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Abstract

In this paper, we aim to design decision-making mechanisms for a
simulated Khepera robot equipped with simple sensors, which integrates
over time its perceptual experience in order to initiate a simple signalling
response. Contrary to other previous similar studies, in this work the
decision-making is uniquely controlled by the time-dependent structures
of the agent controller, which in turn, are tightly linked to the mechanisms
for sensory-motor coordination. The results of this work show that a sin-
gle dynamic neural network, shaped by evolution, makes an autonomous
agent capable of ‘feeling’ time through the flow of sensations determined
by its actions. Further analysis of the evolved solutions reveals the nature
of the selective pressures which facilitate the evolution of fully discriminat-
ing and signalling agents. Moreover, we show that, by simply working on
the nature of the fitness function, it is possible to bring forth discrimina-
tion mechanisms which generalise to conditions never encountered during
evolution.

1 Introduction

Animals that forage in a heterogeneous environment, where resources are dis-
tributed in patches, are required to make ‘complex decisions’ such as in which
patch to forage, or at which moment in time it is better to move to another
patch. To make such decisions, animals need to acquire relevant information
from their environment. Although several different mechanisms have been pro-
posed to account for the observed behaviour of different animals, behavioural
ecologists tend to assume that the experience the animals have of the patch
during time has an incremental or a decremental effect on the animal tendency
to remain in the patch (see Nonacs, 2003, Alphen et al., 2003, for more on this
issue).

A general problem common to biology and robotics concerns the definition
of the mechanisms necessary to decide when it is better to pursue a particular
action in a certain location and at which moment in time it is better to leave
for pursuing a similar or a different activity in a similar or different location.
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This problem is not limited to foraging alone, but it extends to many activi-
ties a natural or artificial agent is required to carry out. Autonomous agents
may be asked to change their behaviour in response to the information gained
through repeated interactions with their environment. For example, in a group
of robots, although many individual actions might be simpler to carry out than
a single coordinated activity, they might turn out to be less efficient (see Tri-
anni et al., 2004). Therefore, autonomous agents require adaptive mechanisms
to decide whether it is better to pursue solitary actions or to initiate cooperative
strategies.

In this paper, we aim at synthesising decision-making mechanisms for an au-
tonomous robot equipped with simple sensors, which integrates over time its per-
ceptual experiences in order to initiate alternative actions. In other words, the
behaviour of the agent should change as a consequence of its repeated interaction
with particular environmental circumstances. We are interested in exploiting
a biologically-inspired evolutionary approach, based on the use of dynamical
neural networks and genetic algorithms (Beer, 1995). Generally speaking, the
appeal of an evolutionary approach to robotics is twofold. Firstly, and most ba-
sically, it offers the possibility of automating a complex design task (Nolfi and
Floreano, 2000). Secondly, since artificial evolution needs neither to understand,
nor to decompose a problem in order to find a solution, it offers the possibility
of exploring regions of the solution space that conventional design approaches
are often constrained to ignore (Harvey et al., 1992). In our work, artificial
evolution should tightly couple the agent’s decision-making mechanisms to the
nature of the environment and to the sensory-motor capabilities of the agent.

The experiment performed here, described in detail in section 2, requires an
autonomous agent to possess both navigational skills and decision-making mech-
anisms. That is, the agent should prove capable of navigating in a boundless
arena in order to approach a light bulb positioned at a certain distance from its
starting position. Moreover, it should prove capable of discriminating between
two types of environment: one in which the light can be actually reached, and
another in which the light is surrounded by a ‘barrier’ which prevents the agent
from proceeding further toward its target. Due to the nature of the experimen-
tal setup, the agent can find out in which type of environment it is situated
only if it proves capable of (i) moving in a coordinated fashion in order to bring
forth the perceptual experience required to discriminate between the two envi-
ronments; (ii) integrating over time its perceptual experience in order to initiate
a signalling behaviour if situated in an environment in which the light cannot
be reached.

The results of our simulations show that a single Continuous Time Recur-
rent Neural Network—CTRNN, described in section 4.2 and also in (Beer,
1995)—shaped by evolution makes an autonomous agent capable of ‘feeling’
time through the flow of sensations determined by its actions.1 Low level ‘leaky-
integrator’ neurons, which constitute the elementary units of the robot’s con-
troller, provide the agent with the required time-dependent structures. Further
analysis of the evolved solutions reveals the nature of the selective pressures
which facilitate the evolution of fully discriminating and signalling agents (see

1The term ‘feeling’, extensively employed in this document, could be seen as an anthropo-
morphism. However, in this paper, we use it to mean no more than: a robot that manages
to discriminate between two types of environment by relying on the persistence over time of
a particular perceptual experience.

2



2

F

NN

1L L

M1

S

12
0

120

M2

Figure 1: A picture of a Khepera robot on the left. Plan of the robot on the
right, showing sensors and motors. The robot is equipped with two ambient
light sensors (L1 and L2) and a floor sensor indicated by the black square F .
The left and right motor (M1 and M2) are controlled by a dynamic neural
network (NN). A simple sound signalling system, controlled by an output of the
network, is referred to as S.

section 5). Moreover, we show that, simply by working on the nature of the fit-
ness function, it is possible to bring forth discrimination mechanisms which are
robust enough to deal with environmental circumstances that have never been
encountered by the best evolved robots’ ancestors. This result further supports
the significance of the evolutionary robotics approach as a suitable method to
develop adaptive autonomous systems.

The paper is structured as follows. Section 2 gives a detailed description of
the discrimination task. Section 3 highlights similarities and differences between
our approach and some other works in the evolutionary robotics literature about
decision-making problems based on the evolution of ‘low-level’ time-dependent
structures. We claim that, although other studies looked at the evolution of
time-dependent structures to control the behaviour of agents required to make
decisions based on their experience, our experimental setup allows us to look at
issues that have not been yet explored. Section 4 introduces the experimental
setup used for the experiments described in section 5 and section 6. Conclusions
are drawn in section 7.

2 Description of the task

At the beginning of each trial, a robot is positioned within a boundless arena,
at about 100 cm west of a light bulb, with a randomly determined orientation
chosen between north-east and south-east (see figure 2 left). The light bulb
is always turned on during the trial. The robot perceives the light through
its ambient light sensors, positioned 45 degrees left and 45 degrees right with
respect to its heading. Light levels alter depending on the robot’s distance
from the light. The colour of the arena floor is white except for a circular
band, centred around the lamp, within which the floor is in shades of grey. The
circular band covers an area between 40 cm and 60 cm from the light; the floor is
black at exactly 40 cm from the light; the grey level decreases linearly with the
distance from the light. The robot perceives the colour of the floor through its
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Figure 2: Depiction of the task. The small black circle represents the robot at
starting position. The small empty circle represents the light bulb. The arena
floor is white everywhere except within a circular band surrounding the light.
The way in zone corresponds to the sector of the band, indicated by dotted
lines, in which the floor is white. In both pictures, the continuous arrows are
examples of good navigational strategies; the dashed arrows are examples of
forbidden trajectories. In Env. B, the continuous arrow gets thicker to indicate
that the robot emits a sound after having made a loop around the light.

floor sensor, positioned under its chassis, which outputs a value scaled between
0—when the robot is positioned over white floor—and 1—when it is over black
floor (see section 4 for a description of the robot).

The robot can freely move within the band, but it is not allowed to cross
the black edge. The latter can be imagined as an obstacle or a trough, that
prevents the robot from further approaching the light (see dashed arrows in
figure 2). Whenever the robot crosses the black edge, the trial is unsuccessfully
terminated. The area in shades of grey is meant to work as a warning signal
which indicates to the robot how close it is to the danger—i.e., the black edge.

There are two types of environment. In one type—referred to as Env. A—
the band presents a discontinuity (see figure 2, left). This discontinuity, referred
to as the way in zone, is a sector of the band in which the floor is white. In
the other type—referred to as Env. B—the band completely surrounds the light
(see figure 2, right). The way in zone represents the path along which the robot
is allowed to safely reach the light in Env. A. A successful robot should prove
capable of performing phototaxis as well as looking for the way in zone to avoid
to cross the black edge of the band. Such a robot should always reach the
light in Env. A. On the contrary, in Env. B the robot should, besides avoiding
to cross the black edge, signal the absence of the way in zone by emitting a
tone. How can the robot, provided only with local information, distinguish
between environments in which the band presents a discontinuity (i.e., Env. A)
and environments in which the band does not presents any discontinuity (i.e.,
Env. B)?

The cue the agent should use is a temporal one: that is, the Env. B can be
‘recognised’ by the persistence of a particular perceptual state for the amount of
time necessary to discover that there is no way in zone. For example, a successful
agent might integrate over time the grey level sensed by its floor sensor to bring
forth something similar to the ‘feeling’ of being travelling within the band for as
long as the time required to complete a loop. Such a strategy would allow the
robot to make sure that there is no way in zone. Alternatively, the robot might
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simply react to the colour of the floor and integrate over time the perceived
light intensity. In this case, the perception of the circular band is simply used
to interrupt the phototaxis and to initiate a circular trajectory.

Notice that, whatever is the nature of the perceptual state that the robot
integrates over time, the underlying mechanisms for the integration are strongly
dependent upon the way in which the robot moves within the environment.
For example, let’s assume that our robot, by circuiting around the light while
remaining over the circular band, integrates over time the reading from the floor
sensor. By employing this strategy, the amount of time required for our robot to
perform a complete loop of the band depends on the dimensions of the band and
on the way in which the robot moves within the band. The robot movements—
e.g., its speed and trajectory—are determined by its controller. Thus, the latter
should make the robot move in such a way that, if the perception of the band
lasts for a certain amount of time, the robot can deduce that the band does not
present any discontinuity. Consequently, it should activate the sound signalling.

In view of what we have just said, we claim that the most challenging part of
our empirical work resides in (i) synthesising, through an evolutionary process,
a robot’s controller which must be capable of moving the robot coordinately so
that it can integrate over time the flow of perception determined by its actions;
(ii) evolving within a single—i.e., not modularised—controller the mechanisms
required for sensory-motor coordination and discrimination through sound sig-
nalling.

As illustrated in the next section, the results of previous similar works in
the evolutionary robotics literature seem to suggest that CTRNNs provide all
the ‘building blocks’ necessary for evolution to generate the mechanisms re-
quired by an autonomous agent to perform this task: that is, mechanisms for
sensory-motor coordination and time-dependent structures for decision making
(see section 3).

3 Related work

Several studies have described evolutionary simulation models in which time-
dependent structures are evolved to control the behaviour of agents required to
make decisions based on their experiences. The aim of this section is to highlight
similarities and differences between our experiments and those already in the
literature.

First of all, we wish to make a distinction between our work and some others
that we refer to as non-ecological models (Todd and Miller, 1991a,b, Yamauchi
and Beer, 1994, Tuci et al., 2002a). In our model, the agent perception is
brought forth by the agent itself through its actions. Contrary to us, in the
non-ecological models the perceptual experience of the agents is determined
by the experimenter. This is, in our view, a significant difference which bears
upon the complexity of our task. Obviously, the flow of perception provides the
agents the cues to make the discrimination. In non-ecological models, the dis-
crimination task is therefore facilitated by the fact that perceptual structures
are ‘made available’ to the agent by the experimenter (see also Parisi et al.,
1990, for more on this issue). Moreover, some of the non-ecological models (see
for example Yamauchi and Beer’s 1994 experiment) are further simplified by
the presence of an explicit reinforcement signal—i.e., an input signal explicitly
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dedicated to inform the agent’s controller on the characteristics of the ‘environ-
mental circumstances’ in which it is currently situated by making available to
the system any possible mismatch between the current agent’s action and the
correct response.

Other studies on the evolution of time-dependent structures for discrimina-
tion tasks share with our experiment the ecological perspective, in which the
nature of the agent’s perception is determined by its own actions, and the re-
inforcement signals are part of the evolved structures (see Ziemke and Thieme,
2002, Tuci et al., 2002b, Nolfi, 2002, Blynel and Floreano, 2003). The evolution
of time-dependent structures and decision-making mechanisms have been ex-
tensively studied on the T-maze problem (see Ziemke and Thieme, 2002, Blynel
and Floreano, 2003). Generally speaking, these tasks require a robot to find
its way to a goal location, placed at the bottom of any of the two arms of a
maze. When at the T junction, the robot must decide whether to turn left or
right. The correct decision can be made if the agent is capable of exploiting
perceptual cues which were available to it while it was navigating down the
first corridor, or by ‘remembering’ something about previous trials in a similar
T-maze. In (Ziemke and Thieme, 2002), a mechanism for neuromodulation of
sensory-motor weights provides the agents the required plasticity to exploit the
relationship between the location of light signals placed roughly at the middle
of the first corridor, and the turn to make at the junction. Blynel and Floreano
(2003) allow the agent to experience the environment in a first trial, in which
the success or failure play the role of a reinforcement signal, in order to associate
the position of the goal with respect to the T-junction. In Tuci et al. (2002b),
evolved CTRNNs provide the agents with the required plasticity to discover the
spatial relationship between the position of a landmark and the position of a
goal. In this study, the spatial relationship between the goal and the landmark
can be learned by ‘remembering’ from previous trials the relative position of the
landmark with respect to the goal.

The difference between the ecological models and our study is not as ap-
parent as it was for the non-ecological ones described at the beginning of the
section. However, it should be noticed that, in the ecological studies reviewed
above, the discrimination is based on the recognition of distinctive environmen-
tal contingencies and the maintenance of these experiences through time, as a
form of short term memory.2 On the contrary, in our study, the cue which allows
the agent to make the discrimination has to deal with the persistence over time
of a perceptual state common to both the elements to be distinguished—i.e.,
Env. A and Env. B—rather than with the nature of the cue itself employed to
make the discrimination. That is, in our case, due to the nature of the agent
sensory apparatus, one environment can be distinguished by the other solely be-
cause a perceptual state, common to both environments, might, in one case, be
perceived by the agent for a time longer than what the agent might experience
by acting in the other type of environment.

Similar experiments to the one described here, were performed by Nolfi
(2002) and by Croon et al. (2004). These authors investigate a discrimina-
tion task in which a robot, while navigating through a maze, must recognise it
is located in one room rather than in another. In spite of the differeces in the

2Notice that i) the term ‘recognition’ is used to indicate a sequence of agent’s actions
produced in response to particular sensors’ states; ii) the term ‘memory’ does not necessarily
refer to a neural structure internal to the agent’s controller.
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experimental set up, these works and the one described here focus on similar
issues. They all exploit evolution to design controllers for autonomous robots
required to make decisions based on time-dependent structures.

4 The robot-based model

In this section, we provide some details concerning the robot-environment sim-
ulation model used to evolve the controllers (see section 4.1), the equation used
to update the state of the neural network (see section 4.2), and the parameters
of the genetic algorithm (see section 4.3).

4.1 The simulation

The robot and its world are simulated using a modified version of the ‘mini-
mal simulation’ technique described by Jakobi (1997). Jakobi’s technique uses
high levels of noise to guarantee that the simulated controller will transfer to a
physically realised robot with no loss of performance. Our simulation models
a Khepera robot, a 55 mm diameter cylindrical robot (see figure 1). This sim-
ulated robot is provided with two ambient light sensors, placed at 45 degrees
(L1) and -45 degrees (L2) with respect to its heading, and a floor sensor posi-
tioned facing downward on the underside of the robot (F ). The light sensors
have an angle of acceptance of 120 degrees, and they can detect the light up to
a distance of 100 cm from the light source. Light levels change as a function
of the robot’s distance from the lamp. The light sensor values are extrapolated
from a look-up table3 which corresponds to the one provided with the Evorobot
simulator—see Nolfi (2000) for further details. The floor sensor can be con-
ceived of as a proximity infra-red sensor capable of detecting the level of grey
of the floor. It produces an output which is proportional to the level of grey,
scaled between 0—when the robot is positioned over white floor—and 1—when
it is over black floor. The sound signalling system is represented by the binary
output of one of the neurons of the robot’s controller (see section 4.2 for details).

The implementation of our simulator, as far as it concerns the function
that updates the position of the robot within the environment, closely matches
the way in which Jakobi designed his minimal simulation for a Khepera robot
within an infinite corridor—see Jakobi (1997) for further details. In particular,
the robot has right and left motors—respectively M1 and M2—which can move
independently forward or backward, allowing it to turn fully in any direction.
The robot is assumed to have negligible mass, so that the motor output can
be taken as the tangential velocity of the robot at the motor mount point.
The current heading θ′ and the position (x′, y′) of the virtual Khepera within
its environment are calculated at each time step according to the following

3This look up table is available at http://iridia.ulb.ac.be/∼etuci/publications.html.
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equations:
µ = rw ∗ ωw ∗ ∆t;

x′ = x + χ(θ) ∗
(ωr + ωl)

2
∗ µ ∗ dt;

y′ = y + γ(θ) ∗
(ωr + ωl)

2
∗ µ ∗ dt;

θ′ = θ +
(ωr − ωl) ∗ µ

d ∗ dt

(1)

where ωr and ωl correspond to the instantaneous velocity of the right and the left
motors respectively; µ is a constant equal to 0.8 cm representing the maximum
distance covered by a robot in ∆t = 1 s at maximum speed ωw = 10 rad/s;
rw = 0.8 cm is the the radius of the wheel; χ(θ) and γ(θ) correspond to the
horizontal and vertical increments for a Khepera travelling at a speed of 1 cm
per second for a given orientation θ; d = 5.2 cm is the length of the axle. The
simulation time step dt corresponds to 0.2 seconds. There is no allowance for
momentum, and the noise inherent in the real-world situation is not modelled.

4.2 The controller

Fully connected, eight neuron Continuous Time Recurrent Neural Networks
(CTRNNs) are used. All neurons are governed by the following state equation:

dpi

dt
=

1

τi


−pi +

8∑

j=1

wjiσ(pj + βj) + gIi


 , σ(x) =

1

1 + e−x
(2)

where, using terms derived from an analogy with real neurons, pi represents the
cell potential, τi the decay constant, βj the bias term, σ(pj +βj) the firing rate,
wji the strength of the synaptic connection from neuron jth to neuron ith, Ii

the intensity of the sensory perturbation on sensory neuron i. Three neurons
receive input Ii from the robot sensors. These input neurons receive a real
value in the range [0,1], which is a simple linear scaling of the reading taken
from its associated sensor.4 The other neurons do not receive any input from
the robot’s sensors. The cell potential pi of the 6th neuron, mapped into [0,1]
by the sigmoid function σ and then set to 1 if bigger than 0.5 or 0 otherwise, is
used by the robot to control the sound signalling system. The cell potentials pi

of the 7th and the 8th neuron, mapped into [0,1] by the sigmoid function σ and
then linearly scaled into [-10,10], set the robot motors output. The strength
of synaptic connections wji, the decay constants τi, the bias terms βj , and the
gain factor g are genetically encoded parameters. Cell potentials are set to 0
any time the network is initialised or reset, and circuits are integrated using the
forward Euler method with an integration step-size of 0.2 seconds.

4.3 The evolutionary algorithm

A simple generational genetic algorithm (GA) is employed to set the parame-
ters of the networks (Goldberg, 1989). The population contains 100 genotypes.

4Neuron N1 takes input from the ambient light sensor L1, N2 from the ambient light sensor
L2, N3 from the floor sensor F .
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Generations following the first one are produced by a combination of selec-
tion with elitism, recombination and mutation. For each new generation, the
three highest scoring individuals (‘the elite’) from the previous generation are
retained unchanged. The remainder of the new population is generated by
fitness-proportional selection from the 70 best individuals of the old population.
Each genotype is a vector comprising 81 real values (64 connections, 8 decay
constants, 8 bias terms, and a gain factor). Initially, a random population of
vectors is generated by initialising each component of each genotype to values
chosen uniformly random from the range [0,1]. New genotypes, except ‘the
elite’, are produced by applying recombination with a probability of 0.3 and
mutation. Mutation entails that a random Gaussian offset is applied to each
real-valued vector component encoded in the genotype, with a probability of
0.15. The mean of the Gaussian is 0, and its standard deviation is 0.1. Dur-
ing evolution, all vector component values are constrained to remain within the
range [0,1]. Genotype parameters are linearly mapped to produce CTRNN pa-
rameters with the following ranges: biases βj ∈ [-2,2], weights wji ∈ [-6,6] and
gain factor g ∈ [1,12]. The genes which codify the decay constants are firstly
linearly mapped onto the range [−0.7, 1.7] and then exponentially mapped into
τi ∈ [10−0.7,101.7].

5 Evolution of time-dependent discrimination

mechanisms

In this section we illustrate the fitness function and the results of a first series of
experiments in which we aim to evolve agents capable of discriminating between
Env. A and Env. B. The fitness function employed simply rewards a robot for
approaching the light bulb, and for signalling anytime it is located in Env. B,
but not signalling in Env. A. A significant feature of this fitness function is
that it rewards agents that make a proper use of their sound signalling system
regardless of the strategies exploited to make the discrimination.

We have run three sets of ten evolutionary simulations—referred to as con-
dition +A, condition +B, and condition AB—which differ with respect to the
proportion of Env. A and Env. B each agent experiences during the evolution-
ary phase. In condition +A, the Env. A are three times more frequent than the
Env. B. In condition +B, the Env. B are three times more frequent than the
Env. A. In condition AB, the two types of environment appear with the same
frequency.

The reason for running simulations on these three conditions is related to
the potential effects on the phylogeny of the system produced by different selec-
tive pressures determined by the proportion of Env. A and Env. B the agents
encounter during their life time. For example, due to the nature of the task,
we may assume that sound signalling is advantageous only if it is employed by
an agent that possesses the sensory-motor coordination required to discrimi-
nate between Env. A and Env. B. However, if Env. B is more frequent than
Env. A—as in condition +B— an agent that always signals, regardless of its
sensory-motor capabilities, has a higher fitness than an agent that never signals.
Although both types of agent are sometimes right and some other times wrong,
the former is three times more successful than the latter. Thus, in condition +B,
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evolution might progress through an initial stage characterised by populations
of signalling agents, followed by a subsequent stage characterised by popula-
tions of agents which combine signalling with the sensory-motor coordination
required to carry out the discrimination task.

On the contrary, in condition +A the payoff is reversed. An agent that
never signals is three times more successful than an agent that always emits a
sound signal. Thus, evolution might proceed by firstly rewarding agents capable
of sensory-motor coordination but not capable of sound signalling, and subse-
quently by rewarding those agents that combine sensory-motor coordination
with a proper use of the sound. Both conditions +A and +B require the grad-
ual and progressive evolution of adaptive mechanisms coupled with previously
evolved traits. However, such evolutionary trend might not be particularly easy
to obtain.

It is more difficult to imagine what could happen in condition AB, which
does not favour either the mechanisms for sensory-motor coordination over the
mechanisms for signalling, or vice-versa. Although this condition might facili-
tate the progressive evolution of agents capable of the required sensory-motor
coordination and signalling, there is also the possibility that the lack of a strong
selective pressure for or against either mechanisms might be deleterious rather
than beneficial to the evolution of the desired behaviour. The system might
end up fluctuating without being capable of ‘bootstrapping’ from randomly ini-
tialised controllers the desired solution/s.

The results of the simulations and the analysis of the evolved solutions,
illustrated in section 5.2, provide useful empirical evidence to clarify some of
the issues discussed above.

5.1 The evaluation function

During the evolution, each genotype is coded into a robot controller, and is
evaluated 16 times. The proportion of Env. A and Env. B within the 16 trial
depends on the condition. At the beginning of each trial, the neural network is
reset—i.e., the activation value of each neuron is set to zero. Each trial differs
from the others in the initialisation of the random number generator, which
influences the robot starting position and orientation, the position of the way
in zone, and the noise added to motors and sensors. For each trial in Env. A,
the position of the way in zone is varied to facilitate the evolution of robust
navigational strategies. Its amplitude is fixed to π

2
. Within a trial, the robot

life-span is 80 seconds (400 simulation cycles). A trial is terminated earlier
if either the robot crosses the black edge of the band (see dashed arrows in
figure 2) or because it reaches an Euclidean distance from the light higher than
120 cm. In each trial e, the robot is rewarded by an evaluation function fe

which corresponds to the sum of the following two components:

1. Rmotion—This component rewards movements toward the light bulb, and
it is computed as:

Rmotion =
df − dn

df

(3)

where df and dn represent respectively the furthest and the nearest Eu-
clidean distance between the robot and the light bulb. In particular, df
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is updated whenever the robot increases its maximum distance from the
light bulb. At the beginning of the trial, dn is fixed as equal to df, and it
is subsequently updated (i) every time the robot gets closer to the light
bulb; (ii) every time df is updated. In this latter case, dn is set up equal
to the new df. In Env. A, dn is set to 0 if the robot is less than 7.5 cm
away from the light bulb. In Env. B, dn is set to 0 as soon as the robot
reaches the band in shades of grey.

2. Rsignal—This component rewards agents that (i) do not signal anytime
they are located in Env. A; (ii) emit a sound signal anytime they are
located in Env. B. The component is computed as:

Rsignal =

{
1 if proper signalling
0 otherwise

(4)

An important feature of this evaluation function is that it simply rewards
agents that make a proper use of their sound signalling system, without directly
interfering with the nature of the discrimination strategies.

5.2 Obtained Results

Ten replication of the experiments are run for each condition. Figure 3 shows, for
each condition, the fitness of the best individual and the mean population fitness
plotted against the generation number and averaged over the ten replications.
It is possible to notice that in all the three conditions the maximum fitness
value is reached, suggesting that in all replications of the experiment and in all
conditions a successful behaviour was evolved. The 100% success rate can be
accounted for by recalling that the fitness function, not rewarding any specific
action except phototaxis and the signalling behaviour, has positively influenced
the development of successful behaviours. In fact, evolution is left free to search
for whatever strategy could be effective for the achievement of the final goal.5

5.2.1 Analysis of the evolved behavioural strategies

A qualitative analysis of the evolved controllers confirms that a number of dif-
ferent behavioural strategies have been obtained. However, some constant char-
acteristics can be recognised. At the beginning of a trial, all robots perform
phototaxis until they reach the circular band. When the grey level on the floor
exceeds a certain threshold, the robots start circuiting around the light bulb
with an approximately constant angular speed. Whenever the robots are placed
in Env. A and the way in zone is detected, phototaxis starts again and the light
bulb is reached. On the contrary, in Env. B, after travelling on the band for a
given time without detecting the way in zone, the robots initiate a signalling
behaviour.

An example of this behaviour is shown in figure 4: in both Env. A and
Env. B, it is possible to notice that, when the circular band is detected—see
continuous line F at about simulation cycle 130—the robot starts moving on
the circular band maintaining a constant distance from the light bulb. This

5The same experiments performed using a more constraining fitness function yield a success
rate of 50% (data not shown).
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behaviour is indicated by the constant readings of the light sensors L1 and L2
and of the floor sensors F . In Env. A, the way in zone is encountered shortly
before simulation cycle 300, as indicated by the sudden drop in the floor sensor
F . At this point, the robot performs phototaxis again, rapidly reaching the
light bulb, as indicated by the high activation of the light sensors L1 and L2 at
the end of the simulation.

The constant angular speed on the circular band is the basic mechanism
exploited for discrimination between Env. A and Env. B by successfully evolved
robots. In fact, this constant motion allows the robots to experience a constant
perceptual state (the grey level of the floor and the light intensity that impinges
on their sensors), which roughly corresponds to the constant flow of time. In
figure 4, it is possible to notice that the persistence of a particular perceptual
state, corresponding to the robot circuiting around the light and over the band,
makes the output S, which controls the sound, increase linearly. This perceptual
state triggers the sound signalling through an efficient integration mechanism
which is based on the ‘feeling’ of being travelling long enough over the circular
band without having encountered the way in zone. In fact, if the way in zone
is encountered, as in the upper part of figure 4, the activation of the neuron S

decreases below the threshold level 0.5. This response makes the robot capable
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Figure 3: Average fitness during the evolution. All plots are the average over
the 10 replications of the experiment performed for each condition. The thick
line correspond to the average fitness of the best individual, while the thin line
refers to the average fitness of the population.
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Figure 4: Behavioural analysis. The sensors activity and the corresponding
motor outputs are plotted for 400 simulation cycles. L1 and L2 refer to the
light sensors, while F refers to the floor sensor. M1 and M2 correspond to the
motors of the two wheels, and S refers to the sound signalling. When S is bigger
than 0.5, the robot emits a signal (see section 4.1).

of avoiding to initiate the signalling behaviour when it is not required. The
situation is different in Env. B: the absence of the way in zone let the output
of neuron S reach and overcome the threshold level 0.5—see bottom part of fig-
ure 4, simulation cycle 300. This response makes the robot capable of correctly
signalling that it is located in an Env. B.

In summary, the behavioural analysis revealed that the evolved controllers
produce the required sensory-motor coordination that brings forth a perceptual
state that is integrated over time and exploited for discrimination through sound
signalling.
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5.2.2 Analysis of the different selective pressures

All the replications produced a successful controller, no matter the condition
in which the evolution took place (+A, +B or AB). Therefore, we still cannot
state if the selective pressures introduced in condition +A, in condition +B, and
in condition AB made any significant difference. From figure 3, it is possible
to notice that in condition +A the average performance of the best individual
reaches the optimum earlier than in the other two cases. This seems to suggest
that the evolutionary regime in condition +A might be more suitable for the
evolution of fully discriminating agents than the one corresponding to condition
+B and condition AB. Recall that the condition +A facilitates the early evo-
lution of a population of agent with the required sensory-motor coordination
followed by population of agents capable of successfully discriminating through
sound signalling.

In order to assess and compare the performance of controllers evolved in
different conditions, we performed further analyses, by re-evaluating each of the
best evolved final generation individuals for 100 trials in each type of environ-
ment (i.e., Env. A and Env. B). In each trial performed in Env. A, we look at
the robot capability to reach the light bulb (Succ.), without making any error.
Errors can be of two types: E1 refers to the emission of a sound signal, while E2
refers to crossing the black edge of the band. Similarly, in Env. B, we look at
the performance of the robot on properly signalling the absence of the way in
zone (Succ.), without committing any error. Also in this case, two error types
are possible: E3 refers to the lack of sound signalling, and E4 refers to the robot
crossing the black edge of the band. Furthermore, in Env. B we also compute
the offset between the entrance position of the robot in the circular band and
the position in which the robot starts to signal. This measure, called offset ∆,
is computed as follows:

∆ = |α(te, ts)| − 2π, (5)

α(t1, t2) =

t2−1∑

t=t1

ÂOB, A = Xt,B = Xt+1 (6)

where O corresponds to the position of the light, and α is the angular displace-
ment of the robot around the light from the starting position—the position at
time te when the robot enters into the circular band—to the signalling position—
the position at time ts when the robot starts signalling. α is computed summing
up all the convex angles ÂOB comprised between two consecutive position of
the robot Xt, taking into account that an angle is negative if the robot moves
clockwise. This measure accounts for the capability of a robot for searching the
way in zone. Offset ∆ takes value 0 if the robot signals exactly after covering a
complete loop of the circular band. Otherwise, it gives the angular displacement
from this position. Negative values of the offset ∆ suggest that the robot signals
before having performed a complete loop, while positive values correspond to
the situation in which the robot has performed more than one loop around the
light, waiting too long to signal.

Table 1 refers to the post-evaluation in condition +A. Here, all the evolved
controllers perform well, having a very high success rate in both Env. A and
Env. B. It is worth noting that there are only few cases in which the robot makes
signalling errors (E1 and E3), while some replications of the experiments have
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a higher error rate in crossing the black edge of the circular band. This is due
mainly to a tendency of the robots to approach the black edge while circuiting
on the band. Concerning the offset ∆, most evolved controllers have a negative
value, in general lower than 65 degrees, meaning that all robots signal far before
having completed one loop of the circular band. However, this offset is enough
to discriminate between Env. A and Env. B, as the way in zone is 90 degrees
wide. Only in one case, in replication 9, the robot is ‘prudent’: that is, it signals
only after having completed a loop around the light bulb.

Table 1: Post-evaluation in condition +A. Performance of the best evolved
controllers of each replication. The percentage of success (Succ. %) and the
percentage of errors (E1, and E2 in Env. A, and E3, and E4 in Env. B, ) over
100 trials are shown for both Env. A and Env. B. Additionally, the average
offset ∆ and its standard deviation (degrees) are shown for Env. B.

Condition +A
run Env. A Env. B

Succ. E1 E2 Succ. E3 E4 Offset ∆
(%) (%) (%) (%) (%) (%) Avg. Std

n. 1 100 0 0 100 0 0 -38.5 8.79
n. 2 100 0 0 99 1 0 -60.05 30.47
n. 3 100 0 0 100 0 0 -57.47 12.6
n. 4 100 0 0 99 0 1 -17.94 24.06
n. 5 91 1 8 90 0 10 -67.21 25.78
n. 6 100 0 0 98 2 0 -28.83 38.38
n. 7 98 0 0 100 0 0 -47.16 25.21
n. 8 97 0 3 100 0 0 -65.49 16.04
n. 9 96 0 4 91 0 9 63.98 22.91
n. 10 98 0 2 96 4 0 -57.47 27.5

Here, the selective pressure given by the higher percentage of Env. A en-
countered by the robot during evolution yield a robust behaviour. In condi-
tion +A, the sound signalling behaviour appears only after having acquired the
sensory-motor coordination required for the integration over time.6 Therefore,
the association between the sound signalling behaviour and the absence of the
way in zone is simpler to be made with respect to the other conditions, as we
will see in the following.

The situation in condition +B is completely reversed, as shown in table 2.
As expected, the robots perform well in Env. B, with a high success rate and
low percentage of both types of error. However, E1 that is, signalling when not
required, is much higher than in condition +A.7 In all these cases, robots trigger
the sound signal in Env. A too early, before finding the way in zone. This is
confirmed by the wide offset ∆ recorded in Env. B. The selective pressure given

6A phylogenetic analysis revealed that the sound signalling behaviour is the last capability
to apper among the repertoire of behaviours shown by the evolved robots (data not shown).

7It is not surprising to observe high error rates in the post-evaluation analysis, even if
during the evolutionary phase the best evolved individuals reached the optimal fitness value.
This phenomenon is certainly due to an overestimation of the performance of the best-rated
individual of the population, which is tested only in a small subset of all the possible environ-
mental circumstances it might encounter.
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Table 2: Post-evaluation in condition +B. See the caption of table 1 for details.

Condition +B
run Env. A Env. B

Succ. E1 E2 Succ. E3 E4 Offset ∆
(%) (%) (%) (%) (%) (%) Avg. Std

n. 1 97 0 3 100 0 0 -58.49 6.28
n. 2 86 13 1 100 0 0 -166 13.58
n. 3 100 0 0 99 1 0 -63.63 33.69
n. 4 92 8 0 100 0 0 -59.30 18.16
n. 5 84 13 0 100 0 0 -161.65 13
n. 6 78 12 10 100 0 0 -125.08 7.44
n. 7 75 24 1 100 0 0 -181.23 31.51
n. 8 62 36 1 98 2 0 -196 83.07
n. 9 68 30 2 100 0 0 -173.78 21.77
n. 10 98 0 0 100 0 0 65.70 50.42

by the higher percentage of Env. B have first favoured the evolution of signalling
robots, no matter the environment in which they were located and their sensory-
motor capabilities. The obtained results suggest that, in condition +B, it is more
difficult to evolve agents capable of moving in a coordinated fashion in order to
successfully discriminate, through sound signalling, Env. A from Env. B.

The results of the post-evaluation in condition AB, shown in table 3, are
intermediate with respect to the other two conditions. While a high success
rate is achieved for many of the best evolved robots, we can also observe some
errors, performed mainly in Env. A. The robot run n. 1 signals too early—
as indicated by the high negative offset. Thus, it makes many errors of type
E1. A similar performance was produced by several other controllers evolved
in condition +B. Other robots perform well in sound signalling, but they often
cross the black edge of the circular band, making errors E2 or E4. This time,
a similar performance was produced by several others controllers evolved in
condition +A. Clearly, the condition AB has a more uncertain and variable
outcome than the other two.

In conclusion, the above analysis reveals that the selective pressure corre-
sponding to condition +A, which favours the progressive evolution of sensory-
motor coordination and discrimination capabilities through sound signalling,
produces an overall better performance of the evolved controllers.

6 Evolution of robust discrimination strategies

One of the most desirable features of an autonomous robot consists in its ca-
pability to adapt to varying environmental conditions. Research in biology has
shown that the ‘adaptability’ of natural systems is generally bound within some
limits which are determined by the evolutionary history of the species (see Bre-
land and Breland, 1961, Bolles, 1970, Johnston, 1981). Animals, and especially
humans, are also capable of coping with circumstances that it is reasonable to
assume they have never encountered during their phylogeny. Although the na-
ture of the mechanisms which allow an animal to adapt to ‘novel’ circumstances
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is still a controversial issue, biologists tend to assume that mechanisms evolved
to accomplish a particular task, might subsequently carry out other adaptive
functions different from those for which they have been evolved (Gould and
Vrba, 1982).

Evolutionary robotics makes it possible to bring these concepts within the
domain of artificial autonomous systems (see Wheeler, 1996). That is, by evolv-
ing robot’s controllers in varying environmental conditions, we might obtain
agents which show the following characteristics: (i) they can easily adapt to
several environmental conditions as long as they have experienced them during
evolution; (ii) a phylogenetic history in varying environments might help the
emergence of mechanisms which allow the final generation agents to cope with
circumstances that their ancestors have never encountered.

In this section, we show some results in which the robot’s controllers are
evolved in environments in which the distance between the black edge of the
band and the light bulb varies from a minimum of 20 cm to a maximum of
65 cm. We refer to this distance as light-band distance, and the set of simula-
tions in which this distance varies as condition R. The environmental variation
experienced by the robots in condition R represents a significant evolutionary
challenge for robots that are required to perform the discrimination task de-
scribed in section 2. By varying the band-light distance, while maintaining
fixed the width of the circular band (20 cm), the spatio-temporal structures
that the robot must exploit to distinguish between Env. A and Env. B vary as
well. For example, for a robot that moves at a certain speed and with a certain
trajectory over the band, if the light-band distance is at its minimum of 20 cm,
the time required to perform a loop around the light will be definitely shorter
than the time required in an environment in which the light-band distance is at
its maximum of 65 cm. In order to be capable of successfully distinguishing be-
tween Env. A and Env. B, this robot must be able to adapt to the characteristics
of the environment. One possible solution consists in exploiting the relation-
ship between the intensity of the light and the activation of the floor sensor in
order to ‘get an idea’ of the light-band distance. If the robots can perceive how

Table 3: Post-evaluation in condition AB. See the caption of table 1 for details.

Condition AB
run Env. A Env. B

Succ. E1 E2 Succ. E3 E4 Offset ∆
(%) (%) (%) (%) (%) (%) Avg. Std

n. 1 90 9 1 100 0 0 -112.48 25.21
n. 2 98 0 2 100 0 0 -1.32 26.35
n. 3 86 0 14 100 0 0 -54.61 5.15
n. 4 100 0 0 100 0 0 28.46 8.02
n. 5 96 2 2 99 0 1 -66.64 33.23
n. 6 99 0 1 100 0 0 -29.40 36.66
n. 7 89 0 11 99 0 1 85.76 45.26
n. 8 90 0 5 96 4 0 55.96 13.17
n. 9 97 0 3 100 0 0 -56.9 30.36
n. 10 96 0 4 96 0 4 70.86 82.50
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far the light is from the black edge of the band, they can consequently adjust
their discrimination strategies to the current environmental circumstances, by
signalling just after having made a loop around the light, regardless of the time
this may take. In principle, once evolved, this adaptive mechanisms should be
robust enough for the robot to cope with environmental circumstances never
encountered by its ancestors.

Unfortunately, preliminary tests in which populations of robots have been
evolved in varying environmental circumstances with the fitness function de-
scribed in section 5, were not particularly satisfying. The variation of important
characteristics of the environment was not enough to evolve adaptive agents ca-
pable of adjusting, through the exploitation of the light-band distance, their
discrimination strategies to the current environmental circumstances. An adap-
tive discrimination strategy would require the robot to signal after having made
a loop around the light while remaining on the circular band. Evolution found a
simpler solution: whatever was the light-band distance, the robots were simply
circuiting around the light for as long as the time required to trigger the sound
signalling. In more detail, the evolved robots started signalling after a fixed
amount of time, chosen in a way to guarantee that they would start signalling
after having made a loop around the light in those environments in which the
light-band distance was at its maximum. Obviously, this strategy allows them
to make perfect discrimination also in those environments in which the light-
band distance was shorter. However, the shorter was the light-band distance,
the more loops around the light were required before emitting the sound signal,
and the less efficient appears the robot’s discrimination strategy. Moreover, by
employing this strategy, the robots were sometimes failing to properly discrimi-
nate if located in environments in which the light-band distance was higher than
the maximum distance experience by their ancestors during evolution. That is,
by employing a fixed ‘signalling time’, the robots were erroneously signalling in
environments in which there was a way in zone.

Thus, we have designed a new fitness function which rewards discriminating
robots for signalling just after having made a loop around the light bulb (see
section 6.1 for a detailed description of the fitness function). Recall that, the
fitness function employed in previous simulations was simply rewarding agents
for properly signalling regardless of the strategies employed to make the dis-
crimination. By rewarding robots which signal just after having made a loop
around the light in an Env. B, we are expecting that, successful agents should
evolve adaptive mechanisms which allow them to find a way to perceive the
light-band distance. Hopefully, such robots should be able to adjust the time
required for signalling with respect to this distance.

6.1 The evaluation function

During the evolution, each genotype is coded into a robot controller, and is
evaluated 16 times in 5 different environments—i.e., in total 80 trials. The
5 environments differ as far as it concerns the light-band distance. For each
environment, this distance randomly varies within one of the following intervals:
[20, 25] cm, [30, 35] cm, [40, 45] cm, [50, 55] cm, [60, 65] cm. Within a set of
16 trials, the robots experience the same proportion of Env. A and Env. B.

In each trial, the initialisation of the robot’s controller and of the random
parameters of the evaluation are performed in the same way as explained in
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Figure 5: Average fitness during the evolution. The plot corresponds to the
average over the 10 replication of the experiment. The tick line corresponds
to the average fitness of the best individual, while the thin line refers to the
average fitness of the population.

section 5.1. Within a trial, the robot life-span is 120 seconds (600 simulation
cycles). As explained before, a trial is terminated earlier if either the robot
crosses the black edge of the band (see dashed arrows in figure 2) or because it
reaches an Euclidean distance from the light higher than 120 cm. In each trial
e, the robot is rewarded by an evaluation function fe which corresponds to the
sum of two components: Rmotion, which rewards phototaxis and is computed as
in equation (3), and Rsignal, which accounts for proper signalling of the robot in
Env. A and in Env. B. Rsignal is computed as illustrated in equation (4) when
the robot is placed in Env. A. Otherwise, we take into account the signalling
error the robot makes with respect to the completion of a loop around the light:

Rsignal =

{
1 − |∆|

2π
proper signalling

0 otherwise
(7)

where the offset ∆ has been introduced in equation (5). If we assume that
a whole loop around the light bulb while remaining over the circular band is
needed to the robot to make sure that there is no way in zone, then Rsignal

rewards adaptive signalling strategies, which adjust themselves to the currently
light-band distance.8

6.2 Obtained Results

The condition R is studied performing 10 evolutionary runs, using the experi-
mental setup described above. figure 5 reports the fitness of the best individual
and the mean fitness of the population during the evolution, averaged over the
10 replications. The maximum fitness is reached in all replications, as indicated
by the plot in figure 5. However, the performance of the best individual oscillates
near the maximum value, due to the high variability in the fitness component
Rsignal. As expected, it is quite difficult for the robots to signal exactly after
having covered one loop around the light.

A post-evaluation analysis has been performed in order to assess the dis-
crimination capabilities of the final generation best evolved controllers in each
of the 10 replications of the experiment. We have re-evaluated each of these

8Actually, 3/4 of a loop would be enough, the amplitude of the way in zone being fixed to
π/2. This choice has been made for generality purposes.
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Table 4: Condition R. Performance of the best evolved controllers of each rel-
ication. Rmotion, Rsignal are introduced in section 5.1 and section 6.1. E1, E2,
E3, and E4, are introduced at the beginning of section 5.2.2.

condition R
run Env. A Env. B

Rmotion Rsignal E1 E2 Rmotion Rsignal E3 E4
(%) (%) (%) (%)

n. 1 0.99 0.98 0 1 1 0.91 5 23
n. 2 1 1 0 0 1 0.97 0 0
n. 3 0.99 0.99 0 1 1 0.94 0 8
n. 4 0.99 0.97 1 0 1 0.82 4 3
n. 5 1 0.99 0 0 1 0.88 0 0
n. 6 0.99 0.99 1 0 1 0.95 0 4
n. 7 1 1 0 0 1 0.94 0 1
n. 8 1 1 0 0 1 0.93 0 0
n. 9 0.99 0.98 0 1 1 0.95 0 0
n. 10 1 1 0 0 1 0.97 0 7

controllers 200 times in each of the five environmental conditions—100 trials in
Env. A and 100 trials in Env. B. The results, averaged for all the replications
and for the five environmental circumstances, are summarised in table 4. This
table illustrates for each agent, two measures of its average success rate (see
columns Rmotion and Rsignal), and two measures of its average rate of failure
for each type of environment (see columns E1, E2, E3, and E4). Table 4 shows
that, as far as it concerns both Rmotion and Rsignal, each final generation best
evolved controller possesses a very high success rate for both Env. A and Env. B.
In particular, the performance in Env. A is always very close to the maximum,
and very few errors have been observed. As far as it concerns Env. B, it is
important to highlight the good performance in the Rsignal component, which is
related to the offset ∆ in the signalling behaviour—see equation (5). Recall that
a value of 0.9 for Rsignal corresponds to an absolute mismatch of 36 degrees with
respect to a complete loop. This means that the evolved signalling behaviour is
very accurate, despite the high variability (i.e., the light-band distance) in the
environmental conditions encountered by the robot.

The evolved controllers produce behaviours that are qualitatively similar to
those described in the previous section. As it was for the robots evolved in the
other evolutionary conditions (i.e., +A, +B, AB), also for the best evolved robot
in condition R the level of grey of the circular band is exploited to navigate at
roughly constant angular speed around the light. However, in this condition,
the amount of light that impinges on the robot’s sensor is an important cue
for the robot to adjust its discrimination strategies to the characteristics of
the environment. It seems that the light is exploited by adaptive regulatory
mechanisms which integrate over time the robot’s flow of perception, as it can
be observed by looking at figure 6. This figure shows the sensors’ reading, the
signal sent by the controller to the robot’s wheel, and the normalised activation
value of neuron S—i.e., the neuron associated with the sound signalling—of
robot run n. 10, during a re-evaluation trial in two Env. B: one in which the
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light-band distance is set to 20 cm (see figure 6 at the top), and one in which the
light-band distance is set to 60 cm (see figure 6 at the bottom). From figure 6 it is
clear that the activation of the neuron S increases linearly in both environments.
However, if we look at the angle of inclination of the continuous line S, we notice
that it is steeper in the environment in which the light-band distance is set to
20 cm than in the environment in which the light-band distance is set to 60
cm. Obviously, for a given position of the robot over the circular band, the
smaller the light-band distance the higher the light intensity. The robot seems
to exploit this feature to adjust its strategy according to the following simple
adaptive mechanism: the higher the light intensity, the shorter the time spent by
the robot over the circular band required by the neuron S to reach the threshold
beyond which the sound is activated.

As we said earlier, adaptive mechanisms evolved in varying environmental
circumstances might turn out to be extremely advantageous for achieving a goal
other than the one for which they have originally evolved. We have tested, for
all the best evolved robots, the robustness of the adaptive mechanisms illus-
trated above, in environmental circumstances never encountered by the robots’
ancestors. In particular, we performed an analysis of the robustness of the robot
discrimination strategies by looking at the quality of the signalling behaviour—
i.e., the offset ∆—in Env. B in which the light-band distance is varying uniformly
from 20 to 80 cm. Although in this test several types of environment have never
been experienced by the robot’s ancestor (i.e., 36 out of 61 environments), we are
particularly interested in those in which the light-band distance is higher than
65 cm, because they clearly require generalisation capabilities that might not be
necessary in the other cases. The offset ∆ has been computed 100 times in each
environment. The results for the robot run n. 10, are shown in figure 7. Surpris-
ingly, the offset ∆ remains within the interval [-20,40] degrees. It takes positive
values mainly for small light-band distances. That is, in these environments,
the robot tends to signal shortly after having completed a loop around the light.
As the light-band distance increases, we can notice a progressive decrease in the
offset ∆. For light-band distances higher than 29 cm, the offset ∆ permanently
remains in the interval [-20,20]. The precision of the signalling mechanism is
not altered by environmental circumstances that have never been encountered
by the robot’s ancestors (in figure 7, notice in particular the performance for
light-band distance higher than 65 cm). To conclude, we can say that the dis-
crimination strategies of the best evolved robots proved robust enough to cope
with varying environmental circumstances never encountered during evolution.
The generalisation arises on the one hand because the environment affords the
agent to discriminate by employing mechanisms whose function is not disrupted
by the environmental changes; on the other hand because evolution was able to
synthesise time-dependent structures and adaptive mechanisms tailor-made for
the agent to capture those ‘affordances’.

7 Conclusions

In this paper, we have shown that a single (i.e., not modularised) CTRNN can
be shaped by evolution to allow an autonomous agent to make coordinated
movements that bring forth the perceptual experience necessary to discriminate
between two types of environments. The results illustrated here are of particular
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Env. B — light-band distance = 60 cm
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Figure 6: Behavioural analysis. The sensors activity and the corresponding
neural outputs are plotted for 600 simulation cycles. The upper plot refers to
Env. B where the light-band distance is 20 cm, while the lower part refers to
Env. B having a band-light distance of 60 cm. See the caption of figure 4 for
more details about the plots.

interest because, contrary to other previous similar studies, in this work the
decision-making is uniquely controlled by the time-dependent structures of the
agent controller, which in turn, are tightly linked to the mechanisms for sensory-
motor coordination (see section 3).

The first set of simulations, described in section 5, are more focused on
the general problem concerning the progressive evolution of behavioural capa-
bilities which are somehow dependent on each other. The results of our sim-
ulations show that the evolution of agents capable of solving the considered
task is favoured by a particular selective pressure (i.e., condition +A) which
facilitates the progressive evolution of fully discriminating agents by firstly re-
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Figure 7: Robustness analysis. The offset ∆ is plotted for varying light-band
distance. The box-plot shows 100 evaluations per box. Boxes represent the
inter-quartile range of the data, while the horizontal bars inside the boxes mark
the median values. The whiskers extends to the most extreme data points within
1.5 of the inter-quartile range from the box. The empty circles mark the outliers.

warding populations of agents capable of sensory-motor coordination but not
capable of sound signalling, and subsequently by rewarding those agents that
combine sensory-motor coordination with a proper use of the sound. The other
evolutionary scenarios explored—i.e., conditions +B and AB—turned out to be
less successful. In particular, condition +B showed that it is by far more difficult
to associate already evolved sound signalling mechanisms with the mechanisms
for the required sensory-motor coordination than the other way around. In
our case, it was particularly straightforward to isolate the evolutionary dynam-
ics of the condition +B, which hindered the evolution of fully discriminating
agents. That is, agents that possessed the mechanisms for signalling and that
were not tightly linked with the required sensory-motor coordination turned
out ‘lucky’ enough to get the highest possible fitness score during the evolu-
tionary phase—these agent were clearly overestimated due to the nature of the
probabilistic features of the environments in which they happened to be evalu-
ated. The overestimated strategies took over in the population. However, these
‘lucky’ agents, if re-evaluated in a bigger number of evaluation trials, showed
the limitation of their discrimination mechanisms (see table 2).

The results of the second set of simulations, described in section 6, represent,
in our view, the most important achievement of our work. These simulations
show that, by simply working on the nature of the fitness function, it is possi-
ble to bring forth discrimination mechanisms which are robust enough to deal
with environmental circumstances which have never been encountered by the
best evolved robot’ ancestors. Notice that these environmental circumstances—
that is, the light-band distance—concern the spatio-temporal structures that
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the robot employs for discrimination (see section 6.2). Therefore, by varying
these important environmental structures, we might have induced a particularly
disruptive effect on the robot performance. Nevertheless, the robots managed
to successfully carry out their task, showing a good performance, as it is shown
in figure 7.

The significance of these results is twofold: on the one hand, they further
support the suitability of CTRNNs as controllers for autonomous robots. That
is, these results indicate that, despite the complexity of the task, in which mech-
anisms for sensory-motor coordination and for discrimination must be tightly
linked, CTRNNs can be easily shaped by evolution to bring forth complex re-
active and non-reactive mechanisms within a single non-modularised controller.
On the other hand, these results bear upon the significance of the evolution-
ary approach to robotics. That is, they suggest that the evolutionary approach
to robotics is a suitable methodological tool to develop adaptive autonomous
agents which, like natural systems, can cope with environmental circumstances
never encountered by the agents’ ancestors during the evolutionary phase. From
an engineering point of view, this is a particularly desirable property to observe
in autonomous systems, since it represents a way to successfully overcome the
limitations of other more classic approaches to robotics (see Brooks, 1991a,b,
Harvey et al., 1992, Wheeler, 1996, for more on this issue).

Based on this preliminary but encouraging results, in future works, we will
consider more challenging experimental setups. In particular, the evolution of
time-dependent structures will be associated with other functions than simple
discrimination through signalling. Time-dependent structures may be employed
to trigger effective alternative activities as it is the case for animal species mak-
ing decisions about the quality of foraging sites. For example, in an environment
with more than one light bulb, the robot might decide to give up circuiting
around a light that does not have a way in zone, and to move to another light
bulb. Another interesting scenario might concern a group of robots engaged in
a similar light approaching task. Let’s assume that the band in shades of grey
is a trough larger than the diameter of a single robot, and that the robots are
capable of self-assembling, as described, for example, in (Dorigo et al., 2004). In
this collective robotics scenario, time-dependent structures and sound signalling
can have the function to trigger aggregation and self-assembling of the robots.
The robots assembled into a bigger structure might be capable of passing over
the trough and reach their goal—i.e., the light bulb.
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