
Metaheuristics for Group Shop Scheduling

by

Christian Blum, Dipl.-Math.
——–

Université Libre de Bruxelles, IRIDIA
Avenue Franklin Roosevelt 50, CP 194/6, 1050 Brussels, Belgium

cblum@ulb.ac.be
——–

Supervised by

Marco Dorigo, Ph.D.
——–

Mâıtre de Recherches du FNRS
Université Libre de Bruxelles, IRIDIA

Avenue Franklin Roosevelt 50, CP 194/6, 1050 Brussels, Belgium
mdorigo@ulb.ac.be

——–

May, 2002

A thesis submitted in partial fulfillment of the requirements of the Université Libre de
Bruxelles, Faculté de Sciences Appliquées for the

DIPLOME D’ETUDES APPROFONDIES (DEA)

I

Abstract

The work presented in this thesis consists of two parts. The first part (Chapters 1 and 2) intro-
duces a general formulation of Shop Scheduling problems, called the Group Shop Scheduling
problem (GSP). This problem formulation covers among other Shop Scheduling problems
the Job Shop Scheduling problem (JSP) and the Open Shop Scheduling problem (OSP). As
both, the JSP and the OSP, are NP -hard combinatorial optimization problems, quite a lot of
research has been devoted in the last 10-15 years to the development of metaheuristic meth-
ods to tackle them. Metaheuristic methods are approximate methods which combine basic
heuristic methods in a higher level framework aimed at efficiently and effectively exploring a
search space. Chapter 2 gives a state-of-the-art review on metaheuristic methods developed
to tackle the JSP and the OSP.
The second part of the thesis summarizes the research results of the Metaheuristics Net-
work [114] on the development and comparison of metaheuristics to tackle the GSP. The
Metaheuristic Network is a Research Training Network funded by the Improving Human
Potential program of the CEC. It aims at the comparison of metaheuristics on different com-
binatorial optimization problems. For each combinatorial optimization problem considered,
five metaheuristics are implemented by different persons in different sites involved in the
Metaheuristics Network. The five metaheuristics considered are: Ant Colony Optimization
(ACO), Evolutionary Computation (EC), Iterated Local Search (ILS), Tabu Search (TS), and
Simulated Annealing (SA). The main part of Chapter 3 gives a summary of the research re-
sults of the author on the development of ACO algorithms to tackle the GSP. These research
results have been published or are about to be published in the following papers:

[17] C. Blum, A. Roli, and M. Dorigo. HC–ACO: The Hyper-Cube Framework for Ant
Colony Optimization. In Proceedings of MIC’2001 – Meta–heuristics International
Conference, volume 2, pages 399–403, Porto, Portugal, 2001. Also available as technical
report TR/IRIDIA/2001-16, IRIDIA, Université Libre de Bruxelles.

[18] C. Blum and M. Sampels. Ant Colony Optimization for FOP Shop scheduling: A case
study on different pheromone representations. In Proceedings of the 2002 Congress
on Evolutionary Computation, CEC’02 (to appear), 2002. Also available as technical
report TR/IRIDIA/2002-03, IRIDIA, Université Libre de Bruxelles.

[95] M. Sampels, C. Blum, M. Mastrolilli, and O. Rossi-Doria. Metaheuristics for Group
Shop Scheduling. Technical Report TR/IRIDIA/2002-07, IRIDIA, Université Libre de
Bruxelles, 2002. Submitted to PPSN’02.

[19] C. Blum and M. Sampels. When Model Bias is Stronger than Selection Pressure.
Technical Report TR/IRIDIA/2002-06, IRIDIA, Université Libre de Bruxelles, 2002.
Submitted to PPSN’02.

[16] C. Blum. ACO applied to Group Shop Scheduling: A case study on Intensification and
Diversification. Technical Report TR/IRIDIA/2002-08, IRIDIA, Université Libre de
Bruxelles, 2002. Submitted to ANTS’2002.

The remaining part of Chapter 3 outlines the other metaheuristics developed to tackle the
GSP and the comparison of these metaheuristics on various GSP instances.

II

Acknowledgments

First of all I want to express my thanks to my supervisor Marco Dorigo for giving me the
opportunity to work in a very dynamic and stimulating environment. In this context I thank
all my colleagues for making IRIDIA a nice place to work at.
Special thanks go to Michael Sampels with whom I cooperated closely on parts of the research
results presented, and to Mark Zlochin with whom I had many fruitful discussions in the
previous months. Furthermore I thank Andrea Roli for always being open for discussing
ideas and for our continuous cooperation.
I’m also very grateful to my parents, sister and brother who are a safe haven for me to which
to return to is always a great pleasure.
Last but not least I want to thank Maria Blesa who stands by my side to support me with
her love.

Contents

1 Introduction 1

1.1 Shop Scheduling: The JSP, the OSP and the GSP 2

1.2 Complexity . 5

1.3 Benchmark instances . 5

1.4 Algorithms . 5

1.4.1 List scheduler algorithms . 7

1.4.2 The shifting bottleneck procedure . 8

1.4.3 Insertion techniques and beam search 9

1.4.4 A matching algorithm combined with packing and inserting 10

2 Metaheuristics for Job and Open Shop Scheduling 12

2.1 Classification of metaheuristics . 14

2.2 Evolutionary Computation . 15

2.2.1 EC algorithms to tackle the JSP . 16

2.2.1.1 Binary representation . 16

2.2.1.2 Permutation representation 17

2.2.1.3 Algorithms without specific representation 18

2.2.1.4 Heuristically guided EC approaches 21

2.2.2 EC algorithms to tackle the OSP . 22

2.3 Tabu Search . 22

2.3.1 Tabu Search algorithms to tackle the JSP 24

2.3.2 Tabu Search algorithms to tackle the OSP 28

2.4 Simulated Annealing . 29

2.4.1 SA algorithms to tackle the JSP . 30

2.4.2 SA algorithms to tackle the OSP . 32

2.5 Ant Colony Optimization . 32

2.5.1 ACO algorithms to tackle the JSP . 36

III

CONTENTS IV

2.5.2 ACO algorithms to tackle the OSP . 37

2.6 Other metaheuristic approaches . 37

2.6.1 A large-step optimization method to tackle the JSP 38

2.6.2 A GRASP to tackle the JSP . 38

2.6.3 A variable depth search method to tackle the JSP 39

3 Metaheuristics for Group Shop Scheduling 40

3.1 Common neighborhood and local search . 41

3.2 Ant Colony Optimization . 42

3.2.1 A new pheromone model PHrel . 42

3.2.2 The Hyper-Cube Framework for Ant Colony Optimization 43

3.2.3 MAX -MIN Ant System for the GSP 44

3.2.4 Intensification and diversification strategies 48

3.2.5 Choice of an ACO algorithm for the comparison 51

3.3 Evolutionary Computation . 54

3.4 Iterated Local Search . 56

3.5 Simulated Annealing . 56

3.6 Tabu Search . 57

3.7 Comparison . 57

3.8 Outlook to future work . 61

List of Algorithms

1 The basic list scheduler algorithm for Shop Scheduling problems 7

2 Restrict(S) method by Giffler and Thompson 7

3 Restrict(S) method of the Non-Delay algorithm 8

4 The basic shifting bottleneck procedure . 9

5 Framework for insertion techniques . 10

6 The iterative packing method . 11

7 Evolutionary Computation (EC) . 16

8 MSXF crossover . 19

9 Iterative Improvement . 23

10 Tabu Search (TS) . 23

11 Simulated Annealing (SA) . 29

12 Ant System (AS) . 33

13 Ant Colony Optimization (ACO) . 34

14 MMAS for the GSP . 46

15 E-MMAS for the GSP . 50

V

Chapter 1

Introduction

Scheduling deals with the allocation of scarce resources to tasks over time. It is a decision
making process with the goal of optimizing one or more objectives. Scheduling problems play
important roles in most manufacturing and production systems as well as in most information–
processing environments. The importance of the scheduling problem makes it one of the most
studied combinatorial optimization problems in general. One of the difficulties encountered
is that in practice not many scheduling problems fit into a common description model. This
makes it very difficult to define a common framework for scheduling problems and also to find
algorithms which can be applied (or adapted) to tackle a great variety of problems. In fact,
a well working algorithm for a problem A might not work at all for a problem B being just a
slight variation of problem A. From the great variety of problems, a few problem formulations
emerged in the scientific area which are used since many years and which can be regarded as
benchmark problems. The best known and most studied scheduling problems are certainly
Shop Scheduling problems, and among them the Job Shop Scheduling problem (JSP) and the
Open Shop Scheduling problem (OSP). It is well known that both problems are NP -hard1,
see [61, 47], and belong to the most intractable combinatorial optimization problems consid-
ered. This is dramatically illustrated by the fact that a JSP instance involving 10 jobs and
10 machines, 1963 proposed by Fisher and Thompson in [75], remained unsolved for more
than a quarter of a century, even though every available algorithm was tried on it. The OSP
seems even harder than the JSP. As an example, JSP instances are considered to be solvable
to optimality nowadays for up to 100 operations, while there still remain unsolved instances
of the OSP with less than 50 operations.2 Many algorithms have been developed to tackle
especially the JSP but also the OSP. In early years – beginning in the sixties – due to the
hardness of the problem, the focus was on developing heuristic algorithms and more efficient
complete algorithms like Branch and Bound methods. In the last 15 years, metaheuristic
algorithms have been discovered to be useful and very efficient tools to tackle the JSP and
the OSP. The state-of-the-art methods nowadays for tackling large JSP and OSP problems
are nearly all attributed to the field of metaheuristics.
In this work we first introduce a way of describing Shop Scheduling problems. Based on
this way of describing problems we formalize the JSP and the OSP. Then we introduce the

1This means that – assuming that P 6= NP – no algorithm working in a time which is a polynomial of the
problem parameters can be found to solve these problems.

2To put things into perspective: The famous TSP problem – also a NP-hard combinatorial optimization
problem – is solvable to optimality nowadays for several thousand cities.

1

CHAPTER 1. INTRODUCTION 2

formulation of a more general Shop Scheduling problem, covering both the JSP and the OSP.
This formulation of Shop Scheduling problems will be called Group Shop Scheduling problem
(GSP). In Chapter 2 we survey existing metaheuristic methods for the JSP and the OSP,
before in Chapter 3 we outline the metaheuristic algorithms for the GSP developed in the
course of the Metaheuristics Network [114]. The focus in this part of the work is on Ant
Colony Optimization (ACO). As the newly developed metaheuristic algorithms are working
on problem instances of the GSP, they can be applied to both, JSP and OSP instances. Com-
paring these metaheuristic algorithms on problem instances from the whole range between
the JSP and the OSP gives further insight into the differences between the JSP and the OSP.

1.1 Shop Scheduling: The JSP, the OSP and the GSP

In Shop Scheduling problems, jobs (items) are to be processed on machines with the objective
of minimizing some function of the completion times of the jobs. Each machine can process
only one job at a time. The processing of a job on a machine is called an operation; its
processing time is fixed, and it cannot be interrupted (scheduling without preemption). In the
JSP the processing of the jobs is subject to the constraints that the sequence of machines for
each job is prescribed. These machine sequences are often called the technological sequences.
In contrast, in the OSP a job can be processed in any order on the machines. In the following
we give a more formal description of the problems. For this purpose we introduce the notation
in Table 1.1.

Table 1.1: Notation

Notation Meaning

n number of jobs
m number of machines
Ji Job i
Mj Machine j
Gl Group l
O set of operations
o, o′ operations
oij operation on job Ji to be processed on machine Mj

p(o) processing time of operations o
m(o) machine on which o has to be processed
ts(o) starting time of operation o with respect to a solution s
j(o) the job operation o belongs to
g(o) the group operation o belongs to

A Shop Scheduling problem can be formalized as follows: We consider a finite set of operations
O which is partitioned into subsets M1, . . . , Mm (machines) where M =

⋃m
j=1{Mj} and into

subsets J1, . . . , Jn (jobs) where J =
⋃n

i=1{Ji}. Also given is a partial order ¹ ⊆ O × O
such that ¹ ∩ Ji × Jj = ∅ for i 6= j (defining the technological sequences), and a function
p : O → N. A feasible solution is a refined partial order ¹∗ ⊇ ¹ for which the restrictions
¹∗ ∩ Ji ×Ji and ¹∗ ∩ Mk ×Mk are total ∀ i, k and the longest chain in ¹∗ is of finite length.

CHAPTER 1. INTRODUCTION 3

In the course of this work, the cost of a feasible solution is defined by

Cmax(¹
∗) = max{

∑

o∈C

p(o) | C is a chain in (O,¹∗)} .

Cmax is called the makespan of a solution. We aim at a feasible solution which minimizes
Cmax. The Shop Scheduling problems we consider in this work are subject to the following
constraints: (i) Each machine can process at most one operation at a time, (ii) operations
must be processed without preemption, and (iii) operations belonging to the same job must
be processed sequentially. This brief problem formulation covers among others the JSP and
the OSP in the following way: The restriction ¹ ∩ Ji × Ji is total in the JSP and trivial
(= {(o, o) | o ∈ Ji}) in the OSP. In the JSP, ¹ induces a total order on the operations of each
job.

For the Group Shop Scheduling problem (GSP), we consider a weaker restriction on ¹
which includes the above scheduling problems by looking at a refinement of the partition J
to a partition into groups G = {G1, . . . , Gg}. We demand that ¹ ∩ Gi ×Gi has to be trivial
and that for o, o′ ∈ J (J ∈ J) with o ∈ Gi and o′ ∈ Gj (i 6= j) either o ¹ o′ or o º o′ holds.
Note that the coarsest refinement G = J (group sizes are equal to job sizes) is equivalent to
the OSP and the finest refinement G = {{o} | o ∈ O} (group sizes of 1) is equivalent to the
JSP.

Regarding the precedence constraints (the technological sequences), an immediate predecessor
o′ of an operation o with j(o) = j(o′) and o′ 6= o is denoted by ¹pred (o) and the relation
between them is denoted as o′ ¹pred o. For o 6= o′ it holds: o′ ¹pred o ⇔ o′ ¹ o and ∀o′′ 6= o, o′

with o′ ¹ o′′ it holds that o ¹ o′′.

Is is useful to represent Shop Scheduling problems on a disjunctive graph [93] G = (V, A, E),
with node set V , conjunctive arc set A, and disjunctive arc set E. The nodes of G corre-
spond to operations, the arcs A3 to precedence constraints, and the edges4 (disjunctive arcs
E) to pairs of operations to be performed on the same machine. G is node-weighted with
node weights corresponding to the processing times of the associated operations. A formal
description of the disjunctive graph for the Group Shop Scheduling problem is given as follows:

V = O (1.1)

A = {ao,o′ | o, o′ ∈ V, o ¹pred o′} (1.2)

E = {eo,o′ | o, o′ ∈ V, m(o) = m(o′) ∨ g(o) = g(o′)} (1.3)

Figure 1.1 shows the disjunctive graphs for the JSP version and the OSP version of a small
Shop Scheduling problem (processing times are omitted in this example). Note that in the
case of the OSP the arc set A is empty because no precedence constraints are given.

Figure 1.2 shows the disjunctive graph for one of the many possible GSP versions of the same
Shop Scheduling problem.

A solution in terms of the disjunctive graph representation is a version of the disjunctive graph
where every undirected arc in E has been given a direction such that the resulting graph is
acyclic. The makespan of a solution is then associated with the length of a longest path in
G (which corresponds to a maximal weight chain C in (O,¹∗)). Such a path will be called a

3Arcs are directed links in graphs denoted by av,v′ for v, v′ ∈ V .
4Edges are undirected links in graphs denoted by ev,v′ for v, v′ ∈ V .

CHAPTER 1. INTRODUCTION 4

b)

1 2 3

4 5 6 7

8 9 10

a)

1 2 3

4 5 6 7

8 9 10

Figure 1.1: Disjunctive graph representation: a) The disjunctive graph corresponding to
the JSP and b) the OSP version of the following problem: O = {1, ..., 10}, J = {J1 =
{1, 2, 3}, J2 = {4, ..., 7}, J3 = {8, 9, 10}}, M = {M1 = {1, 5, 8}, M2 = {2, 4, 9} M3 =
{3, 7}, M4 = {6, 10}} (processing times are omitted).

1 2 3

4 5 6 7

8 9 10

Figure 1.2: Disjunctive graph representation: The disjunctive graph corresponding to one
of the GSP versions of the Shop Scheduling instance shown in Figure 1.1b). This GSP
instance is obtained by a refinement of the job partition into the following group partition:
G = {G1 = {1, 2}, G2 = {3}, G3 = {4}, G4 = {5, 6, 7}, G5 = {8}, G6 = {9, 10}}.

critical path in the course of this work. Note that in general a solution to a Shop Scheduling
problem can also be represented as a permutation (henceforth called a sequence) of all the
operations. Every sequence unambiguously defines the order of operations on machines and
in jobs (groups). In general a solution can be defined by assigning a starting time t(o) to
every operation o ∈ O such that operations don’t overlap each other and the precedence
constraints are respected. When we talk about sequences, we assume that every operation
has been assigned the earliest possible starting time.

According to Fang [35], feasible schedules fall into four classes: Inadmissible, semi-active,
active and non-delay schedules. Figure 1.3 illustrates the relationship between each of these
types. There are an infinite number of inadmissible schedules, which contain excess idle time.
Semi-active schedules contain no idle time. There might be holes in the schedule though, such
that operations might be shifted to the left in machine or job sequences without delaying other
operations. Active schedules contain no idle time, and furthermore, have no operations which
can be completed earlier without delaying other operations. Optimal schedules are guaranteed
to fall within the set of active schedules. Non-delay schedules are a subset of active schedules,
in which operations are placed into the schedule such that no machine is ever kept idle if some

CHAPTER 1. INTRODUCTION 5

Inadmissible Schedules

Schedules

Active Schedules

Schedules
Non−delay

Semi−active

Figure 1.3: Types of feasible schedules for Shop Scheduling problems

operation is able to be processed on it.

1.2 Complexity

In general, both problems, JSP and OSP, are NP-hard and are considered to be among
the most intractable combinatorial optimization problems. For the JSP this was proven by
Lenstra et al. in [61]. Only a few particular cases are efficiently solvable. NP-hardness was
proven for the OSP by Gonzales and Sahni in [47] for m ≥ 3. As both, JSP and OSP, are
special cases of GSP, we also can deduct the NP-hardness of the GSP.

1.3 Benchmark instances

A collection of benchmark instances which have been extensively used in the literature can
be found in the OR-Library. The OR-Library is a collection of test data sets for a variety
of Operations Research (OR) problems. These test data sets can be accessed via emailing
to or.library@ic.ac.uk a message containing the name of the required file, or via the URL
http://www.ms.ic.ac.uk/info.html. The OR-Library is maintained and described by Beasley in
[11]. Table 1.2 lists benchmark instances for the JSP. For the OSP there are less benchmark
instances. Taillard [101] provides 60 problems of varying size and a generator written in
Pascal to generate them. However, these instances are commonly agreed to be quite easy to
solve. Therefore, Brucker et al. [21] generated 18 harder instances.

1.4 Algorithms

A massive amount of literature about solving OSP and JSP has been published in the last
30 to 40 years. The methods proposed can be classified as either complete or approximate
algorithms. Complete algorithms are guaranteed to find for every finite size problem instance

CHAPTER 1. INTRODUCTION 6

Table 1.2: Benchmark problems for the JSP

Problems Source

abz5,...,abz9 Adams et al. [4]
ft6, ft10, and ft20 Fisher and Thompson in [75]
la01,...,la40 Lawrence [60]
orb01,...,orb10 Applegate and Cook [7]
swv01,...,swv20 Storer et al. [98]
yn1,...,yn40 Yamada and Nakano [109]
ta01,...,ta80 Taillard [101]

an optimal solution in bounded time (see [85, 78]). Yet, for many combinatorial optimiza-
tion problems that are NP-hard such as Shop Scheduling problems, complete methods need
exponential computation time in the worst-case and even for small problem instances these
algorithms might take an amount of execution time too high for practical purposes. Therefore,
the use of approximate methods to solve Shop Scheduling problems has been getting more
and more attention in the last 30 years. In approximate methods we sacrifice the guarantee
of finding optimal solutions for the sake of getting good solutions in a significantly reduced
amount of time.
Among the basic approximate methods we usually distinguish between constructive methods
and local search methods. Constructive algorithms generate solutions from scratch by adding
– to an initially empty partial solution – components, until a solution is complete. They are
typically the fastest approximate methods, yet they often return solutions of inferior quality
when compared to local search algorithms. Local search algorithms start from some initial
solution and iteratively try to replace the current solution with a better solution in an ap-
propriately defined neighborhood of the current solution, where the neighborhood is formally
defined as follows:

Definition 1 A neighborhood structure is a function N : S → 2S (where S is the set
of all solutions to a combinatorial optimization problem) that assigns to every s ∈ S a set of
neighbors N (s) ⊆ S. N (s) is also called the neighborhood of s.

With the introduction of a neighborhood structure we can also define the concept of locally
minimal solutions.

Definition 2 A locally minimal solution (or local minimum) with respect to a neigh-
borhood structure N is a solution ŝ such that ∀ s ∈ N (ŝ) : f(ŝ) ≤ f(s). We call ŝ a strict
locally minimal solution if f(ŝ) < f(s) ∀ s ∈ N (ŝ)

In the last 20 years, a new approach to the design of approximate algorithms has emerged
which basically tries to combine basic heuristic methods in a higher level framework aimed at
efficiently and effectively exploring a search space. These methods are nowadays commonly
called metaheuristics. In the following we shortly outline the most important constructive
methods before giving – in the following chapter – an overview of the state-of-the-art in
metaheuristic research for the JSP and the OSP.

CHAPTER 1. INTRODUCTION 7

1.4.1 List scheduler algorithms

List scheduler algorithms are probably the most frequently applied constructive heuristics
for solving Shop Scheduling problems in practice. The reason for that is their simplicity
in terms of implementation and their low time complexity. To construct a schedule, list
scheduler algorithms build a sequence s containing all operations of O exactly once – starting
with an empty sequence – by performing |O| steps as shown in Algorithm 1. A sequence
s unambiguously defines a solution5 to an instance of a Shop Scheduling problem. For the
problem instance depicted in Figure 1.2, the sequence 1 − 0 − 3 − 5 − 4 − 7 − 8 − 9 − 2 − 6
defines group order 1 ¹ 0 in group G1, 5 ¹ 4 ¹ 6 in group G4 and 8 ¹ 9 in group G6. It
also defines machine orders 0 ¹ 4 ¹ 7, 1 ¹ 3 ¹ 8, 2 ¹ 6 and 5 ¹ 0. In the following, partial
sequences are denoted by sx,y where x is the actual length of the partial sequence and y is its
final length. We also use the notation tes(o | sx,y) to denote the earliest possible starting time
of an operation o with respect to the partial sequence sx,y, o /∈ sx,y. Note that these earliest
starting times are with respect to appending an operation to a partial sequence. Analogously,
tec(o | sx,y) = tes(o | sx,y)+ p(o) denotes the earliest possible completion time of an operation
o with respect to the partial sequence sx,y, o /∈ sx,y. In the course of this work the contents
of the t-th position in a sequence s or a partial sequence sx,y, y ≥ t, is denoted by s[t], sx,y[t]
respectively.

Algorithm 1 The basic list scheduler algorithm for Shop Scheduling problems

Orem ← O
s0,|O| is an empty sequence
for t = 1, ..., |O| do

S ← {o ∈ Orem |6 ∃o′ ∈ Orem with o′ ¹pred o}
S′ ← Restrict(S)
o∗ ← Choose(S′)
st−1,|O|[t] = o∗

Orem = Orem \ {o∗}
end for

There exist two major ways of implementing Restrict(S) in Algorithm 1. The one proposed
by Giffler and Thompson [42] works as shown in Algorithm 2. First the earliest possible
completion times of all the operations in S are calculated. Then one of the machines M∗

with minimal completion time t∗ is chosen and set S′ is the set of all operations in S which
need to be processed on machine M∗ and whose earliest possible starting time is < t∗. This
way of restricting set S produces active schedules (see Figure 1.3). Algorithm 1 using the set
restriction given by Algorithm 2 is usually called GT algorithm.

Algorithm 2 Restrict(S) method by Giffler and Thompson

Determine t∗ = min{tec(o | st−1,|O|) | o ∈ S}
Determine M∗ = {M ∈ M | ∃ o ∈ S with m(o) = M and tec(o | st−1,|O|) = t∗}
Choose M∗ ∈ M∗ randomly
S′ ← {o ∈ S | m(o) = M∗ and tes(o, st−1,|O|) < t∗}

5Note that the sequence to schedule mapping is a many to one mapping. Several sequences map to the
same schedule.

CHAPTER 1. INTRODUCTION 8

The other major way of implementing Restrict(S) is called Non-Delay algorithm. It works
as shown in Algorithm 3. First the earliest possible starting time t∗ of all operations in S is
determined. Then S′ consists of all operations in S which can start at time t∗. As the name
indicates, this algorithm produces non-delay schedules (see Figure 1.3).

Algorithm 3 Restrict(S) method of the Non-Delay algorithm

Determine t∗ = min{tes(o | st−1,|O|) | o ∈ S}
S′ ← {o ∈ S | tes(o | st−1,|O|) = t∗}

Over the years quite a lot of research has been devoted to finding rules for choosing among
the operations in set S′ the one to be scheduled next. These rules are commonly called
priority rules or dispatching rules. Table 1.3 shows a selection of them. We mention that
sometimes these rules are used probabilistically (in a roulette-wheel-selection manner) instead
of deterministically. None of these rules can be singled out to be labeled the “best performing”
priority rule. Which rule performs best strongly depends on the structure of the problem
instance to be solved. A good overview on priority rules can be found in [51].

Table 1.3: Priority Rules

Rule Description

Random An operation is randomly chosen
SPT An operation with shortest processing time
LPT An operation with longest processing time
MWR An operation with most work remaining in the job
LWR An operation with least work remaining in the job
LTW An operation with least total work in the job
MTW An operation with most total work in the job
MRO An operation with most remaining operations in the job
LRO An operation with least remaining operations in the job

1.4.2 The shifting bottleneck procedure

The shifting bottleneck procedure by Adams, Balas and Zawack [4] (for the JSP) and by
Ramudhin and Marier [90] (for the OSP) is one of the most powerful iterative constructive
procedures among heuristics for Shop Scheduling problems. For the following description of
this method for the JSP we follow the description given in [15]. The idea is to solve for each
machine a one-machine scheduling problem to optimality under the assumption that a lot
of disjunctive arc directions in the optimal one-machine schedule coincide with an optimal
job shop schedule. Consider all operations of a JSP instance that have to be scheduled on
a machine M . In the (disjunctive) graph G corresponding to a partial schedule (node set is
restricted to the operations already in the schedule) there exists a longest path of length ro

with operation o as the last node. Processing of operation o cannot start before time ro which
is called the head of operation o. There is also a longest path of length qo with operation o
as the start node. Obviously, when o is processed, it will take at least qo time units to finish

CHAPTER 1. INTRODUCTION 9

the whole schedule. qo is called the tail of operation o. Although the one-machine scheduling
problem with heads and tails is NP-complete, there is a powerful branch and bound method
proposed by Potts [88] and Carlier [23] which dynamically changes heads and tails in order
to improve the order of operations on one machine.
As the name suggests, the shifting bottleneck heuristic always schedules bottleneck machines
first. As a measure of the bottleneck quality of a machine M , the value of an optimal
solution of a certain one-machine scheduling problem on machine M is used. The operation
orders on scheduled machines are fully determined. Hence scheduling an additional machine
probably results in a change of heads and tails of those operations whose machine order is
still open. For all machines not scheduled, the maximum makespan of the corresponding
optimal one-machine schedules, where the arc directions of the already scheduled machines
are fixed, determines the bottleneck machine. In order to minimize the makespan of the JSP
the bottleneck machine should be scheduled first. The basic shifting bottleneck procedure is
shown in Algorithm 4.

Algorithm 4 The basic shifting bottleneck procedure

M′ ← ∅ is the set of already schedules machines
repeat

for M ∈ M \M′ do
Compute head and tail for each operation o ∈ M
Solve the one-machine scheduling problem for machine M to optimality. CM

max denotes
the resulting makespan.

end for
Let M b be the bottleneck machine, i.e. CMb

max ≥ CM
max ∀M ∈ M \M′

for M ∈ M′ in the order of its inclusion do
Unschedule M
Compute head and tail for each operation o ∈ M
Solve the one-machine scheduling problem for machine M to optimality

end for
until M = M′

Adams et al. [4] also proposed an improvement of the basic procedure which consists basically
of an enumeration tree where each path from the root to a leaf is similar to an application of
Algorithm 4.

1.4.3 Insertion techniques and beam search

Insertion techniques have been successfully applied to many combinatorial optimization prob-
lems. Especially for permutation problems (like the TSP and also Shop Scheduling problems)
insertion algorithms often generate good solutions. Similar to list scheduler algorithms, inser-
tion algorithms successively complete a partial solution. Let’s assume, we build a permutation
as a sequence from left to right. Then the principle of insertion algorithms for Shop Scheduling
problems can be stated as follows. Given a partial sequence sx,y = (s[1], s[2], ..., s[x])6 with
x < y, an operation o /∈ sx,y to be inserted next has to be determined. Operation o can now
potentially be inserted at most at x + 1 positions in the partial sequence sx,y. The feasible

6Remember that x denotes the actual length of the partial sequence whereas y denotes its final length.

CHAPTER 1. INTRODUCTION 10

ones7 among the possibilities are evaluated (exact makespan or makespan approximations are
possible) and the best insertion point is chosen. The pseudo-code for this mechanism is given
in Algorithm 5.

Algorithm 5 Framework for insertion techniques

Orem ← O
s0,|O| is an empty sequence
for t = 1, ..., |O| do

Choose operation o ∈ Orem to be inserted next
Try to insert o in all t possible positions and evaluate the resulting feasible partial se-
quences.
Chose the best insertion point and insert o.
Orem = Orem \ {o}

end for

The main difference to list scheduler algorithms is that the insertion position for list scheduler
algorithms is fix (a new operation is always appended to a partial sequence) and the crucial
decision is to chose the next operation, whereas in insertion algorithms the order in which
the operations are inserted is usually fix (e.g., ordered according to non-increasing processing
times) and the crucial decision is where to insert the next operation in the partial sequence.
Insertion techniques for OSP have been proposed by Bräsel [20]. An example for the JSP
is the algorithm proposed by Werner et al. [108]. For the Permutation Flow Shop problem
which is a special case of the JSP a very well working insertion algorithm has been proposed
by Nawaz et al. [77].
Often insertion algorithms are combined with a technique called beam search [84]. The basic
idea of this approach is to build a limited number of partial solutions in parallel. If a beamwith
of k is applied, we select in each step of the (parallel) insertion algorithm the k best partial
sequences (instead of just the best one). This selection of partial sequences is called the beam.
This set of k partial sequences enters the next step of the insertion algorithm, and from the
set of all partial sequences obtained by inserting an operation at some position in one of the
partial sequences, we chose again the k best ones and proceed.

1.4.4 A matching algorithm combined with packing and inserting

In 1998, Guéret and Prins [49] proposed a heuristic method to solve the OSP which is based
on algorithms for generating matchings in bipartite graphs. The heuristic works as follows.
It partitions the set of operations into subsets, such that the operations in a subset can run
simultaneously without violating any constraints. A subset might be interpreted as a partial
schedule (a schedule slice). Obviously the length of a slice is the duration of its longest task.
In a first phase, successive subsets are computed and the resulting slices are concatenated to
generate a complete schedule. In a second phase, this preliminary schedule is improved by
packing the slices, which means starting every operation as soon as possible.
Guéret and Prins proposed 3 different matching algorithms to generate differently weighted
matchings in the first phase of the algorithm: (i) application of the well-known Hungarian
algorithm generates min-weight resp. max-weight matchings, (ii) applying a variant of Dijk-

7Remember that a feasible (partial) schedule is characterized by an acyclic disjunctive graph representation.

CHAPTER 1. INTRODUCTION 11

stra’s algorithm for computing paths of maximum capacity generates min-max resp. max-min
matchings and (iii) an algorithm proposed by Martello et al. [66] provides balanced match-
ings8.
For the second phase they proposed the iterative “packing” mechanism shown in Algorithm 6
which takes as input the partition of the operations produced by the matching algorithm of
the first phase.

Algorithm 6 The iterative packing method

Let P = {P1, ..., Pk} be the partition generated by the matching algorithm
Chose P ∗ with |P ∗| = max{|P | | P ∈ P}
Schedule the operations o ∈ P ∗{all have starting time 0}
P = P \ P ∗

S[1] ← P ∗{S is a sequence of partition elements}
while P 6= ∅ do

gcp ← 0
for each P ∈ P do

for l = 1, ..., |S| − 1 do
Schedule the operations o ∈ P between S[l] and S[l + 1]

Compute the makespan of the new partial schedule, Cbefore
max

Pack the new partial sequence
Compute the makespan of the new partial schedule, Cafter

max

if C
before
max

C
after
max

> gcp then

gcp ← C
before
max

C
after
max

P ∗ = P
l∗ = l

end if
end for

end for
Schedule the operations o ∈ P ∗ between S[l∗] and S[l∗ + 1]
Add P ∗ to S at position l∗ (while moving all partition elements P in S at positions l ≥ l∗

one position to the right)
end while
Pack the final schedule

The algorithm outlined in this section was improved by an additional insertion technique and
the application of a local search method for which we refer to [49].

8In a balanced matching the difference in length between the smallest and the longest task is minimized.

Chapter 2

Metaheuristics for Job and Open

Shop Scheduling

Metaheuristic algorithms include1 – but are not restricted to – Ant Colony Optimization
(ACO), Evolutionary Computation (EC) including Genetic Algorithms (GA), Iterated Local
Search (ILS), Simulated Annealing (SA), and Tabu Search (TS). Up to now there is no com-
monly accepted definition for the term metaheuristic. It is just in the last few years that
some researchers in the field tried to propose a definition. In the following we quote some of
them:

“A metaheuristic is a set of concepts that can be used to define heuristic methods that can
be applied to a wide set of different problems. In other words, a metaheuristic can be seen
as a general algorithmic framework which can be applied to different optimisation problems
with relatively few modifications to make them adapted to a specific problem.” This is the
description of metaheuristics used in the Metaheuristics Network [114].

“A metaheuristic is formally defined as an iterative generation process which guides a subor-
dinate heuristic by combining intelligently different concepts for exploring and exploiting the
search space, learning strategies are used to structure information in order to find efficiently
near-optimal solutions.” This citation is taken from a metaheuristics bibliography by Osman
and Laporte [83].

”A metaheuristic is an iterative master process that guides and modifies the operations of
subordinate heuristics to efficiently produce high-quality solutions. It may manipulate a
complete (or incomplete) single solution or a collection of solutions at each iteration. The
subordinate heuristics may be high (or low) level procedures, or a simple local search, or just
a construction method.” This citation is taken from “Meta-heuristics: Advances and Trends
in Local Search Paradigms for Optimization”, by Voss, Martello, Osman and Roucairol [106].

“Metaheuristics are typically high-level strategies which guide an underlying, more problem
specific heuristic, to increase their performance. The main goal is to avoid the disadvantages
of iterative improvement and, in particular, multiple descent by allowing the local search to
escape from local optima. This is achieved by either allowing worsening moves or generating

1in alphabetical order

12

CHAPTER 2. METAHEURISTICS FOR JOB AND OPEN SHOP SCHEDULING 13

new starting solutions for the local search in a more “intelligent” way than just providing
random initial solutions. Many of the methods can be interpreted as introducing a bias such
that high quality solutions are produced quickly. This bias can be of various forms and can
be cast as descent bias (based on the objective function), memory bias (based on previously
made decisions) or experience bias (based on prior performance). Many of the metaheuristic
approaches rely on probabilistic decisions made during the search. But, the main difference
to pure random search is that in metaheuristic algorithms randomness is not used blindly but
in an intelligent, biased form.” This citation is taken from the PhD thesis of Stützle [99].

Summarizing, we outline fundamental properties which characterize metaheuristics:

• Metaheuristics are strategies that “guide” the search process.

• The goal is to efficiently explore the search space in order to find (near-)optimal solu-
tions.

• Techniques which constitute metaheuristic algorithms range from simple local search
procedures to complex learning processes.

• Metaheuristic algorithms are approximate and non-deterministic.

• Metaheuristics incorporate mechanisms to avoid getting trapped in confined areas of
the search space.

• The basic concepts of metaheuristics permit an abstract level description.

• Metaheuristics are not problem-specific.

• Metaheuristics make use of domain-specific knowledge as heuristics controlled by the
upper level strategy.

• Metaheuristics often use search experience (memory) to guide the search.

In short we could say: Metaheuristics are high level concepts for exploring search spaces by
using different strategies. These strategies should be chosen in such a way that a dynamic
balance is given between the exploitation of the accumulated search experience (which is
commonly called intensification) and the exploration of the search space (which is commonly
called diversification). This balance is necessary on one side to quickly identify regions in the
search space with high quality solutions and on the other side not to waste too much time
in regions of the search space which are either already explored or don’t provide high quality
solutions.

The structure of the strategies is highly dependent on the philosophy of the metaheuristic
itself. There are several different philosophies behind the existing metaheuristics. Some of
them can be regarded as “intelligent” extensions of local search algorithms. The goal of this
kind of metaheuristic is to escape from local minima to proceed in the exploration of the
search space and to move on to find other hopefully better local minima. This is for example
true for Tabu Search, Iterated Local Search, Variable Neighborhood Search, GRASP and
Simulated Annealing. These metaheuristics (also called trajectory methods) work on one

CHAPTER 2. METAHEURISTICS FOR JOB AND OPEN SHOP SCHEDULING 14

or several neighborhood structure(s) imposed on the members (the solutions) of the search
space.

We can find a different philosophy in algorithms like Ant Colony Optimization and Evolution-
ary Computation. They incorporate a learning component in the sense that they implicitly or
explicitly try to learn correlations between solution components to identify high quality areas
in the search space. This kind of metaheuristic performs in a sense a biased sampling of the
search space. For instance, in Evolutionary Computation this is achieved by a recombination
of solutions and in Ant Colony Optimization this is achieved by sampling the search space in
every iteration according to a probability distribution.

2.1 Classification of metaheuristics

There are different ways to classify and describe metaheuristic algorithms. Depending on the
characteristics selected to differentiate between them, several classifications are possible, each
of them being the result of a specific viewpoint. We briefly summarize the most important
ways of classifying metaheuristics.

Nature-inspired vs. non-nature inspired. Perhaps, the most intuitive way of classifying
metaheuristics is based on the origins of the algorithm. There are nature-inspired algorithms,
such as Genetic Algorithms and Ant Algorithms, and non nature-inspired ones such as Tabu
Search and Iterated Local Search. In our opinion this classification is not very meaningful for
the following two reasons. First, many recent hybrid algorithms do not fit either class (or, in
a sense, they fit both at the same time). Second, it is sometimes difficult to clearly attribute
an algorithm to one of the metaheuristics.

Population-based vs. single point search. Another characteristic which can be used for
the classification of metaheuristics is the number of solutions used at the same time: Does the
algorithm work on a population or on a single solution at any time? Algorithms working on
single solutions are called trajectory methods and encompass local search-based metaheuris-
tics, such as Tabu Search, Iterated Local Search and Variable Neighborhood Search. They all
share the property of describing a trajectory in the search space during the search process.
Population-based metaheuristics on the contrary perform search processes which describe the
evolution of a set of points in the search space.

Dynamic vs. static objective function. Metaheuristics can also be classified according
to the way they make use of the objective function. While some algorithms keep the objective
function given in the problem representation “as it is”, some others, such as Guided Local
Search (GLS), modify it during the search. The idea behind this approach is to escape from
local optima by modifying the search landscape. Accordingly, during the search the objective
function is altered by trying to incorporate information collected during the search process.

One vs. various neighborhood structures. Most metaheuristic algorithms work on one
single neighborhood structure. In other words, the fitness landscape which is searched doesn’t
change in the course of the algorithm. Other metaheuristics, like Variable Neighborhood
Search (VNS), use a set of neighborhood structures which gives the possibility to diversify
the search and tackle the problem jumping between different fitness landscapes.

CHAPTER 2. METAHEURISTICS FOR JOB AND OPEN SHOP SCHEDULING 15

Memory usage vs. memory-less methods. A very important feature to classify meta-
heuristics is the use they make of the search history, that is whether they use memory or
not. Memory-less algorithms perform a Markov process, as the information they exclusively
use is the current state of the search process to determine the next action. There are several
different ways of making use of memory. Usually we differentiate between short term and long
term memory structures. The first usually keeps track of recently performed moves, visited
solutions or, in general, decisions taken. The second is usually an accumulation of synthetic
parameters and indexes about the search. The use of memory is nowadays recognized as one
of the fundamental elements of a powerful metaheuristic.

We find it most natural to describe metaheuristics following the single point vs. population-
based search classification, which divides metaheuristics into trajectory methods and methods
based on populations. This is motivated by the fact that this categorization permits a clearer
description of the algorithms. Moreover, a current trend is the hybridization of methods in
the direction of the integration of single point search algorithms in population-based ones.

Most of the metaheuristic algorithms iterate on a main loop. This process is stopped as
soon as one or more termination conditions are met. Possible termination conditions include:
maximum CPU time, a maximum number of iterations, a solution s with f(s) less than a pre-
defined threshold value is found, or the maximum number of iterations without improvements
is reached.

In the following two sections, the state-of-the-art in metaheuristic research for JSP and OSP
is presented.

2.2 Evolutionary Computation

Evolutionary Computation (EC) algorithms are inspired by nature’s capability to evolve liv-
ing beings well adapted to their environment. EC algorithms can shortly be characterized as
computational models of evolutionary processes. In every iteration a number of operators is
applied to the individuals of the current population to generate the individuals of the populat-
ion of the next generation (iteration). Usually EC algorithms use operators to recombine two
or more individuals to produce new individuals called recombination or crossover operators,
and also operators which cause a self-adaptation of individuals called mutation or modification
operators (depending on there structure). The driving force in evolutionary algorithms is the
selection of individuals based on their fitness (this can be the value of an objective function
or the result of a simulation experiment, or some other kind of quality measure). Individuals
with a higher fitness have a higher probability to be chosen as members of the next iterations
population (or as parents for the generation of new individuals). This corresponds to the
principle of survival of the fittest in natural evolution. It is the capability of nature to adapt
itself to a changing environment, which gave the inspiration for EC algorithms.

There has been a variety of slightly differing EC algorithms proposed over the years. Basically
they fall into three different categories which have been developed independently from each
other. These are Evolutionary Programming (EP) developed by Fogel et al. in 1966 [40] [41],
Evolutionary Strategies (ES) proposed by Rechenberg in 1973 [92] and Genetic Algorithms
initiated by Holland in 1975 [53] (see [46] and [73] for further literature). EP arose from
the desire to generate machine intelligence. While EP originally was proposed to operate

CHAPTER 2. METAHEURISTICS FOR JOB AND OPEN SHOP SCHEDULING 16

on discrete representations of finite state machines, most of the present variants are used
for continuous optimization problems. The latter also holds for most present variants of ES,
whereas GAs are often used to tackle discrete optimization problems. Over the years there
have been quite a few overviews and surveys about EC methods. Among those are the ones
by Bäck [8], by Fogel [39], by Spears et al. [96] and by Michalewicz et al. [71]. Calégary et
al. [22] tried to give a taxonomy of EC algorithms. A “combinatorial optimization”-oriented
introduction into the field of EC methods is the overview work by Hertz et al. [52], which
gives, in our opinion, a good overview of the different components of EC algorithms and of
the possibilities to define them. Algorithm 7 shows the basic structure of every EC algorithm.

Algorithm 7 Evolutionary Computation (EC)

P ← GenerateInitialPopulation()
Evaluate(P)
while termination conditions not met do

P ′ ← Recombine(P)
P ′′ ← Mutate(P ′)
Evaluate(P ′′)
P ← Select(P ′′ ∪ P)

end while

In this algorithm, P denotes the population of individuals. A population of offspring is gener-
ated by recombination and mutation operators and the individuals for the next population are
selected from the union of the old population and the offspring population. In the following
we outline the most important EC algorithms to tackle the JSP and the OSP.

2.2.1 EC algorithms to tackle the JSP

EC algorithms have been widely used in the last 10 to 15 years to tackle the JSP. A wide
variety of algorithms has been developed. A good overview (until 1997) is given by the
work of Yamada and Nakano [112]. EC algorithms to tackle the JSP differ mainly in the
representation used and the recombination operators applied. In the following we mainly
focus on these two aspects. We split the different EC algorithms into sections depending on
the solution representation used.

2.2.1.1 Binary representation

The first algorithms proposed were based on a binary representation which can be applied
to any combinatorial optimization problem. As described in Section 1.1, a (semi-active)
schedule can be obtained by assigning to all disjunctive arcs a direction such that the resulting
graph remains acyclic. Therefore, by associating every disjunctive arc with a position in a
bit string where the value at this position (0 or 1) indicates the direction, a schedule can
be represented by a binary string2. An advantage of using the binary representation is that
conventional recombination and mutation operators, such as one-point, multi-point or uniform
crossover can be applied. However a resulting bit string might potentially be infeasible (the

2Usually the following convention holds: The value for a disjunctive arc eoij ,okj
(where i < k) is 1 if the

arc is directed from oij to okj . 0 otherwise.

CHAPTER 2. METAHEURISTICS FOR JOB AND OPEN SHOP SCHEDULING 17

corresponding disjunctive graph might contain cycles). There are two approaches to deal with
this problem: one is to repair an illegal string and the other one is to add a penalty term to
the objective function to penalize infeasible solutions.
An example for such a conventional EC method is the algorithm proposed by Nakano and
Yamada [76]. They use a method which they call harmonization to repair infeasible bit strings.
They also experiment with a mechanism called forcing. An illegal bit string produced by the
operators can be considered as a genotype, and a feasible one after repair can be considered
as a phenotype. Therefore, repairing a bit string does not necessarily mean replacing it with
the repaired version, which would be called forcing. Nakano and Yamada experiment with
limited forcing which improved convergence speed and solution quality. However, the results
obtained (compared to the state-of-the-art) are not competitive.

2.2.1.2 Permutation representation

A solution to a JSP instance can be characterized by a permutation of the operations of each
machine. Therefore, a schedule can be represented by the set of permutations (one for each
machine) specifying the processing orders on machines. The advantage of this representation
is that operators developed for permutation problems like the Traveling Salesman Problem
(TSP) can be used on every one of the m partitions constituting a solution.
Kobayashi et al. [58] presented an algorithm using a recombination operator called Subse-
quence Exchange Crossover (SXX), a natural extension of the subtour exchange crossover for
TSPs. A pair of subsequences both originating from the permutation representing the order
on the same machine Mi, one from a solution s0 and one from a solution s1, is exchangeable if
and only if the corresponding operations belong to the same jobs. Figure 2.1 shows an exam-
ple. In case the resulting solution is not feasible, Kobayashi et al. use the GT algorithm (see
Section 1.4.1) to produce a feasible schedule as similar to the infeasible schedule as possible.

5 8 1 9 4 2 3 7 6 10

1 8 5 2 4 9 7 3 6 10

5 1 8 4 9 2 7 3 6 10

8 1 5 2 9 4 3 7 6 10

M1 M2 M3 M4
parent 1

parent 2

offspring 1

offspring 2

Figure 2.1: SXX crossover: An example for two solutions to the JSP instance shown in
Figure 1.1,a).

A second permutation representation is based on a permutation with repetitions. For every
job Ji, i = 1, ..., n the number i occurs |Ji| times in such a permutation with repetitions. By
scanning the permutation from left to right the k-th occurrence of a job number refers to
the k-th operation in the ordered sequence of operations belonging to this job (also called
the technological order). An example on how to decode such a permutation is given in
Figure 2.2. The well-known order crossover and the partially mapped crossover for the TSP
are adapted for the application to this representation by Bierwirth et al. [12, 13]. They called
the adapted crossover versions Generalized Order Crossover (GOX) and Generalized Partially
Mapped Crossover (GPMX). They also proposed Precedence Preservative Crossover (PPX)

CHAPTER 2. METAHEURISTICS FOR JOB AND OPEN SHOP SCHEDULING 18

1 3 2 2 3 1 2 1 3 2

M1

M2

M3

M4

1 8

4

5

9 2

6

3

10

7

Figure 2.2: Decoding of a chromosome for the permutation with repetition representation:
The chromosome encodes a solution to the JSP instance shown in Figure 1.1,a).

which respects the absolute order of genes in parental chromosomes. A randomly generated
bitstring of the length of the chromosomes is used to determine for each gene from which
parent to take it. An example is shown in Figure 2.3
None of the algorithms mentioned in this section belongs to the state-of-the-art nowadays.

1 3 2 2 3 1 2 1 3 2

0 0 1 1 1 0 1 0 0 0

3 2 1 3 2 2 3 1 1 2

1 3 2 3 2 1 2 1 3 2

parent1

parent2

offspring

bitstring

Figure 2.3: PPX crossover: An example for two solutions to the JSP instance shown in
Figure 1.1,a).

2.2.1.3 Algorithms without specific representation

For some algorithms a specific representation is not necessary as the operators don’t work
on the chromosomes themselves, but rather work on the information which is contained in a
solution. An example for such an algorithm is the GT crossover based EC algorithm proposed
by Yamada and Nakano [109]. The GT crossover takes two solutions s0 and s1 as input and
produces offspring as follows. For every machine Mj , j = 1, ..., m we have a binary decision
variable Hjl for all positions l = 1, ..., |Mj |. Values for these decision variables are randomly
generated. Then the GT crossover – instead of using a priority rule to choose from the
restricted set S′ as the GT algorithm does – chooses the operation o∗ ∈ S′ which is scheduled
earliest on machine Mj in parent s0 if Hjk = 0, or in parent s1 if Hjk = 0 (k − 1 operations
are already scheduled on machine Mj in the offspring). A second offspring is generated by
reversing the values of the decision variables. The advantage of the GT crossover or similar
operators is that they directly incorporate domain knowledge into the algorithm. By using
the GT crossover the search process is limited to active schedules which is fine, because an
optimal schedule must obviously be an active one. The results obtained by the algorithm
proposed in [109] are quite good, but worse than the state-of-the-art.

An EC algorithm proposed by Ono et al. [81] applies a crossover operator called Job-Order
Based Crossover (JOX) which is especially designed to preserve characteristics of the parent
schedules. It works as follows. A solution to the JSP specifies for every machine the order

CHAPTER 2. METAHEURISTICS FOR JOB AND OPEN SHOP SCHEDULING 19

in which to process its operations. So, for every job we know the absolute position of its
operations in these machine orders. For the crossover of two solutions, first for every job
it is randomly decided if its operations keep their absolute positions in the machine orders
given by the parents. Then the operations to keep their absolute positions are copied from
parent 1 to offspring 1 and from parent 2 to offspring 2. After that for offspring 2 the missing
operations for every machine are taken in the order given by parent 1 and copied in this
order into the still free positions (respectively for offspring 1 and parent 2). We mention this
method not because there is much evidence that the algorithm proposed in this paper is very
effective, but rather for the fact that JOX is used in one of the state-of-the-art EC methods
to be outlined later.

Among the best performing EC methods for the JSP are the ones using a recombination
operator guided by probabilistic local search. The first recombination operator of that kind,
which is called Multi-Step Crossover Fusion (MSXF), was proposed by Yamada and Nakano
in [111]. The EC algorithm MSXF-GA based on MSXF belongs to the state-of-the-art among
EC algorithms to tackle the JSP, therefore we outline it in more detail. The MSXF operator
works as follows. Let s0 and s1 be the parent solutions, and let d(s0, s1) be the DG distance3

between s0 and s1. Then a probabilistic local search with starting solution s0 and bias towards
s1 is applied as shown in Algorithm 8. This algorithm takes two parent solutions s0 and s1

as input and returns the best solution found during the probabilistic search.

Algorithm 8 MSXF crossover
sbest ← s0, scurrent ← s0

repeat
repeat

Select s ∈ N3(scurrent) with roulette wheel selection inverse proportional to the dis-
tances d(s, s1).
if Cmax(s) < Cmax(scurrent) then

scurrent ← s
else

Accept s with probability p(s, scurrent, T){see text}
end if

until s is accepted
if Cmax(scurrent) < Cmax(sbest) then

sbest ← scurrent

end if
until some termination condition satisfied
Return sbest

The stochastic local search in Algorithm 8 applies a Simulated Annealing like acceptance
criterion. If the new solution is worse than the current one it is still accepted with the
following probability

p(s, scurrent, T) = exp

(
Cmax(s) − Cmax(scurrent)

T

)

(2.1)

3If we regard two schedules in disjunctive graph form, then the DG distance between two solutions s0 and
s1 is the number of disjunctive arcs which are of different direction.

CHAPTER 2. METAHEURISTICS FOR JOB AND OPEN SHOP SCHEDULING 20

The temperature parameter T is kept constant in the course of the recombination operation.
The neighborhood structure used is the N3 neighborhood introduced by [27] and to be outlined
in Section 2.3.1. Mutation is applied in MSXF-GA by applying Algorithm 8 with choosing
among the neighbors of the current solution proportional – instead of inverse proportional –
to the distances d(s, s1). This mutation operator is applied “instead” of the crossover version
in case the two parent solution are too close to each other.
Another interesting component of MSXF-GA is the usage of the reversed problem instance.
In general, a given problem instance of the JSP can be converted to the so-called reversed
problem by reversing the precedence relations of operations in the jobs (the technological
sequences). Obviously, the reversed problem instance is equivalent to the original problem
instance in the sense that reversing the job orders of any schedule for the original problem
instance results in a schedule for the reversed problem instance with the same makespan.
An active schedule to the original problem instance might be improved by performing the
following steps: (i) reverse the solution, (ii) make the reversed solution active, (iii) reverse
the active reversed solution, (iv) make the re-reversed solution active again. To exploit the fact
that sometimes the reversed problem instance is easier to solve than the original one, MSXF-
GA starts with a starting population where half of the individual are (active) solutions to the
original problem instance and the other half are (active) solutions to the reversed problem
instance. Additionally, before crossover or mutation is applied, an operator reverses every
individual to a certain probability.

Sakuma and Kobayashi [94] proposed an EC algorithm that combines the JOX crossover
[81] and a crossover called Extrapolation-Directed Crossover (EDX). The EDX crossover is
very similar to the MSXF crossover outlined above. In fact, the only difference to MSXF
is that EDX incorporates a way of adjusting between interpolation behavior (in MSXF the
crossover setting) and extrapolation behavior (the mutation version of MSXF). The results
of this algorithm are comparable to the performance of MSXF-GA. They clearly improve on
the algorithm proposed by Ono et al., which is only using JOX as a crossover operator.

The best EC algorithm for the JSP at the moment is a multi-population method called
Innately Split Model (ISM) proposed by Ikeda and Kobayashi [54]. They analyzed two well
known and difficult JSP instances to observe that good quality solutions are scattered all over
the search space4. This, in general, makes it difficult or sometimes even impossible to detect
good “building blocks” (parts good solutions have in common). This observation emphasizes
the need for a good diversification mechanism in search algorithms. The performance of ISM
suggests that an EC operating with multiple populations is a good way of attacking this
problem. The multiple populations in ISM are handled as follows.

• ISM starts with a number of np populations with a number of ni individuals each. A
population is initialized by generating a random solution with the GT algorithm and
by generating ni − 1 mutations of this individual (JBSC proposed in [80] is used as
mutation operator). The motivation is to initialize a population in a confined area of
the search space.

• When two populations come too close to each other, one of them is removed from the
search process and a new one is initialized.

4This was also observed by Mattfeld and Bierwirth in [68] who performed a search space analysis for the
JSP.

CHAPTER 2. METAHEURISTICS FOR JOB AND OPEN SHOP SCHEDULING 21

• When a population doesn’t improve during some fixed period of time, it is removed
from the search process and a new one is initialized.

As crossover operator JOX together with the GT algorithm for forcing is used and crossover
partners have to be chosen from the same population. In case the two parents chosen for
crossover are of the same quality (not necessarily the same solutions) then mutation instead
of crossover is applied. An additional feature is that – as proposed in [111] – the algorithm
works on both, solutions to the original problem and solutions to the reversed problem.

2.2.1.4 Heuristically guided EC approaches

In contrast to the EC algorithms outlined in the previous sections, which are working on
more or less5 direct representations, the philosophy of heuristically guided EC approaches is
a different one. These kind of algorithms work on indirect representations in the sense that a
chromosome no more represents a solution itself, it rather provides instructions to a schedule
builder on how to build a solution. This bears the advantage that all possible chromosomes
result in feasible solutions.

The first algorithm of this kind was proposed by Fang et al. [36]. A chromosome is of length
|O| and the domain for every locus is {1, ..., n}. The schedule builder scans a chromosome from
left to right. A number a ∈ {1, ..., n} means: Schedule the first untackled task (according
to the technological sequence) of the a-th job with unscheduled operations at the earliest
possible place in the current partial schedule. The schedule builder keeps a circular list of
uncompleted jobs to determine the a-th job with a modulo operation. To insert an operation
in the partial schedule, the schedule builder (without changing the starting times of operations
already scheduled) looks for a hole in the partial machine sequence where the operation can
be scheduled without creating conflicts. If no hole is found, the operation is scheduled at
the earliest time as last operation in the corresponding partial machine sequence. Examining
the behavior of their algorithm, Fang et al. noticed that the convergence of the algorithm
is characterized by an early convergence in the front parts of the chromosomes and a late
convergence in the last parts of the chromosomes. This is reasonable as the meaning of the
numbers at the end of a chromosome are dependent on the numbers in the front part of
a chromosome. Based on this observation the crossover points for one-point crossover and
the positions for mutation are determined by a mechanism which they call Gene-Variance
based Operator Targeting (GVOT). This mechanism works by measuring the diversity of genes
at each position of the chromosomes in a pool, and choosing the actual point of crossover
or mutation via roulette-wheel-selection proportional to these variances. This mechanism
improved the algorithm considerably. However, the results are worse than those of state-
of-the-art algorithms. The performance of this algorithm might be improved by using local
search to improve solutions after crossover.

Dorndorf and Pesch [34] proposed a different heuristically guided EC algorithm called Priority
Rule Based GA (P-GA). Chromosomes are of length n − 1. The domain for each position
in the chromosomes consists of identifiers for different priority rules to be used by the GT
algorithm which is used as the schedule builder. This means that the choice of an operation

5A direct representation where also infeasible solutions are allowed can also be regarded as an indirect
representation.

CHAPTER 2. METAHEURISTICS FOR JOB AND OPEN SHOP SCHEDULING 22

from the restricted set S′ for a position l in the sequence of operations build by the GT
algorithm is made with the priority rule on position l of a chromosome.

Another heuristically guided EC algorithm – also proposed by Dorndorf and Pesch in [34]
– called Shifting Bottleneck Based GA (SB-GA) controls the selection of nodes in the enu-
meration tree of the shifting bottleneck heuristic (see Section 1.4.2). Here an individual is
represented by a permutation of machine numbers 1, ..., m where the entry in the i-th position
of a chromosome represents the machine to be optimized in Algorithm 4. A cycle crossover
operator is used as the crossover for this permutation representation.

2.2.2 EC algorithms to tackle the OSP

So far the research on EC algorithms specifically built to tackle the OSP is somewhat the
fifth wheel on the wagon. The most well-known EC algorithms explicitly proposed to tackle
the OSP are the 3 versions of a heuristically guided EC algorithm proposed by Fang et al.
in [37]. In the first version called JOB+OP, a chromosome is of length 2|O|. There are two
loci associated with every construction step. The first one of them refers to an operation the
second one to the job the operation has to be taken from. The domain for the first loci is
{1, ..., m} and the domain for every second locus is {1, ..., n}. The schedule builder scans a
chromosome from left to right. For a construction step, the numbers a ∈ {1, ..., m} in the
first locus and b ∈ {1, ..., n} in the second locus mean: Schedule the first a-th unscheduled
operation (according to the technological sequence) of the b-th uncompleted job at the earliest
possible place. Again like in the JSP version of this algorithm the schedule builder keeps a
circular list of uncompleted jobs and for every uncompleted job a circular list of unscheduled
operations. The a-th operation and the b-th job are determined by modulo operations. This
version is a natural extension of the version to tackle the JSP proposed in [36].
A second version of the algorithm uses the same chromosomes as the JSP version of the
algorithm and choses an unscheduled operations from the a-th uncompleted job by applying
an apriori chosen priority rule (see Table 1.3 for a selection of priority rules). This version is
called FH (for fixed heuristic).
The third version called EHC (for evolved heuristic choice) evolves the heuristic choice for
every construction step. It uses the chromosomes of version JOB+OP except that the domain
for the first loci for every construction step is now a set of identifiers for different priority rules.
The results show that versions FH and EHC are superior to JOB+OP. In some cases best
known solutions (generated by a Tabu Search approach by Taillard [101]) could be improved.

A technical report about EC methods applied to the OSP was prepared by Prins [89]. Finally
we mention that quite a few EC algorithms developed for the JSP could be adapted to work
for the OSP.

2.3 Tabu Search

Tabu Search is a metaheuristic method based on local search. Basic local search is usually
called iterative improvement, since each move6 within a given neighborhood structure N is

6A move is the transition from a solution s to a solution s′ ∈ N (s) and usually defined by the modification
which has to be done to s in order to generate s′.

CHAPTER 2. METAHEURISTICS FOR JOB AND OPEN SHOP SCHEDULING 23

only performed if the solution it produces is better than the current solution. The algorithm
stops as soon as it finds a local minimum (see Section 1.4 for the definition of local and
global minima and the neighborhood structure). The algorithmic framework for iterative
improvement is sketched in Algorithm 9.

Algorithm 9 Iterative Improvement

s ← GenerateInitialSolution()
repeat

s ← Improve(s,N (s))
until no improvement is possible

The function Improve(s,N (s)) can either be a first improvement, or a best improvement func-
tion. The former scans the neighborhood N (s) and chooses the first solution which improves
the objective function, the latter exhaustively explores the neighborhood and returns one of
the solutions with the lowest objective function value. Both methods stop at local minima,
therefore their performance strongly depends on the definition of S, f and N . The perfor-
mance of iterative improvement procedures on CO problems is usually quite unsatisfactory,
thus several techniques have been developed to prevent algorithms from getting trapped in
local minima, or to escape from them. One of these techniques is Tabu Search.

Tabu Search (TS) is among the most cited and used metaheuristics for CO problems. The
basic ideas of TS were first introduced in [43] and independently sketched in [50]. A description
of the method and its concepts can be found in [45]. TS explicitly uses the history of the
search, both to avoid local minima and to implement an explorative strategy. The framework
of the basic algorithm is given in Algorithm 10.

Algorithm 10 Tabu Search (TS)

s ← GenerateInitialSolution()
InitializeTabuLists(TL1, . . . , TLr)
k ← 0
while termination conditions not met do

AllowedSet(s, k) ← {z ∈ N (s) | no tabu condition is violated or at least one aspiration
condition is satisfied}
s ← ChooseBestOf(s,AllowedSet(s, k))
UpdateTabuListsAndAspirationConditions()
k ← k + 1

end while

The basic algorithm applies a best improvement local search as basic ingredient and uses a
short term memory to escape from local minima and to avoid cycles. The short term memory
is implemented as a set of tabu lists that store solution attributes. Attributes are usually
components of solutions, moves, or differences between two solutions. Since more than one
attribute can be considered, a tabu list is introduced for each of them. The set of attributes
and related tabu lists define the tabu conditions which are used to filter the neighborhood of
a solution and generate the allowed set, which is a subset of the set of neighbors. The use
of tabu lists prevents the algorithm from returning to recently visited solutions, therefore it

CHAPTER 2. METAHEURISTICS FOR JOB AND OPEN SHOP SCHEDULING 24

prevents from infinite cycling7 and forces the search to accept even uphill moves. The length
l of the tabu list (tabu tenure) controls the memory of the search process. With small tabu
tenures the search will concentrate on limited areas of the search space. On the opposite,
a large tabu tenure forces the search process to explore larger regions, because it forbids
revisiting a higher number of solutions. The tabu tenure can be varied during the search
process.
Storing only attributes of recently visited solutions in the tabu lists introduces a loss of
information, as forbidding a move means assigning the tabu status to probably more than
one solution. Thus, it is possible that unvisited solutions of good quality are excluded from
the allowed set. To overcome this problem, aspiration criteria are defined which allow to
include a solution in the allowed set even if it is forbidden by tabu conditions. Aspiration
criteria define the aspiration conditions that are used to construct the allowed set. The most
commonly used aspiration criterion selects solutions which are better than the current best
one.

2.3.1 Tabu Search algorithms to tackle the JSP

Tabu Search has been applied to the JSP since about 15 years and a lot of research has been
devoted to the development of neighborhood structures, which are the crucial ingredient of
any local search based method. All the neighborhood structures to be outlined in the following
are defined on at least semi-active schedules. To be able to define the different neighborhood
structures some extra notations are needed:

• Given an instance of the JSP, for an operation o, jp(o) and js(o) denote the immediate
predecessor and successor of o in the technological sequence given for job J = j(o) by
the problem instance.

• Furthermore, given a solution s, mpo and mso denote the immediate predecessor and
successor of an operation o in the machine sequence of machine M = m(o).

We also require the following definition.

Definition 3 Given a solution s to an instance of the JSP, a machine block is a maximal
sequence (of size at least one) of operations on the same machine on a critical path of s. An
operation o of a machine block is called internal operation, if it is neither the first nor the
last operation on the machine block.

Neighborhood N0: The first and most simple neighborhood N0 is defined as follows. A
pair of operations o, o′ are swapable with respect to a solution s, if m(o) = m(o′) and either
o = mp(o′) or o′ = mp(o). In other words: o and o′ are swapable if they are neighbors
in the machine sequence given by solution s. A swapping step which consists in reversing
the processing orders of two operations o and o′ is depicted in Figure 2.4. Note that this
neighborhood is relatively large and contains many neighbors which are infeasible. Another
disadvantage of this neighborhood is that many neighbors of a solution are not of better qual-
ity. If for example the two swapped operations are not on a critical path, then this critical

7Cycles of higher periods are possible, since the tabu list has a finite length l which is usually smaller than
the cardinality of the search space.

CHAPTER 2. METAHEURISTICS FOR JOB AND OPEN SHOP SCHEDULING 25

mp(o)

o

o′

ms(o′)

Figure 2.4: An example for reversing the processing orders of two operations o and o′, where
o′ = ms(o). The dashed arcs show the resulting processing orders.

path still exists in the obtained neighbor. To our knowledge, there is no well-working TS
method based on this neighborhood.

Neighborhood N1a: This neighborhood outlined by Van Laarhoven et al. in [59] is based
on the following observations:

• Reversing the processing orders of two swapable operations on a critical path with
respect to a solution s can never lead to an infeasible solution.

• If the reversal of the processing orders of two swapable operations that are not on
a critical path with respect to a solution s leads to a feasible solution s′, then the
makespan of s′ can not be shorter than the makespan of s as the critical path in s still
exists in s′.

The neighborhood N1a of a solution s is defined by all solutions s′ which can be generated by
reversing the processing orders of two swapable operations in any machine block of a critical
path in s. The advantage of this neighborhood is that it is connected.
A refinement N1b of neighborhood N1a was introduced by Matsuo et al. in [67]. This neigh-
borhood is based on the following observation:

CHAPTER 2. METAHEURISTICS FOR JOB AND OPEN SHOP SCHEDULING 26

o′ o′′ mp(o) o ms(o) o′′′

Machine block

Figure 2.5: An example for neighborhood N3: An operation o is moved to the beginning of
the machine block of which it is an internal operation. The dashed arcs show the resulting
processing orders.

• Reversing the processing orders of two swapable, internal operations on a critical path
with respect to a solution s can never lead to a better quality solution s′.

Therefore N1b is defined as N1a excluding the swapable, internal operations.
A further refinement N1c of neighborhood N1b is proposed by Nowicki and Smutnicki [79].
This neighborhood is based on the following observation:

• Reversing the processing orders of the first two operations of the first machine block on
a critical path with respect to a solution s can never lead to a better quality solution
s′. The same holds for the last two operations in the last machine block on a critical
path with respect to a solution s.

Therefore N1c is defined as N1b excluding the first two operations in the first machine block
of a critical path and the last two operations in the last machine block of a critical path.

Neighborhood N2: Dell’Amico and Trubian [27] proposed the following neighborhood. For
any two swapable operations o and o′ = ms(o) at the beginning or the end of a machine
block on a critical path with respect to a solution s neighbors are obtained by permuting the
processing orders of the operations mp(o), o and o′ or the operations o, o′ and ms(o′) such
that o and o′ are interchanged and the resulting solution is feasible.

Neighborhood N3: Another neighborhood proposed by Dell’Amico and Trubian [27] is de-
fined as follows. Considered are machine blocks of size at least two. Neighbors are generated
by positioning an operation o immediately in front of the first operation or after the last
operation in its machine block. Only feasible neighbors are considered. See Figure 2.5 for an
example.

Neighborhood N4: This neighborhood proposed in [67] re-orients at most three edges
simultaneously. A neighbor is obtained by reversing the processing orders of two swapable
operations o and o′ = ms(o) at the beginning or the end of a machine block in a critical
path. And in addition by (if they exist) reversing the processing orders of operations jpt(o′)
and mp(jpt(o′)) for some t ≥ 1 and by reversing the processing orders of operations js(o)
and ms(js(o)). In this description jpt(o) of an operation o denotes its t-th job predecessor

CHAPTER 2. METAHEURISTICS FOR JOB AND OPEN SHOP SCHEDULING 27

jp(...(jp(o))). The additional interchanges are only performed if certain additional conditions
are met. We refer to [67] for details.

There are basically five different well-working TS algorithms to tackle the JSP. The TS al-
gorithm proposed by Taillard [102] uses the neighborhood N1a. After the processing orders
of two swapable operations o and o′ = ms(o) have been reversed, the reversal of o′ and its
machine successor is put in the tabu list. The size of the tabu list is variable. Every 15
iterations a new length for the tabu list is chosen uniformly random between 8 and 14. The
strategy to search the neighborhood is the following. To save computation time, the quality
of a neighbor is only estimated in such a way that the estimate is exact when both operations
involved in the swap are still on a longest path, and that it is a lower bound otherwise. Then,
from the allowed set, the schedule with minimum estimated makespan is selected.

The TS algorithm proposed by Barnes and Chambers [10] also uses neighborhood N1a. The
length of the tabu list is kept fix in this algorithm. In case the allowed set is empty, the tabu
list is emptied. The quality of the neighbors are calculated rather than estimated. A starting
solution for this algorithm is obtained by taking the best from a set of schedules produced
by the GT algorithm and the Non-Delay algorithm using different priority rules. The results
obtained by this algorithm are comparable to the results obtained by the algorithm proposed
by Taillard.

A TS algorithm proposed by Dell’Amico and Trubian [27] obtains even better results. This
algorithm uses a union of neighborhoods N2 and N3. The items on the tabu list are forbidden
re-reversals of processing orders. Depending on the type of neighbor, one or more such items
are on the list. The length of the tabu list depends on how the quality of the current solution
relates to the quality of the previous solution and the quality of the best solution found.
Furthermore, the minimal and maximal allowable lengths of the tabu list are changed after a
certain number of iterations. In case the allowed set is empty, a random neighbor is selected.
A starting solution is obtained by a procedure called “bidir”, which applies list scheduling
simultaneously from the beginning and the end of the schedule.

One of the best TS methods proposed, which belongs to the state-of-the-art algorithms nowa-
days for the JSP, is the TS algorithm by Nowicki and Smutnicki [79]. The neighborhood
used is N1c with the restriction that only one critical path is regarded8. The items on the
tabu list are forbidden re-reversals of processing orders. The length of the tabu list is fixed
to 8. In case the allowed set is empty, the following mechanism is applied. If there is one
neighbor only (which is tabu), then this one becomes the new current solution. Otherwise,
the oldest item on the tabu list is removed iteratively until the allowed set contains at least
one neighbor. A starting solution is obtained by the GT algorithm or an insertion technique.
Another interesting feature of this algorithm is a backtracking scheme. The backtracking
scheme forces the algorithm to restart from promising situations encountered in the recent
past. The algorithm stores a fixed number of such situations in a FIFO list. Backtracking
is applied in case the algorithm does not improve over a certain number of iterations. Also,
complete restarts are applied, because neighborhood N1c might not be connected.

A TS algorithm comparable (if not even better) than the one by Nowicki and Smutnicki is
proposed by Pezella and Merelli in [86]. It is characterized by the following features. The
initial solution is generated by the shifting bottleneck procedure (see Algorithm 4). Each

8Note that there might be several critical paths in a schedule.

CHAPTER 2. METAHEURISTICS FOR JOB AND OPEN SHOP SCHEDULING 28

time the algorithm finds a new best solution it is subject to a re-optimization based on
the re-optimization cycle of the shifting bottleneck procedure. The algorithm uses three
neighborhood structures: (i) a restriction of N1a where the reversal of the processing orders
of the first two and the last two operations is excluded. (ii) A modification of neighborhood
N3: Considered are only machine blocks of size at least three. Neighbors are generated by
positioning an operation o at the second position or the last but one position in its machine
block. Only feasible neighbors are considered, and (iii) is the neighborhood N1c. Moves in
the first two neighborhoods are called internal moves because they don’t change the critical
path. Moves in the third neighborhood do change the critical path and are called external
moves. Moves in the first neighborhood are applied in an intensification phase of the algorithm
whereas moves in the second and third neighborhood are applied in diversification phases.
The tabu list applied is of dynamic size depending on the progress in the search process.

Recently a technical report has been released by Grabowski and Wodecki [48]. The results
reported are even slightly better than the results by Pezella and Merelli. Furthermore the
computation times are far below the computation times of the algorithm by Pezella and
Merelli. It seems that this algorithm once published will be the state-of-the-art algorithm for
tackling the JSP, both in speed and solution quality.

2.3.2 Tabu Search algorithms to tackle the OSP

Two TS methods have been proposed to tackle the OSP. The first one was proposed by
Alcaide et al. [6]. The second one, which is currently the state-of-the-art algorithm for the
OSP, was proposed by Liaw in [62]. Liaw generalized neighborhood structures defined for the
JSP with the following more general definition of a block.

Definition 4 Given a solution s to an instance of the OSP, a block is a maximal sequence
(of size at least one) of operations on the same machine or in the same job on a critical path
of s. An operation o in a block is called an internal operation if it is neither the first nor the
last operation in this block.

Then the following generalization of neighborhood N1c was used.

Neighborhood N1c,OSP : Considering two operations o and o′ where m(o) = m(o′), o′ =
ms(o) and either o is the first operation of a block in a critical path or o′ is the last operation
of a block in a critical path, neighbors are obtained by any of the following four steps: (1)
reverse the processing order of o and o′ only, (2) reverse simultaneously the processing orders
of o and o′ and of jp(o′) and o′, (3) reverse simultaneously the processing orders of o and o′

and of o and js(o), (4) reverse simultaneously the processing orders of o and o′, of jp(o′) and
o′ and of o and js(o). Accordingly consider these for steps (with js replace by ms and jp
replaced by mp) if o and o′ are from a job block instead of a machine block.

The algorithm works with a tabu list of fixed length and the initial solution is produced
by a list scheduler algorithm applying a certain priority rule. Similar to the TS algorithm
by Nowicki and Smutnicki, this algorithm uses restarts and a backtracking scheme. The
backtracking scheme forces the algorithm to restart from promising situations encountered in
the recent past. It is applied in case the algorithm does not improve over a certain number
of iterations.

CHAPTER 2. METAHEURISTICS FOR JOB AND OPEN SHOP SCHEDULING 29

As a final note in this section we mention that most if not all of the neighborhoods defined
in the previous section can be adapted by replacing the definition of a machine block (see
Def. 3) by the definition of the more general block definition given in Def. 4. In this way the
TS algorithms for the JSP can also be applied to the OSP.

2.4 Simulated Annealing

Simulated Annealing (SA) is commonly said to be the oldest among the metaheuristics and
surely one of the first algorithms which had an explicit strategy to avoid local optima. The
origins of the algorithm are in statistical mechanics (Metropolis algorithm) and it was first
presented as a search algorithm for CO problems in [57] and [25]. The fundamental idea is to
allow moves resulting in solutions of worse quality than the current solution (uphill moves) in
order to escape from local minima. The probability of doing such a move is decreased during
the search. The high level algorithm is described in Algorithm 11.

Algorithm 11 Simulated Annealing (SA)

s ← GenerateInitialSolution()
T ← T0

while termination conditions not met do
s′ ← PickAtRandom(N (s))
if f(s′) < f(s) then

s ← s′{s′ replaces s}
else

Accept s′ as new solution with probability p(T, s′, s){see text}
end if
Update(T)

end while

The algorithm starts by generating an initial solution (either randomly or heuristically con-
structed) and by initializing the so-called temperature parameter T . Then this cycle is re-
peated until the termination condition is reached. The instructions in the inner cycle are very
simple: a solution s′ ∈ N (s) is randomly sampled and it is accepted as new current solution
depending on f(s), f(s′) and T . s′ replaces s if f(s′) < f(s) or, in case f(s′) ≥ f(s), with a
probability which is a function of T and f(s′) − f(s). The probability is generally computed

following the Boltzmann distribution exp(−f(s′)−f(s)
T

).

The temperature T is decreased9 during the search process, thus at the beginning of the
search the probability of accepting uphill moves is high and it gradually decreases, converging
to a simple iterative improvement algorithm. This process is analogous to the annealing
processes of metals and glass, which assume a low energy configuration when cooled with an
appropriate cooling schedule. Regarding the search process, this means that the algorithm is
the result of two combined strategies: random walk and iterative improvement. In the first
phase of the search, the bias toward improvements is low and it permits the exploration of the
search space; this erratic component is slowly decreased thus leading the search to converge

9T is not necessarily decreased in a monotonic fashion. Elaborate cooling schemes also incorporate an
occasional increase of the temperature.

CHAPTER 2. METAHEURISTICS FOR JOB AND OPEN SHOP SCHEDULING 30

to a (local) minimum. The probability of accepting uphill moves is controlled by two factors:
the difference of the objective functions and the temperature. On the one hand, at fixed
temperature, the higher the difference f(s′)−f(s), the lower the probability to accept a move
from s to s′. On the other hand, the higher T , the higher the probability of uphill moves.

The choice of an appropriate cooling schedule is crucial for the performance of the algorithm.
The cooling schedule defines the value of T at each iteration k, Tk+1 = Q(Tk, k), where
Q(Tk, k) is a function of the temperature at the previous step and of the iteration number.
Theoretical results on non-homogeneous Markov chains [1] state that under particular con-
ditions on the cooling schedule, the algorithm converges in probability to a global minimum
for k → ∞. More precisely:

∃Γ ∈ IR s.t. lim
k→∞

Prob[global minimum found after k steps] = 1

iff
∞∑

k=1

exp(
Γ

Tk
) = ∞

A particular cooling schedule which fulfills the hypothesis for the convergence is the one
that follows a logarithmic law: Tk+1 = Γ

log(k+k0)
(where k0 is a constant). Unfortunately,

cooling schedules which guarantee the convergence to a global optimum are not feasible in
practice because they take infinite time. Therefore, faster cooling schedules are adopted in
applications. One of the most used follows a geometric law: Tk+1 = αTk, where α ∈]0, 1[,
which corresponds to an exponential decay of the temperature.

The cooling rule can vary during the search, with the aim of tuning the balance between
diversification and intensification. For example, at the beginning of the search, T might be
constant or linearly decreasing, in order to sample the search space; then, T might follow a
rule like the geometric one, to converge to a local minimum at the end of the search. More
successful variants are non-monotonic cooling schedules (e.g., see [82, 65]). Non-monotonic
cooling schedules are characterized by alternating phases of cooling and reheating, thus pro-
viding an oscillating balance between diversification and intensification.

The cooling schedule and the initial temperature should be adapted to the particular problem
instance, since the cost of escaping from local minima depends on the structure of the search
landscape. A simple way of empirically determining the starting temperature T0 is to initially
sample the search space with a random walk to roughly evaluate the average and the variance
of objective function values. But also more elaborate schema can be implemented [55].

2.4.1 SA algorithms to tackle the JSP

SA algorithms have been applied to the JSP since about 10–15 years. They mostly differ in
the neighborhood structure and in the cooling schedule applied. In the following we describe
the most important ones from the literature.

The SA algorithm proposed by Matsuo et al. in [67] is a variant which incorporates iterative
improvement local search (see Algorithm 9). Given a solution s, a neighbor s′ ∈ N4(s) (see
Section 2.3.1 for the definition of N4) is randomly selected. The acceptance of s′ as new
current solution is decided by the usual acceptance criterion. In case s′ is rejected, iterative
improvement local search also in neighborhood N4 is applied and stopped at the local optimum

CHAPTER 2. METAHEURISTICS FOR JOB AND OPEN SHOP SCHEDULING 31

s′′. If s′′ improves s it is accepted as the new current solution. Their method also differs from
most other implementations of SA in that the acceptance probability for a solution worse
than the current solution is independent of the difference in makespan.

In [59] and [2] Aarts et al. describe and test two versions of an SA algorithm for the JSP. The
first version uses N1a as neighborhood structure and the second one uses N4 as neighborhood
structure with t = 1 (see Section 2.3.1 for the definition of these neighborhood structures).
Both algorithms use the same three-parameter cooling schedule. A first parameter ξ0 defines
the initial temperature, a second parameter εs defines the final temperature and a third
parameter δ determines the decrement of the temperature.

In [97], Steinhöfel et al. report on two SA approaches which quite improve on the results of
the approaches mentioned before. They introduce the following neighborhood definition.

Neighborhood N5: This neighborhood is an extension of the neighborhood N1a defined in
Section 2.3.1. A neighbor of a solution s is obtained by performing the following steps: (i)
choose two operations o and o′ from a machine block in a critical path with respect to s. Re-
verse all the processing orders of operation pairs 〈o, ms(o)〉, 〈ms(o), ms2(o)〉, ... ,〈mp(o′), o′〉.
If mp(o) is also on the critical path directly before o then introduce the processing order
mp(o) → o′. Similarly, if ms(o′) is also on the critical path immediately after o′ then intro-
duce the processing order o → ms(o′).

Both SA versions proposed in [97] are based on this neighborhood. The two versions differ
in the cooling schedule applied. The first cooling schedule is given by the simple relation
T (t + 1) ← (1 − c1) · T (t) where T (t) is the temperature at time t and T (0) is appropriately
defined (by taking into account upper and lower bounds for the makespan with respect to
the problem instance to be tackled), and c1 is a small positive constant. The second cooling
schedule is governed by the hyperbolic function

T (t + 1) ←
T (0)

1 + ((t + 1) · φ(c2) · T (0))
(2.2)

where φ : x 7→ ln(1 + x)/(CUB
max − CLB

max) and c2 is a positive constant.
Applying the first cooling schedule, relatively small problems could be solved quite quickly.
The second cooling schedules produced better results (cooling down very slowly) on large
problems and even improved the best known solutions on some instances introduced in [109].
In [5] a parallel implementation of the two SA approaches is described.

Yamada and Nakano [110] proposed an SA algorithm based on a work published earlier
[113] which is a hybrid between SA and an improvement technique based on the shifting
bottleneck procedure (see Algorithm 4). The algorithm published in [113] is a SA based on
the neighborhood N3 (see Section 2.3.1). The main feature of this algorithm is that it jumps
back to the best solution found after a number of steps in which no improvements could be
found. The enhanced version in [110] has the following features. The disadvantage of N3 is
that it might contain neighbors which are not feasible. Intending to preserve the idea of N3

the following neighborhood based on the GT algorithm was proposed.

Neighborhood N6: Let s be an active and feasible schedule. A neighbor is obtained by
performing the following steps: (i) choose a machine block B on a critical path, (ii) chose
an internal operation o on this path, (iii) apply the modified GT algorithm which creates a
solution a) where o is moved as far left in B as possible while maintaining feasibility and b) a

CHAPTER 2. METAHEURISTICS FOR JOB AND OPEN SHOP SCHEDULING 32

solution where o is moved as far right in B as possible while also maintaining feasibility. For
details on the modified GT algorithm we refer to [110].

Another feature of the algorithm is due to the fact that when the temperature drops situations
might occur where all the neighbors are chosen several times before one of them finally is
accepted. To avoid wasting time a mechanism is introduced which keeps track on which
neighbors were already chosen and in case all of them were already chosen and none of them
was accepted, a neighbor is chosen proportional to the relative acceptance probabilities and
accepted as new current solution. A last mechanism added to the basic algorithm is called
BottleRepair, which is a an improvement technique based on the shifting bottleneck procedure.
With a solution s as input it works as follows: (i) reset all sequences on non-critical machines
(machines which do not include any part of a critical path), (ii) re-optimize the still sequenced
machines, (iii) solve a one-machine scheduling problem for each unsequenced machine and
rank them by their makespans in descending order, (iv) add the machine sequences in order
to the partial schedule and reoptimze every scheduled machine after adding one new machine.
This mechanism is applied whenever a neighbor is not accepted. In case BottleRepair generates
a solution s′ better then the current solution, s′ is accepted as new current solution. The
results obtained with this algorithm are in terms of solution quality close to the state-of-the-
art.

A general conclusion for SA based algorithms is that they can perform very well in tackling
the JSP when run-time is of no concern. The results after long running times, especially for
the SA methods of Steinhöfel et al. [97] and of Yamada and Nakano [110] are very good. But
when good solutions are required quickly, the TS algorithms have a clear advantage.

2.4.2 SA algorithms to tackle the OSP

To our knowledge there has been no SA algorithm proposed to tackle the OSP. However, for
SA the same holds as for TS. Existing algorithms to tackle the JSP can be applied to the OSP
by extending the neighborhood definitions from machine blocks to general blocks as done in
Def. 4.

2.5 Ant Colony Optimization

Ant Colony Optimization (ACO) is a metaheuristic approach proposed by Dorigo [29] and
later by Dorigo and colleagues [33, 31]. In the course of this section we follow the description
of ACO given in [30].
The inspiring source of ACO is the foraging behavior of real ants. This behavior – described
by Deneubourg et al. in [28] – enables them to find shortest paths between food sources
and their nest. While walking from food sources to the nest and vice versa, ants deposit
a substance called pheromone on the ground. When they decide about a direction to go
they choose, in probability, paths marked by strong pheromone concentrations. This basic
behavior is the basis for a cooperative interaction which leads to the emergence of shortest
paths.
In ACO algorithms, an artificial ant incrementally constructs a solution by adding solution

CHAPTER 2. METAHEURISTICS FOR JOB AND OPEN SHOP SCHEDULING 33

components to a partial solution under consideration10. For doing that, artificial ants perform
randomized walks on a completely connected graph G = (C,L) whose vertices are the solution
components C and the set L are the connections. This graph is commonly called a construction
graph. The problem constraints Ω are built into the ants’ constructive procedure in a way
such that in every step of the construction process only feasible solution components can be
added to the current partial solution. In most applications, ants are implemented to build
feasible solutions, but sometimes it is unavoidable to work on infeasible solutions. Components
ci ∈ C and connections lij ∈ L can have associated a pheromone value τ (τi if associated to
components, τij if associated to connections), and a heuristic value η (ηi and ηij respectively)
representing a priori or run time information about the problem instance. These values are
used by the ants to make probabilistic decisions on how to move on the construction graph.
The probabilities involved in moving on the construction graph are commonly called transition
probabilities.

Algorithm 12 Ant System (AS)

InitializePheromoneValues()
while termination conditions not met do

for all ants a ∈ A do
sa ← ConstructSolution(τ ,η)

end for
ApplyOnlineDelayedPheromoneUpdate()

end while

The first ACO algorithm proposed in the literature is called Ant System (AS) [33]. The
pseudo-code for this algorithm is shown in Algorithm 12. In this algorithm, A denotes the
set of ants and sa denotes the solution constructed by ant a ∈ A. After the initialization of
the pheromone values, in every step of the algorithm every ant constructs a solution. These
solutions are then used to update the pheromone values. The components of this algorithm
are explained in more detail in the following.

InitializePheromoneValues(): At the beginning of the algorithm the pheromone values (τi

and/or τij) are initialized to the same small numerical value ph > 0.

ConstructSolution(τ ,η): In the construction phase an ant incrementally constructs a solution
by adding solution components to the partial solution constructed so far. The probabilistic
choice of the next solution component to be added is done by using the transition probabilities,
which in AS are determined by the following state transition rule:

p(cr|sa[cl]) =

[ηr]α[τr]β
P

cu∈J(sa[cl])
[ηu]α[τu]β

if cr ∈ J(sa[cl])

0 otherwise
(2.3)

In this formula α and β are parameters to adjust the relative importance of heuristic infor-
mation and pheromone values and J(sa[cl]) denotes the set of solution components which are
allowed to be added to the partial solution sa[cl] with cl as the last component added (note

10Therefore, the ACO metaheuristic can be applied to any combinatorial optimization problem for which a
constructive heuristic can be defined

CHAPTER 2. METAHEURISTICS FOR JOB AND OPEN SHOP SCHEDULING 34

that for the sake of simplicity in the above formula we are only dealing with pheromone on
solution components).

ApplyOnlineDelayedPheromoneUpdate(): Once all ants have constructed a solution, the online
delayed pheromone update rule is applied:

τj ← (1 − ρ) · τj +
∑

a∈A

∆τ sa

j (2.4)

where

∆τ sa

j =

{
Q

f(sa) if cj is a component of sa

0 otherwise,
(2.5)

where f(sa) is the quality of solution sa, 0 < ρ < 1 is a pheromone evaporation rate and Q is
a parameter usually set to 1. This pheromone update rule leads to an increase of pheromone
on solution components which were found in better quality solutions than other solution com-
ponents (where the pheromone will decrease).

In the following we describe the more general ACO metaheuristic, which is based on the same
basic principles as AS. The ACO metaheuristic framework shown in Algorithm 13 covers all
the improvements and extensions of AS which have been developed over the years. It consists
of three parts gathered in the ScheduleActivities construct. The ScheduleActivities construct
does not specify how these three activities are scheduled and synchronized. This is up to the
algorithm designer.

Algorithm 13 Ant Colony Optimization (ACO)

while termination conditions not met do
ScheduleActivities

ManageAntsActivity()
EvaporatePheromone()
DaemonActions() {optional}

end ScheduleActivities
end while

ManageAntsActivities(): An ant builds constructively a solution to the problem by moving
through nodes of the construction graph G. Ants move by applying a stochastic local deci-
sion policy that makes use of the pheromone values and the heuristic values on components
and/or connections of the construction graph (see the state transition rule of AS as an ex-
ample). While moving, an ant keeps in memory the partial solution it has built in terms
of the path it was walking on the construction graph. When adding a component cj to the
current partial solution, it can update the pheromone value(s) τi and/or τij (in case the ant
was walking on connection lij in order to reach component cj). This kind of pheromone up-
date is called online step-by-step pheromone update. Once an ant has build a solution, it can
(by using the memory of the walked path) retrace the same path backward and update the
pheromone values of the used components and/or connections according to the quality of the

CHAPTER 2. METAHEURISTICS FOR JOB AND OPEN SHOP SCHEDULING 35

solution it has built. This is called online delayed pheromone update.

EvaporatePheromone(): Pheromone evaporation is the process by means of which the phe-
romone intensity on the components decreases over time. From a practical point of view,
pheromone evaporation is needed to avoid a too rapid convergence of the algorithm toward
a sub-optimal region. It implements a useful form of forgetting, favoring the exploration of
new areas in the search space.

DaemonActions(): Daemon actions can be used to implement centralized actions which cannot
be performed by single ants. Examples are the use of a local optimization procedure applied
to the solutions built by the ants, or the collection of global information that can be used to
decide whether it is useful or not to deposit additional pheromone to bias the search process
from an non-local perspective. As a practical example, the daemon can observe the path
found by each ant in the colony and choose to deposit extra pheromone on the components
used by the ant that built the best solution. Pheromone updates performed by the daemon
are called offline pheromone updates.

Within the ACO metaheuristic framework as shortly described above the currently best work-
ing versions in practice are Ant Colony System (ACS) [32] and MAX -MIN Ant System
(MMAS) [100]. In the following we are going to outline the peculiarities of these algorithms
shortly.

Ant Colony System (ACS): The ACS algorithm has been introduced to improve on the
performance of Ant System (AS) [33]. ACS is based on AS but presents some important
differences. First, the daemon updates pheromone values offline: At the end of an iteration
of the algorithm – once all the ants have built a solution – pheromone is added to the arcs
used by the ant that found the best solution from the start of the algorithm. Second, ants
use a different decision rule to decide to which component to move next in the construction
graph. The rule is called pseudo-random-proportional rule. With this rule, some moves are
chosen deterministically (in a greedy manner), others are chosen probabilistically with the
usual decision rule. Third, in ACS, ants perform only online step-by-step pheromone updates.
These updates are performed to favor the emergence of other solutions than the best so far.

MAX -MIN Ant System (MMAS): MMAS is again an extension of AS. First, the
pheromone values are only updated offline by the daemon (the arcs that were used by the it-
eration best ant or the best ant since the start of the algorithm receive additional pheromone).
Second, the pheromone values are restricted to an interval [τmin, τmax] and the pheromone
values are initialized to their maximum value τmax. Putting explicit limits on pheromone
values prevents the probability for any solution to be constructed to drop below a certain
value greater than 0. This means that the chance of finding a global optimum never vanishes
during the course of the algorithm.

Recently researchers have been dealing with finding similarities between ACO algorithms, EC
algorithms and other probabilistic learning algorithms. An important step into this direction
was the development of the Hyper-Cube Framework for Ant Colony Optimization (HC-ACO)
proposed by Blum et al. [17]. In this framework the introduction of a kind of normalized online

CHAPTER 2. METAHEURISTICS FOR JOB AND OPEN SHOP SCHEDULING 36

delayed pheromone update rule enables to draw explicit connections to algorithms from EC
like PBIL, or a simple GA using a recombination operator called Gene Pool Recombination
[74].

2.5.1 ACO algorithms to tackle the JSP

Up until now there are two works on ACO algorithms to tackle the JSP. ACO algorithms
mostly differ in four constituents of the algorithm. These are:

• The underlying constructive method which is used to construct solutions.

• The pheromone model which has the function of an adaptive memory used to make the
construction mechanism probabilistic.

• The evaluation of the pheromone information. In other words: How are the transition
probabilities defined?

• The pheromone update rule.

We will concentrate on these topics in order to outline the differences between the two ap-
proaches. The first ACO algorithm for the JSP was proposed by Colorni et al. in [26]. The
constructive method used to probabilistically build solutions is the mechanism of list sched-
uler algorithms (see Algorithm 1). In every step t = 1, ..., |O|, the algorithm uses pheromone
information and heuristic information to decide the next operation in the sequence s to be
built. The pheromone model is the following.

Learning of a predecessor relation in s: In this model (called PHsuc) we have a pheromone
value τoi,oj

on every pair of operations oi, oj ∈ O and we have pheromone values τoi
∀oi ∈ O.

The probabilities for operations oj ∈ S′ to be scheduled in step t dependent on the partial
schedule st−1,|O| are as follows.

p(oj |st−1,|O|) =

[τoj]·[ηoj]
α

P

ok∈S′ [τok]·[ηok]
α : if oj ∈ S′, t = 1

[τoi,oj]·[ηoj]
α

P

ok∈S′ [τoi,ok]·[ηok]
α : if oj ∈ S′, t > 1, st−1,|O|[t − 1] = oi

0 : otherwise

(2.6)

where S′ = S is the set of operations which can be scheduled now (as defined in Algorithm 1).
In this way of modeling the pheromones in every step of the construction phase (except for
the first step) the next operation to be scheduled is dependent on the operation scheduled in
the previous step.

As heuristic information several priority rules where tried in a randomized way. E.g., the SPT
(shortest processing time) rule was used as ηoj

= 1
p(oj)

, ∀oj ∈ O. As a pheromone update

rule the original Ant System global pheromone update rule is used. The results obtained
with this algorithm are far off the state-of-the-art. There are mainly two reasons for that:
1) Recent research showed that local search is needed to improve solutions constructed by
the ants to assist in guiding the search. 2) The algorithm proposed does not include any
mechanisms for additional intensification and diversification of the search process which is

CHAPTER 2. METAHEURISTICS FOR JOB AND OPEN SHOP SCHEDULING 37

needed for problems like Shop Scheduling problems where good solutions don’t necessarily
have parts in common (see [68]). For the sake of completeness we mention that exactly the
same algorithm was reinvented by van der Zwaan and Marques in [105].

A second ACO approach for the JSP was proposed by Teich et al. in [104]. This algorithm
also applies the mechanism of list scheduler algorithms to probabilistically construct solutions.
The difference is in the pheromone model and the generation of the transition probabilities.
Teich et al. applied the following pheromone model which was introduced by Merkle and
Middendorf in [69] for permutation problems.

Learning of absolute positions in s: This model can be regarded as a standard in per-
mutation type problems. To every operation oj ∈ O and every position i in a sequence s we
have associated a pheromone value τoj ,i. Teich et al. use two different strategies to generate
the probabilities for the operations in set S′ of the ant construction phase to be chosen by the
ant (called transition probabilities). The first evaluation strategy is the standard evaluation:

p(oj |st−1,|O|, t) =

[τoj,t]·[ηoj]
α

P

ok∈S′ [τok,t]·[ηok]
α : if oj ∈ S′

0 : otherwise
(2.7)

With this pheromone representation the algorithm tries to learn absolute positions of oper-
ations in a sequence s. The second evaluation strategy – called summing evaluation – was
introduced in [69] and further tested in [70]. The transition probabilities are:

p(oj |st−1,|O|, t) =

Pt
l=1

h

τoj,l

i

·[ηoj]
α

P

ok∈S′

Pt
l=1[τok,l]·[ηok]

α : if oj ∈ S′

0 : otherwise

(2.8)

In this way of evaluating the transition probabilities, if an operation is by some stochastical
error not placed at a position in s where it should have been placed, the probability remains
high to schedule it closely afterward. In the following we denote this pheromone model
combined with standard evaluation by PHabs and combined with summing evaluation by
PHsum.

As heuristic information, Teich et al. used the SPT priority rule in the same way as outlined
above. However, this algorithm neither reaches state-of-the-art performance.

2.5.2 ACO algorithms to tackle the OSP

To our knowledge there has been no ACO algorithm proposed to tackle the OSP. The algo-
rithms proposed for the JSP can easily be adapted to work for the OSP though.

2.6 Other metaheuristic approaches

Except for the metaheuristic approaches mentioned in the previous sections there have been
a few more approaches which we outline in the following.

CHAPTER 2. METAHEURISTICS FOR JOB AND OPEN SHOP SCHEDULING 38

2.6.1 A large-step optimization method to tackle the JSP

The large-step optimization method proposed by Lourenco [63] fits into a metaheuristic frame-
work which is nowadays known as Iterated Local Search (ILS) [99, 64]. ILS applies local search
to an initial solution until it finds a local optimum; then it perturbs the solution and it starts
again a local search. On the basis of an acceptance criterion it is then decided whether the new
local optimum is accepted as the new current solution. The importance of the perturbation
is obvious: a too small perturbation might not enable the system to escape from the basin
of attraction of the local optimum just found. On the other side, a too strong perturbation
would make the algorithm similar to a random restart local search.
To tackle the JSP, Lourenco [63] introduced a combination of small step moves based on the
neighborhood N1a (this corresponds to applying iterative improvement local search) and large
step moves in order to reach new areas in the search space (this corresponds to the perturba-
tion mechanism). The large steps considered are as follows. Randomly select two machines
and remove them from the current schedule. Then solve the one-machine problem for each
of the two machines and insert the obtained machine sequences into the current schedule.
Starting solutions are generated through the application of a randomized GT algorithm. The
results obtained are not state-of-the-art.

2.6.2 A GRASP to tackle the JSP

The Greedy Randomized Adaptive Search Procedure (GRASP), see [38, 87], is a simple
metaheuristic approach which combines constructive heuristics and local search. GRASP is
an iterative procedure, composed of two phases: solution construction and solution improve-
ment. In the construction phase, a feasible solution is built, one element at a time. At each
construction iteration, the next element to be added is determined by ordering all elements
in a candidate list with respect to a greedy function that measures the benefit of selecting
each element. The adaptive component of GRASP arises from the fact that the benefits as-
sociated with every element are updated at each iteration of the construction phase to reflect
the changes caused by the selection of previous elements. The probabilistic component of
GRASP is characterized by the random choice of an element from a restricted candidate list
in every construction step.
Binato et al. [14] propose a GRASP algorithm to tackle the JSP. Their algorithm is charac-
terized by a construction phase based on list scheduler algorithms and by a local search phase
based on the N1a neighborhood (see Section 2.3.1). The construction steps are influenced
by a set of elite solutions found in the course of the search process. Solution components to
be found in elite solutions are preferred in a randomized way while constructing a solution.
Another interesting feature of this algorithm is the Proximate Optimality Principle (POP)
introduced by Glover and Laguna in [44]. This principle states, that good partial solutions
on a number of x < |O| operations are similar to good partial solutions when one operation
is added to the x operations. This principle in mind, iterative improvement based on neigh-
borhood N1a is applied to partial solutions at certain stages of the construction process.
This algorithm obtains good solutions for relatively easy problem instances. For difficult
problem instances the results are quite far off the best known solutions though.

CHAPTER 2. METAHEURISTICS FOR JOB AND OPEN SHOP SCHEDULING 39

2.6.3 A variable depth search method to tackle the JSP

One of the most powerful and certainly one of the state-of-the-art algorithms to tackle the
JSP is a method called Guided Local Search11 (GLS) proposed by Balas and Vazacopoulos in
[9]. Their algorithm is based on a neighborhood where a varying number of processing orders
is reversed to obtain the neighbors. The neighborhood is defined as follows.

Neighborhood N7: A neighbor s′ of a solution s is obtained by an interchange of two
operations o and o′ in the same machine block on a critical path of s. Either operation o′ is
the last one in the block and there is no directed path in the disjunctive graph corresponding
to s connecting js(o) to o′, or, operation o is the first one in the block and there is no directed
path connecting o to jp(o′).

This neighborhood is further restricted by applying experience in the form of so-called guide-
posts gathered during the search process. For details we refer to [9]. GLS works by building
up an incomplete enumeration tree (called neighborhood tree). Each node of such a tree
corresponds to a solution. An edge of a tree joins two solutions s and s′ where the child s′

is obtained through applying a N7 move to s involving two operations o and o′ as outlined
above. The reversed processing order of o and o′ is preserved in all nodes in the subtree
rooted in s′. The children of a node are ranked by their evaluations. The number of children
is limited by a decreasing function of the depth in the neighborhood tree. Finally, besides
fixing of certain processing orders and restricting the number of children, the depth of a tree
is limited by a logarithmic function of the number of operations on the tree’s level. Altogether
the size of the neighborhood tree is bounded by a linear function of the number of operations.
GLS works by iteratively constructing neighborhood trees. If a tree contains the best solution
found so far, it is accepted as the next tree root. Otherwise, a random solution in the current
neighborhood tree is chosen as the root of the next tree. The algorithm starts with a solution
constructed by the GT algorithm using the MWR (most work remaining) priority rule.
In the same paper, Balas and Vazacopoulos outline some combinations of GLS and the shift-
ing bottleneck procedure. The idea is to replace the re-optimization cycle of the shifting
bottleneck procedure with applying GLS instead. So, whenever there are a number of m0

fixed machine sequences defining a partial solution sp, GLS is applied for a certain number of
neighborhood tree generations. The root of the first tree is defined by the partial solution sp.
The machine sequences defined by the best solution found by GLS are then used to continue
the shifting bottleneck procedure. This enhancement of the shifting bottleneck procedure
works extremely well for a lot of benchmark problems, both in time and in solution quality.

11The name of this algorithm is not to be mistaken with the general concept metaheuristic Guided Local
Search introduced by Voudouris and Tsang in [107].

Chapter 3

Metaheuristics for Group Shop

Scheduling

The Metaheuristic Network [114] is a Research Training Network funded by the Improving
Human Potential program of the CEC. It aims at the comparison of metaheuristics on dif-
ferent combinatorial optimization problems. For each combinatorial optimization problem
considered, five metaheuristics are implemented by different people in different sites involved
in the Metaheuristics Network. The five metaheuristics considered are: Ant Colony Opti-
mization (ACO), Evolutionary Computation (EC), Iterated Local Search (ILS), Tabu Search
(TS), and Simulated Annealing (SA). This chapter is devoted to the research conducted in the
course of the Metaheuristics Network on the Group Shop Scheduling problem (GSP). As the
author of this thesis developed and implemented the ACO metaheuristic to tackle the GSP,
the focus of this chapter is on the ACO metaheuristic and the research results published in
the following papers:

• C. Blum, A. Roli and M. Dorigo. HC-ACO: The Hyper-Cube Framework for Ant
Colony Optimization. In Proceedings of the 2001 Metaheuristics International Confer-
ence, MIC’01, 2002 [17].

• C. Blum and M. Sampels. Ant Colony Optimization for FOP Shop scheduling1: A case
study on different pheromone representations. In Proceedings of the 2002 Congress on
Evolutionary Computation, CEC’02 (to appear), 2002 [18].

• C. Blum and M. Sampels. When Model Bias is Stronger than Selection Pressure.
Submitted to the 2002 Conference on Parallel Problem Solving in Nature, PPSN’02,
[19].

• M. Sampels, C. Blum, M. Mastrolilli and O. Rossi-Doria. Metaheuristics for Group
Shop Scheduling. Submitted to the 2002 Conference on Parallel Problem Solving in
Nature, PPSN’02, [95].

• C. Blum. ACO applied to Group Shop Scheduling: A case study on Intensification and
Diversification. Submitted to ANTS2002, [16].

1For historical reasons, the GSP was called FOP Shop Scheduling in [18]. However, the name Group Shop
Scheduling fits better to the structure of the problem.

40

CHAPTER 3. METAHEURISTICS FOR GROUP SHOP SCHEDULING 41

The structure of this chapter is as follows. First, the developed metaheuristics are described.
Then we compare these metaheuristics on GSP instances from the range between JSP and
OSP – the two extreme cases of the GSP – in order to further improve the understanding of
the differences between OSP and JSP. Often when reading research papers from the literature,
it becomes obvious that comparisons of metaheuristics are not done in a fair way. Usually,
researchers compare their results with results from the literature. There are several pitfalls
when doing that: (i) the paper where the results are taken from might be pulished much
earlier such that the computation times are not comparable, because the advance in computing
power from year to year is tremendous, (ii) the compared algorithms might be implemented
on completely different data structures, such that again the results are not comparable, (iii)
the compared algorithms might be implemented in different programming languages. In the
Metaheuristics Network we tried to eliminate these factors in metaheuristic comparison by
fixing the framework for the comparison in the following way:

• The programming language was decided to be C++. The compiler chosen was the GNU
C++ compiler gcc, version 2.95.3.

• The basic data structures to hold the problem data and to represent solutions were
provided. Furthermore, a neighborhood structure to be outlined in the following section
was provided. Every algorithm based on neighborhood structures (such as TS, SA, or
local search to be used inside the population-based metaheuristics) had to be based on
this neighborhood structure.

• The metaheuristics were all tested on a beowulf cluster consisting of 8 PCs with AMD
Athlon 1100 Mhz CPU under Linux.

By fixing this framework we created the basis for a fairer comparison of metaheuristics than
what is done usually.

3.1 Common neighborhood and local search

In Def. 3 of Section 2.3.1 and in Def. 4 of Section 2.3.2 we gave the definitions of machine
blocks and more general blocks (including machine blocks and job blocks) on critical paths of
solutions to the JSP and the OSP. In the following we generalize these definitions to obtain
a definition of blocks for the GSP.

Definition 5 Given a solution s to an instance of the GSP, a block is a maximal sequence
(of size at least one) of operations on the same machine or of the same group on a critical
path of s. An operation o in a block is called an internal operation if it is neither the first
nor the last operation in this block.

According to this block definition we generalize the neighborhood structure N1c – introduced
by Nowicki and Smutnicki in [79] for the JSP – for the application to the GSP.

Neighborhood structure N1c,GSP : The neighborhood of a solution s is defined by all solu-
tions s′ which can be generated by reversing the processing orders of the first two operations

CHAPTER 3. METAHEURISTICS FOR GROUP SHOP SCHEDULING 42

or the last two operations in a block of a critical path with respect to a solution s. Excluded
are the first two operations in the first block and the last two operations in the last block.

By providing the neighborhood structure to be used by any local search method we make
sure that every metaheuristic searches the same landscape, which might enable us to draw
conclusions on which metaheuristic searches this landscape in a more effective way than others.

3.2 Ant Colony Optimization

The ACO algorithm outlined in this section2 is characterized by a new pheromone model
combined with a new evaluation strategy. Furthermore, it is implemented in the Hyper-Cube
Framework, which is a certain way of implementing ACO algorithms proposed by Blum et al.
in [17]. Based on the Hyper-Cube Framework, additional intensification and diversification
mechanisms are introduced into the search process by means of a list of elite solutions found
in the course of the search.

3.2.1 A new pheromone model PHrel

As outlined in Section 2.5, there have been two different ACO approaches to tackle the JSP.
They use three different “pheromone-model”-”pheromone-evaluation-strategy” combinations.
These are (i) learning of successor relations in sequences to be built combined with the stan-
dard evaluation (PHsuc), (ii) learning of absolute positions of operations in the sequences to
be built combined with the standard evaluation (PHabs), and (iii) learning of absolute posi-
tions combined with the summing evaluation (PHsum). However, all three combinations seem
to model the GSP, and Shop Scheduling problems in general, in a somewhat artificial way.
Combination (i) is artificial because by using this combination the algorithm tries to learn
successor relationships among the operations in sequences s to be generated by the algorithm.
This means that the algorithm potentially learns relationships between operations which are
not related at all (which means that they are not to be processed on the same machine or that
they are not in the same group). Combinations (ii) and (iii) are artificial because an algo-
rithm using these “pheromone-model”-”pheromone-evaluation-strategy” combinations learns
absolute positions in the sequences s generated by the algorithm and does only implicitly take
into account the relations among operations. By introducing the following pheromone model
in [18] we intended to introduce a more natural modeling of Shop Scheduling problems.

Learning of relations among operations: In this new pheromone model – which we
called PHrel in [18] – we assign pheromone values to pairs of related operations. We call two
operations oi, oj ∈ O related if they belong to the same group, or if they have to be processed
on the same machine. Formally, a pheromone value τoi,oj

for a pair of operations oi, oj ∈ O,
where oi 6= oj , exists iff g(oi) = g(oj) or m(oi) = m(oj).

The meaning of a pheromone value τoi,oj
is that if τoi,oj

is high then operation oi should be
scheduled before operation oj . The choice of the next operation to be scheduled is handled
as follows. If in step t of the construction mechanism (which is the list scheduler algorithm)
there is an operation oi ∈ S′

t (remember that S′
t is the restricted set of operations which can

be scheduled in step t of the construction phase) with no related and unscheduled operations

2This ACO algorithm was developed at IRIDIA, Université Libre de Bruxelles, Belgium, by Christian Blum.

CHAPTER 3. METAHEURISTICS FOR GROUP SHOP SCHEDULING 43

left, it is chosen. Otherwise we choose among the operations of set S′
t with the following

transition probabilities:

p(o | st−1,|O|) =

min
or∈Srel

o
τo,or

P

ok∈S′
t
min

or∈Srel
ok

τok,or
: if o ∈ S′

t

0 : otherwise

where Srel
o = {o′ ∈ O | m(o′) = m(o) ∨ g(o′) = g(o), o′ not scheduled yet}, and st−1,|O| is a

partial sequence of length t− 1 and final length |O|. The meaning of this rule for computing
the transition probabilities is the following: If at least one of the pheromone values between
an operation oi ∈ S′

t and a related operations or that is not scheduled yet is low, then the
operation oi probably should not be scheduled now. By using this pheromone model the
algorithm tries to learn relations between operations. The absolute position of an operation
in the sequence s is not important anymore. Of importance, is the relative position of an
operation with respect to the related operations.

As shown in [18], PHrel appears to be superior to the other “pheromone-model”-”pheromone-
evaluation-strategy” combinations proposed for Shop Scheduling type problems. In particular
– as shown in [19] – unlike other pheromone models, PHrel does not introduce an overly strong
model bias potentially leading the search process to low quality areas in the search space.

3.2.2 The Hyper-Cube Framework for Ant Colony Optimization

In most ACO implementations the hyperspace for the pheromone values used by the ants to
construct solutions is only implicitely limited. In contrast, the Hyper-Cube Framework – in-
troduced in [17] – provides a way of implementing ACO algorithms such that the hyperspace
for the pheromone values is explicitly know to be [0, 1]z where z is the number of pheromone
values. In the following we describe the Hyper-Cube Framework on the pheromone model
introduced in the previous section. The Hyper-Cube Framework is characterized by a phero-
mone update rule where the relative difference between the qualities of the solutions produced
in an iteration are important rather than the absolute qualities of these solutions. In general,
any pheromone update rule can be adapted to work in the Hyper-Cube Framework. In order
to present the idea, we choose the usual Ant System global pheromone update rule as pro-
posed in [33]. For the pheromone values τoi,oj

of pheromone model PHrel introduced in the
previous section the usual Ant System global pheromone update rule is the following one.

τoi,oj
← (1 − ρ) · τoi,oj

+
k∑

l=1

∆slτoi,oj
(3.1)

where

∆slτoi,oj
=

{ 1
Cmax(sl)

if oi before oj in sl,

0 otherwise.
(3.2)

In the Hyper-Cube Framework a normalization of the contribution of every solution used for
updating the pheromone values is done in the following way.

τoi,oj
← (1 − ρ) · τoi,oj

+ ρ ·
k∑

l=1

∆slτoi,oj
(3.3)

CHAPTER 3. METAHEURISTICS FOR GROUP SHOP SCHEDULING 44

where

∆slτoi,oj
=

1
Cmax(sl)

Pk
r=1

1
Cmax(sr)

if oi before oj in sl,

0 otherwise.
(3.4)

where we multiply the sum of normalized contributions with the evaporation rate ρ. The
Hyper-Cube Framework allows a nice interpretation of the pheromone update rule. In the
following we regard the set of all pheromone values as a vector ~τ where each position is
associated with exactly one of the pheromone values3. Remember that the meaning of each
pheromone value τoi,oj

is the following: If τoi,oj
is high – which means close to 1 – then oi

should be scheduled before oj , and vice versa. This means that we can regard a solution s as
a vector ~s of the same size as ~τ where a position associated to pheromone value τoi,oj

is set
to 1, if oi is scheduled before oj in s, and 0 otherwise. Now we transform equations (3.3) and
(3.4) to obtain the following pheromone update rule.

τoi,oj
← τoi,oj

+ ρ ·

((
k∑

l=1

1
Cmax(sl)

· δ(oi, oj , sl)
∑k

r=1
1

Cmax(sr)

)

− τoi,oj

)

(3.5)

where

δ(oi, oj , s) =

{
1 if oi before oj in s,
0 otherwise.

(3.6)

By defining

~d ←
k∑

l=1

(
1

Cmax(sl)
∑k

r=1
1

Cmax(sr)

)

· ~sl (3.7)

we can rewrite equation (3.5) in vector form as

~τ ← ~τ + ρ ·
(

~d − ~τ
)

(3.8)

where ~d is the weighted sum of solution vectors ~sl, l = 1, ..., k. This means that the Ant
System global pheromone update rule in the Hyper-Cube Framework shifts the vector ~τ with
stepsize ρ toward the weighted sum of solution vectors ~sl. This also implies that if the
algorithm starts with pheromone values from the interval [0, 1] then they will have a lower
bound 0 and an upper bound 1. If the algorithm even starts with an initial pheromone vector
in the convex hull of feasible solution vectors, then it will never leave this convex hull. This
view is graphically presented in Figure 3.1.

3.2.3 MAX -MIN Ant System for the GSP

MMAS was proposed by Stützle and Hoos as an improvement of the original Ant System
(AS) proposed by Dorigo et al. in [33]. MMAS differs from AS by applying a lower and an
upper bound, τmin and τmax, on the pheromone values. The lower bound (a small positive

3This means that the vector ~τ has as many positions as the cardinality of the set of pheromone values.

CHAPTER 3. METAHEURISTICS FOR GROUP SHOP SCHEDULING 45

τ
d

a)

Solution of ant 1

b)

Solution of ant 2

(1,0,0)

(1,1,0)

(1,0,1)

(1,1,1)
(0,1,1)

(0,0,1)

(0,0,0) (1,0,0)

(1,1,0)

(1,0,1)

(1,1,1)
(0,1,1)

(0,0,1)

(0,0,0)

Figure 3.1: The Hyper-Cube Framework: An example for an artificial problem instance
modeled by three pheromone values. The length of the pheromone vector ~τ and the length
of the solution vectors ~s is therefore 3. We assume to have three different feasible solutions:
(0, 0, 0), (1, 1, 0) and (0, 1, 1). The gray shaded area is the convex hull of the feasible solutions,
which corresponds to the hyperspace in which the pheromone vector moves. In b) a situation
is depicted where the algorithm has produced two solutions (0, 0, 0) and (0, 1, 1). We assume
(0, 0, 0) to have the shorter makespan. Therefore, vector ~d, which is the weighted sum of these
two solutions, is closer to (0, 0, 0) than to (0, 1, 1). The update rule will then shift vector ~τ
toward this vector ~d.

constant) is preventing the algorithm from converging4 to a solution. Another important
feature of MMAS is that – due to a quite aggressive pheromone update – the algorithm
concentrates quickly on an area in the search space. When the system is stuck in an area of
the search space5 the best solution found since the start of the algorithm is used to update
the pheromone values in every iteration until the algorithm gets stuck again. After that,
a restart is performed. The reason for doing that is the hope of finding a better solution
between the restart best solution and the best solution found since the start of the algorithm.
This mechanism is clearly an intensification mechanism. Additional diversification is reached
by the original MMAS by restarting the algorithm with equal pheromone values. This way
of diversifying the search process is not guided by any search history.
The framework of our MMAS algorithm for the GSP is shown in Algorithm 14. The most
important features of this algorithm are explained in the following.

In Algorithm 14, τ = {τ1, ..., τl} is a set of pheromone values, na is the number of ants, and
sj is a solution to the problem – a sequence containing all operations – constructed by ant
j, where j = 1, ..., na. Furthermore, sib denotes the best solution constructed in an itera-
tion, srb denotes the best solution found in a restart phase of the algorithm (a phase where
glob conv == FALSE), and sgb denotes the best solution found since the start of the algo-
rithm.

InitializePheromoneValues(τ): In the basic version of the algorithm we initialize all the phero-
mone values to the same positive constant 0.5.

4In the course of this work we refer to convergence of an algorithm as a state where only one solution has
a probability greater than 0 to be generated.

5This is usually determined by some convergence measure.

CHAPTER 3. METAHEURISTICS FOR GROUP SHOP SCHEDULING 46

Algorithm 14 MMAS for the GSP

sgb ← NULL
srb ← NULL
cf ← 0
glob conv ← FALSE
InitializePheromoneValues(τ)
while termination conditions not met do

for j = 1 to na do
sj ← ConstructSolution(τ)
LocalSearch(sj)

end for
sib ← argmin(Cmax(s1), ..., Cmax(sna))
Update(sib, srb, sgb)
if glob conv == FALSE then

ApplyOnlineDelayedPheromoneUpdate(τ ,srb)
else

ApplyOnlineDelayedPheromoneUpdate(τ ,sgb)
end if
cf ← ComputeConvergenceFactor(τ)
if cf ≥ 0.99 AND glob conv == TRUE then

ResetPheromoneValues(τ)
srb ← NULL
glob conv ← FALSE

else
if cf ≥ 0.99 AND glob conv == FALSE then

glob conv ← TRUE
end if

end if
end while

ConstructSolution(τ): An important part of an ACO algorithm is the constructive mechanism
used to probabilistically construct solutions. We used the mechanism of a list scheduler
algorithm as outlined in Algorithm 1 in Section 1.4.1. To summarize, the list scheduler
algorithm builds a sequence s of all operations – starting with an empty sequence – by
performing |O| steps as follows:

1. Create a set St (where t is the step number) of all operations that can be scheduled
next.

2. Use a heuristic to produce a set S′
t ⊆ St.

3. Use a heuristic to pick an operation o ∈ S′
t to be scheduled next. Add operation o to

the partial sequence st−1,|O|.

Remember that a sequence s of all operations is a total order on all operations that specifies a
total order on the operations of each group and of each machine. This unambiguously defines

CHAPTER 3. METAHEURISTICS FOR GROUP SHOP SCHEDULING 47

a solution to an instance of the problem. The construction mechanism applied by the ants
chooses S′

t = St in step 2, and in step 3 it chooses among the operations in S′
t probabilistically.

The probabilities for the operations in S′
t (called transition probabilities) to be chosen, depend

on the pheromone model. For our algorithm we choose the pheromone model PHrel proposed
by Blum et al. in [18] and outlined in the previous section. The transition probabilities –
biased by heuristic information – are generated as follows:

p(o | st−1,|O|) =

“

min
or∈Srel

o
τo,or

”

·ηo
α

P

ok∈S′
t

„

min
or∈Srel

ok

τok,or

«

·ηok
α

: if o ∈ S′
t

0 : otherwise,

where Srel
o = {o′ ∈ O | m(o′) = m(o) ∨ g(o′) = g(o), o′ not scheduled yet}. As heuristic

information ηo we use the inverse of the earliest starting time of an operation o with respect
to the current partial schedule st−1,|O|

6, and α is a parameter to adjust the influence of the
heuristic information ηo.

LocalSearch(sj): To every solution sj constructed by the ants, a best improvement local search
based on neighborhood structure N1c,GSP as outlined in Section 3.1 is applied.

Update(sib, srb, sgb): This function updates solutions srb and sgb with the iteration best solu-
tion sib. srb is replaced by sib, if Cmax(sib) < Cmax(srb). The same holds for sgb.

ApplyOnlineDelayedPheromoneUpdate(τ ,s): The algorithm is implemented in the Hyper-Cube
Framework described in Section 3.2.2. MMAS algorithms usually apply a pheromone update
rule which (depending on some convergence measure) uses the iteration best solution sib, the
restart best solution srb and sgb, the best solution found since the start of the algorithm,
to update the pheromone values. Our algorithm only uses the restart best solution and the
global best solution. The reason for that is the different structure of the scheduling problems
covered by the GSP. Preliminary experiments showed that for OSP instances a much higher
selection pressure is needed to make the algorithm converge than for JSP instances. The
implications in practice are that the use of the iteration best solution sib for updating the
pheromone values would have to be fine-tuned depending on the problem instance structure.
To avoid this we decided against using the iteration best solution.
As our algorithm – at any time – only uses one solution (srb or sgb) for updating the phero-
mone values, we can specify the pheromone updating rule for our algorithm deriving it from
equation (3.5) as follows.

τoi,oj
← fmmas

(
τoi,oj

+ ρ · (δ(oi, oj , s) − τoi,oj
)
)

(3.9)

where the delta-function is as defined in equation (3.6), and

fmmas(x) =

τmin if x < τmin,
x if τmin ≤ x ≤ τmax,
τmax if x > τmax.

(3.10)

6We add 1.0 to all earliest starting times in order to avoid division by 0.

CHAPTER 3. METAHEURISTICS FOR GROUP SHOP SCHEDULING 48

We set the lower bound τmin for the pheromone values to 0.001 and the upper bound7 τmax

to 0.999. Therefore, after applying the pheromone update rule above, we set the pheromone
values that exceed the upper bound or are below the lower bound back to the respective bound.

ComputeConvergenceFactor(τ): To measure the “extent of being stuck” in an area in the
search space we compute after every iteration a so–called convergence factor cf . We compute
this factor as follows.

cf ←

((∑

oi 6=oj , related max{τmax − τoi,oj
, τoi,oj

− τmin}
∑

oi 6=oj , related τmax − τmin

)

− 0.5

)

· 2.0 (3.11)

From the formula above it becomes clear that when the algorithm is initialized (or restarted)
with pheromone values all 0.5, cf is 0.0 and when all pheromone values are either equal to
τmin or equal to τmax, cf is 1.0.

ResetPheromoneValues(τ): In the basic version of our algorithm we reset all the pheromone
values to the same positive constant 0.5.

This concludes the description of the basic MMAS for the GSP (henceforth identified by
U for uniform initialization and resetting of pheromone values). As mentioned before, Shop
Scheduling problems are in general multimodal problems in the sense that good solutions
are scattered all over the search space. Therefore we expect to be able to improve the
basic algorithm presented in this section with additional intensification and diversification
mechanisms.

3.2.4 Intensification and diversification strategies

Intensification and diversification of the search process are quite unexplored topics in ACO re-
search. There are just a few papers explicitly dealing with the topic. The mechanisms already
exisiting can be divided into two different categories. The first one consists of mechansims
changing in some way the pheromone values, either on-line (e.g., [32, 91]) or by resetting
the pheromone values (e.g., [100, 103]). The second category consists of algorithms applying
multiple colonies and exchanging information between them in some way (e.g., [72, 56]). In
contrast to that, most of the intensification and diversification mechanisms to be outlined in
the following are based on a set of elite solutions found by the algorithm in the history of the
search process.
As a first strategy to introduce more intensification and diversification into the the search
process performed by Algorithm 14, we changed the functions to initialze and reset the phe-
romone values. In an algorithm henceforth identified by R (for random pheromone setting)
we use a pheromone value initialization and resetting function that generates for every phero-
mone a value uniformly random between 0.25 and 0.758. This introduces more intensification,
because right from the start of a restarting phase the algorithm is more focused on a certain

7Note that in contrast to the usual way of implementing ACO algorithms, in the Hyper–Cube Framework
also the upper bound for pheromone values is necessary to avoid convergence to a solution.

8Note that the Hyper–Cube framework facilitates a strategy like that, as we explicitly know the space in
which the pheromone values move to be [0, 1]z where z is the number or pheromone values.

CHAPTER 3. METAHEURISTICS FOR GROUP SHOP SCHEDULING 49

area in the search space given by the randomly chosen values for the pheromones. On the
other side more diversification is introduced, because with every restart the algorithm focuses
probably on a different area of the search space.
Examining the behaviour of the MMAS algorithm presented in the previous section we no-
ticed that the algorithm wastes time by always – at the end of a restart phase – moving
towards the best solution found since the start of the algorithm. After some while there are
no improvements to be found around this solution. The strategy of always moving toward
the best found solution might work well for problems like the Traveling Salesman Problem
with a fitness-distance correlation9, for problems without a fitness-distance correlation other
strategies seem to be required. To change this strategy we keep a list Lelite of elite solutions
found during the search. Henceforth, we call the solutions srb – the best solutions found in a
restart phase of the algorithm – elite solutions. Lelite works as a FIFO list and has a max-
imum length l. The framework of the algorithm using this list of elite solutions, henceforth
called E-MMAS, is given in Algorithm 15.

In Algorithm 15, if loc conv == FALSE and glob conv == FALSE we say the algorithm is in
a restart phase. In case loc conv == TRUE and glob conv == FALSE we say the algorithm
is in the phase of local convergence, and in case loc conv == FALSE and glob conv ==
TRUE we say the algorithm is in the phase of global convergence. In Algorithm 15, the
phase of convergence to the best solution found since the start of the algorithm as shown in
Algorithm 14 is replaced by consecutive phases of local and global convergence. In the phase
of local convergence the system moves toward a solution sclosest, which is closest to srb in
Lelite with respect to the following distance measure:

dh(s1, s2) =
∑

oi 6=oj , related

δ(oi, oj , s1, s2), (3.12)

where δ(oi, oj , s1, s2) = 0 if the processing order between oi and oj is the same in both so-
lutions s1 and s2, and δ(oi, oj , s1, s2) = 1 otherwise. By doing that the algorithm tries to
improve solution sclosest. In the phase of global convergence, the system moves toward a so-
lution sbest, which is the best quality solution among the solutions in Lelite. The components
of Algorithm 15 different or additional to the components of Algorithm 14 are outlined in the
following.

AddToEliteList(Lelite,srb): Every solution srb at the end of a restart phase is added to Lelite.
At the beginning of the algorithm the list is empty. In a situation where the length of Lelite

is smaller than l, the new solution is just added. In case the length of Lelite is l, additionally
the first element of Lelite is removed.

UpdateEliteList(Lelite,s,srb): At the end of the phases of local or global convergence it is
checked if sclosest, respectively sbest, was improved. If this is the case, sclosest, respectively
sbest, is removed from the list Lelite and the improved solution srb is added at the end of
Lelite. This mechanism implies that a solution, once added to Lelite, has |Lelite| (the length of

9Informally, the expression fitness-distance correlation denotes the existence of the following property: The
higher the quality of a solution, the higher is the probabilitiy that it has many parts in common with the
global optimum.

CHAPTER 3. METAHEURISTICS FOR GROUP SHOP SCHEDULING 50

Algorithm 15 E-MMAS for the GSP

sgb ← NULL, srb ← NULL, sclosest ← NULL, sbest ← NULL, cf ← 0
loc conv ← FALSE, glob conv ← FALSE
InitializePheromoneValues(τ)
while termination conditions not met do

for j = 1 to na do
sj ← ConstructSolution(τ)
LocalSearch(sj)

end for
sib ← argmin(Cmax(s1), ..., Cmax(sna))
Update(sib, srb, sgb)
ApplyOnlineDelayedPheromoneUpdate(τ ,srb)
cf ← ComputeConvergenceFactor(τ)
if cf ≥ 0.99 AND glob conv == FALSE AND loc conv == FALSE then

AddToEliteList(Lelite,srb)
sclosest ← argmin{dh(srb, s) | s ∈ Lelite, s 6= srb} {see text for definition of dh(., .)}
srb ← sclosest

loc conv ← TRUE
else

if cf ≥ 0.99 AND glob conv == FALSE AND loc conv == TRUE then
UpdateEliteList(Lelite,sclosest,srb)
sbest ← argmin{Cmax(s) | s ∈ Lelite}
srb ← sbest

loc conv ← FALSE
glob conv ← TRUE

else
if cf ≥ 0.99 AND glob conv == TRUE AND loc conv == FALSE then

UpdateEliteList(Lelite,sbest,srb)
ResetPheromoneValues(τ)
srb ← NULL, sclosest ← NULL, sbest ← NULL
glob conv ← FALSE
loc conv ← FALSE

end if
end if

end if
end while

CHAPTER 3. METAHEURISTICS FOR GROUP SHOP SCHEDULING 51

Lelite) restart phases of the algorithm to be improved. If it is improved it has again the same
time to be improved again. If a solution in Lelite is not improved within |Lelite| restart phases
of the algorithm, it is dropped from Lelite and its neighborhood is regarded as an explored
region of the search space.

The intuition behind the usage of a list of elite solutions as described above is the following.
Instead of only on one area – as done in the usual MMAS – our algorithm works on several
areas in the search space trying to improve the best solutions found in these areas. If it can
not improve them in a certain amount of time they are discarded even if they contain the best
solution found since the start of the algorithm. This prevents the algorithm from wasting time
and acts as a diversifying component. This mechanism also incorporates a strong intensifying
component by applying the phase of local convergence and the phase of global convergence
as described above.
Algorithm E-MMAS using the random pheromone initialization and resetting as described
at the beginning of this section is henceforth identified by ER. We also developped two more
ways of resetting the pheromone values in Algorithm E-MMAS. The first one is aiming at
a diversification of the search depending on the elite solutions in Lelite. In this scheme the
pheromone values are reset as follows.

τoi,oj
← f

(
P

s∈Lelite
δ(oi,oj ,s)

|Lelite|

)

where f(x) =

0.5 + x if x < 0.25,
1.0 − x if 0.25 ≤ x ≤ 0.75,
x − 0.5 if x > 0.75

(3.13)

The delta-function is the same as defined in (3.6). The intuition of this setting is that we
want to reset the pheromone values in order to concentrate the search in areas of the search
space different from the current set of elite solutions. However, the more agreement is found
among the elite solutions about an order between two related operations oi and oj , the more
we rely on the accuracy of this order and the resetting of the corresponding pheromone values
is approximating equal chance for both directions (cases x < 0.25 and x > 0.75 in (3.13)).
Algorithm E-MMAS using for the first three restart phases the random setting of pheromone
values and afterwards this diversification scheme is henceforth identified by ED.
Another scheme for resetting pheromone values aims at an intensification of the search process.
First the best solution sbest among the elite solutions is chosen, then another one ssecond

different from sbest is chosen from Lelite uniformly random. Using these two solutions, the
resetting of pheromone values is done as follows.

τoi,oj
← fmmas

(
δ(oi, oj , sbest) + δ(oi, oj , ssecond)

2.0

)

(3.14)

where the delta-function is as defined in (3.6) and the function fmmas, which keeps the
pheromone values in their bounds, is as defined in (3.10). Algorithm E-MMAS using for the
first three restart phases the random setting of pheromone values and fliping a coin for all
consecutive restart phases to choose among the diversification setting of pheromone values
described above and the intensification setting is henceforth identified by EDI.

3.2.5 Choice of an ACO algorithm for the comparison

In order to choose one of the ACO algorithms for the metaheuristics comparison, we ran
experiments on the five different algorithm options outlined in the previous sections. These

CHAPTER 3. METAHEURISTICS FOR GROUP SHOP SCHEDULING 52

are: U , R, ER, ED and EDI. Additionally, we tested a further enhencement of EDI where
we incorporated a short Tabu Search run based on the neighborhood structure N1c,GSP applied
to the best ant per iteration. We fixed the length of this Tabu Search run to |O|/2. This
version of the algorithm is henceforth identified by EDITS . A summary of the characteristics
of the different algorithm options is given in Table 3.1. We tested these six versions on three

Table 3.1: Different versions of the ACO algorithm to tackle the GSP

Identifier Characteristics

U MMAS using uniform setting of pheromone values
R MMAS using random setting of pheromone values
ER E-MMAS using random setting of pheromone values
ED E-MMAS using random setting for the first three restart phases,

and after that the diversification setting of pheromone values
EDI E-MMAS using random setting for the first three restart phases,

and after that fliping a coin in every restart phase to choose among
diversification setting and intensification setting

EDITS The same as EDI with an additional short Tabu Search run
for the best ant in every iteration

problem instances. We chose the first problem tai 15 15 1 jsp with 15 jobs and 15 machines
introduced by Taillard in [101] for the JSP, and the first problem tai 15 15 1 osp with 15
jobs and 15 machines also introduced in [101] for the OSP. The optimal solutions for these
problems are known to be 1231, and 937 respectively. As a third problem we chose whizzkids97
which is a very difficult GSP instance on 197 operations introduced for a competition held
at the TU Eindhoven in 1997. The optimal solution for this problem is 469. We ran each of
the six versions of our algorithm 10 times for 18000 seconds on each problem instance. The
results are shown in Figures 3.2, 3.3 and 3.4. There are several observations to be mentioned.
The short Tabu Search run on the iteration best ant improves the algorithm considerably.
Version EDITS finds the optimal solutions for the JSP and the OSP instance by Taillard
and produces a solution which is only 2.77% above the optimal solution for the instance
whizzkids97. Furthermore, the results on the whizzkids97 instance show that the versions R,
ER, ED and EDI clearly improve on the basic version U of our algorithm. Among these four
improved versions, version EDI has a clear advantage over the other three versions. These
observations are supported by the result of the pairwise Wilcoxon rank sum test. This test
produced probabilities between 89% and 98% for version EDI to be different from the other
versions. The results concerning EDI are the same – even if not with the same statistical
significance – on the two instances by Taillard. The lack of statistical significance might be
caused by the fact that these two instances are easier to solve than the whizzkids97 instance.
The diversification setting alone (version ED) and the random settings (versions R and ER)
do not seem to improve the basic version U on the Taillard instances. Therefore we choose
version EDITS as the ACO algorithm to enter the comparison of metaheuristics to tackle the
GSP.

CHAPTER 3. METAHEURISTICS FOR GROUP SHOP SCHEDULING 53

ED EDI EDI_TS ER R U

480

490

500

510

520

530

Solutions

Metaheuristic

S
ol

ut
io

n
Q

ua
lit

y

ED EDI EDI_TS ER R U

0

10

20

30

40

50

60

Ranks

Metaheuristic
R

an
k

Figure 3.2: Comparison of the ACO versions summarized in Table 3.1 on the whizzkids97
instance. The absolute values of the solutions generated by each ACO version (left) and their
relative rank in the comparison among each other (right) are depicted in two boxplots. A box
shows the range between the 25% and the 75% quantile of the data. The median of the data
is indicated by a bar. The whiskers extend to the most extreme data point which is no more
than 1.5 times the interquantile range from the box. Extreme points are indicated as circles.

ED EDI EDI_TS ER R U

1230

1240

1250

1260

1270

1280

1290

Solutions

Metaheuristic

S
ol

ut
io

n
Q

ua
lit

y

ED EDI EDI_TS ER R U

0

10

20

30

40

50

60

Ranks

Metaheuristic

R
an

k

Figure 3.3: Comparison of the ACO versions summarized in Table 3.1 on the tai 15 15 1 jsp
instance. The absolute values of the solutions generated by each ACO version (left) and their
relative rank in the comparison among each other (right) are depicted in two boxplots. A box
shows the range between the 25% and the 75% quantile of the data. The median of the data
is indicated by a bar. The whiskers extend to the most extreme data point which is no more
than 1.5 times the interquantile range from the box. Extreme points are indicated as circles.

CHAPTER 3. METAHEURISTICS FOR GROUP SHOP SCHEDULING 54

ED EDI EDI_TS ER R U

940

950

960

970

980

990

Solutions

Metaheuristic

S
ol

ut
io

n
Q

ua
lit

y

ED EDI EDI_TS ER R U

0

10

20

30

40

50

60

Ranks

Metaheuristic

R
an

k

Figure 3.4: Comparison of the ACO versions summarized in Table 3.1 on the tai 15 15 1 osp
instance. The absolute values of the solutions generated by each ACO version (left) and their
relative rank in the comparison among each other (right) are depicted in two boxplots. A box
shows the range between the 25% and the 75% quantile of the data. The median of the data
is indicated by a bar. The whiskers extend to the most extreme data point which is no more
than 1.5 times the interquantile range from the box. Extreme points are indicated as circles.

3.3 Evolutionary Computation

The EC algorithm10 developed for the GSP is characterized by a steady-state evolution pro-
cess. To improve the offspring after crossover, we use a best improvement local search on
the neighborhood structure N1c,GSP defined in Section 3.1. Tournament selection is used
to choose which individuals reproduce at each generation and a “replace if better policy” is
used to decide whether or not to accept the offspring for the new population. The initial
population is built by using the Non-Delay algorithm (see Algorithm 3 in Section 1.4.1). The
population size is set to 50. A solution is represented by a sequence (total order on O), which
induces a total order on each machine M ∈ M and each group G ∈ G.

The crossover that is applied by this algorithm is a kind of uniform order based crossover
respecting group precedence relations. It generates an offspring from two parents as follows:

1. Produce a partial child sequence where each position is either filled with the content of
the first parent or left free, with equal probability.

2. Insert the missing operations in the partial list in the order in which they appear in the
second parent.

3. If there is a free position between the last operation of the previous group and the first
of the next one, put the current operation there.

10This algorithm was developed at the Napier University, Edinburgh, UK, by Olivia Doria-Rossi.

CHAPTER 3. METAHEURISTICS FOR GROUP SHOP SCHEDULING 55

1 2 3

4 5 6

7 8

Figure 3.5: An example for a GSP instance on 8 operations: O = {1, . . . , 8}, J = {J1 =
{1, 2, 3}, J2 = {4, 5, 6}, J3 = {7, 8}}, M = {M1 = {1, 5, 7}, M2 = {2, 4}, M3 = {3, 6, 8}},
G = {G1 = {1, 2}, G2 = {3}, G3 = {4}, G4 = {5, 6}, G5 = {7}, G6 = {8}}, G1 ≺ G2, G3 ≺
G4, G5 ≺ G6, processing times are ommitted.

4. Otherwise, put it just before the first operation of the next group and shift the list to
fill the first free position.

In order to demonstrate this mechanism, we consider the GSP instance depicted in Figure 3.5.
The two parents below are both feasible schedules for the described instance. A partial child
sequence is produced and its free positions are filled as follows:

Parent1 2 1 4 3 5 6 7 8
Parent2 7 4 8 1 5 2 6 3

Partial child ∗ 1 ∗ 3 ∗ 6 7 ∗
− −−−−−−−−−−−− − − − − − − − −

Child 4 1 5 2 3 6 7 8

The first operation of the second parent that is not yet in the partial sequence, in this case
operation 4, is inserted in the first free position; then operation 5 is inserted in the next free
position checking that it occurs after 4, which is the last operation of the previous group in
job 2; now operation 8 has to be inserted, but since it has to be scheduled after operation
7, it ends up in the next free position after 7; finally operation 2 has to be scheduled before
operation 3, and since there is no free position in the list before 2, it is inserted immediately
before 2 and the list is shifted forward until the next free position is reached.

As modification (mutation) operator we implemented a variable neighborhood search (VNS)
based on the neighborhood structure N1c,GSP described in Section 3.1 for Nk, k = 1, . . . , 10,
where Nk(¹

∗) = N1c,GSP (N1c,GSP (· · · N1c,GSP
︸ ︷︷ ︸

k

(¹∗))). That means that a random solution in

N1c,GSP is chosen first, then the local search is applied, and if no improvement is found, a
random solution in N2 is chosen followed by local search, then a random solution in N3 and
so on until a better solution is found. The mutation rate is set to be 0.5.

CHAPTER 3. METAHEURISTICS FOR GROUP SHOP SCHEDULING 56

3.4 Iterated Local Search

ILS, in spite of its simplicity, is a powerful metaheuristic that applies a local search algorithm
iteratively to modifications of the current solution. A detailed description of ILS algorithms
can be found in [64]. ILS roughly works as follows. First an initial locally optimal solution,
with respect to the given local search, is constructed. A good starting point can be important,
if high-quality solutions are to be reached quickly. Then, more importantly, a perturbation
has to be defined, that is a way to modify the current solution to an intermediate state to
which the local search can be applied next. Finally, an acceptance criterion is used to decide
from which solution to continue the search process.

The implementation described here11 for the GSP works with a best improvement local search
based on neighborhood structure N1c,GSP . The initial solution is generated using the Non-
Delay algorithm (see Section 1.4.1). The idea used for the perturbation is to slightly modify
the definition of the problem instance data and apply the local search for this modified instance
to the current solution regarded as a solution of the new instance; the result is the perturbed
solution in the original problem instance. In the GSP the processing times of the operations,
unlike group or machine data, can be easily modified such that a solution to one problem
instance can be regarded as a solution to the other. For a percentage α of operations the
processing time is therefore increased or decreased (with the same probability) by a certain
percentage β of its value; then the local search within the modified problem instance is run
for the current solution and finally the resulting locally optimal solution to the modified
instance, regarded as a solution to the original instance, is the perturbed solution. Note that
this solution is not necessarily a local optimum for the original instance. Now the local search
can be applied to the intermediate perturbed solution to reach a locally optimal solution.

Finally the acceptance criterion tells us whether to continue the search from the new local
optimum or from our previous solution. Random walk, the “accept-only-if-better” strategy,
and SA type acceptance criteria have been tested along with different values for α and β.
The random walk acceptance criterion with α = 40 and β = 40 has been selected as it gives
the best performance.

3.5 Simulated Annealing

SA is a metaheuristic based on the idea of annealing in physics [3]. The algorithm starts out
with some initial solution and moves from neighbor to neighbor. If the proposed new solution
is equal to or better than the current solution, it is accepted. If the proposed new solution is
worse than the current solution, it is even then accepted with some positive probability. For
the SA implemention12 for the GSP the latter probability is

Paccept = exp(−
∆

T
) = exp(−

(Cmax(¹
∗′) − Cmax(¹

∗))/Cmax(¹
∗)

T
),

where ¹∗ denotes the current solution, ¹∗′ denotes the the proposed next solution, ∆ is the
percent cost change, and the temperature T is simply a control parameter. Ideally, when local
optimization is trapped in a poor local optimum, Simulated Annealing can “climb” out of the

11This algorithm was developed at the Napier University, Edinburgh, UK, by Olivia Doria-Rossi.
12This algorithm was developed at IDSIA, Lugano, CH, by Monaldo Mastrolilli.

CHAPTER 3. METAHEURISTICS FOR GROUP SHOP SCHEDULING 57

poor local optimum. In the beginning the value of T is relatively large so that many cost-
increasing moves are accepted in addition to cost-decreasing moves. During the optimization
process the temperature is decreased gradually so that fewer and fewer cost-increasing moves
are accepted.

The selection of the temperature is done as follows. We set the initial temperature such
that the probability to accept a move with ∆ = δ = 0.01 is Pstart = 0.9. Moreover, at the
end of the optimization process, we would like that the probability to accept a move with
∆ = δ = 0.01 is Pend = 0.1. With these requirements, we constraint the temperature at time
x to be T = rxτmax, where τmax = −δ/ lnPstart, r = tmax

√

δ/(ln(1/Pend) · τmax), and where
tmax denotes the maximum time allowed for computation.

3.6 Tabu Search

In the TS algorithm implemented for the GSP13, according to the neighborhood structure
N1c,GSP , a move is defined by the exchange of certain adjacent critical operation pairs. We
forbid the reversal of the exchange of a critical operation pair by recording the iteration
number on which the exchange was performed and requiring that this number plus the current
length T be strictly less than the current iteration number.

The tabu status length T is crucial to the success of the TS procedure, and we propose a self-
tuning procedure based on empirical evidence. T is dynamically defined for each solution. It is
equal to the number c of operations of the current critical path divided by a suitable constant
d (we set d = 5). We choose this empirical formula since it summarizes, to some extent, the
features of the given problem instance and those of the current solution. For instance, there
is a certain relationship between c and the instance size, between c and the quality of the
current solution. In order to diversify the search it may be unprofitable to repeat the same
move often if the number of candidate moves is “large” or the solution quality is low, in some
sense, when c is a “large” number.

With the aim of decreasing the probability of generating cycles, we consider a variable neigh-
bor set: every non tabu move is a neighbor with probability 0.8. Moreover, in order to explore
the search space in a more efficient way, TS is usually augmented with some aspiration crite-
ria. The latter are used to accept a move even if it has been marked tabu. We consider a tabu
move as a neighbor with probability 0.3, and perform it only if it improves the best known
solution. To summarize, the proposed TS considers a variable set of neighbors and performs
the best move that improves the best known solution (aspiration), otherwise performs the
best non tabu move chosen among those belonging to the current variable neighborhood set.

3.7 Comparison

We tested the proposed metaheuristics on the whizzkids97 instance. This is a GSP instance
that was used for a mathematics competition in The Netherlands in 1997 [115]. It consists of
197 operations on 15 machines and 20 jobs which are subpartitioned into 124 groups. As this
is the only established GSP instance, we derived further GSP instances from JSP instances.

13This algorithm was developed at IDSIA, Lugano, CH, by Monaldo Mastrolilli.

CHAPTER 3. METAHEURISTICS FOR GROUP SHOP SCHEDULING 58

The most prominent problem instance for JSP is a problem with 10 machines and 10 jobs
which was introduced 1963 by Fisher and Thompson in [75]. It had been open for more
than twenty years before the optimality of a solution was proved by Carlier and Pinson [24].
Another famous series of 80 problem instances for JSP and 60 OSP instances was generated
by Taillard [101]. We use the Fisher-Thompson instance ft10 and Taillard’s first JSP instance
tai 15 15 1 jsp on 15 jobs and 15 machines to generate 10 respectively 15 new benchmark
instances for the GSP. For both problems, we refined the job partition into a group partition
by subdividing each Ji = oi

1 ¹ · · · ¹ oi
ji

into b groups of fixed length g = 1, . . . , 10 respectively
g = 1, . . . , 15 (and possibly one last group of shorter length):

{oi
1, . . . , o

i
g}, {o

i
g+1, . . . , o

i
2g}, . . . , {o

i
(b−1)g+1, . . . , o

i
ji
} (b = dji/ge) .

We tested the five developed metaheuristics: ACO14, EC, ILS, SA and TS as described in the
previous sections. From the whizzkids97 GSP instance we derived three problem instances: (i)
The original GSP instance in the following denoted by whizzkids97 gsp, (ii) the OSP version
whizzkids97 osp, and (iii) the JSP version whizzkids97 jsp where we fixed the technological
sequences as they appear in the file. We tested each metaheuristic for 10 trials of 18000
seconds each (1800 seconds for the OSP version). The OSP version of this problem turned
out to be very easy to solve (see Figure 3.6) and all metaheuristics, except for the EC algorithm
which is performing worse, show a similar performance. However, ACO is the only algorithm
which always finds the best solution found. The original GSP instance (see Figure 3.7) seems
to be much harder to solve, especially for the population based methods. TS, although not
finding the best solutions found by SA, showed the overall best performance, followed by
ILS, SA, ACO and further behind the EC algorithm. The JSP instance (see Figure 3.8)
again shows TS in the advantage over the other algorithms. ILS, ACO and SA show a similar
performance. SA shows a higher variance in the qualities of the solutions produced. Again the
performance of the EC algorithm is worse than the performance of the other metaheuristics.

We further tested our metaheuristics on the 10 GSP instances derived from ft10 for a time
limit of 60 seconds for each of the 10 trials per metaheuristic. A summary of these results
showing the mean ranks in a mean rank based comparison is given in Figure 3.9. Again, TS
showed the best results for most group sizes, except for group size 8 where ACO has a slight
advantage. ACO is altogether the second best algorithm. The results in Figure 3.10 show
that ACO, EC and TS find the optimal solution 930 to the original JSP version of ft10 within
60 seconds. The third algorithm in the ranking is ILS which performs poorly for group size
1, but then ranks between 2 and 4 for the other group sizes. EC shows a quite particular
behaviour. It performs quite well for small and large group sizes15, but shows decreasing
performance for the medium group sizes. SA ranks last for most of the groups sizes. It might
be that for SA 60 seconds is not enough for reaching good solutions.

We observed a similar behavior for the 15 instances derived from tai 15 15 1 jsp, which we
tested for running times of 600 and 1800 seconds for each of the 10 trials per metaheuristic
(see Figures 3.11 and 3.12). It turned out that with increasing running time the difference
between TS and the other metaheuristics became smaller, and TS was outperformed by ACO
and ILS for some medium group sizes (7, 9 and 10). ACO even outperforms TS slightly on
groups sizes 2 and 4 for the longer running times. For longer running times ACO is for nearly

14Version EDITS described in Section 3.2.
15For instances close to JSP and close to OSP.

CHAPTER 3. METAHEURISTICS FOR GROUP SHOP SCHEDULING 59

A
C

O

E
C

IL
S

S
A

T
S

338

340

342

344

346

348

350

Solutions

Metaheuristic

S
ol

ut
io

n
Q

ua
lit

y

A
C

O

E
C

IL
S

S
A

T
S

20

25

30

35

40

45

50

Ranks

Metaheuristic
R

an
k

Figure 3.6: Comparison of the metaheuristics on the whizzkids97 osp problem, which is the
OSP instance derived from whizzkids97. The absolute values of the solutions generated by
each metaheuristic (left) and their relative rank in the comparison among each other (right)
are depicted in two boxplots. A box shows the range between the 25% and the 75% quantile
of the data. The median of the data is indicated by a bar. The whiskers extend to the most
extreme data point which is no more than 1.5 times the interquantile range from the box.
Extreme points are indicated as circles.

A
C

O

E
C

IL
S

S
A

T
S

470

480

490

500

510

Solutions

Metaheuristic

S
ol

ut
io

n
Q

ua
lit

y

A
C

O

E
C

IL
S

S
A

T
S

0

10

20

30

40

50

Ranks

Metaheuristic

R
an

k

Figure 3.7: Comparison of the metaheuristics for the original whizzkids97 gsp problem. The
absolute values of the solutions generated by each metaheuristic (left) and their relative rank
in the comparison among each other (right) are depicted in two boxplots. A box shows the
range between the 25% and the 75% quantile of the data. The median of the data is indicated
by a bar. The whiskers extend to the most extreme data point which is no more than 1.5
times the interquantile range from the box. Extreme points are indicated as circles.

CHAPTER 3. METAHEURISTICS FOR GROUP SHOP SCHEDULING 60

A
C

O

E
C

IL
S

S
A

T
S

515

520

525

530

535

540

545

Solutions

Metaheuristic

S
ol

ut
io

n
Q

ua
lit

y

A
C

O

E
C

IL
S

S
A

T
S

10

20

30

40

50

Ranks

Metaheuristic

R
an

k

Figure 3.8: Comparison of the metaheuristics on the whizzkids97 jsp problem, which is the
JSP instance derived from whizzkids97. The absolute values of the solutions generated by
each metaheuristic (left) and their relative rank in the comparison among each other (right)
are depicted in two boxplots. A box shows the range between the 25% and the 75% quantile
of the data. The median of the data is indicated by a bar. The whiskers extend to the most
extreme data point which is no more than 1.5 times the interquantile range from the box.
Extreme points are indicated as circles.

all group sizes quite close to the performance of the TS. However, the TS is the only algorithm
which finds (even within 600 seconds) the optimal solution 1231 for the original JSP version
of tai 15 15 1 jsp (see Figure 3.13). EC again performs rather poorly on medium group sizes
and performs well on small group sizes (where the VNS might help to find good solutions)
and big group sizes (where the Non-Delay algorithm to produce the initial solution helps to
find very good starting solutions).

Summarizing we can say: TS overall shows the best performance, which indicates the power
of the neighborhood structure defined in Section 3.1. ACO shows overall the second best
performance even outperforming the TS on some group sizes, followed by the ILS whose
performance is for a few exceptions consistently slightly worse than the performance of the
ACO. The EC approach performs well on small and big group sizes, whereas for medium
group sizes the relative performance of the algorithm is rather poor. SA can perform very
well when long running times are allowed. For example, SA found the best solution among
the metaheuristics for the difficult original whizzkids97 problem when given 18000 seconds of
running time. Therefore, we conclude that among the population based metaheuristics the
ACO implementation shows a clear advantage over the EC implementation, and among the
trajectory methods in general the TS implementation outperforms the ILS implementation
and the SA implementation. However, we suggest that there is no “best metaheuristic” with
which to tackle the GSP. Our fair comparison showed that depending on the position of
the problem instance between JSP and OSP different metaheuristic techniques show advan-
tages. The GSP might best be tackled by a hybrid metaheuristic approach that combines the
elements of the algorithms described in this work according to the results of our analysis.

CHAPTER 3. METAHEURISTICS FOR GROUP SHOP SCHEDULING 61

3.8 Outlook to future work

There are several possible directions for future work. Concerning the ACO algorithm, dif-
ferent heuristic information should be tested. An interesting result might be that different
heuristic information leads the algorithm to different areas in the search space which would
suggest the usefulness of using different heuristic information in different restart phases. Also,
other construction mechanisms for ACO could be considered. For example, an insertion based
construction algorithm might be computionally more expensive, but might improve the per-
formance.
Concerning problem instances, a generator should be developed which generates GSP in-
stances not only with 0 variance in the group sizes, but rather providing a way of adjusting
the desired variance in the group sizes of the problem instance to be generated.

CHAPTER 3. METAHEURISTICS FOR GROUP SHOP SCHEDULING 62

0 10 20 30 40 50 60

2
4

6
8

10

Problem Instance: ft10, 60 seconds

Mean Rank

S
iz

e
of

 G
ro

up
s

ACO
EC
ILS
SA
TS

Figure 3.9: Mean ranks (x-axis) of the solutions generated by the metaheuristics to the 10 GSP
instances derived from ft10. The group size (y-axis) varies from 1 to 10. The metaheuristics
were tested 10 times each on every derived problem, for a time of 60 seconds per run. Note
that the best mean rank a metaheuristic can achieve is 5 in case the solutions produced in
its 10 trials are all better than the 40 solutions generated by the other 4 metaheuristics.
Accordingly the worst mean rank is 45.

CHAPTER 3. METAHEURISTICS FOR GROUP SHOP SCHEDULING 63

A
C

O

E
C

IL
S

S
A

T
S

940

960

980

1000

Solutions

Metaheuristic

S
ol

ut
io

n
Q

ua
lit

y

A
C

O

E
C

IL
S

S
A

T
S

10

20

30

40

50

Ranks

Metaheuristic

R
an

k

Figure 3.10: Comparison of the metaheuristics on the original ft10 problem, which is a JSP
instance. The absolute values of the solutions generated by each metaheuristic (left) and their
relative rank in the comparison among each other (right) are depicted in two boxplots. A box
shows the range between the 25% and the 75% quantile of the data. The median of the data
is indicated by a bar. The whiskers extend to the most extreme data point which is no more
than 1.5 times the interquantile range from the box. Extreme points are indicated as circles.

CHAPTER 3. METAHEURISTICS FOR GROUP SHOP SCHEDULING 64

0 10 20 30 40 50 60

2
4

6
8

10
12

14

Problem Instance: tai_15_15_1_jsp, 600 seconds

Mean Rank

S
iz

e
of

 G
ro

up
s

ACO
EC
ILS
SA
TS

Figure 3.11: Mean ranks (x-axis) of the solutions generated by the metaheuristics to the 15
GSP instances derived from tai 15 15 1 jsp. The group size (y-axis) varies from 1 to 15. The
metaheuristics were tested 10 times each on every derived problem, for a time of 600 seconds
per run.

CHAPTER 3. METAHEURISTICS FOR GROUP SHOP SCHEDULING 65

0 10 20 30 40 50 60

2
4

6
8

10
12

14

Problem Instance: tai_15_15_1_jsp, 1800 seconds

Mean Rank

S
iz

e
of

 G
ro

up
s

ACO
EC
ILS
SA
TS

Figure 3.12: Mean ranks (x-axis) of the solutions generated by the metaheuristics to the 15
GSP instances derived from tai 15 15 1 jsp. The group size (y-axis) varies from 1 to 15. The
metaheuristics were tested 10 times each on every derived problem, for a time of 1800 seconds
per run.

CHAPTER 3. METAHEURISTICS FOR GROUP SHOP SCHEDULING 66

A
C

O

E
C

IL
S

S
A

T
S

1230

1240

1250

1260

1270

Solutions

Metaheuristic

S
ol

ut
io

n
Q

ua
lit

y

A
C

O

E
C

IL
S

S
A

T
S

0

10

20

30

40

50

Ranks

Metaheuristic

R
an

k

Figure 3.13: Comparison of the metaheuristics on the original tai 15 15 1 jsp problem, which
is a JSP instance. The absolute values of the solutions generated by each metaheuristic
(left) and their relative rank in the comparison among each other (right) are depicted in two
boxplots. A box shows the range between the 25% and the 75% quantile of the data. The
median of the data is indicated by a bar. The whiskers extend to the most extreme data
point which is no more than 1.5 times the interquantile range from the box. Extreme points
are indicated as circles.

Bibliography

[1] E.H.L. Aarts, J.H.M. Korst, and P.J.M. van Laarhoven. Simulated annealing. In Emile
H. L. Aarts and Jan Karel Lenstra, editors, Local Search in Combinatorial Optimization,
pages 91–120. Wiley-Interscience, Chichester, England, 1997.

[2] E.H.L. Aarts, P.J.M. Van Laarhoven, J.K. Lenstra, and N.L.J. Ulder. A Computa-
tional Study of Local Search Algorithms for Job Shop Scheduling. ORSA Journal on
Computing, 6(2):118–125, 1994.

[3] E.H.L. Aarts and J.K. Lenstra, editors. Local Search in Combinatorial Optimization.
Wiley-Interscience, 1997.

[4] J. Adams, E. Balas, and D. Zawack. The shifting bottleneck procedure for Job Shop
Scheduling. Management Science, 34(3):391–401, 1988.

[5] A. Albrecht, U. Der, K. Steinhöfel, and C.-K. Wong. Distributed simulated annealing for
job shop scheduling. In Proceedings of the 6th Conference on Parallel Problem Solving
in Nature, PPSN’00, LNCS 1917, pages 243–252, 2000.

[6] D. Alcaide, J. Sicilia, and D. Vigo. A tabu search algorithm for the open shop problem.
TOP: Trabajos de Investigación Operativa, 5(2):282–296, 1997.

[7] D. Applegate and W. Cook. A Computational Study of the Job-Shop Scheduling Prob-
lem. ORSA Journal on Computing, 3:149–156, 1991.

[8] T. Bäck. Evolutionary Algorithms in Theory and Practice. Oxford University Press,
New York, 1996.

[9] E. Balas and A. Vazacopoulos. Guided Local Search with Shifting Bottleneck for Job
Shop Scheduling. Management Science, 44(2):262–275, 1998.

[10] J.W. Barnes and J.B. Chambers. Solving the Job Shop Scheduling Problem Using Tabu
Search. IIE Transactions, 27:257–263, 1995.

[11] J.E. Beasley. OR-Library: distributing test problems by electronic mail. Journal of the
Operational Research Society, 41(11):1069–1072, 1990.

[12] C. Bierwirth. A generalized permutation approach to job shop scheduling with genetic
algorithms. European Journal of Operational Research, 17:87–92, 1995.

67

BIBLIOGRAPHY 68

[13] C. Bierwirth, D. Mattfeld, and H. Kopfer. On permutation representations for schedul-
ing problems. In Proceedings of the 4th Conference on Parallel Problem Solving in
Nature, PPSN’96, 1996.

[14] S. Binato, W.J. Hery, D.M. Loewenstern, and M.G.C. Resende. A GRASP for Job Shop
Scheduling. Technical Report 00.6.1, AT&T Labs Research, 2000.

[15] J. Blaz̀ewicz, W. Domschke, and E. Pesch. The job shop scheduling problem: Conven-
tional and new solution techniques. European Journal of Operational Research, 93:1–33,
1996.

[16] C. Blum. ACO applied to Group Shop Scheduling: A case study on Intensification and
Diversification. Technical Report TR/IRIDIA/2002-08, IRIDIA, Université Libre de
Bruxelles, 2002. Submitted to ANTS’2002.

[17] C. Blum, A. Roli, and M. Dorigo. HC–ACO: The hyper-cube framework for Ant Colony
Optimization. In Proceedings of MIC’2001 – Meta–heuristics International Conference,
volume 2, pages 399–403, Porto, Portugal, 2001. Also available as technical report
TR/IRIDIA/2001-16, IRIDIA, Université Libre de Bruxelles.

[18] C. Blum and M. Sampels. Ant Colony Optimization for FOP Shop scheduling: A case
study on different pheromone representations. In Proceedings of the 2002 Congress on
Evolutionary Computation, CEC’02 (to appear), 2002. Also available as technical report
TR/IRIDIA/2002-03, IRIDIA, Université Libre de Bruxelles.

[19] C. Blum and M. Sampels. When Model Bias is Stronger than Selection Pressure.
Technical Report TR/IRIDIA/2002-06, IRIDIA, Université Libre de Bruxelles, 2002.
Submitted to PPSN’02.

[20] H. Bräsel. Lateinische Rechtecke und Maschinenbelegung. PhD thesis, TU Magdeburg,
1990.

[21] P. Brucker, J. Hurink, B. Jurisch, and B. Wöstmann. A branch & bound algorithm for
the open-shop problem. Discrete Applied Mathematics, 76:43–59, 1997.

[22] P. Calegari, G. Coray, A. Hertz, D. Kobler, and P. Kuonen. A taxonomy of evolutionary
algorithms in combinatorial optimization. Journal of Heuristics, 5:145–158, 1999.

[23] J. Carlier. The one machine sequencing problem. European Journal of Operational
Research, 11:42–47, 1982.

[24] J. Carlier and E. Pinson. An algorithm for solving the job-shop problem. Management
Science, pages 164–176, 1989.

[25] V. Cerny. A thermodynamical approach to the travelling salesman problem: An efficient
simulation algorithm. Journal of Optimization Theory and Applications, 45:41–51, 1985.

[26] A. Colorni, M. Dorigo, V. Maniezzo, and M. Trubian. Ant system for Job-shop schedul-
ing. Belgian Journal of Operations Research, Statistics and Computer Science, 34:39–53,
1994.

BIBLIOGRAPHY 69

[27] M. Dell’Amico and M. Trubian. Applying tabu search to the job-shop scheduling prob-
lem. Annals of Operations Research, 41:231–252, 1993.

[28] J.-L. Deneubourg, S. Aron, S. Goss, and J.-M. Pasteels. The self-organizing exploratory
pattern of the argentine ant. Journal of Insect Behaviour, 3:159–168, 1990.

[29] M. Dorigo. Optimization, Learning and Natural Algorithms (in Italian). PhD thesis,
DEI, Politecnico di Milano,Italy, 1992. pp. 140.

[30] M. Dorigo and G. Di Caro. The Ant Colony Optimization meta-heuristic. In D. Corne,
M. Dorigo, and F. Glover, editors, New Ideas in Optimization, pages 11–32. McGraw-
Hill, 1999. Also available as Technical Report IRIDIA/99-1, Université Libre de Brux-
elles, Belgium.

[31] M. Dorigo, G. Di Caro, and L. M. Gambardella. Ant algorithms for discrete optimiza-
tion. Artificial Life, 5(2):137–172, 1999.

[32] M. Dorigo and L.M. Gambardella. Ant colony system: A cooperative learning approach
to the travelling salesman problem. IEEE Transactions on Evolutionary Computation,
1(1):53–66, 1997.

[33] M. Dorigo, V. Maniezzo, and A. Colorni. Ant System: Optimization by a colony of
cooperating agents. IEEE Transactions on Systems, Man and Cybernetics - Part B,
26(1):29–41, 1996.

[34] U. Dorndorf and E. Pesch. Evolution based learning in a job shop scheduling environ-
ment. Computers in Operations Research, 22:25–40, 1995.

[35] H.-L. Fang. Genetic Algorithms in Timetabling and Scheduling. PhD thesis, Department
of Artificial Intelligence, University of Edinburgh, 1994.

[36] H.-L. Fang, P. Ross, and D. Corne. A Promising Genetic Algorithm Approach to Job-
Shop Scheduling, Rescheduling, and Open-Shop Scheduling Problems. In Proceedings
of the 5th International Conference on Genetic Algorithms, ICGA’93, pages 375–382.
Morgan Kaufmann, 1993.

[37] H.-L. Fang, P. Ross, and D. Corne. A Promising Hybrid GA/heuristic Approach for
Open-Shop Scheduling Problems. In Proceedings of the 11th European Conference on
Artificial Intelligence, ECAI’94, pages 590–594. John Wiley & Sons, Ltd., 1994.

[38] T.A. Feo and M.G.C. Resende. Greedy randomized adaptive search procedures. Journal
of Global Optimization, 6:109–133, 1995.

[39] D.B. Fogel. An introduction to simulated evolutionary optimization. IEEE Transactions
on Neural Networks, 5(1):3–14, 1994.

[40] L.J. Fogel. Toward inductive inference automata. In Proceedings of the International
Federation for Information Processing Congress, pages 395–399, Munich, 1962.

[41] L.J. Fogel, A.J. Owens, and M.J. Walsh. Artificial Intelligence through Simulated Evo-
lution. Wiley, 1966.

BIBLIOGRAPHY 70

[42] B. Giffler and G.L. Thompson. Algorithms for solving production scheduling problems.
Operations Research, 8:487–503, 1960.

[43] F. Glover. Future paths for integer programming and links to artificial intelligence.
Comp. Oper. Res., 13:533–549, 1986.

[44] F. Glover and M. Laguna. Modern Heuristic Techniques for Combinatorial Problems,
chapter Tabu search, pages 70–141. Blackwell Scientific Publications, Oxford, 1993.

[45] F. Glover and M. Laguna. Tabu Search. Kluwer Academic Publishers, 1997.

[46] D.E. Goldberg. Genetic algorithms in search, optimization and machine learning. Ad-
dison Wesley, Reading, MA, 1989.

[47] T. Gonzales and S. Sahni. Open shop scheduling to minimize finish time. Journal of
the Association for Computing Machinery, 23(4):665–679, 1976.

[48] J. Grabowski and M. Wodecki. A new very fast tabu search algorithm for the job shop
problem. Technical Report 21/2001, Wroclaw University of Technology, Institute of
Engineering Cybernetics, 2001.

[49] C. Guéret and C. Prins. Classical and new heuristics for the open-shop problem: A
computational evaluation. European Journal of Operational Research, 107:306–314,
1998.

[50] P. Hansen. The steepest ascent mildest descent heuristic for combinatorial program-
ming. In Congress on Numerical Methods in Combinatorial Optimization, Capri, Italy,
1986.

[51] R. Haupt. A survey of priority rule-based scheduling. OR Spektrum, 11:3–16, 1989.

[52] A. Hertz and D. Kobler. A framework for the description of evolutionary algorithms.
European Journal of Operational Research, 126:1–12, 2000.

[53] J.H. Holland. Adaption in natural and artificial systems. The University of Michigan
Press, Ann Harbor, MI, 1975.

[54] K. Ikeda and S. Kobayashi. GA Based on the UV-Structure Hypothesis and Its Ap-
plication to JSP. In Proceedings of the 6th Conference on Parallel Problem Solving in
Nature, PPSN’00, LNCS 1917, pages 273–282, 2000.

[55] L. Ingber. Adaptive simulated annealing (ASA): Lessons learned. Control and Cyber-
netics – Special Issue on Simulated Annealing Applied to Combinatorial Optimization,
25(1):33–54, 1996.

[56] H. Kawamura, M. Yamamoto, K. Suzuki, and A. Ohuchi. Multiple Ant Colonies Al-
gorithm Based on Colony Level Interactions. IEICE Transactions on Fundamentals,
E83–A(2):371–379, 2000.

[57] S. Kirkpartick, C.D. Gelatt, and M.P. Vecchi. Optimization by simulated annealing.
Science, 220(4598):671–680, 1983.

BIBLIOGRAPHY 71

[58] S. Kobayashi, I. Ono, and M. Yamamura. An efficient genetic algorithm for job shop
scheduling problems. In Proceedings of the 4th International Conference on Genetic
Algorithms, ICGA’91, pages 506–511, 1995.

[59] P.J.M. Van Laarhoven, E.H.L. Aarts, and J.K. Lenstra. Job Shop Scheduling by Sim-
mulated Annealing. Operations Research, 40:113–125, 1992.

[60] S. Lawrence. Resource Constraint Project Scheduling: an Experimental Investigation
of Heuristic Scheduling Techniques (Supplement). Technical report, Graduate School
of Industrial Administration, Carnegie Mellon University, Pittsburgh, 1984.

[61] J.K. Lenstra and R.H.G. Kan Rinnooy. Computional complexity of discrete optimization
problems. Annals of Discrete Mathematics, 4:121–140, 1979.

[62] C.-F. Liaw. A tabu search algorithm for the open shop scheduling problem. Computers
and Operations Research, 26:109–126, 1999.

[63] H. Ramalhino Lourenco. Job-shop scheduling: Computational study of local search and
large-step optimization methods. European Journal of Operational Research, 83:347–
364, 1995.

[64] H. Ramalhino Lourenco, O. Martin, and T. Stützle. Iterated Local Search. In F. Glover
and G. Kochenberger, editors, Handbook of Metaheuristics. To appear. Also available
at http://www.intellektik.informatik.tu-darmstadt.de/˜tom/pub.html.

[65] M. Lundy and A. Mees. Convergence of an annealing algorithm. Mathematical Pro-
gramming, 34(1):111–124, 1986.

[66] S. Martello, W.R. Pulleyblank, P. Toth, and D. de Werra. Balanced optimization
problems. Operations Research Letters, 3(5):275–278, 1984.

[67] H. Matsuo, C.J. Suh, and R.S. Sullivan. A Controlled Search Simulated Annealing
Method for the General Jobshop Scheduling Problem. Technical Report 03-04-88, Grad-
uate School of Business, University of Texas, Austin, 1988.

[68] D.C. Mattfeld, C. Bierwirth, and H. Kopfer. A Search Space Analysis of the Job Shop
Scheduling Problem. Annals of Operations Research, 86:441–453, 1999.

[69] D. Merkle and M. Middendorf. Ant ant algorithm with a new pheromone evaluation
rule for total tardiness problems. In Proceedings of the EvoWorkshops 2000, volume
1803 of Lecture Notes in Computer Science, pages 287–296. Springer, 2000.

[70] D. Merkle and M. Middendorf. On the behaviour of ACO algorithms: Studies on sim-
ple problems. In Proceedings of MIC’2001 – Meta-heuristics International Conference,
volume 2, pages 573–577, Porto – Portugal, 2001.

[71] Z. Michalewicz and M. Michalewicz. Evolutionary computation techniques and their
applications. In Proceedings of the IEEE International Conference on Intelligent Pro-
cessing Systems, pages 14–24, Beijing, China, 1997. Institute of Electrical & Electronics
Engineers, Incorporated.

BIBLIOGRAPHY 72

[72] M. Middendorf, F. Reischle, and H. Schmeck. Information Exchange in Multi Colony
Ant Algorithms. In Proceedings of the Workshop on Bio-Inspired Solutions to Parallel
Processing Problems, LNCS 1800, pages 645–652. Springer Verlag, 2000.

[73] M. Mitchell. An introduction to genetic algorithms. MIT press, Cambridge, MA, 1998.

[74] H. Mühlenbein and H.-M. Voigt. Gene Pool Recombination in Genetic Algorithms. In
I.H. Osman and J.P. Kelly, editors, Proc. of the Metaheuristics Conference, Norwell,
USA, 1995. Kluwer Academic Publishers.

[75] J.F. Muth and G.L. Thompson. Industrial Scheduling. Prentice Hall, Englewood Cliffs,
NJ, USA, 1963.

[76] R. Nakano and T. Yamada. Conventional genetic algorithm for job shop problems.
In Proceedings of the 4th International Conference on Genetic Algorithms, ICGA’91,
pages 474–479, 1991.

[77] M. Nawatz, E.E. Enscore, and I. Ham. A heuristic algorithm for the m-machine, n-job
flow shop sequencing problem. OMEGA, 11:91–95, 1983.

[78] G.L. Nemhauser and A.L. Wolsey. Integer and Combinatorial Optimization. John Wiley
& Sons, New York, 1988.

[79] E. Nowicki and C. Smutnicki. A fast taboo search algorithm for the job-shop problem.
Management Science, 42(2):797–813, 1996.

[80] I. Ono and S. Kobayashi. An Evolutionary Algorithm for Job-Shop Scheduling Problems
Using the Inter-Machine Job-Based Order Crossover. Journal of Japanese Society for
Artificial Intelligence, 13(5):780–790, 1998.

[81] I. Ono, M. Yamamura, and S. Kobayashi. A Genetic Algorithm for Job-shop Scheduling
Problems Using Job-based Order Crossover. In Proceedings of the IEEE International
Conference on Evolutionary Computation, CEC’96, pages 547–552, 1996.

[82] I.H. Osman. Metastrategy simulated annealing and tabu search algorithms for the
vehicle routing problem. Annals of Operations Research, 41:421–451, 1993.

[83] I.H. Osman and G. Laporte. Metaheuristics: A bibliography. Annals of Operations
Research, 63:513–623, 1996.

[84] P.S. Ow and T.E. Morton. The single machine early/tardy problem. Management
Science, 35:177–191, 1989.

[85] C.H. Papadimitriou and K. Steiglitz. Combinatorial Optimization - Algorithms and
Complexity. Dover Publications, Inc., New York, 1982.

[86] F. Pezzella and E. Merelli. A tabu search method guided by shifting bottleneck for the
job-shop scheduling problem. European Journal of Operational Research, 120:297–310,
2000.

[87] L.S. Pitsoulis and M.G.C. Resende. Greedy Randomized Adaptive Search procedures.
Technical report, AT&T Labs Research, 2001.

BIBLIOGRAPHY 73

[88] C.N. Potts. Analysis of a heuristic for one machine sequencing with release dates and
delivery times. Operations Research, 28:1436–1441, 1980.

[89] C. Prins. Competitive genetic algorithms for the open shop scheduling problem. Tech-
nical Report 99/1/AUTO, École des Mines de Nantes, 1999.

[90] A. Ramudhin and P. Marier. The Generalized Shifting Bottleneck Procedure. European
Journal of Operational Research, 93:34–48, 1996.

[91] M. Randall and E. Tonkes. Intensification and Diversification Strategies in Ant Colony
System. Technical Report TR00-02, School of Information Technolony, Bond University,
2000.

[92] I. Rechenberg. Evolutionsstrategie: Optimierung technischer Systeme nach Prinzipien
der biologischen Evolution. Frommann-Holzboog, 1973.

[93] B. Roy and B. Sussmann. Les problémes d’ordonnancement avec constraints dijonctives.
Technical Report Note DS 9 bis, SEMA, Paris, France, 1964.

[94] J. Sakuma and S. Kobayashi. Extrapolation-Directed Crossover for Job-shop Scheduling
Problems: Complementary Combination with JOX. In Proceedings of the Genetic and
Evolutionary Computation Conference, GECCO’00, pages 973–980. Morgan Kaufmann,
2000.

[95] M. Sampels, C. Blum, M. Mastrolilli, and O. Rossi-Doria. Metaheuristics for Group
Shop Scheduling. Technical Report TR/IRIDIA/2002-07, IRIDIA, Université Libre de
Bruxelles, 2002. Submitted to PPSN’02.

[96] W.M. Spears, K.A. De Jong, T. Bäck, D.B. Fogel, and H. de Garis. An overview of
evolutionary computation. In Pavel B. Brazdil, editor, Proceedings of the European
Conference on Machine Learning (ECML-93), volume 667, pages 442–459, Vienna,
Austria, 1993. Springer Verlag.

[97] K. Steinhöfel, A. Albrecht, and C.K. Wong. Two Simulated Annealing-Based Heuris-
tics for the Job Shop Scheduling Problem. European Journal of Operational Research,
118(3):524–548, 1999.

[98] R.H. Storer, S.D. Wu, and R. Vaccari. New search spaces for sequencing instances with
application to job shop scheduling. Management Science, 38:1495–1509, 1992.

[99] T. Stützle. Local Search Algorithms for Combinatorial Problems - Analysis, Algorithms
and New Applications. DISKI - Dissertationen zur Künstliken Intelligenz. infix, 1999.

[100] T. Stützle and H. H. Hoos. MAX -MIN Ant System. Future Generation Computer
Systems, 16(8):889–914, 2000.

[101] E. Taillard. Benchmarks for basic scheduling problems. European Journal of Operations
Research, 64:278–285, 1993.

[102] E. Taillard. Parallel Taboo Search Techniques for the Job Shop Scheduling Problem.
ORSA Journal on Computing, 6(2):108–117, 1994.

BIBLIOGRAPHY 74

[103] E.-G. Talbi, O. Roux, C. Fonlupt, and D. Robillard. Parallel Ant Colonies for the
quadratic assignment problem. Future Generation Computer Systems, 17:441–449, 2001.

[104] T. Teich, M. Fischer, A. Vogel, and J. Fischer. A new Ant Colony Algorithm for the Job
Shop Scheduling Problem. In Proceedings of the Genetic and Evolutionary Computation
Conference, GECCO’01, page 803, 2001.

[105] S. van der Zwaan and C. Marques. Ant Colony Optimization for Job Shop Scheduling. In
Proceedings of the 3rd Workshop on Genetic Algorithms and Artificial Life, GAAL’99,
1999.

[106] S. Voss, S. Martello, I.H. Osman, and C. Roucairol, editors. Meta-Heuristics - Advances
and Trends in Local Search Paradigms for Optimization. Kluwer Academic Publishers,
1999.

[107] C. Voudouris and E. Tsang. Guided Local Search. Technical Report CSM–247, Depart-
ment of Computer Science, University of Essex, 1995.

[108] F. Werner and A. Winkler. Insertion techniques for the heuristic solution of the job
shop problem. Discrete Applied Mathematics, 58:191–211, 1995.

[109] T. Yamada and R. Nakano. A genetic algorithm applicable to large-scale job shop
problems. In Proceedings of the 2nd Conference on Parallel Problem Solving in Nature,
PPSN’92, pages 281–290, 1992.

[110] T. Yamada and R. Nakano. Job-Shop Scheduling by Simulated Annealing Combined
with Deterministic Local Search. In Meta-heuristics: theory & applications, pages 237–
248. Kluwer Academic Publishers, MA, USA, 1996.

[111] T. Yamada and R. Nakano. Scheduling by Generic Local Search with Multi-Step
Crossover. In Proceedings of the 4th Conference on Parallel Problem Solving in Na-
ture, PPSN’96, pages 960–969, 1996.

[112] T. Yamada and R. Nakano. Genetic algorithms in engineering systems, chapter Job-shop
scheduling, pages 134–160. IEE Control Engineering 55. The Institution of Electrical
Engineers, 1997.

[113] T. Yamada, B.E. Rosen, and R. Nakano. A Simulated Annealing Apprach to Job
Shop Scheduling using Critical Block Transition Operators. In Proceedings of the IEEE
International Conference on Neural Networks, ICNN’94, 1994.

[114] http://www.metaheuristics.net/, 2000.

[115] http://www.win.tue.nl/whizzkids/1997 , 1997.

