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Abstract

The goal of the thesis is to study the behavior of the ant colony optimization metaheuristic under
uncertain conditions. We choose the probabilistic traveling salesman problem (PTSP) as
a test-bed amongst stochastic optimization problems, in much the same way as the traveling

salesman problem (TSP) has been considered a standard amongst deterministic optimization
problems. Given a set of cities and the cost of travel between each pair of them, the goal of the
TSP is to find the cheapest way of visiting all of the cities and returning to the starting point.
This is a computationally hard problem to solve and called as NP-hard problem. Ant colony
optimization metaheuristic is one of the successful techniques to find the nearly optimal solution
for this class of problems. The PTSP is a variant of TSP in which each city only needs to be
visited with certain probability. To solve this problem, one first decides upon the order in which
the cities are to be visited: the ’a priori ’ tour. Subsequently, it is revealed which cities need to
be visited, and those which need to be skipped, generating in this way an ’a posteriori tour ’. The
objective is to choose an a priori tour which minimizes the expected length of the a posteriori
tour. This is again a NP-hard problem.

In this thesis, we present a new approach to compute a good solution for PTSP based on
sampling and racing techniques. The accuracy of our approach is experimentally evaluated and
compared against the standard ant colony optimization metaheuristic.
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Chapter 1

Introduction

Science and technology have changed every aspect of life and society and provided significant
benefits to the day to day life. They have also created new issues for the society due to their
application and the level of sophistication they have brought. In many cases these scientific and
technological advances hold the advantage of positive applications for the benefit of humankind. As
long as there have been people, there has been technology. Indeed, the techniques of creating and
shaping tools from stones and wood to hunt animals are taken as the chief evidence of the beginning
of human culture. On the whole, technology has been a powerful force in the development of
civilization and has a very close link with science. Technology, like language, rituals, commerce,
and arts, is an intrinsic part of a cultural system and it both shapes and reflects the system’s values.
In today’s world, technology is a complex social network that includes not only research, design,
and crafts but also finance, manufacturing, management, labor, marketing, and maintenance.

In the broadest sense, technology extends our abilities to change the world: to cut, shape, or
put together materials; to move things from one place to another; to reach farther with our hands,
voices, and senses. We use technology to change the world to suit us better. The changes may
relate to survival needs such as food, shelter, or defense, or they may relate to human aspirations
such as knowledge, art, or control. But the results of changing the world are often complex,
uncertain and not completely predictable. They can include unexpected benefits, unexpected
costs, and unexpected risks any of which may fall on different social groups at different times.

By ‘uncertain’ knowledge, let me explain, I do not mean merely to distinguish what is
known for certain from what is only probable. The game of roulette is not subject, in
this sense, to uncertainty...The sense in which I am using the term is that in which
the prospect of a European war is uncertain, or the price of copper and the rate of
interest twenty years hence...About these matters there is no scientific basis on which
to form any calculable probability whatever. We simply do not know. - (J.M. Keynes,
1883-1946, a revolutionary economist)

Anticipating, modelling and understanding the effects of uncertainty is therefore important for
exploiting the benefits and capabilities of the technology. In the ever changing world, the only
certainty is uncertainty. Reasoning based on probability and statistics gives modern societies the
ability to cope with uncertainty. It has astonishing power to improve decision-making accuracy
and to test new ideas.

The last two decades have seen numerous advancement in humans ability to solve large-scale
problems with computers. Though a number of factors led to this impressive progress, the most
important one is the advancement in the hardware and software technology. The computing
power has been growing exponentially in the last decade in terms of processor speed and memory.

1



2 CHAPTER 1. INTRODUCTION

This increase in the power of hardware has subsequently facilitated the development of increas-
ingly sophisticated software for large scale problems. Combinatorial optimization problems are a
prominent class of such large scale problems. They are conceptually easy to model and challeng-
ing to solve in practice. Due to the importance of combinatorial optimization problems for the
scientific as well as the industrial world, the number of researchers in this field is growing day by
day. Further, the concept of cluster and parallel computing has allowed researchers to gain more
in the optimization efforts.

While much research work has been made in finding exact solutions to some combinatorial op-
timization problems, using techniques such as dynamic programming, cutting planes, and branch
and cut methods, many hard combinatorial problems are yet to be solved exactly and require good
heuristic methods. In practice we are often solving models that are approximate representation of
reality: reaching “optimal solutions” in many cases doesn’t have any meaning. The goal of heuris-
tic methods for combinatorial optimization is to quickly produce good-quality solutions, without
necessarily providing any guarantee of their optimality. Metaheuristics are high level procedures
that coordinate simple heuristics, such as local search, to find solutions that are of better quality
than those found by the simple heuristics without any such procedure. The term metaheuristics
refers to the class of algorithms that can find good enough solutions in a reasonably short compu-
tational time and limited resources. Modern metaheuristics include simulated annealing [65, 23],
genetic algorithms [57], tabu search [47], GRASP (greedy randomized adaptive search procedure)
[40, 41], ant colony optimization [31, 32], variable neighborhood search [54], and their hybrids. In
many practical problems they have proved to be effective and efficient approaches, being portable
and adaptable to accommodate variations in problem structure and in the objectives considered
for the evaluation of solutions. For all these reasons, metaheuristics have probably been one of
the most promising research topics in optimization for the last two decades.

The need for efficient algorithms became evident as people attempted to solve large instances
of complex problems on computers. This spawned extensive research in several fields of computer
science; the problems in these fields experienced world-wide popularity not only because they have
an enormous number of applications in computer, communications, and industrial engineering, but
also because they have supplied an ideal proving ground for new algorithmic techniques. Nature-
inspired computing is the set of computing techniques that are inspired by natural process. The
remarkable growth of computing power over the last decades have made the computer a fantastic
tool to cope with complexity. The emergence of nature inspired computing is one of the most
amazing achievements of the researches. Ant colony optimization [31, 32] inspired by foraging
behavior of ants, genetic algorithms [57] inspired by biology, simulated annealing [65, 23] inspired
by physics are some of the well known computational techniques inspired by nature.

This thesis addresses a specific family of combinatorial optimization problems which includes
probabilistic elements in the problem definition to describe the uncertainty associated with the
problem itself. For the applications such as strategic planning for collection and distribution
services, communication and transportation systems, job scheduling, organizational structures
etc., the probabilistic nature of the models are very attractive as a abstraction of real world
systems. Another peculiarity of the thesis is the use of nature inspired computation, ant colony
optimization metaheuristic to attack the combinatorial optimization problems under uncertainty.

Goals of the Thesis

The traveling salesman problem (TSP) is a basic version of a combinatorial optimization
problems. Ant colony optimization metaheuristics, a nature inspired computational technique, is
one of the successfully applied techniques to find a good enough solution for the TSP in a rea-
sonably short computational time. The probabilistic traveling salesman problem (PTSP)
is a variant of the TSP under uncertain conditions. The first goal of the thesis is to analyze
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the possibility of tackling the PTSP by treating it as TSP with ant colony optimization. More
precisely, we experimentally evaluate the influence of the probabilistic nature of the problems on
quality of the solutions found by ant colony optimization algorithms. The motivation behind this
goal is to study portability, adaptability and robustness of the optimal solution of the determin-
istic case for the probabilistic scenario. The second goal is to develop an ant colony optimization
algorithm based on probabilistic and statistical techniques to find a good solution to the PTSP.
The motivation behind the design of new algorithm is to compute a better quality solution to the
problems in which the influence of randomness is of major importance.

Original Contributions

The original contributions are:

• In previous research works (Birattari [17], Birattari et al. [18]), the F-Race algorithm is
successfully employed to tune the metaheuristic algorithms. In this thesis, we show that the
F-Race algorithm can be profitably combined with ACO for developing an algorithm that
finds good quality solutions to the combinatorial optimization problems under uncertainty.
ACO/F-Race algorithm for optimization under uncertainty (Birattari et al. [19]) has been
presented at the Sixth Metaheuristics International Conference 2005.

• pACS [13], the state-of-the-art ACO algorithm designed to solve the PTSP, is based on
mathematical approximations whereas the proposed ACO/F-Race approach is based on em-
pirical estimation. This thesis describes an experimental evaluation method to compare the
empirical estimation against mathematical approximation techniques for the PTSP.

• Local search methods are used in general to improve the solution found by ACO algorithms.
The state-of-the-art local search methods for the PTSP are based on mathematical approxi-
mation [8, 12]. This thesis describes a local search for the PTSP which is based on empirical
estimation. This thesis also proposes a comparative analysis of these two approaches.

Structure of the Thesis

The rest of the thesis is organized as follows. Chapter 2 is divided into two sections and will present
the background required to understand the entire thesis. The first section defines the problem,
its formal notation and informal explanation to understand the complexity and the nature of
the problem which is going to be tackled by this thesis. The second section of this chapter will
explain the state-of-the-art methodologies to solve the problem under consideration. Ant colony
optimization is described in detail, whereas other methodologies will be briefly explained for the
sake of completeness. Chapter 3 discusses the proposed approach, the original element of the
thesis. This chapter is also divided into two sections where the first section presents the algorithm
and the second section explains the local search for the proposed approach. Chapter 4 presents
some computational experiments and results. The experimental framework and the criterions for
analyzing the results of the proposed approach are described in the first section of this chapter.
The second section presents the results with interpretation. Chapter 5 concludes the thesis with a
brief summary followed by some suggestions to improve the proposed approach and some directions
for the future research work.
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Chapter 2

Background and State of the Art

This chapter is composed of two parts: Section 2.1 provides the background knowledge about
combinatorial optimization problems. In specific, we describe the probabilistic traveling salesman
problem, its formulation, complexity and literature review in subsection 2.1.1. Section 2.2 de-
scribes the state-of-the-art solution techniques for the probabilistic traveling salesman problem.
We present them in two subsections. Subsection 2.2.1 describes metaheuristics. In particular,
we focus on the ant colony optimization metaheuristic and on its stochastic variants with higher
importance. Subsection 2.2.2 gives a bird’s eye view of the popular exact solution techniques.

2.1 Problem Definition

Combinatorial optimization (CO) problems describe the optimal allocation of limited re-
sources to meet desired objectives when the values of some or all of the resources are restricted
by constraints. Constraints on basic resources, such as labor, cost, energy, or distance, restrict
the possible alternatives that are considered feasible. The versatility of the CO model stems from
the fact that in many practical problems, activities and resources, such as machines, airplanes
and people, are indivisible. Also, many problems have only a finite number of alternative choices
and consequently they can appropriately be formulated as combinatorial optimization problems.
Combinatorial optimization models are used in planning where some or all of the decisions can
take on only a finite number of alternative possibilities. In most such problems, there are many
possible alternatives to consider and one overall goal determines which of these alternatives is
best. For example, an airline company needs to determine crew schedules which minimize the
total operating cost; as another example, consider the design of flexible production plant in a
manufacturing industry to handle the dynamic needs of the market. Therefore, in day-to-day’s
changing and competitive industrial world, the difference between using a quickly derived solu-
tion and using sophisticated mathematical models to find an optimal solution can determine the
success and failure of the enterprizes.

CO is a process of finding one or more optimal solutions in a well defined problem solution space.
Such problems occur in almost all fields of management (e.g. commerce, production, scheduling,
inventory control and layout), as well as in many engineering disciplines (e.g. optimal design of
waterways or bridges, VLSI-circuitry design and testing, the layout of circuits to minimize the area
dedicated to wires, design and analysis of data networks, logistics of electrical power generation
and transport, the scheduling of lines in flexible manufacturing facilities).

Computational Complexity

Computational complexity (or complexity theory) is a central subfield of the theoretical founda-
tions of computer science. It is concerned with the study of the intrinsic complexity of computa-
tional tasks. This study tends to aim at generality; it focuses on computational time and considers

5
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the effect of limiting it on the class of problems that can be solved. It also tends to asymptotic:
studying the complexity as the size of data grows. Another related subfield deals with the design
and analysis of algorithms for specific (classes of) computational problems that arise in a variety
of areas of mathematics, science and engineering. In general, computational complexity studies:

• the efficiency of algorithms

• the inherent “difficulty” of problems of practical and/or theoretical importance

A decision problem is a problem that takes an input and requires either YES or NO as output.
If there is an algorithm which is able to produce the correct answer for any input of length n in
at most nk steps, where k is some constant independent of the input, then the problem can be
solved in polynomial time and are grouped as P class.

Now consider an algorithm A(w,C) which takes two arguments: input w of length n to the
decision problem, and another input C which is an information required to verify a positive answer,
such that A produces a YES/NO answer in at most nk steps. Then we say that the problem can
be solved in non-deterministic polynomial time and are called as NP class. For example, we might
ask whether 69799 is a multiple of any integers between 1 and 250. The answer is YES, though
it would take a fair amount of computational time. On the other hand, if someone claims that
the answer is YES because 223 is a divisor of 69799, then we can quickly check that with a single
division. Verifying that a number is a divisor is much easier than finding the divisor in the first
place.

NP-complete problems are the most difficult problems in NP, in the sense that they are the
ones most likely not to be in P. A decision problem is NP-complete if it is in NP and every
other problem in NP is reducible to it. The reduction here refers to the transformation of one
problem into another problem in a polynomial time. One example of an NP-complete problem is
the subset sum problem which can be stated in the following way: given a finite set of integers,
determine whether any non-empty subset of them sums to zero. A supposed answer is very easy
to verify for correctness, but no one knows a significantly faster way to solve the problem than to
try every single possible subset, which is computationally expensive.

The term NP-hard refers to any problem that is at least as hard as any problem in NP. Thus,
the NP-complete problems are precisely the intersection of the class of NP-hard problems with
the class NP. Any problem that involves the identification of an optimal solution from a well
defined large solution space is known as an optimization problem. In computational complexity,
optimization problems whose decision versions are NP-complete are NP-hard, since solving the
optimization version is at least as hard as solving the decision version. A substantial treatment of
this topic was presented in [45].

Formal Definition

According to Papadimitriou and Steiglitz [80], a CO problem P = (S, f) is an optimization
problem in which a finite set of solutions and the search space S are given along with an objective
function f : S → <+ that assigns a positive cost to each solution s in the search space S. The
goal is to find a solution of minimal cost.1 The practical importance of CO problems attracted
many researchers over time and led to the development of different algorithms to tackle them. It
is interesting to note that all these algorithms falls into one of the two classes:

• Complete algorithms : Complete algorithms are guaranteed to find for every finite size
instance of a CO problem a minimum cost value [80, 77].

1Note that minimizing over an objective function f is the same as maximizing over −f . Therefore, every CO
problem can be described as a minimization problem.
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• Approximate algorithms: However, for CO problems that are NP-hard, no polynomial time
algorithm exists, assuming that P 6= NP [45]. The amount of time that an exact algorithm
takes is likely to be so long that it might be too long for all practical purposes. The
approximate algorithms find good enough solution in a reasonable amount of time. The
key idea behind this technique is to sacrifice the quality of the solution for a tractable
running time.

2.1.1 Probabilistic Traveling Salesman Problem

We adopt the probabilistic traveling salesman problem (PTSP) as a test-bed amongst
stochastic optimization problems, in much the same way as the traveling salesman problem

(TSP) has been considered a standard amongst deterministic optimization problems. PTSP is the
most fundamental stochastic routing problem that is available in the literature [60]. Given a set of
cities and the cost of travel between each pair of them, the goal of the TSP is to find the cheapest
way of visiting all of the cities and returning to the starting point. However, it is certainly not
obvious how to use this data to plan the cheapest route. PTSP, as the name reveals, is a variant
of TSP to optimization in the face of unknown data. Whereas all of the cities in the TSP must be
visited once and only once, in the PTSP each city only needs to be visited with some probability.
For example, consider a PTSP through a set of n cities. On any given scenario of the problem
only k out of n cities have to be visited. This can be denoted by the subset S where | S | =k. (i.e)
on any given day, the salesman may have to visit only a subset S that contains k cities. Therefore,
there exist 2n possible scenarios for the problem.2

The most obvious approach in dealing with such cases is to attempt to solve optimally or re-
optimize every potential scenarios of the PTSP. Though re-optimization technique is trivial, it aims
to solve exponentially many scenarios of a NP-hard problem. Moreover, in many applications it
is necessary to find a solution to each new scenario quickly but without extra computation and
extra resources. A well known approach to tackle this situation is a priori optimization or skipping
strategy introduced by Jaillet [61]. In PTSP, a tour which visits all the cities is called as an a
priori tour. The | S | = k cities of the PTSP will be visited in the same order as they appear in
the a priori tour by skipping the cities that are not a part of S: constructing in this way the a
posteriori tour. Therefore, the problem of finding an a priori tour which minimizes the expected
value of the a posteriori tour length is defined as PTSP [62]. The expected value is computed over
all possible scenarios S1, S2 . . . S2n . Figure 2.1 shows one of such possible a priori tour of the
PTSP. The a posteriori tour follows the a priori tour by skipping the cites that are not a part of
current scenario is shown in Figure 2.2.

From the a priori optimization perspective, the formal notation of PTSP can be derived as:

• G = (N,A), complete weighted graph

• N , the set of nodes in G representing cities

• pi, the probability associated with the node i ∈ N

• A, the set of arcs connecting the nodes in N

• dij , the weight associated with arcs, that is, the distance between cities i, j ∈ N3

• S1, S2 . . . S2n , the set of all possible scenarios.

2For example consider 2 cities n1 n2 PTSP. The set of possible scenarios is {(),(n1),(n2),(n1,n2) } that has 22

cardinality.
3For symmetric PTSP dij=dij but in asymmetric PTSP, at least one arc (i, j) depend on the direction (i.e)

dij 6= dij
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Figure 2.1: First step in the a priori optimization: The a priori tour of a PTSP instance (which
contains six cites) that visits all the cities once and only once.

Figure 2.2: Second step in the a priori optimization: The a posteriori tour (thick line) in which
cities of the PTSP will be visited in the same order as they appear in the a priori tour (dotted
line) by skipping the cities that are not a part of the random scenario S
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The goal is to find the a priori tour of the graph that minimizes the expected value of the a
posteriori tour length. The most recent and comprehensive literature review about the PTSP and
its solution techniques is presented by Campbell [21] where she describes the aggregation approach
to solve PTSP. The rest of this section summarizes the history of PTSP and its solution techniques
from [21].

In 1985, Patrick Jaillet first made an exhaustive study of the PTSP in his dissertation [60].
His work attested interesting properties of optimal PTSP tours. Later in [61], he provided a
formulation for the expected value of the a posteriori tour and established the relationship between
optimal PTSP and TSP solutions. Most of the Jaillets results discussed PTSP with homogeneous
probabilities.

Berman and Simchi-Levi [6] studied instances of the PTSP with heterogeneous probabilities.
They established the lower bound for the PTSP instances. They also explained the potentialities
of using a branch-and-bound algorithm to find an optimal a priori tour but without any compu-
tational results. Therefore, it is hard to observe quantitative relationship between the solution
and the instance. Furthermore, the nature of the proposed approach paralyzes its application and
generality to large problem instances.

For what concerns the thesis, it is important to observe the work of Rossi and Gavioli [86].
They proposed an approximation algorithm based on nearest neighbor techniques. The expected
costs of the resulting solutions are compared with those found using the basic TSP approximation
algorithms. The results of computational experiments conclude that it is necessary to employ
techniques specifically developed for the PTSP if the number of cities is greater than 50 and the
probability of each city requiring a visit is less than 60%.

Bertsimas focussed on a series of other probabilistic combinatorial optimization problems, such
as the probabilistic minimum spanning tree and vehicle routing problems in his dissertation [8] and
related papers [7, 9, 10]. Inspired by Jaillets work, he generalized the computational techniques of
the approximation algorithms for the deterministic problems to the probabilistic context, including
the spacefilling curve approach for the TSP to the PTSP.

Bertsimas and Howell [9] investigated the potentialities of applying TSP approximation algo-
rithm for solving the PTSP. They proposed an algorithm based on spacefilling curve approach
[4] to construct an initial solution and local search to improve the computed solution. The 2-opt
and 1-shift techniques developed for the TSP in [68] are extended to compute the change in the
objective function in an expected value sense. Notwithstanding some approximation errors [15]
in the generalization, improvement based on expected value becomes more significant as the size
of the problem becomes large. They also found that expected value based local improvement is
particularly important when the probability values associated with the cities are significantly less
than 1 as proposed by Rossi and Gavoli [86]

The sampling approach for solving PTSP was proposed by Bertsimas et al. [11]. They compared
the objective values obtained from the a priori tour and sampling techniques. While the former
is computed from the TSP approximate algorithm and improved with local search, the later is
derived by averaging the results obtained from a sampling of realizations. The experimental results
show that there is no significant difference in the solution quality but the computational time of
the a priori approach is lesser than sampling techniques.

When instances of larger sizes must be optimized, or a large sequence of instances must be opti-
mized, exact algorithms are no longer practical. The next best choice, then, is to use approximate
methods that find near-optimal tours quickly. These are known as heuristic algorithms. Meta-
heuristic algorithms [46] guide the heuristic algorithms to find high quality near optimal solutions
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in a reasonable computational time. Evolutionary algorithm [38], stochastic annealing approach
[53] , and ant colony metaheuristics [13] [52] provide a robust and effective optimization techniques
to solve PTSP.

The PTSP has a wide range of applications because it is close to some important real world
problems such as routing problems like dynamic vehicle routing with stochastic demands [14],
communication network and protocol design [3].

Cost Function Estimation

Optimization problems require finding the minimum or maximum (depending on the problem)
of a mathematical expression known as the objective function. The objective function involves a
number of variables. The goal of optimization is to find values for these constituent variables that
minimize or maximize the objective function. In the context of cost minimization and revenue
maximization, it is known as cost function and value function respectively. Robbins and Munro [85]
gave the first formal idea of optimizing the stochastic problems by stochastic approximation. The
formal description of the cost function of the CO problems under uncertainty can be represented
as follows:

• s, a solution in the set of feasible solution S

• ω which describes the influence of the uncertainty associated with the solution s

• f(s, ω), the cost function which depends on s and ω

• E, the mathematical expectation

• The goal is, Minimize F (s) = E[f(s, ω)] subject to s ∈ S

In the context of PTSP, a feasible solution s represents an a priori tour visiting once and only
once all the cities. The set S contains all the feasible a priori tours. The variable ω determines
the cities to be included in the tour. The function f(s, ω) is the tour length of the a posteriori
tour. The goal of the optimal solution in PTSP is to choose an a priori tour from the set S which
minimizes the expected value of the a posteriori tour length f(s, ω).

One attempt to solve the PTSP using an exact method was taken by Laporte et al. [66] who
introduced the use of integer stochastic programming. This study was severely limited in the
size of problem attempted and the stochastic programming algorithm failed to solve the PTSP on
certain occasions. Thus the quality of the results is not very high. On the other hand, the empirical
estimation approach is employed to solve PTSP. The main advantage of the estimation approach
over the one based on mathematical approximation is generality: Indeed, a sample estimate of the
expected cost of a given solution can be simply obtained by averaging a number of realizations
of the cost itself. Further, computing a profitable approximation is a problem-specific issue and
requires a deep understanding of the underlying probabilistic model. In the empirical estimation
approach to stochastic combinatorial optimization, the expectation F (s) of the cost f(s, ω) for a
given solution s is estimated on the basis of a sample f(s, ω1), f(s, ω2),..., f(s, ωN ) obtained from
N independently extracted realizations of the random variable ω:

ε(F (s)) =
1

N

N
∑

v=1

f(s, ωv) (2.1)

Clearly, ε(F (s)) is an unbiased estimator of F (s).
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2.2 State-of-the-Art Approaches

Due to the economical importance and scientific challenge of the PTSP, several algorithms were
devised for their solution. The choice of the exact or approximate algorithms is decided by the
practical problems and their time constraints. In the following sections we describe both of them
briefly but a substantial treatment is given to ant colony optimization metaheuristics which serves
as a background for the approach described in Chapter 3.

2.2.1 Metaheuristic Approaches

The field of metaheuristics for the application to combinatorial optimization problems is an in-
teresting and rapidly growing field of research. This is due to the importance of combinatorial
optimization problems for the scientific as well as the industrial world. The term metaheuristic is
derived from two Greek words. Heuristic, which derives from the verb heuŕısco (ευρίσκω) which
means “to search”, and meta (µετα), stands for “beyond, on a higher level”. The term meta-
heuristic, first proposed by Glover [46], has been used in the literature with different meanings.
Only in the last years some researcher have proposed a general definition [79, 95]. We can cite for
example the one given by Stützle [90]:

Metaheuristics are typically high-level strategies which guide an underlying, more prob-
lem specific heuristic, to increase their performance. The main goal is to avoid the
disadvantages of iterative improvement and, in particular, multiple descent by allow-
ing the local search to escape from local optima. This is achieved by either allowing
worsening moves or generating new starting solutions for the local search in a more
“intelligent” way than just providing random initial solutions. Many of the methods
can be interpreted as introducing a bias such that high quality solutions are produced
quickly. This bias can be of various forms and can be cast as descent bias (based on
the objective function), memory bias (based on previously made decisions) or experi-
ence bias (based on prior performance). Many of the metaheuristic approaches rely
on probabilistic decisions made during the search. But, the main difference to pure
random search is that in metaheuristic algorithms randomness is not used blindly but
in an intelligent, biased form.

A simple and precise definition is given by Metaheuristics Network4 which states that:

A metaheuristic is a set of concepts that can be used to define heuristic methods that can
be applied to a wide set of different problems. In other words, a metaheuristic can be
seen as a general algorithmic framework which can be applied to different optimization
problems with relatively few modifications to make them adapted to a specific problem.

Blum and Roli [20] presented a series of characteristic properties of metaheuristics. We summarize
them as follows:

• Metaheuristics are strategies that “guide” the search process. Their goal is to efficiently
explore the search space in order to find (near-)optimal solutions.

• Metaheuristics may incorporate mechanisms to avoid getting trapped in confined areas of
the search space.

• The basic concepts of metaheuristics can be described on an abstract level (i.e., not tied to
a specific problem).

• Metaheuristics often use the experience gained in previous searches (memory) to guide new
searches.

4Metaheuristics Network was a European Union research project whose main scientific goal is to improve the

understanding of metaheuristics work through theoretical and experimental research. www.metaheuristics.org
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Figure 2.3: The main means used by ants to form and maintain the line is a pheromone trail.
Ants deposit a certain amount of pheromone while walking, and each ant probabilistically prefers
to follow a direction rich in pheromone rather than a poorer one. An obstacle in the ant’s path
which leads to two paths, a longer and a shorter between nest and food.

• Metaheuristics may make use of domain-specific knowledge in the form of heuristics that
are controlled by the upper level strategy. Those strategies must be chosen in such a way
to balance dynamically the exploitation of previously gained experience, called intensifica-
tion, and the exploration of the search space, called diversification. This balancement is
necessary, on one side, to quickly identify region in the search space where good solutions
are, on the other side, to not loose to much time in searching inside regions that have already
been explored or that seem not to have good solutions.

Ant Colony Optimization

Ant colony optimization(ACO) is one of the latest metaheuristic developed to tackle CO prob-
lems. ACO technique was introduced by Dorigo [31]. Henceforth, the number of applications
and researchers using this methodology are increasing day by day. In this section we present the
description of ACO framework given by Dorigo and Caro [32].

The computational model of ACO was inspired by the foraging behavior of ants. This behavior
as described by Deneubourg et al. [30] enables ants to find shortest paths between food sources
and their nest. As soon as an ant finds a source of food, the former evaluates the source quantity
and quality and carries some food sample to the nest. While returning back, the ant deposits
a chemical substance called pheromone on the ground. This pheromone serves to attract other
ants to follow the same path. Clearly, the ants taking shorter path will return back to the nest
sooner than the ants taking the longer path. Henceforth the concentration of the pheromone on
the shorter path increases faster than the longer paths. The higher the pheromone intensity, the
higher will be the probability that the following ants take the respective (shorter) path. Although
leaving the pheromone trails by an ant on the path while returning to the nest seems to be a
primitive behavior, a colony of ants engaging in this primitive behavior will emerge as a source of
collective intelligence [36]. This intelligent behavior of ant colonies is the inspiration for artificial
ant colonies which are developed to tackle CO problems.

For illustration, let us consider Figure 2.3 that sketches an obstacle in the ant’s path. Obviously,
it forms two paths, a longer and a shorter between nest and food. Figure 2.4 shows the ants will
take randomly both longer and shorter paths. Clearly, the pheromone intensity increases more in
the shorter path. As a consequence, after some time all the ants will take the shorter path which
is shown in Figure 2.5.

ACO algorithm incorporates artificial ants that follow the artificial pheromone trails represented
by a parameterized probabilistic model termed as the pheromone model. The pheromone model
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Figure 2.4: Ants which are just in front of the obstacle cannot continue to follow the pheromone
trail and therefore they have to choose between turning right or left. Therefore, they randomly
choose both longer and shorter paths. The pheromone intensity starts to increase more in the
shorter path

Figure 2.5: Due to the positive feedback process, very soon all the ants will choose the shorter
path which contains higher pheromone intensity than the longer one.
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consists of a set of model parameters whose values are called the pheromone values. The interesting
element of the ACO algorithm is the probabilistic construction of solutions using the pheromone
values. The motivations behind this solution construction techniques are:

• To generate a solution using the pheromone model from a large solution space which contains
solutions of different quality.

• To narrow the search towards the high quality solutions in the solution space by updating
the pheromone values with the solutions that were constructed in earlier iterations.

More in general, ACO is a constructive technique that aims to improve the solution after each
iteration. The framework of the ACO metaheuristic for CO presented by Dorigo and Stützle [34]
is shown in Algorithm 1.

Algorithm 1 Ant Colony Optimization Framework

input: an instance x of a CO problem
while termination conditions not met do

ScheduleActivities
SolutionConstructionWithAnts()
PheromoneUpdate()
DaemonActions()

end ScheduleActivities
sbest ← best solution in the population of solutions

end while
output: sbest, “candidate” to optimal solution for x

Clearly, the three key algorithmic components are grouped under the ScheduleActivities con-
struct. This framework also provides more flexibility to the designer with respect to scheduling
and synchronization. More precisely, there is no restriction for parallel and independent or syn-
chronization methodology for the execution.

SolutionConstructionWithAnts(): ACO, as a constructive heuristic, assembles solutions as
sequences of solution components taken from a finite set C = {c1, · · · , cn}. For the TSP these
solution components are referred as cities. A starting point in the solution construction step is
an empty partial solution sp =<>. Now, we will describe the solution construction phase with
the first ACO algorithm called Ant System [35],[31]. Initially, m artificial ants are placed on
randomly chosen cities. At each construction step, each ant constructs the solution by using a
probabilistic action choice rule called random proportional rule, to decide which city to visit next.
More precisely, the probability with which ant k, currently at city i, chooses to go to city j is
given by Equation:

pk
ij =

τα
ij · η

β
ij

∑

l∈Nk
i

τα
il · η

β
il

, if j ∈ Nk
i (2.2)

where, ηij is known as the the heuristic information which is inversely proportional to the distance
dij of current city i and the next city j and τij refers to pheromone trails of the biological metaphor
that judge the the desirability of visiting city j from city i. Dorigo and Stützle [34] proposed to
set ηij = 1/dij . The solution construction mechanism, at each construction step, add a feasible
solution component from the set Nk

i ⊆ C \ sp to the current partial solution sp. Intuitively, Nk
i is

the feasible neighborhood of ant k when being at city i, that is, the set of cities that ant k has not
visited yet. It is interesting to note the dependency of the solution construction with respect to
positive parameters α and β. The search is intensified towards the already found solutions when
the α value is higher, whereas the search is diversified in the solution space to explore the new
solution with the lower counterpart. On the other hand, when the β value is higher, the solution
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component from N(ik) which has the lower heuristic value (nearest neighbor) will be selected as
the next solution component and viceversa.

PheromoneUpdate(): There are several types of pheromone updates employed in ACO algo-
rithms. However the basic ingredient is the same. Similar to the biological metaphor, pheromone
update incorporates two elements:

• pheromone evaporation, which uniformly decreases all the pheromone values. Henceforth
this process implements a useful form of forgetting. As a consequence, the search process is
diversified in the solution space favoring the exploration of new areas.

• pheromone deposit: one or more solutions from the current and/or from earlier iterations
are used to increase the values of pheromone trail parameters on solution components that
are part of these solutions.

The Ant System [35],[31] uses the following pheromone update rule called AS-update.

τij ← (1 − ρ) · τij + ρ ·
∑

{s∈Giter |ci∈s}

F (s), ∀(i, j) ∈ C (2.3)

where Giter is the set of solutions that were generated in the current iteration. Furthermore,
ρ ∈ (0, 1] is a parameter called evaporation rate, and F : G → <+ is a function such that
f(s) < f(s′) ⇒ F (s) ≥ F (s′),∀s 6= s′ ∈ G. F (·) is commonly called the quality function. In
the first work [35],[31] the update rule in the Equation 2.3 was defined without multiplying the
pheromone by ρ in the second additive factor. Only afterwards (for example in [33]) this was often
done. However, as ρ is a constant, it does not paralyze the qualitative behavior of the algorithm.

DaemonActions(): Daemon actions refers to the execution of actions which has to take place
centrally. For example, the constructed solution is improved by applying local search. As a another
example, the daemon may decide to deposit extra pheromone on the solution components that
belong to the best solution found so far.

Several types of pheromone update procedures are available in practice which aim at the in-
tensification or the diversification of the search process and they differ in the way they update
the pheromone values. Explaining each flavor is beyond the scope of the thesis. However, it is
worthwhile to mention some of the ACO variants: Ant Colony System (ACS)[33], MAX −MIN
Ant System (MMAS) [91], Elitist Ant System [35][33]. In the following sections we present the
ACO algorithms which are proposed to solve the PTSP.

Explicit Objective Function based Ant Colony System

Bianchi et al. [13] first proposed the potentialities of ACO algorithms for the PTSP. This approach
exploits an explicit formula for the calculation of expectation of the objective function. Let the set
V denotes cities in the a priori tour and S be the subset of cities whose a posteriori tour length
is Lλ(S). We can denote p(S) as the probability that the subset of cities S will require a visit.
In this context, the objective function or the expected length of the a posteriori tour E[Lλ] is
averaged over all possible a posteriori tour lengths. Jaillet [60] proposed a closed form expression
to compute the objective function:

E[Lλ] =
∑

S⊆V

p(S)Lλ(S) (2.4)

An arc (i, j) is actually used only when nodes i and j need to be visited by skipping the nodes
i + 1, i + 2, ..., j − 1. This event occurs with the probability given by Equation 2.5

p(i, j) = pipj

j−1
∏

k=i+1

(1 − pk) (2.5)
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Therefore,

p(S) =
∏

iεS

pi

∏

iεV −S

(1 − pi) (2.6)

When the a priori tour is adapted by skipping a set of cities which do not require a visit,
the objective function can be derived as shown in Equation 2.7 [60] in which dij denotes the
distance between two cities i and j. In other words, the number of skipping nodes represented by
|i + 1, i + 2, ..., j − 1| ranges from 0, 1, 2....n − 2.

E[Lλ] =
n

∑

i=1

n
∑

j=i+1

dijpipj

j−1
∏

k=i+1

(1 − pk) +
n

∑

i=1

i−1
∑

j=1

dijpipj

j−1
∏

k=i+1

(1 − pk)

j−1
∏

l=1

(1 − pl) (2.7)

For a homogeneous PTSP where all cities have same probability, the Equation 2.7 becomes
simple as shown below [13]:

E[Lλ] = p2
n−2
∑

r=0

(1 − p)rL
(r)
λ (2.8)

where, L
(r)
λ =

∑n

j=1 d(j, (j + 1 + r) mod n) is the sum of the distances between each city and its

(r + 1)th following city in the a priori tour.

The ACS algorithm was introduced as an improved version of AS to harness a better perfor-
mance. Bianchi et al. [13] developed a modified version of ant colony system (ACS) [33] called
probabilistic ant colony system (pACS) to tackle homogeneous PTSP that takes the PTSP objective
function in Equation 2.8 while selecting the best solution at each iteration. More precisely, for each
ant’s a priori tour, E[Lλ] is computed using the Equation 2.8. The a priori tour with minimum
E[Lλ] and the corresponding ant is selected as the iteration-best solution and the iteration-best
ant respectively for the current iteration. The interesting elements which makes the pACS differ
from AS are as follows:

• A variant of the Equation 2.2 called pseudo-random-proportional rule is used in pACS to
perform the construction steps.

j =

{

argmaxlεNk
i
{τil[η]β} if q ≤ q0,

J Otherwise
(2.9)

where q is uniformly distributed in the interval [0,1], q0 is a parameter such that [0 ≤ q0 ≤ 1]
and J is a random variable whose value is returned by the Equation 2.2. Therefore, with
probability q0 the ant chooses the best city according to the pheromone trail and the distance
between cities, whereas with probability 1 − q0 exploration of search space is achieved.

• The search process during the solution construction is diversified by immediately decreas-
ing the pheromone value τij when the ants move from city i to city j. This is given by
Equation 2.10

τij ← (1 − ξ) · τij + ξ · τij , (2.10)

where ξ, 0 < ξ < 1, and τij are parameters. Dorigo and Stützle [34] recommended to set
τ0=1/Cnn, where n is the number of cities and Cnn is the length of the nearest neighbor
tour.
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• The components of the best-so-far solution are only allowed to update the pheromone. The
same holds true concerning the pheromone evaporation. Therefore the Equation 2.3 becomes,

τij ← (1 − ρ) · τij + ρ · τij , ∀(i, j) ∈ sbest (2.11)

where sbest represents the iteration-best tour whose objective function has minimum expected
length.

Now we summarize the results and the significance of this approach. In the experimental
section, Bianchi et al. [13] presented the comparative analysis of the pACS against ACS when
applied to homogenous PTSP with respect to solution quality. The results showed that the smaller
the value of probabilities associated with each city in the PTSP, the higher the solution quality
of pACS compared to ACS. For the probability values closer to 1, ACS performs better. The
reason for these observations is explained with respect to time complexity of the algorithms. The
time complexity of one iteration in both the algorithms is O(n2) but constant of proportionality
is higher in pACS. Furthermore, in each iteration the evaluation of best solution takes O(n2) in
pACS because of expensive computation in objective function whereas in ACS it is O(n). When
p is near to 1, a good solution to the TSP is also a good solution to the PTSP. As a consequence,
ACS, which can perform more iterations than pACS for a same amount of computational time,
has a better solution quality. They also concluded that pACS cannot be easily generalized to
heterogenous PTSP as the equation for calculating the objective function becomes complex.

Simulation based Ant Colony Optimization

The stochastic combinatorial optimization problem needs not to be essentially different from that
of a deterministic problem when the objective function can be represented as an explicit math-
ematical expression (for example the Equation 2.8) or at least be easily computed numerically
[52]. In such case, it is possible to formulate the stochastic problems as the representation of the
expected objective function and to solve them with deterministic exact or approximate optimi-
zation algorithms. In most cases, it is only possible to determine the estimates of the expected
objective function by means of sampling or simulation. Moreover this is the key element in the
area of simulation optimization, which has been a topic of interesting and challenging research for
several decades. A substantial treatment of this topic and the key features have been described
by Fu [44]. In pACS [13], an explicit formula for the expectation of the objective function value is
known for the PTSP, so the chosen solution technique cannot be generalized to problems where
sampling is necessary to obtain estimates of this expectation. Gutjahr [52] proposed a general
purpose, simulation based ACO algorithm called S-ACO for solving stochastic combinatorial op-
timization problems. The theoretical convergence of S-ACO to the global optimum solution has
been described in [51]. Without the loss of generality S-ACO can be employed to solve PTSP.
The pseudo code of the S-ACO algorithm is given in Algorithm 2.

The algorithm starts with the initialization of the pheromone values such that the pheromone
values for all arcs in PTSP is set to unity. The important and interesting elements which make the
difference between AS and S-ACO are the sampling/simulation and pheromone update procedures.
Once the ants finished constructing the a priori tour with random proportional rule, a random
scenario ω is generated according to the probability pi associated with each city in the PTSP.
Intuitively, the algorithm generates a random number x for each city in the interval [0,1] to decide
a city to be included in the ω. In other words, if pi ≤ x then the city is included otherwise it is
excluded. Afterwards, the a posteriori tour length for each a priori tour is computed using the
random scenario ω. The ant whose a posteriori tour length is minimum will be considered as the
iteration best ant and the corresponding a priori tour is considered as the iteration-best solution
s. Gutjahr [52] also experimented with several random scenarios to select the iteration best ant
but this methodology increased the runtime without improving the solution quality.
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Algorithm 2 Simulation based Ant Colony Optimization

input: an instance C of a PTSP problem
set τij ← 1 for all (i,j)
for round r = 1, 2, 3..... do

for ant σ = 1, 2, 3.....m do
place the ant in a random city i
choose the next city by random proportional rule until all the cities were included in the
tour

end for
Based on one random scenario ω select the best tour s from m ants
if (r = 1) then

set sbest ← s
else

Based on Nm random scenarios ωv, compute a sample estimate

ε(F (s) − F (sbest)) =
1

Nm

Nm
∑

v=1

f(s, ωv) − f(sbest, ωv)

if ε(F (s) − F (sbest)) < 0 then
sbest ← s;

end if
end if
evaporation: set τij ← 1 − ρ∀(i, j) ;
best-so-far pheromone update: set τij ← τij + c1,∀(i, j) ∈ sbest;
iteration best pheromone update: set τij ← τij + c2,∀(i, j) ∈ s;

end for

For the first iteration, the iteration-best solution is also considered as the best-so-far solution.
But for the subsequent iterations, it is not possible anymore to decide deterministically whether a
iteration-best solution s is better than the solution currently considered as the best so far solution
sbest. After the iteration-best solution s has been determined, it is compared with the solution
considered currently as the best-so-far solution sbest using sampling/simulation technique. Intu-
itively, the algorithm generates Nm iteration specific scenarios5 and for each of them it computes
the a posteriori tour length for both s and sbest. Only afterwards, the solution with least average
is considered as the sbest. The larger the Nm, the higher the precision of the decision will be.
The number of random scenarios grows linearly with the number of iterations r and Gutjahr [52]
proposed to set Nm = 50 + (0.0001.n2).r where n is the number of cities in the PTSP.

In contrast to AS algorithm, only the solutions s and sbest are allowed to update the pheromone.
The parameters c1 > 0 and c2 > 0 in the algorithm determine the amount of pheromone increment
on the best-so-far tour and iteration-best tour respectively. Experiments in [52] showed that c2

should be chosen small compared to c1, but a small positive c2 produced better results than setting
c2 = 0.

Stochastic Simulated Annealing

Simulated annealing (SA) is one of the oldest metaheuristics and one of the first algorithms
that had an explicit strategy to escape from local minima. The history of this algorithm dates
back to 1953 with statistical mechanics (Metropolis algorithm [72]). The original idea of SA was
inspired by physics, in specific, the annealing process of metal and glass, which assume a low
energy configuration when cooled with an appropriate cooling schedule. SA was first presented as

5For the next iteration, new scenarios will be drawn.
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a search algorithm for CO problems in Kirkpatrick et al. [65] and Cerný [23]. In order to avoid
getting trapped in local minima, the fundamental idea is to allow moves to solutions with objective
function values that are worse than the objective function value of the current solution. Such a
kind of move is often called an uphill-move. For the deterministic CO, at each iteration a solution
s′ ∈ N (s) is randomly chosen. If s′ is better than s (i.e., has a lower objective function value),
then s′ is accepted as new current solution. For the stochastic CO problems, the evaluation of the
objective function is done by sampling [53]. In other words, accepting a best solution needs the
evaluation of Nm random scenarios. Otherwise, if the move from s to s′ is an uphill-move, s′ is
accepted with a probability which is a function of a temperature parameter Tk and f(s′) − f(s).
Usually this probability is computed by following the Boltzmann distribution:

p(s′|Tk, s) = e
−

f(s′)−f(s)
Tk . (2.12)

The search process described by SA is a markov process [37], as it follows a trajectory in the state
space in which the next state is chosen depending only on the current state. Therefore in principle,
SA is memory-less. However, the use of memory can be beneficial for SA approaches (as proposed
in Chardaire et al. [24]). The algorithmic framework of stochastic SA is described in Algorithm 3.

Algorithm 3 Stochastic Simulated Annealing

input: an instance C of a PTSP problem
s ← GenerateInitialSolution()
k ← 0
Tk ← SetInitialTemperature()
while termination conditions not met do

s′ ← PickNeighborAtRandom(N (x))
Based on Nm random scenarios ωv, compute a sample estimate

ε(F (s) − F (s′)) =
1

Nm

Nm
∑

v=1

f(s, ωv) − f(s′, ωv)

if ε(F (s) − F (s′)) < 0 then
s ← s′;

else
accept s′ as new solution with probability p(s′|Tk, s)

end if
AdaptTemperature(Tk)

end while
sbest ← s
output: sbest, “candidate” to optimal solution for C

GenerateInitialSolution(): The algorithm starts with an initial solution which is generated
in a random or a heuristic way.

SetInitialTemperature(): The initial value of the temperature is set in such a way that it
favors uphill-move at the start of the algorithm.

AdaptTemperature(Tk): The temperature Tk is changed at each iteration according to a cooling
scheme. The cooling scheme determines the value of Tk at each iteration k. The choice of an
appropriate cooling scheme plays an important role in the performance of the algorithm. The
probability of accepting the worsening solutions should be high during the initial iterations to
favor the uphill-moves. Afterwards, this probability should be gradually decreased during the
search.

Aarts et al. [1] verified the theoretical results with non-homogeneous markov chains which states
that under certain conditions on the cooling schedule, the algorithm converges in probability to
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a global minimum for k → ∞. A particular cooling scheme that fulfills the hypothesis for the
convergence to guarantee the optimal solution is the one that follows a logarithmic law. Therefore,
Tk is determined as Tk ← r

log k+c
(where c is a constant). Typically, the cooling schemes which

satisfies the logarithmic law will be too slow for the practical purposes. Therefore, a faster cooling
scheme is adopted in practice. One of the most popular ones follows a geometric law: Tk ←
α × Tk−1, where α ∈ (0, 1), which corresponds to an exponentially decay of the temperature.

The cooling scheme can be used for balancing between diversification and intensification. For
example, at the beginning of the search, Tk might be constant or linearly decreasing in order to
sample the search space; then, Tk might follow a rule such as the geometric one in order to make
the algorithm converge to a local minimum at the end of the search. The cooling scheme and the
initial temperature should be adapted to the particular problem instance considered, since the
cost of escaping form local minima depends on the structure of the search landscape. A simple
way of empirically determining the starting temperature T0 is to initially sample the search space
with a random walk to roughly evaluate the average and the variance of objective function values.
Based on the samples, the starting temperature can be fixed to favor the uphill-moves. Reference
of successful applications of SA can be found in Fleischer [39], Ingber [59], Aarts et al. [1].

Genetic Algorithms for Noisy Function

Genetic algorithms was first introduced by Holland [57]. They falls under the computational
algorithms called evolutionary computation (EC). EC algorithms can be characterized as compu-
tational models of evolutionary process that take inspiration from the natural selection. At each
iteration, a number of operators is applied to the individuals of the current population to generate
the individuals of the population of the next generation (iteration). EC algorithms use opera-
tors called recombination or crossover to recombine two or more individuals to produce new ones.
They also use mutation or modification operators which cause a self-adaptation of individuals.
The driving force in evolutionary algorithms is the selection of individuals based on their fitness
(which can be based on the objective function or some other kind of quality measure). Individ-
uals with a higher fitness have a higher probability to be chosen as members of the population
of the next iteration (or as parents for the generation of new individuals). This corresponds to
the principle of survival of the fittest in natural evolution. It is the capability of the nature to
adapt to a changing environment, which gave the inspiration for EC algorithms. Other classes
of EC includes evolutionary programming (EP) as introduced by Fogel [43], Fogel et al. [42],
evolutionary strategies (ES) proposed by Rechenberg [83]. Hertz and Kobler [56] give a good
overview of the different components of EC algorithms and of the possibilities to define them.
In the context of stochastic CO problems, Fitzpatrick and Grefenstette [38] proposed the genetic
algorithms based on sampling techniques. Without loss of generality, we can use this approach to
PTSP. Algorithm 4 shows the basic structure of stochastic genetic algorithms.

In this algorithm, P denotes the population of individuals. A population of offsprings is gener-
ated by the application of recombination and mutation operators and the individuals for the next
population are selected from the union of the old population and the offspring population. The
main features of the Genetic Algorithm are:

Description of the individuals: GA works with populations of individuals. These individuals
are not necessarily solutions to the considered instance. They may be partial solutions, or
sets of solutions. Most commonly used individuals in TSP is the representation of solutions
as bit-strings or as permutations of number of cities n. Furthermore, individuals are called
genotypes, whereas the solutions that are encoded by individuals are called phenotypes.
Radcliffe [82] proposed various representation schemes for different types of problems.

Evolution process: The algorithm has to choose which individuals will enter the population of
the next iteration. This is done by a selection scheme. In PTSP, the performance of each
candidate solution is computed by estimating the performance via sampling techniques.
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Algorithm 4 Genetic Algorithms for Noisy Environments

input: an instance C of a PTSP problem
s ← GenerateInitialPopulation()
Evaluate(s)
while termination conditions not met do

s′ ← Recombine(s)
s′′ ← Mutate(s′)
Based on Nm random scenarios ωv, compute a sample estimate

ε(F (s′) − F (s′′)) =
1

Nm

Nm
∑

v=1

f(s′, ωv) − f(s′′, ωv)

if ε(F (s′) − F (s′′)) < 0 then
Evaluate(s′′)
P ← Select(s′′, s′)

end if
sbest ← best solution in s

end while
output: sbest, “candidate” to optimal solution for C

Neighborhood function: This function defines the rule for recombination. A neighborhood
function NEC : I → 2I assigns to each individual i ∈ I a set of individuals NEC(i) ⊆ I
whose members are permitted to act as recombination partners for i to create offspring.

Information sources: The most common form of information sources to create offsprings (i.e.,
new individuals) is a two-parent crossover. Mühlenbein and Voigt [76] and Syswerda [93]
proposed various methodologies to generate the next population.

Intensification and Diversification: EC algorithms that apply a local search to each individual
of a population to intensify the search process are often called as Memetic Algorithms [75].
On the other hand, the search process is diversified by using a mutation operator. DeJong
[29], Cavicchio [22], Goldberg and Richardson [48] and Mahfoud [69] present a substantial
explanations for intensification and diversification nature of genetic algorithms.

2.2.2 Mathematical Approaches

In this section we present a brief description of the most widely used mathematical solution
techniques for the PTSP. In the following section, we limit ourselves to the very basic concepts
characterizing each technique without entering into the explanations. Therefore, the goal of this
sub-section is to give a overview of the state-of-the-art exact solution techniques.

Sample Average Approximation

The sample average approximation (SAA) [27] is an approach for solving stochastic optimization
problems by using monte carlo simulation. In this technique the expected objective function of the
stochastic problem is approximated by a sample average estimate derived from a random sample.
The resulting sample average approximating problem is then solved by deterministic optimization
techniques such as branch and cut [94]. The process is repeated with different samples to obtain
candidate solutions along with statistical estimates of the variations in the optimal solutions.

Variable Sample Random Search Methods

Verweij et al. [94] proposed the application of a certain class of Monte Carlo methods to solve
stochastic CO problems. In particular, they studied variable-sample techniques, in which the
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objective function is replaced, at each iteration, by a sample average approximation. They also
provided general results on the schedule of sample sizes, under which variable-sample methods
yield consistent estimators as well as bounds on the estimation error. The work illustrate these
ideas by studying a modification of the well-known pure random search method and adapting
the variable-sample scheme to show the convergence of the algorithm. In pure random search
algorithms, the randomness is not used blindly but in an intelligent, biased form.

Stochastic Branch and Bound Method

The main idea of the stochastic branch and bound method is to iteratively execute three operations:

• partitioning a large solution S space into smaller subsets S1, S2, S3,..., Sn

• stochastic estimation of the objective function within the subsets

• removal of some subsets

If the branch-and-bound works well, most of the Si will be eliminated. At the next step,
partition is done to the remaining Si and the algorithm is repeated. A stochastic version of the
branch and bound method is proposed for solving stochastic global optimization problems by
Norkin et al. [78]. The method, instead of deterministic bounds, uses stochastic upper and lower
estimates of the optimal value of subproblems, to guide the partitioning process. The authors also
prove the convergence of this method. Methods for constructing random bounds for stochastic
global optimization problems are also discussed in this work.

Stochastic Ruler Method

Yan and Mukai [97] described the stochastic ruler (SR) method that is related to, but different
from the SA method. While the objective value at a new solution candidate is compared with
that of the current solution candidate in SA, the objective value at a new solution candidate is
compared against a probabilistic ruler in the SR method, where the ruler range covers the range
of the observed objective function values. The convergence is shown to be global. Alrefaei and
Andradottir [2] proposed another method based on a modification of the SR method. The new
algorithm uses a finite number of random scenarios for each iteration whereas the SR method uses
an increasing sequence of scenarios per iteration.

Nested Partition Method

The nested partition (NP) algorithm is a new optimization algorithm that is based on the concept
of adaptive sampling. The NP algorithm steers the sampling effort toward a decreasing search
space until the search space is indivisible. The algorithm partitions the solution feasible region
into subregions where it samples each subregion and chooses the best promising subregion to
partition further. Regions not belonging to the most promising subregion are aggregated into a
surrounding subregion which is also sampled. The algorithm moves back to a larger subregion if
the surrounding subregion is found to be more promising. It is shown in [87] that this algorithm
forms a markov chain and would recognize the global optimum solution that forms an absorbing
state and never leaves this state. Making a correct move, between the different transient states
until being absorbed in the global optimum solution state, depends on lots of factors such as the
partitioning scheme and the quality of the samples [88].



Chapter 3

Proposed Approach

This chapter is exclusively dedicated to the description of the ACO/F-Race algorithm. Section
3.1 starts with a technical overview of the general racing approach. Subsection 3.1.1 describes the
ACO/F-Race solution technique to solve the PTSP. The introductory part of this chapter and the
description of ACO and its variant S-ACO from the previous chapter will provide sufficient back-
ground to understand the proposed approach. Therefore, this subsection doesn’t reprise the ACO
concepts but concentrates on the description of adopting F-Race in the ACO framework to tackle
PTSP. Furthermore, for the sake of clarity and illustration, we focus on the homogeneous version
of PTSP. Without loss of generality, all the algorithms proposed in this section can be adapted to
heterogenous PTSP. Section 3.2 describes the computational procedures to improve the solution
found by the ACO/F-Race. We propose two local search algorithms for PTSP called empirical
2-opt and empirical 2.5-opt inspired by 2-opt and 2.5-opt local search algorithms designed to solve
the TSP.

3.1 ACO/F-Race Algorithm

The family of racing approaches is inspired by the algorithm Hoeffding race introduced by Maron
and Moore [71] for solving the model selection problem in machine learning. The problem of model
selection can be thought of as trying to find the best student in a classroom using a series of tests.
This problem, in different flavors, occurs repeatedly in the field of machine learning [73]. There
are several ways to determine the solution to this problem as proposed by Weiss and Kulikowski
[96]. The key idea behind Hoeffding race can be explained in the following way: All the students
in the class are evaluated with the first set of tests at once. After a small number of tests, we
can distinguish the best students, that is, those with the higher grades, from those with the lower
grades. Using statistical bounds, the students whose grades are significantly worse than the best
ones are discarded and not considered anymore for the further tests. Depending on the feedback
from several evaluations, more students can be differentiated and eliminated. Quite similarly,
the racing algorithm concentrates the computational effort on the best models by discarding the
inaccurate models by not testing them unnecessarily.

In the context of metaheuristics, racing algorithms are designed to select the best performing
settings of the parameter values [18], [17]. The solution quality of ACO and other metaheuristics
is susceptible to the stochastic nature of the algorithms. Moreover, it is also depends on the values
assigned to the parameters in the algorithm. Given a set of parameters and some instances of a
CO problem, the racing procedure computes the best parameter configuration for the given CO
problem in a limited amount of time. For example, let us consider the S-ACO [52] described
in Chapter 2. Let us also consider a scenario in which we need to find the best parameters
setting for this algorithm where each parameter has several values such as α ∈ {1,1.25,1.5,2}, β
∈ {0,1,3,5}, ρ ∈ {0.6,0.7,0.8,0.9}, c1 ∈ {0,0.005,0.002 } and c2 ∈ {0,0.1,0.2,0.3}. Clearly, each
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possible combination of the parameters setting represents one particular configuration, expressing
a total number of 4x4x4x3x4=768 parameters configurations. Furthermore, the stochastic nature
of the algorithm demands several runs for each configuration to hypothesize the best setting.
In other words, we need to run the algorithm with each parameters configuration several times
by changing the random seed used by the metaheuristic algorithm. A brute force approach to
the problem consists of evaluating all the possible configurations on a sufficiently large number
of samples [49] and selecting the one with the best average solution quality in all or most of
samples. On the other hand, taking the inspiration from the Hoeffding race, the racing procedure
computes the best configuration for the given instance of the CO problem by concentrating on
the better configurations by leaving out the inferior parameters configurations. Intuitively, for a
fixed computational time, the racing algorithm evaluates more samples only on the algorithms
with superior parameters settings whereas brute force approach evaluates relatively less samples
on all the possible settings.

The racing algorithm proposed for tuning metaheuristics is known as F-Race. This is based
on Friedman two-way analysis of variance by ranks [67], a statistical method1 for hypothesis2

testing. F-Race procedure can be demonstrated in the following way: Let us assume that F-
Race has evaluated k samples and n = {θ1, ...., θn} configurations are still available in the race.
The assumption taken by the Friedman test is that all the observed solutions are from the same
population, that is, there is no statistically significant difference [16] in the observed solutions.
Mathematically, the observed solutions are mutually independent n-variate random variables
(Ck(θ1, il), C

k(θ2, il), ...., C
k(θn, il)) called blocks [28]. More precisely, the value Ck(θ1, il) cor-

responds to the computed solution on the sample il for the configuration θ1 in the race at step
k.

Step Observed Solution
k − 3 Ck−3(θ1, il−3) Ck−3(θ2, il−3) · · · Ck−3(θn, il−3)
k − 2 Ck−2(θ1, il−2) Ck−2(θ2, il−2) · · · Ck−2(θn, il−2)
k − 1 Ck−1(θ1, il−1) Ck−1(θ2, il−1) · · · Ck−1(θn, il−1)

k Ck(θ1, il) Ck(θ2, il) · · · Ck(θn, il)

In each block, C(θ, i) are ranked from the smallest to the largest. Average ranks are used in case
of ties. For each configuration θj ∈ {θ1, ...., θn}, Rlj denotes the rank of θj within block l, and

Rj =
∑k

l=1 Rlj represents the sum of the ranks over all instances il, with 1 ≤ l ≤ k.

Step Corresponding Rank
k − 3 R1,k−3 R2,k−3 · · · Rn,(k−3)

k − 2 R1,k−2 R2,k−2 · · · Rn,(k−2)

k − 1 R1,k−1 R2,k−1 · · · Rn,(k−1)

k R1,k R2,k · · · Rn,(k)

The Friedman test considers the following statistic [26].

T =

(n − 1)

n
∑

j=1

(

Rj −
k(n + 1)

2

)2

k
∑

l=1

n
∑

j=1

R2
lj −

kn(n + 1)2

4

(3.1)

To accept the assumption of the hypothesis that all possible rankings of the solutions within
each block are equally likely, T is approximately χ2 distributed with n− 1 degrees of freedom. In

1Statistical methods are used to determine if the difference in the results (solution) from a set of experiments
(several runs) are great enough to conclude that the difference is statistically significant.

2A hypothesis is an assumption about the distribution of the results(solution).
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Figure 3.1: A visual representation of the amount of computation needed by brute force (rectangle
comprised by dashed line) and racing approach(shadowed area).

F-Race, if the hypothesis is accepted at step k, then all the configurations from step k are allowed
to race for the next step k +1. On the other hand, if the observed T exceeds the 1−α quantile of
such distribution, the hypothesis is rejected. As a consequence, at the approximate level α, there
is a possibility of dropping at least a configuration θj from {θ1, ...., θn} which shows statistically
significant difference from the other configurations.

Next step after rejecting the hypothesis is to identify which configuration has to be dropped from
further racing. For this reason, pairwise comparison between individual candidates is performed.
The candidates θj and θh are considered different if:

| Rj − Rh |
√

2k(1− T
k(n−1)

)(
P

k
l=1

P

n
j=1 R2

lj
−

kn(n+1)2

4 )

(k−1)(n−1)

> t1 − α/2 (3.2)

where t1−α/2 is the 1−α/2 quantile of the student’s t distribution. Therefore in F-Race, rejection
of hypothesis is followed by pairwise comparisons which are executed between the best candidate
and each other one. All the candidates, whose ranks are significantly worse than the best, at step
k, are discarded and will not appear in the next step k + 1.

The ranking of the quantiles C(θ, i) plays the vital role for the efficient computation of the best
configuration by F-Race approach [18] [17] in the following way:

• Nonparametric nature: Nonparametric tests are powerful in detecting population differences
when certain assumptions are not satisfied. On the other hand, if we consider the parametric
tests, for example, t test assumes the values from each sample should come from a normal
distribution. Central limit theorem states that when the samples are very large, then the
sample means will follow the normal distribution even if the respective variable is not nor-
mally distributed in the observation. Hence, the parametric methods like t test are more
powerful and appropriate for large samples. The smaller the sample size, the lesser will be
the ability of t test to detect the differences. The striking feature of the nonparametric test
is that it doesn’t requires the hypothesis formulation and thus they are distribution-free.
Further it is appropriate when the sample sizes are small. In F-Race, the number of candi-
dates is reduced as soon as possible and the further evaluations take place only on a small
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number of surviving candidates. Therefore, we cannot use parametric tests and we have to
adopt nonparametric tests. More debates, discussions and facts about nonparametric and
parametric methods were presented in Larson [67].

• Blocking design: Blocking design reduces the variability due to a known source of variation.
Given a set of configuration for the stochastic algorithms such as metaheuristic algorithms
and treating them with several different samples results in a large variation in the solution
quality. Blocking is an efficient way of normalizing the solution quality observed on several
different samples [28]. Therefore, the ranking of different configurations within each sample
eliminates the risk of sample’s influence in the accepting or rejecting a configuration.

Notwithstanding the inspiration from a number of machine learning algorithms such as Maron
[70], Gratch et al. [50], Chien et al. [25], Moore and Lee [74], F-Race is the first racing algorithm
to implement blocking through ranking and to adopt the Friedman test as the aggregate test [49]
over all candidates, to be performed prior to any pairwise test. By means of F-Race, Birattari
et al. [18] first proposed the formal definition for the problem of tuning metaheuristics from a
machine learning perspective. A substantial explanation of the topic is given in Birattari [17].

3.1.1 Solution Methodology

ACO/F-Race algorithm, we propose in this thesis, is inspired by S-ACO [52] and F-Race [18]
approaches. In this algorithm, F-Race is used in an original way as a component of the ACO
algorithm. Similar to S-ACO, the proposed approach uses empirical estimation for tackling CO
problems under uncertainty. Without loss of generality, ACO/F-Race can be adopted to solve the
PTSP, in specific, to optimize the expected length of the a posteriori tour. The pseudo-code of
the ACO/F-Race is presented in Algorithm 5.

Algorithm 5 ACO/F-Race Algorithm

input: an instance C of a PTSP problem
set τij ← 1 for all (i,j)
for round r = 1, 2, 3..... do

for ant σ = 1, 2, 3.....m do
place the ant in a random city i
choose the next city by random proportional rule until all the cities were included in the
tour

end for
if (r = 1) then

Based on Nm random scenarios ωv, race m ant’s tour sm

sbest ← F-Race(Nm, sm)

else
Based on Nm random scenarios ωv, race m ant’s tour sm with best-so-far ant’s tour sbest

sbest ← F-Race(Nm, sm ∪ sbest)

end if
evaporation: set τij ← (1 − ρ)τij∀(i, j) ;
best-so-far pheromone update: set τij ← τij + c1,∀(i, j) ∈ sbest;
iteration-best pheromone update: set τij ← τij + c2,∀(i, j) ∈ sbest;

end for

Clearly, the algorithm reveals that most of the components are similar to S-ACO. Typically,
the algorithm starts by initializing the pheromone on each arcs (i, j) of the PTSP to unity. Sub-
sequently, the iterative ContructSolution phase of the ACO/F-Race starts. The iteration begins
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by placing m ants randomly on the cities of the PTSP. Each ant construct the a priori tour ac-
cording to the random proportional rule given by Equation 3.3 (which is same as the Equation
2.2). Therefore, an ant k, currently at city i moves to the city j probabilistically using Equation
3.3, where Nk

i is the set of all cities yet to be visited by the ant k.

pk
ij =

τα
ij · η

β
ij

∑

l∈Nk
i

τα
il · η

β
il

, if j ∈ Nk
i (3.3)

Once m ants finished constructing their respective a priori tour, the original element of the
proposed approach, F-Race algorithm starts. During the first iteration, the function F-Race
evaluates and compares m ants a priori tour to select the iteration-best solution. Since there is
no best-so-far tour at the first iteration, the selected iteration-best solution is also considered as
the best-so-far solution. From the subsequent iterations, the function F-Race evaluates m ant’s
solution together with the best-so-far solution.

Now we describe the way in which the F-Race approach is adopted as a component for selecting
the best-so-far solution. As described earlier, once the ants constructed the tour, it’s a priori
tours are then passed to the function F-Race as described in Algorithm 6. In S-ACO, the value

Algorithm 6 Racing Function

Function F-Race(Nm,Θ)
M ← 2 ∗ Nm{/*stopping criteria for each iteration in ACO/F-RACE */}
evaluated-candidates ← 0 {/* number of evaluated candidates */}
steps ← 0{/* number of steps performed */}
while (evaluated-candidates+surviving-candidates) ≤ M do

steps ← steps + 1
surviving-candidates ← | Θ |{/* number of surviving candidates */}
generate a random scenario ω
for each a priori tour θi ∈ Θ do

compute the a posteriori tour θi by skipping strategy
end for
evaluated-candidates ← evaluated-candidates+surviving-candidates
if (Failed Significance Friedman(steps, θ1 · · · θ|Θ|) then

Θ ← Θ \ pairwise(θi ∈ Θ)
end if

end while
return θbest from surviving candidates of the set Θ

of Nm determines the number of random scenarios to be evaluated for each iteration to select the
best-so-far solution. At each iteration (except first iteration), the iteration-best and best-so-far
solution is evaluated on Nm random scenarios. As a consequence, the number of evaluations in
S-ACO is twice that of Nm. In order to make a fair experimental evaluation and comparison of
ACO/F-Race with S-ACO, we have adopted the same number of evaluations in the later as that
of the former. Therefore, the termination condition of the F-Race function is set such that the
number of evaluations should reach twice the value of Nm. Until this termination condition is
encountered, at each step, a new step specific random scenario ω is generated according to the
probability pi associated with each city i in the PTSP. This ω is used for evaluating the solution
which are still in the race. Intuitively, at each step, a posteriori tour length θi is computed for
each a priori tour θi ∈ Θ (the set Θ contains the surviving ant’s solution) with ω (cities to be
visited in the a posteriori tour) using skipping strategy.

Without loss of generality, the racing approach designed for tuning metaheuristic algorithms can
be employed to discard the ants with inferior solutions. The function (Failed Significance Friedman(steps, θ1 · · · θ|Θ
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test for the failure of the hypothesis using Friedman-two-way analysis of variance by ranks. More
precisely, at each step, the a posteriori tour length of the surviving ants Θ referred as θ1 · · · θ|Θ|

is tested for the statistically significant difference by computing T using the Equation 3.1. As a
consequence of such difference, the next step is to discard some ants from the race with the func-
tion pairwise(θi ∈ Θ). Using the Equation 3.2, this function removes the ants whose solution’s
rank are significantly worse than the rank of best ant’s solution. Racing of solutions stops when
the termination condition becomes true. The a priori tour that wins the race is returned as the
θbest to the main algorithm.

The solution that wins the race is employed for updating the pheromone and stored as the
best-so-far solution for the next iteration of the algorithm. Since the best-so-far solution from
the previous iteration has to compete with the solutions generated at the current iteration, the
concept of iteration-best solution doesn’t occur in ACO/F-Race. Although the concept of iteration-
best pheromone update doesn’t have any sense in ACO/F-Race, a fair experimental comparison
with S-ACO requires it. Therefore, the best-so-far solution is used as the candidate for updating
pheromone both in the best-so-far and the iteration-best pheromone updates.

The significant difference between S-ACO and ACO/F-Race lies in the technique used to select
the iteration-best tour for each iteration. In S-ACO, the solutions produced at a given iteration
are compared on the basis of a single scenario ω to select the iteration-best tour. On the basis of
larger sample size Nm, whose size is computed dynamically, the iteration-best tour is compared
with best-so-far tour in the algorithm. The tour with least expected a posteriori tour length
among two solutions is selected and stored as the new best-so-far tour for future comparisons
and to update the pheromone matrix for the global pheromone update phase. More precisely,
S-ACO exploits sampling techniques and parametric test whereas ACO/F-Race uses F-Race, an
algorithm originally developed for tuning metaheuristics based on nonparametric tests. Although
it is not necessary to have iteration-best pheromone update phase and large sample size, ACO/F-
Race solution construction and pheromone update were implemented as described in [52] for the
experimental comparison.

3.2 Local Search Methodology

Metaheuristic algorithms frequently encounter a sequence of states in which it is impossible to
improve the solution quality by itself. Notwithstanding this inadequacy, various research works
on metaheuristics tell us that a promising approach to extract high-quality solutions is to couple a
local search mechanism within the metaheuristics framework. Local search algorithms operate on
the solutions found by metaheuristics by introducing some modification to obtain locally optimal
solutions [92]. Furthermore, the consideration of local search algorithm as a stand alone solution
technique for CO problems suffers from the problem of finding good starting solutions. Therefore,
the key idea of coupling metaheuristic algorithms with local search algorithms can be explained in
the following way: On the one hand, the metaheuristic algorithms provide a high quality starting
solutions. On the other hand, local search algorithms operate on these quality solutions to provide
a higher quality solutions.

ACO framework has the flexibility of coupling local search in the definition. Once ants complete
their solution construction phase, the local search algorithms are allowed to refine their solutions
to yield a higher quality solutions. Afterwards, the pheromones are updated on the arcs with
respect to the improved solutions found by local search procedures. With various experimental
evidence, Dorigo and Stützle [34] proposed that combining the ant’s solution construction phase
with the local search procedures is a promising approach and there is a very high possibility and
probability that the local search procedures can improve the solution constructed by the ants.
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Fortunately enough, the number of possible choices when combining the local search with ACO
algorithms is quite large [34]. Notwithstanding these possibilities, it is very important to under-
stand the fundamental nature of local search procedure concerning effectiveness and efficiency.
Most of the local search procedures demand high computational time to refine the solutions.
Therefore, the decision is up to the algorithm designer to choose, for a given computation time,
a frequent refining local search algorithm that slightly improves the solution quality of the initial
solutions, or a less frequent, slow and effective local search algorithm that significantly improves
the solution quality.

The number of ants, the necessity to use heuristic information, parameter settings and which
ant(s) should be allowed to improve their solutions by a local search are some of the major elements
to be set before adopting a particular local search algorithm in the ACO framework. Most effective
and recommended local search in ACO algorithms is best-so-far solution refinement [34]. It is also
interesting to know whether ACO algorithm with a best parameter setting will remain best after
adding the local search.

Local search algorithms for the TSP are based on the k-exchange neighborhood relation, in
which candidate solutions s and s′ are direct neighbors if and only if, s′ can be obtained from s
by deleting a set of k edges and rewiring the resulting fragments into a complete tour by inserting
a different set of k edges [92]. Within the ACO framework, the local search techniques such as
2-opt, 2.5-opt and 3-opt [92] are used quite often in TSP to improve the solution found by ants.
All three implementations exploit three standard speedup techniques: use of nearest neighbor list
of limited length, the use of a fixed radius nearest-neighbor search, and the use of don’t look bits.
These techniques increases the computation time sub-quadratically, that is, O(n2) where n is the
size of the instance. Large number of speed up techniques and its substantial explanation can be
found in Bentley [5], Johnson and McGeoch [63] and Reinelt [84].

A quick and straightforward implementation [92] of a k-exchange iterative improvement algo-
rithm considers, in each step, all possible combinations for the k edges to be deleted and replaced.
After deleting k edges from a given candidate solution s, the number of ways in which the resulting
fragments can be reconnected into a candidate solution different from s depends on k; For k = 2,
after deleting two edges (ui, uj) and (uk, ul), the only way to reconnect the two partial tours into
a different complete tour is by introducing the edges (ui, uk) and (ul, uj). It is interesting to note
that after a 2-exchange move, one of the two partial tours is reversed.

Candidates for k-exchange moves can be identified quickly using the speed up techniques. For
example, to enable an efficient access to the cities in the given tour that are connected to a given
city ui by edges with shorter distance can be achieved in the form of a list of neighboring cities
uk that is sorted according to the distance in ascending order. By using such candidate list for all
the cities in the TSP, nearest neighbor search can be performed very efficiently. The use of lists
for 2-opt often leads to improvement in the quality of the local optima found by these algorithms.
Recommended value for the number of neighbors ranges from 10 to 40 [92]. Full candidate list for
each city incorporating all the n − 1 other cities in the TSP requires O(n2log n) computational
time and O(n2) memory. Therefore, to reduce memory requirements, it is often desirable to use
fixed length nearest neighbor list. As a consequence, the tours obtained from 2-opt using nearest
neighbor list are no longer guaranteed to be locally optimal, because some improving moves may
be missed. Alternative approachs to construct nearest neighbor lists were proposed by Peckny
and Miller [81], Helsgaum [55].

Empirical 2-opt local search for PTSP

Bertsimas [8] first introduced the local search algorithms based on mathematical approximations,
for CO problems under uncertainty known as 2-p-opt and 1-shift algorithms. Bianchi et al. [15]
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Figure 3.2: The a priori tour of a PTSP visiting all the cities once and only once. The edges
(ui, uj) and (uk, ul) are selected for the 2-opt move.

and Bianchi and Campbell [12] extended the 2-p-opt and 1-shift algorithms to the PTSP. The
local search algorithm we propose in this thesis, empirical 2-opt local search for PTSP, is based on
the 2-opt local search in best-so-far solution using nearest neighbor list as the speed up technique.
This technique, to the best of our knowledge, is the first local search for the PTSP which uses
empirical estimation.

Before entering into the algorithmic details, it is important to understand the meaning of so-
lution quality improvement in the context of TSP and PTSP. In the TSP, the improvement is
straightforward, in the sense that the improvement can be calculated directly. Intuitively, if we
consider the 2-opt move between the edges (ui, uj) and (uk, ul) of the TSP, the only possible
refinement is (ui, uk) and (ul, uj). Therefore, the improvement in the solution quality 4 is consid-
ered as the difference between the length of the solution components after and before 2-opt move
as shown in Equation 3.4:

4 = (d[ui][uk] + d[ul][uj ]) − (d[ui][uj ] + d[uk][ul]) (3.4)

where, d[ui][uk], d[ul][uj ], d[ui][uj ], d[uk][ul] represents the distance between the respective
cities in the TSP. The solution quality is said to be improved when 4 < 0 and viceversa. On the
other hand, for the PTSP, the 2-opt move in the best-so-far solution is considered as an improved
move only when it reduces the expected length of the a posteriori tour with respect to the set of
all random scenarios ωv. Therefore, in ACO/F-Race algorithm, to compute the improvement for
a 2-opt move, it is customary to remember the random scenarios ωv which are evaluated to select
the best-so-far solution for a given iteration.

In the context of PTSP, it should be noted that since the edges (ui, uj) and (uk, ul) for 2-opt
move are selected from the a priori solution, there are possibilities that the cities ui, uj , uk, ul

may not occur in the random scenarios ωv. A straight forward approach which re-computes the
a posteriori tour length for each random scenario doesn’t needs to consider this issue. But this
re-computation increases the total computational time especially when the number of random
scenarios is large. This case is trivial when the number of iteration increases. Therefore, we
propose a simple way of computing the improvement similar to the Equation 3.4. For illustration,
consider the best-so-far solution as shown in Figure 3.2. Assume that the edges (ui, uj) and
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Figure 3.3: The modified a priori tour of a PTSP visiting all the cities once and only once. The
edges (ui, uj) and (uk, ul) are modified as (ui, uk) and (uj , ul) with 2-opt move

(uk, ul) in the best-so-far solution are selected for 2-opt move. As a consequence, the new tour
with interchanged edges (ui, uk) and (ul, uj) is shown in Figure 3.3. Now we have to compute the
improvement measure 4ωc

, for each random scenario ωc ∈ ωv. We can use the same Equation
3.4 to compute 4ωc

, when all the cities in the selected edges for 2-opt move are included in a
random scenario ωc. On the other hand, let us consider a case when the city ui is not included in
the random scenario ωc. In such scenario, we have to find the previous city uprev which has to be
visited before visiting ui in the modified a priori solution. Intuitively, in the modified a posteriori
tour, the city uprev is visited followed by visiting the city uk by skipping the city ui as shown in
Figure 3.4. Therefore, the 2-opt improvement measure 4ωc

for the random scenario ωc can be
derived as:

4ωc
= (d[uprev][uk] + d[ul][uj ]) − (d[uprev][uj ] + d[uk][ul]) (3.5)

Similar argument can be made when the random scenario doesn’t contain uj as shown in Figure
3.5. Equation for this case is given as:

4ωc
= (d[ui][uk] + d[ul][uprev]) − (d[ui][uprev] + d[uk][ul]) (3.6)

For the random scenario that doesn’t have cities uk or ul, the equation can be derived by finding
the next city to be visited from uk or ul in the modified solution. The scenarios without uk and
ul are shown in Figures 3.6 and 3.7 respectively. Equations for both the cases are established as:

4ωc
= (d[ui][unext] + d[ul][uj ]) − (d[ui][uj ] + d[unext][ul]) (3.7)

4ωc
= (d[ui][uk] + d[unext][uj ]) − (d[ui][uj ] + d[uk][unext]) (3.8)

The total improvement measure is the average of all improvement measure computed for each
scenario ωc ∈ ωv. This is represented as:

4ωv
=

1

v

v
∑

c=1

4ωc
(3.9)

Therefore, after the 2-opt move, the solution quality is considered to be improved when 4ωv
< 0

and viceversa.
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Figure 3.4: The a posteriori tour of a PTSP visiting the cities in the same order as modified a
priori tour when the city ui doesn’t need to be visited.

Figure 3.5: The a posteriori tour of a PTSP visiting the cities in the same order as modified a
priori tour when the city uj doesn’t need to be visited.
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Figure 3.6: The a posteriori tour of a PTSP visiting the cities in the same order as modified a
priori tour when the city uk doesn’t need to be visited.

Figure 3.7: The a posteriori tour of a PTSP visiting the cities in the same order as modified a
priori tour when the city ul doesn’t need to be visited.
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Algorithm 7 Empirical 2-opt local search

Function empirical 2-opt local search(ωv,sbest)
{function pick edge random() randomly select an edge for the 2-opt move}
(ui, uj) ← pick edge random()
(uk, ul) ← pick edge random() {function excahnge edge() makes the 2-opt move in sbest}
s′best ←exchange edge((ui, uj), (uk, ul))
for each random scenario ωc ∈ ωv do

if ui ∈ ωc then
first edge first ← ui

else
first edge first ← previous city(ui, s

′
best)

end if
if uj ∈ ωc then

first edge second ← uj

else
first edge second ← previous city(uj , s

′
best)

end if
if uk ∈ ωc then

second edge first ← uk

else
second edge first ← next city(uk, s′best)

end if
if ul ∈ ωc then

second edge second ← ul

else
second edge second ← next city(ul, s

′
best)

end if
4ωc

← (d[first edge first][second edge first]+d[first edge second][second edge second]) -
(d[first edge first][first edge second]+d[second edge first][second edge second])

end for

4ωv
=

1

v

v
∑

c=1

4ωc

if 4ωv
< 0 then

sbest ← s′best

end if
return sbest
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The pseudo code for the empirical 2-opt local search is presented in Algorithm 7. Once the
best-so-far solution is computed by the racing approach in ACO/F-Race algorithm, the 2-opt local
search is employed to refine the solution.

The local search algorithm needs the best-so-far solution sbest and the set of all random sce-
narios ωv used for selecting the best-so-far solution from the F-Race algorithm. The 2-opt local
search procedure starts by selecting two edges (ui, uj),(uk, ul) at random by using the function
pick edge random() from the nearest neighbor list. It is customary to remember the selected list
of edges to avoid selecting same edge more than once. The function exchange edge applies the
2-opt move between the edges to yield a modified solution s′best. It is followed by evaluating the
improvement measure for each random scenario ωc ∈ ωv. According to the cities that need to be
visited in the random scenario, the improvement measure 4ωc

is computed as illustrated earlier
with the Figures 3.4, 3.5, 3.6, 3.7. Given a random scenario ωc, the functions previous city() and
next city() are used to find the previous city and the next city in the modified a priori tour s′best

when the given city doesn’t requires a visit in ωc. The improvement measure 4ωc
is computed

for each random scenario. Followed by these evaluations, the average improvement 4ωv
is calcu-

lated. Inexpensive computational time for 2-opt local search gives the flexibility to have several
refinements of best-so-far solution before updating the pheromone. In our case, we employed the
2-opt local search repeatedly as long as the quality of the modified solution improves. Finally, the
empirical 2-opt local search algorithm returns the modified solution as sbest to the ACO/F-Race
algorithm which is then used as the candidate for updating the pheromone.

Empirical 2.5-opt local search for PTSP

In this section, we present empirical 2.5-opt local search procedure for the PTSP based on empirical
estimation and inspired by the 2.5-opt local search procedure of TSP [92]. Let us consider that
the algorithm wants to make a 2.5-opt move between the edges (ui, uj) and (uk, ul). It first checks
2-opt move between edges for the improvement. If it is not fruitful then it will explore the next
improvement by inserting the city ul between ui and uj . It is interesting to note that, in 2.5-opt
move none of the partial tour will be reversed. Obviously, the additional refinement phase in
2.5-opt move requires extra computing time when compared to 2-opt move. Notwithstanding the
computational overhead, the experimental evidence of Bentley [5] shows that the amount of extra
computational time is small and it leads to significantly better solution quality with respect to
2-opt local search in the TSP. A substantial explanations for 2.5-opt can be found in Stützle and
Hoos [92], Dorigo and Stützle [34].

In the context of 2.5-opt move, the only possible refinement is inserting the city ul between the
cities ui and uj . As a consequence, the edge starting from the city uk is rewired to the city ulnext

which has to be visited after visiting the city ul. Figure 3.8 shows the re-fragmentation procedure
of the 2.5-opt move for the same a priori solution sketched in the Figure 3.2. The improvement
in the solution quality is estimated by Equation 3.10 similar to the 2-opt move.

4 = (d[ui][ul] + d[ul][uj ] + d[uk][ulnext
]) − (d[ui][uj ] + d[uk][ul] + d[ul][ulnext

]) (3.10)

Considering different random scenarios and the cities to be visited in each of those random
scenarios, the improvement measure 4ωc

is computed. The pseudo code for empirical 2.5-opt is
shown in Algorithm 8. The algorithm first checks for 2-opt improvement, failure of which leads to
2.5-opt move. The function excahnge edge2.5() makes the 2.5-opt re-fragmentation in the solution
as illustrated in the Figure 3.8. The functions which are used in empirical 2-opt local search such
as previous city() and next city() can be used for 2.5-opt move without any modifications. The
procedures for selecting the city and computing the improvement measure were same as that of
the empirical 2-opt algorithm.
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Algorithm 8 Emprical 2.5-opt local search

Function empirical 2.5-opt local search(ωv,sbest)
Perform the same operations as explained in the empirical 2-opt algorithm
If the empirical 2-opt move doesn’t show any improvement then start the 2.5-opt move in sbest

{function excahnge edge2.5() makes the 2.5-opt move in sbest}
s′best ←exchange edge2.5 ((ui, uj), (uk, ul))
for each random scenario ωc ∈ ωv do

if ui ∈ ωc then
first edge first ← ui

else
first edge first ← previous city(ui, s

′
best)

end if
if uj ∈ ωc then

first edge second ← uj

else
first edge second ← previous city(uj , s

′
best)

end if
if uk ∈ ωc then

second edge first ← uk

else
second edge first ← next city(uk, s′best)

end if
if ul ∈ ωc then

second edge second ← ul

else
second edge second ← next city(ul, s

′
best)

end if
if ulnext

∈ ωc then
second edge second next ← ulnext

else
second edge second next ← next city(ulnext

, s′best)
end if
4ωc

← (d[first edge first][second edge second]+d[second edge second][first edge second]+
d[second edge first][second edge second next]) -(d[first edge first][first edge second]+d[second edge first][second edge
d[second edge second][second edge second next])

end for

4ωv
=

1

v

v
∑

c=1

4ωc

if 4ωv
< 0 then

sbest ← s′best

end if
return sbest
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Figure 3.8: The modified a priori tour of a PTSP visiting all the cities once and only once. The
edges (ui, uj), (uk, ul) and (ul, ulnext

) are modified as (ui, ul), (ul, uj) and (uk, ulnext
) by 2.5-opt

move which inserts the city ul between ui and uj
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Chapter 4

Experiments and Results

In this chapter we discuss the results of the experiments we conducted using the ACO/F-Race
algorithm and empirical local search algorithms. Section 4.1 describes the experimental set-up,
the problem sets, the hardware and software specifications and the output metrics for the exper-
imental evaluations. Subsection 4.1.1 presents the experimental results concerning the behavior
of ACO under uncertain conditions. More precisely, the computational experiments include the
comparative study of the state-of-the-art ACO algorithms for solving PTSP such as explicit objec-
tive function based ACS (pACS) [13], simulation based ACO (S-ACO) [52] against the proposed
ACO/F-Race approach. The next subsection 4.1.2 describes the results for empirical 2-opt and
2.5-opt local search algorithms. We show how the empirical 2-opt and 2.5-opt improves the so-
lution quality of ACO/F-Race. We also present a set of preliminary results in which we compare
the performance of empirical local search approaches against 1-shift local search [15, 8], the state-
of-the-art local search methodology for solving PTSP.

4.1 Experimental Framework

The primary goal of this thesis is to study the behavior of the ACO algorithms under uncertain
conditions. More precisely, we are interested in evaluating the solution quality of the ACO al-
gorithm which solves PTSP as TSP. In this context, we fixed Ant System [31] as the standard
ACO algorithm with a slight modification, that is, the objective function is estimated on the basis
of a single random scenario which is freshly sampled at each iteration of the algorithm. It is a
standard practice to justify the proposal of a new algorithm by comparison of the new algorithm
with the current state-of-the-art algorithm. The proposed algorithm, ACO/F-Race, based on the
sampling and racing approach is inspired by S-ACO [52] which is based on the sampling technique.
Quite naturally, it is more meaningful to compare the solution quality of the two algorithms to
justify the significance of the proposed approach. The proposed empirical estimation approach is
still relatively unstudied. We would, nevertheless like to make the first step towards the compara-
tive study of ACO/F-Race with pACS [13] which is based on mathematical approximation and the
state-of-the-art ACO algorithm designed to solve PTSP. In this thesis, we restrict our experiments
to ACO. Henceforth we use the following notation.

Algorithm Notation
Ant System ACO-1
Simulation based ACO algorithm S-ACO
Racing and Sampling ACO algorithm ACO/F-Race
Explicit objective function based ACS pACS

We use a standard benchmark to evaluate the quality of the algorithms. TSPLIB is one of the
standard benchmarks with a library of sample instances for the TSP from various sources such

39
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as cities in a country, drilling holes in a printed circuit board etc. These instances can be further
subdivided into cases where the nodes are uniformly distributed and the cases where they are
clustered. There are no standard benchmark for the PTSP. To gain some standardization, we
carried out the experiments with the TSP instances. We used the TSP instances generated by the
DIMACS [64]1 TSP generator. We are also interested in analyzing how the performance of the
algorithm varies in terms of the organization of the nodes in the instances. In this context, we
followed the experimental setup of Bertsimas and Howell [9]: case in which nodes are uniformly
distributed and case in which nodes are clustered. For each case, we consider 100 TSP instances
of 300 cities. From each TSP instance, we obtain 21 homogeneous PTSP instances by letting the
probability associated with each city be {0,0.05,0.10,· · · ,0.95,1.0}. This resulted in 4200 PTSP
instances for the experimental evaluation.

After the selection of the problem, we fixed the computational time for the algorithms as pro-
posed by Dorigo and Stützle [34]. They compared various ACO algorithms to solve TSP instances
from TSPLIB involving 198 and 783 cities using 100 seconds and 10000 seconds as the compu-
tational time respectively. Therefore, we allowed 120 seconds for each algorithm as the amount
of computational time. It is interesting to see the quality of the solutions at the half way of this
running time. For this purpose, we have also recorded the solution quality of the algorithms at 60
seconds.

The primary motivation behind this experimental study was to compare the evaluation pro-
cedure based on F-Race with the one proposed in S-ACO. Therefore, the algorithms were not
fine-tuned, and the parameters adopted are those suggested by Gutjahr [52] for S-ACO. This
might possibly introduce a bias in favor of S-ACO. In future, we will adopt F-Race approach [18]
for tuning the algorithms.

Parameter Notation Value
Number of ants σ 25
Pheromone exponent α 1.0
Heuristic exponent β 2.0
Pheromone evaporation factor ρ 0.01
best-so-far update constant c1 0.04
iteration-best update constant c2 0.00
Number of nearest neighbors in tour construction nn 25

Empirical Analysis of the Solution Quality

The goal of the optimal solution of the PTSP is to choose an a priori tour which minimizes the
expected value of the a posteriori tour length. The a priori tour computed by each algorithm
on each instance were then evaluated on 300 freshly generated random scenarios to compute the
expected value of the a posteriori tour length. The random scenarios are sampled according to
the probability associated with the instance.

The Computing Environment

The experiments presented in this chapter were performed on the cluster of personal computers
called Polyphemus which is available at IRIDIA, Université Libre de Bruxells. More precisely,
we used a group of clients composed of 16 nodes and each node features 2 AMD OpteronTM244.
All the nodes run the GNU/Linux operating system as distributed by Debian. All the algorithms
mentioned in this chapter were implemented in C language based on the source code of Stützle

1DIMACS is a academic competition that aims create a reproducible picture of the state of the art in the area
of TSP heuristics (their effectiveness, their robustness, their scalability, etc.)
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[89]2 except pACS algorithm [13] which is implemented in C++. The source code was compiled for
execution on Polyphemus using gcc, the GNU Compiler Collection of the Free Software Foundation,
versions 3.2 and 3.3. The graphs and plots shown in this section were produced with the R
package3.

Interpreting Tables and Graphs

For every class of instances and then for the entire set of instances we verify if differences in cost of
the solutions found by the algorithms are statistically significant. We use the Pairwise Wilcoxon
rank sum test [26] with p-values4 adjustment method by Holm [58]. In the tables associated to
the graphics we report for every pair of algorithms (r, c) the p-values for the null hypothesis: “The
distributions of the solutions generated by A and by B are the same”.

The significance level with which we reject the null hypothesis is 0.99. The p-values smaller
than 0.01 are sufficient to reject the null hypothesis in favor of the alternate hypothesis. The table
features the names of the algorithms under consideration on its row (r) and column (c). A number
less than 0.01 as an entry in (r,c) represents the condition that the observed performance of the
algorithms r and c has a sufficient statistical difference to reject the null hypothesis at a confidence
level of at least 99%. The symbol * as an entry in (r,c) of the table refers to the condition that the
algorithms are same r=c whereas - as an entry in (r,c) represents that the comparison is already
made in the form of (c,r).

We represent the performance of the algorithms in x-y plots and present them in two forms for
each case: the absolute performance graph and its corresponding relative performance graph. In
the absolute performance graph, the x-axis denotes the probability that the cities require being
visited in the PTSP and the y-axis represents the expected value of the a posteriori tour length
averaged over 100 PTSP instances. The large scale of the y-axis makes the visualization of the
difference in the solution quality difficult. The next graph illustrates the relative difference in the
solution quality of the algorithms by taking a single algorithm as a normalized reference.

Analysis of Stochasticity

The stochasticity of the homogeneous PTSP can be measured with other simple heuristics. In this
context, the term stochasticity refers to the variance associated with the a posteriori tour length of
the PTSP. For illustration, consider a straight forward and simple heuristic algorithm that finds
the a priori tour for the PTSP by treating it as TSP. It is possible to measure the quality of
the solution with respect to the influence of the stochasticity in the following way: The solutions
computed by each algorithm on a given PTSP were evaluated on a number of random scenarios
to compute the a posteriori tour length associated with each random scenario. The mean and
variance of the a posteriori tour length over the set of all random scenarios under consideration
describe the stochasticity associated with the problem. More precisely, the larger the variance,
the higher the stochasticity associated with the problem and viceversa.

In order to determine the stochastic nature of the problem, we test the homogeneous PTSP
problems with simple heuristics such as Nearest Neighbor, Nearest Insertion and Furthest Insertion
heuristics. The Nearest Neighbor algorithm (see Algorithm 9) always visits the nearest city

2This software package provides an implementation of various ACO algorithms applied to the TSP. The ACO
algorithms implemented are Ant System, Elitist Ant System, MAX-MIN Ant System, Rank-based version of Ant
System, Best-Worst Ant System, and Ant Colony System.

3R is a language and environment for statistical computing and graphics. It provides a wide variety of statistical
(linear and nonlinear modelling, classical statistical tests, time-series analysis, classification, clustering, ...) and
graphical techniques, and is highly extensible. It is also available as Free Software under the terms of the Free
Software Foundation’s GNU General Public License in source code form.

4The p-value of a test is the probability of obtaining a value more extreme than the one that is obtained, in the
direction of the alternate hypothesis, if the null hypothesis is true.
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whereas other algorithms first find a tour on small subset of cities, and then extends this tour
by inserting the remaining cities one after the other until all the cities have been inserted. More
precisely, the Nearest Insertion approach (see Algorithm 10), from all cities yet to be visited,
chooses a city whose insertion causes the lowest increase in the length of the tour. On the other
hand, the Furthest Insertion approach (see Algorithm 11) inserts a city whose minimal distance
to the visiting city is maximal. The idea behind this strategy is to fix the overall layout of the tour
in the first few iterations of the insertion process. These algorithms are simple in conception and
implementation. Figure 4.1 visualizes the stochasticity associated with the uniformly distributed
and clustered homogeneous PTSP instances. The x-axis denotes the probability that the cities
require being visited in the homogeneous PTSP. The y-axis represents the normalized standard
deviation, that is, the standard deviation divided by the mean, for the a posteriori tour length
computed on 300 random scenarios sampled according to the corresponding x-axis probability.

Algorithm 9 Nearest Neighbor

1. Select a random city
2. Select the nearest unvisited city and go there
3. Repeat step 2 until no more cities remain
4. Return to the first city

Algorithm 10 Nearest Insertion

1. Select the shortest edge and make a sub tour of it
2. Select the city not in the sub tour having the shortest distance to any one of the cities in the
sub tour
3. Find the edge in the sub tour such that the cost of inserting the selected city between the
edge’s cities will be minimal
4. Repeat step 2 until no more cites remain

Algorithm 11 Furthest Insertion

1. Select the longest edge and make a sub tour of it
2. Select the city not in the sub tour having the farthest distance to any one of the cities in the
sub tour
3. Find the edge in the sub tour such that the cost of inserting the selected city between the
edge’s cities will be minimal
4. Repeat step 2 until no more cities remain

From the results, we infer that the variance of the a posteriori tour length computed for the
homogeneous PTSP is less for the probability values close to 1. This indicates that in these cases,
most of the cites in the PTSP need to be visited in all the sampled random scenarios. On the other
hand, as the probability decreases, the number of cities that need to be visited in the generated
random scenarios also decreases. As a consequence, the lesser the probability, the higher the
variance of the a posteriori tour length. Therefore, we informally conclude that by decreasing the
probability values associated with each city, the stochasticity of the homogeneous PTSP increases.
These results form the basis for other experiments described in the rest of this chapter.

4.1.1 Experiments on Solution Techniques

In this subsection, we present the computational results which describe the behavior of several ACO
versions under uncertainty. Figures 4.2, 4.3 describe the absolute and the relative performance
of the algorithms in terms of solution quality for the computational time of 60 seconds. The
values in the y-axis denote the expected value of the a posteriori tour length averaged over
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Figure 4.1: Experimental results for the stochasticity on the uniformly distributed and clustered
homogeneous PTSP instances. The x-axis denotes the probability that the cities require being
visited in the homogeneous PTSP. The y-axis represents the normalized standard deviation, that
is, the standard deviation divided by mean, for the the a posteriori tour length computed on 300
random scenarios sampled according to the corresponding x-axis probability.
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Table 4.1: The Wilcoxon paired test and p-values for the null hypothesis: The distributions of the
solutions are the same for uniformly distributed homogeneous PTSP for the computational time
of 60 seconds. The significance level with which we reject the null hypothesis is 0.99. p-values
smaller than 0.01 are sufficient to reject the null hypothesis. The quantities under analysis are the
expected length of the a posteriori tour obtained by ACO/F-Race, S-ACO and ACO-1.

Probability=0.25 pACS ACO/F-Race SACO ACO-1
pACS * < 2.2e − 16 < 2.2e − 16 < 2.2e − 16
ACO/F-Race - * < 2.2e − 16 < 2.2e − 16
SACO - - * < 2.2e − 16

Probability=0.5 pACS ACO/F-Race SACO ACO-1
pACS * < 2.2e − 16 < 2.2e − 16 < 2.2e − 16
ACO/F-Race - * < 2.2e − 16 1
SACO - - * 1

Probability=0.75 pACS ACO/F-Race SACO ACO-1
pACS * < 2.2e − 16 < 2.2e − 16 1
ACO/F-Race - * < 2.2e − 16 1
SACO - - * 1

Probability=1.0 pACS ACO/F-Race SACO ACO-1
pACS * < 2.2e − 16 < 2.2e − 16 < 2.2e − 16
ACO/F-Race - * < 2.2e − 16 1
SACO - - * 1

100 homogeneous PTSP instances of 300 uniformly distributed cities. The values in the x-axis
represent the corresponding probability that the cities require being visited in the homogeneous
PTSP. Table 4.1 summarize the statistical significance for the observation, that is, the p-values
for the Wilcoxon paired rank test for the probabilities {0.25, 0.50, 0.75, 1.0} that the cities require
being visited in the PTSP.

From Figure 4.3, we can observe that the solution quality computed by ACO-1 is better than
S-ACO and ACO/F-Race for the probability range greater than 0.4, that is, when the variance
of the a posteriori tour length is small. This means that an algorithm designed to solve TSP is
better than one specifically developed for PTSP. This confirms the results of the research work
established by Rossi and Gavioli [86]. This is easily explained: Using large number of random
scenarios for selecting the best-so-far solution is simply a waste of time when the variance of the
objective function is very small.

On the other hand, for the probability range less than 0.4, the problem becomes more stochastic.
Therefore, the best-so-far solution obtained using large number of samples plays a significant role.
The rationale behind this technique is that unfortunate modifications to the pheromone matrix
that can be caused by sampling an atypical random scenario at a given iteration, will not have a
large impact on the overall result and will be corrected in following iterations. The risk we run
by following a single sample strategy, in ACO-1, is that we might sample a particularly atypical
random scenario which provides a misleading selection of the solutions. As a consequence, ACO/F-
Race and S-ACO obtain better results than ACO-1. We can justify our observation with Table
4.3. The p value associated with ACO/F-Race(row) Vs. ACO-1(column) and S-ACO(row) Vs.
ACO-1(column) is < 2.2e−16 for the probability range 0.0 to 0.4 and it becomes 1 for probability
range 0.5 to 1.0 which refers to the condition that ACO-1 obtain better results than ACO/F-Race
and S-ACO.
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Figure 4.2: Experimental results on the uniformly distributed homogeneous PTSP. The plot rep-
resents the expected length of the a posteriori tour obtained by ACO/F-Race, S-ACO and ACO-1
for the computational time of 60 seconds.
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Figure 4.3: Experimental results on the uniformly distributed homogeneous PTSP. The plot repre-
sents the expected length of the a posteriori tour obtained by ACO/F-Race and S-ACO normalized
by the one obtained by ACO-1 for the computational time of 60 seconds.
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Another important observation concerning the results is the performance of the ACO/F-Race.
Throughout the whole range of probabilities, the solution quality computed by ACO/F-Race is
significantly better than S-ACO. Therefore, we infer that the nonparametric evaluation method
adapted by ACO/F-Race computes better solution than parametric S-ACO. Notwithstanding the
same number of evaluations, the S-ACO selects the iteration-best solution based on a single random
scenario whereas ACO/F-Race use the racing approach to evaluate all the solutions obtained at
each iteration. As a consequence, while selecting the iteration-best solution, the probability of
neglecting a good solution is very high in S-ACO by sampling an atypical random scenario. In
Table 4.1, for the entire probability range, the p value of the Wilcoxon test associated with ACO/F-
Race(row) Vs. S-ACO(column) is < 2.2e−16. To ensure ACO/F-Race is significantly better than
S-ACO it is enough to have the p value < 0.01.

Further insight into the results revels that pACS performs better than ACO/F-Race and S-ACO.
The statistical significance for this observation is shown in Table 4.1. The p-value is < 2.2e − 16
for all the probabilities in pACS(row) Vs. ACO/F-Race(column). The same holds true for pACS
(row) Vs. S-ACO (column). It should be noted that pACS is fine tuned for parameter configuration
and it exploits the pseudo random proportional rule5 in the solution construction process. On the
other hand, ACO/F-Race and S-ACO are not tuned for the parameter and employ the random
proportional rule6. It is known in the literature [34] that an ACO algorithm which employs pseudo
random proportional rule computes better solution than one which uses random proportional rule.
Therefore, pACS computes better solution than ACO/F-Race and S-ACO. The primary goal of
this experiment was to compare the evaluation procedure based on F-Race with the one proposed
in S-ACO. For this reason, solution construction (with random proportional rule) was implemented
as described in S-ACO [52]. In future, we will combine F-Race with better performing ACO.

Figure 4.5 shows the results obtained for the uniformly distributed homogeneous PTSP for the
computational time of 120 seconds. We can observe a similar behavior to the results obtained
for the computational time of 60 seconds. The interesting element to observe from these results
is that the difference in the relative performance among different algorithms becomes less with
respect to the relative performance at 60 seconds. This behavior can be justified with the property
of convergence in solution of ACO. It is a state of the algorithm that keeps on generating the same
optimal solution. ACO-F/Race and pACS reach this optimal solution in shorter computational
time due to the improved technique which they adopt to select the iteration-best solution. On the
other hand, ACO-1 and S-ACO attain this state by reaping the benefits of higher computational
time. The statistical significance for this observation is given in Table 4.2.

The experimental evaluations for the homogeneous PTSP with clustered cities, for the compu-
tational time of 60 and 120 seconds are shown in Figures 4.7 and 4.9 respectively. The Wilcoxon
paired test and the p values are summarized in Tables 4.3 and 4.4. From the results, we observe
that the behavior of the algorithms do not change significantly with the clustered distribution.
Therefore, the arguments and justifications which are explained for the uniformly distributed cities
can be adapted to the clustered PTSP.

5See Equation 2.9 described in page 18
6See Equation 2.2 described in page 15
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Table 4.2: The Wilcoxon paired test and p-values for the null hypothesis: The distributions of the
solutions are the same for uniformly distributed homogeneous PTSP for the computational time
of 120 seconds. The significance level with which we reject the null hypothesis is 0.99. p-values
smaller than 0.01 are sufficient to reject the null hypothesis. The quantities under analysis are the
expected length of the a posteriori tour obtained by ACO/F-Race, S-ACO and ACO-1.

Probability=0.25 pACS ACO/F-Race SACO ACO-1
pACS * < 2.2e − 16 < 2.2e − 16 < 2.2e − 16
ACO/F-Race - * < 2.2e − 16 < 2.2e − 16
SACO - - * < 2.2e − 16

Probability=0.5 pACS ACO/F-Race SACO ACO-1
pACS * < 2.2e − 16 < 2.2e − 16 0.8757
ACO/F-Race - * < 2.2e − 16 1
SACO - - * 1

Probability=0.75 pACS ACO/F-Race SACO ACO-1
pACS * < 2.2e − 16 < 2.2e − 16 0.9583
ACO/F-Race - * < 2.2e − 16 1
SACO - - * 1

Probability=1.0 pACS ACO/F-Race SACO ACO-1
pACS * < 2.2e − 16 < 2.2e − 16 < 2.2e − 16
ACO/F-Race - * < 2.2e − 16 1
SACO - - * 1

Table 4.3: The Wilcoxon paired test and p-values for the null hypothesis: The distributions of the
solutions are the same for clustered homogeneous PTSP for the computational time of 60 seconds.
The significance level with which we reject the null hypothesis is 0.99. p-values smaller than 0.01
are sufficient to reject the null hypothesis. The quantities under analysis are the expected length
of the a posteriori tour obtained by ACO/F-Race, S-ACO and ACO-1.

Probability=0.25 pACS ACO/F-Race SACO ACO-1
pACS * < 2.2e − 16 < 2.2e − 16 < 2.2e − 16
ACO/F-Race * - < 2.2e − 16 < 2.2e − 16
SACO - - * < 2.2e − 16

Probability=0.5 pACS ACO/F-Race SACO ACO-1
pACS * < 2.2e − 16 < 2.2e − 16 < 2.2e − 16
ACO/F-Race * - < 2.2e − 16 < 2.2e − 16
SACO - - * 1

Probability=0.75 pACS ACO/F-Race SACO ACO-1
pACS * < 2.2e − 16 < 2.2e − 16 1
ACO/F-Race * - < 2.2e − 16 1
SACO - - * 1

Probability=1.0 pACS ACO/F-Race SACO ACO-1
pACS * < 2.2e − 16 < 2.2e − 16 < 2.2e − 16
ACO/F-Race * - < 2.2e − 16 < 2.2e − 16
SACO - - * 1
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Figure 4.4: Experimental results on the uniformly distributed homogeneous PTSP. The plot rep-
resents the expected length of the a posteriori tour obtained by ACO/F-Race, S-ACO and ACO-1
for the computational time of 120 seconds.
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Figure 4.5: Experimental results on the uniformly distributed homogeneous PTSP. The plot repre-
sents the expected length of the a posteriori tour obtained by ACO/F-Race and S-ACO normalized
by the one obtained by ACO-1 for the computational time of 120 seconds.
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Figure 4.6: Experimental results on the clustered homogeneous PTSP. The plot represents the
expected length of the a posteriori tour obtained by ACO/F-Race, S-ACO and ACO-1 for the
computational time of 60 seconds.
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Figure 4.7: Experimental results on the clustered homogeneous PTSP. The plot represents the
expected length of the a posteriori tour obtained by ACO/F-Race and S-ACO normalized by the
one obtained by ACO-1 for the computational time of 60 seconds.
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Figure 4.8: Experimental results on the clustered homogeneous PTSP. The plot represents the
expected length of the a posteriori tour obtained by ACO/F-Race, S-ACO and ACO-1 for the
computational time of 120 seconds.
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Figure 4.9: Experimental results on the clustered homogeneous PTSP. The plot represents the
expected length of the a posteriori tour obtained by ACO/F-Race and S-ACO normalized by the
one obtained by ACO-1 for the computational time of 120 seconds.
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Table 4.4: The Wilcoxon paired test and p-values for the null hypothesis: The distributions of the
solutions are the same for clustered homogeneous PTSP for the computational time of 120 seconds.
The significance level with which we reject the null hypothesis is 0.99. p-values smaller than 0.01
are sufficient to reject the null hypothesis. The quantities under analysis are the expected length
of the a posteriori tour obtained by ACO/F-Race, S-ACO and ACO-1.

Probability=0.25 pACS ACO/F-Race SACO ACO-1
pACS * < 2.2e − 16 < 2.2e − 16 < 2.2e − 16
ACO/F-Race - * < 2.2e − 16 < 2.2e − 16
SACO - - * < 2.2e − 16

Probability=0.5 pACS ACO/F-Race SACO ACO-1
pACS * < 2.2e − 16 < 2.2e − 16 1
ACO/F-Race - * < 2.2e − 16 1
SACO - - * 1

Probability=0.75 pACS ACO/F-Race SACO ACO-1
pACS * < 2.2e − 16 < 2.2e − 16 1
ACO/F-Race - * < 2.2e − 16 1
SACO - - * 1

Probability=1.0 pACS ACO/F-Race SACO ACO-1
pACS * < 2.2e − 16 < 2.2e − 16 < 2.2e − 16
ACO/F-Race - * < 2.2e − 16 < 2.2e − 16
SACO - - * 1

4.1.2 Experiments on Local Search techniques

This subsection describes the potentialities of the empirical 2-opt and 2.5-opt local search pro-
cedures proposed in this thesis. More precisely, we will present the computational experiments
to illustrate the phenomenon and the significance of the empirical local search techniques when
applied to ACO/F-Race. The second part of this subsection describes some preliminary exper-
imental results in which we compare our local search techniques with the state-of-the-art local
search approach.

Effectiveness of the empirical local search algorithms

We followed the same experimental methodology with respect to the problem type and the com-
putational time as explained in the previous section. We examined the solution refinement phe-
nomenon of the proposed local search approach by solving the PTSP with three different algo-
rithms:

• ACO/F-Race

• ACO/F-Race with empirical 2-opt local search

• ACO/F-Race with empirical 2.5-opt local search

For the homogeneous PTSP that contains uniformly distributed cites, Figures 4.10, 4.11 describes
the absolute and the relative performance of the algorithms for the computational time of 60
seconds. Table 4.5 summarize the p-values for the Wilcoxon paired rank test to show the statistical
significance for the experimental observations.
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Figure 4.10: Experimental results on the uniformly distributed homogeneous PTSP. The plot
represents the expected length of the a posteriori tour obtained by ACO/F-Race, ACO/F-Race
empirical 2-opt and ACO/F-Race empirical 2.5-opt for the computational time of 60 seconds.
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Figure 4.11: Experimental results on the uniformly distributed homogeneous PTSP. The plot
represents the expected length of the a posteriori tour obtained by ACO/F-Race empirical 2-
opt and ACO/F-Race empirical 2.5-opt normalized by the one obtained by ACO/F-Race for the
computational time of 60 seconds.
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Table 4.5: The Wilcoxon paired test and p-values for the null hypothesis: The distributions of the
solutions are the same for uniformly distributed homogeneous PTSP for the computational time
of 60 seconds. The significance level with which we reject the null hypothesis is 0.99. p-values
smaller than 0.01 are sufficient to reject the null hypothesis. The quantities under analysis are the
expected length of the a posteriori tour obtained by ACO/F-Race, ACO/F-Race empirical 2-opt
and ACO/F-Race empirical 2.5-opt.

Probability=0.25 ACO/F-Race 2.5-opt ACO/F-Race 2-opt ACO/F-Race
ACO/F-Race 2.5-opt * < 2.2e − 16 < 2.2e − 16
ACO/F-Race 2-opt - * < 2.2e − 16

Probability=0.50 ACO/F-Race 2.5-opt ACO/F-Race 2-opt ACO/F-Race
ACO/F-Race 2.5-opt * < 2.2e − 16 < 2.2e − 16
ACO/F-Race 2-opt - * < 2.2e − 16

Probability=0.75 ACO/F-Race 2.5-opt ACO/F-Race 2-opt ACO/F-Race
ACO/F-Race 2.5-opt * < 2.2e − 16 < 2.2e − 16
ACO/F-Race 2-opt - * < 2.2e − 16

Probability=1.0 ACO/F-Race 2.5-opt ACO/F-Race 2-opt ACO/F-Race
ACO/F-Race 2.5-opt * < 2.2e − 16 < 2.2e − 16
ACO/F-Race 2-opt - * < 2.2e − 16

The results from Figure 4.11 clearly show that the empirical 2-opt and 2.5-opt significantly
increase the quality of the solution computed by the ACO/F-Race for all the probability values.
This is easily explained: The empirical 2-opt local search approach evaluates the improvement in
the expected length of the a posteriori tour that results from reversing the tour between each pair
of nodes. The empirical 2.5-opt local search computes the improvement by removing each city from
its current position in the tour and inserting it at all other points in the tour. As a consequence,
the newly computed solution is always better. Table 4.5 provides statistical significance for the
observation.

Further insight into the results reveals that the solution quality of empirical 2.5-opt is signif-
icantly better than empirical 2-opt for probabilities greater than 0.1. The superior performance
of the empirical 2.5-opt local search can be justified by the technique employed for the solution
refinement. For the same set of nearest neighbors, the 2.5-opt chooses the best swap when com-
pared to 2-opt [92]. The same argument holds true for the empirical local search too. But the
poor performance of 2.5-opt for the probabilities from 0.0 to 0.1 is surprising. Here the problem
becomes highly stochastic. In 2.5-opt, the search for the best swap with very few cities using
large number of samples results in a waste of computational time. On the other hand, 2-opt move
contributes this extra time to the ACO/F-Race to perform more iterations which results in better
quality solutions.

Another interesting observation from this result is the difference in the relative performance
of the algorithms. The relative difference of solutions computed by local search versions of the
ACO/F-Race (with respect to ACO/F-Race) decreases with the increase of the probability associ-
ated with the homogeneous PTSP. For highly stochastic problems, using large samples to estimate
the improvement measure enables empirical local search to compute better quality solutions. It is
simply a waste of time when the problem is less stochastic.

Figures 4.12, 4.13 show the results obtained for the uniformly distributed cities in the homo-
geneous PTSP for the computational time of 120 seconds. Table 4.6 lists the p-values for the
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Figure 4.12: Experimental results on the uniformly distributed homogeneous PTSP. The plot
represents the expected length of the a posteriori tour obtained by ACO/F-Race, ACO/F-Race
empirical 2-opt and ACO/F-Race empirical 2.5-opt for the computational time of 120 seconds.
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Figure 4.13: Experimental results on the uniformly distributed homogeneous PTSP. The plot
represents the expected length of the a posteriori tour obtained by ACO/F-Race empirical 2-
opt and ACO/F-Race empirical 2.5-opt normalized by the one obtained by ACO/F-Race for the
computational time of 120 seconds.
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Table 4.6: The Wilcoxon paired test and p-values for the null hypothesis: The distributions of the
solutions are the same for uniformly distributed homogeneous PTSP for the computational time
of 120 seconds. The significance level with which we reject the null hypothesis is 0.99. p-values
smaller than 0.01 are sufficient to reject the null hypothesis. The quantities under analysis are the
expected length of the a posteriori tour obtained by ACO/F-Race, ACO/F-Race empirical 2-opt
and ACO/F-Race empirical 2.5-opt.

Probability=0.25 ACO/F-Race 2.5-opt ACO/F-Race 2-opt ACO/F-Race
ACO/F-Race 2.5-opt * < 2.2e − 16 < 2.2e − 16
ACO/F-Race 2-opt - * < 2.2e − 16

Probability=0.50 ACO/F-Race 2.5-opt ACO/F-Race 2-opt ACO/F-Race
ACO/F-Race 2.5-opt * < 2.2e − 16 < 2.2e − 16
ACO/F-Race 2-opt - * < 2.2e − 16

Probability=0.75 ACO/F-Race 2.5-opt ACO/F-Race 2-opt ACO/F-Race
ACO/F-Race 2.5-opt * < 2.2e − 16 < 2.2e − 16
ACO/F-Race 2-opt - * < 2.2e − 16

Probability=1.0 ACO/F-Race 2.5-opt ACO/F-Race 2-opt ACO/F-Race
ACO/F-Race 2.5-opt * < 2.2e − 16 < 2.2e − 16
ACO/F-Race 2-opt - * < 2.2e − 16

Wilcoxon paired rank test for this observation. The only difference that can be found in Fig-
ure 4.13 is that the difference in relative performance among different algorithms becomes less
with respect to the relative performance at 60 seconds due to the property of convergence in the
solution.

The experimental evaluations for the homogeneous PTSP with clustered cities, for the compu-
tational time of 60 and 120 seconds are shown in Figures 4.14, 4.15 and 4.16, 4.17 respectively.
The Wilcoxon paired test and the p values are summarized in Tables 4.7 and 4.8. The behav-
ior of the algorithms is similar to the uniformly distributed instances. Therefore, the arguments
and justifications which are explained for the uniformly distributed cities can be adapted to the
clustered PTSP.

Preliminary Results Towards the State-of-the-Art Perspective

In this subsection, we present the results of the computational experiments which compare the
ACO/F-Race empirical 2-opt and 2.5-opt local search against pACS 1-shift local search algorithm.
The 1-shift local search is a solution improvement technique that computes the improvement
measure using mathematical approximation by removing each city from its current position in the
tour and inserting it at all other points in the tour (in the same way as that of 2.5-opt move).
The experimental setup was same as stated before.

The absolute and relative behavior of the algorithms, on the uniformly distributed instances,
for the computational time of 60 seconds, are shown in Figures 4.18 and 4.19 respectively. Table
4.9 contains the p values of the Wilcoxon paired test for the observation.
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Table 4.7: The Wilcoxon paired test and p-values for the null hypothesis: The distributions of the
solutions are the same for clustered homogeneous PTSP for the computational time of 60 seconds.
The significance level with which we reject the null hypothesis is 0.99. p-values smaller than 0.01
are sufficient to reject the null hypothesis. The quantities under analysis are the expected length of
the a posteriori tour obtained by ACO/F-Race, ACO/F-Race empirical 2-opt and ACO/F-Race
empirical 2.5-opt.

Probability=0.25 ACO/F-Race 2.5-opt ACO/F-Race 2-opt ACO/F-Race
ACO/F-Race 2.5-opt * < 2.2e − 16 < 2.2e − 16
ACO/F-Race 2-opt - * < 2.2e − 16

Probability=0.50 ACO/F-Race 2.5-opt ACO/F-Race 2-opt ACO/F-Race
ACO/F-Race 2.5-opt * < 2.2e − 16 < 2.2e − 16
ACO/F-Race 2-opt - * < 2.2e − 16

Probability=0.75 ACO/F-Race 2.5-opt ACO/F-Race 2-opt ACO/F-Race
ACO/F-Race 2.5-opt * < 2.2e − 16 < 2.2e − 16
ACO/F-Race 2-opt - * < 2.2e − 16

Probability=1.0 ACO/F-Race 2.5-opt ACO/F-Race 2-opt ACO/F-Race
ACO/F-Race 2.5-opt * < 2.2e − 16 < 2.2e − 16
ACO/F-Race 2-opt - * < 2.2e − 16

Table 4.8: The Wilcoxon paired test and p-values for the null hypothesis: The distributions of the
solutions are the same for clustered homogeneous PTSP for the computational time of 120 seconds.
The significance level with which we reject the null hypothesis is 0.99. p-values smaller than 0.01
are sufficient to reject the null hypothesis. The quantities under analysis are the expected length of
the a posteriori tour obtained by ACO/F-Race, ACO/F-Race empirical 2-opt and ACO/F-Race
empirical 2.5-opt.

Probability=0.25 ACO/F-Race 2.5-opt ACO/F-Race 2-opt ACO/F-Race
ACO/F-Race 2.5-opt * < 2.2e − 16 < 2.2e − 16
ACO/F-Race 2-opt - * < 2.2e − 16

Probability=0.50 ACO/F-Race 2.5-opt ACO/F-Race 2-opt ACO/F-Race
ACO/F-Race 2.5-opt * < 2.2e − 16 < 2.2e − 16
ACO/F-Race 2-opt - * < 2.2e − 16

Probability=0.75 ACO/F-Race 2.5-opt ACO/F-Race 2-opt ACO/F-Race
ACO/F-Race 2.5-opt * < 2.2e − 16 < 2.2e − 16
ACO/F-Race 2-opt - * < 2.2e − 16

Probability=1.0 ACO/F-Race 2.5-opt ACO/F-Race 2-opt ACO/F-Race
ACO/F-Race 2.5-opt * < 2.2e − 16 < 2.2e − 16
ACO/F-Race 2-opt - * < 2.2e − 16
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Figure 4.14: Experimental results on the clustered homogeneous PTSP. The plot represents the
expected length of the a posteriori tour obtained by ACO/F-Race, ACO/F-Race empirical 2-opt
and ACO/F-Race empirical 2.5-opt for the computational time of 60 seconds.
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Figure 4.15: Experimental results on the clustered homogeneous PTSP. The plot represents the
expected length of the a posteriori tour obtained by ACO/F-Race empirical 2-opt and ACO/F-
Race empirical 2.5-opt normalized by the one obtained by ACO/F-Race for the computational
time of 60 seconds.
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Figure 4.16: Experimental results on the clustered homogeneous PTSP. The plot represents the
expected length of the a posteriori tour obtained by ACO/F-Race, ACO/F-Race empirical 2-opt
and ACO/F-Race empirical 2.5-opt for the computational time of 120 seconds.
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Figure 4.17: Experimental results on the uniformly distributed homogeneous PTSP. The plot
represents the expected length of the a posteriori tour obtained by ACO/F-Race empirical 2-
opt and ACO/F-Race empirical 2.5-opt normalized by the one obtained by ACO/F-Race for the
computational time of 120 seconds.
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Table 4.9: The Wilcoxon paired test and p-values for the null hypothesis: The distributions of the
solutions are the same for uniformly distributed homogeneous PTSP for the computational time
of 60 seconds. The significance level with which we reject the null hypothesis is 0.99. p-values
smaller than 0.01 are sufficient to reject the null hypothesis. The quantities under analysis are the
expected length of the a posteriori tour obtained by ACO/F-Race empirical 2-opt, ACO/F-Race
empirical 2.5-opt and pACS 1-shift

Probability=0.25 ACO/F-Race 2.5-opt pACS 1-shift ACO/F-Race 2 opt
ACO/F-Race 2.5-opt * < 2.2e − 16 < 2.2e − 16
pacs 1-shiftt - * < 2.2e − 16

Probability=0.50 ACO/F-Race 2.5-opt pACS 1-shift ACO/F-Race 2 opt
ACO/F-Race 2.5-opt * < 2.2e − 16 < 2.2e − 16
pacs 1-shiftt - * < 2.2e − 16

Probability=0.25 ACO/F-Race 2.5-opt pACS 1-shift ACO/F-Race 2 opt
ACO/F-Race 2.5-opt * < 2.2e − 16 < 2.2e − 16
pacs 1-shiftt - * < 2.2e − 16

Probability=1.0 ACO/F-Race 2.5-opt pACS 1-shift ACO/F-Race 2 opt
ACO/F-Race 2.5-opt * < 2.2e − 16 < 2.2e − 16
pacs 1-shiftt - * < 2.2e − 16

The results from Figure 4.19 clearly show that ACO/F-Race with empirical 2.5-opt local search
performs better than the other two algorithms for the probability values from 0.15 to 1.0. We
found, much to our surprise, that the solution quality of pACS 1-shift algorithm is significantly
worse than the quality of the solution computed by ACO/F-Race with empirical 2.5-opt local
search. From these results, we conclude that the evaluation method adapted by empirical approach
is significantly better than the mathematical approximation. On the other hand, when the problem
is highly stochastic (for probability value less than 0.15 ) the quality of the solution computed by
ACO/F-Race empirical 2.5-opt local search is worse than pACS 1-shift approach. As established
with previous experiments for the 2.5-opt, the search for the best swap with very few cities in
the large samples results in wasted computational time. On the other hand, 1-shift use this
computational time to perform more recursions and iterations. For the computational time of
120 seconds, it is clear from Figure 4.21 that the solution quality of pACS 1-shift is significantly
better than the ACO/F-Race empirical 2-opt local search. The pACS exploit the pseudo random
proportional rule which favors towards high quality solution. The 1-shift local search takes place
in such high quality solutions to obtain better solutions than ACO/F-Race empirical 2-opt. On the
other hand, the pACS 1-shift algorithm exhibits different behavior with the clustered instances.
It is more evident in Figure 4.25 where the difference in the relative performance between the
pACS 1-shift and ACO/F-Race with empirical 2-opt is minimal. We derive the justification for
this behavior from the research work made by Bertsimas and Howell [9] where they concluded
that 1-p shift local search scheme works well only for the uniformly distributed data set.
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Table 4.10: The Wilcoxon paired test and p-values for the null hypothesis: The distributions of the
solutions are the same for uniformly distributed homogeneous PTSP for the computational time
of 120 seconds. The significance level with which we reject the null hypothesis is 0.99. p-values
smaller than 0.01 are sufficient to reject the null hypothesis. The quantities under analysis are the
expected length of the a posteriori tour obtained by ACO/F-Race empirical 2-opt, ACO/F-Race
empirical 2.5-opt and pACS 1-shift

Probability=0.25 ACO/F-Race 2.5-opt pACS 1-shift ACO/F-Race 2 opt
ACO/F-Race 2.5-opt * < 2.2e − 16 < 2.2e − 16
pacs 1-shiftt - * < 2.2e − 16

Probability=0.50 ACO/F-Race 2.5-opt pACS 1-shift ACO/F-Race 2 opt
ACO/F-Race 2.5-opt * < 2.2e − 16 < 2.2e − 16
pacs 1-shiftt - * < 2.2e − 16

Probability=0.25 ACO/F-Race 2.5-opt pACS 1-shift ACO/F-Race 2 opt
ACO/F-Race 2.5-opt * < 2.2e − 16 < 2.2e − 16
pacs 1-shiftt - * < 2.2e − 16

Probability=1.0 ACO/F-Race 2.5-opt pACS 1-shift ACO/F-Race 2 opt
ACO/F-Race 2.5-opt * < 2.2e − 16 < 2.2e − 16
pacs 1-shiftt - * < 2.2e − 16

Table 4.11: The Wilcoxon paired test and p-values for the null hypothesis: The distributions of the
solutions are the same for clustered homogeneous PTSP for the computational time of 60 seconds.
The significance level with which we reject the null hypothesis is 0.99. p-values smaller than 0.01
are sufficient to reject the null hypothesis. The quantities under analysis are the expected length
of the a posteriori tour obtained by ACO/F-Race empirical 2-opt, ACO/F-Race empirical 2.5-opt
and pACS 1-shift

Probability=0.25 ACO/F-Race 2.5-opt pACS 1-shift ACO/F-Race 2 opt
ACO/F-Race 2.5-opt * < 2.2e − 16 < 2.2e − 16
pacs 1-shiftt - * < 2.2e − 16

Probability=0.50 ACO/F-Race 2.5-opt pACS 1-shift ACO/F-Race 2 opt
ACO/F-Race 2.5-opt * < 2.2e − 16 < 2.2e − 16
pacs 1-shiftt - * < 2.2e − 16

Probability=0.25 ACO/F-Race 2.5-opt pACS 1-shift ACO/F-Race 2 opt
ACO/F-Race 2.5-opt * < 2.2e − 16 < 2.2e − 16
pacs 1-shiftt - * < 2.2e − 16

Probability=1.0 ACO/F-Race 2.5-opt pACS 1-shift ACO/F-Race 2 opt
ACO/F-Race 2.5-opt * < 2.2e − 16 < 2.2e − 16
pacs 1-shiftt - * < 2.2e − 16
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Figure 4.18: Experimental results on the uniformly distributed homogeneous PTSP. The plot
represents the expected length of the a posteriori tour obtained by ACO/F-Race empirical 2-opt,
ACO/F-Race empirical 2.5-opt and pACS 1-shift for the computational time of 60 seconds.
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Figure 4.19: Experimental results on the uniformly distributed homogeneous PTSP. The plot
represents the expected length of the a posteriori tour obtained by ACO/F-Race empirical 2-
opt and pACS 1-shift normalized by the one obtained by ACO/F-Race empirical 2.5-opt for the
computational time of 60 seconds.
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Figure 4.20: Experimental results on the uniformly distributed homogeneous PTSP. The plot
represents the expected length of the a posteriori tour obtained by ACO/F-Race empirical 2-opt,
ACO/F-Race empirical 2.5-opt and pACS 1-shift for the computational time of 120 seconds.
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Figure 4.21: Experimental results on the uniformly distributed homogeneous PTSP. The plot
represents the expected length of the a posteriori tour obtained by ACO/F-Race empirical 2-
opt and pACS 1-shift normalized by the one obtained by ACO/F-Race empirical 2.5-opt for the
computational time of 120 seconds.
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Figure 4.22: Experimental results on the clustered homogeneous PTSP. The plot represents the
expected length of the a posteriori tour obtained by ACO/F-Race empirical 2-opt, ACO/F-Race
empirical 2.5-opt and pACS 1-shift for the computational time of 60 seconds.
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Figure 4.23: Experimental results on the clustered homogeneous PTSP. The plot represents the
expected length of the a posteriori tour obtained by ACO/F-Race empirical 2-opt and pACS
1-shift normalized by the one obtained by ACO/F-Race empirical 2.5-opt for the computational
time of 60 seconds.
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Figure 4.24: Experimental results on the clustered homogeneous PTSP. The plot represents the
expected length of the a posteriori tour obtained by ACO/F-Race empirical 2-opt, ACO/F-Race
empirical 2.5-opt and pACS 1-shift for the computational time of 120 seconds.
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Figure 4.25: Experimental results on the clustered homogeneous PTSP. The plot represents the
expected length of the a posteriori tour obtained by ACO/F-Race empirical 2-opt and pACS
1-shift normalized by the one obtained by ACO/F-Race empirical 2.5-opt for the computational
time of 120 seconds.
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Table 4.12: The Wilcoxon paired test and p-values for the null hypothesis: The distributions of the
solutions are the same for clustered homogeneous PTSP for the computational time of 120 seconds.
The significance level with which we reject the null hypothesis is 0.99. p-values smaller than 0.01
are sufficient to reject the null hypothesis. The quantities under analysis are the expected length
of the a posteriori tour obtained by ACO/F-Race empirical 2-opt, ACO/F-Race empirical 2.5-opt
and pACS 1-shift

Probability=0.25 ACO/F-Race 2.5-opt pACS 1-shift ACO/F-Race 2 opt
ACO/F-Race 2.5-opt * < 2.2e − 16 < 2.2e − 16
pacs 1-shiftt - * < 2.2e − 16

Probability=0.50 ACO/F-Race 2.5-opt pACS 1-shift ACO/F-Race 2 opt
ACO/F-Race 2.5-opt * < 2.2e − 16 < 2.2e − 16
pacs 1-shiftt - * < 2.2e − 16

Probability=0.25 ACO/F-Race 2.5-opt pACS 1-shift ACO/F-Race 2 opt
ACO/F-Race 2.5-opt * < 2.2e − 16 < 2.2e − 16
pacs 1-shiftt - * < 2.2e − 16

Probability=1.0 ACO/F-Race 2.5-opt pACS 1-shift ACO/F-Race 2 opt
ACO/F-Race 2.5-opt * < 2.2e − 16 < 2.2e − 16
pacs 1-shiftt - * < 2.2e − 16
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Chapter 5

Conclusion and Future Work

This chapter presents the summary of the thesis with the contribution of the proposed approach
followed by the conclusion of the thesis, suggestions for the improvement and future work.

Summary

In a large number of real-world combinatorial optimization problems, the objective function is
affected by uncertainty. In order to tackle these problems, it is customary to resort to a proba-
bilistic model of the value of each feasible solution. In other words, a setting is considered in which
the cost of each solution is a random variable, and the goal is to find the solution that minimizes
some statistics of the latter. For a number of practical and theoretical reasons, it is customary
to optimize with respect to the expectation. For a given probabilistic model, the expectation
can always be computed but this typically involves particularly complex analytical manipulations
and computationally expensive procedures. Two alternatives have been discussed in the litera-
ture: analytical approximation and empirical estimation. While the former explicitly relies on
the underlying probabilistic model for approximating the expectation, the latter estimates the
expectation through sampling or simulation. Computing a profitable approximation is a problem
specific issue and requires a deep understanding of the underlying probabilistic model. The main
advantage of the estimation approach over the one based on approximation is generality: Indeed,
a sample estimate of the expected cost of a given solution can be simply obtained by averaging a
number of realizations of the cost itself.

We adopted the probabilistic traveling salesman problem (PTSP) as a test-bed for
stochastic optimization problems, in much the same way as the traveling salesman problem

(TSP) has been considered a standard amongst deterministic optimization problems.

Metaheuristics is a general algorithmic framework to solve different optimization problems.
They compute fairly good solution in a reasonable amount of computational time. Ant colony
optimization is a metaheuristic which takes inspiration from foraging behavior of ant colonies.

We have developed a computational technique called ACO/F-Race algorithm for tackling highly
stochastic PTSP. The proposed approach is inspired by S-ACO [52] and F-Race [18, 17]. The
former is an ACO algorithm based on simulation/sampling techniques to tackle the stochastic
optimization problems and the later is an algorithmic framework originally developed for tuning
metaheuristics. F-Race is itself inspired by a class of racing algorithms proposed in the machine
learning literature for tackling model selection problem. The peculiarity of the F-Race approach
compared to other racing algorithms is the adoption of the Friedman two-way analysis of variance
by ranks, a nonparametric statistical test that appears particularly suitable for the highly stochastic
PTSP.

67
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In general, ACO algorithms frequently encounter a sequence of states in which it is impossible
to improve the solution quality by itself. Local search algorithms improve the solutions computed
by ACO by introducing some modifications [92]. The state-of-the-art local search procedures for
PTSP such as 1-shift and 2-p-opt local search are based on complex mathematical approxima-
tions. We proposed empirical 2-opt and empirical 2.5-opt for PTSP inspired by 2-opt and 2.5-opt
local search algorithms which are explicitly designed to solve TSP. We derived computationally
inexpensive equations to compute the improvement in the objective function for the proposed
improvement techniques. As a consequence, the solution computed by ACO/F-Race algorithm is
subjected to several refinements in a short computational time to obtain a high quality solution.

Conclusion

The experimental results proposed in the subsection 4.1.1 confirm the generality of the approach
proposed in Gutjahr [52]. More precisely, from the computational experiments, we conclude that
it is important to use an ACO technique specifically developed for PTSP when the probability
associated with each city in the PTSP is significantly less than 1. This confirms the results
established by Rossi and Gavioli [86] and Bertsimas and Howell [9]. In the experimental analysis
proposed in the subsection 4.1.1, the goal was to compare the evaluation procedure based on F-
Race with the one proposed in S-ACO [52] and with the trivial one based on a single sample ACO-1.
For this reason, solution construction and pheromone update were implemented as described in
[52]. As a consequence, ACO/F-Race exhibits inferior solution quality than the state-of-the-art
pACS algorithm [13]. On the other hand, ACO/F-Race computes significantly better solutions
than S-ACO by reaping the benefits of the nonparametric selection phenomenon of the F-Race
approach. The general conclusions that we can draw from these results are:

• ACO/F-Race algorithm is extremely useful when the stochasticity associated with the PTSP
is significantly large as suggested by Rossi and Gavioli [86].

• We propose to use ACO algorithms designed for TSP to solve PTSP when the stochasticity
associated with the problem is small. This is because the computational time is wasted by
the evaluation method adopted by ACO/F-Race (which results in inferior solution quality).

The experimental results on the proposed local search procedures such as empirical 2-opt and
empirical 2.5-opt reveal that the solution computed by ACO/F-Race can be significantly improved
by coupling it with the empirical local search. The inexpensive computational time of the proposed
improvement procedures enables ACO/F-Race to have several refinements to produce significantly
high quality solutions. The results from the preliminary experiments with the state-of-the-art local
search procedure indicate that the empirical estimation based evaluation method is more profitable
than mathematical approximation. Therefore, in the context of PTSP, we conclude the following:

• ACO/F-Race can be employed to identify good quality solutions in the search space. The
empirical local search techniques operate on these solutions to compute significantly better
quality solutions.

• Local search approach which uses empirical estimation can obtain better solutions than
mathematical approximation.

Finally, We conclude that the ACO/F-Race algorithm and the empirical estimation based local
search can be profitably adopted for computing high quality solutions in the framework of appli-
cations of ant colony optimization to combinatorial optimization problems under uncertainty.

Original Contributions

The original contributions of this DEA thesis are:
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• We proposed the ACO/F-Race algorithm inspired by F-Race [18, 17] and S-ACO [52] as
the computational technique for computing quality solutions in the framework of ant colony
optimization algorithms when applied to combinatorial optimization problems under un-
certainty. More precisely, the novelty of the proposed technique lies in the nonparametric
approach for selecting the best-so-far ant, that is, the ant that is appointed for updating
the pheromone matrix. In contrast, S-ACO employ the parametric procedure for the same.
ACO/F-Race algorithm for optimization under uncertainty (Birattari et al. [19]) has been
presented at the Sixth Metaheuristics International Conference 2005.

• pACS [13], the state-of-the-art ACO algorithm designed to solve the PTSP, is based on
mathematical approximations whereas the proposed ACO/F-Race approach is based on em-
pirical estimation. This thesis described an experimental evaluation method to analyze the
empirical estimation against mathematical approximation techniques.

• Local search methods are used in general to improve the solution found by ACO algorithms.
The state-of-the-art local search methods for the PTSP are based on mathematical approxi-
mations and recursions [8, 12]. In this thesis, we proposed empirical 2-opt and 2.5-opt local
search for the PTSP which is based on empirical estimation. This approach, to the best of
our knowledge, is the first local search technique that uses empirical estimation to compute
the objective function. This thesis also proposed a comparative analysis of the estimation
approach against mathematical approximation.

Future work

Further research is needed for properly assessing the quality of ACO/F-Race. We plan to study
the behavior of ACO/F-Race on non-homogeneous problems. We intend to enrich the solution
construction phase of the ACO/F-Race by exploring other possibilities, such as construction and
update as defined in MAX −MIN ant system [91].

In the context of local search techniques, we are currently developing empirical 3-opt for PTSP
inspired by the 3-opt local search for TSP [92]. Preliminary experiments with this local search
technique indicate that significant improvements in the solution quality can be attained with the
proposed approach.

We plan to design a unified framework which contains the ACO/F-Race algorithm enriched by
empirical estimation based local search procedures such as empirical 2-opt, 2.5-opt and 3-opt local
search procedures.

Applications to other problems, in particular of the vehicle routing class, will be considered,
too.
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