
Université Libre de Bruxelles
Institut de Recherches Interdisciplinaires
et de Développements en Intelligence Artificielle

F-Race and iterated F-Race: An overview

Mauro Birattari, Zhi Yuan, Prasanna Balaprakash,

and Thomas Stützle

IRIDIA – Technical Report Series

Technical Report No.

TR/IRIDIA/2009-018

June 2009

IRIDIA – Technical Report Series

ISSN 1781-3794

Published by:

IRIDIA, Institut de Recherches Interdisciplinaires

et de Développements en Intelligence Artificielle

Université Libre de Bruxelles

Av F. D. Roosevelt 50, CP 194/6
1050 Bruxelles, Belgium

Technical report number TR/IRIDIA/2009-018

The information provided is the sole responsibility of the authors and does not necessarily
reflect the opinion of the members of IRIDIA. The authors take full responsability for
any copyright breaches that may result from publication of this paper in the IRIDIA –
Technical Report Series. IRIDIA is not responsible for any use that might be made of
data appearing in this publication.

F-Race and iterated F-Race: An overview

Mauro Birattari, Zhi Yuan, Prasanna Balaprakash, and Thomas Stützle

June 2009

Abstract

Algorithms for solving hard optimization problems typically have several parameters that

need to be set appropriately such that some aspect of performance is optimized. In this article,

we review F-Race, a racing algorithm for the task of automatic algorithm configuration. F-Race

is based on a statistical approach for selecting the best configuration out of a set of candidate

configurations under stochastic evaluations. We review the ideas underlying this technique

and discuss an extension of the initial F-Race algorithm, which leads to a family of algorithms

that we call iterated F-Race. Experimental results comparing one specific implementation

of iterated F-Race to the original F-Race algorithm confirm the potential of this family of

algorithms.

1 Introduction

Many state-of-the-art algorithms for tackling computationally hard problems have a number of
parameters that influence their search behavior. Such algorithms include exact algorithms such
as branch-and-bound algorithms, algorithm packages for integer programming, and approximate
algorithms such as stochastic local search (SLS) algorithms. The parameters can roughly be
classified into numerical and categorical parameters. Examples of numerical parameters are the
tabu tenure in tabu search algorithms or the pheromone evaporation rate in ant colony optmization
(ACO) algorithms. Additionally, many algorithms can be seen as being composed of a set of
specific components that are often interchangeable. Examples are different branching strategies in
branch-and-bound algorithms, different types of crossover operators in evolutionary algorithms, or
different types of local search algorithms in iterated local search. These interchangable components
are often well described as categorical parameters of the underlying search method.

Research has clearly shown that the performance of parameterized algorithms depends strongly
on the particular values of the parameters and the choice of an appropriate setting of these
parameters is itself a difficult optimization problem [1, 12, 14]. Given that typically not only the
setting of numerical parameters but also that of categorical parameters needs to be determined, we
call this problem also the algorithm configuration problem. An important aspect of this problem
is that it is typically a stochastic problem. In fact, there are two main sources of stochasticity.
The first is that often the algorithm itself is stochastic because it uses some randomized decisions
during the search. In fact, this stochasticity is typical for SLS algorithms [28]. However, even
if an algorithm is deterministic, its performance and search behavior depends on the particular
instance to which it is applied. In fact, the particular instance being tackled can be seen as having
been drawn according to some underlying, possibly unknown probability distribution, introducing
in this way a second stochastic factor.

In our research, we have developed a method, called F-Race, which is particularly well suited
for dealing with this stochastic aspect. It is a method that is inspired from racing algorithms in
machine learning, in particular Hoeffding races [33, 34, 35]. The essential idea of racing methods, in
general, and ours, in particular, is to evaluate a given set of candidate configurations iteratively on
a stream of instances. As soon as enough statistical evidence is gathered against some candidate
configurations, these are eliminated and the race continues only with the surviving ones. In

1

2 IRIDIA – Technical Report Series: TR/IRIDIA/2009-018

our case, this method uses after each evaluation round of the candidate configurations, the non-
parametric Friedman test as a family-wise test: it checks whether there is evidence that at least one
of the configurations is significantly different from others. If the null hypothesis of no differences
is rejected, Friedman post-tests are applied to eliminate those candidate configurations that are
significantly worse than the best one.

In this article, we first formally describe the algorithm configuration problem, following [14, 12].
Next, in Section 3, we give details on F-Race. Section 4 discusses considerations on the sampling of
candidate configurations, proposes a family of iterated F-Race algorithms, and defines one specific
iterated F-Race algorithm, which extends over an earlier version published in [4]. Computational
results with this new variant, which are presented in Section 5, confirm its advantage over other
ways of generating the candidate configurations for F-Race. We end this article by an overview of
available F-Race applications and outline ideas for further research.

2 The algorithm configuration problem

F-Race is a method for the offline configuration of parameterized algorithms. In the training phase
of offline tuning, an algorithm configuration is to be determined in a limited amount of time
that optimizes some measure of algorithm performance. The final algorithm configuration is then
deployed in a production phase where the algorithm is used to solve previously unseen instances.

A crucial aspect of this algorithm configuration problem is that it is a problem of generalization,
as it occurs in other fields such as machine learning. Based on a given set of training instances, the
goal is to find high-perfoming algorithm configurations that perform well on (a potentially infinite
set of) unseen instances that are not available when deciding on the algorithm’s parameters.
Hence, one assumption that is tacitly made is that the set of training instances is representative
for the instances the algorithm faces once it is employed in the production phase. The notions of
best performance, generalization, etc. are made explicit in the formal definition of the algorithm
configuration problem.

2.1 The algorithm configuration problem

The problem of configuring a parameterized algorithm can be formally defined as a 7 tuple
〈Θ, I, PI , PC , t, C, T 〉, where

• Θ is the possibly infinite set of candidate configurations.

• I is the possibly infinite set of instances.

• PI is a probability measure over the set I.

• t : I → ℜ is a function associating to every instance the computation time that is allocated
to it.

• c(θ, i, t(i)) is a random variable representing the cost measure of a configuration θ ∈ Θ on
instance i ∈ I when run for computation time t(i).1

• C ⊂ ℜ is the range of c, that is, the possible values for the cost measure of the configura-
tion θ ∈ Θ on an instance i ∈ I.

• PC is a probability measure over the set C: With the notation PC(c|θ, i), we indicate the
probability that c is the cost of running configuration θ on instance i.

1To make the notation lighter, in the following we often will not mention the dependence of the cost measure
on t(i). We use the term cost to refer, without loss of generality, to the minimization of some performance measure
such as the objective function value in a minimization problem or the computation time taken for a decision problem
instance.

IRIDIA – Technical Report Series: TR/IRIDIA/2009-018 3

• C(θ) = C(θ|Θ, I, PI , PC , t) is the criterion that needs to be optimized with respect to θ. In
the most general case it measures in some sense the desirability of θ.

• T is the total amount of time available for experimenting with the given candidate configu-
rations on the available instances before delivering the selected configuration.2

On the basis of these concepts, solving the problem of configuring a parameterized algorithm is to
find the configuration θ̄ such that:

θ̄ = arg min
θ∈Θ

C(θ). (1)

Throughout the whole article, we consider for C the expected value of the cost measure c:

C(θ) = EI,C [c] =

∫

c dPC(c|θ, i) dPI(i), (2)

where the expectation is considered with respect to both PI and PC , and the integration is taken
in the Lebesgue sense [8]. However, other options for defining the cost measure to be minimized
such as the median cost or a percentile of the cost distribution are easily conceivable.

The measures PI and PC are usually not explicitly available and the analytical solution of the
integrals in Eq. 2 is not possible. In order to overcome this limitation, the expected cost can be
estimated in a Monte Carlo fashion on the basis of running the particular algorithm configuration
on a training set of instances.

The cost measure c in Eq. 2 can be defined in various ways. For example, the cost of a
configuration θ on an instance i can be measured by the objective function value of the best
solution found in a given computation time t(i). In such a case, the task is to tune algorithms
for an optimization problem and the goal is to optimize the solution quality reached within a
given computation time. In the case of decision problems, the goal is rather to choose parameter
settings such that the computation time to arrive at a decision is minimized. In this case, the
cost measure would be the computation time taken by an algorithm configuration to decide an
instance i. Since arriving at a decision may take infeasibly long computation times, the role
played by the function t is to give a maximum computation time budget for the execution of
the algorithm configuration. If after a cutoff time of t(i) the algorithm has not finished, the
cost measure may use additional penalties [29]. Finally, let us remark that the definition of the
algorithm configuration problem applies not only to the configuration of stochastic algorithms,
but it extends also to deterministic, parameterized algorithm: in this case, c(θ, i, t(i)) is strictly
speaking not anymore a random variable but a deterministic function; the stochasticity is then
due to the instance distribution PI .

One basic question concerns how many times a configuration should be evaluated on each of the
available problem instances for estimating the expected cost. Assuming that the performance of
a stochastic algorithm is evaluated by a total of N runs, it has been proved by Birattari [10, 12],
that sampling N instances with one run on each instance results in the lowest variance of the
estimator. Hence, it is always preferable to have a large set of training instances available. If,
however, only few training instances are provided, one needs to go back to evaluating algorithm
configurations on the instances more than once.

2.2 Types of parameters

As said in the introduction, algorithms can have different types of parameters. There we have
distinguished between categorical and numerical parameters. Categorical parameters typically
refer to different procedures or discrete choices that can be taken by an algorithm (or, more in
general, an algorithm framework such as a metaheuristic). In SLS algorithms examples are the
type of perturbations and the particular local search algorithm used in iterated local search (ILS)
or the type of neighborhood structure to be used in iterative improvement algorithms. Sometimes

2In the following, we refer to T also as computational budget ; often it will be measured as the number of
algorithm runs instead of a total amount of computation time.

4 IRIDIA – Technical Report Series: TR/IRIDIA/2009-018

it is possible to order the categories of these categorical parameter according to some surrogate
measure. For example, neighborhoods may be ordered according to their size or crossover operators
in genetic algorithms according to the disruptedness they introduce. Hence, sometimes categorical
parameters can be converted into ordinal ones. (We are, however, not aware of configuration
methods that exploited this possibility so far.) Categorical parameters that may be ordered based
on secondary criteria, we call pseudo-ordinal parameters.3

Besides categorical parameters, numerical parameters are common in many algorithms. Continuous
numerical parameters take as values some subset of the real numbers. Examples of these are the
pheromone evaporation rate in ACO, or the cooling rate in simulated annealing. Often, numerical
parameters take integer values; an example is the strength of a perturbation that is measured
by the number of solution components that change. If such parameters have a relatively large
domain, they may be treated in the configuration task as continuous parameters, which are then
rounded to the next integer. In the following we call such integer parameters quasi-continuous
parameters.

Furthermore, it is often the case that some parameter is only in effect when another parameter,
usually a categorical one, takes certain values. This is the case of a conditional parameter. An
example can be given in ILS, where as one option a tabu search may be used as the local search;
in this case, the tabu list length parameter is a conditional parameter that depends on whether a
categorical parameter “type of local search” indicates that tabu search is used.4 The F-Race based
configuration algorithms described in this article are able to handle all aforementioned types of
parameters, including conditional parameters.

3 F-Race

The conceptually simplest approach for estimating the expected cost of an algorithm configuration
θ, as defined by Eq. 2, is to run the algorithm using a sufficiently large number of instances.
This estimation can be repeated for a number of candidate configurations and once the overall
computational budget allocated for the selection process is consumed, the candidate configuration
with the lowest estimate is chosen as the best performing configuration. This is an example of
what can be characterized as the brute-force approach to algorithm configuration.

There are two main problems associated with this brute-force approach. The first is that
one needs to determine a priori how often a candidate configuration is evaluated. The second
is that also poor performing candidate configurations are evaluated with the same amount of
computational resources as the good ones.

3.1 The racing approach

As one possibility to avoid the disadvantages of the brute-force approach we have used a racing
approach. The racing approach originated from the machine learning community [34], where it
was first proposed for solving the model selection problem [16]. We adapted this approach to make
it suitable for the algorithm configuration task. The racing approach performs the evaluation of a
finite set of candidate configurations using a systematic way to allocate the computational resources
among them. The racing algorithm evaluates a given finite set of candidate configurations step

by step. At each step, all the remaining candidate configurations are evaluated in parallel,5

3Note that, strictly speaking, binary parameters are also ordinal ones, although they are usually handled without
considering an ordering.

4It is worth noticing that sometimes it may make sense to replace a numerical parameter by a categorical
parameter plus a conditional parameter, if changing the numerical parameter may lead to drastic changes in design
choices of an algorithm. Consider as an example the probability of applying a crossover operator. This parameter
may take a value of zero, which indicates actually that no crossover is applied. In such cases it may be useful
to introduce a binary parameter, which indicates whether crossover is used or not, together with a conditional
parameter on the crossover probability, which is only used if the binary parameter indicates that crossover is used.

5A round of function evaluations of surviving candidate configurations on a certain instance is called an
evaluation step, or, simply, a step. By function evaluation, we refer to one run of the candidate configu-
ration on one instance.

IRIDIA – Technical Report Series: TR/IRIDIA/2009-018 5

and the poor candidate configurations are discarded as soon as sufficient statistical evidence is
gathered against them. The elimination of the poor candidates allows to focus the computations
on the most promising ones to obtain lower variance estimates for these. In this way, the racing
approach overcomes the two major drawbacks of the brute-force approach. First, it does not
require a fixed number of steps for each candidate configuration but it determines it adaptively
based on statistical evidence. Second, poor performing candidates will not be evaluated as soon
as enough evidence is gathered against them. A graphical illustration of the racing algorithm and
the brute-force approach is shown in Fig. 1.

To describe the racing approach formally, suppose a sequence of training instances ik, with
k = 1, 2, . . ., is randomly generated from the target class of instances I following the probability
model PI . Denote by cθ

k the cost of a single run of a candidate configuration θ on instance ik. The
evaluation of the candidate configurations is performed incrementally such that at the k-th step,
the array of observations for evaluating θ,

ck(θ) =
(

cθ
1, c

θ
2, . . . , c

θ
k

)

,

is obtained by appending cθ
k to the end of the array ck−1(θ). A racing algorithm then generates

a sequence of nested sets of candidate configurations

Θ0 ⊇ Θ1 ⊇ Θ2 ⊇ . . . ,

where Θk is the set of the surviving candidate configurations after step k. The sets of surviving
candidate configurations start from a finite set Θ0 ⊆ Θ, which is typically obtained by sampling
|Θ0| candidate configurations from Θ. How the initial set of candidate configurations can be
generated is the topic of Section 4. The step from a set Θk−1 to Θk is obtained by possibly
discarding some configurations that appear to be suboptimal on the basis of information that
becomes available at step k.

At step k, when the set of the surviving candidates is Θk−1, a new instance ik is considered.
Each candidate θ ∈ Θk−1 is tested on ik and each observed cost cθ

k is appended to the respective
array ck−1(θ) to form the arrays ck(θ) for each θ ∈ Θk−1. Step k terminates defining set Θk by
dropping from Θk−1 the candidate configurations that appear to be suboptimal based on some
statistical test that compares the arrays ck(θ) for all θ ∈ Θk−1.

The above described procedure is iterated and stops either when all candidate configurations
but one are discarded, a given maximum number of instances have been sampled, or when the
predefined computational budget B has been exhausted.6

3.2 The peculiarity of F-Race

F-Race is a racing algorithm based on the non-parametric Friedman’s two-way analysis of variance
by ranks [22], for short, Friedman test. This algorithm was first proposed by Birattari et al. [14]
and studied in detail in Birattari’s PhD thesis [11].

To describe F-Race, assume it has reached step k, and m = |Θk−1| candidate configurations are
still in the race. The Friedman test assumes that the observed costs are k mutually independent
m-variate random variables

b1 =
(

c
θv1

1 , c
θv2

1 , . . . , c
θvm

1

)

b2 =
(

c
θv1
2 , c

θv2
2 , . . . , c

θvm

2

)

...
...

...
. . .

...

bk =
(

c
θv1

k , c
θv2

k , . . . , c
θvm

k

)

6The computational budget may be measured as a total available computation time T (see definition of the
configuration problem on page 2). It is, however, often more convenient to define the maximum number of function
evaluations, if each function evaluation is limited to a same amount of computation time.

6 IRIDIA – Technical Report Series: TR/IRIDIA/2009-018

Figure 1: Graphical representation of the allocation of configuration evaluations by the racing
approach and the brute-force approach. In the racing approach, as soon as sufficient evidence is
gathered that a candidate is suboptimal, such candidate is discarded from further evaluation. As
the evaluation proceeds, the racing approach focuses thus more and more on the most promising
candidates. On the other hand, the brute-force approach tests all given candidates on the same
number of instances. The shadowed figure represents the computation performed by the racing
approach, while the dashed rectangle the one of the brute-force approach. The two figures cover
the same surface, that is, the two approaches are allowed to perform the same total number of
experiments.

Candidates

In
st

a
n
c
e
s

called blocks, where each block bl corresponds to the computational results obtained on instance il
by each surviving configuration at step k.

Within each block, the costs cθ
l are ranked in non-decreasing order; average ranks are used in

case of ties. For each configuration θvj
∈ Θk−1, Rlj is the rank of θvj

in block bl, and Rj =
∑k

l=1 Rlj

is the sum of ranks for configuration θvj
, over all instances il, with 1 ≤ l ≤ k. The test statistic

used by the Friedman test is the following [22]:

T =

(m − 1)

m
∑

j=1

(

Rj −
k(m + 1)

2

)2

k
∑

l=1

m
∑

j=1

R2
lj −

km(m + 1)2

4

.

Under the null hypothesis that all candidates are equivalent, T is approximately χ2 distributed
with m − 1 degrees of freedom [39]. If the observed value of T is larger than the 1 − α quantile
of this distribution, the null hypothesis is rejected. This indicates that at least one candidate
configuration gives better performance than at least one of the others.

If the null hypothesis is rejected in this family-wise test, it is justified to do pairwise comparisons
between individual candidates. There are various ways of conducting these Friedman post hoc
tests. For F-Race, we have chosen one particular one that is presented in the book of Conover [22]:
candidates θj and θh are considered to be statistically significantly different if

|Rj − Rh|
√

2k(1− T

k(m−1))
“

P

k
l=1

P

m
j=1R2

lj
−

km(m+1)2

4

”

(k−1)(m−1)

> t1−α/2,

where t1−α/2 is the 1 − α/2 quantile of the Student’s t distribution.

IRIDIA – Technical Report Series: TR/IRIDIA/2009-018 7

If F-Race does not reject at step k the null hypothesis of the family-wise comparison, all
candidate configurations in Θk−1 pass to Θk; if the null hypothesis is rejected, pairwise comparisons
are performed between the best candidate configuration and each other one. The best candidate
configuration is selected as the one that has the lowest expected rank. All candidate configurations
that result significantly worse than the best one are discarded and will not appear in Θk.

When only two candidates remain in the race, the Friedman test reduces to the binomial sign
test for two dependent samples [45]. However, in the F-Race algorithm, the Wilcoxon matched-
pairs signed-ranks test [22] is adopted, for the reason that the Wilcoxon test is more powerful and
data-efficient than the binomial sign test in such a case [46].

In F-Race, the test statistic is based on the ranking of the candidates. Ranking plays an
important two-fold role. The first one is due to the non-parametric nature of a test based on
ranking. A second role played by ranking in F-Race is to implement in a natural way a blocking
design [23, 36]. By focusing only on the ranking of the different configurations within each instance,
this blocking design becomes an effective way for normalizing the costs observed on different
instances.

4 The sampling strategy for F-Race

In the previous section, the question, how the set of candidate configurations Θ0 is defined, was
left open. This is the question we address in this section; in fact, it should be clear that this
question is rather independent of the definition of F-Race: any reasonable sampling method may
be considered.

4.1 Full factorial design

When F-Race was first proposed [14], the candidate configurations were collected by a full factorial
design (FFD) on the parameter space. The reason of adopting a full factorial design at that time
was that it made more convenient the focus on the evaluation of F-Race and its comparison to
other ways of defining races.

A full factorial design can be done by determining for each parameter a number of levels
either manually, randomly or in some other way. Then, each possible combination of these levels
represents a unique configuration, and Θ0 comprises all possible combinations. One main drawback
of a full factorial design is that it requires expertise to select the levels of each parameter. Maybe
more importantly, the set of candidate configurations grows exponentially with the number of
parameters. Suppose that d is the dimension of the parameter space and that each dimension
has l levels; then the total number of candidate configurations would be ld. It therefore quickly
becomes impractical and computationally prohibitive to test all possible combinations even for
a reasonable number of levels at each dimension. We denote the version of F-Race using a full
factorial design by F-Race(FFD).

4.2 Random sampling design

The drawbacks of the full factorial design were described also by Balaprakash et al. [4]. They
showed that F-Race with initial candidates generated by a random sampling design significantly
outperforms the full factorial design for a number of applications. In the random sampling de-
sign, the initial elements are sampled according to some probability model PX defined over the
parameter space X .7 If a priori information is available, such as the effects of certain parameters
or their interactions, the probability model PX can be defined accordingly. However, this is rarely
the case, and the default way of defining the probability model PX is to assume a uniform distri-
bution over X . We denote the random sampling version of F-Race based on uniform distributions
F-Race(RSD).

7Note that the space of possible parameter value combinations X is different from the one-dimensional vector
of candidate algorithm configurations Θ, and there exists a one-to-one mapping from X to Θ.

8 IRIDIA – Technical Report Series: TR/IRIDIA/2009-018

Algorithm 1 Iterated F-Race

Require: parameter space X , a noisy objective function black-box f .
initialize probability model PX for sampling from X
set iteration counter l = 1
repeat

sample the initial set of configurations Θl
0 based on PX

evaluate set Θl
0 by f using F-Race

collect elite configurations from F-Race to update PX

l = l + 1
until termination criterion is met
identify the best parameter configuration x∗

return x∗

Two main advantages of the random sampling design are that for numerical parameters, no
a priori definition of the levels needs to be done and that an arbitrary number of candidate
configurations can be sampled while still covering the parameter space, on average, uniformly.

4.3 Iterated F-Race

As a next step, Balaprakash et al. [4] proposed the iterative application of F-Race, where at
each iteration a number of surviving candidate configurations of the previous iteration bias the
sampling of new candidate configurations. It is hoped in this way to focus the sampling of candidate
configurations around the most promising ones. In this sense, iterated F-Race follows directly the
framework of model-based search [53], which is usually implemented in three steps. First, construct
a candidate solution based on some probability model; second, evaluate all candidates; third,
update the probability model biasing the next sampling towards the better candidate solutions.
These three steps are iterated, until some termination criterion is satisfied.

Iterated F-Race proceeds in a number of iterations. In each iteration, first a set of candidate
configurations is sampled; this is followed by one run of F-Race applied to the sampled candidate
configurations. An outline of the general framework of iterated F-Race is given in Alg. 1.

There are many possible ways how iterated F-Race can be implemented. In fact, one possibility
would be to use some algorithms for black-box mixed discrete-continuous optimization problems.
However, a difficulty here may be that for F-Race to be effective, the number of candidate con-
figurations should be reasonably large, while due to the necessarily strongly limited number of
function evaluations, few iterations should be run. Therefore, in [4] a different approach was
followed and an ad-hoc method was proposed for biasing the sampling. Unfortunately, the ad-
hoc iterated F-Race was there only defined and tested on numerical parameters. Nevertheless,
it is relatively straightforward to generalize the ideas presented there to categorical parameters.
In what follows, we first give a general discussion of the issues that arise in the definition of an
iterated F-Race algorithm and then we present one particular implementation in Section 4.4. For
the following discussion, we assume that the total computational budget B for the configuration
process, which is measured by the number of function evaluations, is given a priori.

How many iterations? Iterated F-Race is an iterative process and therefore one needs to define
the number of iterations. For a given computational budget, using few iterations will allow
to sample at each iteration more candidate configurations and, hence, lead to more explo-
ration at the cost of less possibilities of refining the model. In the extreme case of using
only one iteration, this amounts to an execution of F-Race(RSD). Intuitively, the number of
iterations should depend on the number of parameters: if only few parameters are present,
we expect, others things being equal, the problem to be less difficult to optimize and, hence,
less iterations to be required.

Which computational budget at each iteration? Another issue concerns the distribution of
the computational budget B among the iterations. The simplest idea is to divide the com-

IRIDIA – Technical Report Series: TR/IRIDIA/2009-018 9

putational budget equally among all iterations. However, other possibilities are certainly
reasonable; for example, one may decrease the number of function evaluations available with
an increase of the iteration counter to increase exploration in the first iterations.

How many candidate configurations at each iteration? For F-Race, the number of candi-
date configurations to be sampled needs to be defined. A good idea is to make the number
of candidate configurations dependent on the status of the race, in other words, the iteration
counter. Typically, in the first iteration(s), the sampled candidate configurations are very
different from each other, resulting in large performance differences. As a side effect, poor
candidate configurations usually can be quickly eliminated. In later iterations, the sampled
candidate configurations become more similar and it becomes more difficult to determine the
winner, that is, more instances are needed to detect significant differences among the config-
urations. Hence, for a same budget of function evaluations for one application of F-Race, in
early iterations more configurations can be sampled, while in later iterations less candidate
configurations should be generated to identify with a low variance a winning configuration.

When to terminate F-Race at each iteration? At each iteration l, F-Race terminates if one
of the following two conditions is satisfied: (i) if the computational budget for the l-th
iteration, Bl, is spent; (ii) when a minimum number of candidate configurations, denoted
by Nmin, remains. Another question concerns the value of Nmin. F-Race terminates by
default if a unique survivor is identified. However, to maintain sufficient exploration of the
parameter space, in iterated F-Race it may be better to keep a number of survivors at each
iteration and to sample around these survivors the candidate configurations for the next
iteration. Additionally, for setting Nmin, it may be a good idea to take into account the
number of dimensions in the parameter space X : the larger the parameter space, the more
survivors should remain to ensure sufficient exploration.

How should the candidate configurations be generated? As said, all candidate configura-
tions are randomly sampled in the parameter space according to some probability distribu-
tion. For continuous and quasi-continuous parameters, continuous probability distributions
are appropriate; for categorical and ordinal parameters, however, discrete probability dis-
tributions will be more useful. A first question related to the probability distributions is of
which type they should be. For example, in the first paper on iterated F-Race [4], normal
distributions were chosen as models, but this choice need not be optimal. Another ques-
tion related to the probability distributions is how they should be updated and, especially,
how strong the bias towards the surviving configurations of the current iteration should
be. Again, here the trade-off between exploration and exploitation needs to be taken into
account.

4.4 An example iterated F-Race algorithm

Here we describe one example implementation of iterated F-Race, to which we refer as I/F-Race in
the following. This example implementation is based on the previous one published by Balaprakash
et al. [4]. However, it differs in some parameter choices and extends the earlier version by defining
a way to handle categorical parameters. Note that the proposed parameter settings are chosen in
an ad-hoc version; tuning the parameter settings of I/F-Race was beyond the scope of this article.

Number of iterations. We denote by L the number of iterations of I/F-Race, and increase L
with d, the number of parameters, using a setting of L = 2 + round(log2 d).

Computational budget at each iteration. The computational budget is distributed as equally
as possible across the iterations. Bl, the computational budget in iteration l, where l =
1, ..., L, is set to Bl = (B − Bused)/(L − l + 1); Bused denotes the total computational
budget used until iteration l − 1.

10 IRIDIA – Technical Report Series: TR/IRIDIA/2009-018

The number of candidate configurations. We introduce a parameter µl, and set the number
of candidate configurations sampled at iteration l to be Nl = ⌊Bl/µl⌋. We let µl increase
with the number of iterations, using a setting of µl = 5 + l. This allows more evaluation
steps to identify the winners when the configurations are deemed to become more similar.

Termination of F-Race at each iteration. In addition to the usual termination criteria of
F-Race, we stop it if at most Nmin = 2 + round(log2 d) candidate configurations remain.

Generation of candidate configurations. In the first iteration, all candidate configurations
are sampled uniformly at random. Once F-Race terminates, the best Ns candidate configura-
tions are selected for the update of the probability model. We use Ns = min(Nsurvive, Nmin),
where Nsurvive denotes the number of candidates that survive the race. These Ns elite config-
urations are then weighted according to their ranks, where the weight of an elite configuration
with rank rz (z = 1, . . . , Ns) is given by:

wz =
Ns − rz + 1

Ns · (Ns + 1)/2
. (3)

In other words, the weight of an elite configuration is inversely proportional to its rank.
Since the instances for configuration are sampled randomly from the training set, the Ns

elite configurations of the lth iteration will be re-evaluated in the (l+1)st iteration, together
with the Nl+1−Ns candidate configurations to be sampled anew. (Alternatively, it is possible
to evaluate the configurations on fixed instances, so that the results of the elite configurations
from the last iteration could be reused.) The Nl+1 − Ns new candidate configurations are
iteratively sampled around one of the elite configurations. To do so, for sampling each
new candidate configuration, first one elite solution Ez (z ∈ {1, . . . , Ns}) is chosen with a
probability proportional to its weight wz and next a value is sampled for each parameter.
The sampling distribution of each parameter depends on whether it is a numerical one (the
set of such parameters is denoted by Xnum) or a categorical one (the set of such parameters
is denoted by Xcat). We have that the parameter space X = Xnum ∪ Xcat.

First suppose that Xi is a numerical parameter, i.e. Xi ∈ Xnum, with boundary Xi ∈
[Xi, Xi]. Denote vi = Xi − Xi the range of the parameter Xi. The sampling distribution of
Xi follows a normal distribution N(xz

i , σ
l
i), with xz

i being the mean and σl
i being the standard

deviation of Xi in the lth iteration. The standard deviation is reduced in a geometric fashion
from iteration to iteration using a setting of

σl+1
i = vi ·

(

1

Nl+1

)
l
d

for l = 1, . . . , L − 1. (4)

In other words, the standard deviation for the normal distribution is reduced by a factor of
(

1
Nl+1

)
1
d

as the iteration counter increments. Hence, the more parameters, the smaller the

update factor becomes, resulting in a stronger bias of the elite configuration on the sampling.
Furthermore, the larger the number of candidate configurations to be sampled, the stronger
the bias of the sampling distribution.

Now, suppose that Xi ∈ Xcat with ni levels Fi = f1, . . . , fni
. Then we use a discrete

probability distribution Pl(Fi) with iteration l = 1, . . . , L, and initialize P1 to be uniformly
distributed over Fi. Suppose further that after the l-th iteration (l > 1), the ith parameter
of the selected elite configuration Ez takes level fz

i . Then, the discrete distribution of
parameter Xi is updated as:

Pl+1(fj) = Pl(fj) · (1 −
l

L
) + Ij=fz

i
·

l

L
for l = 1, . . . , L − 1 and j = 1, . . . , ni (5)

IRIDIA – Technical Report Series: TR/IRIDIA/2009-018 11

where I is an indicator function; the bias of the elite configuration on the sampling distri-
bution is getting stronger as the iteration counter increments.

The conditional parameters are sampled only when they are activated by their associated
upper-level categorical parameter, and their sampling model is updated only when they
appear in elite configurations.

5 Case studies

In this section, we experimentally evaluate the presented variant of I/F-Race and we compare it
in three case studies to F-Race(RSD) and F-Race(FFD).

All three case studies concern the configuration of ant colony optimization (ACO) algorithms
applied to the traveling salesman problem (TSP). They are ordered according to the number of
parameters to be tuned. In particular, they involve configuring MAX–MIN Ant System (MMAS),
a particularly successful ACO algorithm [48], using four categorical parameters and configuring
MMAS using seven categorical parameters. Both case studies use the MMAS implementation
available in the ACOTSP software package.8 The ACOTSP package implements several ACO
algorithms for the TSP. The third case study uses the ACOTSP package as a black-box software
and involves setting 12 mixed parameters. Among others, one of these parameters is the choice of
which ACO algorithm should be used.

In all experiments we used Euclidean TSP instances with 750 nodes, where the nodes are
uniformly distributed in a square of side length 10 000. We generated 1 000 instances for training
and 300 for evaluating the winning configurations using the DIMACS instance generator [30].
The experiments were carried out on cluster computing nodes, each equipped with two quad-core
XEON E5410 CPUs running at 2.33 GHz with 2 × 6 MB second level cache and 8 GB RAM.
The cluster was running under Cluster Rocks Linux version 4.2.1/CentOS 4. The programme was
compiled with gcc-3.4.6-3, and only one CPU core was used for each run due to the sequential
implementation of the ACOTSP software.

For each case study we have run a total of six experiments, which result by all six combinations
of two different computation time limits allocated for each function evaluation to the ACOTSP
software (five and twenty CPU seconds) and three values for the computational budget. The
different levels of the computational budget have been chosen to examine the dependence of the
possible advantage of I/F-Race as a function of the corresponding computational budget.

In each of the six experiments, 10 trials were run. Each trial is the execution of the
configuration process (in our case, either F-Race(FFD), F-Race(RSD), or I/F-Race) together
with a subsequent testing procedure. In the testing procedure, the final parameter setting
returned by configuration process is evaluated on 300 test instances.

5.1 Case Study 1, MMAS under four parameters

In this case study, we tune four parameters of MMAS: the relative influence of pheromone trails
α; the relative influence of heuristic information β; the pheromone evaporation rate ρ; and the
number of ants, m.

In this first and the second case study, we discretize these numerical parameters and treat
them as categorical ones. Each parameter is discretized by regular grids, resulting in a relatively
large number of levels. Their ranges and number of levels as listed in Table 1.9 The motivation for
discretizing numerical parameters is to test whether I/F-Race is able to improve over F-Race(RSD)
and F-Race(FFD) for categorical parameters; previously, it was already shown that I/F-Race gives
advantages for numerical parameters [4].

The three levels of the computational budget chosen are 6 · 34 = 486, 6 · 44 = 1 536 and
6 · 54 = 3 750. In this way the candidate generation of F-Race(FFD) can be done by selecting

8The ACOTSP package is available at http://www.aco-metaheuristic.org/aco-code/.)
9For the other parameters, we use default values and we opted for an ACO version that does not use local search.

12 IRIDIA – Technical Report Series: TR/IRIDIA/2009-018

Table 1: Given are the parameters, the original range considered before discretization and the
number of levels considered after discretization for the first case study. The number of candidate
parameter settings is 12 100.

parameter range # levels
α [0.01, 5.00] 11
β [0.01, 10.00] 11
ρ [0.00, 1.00] 10
m [5, 100] 10

Table 2: Computational results for configuring MMAS for the TSP with 4 discretized parameters
for a computation time bound of 5 and 20 seconds, respectively. The column entries with the label
per.dev shows the mean percentage deviation of each algorithm from the reference cost. +x (−x)
means that the solution cost of the algorithm is x% more (less) than the reference cost. The column
with the label max.bud gives the maximum number of evaluations given to each algorithm.

5 seconds 20 seconds

algo per.dev per.dev max.bud

F-Race(FFD) +0.85 +0.79 486
F-Race(RSD) −0.58 −0.44 486
I/F-Race −0.26 −0.34 486
F-Race(FFD) +0.51 +1.27 1 536
F-Race(RSD) −0.08 −0.66 1 536
I/F-Race −0.42 −0.61 1 536
F-Race(FFD) +0.40 +0.71 3 750
F-Race(RSD) −0.12 −0.27 3 750
I/F-Race −0.28 −0.45 3 750

the same number of levels for each parameter, in our case three, four, and five. Without a priori
knowledge, the level of each parameter is selected randomly in F-Race(FFD).

The experimental results are given in Table 2. The table shows the average percentage deviation
of each algorithm from the reference cost, which for each instance is defined by the average cost
across all candidate algorithms on that instance. The results of the algorithms tuned by F-
Race(FFD), F-Race(RSD), and I/F-Race, are compared using the non-parametric pairwise Wilcoxon
test with Holm adjustment, using blocking on the instances; the significance level chosen is 0.05.
Results in boldface indicate that the corresponding configurations are statistically better than the
ones of the two competitors.

In all experiments, I/F-Race and F-Race(RSD) significantly outperform F-Race(FFD). Overall,
I/F-Race has a slight advantage over F-Race(RSD): in three of six experiments I/F-Race returns
configurations that are significantly better than those found by F-Race(RSD), while the opposite is
true on only one experiment. The trend appears to be that with larger total budget, the advantage
of I/F-Race over F-Race(RSD) increases. The reason for the relatively good performance of F-
Race(RSD) could be due to the fact that the parameter space is rather small (12100 candidate
configurations) and that the number of levels (10 or 11) for each parameter is large.

5.2 Case study 2, MMAS under seven parameters

In this case study we have chosen seven parameters. These are the same as in the first case study
plus three additional parameters: γ, a parameter that controls the gap between the minimum and
maximum pheromone trail value in MMAS, γ = τmax/(τmin · instance size); nn, the number

IRIDIA – Technical Report Series: TR/IRIDIA/2009-018 13

Table 3: Given are the parameters, the original range considered before discretization and the
number of levels considered after discretization for the first case study. The number of candidate
parameter settings is 259 200.

parameter range #levels
α [0.01, 5.00] 5
β [0.01, 10.00] 6
ρ [0.00, 1.00] 8
γ [0.01, 5.00] 6
m [5, 100] 5
nn [5, 50] 4
q0 [0.0, 1.0] 9

Table 4: Computational results for configuring MMAS for TSP with seven categorical parameters
in 5 and 20 CPU seconds. For an explanation of the table entries see the caption of Table 2.

5 seconds 20 seconds

algo per.dev per.dev max.bud

F-Race(FFD) +9.33 +4.61 768
F-Race(RSD) −4.49 −1.35 768
I/F-Race −4.84 −3.25 768
F-Race(FFD) +1.58 +2.11 1 728
F-Race(RSD) −0.49 −0.78 1 728
I/F-Race −1.10 −1.33 1 728
F-Race(FFD) +0.90 +2.38 3 888
F-Race(RSD) −0.27 −0.33 3 888
I/F-Race −0.63 −2.05 3 888

of nearest neighbors used in the solution construction phase; and q0, the probability of selecting
the best neighbor deterministically in the pseudo-random proportional action choice rule; for a
detailed definition see [26].

The parameters are discretized using the ranges and number of levels given in Table 3. Note
that in comparison to the previous experiment, the parameter space is more than one order of
magnitude larger (259 200 ≫ 12 100). Besides, there is smaller number of levels for each parameter,
usually between four to nine. We use the same experimental setup as in the previous section, except
that for the computational budget, we choose 6·27 = 768 such that each parameter in F-Race(FFD)
has two levels, 6 · 25 · 32 = 1 728, such that in F-Race(FFD), five parameters will have two levels
and the other two three levels, and 6 · 23 · 34 = 3 888, such that in F-Race(FFD), three parameters
will have two levels, and the other four parameters have three levels.

The experimental results are listed in Table 4 and the results are analyzed in a way analogous
to case study 1. The results clearly show that I/F-Race significantly outperforms F-Race(FFD)
and F-Race(RSD) in each experiment. As expected, also F-Race(RSD) outperforms F-Race(FFD)
significantly.

5.3 Case study 3, ACOTSP under twelve parameters

In a final experiment, 12 parameters of the ACOTSP software are examined. This configuration
task is the most complex and it requires the setting of categorical as well as numerical parameters.

Among these parameters, firstly two categorical parameters have to be determined, (i) the
choice of the ACO algorithm, among the five variants MMAS, ant colony system (ACS), rank-

14 IRIDIA – Technical Report Series: TR/IRIDIA/2009-018

Table 5: Computational results for configuring MMAS for TSP with 12 parameters in 5 and 20
CPU seconds. For an explanation of the table entries see the caption of Table 2.

5 seconds 20 seconds

algo per.dev per.dev max.bud

F-Race(RSD) +0.06 +0.005 1 500
I/F-Race −0.06 −0.005 1 500
F-Race(RSD) +0.04 +0.009 3 000
I/F-Race −0.04 −0.009 3 000
F-Race(RSD) +0.07 −0.001 6 000
I/F-Race −0.07 +0.001 6 000

based ant system (RAS), elitist ant system (EAS), ant system (AS); (ii) the local search type l,
including four levels: no local search, 2-opt, 2.5-opt, and 3-opt. All the ACO construction algo-
rithms share the three continuous parameter α, β, and ρ, and two quasi-continuous parameters m
and nn, which have been introduced before. Moreover, five conditional parameters are considered:
(i) the continuous parameter q0 (introduced in Sec. 5.2) is only in effect when ACS is deployed;
(ii) the quasi-continuous rasrank, is only in effect when RAS is chosen; (iii) the quasi-continuous
eants is only in effect when EAS is applied; (iv) the quasi-continuous parameter nnls is only in
effect when local search is used, namely either 2-opt, 2.5-opt or 3-opt; (v) the categorical parame-
ter dlb is only in effect when local search is used. Here, only F-Race(RSD) and I/F-Race are tested
because F-Race(FFD) has so far already been outperformed by the other two variants, and, due
to the large number of parameters, running F-Race(FFD) becomes infeasible. As computational
budgets we adopted 1 500, 3 000 and 6 000 function evaluations. The experimental results are given
in Table 5. The two algorithms F-Race(RSD) and I/F-Race are compared using the non-parametric
pairwise Wilcoxon test using a 0.05 significance level. The statistical comparisons show that I/F-
Race is again dominating. It is significantly better performing in five out of six experiments; only
in one case no statistically significant difference can be identified. However, the quality differences
in this set of experiments are quite small, usually below 0.1% in the five CPU seconds case, while
in the 20 CPU seconds case the difference is below 0.01%. This shows that the solution quality is
not very sensitive to the parameter settings. This is usually the case when a strong local search
such as 3-opt is used.

6 A review of F-Race applications

F-Race has received significant attention as it is witnessed by the 99 citations to the first article on
F-Race [14] in the google scholar database as of June 2009. In what follows, we give an overview
of researches that applied F-Race in various contexts.

Fine-tuning algorithms. The by far most common use of F-Race is to use it as a method to fine-
tune an existing or a recently developed algorithm. Often, the tuning through F-Race is also done
before comparing the performance of various algorithms. In fact, this latter usage is important to
make reasonably sure that performance differences between algorithms are not simply due to an
uneven tuning.

A significant fraction of the usages of F-Race is due to researchers either involved in the de-
velopment of the F-Race method or by their collaborators. In fact, F-Race has been developed in
the research for the Metaheuristics Network, an EU-funded research and training network on the
study of metaheuristics. Various applications there have been for configuring different metaheuris-
tics for the university-course timetabling problem [20, 32, 43] and also for various other problems
[18, 21, 24, 42, 44].

Soon after these initial applications, F-Race has also been adopted by a number of other

IRIDIA – Technical Report Series: TR/IRIDIA/2009-018 15

researchers. Most applications focus on configuring SLS methods for combinatorial optimization
problems [9, 2, 25, 27, 31, 40, 41]. However, also other applications have been considered including
the tuning of algorithms for training neural networks [15, 47], or the tuning of parameters of a
control system for simple robots [37, 38].

Industrial applications. Few researches have evaluated F-Race in pilot studies for industrial
applications. The first has been a feasibility study, where F-Race was used to configure a commer-
cial solver for vehicle routing and scheduling problems, which has been developed by the software
company SAP. In this research, six configuration tasks have been considered that ranged from the
study of specific parameters, which determined the frequency of the application of some important
operators of the program, to the configuration of the SLS method that was used in the software
package. F-Race was compared to a strategy that after each fixed number of instances discarded
a fixed percentage of the worst candidate configurations, showing, as expected, advantages for
F-Race when the performance differences between configurations were stronger. Some results of
this study have been published in [7]; more details are available in a master thesis [6].

Yuan et al. [52] have adopted F-Race to configure several algorithms for a highly constrained
train scheduling problem arising at Deutsche Bahn AG. A comparison of various tuned algorithms
identified an iterated greedy algorithm as the most promising one.

Algorithm development. F-Race has occasionally also been used to explicitly support the
algorithm development process. A first example is described by Chiarandini et al. [19] who used
F-Race to design a hybrid metaheuristic for the university-course timetabling problem. In their
work they have adopted F-Race in a semi-automatic way. They observed the algorithm candidates
that were maintained in a race and based on this information they generated new algorithm
candidates that were then manually added to the ongoing race. In fact, one of these newly injected
candidate algorithms was finally the best performing algorithm in an international timetabling
competition (see also http://www.idsia.ch/Files/ttcomp2002).

The PhD work of Matthijs den Besten [24] provides an empirical investigation into the applica-
tion of ILS to solve a range of deterministic scheduling problems with tardiness penalties. Racing,
in general, and F-Race, in particular, is a very important ingredient throughout the algorithm de-
velopment and calibration. The ILS algorithms are built in a modular way and F-Race is applied
to assess each combination of modular components of the algorithm.

Comparison of F-Race to other methods There have been some comparisons of F-Race with
other racing algorithms. Some preliminary results comparing F-Race and t-test based racing
techniques are presented by Birattari [11, 12], showing that F-Race typically performs best.

Yuan and Gallagher [49] discuss the use of F-Race for the empirical evaluation of evolutionary
algorithms. They also use an algorithm called A-Race, where the family-wise test is based on the
analysis of variance (ANOVA) method. From the experiments they conduct, they conclude that
their version of an F-Race obtains better results than A-Race.

Caelen and Bontempi in their work [17] compare five techniques from various communities on a
model selection task. The techniques compared are (i) a two-stage selection technique proposed in
the stochastic simulation community, (ii) a stochastic dynamic programming approach conceived to
address the multi-armed bandit problem, (iii) a racing method, (iv) a greedy approach, (v) a round-
search technique. F-Race is mentioned and applied for comparison purposes. The comparison
results shows that the bandit strategy yields the most promising performance when the sample
size is small, but F-Race outperforms other techniques when the sample size is sufficiently large.

Extensions and Hybrids of F-Race. The F-Race algorithm has been adopted as a module
integrated into an ACO algorithm framework for tackling combinatorial optimization problems
under uncertainty [13]. The resulting algorithm is called ACO/F-Race and it uses F-Race to
determine the best of a set of candidate solutions generated by the ACO algorithm. In later
work by Balaprakash et al. [3] on the application of estimation-based ACO algorithms to the
probabilistic traveling salesman problem the Friedman test is replaced by an ANOVA.

Yuan and Gallagher [50, 51] propose an approach to tune evolutionary algorithms by hybridiz-
ing Meta-EA and F-Race. Meta-EA is an approach that uses various genetic operators to tune the

16 IRIDIA – Technical Report Series: TR/IRIDIA/2009-018

parameters of EAs. It is reported that one major difficulty in Meta-EA is that it cannot handle
effectively categorical parameters. These categorical parameters are usually handled in Meta-EA
by pure random search. The proposed hybridization uses Meta-EA to evolve part of the numerical
parameters and leave the categorical parameters for F-Race. Experiment show that Meta-EA plus
F-Race required only around 12% of the computational effort taken by Meta-EA plus random
search.

7 Summary and Outlook

In this article, we have presented the algorithm configuration problem that F-Race tackles and
have given a detailed review of the method. F-Race essentially is selection method of the best
algorithm configuration under stochastic evaluations. As such, it is a method that is independent
of the way the candidate configurations are sampled. In a next step, we have introduced the family
of iterated F-Race algorithms, where the sampling of new candidate configurations is done through
probability models that are iteratively refined.

There is a significant number of possible extensions and adaptations of the F-Race method.
In fact, any mixed-integer (stochastic) optimization techniques could at least in principle provide
the sampling method for an iterated F-Race. A part of our current research is actually devoted to
this observation. We are currently studying the usage of F-Race on top of continuous optimization
methods and first results show statistically significant advantages over strategies using a fixed
sample size. Combinations of F-Race with other methods for parameter tuning such as SPO [5]
and local search approaches [29] may also be useful. Finally, we believe that the ideas on which
F-Race is based can be also fruitful for other tasks than algorithm tuning. In fact, we envision that
especially applications to stochastic optimization problems may benefit very much, ACO/F-Race
[13] being a first such successful example.

Acknowledgements

This work has been supported by META-X, an ARC project funded by the French Community of
Belgium. The authors acknowledge support from the fund for scientific research F.R.S.-FNRS of
the French Community of Belgium, of which they are research associates (MB and TS), or aspirant
(ZY), respectively.

References

[1] B. Adenso-Diaz and M. Laguna. Fine-tuning of algorithms using fractional experimental
designs and local search. Operations Research, 54(1):99–114, 2006.

[2] P. Balaprakash, M. Birattari, T. Stützle, and M. Dorigo. Adaptive sample size and importance
sampling in estimation-based local search for the probabilistic traveling salesman problem.
European Journal of Operational Research, 199(1):98–110, 2009.

[3] P. Balaprakash, M. Birattari, T. Stützle, Z. Yuan, and M. Dorigo. Ant colony optimization
and estimation-based local search for the probabilistic traveling salesman problem. Swarm
Intelligence, 3(3):223–242, 2009.

[4] P. Balaprakash, M. Birattari, and T.Stützle. Improvement strategies for the F-Race algorithm:
Sampling design and iterative refinement. In T. Bartz-Beielstein et al., editors, Hybrid Meta-
heuristics, 4th International Workshop, HM 2007, volume 4771 of Lecture Notes in Computer
Science, pages 108–122. Springer Verlag, Berlin, Germany, 2007.

[5] T. Bartz-Beielstein. Experimental Research in Evolutionary Computation. Springer Verlag,
Berlin, Germany, 2006.

IRIDIA – Technical Report Series: TR/IRIDIA/2009-018 17

[6] S. Becker. Racing-Verfahren für Tourenplanungsprobleme. Diplomarbeit, Technische Univer-
sität Darmstadt, Darmstadt, Germany, 2004.

[7] S. Becker, J. Gottlieb, and T. Stützle. Applications of racing algorithms: An industrial
perspective. In E.-G. Talbi et al., editors, Artificial Evolution: 7th International Conference,
Evolution Artificielle, EA 2005, volume 3871 of Lecture Notes in Computer Science, pages
271–283, Lille, France, 2005. Springer Verlag, Berlin, Germany.

[8] P. Billingsley. Probability and Measure. John Wiley & Sons, New York, NY, USA, second
edition, 1986.

[9] M. S. bin Hussin, T. Stützle, and M. Birattari. A study of stochastic local search algorithms
for the quadratic assignment problems. In E. Ridge et al., editors, Proceedings of SLS-DS
2007, Doctoral Symposium on Engineering Stochastic Local Search Algorithms, pages 11–15,
Brussels, Belgium, September 2007.

[10] M. Birattari. On the estimation of the expected performance of a metaheuristic on a class of
instances. How many instances, how many runs? Technical Report TR/IRIDIA/2004-001,
IRIDIA, Université Libre de Bruxelles, Brussels, Belgium, 2004.

[11] M. Birattari. The Problem of Tuning Metaheuristics as Seen from a Machine Learning Per-
spective. PhD thesis, Université Libre de Bruxelles, Brussels, Belgium, 2004.

[12] M. Birattari. Tuning Metaheuristics: A Machine Learning Perspective, volume 197 of Studies
in Computational Intelligence. Springer Verlag, Berlin, Germany, 2009.

[13] M. Birattari, P. Balaprakash, and M. Dorigo. The ACO/F-Race algorithm for combinatorial
optimization under uncertainty. In K. F. Doerner et al., editors, Metaheuristics - Progress
in Complex Systems Optimization, Operations Research/Computer Science Interfaces Series,
pages 189–203. Springer Verlag, Berlin, Germany, 2007.

[14] M Birattari, T. Stützle, L. Paquete, and K. Varrentrapp. A racing algorithm for configuring
metaheuristics. In W. B. Langdon et al., editors, GECCO 2002: Proceedings of the Genetic
and Evolutionary Computation Conference, pages 11–18. Morgan Kaufmann Publishers, San
Francisco, CA, 2002.

[15] C. Blum and K. Socha. Training feed-forward neural networks with ant colony optimization:
An application to pattern classification. In N. Nedjah et al., editors, Proceedings of Fifth In-
ternational Conference on Hybrid Intelligent Systems (HIS’05), pages 233–238, Los Alamitos,
CA, USA, 2005. IEEE Computer Society.

[16] K.P. Burnham and D.R. Anderson. Model selection and multimodel inference: a practical
information-theoretic approach. Springer, 2002.

[17] O. Caelen and G. Bontempi. How to allocate a restricted budget of leave-one-out assessments
for effective model selection in machine learning: a comparison of state-of-the-art techniques.
In K. Verbeeck et al., editors, Proceedings of the 17th Belgian-Dutch Conference on Artificial
Intelligence (BNAIC’05), pages 51–58, Brussels, Belgium, 2005.

[18] M. Chiarandini. Stochastic local search methods for highly constrained combinatorial opti-
misation problems. PhD thesis, Technische Universität Darmstadt, Darmstadt, Germany,
2005.

[19] M. Chiarandini, M. Birattari, K. Socha, and O. Rossi-Doria. An effective hybrid algorithm
for university course timetabling. Journal of Scheduling, 9(5):403–432, 2006.

[20] M. Chiarandini and T. Stützle. Experimental evaluation of course timetabling algorithms.
Technical Report AIDA-02-05, FG Intellektik, FB Informatik, Technische Universität Darm-
stadt, Darmstadt, Germany, 2002.

18 IRIDIA – Technical Report Series: TR/IRIDIA/2009-018

[21] M. Chiarandini and T. Stützle. Stochastic local search algorithms for graph set t-colouring
and frequency assignment. Constraints, 12(3):371–403, 2007.

[22] W. J. Conover. Practical Nonparametric Statistics. John Wiley & Sons, New York, NY, USA,
third edition, 1999.

[23] A. Dean and D. Voss. Design and Analysis of Experiments. Springer Verlag, New York, NY,
USA, 1999.

[24] M. L. den Besten. Simple Metaheuristics for Scheduling. An empirical investigation into
the application of iterated local search to deterministic scheduling problems with tardiness
penalities. PhD thesis, FG Intellektik, FB Informatik, TU Darmstadt, 2004.

[25] L. Di Gaspero and A. Roli. Stochastic local search for large-scale instances of the haplotype
inference problem by pure parsimony. Journal of Algorithms, 63(1-3):55–69, 2008.

[26] M. Dorigo and T. Stützle. Ant colony optimization. MIT Press, Cambridge, MA, 2004.

[27] L. Di Gaspero, G. di Tollo, A. Roli, and A. Schaerf. Hybrid local search for constrained
financial portfolio selection problems. In Integration of AI and OR Techniques in Constraint
Programming for Combinatorial Optimization Problems, volume 4510 of Lecture Notes in
Computer Science, pages 44–58. Springer Verlag, Berlin, Germany, 2007.

[28] H. H. Hoos and T. Stützle. Stochastic Local Search. Foundations and Applications. Morgan
Kaufmann Publishers, San Francisco, CA, USA, 2004.

[29] Frank Hutter, Holger H. Hoos, and Thomas Stützle. Automatic algorithm configuration based
on local search. In R. C. Holte et al., editors, Proceedings of the 22nd Conference on Artificial
Intelligence (AAAI), pages 1152–1157. AAAI Press / The MIT Press, Menlo Park, CA, USA,
2007.

[30] D. S. Johnson, L. A. McGeoch, C. Rego, and F. Glover. 8th DIMACS implementation chal-
lenge. http://www.research.att.com/∼dsj/chtsp/ (webpage last visited in April 2009).

[31] R. Lenne, C. Solnon, T. Stützle, E. Tannier, and M. Birattari. Effective stochastic local
search algorithms for the genomic median problem. In E. Ridge et al., editors, Proceedings of
SLS-DS 2007, Doctoral Symposium on Engineering Stochastic Local Search Algorithms, pages
1–5, Brussels, Belgium, September 2007.

[32] M. Manfrin. Metaeuristiche per la costruzione degli orari dei corsi universitari. Tesi di Laurea,
Università degli Studi di Firenze, Firenze, Italy, 2003. In Italian.

[33] O. Maron. Hoeffding races: Model selection for MRI classification. Master’s thesis, The
Massachusetts Institute of Technology, Cambridge, MA, USA, 1994.

[34] O. Maron and A. W. Moore. Hoeffding races: Accelerating model selection search for clas-
sification and function approximation. In J. D. Cowan et al., editors, Advances in Neural
Information Processing Systems, volume 6, pages 59–66, San Francisco, CA, USA, 1994.
Morgan Kaufmann Publishers.

[35] O. Maron and A. W. Moore. The racing algorithm: Model selection for lazy learners. Artificial
Intelligence Review, 11(1–5):193–225, 1997.

[36] D. C. Montgomery. Design and Analysis of Experiments. John Wiley & Sons, New York,
NY, USA, fifth edition, 2000.

[37] S. Nouyan. Teamwork in a Swarm of Robots – An Experiment in Search and Retrieval. PhD
thesis, Université Libre de Bruxelles, Brussels, Belgium, 2008.

IRIDIA – Technical Report Series: TR/IRIDIA/2009-018 19

[38] S. Nouyan, A. Campo, and M. Dorigo. Path formation in a robot swarm. Swarm Intelligence,
2(1):1–23, 2008.

[39] A. Papoulis. Probability, Random Variables, and Stochastic Processes. McGraw-Hill, New
York, NY, USA, third edition, 1991.

[40] P. Pellegrini. Application of two nearest neighbor approaches to a rich vehicle routing prob-
lem. Technical Report TR/IRIDIA/2005-15, IRIDIA, Université Libre de Bruxelles, Belgium,
2005.

[41] C. Philemotte and H. Bersini. The gestalt heuristic: learning the right level of abstraction to
better search the optima. Technical Report TR/IRIDIA/2008-021, IRIDIA, Université Libre
de Bruxelles, Belgium, 2008.

[42] M. Risler, M. Chiarandini, L. Paquete, T. Schiavinotto, and T. Stützle. An algorithm for the
car sequencing problem of the ROADEF 2005 challenge. Technical Report AIDA–04–06, FG
Intellektik, TU Darmstadt, Darmstadt, Germany, March 2004.

[43] O. Rossi-Doria, M. Sampels, M. Birattari, M. Chiarandini, M. Dorigo, L. M. Gambardella,
J. Knowles, M. Manfrin, M. Mastrolilli, B. Paechter, L. Paquete, and T. Stützle. A comparison
of the performance of different metaheuristics on the timetabling problem. In E. Burke et al.,
editors, Practice and Theory of Automated Timetabling IV, volume 2740 of Lecture Notes in
Computer Science, pages 329–351. Springer Verlag, Berlin, Germany, 2003.

[44] T. Schiavinotto and T. Stützle. The linear ordering problem: Instances, search space analysis
and algorithms. Journal of Mathematical Modelling and Algorithms, 3(4):367–402, 2004.

[45] D. Sheskin. Handbook of Parametric and Nonparametric Statistical Procedures. Chapman &
Hall/CRC, Boca Raton, FL, USA, second edition, 2000.

[46] S. Siegel and N. J. Castellan, Jr. Non Parametric Statistics for the Behavioral Sciences.
McGraw-Hill, New York, NY, USA, second edition, 1988.

[47] K. Socha and C. Blum. An ant colony optimization algorithm for continuous optimization:
application to feed-forward neural network training. Neural Computing and Applications,
16(3):235–247, 2007.

[48] T. Stützle and H. H. Hoos. MAX–MIN ant system. Future Generation Computer Systems,
16(8):889–914, 2000.

[49] B. Yuan and M. Gallagher. Statistical racing techniques for improved empirical evaluation
of evolutionary algorithms. In X. Yao et al., editors, Parallel Problem Solving from Nature
- PPSN VIII, volume 3242 of Lecture Notes in Computer Science, pages 172–181. Springer
Verlag, Berlin, Germany, 2004.

[50] B. Yuan and M. Gallagher. A hybrid approach to parameter tuning in genetic algorithms. In
Proceedings of the IEEE Congress in Evolutionary Computation (CEC’05), volume 2, pages
1096–1103. IEEE Press, Piscataway, NJ, 2005.

[51] B. Yuan and M. Gallagher. Combining Meta-EAs and racing for difficult ea parameter tuning
tasks. In Parameter Setting in Evolutionary Algorithms, volume 54 of Studies in Computa-
tional Intelligence, pages 121–142. Springer Verlag, Berlin, Germany, 2007.

[52] Z. Yuan, A. Fügenschuh, H. Homfeld, P. Balaprakash, T. Stützle, and M. Schoch. Iterated
greedy algorithms for a real-world cyclic train scheduling problem. In M. J. Blesa et al.,
editors, Hybrid Metaheuristics, 5th International Workshop, HM 2008, volume 5296 of Lecture
Notes in Computer Science, pages 102–116. Springer Verlag, Berlin, Germany, 2008.

[53] M. Zlochin, M. Birattari, N. Meuleau, and M. Dorigo. Model-based search for combinatorial
optimization: A critical survey. Annals of Operations Research, 131(1–4):373–395, 2004.

