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Abstract

This paper is about the design of an artificial neural network to control an autonomous robot

that is required to iteratively solve a discrimination task based on time-dependent structures. The

“decision making” aspect demands the robot “to decide”, during a sequence of trials, whether or

not the type of environment it encounters allows it to reach a light bulb located at the centre of a

simulated world. Contrary to other similar studies, in this work the robot employs environmental

structures to iteratively make its choice, without previous experience disrupting the functionality of

its decision-making mechanisms.

keywords: Evolutionary robotics, artificial neural networks, evolutionary algorithms.

1 Introduction

Evolutionary Robotics (ER) is a methodological tool for the design of robots’ controllers. Owing to its
properties, ER can also be employed to study the evolution of behaviour and cognition from a perspective
complementary to classic biological/psychological methods (see [4]).

Given the current “status” of their research field, ER practitioners focus not only on studies with an
explicit bearing on engineering or biological literature but also on studies which aim to further develop
their methods. For example, several research works have focused on the modelling and exploitation of
alternative controllers for autonomous robots—e.g., spiking networks [7], and gas networks [5]. In general,
these works look at how to exploit evolution to shape these controllers rather than at the complexity and
the significance of the evolved behaviour. Contrary to these, other works are more focused on the evolution
of novel—i.e., never evolved yet—and complex behaviour. For example, some works exploited “classic”
neural structures to evolve controllers for agents capable of non-reactive or learning behaviour [8]. The
results of these studies should be considered as a “proof-of-concept”: they show that the type of control
structure employed can be shaped by evolutionary algorithms to provide the robot with the underlying
mechanisms required to solve the task at hand.

The work illustrated in this paper belongs to the latter category. To the best of our knowledge, this
is the first study in which a single (i.e., non modularised) dynamic neural network has been shaped to
control the behaviour of an autonomous robot engaged in an iterated discrimination task.1. The task
requires navigation within a circular arena in order to approach a light bulb located at the centre of
this simulated world. The “decision making” aspect requires the robot “to iteratively decide”, during
a sequence of trials, whether or not the types of environment it encounters allow it to accomplish its
task. The difficulty of the task lies, on the one hand, in the nature of the discrimination problem, which
requires the integration of sensory information over time; on the other hand, in the design of decision
making mechanisms to carry out the iterated discrimination task. That is, this task requires the robot to
possess memory structures which do not lose their functionality due to potentially disruptive effects of the
previous experience—i.e., the nature and the amount of discriminations already made. The results show
that dynamic neural networks can be successfully designed by evolution to allow a robot to iteratively
solve the discrimination task based on time-dependent cues. We also provide an analysis which gives
some hints on the strategy employed by the best evolved robot to solve the task.

2 Methods

Description of the task At the start of each trial, the simulated robot is placed in a circular arena
with a radius of 110 cm (see Fig. 1). The arena is simulated as a toroidal world; that is, if the robot

1A literature review of the field can be found in [9]
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traverses the world’s boundaries from one side, it comes in from the other side at the anti-diametrical
position. At the centre of this world there is a light bulb that is always turned on during a trial. The
light can be perceived up to a distance of 90 cm. Between 90 cm and 110 cm of distance to the bulb,
the robot does not perceive any light. We refer to this area of the arena as the dark zone. The robot
perceives the light through its ambient light sensors. The colour of the arena floor is white except for a
circular band, centred around the lamp, within which the floor is in shades of grey. The circular band
covers an area between 40 cm and 60 cm from the light. The band is divided in three sub-zones of equal
width but coloured differently—i.e., light grey, dark grey, and black. The robot perceives the colour of
the floor through its floor sensor, positioned under its chassis.

The robot can freely move within the arena as well as on the circular band, but it is not allowed to
cross the black edge of the band close to the light. This edge can be imagined as an obstacle or a trough,
that prevents the robot from further approaching the light. Whenever the robot crosses the black edge,
the trial is unsuccessfully terminated. The light grey and the dark grey zones are meant to work as a
warning signal which indicates to the robot how close it is to the danger—i.e., the black edge. There are
two types of environment. In one type—referred to as Env A—the band presents a discontinuity (see
Fig. 1, left). This discontinuity, referred to as the way in zone, is a sector of the band in which the floor
is white. In the other type—referred to as Env B—the band completely surrounds the light (see Fig. 1,
middle). The way in zone represents the path along which the robot is allowed to safely reach the light
in Env A. The robot cannot reach the proximity of the light in Env B.

At the start of each trial, the robot does not know in which type of environment it is located. It finds
itself positioned in the dark zone with a random orientation. At this time its task is to explore the arena,
in order to get as close as possible to the light. If it encounters the circular band it has to start looking
for the way in zone in order to continue approaching the light. If it finds the way in zone, the robot has
to get closer to the light and remain in its proximity for 10s. After this time, the trial is successfully
terminated and the robot is randomly re-positioned in the dark zone. If there is no way in zone (i.e., the
current environment is Env B), the robot should be capable of (a) “recognising” the absence of the way
in zone, (b) notifying by a sound signal the absence of the way in zone, (c) coming back to the dark zone
by performing anti-phototaxis. Back in the dark zone either because re-positioned or because returned
there, the robot has to “prepare” itself for a new trial in which the characteristics of the environment
are unknown. The transition between two consecutive trials is particularly complex in case the robot has
just concluded a trial in Env B. This transition requires the robot to turn the sound off and to switch
from anti-phototaxis (i.e., the last behaviour performed in Env B) to random walk and then phototaxis
once the light falls again within its perceptual field.

This task is very similar to the one described in [9] since the robot is required to make use of a
temporal cue in order to discriminate between Env A and Env B. This discrimination is based on the
persistence of the perception of a particular sensorial state (e.g., the perception of the grey floor, the
light, or both) for the amount of time that, given the trajectory and speed of the robot, corresponds
to the time required to make a loop around the light. In other words, if the perception of a particular
sensorial state common to both types of environment lasts significantly long with respect to the speed
and trajectory of the robot, then that sensorial state might be used by the robot to “conclude” that there

Env A Env B S-bot
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Figure 1: Depiction of the task and picture of a s-bot close to a 1 Euro coin. The dark zone is the area
within the dotted circles. The target area, centred on the light, is indicated by the dashed circle. The
continuous arrows are examples of good navigational strategies.
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is no way in zone, and a tone has to be emitted (see [9] for more details).
However, with respect to [9], this task is meant to be a step further in the evolution of decision

making mechanisms based on time-dependent structures. In [9], we studied the evolution of decision
making mechanisms for a one shot discrimination task by simply resetting the robot’s controller (i.e.,
set to 0 the cell potential of the neurons) at the beginning of each trial. The resetting “facilitates” the
task of discriminating between Env A and Env B since (a) the integration of the sensorial state which
eventually leads to the emission of the sound signal is not disrupted by the type and the amount of
previous experience; (b) the robot does not need to terminate the emission of the sound signal, since,
given the way in which sound is implemented, such an event is automatically determined by the resetting;
(c) the robot does not need to “recognise” the end of the current trial and the beginning of a new one,
since such transition implies the resetting of the activation values of the neurons of its controller. In other
words, each trial is for the robot like a new life in which, starting from the same internal state, a single
decision has to be made.

The task described in this paper is made significantly more complex with respect to what shown
in [9] by (a) avoiding to impose the resetting of the robot controller at the beginning of each trial, and
consequently by (b) letting the robot autonomously develop the conditions which set the end of a trial
and the beginning of a new one. If the robot controller is not reset at the beginning of a trial, the decision
to be made in the trials following the first one, will necessarily be carried out by mechanisms which have
already been “shaped” by previous experience.2 Therefore, it is important that the functionality of the
decision making mechanisms employed by the robot are not disrupted by previous experience. In other
words, discriminating between Env A and Env B requires the robot to make use of memory structures
to integrate over time a particular sensorial state. Carrying out such an iterated discrimination task
requires the robot to possess memory structures which do not lose their functionality due to potential
disruptive effects of the previous experience—i.e., the nature and the amount of discriminations already
made. Furthermore, the robot should be able to exploit its perception in order to establish when a trial
ends and a new one starts. This is particularly important at the end of an exploration in Env B, in
which the robot should conclude the trial by emitting a tone and moving away from the light and should
begin the new trial with the sound turned off and performing light seeking behaviour. These changes
(i.e., sound on - sound off, anti-phototaxis - phototaxis) have to be triggered by perceptual states which
ideally set the end of a trial and the start of a new one.

Several implementation details such as (i) requiring the robot to perform anti-phototaxis in Env B,
(ii) the introduction of the dark zone, and (iii) the toroidal world, have been introduced to make sure
that the robot’s sensory experience can potentially provide the support the robot needs in order to make
iterated choices. For example, a robot that successfully terminates a trial in Env B can exploit the
perceptual states associated with performing anti-phototaxis and with its presence in the dark zone to
“prepare” itself for the new trial (a) by turning the sound signalling off, and (b) by adjusting its internal
state so that it will be ready for a new discrimination task. In particular, being repositioned in the dark
zone after a success in Env A, or reaching the dark zone after a success in Env B, are two events that
can be unambiguously employed by the robot in order to establish the end of the current trial and the
beginning of the following one. In the absence of a global framework of reference (e.g., a compass), the
toroidal world makes it easier for a robot to navigate in the dark zone in order to reach the area in which
the light source can be perceived.

The simulation model The robot and its world are simulated using the “minimal simulation” tech-
nique described in [6]. This technique uses high levels of noise to guarantee that the simulated controller
transfers to the physical robot with no loss of performance (see [1]). Our simulation models some of
the hardware characteristics of the real s-bots. The s-bots are small wheeled cylindrical robots, 5.8 cm
of radius, equipped with infrared proximity sensors, light and humidity sensors, accelerometers, and
omni-directional camera (see Fig. 1, right, and also http://www.swarm-bots.org/ for more details).
In particular, our simulated s-bot is provided with four ambient light sensors, placed at −112.5◦ (A1),
−67.5◦ (A2), 67.5◦ (A3), and 112.5◦ (A4) with respect to its heading, a floor sensor positioned facing
downward on the underside of the robot (F ), an omni-directional sound sensor (S), and a loud-speaker.
The motion of the robot is implemented by the two wheel actuators. Light levels change as a function of
the robot’s distance from the lamp. Light sensor activation values are taken from a look-up table which
contains sampled information from the real robot. The ground sensor detects the level of grey of the floor.
The robot floor sensor outputs the following values: 0 if the robot is positioned over the white floor; 1

3
if

the robot is positioned over the light grey floor; 2

3
if the robot is positioned over the dark grey floor; 1

2In our model, it is the neuron’s cell potential to be modified by the robot’s experience.
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if the robot is positioned over the black floor. The simulated speaker produces a binary output (on/off);
the sound sensor has no directionality and intensity features. Concerning the function that updates the
position of the robot within the environment, we employed the Differential Drive Kinematics equations,
as presented in [2]. 10% uniform noise was added to the light sensor readings, the motor outputs and the
position of the robot.

The controller and the evolutionary algorithm Fully connected, eight neuron continuous time
recurrent neural networks (CTRNNs) are used. All neurons are governed by the following state equation:

dyi

dt
=

1

τi



−yi +

8
∑

j=1

ωjiσ(yj + βj) + gIi



 σ(x) =
1

1 + e−x
(1)

where, using terms derived from an analogy with real neurons, yi represents the cell potential, τi the
decay constant, βj the bias term, σ(yj + βj) the firing rate, ωji the strength of the synaptic connection
from neuron jth to neuron ith, Ii the intensity of the sensory perturbation on sensory neuron i. Four
neurons receive input (Ii) from the robot sensors: neuron N1 takes input from A1+A2

2
, N2 from A3+A4

2
,

N3 from F , and N4 from S. Neurons N1, N2, and N3 receive as input a real value in the range [0,1],
while neuron N4 receives a binary input (i.e., 1 if a tone is emitted, otherwise 0). The other neurons do
not receive any input from the robot’s sensors. The cell potential (yi) of the 6th neuron, mapped into
[0,1] by a sigmoid function (σ), is used by the robot to control the sound signalling system (i.e., the robot
emits a sound if y6 >= 0.5). The cell potentials (yi) of the 7th and the 8th neuron, mapped into [0,1] by a
sigmoid function (σ) and then linearly scaled into [−6.5, 6.5], set the robot motors output. The strength
of synaptic connections ωji, the decay constant τi, the bias term βj , and the gain factor g are genetically
encoded parameters. Cell potentials are set to 0 any time the network is initialised or reset, and circuits
are integrated using the forward Euler method with an integration step-size of 0.1.

A simple generational genetic algorithm is employed to set the parameters of the networks [3]. The
population contains 100 genotypes. Generations following the first one are produced by a combination of
selection with elitism, recombination and mutation. For each new generation, the three highest scoring
individuals (“the elite”) from the previous generation are retained unchanged. The remainder of the new
population is generated by fitness-proportional selection from the 70 best individuals of the old popu-
lation. Each genotype is a vector comprising 81 real values (64 connections, 8 decay constants, 8 bias
terms, and a gain factor). Initially, a random population of vectors is generated by initialising each com-
ponent of each genotype to values chosen uniformly random from the range [0,1]. New genotypes, except
“the elite”, are produced by applying recombination with a probability of 0.3 and mutation. Mutation
entails that a random Gaussian offset is applied to each real-valued vector component encoded in the
genotype, with a probability of 0.13. The mean of the Gaussian is 0, and its standard deviation is 0.1.
During evolution, all vector component values are constrained to remain within the range [0,1]. Genotype
parameters are linearly mapped to produce CTRNN parameters with the following ranges: biases βj ∈

[-2,2], weights ωji ∈ [−6, 6] and gain factor g ∈ [1,12]. Decay constants are firstly linearly mapped onto
the range [−0.7, 1.7] and then exponentially mapped into τi ∈ [10−0.7, 101.7]. The lower bound of τi

corresponds to a value slightly smaller than the integration step-size used to update the controller; the
upper bound corresponds to a value slightly bigger than the average time required by a robot to reach
and to perform a complete loop of the band in shades of grey.

The evaluation function During evolution, each genotype is coded into a robot controller, and is
evaluated ten times, 5 trials in Env A, and 5 trials in Env B. The sequence of environments within the 10
trials is chosen randomly. Each trial (e) differs from the others in the initialisation of the random number
generator, which influences the robot starting position and orientation, the position and amplitude of the
way in zone, and the noise added to motors and sensors. The width of the way in zone can vary from
45◦ to 81◦. Within a trial, the robot life-span is 80 s (800 simulation cycles). In each trial, the robot is
rewarded by an evaluation function fe which corresponds to the sum of the following four components:
1) C1 rewards fast movement to the target area. C1 = di−dc

di

where di and dc represent respectively the
initial and the current Euclidean distance between the robot and the light bulb. In Env A, C1 is set to
1 if the robot terminates the trial less than 35 cm away from the light bulb. In Env B, C1 is set to 1 as
soon as the robot reaches the circular band without crossing the black edge in the direction of the light.
2) C2 rewards movements away from the light. C2 = dc

dmax

if trial in Env B , 0 if trial in Env A or if
C1 < 1 (dmax = 110 cm).
3) C3 rewards agents that never signal in Env A and that always signal in Env B. C3 is set to 1 if the
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Table 1: Results of post-evaluation showing the performance of the best evolved controllers of each run.
The percentage of success (Succ.) and the percentage of errors (I, II, III in Env A, and IV, V, VI, VII in
Env B) over 252 evaluations are shown for both Env A and Env B. Additionally, the average offset ∆,
its standard deviation (degrees), and the number of successful trials (n.) are shown for Env B.

run Env A Env B
Succ. Types of Error (%) Succ. Types of Error (%) offset ∆

I II III IV V VI VII Avg. Std n.
n. 1 83.17 7.77 4.76 0.15 1.42 14.92 0.00 4.12 79.52 21.25 115.86 18
n. 2 94.12 5.87 0.00 0.00 96.42 1.34 0.00 0.00 2.22 50.52 124.08 1215
n. 3 22.85 0.00 77.06 0.0 0.0 0.23 0.0 99.76 0.0 — — 0.0
n. 4 84.92 14.68 0.23 0.00 98.57 0.0 0.0 0.0 1.42 -81.12 39.32 1242
n. 5 86.19 8.33 5.23 0.07 81.58 0.07 0.15 15.23 2.93 -10.8 79.05 1028
n. 6 33.17 10.07 50.55 6.19 92.93 0.00 0.00 0.079 6.98 6.1 104.75 1171
n. 7 88.49 11.11 0.39 0.00 97.53 0.00 0.00 0.00 2.46 -15.81 80.87 1229
n. 8 82.93 16.50 0.47 0.07 96.19 1.11 0.00 0.00 2.69 -60.04 82.16 1212
n. 9 99.68 0.07 0.23 0.00 95.87 2.06 0.00 0.23 1.82 71.03 50.89 1208
n. 10 59.04 40.95 0.00 0.00 98.57 0.07 0.00 0.00 1.34 -155.86 57.36 1242

robot signals properly, 0 otherwise. The robot is considered to have signalled only if it has done so being
closer than 70 cm from the light. By doing so, we create an area between 70 cm and 110 cm from the
light that the robot can use to turn the sound off at the end of a trial in Env B.
4) C4 rewards movements toward the light. C4 = 1 −

k
T

if trial in Env A, 0 otherwise. k is the number
of simulated time-steps the robot spent to reach the target area, and T = 800 is the total number of
simulated time-steps available to the robot. An important feature of this evaluation function is that it
simply rewards agents that make a proper use of their sound signalling system, without directly interfering
with the nature of the discrimination strategies.

3 Results

Ten evolutionary simulations, each using a different random initialisation, were run for 7000 generations.
We examined the best individual of the final generation from each of these runs in order to establish
whether they evolved the required behaviour. Recall that the robot is successful in Env A if it reaches
the target area without emitting any sound signal; it is successful in Env B if (a) it reaches the circular
band, (b) signals the absence of the way in zone by emitting a tone, and (c) comes back to the dark zone
(anti-phototaxis).

During the post-evaluation phase, each of the ten best evolved controllers was subjected to a set of
252 different re-evaluations. Since a re-evaluation is composed of 10 trials, out of which 5 are Env A and
5 are Env B, 252 ( 10!

5!·5!
) is the number of possible evaluations which differ in the order of presentation of

Env A and Env B. 2520 is the total number of trials experienced by each robot during the post-evaluation,
half of which in Env A and half in Env B. Note that during evolution, each robot experienced only a
particular sequence of 5 trials in Env A and 5 trials in Env B. Since the robot controller is reset only at
the beginning of each evaluation, the order of presentation of the types of environment might bear upon
its performance. A robot that results successful in the post-evaluation is one which employs a strategy
which is effective regardless the sequence of environments.

During the post-evaluation phase, we looked at the robot’s capability to reach the light bulb (Succ.)
in Env A, without making any error. Errors can be of three types: error (I) refers to the case in which
the robot emits a sound signal, error (II) refers to the case in which the robot crosses the black edge of
the band, error (III) refers to the case in which the robot makes both errors I and II within the same
trial. Similarly, in Env B, we looked at the performance of the robot in completing the task as mentioned
above (Succ.), without committing any error. Four error types are possible: error (IV) refers to the lack
of sound signalling, error (V) refers to the robot crossing the black edge of the band, error (VI) refers to
the robot missing to reach the dark zone after having signalled; error (VII) refers to the case in which the
robot makes error IV, V, and VI within the same trial. Furthermore, in Env B we also compute the offset
(offset ∆) between the entrance position of the robot in the circular band and the position in which the
robot starts to signal (see [9] for a description of how the offset ∆ is computed). This measure accounts
for the precision of signalling with respect to the time it takes for the robot to complete a loop around the
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Figure 2: The graph shows the output of the neuron that controls the sound (N6, see continuous thick
line), the floor sensor reading (F , see continuous thin line), the average values of the light sensor readings
(A1, A2, A3, A4, see dotted line), during the first 5 trials of a 10 trials evaluation in which the robot did
not make any error. The numbers on the x-axis, show at which point of the robot life-span a new trial
begins.

light. Offset ∆ takes value 0◦ if the robot signals exactly after covering a complete loop of the circular
band. Negative values of the offset ∆ suggest that the robot signals before having performed a complete
loop; positive values correspond to the situation in which the robot emits a tone after having performed
a loop around the light. The results of the post-evaluation, shown in Table 1, shed light on two aspects
of our work: first, they give a quantitative estimate of the overall success rate of the evolved strategies;
second, they provide elements to infer the behavioural strategies employed by our robots to solve the task.
Concerning the percentage of success in both types of environment, the results are quite encouraging.
Despite the complexity of the task, six runs out of ten—runs n. 2, 4, 5, 7, 8, 9—show a percentage of
success (Succ.) in both types of environment higher than 80% (i.e., more than 2016 successful trials out
of 2520). The strategies of run n. 2 and 9 are the most effective, with a percentage of success in both
environments higher than 94%. The performance of run n. 4, 5, 7, 8 is mainly “blurred” by errors of
type I, caused by a risk-taking behaviour, which led the robot to signal slightly before having completed
a loop around a light—see the negative values of the average offset ∆. Among the less successful robots,
the performance of run n. 10 is also disrupted by errors of type I. The bad result of run n. 6, and n. 2
is mainly due to crossing the black edge of the circular band (error type II). Run n. 1 is quite successful
in Env A, but its performance is particularly bad in Env B. In view of its high error rate of type VII, we
can conclude that this robot employs the strategy of never signalling in Env B, and of remaining on the
circular band circuiting around the light. It is worth noticing that the two most successful runs (i.e., run
n. 2 and 9) employ a risk-averse behaviour, since they have the tendency to signal slightly after having
completed a loop around a light—see the positive values of the average offset ∆.

The graphs shown in Fig. 2 give us some hints on the mechanisms employed by robot run n. 9 (a)
to control the sound, and (b) to switch from phototaxis to anti-phototaxis and vice-versa. As far as it
concerns (a), Fig. 2 shows that the output of neuron N6 increases if the robot is on the circular band. The
output of N6 crosses the 0.5 threshold—i.e., the sound is turned on—if the robot remains on the band for
a time slightly higher than the time required to make a loop around the light. This can be inferred by the
positive value of the offset ∆ in Table 1. Concerning (b), the robot performs phototaxis as long as it does
not perceive any sound. Fig. 2 shows that the perception of sound makes the robot change strategy—i.e.,
from phototaxis to anti-phototaxis. Once the robot is out of the band, the output of neuron N6 starts
decreasing. However, given the rate of change of the output of neuron N6, the robot stops emitting a
tone just after having reached the dark zone. Owing to this mechanism, the robot manages, by the end
of a trial in Env B, to set the cell potential of neuron N6 to a value which makes it possible for it (a) to
approach the light at the beginning of the following trial, since no sound is emitted, and (b) to be in a
“state” to be able to perform another discrimination.

4 Conclusions

In this paper, we have shown that a single dynamic neural network can be synthesised by evolution
to allow an autonomous robot to successfully perform an iterated discrimination task, based on time-
dependent structures. The results illustrated here are of particular interest because, to the best of our
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knowledge, this is the first study in which an autonomous robot manages to iteratively solve a complex
non-reactive task without previous experience disrupting its decision making mechanisms. The perfor-
mance of the best evolved robot was not disrupted by the sequence of presentation of the environments.
However, the robustness of the evolved strategies with respect to other potentially more disruptive envi-
ronmental changes, such as the dimensions of the circular band, and the dark zone, remains to be assessed.

Acknowledgements This work was supported by the ECAgents project, funded by the Future and
Emerging Technologies programme of the European Commission, under grant IST-1940. The authors
thank Thomas Halva Labella and Vito Trianni for stimulating discussions and feedback during the prepa-
ration of this paper, and the three reviewers for their helpful comments. Marco Dorigo acknowledges
support from the Belgian FNRS, of which he is a Research Director, and from the “ANTS” project, an
“Action de Recherche Concertée” funded by the Scientific Research Directorate of the French Commu-
nity of Belgium. The information provided is the sole responsibility of the authors and does not reflect
the Community’s opinion. The Community is not responsible for any use that might be made of data
appearing in this publication.

References

[1] C. Ampatzis, E. Tuci, V. Trianni, and M. Dorigo. Evolving communicating agents that integrate
information over time: a real robot experiment. Technical Report TR/IRIDIA/2005-12, Université
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