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Abstract

In this paper, we study coordinated motion in a swarm robotic system, called
a swarm-bot. A swarm-bot is a self-assembling and self-organizing artifact, com-
posed of a swarm of s-bots, mobile robots with the ability to connect to and dis-
connect from each other. The swarm-bot concept is particularly suited for tasks
that require abilities of navigation on rough terrain, such as space exploration or
rescue in collapsed buildings. In fact, a swarm-bot can exploit the cooperation
of its simple components to overcome difficulties or avoid hazardous situations.
As a first step toward the development of more complex control strategies, we
investigate the case in which a swarm-bot has to explore an arena while avoiding
to fall into holes. In order to synthesize the controller for the s-bots, we rely
on artificial evolution, which proved to be a powerful tool for the production of
simple and effective solutions to the hole avoidance task.

1 Introduction

The first problem to be faced when trying to control an autonomous robot is to make
it move efficiently in a given environment. Depending on the robot, this task can
be rather simple (i.e., the motion of a wheeled robot) or particularly complex (i.e.,
walking for a humanoid robot). Also the environment in which the robot is placed
influences the complexity of the problem: a flat terrain is clearly less challenging than
a rough terrain with holes and obstacles. An additional source of complexity is found
in the coordinated motion task, in which the robotic system is composed of a number of
independent entities that have to coordinate their actions in order to move coherently.

Coordinated motion is a well studied behavior in biology, being observed in many
different animal species. For example, we can think of flocks of birds coordinately flying,
or of schools of fish swimming in perfect unison. These examples are not only fascinat-
ing for the charming patterns they create, but they also represent interesting instances
of self-organized behaviors. Many researchers have provided models for schooling be-
haviors of fish, and replicated them in artificial life simulations (see [2], chapter 11).
Similarly, groups of artificial fish (called e-boids) have been evolved to display schooling
behaviors, obtaining interesting results [13]. Finally, evolutionary computation has been
used also to evolve coordinated motion behaviors in small groups of physical robots [8].

∗Reprinted from Intelligent Autonomous Systems 8, F. Groen, N. Amato, A. Bonarini, E. Yoshida,
and B. Krose, editors, Hole Avoidance: Experiments in Coordinated Motion on Rough Terrain, V. Tri-
anni, S. Nolfi and M. Dorigo, 29-36, Copyright (2004), with permission from IOS Press, Amsterdam,
The Netherlands.
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Coordinated motion is a problem of fundamental importance within the SWARM-
BOTS project1, wherein this research is conducted. The SWARM-BOTS project aims
at the development of a new robotic system, called a swarm-bot [12]. A swarm-bot is
defined as an artifact composed of simpler autonomous robots, called s-bots. An s-bot

has limited acting, sensing and computational capabilities, and can create physical con-
nections with other s-bots, thereby forming a swarm-bot that is able to solve problems
the single individual cannot cope with. Coordinated motion is a basic ability that the
swarm-bot should display: a swarm-bot should move coherently across the environment
as a result of the cooperation of the s-bots assembled in a single structure [1].

Another basic ability for the swarm-bot is coping with rough terrains, holes, gaps
or narrow passages. Navigating on rough terrain is an important feature for an intelli-
gent autonomous system, that can open many possible application scenarios, like space
exploration or rescue in a collapsed building. Research in this direction has focused
mainly on the development of rovers provided with articulated wheels or tracks, like
the pathfinder [9]. A different approach to rough terrain navigation is presented by
reconfigurable robotics, where robots can adopt different shapes in order to cope with
different environmental conditions [3, 10, 14].

In the swarm-bot case, navigation on rough terrain is achieved by means of the
cooperation between s-bots which can self-assemble and build structures that can cope
with hazardous situations like avoiding a hole or passing over a trough. In such cases,
rigid connections serve as support for those s-bots that are suspended over the gap.
This approach to rough terrain navigation also has a natural counterpart in ants of the
species Œcophilla longinoda [6], which are able to build chains connecting one to the
other, creating bridges that facilitate the passage of other ants.

In this paper, we study an instance of the family of “navigation on rough terrain”
tasks, that is, hole avoidance. A swarm-bot has to perform coordinated motion in
an environment that presents holes too large to be traversed. Thus, holes must be
recognized and avoided, so that the swarm-bot does not fall into them. The difficulty in
this task is twofold: first, s-bots should coordinate their motion. Second, s-bots have to
recognize the presence of an hole, communicate it to the whole group and re-organize
to choose a safer direction of motion.

The rest of this paper is organized as follows: Section 2 describes our approach to the
study of the hole avoidance problem. Section 3 and 4 are dedicated to the description
of the obtained results. Finally, Section 5 concludes the paper.

2 Evolution of Hole Avoidance Behaviors

In this paper, the s-bots controllers are obtained using artificial evolution. There
are multiple motivations that lay behind this choice for synthesizing controllers for
a robot [7]. In particular, in a distributed multi-robot context as the one considered
within the SWARM-BOTS project, handcrafting the controllers may be too complex.
Here, artificial evolution can bypass this difficulty, as it directly tests the behavior dis-
played by the robots embedded in their environment. Furthermore, artificial evolution
can exploit the richness of solutions offered by the complex dynamics resulting from
robot-robot and robot-environment interactions [12].

Figure 1a shows the current s-bot.2 In this paper, however, experiments are per-
formed in simulation, using a software based on VortexTM, a 3D rigid body dynamics

1A project funded by the Future and Emerging Technologies Programme (IST-FET) of the Euro-
pean Community, under grant IST-2000-31010.

2Details regarding the hardware and simulation of the swarm-bot can also be found in the project
web-site (www.swarm-bots.org).
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Figure 1: (a) The s-bot prototype, provided of the tracks system, the body holding the
rigid and the flexible grippers, and many sensors. (b) The simulated s-bot model. The
body is transparent to show the chassis (center sphere), the motorized wheels (lighter
spherical wheels) and the passive wheels (darker spherical wheels). The position of the
virtual gripper is shown with an arrow painted on the s-bot ’s body. Ground sensors are
displayed as lines exiting from the s-bot.

simulator. We have defined a simple s-bot model that at the same time allows fast simu-
lations and preserves those features of the real s-bot that we considered most important
(see Figure 1b).

The simulated s-bot is composed of a cylindrical turret (radius: 6 cm, height 6 cm),
connected to a chassis by a motorized hinge joint. The chassis is a sphere (radius:
1.4 cm) to which 4 spherical wheels are connected (radius: 1.5 cm). The lateral wheels
are connected to the chassis by a motorized joint and a suspension system and they
are responsible for the motion of the s-bot. The front and back wheels are passive.
Connections between s-bots are simulated creating a joint between the two bodies.

Each s-bot is provided with a traction sensor placed at the turret-chassis junction.
It detects the direction and the intensity of the traction force that the turret exerts on
the chassis. The traction sensor, integrating all the pulling/pushing forces created by
the movement of the connected s-bots, provides an indication of the average direction
toward which the swarm-bot is trying to move as a whole.3 Besides traction sensors,
we also make use of 4 ground sensors, which are infrared proximity sensors evenly
distributed around the chassis of the s-bot and pointed toward the ground.

Concerning the actuators, each s-bot can control its wheels independently. The
maximum angular speed has been set to 10 rad/s, which corresponds to a maximum
speed of the s-bot of 0.15 m/s. In addition, the movements of the s-bot are also
influenced by the turret/chassis motor. This motor is controlled setting its desired
angular speed as half of the difference between the desired angular speed of the left and
right wheels. This setting helps the rotation of the chassis with respect to the turret
also when one or both wheels of the s-bot do not touch the ground [1].

In order to study the hole avoidance task, we designed a square arena (side 3 m) that
contains 4 square holes (side 60 cm) evenly distributed (see Figure 2b). The swarm-bot

consists of a linear structure made of 4 s-bots, which are rigidly connected by means
of their virtual grippers. Each s-bot is controlled by a simple perceptron, a neural
network connecting its sensory inputs to the motor outputs. The network has 8 sensory
inputs: 4 are dedicated to the readings coming from the ground sensors, and the other
4 encode the intensity and direction of traction (for more details, see [1, 11]). Moreover,
the neural network is provided with one bias unit and 2 outputs that control the two
wheels and the turret/chassis motor. This perceptron has in the whole 18 connections,

3This particular kind of sensor proved to be of fundamental importance for the evolution of coor-
dinated motion in a swarm-bot [1, 11].
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whose weights are evolved.
We use a generational evolutionary algorithm. The initial population is composed

of µ = 100 randomly generated genotypes. Each genotype is binary encoded, and is
mapped into a neural network controller for a single s-bot. Each weight, ranging in
the interval [−10, 10], was represented in the genotype by 8 bits, corresponding to a
genotype length L = 18 × 8 = 144 bits. This controller is cloned in each of the n = 4
s-bots involved in the experiment. The fitness F of each genotype is estimated allowing
the group of s-bots to “live” for M = 5 “epochs” and then averaging the obtained value.
The best λ = 20 genotypes of each generation are allowed to reproduce, each generating
µ/λ = 5 offspring. Each of their bits has a probability 2/L of being flipped. Parents
are not copied to the offspring population (no elitism). An evolutionary experiment
lasts 100 generations. This algorithm is very simple and straightforward, and we found
that it is sufficient to evolve simple but efficient controllers for groups of robots [12, 1].

The fitness function is designed to favor coordinated motion, exploration of the
arena and a fast reaction to the detection of an hole. The fitness estimation F

e
in each

epoch is given by the average of two components, F
e1

and F
e2

. In order to compute
the fitness components, we divide each epoch e into two sub-epochs, e1 and e2. In
the former, we test the genotype for its ability to perform coordinated motion in a
flat environment. Here the s-bots start connected in a linear formation, having the
orientation of their chassis randomly initialized. They are selected for the ability to
move as far as possible from their initial position, which indirectly implies an ability to
display coordinated movements. Therefore, the fitness estimation F

e1
is computed as

the distance covered by the group. The sub-epoch e1 lasts T
e1

= 150 simulation cycles,
each cycle corresponding to 100 ms of real time.

In sub-epoch e2, s-bots are positioned at the center of the arena with holes, and
start in the usual chain configuration. Their chassis are all initialized with the same
random orientation. Also the chain is randomly oriented at the beginning of each sub-
epoch. In this way, there is no need for a coordination phase at the beginning of the
sub-epoch, the focus being on hole avoidance. The sub-epoch lasts T

e2
= 200 cycles.

The fitness estimation F
e2

is given by the product of two sub-components: the survival

sub-component F
s

and the exploration sub-component F
x
. The former rewards only

those genotypes that reach the end of the epoch without falling into a hole. This sub-
component penalizes every fall, even if it happens at the end of the sub-epoch, thus
favoring more robust behaviors. The second sub-component is designed to favor those
genotypes that are able to better explore the arena. In this case, the arena is virtually
divided in 25 square zones of 60 cm side. The genotype is rewarded proportionally to
the percentage of visited zones during the sub-epoch (for more details, see [11]).

3 Obtained Results

In this section, we present the results obtained evolving hole avoidance behaviors using
the controller described above. We replicated the evolutionary experiment 10 times.
The average fitness values, computed over all the replications, are shown in Figure 2.
The average performance of the best individual and of the population are plotted against
the generation number. The plot indicates that the evolutionary experiments were suc-
cessful: the average fitness value of the best individuals reaches the 80% of the theo-
retical maximum value, which cannot be achieved due to the particular experimental
setup.4

4The theoretical maximum value could be reached only if in the first sub-epoch s-bots started with
their chassis perfectly aligned, so that no coordination phase is required, allowing the swarm-bot to
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Figure 2: Hole avoidance results: (a) Average fitness over 10 replications of the exper-
iment. (b) Trajectories displayed by a swarm-bot performing a hole avoidance task.

In order to test the performance of the evolved controllers, we evaluated the best
individuals of the last generation of each replication of the experiment. The correspond-
ing results are shown in Table 1. All individuals perform reasonably well, even if it can
be noted that the average performance of every controller is lower than the average
value achieved at the last generation of the evolutionary runs, showed in Figure 2a.
This is due to the small sampling size used during the evolution (5 epochs per fitness
estimation), which leads to an over-estimation of the fitness of the best individuals
plotted in Figure 2a.

Table 1: Mean performance of the best individuals for each replication of the experi-
ment, averaged over 100 epochs. The best evolved individual is highlighted in bold.

Replication 1 2 3 4 5
Performance 0.6640 0.6541 0.6502 0.6079 0.5835

Replication 6 7 8 9 10
Performance 0.6376 0.6866 0.6397 0.6640 0.6458

Direct observation of the behaviors evolved showed that all efficient solutions rely
on similar strategies. We observed the evolved behaviors placing the swarm-bot in the
arena with holes, and starting with different orientation of the chassis of the s-bots.5 At
the beginning, the s-bots start to move in the direction they were positioned, resulting
in a rather disordered overall motion. Within few simulation cycles, the physical con-
nections transform this disordered motion into traction forces, which are exploited to
coordinate the group. When an s-bot feels a traction force, it rotates its chassis in order
to cancel this force. Once the chassis of all the s-bots are oriented in the same direction,
the traction forces disappear and the coordinated motion of the swarm-bot starts (see
Figure 2b). Then, when one s-bot detects an edge, it rotates the chassis and changes the
direction of motion in order to avoid falling. This change in direction creates a traction
force for the other s-bots, which they perceive by means of their traction sensors. At
this point, a new coordination phase is triggered, which ends up in a new direction of
motion that leads the swarm-bot away from the edge. A key role in the functioning of
this strategy is played by the motor controlling the rotation of the chassis with respect
to the turret of an s-bot. In fact, this motor has a stabilizing effect on the rotation of
the chassis even if one of the wheels is suspended out of the edge. This gives to the
s-bot the chance of changing its direction of motion, even when partially suspended.
Consequently, the s-bot can exert a traction force that can be felt by the other s-bots.

cover the maximum distance.
5See http://www.swarm-bots.org/index.php?main=3&sub=35&conpage=ha for some movies of

these behaviors.
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4 Generalization

The evolved strategy for hole avoidance is very robust, being able to work in a number
of different situations. This is a result of the physical connections among s-bots and,
above all, of the use of the traction sensors.

As a first experiment, we tested the scalability of the evolved controllers varying the
size and the shape of the swarm-bot. We observed that the evolved controllers perform
well in many different conditions. For example, Figure 3a shows the case of a swarm-bot

comprising 8 s-bots connected in a “star” shape. The swarm-bot is placed in a square
arena without holes, but with open borders. The swarm-bot is still able to avoid to fall
out of the arena, notwithstanding the higher inertia of the star formation.

Another interesting feature of the evolved controllers is that they are able to perform
collective obstacle avoidance. In fact, when an s-bot hits an obstacle, its turret exerts
a force on the chassis in a direction opposite to the obstacle. This force is felt as a
traction pulling the s-bot away from the obstacle. In response to this traction, the s-bot

rotates its chassis in order to cancel the traction, as explained before. Moreover, the
rigid connections between s-bots transmit the force resulting from the collision to the
whole group, triggering a fast change in the direction of movement of the swarm-bot. As
shown in Figure 3b, the swarm-bot is able to avoid both holes and obstacles, represented
here by walls surrounding the arena. It is worth noting that the traction sensor works as
an omni-directional bumper distributed on the whole body of the swarm-bot, allowing
collective obstacle avoidance.

Finally, we tested the evolved controllers when the s-bots are connected using flex-
ible, rather then rigid, connections. Flexible connections allow the relative motion of
connected s-bots, and, therefore, the use of this type of connections allows the shape
of the swarm-bot to change during motion. Because of the flexibility of the connec-
tions, traction can be only partially transmitted. Nevertheless, the evolved strategies
still work. We performed tests with both a star and a chain formation composed of 8
s-bots each. The flexible star formation case is shown in Figure 3c, where the swarm-bot

was placed in a square arena with four big cylindrical obstacles and no walls on the
perimeter. Figure 3c shows that the flexible formation was able to perform coordinated
motion, obstacle and hole avoidance, changing shape when it had to go through a nar-
row passage having an obstacle on the left and the arena border on the right. The
flexible formation adapts more easily to the environment, and in some situations can
avoid holes more efficiently than a rigid structure. In fact, the s-bots do not completely
feel the inertia of the swarm-bot, because they can move deforming the structure and
adapting to the edge of the hole. This fact is even more evident in Figure 3d, where a
chain formation was placed in the arena with holes. Here, when the chain reached the
edge, it completely deformed without having a single s-bot being completely pushed
out of the arena.

5 Conclusions

We presented a set of experiments for the evolution of hole avoidance behaviors in
a group of simulated s-bots that are physically connected to form a swarm-bot. The
solutions found by evolution are simple and in many cases they generalize to different
environmental situations. This demonstrates that evolution is able to produce a self-
organizing system that relies on simple and general rules, a system that is consequently
robust to environmental changes and to the number of s-bots involved in the experiment.
The evolved strategies strongly rely on the traction forces produced by those s-bots that
feel the presence of an hazard. Using the information given by the traction sensors, the
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Figure 3: Generalization properties: (a) Size and shape change. (b) Obstacle avoidance.
(c) Obstacle and hole avoidance of a big star formation with flexible connections. (d)
Hole avoidance of a big linear formation with flexible connections.

whole group can change the direction of motion when heading toward a hole.
The traction sensor was found to be a very powerful mean of achieving coordination

in the swarm-bot. In fact, it allows the exploitation of the complex dynamics arising
from the interactions among s-bots and between the s-bots and the environment. It
provides robustness and adaptivity features with respect to environmental or structural
changes of the swarm-bot. Besides, traction forces are used as a sort of communication
of the presence of an hazard. This communication among s-bots is neither direct nor
explicit, but can be considered as an implicit stigmergic communication, as it takes
place through the environment, that is, through the bodies and the physical connections
among s-bots[4, 5]. Finally, the traction sensor can work also as a distributed bumper
for the swarm-bot, allowing collective obstacle avoidance.

The hole avoidance task represents the first step toward the solution of more difficult
problems. We plan to continue studying problems that belong to the “navigation on
rough terrain” family, like passing over a trough or coping with an uneven terrain.
Finally, we will face the challenge given by functional self-assembling for all-terrain
navigation, that is, we will study the problem of forming or disbanding swarm-bots with
a shape functional to the environmental conditions and to the task to be performed, in
order to maximize the efficiency in the navigation.
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