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Chapter 1

Introduction

In this report, we introduce a novel method to automatically generate control
software for swarm robotics systems.

Swarm robotics [15] is an approach to robotics in which a large number
of robots cooperates to solve a task that would be impossible to solve for a
single robot. A robot swarm, is an highly redundant system that acts in a
self-organized way without the need of any form of centralized coordination.
The collective behavior of a swarm is the result of the local interactions that
each robot has with its neighbors and with the environment. We refer the
reader to [9] for a complete review on swarm robotics.

The self-organized and distributed nature of a robot swarm helps in de-
veloping large robotics systems that are scalable with respect to the number
of robots composing the swarm, robust against the failure of some of the
robots, and flexible, that is, able to cope with a wide range of environmental
conditions.

Unfortunately, the self-organized and distributed nature of robot swarms
has a downside: it poses major challenges in the design of robot swarms.
The requirements are typically expressed at the swarm level, by specifying
the task that the swarm, as a whole, has to perform. However, the collective
behavior of the swarm cannot be designed directly, since it is the result of the
complex interactions between the robots composing the swarm, interactions
whose result is difficult or impossible to foresee. For this reason, the de-
signer’s task is indirect : he needs to carefully design the individual behaviors
of the robots to obtain the desired collective behavior of the swarm.

At the moment, there is no general approach to this design problem,
even though some approaches have been recently proposed [10, 6, 30, 26].
Currently, most robot swarms are designed by hand using a trial-and-error
process: an individual behavior is developed and tested until the desired
collective behavior is obtained. This approach is closer to craftsmanship than
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to engineering: the quality of the result strongly depends on the experience
and intuition of the designer. Moreover, this trial-and-error process is time
consuming and does not give any guarantee on the results.

A different approach to the design and development of a robot swarm
are automatic design methods [9]. Automatic design methods are able to
develop, using a computation intensive process, the control software of a
robot swarm without the intervention of the human designer. The first auto-
matic design method that has been adopted in swarm robotics is evolutionary
robotics [37]. Results in evolutionary robotics showed that it is possible to
automatically obtain the behavior of a robot swarms for a number of tasks.
However, evolutionary robotics has number of limitations, such as the reality
gap problem [34] and the difficulty of defining an effective fitness function
[42]. Strengths and limitations of evolutionary robotics are discussed in Sec-
tion 2.1.2.

In this report, we introduce AutoMoDe (automatic modular design). Au-
toMoDe is a novel automatic approach to the design and development of
swarm robotics systems. Given a task, AutoMoDe is able to automatically
generate the individual behaviors of the robots in the form of probabilistic fi-
nite state machines (PFSM). The individual behaviors are developed so that
the resulting collective behavior accomplishes the desired task.

The novelty of our approach is that AutoMoDe generates these individ-
ual level PFSMs by searching for the best combination of given preexisting
behavioral modules, which we call atomic behaviors. Examples of atomic
behaviors are: random-walk, go-to-light, follow-robot. In other words, Auto-
MoDe develops a new controller using an optimization algorithm by selecting:
the atomic behaviors, the topology of the PFSM, the transition rules and the
internal parameters of the selected atomic behaviors.

In this report, we evaluate a proof-of-concept version of AutoMoDe using
two tasks commonly studied in the swarm robotics literature: aggregation
and foraging. The obtained results show that AutoMoDe automatically gen-
erates controllers able to tackle the two tasks with good performance. More-
over, the obtained controllers are naturally understandable for a human user
and can be directly deployed on real robots without performance loss.

The rest of the report is organized as follows: in Chapter 2 we provide
an overview of our research project, and by analyzing the state of the art,
we highlight the motivations behind AutoMoDe. In Chapter 3 we present
some preliminary studies on evolutionary robotics. In Chapter 4 we describe
the AutoMoDe and its first proof-of-concept version AutoMoDe-Vanilla. In
Chapter 5 we present the results achieved by AutoMoDe-Vanilla on the
design of controllers for two tasks: aggregation and foraging. Finally, in
Chapter 6 we draw some conclusions highlighting some future research di-
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Chapter 2

Our Research Project

The goal of our research project is to develop a method to generate auto-
matically modular controllers for swarm robotics systems. Swarm robotics
[16, 8, 5] is an approach to collective robotics that takes inspiration from
the self-organized behaviors of social animals [13]. Swarm robotics aims to
develop large robotics systems that are scalable, robust and flexible.

In the design of swarm robotics systems, the requirements are typically
expressed at the swarm level, by specifying the task that the swarm, as a
whole, has to perform. The functioning of the swarm and its performance
on the given task are the result of the behavior of each individual robot
[16]. Currently, a fundamental open problem in the design of swarm robotics
systems is bridging the gap between the desired collective properties of the
swarm and the implementation of the individual behavior of each robot.

To fill this gap, two common approaches have been proposed in the liter-
ature: the behavior-based approach [11] and the evolutionary approach [37].
In the behavior-based approach, the designer manually defines the behavior
of the individual robots on the basis of the swarm level specifications. At
the moment, no general formal method exists for determining how the indi-
vidual robots should act so that the swarm performs a given task or displays
desired properties. As a consequence, designing a system with the behavior-
based approach is mostly a trial and error process. Thus, the quality of
the result strongly depends on the experience and intuition of the designer.
In the evolutionary approach, on the other hand, the individual controllers
are obtained through an automatic optimization process inspired by natural
evolution. The quality of the result depends on the ability of the designer
to define the objective function that is to be maximized by the optimiza-
tion process. The obtained controllers are black boxes that can hardly be
analyzed, verified and maintained [34].

Our idea is to combine the advantages of the behavior-based approach and
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the evolutionary robotics approach by developing a method for the automatic
design of controllers that yields modifiable and modular controllers. In the
proposed method, a controller is a probabilistic finite state machine in which
the states are behavioral modules. This probabilistic finite state machine
is configured automatically using well-tested optimization algorithms, thus
relieving the designer of the difficult task of defining the interactions between
different behaviors.

The main expected result of our research is the development of an auto-
matic design method that leads to modifiable, engineered and maintainable
controllers. We will implement our automatic design method as a software
suite that we will release as an open-source project.

2.1 State of the art

In swarm robotics, the most commonly used design approaches are the behavior-
based approach and the approach of evolutionary robotics.

2.1.1 Behavior-based Approach

In the behavior-base approach, the designer, using his experience, derives
from the swarm specification the controller of the robots. The single be-
haviors (e.g., obstacle avoidance or phototaxis) are implemented as modules
that can be combined in order to create complex controllers. The interac-
tion among these modules are commonly managed by a complex probabilistic
finite state machine (henceforth PFSM) [41]. Tuning these PFSMs is a com-
plex task due to the multitude of interactions among the different modules.
The main advantage of behavior-based approach is code reusability: a be-
havior can be reused or adapted to different problems. The main drawback
of the behavior-based approach is the lack of a general method to define
individual behaviors that meet the given swarm-level specifications [42, 3].

2.1.2 Evolutionary Robotics

Evolutionary Robotics is an automatic design method that applies artifi-
cial evolution techniques [23] to multi-robot systems [37]. In evolutionary
robotics, the controllers are obtained through a process of artificial evolution
in which a population of controllers is evaluated and, like in natural evolu-
tion, the best performing controllers are more likely to survive. The process
is a series of generation. From one generation to another the controllers are
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modified and combined using operations inspired by the natural evolution
(i.e. mutation and crossover).

Typically the optimization algorithm is a genetic algorithm [27], that
evolves a population of controllers based on artificial neural networks. For
our purposes, an artificial neural network is simply a function with a certain
number of input values and output values1. The mapping from the inputs
to the outputs depends on the parameters of the neural network. Generally,
in robotics, inputs are mapped to sensors and outputs to actuators. The
controllers search space is defined by the free parameters of the artificial
neural network. By instantiating these free parameters, the optimization
algorithm can regulate the fine-grained aspects of the robot behavior. We
refer the reader to [43] for more information about evolutionary robotics.

Evolutionary robotics has been successfully applied in many scenarios. In
particular, evolutionary robotics is used as a tool to explore the possibility
of obtaining automatically behaviors with defined properties. For example,
in [4] an experimental analysis is carried out to investigate the evolution of
communication strategies among robots. More recently, in [18] we applied
an evolutionary robotics method to automatically design an aggregative be-
havior that shows dynamics that are similar to a biological model.

Artificial neural networks have been proved to be a successful way of
controlling the behavior of the robots because of their versatility, that is,
their ability to represent a wide range of different output functions. Virtually
any function input-output can be obtained using a properly configured neural
network. Thanks to this versatility, evolutionary robotics allows the designer
to obtain controllers without having an a priory knowledge of the collective
behavior needed to solve the task.

Since neural networks are able to emulate any input-output function they
are defined bias-free, that is, they do not require any a priory knowledge
on the output function to obtain. This extreme versatility of the neural
networks has a downside: the quality of a neural network strongly depends
on the process followed to configure it. This is known in the literature as
the bias and variance tradeoff [22]. In the context of automatic design, the
designer has to find the right balance between introducing a bias that can
lead to neural networks that are not versatile enough to carry out the desired
task and having a bias-free neural network that is highly versatile but also is
highly dependent on the process followed to configure it. In particular, since
the process of configuration of the neural network involves a simulator there
is a very high risk of obtaining controllers that are affected by the reality

1for the sake of simplicity, we refer here only to feed-forward neural networks although
our considerations can be extended also to recurrent neural networks
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gap, that is, controllers which, while performing well in simulation, fail or
have poor performance once installed on the real robots.

Beside the reality gap there are other critical aspects about the use of
neural networks as controllers: neural network based controllers are not eas-
ily understandable and modifiable by the designer. In fact, since the pa-
rameters composing the neural network’s configuration are meaningless and
unstructured, understanding and/or modifying the resulting behavior of the
controller is almost impossible.

2.2 Our original idea

Our idea is to develop a method for the automatic generation of modular
and maintainable controllers. The controllers that our method will produce
will be probabilistic finite state machines (PFSM) in which states are behav-
ioral modules. Each of these modules implements a specific, self-contained
behavior that the robot exhibits. These modules can be implemented in-
dependently by using any technique, even by a recursive application of our
method. Each module receives input (e.g., sensor values) and computes
output (e.g., actuator commands). The transitions between the behavioral
modules are governed by the PFSM and depend on the input and output of
the behavioral module.

Each behavioral module has a set of parameters that governs its func-
tioning. These parameters, defined during the implementation, allow the
behavioral module to be adapted to different applications. Also the PFSM
has a set of parameters (e.g., transition probabilities), which regulate the in-
teraction between the behavioral modules. In our method, the parameters of
the PFSM and the parameters of each behavioral module are tuned in order
to obtain a controller that, once installed on all the robots of the swarm,
allows the swarm itself to perform the specific desired task. The search for
good parameter values is an optimization problem that can be tackled us-
ing different techniques such as evolutionary algorithms, metaheuristics or
parameter tuning techniques [23, 28, 7].

In order to perform the search for good parameter values by the automatic
technique, the designer has to define an objective function that measures the
swarm-level performance obtained via a given controller. In our method, the
objective function does not necessarily evaluate the swarm-level performance
as a whole. Instead, we plan to use credit assignment techniques [17, 45] to
reward some specific swarm-level actions that are functional to meeting the
given specifications, even if the overall performance of the swarm is poor.

Using our method, the outcome (i.e. the controller) of the design process
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Figure 2.1: The design process:
1. The behavior library is a collection of behavioral modules (Each behav-
ioral module has a set of parameters in order to be applicable in different
scenarios).
2. The designer derives an objective function from the requirements.
3. The automatic configuration evaluates automatically many candidate con-
trollers using the objective function.
4. The automatic configuration obtains a controller that meets the require-
ments.
5. The obtained controller is installed on the robots.

is the same of the behavior-based approach, that is, a PFSM in which the
states are behavioral modules. On the other hand, the design process is differ-
ent since an automatic configuration algorithm substitutes the trial-and-error
approach of the human designer. Figure 2.1 shows the design process to ob-
tain a controller in our method, while an example of automatic configuration
algorithm is described in Figure 2.2. Our method combines the advantages
of the behavior-based approach and the evolutionary robotics. As in the evo-
lutionary robotics, in our method a controller consists of behavioral modules
and, as in the behavior-based approach, the generation of the controller is
automatic. The effort to build complex behaviors is reduced compared to
the behavior-based approach, because the complex problem of defining the
PFSM is solved automatically. In addition, unlike in the behavior-based ap-
proach, in our method the parameters of the controller are meaningful. This
leads to controllers that can be modified and reused. Since the structure of
the controller is defined by a PFSM, it is possible to reuse parts of structure
itself. Finally, the parameter search space is smaller and structured, making
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Figure 2.2: An example of automatic configuration using a local search:
1. A candidate controller is generated by combining the behavioral modules
of the behavior library (The search in the space of all the possible controllers
is done using a local search.)
2. The controller is evaluated in simulation using the objective function:
The controller is installed on all the virtual robots of the swarm and the
simulation is run.
The objective function evaluates the performance that the swarm obtains in
simulation.
3. If a termination criterion is fulfilled the current controller is returned.
Otherwise the algorithm goes back in 1

this framework applicable to more complex problems.
In the context of this project, there are several possible directions to

extend the work we proposed above. For instance, we wish to investigate
the possibility of selecting automatically the structure of PFSM using model
selection methods [12] from statistics and machine learning [38]. Another
possible direction that we would like to explore is the application of self-
adaptation methods that allows the robots to modify their parameters on
the fly, as a result of the interaction with the environment.

We will conduct the experimental analysis using both simulations and
real-robot experiments. Studying swarm robotic systems using simulation
has the advantages of being faster and cheaper than experiments with real
robots. In particular, in the context of our project, simulation has a crucial
role because it allows the optimization algorithm to evaluate quickly the
performance of the candidate controllers. Since simulation cannot reproduce
all the details of reality, we will carry out experiments with real robots in
order to validate the results obtained in simulation.

To demonstrate the validity of our method we will test it on complex
swarm robotics problems. These problems will be representative of classes of
real applications. At the moment, we have identified a candidate problem:
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foraging. Foraging is a classic test-bed application in swarm robotics, in
which robots have to retrieve prey objects from the environment and bring
them back to the nest [46]. This problem is widely analyzed in literature [31,
21, 40], which allows me to compare our method with existing ones.

2.3 Vision

The vision behind our project is that in the future the robotics industry
will be similar to the software industry. Nowadays, the software industry
is composed by many companies each one developing software for a high
specialized domain. Each one of those companies has deep knowledge on
its domain of specialization. This knowledge is represented, among other
things, by reliable software modules. When a new software is produced, those
software modules are combined and instantiated to meet the requirements of
the new customer. Similarly, we think that in future the robotics industry will
be composed by many robotics companies specialized in solving a particular
kind of task. Each one of those companies will provide swarm robotic systems
for a particular real world application like oil spill cleanup, fruit collection,
pest control, search and rescue, etc. In the same way as software companies,
which have library of software modules, robotics companies will have library
of behavioral modules. Those behavioral modules will be then combined and
instantiated to obtain controllers for solving the particular task requested by
the customer.

Differently from the software industry where the modules are combined
by hand, in swarm robotics the combination between behavioral modules
is a difficult task due to the complexity of the interactions between those
behavioral modules. In this context, our method will be really useful: an
optimization algorithm automatically designs the controller by combining
and instantiating the behavioral modules of the library.

One of the scenarios of possible application of swarm robotics is search
and rescue. In this scenario, rescuers have to search for survivors in disas-
ter zones. Due to the hazardous environments, rescuers might be killed or
wounded in action. For this reason, the use of robotic rescuers instead of hu-
man rescuers has been studied and some remote controlled robotic rescuers
were used in two recent disasters, the Fukushima nuclear disaster and the
Costa Concordia disaster. However, in those occasions the traditional ap-
proach based on remote controlled robots showed restrictions that limit its
employment. In particular, this approach assumes a real-time connection be-
tween the operator and the robot that is difficult to ensure in hazardous and
not structured environment. On the contrary, an approach based on a swarm
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of autonomous robots does not need such a continuous connection and can be
used in a wider range of situations. In this context, our method can be used
since it speeds up the design of controllers for swarm of robots. We imagine
that robotic company specialized in search and rescue will have a library of
behavioral modules for robots locomotion in hazardous environments and for
detecting survivals. In case of a disaster, this company will launch the au-
tomatic configuration algorithm with all the information gathered from the
disaster (i.e., estimated number of missing people, environmental conditions,
weather conditions, etc.) in order to obtain a controller that fits better the
particular situation of the disaster.

We think that in future swarm robotics will play an important role in
the real world. In this context, we believe that our method will promote the
use of swarm robotics in our every day life by simplifying the design and
development process.



Chapter 3

Preliminary studies in
evolutionary robotics:
Analysing an Evolved Robotic Behaviour Using a

Biological Model of Collegial Decision Making

Evolutionary robotics can be a powerful tool in studies on the evolutionary
origins of self-organising behaviours in biological systems. However, these
studies are viable only when the behaviour of the evolved artificial system
closely corresponds to the one observed in biology, as described by available
models. In this study, we compare the behaviour evolved in a robotic system
with the collegial decision making displayed by cockroaches in selecting a
resting shelter. We show that artificial evolution can synthesise a simple self-
organising behaviour for a swarm of robots, which presents dynamics that
are comparable with the cockroaches behaviour.

3.1 Introduction

In recent studies, evolutionary robotics (ER, see [37]) has been used as an
instrument to investigate the evolutionary conditions for the emergence of
adaptive behaviour in groups of interacting agents. The main motivation
behind these studies is that the evolution of certain adaptive traits and be-
havioural responses is tightly linked to ecological and social conditions. These
conditions are extremely difficult or impossible to be controlled and repli-
cated with empirical studies [1], while they can be completely managed in
ER studies. The use of ER to analyse adaptive behaviours has been demon-
strated in several occasions. For instance, the effects of genetic relatedness on

12
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the evolution of cooperative communication strategies can be investigated by
systematically varying the composition of interacting groups [44, 35]. Simi-
larly, thanks to a simple ER experiment, it has been shown that the effect of
stochastic variations in the evolutionary history could be at the basis of the
emergence of diverse signalling strategies [47].

At the same time, ER represents a powerful design tool for the synthesis
of collective, self-organising behaviours in swarms of robots [43]. It provides
an automatic design methodology to synthesise the individual mechanisms
leading to an optimal group response, according to a user-defined perfor-
mance metric. Additionally, ER can shed light on the evolutionary pressures
leading to the emergence of observed collective behaviours. However, it is
necessary to understand whether or not the target behaviour can be evolved
in the artificial system, and whether it displays dynamics comparable with
the natural counterpart.

In this study, we perform this first step, that is, the validation of an ER
system with respect to collegial decision making by cockroaches in selecting a
resting shelter [2]. Cockroaches (Blattella germanica) are gregarious insects
that manifest cooperative behaviour in selecting a resting site: whenever
more than one site is present, the insects collectively choose to aggregate in
one single place (provided that it is large enough to host them all). Experi-
mental studies allowed to determine which are the social influences that lead
to such a collegial decision-making process, and a dynamical model has been
developed (see [2] and Section 3.3.1 for more details). The identified mech-
anisms have been successfully exploited for designing collective aggregation
and decision-making behaviours in swarms of robots [20, 14, 10], allowing also
mixed insect-robot experiments [25]. However, to the best of our knowledge,
there has been no attempt to study the evolution of a similar decision-making
behaviour in swarms of robots. In this study, we demonstrate that similar col-
legial decisions can be evolved in an artificial system. Our goal is to (i) verify
the evolvability of the collegial decision making in the artificial system, and
(ii) determine whether the dynamics of the system correspond qualitatively
and quantitatively to the ones predicted by the biological model [2]. This
will allow us to determine whether or not evolutionary robotics is suitable
for formulating hypotheses about the evolutionary pressures that resulted in
collective decision-making in cockroaches.

The chapter is organised as follows. In Section 3.2, we describe in detail
the experimental setup for the ER experiments. In Section 3.3, we discuss
the results obtained from the evolutionary experiments with respect to the
evolvability of the decision-making behaviour in a robotic system. In Sec-
tion 3.3.1, we present the dynamical model proposed in [2], and we discuss
the methodology that leads us to fit the evolved behaviour to the model.
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Figure 3.1: Left: the simulated experimental arena used for the experiments.
Right: the e-puck robot, used for the simulated evolutionary experiments
presented in this work.

In Section 3.3.2, we present a comparison of the dynamics of the evolved
behaviour with the ones predicted by the model. Section 3.4 concludes the
chapter with some final remarks.

3.2 Experimental Setup

We study the evolution of collegial decision making in a swarm of robots that
have to aggregate in one of two areas within the experimental arena. Our
experimental setup is based on the one used in Amé et al. [2]. The robots
operate in a dodecagonal arena (Figure 3.1 left) of area 4.91 m2 surrounded
by walls. The floor of the arena is white with two black circular areas having
the same radius (ra = rb = 35 cm) and centred at 67 cm from the walls.
In the following, we refer to the two black areas as area a and b, and the
remaining white area as c.

The experiments are carried out in simulation using ARGoS [39], a multi-
engine simulator of swarm robotics systems. The robots and the environment
are modelled using a 2D dynamic physics engine. We use a simulated model
of the e-puck robot (Figure 3.1 right), a small wheeled robot designed for
research and education [36]. In our experimental setup, each robot can per-
ceive walls and other robots through eight infrared proximity sensors placed
all around its chassis. It can sense the colour of the floor using three ground
sensors placed under its front. Additionally, each robot features another
sensor called range and bearing [24]. This sensor allows the robot to com-
municate locally with other robots by sending and receiving messages. In
our experiments, the robot uses such a sensor only to perceive the number
of other robots within a 70 cm range. To normalise the output of the sensor,
we use the preprocessing function z(n) = 1− ( 2

1+en
), where n is the number
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of robots perceived at any given moment. Since the real e-puck can perceive
no more than 5 robots at a given time, z(n) saturates to 1 for n > 5.

The controller that governs each robot is an artificial neural network. We
assume that robots can achieve aggregation using a memoryless behaviour,
that is, the behaviour of each robot depends only on the present values of sen-
sors without any kind of internal state. For this reason, we use as controller
a fully connected, feed-forward neural network. This neural network has 12
inputs, one for each sensor (8 infrared proximity, 3 ground sensors, 1 from
the range and bearing), 2 outputs, one for each wheel, and no hidden units.
The input values are linearly scaled in [0,1] when necessary. The activation
of the output neurons is computed as the weighted sum of all input units plus
a bias term, filtered through a standard logistic function. The two output
neurons control the speed of the two wheels, by scaling their activation in
the range [−vm, vm], with vm = 16 cm/s.

We use a simple evolutionary algorithm to set the parameters of the neural
network. Each parameter is represented in the genotype by a real number in
the range [-5,5]. The evolutionary algorithm works on a population of 100
genotypes, evolved for 200 generations. The population of the first generation
is randomly generated. Subsequent generations are created using a selection
and reproduction process that involves elitism and mutation. The 20 best
genotypes—i.e., the elite—are included unchanged in the next generation.
The remaining genotypes of the population are generated by mutation of the
genotypes of the elite. The mutation is done by adding a random value to
each element of the genotype. The random value is drawn from a normal
distribution with mean 0 and variance 1.

The genotype is mapped into a controller that is instantiated in all the
robots of the group (N = 10). To evaluate the performance, 10 trials of
T = 250 seconds are run. The evaluation of the performance of the genotype
is based on the function f(t):

f(t) =
|xa(t)− xb(t)|

N
∈ [0, 1] (3.1)

where xi(t) is the number of robots in area i ∈ {a, b} at time t and N is
the total number of robots. The function f(t) is equal to zero when a and b
contain the same number of robots. On the contrary, f(t) is equal to 1 when
all the robots aggregate on the same area. Fluctuations of f(t) are smoothed
through an exponential moving average with time constant α = 0.9:

G(t) = αG(t− 1) + (1− α)f(t) ∈ [0, 1] (3.2)

where G(0) = 0. Finally, the fitness F of the genotype is the average of G(T )
over all the 10 trials.
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3.3 Results

We performed 20 evolutionary runs starting from different randomly gener-
ated populations. For each run, we selected the best controller within the
final population: we evaluated the performance of every controller of the last
generation for K = 200 trials, and we selected the one with the highest aver-
age fitness. All the evolutionary runs were able to produce controllers with
high performance (data available as supplementary material in [19]).

A qualitative analysis of the obtained controllers reveals that the evolved
behaviours are quite similar one to the other. In general, the robots act
differently according to their position in the arena. When a robot is in the
white area c, it explores the arena following a wide curved trajectory. If the
robot reaches the external wall of the arena, it starts to follow it. The robot
motion is influenced by the presence of other robots: curves become sharper
when other robots are nearby. Such a perturbation makes the robot leave the
border of the arena and eventually enter in one of the two black areas. When
the robot is in one black area it follows a circular trajectory. The radius
of the trajectory decreases as the number of robots in the area increases.
In this way, if the area is empty the robot follows a wide trajectory and
eventually leaves. On the contrary if the area is crowded the robot almost
rotates on its axis. If the robot goes out of the black area it starts again to
explore the arena. Example videos of the obtained controller are available as
supplementary material [19].

There are qualitative similarities between the evolved behaviour just de-
scribed and the self-organizing aggregation behaviour observed in groups of
cockroaches. In particular, we observed that the probability that a robot
leaves an area is inversely proportional to the number of the robots located
in the area itself. To determine whether or not the evolved behaviour presents
dynamics quantitatively similar to the biological system, we check the ad-
herence of the evolved robotic behaviour1 with the model introduced in [2].
In Section 3.3.1, we introduce the model and the methodology we used to
estimate its parameters. In Section 3.3.2, we compare the dynamics of the
evolved behaviour with the predictions of the mathematical model.

3.3.1 Model

In Amé et al.’s model [2], the behaviour of each individual insect is charac-
terised by Ji, its probability to join area i, and Li, its probability to leave
area i. Both probabilities depend on xi, the number of insects located in area

1To this aim, we select the best obtained controller among all evolutionary runs.
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i, and on S, the carrying capacity, that is, the maximum number of insects
that can be hosted in a single area.

The joining probability Ji decreases slightly with the number of insects
in area i because of crowding effects. This accounts for the observation that
it is less probable to join an area that is already densely populated. Amé et
al. define Ji as:

Ji = µ
(

1− xi
S

)
, i = [a, b]; (3.3)

where µ represents the area quality, that is, the probability that an individual
joins the area without social influences, xi is the number of insects already
in area i, and S is the carrying capacity.

Similarly, the leaving probability Li is inversely proportional to the num-
ber of individuals in area i. This accounts for social influences among indi-
viduals, which tend to stay close together. Li is low when the area is densely
populated and high when it is sparsely populated. Amé et al. define Li as:

Li =
θ

1 + ρ
(xi
S

)2 , i = [a, b]; (3.4)

where θ depends on the quality of the area, and ρ is a reference surface ratio
related to the area carrying capacity. Using Ji and Li it is possible to describe
the time evolution of the number of individuals in the different areas through
a system of differential equations:

dxi
dt

= Jixc − Lixi = µxc

(
1− xi

S

)
− θxi

1 + ρ
(xi
S

)2 , i = [a, b] (3.5)

N = xc + xa + xb (3.6)

where N is the total number of individuals and xc is the number of individuals
in c, that is, the individuals outside the black areas. This model therefore
describes the dynamics of the aggregation behaviour in terms of the number
of individuals present in the different areas of the arena (see [2] for details).

To evaluate the correspondence of the evolved behaviour with the model,
we estimated the model parameters from the results of simulated experi-
ments.

The carrying capacity S was estimated using a linear function S = m ra
rr

+
q, where ra is the radius of area a, and rr is the radius of the robot. We
performed 200 trials observing how many robots could be hosted in an area
using N = 100, ra = [0.15, 0.35, 0.45, 0.5] and rr = 0.035. The obtained
parameters are m = 4.24 and q = −13.38 (R2 = 0.999, p-val< 0.001).
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Figure 3.2: The bifurcation diagram of our model for different values of
d = S

N
. The percentage of robots in area a and area c.

To estimate the parameters of Ji and Li, we gathered the empirical prob-
abilities by performing 200 simulated experiments in the same conditions as
presented in Section 3.2 (N = 10, r = 0.35 cm, S = 29). We separately
fitted the parameters for Ji and Li to our data using the non-linear least
squares method. The obtained parameters are: µ = 0.008, θ = 0.008 and
ρ = 138.574. We measured the quality of the fitting by computing the coef-
ficient of determination R2. While the fitting on Li is excellent (R2 = 0.979,
p-val< 0.001), the fitting on Ji is not as good (R2 = 0.560, p-val= 0.148).
This is due to the fact that in our robotic system, Ji appears to be non-
linear, differently from Amé et al.’s model. Even though the fitting is not
good, we decided to be consistent with Amé et al.’s model and not change Ji.
A discussion of the possible effects of this decision is presented in Section 3.4.

Following the analysis presented in [2], we studied the system behaviour
described by eq. (3.5) and (3.6) for different values of d = S

N
. In Fig. 3.2, it is

possible to see the bifurcation diagram of the model. Four different situations
can be observed: (i) For d lower than 0.5, the areas are too small to host all
the robots; the robots fill completely the areas and some remain in c. (ii) For
0.5 ≤ d < 1, a single area is too small to host all the robots, so the areas are
filled equally. However, in this second case, since there is enough space on
the areas for all the robots, only few robots are on c. (iii) For 1 < d ≤ 4.2
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the areas are big enough for aggregation to happen. Two stable solutions are
found, corresponding to area a or area b hosting the majority of the robots.
Additionally an unstable solution is found, corresponding to both areas filled
equally. (iv) For d greater than 4.2 the areas are too big and the robots are
less likely to perceive the presence of other robots in the same area. Thus,
the stable solution corresponds to both areas filled equally.

The number of robots present in c described by eq. (3.6) also varies with
d. Two different situations can be observed: For d lower than 0.5, xc/N
decreases sharply: as areas a and b get bigger, more space is available and the
areas can host more and more robots; For d greater than 0.5, the population
fraction on c increases steadily. This is due to the fact that, as S becomes
bigger, the probabilities Ji and Li increase, resulting in a system less likely
to converge on a state in which all robots are in areas a or b.

We consider that a collective decision has occurred when xa/N > 0.8. In
the bifurcation diagram in Fig. 3.2 this happens only for d between 1 and
2.8. For d between 2.8 and 4.2 the model predicts a more variable condition
with a still unbalanced distribution of robots among the two areas, and an
increasing number of robots that move from one area to the other. In the
following, we verify these model predictions with respect to the experimental
data, presenting a comparison between the results obtained in simulation
and those obtained with the model.

3.3.2 Dynamics of robotics and model simulations

We compared the results obtained from simulated robotics experiments and
Monte Carlo experiments for different values of d = S/N . We carried out
two different analyses. In the first one, the different values of d are obtained
by keeping the number of robots fixed to N = 10 and varying the carrying
capacity S, by changing ri. In the second, we keep ri = 35 cm (which corre-
sponds to S = 29) and we vary the number of robots. For each value of d,
we run 1000 trials of T = 500 seconds, both for the robotic and the Monte
Carlo simulations. For each trial, we collected the final group distribution xi
over the different areas.

Figures 3.3 and 3.4 show the obtained results. For each value of d, one
bar for each area of the arena is reported. The colours in the stacked bars
show the frequency of individual distributions. We divided the distributions
in five classes (0-20%, 20-40%, 40-60%, 60-80%, 80-100%), giving each class
a different colour. The size of each class in the figures is proportional to its
frequency. If the robots are able to perform a collegial decision and aggregate
in one single area most frequently, the bars of the areas a and b are mostly
dark blue, corresponding to a bimodal distribution with peaks in 0-20% and
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Figure 3.3: Comparison between the behaviour of the simulated experiments
and the Monte Carlo experiments keeping the number of robots fixed to
N = 10, and varying the size of the black areas from ri = 15 cm to ri = 50 cm.

80-100%. On the contrary, if the group splits by aggregating in both areas,
the bars of the areas a and b are mostly white, corresponding to a unimodal
distribution centred in 40-60%. Area c is depicted in dark red when empty
(0-20%) and white when full (80-100%).

Figure 3.3 shows the comparison between robotics and model simulations
when the number of robots is fixed to N = 10. Apart from low values of
S, there is a good correspondence between the model and the evolved be-
haviour. Moreover, the evolved behaviour looks more stable for d > 2.9,
indicating that the robots have a better tendency to perform collegial de-
cision than predicted by the model. For S = {5, 11}—corresponding to
ri = {15, 20} cm—the robots find the areas with difficulty due to the small
radius and aggregates are less stable.

Figure 3.4 shows the results when the carrying capacity S is fixed to 29.
The evolved behaviour presents a smoother transition from equally occupy-
ing the areas at low d to collegial decisions at high d. For 8 < N < 12
there is a good correspondence, as the robotic system is close to the evo-
lutionary conditions. Differently, for N ≥ 13 robots split more frequently
than aggregating, while the model predicts splitting only when one area is
saturated. Overall, we observe a good qualitative correspondence between
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Figure 3.4: Comparison between the behaviour of the simulated experiments
and the Monte Carlo experiments keeping a constant radius ri = 35 cm (S =
29) and varying the number of robots from N = 5 to N = 40.

robotics simulations and the model, but mostly within the range of parame-
ters used to evolve the robotics behaviour. A more detailed discussion about
these discrepancies follows in the next section.

3.4 Final Remarks

In this study, we demonstrated that evolutionary robotics techniques can be
used to synthesise a collegial decision making behaviour similar to the one
observed in cockroaches. This is an important result, especially considering
that the robotic controllers are simple feed-forward neural networks without
internal states. That is, also in a robotic system collegial decisions can emerge
solely from simple individual behaviours modulated by social interactions.

We compared the dynamics of the evolved robotic behaviour with the
predictions of the model proposed in [2], finding some qualitative correspon-
dence. However, quantitative comparisons revealed similar dynamics mostly
for a small parameter range around the evolutionary conditions (N = 10,
S = 29). We identify two reasons for these discrepancies: (i) the evolved
system exploits geometric regularities, such as the arena dimension and the
positioning of the areas; (ii) the sensing radius for the robots (75 cm) is quite
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large with respect to the arena dimensions. Both these issues have a bearing
on the probability of joining an area, which also explains the non perfect fit
of the model parameters observed in Section 3.3.1. In practice, we observe
that the evolved behaviour depends on both S and N , and not only on the
their ratio d, as predicted by the model. In future work, by removing geo-
metric regularities from the evolutionary setup, we hope to obtain a better
quantitative matching with the model predictions. If successful, we plan to
exploit this artificial experimental setup to investigate the optimality of the
evolved behaviour with respect to different selective pressures, genetic relat-
edness among individuals in the group, and variable ecological conditions.
We believe this can be useful to better understand the evolutionary path
leading to collegial decision making.



Chapter 4

AutoMoDe

4.1 Automatic design methods

In this section, we present the definition of automatic design method for
swarm robotics controllers.

Given a task to carry out, the goal of an automatic design method (here-
after ADM) is to automatically design and develop a collective behavior
for a robot swarm able to effectively tackle the given task. As said before,
designing a collective behavior means, in practice, designing the individual
controllers of the robots composing the swarm. This means that, ultimately,
the goal of an ADM is to design individual controllers that, once instantiated
in a robot swarm, result in the proper collective behavior to solve the given
task.

In its most generic form, an ADM is an iterative process based on an op-
timization algorithm that explores a set of candidate controllers searching for
the best solutions for the given task. Such candidate controllers are sampled
from the controller search space, that is, the set of all possible controllers.
Each candidate controller is evaluated using an objective function which gives
a metric on the quality of the controller, that is, its efficacy in solving the
given task when instantiated in a robot swarm. Usually, this evaluation is
performed using a computer simulation of the chosen robotic platform and
the experimental conditions in which the final system will operate. The ob-
jective function is used to select the best candidates which are used for the
next iteration of the procedure. In other words, the objective function guides
the optimization algorithm in the search for the best solutions. At the end
of this process, the obtained solution is instantiated and tested using real
robots.

From this general description of an ADM, we can see that a number of

23
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elements (presented in italics above) are part of the setup, that is, must be
manually chosen by the human designer. In particular, the setup of an ADM
is composed of:

The controller search space – The controller search space represents
the space of all the possible controllers that the ADM can generate. Usually
a controller is composed of two parts: a template, chosen by the human
designer, and a set of parameters. The ADM generates individual controller
by instantiating each parameter of the template. The human designer needs
to carefully choose the template and the range of the parameters in order to
have a search space large enough to include all potentially good controllers,
but not so large that it hinders the search.

The objective function – The objective function is a mathematical func-
tion used to evaluate the performance of the swarm in solving the desired
task. It is used to compute a metric that must be maximized or minimized
by the optimization algorithm. The objective function needs to be chosen
carefully because it plays an critical role in the ADM: it guides the search
process of optimization algorithm.

The optimization algorithm – The optimization algorithm explores the
controller search space for controllers able to solves the given task. The op-
timization algorithm evaluates the performance of the candidate controllers
through the objective function. The algorithm stops when a termination cri-
teria is fulfilled. Usually, the termination criteria are either in the form of
a threshold on the metric given by the objective function, or in the form of
the number of evaluations performed by the optimization algorithm.

The robotic platform – The robotic platform, that is, the specific kind
of robot composing the swarm, must be chosen considering the capabilities
needed to solve the task. The capabilities of the chosen robot influence
the ADM: different capabilities result in different behaviors, as the ADM
optimizes the use of the sensors/actuators available.

The simulation platform – The simulation platform is a software tool
used to simulate the robot swarm and its behavior in a virtual environ-
ment. The simulation platform is needed because evaluating the candidate
controllers on the real robots is time consuming and potentially dangerous.
The main limit in the use of simulators is that it is impossible of perfectly
and completely reproduce the robots and the real experimental conditions:
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the differences between the simulated experiments and the real-world exper-
iments fall in the so called reality gap [34, 29]. The important consequence
of the reality gap is that controllers obtained in simulation may have a very
different performance when tested in the real world. Since the reality gap
cannot be completely removed, the designer has to identify the limits of the
selected simulation platform and devise methods to reduce the reality gap,
at least in the aspects more relevant to the task to perform. The problem of
the reality gap is central to all ADMs.

The experimental conditions– The experimental conditions represents
the environment in which the swarm operates. They include the character-
istics of the environment as, for example, the size and the geometry of the
environment. These experimental conditions have to be carefully replicated
in the simulation tool.

4.2 Characteristics of AutoMoDe

In this section we describe the main characteristics and features of the pro-
posed method following the definitions given in Section 4.1.

AutoMoDe (automatic modular design) is a novel automatic method to
the design and development of swarm robotics systems. Given a task, Auto-
MoDe is able to automatically generate the individual behaviors of the robots
in the form of a probabilistic finite state machines (PFSM). The individual
behaviors are developed so that the resulting collective behavior solves the
desired task. The novelty of my proposed method is that AutoMoDe gener-
ates these individual level PFSMs by searching for the best combination of
given preexisting behavioral modules, which we call atomic behaviors. Ex-
amples of atomic behaviors are: random-walk, go-to-light, follow-robot. In
detail, AutoMoDe develops a new controller using an optimization algorithm
by selecting: the atomic behaviors, the topology of the PFSM, the transition
rules and the internal parameters of the selected atomic behaviors.

Following the definitions of Section 4.1, in AutoMoDe the controller
search space is defined by all the possible PFSMs that can be obtained by
combining the atomic behaviors and their internal parameters. This con-
troller search space can be explored using a wide range of optimization algo-
rithms.

The motivation behind AutoMoDe is to define an automatic design method
that leads to understandable and modifiable modular controllers that suffer
less from the reality gap, that is, they can be installed on the real robots with-
out significant performance loss. The controllers obtained using AutoMoDe
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Figure 4.1: The e-puck robot

are human-readable since are based on PFSMs. This leads to controllers
that can be also modified by hand when needed. Moreover, the fact that the
controllers are based on modules (i.e. atomic behavior) facilitates the reuse
of components. With AutoMoDe the reality can be overcome because, the
single atomic behaviors can be tested on the real robots.

4.3 Proof of concept: AutoMoDe-Vanilla

In this section we describe a proof-of-concept version of AutoMoDe called
AutoMoDe-Vanilla that is used to carry out the experiments described in
Section 5.1. Our goal is not to define the ultimate automatic design method
but to show that the core ideas of AutoMoDe are valid. For this reason
AutoMoDe-Vanilla, is unsophisticated in many aspects like the way in which
the probabilistic finite state machines are represented and optimized. We will
explore more sophisticated versions of AutoMoDe in future research.

AutoMoDe-Vanilla is a version of AutoMoDe, implemented to design
controllers for the e-puck robot1, (Figure 4.1 ) a small wheeled robot designed
for research and education [36].

In the following, we present the various element composing the setup of
AutoMoDe-Vanilla:

The robotic platform – we chose a swarm of e-puck robots. Each e-
puck can move using two differential wheels. The e-puck is equipped with

1http://www.e-puck.org/
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light, proximity and ground sensors. Moreover, the e-pucks can communicate
with each other using the range and bearing [24]. This sensor allows the
robot to communicate locally with other robots by sending and receiving
messages within a 70 cm range. When a robot receives a message it also
receives information about the distance (range) and the angle (bearing) of
the sending robot.

The simulation platform – The robot swarm is simulated using the
ARGoS simulator [39], a multi-engine simulator of swarm robotics systems.
The robots and the environment are modeled using a 2D dynamic physics
engine. A very interesting feature of ARGoS is that the controllers obtained
in simulation can be ported directly on the real robots, making the passage
from simulation to real robot seamless.

The controller search space – The controller is defined as a probabilistic
finite state machine (PFSM) composed of atomic behaviors linked by condi-
tional state transitions. Both the atomic behaviors and the conditional state
transitions use the sensors and actuators of the e-puck. Figure 4.2 shows an
example of PFSM obtainable using AutoMoDe-Vanilla.

As stated in Section 4.2, one of the unique features of AMD is that the
controllers are generated composing pre-available atomic behaviors. In AMD-
vanilla these are the atomic behaviors available:

1. Random walk (RW): the robot goes straight and when it hits an obsta-
cle it turns around for a random number of steps chosen in the interval
[0, rwm], where rwm is a parameter of the atomic behavior.

2. Stop (Stop): the robot stays still

3. Phototaxis (PT): The robot moves toward towards the closest light
source if available, otherwise it moves straight. The light source is
perceived using the light sensor.

4. Anti-Phototaxis (APT): same as PT, but with opposite direction.

5. Attraction (RBT): The robot uses the range and bearing sensor to com-
pute the direction towards the center of the robots in communication
range. The direction vector w is computed by aggregating the received
messages following the equation:

w =
∑
m∈M

(
att

range(m)
,∠bearing(m)) (4.1)

where are att is a parameter.
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Figure 4.2: Example of PFSM obtained using AutoMoDe-Vanilla: the state
STOP is the initial state and it has two conditions that go to the state APT.
The state APT has one condition pointing at the state STOP. At the begin-
ning the current state is set to STOP. At each time step after the execution
of the current state, the conditions of the current state are evaluated: when
a condition is true the state pointed by the condition becomes the current
state.
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6. Repulsion (ARBT): Same as RBT, but with opposite direction. The
parameter rep has the same meaning of apt in RBT.

The atomic behaviors are linked with conditional state transitions. The
conditions on these state transitions are evaluated at each step after the
execution of the atomic behavior. If a condition is true, then the current state
updated to the state pointed by the condition. As for the atomic behaviors,
the conditions can have parameters. In AutoMoDe-Vanilla there are six
conditions available:

1. Black Floor (Black): The condition returns true if the robot’s ground
sensor read that the floor is black. False otherwise. The parameter p
is the tunable probability of transition.

2. Gray Floor (Gray): The condition returns true if the robot’s ground
sensor read that the floor is gray. False otherwise. The parameter p is
the tunable probability of transition.

3. White Floor (White): The condition returns true if the robot’s ground
sensor read that the floor is white. False otherwise. The parameter p
is the tunable probability of transition.

4. Probabilistic Neighbors Count (Neighbors Count): The condition re-
turns true according to the probabilistic distribution z(n) = 1

1+ew(p−n) ,
with n that is the number of robots in the neighborhood, p and w are
tunable parameters.

5. Inverted-Probabilistic Neighbors Count (Inv-Neighbors Count): The
condition returns true according to the probabilistic distribution z(n) =
1− 1

1+ew(p−n) , with n that is the number of robots in the neighborhood,
p and w are tunable parameters.

6. Fixed Probability (Fixed Probability): The condition returns true with
a probability p, where p is a parameter.

In order to limit the complexity of the obtained PFSM, we limit the number of
state usable by AutoMoDe-Vanilla to 4, that is, AMD-vanilla can generate
probabilistic finite state machines with up to 4 states where each state can
have up to 4 conditions.

The optimization algorithm – The optimization algorithm automati-
cally explores the space of all the possible controllers that can be obtained
by combining the behavioral modules and the conditions, and instantiating
the respective internal parameters. In AutoMoDe-Vanilla, we use F-Race[7],
a racing algorithm for tuning metaheuristics.



Chapter 5

Experiments and Results

5.1 Experimental Setup

To asses the capabilities of AutoMoDe-Vanilla we carry out a series of ex-
periments in which the proposed method is used to obtain controllers for a
swarm of 20 e-pucks in order to solve two different tasks: aggregation and
foraging.

5.1.1 Aggregation

In the aggregation task the swarm of robots has to aggregate on one of the two
black areas of the arena’s floor. The aggregation task is the same analyzed
in [18] and presented in Chapter 3. Figure 5.1 shows the arena for the
aggregation task in both simulation and reality. The arena is a dodecagonal
area of 4.91 m2 surrounded by walls. The floor of the arena is gray and there
are two black circular areas on the floor, a and b, that have the same radius
(ra = rb = 35 cm) and are centered at 67 cm from the walls.

To evaluate the controllers simulations of T = 250 s are run. A swarm
of 20-epuck equipped with the controller to test, is randomly distributed in
the arena and then started. The objective function for the aggregation task
is calculated as:

F =
max(xa(T ), xb(T ))

N
∈ [0, 1] (5.1)

where xa(T ) and xb(T ) are the number of robots present on the black areas
a or b at the end of the simulation and N is the total number of the robots
composing the swarm. This objective function is equals to 1 when at the end
of the simulation all the robots are aggregated on one of the two areas.
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(a) simulated arena (b) real arena (and 20 e-pucks)

Figure 5.1: Arena for the aggregation task

5.1.2 Foraging

The foraging task consists of retrieving objects from the food sources repre-
sented by black circles on the floor and storing them in the nest area repre-
sented by the white floor. Figure 5.2 shows the arena for the foraging task
in both simulation and reality. The arena has the same shape and size of the
aggregation task, but the two black areas have a radius of 20 cm. Moreover,
there is a light behind the nest area that the robots can perceive through the
light sensors.

(a) simulated arena (b) real arena (and 20 e-pucks)

Figure 5.2: Arena for the foraging task. The circle at the bottom of the
simulated arena is the light.

The objective function for the foraging task is calculated as the number
of objects retrieved and stored in the nest: each time a robot goes on a
black area and then goes back to the white area the objective function is
incremented by one.
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5.1.3 Setup of evolutionary robotics

In our experimental setup, we compare the results of AutoMoDe-Vanilla
with an evolutionary robotics method. For the evolutionary robotics method
we use the same setup described in Chapter 3, here we report the setup
of the controller while for the description of the evolutionary algorithm we
refer the reader to Section 3.2. The e-puck can perceive obstacles and light
intensity using respectively the proximity and the light sensors. The color of
the floor is read using three ground sensors. The range and bearing is used
to calculate the number of robots in a 70 cm range and the vector w that
is a vectorial sum of the positions of the perceived robots. The controller is
a fully connected, feed-forward neural network. This neural network has 24
inputs, 2 outputs and no hidden units. The inputs are: 8 proximity sensors,
8 light sensors, 3 ground sensors and 5 aggregated input from the range
and bearing: one input is obtained using z(n) = 1 − 1

1+en
where n is the

number of the perceived robots. The other four input are computed as scalar
projection on the angles 45◦, 135◦, 225◦, 315◦ of the vector perceived robots
w (computed following the Equation 4.1 with att = 1). The activation of
the output neurons is computed as the weighted sum of all input units plus
a bias term, filtered through a standard logistic function. The outputs of
the neural networks regulate the speed of the two wheels, by scaling their
activation in the range [vm,−vm], with vm = 16 cm/s.

The neural network has a set of 50 parameters. Each parameter is a real
value in the range [−5, 5]. To set these parameters we use the evolutionary
algorithm described in Section 3.2.

5.2 Results

For each task we run three experimental sessions. The sessions differ on
the simulation budget, that is, the total number of simulations used by each
design method in the search for the best controller. The three simulation bud-
gets are: 200000, 50000, and 10000. For each simulation budget we perform
20 independent runs for both AutoMoDe-Vanilla and evolutionary robotics.
Since at the end of each run the design method returns one controller. The
20 controllers obtained by each method are then evaluated once in simula-
tion and once on the real robots. The evaluation on the real robots is done
using a tracking system that allows us to compute the objective functions by
tracking the position of the robots using a ceiling camera and a marker on
the top of each robot. Figure 5.3 shows a screenshot obtained by the tracking
system.
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Figure 5.3: Screenshot obtained by the tracking system

5.2.1 Aggregation

For assessing the performance of AutoMoDe-Vanilla and for comparing it
with evolutionary robotics we observe two aspects of the results. First of all,
we compare the performance of the two design methods on the real robots in
order to understand which one is able to deploy better controllers. Secondly,
within the same design method we compare the performance in simulation
and on the real robots in order to evaluate the reality gap.

Figures 5.4, 5.5 and 5.6 show the performance of AutoMoDe-Vanilla
and evolutionary robotics in simulation and on the real robots. In all three
the sessions, AutoMoDe-Vanilla performs better than evolutionary robotics
on the real robots. For each budget, the difference in performance between
AutoMoDe-Vanilla and evolutionary robotics is statistically significant at
the 95% confidence level, according to the Friedman test.

For what concerns the comparison between simulated and real robots,
the controllers designed using evolutionary robotics, while performing well
in simulation, show poor performance on the real robots. This difference in
performance is statistically significant according to the Friedman test. On
the contrary, the controllers designed using AutoMoDe-Vanilla show similar
performance between simulation and real robots. According to the Friedman
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Figure 5.4: Aggregation – Performance of the obtained controllers
using 10k simulation budget. The plot shows, for each automatic design
method, the performance of the 20 controllers (one for each independent run)
both in simulation and on the real robots. The white boxplots are the results
of evolutionary robotics and the gray ones are the results of AutoMoDe-
Vanilla
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Figure 5.5: Aggregation – Performance of the obtained controllers
using 50k simulation budget.The plot shows, for each automatic design
method, the performance of the 20 controllers (one for each independent run)
both in simulation and on the real robots. The white boxplots are the results
of evolutionary robotics and the gray ones are the results of AutoMoDe-
Vanilla
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Figure 5.6: Aggregation – Performance of the obtained controllers
using 200k simulation budget. The plot shows, for each automatic design
method, the performance of the 20 controllers (one for each independent run)
both in simulation and on the real robots. The white boxplots are the results
of evolutionary robotics and the gray ones are the results of AutoMoDe-
Vanilla

test, the difference in performance between simulation and real robots is not
statistically significant.

Behavioral analysis

Here we describe the behaviors of the controllers designed by evolutionary
robotics and AutoMoDe-Vanilla. As discussed in Section 2.1.2, one of the
limits of evolutionary robotics is the impossibility to directly analyze the
obtained controller. In fact, the numerical values obtained by evolutionary
robotics have no meaning from the human point of view. The only way
to analyze a behavior obtained with evolutionary robotics is to instantiate
it on robots and observe their behavior. We here provide an analysis of
the behavior obtained from evolutionary robotics for the aggregation task.
The controllers designed by evolutionary robotics show behaviors that are
qualitatively similar one to the other. When a robot is in the gray area, it
moves following a circular trajectory. The radius of this trajectory decreases
when the number of robots perceived by the range and bearing increases.
Moreover, the trajectory is perturbed by the collisions with other robots or
with the walls. When a robot enters in a black area the radius of its trajectory
becomes so small that the robot almost rotates on its spot. In this condition,
the robot leaves the black area only because of collisions with other robots.
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Figure 5.7: Aggregation – A controller designed by AutoMoDe-
Vanilla. At the beginning the robot moves toward the other robots (state
RBT e.g. attraction). When it detects the black floor it stops (state STOP).
In the STOP state it checks for its conditions. It changes state when it detects
the gray floor. It also starts moving, with a 0.25 probability, independently
from the floor color.
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(a) beginning (b) after 50 s (c) end of the run

Figure 5.8: Aggregation – Resulting behavior of a controller designed using
AutoMoDe-Vanilla

In general, the resulting collective behavior is an aggregative behavior but
it seems to be strongly dependent on some aspects of the experiment that
are difficult to foreseen, in particular the collisions. In some situations, the
robots are not able to get free after a collision and they get stuck outside the
black areas.

A feature of AutoMoDe is that we the obtained controllers are in the
form of a probabilistic state machine, which is easily readable by the human
developer. We here analyze the behaviors obtained from AutoMoDe for the
aggregation task. All controllers designed by AutoMoDe-Vanilla for the
aggregation task have, with small differences, the same structure. Figure 5.7
shows a representative controller that we explain in the following. At the
beginning the robot is in the state attraction (called RBT), that is, it moves
toward the other robots. The robot changes state when the floor is black
with a probability 1. In the state STOP, the robot does not move. The
robot changes the state to RBT with a 0.25 probability or when it perceives
the gray floor. The resulting collective behavior is shown in Figure 5.8. At
the beginning, the robots go closer to each other. The robots that enter in
the black areas stop for a while and then start again to move. Thanks to
this behavior, the robots that are on the black areas result in an attraction
point for the other robots. After a while (Figure 5.8b), all the robots are
in the proximity of the black areas with some of them that are in the black
areas. Eventually the robots outside a black area move to the black area
where there are already more robots (Figure 5.8c).
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Figure 5.9: Foraging – Performance of the obtained controllers us-
ing 10k simulation budget. The plot shows, for each automatic design
method, the performance of the 20 controllers (one for each independent run)
both in simulation and on the real robots. The white boxplots are the results
of evolutionary robotics, the gray ones are the results of AutoMoDe-Vanilla
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Figure 5.10: Foraging – Performance of the obtained controllers us-
ing 50k simulation budget. The plot shows, for each automatic design
method, the performance of the 20 controllers (one for each independent run)
both in simulation and on the real robots. The white boxplots are the results
of evolutionary robotics, the gray ones are the results of AutoMoDe-Vanilla
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Figure 5.11: Foraging – Performance of the obtained controllers us-
ing 200k simulation budget. The plot shows, for each automatic design
method, the performance of the 20 controllers (one for each independent run)
both in simulation and on the real robots. The white boxplots are the results
of evolutionary robotics, the gray ones are the results of AutoMoDe-Vanilla

5.2.2 Foraging

Figures 5.9, 5.10 and 5.11 show the performance achieved by AutoMoDe-
Vanilla and evolutionary robotics in simulation and on the real robots. In
all the three sessions, AutoMoDe-Vanilla performs significantly better than
evolutionary robotics.The performance of AutoMoDe-Vanilla is constant
independently from the used budget. Concerning the reality gap, the con-
trollers obtained using AutoMoDe-Vanilla achieve the same performance in
simulation and on the real robots, since the difference in performance is not
statistically significant. For evolutionary robotics, there is a wide difference
due to the reality gap. The magnitude of the difference in performance be-
tween simulation and real robots increases with the simulation budget. While
the performance of the controllers in simulation increases with the simulation
budget, the performance of the controllers on the real robots is constant. In
all the three sessions, the difference in performance between simulation is
statistically significant.

Behavioral analysis

The controllers obtained by evolutionary robotics show qualitatively similar
behaviors. The robots explore the arena following curved trajectories. These
trajectories are perturbed by the presence of other robots, the color of the
floor and the intensity of the light. As result of these perturbation the robots
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(a) random walk

(b) random walk / phototaxis

Figure 5.12: Foraging – The two classes of controllers designed by AutoMoDe-
Vanilla.

The gray nodes are unreachable
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follow the walls and sometimes they cross the arena. This behavior results
in robots passing on the black areas (the preys) an on the white area (the
nest). However, the performance of this behavior is strongly affected by
the collisions among robots. Very ofter the robots get stuck and create an
aggregate near the walls.

Concerning the controllers obtained by AutoMoDe-Vanilla, we identify
two classes of controllers: random walk controllers, and random walk / pho-
totaxis controllers. Figure 5.12 shows a representative of the random walk
controllers: the robot moves randomly in the arena. Thanks to this random
movement the robot enters the black and the white areas increasing the value
of the objective function. This class of controllers is frequent when the lower
simulation budget is used while is rare when the higher simulation budget is
used. The controllers of the random walk / phototaxis class (Figure 5.12b)
are based on the alternation between random walk and phototaxis. A robot
uses the random walk to search for the black areas. When it finds a black
area it changes the state to phototaxis to go back to the white area. When
it reaches the white area it starts again to do random walk.

5.3 Summary of the results

The results just presented show that AutoMoDe-Vanilla is able to design
performing controllers for both aggregation and foraging starting from the
same atomic behaviors and conditions. The obtained controllers appear to
be immune from the reality gap since they show similar performance in sim-
ulation and on the real robots. Comparing AutoMoDe-Vanilla with evolu-
tionary robotics the results on the real robots show that AutoMoDe-Vanilla
outperforms evolutionary robotics in all the experiments. Moreover, the be-
havioral analysis shows that the controllers designed by AutoMoDe-Vanilla,
since are based on probabilistic finite state machines, are easy to understand.
This aspect is important since it allows the designer to debug and modify
manually the obtained controllers, if necessary.



Chapter 6

Conclusions and Future Works

In this report, we presented AutoMoDe a novel approach to the design and
development of swarm robotics controllers. Given a task, AutoMoDe devel-
ops automatically the controllers of the robots so that the resulting collective
behavior of the swarm accomplishes the desired task. In the AutoMoDe,
the controllers are defined in the form of probabilistic finite state machines.
These probabilistic finite state machines are obtained by a combination of
preexisting modules: the atomic behaviors. In AutoMoDe, a new controller
is generated through an optimization process that searches for the best com-
bination of such atomic behaviors.

The controllers designed by AutoMoDe are naturally understandable by a
human user, because they are based on probabilistic state machines. For this
reason, the controllers can be analyzed and modified by hand, if necessary.

In this report we presented a proof-of-concept version of AutoMoDe called
AutoMoDe-Vanilla. Our aim was not to define the ultimate design algo-
rithm but to show the feasibility of AutoMoDe. For this reason, AutoMoDe-
Vanilla can be improved in many aspects, in particular, for what concerns
the representation of the probabilistic finite state machine and the optimiza-
tion algorithm.

We evaluated AutoMoDe-Vanilla on the design of controllers for two
different swarm robotics tasks: aggregation and foraging. We compared the
performance of AutoMoDe-Vanilla with controllers obtained using evolu-
tionary robotics on the real robots. The results showed that in all the exper-
iments, AutoMoDe-Vanilla was able to design controller that outperform
the ones obtained by evolutionary robotics. Moreover, the controllers ob-
tained by AutoMoDe-Vanilla showed to be almost immune from the reality
gap: they were deployed on the real robots without any significant perfor-
mance loss.

As future work, we will improve over AutoMoDe-Vanilla by implement-
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ing better performing optimization algorithms and more sophisticated ways
to represent the probabilistic finite state machines. For what concerns the
optimization algorithms, we will keep on focussing on tuning algorithms that
showed to be very promising. Concerning the representation of the proba-
bilistic finite state machines, we will analyze grammar-based representations
that have been successfully applied in the field of automatic design of algo-
rithm [32, 33].
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[2] Jean-Marc Amé, José Halloy, Colette Rivault, Claire Detrain, and
Jean Louis Deneubourg. Collegial decision making based on social am-
plification leads to optimal group formation. Proceedings of the National
Academy of Sciences, 103(15):5835–5840, 2006.

[3] Christos Ampatzis. On the Evolution of Autonomous Time-based
Decision-making and Communication in Collective Robotics. PhD the-
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