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Abstract

In this work, we address the problem of synthesizing non-reactive controllers
for a swarm robotic system, called swarm-bot, using Artificial Evolution. In
particular, we evolve simple dynamical neural networks, in order to achieve
autonomous decision-making agents that are able to integrate over time
their perceptual experience. These agents cooperate in carrying out certain
tasks by communicating their experience to the rest of the group. We show
the applicability of our desision-making mechanisms in the realisation of a
complex scenario.
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Chapter 1

Introduction

This work addresses the problem of defining the control system for a group
of autonomous robots that have to deal with a non-reactive task. We aim
to design neural controllers for a group of autonomous robots equipped with
simple sensors. The robots integrate over time their perceptual experiences
in order to initiate alternative actions. In other words, the behavior of the
agents should change as a consequence of their repeated interaction with
particular environmental circumstances. We are interested in exploiting a
biologically-inspired evolutionary approach, based on the use of dynamical
neural networks and genetic algorithms [5]. In general, we apply techniques
derived from Artificial Evolution, and we show how they can produce simple
but effective and robust solutions.

There are multiple motivations that lay behind the choice of Artificial
Evolution as a tool for synthesizing controllers for a group of robots. First,
Artificial Evolution can bypass many difficulties encountered in the hand
design. In fact, even in a single-robot domain, the problem of designing the
control system is not trivial at all and is in fact limited by the designer’s a
priori intuitions. The designer must discover the rules that must be encoded
into the controller in order to achieve a certain goal, and decompose the task
into several subtasks. To do so, it is necessary to know the environment in
which the robot should act and to predict the outcome of a sequence of
actions performed by the robot. When the environment is dynamic and
unpredictable, designing the control system could be very challenging. In a
distributed multi-robot domain, this problem is worsened by the fact that
each robot is an independent entity that can take its own decisions de-
pending on the current sensory input information, but also on its internal
state. Furthermore, robots interact with each other, making the system

1



CHAPTER 1. INTRODUCTION 2

much more dynamic and complex. The designer must be capable of pre-
dicting the outcome of such interactions, which could be extremely difficult,
even impossible. On the contrary, Artificial Evolution does not suffer from
this problem since it is an automatic process that directly tests the behavior
displayed by the robots embedded in their environment and selects out the
bad-performing individuals. This approach, working in a bottom-up direc-
tion, bypasses the decomposition problems given by a top-down approach,
typical of behavior-based or rule-based systems, being relatively unbiased.
Furthermore, Artificial Evolution can exploit the richness of solutions offered
by the complex dynamics resulting from robot-robot and robot-environment
interactions.

In this work, we present the results obtained from the ongoing work
within the SWARM-BOTS project1. The aim of the SWARM-BOTS project
is the development of a new robotic system, called a swarm-bot [55, 40]. The
swarm-bot is defined as an artifact composed of simple autonomous robots,
called s-bots. An s-bot has limited acting, sensing and computational ca-
pabilities, but can create physical connections with other s-bots, therefore
forming a swarm-bot that is able to solve problems the single individual
cannot cope with. Up to now, in the project have been studied only reactive
behaviors. We chose to study integration over time, a non-reactive task,
that is a task that in order to be carried out by the robot, needs “mem-
ory”. The robot’s behavior will not only be affected by its current sensory
status, but also by its internal dynamics. At this specific moment in the
project, the study of efficient decision-making mechanisms is necessary in
order to succeed in integrating different behaviors exhibited by the swarm-
bot, for which efficient controllers have already been successfully evolved.
The work described in this paper will tackle the problem of designing a
controller which is able to integrate sensorial information over time and ad-
just its subsequent behavior accordingly. With the use of communication,
we will expand its functionality for a group of robots. For more details on
the significance of this work for the project, the reader is suggested to see
Section 1.2.2. In the rest of this chapter, we first present the state-of-the-
art, describing the research fields that constitute the starting point of this
work (see Section 1.1). In Section 1.2, after some general information and
state-of-the-art, we present in detail the SWARM-BOTS project and our
contribution to it. Finally, Section 1.3 briefly summarizes the contents of
this thesis.

1A project funded by the Future and Emerging Technologies Programme (IST-FET)
of the European Community, under grant IST-2000-31010.
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1.1 Background

In the last decade there has been a growing interest in the development of
complex robotic systems which could present features like versatility, ro-
bustness or capacity to perform complex tasks in unknown environments.
In order to achieve these features, the single-robot approach was often aban-
doned in favor of more complex systems, involving multiple robots working
in strict cooperation. In fact, developing and controlling a single, multi-
purpose robot is a complex task, that can also prove to be very expensive.
Another problem that might be experienced with the single-robot approach
is that even small failures may prevent the accomplishment of the whole task.
A group of simple and cheap robots may be able to efficiently accomplish
many tasks that go beyond the capabilities of the individual robot. This
idea is the cornerstone of the research in the Collective Robotics field and
in the Metamorphic Robotics field, which cover most of the related research
done so far. On a parallel track, the research in autonomous robotics has
faced the challenge of synthesizing the controllers for such robotics systems.
Among the different approaches that have been proposed, we are mainly
interested in the study of Evolutionary Robotics, which applies techniques
derived from Artificial Evolution to the development of controllers for au-
tonomous robots (for a review see [45]). In this section, we present the
state-of-the-art in all these research fields, which constitutes the starting
point of our research.

1.1.1 Collective Robotics

The field of Collective Robotics focuses on the study of robotic systems
that are composed of a number of autonomous robots which act together
in order to reach a common goal (for an overview of the field, see [49]).
The main motivation behind the study of collective robotic systems lays in
the possibility to decompose the solution of a complex problem into sub-
problems that are simpler and that can be faced by simple robotic units.

Collective robotics research has mainly focused on the achievement of
coordination of several systems. For example, Gerkey and Matarić [23] pro-
pose a dynamic task allocation method based on auction exchange in order
to achieve cooperation in a group of robots. Agassounon et al. [2] use a
scalable algorithm based on a threshold model for the allocation of robots
in a puck collecting and clustering task. Melhuish [38] describes a clustering
task collectively performed by a group of cooperating robots. Schenker et
al. [56] summarize the robotics work being carried out at NASA Jet Propul-
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sion Laboratory. They report on the development of RWC (a multi-Robot
Work Crew), which consists of cooperating rovers controlled a decentralised
behavior-based control architecture. It is an interesting approach since it
is designed not only for cooperative group behaviors but also for tightly
coordinated tasks such as the transporting of large payloads [51].

Another interesting aspect of collective robotics is given by the robust-
ness that can be achieved by providing redundancy to the whole system.
For example, Parker [48] defined a software architecture for fault tolerant
control of heterogeneous robots which allows a robot to select the correct
action to be performed depending on the requirement of the mission, the
activities of the other robots, the environmental conditions, and its own in-
ternal state. Goldberg and Matarić [24] demonstrate the effectiveness of a
behavior-based approach for the definition of robust and easily modifiable
controllers for distributed multi-robot collection tasks.

A controversial aspect in the collective robots community is given by
the use of communication. In some cases, communication can be useful for
modelling the internal state of other agents, or for communicating the exe-
cution of a particular action to a teammate, as will also be the case in our
work. Bonarini and Trianni [9] have shown that the communication of “co-
operation proposals” can help learning cooperative behaviors. Matarić [37]
showed how communication can be used to transmit sensory information to
other robots in order to increase the coordination of the group. Communi-
cation was also used as a mean to distribute reward to other members of the
group in a reinforcement learning task. Balk and Arkin [3] have shown that
cooperation can emerge in a group of robots if they are not able to inde-
pendently accomplish a given task. They show that, depending on the task,
communication may or may not be helpful, and that often very simple forms
of communication are sufficient to the accomplishment of a cooperative task.

1.1.2 Metamorphic Robotics

The major effort in Metamorphic Robotics research has been to study single
robots composed of a collection of identical modules where each module is
a simpler robot. Usually, every module is in contact with at least another
module so that a more complex structure is defined. All modules have the
same physical structure and each module is autonomous from the viewpoint
of computation and communication.

Chirikjian et al. [14] describe a metamorphic robot composed of iden-
tical hexagonal modules that can aggregate as a two-dimensional structure
with varying geometry. Robot configuration is computed by a centralized
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control that uses mathematical properties of the lattice connectivity graph
associated to the structure. The work is closer to geometrical and kinemat-
ics research where the goal is to compute the minimum number of moves to
reach a given configuration rather than to the problem of controlling in real
time a complex robot structure. Yim et al. [69] have developed PolyBot, a
metamorphic robot defined by a sophisticated basic module with on-board
computing capabilities. Also in this case, however, the robot shape is de-
fined by a centralized control. Murata et al. [41] consider a system of 2D
modules called Fracta that can achieve planar motion by walking over each
other. The reconfiguration motion is actuated by varying the polarity of elec-
tromagnets that are embedded in each module. Kamimura et al. [34] have
developed MTRAN, which got a lot of attention due to excellent results with
real hardware. This system uses a large number of modules with only one
degree of freedom and can self-reconfigure. Shen et al. [57, 13] with CONRO
proposed another work that follows the above-mentioned directions. Robot
morphology is ensured by modular identical structures strongly coupled by
physical connectors. Robot shapes are predefined and module moves are pre-
computed by planners based on global information while no effort is made
on distributed/on-line control, adaptation and self-reconfiguration. Only re-
cently, a decentralized control has been developed for this system by Støy
et al. [58]. This system allows to manually change the position of the hard-
ware modules in the structure while the system is running and each module
autonomously re-adapts its behavioral role in the system.

1.1.3 Evolutionary Robotics

The problem of defining a controller for a robotic system has been ap-
proached from many different directions: inferential planners, behavior-
based robotics and learning classifier systems are only some examples of the
possible ways of controlling a robot. Among these, Evolutionary Robotics
is a very promising technique for the synthesis of robot controllers [45]. It
is inspired by the Darwinian principle of selective reproduction of the fittest
individual in a population. The process of searching the design space by
mimicking natural evolution is generally referred to as Evolutionary Algo-
rithms. In this thesis we will employ a particular type of Evolutionary
Algorithms called genetic algorithms [31]. A genetic algorithm works as
follows: starting from a population of genotypes, each encoding the con-
trol system (and sometimes the morphology) of the robot, the evolutionary
process evaluates the performance of each individual controller, letting the
robot free to act in its environment following the genetically encoded rules.
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The fittest robots are allowed to reproduce, generating copies of their genetic
material, which can be changed by several genetic operators (e.g., mutation,
crossover). This process is iterated a number of times (generations) until
a satisfying controller is found that meets the requirements stated by the
experimenter in the performance evaluation (fitness function).

Evolutionary Robotics provides us with a unique opportunity to cou-
ple an agent’s dynamical system with the environment’s dynamical system,
through sensory-motor interactions. By exhibiting both situatedness and
embodiment, it evaluates a solution based on the agent’s interaction with
its enviroment [30].

Many difficult control problems have been easily solved relying on the
evolutionary approach. For example, Nolfi [42] successfully evolved a con-
troller for the Khepera robot [39] in order to find and stay close to a target
object. The Khepera, equipped only with infrared proximity sensors, was
placed in a rectangular arena surrounded by walls and containing the tar-
get cylindrical object that had to be found. The evolved controller did
very well, while this task is very difficult to be solved by hand design—
with a behavior-based controller. In fact, a difficult discrimination must
be performed between the sensory pattern generated by a wall and the one
generated by the target obstacle. Harvey et al. [29] addressed the problem
of navigation acquiring information about the evironment from a camera.
They evolved both the morphology of the visual receptive field and the ar-
chitecture of the neural network. Using these settings, they successfully
synthesized an individual for approaching a triangular shape painted on a
wall and at the same time avoiding a rectangular one, guided by the vision
system. Floreano and Mondada [19] evolved a homing navigation behavior
for a Khepera robot, using a recurrent neural network. They showed that
the internal dynamics of the recurrent network could encode a sort of map
of the environment that leads to an efficient homing behavior.

More recently, the evolutionary robotic community has approached the
problem of defining collective behaviors. For example, Baldassare et al. [4]
evolved group behaviors for simulated Khepera robots, which had to aggre-
gate and navigate toward a light target. Quinn [52] evolved coordinated
motion behaviors with two Khepera. On the same track, Quinn et al. [53]
studied coordinated motion with three wheelchair robots.
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1.2 Swarm Robotics and The Swarm-Bots Project

1.2.1 Swarm Robotics

Swarm robotics is a novel approach to the design and implementation of
robotic systems. These systems are composed of swarms of robots which
tightly interact and cooperate to reach their goal. Swarm robotics can be
considered as an instance of the more general field of collective robotics (see
Section 1.1.1). It is inspired by the social insect metaphor and emphasizes
aspects like decentralization of the control, limited communication abilities
among robots, emergence of global behavior and robustness. In a swarm
robotic system, although each single robot composing the swarm is a fully
autonomous robot, the swarm as a whole can solve problems that the single
robot cannot solve because of physical constraints or limited abilities.

Sugawara et al. have studied different aspects of swarm robotic systems.
In [59], they study the task of gathering pucks to a fixed point under different
distributions of pucks in the environment. When a robot found a puck,
it stopped and emitted light for a certain time duration, to broadcast its
position. The emitted light served as an attraction field to other unladen
robots. The performance of the swarm was measured through the percentage
of collected pucks with respect to time. Among other things, the authors
have also presented results for the aggregation of the robots, resembling that
of amoebae. The authors also proposed an analytical model of the swarm
robotic system, to explain some of the dynamics of the system.

Payton et al. [50] work on the Pheromone Robotics project and have
built a swarm robotic system in order to study the coordination of robots
for tasks such as surveillance, reconnaissance, hazard detection and path
finding. The system consisted of a group of mobile robots, called pher-
obots, that can locally communicate with each other using infrared-based
transceivers mounted on them.

DARPA (Defense Advanced Research Projects Agency) awarded a grant
to Icosystem Corporation (http://www.icosystem.com) to apply swarm in-
telligence methods to the control of robotic swarms. The project is titled
“Design of Control Strategies for Swarms of Unmanned Ground Vehicles”
and it proposes to develop strategies to control swarms of robots carrying
out indoor navigation and reconnaissance tasks. The underlying research
goal of this project is to address a number of fundamental questions about
swarm control [66, 22].

Bruemmer et al. [12] report on the use of social potential attractive
and repulsive fields emitted by each robot, as a means to coordinate group
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behavior and promote the emergence of swarm intelligence. They tackle the
problem of spill finding and perimeter detection by a swarm of robots.

Gaudiano et al. [21] studied the control of a swarm of UAVs (Unmanned
Air Vehicles). The work is done in simulation for the problems of search over
a region (which can also be seen as an area coverage task). They simulated
different strategies and analyzed their efficiencies.

1.2.2 The SWARM-BOTS project

As mentioned above, this work is carried out within the SWARM-BOTS
project, whose aim is the development of a swarm robotic system, called
swarm-bot. A swarm-bot is defined as an artifact composed of a swarm of
s-bots, mobile robots with the ability to connect to/disconnect from each
other. S-bots have simple sensors and motors and limited computational
capabilities. Their physical links are used to assemble into a swarm-bot able
to solve problems that cannot be solved by a single s-bot (see Figure 1.1).

Figure 1.1: Graphical visualization of an s-bot.

The swarm-bot concept lies between the two main streams of robotics
research described above, that is, collective robotics and metamorphic
robotics. In fact, in collective robotics, autonomous mobile robots inter-
act with each other to accomplish a particular task, but, unlike s-bots, they
do not have the ability to attach to each other by making physical connec-
tions. On the other hand, a self-reconfigurable robotic system consists of
connected self-contained modules that, although autonomous in their move-
ment, remain attached to each other, lacking the full mobility of s-bots.

In the swarm-bot formation, the s-bots are attached to each other and
the robotic system is a single whole that can move and reconfigure along
the way when needed. For example, it might have to adopt different shapes
in order to go through a narrow passage or overcome an obstacle. Physical
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connections between s-bots are important for building pulling chains, as for
example in an object retrieval scenario (see Figure 1.2a). They can also
serve as support if the swarm-bot is going over a hole larger than a single s-
bot, as exemplified in Figure 1.2b, or when the swarm-bot is passing through
a steep concave region, in a navigation on rough terrain scenario. Anyway,
there might be occasions in which a swarm of independent s-bots is more
efficient: for example, when searching for a goal location or when tracking
an optimal path to a goal.

(a) (b)

Figure 1.2: Graphical visualization of possible scenarios involving a swarm-
bot. (a) Retrieving a circular object. (b) Passing over a trough.

The above examples represent the family of tasks a swarm-bot should be
able to perform. Although these tasks present many differences from each
other, they share many common aspects, among which the capability to
perform aggregation and to distributely coordinate the activity of the group.
Aggregation is definitely of utmost interest because it is a prerequisite for
the development of other forms of cooperation: for example, in order to
assemble in a swarm-bot, s-bots should first be able to aggregate. On the
other hand, the ability to coordinate the activities of the group is crucial
for the effectiveness of a swarm-bot : for example, when carrying a heavy
object that a single s-bot cannot move, all s-bots should coordinate and pull
or push in the same direction, in order to maximize the performance of the
swarm-bot.

Up to now, the project’s empirical work has focused on the study of
Coordinated Motion (see [16]), Cooperative Transport (see [26, 27]), Chain
Formation and Task Allocation(see [36, 35]). The final goal of the project is
the successful realization of a scenario described in detail in [15]. Figure 1.3
gives an approximate idea about the settings of this scenario.

A swarm of up to 35 s-bots must transport a heavy object from its initial
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Figure 1.3: Picture of the scenario

location to a goal location. There are several possible paths from the initial
to the goal location and these paths may have different lengths and may
require avoiding obstacles and holes. The weight of the object is such that
its transportation requires the coordinated work of at least n s-bots, where
n is a parameter . Since the “building blocks” of the overall behavior exist,
we need a strategy that will provide us with an effective decision making
mechanism, for swapping between strategies. We also need a strategy that
will allow each s-bot to realise its current status in the work it is carrying
out. For example, robots that explore the enviroment in order to find the
goal location, might encounter holes in it, as shown in the above picture.
They need to be able to make a decision as to if the hole can be traversed by
a single robot. If this is not the case, to call for help, resulting in a swarm-bot
formation which might be more effective in passing over this gap. Definitely,
it is a “cheaper” solution if one robot can solve the task alone, but we are
interested in cases where this is not possible. Thus, the work demonstrated
in this thesis addresses the problem of evolving neural network controllers
which will be able to produce this decision-making mechanism, which in
turn will contribute to the realization of the scenario. Our goal is to solve
a simplified part of it, which will be the first step in the realization of the
complete complex scenario, capturing the elements of a decision-making
mechanism. More in detail, our work is focused on the design of controllers
evolved to tackle non-reactive problems, problems where a simple reactive
behavior is not enough to solve the task, but a kind of “memory” and internal
dynamics are necessary. Consequently, we will result in controllers consisting
in a very different structure compared to what has been used up to now in
the project.
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1.3 Report Layout

This report is organized as follows. In Chapter 2 we discuss about the moti-
vation that led us to the choice of integration over time as a decision making
mechanism for the swarm-bot. We present the work of Tuci et al. [65] which
is the starting point of this research and discuss its limitations, discussing
possible extentions and adaptations in order for this idea to fit into the
SWARM-BOTS project context.

In Chapter 3, we present the setup used for a first set of experiments
performed, the replication of the work of Tuci et al. in a physics-based 3D
enviroment. We provide the motivation for the experiments performed and
for the simulation model used, by introducing the notion of Minimal Simu-
lation, as defined by Jakobi in [32]. We will show that since our experiments
don’t require dynamics and physics, they can be conducted within a Minimal
Simulation environment. The latter is much faster than a 3D physics-based
simulator. We also describe the simulation, controller and evolutionary al-
gorithm we employed in all the performed experiments. Finally, we provide
the results obtained and an analysis performed.

In Chapter 4, we present a second set of experiments performed, ex-
tending the work presented in 3, the results obtained and their statistical
analysis. This time, the task is more oriented towards a Collective Robotics
scenario, since it requires communication between two robots.

In Chapter 5, we draw the conclusions of this work, highlighting the
important aspects of this research. Finally, we indicate the possible future
research directions to be followed.



Chapter 2

Evolving Time-Dependent

Structures

Several studies have described evolutionary simulation models in which time-
dependent structures are evolved to control the behavior of agents required
to make decisions based on their experiences. The aim of Section 2.1 is to
present the related work in literature, introducing the distinction between
ecological and non-ecological models. Section 2.2 gives an overview of the
works introducing integration over time while in Section 2.3 we present in
detail the Tuci et al. experiments, which are the starting point and inspira-
tion of the work presented in this thesis.

2.1 Literature Review

It is useful to draw a line between two lines of research present in the liter-
ature, in a very simple way. These are non-ecological and ecological mod-
els [60, 61, 68, 63]. In ecological models, like the one by Tuci et al. [65],
described in detail in the following section, and our experimental work, the
agent’s perception is brought forth by the agent itself through its actions.
Contrary to that, in the non-ecological models the perceptual experience of
the agents is determined by the experimenter. Obviously, the flow of percep-
tion provides the agents the cues to make the discrimination (for more on
this issue see also [47]). The input to the network is not determined by the
network’s output at previous timestep. That is, the network does not bring
forth the world which it experiences through its sensors. Moreover, some of
the non-ecological models (see [68]) are further simplified by the presence
of an explicit reinforcement signal—i.e., an input signal explicitly dedicated

12
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to inform the agent’s controller on the characteristics of the “environmental
circumstances” in which it is currently situated by making available to the
system any possible mismatch between the current agent’s action and the
correct response.

For example, in [63], populations of CTRNNs (Continuous-Time Recur-
rent Neural Networks) are evolved to solve the “Dowry Problem”—a sequen-
tial decision problem in which an agent has to maximise the expected payoff
given by choosing a single item from among a population of sequentially en-
countered items. The latter appears to the agent in random order, and they
are drawn from a population with parameters that are completely unknown
ahead of time. The sequence of items presented to the network is not in any
case affected by the response of the agent at previous time. The results of the
simulations show that evolved CTRNNs are capable of sampling a certain
proportion of the population of items that is currently experiencing to get
an estimation of the distribution of values, and subsequently to exploit this
information and make a choice. In [68], an “abstract” agent—i.e., a disem-
bodied dynamic neural network—was responsible of solving the integration
of reactive and non-reactive behaviors consisting mainly in generating the
appropriate n-bit sequence chosen from either two, three, or four possible
different sequences.

Other studies on the evolution of time-dependent structures for discrimi-
nation tasks share with ours and the Tuci et al. experiment a more ecological
perspective, in which the nature of the agent’s perception is determined by
its own actions, and the reinforcement signals are part of the evolved struc-
tures (see [70, 64, 44, 8]). The evolution of time-dependent structures and
decision-making mechanisms has been extensively studied on the T-maze
problem (see [70, 8]). The robot is required to find its way to a goal loca-
tion, placed at the bottom of any of the two arms of the maze. When at the
T junction, the robot must decide whether to turn left or right. The correct
decision can be made if the agent is capable of exploiting perceptual cues
which were available to it while it was navigating down the first corridor,
or by “remembering” something about previous trials in a similar T-maze.
In [70], weight change mechanisms provide the agents the required plastic-
ity to exploit the relationship between the location of light signals placed
roughly at the middle of the first corridor, and the turn to make at the
junction. Blynel et al. in [8] allow the agent to experience the environment
in a first trial, in which the success or failure play the role of a reinforce-
ment signal, in order to associate the position of the goal with respect to
the T-junction.

In [64], evolved CTRNNs provide the agents the required plasticity to
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discover the spatial relationship between the position of a landmark and
the position of a goal. In this study, the spatial relationship between the
goal and the landmark can be learnt by “remembering” from previous trials
the relative position of the landmark with respect to the goal. The work
illustrated by Nolfi in [44] investigates a discrimination task in which a robot,
while navigating through a maze, must recognise if it is located in one room
rather than another. Here, the agent exploits environmental cues, such as
navigating through subsequent corners of the maze, and fine-tuned time-
dependent structures to take the correct decision. Environmental structures
(regularities) are at the basis of the recognition process performed by the
agent’s controller during the exploration of the maze.

The difference between the ecological models and our study is not as
apparent as it was for the non-ecological ones described at the beginning
of the section. However, it should be noticed that, in the ecological studies
reviewed above, the discrimination is based on the recognition of distinc-
tive environmental contingencies and the maintenance of these experiences
through time, as a form of short term memory. On the contrary, in our
study, the cue which allows the agent to make the discrimination has to
deal with the persistence over time of a perceptual state common to both
of the elements to be distinguished—i.e., Env.A and Env.B—rather than
with the nature of the cue itself employed to make the discrimination. That
is, in our case, due to the nature of the agent’s sensory apparatus, the two
types of environment can be distinguished solely because a perceptual state,
present in both environments, might be perceived by the agent for a longer
time in one than in the other.

2.2 Integration Over Time

A general problem common to biology and robotics concerns the definition
of the mechanisms necessary to decide when it is better to pursue a partic-
ular action in a certain location and at which moment in time it is better
to leave for pursuing a similar or a different activity in a similar or different
location. This problem is not limited to foraging alone, but it extends to
many activities a natural or artificial agent is required to carry out. Au-
tonomous agents may be asked to change their behavior in response to the
information gained through repeated interactions with their environment.
For example, in a group of robots, although many individual actions might
be simpler to carry out than a single coordinated activity, they might re-
sult less efficient (see [62]). Therefore, autonomous agents require adaptive
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mechanisms to decide whether it is better to pursue solitary actions or to
initiate cooperative strategies. Also, an agent might need to communicate
to the other members of the group some information it has gathered. The
scenario described in Section 1.2 requires such a behavior. For example, the
robots should find a way to the goal area, and to do so they have to explore
their enviroment, which might contain holes or areas dangerous to traverse.
We need a strategy which will allow such agents to decide if alternative
strategies are required and thus trigger cooperation through communication
of their experience.

One way to deal with the challenge described above is the design of
decision-making mechanisms for —in our case— an s-bot, which integrates
over time its perceptual experience in order to initiate alternative actions.
In other words, the behavior of the agent should change as a consequence
of its repeated interaction with particular environmental circumstances.

Nolfi et al. define agents that exploit internal representations as well as
information directly available from their sensors and that are able to extract
their internal representations autonomously by interacting with the environ-
ment, as agents that are able to integrate sensory-motor information over
time. They rely on a mixed strategy in which basic sensory-motor mecha-
nisms are complemented and enhanced with additional internal mechanisms
and tend to rely on partial, action-oriented, and action-mediated represen-
tations of the external environment [46].

In this thesis we call upon the notion of internal representation, a very
controversial issue in the literature. It can be more properly characterized
as a description that is in the eye of the observer rather than as a formal
property of an agent. We do not want to get into details in this subject,
therefore we will resort on the more general notion of internal state. By
internal state we mean a state (e.g. the activation state of an internal
neuron of the control system of a robot) that might be affected by the pre-
vious sensory-motor states experienced by the robot and that co-determine,
together with the current sensory states, the robot’s motor actions. By me-
diating between perception and actions, internal states might allow agents
to produce behaviors that are decoupled from the immediate circumstances
while still remaining sensitive to them. We will use the definition introduced
by Nolfi et al. in [46]. Thus, a reactive robot is a robot that does not have
any internal state and for which the current motor action is only dependent
of the current sensory state. On the contrary, a robot that relies exclusively
on its internal dynamics is a robot in which sensory information coming
from the external environment is either missing or not taken into account
once the robot motor actions are determined. A very important observation
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to be made is that a robot with a non-reactive controller can also exhibit
reactive behavior.

Most of the experiments in evolutionary robotics rely on neural con-
trollers. In many cases feed-forward neural networks are used. These net-
works are effective in producing reactive behavior but cannot deal with time,
always reacting in the same way to the same sensory state and therefore can-
not integrate information over time. In other cases recurrent neural networks
have been used (see [18]). Other attempts have been conducted by using
Continuous Time Recurrent Neural Networks (CTRNNs) [7]. By relying
on differential equations instead of being updated at fixed time steps these
networks can produce continuous dynamics. These networks have been suc-
cessfully applied to a variety of tasks (such as legged locomotion [33] and
visually guided navigation [29]). However the extent to which they can be
applied to tasks that have sequential components and their ability to scale up
is unclear. Other attempts have been conducted by using synaptic plastic-
ity. In some cases the synaptic weights were updated by using reinforcement
learning (see [1]) or back-propagation (see [54]) on the basis of self-generated
teaching signals. In other cases synaptic weights were updated on the basis
of genetically encoded hebbian rules (see [20]). In general terms, integration
of information over time can be accomplished both by modifying the synap-
tic weights (through some form of plasticity) and by means of recurrent
connections. In both cases in fact, the way in which individuals react to the
current sensory state might be affected by the previous experienced sensory
states. Different methods however might have different characteristics. For
instance, the former approaches, by relying on gradient descent techniques,
tend to produce small and long term effects on the robot behaviors whereas
the latter approach, based on hebbian learning, might produce significant
effects in the short term [20].

So, we can expect the emergence of systems able to integrate sensory-
motor information over time and later use this information to modulate their
behavior accordingly under certain conditions. First of all, as we discussed
above, the agent should be equipped with the appropriate neural controller,
able to display non-reactive behavior. But then, how do we distinguish
between the tasks that require integration over time and those that don’t?
The border between what can be accomplished by simple agents that only
rely on their current sensory states or on their internal dynamics and what
can be accomplished by more complex agents that are also able to integrate
information over time is rather fuzzy and cannot be formally identified.
However, problems that should be accomplished in varying environmental
conditions tend to require agents able to integrate information over time [46].
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2.2.1 CTRNNs

Continuous Time Recurrent Neural Networks (CTRNNs) have been intro-
duced in Evolutionary Robotics by Beer [6], and they are the reflection of
a theoretical approach to cognition which aims to exploit the mathematical
tools of dynamical systems theory to investigate issues of interest in adaptive
behavior research. According to Beer, there are two fundamental principles
which justify the use of the formalism of dynamical systems theory within
the context of adaptive behavior. Firstly, since the fundamental nature of
adaptive behavior in natural systems is to generate the appropriate behav-
ior at the appropriate time, dynamical systems theory provides the required
mathematical formalisms for the description and the analysis of systems
whose behavior unfolds over time. Far from being inessential details, is-
sues of rate and timing fundamentally matter to an embodied agent. For
an embodied agent, time can make all the difference between an adaptive
behavior and an unsuccessful one. Secondly, since in nature qualitatively
similar patterns of behavioral dynamics are given rise by different combina-
tions of underlying biochemical mechanisms, it looks plausible to consider
adaptive behavior as generated by causal mechanisms which result from the
dynamical interactions of elementary units such as cells or molecules, rather
than generated by the dynamics of the single elementary units. Thus, the
explanatory focus on any investigation on the causal mechanisms of adap-
tive behavior must look at the structure of this internal dynamics, rather
than the behavior of the single elementary unit. The theoretical concepts
and formalism that can best do justice of this dynamical nature are those
of the dynamical systems theory. Continuous Time Recurrent Neural Net-
works (CTRNNs) represent a particular convenient way of instantiating a
dynamical system to control the behavior of autonomous robots. CTRNNs
differ from the classic connectionist artificial neural networks because each
node within a CTRNN has its own state: i.e., the activation level, whose
rate of change is specified by a time constant associated with each node.
Furthermore, the nodes within the network are self-connected, as well as
interconnected in an arbitrary way with each other. These two features al-
low the network to develop dynamical behavior in which the state of nodes
alters the behavioral output of the system even if the sensory input remains
constant.

As we mentioned in the previous section, a prerequisite to achieve inte-
gration over time is that the agent is equipped with the appropriate neural
controller, able to display non-reactive behavior and rich internal dynamics.
According to Beer [6], CTRNNs are an obvious choice for this work because



CHAPTER 2. EVOLVING TIME-DEPENDENT STRUCTURES 18

(1) they are arguably the simplest nonlinear, continuous dynamical neural
network model; (2) despite their simplicity, they are universal dynamics ap-
proximators in the sense that, for any finite interval of time, CTRNNs can
approximate the trajectories of any smooth dynamical system on a compact
subset of <n arbitrarily well ;(3) they have a plausible neurobiological in-
terpretation, where the state y is often associated with a nerve cell s mean
membrane potential and the output s(y) is associated with its short-term
average firing frequency. CTRNNs are also being applied to a wide variety
of other problems, including associative memories, optimization, biological
modeling and many others. Since these networks will be the ones used in
our work to achieve agents displaying non-reactive as well as reactive be-
havior, it is useful at this point to give the mathematics that describe their
behavior.

Continuous-Time Recurrent Neural Networks are networks of model neu-
rons of the general form:

dyi

dt
=

1

τi



−yi +
N

∑

j=1

ωjiσ(yj + βj) + Ii



 , ı = 1, 2, ..., N, σ(x) =
1

1 + e−x

(2.1)
where, using terms derived from an analogy with real neurons, yi represents
the cell potential, τi the decay constant, βj the bias term, σ(yj + βj) the
firing rate, ωji the strength of the synaptic connection from neuron j th to
neuron ith, Ii the intensity of the sensory perturbation on sensory neuron i.

2.3 The Tuci et al. Experiment : “Evolving the

“feeling” of time through sensory-motor coor-

dination: a robot based model”

The starting point of our experiments is the paper by Tuci et al. (for details
see [65]). They designed decision-making mechanisms for an autonomous
robot equipped with simple sensors, which integrates over time its perceptual
experience in order to initiate a simple signalling response. Contrary to
other previous similar studies, in this work the decision-making was uniquely
controlled by the time-dependent structures of the agent’s controller, which
in turn, are tightly linked to the mechanisms for sensory-motor coordination.
The results of this work showed that a single dynamical neural network,
shaped by evolution, makes an autonomous agent capable of “feeling” time
through the flow of sensations determined by its actions. Further analysis
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of the evolved solutions revealed the nature of the selective pressures which
facilitate the evolution of fully discriminating and signalling agents.

Their experiments required an autonomous agent to posess both navi-
gational skills and decision-making mechanisms. That is, the agent should
prove capable of navigating in a boundless arena in order to approach a light
bulb positioned at a certain distance from its starting position. Moreover,
it should prove capable of discriminating between two types of environment:
one in which the light can actually be reached, and another in which the
light is surrounded by a “barrier” which prevents the agent from proceeding
further toward its target. Due to the nature of the experimental setup, the
agent could find out in which type of environment it was situated only if it
proved capable of (i) moving coordinately in order to bring forth the per-
ceptual experience required to discriminate between the two environments;
(ii) integrating over time its perceptual experience in order to initiate a sig-
nalling behavior if situated in an environment in which the light cannot be
reached.

The results of their simulations showed that a single Continuous Time
Recurrent Neural Network controller shaped by evolution, makes an au-
tonomous agent capable of “feeling” time through the flow of sensations
determined by its actions. In other words, the controller allows an agent to
make coordinated movements which bring forth the perceptual experience
necessary to discriminate between two different types of environment and
thus to initiate a simple signalling behavior. Low level “leaky-integrator”
neurons, which constitute the elementary units of the robot’s controller,
provide the agent with the required time-dependent structures.

At this point we are going to present their work in detail, since as we
already mentioned above, it is the starting point for our train of thought
and experiments.

At the beginning of each trial, a simulated Khepera robot is positioned
within a boundless arena, at about 100 cm west of a light bulb, with a
randomly determined orientation chosen between north-east and south-east
(see Figure 2.1 left). The light bulb is always turned on during the trial.
The robot perceives the light through its ambient light sensors, positioned
45 degrees left and 45 degrees right with respect to its heading. Light levels
alter depending on the robot’s distance from the light. The colour of the
arena floor is white except for a circular band, centered around the lamp,
within which the floor is in shades of grey. The circular band covers an area
between 40 cm and 60 cm from the light; the floor is black at exactly 40 cm
from the light; the grey level decreases linearly with the distance from the
light. The robot perceives the colour of the floor through its floor sensor,
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Figure 2.1: Depiction of the task. The small black circles represent the robot
at starting position. The small empty circles represent the light bulb. The
arena floor is white everywhere except within a circular band surrounding
the light. The way in zone corresponds to the sector of the band, indicated
by dotted lines, in which the floor is white. In both pictures, the continuous
arrows are examples of good navigational strategies; the dashed arrows are
examples of forbidden trajectories. In Env.B, the continuous arrow gets
thicker to indicate that the robot emits a sound after having made a loop
around the light.

positioned on its belly, which outputs a value scaled between 0—when the
robot is positioned over white floor—and 1—when it is over black floor.

The robot can freely move within the band, but it is not allowed to cross
the black edge. The latter can be imagined as an obstacle or a trough, that
prevents the robot from further approaching the light (see dashed arrows
in Figure 2.1). Whenever the robot crosses the black edge, the trial is
unsuccessfully terminated. The area in shades of grey is meant to work as
a warning signal which “tells” the robot how close it is to the danger—i.e.,
the black edge.

There are two types of environment. In one type—referred to as Env.A—
the band presents a discontinuity (see Figure 2.1, left). This discontinuity,
referred to as the way in zone, is a sector of the band in which the floor
is white. In the other type—referred to as Env.B—the band completely
surrounds the light (see Figure 2.1, right). The way in zone represents the
path along which the robot is allowed to safely reach the light in Env.A. A
successful robot should prove capable of performing phototaxis as well as
looking for the way in zone to avoid to cross the black edge of the band.
Such a robot should always reach the light in Env.A. On the contrary, in
Env.B the robot should, besides avoiding to cross the black edge, signal
the absence of the way in zone by emitting a tone. So, to summarise the
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task the agent has to perform , he should distinguish between environments
in which the band presents a discontinuity (i.e., Env.A) and environments
in which the band does not presents any discontinuity (i.e., Env.B), while
provided only with local information.

The cue the agent should use is a temporal one: that is, the Env.B can
be “recognised” by the persistence of a particular perceptual state for the
amount of time necessary to discover that there is no way in zone. For
example, a successful agent might integrate over time the grey level sensed
by its floor sensor to bring forth something similar to the “feeling” of being
travelling within the band for as long as the time required to complete a
loop. Such a strategy would allow the robot to make sure that there is no
way in zone. Alternatively, the robot might simply react to the colour of the
floor and integrate over time the perceived light intensity. In this case, the
perception of the circular band is simply used to interrupt the phototaxis
and to initiate a circular trajectory.

Notice that, whatever is the nature of the perceptual state that the
robot integrates over time, the underlying mechanisms for the integration
are strongly dependent on the way the robot moves within the environment.
For example, let’s assume that our robot, by circuiting around the light
while remaining on the circular band, integrates over time the reading from
the floor sensor. By employing this strategy, the amount of time required
for our robot to perform a complete loop of the band depends on the dimen-
sions of the band and on the way in which the robot moves within the band.
The robot movements—e.g., its speed and trajectory—are determined by its
controller. Thus, the latter should make the robot move in such a way that,
if the perception of the band lasts for a certain amount of time, the following
conclusions can be drawn: (i) the band does not present any discontinuity;
(ii) the sound signalling must be activated. In other words, the agent should
prove capable of moving in such a way that its flow of perception is infor-
mative enough to allow it to “feel” time and consequently to make a correct
discrimination, through sound signalling, between Env.A and Env.B.

The difficulty of this experiment is twofold: on the one hand it resides
in synthesising, through an evolutionary process, a robot’s controller which
must be capable of moving the robot coordinately so that it can integrate
over time the flow of perception determined by the robot’s actions. On
the other hand, evolution must find a way to combine within a single—
i.e., not modularised—controller the mechanisms required for sensory-motor
coordination and discrimination through sound signalling.

At this point it would be beneficial to argue why this experiment requires
integration over time, why it is a non-reactive task. The robot will have
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to discriminate between the enviroments by “feeling” the time it has been
travelling on the circular band, and then initiate a signalling behavior. So
it has to encode in its internal state somehow this time travelling, therefore
the task is non-reactive. And yet, we cannot guarantee that this task would
never be solved by a purely reactive agent. Imagine an agent that can
move in circles with gradually decreasing radius around the black band. It
could signal, once it feels a certain grey level, information available by its
floor sensor. This agent of course is considered a lucky one, and the case
described here is so extreme that we can disregard it. After all, one has to
a priori design this behavior.

In the following section, we will present the details concerning the robot-
environment simulation model used by Tuci et al. to evolve the controllers
(see section 2.3.1), the equation used to update the state of the neural
network (see section 2.3.2), the parameters of the genetic algorithm (see
section 2.3.3), the evaluation function used and a short analysis of the results
of this first experiment they conducted. It is important to refer to in detail
to all the above parameters, because most of them are going to be used in
our experiments.

2
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Figure 2.2: A picture of a Khepera robot on the left. Plan of the robot on the
right, showing sensors and motors. The robot is equipped with two ambient
light sensors (L1 and L2) and a floor sensor indicated by the black square F .
The left and right motor (M1 and M2) are controlled by a dynamic neural
network (NN). A simple sound signalling system, controlled by an output of
the network, is referred to as S.
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2.3.1 The simulation

The robot and its world were simulated using a modified version of the
“minimal simulation” technique described by Jakobi in [32]. Jakobi’s tech-
nique uses high levels of noise to guarantee that the simulated controller will
transfer to a physically realised robot with no loss of performance. Their
simulation models a Khepera robot, a 55 mm diameter cylindrical robot
(see Figure 2.2). This simulated robot is provided with two ambient light
sensors, placed at 45 degrees (L1) and -45 degrees (L2) with respect to its
heading, and a floor sensor positioned facing downward on the underside of
the robot (F ). The light sensors have an angle of acceptance of 120 degrees.
Light levels change as a function of the robot’s distance from the lamp. The
light sensor values are extrapolated from a look-up table which corresponds
to the one provided with the Evorobot simulator (see [43] for further de-
tails). The floor sensor can be conceived of as a proximity infra-red sensor
capable of detecting the level of grey of the floor. It produces an output
which is proportional to the level of grey, scaled between 0—when the robot
is positioned over white floor—and 1—when it is over black floor. The sound
signalling system is represented by the binary output of one of the neurons
of the robot’s controller (see Section 2.3.2 for details).

The implementation of the simulator, as far as it concerns the func-
tion that updates the position of the robot within the environment, closely
matches the way in which Jakobi designed his minimal simulation for a
Khepera robot within an infinite corridor (see [32] for a detailed description
of the simulator). The robot has right and left motors—respectively M1

and M2—which can move independently forward or backward, allowing it
to turn fully in any direction.

2.3.2 The controller

Fully connected, eight neuron Continuous Time Recurrent Neural Networks
(CTRNNs) are used. All neurons are governed by the state equation 2.1,
with N = 8. Three neurons receive input (Ii) from the robot sensors. These
input neurons receive a real value in the range [0,1], which is a simple linear
scaling of the reading taken from its associated sensor1. The other neurons
do not receive any input from the robot’s sensors. The cell potential (yi) of
the 6th neuron, mapped into [0,1] by a sigmoid function (σ) and then set to
1 if bigger than 0.5 or 0 otherwise, is used by the robot to control the sound

1Neuron N1 takes input from the ambient light sensor L1, N2 from the ambient light
sensor L2, N3 from the floor sensor F .
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signalling system. The cell potentials (yi) of the 7th and the 8th neuron,
mapped into [0,1] by a sigmoid function (σ) and then linearly scaled into
[-10,10], set the robot motors output. The strength of synaptic connections
ωji, the decay constants τi, the bias terms βj , and the gain factor g are
genetically encoded parameters. Cell potentials are set to 0 any time the
network is initialised or reset, and circuits are integrated using the forward
Euler method with an integration step-size of 0.2 seconds.

2.3.3 The evolutionary algorithm

A simple generational genetic algorithm (GA) is employed to set the param-
eters of the networks [25]. The population contains 100 genotypes. Gen-
erations following the first one are produced by a combination of selection
with elitism, recombination and mutation. For each new generation, the
three highest scoring individuals (“the elite”) from the previous generation
are retained unchanged. The remainder of the new population is gener-
ated by fitness-proportional selection from the 70 best individuals of the
old population. Each genotype is a vector comprising 81 real values (64
connections, 8 decay constants, 8 bias terms, and a gain factor). Initially,
a random population of vectors is generated by initialising each component
of each genotype to values chosen uniformly random from the range [0,1].
New genotypes, except “the elite”, are produced by applying recombination
with a probability of 0.3 and mutation. Mutation entails that a random
Gaussian offset is applied to each real-valued vector component encoded in
the genotype, with a probability of 0.15. The mean of the Gaussian is 0, and
its standard deviation is 0.1. During evolution, all vector component values
are constrained to remain within the range [0,1]. Genotype parameters are
linearly mapped to produce CTRNN parameters with the following ranges:
biases βj ∈ [-2,2], weights ωji ∈ [-6,6] and gain factor g ∈ [1,12]. The genes
which codify the decay constants are firstly linearly mapped onto the range
[−0.7, 1.7] and then exponentially mapped into τi ∈ [10−0.7,101.7].

2.3.4 The experiment - The evaluation function

In this section we illustrate the fitness function and the results of a first
series of experiments in which they evolved agents capable of discriminating
between Env.A and Env.B. The fitness function employed does not simply
reward a robot for approaching the light bulb and for signalling anytime it
is located in Env.B. A significant feature of this fitness function is that it
rewards agents that make use of their sound signalling system at the point
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where it is required.
During the evolution, each genotype is coded into a robot controller, and

is evaluated 40 times—20 times in Env.A and 20 in Env.B. At the beginning
of each trial, the neural network is reset—i.e., the activation value of each
neuron is set to zero. Each trial differs from the others in the initialisation of
the random number generator, which influences the robot starting position
and orientation, the position and amplitude of the way in zone, and the noise
added to motors and sensors. For each of the 20 trials in Env.A, the position
of the way in zone is varied to facilitate the evolution of robust navigational
strategies. Its amplitude is fixed to π

2
. Within a trial, the robot life-span

is 80 s (400 simulation cycles). A trial is terminated earlier if either the
robot crosses the black edge of the band (see dashed arrows in Figure 2.1)
or because it reaches an Euclidean distance from the light higher than 120
cm. In each trial t, the robot is rewarded by an evaluation function ft which
corresponds to the sum of the following four components:

Rmotion =
df − dn

df

Rerror = −
pb

tb

Rnear =

{

pc/tc Env.A
0 Env.B

Rsignal =

{

0 Env.A
pa/ta Env.B

Rmotion rewards movements toward the light bulb: df and dn represent
respectively the furthest and the nearest Euclidean distance between the
robot and the light bulb. In particular, df is updated whenever the robot
increases its maximum distance from the light bulb. At the beginning of the
trial, dn is fixed as equal to df, and it is subsequently updated every time
step when (i) the robot gets closer to the light bulb; (ii) df is updated. In
this latter case, dn is set equal to the new df.

In Env.A, dn is set to 0 if the robot is less than 7.5 cm away from the
light bulb. In Env.B, dn is set to 0 if the robot makes a complete loop
around the light bulb while remaining within the circular band.

Rerror is negative to penalise the robot for (i) signalling in Env.A, and
(ii) signalling in Env.B before having made a loop around the light: pb is the
number of simulation cycles during which the robot has erroneously emitted
a tone, and tb is the number of simulation cycles during which the robot was
not required to signal.

Rnear rewards movements for remaining close to the light bulb: pc is the
number of simulation cycles during which the robot was no further than
7.5 cm away from the light bulb in Env.A, and tc is the robot life-span. In
Env.B the robot cannot get closer than 40 cm to the light, therefore, this
component is equal to 0.
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Rsignal rewards signalling in Env.B: pa is the number of simulation cycles
during which the robot has emitted a tone after having made a loop around
the light, and ta is the number of simulation cycles during which the robot
was required to emit a tone. In Env.A, this component is always set to
zero. Recall that the robot is also penalised for crossing the black edge of
the band and for reaching a distance from the light higher than 120 cm.
In these cases, the trial is ended and the robot’s fitness is computed by
considering the current state of the system.

2.3.5 Results

Twenty evolutionary simulations, each using a different random initialisa-
tion, were run for 6000 generations. The best individual of the final gener-
ation from each of these runs was examined in order to establish whether
they evolved the required behaviour.

During re-evaluation, each of the twenty best evolved controllers was
subjected to a set of 100 trials in Env.A and a set of 100 trials in Env.B.
At the beginning of each re-evaluation trial, the controllers are reset. Each
trial has a different initialisation. During re-evaluation, the robot life-span
is 120 s (600 simulation cycles).

Firstly, the navigational ability of the best evolved robot in an Env.A
was analysed. A successful robot should reach the light bulb going through
the way in zone, without signalling. The results prove that almost all the
best evolved robots employ successful navigational strategies which allow
them to find the way in zone, and to spend between 40% and 80% of their
life-time close to the target. According to Tuci et al. , the fact that some
runs resulted slightly less successful than others, is due to a tendency to cross
the black edge of the band. A qualitative analysis of the robots’ behavior
that they performed shows that, when the best evolved robots are situated
in an Env.B, their navigational strategies allow them (i) to approach the
light as much as possible without crossing the black edge of the band, and
(ii) to make a loop around the light, between 40 cm and 60 cm from the
light, following a trajectory nearly circular.

The agents were not evolved just to navigate properly toward the light,
but also for accurately discriminating between the two types of environment.
Recall that the agents are required to make their choice by emitting a tone
only if they “feel” they have been situated in an Env.B. None of the best
evolved robots emited a tone if situated in Env.A. On the contrary, their
success in evolving robots emitting sound when in Env.B was not as high,
since only approximately half of the robots were behaving as expected.
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The quality of the signalling behavior can be established with reference
to the amount of error of type I (Err.I) and error of type II (Err.II) made
by the successful robots. The Err.I refers to those cases in which the robot
emits a tone before having made a loop around the light. The Err.II refers
to those cases in which the robot emits a tone after having completed the
loop. Err.I can be considered as a false positive error—i.e., signalling that
there is no way in zone when there may be one. Err.II can be considered
as a false negative error—i.e., not accurately signalling that there is no way
in zone. Both types of error are calculated with respect to the angular
displacement of the robot around the light from the starting position—the
position at the time when the robot enters into the circular band—to the
signalling position—the position at the time when the robot starts signalling.

If the robot makes no errors, this angle is 2π. It is obvious that the bigger
the deviation from this value, the less reliable the signalling mechanism. Of
course, a robot that signals less than π

2
radians before the full circle, is far

more succesful than one that signals after the completion of the loop. This
follows from the fact that the maximum distance on the black band a robot
can cover in Env.A is 3π

2
, so having been travelling more on the band would

mean that it is in Env.B. It is of course very difficult to make no errors—i.e,
emitting a tone precisely at the time in which an entire loop around the light
is made. Tuci et al. consider successful an agent that, in order to signal the
absence of the way in zone, manages to reduce the amount of errors of both
types. Most of the robots that manage to signal have average errors bigger
than 20 degrees.

The mechanisms that the successful robots employ to solve the discrimi-
nation task are tuned to those environmental conditions experienced during
evolution. So, they do not properly work if the environment changes. For
example, in some complementary experiments they observed that both the
reduction and the increment of the distance between the black edge of the
band and the light disrupt the robot’s performance: the smaller the distance,
the bigger the Err.II—i.e., signalling after having made a loop around the
light; the higher the distance, the bigger Err.I—i.e., signalling before having
made a loop around the light. There was only one run that resulted in an
agent integrating both the perception of the floor and the intensity of the
light, but the relationship between these two sensory inputs had a bearing
on the emission of the tone. So, for a given level of grey, the higher/lower
is the intensity of the light the shorter/longer is the time it takes to the
robot to emit a tone. Tuci et al. suggest that the artificial neural networks
turned out to be capable of tracking significant variations in environmental
conditions—i.e., the relationship between the intensity of the light and levels
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of grey of the floor.

2.3.6 Discussion and Conclusions

Tuci et al. have indeed shown that a single dynamic neural network can
be synthetised by evolution to allow an autonomous agent to make coordi-
nated movements that bring forth the perceptual experience necessary to
discriminate between two types of environments. The results illustrated in
[65] are indeed of particular interest because, contrary to other previous
similar studies, in this work the decision-making is uniquely controlled by
the time-dependent structures of the agent’s controller, which in turn, are
tightly linked to the mechanisms for sensory-motor coordination.

The significance of their results is twofold: on the one hand, they bear
upon the significance of CTRNNs as controllers for autonomous robots.
That is, these results prove that, despite the complexity of the task, in
which mechanisms for sensory-motor coordination and for discrimination
must be tightly linked, CTRNNs can be easily shaped by evolution to bring
forth complex reactive and non-reactive mechanisms within a single non-
modularised controller. On the other hand, these results bear upon the
significance of the evolutionary approach to robotics. That is, they sug-
gest that the evolutionary approach to robotics is a suitable methodological
tool to develop adaptive autonomous agents which, like natural systems,
can cope with unexpected circumstances—that is, environments never en-
countered by the agents’ ancestors during the evolutionary phase. From an
engineering point of view, this is a particularly desirable property to observe
in autonomous systems, since it represents a way to successfully overcome
the limitations of other more classic approaches to robotics (for more on this
issue see [10, 11, 28, 67]).

The reason we chose to give such a detailed presentation of this work
is that it served as starting point and motivation to our work. It was very
challenging to see if with the required modifications, we could port this work
in the context of the SWARM-BOTS project. As mentioned, their work has
been carried out with the Khepera robot and a simulator designed for it.
If we want to make use of their results within the SWARM-BOTS project,
significant work has to be done. Also, given the fact that these experiments
can be extended in a lot of different ways, it must be clear why we chose to
continue beyond them. Last but not least, it is always challenging to try to
port the results of a simulation to a real robot—in our case the s-bot. But
in order to do so, there remained a lot of work to be done concerning the
reliability of the sensors and changes that we have to come up with in order
to apply these methods to another robot than the Khepera.
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Even though these experiments provided us with useful results and in-
spiration, there is an important deal of criticism to be addressed.

Firstly, as mentioned above, Minimal Simulation relies on the idea of
applying big amounts of noise on the sensors to ensure portability of the
evolved controller to a real-world enviroment. Obviously, it is very challeng-
ing to try to do so, and reality can be some times disappointing. The results
of the experiments conducted were only tested on a 2D simulator that did
not take into account forces and dynamics. It would be very interesting to
see if there is any mismatch between the behavior of the evolved controllers
in a 2D environment and a much-more realistic 3D physics-based simulator.

Secondly, although noise is added on sensorial information concerning the
ambient light sensors, no noise was present on the floor sensor. Therefore,
the information provided is idealistic and it is very probable that if we try to
port these results to a realistic enviroment we will fail. Imagine a scenario
where the robot is not allowed to touch the black edge and in case this
happens, severe damage will be inflicted upon the robot. In order to ensure
that the robot will always avoid critically approaching the black band, thus
making it more robust, we have to introduce noise on the sensor encoding
the status of the circular band.

Furthermore, the only variation in environmental circumstances encoun-
tered by the robot during the evolution, is a variation of the position of the
way in zone in Env.A. This ensures that the robot will have to look for the
way in and thus ensures the emergence of integration over time. On the con-
trary, there is no variation that would ensure adaptability of the controller
in novel circumstances, not encountered by the robot’s evolutionary ances-
tors. So when the robot was placed—during post-evaluation—at a distance
significantly different than the distance to the light for which it had been
evolved, the results were disappointing, since they found out that only one
of the evolved controllers proved robust to variation in the environmental
conditions without being explicitly evolved for this. We believe that the
adaptability and the robustness of a controller is of utmost importance, so
despite their encouraging results in this innovative experiment, some mod-
ification must be made in order to achieve more robust agents, that could
potentially exhibit a good behavior even in circumstances not encountered
by their evolutionary ancestors.

We believe that the cause of this potential lack of adaptability is primar-
ily the design of the evaluation function, described in detail in Section 2.3.4.
This function, being quite complicated and very explicit concerning the
“score” it attributes to the different behaviors, does not allow evolution
to freely explore the space of potential solutions. In our view it would be
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better to employ a simpler fitness function that could lead us to more robust
solutions. Also, the fact that they used the same number of evaluations for
the two enviroments could be a factor that deteriorated the performance of
the controllers. The number of evaluations in the two enviroments could
be used as a parameter to tune the system. Given the fact that the robot
travels around the band in a circular trajectory trying to find a way in zone
is due to the Env.A conditions, it could be the case that if this enviro-
ment was encountered more during the evolution, a better behavior could
have been evolved. This argument is strengthened by the fact that a lot of
non-succesful agents were crossing the black edge. Arguably, with a bigger
proportion of Env.A during evolution, the robots could result being more
prudent. Also, varying the width of the way in zone can result in more
robust agents.

Finally, the signalling behavior could serve as a communication signal
to other robots, that could alter their current status or action. It could
even serve as a starting point for altering the current action of the signalling
robot. This is an obvious extention to their experiment, since the way it is
presented, the signalling behavior is just a sign that the robot has correctly
discriminated between the two environments.

The critisisms formulated above will be incorporated as changes in our
replication of their experiment, in order to put it in the context of the
SWARM-BOTS project, described in the following chapter. These changes
will also be used in Chapter 4, where we extend their experiments in a
collective robotics scenario.



Chapter 3

Replicating Tuci et al. in

SWARMBOTS3D

In this chapter we present in detail the setup we used for our experiments.
In particular, we deal with the porting and replication of the Tuci et al. ex-
periment for the s-bot simulator SWARMBOTS3D. We introduce the notion
of Minimal Simulation and its applicability to our task. Finally, we present
the results of the replication.

3.1 Methodological Issues

As we already mentioned in the previous chapter, the Tuci et al. experi-
ment was designed for a Khepera robot. In order to use the results of this
experiment for the SWARM-BOTS project, we need to rerun the experi-
ments with the simulated s-bots, using the SWARMBOTS3D simulator, a
3D physics-based simulator described in detail in Section 3.2.

Of course, the successful transfer to a 3D physics-based enviroment will
be guaranteed only if we evolve the controllers in this enviroment. This
work is presented in Section 3.3. Although this methodology will ensure
success, it introduces a time constraint, since this method is very slow. Our
task does not require the use of dynamics to be carried out, that is the robot
does not have to feel forces to perform the task successfully. Therefore, a
very fast method to produce results would be to use once again the Minimal
Simulation approach, as Tuci et al. did. So, all the parameters used for
the Khepera robot simulator have to be changed and adapted for the s-bot.
To be more precise, we had to use the look-up tables for sensorial inputs
available for the s-bot and to adapt position update functions with respect

31
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to the s-bot geometry. Also, their experiment was developped using a 2D
simulator which did not take into account dynamics and forces. In order to
make it more realistic, we had to test the evolved controllers on a simulator
modelling 3D environments, thus bridging the gap between simulation and
reality. This is the most basic step we have to follow if we want to test our
controllers with real robots. This task was not trivial since we had to come
up with a way to compensate the lack of dynamics in the evolution. As
we will show later, the use of noise and more specifically pink noise1 on all
sensors, motor actuators and position produced robust solutions which were
able to generalise in 3D enviroments with forces. As Jakobi states in [32],
the robot does not have to move identically in simulation and reality, but it
has to satisfy some criteria we define in order to be characterised as useful.
Following the same rationale, we can use the criteria of signalling, avoid-
ing errors, moving coordinately around the black band and distinguishing
between the two environments to decide if the porting to the 3D simulator
has been successful and avoid the demand of an identical behavior. There-
fore, in all our subsequent experiments, we had to make some changes in the
methods used by Tuci et al. in order to achieve a more robust and adaptable
behavior. Namely, we introduced noise on the floor sensor, pink noise on all
sensors, variance in the way in zone’s amplitude during evolution, different
proportions of the two enviroments and we changed the evaluation function
to a simpler form.

3.2 The SWARMBOTS3D Simulator

In this section, we describe the simplified s-bot simulation model we used in
order to run evolutionary experiments, but also to test controllers evolved
within the simple 2D simulator.

The mobility of the real s-bot is ensured by a combination of two tracks
and two wheels, called Differential Treels c© Drive which are mounted on
a chassis containing motors and batteries. Each track is connected to the
wheel of the same side and it is controlled by an independent motor. The
chassis can rotate with respect to the main body (turret) by means of a
motorized axis. The s-bots have two different ways of creating physical
interconnections, rigid and semi-flexible. In our simulated model, since it
was not needed, we did not make use of either the grippers or the rotating

1Pink noise is a way of “adding noise to the noise”, in other words a way to make the
noise non-systematic. Applying pink noise ensures that the system will not “get used” to
the noise characteristics.
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chassis.
We have used a simple s-bot model in order to develop fast simulations,

which could preserve the features of the real s-bot we are interested in (see
Figure 3.1). For this purpose, we relied on the VortexTM SDK, which offers
the necessary functionalities to develop accurate 3D dynamic simulators.
The s-bot turret is modeled as a cylinder (radius: 6 cm, height 6 cm), con-
nected to the chassis by a motorized hinge joint. The chassis is a sphere
(radius: 1.4 cm) to which 4 spherical wheels are connected (radius: 1.5 cm),
two lateral and two passive wheels in the front and in the back, which serves
as support. The lateral wheels are connected to the chassis by a motorized
joint and a suspension system, thus they are responsible for the motion of
the s-bot. In this way, a differential drive mechanism is implemented, mod-
eling the external wheels of the physical realization. On the contrary, the
other wheels are not present in the real s-bot, which is provided of tracks
instead. These wheels model the balancing role of tracks, but, being not
motorized, they do not contribute to the motion of the s-bot.

Figure 3.1: The simulated s-bot model. The body is transparent to show
the chassis (center sphere), the motorized wheels (lighter spherical wheels)
and the passive wheels (darker spherical wheels). The position of the vir-
tual gripper is shown with an arrow painted on the s-bot ’s body. On the
contrary, the front direction of the chassis is not shown. In the following,
we will display the direction of forward motion drawing a cone in place of
the spherical chassis

The s-bot model is thus simple enough to obtain fast simulations. Wheels
are modeled as spheres and not as cylinders in order to simplify both the
collisions detection between the wheels and the ground, and the computa-
tion of the dynamics of the different bodies. The chassis, having no other
functionality than connecting the different parts of the s-bot, is modeled as
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a sphere, which is the simplest object to be simulated. The s-bot turret on
the contrary is modeled as a cylinder, the simplest shape close to the real
s-bot. This allows to simulate in a realistic way collision among s-bots and
between s-bots and walls or obstacles. On the contrary, the computation of
collisions involving wheels, chassis, walls and obstacles are all disabled, as
these objects cannot collide, thus improving the performance of the simu-
lator. Furthermore, since we do not deal with tasks requiring connections
between the robots, and in an effort to speed up the simulator as much as
possible, we reduced all geometry by a factor of two, thus using a smaller
and faster s-bot model (see Figure 3.2), which is able to capture all the
properties of the normal-size model.

Figure 3.2: The 4 simulated s-bot models. From left to right we have the
4 models with ascending simulation detail. Our model is the left-most one
and the most detailed one which models very closely the real s-bot is the
right-most one.

3.2.1 Sensor, Actuator and Network Configuration

The hardware realization of an s-bot includes many sensor systems, among
which infrared proximity sensors, light sensors, directional microphones and
an omni-directional camera. Concerning the actuators, each s-bot can con-
trol its wheels independently. In order to do so, the control system can
specify a desired angular speed to be reached and a maximum torque to be
applied by the motor controlling the lateral wheels. The maximum speed
values has been set to 6.5 rad/s. The maximum torque to be applied is set
to 0.2 Nm. The desired angular speed is ωt is defined as

ωt =
ωl − ωr

2
, (3.1)

where ωl and ωr are the desired angular speed of the left and right wheel
respectively. The maximum speed and torque values are the same as for the
wheel motor.
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The first experiment we conducted was the replication of the experiment
performed by Tuci et al. for the s-bot. To do so, we made use of the same sen-
sors, actuators and neural architecture. We refer the reader to Sections 2.3.1
and 2.3.2 for details.

When defining the task for the SWARMBOTS3D simulator, we used as
L1 the average of the light sensors 0 and 1 of the s-bot model provided by
SWARMBOTS3D and as L2 the average of light sensors 6 and 7. To explain
more in detail, the sensors 0 and 7 are placed at the left of the heading of
the robot, at 22.5 and 70 degrees. Similarly, the sensors 6 and 7 are placed
to the right, so at -22.5 and -70 degrees, respectedly. Therefore, we chose to
average these values in order to create the equivalent of 2 sensors placed at
45 and -45 degrees, as used in Tuci et al.. This time, the light sensors values
were extracted from a look-up table extrapolated from the SWARMBOTS3D
simulator. To model the floor sensor we chose to introduce a ’false’ sensor
with the properties defined in Section 2.3.1. One obvious choice would be
to use one of the infrared proximity sensors, that would be pointing to the
floor, but this is not yet implemented and is possible future work which
would render the porting of the evolved controllers on the real robot more
feasible. The wheel actuators as well as the sound actuator were the ones
provided by the SWARMBOTS3D model. The sound actuator was one of
the three directional microphones mounted on the s-bot turret. Figure 3.3
presents them in detail. The sound signalling system is represented by the
binary output of one of the neurons of the robot’s neural controller. Once
the neuron’s output is bigger than 0.5, we consider this neuron activated.
Concerning the update of the position of the robot, there was no need to use
a look-up table since the update is done automatically by SWARMBOTS3D.

Noise of 5% was added as in [65] on top of the ambient light sensorial
readings. This time, in order to make the controller more robust regard-
ing the robot’s capability of always efficienty avoiding the black edge, we
also implemented a 10% noise on the readings of the floor sensor. This
high amount of noise, although at first sight dangerous to fuzzify too much
the evolution, would guarantee a more robust behavior. Imagine a setting
where the robot will be destroyed if it touches the black band. It is thus
of utmost importance to make the system as robust as possible. This was
a definite drawback of the experiments conducted by Tuci et al.. We also
added noise on the position of the robot, in order to minimize possible mis-
matches between its movement in the simple 2D enviroment and the complex
physics-based enviroment of a 3D simulator. Finally, 10% noise was added
on the motor actuators too, for the case of the Minimal Simulator approach.
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Figure 3.3: The three simulated microphones that an s-bot possesses

3.2.2 The Simulation and the new evaluation function

During the evolution, each genotype is coded into a robot controller, and is
evaluated 15 times, 12 times in Env.A and 3 times in Env.B. We remind the
reader that Tuci et al. in their experiment used a one-to-one proportion for
the two environments. We introduced this change in order to obtain more
robust controllers (see Section 2.3.6). At the beginning of each trial, the
neural network is reset—i.e., the activation value of each neuron is set to
zero. Each trial differs from the others in the initialisation of the random
number generator, which influences the robot starting position and orien-
tation, the position of the way in zone, and the noise added to motors and
sensors. For each trial in Env.A, the position of the way in zone is varied
to facilitate the evolution of robust navigational strategies. Its amplitude
varies within the interval [π

6
, π

2
]. Within a trial, the robot life-span is 140

seconds (700 simulation cycles). The reason we increased this value in com-
parison to the 80 seconds used by Tuci et al. is that the s-bot due to different
geometry and kinematics moves in a different way than the Khepera robot.
A trial is terminated earlier if either the robot crosses the black edge of the
band (see dashed arrows in Figure 2.1) or because it reaches an Euclidean
distance from the light higher than 120 cm. For reasons we explained in
Section 2.3.6, we changed the evaluation function to a simpler form. In each
trial e, the robot is rewarded by function fe which corresponds to the sum
of the following two components:

1. Rmotion—This component rewards movements toward the light bulb,
and it is computed as:

Rmotion =
di − df

di
(3.2)
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where di and df represent respectively the initial and the final Eu-
clidean distance between the robot and the light bulb. In Env.A, df

is set to 0 if the robot is less than 15 cm away from the light bulb. In
Env.B, df is set to 0 as soon as the robot reaches the band in shades
of grey.

2. Rsignal—This component rewards agents that (i) do not signal anytime
they are located in Env.A; (ii) emit a sound signal anytime they are
located in Env.B. The component is computed as:

Rsignal =

{

1 if proper signalling
0 otherwise

(3.3)

An important feature of this evaluation function is that it simply rewards
agents that make a proper use of their sound signalling system, without
directly interfering with the nature of the discrimination strategies.

3.3 The Replication with SWARMBOTS3D

The first experiment conducted was evolving a controller able to perform
integration over time, with SWARMBOTS3D, which means that the sim-
ulated enviroment also modelled forces between the enviroment and the
robot and amongst the different counterparts of the robot itself. We aimed
at replicating the Tuci et al. experiment. The main feature of this test was
that the controller should be evolved within a physics-3D enviroment, while
Tuci et al. evolved the robots in a 2D enviroment not taking into account
dynamics.

Only one simulation was ran, and the desired behavior was evolved. The
robot was most of the times able to successfully discriminate between the
two environments, emitting a sound if situated in Env.B. Sometimes though
it was crossing the black edge or not signalling at all. It would of course
be interesting to have results with SWARMBOTS3D, and that for various
reasons. Fistly, we could compare them to the ones acquired without using
the latter simulator and possibly draw useful conclusions. Then, one could
claim that evolving controllers in a realistic enviroment, much closer to re-
ality than the one used in [65], would result in a more robust controller.
Of course, this argument takes for granted that a simulator like SWARM-
BOTS3D can successfully be ported to the real s-bots, but there is not yet
proof to support this argument. After all, we need to take into account time
limitations and computational efficiency too, notions extremely important
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in Evolutionary Robotics. One run of the experiment in SWARMBOTS3D
demanded almost 3000 generations to evolve the required behavior which is
translated to almost two weeks of six machines running in parallel. Consid-
ering the time limits for delivering this work, we decided to abandon this
solution, and come up with a much faster solution to our problem. For
these reasons, there will no results presented based on this method, except
for just the fitness value during the evolution (Figure 3.4). The fitness value
is scaled between 0 and 1. We can notice that at around 2700 generations
the solution is found, but then there are a lot of fluctuations.

Figure 3.4: The Fitness during the evolution. The top thin line corresponds
to the fitness of the best individual, while the dotted line refers to the average
fitness of the population.

3.4 The Minimal Simulation Approach

Taking into account the fact that our task did not require use of dynam-
ics, since no connections among dynamical bodies were needed, nor there
was any dynamical interaction between robot and enviroment (i.e. rough
terrain), we decided to use the Minimal Simulation approach for our exper-
iment.
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The robot and its world are once again simulated using a modified version
of the “minimal simulation” technique described by Jakobi in [32]. Jakobi’s
technique uses high levels of noise to guarantee that the simulated controller
will transfer to a physically realised robot with no loss of performance. Our
hypothesis is that the controller will initially successfully transfer to the
SWARMBOTS3D enviroment, when tested there. What we want to achieve
is evolve the controller in a simple minimal environment, thus avoiding com-
plicated dynamics relations which are not required according to the defini-
tion of our task, acquiring the solution quickly and easily. Our hypothesis
will be confirmed if the robot behaves in a satisfactory manner, fulfilling the
criteria of correctly signalling and finding the way in zone, avoiding to make
errors of any type—like crossing the band, when the evolved controller is
downloaded and tested on a physics-based simulator as SWARMBOTS3D.
We will not demand that the robot moves identically in the two simulators,
since that would be an extremely severe criterion, especially if the robot is
able to carry out the task.

Therefore, we adapted the simulation of Tuci et al., modelling the Khep-
era robot, so that it can model the fast s-bot model described in section 3.2.

The initial results were promising, but there was a big discrepancy in the
behavior of the robot in the SWARMBOTS3D enviroment and in the 2D
minimal simulator. Therefore, we had to come up with a way to compensate
the lack of dynamics in the evolutionary environmant. Jakobi claims that
high levels of noise are required in order to expect a satisfactory tranfer of
the controller to reality. Having already used noise on all sensorial informa-
tion and on the robot’s position, we decided to also implement pink noise
on them. Pink noise is a way of avoiding the case where a system would
“learn” the characteristics of the noise and thus its effect on the robustness
is reduced. In fact, what we do is ensure that the noise comes from differ-
ent windows of the uniform distribution for each sensor and position. Also,
there is a provision for long or short-term change to the sensor’s or position’s
value.

Another big change we had to implement was to adapt the position
updating to the s-bot geometry. Initially we made use of the same look-up
table described in [32]—also used by Tuci et al., just altering the parameters
which refer to the robot’s geometry and dimensions. Unfortunately the
initial results were not that satisfying, so we decided to use the kinematics
of a differential drive robot, as described by Dudek and Jenkin in [17].

The results were satisfactory in the sense that the robot was moving
and behaving very similar to the Minimal 2D Simulator case. Of course,
it is again of utmost importance to stress that we do not require the robot
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to behave identically in the two simulators, especially for what concerns
its movement. This is almost impossible to achieve since a physics-based
environment contains interactions and dynamics that cannot be predicted.

The main lesson that we learned with the experimentation presented
above is that if our task does not need physics to be achieved, we can use
a Minimal simulation which can easily and fastly produce results, that can
successfully transfer to a physics-based environment, maybe even reality,
with the use of noise.

The experiment we ran with the methodology described above is a repli-
cation of the Tuci et al. experiment, with the Minimal Simulation approach.
This allows us to spot possible differences in the results obtained, but is
also very encouraging since the experiment was successful, in our effort to
proceed and expand their experiment. The post-evaluation is done in both
the Minimal 2D simulator and SWARMBOTS3D. Thus we will be able to
infer some conclusions on the success of the porting to the physics-based 3D
simulator.

3.5 Results

3.5.1 The Replication

We made twenty replications of the experiments. Figure 3.5 shows the fit-
ness of the best individual and the mean population fitness plotted against
the generation number (5000) and averaged over the 20 replications. We
can notice that in all replications of the experiment a successful behavior
was evolved2. The 100% success rate can be accounted for by recalling that
the fitness function, not rewarding any specific action except phototaxis and
the signalling behavior, has positively influenced the development of success-
ful behaviors. In fact, evolution was left free to search for a strategy that
could be effective for the achievement of the final goal. This was not the
case with the evaluation function used by Tuci et al., described in detail in
Section 2.3.4. Their results report—after post-evaluation—12 out of 20 suc-
cessful controllers. As we will show in Section 3.5.3, we obtained 18 out of 20
successful controllers, that is controllers able to perform the discrimination.

2The maximum fitness value is almost 2, since for some of the controllers, the final
generation’s achieved fitness value is very close to 2 but not exactly 2
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Figure 3.5: Average fitness during the evolution. All plots are the average
over the 20 replications of the experiment. The top thin line corresponds to
the average fitness of the best individual, while the dotted line below refers
to the average fitness of the population.

3.5.2 Analysis of the evolved behavioral strategies

A qualitative analysis of the evolved controllers confirms that a number of
different behavioral strategies have been obtained. However, some constant
characteristics can be recognised. At the beginning of a trial, all robots
perform phototaxis until they reach the circular band. When the grey level
on the floor overcomes a certain threshold, the robots start circuiting around
the light bulb with an approximately constant angular speed. Whenever
the robots are placed in Env.A and the way in zone is detected, phototaxis
starts again and the light bulb is reached. On the contrary, in Env.B, after
travelling on the band for a given time without detecting the way in zone,
the robots initiate a signalling behavior.

An example of this behavior is shown in Figure 3.6: in both Env.A and
Env.B, it is possible to notice that, when the circular band is detected—see
continuous line F at about simulation cycle 90—the robot starts moving on
the circular band maintaining a constant distance from the light bulb. This
behavior is indicated by the constant readings of the light sensors L1 and
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L2 and of the floor sensors F . In Env.A, the way in zone is encountered
shortly before simulation cycle 500, as indicated by the sudden drop in the
floor sensor F . At this point, the robot performs phototaxis again, rapidly
reaching the light bulb, as indicated by the high activation of the light
sensors L1 and L2 at the end of the simulation.

The constant angular speed on the circular band is the basic mecha-
nism exploited for discrimination between Env.A and Env.B by successfully
evolved robots. In fact, this constant motion allows the robots to experi-
ence a constant perceptual state (the grey level of the floor and the light
intensity that impinges on their sensors), which roughly corresponds to the
constant flow of time. In Figure 3.6, one can notice that the persistence of
a particular perceptual state, corresponding to the robot circuiting around
the light and over the band, makes the output S, which controls the sound,
increase linearly. This perceptual state triggers the sound signalling through
an efficient integration mechanism which is based on the “feeling” of being
travelling long enough over the circular band without having encountered
the way in zone. In fact, if the way in zone is encountered, as in the upper
part of Figure 3.6, the activation of the neuron S decreases below the thresh-
old level 0.5. This response makes the robot capable of avoiding to initiate
the signalling behaviour when it is not required. The situation is different in
Env.B: the absence of the way in zone let the output of neuron S reach and
overcome the threshold level 0.5—see bottom part of Figure 3.6, simulation
cycle 550. This response makes the robot capable of correctly signalling
that it is located in Env.B. It is also worth noticing that the output of the
neuron S is rising in both enviroments, and around the same time in Env.A
drops—manifestating the detection of a way in zone—and in Env.B rises
above the threshold level. Finally, we can notice that the output of neuron
S is initialised a bit below 0.5 and then drops linearly until the circular band
in shades of grey is discovered, when it starts rising again. This proves that
the feeling of time is dependent of the previous experience of the robot, that
is of the distance it covered to reach the band. So in case it has to cover, for
instance, a bigger distance to reach it, the value of the neuron’s output will
decrease further on, possibly causing the robot to signal later the absence
of the way in zone, than it does for the initial distance.

In summary, the behavioral analysis revealed that the evolved controllers
produce the required sensory-motor coordination that brings forth a per-
ceptual state that is integrated over time and exploited for discrimination
through sound signalling.
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Figure 3.6: Behavioral analysis. The sensor activity and the corresponding
motor output are plotted for 700 simulation cycles. L1 and L2 refer to the
light sensors, while F refers to the floor sensor. M1 and M2 correspond to
the motors of the two wheels, and S refers to the sound signalling. When S
is bigger than 0.5, the robot emits a signal.

3.5.3 Post Evaluation in the Minimal Simulator Environ-

ment

In order to test the performance of the controllers evolved, it is required to
perform a post evaluation. This is due to the possibility that the fitness of an
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evolved individual is overestimated. If this is the case, the post evaluation
will reveal it. Thus, we performed further analyses, by re-evaluating each
of the best evolved final generation individuals for 100 trials in each type
of environment (i.e., Env.A and Env.B). In each trial performed in Env.A,
we look at the robot’s capability to reach the light bulb (Succ.), without
incurring in any error. Errors can be of two types: E1 refers to the emission
of a sound signal, while E2 refers to crossing the black edge of the band.
Similarly, in Env.B, we look at the performance of the robot on properly
signalling the absence of the way in zone (Succ.), without committing any
error. Also in this case, two error types are possible: E3 refers to the lack
of sound signalling, and E4 refers to the robot crossing the black edge of
the band. Furthermore, in Env.B we also compute the offset between the
entrance position of the robot in the circular band and the position in which
the robot starts to signal. This measure, called offset ∆, is computed as
follows:

∆ = |α(te, ts)| − 2π, (3.4)

α(t1, t2) =

t2−1
∑

t=t1

ÂOB, A = Xt,B = Xt+1 (3.5)

where O corresponds to the position of the light, and α is the angular
displacement of the robot around the light from the starting position—the
position at time te when the robot enters into the circular band—to the
signalling position—the position at time ts when the robot starts signalling.
Angular displacement α is computed summing up all the convex angles
ÂOB comprised between two consecutive position of the robot Xt, taking
into account that an angle is negative if the robot moves clockwise. This
measure accounts for the capability of a robot for searching the way in zone.
Offset ∆ takes value 0 if the robot signals exactly after covering a complete
loop of the circular band. Otherwise, it gives the angular displacement from
this position. Negative values of the offset ∆ suggest that the robot signals
before having performed a complete loop, while positive values correspond
to the situation in which the robot has performed more than one loop around
the light, waiting too long to signal.

Table 3.1 refers to the post-evaluation results. As we can see, 17 out
of the 20 controllers perform well, having a very high success rate in both
Env.A and Env.B. In general, 18 out of the 20 controllers are able to perform
the discrimination task. It is worth noting that two of the controllers that
do not perform well, both fail to signal in Env.B (replications 12 and 18).
The errors of the rest of the controllers are mostly signalling errors (E1 and
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E3), while some replications of the experiments have a higher error rate
in crossing the black edge of the circular band. This is due mainly to a
tendency of the robots to approach the black edge while circuiting on the
band. Especially the controller in replication 11 has incured in this error lots
of times, making this controller almost unsuccessful in Env.B. Concerning
the offset ∆, most evolved controllers have a negative value, in general lower
than 80 degrees, meaning that all robots signal before having completed one
loop of the circular band. However, this offset can enough to discriminate
between Env.A and Env.B, as the way in zone is up to 90 degrees wide.
Only in one case, in replication 1 and 13, the robot is “prudent”: that is, it
signals only after having completed a loop around the light bulb. The only
times the robot signals at an angle smaller than -90 degrees are replications
11 and 18, which as we mentioned above are not successful. It is important
here to remind the reader that our fitness function described in detail in
Section 3.2.2 does not reward signalling exactly after a full loop, as the one
in Tuci et al. did. Yet, we managed to produce more successful controllers,
with the changes we implemented on some methodological issues.

3.5.4 Robustness of the evolved solutions

It is very important to acquire controllers that are able to adjust to varying
enviromental circumstances, that are able to display a satisfactory behavior
even in circumstances not encountered in evolution. As we criticized in
Section 2.3.6, Tuci et al. fail to produce controllers able to do so. Only
one out of the twenty controllers is able to display some generalization.
Therefore, we decided to test the best evolved controllers of the twenty runs
in an experimental setup where the distance between the light source and the
circular band varies between 20 and 60 cm, in Env.B. We measure the offset
of the robot as the forementioned distance varies. The results are diplayed
in Table 3.2. In general we can say that the closer to the light source is the
circular band, the earlier the robot emits the sound. The distance that the
robot has been travelling performing phototaxis until it reaches the black
band definitely plays a role in its subsequent behavior. The feeling of time
travelling in the band is not independent of the robot’s previous experience,
that is the time it travelled to arrive to the band. This is a result of network
configuration and choice. Furthermore, if the band is positioned closer to
the light, the light sensors of the robot once upon the band are more active.
We expect thus a different behavior if the robot is placed in an enviroment
different than the one in which it has been evolved. It is important to stress
the fact that the robot has not been evolved with a fitness function that
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Table 3.1: Post-evaluation. Performance of the ten best evolved controllers.
The percentage of success (Succ. %) and the percentage of errors (E1, and
E2 in Env.A, and E3, and E4 in Env.B, ) over 100 trials are shown for
both Env.A and Env.B. Additionally, the average offset ∆ and its standard
deviation (degrees) are shown for the environment type Env.B.

Post-Evaluation Results in the Minimal Simulation Environment

run Env.A Env.B

Succ. E1 E2 Succ. E3 E4 Offset ∆

(%) (%) (%) (%) (%) (%) Avg. Std

n. 1 78 0 1 100 0 0 16.40 45.03

n. 2 100 0 0 87 13 0 -8.15 47.90

n. 3 100 0 0 100 0 0 -47.86 9.83

n. 4 100 0 0 100 0 0 -78.99 14.58

n. 5 99 0 0 98 2 0 -28.89 17.44

n. 6 99 0 1 100 0 0 -71.84 25.91

n. 7 100 0 0 93 7 0 -19.97 15.62

n. 8 100 0 0 100 0 0 -28.41 15.49

n. 9 100 0 0 89 5 6 36.42 23.28

n. 10 100 0 0 100 0 0 -39.85 10.44

n. 11 100 0 0 54 8 38 -107.49 71.70

n. 12 89 0 0 0 100 0 -2.55 12.25

n. 13 100 0 0 98 2 0 30.24 19.72

n. 14 100 0 0 100 0 0 -21.40 12.55

n. 15 100 0 0 100 0 0 -1.16 22.41

n. 16 99 0 1 98 2 0 -0.62 37.90

n. 17 100 0 0 99 1 0 -58.19 25.39

n. 18 96 0 3 0 100 29 -102.57 57.72

n. 19 100 0 0 100 0 0 -36.10 7.95

n. 20 94 0 0 99 1 0 -68.15 19.32

would favor its signalling with zero offset.
We can notice that there are a lot of controllers that are able to display

a good behavior, for a lot of distances, contrary to the results of Tuci et al.
Of course, Tuci et al. present in their results smaller errors for the “bad per-
forming” controllers, but we remind the reader here that our fitness function
did not reward exact signalling. Another general remark is that in our re-
sults they almost all fail when the band is positioned very close to the light,
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Table 3.2: Robustness analysis. Performance of the twenty best evolved
controllers. The average offset of 100 evolutionary runs is given for the
mentioned distances between the circular band and the light.

Robustness Analysis

run 20 25 30 35 40 45 50 55 60

1 495.88 375.90 183.21 62.28 18.13 -29.89 -149.03 -216.52 -228.68

2 -336.70 -346.56 -42.39 37.12 -12.90 -54.54 -41.04 -64.81 -83.73

3 -258.39 -219.49 -62.47 -18.30 -53.66 -78.09 13.97 -9.04 -27.20

4 -297.15 -343.73 -193.25 -32.21 -82.33 -134.39 -69.30 -66.60 -85.06

5 -346.36 -340.60 -101.55 11.76 -26.96 -49.27 -68.22 -81.20 -91.74

6 -43.15 20.76 15.44 -33.93 -72.28 -62.15 -74.20 -98.83 -118.44

7 -57.75 -79.16 72.67 22.70 -15.93 -46.20 -56.97 -73.77 91.81

8 -159.55 -182.58 -47.90 24.34 -30.34 -67.88 -32.55 -50.43 -65.23

9 432.50 312.10 167.09 83.69 35.01 1.09 11.06 -15.64 -38.37

10 82.22 69.18 43.91 -1.05 -36.29 -42.02 -57.71 -80.44 -99.29

11 -322.44 -332.44 -124.27 -68.14 -106.32 -150.58 -36.48 -55.62 -73.28

12 -356.13 -355.99 -355.74 -167.97 -3.38 -34.69 -79.94 -175.94 -200.85

13 -175.53 -242.47 -155.63 79.48 30.53 -10.77 17.36 -25.29 -54.62

14 -253.24 -41.58 57.42 12.09 -22.38 -41.10 -90.80 -103.97 -115.43

15 -74.19 -126.56 56.72 32.08 -0.30 -28.22 -36.15 -56.88 -96.15

16 263.80 225.88 163.90 57.61 -2.86 -47.91 -123.25 -139.07 -151.85

17 -348.21 -345.60 -282.34 -11.84 -63.76 -106.50 -138.68 -180.32 -203.69

18 8.37 -118.91 -65.88 -92.18 -108.91 -130.78 -169.82 -337.55 -341.41

19 -344.55 -344.31 -318.16 -1.67 -43.29 -80.16 -32.54 -51.80 -68.30

20 -308.60 -318.03 -13.27 -30.96 -69.84 -87.39 -50.85 -66.83 -79.52

namely 20 or 25 cm away from it. On the other hand, they seem to perform
very well in distances bigger than the one for which they were evolved (40
cm). Runs no. 2, 5, 7, 8, 10, 15, 19, 20 seem to perform well, especially for
distances bigger than 40 cm. It is possible that when the band is positioned
very close to the light, the light sensors activation is too high, affecting in
a negative way the performance of the robot. What is also surprising is
that sometimes the controllers perform better for distances other than 40
cm than for the latter distance. Finally, in Figure 3.7, we show the boxplot
for run 20, one of the most successful ones.

3.5.5 Post Evaluation in SWARMBOTS3D

In this section, we present the results obtained by post-evaluating in
SWARMBOTS3D the best individual of the final generation of run no. 14,
one of the most successfull ones, as we can see in Table 3.1. The robot was
100% successful in both enviroments and had an average offset ∆ of -21.40
degrees. As we mentioned in Section 3.1, the criteria for judging the quality
of the porting from the one simulator to the other must be relevant to the
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Figure 3.7: Robustness analysis for run no.20. The offset ∆ is plotted for
varying light-band distance. The box-plot shows 100 evaluations per box.
Boxes represent the inter-quartile range of the data, while the horizontal
bars inside the boxes mark the median values. The whiskers extends to the
most extreme data points within 1.5 of the inter-quartile range from the
box. The empty circles mark the outliers.

task the robot has to carry out. We must not demand the robot to have an
identical behavior in the two very different simulators. Therefore, we will
once again perform a post-evaluation where we extract the same informa-
tion as in Section 3.5.3, namely in Env.A the robot’s capability to reach the
light bulb (Succ.), without incurring in any error, errors E1 and E2 and for
Env.B, we look at the performance of the robot on properly signalling the
absence of the way in zone (Succ.), without committing any error and the
two possible error types, E3 and E4. Furthermore, in Env.B we once again
compute the offset ∆.

The initial evaluations were performed with exactly the same settings
used in the Minimal Enviroment were the controller was also evolved. There-
fore, we used the same initial orientation for the robot, thus between -120
and 120 degrees (see Figure 2.1) and the same amount of timesteps for the
lifetime of the robot, so 700. The initial results were quite disappointing.
What we found out was that due to acceleration, inertia and friction, the
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robot lost a lot of time trying to orient itself correctly towards the light and
then perform phototaxis. In fact, the robot moved towards the light bulb
in both simulators with his back turned to the light. This is the solution
evolution found for our problem. Therefore, placing the robot in a position
facing the light, even with some variability, caused a spinning of the robot
in order for the correct orientation to be found and then for phototaxis to
be performed. Of course, this was also the case in the Minimal Simulator
enviroment, but in this case, the acceleration, inertia and friction seemed to
cause a very annoying delay in the beginning of the robot’s lifetime. In order
to confirm our hypothesis that the initial orientation matters, we conducted
the same evaluation for three different configurations:

• orientation π: the robot is placed in a position facing the light, the
most inappropriate for phototaxis

• orientation π+[-120,120]: the robot is placed in the original orientation

• orientation 0: the robot has its back turned to the light, having the
most appropriate orientation for phototaxis.

As we can see in Table 3.3, our hypothesis was confirmed. The robot
performed well only in the latter of the three cases, behaving extremely bad
for the π orientation.

Looking at the results for the robot facing the light, we see that it was
not able to signal in any of the 100 trials. Looking at the behavior of
the simulated robot, it was obvious that because of the totally unfavorable
initial orientation and the disruptive effect of dynamics in the phase where
the robot tried to find a suitable orientation to perform phototaxis, the
robot’s lifetime was not enough for it to perform a complete loop around
the light and thus discriminate between the two enviroments, thus emitting
a sound. Therefore, we decided to perform some more experimentation,
this time varying the timestep value, from the initial 700 value up to its
double, 1400. As we can see in Table 3.3, the performance of the robot
improves significally if its lifetime is increased above 800 timesteps, even for
unfavorable initial orientations.

The conclusions we can draw from this post-evaluations is that it is
possible to compare the results obtained in the two enviroments, but we
have to be very careful because the influence of parameters that are not
so important in the Minimal Simulation case, like the initial orientation, is
affected by dynamics. Since that must be a value that is identical when
we make a comparison between the two series of results, we have to give
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the robot a longer lifetime if evaluated in the SWARMBOTS3D simulator.
We can see that the performance is definitely comparable to the one in the
Minimal Simulator case. What is also astonishing is the fact that the robot
never crosses the black band in this case too, which is due to the noise on the
floor sensor, the bigger proportion of Env.A encountered during evolution
and the varying amplitude of the way in zone. Finally, the average offset
∆ value is almost identical to the one obtained in the post-evaluation with
the Minimal Simulator. This is almost a surprising result which proves that
indeed the only discrepancy present between the two simulated behaviors
lies in the initialisation of the robot and the effect of 3D dynamics and
kinematics in its repositioning—which can be minimized by allowing the
robot to live longer in the 3D case.
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Table 3.3: Post-evaluation in SWARMBOTS3D. The percentage of success
(Succ. %) and the percentage of errors (E1, and E2 in Env.A, and E3,
and E4 in Env.B, ) over 100 trials are shown for both Env.A and Env.B.
Additionally, the average offset ∆ and its standard deviation (degrees) are
shown for the environment type Env.B. These values are displayed for vari-
ous timesteps and initial robot orientations.

Post-Evaluation Results in SWARMBOTS3D

orientation timestep Env.A Env.B

Succ. E1 E2 Succ. E3 E4 Offset ∆

(%) (%) (%) (%) (%) (%) Avg. Std

0 700 93 0 0 88 12 0 -22.59 34.90

0 800 100 0 0 95 3 0 -21.07 34.52

0 900 100 0 0 96 3 0 -20.95 34.56

0 1000 100 0 0 95 0 0 -20.95 34.56

0 1100 100 0 0 92 1 0 -20.95 34.56

0 1200 100 0 0 82 0 0 -20.95 34.56

0 1300 100 0 0 79 3 0 -20.95 34.56

0 1400 100 0 0 71 0 0 -20.95 34.56

π 700 62 0 0 0 100 0 - -

π 800 65 0 0 59 41 0 -15.52 46.97

π 900 93 0 0 92 4 0 4.13 25.24

π 1000 96 0 0 98 1 0 5.72 18.19

π 1100 97 0 0 94 0 0 5.89 17.48

π 1200 99 0 0 94 0 0 5.89 17.48

π 1300 99 0 0 87 0 0 5.89 17.48

π 1400 99 0 0 86 1 0 5.89 17.48

π+[-120,120] 700 94 0 0 58 40 0 -7.43 38.94

π+[-120,120] 800 100 0 0 93 5 0 0.47 33.5

π+[-120,120] 900 100 0 0 98 0 0 1.93 31.87

π+[-120,120] 1000 100 0 0 95 0 0 1.93 31.87

π+[-120,120] 1100 100 0 0 93 0 0 1.93 31.87

π+[-120,120] 1200 100 0 0 87 0 0 1.93 31.87

π+[-120,120] 1300 100 0 0 80 1 0 1.93 31.87

π+[-120,120] 1400 100 0 0 72 2 0 1.85 31.72



Chapter 4

Evolving communicating

agents that integrate

information over time

In this chapter we present a second set of experiments we conducted, of
a much more complicated nature. Two s-bots have to integrate over time
their perceptual experience and communicate the result to the other robot,
resulting in a cooperative behavior. The robot that has first finished its
integration of its perceptual state must inform the other member of the
group—in case of absence of a way in zone, by signalling. Therefore, the
actions of each robot are now affected by the perceptual state of the other
member of the group. Finally, the robots are required to adjust their strategy
after a signalling behavior has been triggered by either robot and go away
from this inaccessible light source. It is important to notice that the latter
behavior is reactive, since the robots simply react to an enviromental signal.

Evolution must find a solution by evolving a single neural network that
controlls two robots, which must successfully alternate between reactive and
non-reactive behaviors. Furthermore, the controller should be able to dis-
play even contradictory behaviors, that is going towards and away from the
light source. Finally, the robots should quit their current activity and pur-
sue another, once the communication signal is transmitted. These points
illustrate the difficulties and challenges of the task.

We present in detail the simulation, the evolutionary algorithm, the neu-
ral controller and the evaluation function used for this experiment and in the
end we present and analyse the results obtained. Furthermore, we compare
once again the post evaluation results obtained with the Minimal Simulation

52
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approach with the ones obtained in SWARMBOTS3D.

4.1 The Task

This task is inspired by two distinct sources. The first one is the final
scenario depicted in Figure 1.3 and described in [15]. A desired property of
an explorer robot is to be able to communicate to the other members of the
swarm the results of his search. More specifically, in case a trough is detected
by a robot, this robot should inform the swarm about the nature of the
trough, so if it can be traversed by a single s-bot or if there is a way in zone,
in order to pass to the other side. Since we have to allocate our resources
in the best possible way to achieve an optimal use of the number of s-bots
available, we want to avoid having more than one robots reaching to the same
conclusions about the same part of the explored enviroment. The second
source of inspiration is biology. Animals that forage in a heterogeneous
environment, where resources are distributed in patches, are required to
make “complex decisions” such as the patch in which to forage, and at
which moment in time it is better to leave and travel to another patch.
To make such decisions, animals need to acquire relevant information from
their environment. Afterwards, through stigmergic or direct communication
they communicate their decision to the other members of the colony. A
general problem common to biology and robotics concerns the definition of
the mechanisms necessary to decide when it is better to pursue a particular
action in a certain location and at which moment in time it is better to leave
for pursuing a similar or a different activity in a similar or different location.

Once again, we are going to make use of the Minimal Simulation ap-
proach. This time though, we have to overcome certain obstacles. Since two
robots are present in the enviroment, we are probably going to face collisions
between them. A physics-based 3D simulator can take care of the collisions
since the two robots are modelled like dynamical bodies. In our Minimal
Simulation approach we are not using any forces, therefore we have to evolve
robots that can perform obstacle avoidance, thus avoiding the other robot.
In order to be able to do this, we have to use simulated proximity Infra-Red
sensors, along with the other sensors used also in the Tuci et al. experiment,
so that the robots can “sense” each other. The robots perceive the light
through their ambient light sensors, positioned 45 degrees left and 45 de-
grees right with respect to their heading. Light levels alter depending on the
robots distance from the light. The colour of the arena floor is once again
white, except for a circular band, centered around the lamp, within which
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the floor is in shades of grey. The circular band covers an area between
40 cm and 60 cm from the light; the floor is black at exactly 40 cm from
the light; the grey level decreases linearly with the distance from the light.
Again the robots perceive the colour of the floor through their floor sensor,
positioned on their bellies, which outputs a value scaled between 0—when
the robots are positioned over white floor—and 1—when they are over black
floor. The robots are also equipped with a sound sensor, which is binary
and is set to 1 if any robot is signalling (including the robot itself), and to
0 if no robot is signalling. This sensor will implement communication.

Concerning the robot’s controller, this time we decided not to use more
neurons than the sum of inputs and outputs of the network, as was done by
Tuci et al.. The reason is that with the use of IR proximity sensors and the
extra communication sound sensor, the network has become already quite
big. Therefore, it will be harder for evolution to find the solution, given
that the search space has singifically grown. So, our genotype is a vector
comprising 144 real values (121 connections, 11 decay constants, 11 bias
terms and a gain factor).

At the beginning of each trial, two simulated s-bots are positioned within
a boundless arena, one of them at about 85 cm west of the light bulb, with a
randomly determined orientation chosen between north-east and south-east
(see Figure 2.1 left), and one at about 115 cm west of the light bulb, with
the same random orientation.

Similar to Tuci et al., there are two types of environment. In Env.A the
band presents a discontinuity—a way in zone (see Figure 2.1, left). In Env.B
the band completely surrounds the light (see Figure 2.1, right). The way in
zone represents the path along which the robots are allowed to safely reach
the light in Env.A. Successful robots should prove capable of performing
phototaxis as well as looking for the way in zone, avoiding to cross the
black edge of the band. Such robots should always reach the light in Env.A,
avoiding crashing with each other. On the contrary, in Env.B, the robots
should, besides avoiding to cross the black edge, signal the absence of the
way in zone by emitting a tone. Furthermore, they have to react to the
latter signal—no matter from which robot it came from— and move away
from this light source which does not present a way in zone.

4.2 The Simulation

During the evolution, each genotype is coded into a robot controller, and
is evaluated 15 times, 12 times in Env.A and 3 times in Env.B. We use
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this proportions once again, as they led to more robust controllers in the
replication of the Tuci et al. experiment. At the beginning of each trial, the
neural network is reset—i.e., the activation value of each neuron is set to
zero. Each trial differs from the others in the initialisation of the random
number generator, which influences the robots’ starting position and orien-
tation, the position of the way in zone, and the noise added to motors and
sensors. For each trial in Env.A, the position of the way in zone is varied
to facilitate the evolution of robust navigational strategies. Its amplitude
varies within the interval [π

6
, π

2
]. Once, again we choose a varying amplitude

since it contributed to obtaining more robust controllers in our replication
of Tuci et al.. Within a trial, the robot life-span is 280 seconds (1400 sim-
ulation cycles). A trial is terminated earlier if both robots cross the black
edge of the band (see dashed arrows in Figure 2.1) or because both reach an
Euclidean distance from the light higher than 140 cm. In each trial e, the
robots are rewarded by the average of the values of the fitness function of
the two robots. This way we ensure that in order to result in a successful
behavior, both robots must perform well.

In case the robots are situated in Env.A, they are each rewarded by
function fe1 which corresponds to the sum of the following two components:

1. Rmotion—This component rewards movement toward the light bulb,
and it is computed as:

Rmotion =
di − df

di
(4.1)

where di and df represent respectively the initial and the final Eu-
clidean distance between the robot and the light bulb. In Env.A, df

is set to 0 if the robot is less than 15 cm away from the light bulb.

2. Rsignal—This component rewards agents that do not signal. The com-
ponent is computed as:

Rsignal =

{

1 if no signalling
0 otherwise

(4.2)

In case the robots are situated in Env.B, they are each rewarded by
function fe2 which corresponds to the sum of the following two components:

1. Rmotion—This component rewards movement toward the light bulb,
if none of the robots have signalled, and moving away from the light
bulb if any of the two robots has signalled. It is computed as:
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Rmotion =

{

di−df

di
if no robot has signalled

df

dmax
if any robot has signalled

(4.3)

where di and df represent respectively the initial and the final Eu-
clidean distance between the robot and the light bulb and dmax is the
maximum distance the robot is allowed to go away from the light.
This will ensure that the robots will go away from the light after one
of them has emitted a sound communicating that there is no way in
zone, and reach a distance from it equal to 140 cm for this simulation.
Df is set to 0 when the robot is on the circular band in shades of grey.

2. Rsignal—This component rewards agents that signal. The component
is computed as:

Rsignal =

{

1 if any robot signalled
0 otherwise

(4.4)

Notice that the evaluation function used is identical to the one used in
Section 3.2.2 (equation 3.2), when the robots are located in Env.A. On the
other hand, if the robots are situated in Env.B, Rmotion is different in the
sense that if any of the two robots has signalled, it changes and instead
of rewarding phototaxis, it rewards the opposite behavior. Also, Rsignal is
different in the sense that each robot does not only get rewarded by its own
action of emitting a sound, but also by the other group member’s action. The
evaluation function described above is very simple, being the least explicit
possible. Even though component Rsignal for Env.B could be made more
explicit punishing robots that both finish the loop and signal, ignoring the
communication signal, we let evolution free to explore the search space,
which for this experiment is very big.

In order to evolve robot-robot avoidance, we punish the robots whenever
they approach each other below a critical distance. The more the robots
fall into thar error during their lifetime, the more they are punished. The
maximum number of virtual crashes we allow is set to 3 and above this
value the robots die being punished very severely, rewarded very poorly by
the evaluation function. Since they are initialised quite far from each other
in order to ensure that one of them will be able to finish its integration
earlier than the other and signal first—in Env.B—, the only time the robots
really interact is when they are located in Env.A and very close to the light—
having both found the way in zone. We let the robots interact in this area
for a long interval in order to ensure that they evolve robot-robot avoidance.
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4.3 Results

We ran 10 evolutions, each with a different random initial seed, for 5000
generations. In eight of them, the maximum fitness value of around 2 was
achieved. Two runs did not find the solution, and evolution was stuck at a
point where the robots fail to signal the absence of a way in zone. Figure 4.1
shows the fitness of the best individual and the mean population fitness
plotted against the generation number (5000) and averaged over the 10
replications. We can notice that the average fitness of the best individuals of
all replications is slightly over 1.9, which is normal if we take into account the
fact that the two unsuccessful controllers had a fitness of 1.8. Of course, post-
evaluation will reveal once again if some controllers were lucky in obtaining
the maximum fitness value and if there are drawbacks in their behavior.

Figure 4.1: The Fitness during the evolution. The top thin line corresponds
to the fitness of the best individual, while the dotted line refers to the average
fitness of the population.

4.3.1 Post-Evaluation in the Minimal Simulator

In order to test the performance of the controllers evolved, it is required to
perform a post evaluation. This is due to the possibility that the fitness of an



CHAPTER 4. EVOLVING COMMUNICATING AGENTS 58

evolved individual is overestimated. If this is the case, the post evaluation
will reveal it. Especially in our case, sometimes the robots might have
been lucky without ever crashing against each other during their lifetime, or
without ever crossing te black edge. Thus, we performed further analyses,
by re-evaluating each of the best evolved final generation individuals for 100
trials in each type of environment (i.e., Env.A and Env.B). In each trial
performed in Env.A, we look at the two robots’ capability to both reach
the light bulb (Succ.), without incurring in any error. Errors can be of two
types, for each robot: E1 refers to the emission of a sound signal and E2
refers to crossing the black edge of the band. The results are displayed in
Table 4.1. In Env.B, we look at the performance of the two robots in the
following way: We measure the times the complete task is successful, that is
the first robot to reach the band properly signals the absence of the way in
zone and then both robots leave the grey zone and end up in a distance of
140 cm away from the light source, without committing any errors (Succ.).
We also measure the reaction time for each robot (react), that is the number
of timesteps required by each robot to get out of the circular band in shades
of grey in order to go away from this light source. In this case, three error
types are possible: E3 refers to the lack of sound signalling by the first robot
(we do not care if the second robot signals or not), E4 refers to the robots
crossing the black edge of the band and E5 for each robot refers to the times
they end up at a different distance from the light source than the desired
value of 140 cm. Finally, in Env.B we also compute the offset between the
entrance position of the robot arriving to the circular band first and the
position in which this robot starts to signal. This measure, called offset ∆,
is computed as in equation 3.4. The results are displayed in Table 4.2.

We can see from the results that it was not an easy task for evolution
to find a solution for our task. Especially the fact that we require the
robots to perform both phototaxis and go away from the light, and those
contradictory behaviors to be both displayed by the same controller makes
the task difficult. Evolution has to shape one single neural network for two
robots that manage to display a very robust transition between reactive and
non-reactive behaviors. Robots are also required to rapidly quit their current
action and switch to another once they hear a communication signal emitted
by the other member of the group. Nevertheless, evolution managed to find
four controllers, namely the ones produced in runs no. 3, 7, 8 and 10 that
perform very well. The errors are very few and the Succ. rate is high and
could have been almost maximal if the robots did not crash sometimes when
located in the vicinity of the light source in Env.A. Of course, these crashes
are virtual and it would be better to use the expression of approaching each
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other more than a critical distance. It is worth noting at this point that
in almost all runs we have some crashes, but it is rather difficult to evolve
robots that are required to be both in a distance smaller than 15 cm from
the light source, given that their diameter is already 5.8 cm. Reaction time
for the latter controllers is quite small and the average value of the offset
∆ is excellent for runs no. 7 and 8, good for run no. 3 but big for run
no. 10, since the way in zone’s amplitude varies up to 90 degrees. Also,
the robots almost always end up in the desired distance from the light, that
is the number of E5 is very low. Runs no. 2 and 6 perform fine, but the
number of E4 and E5 is rather high. Run no. 4 is unsuccessful, but looking
at the evolved behavior in our simulated 2D environment we found out that
evolution found a solution that under some circumstances was evaluated
with the maximum score, despite the fact that it was not optimal. The
robots signal before reaching the black band, and then immediately go
further away from the light source, reaching the distance they are supposed
to, in all trials in Env.B. Also, in Env.A, we can see that in many trials
the robots erroneously emit sound. Finally, the fact that it is hard for
evolution to shape a network able to display two contradictory behaviors—
going towards and away from the light—is illustrated in the results of run
no. 5. The performance is optimal, except for the fact that the robots in
all cases fail to reach the desired distance from the light (140 cm). On the
contrary, they start spinning at a smaller distance to it and afterwards the
going away behavior is disrupted.

Concerning communication, it is evident that in the vast majority of
the cases the robots react very quickly to the signalling. Notice that we
measure the simulated timesteps they spend to go out of the circular band
in shades of grey. An average of 45 timesteps corresponds to 4.5 seconds to
leave the black band, which is a very fast reaction. We remind the reader
that the robots are required to disrupt their action of looping around the
light staying inside the grey circular band and then signalling the absence
of a way in zone. They must pursue a very different action from that point
on, which is not based on constant light readings anymore (see Section 3.5.2
and Figure 3.6).

Finally, regarding the times the robots cross the black band, we notice
that in our experiment, this number is higher than in the replication of Tuci
et al.. One explanation for this is that the robots are initialised with an
average distance of 30 cm between them. As we saw in Section 3.5.4, the
distance to the lights for which the robots are evolved is crucial, and when
placed in varying distances, their performance—in general—drops. In our
case, one single network should control two robots that must perform the
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same task, but under very different conditions. The distance the one robot
must cover in order to reach the circular band in shades of grey is much
bigger than the one the other has to cover.

Table 4.1: Post-evaluation in the Minimal Simulation environment. Per-
formance of the ten best evolved controllers in Env.A. The percentage of
success (Succ. %) and the percentage of errors E1 and E2 over 100 trials are
shown for both robots. Robot 1 is initialised closer to the light source.

Post-Evaluation Results in
the Minimal Simulation Environment

Env.A

run Succ. E1 E2

r1 r2 r1 r2

(%) (%) (%) (%) (%)

n. 1 85 0 0 0 0

n. 2 92 0 0 0 0

n. 3 88 0 0 1 0

n. 4 62 31 31 3 4

n. 5 94 0 0 0 0

n. 6 98 0 0 1 1

n. 7 76 0 0 0 0

n. 8 94 0 0 1 0

n. 9 94 0 0 0 0

n. 10 92 0 0 0 0

4.3.2 Post-Evaluation in SWARMBOTS3D

As we did in Chapter 3 and with the replication of the Tuci et al. experiment,
we are interested in re-evaluating the controllers evolved in the Minimal
Simulation environment in SWARMBOTS3D. To do so, we will extract the
same information as in Section 4.3.1. We re-evaluate 100 times again in
Env.A and 100 times in Env.B the best controllers of run no. 10, one of
the most successful runs over all. In Table 4.3 we can see the results of the
post-evaluation in Env.A, and in Table 4.4 the results for Env.B.

As we can see, in Env.A, the controller controllers behaves in a very
similar manner in both simulators (see also Table 4.1). The success rate is
high in both cases and the number of errors is almost identical. Again, the
cases where the robots do not succeed usually are caused by crashes around
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Table 4.2: Post-evaluation in the Minimal Simulation environment. Per-
formance of the ten best evolved controllers in Env.B. The percentage of
success (Succ. %), the reaction time, the percentage of errors E3, E4 and
E5 over 100 trials are shown for both robots. Additionally, we show the
average offset ∆ and its standard deviation (degrees) for the first robot that
completes the loop. Robot 1 is initialised closer to the light source.

Post-Evaluation Results in the Minimal Simulation Environment

Env.B

run Succ. react E3 E4 E5 Offset ∆

r1 r2 r1 r2 r1 r2 Avg. Std

Avg. Std Avg. Std

(%) (%) (%) (%) (%) (%) (%) (%) (%) (%)

1 0 — 100 0 0 —

2 50 96.9 51.7 104.13 50.02 0 21 30 2 2 -86.71 54.86

3 95 65.23 25.98 67.02 28.98 0 2 3 0 0 -71.30 89.29

4 0 — 0 7 8 5 4 —

5 0 113.17 35.62 118.13 29.12 0 0 0 100 100 -28.45 67.95

6 67 60.61 48.26 61.68 41.81 6 4 16 9 3 0.59 119.68

7 96 45.04 83.97 38.30 13.14 1 0 0 2 1 -30.34 122.50

8 90 46.31 11.29 45.98 10.53 1 3 5 1 0 -27.36 90.08

9 0 — 100 0 1 —

10 100 74.1 17.67 73.8 16.58 0 0 0 0 0 -113.74 98.64

the light source, after the way in zone is found by both robots.
In Env.B though, things are not that similar (see also Table 4.2). The

success rate is again 100% no errors are made, the reaction time is almost
identical, but we see a very big discrepancy in the value of the offset ∆.
When re-evaluated in the minimal simulator environment, the robot ini-
tialised closer to the band was signalling on average too early. On the other
hand, when re-evaluated in SWARMBOTS3D, it is signalling too late. For
reasons discussed in Section 3.5.5, the initial orientation of the robots, being
π+[-120,120], is disrupting phototaxis and causes a lot of problems in the
physics-based 3D environment. Also, as we saw in Section 4.3.1, the fact
that the robots are initialised with an average distance of 30 cm between
them, affects their performance. More specifically it is more difficult for the
robot to reach the band first, to signal at the right moment the absence
of a way in zone, since one single network should control two robots that
must perform the same task, but under very different conditions. If we take
into account the disruptive effect of dynamics in the phase where the robots
have to adjust their orientation and perform phototaxis, we can explain the
very big discrepancy in the values of the offset ∆ in the two simulated envi-
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ronments. Finally, as mentioned in Section 3.5.5, the feeling of time is not
independent of the previous experience, that is the robot’s memory while
on the band is affected by the time it has been moving to get there.

It is clear that this time it is much more challenging to acquire similar
results when testing an evolved controller in the two simulated environments.
In this complex task we have to use parameters that worsen the performance
of the controller in the physics-based 3D environment, like the difference in
the initial distances. It is possible that modifying some parameters—like we
did in Section 3.5.5—might lead to more consistent results. But this study
is out of the scope of this work and was not performed.

Table 4.3: Post-evaluation in SWARMBOTS3D. Performance of one evolved
controller in Env.A. The percentage of success (Succ. %) and the percentage
of errors E1 and E2 over 100 trials are shown for both robots. Robot 1 is
initialised closer to the light source.

Post-Evaluation Results
in SWARMBOTS3D

Env.A

run Succ. E1 E2

r1 r2 r1 r2

(%) (%) (%) (%) (%)

n. 10 89 0 0 0 0

Table 4.4: Post-evaluation in SWARMBOTS3D. Performance of one evolved
controller in Env.B. The percentage of success (Succ. %), the reaction time,
the percentage of errors E3, E4 and E5 over 100 trials are shown for both
robots. Additionally, we show the average offset ∆ and its standard de-
viation (degrees) for the first robot that completes the loop. Robot 1 is
initialised closer to the light source.

Post-Evaluation Results in SWARMBOTS3D

Env.B

run Succ. react E3 E4 E5 Offset ∆

r1 r2 r1 r2 r1 r2 Avg. Std

Avg. Std Avg. Std

(%) (%) (%) (%) (%) (%) (%) (%) (%) (%)

10 100 69.86 1.03 58.40 8.50 0 0 0 0 0 72.62 14.00
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Conclusions

In this work we addressed the problem of defining the control system for a
group of autonomous robots that have to deal with a non-reactive task. We
successfully designed neural controllers for robots that integrate over time
their perceptual experiences in order to initiate alternative actions. We made
use of techniques derived from Artificial Evolution, and we showed how they
can produce simple but effective and robust solutions. One of the interesting
points that came up during our experiments was the problem of choosing the
nature of the simulator in which we evolved our controllers, having to choose
between a 3D physics-based environment taking into account dynamics and
forces, and a Minimal Simulator—a much faster method. The latter solu-
tion was chosen since our task did not require forces in order to be solved
and since we proved that with the correct modifications, the controllers it
produces can perform equally well in a realistic simulated enviroment.

5.1 Results

We ran two sets of experiments. The first one was a replication of the ex-
periment of Tuci et al., in order to port its results in the SWARM-BOTS
project context. In this experiment, a robot must integrate over time its
perceptual experience, thus “feeling” the flow of time. Changes in various
methodological aspects were made in order to produce more robust solutions
and better-performing controllers. Initially, we tried to evolve the controllers
in a physics-based 3D enviroment, but since this method was not efficient
enough as far as time and computational power are concerned, it was aban-
doned. We turned to the Minimal Simulation approach, which was able
to rapidly produce robust solutions. These solutions were able to perform
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equally well when tested in a realistic simulated environment, revealing the
power of the Minimal Simulation approach.

The second experiment was an extension of the latter experiment, more
suited for a collective robotics scenario. Two robots were able to integrate
over time their perceptual experience and communicate the result to the
other member of the group, resulting in an alternative action. The simu-
lated robots managed to display a very robust transition between reactive
and non-reactive behaviors. Once again, we used the Minimal Simulation
approach.

One of the major achievements of this work is the fact that we managed
to design one controller able to display a very complex behavior. The
controller can trigger even contradictory behaviors, namely phototaxis and
going away from the light source, depending on a decision it has to make.
Robots can also rapidly quit their current action and switch to another
once they hear a communication signal emitted by the other member of the
group. Of course, there are other ways of designing a control system for
robots having to perform the task we described, like hand-crafting parts of
the solution. We cannot prove that our approach is better, but we proved
that our approach was successful, even though it is time-consuming and not
trivial to synthesize an integrated (not modularised) neural network through
an evolutionary process. Our contribution to the literature is that we showed
that evolution can produce robust solution for a complex task like the one
we described.

This experiment finally is a very important first step towards the real-
ization of a complex SWARM-BOTS project scenario. We have designed
a decision-making mechanism that with the use of communication will be
very useful to the swarm-bot, since the s-botswill often be required to make
complex decisions based on their perception of the environment.

5.2 Future Work

Our work can be extended in various directions. The first and most obvious
is a collective robotics one, like the task the swarm-bot has to carry out
in the scenario described in [15]. It would be of particular interest to have
robots that are able to aggregate or self-assemble after one of them realises
that the trough it discovered cannot be traversed by one robot. Also, if
the knowledge every robot gathers about its environment is communicated,
we will have a better allocation of resources, exploiting the s-bots more
efficiently. Another direction is more biology-inspired, specifically by patch
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foraging. It would be interesting to see if robots that leave a light source
that is not accessible can locate and approach other, accessible light sources,
by exploring their environment. The inspiration is animals that leave a food
source they cannot exploit and look for others in their environment. Finally,
we could also move in the direction of exploring the use of communication.
If the sound sensor is made distance or direction-dependent, we can be able
to coordinate the movement of the two robots in various manners, enriching
the repertoire of behaviors they can exhibit.

Nevertheless, as in any robotics study, the ultimate challenge is to be
able to port the results obtained in simulation on real robots. In order to
be more confident that we will be successful, we have to perform some fur-
ther experimenting and apply several changes. Sensorial information must
become more realistic, especially concerning the sensor that encodes the
status of the enviromental cue used for discrimination between different en-
viroments, that is the floor sensor, and the sound sensor that implements
communication between the robots. The floor sensor can be one of the 15
infra-red proximity sensors mounted on the real s-bot. The sound sensor
can be one or a combination of the four sound sensor mounted on the s-bot.
Furthermore, the simulated robot model used has to be closer to reality.
Since the SWARMBOTS3D simulator provides a detailed simulated s-bot
which models very closely the real robot, we will run our experiments with
that model. Finally, methodological aspects during evolution might need
reconsideration in order to achieve more robustness. Specifically, we would
like to make the “feeling of time” independent of previous—irrelevant to
the task—experience, but only dependent of the environmental cue used for
discrimination.
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September 2002. University of Zurich.

[41] S. Murata, H. Kurokawa, and S. Kokaji. Self-Assembling Machine.
In E. Straub and R. Spencer Sipple, editors, Proceedings of the In-
ternational Conference on Robotics and Automation. Volume 1, pages
441–448, Los Alamitos, CA, USA, May 1994. IEEE Computer Society
Press.

[42] S. Nolfi. Evolving Non-Trivial Behavior on Autonomous Robots: Adap-
tation Is More Powerful Than Decomposition and Integration. In
T.Gomi, editor, Evolutionary Robotics, pages 21–48. AAI Books, On-
tario (Canada), 1997.

[43] S. Nolfi. EvoRob 1.1 User Manual. Institute of Psychol-
ogy, National Research Council (CNR), 2000. Available at
http://gral.ip.rm.cnr.it/evorobot/simulator.html.

[44] S. Nolfi. Evolving Robots Able to Self-Localize in The Environment:
The Importance of Viewing Cognition as The Result of Processes Oc-
curring at Different Time Scales. Connection Science, 14(2):231–244,
2002.

[45] S. Nolfi and D. Floreano. Evolutionary Robotics: The Biology,
Intelligence, and Technology of Self-Organizing Machines. MIT
Press/Bradford Books, Cambridge, MA, USA, 2000.

[46] S. Nolfi and D. Marocco. Evolving Robots Able to Integrate Sensory-
Motor Information over Time. Theory in Biosciences, 120:287–310,
2001.



BIBLIOGRAPHY 71

[47] D. Parisi, F. Cecconi, and S. Nolfi. Econet: Neural Networks that Learn
in an Environment. Network, 1:149–168, 1990.

[48] E. Parker. ALLIANCE: An Architecture for Fault Tolerant Multirobot
Cooperation. IEEE Transactions on Robotics and Automation, 14:220–
240, 1998.

[49] L.E. Parker, G Bekey, and J Barhen, editors. Distributed Autonomous
Robotic Systems 4. Springer, Tokyo, Japan, 2000.

[50] D. Payton, R. Estkowski, and M. Howard. Compound Behaviors in
Pheromone Robotics. Robotics and Autonomous Systems, 44(3-4):229–
240, 2003.

[51] P. Pirjanian, C. Leger, E. Mumm, B. Kennedy, M.Garrett, H. Aghaz-
arian, S. Farritor, and P.Schenker. Distributed Control for a Modular,
Reconfigurable Cliff Robot. In Proceedings of the IEEE International
Conference on Robotics and Automation (ICRA ’02), 2002.

[52] M. Quinn. Evolving Communication Without Dedicated Communica-
tion Channels. In J. Kelemen and P. Sosik, editors, Advances in Arti-
ficial Life: Sixth European Conference on Artificial Life (ECAL 2001),
pages 357–366, Berlin, 2001. Springer-Verlag.

[53] M. Quinn, L. Smith, G. Mayley, and P. Husband. Evolving Team-
work and Role Allocation With Real Robots. In R.K. Standish, M.A.
Bedau, and H.A. Abbass, editors, Proceedings of the 8th International
Conference on Artificial Life, pages 302–311. MIT Press, 2002.

[54] Nolfi S. and Parisi D. Auto-Teaching: Networks that Develop their Own
Teaching Input. In Proceedings of the Second European Conference on
Artificial Life, Brussels, Université Libre de Bruxelles, 1993.
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