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Abstract

The Probabilistic Traveling Salesman Problem (PTSP) is a TSP problem in which

each customer requires a visit only with a given probability, independently of the

others. The goal is to find an a priori tour of minimal expected length over all

customers, with the strategy of visiting a random subset of customers in the same

order as they appear in the a priori tour. The PTSP is NP-hard, and only very small

instances may be solved by exact methods. Here, we concentrate on the design of

algorithms (heuristics) for finding good suboptimal solutions to the problem.

Given the analogies between the TSP and the PTSP, it is reasonable to ex-

pect that, like in the TSP, a good heuristic for the problem is composed by two

components. The first component is a solution construction algorithm, which finds

an initial solution. The second component is a local search algorithm, which tries

to improve as much as possible the starting solution. A good heuristic algorithm

usually integrates these two components, and repeats the sequence construction-

improvement of a solution several times, untill a good solution or some other termi-

nation criterion is not satisfied.

In this thesis we propose new (for the PTSP) computational approaches for both

solution construction and local search algorithms. As far as the solution construction

algorithm is concerned, we investigate the potentialities of the ant colony optimiza-

tion metaheuristic for the PTSP, which is a new approach for this type problem.

This choice is motivated by the observation that, for the TSP, when adding to ant

colony optimization algorithms local search procedures, the quality of the results

obtained was close to that obtainable by other state-of-the-art methods. Also for

the PTSP, it is reasonable to expect good performance of ant colony optimization

algorithms with local search. As far as local search is concerned, we show that the

current algorithms in the literature, 2-p-opt and 1-shift, are inadequate. This re-

sults pose the question whether a new fast local search operator for the PTSP can

be derived. One possibility to design fast local search is to use an approximation

of the objective function, which is faster to be computed than the exact one. Two

types of approximations are proposed and analyzed in this thesis.

Part of the research developed in this thesis has been published, or is about to

be published, in the following papers:

[6] L. Bianchi, L. M. Gambardella, and M. Dorigo. An ant colony optimiza-

tion approach to the probabilistic traveling salesman problem. In Proceedings

of PPSN-VII, Seventh International Conference on Parallel Problem Solving

from Nature, volume 2439 of Lecture Notes in Computer Science. Springer,
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Berlin, Germany, 2002.

[7] L. Bianchi, L. M. Gambardella, and M. Dorigo. Solving the homogeneous prob-

abilistic traveling salesman problem by the ACO metaheuristic. In M. Dorigo,

G. Di Caro, and M. Sampels, editors, Proceedings of ANTS 2002 – From Ant

Colonies to Artificial Ants: Third International Workshop on Ant Algorithms,

volume 2463 of Lecture Notes in Computer Science, pages 176–187. Springer,

Berlin, Germany, 2002.

[8] L. Bianchi and J. Knowles. Local search for the probabilistic traveling salesman

problem: a proof of the incorrectness of bertsimas’ proposed 2-p-opt and 1-

shift algorithms. Technical Report IDSIA-21-02, IDSIA, Lugano, Switzerland,

2002. Submitted to European Journal of Operational Research.
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Chapter 1

Introduction

1.1 Vehicle routing problems involving uncertainty

In typical distribution systems, vehicles provide delivery, customer pick-up, or repair

and maintenance services to customers that are geographically dispersed in a given

area. In most applications, a common objective is to find a set of routes for the

vehicles which satisfies a variety of constraints and so as to minimize the total fleet

operating cost. The problem of minimizing total cost has traditionally been called

the vehicle routing problem (VRP).

The deterministic VRP is well known in the operations research literature (see

[9, 11, 19, 21, 5, 31] for reviews). By ‘deterministic’, we mean routing problems in

which the number of customers, their locations, the size of their demands, and all

other elements defining the problems are known with certainty before the routes,

or solutions, are designed. One can identify, however, a practically endless variety

of problems in which one or more of these parameters are random variables, that

is, subject to uncertainty in accordance to some probability distribution. VRPs

involving uncertainty, are more appropriate models for the many real-world prob-

lems in which randomness is not only present, but a major concern. This type of

VRPs belong to the wider class of probabilistic combinatorial optimization problems

(PCOPSs, according to the terminology used in [4]).

In VRPs involving uncertainty one finds that, after solving a given instance re-

alization involving certain values of the random variables, it becomes necessary to

repeatedly solve many other instance realizations of the same problem, correspond-

ing to different values of the random variables. These other instance realizations are

therefore variations of the instance solved originally. Yet, they may be sufficiently

different from one another to necessitate a reconsideration of the entire problem on
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1.2. Definition of the Probabilistic Traveling Salesman Problem

part of the analyst. The most obvious approach to deal with this type of problems

is the re-optimization strategy. It consists in attempting to optimally solve (or near-

optimally with a good heuristic) every potential instance of the original problem.

This approach, however, has several disadvantages. For example, if the combina-

torial optimization is NP-hard (like in the case of VRPs), one might have to solve

exponentially many instances of a hard problem. Moreover, in many applications

it is necessary to find a solution to each instance realization quickly, but one might

not have the required computing or other resources for doing so.

Rather than reoptimizing every potential instance realization, a completely dif-

ferent strategy consists in finding an a priori solution to the original problem, to be

updated in a simple and fast way after each instance realization is known.

All the intermediate strategies between a priori and re-optimization are called

mixed optimization strategies. These strategies allow for arbitrarily sophisticated

and possibly computationally demanding modifications of one or more a priori so-

lutions.

The above discussion of optimization strategies is general, in the sense that it

applies to any PCOP. In the following, we focus on the particular problem which

has been the subject of our research.

1.2 Definition of the Probabilistic Traveling Sales-

man Problem

Consider a completely connected graph G = (V,E) where V = {i = 1, 2, ..., n} is

the set of vertices, representing a set of customers, and E = {eij} is the set of edges

joining each couple of customers i, j. To each edge eij is associated a cost dij, which

represents the travel distance between customers i and j. A tour is a sequence of

customers which starts and ends at one customer, and visits all the other customers

exactly once. The traveling salesman problem (TSP) consists in finding a tour of

minimal length.

Consider now a problem related to the TSP, but where customers are stochastic.

(TSP with stochastic customers, or TSPSC): suppose that each customer i requires

a visit only with probability pi, independently of the others. If S denotes a set

of customers that require a visit, then every random subset S ⊆ V has a certain

probability to happen. One can see the TSP with stochastic customers as a set of

TSP problems, one for each random set S, each one having a certain probability of

being the actual set of customers to be visited. The goal is to find, for each random

2



1.2. Definition of the Probabilistic Traveling Salesman Problem

Ant Space

Filling

Curve

L−shaped

method

Integer

a−priori, skipping re−optimization

Nearest

Neighbour
Colony

Optimization

optimization

TSPSC

(PTSP)

problem:

strategy:

algorithm: Local Search

Figure 1.1: Logical tree representing the relation among a probabilistic combina-

torial optimization problem (root), solution strategies (first level) and optimization

algorithms (second level). The traveling salesman problem with stochastic cus-

tomers (TSPSC) may be attacked with three types of strategies, a priori, mixed

and re-optimization strategy. The TSPSC, if attacked with the a priori strategy

is called probabilistic traveling salesman problem (PTSP), which is the subject of

this research. Optimization algorithms should be designed according to the chosen

solution strategy.

subset S ⊆ V , a traveling salesman tour over the customers in S in such a way as

to minimize the expected tour length over all random subsets S ⊆ V .

The TSP with stochastic customers models a delivery context where a set of

customers has to be visited on a regular (e.g., daily) basis, but all customers do not

always require a visit. In general, every day only a subset of customers requires a

visit, and the composition of this subset is only known the same day as the required

deliveries. Therefore, every day there is a different traveling salesman problem to

solve, over the subset of customers requiring a visit on that day. The objective, in

this context, is to minimize the average distance traveled over many days of service.

As we have seen in section 1.1, given a PCOP, different strategies may be used to

solve the problem. The definition and choice of a strategy is an important step in the

solution process of the problem, since it influences the design of specific optimiza-

tion algorithms. Figure 1.1 schematically shows different alternative possibilities to

address the TSPSC. In this research, we focus on the a priori solution strategy for

the TSPSC. The problem, when solved by an a priori strategy, is known as prob-

abilistic traveling salesman problem (PTSP, see Figure 1.1). The a priori strategy

consists in the definition of an a priori solution and of an updating method, which,

for the PTSP, are the following. The a priori solution is defined as a tour visiting

the complete set V of n customers. A very simple updating method modifies the a

priori tour in order to have a particular tour for each subset of customers S ⊆ V :

3



1.2. Definition of the Probabilistic Traveling Salesman Problem

for every subset of customers, visit them in the same order as they appear in the a

priori tour, skipping the customers that do not belong to the subset. The strategy

related to this method is also called the ‘skipping strategy’. The objective of the

PTSP is finding an a priori tour of minimum expected length under the skipping

strategy. The concept of a priori solution, and the updating of the a priori solution

when only a subset of customers require a visit, is exemplified in Figure 1.2, for a

PTSP instance with 10 customers.

The PTSP approach models a delivery context where re-optimizing vehicle routes

from scratch every day is unfeasible. In this context the delivery man would follow

a standard route (i.e., an a priori tour), leaving out customers that on that day do

not require a visit. The standard route of least expected length corresponds to the

optimal PTSP solution.

1.2.1 Notation and objective function

Let us consider an instance of the PTSP. We have a completely connected graph

whose nodes form a set V = {i = 1, 2, ..., n} of customers. Each customer has a

probability pi of requiring a visit, independently of the others. A solution for this

instance is an a priori tour λ over all nodes in V , to which is associated the expected

length objective function

E[L(λ)] =
∑

S⊆V

p(S)L(λ|S) . (1.1)

In the above expression, S is a subset of the set of nodes V , L(λ|S) is the distance

required to visit the subset of customers S (in the same order as they appear in the

a priori tour), and p(S) is the probability for the subset of customers S to require a

visit:

p(S) =
∏

i∈S

pi

∏

i∈V −S

(1− pi) . (1.2)

The evaluation of expression (1.1) for the objective function requires a sum over a

number of terms which is exponential in n. Jaillet [24, 25] showed that the evaluation

of the PTSP objective function (eq.(1.1)) can be done in O(n2). In fact, let us

consider (without loss of generality) an a priori tour λ = (1, 2, . . . , n); then its

4



1.2. Definition of the Probabilistic Traveling Salesman Problem

(a) Example of two a priori tours

(b) The two tours resulting from the a priori tours of Fig.1.2(a)

when customers 1 and 8 do not require a visit

Figure 1.2: Graphical examples of a PTSP instance and two a piori solutions.

5



1.3. Brief literature review

expected length is

E[L(λ)] =
n

∑

i=1

n
∑

j=i+1

dijpipj

j−1
∏

k=i+1

(1− pk)+

n
∑

i=1

i−1
∑

j=1

dijpipj

n
∏

k=i+1

(1− pk)

j−1
∏

l=1

(1− pl) . (1.3)

This expression is derived by looking at the probability for each arc of the complete

graph to be used, that is, when the a priori tour is adapted by skipping a set of

customers which do not require a visit (see, for instance, Figure 1.2). For instance,

an arc (i, j) is actually used only when customers i and j do require a visit , while

customers i+1, i+ 2, ..., j do not require a visit. This event occurs with probability

pipj

∏j−1
k=i+1(1− pk) (when j ≤ n).

1.3 Brief literature review

The PTPS was introduced in Jaillet’s PhD thesis [24]. This problem is an NP-hard

[4, 1], and instances only up to 50 customers have been solved to optimality [27].

This is why a lot of effort has been done in the literature in designing heuristic algo-

rithms for finding good suboptimal solutions for the PTSP. Heuristics using a nearest

neighbor criterion or savings criterion were implemented and tested by Jézéquel [26]

and by Rossi-Gavioli [30]. Later, Bertsimas-Jaillet-Odoni [4] and Bertsimas-Howell

[3] have further investigated some of the properties of the PTSP and have proposed

some heuristics for the PTSP. These include tour construction heuristics (space fill-

ing curves and radial sort), and tour improvement heuristics (probabilistic 2-opt

edge interchange local search and probabilistic 1-shift local search). Most of the

heuristics proposed are an adaptation of a TSP heuristic to the PTSP, or even the

TSP heuristic itself, which in some cases gives good PTSP solutions. Recently,

Branke-Guntsch [10] have applied ant colony optimization algorithms to the PTSP,

extending the results of this research thesis and using an approximated objective

function to speed up the computation.

1.4 Outline of the thesis

Given the analogies between the TSP and the PTSP, it is reasonable to expect that,

like in the TSP, a good heuristic for the problem is composed by two components.

6



1.4. Outline of the thesis

The first component is a solution construction algorithm, which finds an initial

solution. The second component is a local search algorithm, which tries to improve as

much as possible the starting solution. A good heuristic algorithm usually integrates

these two components, and repeats the sequence construction-improvement of a

solution several times, until a good solution or some other termination criterion is not

satisfied. In this thesis we propose new (for the PTSP) computational approaches

for both solution construction and local search algorithms.

The thesis is organized as follows. In section 2 we address the study of a solution

construction algorithm for the PTSP, in particular, we investigate the potentialities

of ant colony optimization (ACO) algorithms for the PTSP. This choice is motivated

by the observation that, for the TSP, when adding to ACO algorithms local search

procedures based on 3-opt [28], the quality of the results obtained [20, 17] was close to

that obtainable by other state-of-the-art methods. Given the analogies between the

TSP and the PTSP, it is reasonable to expect good performance of ACO algorithms

with local search also on the PTSP. In section 3 we address the issue of local search

for the PTSP, by showing that the current algorithms in the literature, 2-p-opt and

1-shift [4, 3], are inadequate. This results pose the question whether a new fast

local search operator for the PTSP can be derived. One possibility to design fast

local search is to use an approximation of the objective function, which is faster to

be computed than the exact one. Two types of approximations are proposed and

analyzed in section 4. The three appendices of this thesis contain additional details

about the local search algorithms we addressed in section 3.

7



Chapter 2

Solution construction algorithms

for the PTSP

This chapter explores the possibility of using the Ant Colony Optimization meta-

heuristic (ACO) for solving the PTSP. For the TSP, when adding to ACO algorithms

local search procedures based on 3-opt [28], the quality of the results obtained [20, 17]

was close to that obtainable by other state-of-the-art methods. Given the analogies

between the TSP and the PTSP, it is reasonable to expect good performance of

ACO algorithms with local search also on the PTSP.

Section 2.1 introduces the ACO meta-heuristic as solution framework for opti-

mization problems in general. The second section (section 2.2) describes the par-

ticular implementations of ACO we chose for solving the PTSP, that is, ACS and

pACS. The last section reports the experimental analysis of ACS and pACS, and

comparisons with other solution construction algorithms in the PTPS literature.

2.1 The ACO metaheuristic

ACO is a metaheuristic approach proposed by Dorigo [13] and later by Dorigo et

al.[18]. A complete description and review of ACO applications may be found in

[15, 16, 14]. Here, we follow the description of ACO given in [14].

The inspiring source of ACO is the foraging behavior of real ants. This behavior,

described by Deneubourg et al in [12], enables them to find shortest paths between

food sources and their nest. While walking from food sources to the nest and

vice versa, ants deposit a substance called pheromone on the ground. When they

decide about a direction to go they choose, with higher probability, paths marked by

strong pheromone concentrations. This basic behavior is the basis for a cooperative

8



2.1. The ACO metaheuristic

procedure ACO metaheuristic for combinatorial optimization problems

while (termination condition not met) do

schedule activities

ants activity()

pheromone evaporation()

daemon actions()

end schedule activities

end while

end ACO metaheuristic

Figure 2.1: High level pseudocode for the ACO metaheuristic.

interaction which leads to the emergence of shortest paths. In fact, if a path is

shorter than the others, an ant that luckily finds it will walk through satisfying it

in a shorter time than the time required by the other ants on longer paths. This

implies that the shorter path may be marked by pheromone earlier than other paths,

and it is therefore preferred, in probability, by other ants.

In order for a problem to be solvable by ACO, it must be modeled in the following

way. Given a graph G = (C,L,W ), a feasible solution is a path on this graph,

satisfying a set Ω of constraints. The optimal solution is a minimum cost path (for

minimization problems) over G. The graph G = (C,L,W ) and the constraints Ω

are defined as follows: C = {c1, c2, . . . cn} is a finite set of possible components,

L = {lcicj
|ci, cj ∈ C} a finite set of possible connections among the elements of C,

W a set of weights associated either to the components C or to the connections L

or both, and Ω(C,L, θ) is a finite set of constraints assigned over the elements of C

and L (θ indicates that the constraints can change over time). For example, in the

TSP C is the set of customers, L is the set of edges connecting the customers, W the

length of the edges in L, and the constraints Ω impose that in any feasible solution

each customer appears once and only once. A feasible path over G is solution ψ

and a minimum cost path is an optimal solution and it is indicated by ψ∗; f(ψ) is

the cost of solution ψ, and f(ψ∗) is the cost of the optimal solution. In the TSP

for example, a solution ψ is an Hamiltonian circuit and ψ∗ the shortest feasible

Hamiltonian circuit.

In ACO algorithms a colony of artificial ants iteratively and stochastically con-

structs solutions for the problem defined by G and Ω using artificial pheromone

trails and heuristic information. Most ACO algorithms for combinatorial optimiza-

tion problems follow the algorithmic scheme given in Fig. 2.1.

During the procedure ants activities() each ant k starts with a partial solution

9



2.2. Solving the PTSP by the ACO metaheuristics

ψk(1) consisting of one of the components in C, and adds components to ψk(h) till a

complete feasible solution ψ is built, where h is the step counter. Components to be

added to ψk(h) are stochastically chosen in an appropriately defined neighborhood of

the last component added to ψk(h). The ants stochastic choice is made by applying

a stochastic local decision policy that makes use of local information available at

the visited components. Once an ant has built a solution, or while the solution

is being built, the ant evaluates the (partial) solution and adds pheromone on the

components and/or connections it used. Pheromone is added in such a way to give

information about the quality of the (partial) solution. This pheromone information

will direct the search of the ants in the following iterations.

Besides ants’ activity, an ACO algorithm includes a pheromone evaporation()

and an optional daemon action() procedure. Pheromone evaporation is the process

by which the pheromone trail automatically decreases over time. Evaporation allows

the exploration of new solutions, and should avoid early convergence of the ACO

algorithm to a poor solution. “Deamon” actions can be used to implement central-

ized actions which cannot be performed by single ants. Examples are the activation

of a local optimization procedure, or the collection of global information that can be

used to decide whether it is useful or not to deposit additional pheromone to bias the

search process from a non-local perspective. For instance, the deamon can observe

the path found by each ant in the colony and choose to deposit extra pheromone on

the edges used by the ant that made the shortest path. In most applications to com-

binatorial optimization problems the ant activity(), pheromone evaporation() and

deamon actions() procedures are scheduled sequentially. Nevertheless, the sched-

ule activity construct of the ACO metaheuristic (Fig.2.1) leaves the decision on

how these three procedures must be synchronized to the user.

2.2 Solving the PTSP by the ACO metaheuristics

We apply to the PTSP the Ant Colony System (ACS) [20, 17], a particular ACO

algorithm which was successfully applied to the TSP. We also consider a modification

of ACS which explicitly takes into account the PTSP objective function (we call

this algorithm probabilistic ACS, that is, pACS). Another ACO approach to the

PTSP has been recently proposed by Branke et al. [10], where an approximate

objective function and the use of a new heuristic guidance scheme seem to give

promising results. In the following, we describe how ACS and pACS construct a

solution (procedure ant activity() of Fig.2.1) and how they update pheromone trails

(procedure pheromone evaporation() and deamon action() of Fig.2.1).

10



2.2. Solving the PTSP by the ACO metaheuristics

2.2.1 Solution construction in ACS and pACS

A feasible solution for an n-city PTSP is an a priori tour which visits all customers.

Initially m ants are positioned on their starting cities chosen according to some

initialization rule (e.g., randomly). Then, the solution construction phase starts

(procedure ant activity() in Fig.2.1). Each ant progressively builds a tour by choos-

ing the next customer to move to on the basis of two types of information, the

pheromone τ and the heuristic information η. To each arc joining two customers

i, j it is associated a varying quantity of pheromone τij , and the heuristic value

ηij = 1/dij, which is the inverse of the distance between i and j. When an ant k is

on city i, the next city is chosen as follows.

• With probability q0, a city j that maximizes τij · ηβ
ij is chosen in the set Jk(i)

of the cities not yet visited by ant k. Here, β is a parameter which determines

the influence of the heuristic information.

• With probability 1− q0, a city j is chosen randomly with a probability given

by

pk(i, j) =







τij ·η
β
ij

P

r∈Jk(i) τir ·η
β
ir

, if j ∈ Jk(i)

0, otherwise.
(2.1)

This decision rule has a double function: with probability q0 the decision rule ex-

ploits the knowledge available about the problem, that is, the heuristic knowledge

about distances between cities and the learned knowledge memorized in the form

of pheromone trails, while with probability 1− q0 it operates a biased exploration.

Tuning q0 allows to modulate the degree of exploration and to choose whether to

concentrate the activity of the system on the best solutions so far or to explore the

search space.

2.2.2 Pheromone trails update in ACS and pACS

Pheromone trails are updated in two stages, the first is part of the ant activity(),

while the second is part of the deamon actions() (Fig.2.1). In the first stage of

pheromone update, each ant, after it has chosen the next city to move to, applies

the following local update rule:

τij ← (1− ρ) · τij + ρ · τ0, (2.2)

where ρ, 0 < ρ ≤ 1 is a parameter, and τ0 is the same as the initial value of

pheromone trails. The effect of the local updating rule is to make less desirable an

11



2.2. Solving the PTSP by the ACO metaheuristics

arc which has already been chosen by an ant, so that the exploration of different

tours is favored during one iteration of the algorithm.

The second stage of pheromone update occurs when all ants have terminated

their tour. Pheromone is only modified on those arcs belonging to the best tour

since the beginning of the trial (best-so-far tour), by the following global updating

rule

τij ← (1− α) · τij + α ·∆τij , (2.3)

where

∆τij = ObjectiveFunc−1
best (2.4)

with 0 < α ≤ 1 being the pheromone decay parameter, and ObjectiveFuncbest is

the value of the objective function of the best-so-far tour. This pheromone updating

rule is a “deamon” action, since ants do not have the knowledge about the best-so-

far tour. ACS and pACS only differ by the use of this “deamon” action. In fact, in

ACS the objective function is the a priori tour length, while in pACS the objective

function is the PTSP expected length of the a priori tour. In the next section we

discuss in more detail the differences between ACS and pACS.

2.2.3 Discussion of differences between ACS and pACS

Differences between ACS and pACS are due to the fact that the two algorithms

exploit different objective functions in the pheromone updating phase. The global

updating rule of equations (2.3) and (2.4) implies two differences in the way ACS

and pACS explore the search space. The first and most important difference is the

set of arcs on which pheromone is globally increased, which is in general different

in ACS and pACS. In fact, the ‘best tour’ in eq. (2.4) is relative to the objective

function. Therefore in ACS the search will be biased toward the shortest tour, while

in pACS it will be biased toward the tour of minimum expected length. The second

difference between ACS and pACS is in the quantity ∆τij by which pheromone is

increased on the selected arcs. This aspect is less important than the first, because

ACO in general is more sensitive to the difference of pheromone among arcs than

to its absolute value.

The length of an a priori tour (ACS objective function) may be considered as

an O(n) approximation to the O(n2) expected length (pACS objective function).

In general, the worse the approximation, the worse will be the solution quality of

ACS versus pACS. The quality of the approximation depends on the set of customer

probabilities pi. In the homogeneous PTSP, where customer probability is p for all

12
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customers, it is easy to see the relation between the two objective functions. For a

given a priori tour Lλ we have

∆ = Lλ − E[Lλ] = (1− p2)Lλ − p2

n−2
∑

r=1

(1− p)rL
(r)
λ , (2.5)

which implies

∆ ∼ O(q · Lλ) (2.6)

for (1− p) = q → 0. Therefore the higher the probability, the better is the a priori

tour length Lλ as an approximation for the expected tour length E[Lλ].

In the heterogeneous PTSP, it is not easy to see the relation between the two

objective functions, since each arc of the a priori tour Lλ is multiplied by a different

probabilistic weight (see eq.(1.3)), and a term with Lλ cannot be isolated in the

expression of E[Lλ], as in the homogeneous case.

ACS and pACS also differ in time complexity. In both algorithms one iteration

(i.e., one cycle through the while condition of Fig. 2.1) is O(n2) [18], but the constant

of proportionality is bigger in pACS than in ACS. To see this one should consider

the procedure UpdateTrail of Fig. 2.1, where the best-so-far tour must be evaluated

in order to choose the arcs on which pheromone is to be updated. The evaluation

of the best-so-far tour requires O(n) time in ACS and O(n2) time in pACS. ACS is

thus faster and always performs more iterations than pACS for a fixed CPU time.

2.3 Experimental tests

2.3.1 Homogeneous PTSP Instances

Homogeneous PTSP instances were generated starting from TSP instances and as-

signing to each customer a probability p of requiring a visit. TSP instances were

taken from two benchmarks. The first is the TSPLIB [32], from which we considered

instances with a number of customers between 50 and 200. The second benchmark

is a group of instances where customers are randomly distributed on the square

[0, 106]. Both uniform and clustered distributions where considered in this case, and

the number of cities varied between 50 and 350. For generating random instances

we used the Instance Generator Code of the 8th DIMACS Implementation Challenge

at http://research.att.com/dsj/chtsp/download.html.

13



2.3. Experimental tests

2.3.2 Computational environment and ACS parameters

Experiments were run on a Pentium Xeon, 1GB of RAM, 1.7 GHz processor. In

order to asses the relative performance of ACS versus pACS independently from the

details of the settings, the two algorithms were run with the same parameters. We

chose the same settings which yielded good performance in earlier studies with ACS

on the TSP [17]: m = 10, β = 2, q0 = 0.98, α = ρ = 0.1 and τ0 = 1/(n · Obj ),

where n is the number of customers and Obj is the value of the objective function

evaluated with the nearest neighbor heuristic [17].

The stopping criterion used in both algorithms is CPU time in seconds, chosen

according to the relation stoptime = k · n2, with k = 0.01. This value of k lets

ACS perform at least 17 · 103 iterations on problems with up to 100 customers, and

at least 15 · 103 iterations on problems with more than 100 customers. For each

instance of the PTSP, we ran 5 independent runs of the algorithms.

2.3.3 Comparison between pACS and ACS

For each TSP instance tested, nine experiments were done varying the value of the

customer probability p from 0.1 to 0.9 with a 0.1 interval. Fig. 2.2 summarizes

results obtained on 21 symmetric PTSP instances, one third of the instances were

taken from the TSPLIB, the others were random instances (half of them uniform

and half clustered). The figure shows the relative performance of pACS versus ACS,

averaged over the tested instances. A typical result for a single instance is reported

in Fig. 2.3.

As it was reasonable to expect, for small enough probabilities pACS outperforms

ACS. In all problems we tested though, there is a range of probabilities [p0, 1] for

which ACS outperforms pACS. The critical probability p0 at which this happens

depends on the problem.

The reason why pACS does not always perform better than ACS is clear if we

consider two aspects: the complexity (speed) of ACS versus pACS, and the goodness

of the PTSP objective function approximation as p approaches 1. When p is near

to 1, a good solution to the TSP is also a good solution to the PTSP; therefore,

ACS, which performs more iterations than pACS, has a better chance to find a good

solution.
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Figure 2.2: Relative performance of pACS versus ACS for the homogeneous PTSP.

The vertical axis represents (E[Lλ(pACS)]− E[Lλ(ACS)])/E[Lλ(pACS)]. On the

horizontal axis there is the customer probability p. Each point of the graph is

an average over 21 symmetric homogeneous PTSP instances. Error bars represent

average deviation, defined as
∑n

i=1 |xi− <x> |/n, with n = 21. Note that for

p = 1 ACS outperforms pACS, since for a fixed CPU stopping time ACS makes

more iterations.
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Figure 2.3: Relative performance of pACS versus ACS for the eil76.tsp instance

of the TSPLIB. Error bars represent the average deviation of the result over 5

independent runs of the algorithms.
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2.3.4 Comparison between pACS and other tour construc-

tion heuristics

We compared pACS with two simple tour construction heuristics, the radial sort

and the random best heuristic. The random best heuristic generates random tours

and selects the one with the shortest expected length. Random best and pACS were

run on the same machine (a Pentium Xeon, 1GB of RAM, 1.7 GHz processor) for

the same CPU time (stoptime = k · n2 CPU seconds, with k = 0.01). For pACS

we chose the same settings which yielded good performance in earlier studies with

ACS on the TSP [17]: m = 10, β = 2, q0 = 0.98, α = ρ = 0.1 and τ0 = 1/(n ·Obj ),

where n is the number of customers and Obj is the value of the objective function

evaluated with the nearest neighbor heuristic [17]. For each experiment, we run 5

independent trials of pACS.

Radial sort builds a tour by sorting customers by angle with respect to the ‘center

of mass’ of the customer spatial distribution. The ‘center of mass’ coordinates have

been computed here by averaging over the customers coordinates. The a priori

tour which radial sort builds does not depend on the customer probabilities, and a

unique tour is thus used as a priori tour for all probabilities of the PTSP. Even if very

simple, this heuristic is interesting for the PTSP, because of the conjecture [3] that

the tour generated by radial sort is near optimal for small customer probabilities.

Moreover, the combination of radial sort and the 1-shift local search have shown

to be the best combination of tour construction and tour improvement heuristics

in [3]. A disadvantage of radial sort is that it is only applicable to those PTSP

instances where the coordinates of customers are known. In general, this is not the

case for asymmetric PTSP instances, where the arc weights may have, for instance,

the meaning of travel times.

The average relative performance of pACS with respect to radial sort and random

best heuristics is shown in Fig. 2.4. The first observation is that pACS always

performs better than radial sort and random best, for each probability and for

each type of instance, while random best is always very poor both with respect to

pACS and to radial sort. Secondly, radial sort and pACS are equivalent for small

probabilities (prob = 0.1). This results supports the conjecture of near-optimality

of radial sorted tours for small probability, and it is interesting that this also applies

to non uniform instances, such as TSPLIB and random clustered instances.
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Figure 2.4: Relative performance of pACS with respect to radial sort and random

best heuristics. On the horizontal axis there is the customers probability. Each

point is an average over 21 symmetric PTSP instances. Error bars represent average

deviation, defined as
∑n

i=1 |xi− <x> |/n, with n = 21.

2.3.5 Absolute performance

For the PTSP instances we tested, the optimal solution is not known. Therefore, an

absolute performance evaluation of a PTSP heuristic can only be done against some

lower bound of the optimal PTSP solution, when this is available and tight enough.

A lower bound to the optimal solution would give us an upper bound to the error

performed by the pACS heuristic with respect to the PTSP optimum. In fact, if

LB is the lower bound and E[Lλ∗ ] is the optimal solution value, then by definition

we have

E[Lλ∗ ] ≥ LB . (2.7)

If the solution value of pACS is E[Lλ], then the following inequality holds for the

relative error
E[Lλ]− E[Lλ∗ ]

E[Lλ∗ ]
≤ E[Lλ]− LB

LB
. (2.8)

In the following we apply two different techniques for evaluating a lower bound to

the optimal PTSP solution (and thus for evaluating the absolute performance of

pACS). In the first case a theoretical lower bound is used while in the second case

the lower bound is estimated by using Monte Carlo sampling.
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Figure 2.5: Upper bound of relative percent error of pACS for 5 TSPLIB instances.

Note that, for decreasing customers probability, the upper bound to the relative

error becomes bigger at least partially because the lower bound to the optimum

becomes less tight.

Theoretical lower bound to the PTSP optimum.

For the homogeneous PTSP and for instances where the optimal length LTSP of the

corresponding TSP is known, it is possible to use the following lower bound to the

optimal expected length, as was proved in [3]

LB = pLTSP (1− (1− p)n−1) . (2.9)

If we put this lower bound into the right side of equation (2.8), we obtain an upper

bound of the relative error of pACS. Fig. 2.5 shows the absolute performance of

pACS, evaluated with this method, for a few TSPLIB instances. From the figure

we see that, for example, pACS finds a solution within 15% of the optimum for a

homogeneous PTSP with customers probability 0.9. This technique for evaluating

the absolute performance of a PTSP heuristic is rigorous, but has the limitation

that the lower bound for small probabilities is not tight, so that it produces big

overestimates of the error. The following technique is more flexible and gives better

estimates of the error, even if, as we will see, it also has some limitations.
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Estimated a posteriori optimum.

The expected tour length under re optimization is defined as the average of the

lengths of the optimal TSP solution to each subset of customers, and it is also called

a posteriori optimum, since it is the value obtained by solving a TSP problem once

the set of customers requiring a visit on a certain day is known. The a posteriori

optimum is a lower bound on the optimal PTSP solution, because the length induced

by the PTSP a priori tour on a subset of customers cannot be smaller than the

optimal TSP solutions for that subset of customers.

The exact evaluation of the a posteriori optimum is impractical, because it re-

quires the solution of 2n instances of the TSP to optimality. The technique proposed

in [3], consists in making two approximations. First, only a random sample of the

2n subsets of customers is selected, by means of a stratified Monte Carlo sampling

(see [3] for a detailed description). Second, each random sample of customers S is

solved to near optimality as a TSP by choosing the best of |S|/γ random tours (γ

is a parameter) and applying to it the 3-opt local search.

This technique can be applied easily only to small instances (say, up to 100 cus-

tomers). Otherwise, care must be taken in order to avoid overflow when generating

the stratified samples from a set of 2n subsets of customers. We report average

results for 10 random uniform and clustered instances in Fig. 2.6. In our tests we

used γ = 0.5 and about 400 samples. From the figure we see that pACS is within

8% of the optimum when applied to uniform random instances, while it is within

14% of the optimum if the instances are clustered.

2.3.6 Conclusions

In this chapter we investigated the potentialities of pACS, a particular ACO al-

gorithm, for the homogeneous PTSP. We showed that the pACS algorithm is a

promising tour construction heuristic for the PTSP. We compared pACS with other

tour construction heuristics and we provided an estimation of the absolute error

with respect to the optimal PTSP solution for some instances. We also compared

pACS to ACS, and we showed that for customers probability close to 1, the ACS

heuristic is a better alternative than pACS.

In this chapter the ACO metaheuristic was applied without a local search for im-

proving the a priori tour. The study of an efficient local search for the PTSP, which

should greatly improve the solution quality of pACS and of any tour construction

heuristic in general, is an important issue, and it is analyzed in chapter 3.
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Figure 2.6: Relative percent error with respect to the estimated a posteriori optimum

for random uniform instances (U50) and for random clustered instances (C50) of 50

customers. Each point is an average over 10 random instances.
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Chapter 3

The issue of local search for the

PTSP

In order for a metaheuristic to achieve state-of-the art results in an optimization

problem, the local search or solution improvement part of the algorithm is very

important.

In the literature there has been one major attempt to apply TSP-inspired local

search algorithms to the homogeneous PTSP: the 2-p-opt and 1-shift algorithms

introduced by Bertsimas [1, 3], who proposed for these two algorithms fast evaluation

operators, which compute the cost evaluations of the entire neighborhood of a tour

in O(n2) time. Unfortunately, derivations for these expressions were not given in [3],

and it has since come to our attention that they do not correctly calculate the change

in expected tour length. This fact has two consequences. First, results published

in several papers, which used the 2-p-opt and 1-shift local search, should be re-

examined because they may be wrong. Second, it poses the question whether a new

fast local search operator for the PTSP can be derived. In fact, using the O(n2)

full evaluation of the objective function for the cost of a move gives an O(n4) local

search algorithm (since the neighborhood size of 1-shift and 2-p-opt is O(n2)), so

any improvement on this would be most useful.

This chapter is organized as follows. In section 3.1 we describe some basic con-

cepts about local search algorithms in general. Section 3.2 highlights the difficulties

to be dealt with when trying to apply TSP-inspired local search algorithms to the

PTSP. In section 3.3 we describe the 2-p-opt move and give the delta evaluation

expressions proposed in [3], followed by a proof of their incorrectness. Section 3.4

follows a similar course but with respect to the 1-shift operator. While our focus

here is on the expressions published in [3], we note that the expressions given in
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3.1. Local search algorithms

Bertsimas’ PhD thesis [1] are also incorrect and given without derivation. Since

the 2-p-opt expression given in [1] differs slightly from that in [3], we include a sep-

arate appendix (appendix A) to address this expression. Two further appendices

(appendix B and C) present a full calculation of the cost of local search moves for

a simple PTSP tour, when the 2-p-opt [3] and 1-shift operators are applied, re-

spectively. The calculations demonstrate, concretely, the different results obtained

using Bertsimas’ delta expressions, compared with the full evaluation. These calcu-

lations were generated by a computer program written in C which is also available

at http://www.idsia.ch/∼leo/.

3.1 Local search algorithms

Local search is one of the most effective heuristics in many combinatorial optimiza-

tion problems [29], and it is based on a very simple method: trial and error. Local

search algorithms repeatedly perform simple modifications of a solution (moves),

accepting a move only when the cost of the move is negative. More formally, given

an instance (F, c) of an optimization problem, where F is the set of feasible solutions

and c is the cost mapping, we choose a neighborhood

N : F → 2F (3.1)

which is searched at point t ∈ F for improvements by the procedure

improve(t) =

{

any s ∈ N(t) with c(s) < c(t), if such an s exists

“no”, otherwise.
(3.2)

The general local search procedure is shown in Fig.3.1. We start at some initial

feasible solution t ∈ F and use the procedure improve(t) to search for a better

solution in its neighborhood. So long as an improved solution exists, we adopt it

and repeat the neighborhood search from the new solution; when we reach a local

optimum we stop. A local optimum is a solution t∗ ∈ F such that c(t∗) ≤ c(t), for

all neighbor solutions t ∈ N(t∗).

To apply the local search approach to a problem, one should make a number of

choices. First, one should obtain an initial feasible solution. Sometimes the initial

solution is obtained by using some heuristic algorithm, or even a random choice

could be useful. Next, one should choose a ‘good’ neighborhood for the problem

at hand, and a method for searching it. This choice is usually guided by intuition.

In general, there is a trade-off between large and small neighborhoods. A larger
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3.2. TSP-inspired local search algorithms

procedure local search

t:= some initial starting solution in F

while (improve(t) 6= ‘no’) do

t := improve(t)

end while

end local search

Figure 3.1: High level pseudo-code for the local search.

neighborhood might provide better local optima, but will take more time to search.

Is it better to generate fewer ‘stronger’ local optima or more ‘weaker’ ones? There

is no general rule to answer this question. Another aspect related to this trade-off is

wether to search the all neighborhood for the best neighbor of the current solution

(best improvement local search), or to be happy with the first improving solution

(first improvement local search), like in the local search sketched in Fig.3.1.

More aspects related to the implementation of a good local search and applica-

tions to a diversity of problems may be found in [29]. In the following, we focus

on the main difficulties to be overcome when designing a local search for the PTSP

problem.

3.2 TSP-inspired local search algorithms

Because of the analogy between the TSP and the PTSP, it may seem reasonable to

apply TSP local search algorithms to the PTSP. Nevertheless, a local search that is

efficient for the TSP may be inefficient when applied to the PTSP. In this section, we

will analyze some possible advantages and disadvantages of applying TSP-inspired

local search algorithms to the PTSP.

The run time efficiency of a local search depends, among many factors, on three

aspects:

• the time to evaluate a neighbor solution in order to check if it is an improving

one,

• the time to find an improving solution (or to verify that none exists),

• the time to perform the change from the present to the new improving solution.

The last point only depends on the dimension of the neighborhood and the second

point only depends on the data structure representing a solution, which are same
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for the TSP and for the PTSP. In fact, an a priori solution to the PTSP may also

represent a solution to the corresponding TSP, that is, to the problem obtained only

by considering the distance matrix of the PTSP and disregarding the customers

probabilities (see the definition of the PTSP in section1). Therefore, if a TSP local

search perform these two operations efficiently, the same is true for the PTSP.

The critical point is the first one, that is, the time to evaluate a neighbor solution.

In fact, in successful TSP local searches this process typically requires Θ(1) time,

while in the PTSP it is not trivial to find such an efficient evaluation, due to the

fact that the PTSP objective function is much more complex than the TSP one.

Let us reconsider the form of the objective function for the homogeneous PTSP.

Given an a priori tour λ = λ(1), λ(2), ..., λ(n), its expected length (that is, the

objective function), is computed in O(n2) by the following expression [24]:

E[L(λ)] =
n

∑

j=1

n−1
∑

r=1

p2(1− p)r−1d(λ(j), λ(j + r)). (3.3)

Throughout the thesis we use the convention that, ∀i ∈ {1, 2, ..., n} and ∀r ∈
{1, 2, ..., n− 1},

λ(i± r) =

{

λ((i± r)modn), if i± r 6= 0 and if i± r 6= n

λ(n), otherwise .
(3.4)

We recall that the meaning of equation (3.3) is as follows. In each term of the sum

the distance between the jth city λ(j) and the (j+ r)th city λ(j+ r) is weighted by

the probability that the two nodes require a visit (p2) while the r−1 nodes between

them do not require a visit ((1− p)r−1). In other words, each arc (λ(j), λ(j + r)) is

weighted by a probability coefficient p2(1− p)r−1.

The 2-p-opt and 1-shift algorithms introduced by Bertsimas [1, 3], use fast eval-

uation operators, which compute the cost evaluations of the entire neighborhood of

a tour in O(n2) time. Unfortunately, as we will show in the next sections, they do

not correctly calculate the change in expected tour length.

3.3 The 2-p-opt

The 2-p-opt local search was introduced by Bertsimas in [1] and later published by

this journal in an article by Bertsimas and Howell [3]. In this chapter we refer to [3].

Given an a priori tour λ, its 2-p-opt neighborhood is the set of tours obtained by

reversing a section of λ (that is, a set of consecutive nodes) and adjusting the arcs

adjacent to the reversed section, as for example in Figure 3.2.
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Figure 3.2: Tour λ = 1, 2, ..., i, i+1, ..., j, ..., n (left) and tour λ̃ = 1, 2, ..., i−1, j, j−
1, ..., i, j + 1, ..., n (right) obtained from λ by reversing the section (i, i + 1, ..., j),

with n = 10, i = 3, j = 7.

3.3.1 Expressions proposed in [3] for the cost of a 2-p-opt

move

Consider, without loss of generality, a tour λ = 1, 2, ..., i, i+ 1, ..., j, ..., n and a tour

λ̃ = 1, 2, ..., j, j − 1, ..., i, j + 1, ..., n obtained by reversing a section (i, i+ 1, ..., j) of

λ. Let ∆Ei,j denote the change in the expected length E[L(λ̃)] − E[L(λ)]. In the

following we reproduce verbatim the expressions given in [3] for the computation of

∆Ei,j . Let j = i + k. Given the two dimensional matrices of partial results A and

B:

Ai,k =
n−1
∑

r=k

(1−p)r−1d(i, i+r) and Bi,k =
n−1
∑

r=k

(1−p)r−1d(i−r, i), 1 ≤ k ≤ n−1, 1 ≤ i ≤ n,

(3.5)

∆Ei,j is computed by means of the following recursive equations. Letting q = 1− p,
for k = 1,

∆Ei,i+1 = p3[q−1Ai,2 − (Bi,1 − Bi,n−1)− (Ai+1,1 −Ai+1,n−1) + q−1Bi+1,2], (3.6)

and for k ≥ 2,

∆Ei,j = ∆Ei+1,j +p2[(q−k − 1)Ai,k+1 + (qk − 1)(Bi,1 −Bi,n−k)

+(qk − 1)(Aj,1 − Aj,n−k) + (q−k − 1)Bj,k+1

+(qn−k − 1)(Ai,1 −Ai,k) + (qk−n − 1)Bi,n−k+1

+(qk−n − 1)Aj,n−k+1 + (qn−k − 1)(Bj,1 − Bj,k)].

(3.7)

The 2-p-opt local search proposed proceeds in two phases. The first phase consists

of computing ∆Ei,i+1 for every value of i, and at the same time accumulating the
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5 = i+k, k = 2  

1
2

8

9

7

4 = i+1 

6 = i+3

3 = i   

n=10

Figure 3.3: Tour λ̃, with λ̃(i) = i+2, λ̃(i+1) = i+1, λ̃(i+2) = i, and λ̃(i+3) = i+3.

The dashed line represents arcs (i+ 1, i+ 3) and (i+ 3, i+ 1).

two matrices of partial results A and B. Note that since the computation of ∆Ei,i+1

only involves two rows of A and B, one can proceed to the next pair of nodes without

recomputing each entire matrix. Each time a negative ∆Ei,i+1 is encountered, one

immediately switches the two nodes involved. The n calculations of phase one

require O(n) time apiece, or O(n2) time in all. At the end of this phase, an a priori

tour is reached for which every ∆Ei,i+1 is positive, and the matrices A and B are

complete and correct for that tour. The second phase of the local search consists of

computing ∆Ei,j recursively by means of equation (3.7). Since each ∆Ei,j in phase

two is computed in O(1) time, this phase, and thus the entire 2-p-opt checking

sequence, is performed in O(n2).

Note that this procedure would be much faster than using the full evaluation

function (equation (3.3)) for the cost of each 2-p-opt move. In fact, the full eval-

uation would require O(n2) time for the cost calculation of each move, and O(n4)

time for the entire 2-p-opt checking sequence (since the neighborhood size of 2-p-opt

is O(n2)). Unfortunately, as we show in the following section, the delta evaluation

expressed by equation (3.7) is not correct.

3.3.2 Incorrectness of the proposed 2-p-opt recursive equa-

tion from [3]

Theorem 1 Given an instance of the homogeneous PTSP, an a priori tour λ =

(1, 2, ..., i, i+ 1, ..., i+ k, ..., n), and an a priori tour λ̃ = (1, 2, ..., i− 1, i+ k, i+ k −
1, ..., i, i+ k + 1, ..., n), then E[L(λ̃)]−E[L(λ)] 6= ∆Ei,i+k for k ≥ 2.
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3.3. The 2-p-opt

The proof is by example. Let k = 2, then, according to (3.7)

∆Ei,i+2 = ∆Ei+1,i+2 +p2[(q−2 − 1)Ai,3 + (q2 − 1)(Bi,1 −Bi,n−2)

+(q2 − 1)(Ai+2,1 − Ai+2,n−2) + (q−2 − 1)Bi+2,3

+(qn−2 − 1)(Ai,1 − Ai,2) + (q2−n − 1)Bi,n−1

+(q2−n − 1)Ai+2,n−1 + (qn−2 − 1)(Bi+2,1 −Bi+2,2)].

(3.8)

We show that in this expression there are arcs with an incorrect probability coeffi-

cient. Consider for instance arc (i+ 1, i+ 3) and arc (i+ 3, i+ 1). We examine the

probability coefficients of these arcs, as computed by the recursive equation (3.8).

The terms inside square brackets of equation (3.8) only take into account arcs join-

ing respectively i and i+ 2 with other nodes. Therefore, the arcs (i+ 1, i+ 3) and

(i+ 3, i+ 1) are only computed in the first term of equation (3.8):

∆Ei+1,i+2 = p3[q−1Ai+1,2−(Bi+1,1−Bi+1,n−1)−(Ai+2,1−Ai+2,n−1)+q
−1Bi+2,2]. (3.9)

In the above expression, arc (i+ 1, i+ 3) is computed by the term corresponding to

r = 2 of Ai+1,2 =
∑n−1

r=2 (1− p)r−1d(i+1, i+1+ r), and arc (i+3, i+1) is computed

by the term corresponding to r = n−2 of Bi+1,1 =
∑n−1

r=1 (1−p)r−1d(i+1− r, i+1).

From this observation and from equation (3.9), we see that arc (i + 1, i + 3) is

computed as follows:

p3

(1− p)(1− p)d(i+ 1, i+ 3) = p3d(i+ 1, i+ 3), (3.10)

and arc (i+ 3, i+ 1) is computed as follows:

p3(1− p)n−3d(i+ 3, i+ 1). (3.11)

Now we consider the objective function (3.3), and we write the probability co-

efficients that arcs (i + 1, i + 3) and (i + 3, i + 1) must have in E[L(λ)] and in

E[L(λ̃)]. When the a priori tour is λ, arc (i + 1, i + 3) = (λ(i + 1), λ(i + 3)) and

it has a probability coefficient of p2(1 − p), that is, the probability that λ(i + 1)

and λ(i + 3) require a visit while the single node λ(i + 2) between them does not

require a visit. The same coefficient is valid when the a priori tour is λ̃, because

(i + 1, i + 3) = (λ̃(i + 1), λ̃(i + 3)), and there is only one node (λ̃(i + 2)) between

λ̃(i + 1) and λ̃(i + 3). Figure 3.3 may be of help in visualizing this. Similarly,

arc (i + 3, i + 1) has probability coefficient p2(1 − p)n−3 both in λ and in λ̃ (since

i + 3 = λ̃(i + 1 − (n − 2))). Therefore arc (i + 1, i + 3) is computed as follows in

E[L(λ̃)]−E[L(λ)]:

[p2(1− p)− p2(1− p)]d(i+ 1, i+ 3) = 0, (3.12)
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Figure 3.4: Tour λ = 1, 2, ..., i, i+ 1, ..., j, ..., n (left) and tour λ̃ = 1, 2, ..., i− 1, i +

1, i+2, ..., j, i, j+1, ..., n (right) obtained from λ by moving node i to position j and

shifting backwards one space the nodes i+ 1, ..., j, with n = 10, i = 3, j = 7.

in contrast with (3.10), and the arc (i+3, i+1) is computed as follows in E[L(λ̃)]−
E[L(λ)]:

[p2(1− p)n−3 − p2(1− p)n−3]d(i+ 3, i+ 1) = 0, (3.13)

in contrast with (3.11). �

Appendix B presents the step-by-step evaluation of a 2-p-opt move, first using the

full evaluation of the objective function (3.3), and second using Bertsimas’ proposed

expression (3.7).

Note: a proof of the incorrectness of the 2-p-opt expression appearing in [1] is

given in appendix A.

3.4 The 1-shift

The 1-shift local search was introduced by Bertsimas in [1] and later published by

this journal in an article by Bertsimas and Howell [3]. Given an a priori tour λ, its

1-shift neighborhood is the set of tours obtained by moving a node i to position j of

the tour, with the intervening nodes being shifted backwards one space accordingly,

as for example in Figure 3.4.

3.4.1 Expressions proposed in [3] for the cost of a 1-shift

move

Consider, without loss of generality, a tour λ = 1, 2, ..., i, i+ 1, ..., j, ..., n and a tour

λ̃ = 1, 2, ..., i− 1, i+ 1, i+ 2, ..., j, i, j + 1, ..., n obtained from λ by moving node i to

position j and shifting backwards one space the nodes i+ 1, ..., j. Let ∆E ′
i,j denote
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3.4. The 1-shift

the change in the expected length E[L(λ̃)]−E[L(λ)]. In the following we reproduce

verbatim the expressions given in [3] for the computation of ∆E ′
i,j.

Let j = i + k. Note that, for k = 1, the tour λ̃ obtained by 1-shift is the same

as the one obtained by 2-p-opt. Therefore, for k = 1, ∆E ′
i,i+1 = ∆Ei,i+1 and the

computation is done according to (3.6). For k ≥ 2, the proposed expression is:

∆E ′
i,j = ∆E ′

i,j−1 +p2[(q−k − q−(k−1))Ai,k+1 + (qk − qk−1)(Bi,1 − Bi,n−k)

+(q − 1)(Aj,1 −Aj,n−k) + (q−1 − 1)Bj,k+1

+(qn−k − qn−(k−1))(Ai,1 − Ai,k) + (qk−n − q(k−1)−n)Bi,n−k+1

+(1− q−1)Aj,n−k+1 + (1− q)(Bj,1 − Bj,k)],
(3.14)

where A and B are the same matrices of partial results considered for the 2-p-opt and

defined by (3.5). This algorithm follows the same lines as the 2-p-opt algorithm: all

phase one computations, including the accumulation of matrices A and B, proceed

in the same way. The second phase of the local search consists of computing ∆E ′
i,j

recursively by means of equation (3.14). Like 2-p-opt, since each ∆E ′
i,j in phase two

is computed in O(1) time, this phase, and thus the entire 1-shift checking sequence,

is performed in O(n2). Similarly to the 2-p-opt, note that this procedure would

be much faster than using full evaluation function (equation (3.3)) for the cost of

each 1-shift move. In fact, the full evaluation would require O(n2) time for the cost

calculation of each move, and O(n4) time for the entire 1-shift checking sequence

(since the neighborhood size of 1-shift is O(n2)). Unfortunately, as we show in the

following section, the delta evaluation expressed by equation (3.14) is not correct.

3.4.2 Incorrectness of the proposed 1-shift recursive expres-

sion

Theorem 2 Given an instance of the homogeneous PTSP, an a priori tour λ =

(1, 2, ..., i, i + 1, ..., i + k, ..., n), and an a priori tour λ̃ = (1, 2, ..., i − 1, i + 1, i +

2, ..., i+ k, i, i+ k + 1, ...n), then E[L(λ̃)]− E[L(λ)] 6= ∆E ′
i,i+k for k ≥ 2.

The proof is by example. Let k = 2, then, according to (3.14)

∆E ′
i,i+2 = ∆E ′

i,i+1 +p2[(q−2 − q−1)Ai,3 + (q2 − q)(Bi,1 − Bi,n−2)

+(q − 1)(Ai+2,1 − Ai+2,n−2) + (q−1 − 1)Bi+2,3

+(qn−2 − qn−1)(Ai,1 − Ai,2) + (q2−n − q1−n)Bi,n−1

+(1− q−1)Ai+2,n−1 + (1− q)(Bi+2,1 − Bi+2,2)].

(3.15)

We show that in this expression there are arcs with an incorrect probability co-

efficient. Consider for instance arc (i, i + 1) and arc (i + 1, i). We examine the
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Figure 3.5: Tour λ̃, with λ̃(i) = i+1, λ̃(i+1) = i+2, and λ̃(i+2) = i. The dashed

line represents arcs (i, i+ 1) and (i+ 1, i).

probability coefficients of these arcs, as computed by the recursive equation (3.15).

The first term of (3.15) is ∆E ′
i,i+1 and it is equal to (3.6). By an inspection of

the terms A and B in equation (3.6) it is not difficult to see that arcs (i, i + 1)

and (i+ 1, i) are not computed by ∆E ′
i,i+1. Arc (i, i + 1) is computed by the term

(qn−2 − qn−1)(Ai,1 − Ai,2) of equation (3.15), that is,

p2((1− p)n−2 − (1− p)n−1)d(i, i+ 1), (3.16)

and arc (i + 1, i) is computed by the term (q2−n − q1−n)Bi,n−1 of equation (3.15),

that is,
p3

(1− p)d(i+ 1, i). (3.17)

Now we consider the objective function (3.3), and we write the probability coef-

ficients that arcs (i, i+1) and (i+1, i) must have in E[L(λ)] and in E[L(λ̃)]. When

the a priori tour is λ, arc (i, i+ 1) = (λ(i), λ(i+ 1)) and it has a probability coeffi-

cient of p2, that is, the probability that λ(i) and λ(i+ 1) require a visit. When the

a priori tour is λ̃, we have (i, i+ 1) = (λ̃(i+ 2), λ̃(i)) = (λ̃(i− (n− 2)), λ̃(i)), which

leads to the probability coefficient p2(1 − p)n−3 (see Figure 3.5). The difference of

the probability coefficients of (i, i+ 1) in λ̃ and λ leads to

p2((1− p)n−3 − 1)d(i, i+ 1), (3.18)

which is different from (3.16). Let us now focus on arc (i+ 1, i). When the a priori

tour is λ, arc (i + 1, i) = (λ(i − (n − 1)), λ(i)) and it has a probability coefficient

of p2(1 − p)n−2. When the a priori tour is λ̃, we have (i + 1, i) = (λ̃(i), λ̃(i + 2))

(see Figure 3.5), and the probability coefficient is p2(1 − p). The difference of the

probability coefficients of (i+ 1, i) in λ̃ and λ leads to:

p2(1− p− (1− p)n−2)d(i+ 1, i), (3.19)
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3.4. The 1-shift

which is different from (3.17). �

Appendix C presents the step-by-step evaluation of a 1-shift move, first using the

full evaluation of the objective function (3.3), and second using Bertsimas’ proposed

expression (3.14).
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Chapter 4

Approximations of the objective

function

As we have seen, the objective function of the PTSP is computationally expensive,

since it needs to consider all the O(n2) edges joining couples of customers. For this

reason, it is worth investigating the design of fast approximations of the objective

function, to be used in optimization algorithms for speeding up, and thus possibly

improving, the optimization process.

In this chapter we present and analyze two types of objective function approxi-

mations. The first approximation (section 4.1) is based on the observation that, for

a given a priori solution, some edges have a very small probability of being actually

travelled, and therefore they may be neglected. We call this type of approximation

‘depth-approximation’ (this naming convention will become clear in the remainder

of this chapter). The second type of approximation (section 4.2) is based on the

observation that the objective function computes the expected value of a quantity,

and therefore it may be estimated by a sampling technique. We call this second

type of approximation ‘sampling-approximation’. In section 4.3 we experimentally

analyze the accuracy of the two types of approximations under different conditions.

4.1 Depth-approximation

We say that and edge eij has a depth θ ∈ [0, n− 2] with respect to a given a priori

tour λ if there are exactly θ cities on the tour between i and j. A high depth θ for an

edge implies a small probability for the edge to be actually part of a realized tour,

since this would mean that a large number θ of consecutive customers do not require

a visit. Therefore, edges with higher depth should impact less on the objective value
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4.1. Depth-approximation

of an a priori tour. Let us now be more precise.

Given an a priori tour λ, and depth values θ = 0, 1, ..., n − 2, the edges of the

PTSP instance under consideration may be grouped in sets λ(θ), each set containing

edges of the same depth. Note that the edge set λ(θ) contains a number of subtours

(that is, tours which visit a subset of the customers) equal to gcd(n, θ + 1) 1. For

instance, the set λ(0) contains exactly the edges of the a priori tour. In general,

however, it may be the case that the subtours formed in such a way can never be

realized under the a priori strategy. As an example of edge partition according to

the depth, Fig. 4.1 shows, from left to right, an a priori tour λ (which coincides with

the set of edges λ(0)) , λ(1) and λ(2) for a PTSP with 8 customers. Note that λ(1)

contains two subtours which could be actually realized under the a priori strategy,

but λ(2) contains one single tour that visits all customers, and therefore cannot be

realized under the a priori strategy (since, if all customers are to be visited, then

they are visited according to the a priori tour λ).

Given the partition of edges according to their depth θ = 0, 1, 2, ..., n − 2, the

PTSP objective function may be written as a sum of terms of increasing depth:

E[L(λ)] =

n−2
∑

θ=0

[

n
∑

j=1

dλ(j),λ(j+θ+1) · pλ(i)pλ(i+θ+1)

θ
∏

k=1

(1− pλ(i+k))

]

, (4.1)

where λ = (λ(1), λ(2), ..., λ(n)) is the a priori tour. In the special class of PTSP

instances where pi = p for all customers i ∈ V (the homogeneous PTSP), equation

(4.1) may be written as

E[L(λ)] =

n−2
∑

θ=0

L(λ(θ))p2(1− p)θ (4.2)

where L(λ(θ)) ≡
∑n

j=1 d(j, (j + 1 + r)). The L(λ(θ))’s have the combinatorial inter-

pretation of being the sum of lengths of the collection subtours in λ(θ).

It is now easy to see how the probability of an edge of depth θ to be used decreases

with θ. In the homogeneous PTSP (equation 4.2) this probability is p2(1− p)θ, and

in the heterogeneous PTSP (equation 4.1) it also involves a product over θ + 2

probability coefficients. Therefore, the probability of an edge of depth θ to be

used (and therefore the weight of such and edge in the objective value) decreases

exponentially with θ. The idea, in the depth-approximation, is to stop the evaluation

1The term ‘gcd’ stays for ‘greatest common divisor’.
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λ(1) λ(2)(0)
λ = λ

Figure 4.1: Edges grouped in sets according to their depth θ. The picture shows

the sets with λ(θ) with θ = 0, 1, 2. Note that λ(0) corresponds to the set of edges

forming the a priori tour.

of the objective function after a fixed depth has been reached. We define

Eθ[L(λ)] =

θ
∑

r=0

[

n
∑

j=1

dλ(j),λ(j+r+1) · pλ(i)pλ(i+r+1)

r
∏

k=1

(1− pλ(i+k))

]

, (4.3)

and for the homogeneous PTSP this simplifies to

Eθ[L(λ)] =
θ

∑

r=0

L(λ(r))p2(1− p)r. (4.4)

The time complexity of the depth-approximation isO(θn), therefore, the smallest

the θ, the fastest is the computation of the depth-approximation respect to the O(n2)

exact objective function. Nevertheless, the smallest the θ, the bigger is the difference,

or error, between approximated and exact computation. The main question here is

how the quality of the depth-approximation degrades by decreasing the depth of the

computation, and for different types of PTSP instances. This is discussed in section

4.3.

4.2 Sampling-approximation

Here, we propose an approximation to the PTSP objective function which is based

on the observation that the objective function computes an expected value of a

random quantity, and therefore it may be estimated by a sampling technique. More
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4.2. Sampling-approximation

precisely, given an a priori tour λ, the objective function may be written as (see also

section 1)

E[L(λ)] =
∑

S⊆V

p(S)L(λ|S). (4.5)

In the above expression, S is a subset of the set of customers V , L(λ|S) is the length

of the tour λ, pruned in such a way as to only visit the customers in S, skipping the

others, and p(S) is the probability for the subset of customers S to require a visit:

p(S) =
∏

i∈S

pi

∏

i∈V −S

(1− pi). (4.6)

The objective function, as expressed by equation 4.5, computes the expected value

of the tour λ, over all possible random subsets of customers.

The idea, in sampling-approximation, is to estimate the exact expected value

4.5 through sampling, in the following way. The length L(λ) is a discrete random

variable, taking the value L(λ|S) with probability p(S). Let Si, i ∈ 1, 3, ..., N be

subsets of the original n customers sampled with probability p(Si). If each subset

Si is sampled independently of the others, the Central Limit Theorem implies that

1

N

N
∑

i=1

L(λ|Si
) ≈ E[L(λ)], (4.7)

for N big enough.

The time complexity of the sampling-approximation is O(Nn), therefore, the

smallest the sample sizeN , the fastest is the computation of the sampling-approximation

respect to the O(n2) exact objective function. Nevertheless, the smallest the N , the

bigger is the difference, or error, between approximated and exact computation. The

main question here is how the quality of the sampling-approximation degrades by

decreasing the number of samples, and for different types of PTSP instances.

There are two ways of evaluating the quality of sampling-approximation. One

is theoretical, by exploiting the theorems of statistics about the precision and con-

fidence intervals of an estimator. The problem, with this, is that it may give pes-

simistic indications of the estimation accuracy. In fact, in order to exploit theorems

of statistics, one should be able to approximate the probability distribution of the

length L(λ|S) by a normal distribution. This is true, in general, for a number of

sample N at least equal to 30 (this is an empirical rule which usually applies to

distributions that are not too asymmetric). In our case, we may be lucky, and have

a good approximation already for smaller N , but by using theoretical investigations

we would not know this.
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The other way for evaluating the quality of sampling-approximation is experi-

mental, like in the case of depth-approximation. We can use this option because

we may know the exact value of the objective function. This situation is different

from that of the natural sciences where the exact value being estimated, in general,

is not known. The experimental analysis of sampling-approximation accuracy is

performed in section 4.3.

4.3 Analysis of depth- and sampling-approximation

techniques

In the literature the use of the depth-approximation has been first suggested by Jail-

let [24], without performing experiments. The only application of depth-approximation

we are aware of is a recent paper [10], where the approximation is used in the Ant

Colony Optimization framework with promising results. The idea of sampling as

been applied in [2] for computing a lower bound on the optimal PTSP value, but it

has never been used for approximating the objective function.

In the cited literature there is no analysis of the tradeoff between depth and

quality of the depth-approximation. We feel that, before using any approximation

of the objective function inside an optimization algorithm, it is useful to know as

much as possible about the quality of the approximation.

A number of questions may be asked about the quality of the approximation.

The main questions we would like to answer are the following:

1. suppose that, in an optimization algorithm, we want to have an objective

function approximated by ∆ percent error; how big should be then the depth

θ(∆) (or number of samples N(∆)) of our depth-approximation (or sampling-

approximation)?

2. is θ(∆) (or N(∆)) also dependent on the particular PTSP instance and a priori

tour?

We try to answer these questions by experimental investigation. PTSP instances

were generated starting from TSP instances (from the TSPLIB benchmark [32]) and

assigning to each customer i a probability pi of requiring a visit. We have tested both

homogeneous and heterogeneous PTSP instances. In homogeneous PTSP instances,

we set pi = p for all customers, with p varying from 0.1 to 0.9. We realized hetero-

geneous PTSP instances by generating customers probabilities randomly, according
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Figure 4.2: Probability distributions used for generating random customers proba-

bilities.

to the probability distribution β(a; b), which is defined as follows

β(a; b) =
Γ(a+ b)

Γ(a)Γ(b)
pa−1(1− p)b−1, (4.8)

with p ∈ [0, 1]. By choosing the parameters a and b of the β distribution, one can set

the average customer probability p and the variance σp around the average value:

p =
a

a + b
(4.9)

σp =
ab

(a + b)2(a+ b+ 1)
(4.10)

In order to model different configurations of customers probabilities, we generated

customers probabilities according to the distributions β(0.5; 0.5), β(1; 1), β(1.5; 3),

and β(3; 1.5), whose shapes are as shown in Figure 4.2, and whose average and

deviation, computed according to 4.9 and 4.10, are as in Table 4.1.

Type of convergence Figure 4.3 shows how depth- and sampling-approximation

converge to the exact objective value, by increasing, respectively, the depth and
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p σp

β(0.5; 0.5) 0.5 0.13

β(1; 1) 0.5 0.08

β(1.5; 3) 0.33 0.04

β(3; 1.5) 0.67 0.04

Table 4.1: Average customers probability p and standard deviation of customers

probability σp implied by different choices of the β distribution parameters.

the number of samples in the computation. Figure 4.3 is relative to one particu-

lar instance of the homogeneous PTSP, but the following observations are valid in

general.

Both depth- and sampling-approximation may be good already for small values

of the depth and number of samples, but depth-approximation converges earlier

than sampling-approximation. Another difference between the two approximation

techniques is that sampling-approximation may overestimate the exact objective

value, while depth-approximation is always less than or equal to the exact objective

value. Moreover, the quality of sampling-approximation is a random quantity, and it

may happen that a bigger number of samples does not imply a better approximation

(even if, asymptotically, convergence to the exact objective value would be reached).

Dependence of approximation quality upon customers probabilities Given

a certain set of customers (that is, a TSP instance) we are interested to see if the

quality of approximation is affected by different configurations of customers prob-

abilities. Due to the nature of the approximations, it is reasonable to expect that

depth-approximation is quite sensitive to the probabilities of customers requiring a

visit, while sampling-approximation may be less affected. Such hypothesis are con-

firmed in the case of homogeneous PTSP, where the depth-approximation quality de-

grades for instances with small customers probability, while sampling-approximation

maintain a good quality over all range of probabilities. This is shown in Figure 4.4.

In case of heterogeneous PTSP instances, both depth- and sampling-approximation

are sensitive to the customers probabilities, as shown in Figure 4.5. In particular,

the probability configuration which always has the worst approximation quality is

the one which follows the distribution β(1.5; 3). Note that β(1.5; 3) corresponds to

a probability configuration where a high proportion of customers have a low proba-

bility of requiring a visit (see average customers probability and standard deviation
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4.3. Analysis of depth- and sampling-approximation techniques

Figure 4.3: Depth- and sampling-approximation of the objective function as a func-

tion of, respectively, depth and number of samples. The figure refers to a homo-

geneous PTSP instance with probability 0.7 and 532 customers, whose coordinates

are from the att532.tsp instance of the TSPLIB. The objective function has been

computed on a randomly generated a priori solution. For a depth and number of

samples equal to 10, which is very small, as compared to the number of customers,

the approximation, in this case, is already very good.
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4.3. Analysis of depth- and sampling-approximation techniques

Figure 4.4: Absolute value of the error performed by the depth- and sampling-

approximation as a function of the customers probability, in the homogeneous PTSP,

and for a 1577-customers TSP instance of the TSPLIB. The objective function has

been computed on a randomly generated a priori solution. The error is expressed

as a percentage respect to the exact objective value.
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Figure 4.5: Absolute value of the error performed by the depth- and sampling-

approximation for different customers demands probability configurations (hetero-

geneous PTSP) for a 1577-customers TSP instance of the TSPLIB. The error is

expressed as a percentage respect to the exact objective value.

of β(1.5; 3) respect to other distributions in Table 4.1). Considering both the homo-

geneous and the heterogeneous PTSP, we may argue that, for depth-approximation,

a high proportion of customers with low probability of requiring a visit decreases

the approximation quality (for a fixed depth).

Dependence of approximation quality upon TSP instances Given a certain

depth or number of samples for the approximation, and given a certain customers

probability configuration, we are interested to see if the quality of approximation is

affected by different sets of customers (that is, TSP instances). The quality of depth-

approximation is not much sensitive to the the number of customers, as it appears

from Figures 4.6, which compares depth-approximation quality for ten instances

derived from the TSPLIB, with a number of customers ranging from 51 to 1577.

Among the instances of Figure 4.6, the error of depth-approximation is quite small,

always under 2.5%.
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4.3. Analysis of depth- and sampling-approximation techniques

Figure 4.6: Error performed by the depth-approximation for different instances from

the TSPLIB, with customers probabilities generated according to β probability laws

(heterogeneous PTSP) and for the homogeneous PTSP with customers probability

p = 0.3.
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4.3. Analysis of depth- and sampling-approximation techniques

Figure 4.7: Error performed by the sampling-approximation for different instances

from the TSPLIB, with customers probabilities generated according to β proba-

bility laws (heterogeneous PTSP), and for the homogeneous PTSP with customers

probability p = 0.3.

The situation, with sampling-approximation, is different, as shown in Figure 4.7.

One counterintuitive feature is that, in many cases, an instance with more customers

is better approximated than an instance with less customers. For example, compare

eil76.tsp with fl1577.tsp in Figures 4.7. For heterogeneous PTSPs, differently from

depth-approximation, we cannot say whether there is a β distribution which is worse

or better than others, and the worst error, for 10 samples, may range from around

12% to around 2%. In the homogeneous PTSP instances (with p = 0.3), the error

range is also quite wide, from around 10% to less than 1%.

4.3.1 Conclusions and guidelines

Given an instance with n customers, it may be convenient to use an objective func-

tion approximation if this is both fast, and it gives an acceptable error. Let us

assume that an approximation is fast enough if it runs in O(10 · n) time. This is to

say that we consider a depth and a number of samples equal to 10 for, respectively,
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4.3. Analysis of depth- and sampling-approximation techniques

depth- and sampling-approximation. Will than the error be acceptable, on the base

of the above analysis? Let us assume, here, that an error is acceptable if it is not

bigger than 3%. With these assumptions, we can say that depth-approximation

will almost always produce an acceptable error. The only situation where sampling-

approximation may be better, is in homogeneous PTSP instances with low customers

probability (say, a probability smaller than 0.3), but this is not valid for all TSP

instances, therefore the quality of sampling-approximation should be tested before

relying on it.

It would be interesting to further investigate the relation between the depth or

number of samples and the quality of the approximation. In particular, it would

be useful to find a functional relation between the depth or number of samples and

the approximation quality. This would let us know the smallest depth or number of

samples necessary to achieve a certain chosen precision.
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Outlook and future work

In this thesis we studied the design of a good heuristic for the PTSP, which composed

by two modules: a solution construction and a solution improvement (or local search)

algorithm. We studied separately two modules that, once integrated and iteratively

alternated, would constitute the final heuristic algorithm.

As far as the solution construction algorithm is concerned, we investigated the

potentialities of pACS, a particular ant colony optimization algorithm, for the ho-

mogeneous PTSP. We showed that the pACS algorithm is a promising solution

construction heuristic for the PTSP. We compared pACS with other tour construc-

tion heuristics and we provided an estimation of the absolute error with respect to

the optimal PTSP solution for some instances. We also compared pACS to ACS (an

ant colony optimization algorithm for the TSP), and we showed that for customers

probability close to 1, the ACS heuristic is a better alternative than pACS.

The study of an efficient local search for the PTSP, should greatly improve the

solution quality of pACS and of any tour construction heuristic in general, and it is

an important direction of research. We have shown that the current algorithms in

the literature, 2-p-opt and 1-shift, are inadequate. This results poses the question

whether a new fast local search operator for the PTSP can be derived. One possibil-

ity to design fast local search is to use an approximation of the objective function,

which is faster to be computed than the exact one. Two types of approximations

are proposed and analyzed in this thesis.

The next step of this research will be to integrate the solution construction pACS

algorithm with the local search algorithms, with the aim of obtaining state-of-the art

results for the PTSP. If the TSP inspired 2-p-opt and 1-shift local search are used,

an approximated objective function evaluation should be employed for computing

the cost of a local search move, in order to speed up the computation. An alternative

would be to design a different local search operator which allow for an exact and fast

computation of the move cost, but the design of such a local search is a completely

open question.
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Appendix A

Proof that 2-p-opt as proposed in

[1] is incorrect

A.1 Expressions proposed in [1] for the cost of a

2-p-opt move

In Bertsimas’ PhD thesis [1], the delta evaluation expression for the 2-p-opt local

seach is reported in a slightly different form than that in [3] (equation (3.7)), all the

rest (A,B, and ∆Ei,i+1) being the same. In the following we reproduce verbatim

the recursive equation given in [1] for the computation of ∆Ei,j . For j = i+ k and

k ≥ 2:

∆Ei,j = ∆Ei+1,j−1 +p2[(q−k − 1)Ai,k+1 + (qk − 1)(Bi,1 −Bi,n−k)

+(qk − 1)(Aj,1 − Aj,n−k) + (q−k − 1)Bj,k+1

+(qn−k − 1)(Ai,1 − Ai,k) + (qk−n − 1)Bi,n−k+1

+(qk−n − 1)Aj,n−k+1 + (qn−k − 1)(Bj,1 − Bj,k)].

(A.1)

Equation (A.1) differs from (3.7) by the first term on the right side: here this term

is ∆Ei+1,j−1, while in (3.7) it is ∆Ei+1,j. We observe that the recursive equation

(A.1) is correct for k = 2, and that in this case the first term on the right side is

zero, since ∆Ei+1,i+k−1 = ∆Ei+1,i+1. Unfortunately, equation (A.1) is not correct

for k ≥ 3, as shown in the following theorem.
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A.2. Incorrectness of the proposed 2-p-opt recursive equation from [1]

A.2 Incorrectness of the proposed 2-p-opt recur-

sive equation from [1]

Theorem 3 Given an instance of the homogeneous PTSP, an a priori tour τ =

(1, 2, ..., i, i+ 1, ..., i+ k, ..., n), and an a priori tour τ̃ = (1, 2, ..., i− 1, i+ k, i+ k −
1, ..., i, i+ k + 1, ..., n), then E[L(τ̃ )]− E[L(τ)] 6= ∆Ei,i+k for k ≥ 3.

The proof is again by example. Let k = 3, then, according to (A.1)

∆Ei,i+3 = ∆Ei+1,i+2 +p2[(q−3 − 1)Ai,4 + (q3 − 1)(Bi,1 −Bi,n−3)

+(q3 − 1)(Ai+3,1 − Ai+3,n−3) + (q−3 − 1)Bi+3,4

+(qn−3 − 1)(Ai,1 −Ai,3) + (q3−n − 1)Bi,n−2

+(q3−n − 1)Ai+3,n−2 + (qn−3 − 1)(Bi+3,1 −Bi+3,3)].

(A.2)

We show that in this expression there are arcs with an incorrect probability co-

efficient. Consider for instance arc (i, i + 1) and arc (i + 1, i). We examine the

probability coefficients of these arcs, as computed by the recursive equation (A.2).

Arcs (i, i + 1) and (i + 1, i) are computed both by the term ∆Ei+1,i+2 and by the

terms inside the square brackets of equation (A.2). Let us first focus on the term

∆Ei+1,i+2, from (3.6) we have:

∆Ei+1,i+2 = p3[q−1Ai+1,2−(Bi+1,1−Bi+1,n−1)−(Ai+2,1−Ai+2,n−1)+q
−1Bi+2,2]. (A.3)

In the above expression, arc (i + 1, i) is computed by the term corresponding to

r = n−1 of Ai+1,2 =
∑n−1

r=2 (1−p)r−1d(i+1, i+1+ r), and arc (i, i+1) is computed

by the term corresponding to r = 1 of Bi+1,1 =
∑n−1

r=1 (1 − p)r−1d(i + 1 − r, i + 1).

From this observation we see that arc (i+ 1, i) is computed as follows by the term

∆Ei+1,i+2 of (A.2):

p3

(1− p)(1− p)
n−2d(i+ 1, i) = p3(1− p)n−3d(i+ 1, i), (A.4)

and arc (i, i+ 1) is computed as follows by the term ∆Ei+1,i+2 of (A.2):

−p3d(i, i+ 1). (A.5)

Let us now focus on the terms inside the square brackets of equation (A.2), which

also compute arcs (i, i + 1) and (i + 1, i). Arc (i, i + 1) is computed by the term

corresponding to r = 1 of Ai,1, while arc (i + 1, i) is computed by the term corre-

sponding to r = n− 1 of Bi,n−2. From this observation we see that arc (i, i+ 1) is

computed as follows (by the terms inside the square brackets of equation (A.2)):

p2[(1− p)n−3 − 1]d(i, i+ 1), (A.6)
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1
2

8

9

7

4 = i+1 

6 = i+k,  k=3

3 = i   

n=10

5 = i+2  

Figure A.1: Tour τ̃ , with τ̃(i) = i + 3, τ̃ (i + 1) = i + 2, τ̃ (i + 2) = i + 1, and

τ̃ (i+ 3) = i. The bold line represents arcs (i, i+ 1) and (i+ 1, i).

and arc (i+ 1, i) is computed as follows (by the terms inside the square brackets of

equation (A.2)):

p2(1− p)n−2[(1− p)3−n − 1]d(i+ 1, i). (A.7)

Now, by summing (A.5) with (A.6) we get Bertsimas’ equations coefficient for arc

(i, i+ 1):

p2[(1− p)n−3 − p− 1]d(i, i+ 1), (A.8)

while, by summing (A.4) with (A.7) we get Bertsimas’ coefficient for arc (i+ 1, i):

p2[(1− p)n−3 − p+ 1]d(i+ 1, i). (A.9)

Now we consider the objective function (3.3), and we write the probability coef-

ficients that arcs (i, i+1) and (i+1, i) must have in E[L(τ)] and in E[L(τ̃ )]. When

the a priori tour is τ , arc (i, i + 1) has a probability coefficient p2. When the a

priori tour is τ̃ , arc (i, i + 1) has a probability coefficient p2(1 − p)n−2. Figure A.1

may be of help in visualizing this. Similarly, arc (i+ 1, i) has probability coefficient

p2(1 − p)n−2 in τ and a probability coefficient p2 in τ̃ . Therefore arc (i, i + 1) is

computed as follows in E[L(τ̃ )]− E[L(τ)]:

p2[(1− p)n−2 − 1]d(i, i+ 1), (A.10)

in contrast with (A.8), and the arc (i + 1, i) is computed as follows in E[L(τ̃ )] −
E[L(τ)]:

p2[1− (1− p)n−2]d(i+ 1, i), (A.11)

in contrast with (A.9). �
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Appendix B

Example of a 2-p-opt move

evaluation

We place the nodes of the graph (customers) on the vertices of a regular hexagon in

the Euclidean plane of side 1 so that all distances between pairs of nodes are from

the set, {1, 2,
√

3}. We set p = 0.5.

Let us calculate the difference in expected length of the tours τ = 1, 2, 3, 4, 5, 6

and τ̃ = 1, 5, 4, 3, 2, 6. We shall first do this by calculating, by equation (3.3), the

expected length of each and subtracting one from the other. Then we shall compare

this result with the calculation using Bertsimas’ recursive equation (3.7).
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The expected length of the tour τ = 1, 2, 3, 4, 5, 6 is given by:

E[L(τ)] = (0.25× 0.5(1−1) × d(1, 2) = 0.25× 1 = 0.25) +

(0.25× 0.5(2−1) × d(1, 3) = 0.125×
√

3 = 0.216506) +

(0.25× 0.5(3−1) × d(1, 4) = 0.0625× 2 = 0.125) +

(0.25× 0.5(4−1) × d(1, 5) = 0.031250×
√

3 = 0.054127) +

(0.25× 0.5(5−1) × d(1, 6) = 0.015625× 1 = 0.015625) +

(0.25× 0.5(1−1) × d(2, 3) = 0.25× 1 = 0.25) +

(0.25× 0.5(2−1) × d(2, 4) = 0.125×
√

3 = 0.216506) +

(0.25× 0.5(3−1) × d(2, 5) = 0.0625× 2 = 0.125) +

(0.25× 0.5(4−1) × d(2, 6) = 0.031250×
√

3 = 0.054127) +

(0.25× 0.5(5−1) × d(2, 1) = 0.015625× 1 = 0.015625) +

(0.25× 0.5(1−1) × d(3, 4) = 0.25× 1 = 0.25) +

(0.25× 0.5(2−1) × d(3, 5) = 0.125×
√

3 = 0.216506) +

(0.25× 0.5(3−1) × d(3, 6) = 0.0625× 2 = 0.125) +

(0.25× 0.5(4−1) × d(3, 1) = 0.031250×
√

3 = 0.054127) +

(0.25× 0.5(5−1) × d(3, 2) = 0.015625× 1 = 0.015625) +

(0.25× 0.5(1−1) × d(4, 5) = 0.25× 1 = 0.25) +

(0.25× 0.5(2−1) × d(4, 6) = 0.125×
√

3 = 0.216506) +

(0.25× 0.5(3−1) × d(4, 1) = 0.0625× 2 = 0.125) +

(0.25× 0.5(4−1) × d(4, 2) = 0.031250×
√

3 = 0.054127) +

(0.25× 0.5(5−1) × d(4, 3) = 0.015625× 1 = 0.015625) +

(0.25× 0.5(1−1) × d(5, 6) = 0.25× 1 = 0.25) +

(0.25× 0.5(2−1) × d(5, 1) = 0.125×
√

3 = 0.216506) +

(0.25× 0.5(3−1) × d(5, 2) = 0.0625× 2 = 0.125) +

(0.25× 0.5(4−1) × d(5, 3) = 0.031250×
√

3 = 0.054127) +

(0.25× 0.5(5−1) × d(5, 4) = 0.015625× 1 = 0.015625) +

(0.25× 0.5(1−1) × d(6, 1) = 0.25× 1 = 0.25) +

(0.25× 0.5(2−1) × d(6, 2) = 0.125×
√

3 = 0.216506) +

(0.25× 0.5(3−1) × d(6, 3) = 0.0625× 2 = 0.125) +

(0.25× 0.5(4−1) × d(6, 4) = 0.031250×
√

3 = 0.054127) +

(0.25× 0.5(5−1) × d(6, 5) = 0.015625× 1 = 0.015625) +

= 3.967548. (B.1)
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The expected length of the tour τ̃ = 1, 5, 4, 3, 2, 6 is given by:

E[L(τ̃ )] = (0.25× 0.5(1−1) × d(1, 5) = 0.25×
√

3 = 0.433013) +

(0.25× 0.5(2−1) × d(1, 4) = 0.125× 2 = 0.25) +

(0.25× 0.5(3−1) × d(1, 3) = 0.0625×
√

3 = 0.108253) +

(0.25× 0.5(4−1) × d(1, 2) = 0.03125× 1 = 0.03125) +

(0.25× 0.5(5−1) × d(1, 6) = 0.015625× 1 = 0.015625) +

(0.25× 0.5(1−1) × d(5, 4) = 0.25× 1 = 0.25) +

(0.25× 0.5(2−1) × d(5, 3) = 0.125×
√

3 = 0.216506) +

(0.25× 0.5(3−1) × d(5, 2) = 0.0625× 2 = 0.125) +

(0.25× 0.5(4−1) × d(5, 6) = 0.03125× 1 = 0.031250) +

(0.25× 0.5(5−1) × d(5, 1) = 0.015625×
√

3 = 0.027063) +

(0.25× 0.5(1−1) × d(4, 3) = 0.25× 1 = 0.25) +

(0.25× 0.5(2−1) × d(4, 2) = 0.125×
√

3 = 0.216506) +

(0.25× 0.5(3−1) × d(4, 6) = 0.0625×
√

3 = 0.108253) +

(0.25× 0.5(4−1) × d(4, 1) = 0.03125× 2 = 0.0625) +

(0.25× 0.5(5−1) × d(4, 5) = 0.015625× 1 = 0.015625) +

(0.25× 0.5(1−1) × d(3, 2) = 0.25× 1 = 0.25) +

(0.25× 0.5(2−1) × d(3, 6) = 0.125× 2 = 0.25) +

(0.25× 0.5(3−1) × d(3, 1) = 0.0625×
√

3 = 0.108253) +

(0.25× 0.5(4−1) × d(3, 5) = 0.03125×
√

3 = 0.054127) +

(0.25× 0.5(5−1) × d(3, 4) = 0.015625× 1 = 0.015625) +

(0.25× 0.5(1−1) × d(2, 6) = 0.25×
√

3 = 0.433013) +

(0.25× 0.5(2−1) × d(2, 1) = 0.125× 1 = 0.125) +

(0.25× 0.5(3−1) × d(2, 5) = 0.0625× 2 = 0.125) +

(0.25× 0.5(4−1) × d(2, 4) = 0.03125×
√

3 = 0.054127) +

(0.25× 0.5(5−1) × d(2, 3) = 0.015625× 1 = 0.015625) +

(0.25× 0.5(1−1) × d(6, 1) = 0.25× 1 = 0.25) +

(0.25× 0.5(2−1) × d(6, 5) = 0.125× 1 = 0.125) +

(0.25× 0.5(3−1) × d(6, 4) = 0.0625×
√

3 = 0.108253) +

(0.25× 0.5(4−1) × d(6, 3) = 0.03125× 2 = 0.0625) +

(0.25× 0.5(5−1) × d(6, 2) = 0.015625×
√

3 = 0.027063)

= 4.144431. (B.2)
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Thus, the difference between the expected lengths of the tours is:

E[L(τ̃ )]−E[L(τ)] = 3.967548− 4.144431 = 0.176883. (B.3)

In the following we calculate ∆E2,5 using Bertsimas’ recursive equation (3.7), and we

show that ∆E2,5 is not equal to (B.3). By symmetry we have that ∀k ∈ {1, ..., n−
1},Ai,k = Aj,k,i, j ∈ {1, ..., n}. Furthermore, ∀k ∈ {1, ..., n − 1}, i ∈ {1, ..., n},
Bi,k = Ai,k. Thus, ∀i ∈ {1, ..., n}, we have:

Ai,1 = Bi,1 = 1× 1 + 1/2×
√

3 + 1/4× 2 + 1/8×
√

3 + 1/16× 1

= 5/8×
√

3 + 25/16

= 1/16(10×
√

3 + 25)

= 2.645031755 (B.4)

Ai,2 = Bi,2 = 1/2×
√

3 + 1/4× 2 + 1/8×
√

3 + 1/16× 1

= 5/8×
√

3 + 9/16

= 1/16(10×
√

3 + 9)

= 1.645031755 (B.5)

Ai,3 = Bi,3 = 1/4× 2 + 1/8×
√

3 + 1/16× 1

= 1/8×
√

3 + 9/16

= 1/16(2×
√

3 + 9)

= 0.77900635 (B.6)

Ai,4 = Bi,4 = 1/8×
√

3 + 1/16× 1

= 1/8×
√

3 + 1/16

= 1/16(2×
√

3 + 1)

= 0.27900635 (B.7)

Ai,5 = Bi,5 = 1/16× 1

= 0.0625. (B.8)

Using these and Bertsimas’ recursive equation (3.7), we will now compute ∆E2,5 on

the tour τ = 1, 2, 3, 4, 5, 6. That is, the difference in expected length when we move

from the tour τ = 1, 2, 3, 4, 5, 6 to the tour τ̃ = 1, 5, 4, 3, 2, 6.
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First, we have: i = 2, j = 5, k = 3, p = 0.5, and q = 0.5. This gives us

∆E2,5 = ∆E3,5 + (p2 = 0.25)× [

(q−3 − 1 = 7.0)× (A2,4 = 0.279006) +

(q3 − 1 = −0.875)× ((B2,1 = 2.645032)− (B2,3 = 0.779006)) +

(q3 − 1 = −0.875)× ((A5,1 = 2.645032)− (A5,3 = 0.779006)) +

(q−3 − 1 = 7.0)× (B5,4 = 0.279006) +

(q3 − 1 = −0.875)× ((A2,1 = 2.645032)− (A2,3 = 0.779006)) +

(q−3 − 1 = 7.0)× (B2,4 = 0.279006) +

(q−3 − 1 = 7.0)× (A5,4 = 0.279006) +

(q3 − 1 = −0.875)× ((B5,1 = 2.645032)− (B5,3 = 0.779006))]

= ∆E3,5 + 0.25× [

1.953044 +

−1.632772 +

−1.632772 +

1.953044 +

−1.632772 +

1.953044 +

1.953044 +

−1.632772]

= ∆E3,5 + 0.320272. (B.9)

And we can calculate ∆E3,5 in a similar way. We have i = 3, j = 5, k = 2, p = 0.5,
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and q = 0.5. This gives us:

∆E3,5 = ∆E4,5 + (p2 = 0.25)× [

(q−2 − 1 = 3)× (A3,3 = 0.779006) +

(q2 − 1 = −0.75)× ((B3,1 = 2.645032)− (B3,4 = 0.279006)) +

(q2 − 1 = −0.75)× ((A5,1 = 2.645032)− (A5,4 = 0.279006)) +

(q−2 − 1 = 3)× (B5,3 = 0.779006) +

(q4 − 1 = −0.9375)× ((A3,1 = 2.645032)− (A3,2 = 1.645032)) +

(q−4 − 1 = 15)× (B3,5 = 0.0625) +

(q−4 − 1 = 15)× (A5,5 = 0.0625) +

(q4 − 1 = −0.9375)× ((B5,1 = 2.645032)− (B5,2 = 1.645032))]

= ∆E4,5 + 0.25× [

2.337019 +

−1.774519 +

−1.774519 +

2.337019 +

−0.9375 +

0.9375 +

0.9375 +

−0.9375]

= ∆E4,5 + 0.28125. (B.10)

And finally, we can calculate ∆E4,5 using equation (3.6) for switching two adja-

cent nodes with i = 4, j = 5, k = 1, p = 0.5, and q = 0.5. This gives us:

∆E4,5 = (p3 = 0.125)× [

(A4,2 = 1.645032)/(1− p = 0.5)−
((B4,1 = 2.645032)− (B4,5 = 0.0625))−
(A5,1 = 2.645032)− (A5,5 = 0.0625)) +

(B5,2 = 1.645032)/(1− p = 0.5)]

= 0.125× 1.415064

= 0.176883. (B.11)
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Thus, combining (B.9),(B.10), and (B.11) we have:

∆E2,5 = 0.320272 + 0.28125 + 0.176883

= 0.778405. (B.12)

Thus comparing, (B.12) with (B.3) we have demonstrated the error in Bertsimas’

equation (3.7).
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Appendix C

Example of a 1-shift move

evaluation

As in appendix B, we place the nodes of the graph (customers) on the vertices of a

regular hexagon in the Euclidean plane of side 1 so that all distances between pairs

of nodes are from the set, {1, 2,
√

3}. We set p = 0.5.

Let us calculate the difference in expected length of the tours τ = 1, 2, 3, 4, 5, 6

and τ̃ = 1, 3, 4, 5, 2, 6. We shall first do this by calculating, by equation (3.3), the

expected length of each and subtracting one from the other. Then we shall compare

this result with the calculation using the Bertsimas’ recursive equation (3.14). The

length of the tour τ = 1, 2, 3, 4, 5, 6 is E[L(τ)] = 3.967548, as calculated by (B.1) in
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Appendix B. The length of the tour τ̃ = 1, 3, 4, 5, 2, 6 is given by:

E[L(τ̃ )] = (0.25× 0.5(1−1) × d(1, 3) = 0.25×
√

3 = 0.433013) +

(0.25× 0.5(2−1) × d(1, 4) = 0.125× 2 = 0.25) +

(0.25× 0.5(3−1) × d(1, 5) = 0.0625×
√

3 = 0.108253) +

(0.25× 0.5(4−1) × d(1, 2) = 0.03125× 1 = 0.03125) +

(0.25× 0.5(5−1) × d(1, 6) = 0.015625× 1 = 0.015625) +

(0.25× 0.5(1−1) × d(3, 4) = 0.25× 1 = 0.250) +

(0.25× 0.5(2−1) × d(3, 5) = 0.125×
√

3 = 0.216506) +

(0.25× 0.5(3−1) × d(3, 2) = 0.0625× 1 = 0.0625) +

(0.25× 0.5(4−1) × d(3, 6) = 0.03125× 2 = 0.0625) +

(0.25× 0.5(5−1) × d(3, 1) = 0.015625×
√

3 = 0.027063) +

(0.25× 0.5(1−1) × d(4, 5) = 0.25× 1 = 0.25) +

(0.25× 0.5(2−1) × d(4, 2) = 0.125×
√

3 = 0.216506) +

(0.25× 0.5(3−1) × d(4, 6) = 0.0625×
√

3 = 0.108253) +

(0.25× 0.5(4−1) × d(4, 1) = 0.03125× 2 = 0.0625) +

(0.25× 0.5(5−1) × d(4, 3) = 0.015625× 1 = 0.015625) +

(0.25× 0.5(1−1) × d(5, 2) = 0.25× 2 = 0.5) +

(0.25× 0.5(2−1) × d(5, 6) = 0.125× 1 = 0.125) +

(0.25× 0.5(3−1) × d(5, 1) = 0.0625×
√

3 = 0.108253) +

(0.25× 0.5(4−1) × d(5, 3) = 0.03125×
√

3 = 0.054127) +

(0.25× 0.5(5−1) × d(5, 4) = 0.015625× 1 = 0.015625) +

(0.25× 0.5(1−1) × d(2, 6) = 0.25×
√

3 = 0.433013) +

(0.25× 0.5(2−1) × d(2, 1) = 0.125× 1 = 0.125) +

(0.25× 0.5(3−1) × d(2, 3) = 0.0625× 1 = 0.0625) +

(0.25× 0.5(4−1) × d(2, 4) = 0.03125×
√

3 = 0.054127) +

(0.25× 0.5(5−1) × d(2, 5) = 0.015625× 2 = 0.03125) +

(0.25× 0.5(1−1) × d(6, 1) = 0.25× 1 = 0.25) +

(0.25× 0.5(2−1) × d(6, 3) = 0.125× 2 = 0.25) +

(0.25× 0.5(3−1) × d(6, 4) = 0.0625×
√

3 = 0.108253) +

(0.25× 0.5(4−1) × d(6, 5) = 0.03125× 1 = 0.03125) +

(0.25× 0.5(5−1) × d(6, 2) = 0.015625×
√

3 = 0.027063) +

= 4.285056. (C.1)
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Thus, the difference between the expected lengths of the tours is:

E[L(τ̃ )]−E[L(τ)] = 4.285056− 3.967548 = 0.317508. (C.2)

In the following we calculate ∆E ′
2,5 using Bertsimas’ recursive equation (3.14). Using

equations (B.5)...(B.8) for the values of A and B and Bertsimas’ recursive equation

(3.14), we will now compute ∆E ′
2,5 on the tour τ = 1, 2, 3, 4, 5, 6. That is, the

difference in expected length when we move from the tour τ = 1, 2, 3, 4, 5, 6 to the

tour τ̃ = 1, 3, 4, 5, 2, 6.

First, we have: i = 2, j = 5, k = 3, p = 0.5, and q = 0.5. This gives us

∆E ′
2,5 = ∆E ′

2,4 + (p2 = 0.25)× [

(q−3 − q−2 = 4)× (A2,4 = 0.279006) +

(q3 − q2 = −0.125)× ((B2,1 = 2.645032)− (B2,3 = 0.779006)) +

(q − 1 = −0.5)× ((A5,1 = 2.645032)− (A5,3 = 0.779006)) +

(q−1 − 1 = 1)× (B5,4 = 0.279006) +

(q3 − q4 = 0.0625)× ((A2,1 = 2.645032)− (A2,3 = 0.779006)) +

(q−3 − q−4 = −8)× (B2,4 = 0.279006) +

(1− q−1 = −1)× (A5,4 = 0.279006) +

(1− q = 0.5)× ((B5,1 = 2.645032)− (B5,3 = 0.779006))]

= ∆E ′
2,4 + 0.25× [

1.116025 +

−0.233253 +

−0.933013 +

0.279006 +

0.116627 +

−2.232051 +

−0.279006 +

0.933013]

= ∆E ′
2,4 − 0.308163. (C.3)

And we can calculate ∆E ′
2,4 in a similar way. We have i = 2, j = 4, k = 2, p = 0.5,
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and q = 0.5. This gives us:

∆E ′
2,4 = ∆E ′

2,3 + (p2 = 0.25)× [

(q−2 − q−1 = 2)× (A2,3 = 0.779006) +

(q2 − q = −0.25)× ((B2,1 = 2.645032)− (B2,4 = 0.279006)) +

(q − 1 = −0.5)× ((A4,1 = 2.645032)− (A4,4 = 0.279006)) +

(q−1 − 1 = 1)× (B4,3 = 0.779006) +

(q4 − q5 = 0.03125)× ((A2,1 = 2.645032)− (A2,2 = 1.645032)) +

(q−4 − q−5 = −16)× (B2,5 = 0.0625) +

(1− q−1 = −1)× (A4,5 = 0.0625) +

(1− q = 0.5)× ((B4,1 = 2.645032)− (B4,2 = 1.645032))]

= ∆E ′
2,3 + 0.25× [

1.558013 +

−0.591506 +

−1.183013 +

0.779006 +

0.03125 +

−1 +

−0.0625 +

0.5]

= ∆E ′
2,3 + 0.007812. (C.4)

And finally, we can calculate ∆E ′
2,3 using equation (3.6) for switching two adjacent

nodes with i = 2, j = 3, k = 1, p = 0.5, and q = 0.5. This gives us:

∆E ′
2,3 = (p3 = 0.125)× [

(A2,2 = 1.645032)/(1− p = 0.5)−
((B2,1 = 2.645032)− (B2,5 = 0.0625))−
(A3,1 = 2.645032)− (A3,5 = 0.0625)) +

(B3,2 = 1.645032)/(1− p = 0.5)]

= 0.125× 1.415064

= 0.176883. (C.5)
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Thus, combining (C.3), (C.4), and (C.5) we have:

∆E ′
2,5 = −0.308163 + 0.007812 + 0.176883

= −0.123468. (C.6)

Thus comparing, (C.6) with (C.2) we have demonstrated the error in Bertsimas’

equation (3.14).
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