
Swarm Intell (2009) 3: 223–242
DOI 10.1007/s11721-009-0031-y

Estimation-based ant colony optimization and local
search for the probabilistic traveling salesman problem

Prasanna Balaprakash · Mauro Birattari ·
Thomas Stützle · Zhi Yuan · Marco Dorigo

Received: 13 October 2008 / Accepted: 10 May 2009 / Published online: 4 June 2009
© Springer Science + Business Media, LLC 2009

Abstract The use of ant colony optimization for solving stochastic optimization problems
has received a significant amount of attention in recent years. In this paper, we present a
study of enhanced ant colony optimization algorithms for tackling a stochastic optimization
problem, the PROBABILISTIC TRAVELING SALESMAN PROBLEM. In particular, we propose
an empirical estimation approach to evaluate the cost of the solutions constructed by the
ants. Moreover, we use a recent estimation-based iterative improvement algorithm as a local
search. Experimental results on a large number of problem instances show that the proposed
ant colony optimization algorithms outperform the current best algorithm tailored to solve
the given problem, which also happened to be an ant colony optimization algorithm. As a
consequence, we have obtained a new state-of-the-art ant colony optimization algorithm for
the PROBABILISTIC TRAVELING SALESMAN PROBLEM.

Keywords Ant colony optimization · Empirical estimation · Estimation-based local
search · Probabilistic traveling salesman problem

1 Introduction

Ant colony optimization (ACO) (Dorigo and Stützle 2004) has become a very successful and
widely used swarm intelligence method (Bonabeau et al. 1999; Dorigo and Birattari 2007)

P. Balaprakash (�) · M. Birattari · T. Stützle · Z. Yuan · M. Dorigo
IRIDIA, CoDE, Université Libre de Bruxelles, Brussels, Belgium
e-mail: pbalapra@ulb.ac.be

M. Birattari
e-mail: mbiro@ulb.ac.be

T. Stützle
e-mail: stuetzle@ulb.ac.be

Z. Yuan
e-mail: zyuan@ulb.ac.be

M. Dorigo
e-mail: mdorigo@ulb.ac.be

mailto:pbalapra@ulb.ac.be
mailto:mbiro@ulb.ac.be
mailto:stuetzle@ulb.ac.be
mailto:zyuan@ulb.ac.be
mailto:mdorigo@ulb.ac.be

224 Swarm Intell (2009) 3: 223–242

for solving hard optimization problems. Its success has been proved not only by the large
number of problems to which it has been applied, but also by the very good performance
ACO algorithms have achieved in many fields, especially for routing problems with complex
features, such as stochastic information, or time-varying data (Caro and Dorigo 1998).

In this paper, we study the application of ACO algorithms to the PROBABILISTIC TRAV-
ELING SALESMAN PROBLEM (PTSP) (Jaillet 1985), which is also known as the traveling
salesman problem with stochastic customers (Gendreau et al. 1996). It is a stochastic ex-
tension of the classical traveling salesman problem (TSP). In the PTSP, it is unknown in
advance whether a node requires being visited, but its probability of requiring a visit is
given. The most widely used approach to tackle the PTSP is to construct an a priori solution
before knowing which nodes require being visited. An a priori solution is a permutation of
all the nodes of the given instance. Once the set of nodes that require being visited is known,
the a posteriori solution is derived by visiting the nodes that require being visited in the
order prescribed by the a priori solution and by skipping the nodes that do not require being
visited. The objective of the PTSP is to find an a priori solution, such that the expected cost
of its associated a posteriori solution is minimized.

The PTSP is an N P -hard problem. The stochastic nature and the complexity of the
problem limit the applicability of exact algorithms. The so far best performing exact solution
technique was proposed by Laporte et al. (1994), who formulated the problem as an integer
linear stochastic program and solved it by a branch-and-cut approach. The experimental
results showed that instances of size up to 50 can be solved to optimality.

Recent approaches to the PTSP mainly involve the application of stochastic local search
(SLS) methods (Hoos and Stützle 2005), among which ACO algorithms appear to be cur-
rently the best-performing. SLS methods for the PTSP can be grouped into two main classes:
analytical computation and empirical estimation. In analytical computation algorithms, the
exact cost of an a priori solution is computed using a closed-form expression derived by Jail-
let (1985). A prominent subclass of analytical computation algorithms is analytical approx-
imation, where the cost of the a priori solution is approximated using a truncated version
of the closed-form expression. In empirical estimation algorithms, the cost of the a priori
solution is estimated by Monte Carlo simulation.

Much of the early ACO algorithms for the PTSP are based on analytical computation.
Bianchi et al. (2002a, 2002b) adopted the closed-form expression in an ant colony system
(ACS) and compared it with a version of ACS for the TSP. The preliminary results showed
that the PTSP-specific approach is more effective than its TSP counterpart when the instance
probability values are less than 0.5. Branke and Guntsch (2004) explored the idea to employ
an ad-hoc approximation to replace the exact PTSP objective function, and showed that the
computation time can be significantly reduced without major loss in solution quality. Bianchi
(2006) and Bianchi and Gambardella (2007) proposed pACS+1-shift, which integrates
the PTSP-specific ACS with 1-shift (Bertsimas and Howell 1993; Bianchi et al. 2005), a
local search tailored for the PTSP. The experimental results showed that pACS+1-shift
significantly outperforms all other algorithms proposed so far in the literature, and it is up
to now considered as the best-performing SLS method for the PTSP.

Gutjahr (2003, 2004) proposed S-ACO, a general-purpose estimation-based ACO algo-
rithm for tackling stochastic combinatorial optimization problems, and took the PTSP as
a test bed. In S-ACO, the solutions produced at a given iteration are compared on the ba-
sis of a single realization; then the iteration-best solution is compared with the best-so-far
solution on the basis of a number of realizations that increases with the number of itera-
tions according to a static scheme. Gutjahr (2004) also studied a variant of S-ACO called
S-ACOa, in which the number of realizations needed for comparing the iteration-best with

Swarm Intell (2009) 3: 223–242 225

the best-so-far solution is determined dynamically based on a statistical test. Birattari et al.
(2006) proposed ACO/F-Race, which adopts the F-Race procedure (Birattari 2004, 2009).
In this algorithm, the solutions produced at a given iteration, together with the best-so-far
solution, are compared using a pairwise statistical test for multiple comparisons. The prelim-
inary results showed that for the instances with probability values less than 0.5, ACO/F-Race
achieved solution costs that are significantly better than those of S-ACO and S-ACOa. How-
ever, S-ACO, S-ACOa, and ACO/F-Race are not expected to perform as well as pACS+1-
shift. This is due to the following facts: Firstly, these algorithms are proposed as proof-of-
concepts; secondly, they are based on ant system, which is not typically as well performing
as ACS; thirdly, they do not use any local search as a subsidiary solution improvement
procedure. Note that the adoption of local search is crucial to the performance of ACO al-
gorithms (Dorigo and Stützle 2004). Bianchi (2006) and Bianchi and Gambardella (2007)
also considered the estimation-based solution evaluation approach of Gutjahr (2003, 2004)
in pACS+1-shift, but concluded that this variant is significantly worse performing than
the analytical computation variant of pACS+1-shift.

In our recent research on the PTSP, we first developed 2.5-opt-EEs (Birattari et al.
2008), a new local search algorithm that uses an estimation-based approach to speed up the
cost difference computation between neighbor solutions. 2.5-opt-EEs reaches signifi-
cantly better solutions for a wide range of instances of size from 100 to 1000 nodes and it is
by two to three orders of magnitude faster than 1-shift. Only on instances with low prob-
ability values, 2.5-opt-EEs showed a slightly worse performance than 1-shift. To ad-
dress this issue, we integrated two variance reduction techniques, namely adaptive sample
size and importance sampling into 2.5-opt-EEs, obtaining in this way the new algorithm
2.5-opt-EEais (Balaprakash et al. 2009), which fully outperforms 1-shift. To test
whether the observed behavior extends to SLS methods, we performed some preliminary ex-
periments with a simple iterated local search algorithm that uses 2.5-opt-EEais or an
improved variant of 1-shift. The results showed that the iterated local search algorithm
with 2.5-opt-EEais is very effective with respect to both solution quality and compu-
tation time (Balaprakash et al. 2009). These results indicate that there is also a significant
potential to improve over pACS+1-shift. The aforementioned factors motivated us to
develop a new algorithm that adopts the estimation-based approach in the ACO framework,
with the goal of effectively solving the PTSP.

In order to assess the impact of each algorithmic component that we use, we adopt the fol-
lowing systematic bottom-up design: We use pACS+1-shift as a starting point; in Sect. 4,
we replace 1-shift with 2.5-opt-EEais in pACS and we show that pACS+2.5-
opt-EEais outperforms pACS+1-shift; in Sect. 5, we bring the estimation-based so-
lution evaluation into pACS+2.5-opt-EEais and we show that the cost evaluation per-
formed by the estimation-based approach is comparable to that of the analytical computation
approach; in Sect. 6, we customize three high performing ACO variants, MAX –MI N ant
system, rank-based ant system, and best-worst ant system. We compare the three variants to
ACS and we show that the differences in solution costs among the four ACO variants are mi-
nor, once their parameters are fine tuned. It should be noted that all the four estimation-based
ACO variants outperform the previously best ACO algorithm, pACS+1-shift.

2 The probabilistic traveling salesman problem

A PTSP instance can be defined on a fully connected weighted graph G with V =
{1,2, . . . , n} being a set of nodes and P = {pi : i ∈ V } being a set of probabilities, where pi

226 Swarm Intell (2009) 3: 223–242

is the probability that node i requires being visited. The events that two distinct nodes i and
j require being visited are assumed to be independent. We denote 〈i, j〉 the edge connecting
two distinct nodes i and j and cij the travel cost imposed on this edge. The travel costs are
assumed to be symmetric—for all pairs of nodes i, j we have cij = cji . The probabilistic
information can be modeled using a random variable ω that follows an n-variate Bernoulli
distribution. A realization of ω is a vector of binary values, where a value ‘1’ in position i

indicates that node i requires being visited whereas a value ‘0’ means that it does not need
a visit. A PTSP instance is called homogeneous if all probabilities in the set P are the same,
and it is called heterogeneous otherwise.

The PTSP is usually tackled by the a priori optimization approach in two stages. First,
before the realization of ω is known, a Hamiltonian tour containing all the nodes is con-
structed, which is called an a priori solution; once the nodes that require being visited are
known, the a posteriori solution is obtained by following the nodes in the order of the a priori
solution and by excluding the nodes that need not be visited. See Fig. 1 for an illustration of
a priori and a posteriori solutions. The goal is to find an a priori solution with the minimum
expected a posteriori solution cost.

Suppose x = (π(1),π(2), . . . , π(n),π(n + 1) = π(1)) is an a priori solution for the
PTSP, where π is a permutation of the set V . The analytical computation approach for
evaluating the expected cost F(x) of the a priori solution x uses the following closed-form
expression (Jaillet 1985):

F(x) =
n∑

i=1

n∑

j=i+1

cπ(i)π(j) pπ(i)pπ(j)

j−1∏

k=i+1

(1 − pπ(k))

+
n∑

j=1

j−1∑

i=1

cπ(j)π(i) pπ(i)pπ(j)

n∏

k=j+1

(1 − pπ(k))

i−1∏

k=1

(1 − pπ(k)). (1)

Note that for a homogenous instance with probability p and size n, (1) reduces to F(x) =∑n

i=1

∑n−1
j=1 p2(1 − p)j−1 cπ(i),π(1+((i+j−1) mod n)).

In the empirical estimation approach for the PTSP, the cost F(x) is empirically estimated
on the basis of sample costs of a posteriori solutions f (x,ω1), f (x,ω2), . . . , f (x,ωM) ob-

Fig. 1 An a priori solution for a PTSP instance with 16 nodes, where the nodes are visited in the following
order: 1,2,3, . . . ,15,16, and 1. Let us assume that the nodes 1,3,7,9,11, and 15 are prescribed to be visited
by a realization of ω. The a posteriori solution visits the nodes following the a priori solution but skipping
the gray nodes that do not require to be visited

Swarm Intell (2009) 3: 223–242 227

tained from M independent realizations ω1,ω2, . . . ,ωM of the random variable ω:

F̂M(x) = 1

M

M∑

r=1

f (x,ωr). (2)

As it can be shown easily, F̂M(x) is an unbiased estimator of F(x).

3 The pACS+1-shift algorithm

pACS+1-shift (Bianchi 2006; Bianchi and Gambardella 2007) is currently the best per-
forming ant colony optimization algorithm for the PTSP. It is a standard ACS algorithm
(Dorigo and Gambardella 1997) in which, at each iteration, m ants construct solutions in
the following way: With a probability q0, ant k at node i chooses to move to the node j

that maximizes the product τij η
β

ij ; with probability 1 − q0, the next node j is chosen with

probability pk
ij = τij η

β

ij /
∑

l∈Nk
i
τilη

β

il (the random proportional rule); τij and ηij = 1/cij are
the pheromone value and the heuristic value associated with edge 〈i, j〉, respectively; β is a
parameter that determines the relative influence of the heuristic information; Nk

i is the set of
nodes for which it is feasible to move from node i. When an ant moves from node i to node
j , the pheromone value associated with edge 〈i, j 〉 is updated to τij = (1 − ϕ) · τij + ϕ · τ0,
where ϕ ∈ (0,1] is a parameter, and τ0 is the initial value of the pheromone. At the end
of each iteration, the pheromone value associated with each edge 〈i, j〉 of the best-so-far
solution is updated to τij = (1 − ρ) · τij + ρ · 	τ best

ij , where ρ ∈ (0,1] is a parameter and
	τ best

ij = 1/Cbest. The value of Cbest is set to the cost of the best-so-far solution. The solu-
tions generated at each iteration are evaluated by (1).

1-shift local search, a PTSP-specific iterative improvement algorithm, is applied to
all solutions constructed by the ants prior to the pheromone update. The algorithm proceeds
in two phases: The first phase consists in exploring a swap-neighborhood, where the set of
neighbors of a given solution contains all the solutions that can be obtained by swapping
two consecutive nodes. The second phase explores the node-insertion neighborhood in a
fixed lexicographic order. The cost difference of neighboring solutions is obtained by delta
evaluation, a technique that considers only the cost contribution of solution components that
are not common between the two solutions. This is done using computationally expensive
closed-form expressions, which are based on complex mathematical derivations (Bianchi
et al. 2005; Bianchi 2006; Bianchi and Campbell 2007).

4 Effectiveness of 2.5-opt-EEais in pACS

In this section, we show that the adoption of 2.5-opt-EEais instead of 1-shift
as a subsidiary solution improvement procedure significantly improves the effectiveness
of pACS.

2.5-opt-EEais (Balaprakash et al. 2009) is the state-of-the-art iterative improvement
algorithm for the PTSP. 2.5-opt-EEais differs from 1-shift in the following three
elements: It adopts an empirical estimation technique in the delta evaluation; it uses the 2.5-
exchange neighborhood relation that combines the 2-exchange and node-insertion neighbor-
hoods (Bentley 1992); and it exploits typical TSP neighborhood reduction techniques such
as fixed-radius search, candidate lists, and don’t look bits (Martin et al. 1991; Bentley 1992;

228 Swarm Intell (2009) 3: 223–242

Fig. 2 In this example, the two edges 〈1,2〉 and 〈6,7〉 are deleted and replaced with 〈1,6〉 and 〈2,7〉 by a
2-exchange move. Assume that minis and u are set to 50 and 40, respectively. Since the number of nodes in
the segment [2, . . . ,6] is less than 50% of 16, which is eight, importance sampling is used to bias 40% of 5,
that is, two nodes on each end of the segment [2, . . . ,6]: on the end that starts with node 2, the biased nodes
are 2 and 3; on the other end that starts with node 6, the biased nodes are 5 and 6

Johnson and McGeoch 1997). The effectiveness of the algorithm is further enhanced by the
usage of variance reduction techniques such as the method of common random numbers,
adaptive sample size, and importance sampling. In particular, importance sampling is es-
sential for the algorithm to effectively tackle instances with probability values up to 0.2.
Moreover, the adoption of this procedure is useful for instances with high probability values
although it may result in slightly higher computation time when compared to an appropri-
ate fixed sample size of 100 (Balaprakash et al. 2009). The importance sampling procedure
is implemented as follows: In a 2-exchange move, whenever the number of nodes in the
shorter segment (a 2-exchange move always leads to two tour segments) is less than minis %
of the instance size, u% nodes on each end of the shorter segment are biased with proba-
bility p′. See Fig. 2 for an example. Whenever a node i is biased with probability p′, the
delta evaluation procedure ignores realizations sampled with the original probability pi and
considers instead realizations in which the probability of node i requiring being visited is
p′. The cost difference estimate obtained in this way is a biased one, which is then corrected
to an unbiased one using the likelihood ratio. For the node-insertion move, only the insertion
node is biased with a value p′′. For a more detailed explanation of 2.5-opt-EEais, we
refer the reader to Balaprakash et al. (2009). We denote pACS+2.5-opt-EEais to be the
algorithm obtained by combining pACS with 2.5-opt-EEais.

We tuned the four parameters of 2.5-opt-EEais through a parameter tuning algo-
rithm, Iterative F-Race (Balaprakash et al. 2007). For tuning, we used homogeneous in-
stances obtained as follows: TSP instances are generated with the DIMACS instance gen-
erator (Johnson et al. 2001) from which the PTSP instances are obtained by associating
a probability value to each node. We used clustered instances of 1000 nodes, in which the
nodes are arranged in a number of clusters in a 106 ×106 square. We considered values for p

from 0.050 to 0.200 with increments of 0.025 and from 0.3 to 0.5 with increments of 0.1. We
focus on probability values up to 0.5 because Bianchi and Gambardella (2007) showed that
the instances with probability values greater than 0.5 can effectively be solved as a TSP by
the concorde solver (Applegate et al. 2001). The generated instances are grouped into three
classes according to the value of p: {0.050,0.075,0.100} (Class-I), {0.150,0.175,0.200}
(Class-II), {0.300,0.400,0.500} (Class-III); for each probability level we generated 30 in-
stances. The parameters of 2.5-opt-EEais are fine tuned on each instance class. The

Swarm Intell (2009) 3: 223–242 229

Table 1 Parameters values for 2.5-opt-EEais

Algorithm Parameters Range Selected value

Class-I Class-II Class-III

2.5-opt-EEais minis [0.0,50.0] 42.0 46.0 2.40

u [0.0,20.0] 13.0 16.0 5.80

p′ [0.0,1.0] 0.003 0.47 0.70

p′′ [0.0,1.0] 0.92 0.67 0.95

Table 2 Comparison of the
average cost obtained by
pACS+2.5-opt-EEais and
pACS+1-shift over 30
independent runs on instance
rat783 for each probability
value p. See footnote 1 for an
explanation of the contents and
of the typographic conventions
adopted in the table

p Difference [95% CI]

0.050 +0.24 [+0.01,+0.46]
0.075 −2.02 [−2.51,−1.53]
0.100 −3.03 [−3.43,−2.63]
0.150 −5.21 [−5.78,−4.64]
0.175 −5.80 [−6.27,−5.33]
0.200 −6.21 [−6.66,−5.77]
0.300 −9.40 [−9.92,−8.88]
0.400 −10.76 [−11.45,−10.07]
0.500 −12.18 [−12.76,−11.59]

initial solution for 2.5-opt-EEais is generated using the nearest neighbor heuristic. Ta-
ble 1 shows the range of each parameter given to the tuning algorithm and the selected
value. For pACS, we adopted the parameter values suggested by Bianchi (2006), Bianchi
and Gambardella (2007).

pACS+1-shift and pACS+2.5-opt-EEais are evaluated on the homogeneous
PTSP instances used by Bianchi (2006), which are obtained by assigning a same proba-
bility value to each node for TSPLIB instances, ch150, d198, lin318, att532, and rat783.
The algorithms were implemented in C and compiled with gcc, version 3.3. Experiments
were carried out on AMD Opteron™244 1.75 GHz processors with 1 MB L2-Cache and
2 GB RAM, running under Rocks Cluster GNU/Linux. We used the stopping criterion sug-
gested by Bianchi and Gambardella (2007) and by Bianchi (2006), where each algorithm is
allowed to run for a computation time of n2/100 CPU seconds. The computational results
obtained on the instance rat783 are shown in Table 2 and Fig. 3.

The results show that the adoption of 2.5-opt-EEais in pACS is indeed very ef-
fective. The average cost of the solutions found by pACS+2.5-opt-EEais is between
2.02% to 12.18% less than those of pACS+1-shift and the observed difference is signif-
icant according to Student’s t-test. An exception is for p = 0.050, where pACS+1-shift

1For a given comparison of algorithms A vs. B (in Table 2, algorithm A and B are pACS+2.5-opt-
EEais and pACS+1-shift, respectively) the table reports the observed relative difference between the two
algorithms A and B and the 95% confidence interval (CI) obtained through the t-test. If the value is positive,
algorithm A obtained an average cost that is larger than the one obtained by algorithm B. In this case, the
value is typeset in italics if it is significantly different from zero according to the t-test at a confidence level
of 95%. If the value is negative, algorithm A obtained an average cost that is smaller than the one obtained
by algorithm B. In this case, the value is typeset in boldface if it is significantly different from zero according
to the t-test, at a confidence level of 95%.

230 Swarm Intell (2009) 3: 223–242

Fig. 3 Experimental results on the instance rat783. The plots represent the development of the solution
cost over time for pACS+2.5-opt-EEais and pACS+1-shift. The obtained solution costs of the two
algorithms are normalized by the final solution cost reached by pACS+1-shift. The normalization is done
on a run-by-run basis for 30 runs; the normalized solution cost is then aggregated

obtains an average solution cost that is 0.24% less than that of pACS+2.5-opt-EEais.
The general trends of the experimental results obtained on the other instance sizes are sim-
ilar; we refer the reader to Balaprakash et al. (2008) for the complete set of results and for
the absolute values.

5 Estimation-based ant colony system

In order to design a complete estimation-based ACS, that is, to make the solution evaluation
approach of ACS coherent with that of the underlying iterative improvement algorithm,
we modified pACS+2.5-opt-EEais in such a way that the solution costs are evaluated
using (2) instead of (1). In particular, for each solution xi , an unbiased estimator F̂Mi

(xi) of
F(xi) is obtained through Mi independent realizations of ω. Estimating solution costs with
low variance is crucial to the effectiveness of the estimation approach. As in 2.5-opt-
EEais, here we address this issue using two variance reduction techniques: (i) the method
of common random numbers and (ii) an adaptive sample size.

As in 2.5-opt-EEais, the adoption of the method of common random numbers for
ACS consists in using the same set of realizations to evaluate the solutions produced at
each iteration. The adaptive sample size in 2.5-opt-EEais is implemented using the se-
quential application of a parametric statistical test, Student’s t-test, which is appropriate for
comparing two solutions. However, since in ACS more than two solutions are compared at

Swarm Intell (2009) 3: 223–242 231

each iteration, we use a parametric statistical test based on analysis of variance (ANOVA)
(Fisher 1925) and Tukey’s honestly significant difference (HSD) test (Tukey 1949) for mul-
tiple comparison. We implemented the adaptive sample size procedure as a racing algorithm
(Birattari 2004, 2009): at each iteration, the a posteriori solution cost of each a priori so-
lution is computed sequentially on realizations. Once Mmin realizations have been used,
where Mmin is a parameter, ANOVA is applied on a realization-by-realization basis to test
the null hypothesis that the cost estimates of all solutions are equal. The rejection of the null
hypothesis indicates that there is at least one solution whose cost estimate is significantly
worse than the one with best cost estimate. This particular worse solution is identified using
Tukey’s HSD and is eliminated from further evaluation. The procedure terminates when a
single solution remains or when a maximum number M of realizations is used. If more than
one solution survives at the end, the solution with the best cost estimate is selected as the
best solution. We denote this procedure ANOVA-Race. Note that the aforementioned cost
evaluation procedure takes place after the solutions constructed by the ants are improved by
2.5-opt-EEais. We denote the complete estimation-based algorithm ACS-EE, where
EE stands for empirical estimation.

We evaluate ACS-EE and pACS+2.5-opt-EEais on three groups of homogeneous
PTSP instances: (i) instances derived from TSPLIB instances (ch150, d198, lin318, att532,
and rat783); (ii) clustered instances of size 1000; (iii) uniform instances of size 1000. The
second and third groups of instances are generated afresh using the DIMACS instance gener-
ators. All these instances use probability values as detailed in Sect. 4. For an instance size n,
(Bianchi 2006) and Bianchi and Gambardella (2007) used n2/100 CPU seconds as a stop-
ping criterion, which allowed pACS+1-shift to perform more than five iterations. Such
a high computation time is needed because the computational complexity of 1-shift is
very high. Since 2.5-opt-EEais is between two and three orders of magnitude faster
than 1-shift (Birattari et al. 2008; Balaprakash et al. 2009), we study the algorithms un-
der n2/10000 and n2/1000 CPU seconds. The adoption of n2/100000 CPU seconds is not
insightful because it does not allow the algorithms to perform more than five iterations. Note
that (1) is used for the post-evaluation of the best-so-far solutions found by ACS-EE. We
present the results obtained on clustered instances of size 1000. The trend of the results ob-
tained on TSPLIB and uniform instances is similar to that of clustered instances. A detailed
presentation of these results is available in Balaprakash et al. (2008).

The parameters of the adaptive sampling procedure are fixed a priori: Mmin is set to 5 and
M is set to 1000. The null hypothesis is rejected at a significance level of 0.05. ACS-EE
adopts the same parameter values as pACS+2.5-opt-EEais. ACS-EE uses a same set
of realizations for all iterations. In the context of the PTSP, this strategy is more effective
than changing realizations for each iteration (Birattari et al. 2008). However, the realizations
are selected randomly from the given set for each iteration. Note that the implementation of
ACS-EE and pACS+2.5-opt-EEais is based on ACOTSP (Stützle 2002) and the two
algorithms differ only in the solution evaluation procedure.

The computational results in Table 3 show that for both stopping criteria the two algo-
rithms provide similar results. With 95% confidence, under the current experimental set-
tings, we can state that should ever the expected cost of solutions found by ACS-EE be
higher than the one of those found by pACS+2.5-opt-EEais, the difference between
the expected costs would be at most 0.74% and 0.49% under 100 CPU seconds and 1000
CPU seconds, respectively.

We also tested the algorithms on instances with p > 0.5, where we found that ACS-EE
is significantly better than pACS+2.5-opt-EEais. This can be explained as follows: In-
stances with high probability values have low coefficient of variation (Balaprakash et al.

232 Swarm Intell (2009) 3: 223–242

Table 3 Comparison of the average cost obtained by ACS-EE and pACS+2.5-opt-EEais over 30 clus-
tered instances of size 1000 for 100 and 1000 CPU seconds. Typographic conventions are the same as in
Table 2

100 CPU seconds

ACS-EE

vs.

pACS+2.5-opt-EEais

p Difference [95% CI]

0.050 −0.54 [−1.25,+0.17]
0.075 +0.14 [−0.46,+0.74]
0.100 +0.04 [−0.27,+0.36]
0.125 +0.03 [−0.22,+0.28]
0.150 −0.06 [−0.39,+0.27]
0.175 +0.13 [−0.12,+0.37]
0.200 −0.08 [−0.39,+0.23]
0.300 −0.19 [−0.44,+0.05]
0.400 −0.00 [−0.21,+0.21]
0.500 −0.16 [−0.41,+0.10]
0.600 −0.32 [−0.56,−0.09]
0.700 −0.49 [−0.76,−0.21]
0.800 −0.62 [−0.81,−0.43]
0.900 −0.99 [−1.22,−0.77]

1000 CPU seconds

ACS-EE

vs.

pACS+2.5-opt-EEais

p Difference [95% CI]

0.050 +0.12 [−0.25,+0.49]
0.075 +0.02 [−0.05,+0.10]
0.100 +0.02 [−0.04,+0.08]
0.125 +0.04 [−0.05,+0.13]
0.150 +0.04 [−0.06,+0.15]
0.175 +0.11 [−0.03,+0.26]
0.200 +0.04 [−0.11,+0.20]
0.300 −0.03 [−0.14,+0.08]
0.400 −0.07 [−0.15,+0.02]
0.500 −0.05 [−0.15,+0.05]
0.600 −0.02 [−0.12,+0.08]
0.700 −0.09 [−0.26,+0.08]
0.800 −0.21 [−0.31,−0.10]
0.900 −0.15 [−0.29,−0.02]

2009). In this case, ANOVA-Race needs only few realizations to select the best solution.
This allows ACS-EE to perform more iterations when compared to pACS+2.5-opt-
EEais. Consequently, ACS-EE obtains higher quality solutions.

Note that the results presented in this section and in Sect. 4 suggest different conclusions
from those presented in Bianchi (2006) and Bianchi and Gambardella (2007), where it was
shown that in pACS+1-shift the adoption of an estimation-based approach is less effec-
tive than the analytical computation approach. This difference in results can be put down
to our more advanced estimation approach and our effective estimation-based local search
algorithm.

6 Comparison between estimation-based ACO algorithms

So far ACS is widely adopted to tackle the PTSP (Bianchi et al. 2002a, 2002b; Branke
and Guntsch 2004; Bianchi 2006; Bianchi and Gambardella 2007). Although ACS is a high
performing ACO algorithm, we cannot rule out other existing ACO algorithms as promising
ones for the PTSP. This is due to the fact that there is no theoretical justification or empirical
evidence in the PTSP literature suggesting that ACS is the best choice. We address this issue
by comparing ACS with the following three ACO algorithms: MAX –MI N ant system
(MMAS) (Stützle and Hoos 2000), rank-based ant system (RAS) (Bullnheimer et al. 1999),
and best–worst ant system (BWAS) (Cordón et al. 2002).

In all three algorithms, m ants construct solutions using only the random proportional
rule and they differ from ACS with respect to the pheromone update procedure. In MMAS,

Swarm Intell (2009) 3: 223–242 233

only the iteration-best or best-so-far ant updates the pheromone trail τij associated with
edge 〈i, j〉; the update rule used is: τij = (1 − ρ) · τij + 	τ best

ij , where ρ is a parameter
and 	τ best

ij is set to either 1/Cbest—only when the edge 〈i, j〉 belongs to the chosen best
solution—or 0. The value of Cbest is equal to the cost of the iteration-best or best-so-far
solution depending on which of the two is chosen. The pheromone values are limited within
a maximum and a minimum value in order to reduce the risk of search stagnation; in case of
search stagnation, the search is restarted by re-initializing the pheromone values. In RAS,
at each iteration, from m solutions only the (w − 1) best ranked solutions and the best-
so-far solution are allowed to update the pheromone values using the following equation:
τij = τij + ∑w−1

r=1 (w − r)	τ r
ij + w	τ best

ij , where r is the rank of the solution obtained by
sorting m solutions by increasing cost, 	τr

ij = 1/Cr , and 	τ best
ij = 1/Cbest if edge 〈i, j〉

belongs to the best-so-far solution; Cr and Cbest are the cost of the solution with rank r and
the cost of the best-so-far solution, respectively. In BWAS, only the best-so-far solution is
allowed to update the pheromone values; the pheromone values of the edges that belong to
the worst ant but not to the best-so-far solution are reduced. To avoid premature convergence,
BWAS uses pheromone re-initialization and pheromone mutation.

All the aforementioned algorithms are extended to solve the PTSP by using ANOVA-
Race to evaluate the solution costs and by using 2.5-opt-EEais as the underlying solu-
tion improvement procedure. We denote them MMAS-EE, RAS-EE, and BWAS-EE.

Similar to ACS-EE, the implementations of MMAS-EE, RAS-EE, and BWAS-EE were
based on ACOTSP (Stützle 2002). We evaluate all the algorithms on TSPLIB instances
(ch150, d198, lin318, att532, and rat783), uniform and clustered instances of size 1000. We
allowed each algorithm to run for n2/10000 and n2/1000 CPU seconds. Concerning the
parameter values of each algorithm, we use two sets of values: default parameter values and
tuned parameter values. We present the empirical results in the following three sections.

6.1 Experiments with default parameter values

The default parameter values for each algorithm are chosen reasonably close to the values
proposed in the ACO literature for the TSP (Dorigo and Stützle 2004; Bullnheimer et al.
1999; Cordón et al. 2002): in all the algorithms m, α, and β are set to 10, 1.0, and 2.0,
respectively; in ACS-EE, ρ and q0 are set to 0.1 and 0.98, respectively; in MMAS-EE, ρ is
set to 0.2; in RAS-EE, ρ and w are set to 0.5 and 6, respectively; in BWAS-EE, ρ is set to
0.2. In all algorithms the initial value τ0 of the pheromone is set to a value inversely pro-
portional to Cnn, where Cnn is the TSP cost of the nearest neighbor solution: in ACS-EE τ0

is set to 1/(n × Cnn), while in the other three algorithms τ0 is set to 1/(ρ × Cnn). We de-
note the algorithms that adopt the default parameter values as ACS-EE(d) MMAS-EE(d),
RAS-EE(d), and BWAS-EE(d).

The results obtained on clustered instances of size 1000 are shown in Table 4. For
most probability levels, ACS-EE(d) is better than other algorithms: the average cost of
ACS-EE(d) is between 0.42% and 3.91% and between 0.14% and 3.90% less than that of
other algorithms for 100 and 1000 CPU seconds, respectively. Most of the differences that
have been observed are statistically significant according to the t-test. The results obtained
on TSPLIB and uniform instances of size 1000 exhibit a similar trend. The complete results
can be inspected in Balaprakash et al. (2008).

6.2 Comparison between the algorithms with tuned and default values

The parameter values of each algorithm are tuned on clustered instances of size 1000 for
100 and 1000 CPU seconds in the same way as described in Sect. 4 using Iterative F-Race.

234 Swarm Intell (2009) 3: 223–242

Table 4 Comparison of the average cost obtained by ACS-EE(d), MMAS-EE(d), RAS-EE(d), and
BWAS-EE(d) over 50 clustered instances of size 1000 for 100 and 1000 CPU seconds. Typographic con-
ventions are the same as in Table 2

100 CPU seconds

ACS-EE(d) ACS-EE(d) ACS-EE(d)

vs. vs. vs.
MMAS-EE(d) RAS-EE(d) BWAS-EE(d)

p Difference [95% CI] Difference [95% CI] Difference [95% CI]

0.050 +2.67 [+0.61,+4.73] +1.43 [−0.58,+3.45] +0.75 [−1.39,+2.88]
0.075 −2.84 [−3.42,−2.26] −3.42 [−4.03,−2.80] −3.14 [−3.65,−2.64]
0.100 −3.91 [−4.36,−3.45] −1.64 [−2.05,−1.23] −1.06 [−1.73,−0.38]
0.150 −0.70 [−0.88,−0.51] −0.61 [−0.84,−0.37] −0.12 [−0.29,+0.05]
0.175 −1.03 [−1.24,−0.83] −0.99 [−1.18,−0.80] −0.42 [−0.62,−0.21]
0.200 −1.16 [−1.36,−0.97] −1.08 [−1.26,−0.90] −0.52 [−0.69,−0.36]
0.300 −2.25 [−2.45,−2.04] −2.02 [−2.16,−1.87] −1.17 [−1.37,−0.98]
0.400 −3.11 [−3.32,−2.90] −2.88 [−3.07,−2.70] −1.59 [−1.77,−1.40]
0.500 −3.32 [−3.53,−3.11] −3.29 [−3.48,−3.11] −1.73 [−1.92,−1.53]
1000 CPU seconds

ACS-EE(d) ACS-EE(d) ACS-EE(d)

vs. vs. vs.
MMAS-EE(d) RAS-EE(d) BWAS-EE(d)

p Difference [95% CI] Difference [95% CI] Difference [95% CI]

0.050 −1.89 [−2.22,−1.56] −1.08 [−1.43,−0.73] −0.91 [−1.18,−0.63]
0.075 −1.80 [−2.01,−1.60] −1.37 [−1.52,−1.22] −0.83 [−1.01,−0.64]
0.100 −0.75 [−0.85,−0.65] −0.70 [−0.79,−0.61] −0.38 [−0.46,−0.29]
0.150 −0.79 [−0.87,−0.71] −1.26 [−1.36,−1.16] −0.57 [−0.66,−0.48]
0.175 −0.92 [−1.03,−0.82] −1.74 [−1.83,−1.64] −0.55 [−0.64,−0.47]
0.200 −0.96 [−1.06,−0.86] −2.12 [−2.24,−2.00] −0.45 [−0.54,−0.36]
0.300 −0.62 [−0.73,−0.51] −3.19 [−3.31,−3.07] −0.28 [−0.38,−0.17]
0.400 −0.23 [−0.33,−0.13] −3.61 [−3.77,−3.45] −0.29 [−0.40,−0.18]
0.500 −0.14 [−0.25,−0.03] −3.90 [−4.03,−3.77] −0.41 [−0.50,−0.31]

The selected values are shown in Table 5. Note that we use the same parameter values for
each algorithm on TSPLIB and uniform instances. We denote the algorithms that use the fine
tuned parameter values as ACS-EE(t), MMAS-EE(t), RAS-EE(t), and BWAS-EE(t).

The results from Table 6 show that, as expected, the adoption of tuned parameter val-
ues allows each algorithm to achieve much better results. MMAS-EE(t), RAS-EE(t),
and BWAS-EE(t) profit much more from tuning than ACS-EE(t) does. For 100 CPU
seconds, the observed improvements are very large and are up to 8.63%. For 1000 CPU
seconds, the improvement is up to 3.53%.

6.3 Comparison between the algorithms with tuned parameter values

The computational results of the four algorithms that adopt the tuned parameter values on
clustered instances of size 1000 are given in Table 7. For the absolute values, we refer the

Swarm Intell (2009) 3: 223–242 235

Table 5 Fine-tuned parameter values

100 CPU seconds

Algorithm Parameters Range Selected value

Class-I Class-II Class-III

ACS-EE m [3,15] 5 4 11

β [0.0,5.0] 3.3 0.16 1.0

ρ [0.001,1.0] 0.75 0.84 1.0

q0 [0.0,1.0] 0.84 1.0 0.99

MMAS-EE m [3,15] 5 4 15

α [0.001,1.5] 1.4 1.3 0.99

β [0.0,5.0] 3.2 0.97 2.1

ρ [0.001,1.0] 1.0 1.0 0.97

RAS-EE m [3,15] 3 3 6

α [0.001,1.5] 0.33 1.1 0.71

β [0.0,5.0] 5.0 2.6 2.1

ρ [0.001,1.0] 1.0 0.94 0.83

w [1,10] 1 1 1

BWAS-EE m [3,15] 3 4 4

α [0.001,1.5] 0.99 1.4 0.89

β [0.0,5.0] 3.1 2.9 2.3

ρ [0.001,1.0] 0.95 0.97 0.66

1000 CPU seconds

Algorithm Parameters Range Selected value

Class-I Class-II Class-III

ACS-EE m [3,15] 4 3 5

β [0.0,5.0] 0.05 0.85 3.7

ρ [0.001,1.0] 0.67 0.079 0.82

q0 [0.0,1.0] 0.99 0.99 0.96

MMAS-EE m [3,15] 8 15 6

α [0.001,1.5] 1.5 1.2 1.1

β [0.0,5.0] 1.6 1.9 0.95

ρ [0.001,1.0] 0.99 0.98 0.62

RAS-EE m [3,15] 10 6 11

α [0.001,1.5] 1.2 1.5 1.4

β [0.0,5.0] 0.85 2.1 2.7

ρ [0.001,1.0] 1.0 0.57 0.37

w [1,10] 1 1 1

BWAS-EE m [3,15] 5 10 6

α [0.001,1.5] 0.6 1.1 0.9

β [0.0,5.0] 2.7 0.09 2.4

ρ [0.001,1.0] 0.99 0.85 0.27

236 Swarm Intell (2009) 3: 223–242

Table 6 Comparison of the average cost obtained by the algorithms with tuned values and by the algorithms
with default values over 50 clustered instances of size 1000 for 100 and 1000 CPU seconds. Typographic
conventions are the same as in Table 2

100 CPU seconds

ACS-EE(t) MMAS-EE(t) RAS-EE(t) BWAS-EE(t)

vs. vs. vs. vs.
ACS-EE(d) MMAS-EE(d) RAS-EE(d) BWAS-EE(d)

p Difference [95% CI] Difference [95% CI] Difference [95% CI] Difference [95% CI]

0.050 −8.05 [−9.71,−6.39] −5.03 [−6.24,−3.82] −8.63 [−10.09,−7.17] −7.87 [−9.47,−6.28]
0.075 −2.18 [−2.73,−1.63] −5.84 [−6.37,−5.30] −7.00 [−7.58,−6.41] −5.71 [−6.13,−5.28]
0.100 −0.21 [−0.49,+0.07] −4.81 [−5.25,−4.38] −2.80 [−3.14,−2.45] −1.74 [−2.48,−1.00]
0.150 −1.06 [−1.28,−0.84] −1.75 [−1.92,−1.58] −1.75 [−1.95,−1.56] −1.13 [−1.29,−0.98]
0.175 −0.97 [−1.17,−0.77] −2.06 [−2.24,−1.88] −2.05 [−2.17,−1.92] −1.26 [−1.41,−1.12]
0.200 −1.14 [−1.29,−0.99] −2.27 [−2.47,−2.07] −2.23 [−2.42,−2.03] −1.48 [−1.64,−1.32]
0.300 −0.66 [−0.82,−0.50] −2.78 [−2.97,−2.59] −2.65 [−2.83,−2.48] −1.58 [−1.77,−1.39]
0.400 −0.44 [−0.61,−0.27] −3.28 [−3.49,−3.08] −3.24 [−3.43,−3.05] −1.60 [−1.80,−1.40]
0.500 −0.05 [−0.18,+0.07] −3.19 [−3.39,−2.99] −3.10 [−3.30,−2.90] −1.16 [−1.36,−0.95]
1000 CPU seconds

ACS-EE(t) MMAS-EE(t) RAS-EE(t) BWAS-EE(t)

vs. vs. vs. vs.
ACS-EE(d) MMAS-EE(d) RAS-EE(d) BWAS-EE(d)

p Difference [95% CI] Difference [95% CI] Difference [95% CI] Difference [95% CI]

0.050 −1.14 [−1.42,−0.85] −2.64 [−2.94,−2.34] −2.82 [−3.06,−2.58] −1.65 [−1.90,−1.41]
0.075 −0.30 [−0.36,−0.23] −2.08 [−2.28,−1.87] −1.67 [−1.81,−1.53] −1.09 [−1.30,−0.89]
0.100 −0.22 [−0.26,−0.17] −0.95 [−1.05,−0.84] −0.92 [−1.02,−0.82] −0.58 [−0.67,−0.49]
0.150 −0.16 [−0.22,−0.09] −0.94 [−1.04,−0.84] −1.44 [−1.53,−1.34] −0.68 [−0.78,−0.58]
0.175 −0.04 [−0.11,+0.04] −1.06 [−1.16,−0.95] −1.83 [−1.92,−1.75] −0.61 [−0.69,−0.53]
0.200 −0.09 [−0.17,−0.00] −1.07 [−1.15,−0.98] −2.13 [−2.26,−2.01] −0.44 [−0.54,−0.34]
0.300 +0.19 [+0.08,+0.30] −0.72 [−0.82,−0.62] −3.19 [−3.29,−3.08] −0.11 [−0.21,−0.00]
0.400 +0.07 [−0.02,+0.16] −0.23 [−0.32,−0.14] −3.39 [−3.57,−3.22] −0.07 [−0.17,+0.04]
0.500 +0.10 [−0.00,+0.21] −0.09 [−0.18,+0.01] −3.53 [−3.66,−3.40] −0.10 [−0.22,+0.02]

reader to Balaprakash et al. (2008). From the results, we cannot identify a clear winner
among the considered algorithms. For 100 CPU seconds, with a confidence level of 95%,
under the current experimental setting, we can state that should ever the expected cost of the
solutions found by MMAS-EE(t), RAS-EE(t), and BWAS-EE(t) be larger than those
found by ACS-EE(t), the difference would be at most 1.46%, 2.76% and 1.26%, respec-
tively. For 1000 CPU seconds, the aforementioned differences would be at most 0.37%,
0.83% and 0.11%, respectively. There are a few exceptions, where the differences are sig-
nificant but rather small: for 100 CPU seconds, the maximum observed difference is less
than 1% (except for p = 0.050 and p = 0.075, where the average cost of RAS-EE(t) is
2.08% and 1.59% less than that of ACS-EE(t), respectively) and for 1000 CPU seconds
it is less than 0.7%.

From the absolute values reported in Balaprakash et al. (2008), we observed that for 1000
CPU seconds all the algorithms obtain average solution costs that are smaller than that of

Swarm Intell (2009) 3: 223–242 237

Table 7 Comparison of the average cost obtained by ACS-EE(t), MMAS-EE(t), RAS-EE(t), and
BWAS-EE(t) over 50 clustered instances of size 1000 for 100, 1000, and 10000 CPU seconds. Typographic
conventions are the same as in Table 2

100 CPU seconds

ACS-EE(t) ACS-EE(t) ACS-EE(t)
vs. vs. vs.
MMAS-EE(t) RAS-EE(t) BWAS-EE(t)

p Difference [95% CI] Difference [95% CI] Difference [95% CI]

0.050 −0.60 [−1.50,+0.30] +2.08 [+1.39,+2.76] +0.55 [−0.15,+1.26]
0.075 +0.94 [+0.43,+1.46] +1.59 [+1.18,+2.00] +0.48 [−0.02,+0.99]
0.100 +0.74 [+0.52,+0.97] +0.98 [+0.81,+1.14] +0.49 [+0.30,+0.68]
0.125 +0.03 [−0.10,+0.16] −0.15 [−0.28,−0.02] −0.17 [−0.30,−0.03]
0.150 +0.00 [−0.16,+0.16] +0.10 [−0.05,+0.24] −0.04 [−0.21,+0.13]
0.175 +0.07 [−0.06,+0.20] +0.10 [−0.02,+0.22] −0.12 [−0.26,+0.01]
0.200 −0.02 [−0.18,+0.15] +0.02 [−0.13,+0.18] −0.18 [−0.31,−0.05]
0.300 −0.12 [−0.26,+0.02] −0.01 [−0.17,+0.14] −0.26 [−0.42,−0.10]
0.400 −0.27 [−0.41,−0.12] −0.07 [−0.23,+0.08] −0.43 [−0.57,−0.28]
0.500 −0.18 [−0.33,−0.04] −0.25 [−0.41,−0.10] −0.63 [−0.76,−0.50]
1000 CPU seconds

ACS-EE(t) ACS-EE(t) ACS-EE(t)
vs. vs. vs.
MMAS-EE(t) RAS-EE(t) BWAS-EE(t)

p Difference [95% CI] Difference [95% CI] Difference [95% CI]

0.050 −0.38 [−0.59,−0.16] +0.64 [+0.44,+0.83] −0.38 [−0.60,−0.17]
0.075 −0.02 [−0.04,+0.00] +0.01 [−0.05,+0.06] −0.03 [−0.06,−0.00]
0.100 −0.01 [−0.04,+0.02] +0.00 [−0.04,+0.05] −0.01 [−0.04,+0.02]
0.150 −0.00 [−0.06,+0.05] +0.02 [−0.04,+0.08] −0.04 [−0.09,+0.01]
0.175 +0.10 [+0.02,+0.17] +0.06 [−0.02,+0.14] +0.02 [−0.05,+0.09]
0.200 +0.02 [−0.05,+0.10] −0.07 [−0.16,+0.02] −0.10 [−0.17,−0.02]
0.300 +0.29 [+0.21,+0.37] +0.19 [+0.11,+0.27] +0.02 [−0.08,+0.11]
0.400 +0.07 [−0.02,+0.16] −0.15 [−0.25,−0.05] −0.15 [−0.23,−0.07]
0.500 +0.05 [−0.05,+0.15] −0.28 [−0.38,−0.18] −0.20 [−0.29,−0.10]
10000 CPU seconds

ACS-EE(t) ACS-EE(t) ACS-EE(t)
vs. vs. vs.
MMAS-EE(t) RAS-EE(t) BWAS-EE(t)

p Difference [95% CI] Difference [95% CI] Difference [95% CI]

0.050 −0.16 [−0.26,−0.07] +0.15 [+0.10,+0.21] +0.09 [+0.05,+0.13]
0.075 −0.01 [−0.03,−0.00] +0.02 [−0.00,+0.03] +0.02 [+0.01,+0.03]
0.100 −0.03 [−0.05,−0.01] −0.04 [−0.11,+0.03] −0.02 [−0.04,+0.01]
0.150 −0.04 [−0.08,+0.01] +0.02 [−0.01,+0.05] −0.05 [−0.11,+0.01]
0.175 −0.07 [−0.15,+0.01] −0.00 [−0.07,+0.07] −0.04 [−0.12,+0.04]
0.200 +0.00 [−0.08,+0.09] −0.05 [−0.14,+0.03] −0.01 [−0.12,+0.10]
0.300 +0.00 [−0.07,+0.07] −0.15 [−0.24,−0.06] −0.09 [−0.17,−0.02]
0.400 +0.09 [+0.01,+0.17] −0.33 [−0.47,−0.20] −0.03 [−0.13,+0.06]
0.500 +0.02 [−0.09,+0.12] −0.48 [−0.62,−0.35] −0.06 [−0.13,+0.02]

238 Swarm Intell (2009) 3: 223–242

Table 8 Comparison of the average cost obtained by ACS-EE(t), MMAS-EE(t), RAS-EE(t), and
BWAS-EE(t) over 50 uniform instances of size 1000 for 100, 1000, and 10000 CPU seconds. Typographic
conventions are the same as in Table 2

100 CPU seconds

ACS-EE(t) ACS-EE(t) ACS-EE(t)
vs. vs. vs.
MMAS-EE(t) RAS-EE(t) BWAS-EE(t)

p Difference [95% CI] Difference [95% CI] Difference [95% CI]

0.050 −0.18 [−0.68,+0.31] +1.39 [+0.99,+1.80] +0.34 [−0.03,+0.70]
0.075 +0.44 [+0.28,+0.60] +0.81 [+0.66,+0.96] +0.27 [+0.12,+0.42]
0.100 +0.81 [+0.66,+0.96] +0.93 [+0.74,+1.13] +0.66 [+0.50,+0.82]
0.150 +0.09 [−0.06,+0.25] +0.13 [−0.04,+0.30] −0.06 [−0.24,+0.13]
0.175 +0.00 [−0.19,+0.19] −0.03 [−0.20,+0.13] −0.16 [−0.35,+0.02]
0.200 +0.15 [−0.02,+0.32] +0.14 [−0.06,+0.34] −0.35 [−0.60,−0.11]
0.300 +0.03 [−0.15,+0.20] +0.04 [−0.11,+0.19] −0.41 [−0.64,−0.19]
0.400 −0.08 [−0.26,+0.09] −0.23 [−0.41,−0.05] −0.64 [−0.81,−0.47]
0.500 +0.04 [−0.13,+0.21] −0.53 [−0.70,−0.37] −0.75 [−0.92,−0.58]
1000 CPU seconds

ACS-EE(t) ACS-EE(t) ACS-EE(t)
vs. vs. vs.
MMAS-EE(t) RAS-EE(t) BWAS-EE(t)

p Difference [95% CI] Difference [95% CI] Difference [95% CI]

0.050 −0.12 [−0.29,+0.04] +0.28 [+0.11,+0.45] −0.07 [−0.28,+0.14]
0.075 −0.04 [−0.13,+0.05] −0.01 [−0.10,+0.08] +0.06 [+0.00,+0.12]
0.100 +0.04 [−0.03,+0.11] −0.03 [−0.15,+0.09] +0.12 [+0.03,+0.21]
0.150 +0.09 [−0.01,+0.20] +0.00 [−0.12,+0.12] −0.08 [−0.20,+0.04]
0.175 +0.03 [−0.05,+0.11] −0.06 [−0.19,+0.08] −0.07 [−0.19,+0.05]
0.200 +0.04 [−0.09,+0.18] −0.12 [−0.24,−0.01] −0.10 [−0.22,+0.02]
0.300 +0.11 [−0.01,+0.23] −0.08 [−0.22,+0.06] −0.23 [−0.34,−0.13]
0.400 +0.01 [−0.11,+0.13] −0.45 [−0.58,−0.32] −0.35 [−0.46,−0.24]
0.500 +0.05 [−0.06,+0.17] −0.60 [−0.74,−0.46] −0.33 [−0.46,−0.20]
10000 CPU seconds

ACS-EE(t) ACS-EE(t) ACS-EE(t)
vs. vs. vs.
MMAS-EE(t) RAS-EE(t) BWAS-EE(t)

p Difference [95% CI] Difference [95% CI] Difference [95% CI]

0.050 −0.21 [−0.34,−0.08] +0.09 [−0.01,+0.18] +0.05 [−0.08,+0.18]
0.075 +0.02 [−0.07,+0.11] +0.06 [−0.05,+0.17] +0.06 [−0.03,+0.16]
0.100 +0.04 [−0.10,+0.19] −0.08 [−0.27,+0.12] +0.02 [−0.16,+0.19]
0.150 −0.03 [−0.24,+0.19] −0.10 [−0.23,+0.04] +0.00 [−0.15,+0.16]
0.175 +0.20 [+0.06,+0.33] −0.04 [−0.22,+0.14] +0.13 [−0.01,+0.28]
0.200 +0.13 [−0.07,+0.32] −0.04 [−0.25,+0.17] +0.02 [−0.17,+0.21]
0.300 +0.08 [−0.08,+0.25] −0.37 [−0.57,−0.16] −0.16 [−0.31,−0.01]
0.400 +0.23 [+0.10,+0.37] −0.39 [−0.59,−0.20] +0.03 [−0.12,+0.18]
0.500 +0.08 [−0.09,+0.24] −0.81 [−1.01,−0.60] −0.05 [−0.20,+0.09]

Swarm Intell (2009) 3: 223–242 239

Table 9 Comparison of the average cost obtained by ACS-EE(t), MMAS-EE(t), RAS-EE(t), and
BWAS-EE(t) over 30 independent runs on instance rat783 for n2/10000 = 61 and n2/1000 = 613 CPU
seconds. Typographic conventions are the same as in Table 2

61 CPU seconds

ACS-EE(t) ACS-EE(t) ACS-EE(t)

vs. vs. vs.
MMAS-EE(t) RAS-EE(t) BWAS-EE(t)

p Difference [95% CI] Difference [95% CI] Difference [95% CI]

0.050 −0.06 [−0.24,+0.13] −0.13 [−0.36,+0.11] −0.20 [−0.44,+0.03]
0.075 +0.05 [−0.10,+0.20] +0.03 [−0.14,+0.21] −0.07 [−0.22,+0.08]
0.100 +0.00 [−0.16,+0.16] −0.12 [−0.36,+0.11] −0.11 [−0.27,+0.05]
0.150 −0.09 [−0.28,+0.10] −0.02 [−0.18,+0.14] −0.08 [−0.25,+0.09]
0.175 −0.03 [−0.17,+0.11] +0.09 [−0.04,+0.22] −0.05 [−0.21,+0.11]
0.200 −0.05 [−0.21,+0.12] −0.07 [−0.22,+0.09] −0.18 [−0.36,+0.01]
0.300 +0.17 [−0.03,+0.36] +0.18 [+0.05,+0.30] −0.03 [−0.18,+0.12]
0.400 −0.10 [−0.26,+0.06] −0.31 [−0.47,−0.15] −0.31 [−0.45,−0.16]
0.500 +0.03 [−0.13,+0.19] −0.40 [−0.59,−0.21] −0.25 [−0.40,−0.09]
613 CPU seconds

ACS-EE(t) ACS-EE(t) ACS-EE(t)

vs. vs. vs.
MMAS-EE(t) RAS-EE(t) BWAS-EE(t)

p Difference [95% CI] Difference [95% CI] Difference [95% CI]

0.050 +0.21 [−0.18,+0.59] −0.07 [−0.52,+0.38] −0.57 [−1.09,−0.04]
0.075 −0.10 [−0.30,+0.10] −0.49 [−0.73,−0.24] −0.34 [−0.62,−0.07]
0.100 +0.29 [+0.03,+0.56] −0.24 [−0.57,+0.08] −0.09 [−0.43,+0.26]
0.150 +1.09 [+0.70,+1.47] +0.88 [+0.54,+1.22] +0.88 [+0.52,+1.23]
0.175 +1.57 [+1.21,+1.94] +1.32 [+0.88,+1.76] +1.24 [+0.88,+1.60]
0.200 +1.65 [+1.33,+1.96] +1.09 [+0.69,+1.49] +1.33 [+1.01,+1.64]
0.300 +0.96 [+0.73,+1.20] +0.62 [+0.37,+0.87] +0.31 [+0.01,+0.62]
0.400 +0.06 [−0.27,+0.39] −0.40 [−0.68,−0.11] −0.69 [−1.00,−0.38]
0.500 −0.86 [−1.19,−0.53] −1.41 [−1.64,−1.18] −1.66 [−1.93,−1.40]

100 CPU seconds; the improvements for an order of magnitude increase in the computation
time are in the range of 0.4% to 2.1% except for p = 0.050, where the improvements are
between 2.9% to 4.5%.

In Tables 8 and 9, we report some exemplary results obtained on uniform instances of
size 1000 and on TSPLIB instance rat783. The conclusions of the comparison are similar to
the one of clustered instances of size 1000.

In order to further assess the solution costs achieved by the algorithms for a very long
computation time, we allowed the algorithms to run for 10000 CPU seconds, as suggested
by Bianchi (2006), Bianchi and Gambardella (2007), on clustered and uniform instances
of size 1000. The parameter values of each algorithm are the same as that of 1000 CPU
seconds. The results are shown in Tables 7 and 8. The general trend is similar to that of
shorter computation times: There is no clear winner among the considered algorithms.

240 Swarm Intell (2009) 3: 223–242

7 Conclusions and future work

The main contribution of this paper is the development and the empirical analysis of new
state-of-the-art ACO algorithms for the PTSP. We used the current best performing ACO
algorithm pACS+1-shift as a starting point. We showed that the adoption of the state-
of-the-art iterative improvement algorithm 2.5-opt-EEais allows pACS to obtain a sig-
nificant improvement in the solution cost. To develop a complete estimation-based ACS, we
adopted an estimation-based approach to evaluate the solution costs. Finally, we customized
MAX –MI N ant system, rank-based ant system, and best-worst ant system to solve the
PTSP. We showed that all of them can be used to effectively tackle the PTSP provided that
their parameter values are fine tuned. In a nutshell, we showed that the proposed estimation-
based approach is an effective alternative to the analytical computation techniques when ap-
plying ACO and local search to the PTSP. Note that this conclusion contradicts the previous
results reported in the ACO literature for the PTSP. The major advantage of the estimation-
based approach is that algorithm designers do not require a priori knowledge on how to
compute the expected cost analytically. This is particularly useful when applying ACO al-
gorithms to complex stochastic combinatorial optimization problems, where it might be very
difficult, or even impossible, to derive closed-form expressions.

Our future work consists in customizing effective TSP-specific SLS methods such as
iterated local search, memetic algorithm and comparing them with the proposed estimation-
based ACO algorithms. Further research effort will be devoted to design estimation-based
SLS methods to solve stochastic vehicle routing problems. Another promising research di-
rection is to investigate the application of estimation-based SLS methods to multi-objective
stochastic routing problems.

Acknowledgements The authors thank Leonora Bianchi for providing the source code of pACS+1-
shift. This research has been supported by COMP2SYS, an Early Stage Training project funded by the
European Commission within the Marie Curie Actions program (MEST-CT-2004-505079), and by ANTS
and META-X, which are ARC projects funded by the French Community of Belgium. The authors acknowl-
edge support from the fund for scientific research F.R.S.-FNRS of the French Community of Belgium, of
which PB and ZY are research fellows, MB and TS are research associates, and MD is a research director.

References

Applegate, D., Bixby, R. E., Chvatal, V., & Cook, W. J. (2001). Concorde—a code for solving traveling
salesman problems. URL http://www.math.princeton.edu/tsp/concorde.html.

Balaprakash, P., Birattari, M., & Stützle, T. (2007). Improvement strategies for the F-Race algorithm: Sam-
pling design and iterative refinement. In T. Bartz-Beielstein, M. Blesa, C. Blum, B. Naujoks, A. Roli,
G. Rudolph, & M. Sampels (Eds.), LNCS: Vol. 4771. Hybrid metaheuristics, HM 2007 (pp. 113–127).
Berlin: Springer.

Balaprakash, P., Birattari, M., Stützle, T., Yuan, Z., & Dorigo, M. (2008). Estimation-based ant colony op-
timization and local search for the probabilistic traveling salesman problem. IRIDIA Supplementary
page. URL http://iridia.ulb.ac.be/supp/IridiaSupp2008-018/.

Balaprakash, P., Birattari, M., Stützle, T., & Dorigo, M. (2009). Adaptive sample size and importance sam-
pling in estimation-based local search for the probabilistic traveling salesman problem. European Jour-
nal of Operational Research, 199(1), 98–110.

Bentley, J. L. (1992). Fast algorithms for geometric traveling salesman problems. ORSA Journal on Comput-
ing, 4(4), 387–411.

Bertsimas, D., & Howell, L. (1993). Further results on the probabilistic traveling salesman problem. European
Journal of Operational Research, 65(1), 68–95.

Bianchi, L. (2006). Ant colony optimization and local search for the probabilistic traveling salesman prob-
lem: a case study in stochastic combinatorial optimization. Ph.D. thesis, Université Libre de Bruxelles,
Brussels, Belgium.

http://www.math.princeton.edu/tsp/concorde.html
http://iridia.ulb.ac.be/supp/IridiaSupp2008-018/

Swarm Intell (2009) 3: 223–242 241

Bianchi, L., & Campbell, A. (2007). Extension of the 2-p-opt and 1-shift algorithms to the heterogeneous
probabilistic traveling salesman problem. European Journal of Operational Research, 176(1), 131–144.

Bianchi, L., & Gambardella, L. M. Ant colony optimization and local search based on exact and estimated
objective values for the probabilistic traveling salesman problem (Technical Report IDSIA-06-07). ID-
SIA, USI-SUPSI, Manno, Switzerland, June 2007.

Bianchi, L., Gambardella, L., & Dorigo, M. (2002a). Solving the homogeneous probabilistic travelling sales-
man problem by the ACO metaheuristic. In M. Dorigo, G. Di Caro, & M. Sampels (Eds.), LNCS: Vol.
2463. Ant algorithms, third international workshop, ANTS 2002 (pp. 176–187). Berlin: Springer.

Bianchi, L., Gambardella, L. M., & Dorigo, M. (2002b). An ant colony optimization approach to the prob-
abilistic traveling salesman problem. In J. J. Guervós, P. Adamidis, H. Beyer, J. L. Martín, & H. P.
Schwefel (Eds.), LNCS: Vol. 2439. 7th international conference on parallel problem solving from na-
ture, PPSN VII (pp. 883–892). Berlin: Springer.

Bianchi, L., Knowles, J., & Bowler, N. (2005). Local search for the probabilistic traveling salesman problem:
Correction to the 2-p-opt and 1-shift algorithms. European Journal of Operational Research, 162(1),
206–219.

Birattari, M. (2004). The problem of tuning metaheuristics as seen from a machine learning perspective.
Ph.D. thesis, Université Libre de Bruxelles, Brussels, Belgium.

Birattari, M. (2009). Tuning metaheuristics: a machine learning perspective. Studies in computational intel-
ligence (Vol. 197). Berlin: Springer.

Birattari, M., Balaprakash, P., & Dorigo, M. (2006). The ACO/F-RACE algorithm for combinatorial opti-
mization under uncertainty. In K. F. Doerner, M. Gendreau, P. Greistorfer, W. J. Gutjahr, R. F. Hartl, &
M. Reimann (Eds.), Operations research/computer science interfaces series: Vol. 44. Metaheuristics—
progress in complex systems optimization (pp. 189–203). Berlin: Springer.

Birattari, M., Balaprakash, P., Stützle, T., & Dorigo, M. (2008). Estimation-based local search for stochastic
combinatorial optimization using delta evaluations: A case study in the probabilistic traveling salesman
problem. INFORMS Journal on Computing, 20(4), 644–658.

Bonabeau, E., Dorigo, M., & Theraulaz, G. (1999). Swarm intelligence: from natural to artificial systems.
London: Oxford University Press.

Branke, J., & Guntsch, M. (2004). Solving the probabilistic TSP with ant colony optimization. Journal of
Mathematical Modelling and Algorithms, 3(4), 403–425.

Bullnheimer, B., Hartl, R. F., & Strauss, C. (1999). A new rank based version of the ant system: A computa-
tional study. Central European Journal for Operations Research and Economics, 7(1), 25–38.

Cordón, O., de Viana, I. F., & Herrera, F. (2002). Analysis of the best-worst ant system and its variants on the
TSP. Mathware and Soft Computing, 9(2–3), 177–192.

Di Caro, G., & Dorigo, M. (1998). AntNet: Distributed stigmergetic control for communications networks.
Journal of Artificial Intelligence Research, 9, 317–365.

Dorigo, M., & Birattari, M. (2007). Swarm intelligence. Scholarpedia, 2(9), 1462.
Dorigo, M., & Gambardella, L. M. (1997). Ant colony system: A cooperative learning approach to the trav-

eling salesman problem. IEEE Transactions on Evolutionary Computation, 1(1), 53–66.
Dorigo, M., & Stützle, T. (2004). Ant colony optimization. Cambridge: MIT Press.
Fisher, R. A. (1925). Statistical methods for research workers. Edinburgh: Oliver and Boyd.
Gendreau, M., Laporte, G., & Séguin, R. (1996). Stochastic vehicle routing. European Journal of Operational

Research, 88, 3–12.
Gutjahr, W. J. (2003). A converging ACO algorithm for stochastic combinatorial optimization. In A. Albrecht

& K. Steinhofl (Eds.), LNCS: Vol. 2827. Stochastic algorithms: foundations and applications (pp. 10–
25). Berlin: Springer.

Gutjahr, W. J. (2004). S-ACO: An ant based approach to combinatorial optimization under uncertainty. In
M. Dorigo, M. Birattari, C. Blum, L. M. Gambardella, F. Mondada, & T. Stützle (Eds.), LNCS: Vol.
3172. Ant colony optimization and swarm intelligence, 5th international workshop, ANTS 2004 (pp.
238–249). Berlin: Springer.

Hoos, H., & Stützle, T. (2005). Stochastic local search: foundations and applications. San Mateo: Morgan
Kaufmann.

Jaillet, P. (1985). Probabilistic traveling salesman problems. Ph.D. thesis, Massachusetts Institute of Tech-
nology, Cambridge, MA.

Johnson, D. S., & McGeoch, L. A. (1997). The travelling salesman problem: a case study in local optimiza-
tion. In E. H. L. Aarts & J. K. Lenstra (Eds.), Local search in combinatorial optimization (pp. 215–310).
Wiley: New York.

Johnson, D. S., McGeoch, L.A., Rego, C, & Glover, F. (2001). 8th DIMACS implementation challenge. URL
http://www.research.att.com/~dsj/chtsp/.

Laporte, G., Louveaux, F., & Mercure, H. (1994). A priori optimization of the probabilistic traveling salesman
problem. Operations Research, 42, 543–549.

http://www.research.att.com/~dsj/chtsp/

242 Swarm Intell (2009) 3: 223–242

Martin, O., Otto, S. W., & Felten, E. W. (1991). Large-step Markov chains for the traveling salesman problem.
Complex Systems, 5(3), 299–326.

Stützle, T. (2002). ACOTSP: A software package of various ant colony optimization algorithms applied to
the symmetric traveling salesman problem. URL http://www.aco-metaheuristic.org/aco-code/.

Stützle, T., & Hoos, H. (2000). MAX –M I N ant system. Future Generation Computer Systems, 16(8),
889–914.

Tukey, J. W. (1949). Comparing individual means in the analysis of variance. Biometrics, 5(2), 99–114.

http://www.aco-metaheuristic.org/aco-code/

	Estimation-based ant colony optimization and local search for the probabilistic traveling salesman problem
	Abstract
	Introduction
	The probabilistic traveling salesman problem
	The pACS+1-shift algorithm
	Effectiveness of 2.5-opt-EEais in pACS
	Estimation-based ant colony system
	Comparison between estimation-based ACO algorithms
	Experiments with default parameter values
	Comparison between the algorithms with tuned and default values
	Comparison between the algorithms with tuned parameter values

	Conclusions and future work
	Acknowledgements
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 600
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c006500720020003700200061006e006400200038002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300030003800200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002e0063006f006d000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

