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Abstract

In this work a swarm-robotic system, called swarm-bot, is introduced. A swarm-
bot is a self-assembling and self-organizing artifact composed of a swarm of simple
autonomous mobile robots, called s-bots that are able to establish (and to release)
physical connections between each other and to other objects.

The swarm-bot approach emphasizes aspects like decentralized control architec-
tures, self-assembling abilities, locality and simplicity of interactions among s-bots
and between s-bots and the environment, emergence of order, flexibility and robust-
ness.

This work addresses the problem of controlling swarm-bots or a swarm of simple
s-bots in prey retrieval and collective transport tasks. We focus on tasks concerning
the transport of a single prey by a group of s-bots. To accomplish the tasks efficiently,
the cooperation of several group members is required.

Methods from the field of Evolutionary Computation are applied and studied to
design control policies solving the underlying tasks.

Presently, experiments are carried out using a 3D physics simulator. The simulated
s-bot model is an approximation of a real s-bot, currently manufactured in the scope
of the SWARM-BOTS project. Swarms and swarm-bots composed of real s-bots are
planned to be studied as soon as they are available.
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Report Layout

This work is organized into three chapters.

Chapter 1 provides a general introduction to related research fields. It is split into
four parts. The first part provides an introduction to Evolutionary Algorithms with
special focus on Evolutionary Strategies and the field of Evolutionary Robotics. The
second part is dedicated to a brief introduction to self-organizing systems. The third
part deals with distributed mobile robotic systems in general, and with the swarm
robotics and the swarm-bots approach in particular. Finally, cooperative transport
and retrieval strategies are discussed in the scope of (natural) ant and robotic systems.

Chapter 2 and Chapter 3 focus on particular cooperative transport problems. In
each chapter the simulation framework, the experimental setup, and the results are
presented.

Chapter 2 addresses the problem of the cooperative transport of a prey by a group
of two s-bots into an arbitrary direction. The communication structure among s-bots
is strictly limited to interactions via the environment. Therefore, the s-bots are not
able to sense each other. The task requires the cooperation of both s-bots to be
completed.

Chapter 3 addresses the problem of the cooperative transport of a prey by a group
of four s-bots into a specified direction. Here, interactions via sensing are possible.
Prey objects of various mass, shape and size are utilized.
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Chapter 1.

Introduction

1.1. Evolutionary Algorithms

The field of Evolutionary Algorithms unites several fairly independently created and
developed research branches started in the 60’s. Certainly the most influencing ones
are Evolutionary Strategies (Rechenberg, 1965; Rechenberg, 1973; Schwefel, 1975;
Beyer, 2001) introduced by Rechenberg and Schwefel, Genetic Algorithms (Holland,
1962; Holland, 1975; Goldberg, 1989; Mitchell, 1996; Goldberg, 2002), founded by
Holland, and Evolutionary Programming (Fogel, 1962; Fogel et al., 1966), proposed
by Fogel, Owens and Walsh. Within the field of Genetic Algorithms, the sub-branch
of Genetic Programming (Cramer, 1985; Koza, 1992; Banzhaf et al., 1998; Langdon
and Poli, 2002; Koza et al., 2003) has been invented by Cramer.

The development of these branches has started in different contexts: while Evolu-
tionary Strategies have been introduced as an all-purpose technique in experimental
optimization, Genetic Algorithms have been proposed to study mechanisms of adap-
tive systems and to model classification processes. Evolutionary Programming has
been founded to address time series problems with finite state machines created by
artificial evolution.

However, these branches share similarities, such as the basic inspiration by natural
evolution. Therefore, the generic term Fuvolutionary Algorithms has been established
to emphasize this common base.

The following section provides a brief summary of the development of the theory
of evolution. Section 1.1.2 and Section 1.1.3 describe the Basic Evolutionary Algo-
rithm in general and the particular branch of Evolutionary Strategies. Finally, in
Section 1.1.4 a brief introduction to the field of Evolutionary Robotics is given.

1.1.1. Theory of Evolution

Until modern times, the belief of constancy of species - the division of living things
into species would exist unchanged since time immemorial - was prevalent. The
common opinion was that the diversity of nature could be reduced to a limited number
of sharply defined natural types, each one defining a class of identical, constant
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members. !

Jean Baptiste Lamarck (1744-1829) realized that species are subject of a gradually
developing process. He believed in inheritance of acquired characteristics that would
change according to a teleological drive towards greater perfection triggered by desires
or as a result of the behavior that is influenced by those desires. In his major work
“Philosophie zoologique” (Lamarck, 1809) he states that frequently used organs would
develop further while rarely used organs would recede.

Half a century later, Charles Darwin published his famous book “On the origin of
species by means of natural selection” (Darwin, 1859). Also Darwin believed living
things would develop further and changes would occur mostly in small steps rather
discontinuously. In fact, Darwin postulated that, although development happens
gradually, all living things descend from a single root. This hypothesis has been
supported by the discovery of the universal genetic code of all living entities.

In opposition to Lamarck, he stated that the steps of change were not determined
by a drive towards greater perfection during life-time, but were the result of natural
selection - the selection of individuals being adapted best to their environment. He
assumed that there would be an excessive amount of offspring, but only a limited
amount of available resources in the environment. The offspring would be similar to
their parents, but also vary slightly from each other. Individuals that are adapted
the best to the environment would be more likely to produce offspring than those
that are less adapted. This is referred by the familiar term “survival of the fittest”.
The continuous interplay of variation and natural selection leads to an evolutionary
process.

Although Darwin assumed that characteristics would be inherited, he could not
explain the underlying mechanism. The reinvention of the ideas of Mendel (Mendel,
1866) at the beginning of the 20th century seemed to be incompatible with Darwin’s
theory.? Several critics of Darwin’s Theory of Evolution (“Darwinism”) stated that
complex organisms could arise only by macro mutations rather than by a slow and
continuous evolutionary process that develops gradually.

Also the key role of natural selection as one of the evolution factors was not ac-
cepted by several critics. Instead of this, neo-lamarckian, mutationist, or orthogenetic
theories had been favored. However, insights, especially in microbiology, genetics, pa-
leontology and embryology have led to a falsification of almost all of those theories
or to a support of the theory of natural selection.

Based on Darwin’s Theory of Evolution and the genetic principles primarily ob-
served by Gregor Mendel, the widely accepted Synthetic Theory of Evolution (Dobzhan-
sky, 1937; Mayr, 1942) including insight gained from research in biogeography, pa-

!This is the belief of Essentialism.
2For instance, Darwin’s belief of continuity in the evolutionary progress and the strong discontinuity
concerning inheritance of characteristics observed by Mendel.
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leontology, systematics, and later also in molecular biology has been developed by
Dobzhansky and Mayr.

The synthetic theory refuses any inheritance of acquired characteristics and empha-
sizes the step-wise nature of evolution. It recognizes that evolutionary phenomena
can always be considered as population phenomena and confirms the preeminent
importance of natural selection.?

1.1.2. Basic Evolutionary Algorithm

The insight that natural evolution produces new organisms that get better adapted
over time to their highly complex environments, has led to the application of the
underlying mechanisms in different domains. For instance, evolutionary algorithms
are applied to a huge variety of problems in optimization (Gen and Cheng, 2000;
Koza et al., 2003).

In the following, it is assumed that an optimization problem is given. A set of
(feasible) solutions - the search space - is defined, each solution can be assigned a
fitness value reflecting the quality of solution. The aim is to find a solution of very
high quality.

In the context of Evolutionary Algorithms the term individual is used to refer to a
solution. Each individual has a genotype. The genetic material that is coded in the
genotype is subject to genetic operators during reproduction. Apart from that the
genotype itself is immutable, so there are no changes during the lifetime. Depending
on the problem domain and the evolutionary techniques used, individuals can be
represented in different ways.

The genotype contains the information to construct an organism, the phenotype,
i.e., the expression of the properties that are coded by the genotype. The genotype-
phenotype mapping can be influenced by stochastic processes. Only the phenotype
is subject of selection.

The Basic Evolutionary Algorithm is illustrated in Figure 1.1. In general, evolu-
tionary algorithms investigate different search paths at once. Therefore, a population
comprised of several individuals is kept. Usually, a population of unbiased randomly
initialized individuals serves as starting point. But also individuals of former evolu-
tions or knowledge in the problem domain can be exploited in order to construct a
population to start with.

The quality of each solution is determined by an evaluation procedure. Therefore,
a fitness function, complex simulations, or practical experiments might be utilized in
order to obtain the fitness value reflecting the solution’s quality.

In case a solution of sufficient quality has been found, the algorithm terminates.
Otherwise, certain individuals are selected in order to produce the population of the

3Translated from (Mayr, 1988).
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Figure 1.1.: Basic Evolutionary Algorithm

next generation. Thereby solutions of higher fitness are more likely to be chosen.
The genetic material of the selected individuals will be modified by genetic operators
like mutation or recombination in order to produce offspring that are admitted to
the population of the next generation. Mutation modifies the genotype of one single
individual, whereas recombination combines the genotypes of two or more individuals.
Besides this, some individuals might have the chance to replicate themselves without
any change in the genotype.

In the following section, a brief introduction to the branches of Evolutionary Strate-
gies is given. Characteristics in the individual’s representation, selection, and the
genetic operators are detailed.

1.1.3. Evolutionary Strategies (ES)
Representation

Problem solutions are represented as N-dimensional, real-numbered vectors, also re-
ferred to as the object parameters. Often, there is no encoding step needed, since a
real-valued optimization problem might be given. In this case, the genotype is iden-
tical to the phenotype. The fitness value can be determined using an N-dimensional
objective function that is supposed to be minimized or maximized.

Selection

Considering selection, a distinction is drawn between the so-called plus- and comma-
strategies.
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In case of a (u+))-ES (a plus-strategy), the best p individuals are deterministically
chosen from a set of A offspring and p parents. The selected p individuals create a
new set of A offspring. Therefore, the selected set of p reproducing individuals might
contain both - individuals from the set of A offsprings and individuals of the former set
of p parents. This strategy uses strict elitism to preserve already evolved solutions.
If and only if, at least u better solutions have been created, an individual is replaced.

In case of a (u,A)-ES (comma-strategy) only the p best solutions out of a set of
A offspring that have been created, are selected to produce offspring. Since parent
individuals are not considered, there is no elitism. For this strategy, A should be
bigger than pu.

Mutation

Mutation is a variation operator that changes the genome’s information of a par-
ent individual according to a suitable probability distribution. In an evolutionary
strategy mutation is usually performed by adding a vector of random components
generated from a normal distribution.

One key property of Evolutionary Strategies is self-adaptive behavior. Using spe-
cific types of variation operators, in particular the mutation operator, the evolution-
ary algorithm is able to self-adapt to the local topology of the fitness landscape®.
Self-adaptation can lead to a significant increase in performance. Performance mea-
sures have been defined in several ways (Beyer, 1994). Definitions can refer to local
progress in fitness landscape or search space, or global progress in search space.

A common way to realize an adaptive mutation operator, is to control the mutation
strength s. Let X be the parent’s genotype and Z an N-dimensional real-valued
vector of independently random components generated from the normal distribution
N(0,1).> An offspring X’ can be obtained by X' = X + sZ. It is pursued to
control s in order to maximize performance. A rule of thumb is given by the 1/5
success rule (Rechenberg, 1973): Let Psyccess be an estimation of the probability
that the offspring’s fitness is higher than the one of the parent individual. Pgyccess
is measured periodically (e.g., after a certain number of generations has elapsed). If
Pyyccess < 1/5, s will be decreased, if Psyccess > 1/5, s will be increased, otherwise
s will not be modified. Keeping the success rate close to 1/5, the performance
exhibited by the evolutionary strategy can be nearly optimal. This rule of thumb has
been theoretically justified and studied using some idealized assumptions concerning
the fitness landscape (Beyer, 1993).

For some types of problems it has been shown, that using a plus-strategy combined

4Metaphor figuring a combination of the search space and the fitness values of each genotype as
defined by the objective function. Evolution can be thought of as a hike towards the hills of this
fitness landscape. The highest peaks represent the fittest solutions.

5N(u, o) denotes the normal (gaussian) distribution of average u and variance o>.
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with a constant mutation strength leads to a sub-linear convergence to the optimum,
while controlling the mutation strength leads to a linear convergence to the optimum.
Comma-strategies without controlling the mutation strength do not converge.

So far, it was implicit to have isotropic mutations, that means that Z is a random
vector generated according to a probability distribution with a spherical-symmetrical
density function. However, it is not unusual to have a specific mutation strength S;
for each dimension of the object parameter space. A self-adaptation of those strategy
parameters can be achieved by including them in the individual’s genotype (Schwefel,
1974). Then, the genotype of each individual is comprised of object parameters
X = (X1,Xo,...,Xy) and endogenous® strategy parameters S = (S, Sa,...,Sn).

It is assumed that good object parameters tend to be associated with good strategy
parameters. In case of a mutation, first strategy parameters are mutated, then object
parameters are varied using the new strategy parameters.

It is common practice to mutate the mutation strength parameters s; multiplying
them with a random variable £ with an expected value close to 1. Schwefel proposed
using a lognormal distribution (Schwefel, 1974). This can be realized by

& =exp?, (1.1)

where y = 7N (0, 1) is normally distributed. 7 can be seen as a learning parameter
or learning rate that specifies how fast the evolutionary strategy is able to adapt.

Schwefel’s rule suggests to set 7 o \/—% (for an analysis see (Beyer, 1996)).

A refinement of this is to set
5 = expyg-H/s’ (12)

where y; = 7, N(0, 1) is calculated once per individual and therefore unique for all ob-
ject parameters, while y3 = 73N (0, 1) is determined for each object parameter again.
Thereby, there is a common component for all strategy parameters and there are

specific ones. 7; and 75 can be set proportional to \/;—N and \/21\/ﬁ respectively (Deb
and Beyer, 1999).

In principle, components of the mutation vector Z do not need to be independent:
for a correlated self-adaptation N mutation strengths and N (N —1)/2 rotation angles
can be used to represent the covariances for pair-wise relationships among variables
(Deb and Beyer, 1999). However, the number of strategy parameters might get
intractable for high dimensional search spaces.

5Endogenous strategy parameters are adapted during evolution, while exogenous strategy param-
eters (e.g. p or A) are kept constant.
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Recombination

A recombination operator combines p parent individuals to create a new offspring
(2 < p < ). For a parent individual’s selection, the p best individuals all have the
probability 1/u to be selected. Multiple selections of the same individual are possible.

The intermediate recombination operator computes the center of mass of the real-
valued vectors given by the parent individuals. The dominant or discrete recombina-
tion operator for each coordinate randomly selects a parent to take the corresponding
value from.

Under certain assumptions it can been proven that a choice of p = u leads to
the best performance (Beyer, 1995). Concerning the intermediate recombination,
one might partition each parent vector into a component directing to the global
optimum, and a second component perpendicular to this. Concerning the components
perpendicular to the optimum, parent individuals have no preferential direction.”
Building the center of mass, the impact of those components tends to disappear.
Therefore, recombination can be seen as an operator repairing defective genes (Beyer,
2001).

1.1.4. Evolutionary Robotics

Evolutionary Robotics addresses the problem of automatic design of adaptive, au-
tonomous robots by using evolutionary computation techniques. The term FEvolu-
tionary Robotics was probably first coined by Cliff, Harvey and Husbands (Husbands
and Harvey, 1992; Cliff et al., 1993), but the idea of synthesizing the control system
of a robot by an artificial evolutionary process dates back a few years earlier (Barhen
et al., 1987; Viola, 1988; Garis, 1991; Brooks, 1992).

Most of the work in this field aims at designing control systems. However, the
design may specify also the robots’ morphologies, i.e., the physical, embodied char-
acteristics of the robots.

The Evolution of Control Hand-made design of a robot’s control system can become
an unpleasant, laborious task especially if the robot is confronted with incomplete,
imprecise and partially incorrect information in a dynamically changing environment.

In the Evolutionary Robotics approach the robot’s skills are evolved without hu-
man intervention in close interaction with the environment. In order to let a given
robot perform a desired behavior or task, the human designer will have to specify an
appropriate objective function. In principle, it is not necessary for the designer to
decompose the task into a certain set of basic behaviors. As reported by Nolfi and
Floreano, such a decomposition can be the result of a self-organizing process (Nolfi

"This is true for certain classes of fitness functions.
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and Floreano, 2000). Complex individual behavior can emerge by numerous interac-
tions between the robot and the environment (see also Section 1.2). Since selection
acts solely on the emergent behavior, a suitable decomposition might be attained by
evolution.

Another problem to face is the design of control systems for a group of multiple
robots (see also Section 1.3). In principle, no human intervention is necessary to
decompose the desired behavior of the group of robots into certain individual be-
haviors. This decomposition can be the result of a self-organizing process that arises
during an Artificial Evolution. Given a social group of individuals cooperating “to
enhance the groups’ survival”, “a group can also be the target of selection” (Mayr,
2001, page 280). Since the selection in an artificial evolution can purely act on the
emergent behavior of the group, suitable individual behaviors can be attained as a
byproduct of the evolution (Dorigo et al., 2003; Trianni et al., 2003).

Most of the early work in Evolutionary Robotics was devoted to the evolution of
controllers for simulated robots.

Using the upcoming techniques of Genetic Programming, Koza evolved controllers
based on the subsumption architecture (Brooks, 1986) for sonar-based robots in the
context of navigation, wall following, and box pushing tasks (Koza, 1990; Koza and
Rice, 1992). The simulation model did not include any noise concerning sensing or
actuation. Neglecting noise during the evolution phase, Reynold observed a certain
brittleness, i.e., a vulnerability of the behavior to any slight change or to noise,
for the behaviors he evolved with a genetic programming approach for a vision-
based obstacle avoidance task (Reynolds, 1993). After including noise in his model,
the evolving behaviors got more robust and the problem of brittleness disappeared
(Reynold, 1994).

Beer and Gallagher used a genetic algorithm to synthesize continuous-time recur-
rent neural networks based on the continuous Hopfield model (Hopfield, 1982) to
control a six-legged insect-like robot in chemotaxis and locomotion tasks. A variety
of strategies have been evolved. In case of the locomotion task, a tripod gait appeared
(Beer and Gallagher, 1992).

Colombetti and Dorigo investigated the feasibility of utilizing a hierarchical struc-
ture of learning classifier systems (Booker et al., 1989; Holland, 1975) to build adap-
tive control systems for both simulated and real robots (Colombetti and Dorigo, 1994;
Dorigo, 1995; Dorigo and Colombetti, 1998). First, the lower-level modules in the
hierarchy have learned some pre-defined basic behaviors such as chase, feed or escape.
Then higher-level modules have learned a proper coordination of the basic behaviors.
Finally, all modules could refine their behavior and interactions in parallel. To accel-
erate the learning and adaptation process, the behaviors were learned incrementally
through shaping by a trainer. The trainer observes the agent’s interactions with the
environment giving positive or negative reinforcements.

Nolfi et al. report about a significant decrease in performance of navigation behav-
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iors that have been evolved in simulation, if tested in real environments. However,
continuing the evolutionary process for a few additional generations in the real world,
the attained performance level is similar to the one obtained in simulation (Nolfi et al.,
1994).

Jakobi studied techniques for evolving control systems for real robots using min-
imal simulations. Several behaviors for various robotic systems have been evolved,
e.g. target recognition and approach for visually guided mobile robots, or walking
and obstacle avoidance for an eight-legged robot. In all cases successful behaviors
exhibiting “extremely robust behaviour when downloaded into reality” have occurred
after some hours of simulation time (Jakobi, 1998).

Floreano and Mondada evolved the control system of a robot without the use
of human intervention and directly on a physical robot in real time (Floreano and
Mondada, 1994). Simple recurrent networks were utilized to control a Khepera robot
(Mondada et al., 1993) engaged in a navigation and obstacle avoidance task. In
another experiment they evolved recurrent neural networks to control a real robot
to periodically return to a virtual battery charger. It has been observed that the
activations of the evolved neural networks represented the topology of the world
“that was gradually built through a process of interaction with the environment”
(Floreano and Mondada, 1996).

Co-Evolution of Morphology and Control Morphology and control have been jointly
evolved in simulation in order to obtain a physical structure that fits well in the en-
vironment and a control policy suitable for both, the structure and the environment
(Sims, 1994a; Sims, 1994b; Komosinski, 2000). In an interesting work, Sims applies a
genetic algorithm to evolve virtual creatures (Sims, 1994b). Each genotype encodes
the morphology of three-dimensional simulated creatures as well as the neural sys-
tems for the control of movement. The morphology is specified by a directed graph of
objects of various dimensions that are linked by various types of joints. The control
system is provided with several sensory inputs specifying the current value for each
degree of freedom, potential contacts of each face of each part (self-contacts or con-
tacts with the environment are not distinguished) and the direction to a global light
source. The system has been used to evolve creatures suitable for specific locomotion
behaviors such as swimming, walking, jumping and following.

Recently, evolved morphologies have been manufactured, and the control policies
have been successfully validated on the real robots (Lipson and Pollack, 2000; Endo
et al., 2002).
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1.2. Self-organizing Systems

The theory of self-organization has been developed in many scientific fields, including
chemistry, physics, biology, cybernetics and economics. In general, the term Self-
organizing System denotes systems with the ability to change their internal structure
and their function in response to external circumstances.

The Encyclopedia of Physical Science and Technology gives a summary of the va-
riety of features that have been identified as being typical for many self-organizing
systems (Banzhaf, 2002):

Self-organizing systems are dynamic, non-deterministic, open, exist far
from equilibrium and sometimes employ autocatalytic amplification of
fluctuations. Often, they are characterized by multiple time-scales of their
internal and/or external interactions, they possess a hierarchy of struc-
tural and/or functional levels and they are able to react to external input
in a variety of ways. Many self-organizing systems are non-teleological,
i.e., they do not have a specific purpose except their own existence. As
a consequence, self-maintenance is an important function of many self-
organizing systems. Most of these systems are compler and use redun-
dancy to achieve resilience against external perturbation tendencies.

Numerous attempts to define the notion of self-organization can be found in the
literature (Ashby, 1947; Nicolis and Prigogine, 1977; Haken, 1988; Coveney and
Highfield, 1995). Camazine et al. define self-organization as

a process in which pattern at the global level of a system emerges solely
from numerous interactions among the lower components of the system.
Moreover, the rules specifying interactions among the system’s compo-
nents are executed using only local information, without reference to the
global pattern. (Camazine et al., 2001)

The term pattern can refer to a “spatio-temporal physical structure or behav-
ior” (Anderson, 2002). Patterns emerge by numerous interactions among lower-level
components or possibly even by many repeated interactions belonging to a single
individual (Anderson, 2002).

In general, the term emergence denotes the appearance of qualitatively new phe-
nomena on higher levels of a hierarchical system. The emergence of a pattern in a
self-organized system is caused within the system and is “not generated from interfer-
ence or other external guiding forces, such as templates” (Anderson, 2002; Camazine
et al., 2001). Nevertheless, self-organized systems can be affected by the environment.
Without any change of the characteristics of underlying lower-level components, they

10
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may switch between different semi-stable states (multi-stability) due to intrinsic fac-
tors such as random fluctuations within the system but also due to eztrinsic factors
such as environmental changes (Deneubourg et al., 1989; Anderson, 2002).

Since the rules specifying interactions among the rather simple lower-level com-
ponents of the system use only local information, comparatively limited cognitive
abilities and knowledge of the environment (if any) are required at individual level.

Self-organized systems are usually regulated by positive and negative feedback that
holds between low-level components of the system. These components affect each
other in mutual ways. Thus, circular cause-and-effect relations are present. Positive
feedback corresponds to a recurrent influence that amplifies the initial state. This
results in growing deviations in a runaway, explosive manner. Negative feedback
stabilizes the system, by bringing deviations back to their original state, for instance,
if available resources are exhausted (Heylighen, 2002).

Positive feedback is seen as an important “key ingredient” of many self-organized
systems. In some self-organized systems such as “thermoregulation in honeybee (Apis
mellifera)” positive feedback seems not to be present or the presence is not obvious
(Anderson, 2002).

In nature, self-organizing systems have been identified in living systems (cells, neu-
ral networks, flocks of birds, schools of fish, swarms of bees) and non-living systems
(sand dunes, galaxies, stars). Additionally, self-organization has been discovered
“in man-made systems (societies, economics)” and the “world of ideas (world views,
scientific believes, norm systems)” (Banzhaf, 2002).

1.3. Distributed Mobile Robotics

The field of distributed robotics has received growing attention by researchers in
recent years. Systems comprised of multiple mobile robots have become subject
to first studies in the late 1980’s. Early investigations include works on cellular (or
reconfigurable) robot systems (Fukada and Nakagawa, 1987; Beni, 1988), multi-robot
cooperation (Asama et al., 1989) and multi-robot motion planning (Premvuti and
Yuta, 1990).

Multi-robot systems have been studied in various “principle topic areas” (Mataric,
1995; Parker, 2000) addressing biological inspiration, communication, architectures
and learning, as well as in different application domains, e.g., exploration (Billard
et al., 1999; Hayes et al., 2000), object manipulation (Tung and Kleinrock, 1993;
Parker, 1994; Donald et al., 1994; Sen et al., 1994; Martinoli and Easton, 2003) and
foraging (Goss and Deneubourg, 1992; Drogoul and Ferber, 1993; Becker et al., 1994;
Goldberg and Matarié, 1999).

Related research previous to investigations concerning multi-robot systems has
focused on the control of a single robot, or addressed the field of Distributed Artificial
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Intelligence®.

In the next section potential advantages of multiple mobile robotic systems are pre-
sented. In Section 1.3.2 the terms collective- and cooperative behaviors and tasks are
briefly introduced. Important issues of multi-robot system architectures are detailed
in Section 1.3.3. Finally, Section 1.3.4 presents a novel approach to the design and
implementation of collective robotic systems, taking inspiration from insect societies.

1.3.1. Potential Benefits of Having Multiple Mobile Robots

Systems of multiple mobile robots are of particular interest due to the following
reasons (this list is not exhaustive).

Task Complexity and Solvability Multiple robots may be able to solve tasks that
are inherently too complex or even impossible to be accomplished by a single robot;
moreover, a robotic system can gain a performance increase from using more than
one robot:

e Multiple robots can distribute themselves in the environment to occupy several
possibly distant locations at the same time, while the current operating range
of a single robot is limited to the robot’s vicinity.

e Multiple robots are well suited to perform several actions in parallel.

e Task decomposition and task allocation strategies can be exploited in multi-
robot systems in order to gain improved performance.

Design Costs and Versatility Multi-robot systems can be composed of simple robots
with identical hardware specification. Therefore, the robots may be manufactured
with comparably little cost. Moreover, a single robot that is able to accomplish a
predefined task on its own might be too specialized to perform other tasks, while
groups of multiple robots tend to be applicable in different problem domains.

Flexibility, Robustness and Fault-tolerance A distributed robotic system may be
able to alter its behavior more flexible in response to environmental changes than a
single robot. Moreover, multi-robot systems introduce redundancy. If entire robots
or parts of them fail to serve their purpose, the whole system might still be able to
complete the task. Flexibility and robustness are key properties observed in social

8Distributed Artificial Intelligence (DAI) (Huhns, 1987; Gasser and Huhn, 1989; Bond and Gasser,
1988) is concerned with the cooperative solution of problems by a decentralized group of agents.
The field can be divided into two parts: Distributed Problem Solving (DPS) and Multi-agent
Systems (MAS) (Durfee and Rosenschein, 1994; Mataric, 1995).
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insect colonies (see Section 1.4.1). Various works in distributed robotics draw inspi-
ration from this field (Deneubourg et al., 1990; Kube and Zhang, 1992b; Drogoul
and Ferber, 1993; Kube and Zhang, 1995; Martinoli and Mondada, 1995; Martinoli
et al., 1997; Martinoli and Easton, 2003).

Finally, multi-robot systems are of general research interest since their development
may yield insight into fundamental problems of fields spanning the social sciences (or-
ganization theory, economics) and life sciences (theoretical biology, animal ethology)
(Cao et al., 1997).

1.3.2. Collective and Cooperative Behaviors and Tasks

The term collective behavior is commonly used to refer to any behavior of robots in a
multi-robot system. Cooperative behavior is a collective behavior that is characterized
by cooperation. Various definitions of cooperation and cooperative behavior can be
found in the literature. Cooperative behavior can be defined in the following way
(Cao et al., 1997):

Given some task specified by a designer, a multi-robot system displays
cooperative behavior if, due to some underlying mechanism (i.e., the
“mechanism of cooperation”), there is an increase in the total utility of
the system.

Martinoli and Mondada distinguish between collective noncooperative tasks that do
“not necessarily need cooperation among the individuals to be solved” and collective
cooperative tasks “which absolutely” need “the collaboration of two or more individ-
uals in order to be carried out, because of some physical constraints of a single agent”
(Martinoli and Mondada, 1995). They report about two experiments concerning a
collective noncooperative task and a collective cooperative one. In the first experi-
ment, the task is to let a group of one to five robots cluster small objects that are
scattered arbitrarily in a squared arena. This task is considered as collective nonco-
operative. Using several robots is reported to speed up the cluster building process.
However, the relative performance (i.e., the average size of the constructed clusters
with respect to the cumulative time spent by all robots of the group) is considered to
be best in case the group is composed of only a single robot. Multiple robots cause
an “increasing rate of destructive interferences” (Martinoli and Mondada, 1995). In
a second experiment, the robots are expected to remove long sticks from wholes in
the ground. This is only possible if at least two robots cooperate synchronously.
Therefore, the task is classified as collective cooperative. It is worth noting that the
individual control policies that are applied in both tasks are almost similar.
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1.3.3. System Architectures

In the following, important issues concerning the architecture of multi-robot systems
are discussed.

Centralization/Decentralization Concerning the control, multi-robot systems are
usually classified as either being centralized or decentralized. The term centralized
denotes the characteristic that only one single control agent is present. Centralized
control systems are often said to be not well suited for large group sizes due to the
increasing demand for communication. Moreover, the whole system will collapse, in
case the central controller fails.

Homogeneous and Heterogeneous Groups An important issue concerning archi-
tectures of multi-robot systems is the question of similarity between the robots of a
team. Robots can be equipped with identical capabilities or not. The term homoge-
neous group of robots refers to the first case. If one or more robots are different from
the others, the term heterogenous group is used. Concerning the robot’s capabilities,
it is common to include not only the abilities of the robot’s sensors and actuators,
but also its computational and behavioral abilities. Most research has been carried
out with homogeneous systems.

Balch studied behavioral specialization in learning robot teams. Inspired by Shan-
non’s information entropy (Shannon and Weaver, 1949), he proposes the metric social
entropy to evaluate diversity in societies of mechanically similar but behaviorally
heterogeneous agents (Balch, 1997b). Balch studied the quantitative relationship
between performance and behavioral diversity on various tasks. In case of a robot
soccer task behaviorally heterogeneous robot teams can lead to a performance benefit
(Balch, 1997a). For a particular foraging task the homogenous robot teams performed
better (Balch, 1999).

Heterogeneous groups of mechanically different robots have been studied with the
multi-robot system ALLIANCE. ALLIANCE is a distributed control architecture
for small- to medium-sized heterogeneous robot teams (Parker, 1994; Parker, 1999).
Cooperation is achieved using broadcast communication allowing robots to be aware
of the actions of their teammates. Teams can be composed of both legged and wheeled
robots.

Communication Another way to categorize multi-robot systems is the communica-
tion structure used to interact. Different types of interactions can be distinguished
(Cao et al., 1997):

e Interaction via the environment. In this case there is no explicit communication
between the robots. Moreover, robots are not able to directly perceive each
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other. Interactions are based on modifications of the environment. This kind of
indirect interaction using the environment as communication media is known as
stigmergy (Grassé, 1959). Stigmergic communication is observed, for example,
in social insects like ants (see Section 1.4.1). There are numerous works using
this kind of indirect communication in the context of multi-robotic systems
(Goss and Deneubourg, 1992; Becker et al., 1994; Arkin, 1992).

Interaction via sensing. In this case no explicit communication is prevalent,
but a robot can locally sense the presence of other teammates. The term kin
recognition refers to the ability to distinguish teammates from other objects in
the environment (Mataric, 1994). Kuniyoshi et al. studied the recognition of
the teammates’ actions to gain useful information about the current situation
for the coordination of autonomous agents in various tasks (Kuniyoshi et al.,
1994). They propose a framework, called Cooperation by Observation that is
based on interactions via visual action recognition. Moreover, they introduce
the term attentive structure that is “a set of attentional relations among all
members of a cooperative group and related objects”.

Attentive structures exist in social animals like monkeys or apes: the society
members are paying attention to a common leader individual. Their actions
can be highly dependent on the observed behavior of the leader, for instance,
during an attack of the group (Chance and Jolly, 1970).

Herding, flocking, and schooling behaviors in animals are examples of attentive
structure without the presence of any leader individual. Flocking, dispersion
and pattern formation has been studied in the context of multi-robot systems
(Mataric, 1992a; Mataric, 1992b; Trianni et al., 2003).

Interaction via communication. This class of interactions refers to explicit
communication among robots. Robots can broadcast messages or send messages
dedicated to a particular teammate.

Bach and Arkin showed that using communication can be beneficial for par-
ticular types of tasks. Controllers exhibiting reactive behaviors have been de-
veloped in simulation and have been ported for the purpose of validation to a
group of real mobile robots (Balch and Arkin, 1994). Already a small amount
of transmitted information could lead to a significant increase in performance.

1.3.4. Swarm Robotics and Swarm-bots

Classical Al approaches tend to model robots as rational, deliberative agents, able
to search for solutions within abstract models of their environments.

In swarm robotics and in the field of Swarm Intelligence (Bonabeau et al., 1999)
in general, a fundamental different view of intelligence is taken: rather than model-
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e

Figure 1.2.: Illustration of the s-bot prototype (side and front view): the s-bot is equipped
with a Differential Treels© Drive that is a combination of tracks and wheels, a gripper
fixed to the turret, a gripper attached to a flexible arm, and an omnidirectional camera
system placed inside the pillar on the s-bots top. The turret can be rotated with respect
to the chassis.

ing robots to be rational and deliberative, individuals are of low complexity having
limited cognitive and computational abilities. In fact, complexity on the level of a
collective of simple individuals can emerge due to numerous interactions among the
system’s components. This is a well-known property of a self-organizing system (see
Section 1.2). Examples can be found in nature: social insects — ants, bees, termites
and wasps — can be viewed as powerful problem-solving systems with sophisticated
collective intelligence.

Swarm robotics is a novel approach to the design and implementation of collec-
tive robotic systems, taking inspiration from insect societies. The swarm robotics
approach emphasizes aspects like decentralized control architectures, locality and
simplicity of interactions among robots and between robots and the environment,
emergence of order, flexibility, miniaturization and robustness. Swarm robotic sys-
tems are composed of swarms of robots that tightly interact and cooperate to reach
their goal.

The study of the design, hardware implementation, test and use of self-assembling
swarm robotic systems called swarm-bots is the objective of the SWARM-BOTS
project? (Mondada et al., 2002b; Mondada et al., 2002a; Sahin et al., 2002). A
swarm-bot is a self-assembling and self-organizing artifact composed of simple au-
tonomous mobile robots (called s-bots) that are able to establish and to release phys-
ical connections between each other.

9 SWARM-BOTS is a project sponsored by the Future and Emerging Technologies program of the
European Community (IST-2000-31010).
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The real swarm-bot will be composed of a number of rather simple, insect-like,
s-bots, built out of relatively cheap components. A prototype of the real s-bot is
illustrated in Figure 1.2. The s-bot is equipped with a Differential Treels® Drive
that is a combination of tracks and wheels. The gripper fixed to a turret can be used
to establish robust connections to other s-bots or objects. Additionally, a gripper
attached to a flexible arm can be utilized to grasp other s-bots or objects. An
omnidirectional camera system is placed inside the pillar on the s-bots top. The
turret can be rotated with respect to the chassis.

1.4. Cooperative Prey Retrieval

1.4.1. Cooperative Prey Retrieval in Ants

This section gives a brief introduction about the retrieval of (dead) prey items in ant
colonies.

Let us consider a foraging ant that discovers a prey item to retrieve in an envi-
ronment. The ant will first try to carry the item. If it turns out that the item is
too heavy, the ant will drag it. If the item resists motion, the ant will realign its
body without releasing the grasped item to try to drag again. If several attempts to
drag the item fail, the ant releases the item to find a better position to grasp. If all
attempts are without success, the ant might give up or recruit other nest-mates.

Two types of recruitment strategies can be distinguished: in short-range recruit-
ment, an ant emits a chemical signal in the air to attract other nest-mates in the
immediate vicinity. In long-range recruitment, an ant returns back to the nest laying
a pheromone trail. The pheromone trails guide nest-mates to the prey. It has been
observed that both short-range and long-range recruitment techniques appear in the
species Novomessor cockerelli (Holldobler and Wilson, 1990).

A group of ants might cut the prey into small pieces that can be retrieved in solitary
transport. However, many species of ants can retrieve heavy items cooperatively
(Sudd, 1963; Robson and Traniello, 1998; Traniello and Beshers, 1991).

In case the prey that is retrieved starts to resist motion after some time, realigning
and repositioning behaviors appear that resemble the ones described for single ants
discovering new prey items (Sudd, 1965). In this way, deadlock and stagnation
situations can be solved.

Group retrieval can be much more efficient than the alternative of cutting the item
into small pieces and retrieving the pieces by single ants. It has been reported that a
group of 100 workers of the Pheidologeton diversus can transport an item weighting
5000 times as much as a single worker, and the weight carried by workers involved
in solitary transport on the same foraging trail was at most five times the individual
weight (Moffet, 1988; Bonabeau et al., 1999).
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The size of the group of workers engaged in the transport of a prey is adapting
to the degree of difficulty encountered while trying to retrieve the prey (Holldobler,
1983). This is achieved merely by recruitment strategies that cease to attract other
nest-mates in case the prey can already be moved with the available amount of
workers.

It has been observed that ants do not interact directly but indirectly: the behaviors
of ants modify the environment and thus affect the behaviors of other ants. This is
referred as the concept of stigmergy (Grassé, 1959). Stigmergic communication is
evident for the recruitment strategies used. Another example is that ants engaged in
group transport coordinate via the item being carried.

Although single ants exhibit comparatively simple behaviors on the individual level,
the colony or even parts of the colony are able to solve complex tasks. The emergence
of complexity at a global level in a system composed of simple agents with numerous
local interactions and without reference to the global pattern can be explained by
the concept of self-organization (see Section 1.2).

1.4.2. Cooperative Transport by Robotic Systems

Deneubourg et al. proposed the use of self-organized approaches for the collection and
transport of objects in unpredictable environments (Deneubourg et al., 1990). Each
robot unit could be simple and inefficient by itself, but the group of robots would
have a complex and efficient behavior generated by the interactions between robots.
Cooperation could be achieved without any direct communication among robots, as
in some biological systems that rely on stigmergic communication or that exhibit
particular individual behaviors (Grassé, 1959; Deneubourg and Goss, 1989). In a
transport task, for instance, coordination could occur by inter-individual competition
and via the object to move.

Kube and Zhang studied a decentralized approach for a group of simple robots to
push an object that cannot be moved by a single robot (Kube and Zhang, 1992a;
Kube and Zhang, 1992b; Kube and Zhang, 1995). The approach does not make use of
explicit communication among robots. Taking inspiration from biological collective
transport systems like ant colonies, they extended the model by a stagnation recovery
mechanism. Moreover, a “first formalized model of cooperative transport in ants”
has been provided (Kube and Bonabeau, 2000). A 2D simulator and later on real
robotic systems have been used for validation.

One possible drawback of the control policies described by Kube and Zhang seems
to be the lack of efficiency concerning the time required to accomplish a transport
task, and the rather high number of robots engaged in the transport of an object
that could already be moved by a group of two robots.

Other approaches rely merely on global planning or on a combination of local and
global planning with centralized conflict resolution (a list is given in (Bonabeau et al.,
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1999)). The work of M.J. Mataric, M. Nilsson, and K.T. Simsarian on groups of two
cooperative box-pushing robots can be included in the list, since all robots share all
sensory inputs, even if they might respond autonomous (Mataric et al., 1995).
Lynne Parker studied the use of distributed control systems in heterogeneous
groups of two robots (Parker, 1994; Parker, 1998; Parker, 1999) on certain tasks
including box-pushing. One robot had two wheels arranged as a differential pair.
The other one was a robot with six legs. Parker developed a learning system in
which robots are able to learn from their previous experience with other robots.
Investigations were made both with simulated and with physical mobile robot teams.
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Chapter 2.

Evolving Cooperative Transport Strategies
for Two Minimalist S-bots

Generally, we are interested in the design of policies controlling a whole colony or
just a group of simple s-bots engaged in prey retrieval tasks. Desired properties
concerning the behaviors to be obtained on the colony or group level include:

e Efficiency: the more prey are retrieved by the colony or group of s-bots, the bet-
ter.! Clever search and recruitment strategies to find and to select the items to
retrieve as well as fast transport strategies are of particular interest. To increase
efficiency, strategies might exploit observable and predictable characteristics of
heterogeneous distributions of prey in time and/or space, e.g., by making use
of learning techniques in order to let the colony, group, or individual forager
adapt to current or coming environmental conditions.

e Robustness: the colony or group of s-bots should be able to accomplish the
task even though entire s-bots or s-bot parts may fail to serve their purpose.
Sensor and actuator devices of same type behave not identical, sensors provide
uncertain values, and the physical responses concerning commands sent to ac-
tuators are not precisely predictable. Nevertheless, successful strategies should
be able to accomplish the task with moderate decrease of performance.

e Flexibility: the colony or group of s-bots should be able to adapt to changing
environments and various initial conditions. Flexibility is desirable on both,
colony and group level. For instance, on the colony level, the system should be
able to adapt to the current distribution of prey items in the environment in
order to exploit its characteristics (e.g., huge clusters of prey items) to perform
efficiently. On group level, the s-bots should be able to form suitable structures
in order to retrieve prey of various shape and size. Once the prey is moving,
the group should be able to avoid stagnation in case obstacles are encountered.

' A definition of efficiency can take various aspects into account, for instance, the amount of energy
spent by the s-bots, the quality of prey, different types of prey (“water” and “food”), the minimal
amount of prey in stock etc.
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e Scalability: it is desirable that the obtained strategies can be successfully ap-
plied to larger group sizes or bigger colonies. Having a larger number of s-bots,
it is possible to retrieve more prey in parallel. Moreover, prey objects having
a higher resistance to motion can be transported.

In our experiments, the colony or the groups of s-bots will be controlled by decen-
tralized control systems. Principally, each s-bot is a fully autonomous, mobile robot.
Centralized control systems are said to be not well suited for large group sizes due to
the increasing demand for communication. Moreover, the whole system will collapse,
in case the central controller fails (see also Section 1.3.3).

In the design process of our multi-robot system, we focus on groups of mechani-
cally similar s-bots. In order to control the s-bots these are initially equipped with
identical (artificial) recurrent neural networks. Since, recurrent neural networks are
able to adapt their behaviors during life-time, some s-bots of the group might exhibit
behaviors that are very different from the ones of the other group members. In this
sense, the group of s-bots is heterogeneous (see also Section 1.3.3).

In this chapter, we apply an artificial evolution to synthesize neural networks in
order to control a small group of simple s-bots engaged in a cooperative transport
task. We consider the case that only one single prey is present. Furthermore, no
advanced search or recruitment techniques are necessary, since all s-bots are placed
in the immediate vicinity of the prey.

The environment is a flat ground of infinite size. Since navigation on rough terrain
is a challenging research topic of its own, it would probably increase the problem
complexity to a high degree. Investigations concerning prey retrieval on rough terrain
will be carried out in the future.

The environment cannot be perceived precisely since sensors deliver uncertain val-
ues. Commands sent to the s-bots’ actuators result in an imprecise, delayed response.
Moreover, sensors and actuators of same type behave not identical.

There is no explicit communication among s-bots. Moreover, the s-bots are not
able to sense each other. The communication structure is limited to interactions via
the environment (see Section 1.3.3).

The following two sections introduce the underlying simulation framework and the
task that is studied. In Section 2.3 the experimental setup is detailed. In Section 2.4
and Section 2.5 results and conclusions are presented.

2.1. Simulation Framework
To study multiple s-bots pulling and pushing items of prey in simulation, it is es-

sential to consider the physical characteristics of interactions among agents as well
as between agents and their environment. Therefore, the level of abstraction in the
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Table 2.1.: Friction coefficients belonging to pairs of material types in contact. The “”-
symbol indicates that no contact of the corresponding pair of material types will occur in
the experiments described in this chapter.

ground | wheels torso prey
ground | - 0.8 - 0.25
wheels 0.8 - - -
torso - - 0.02 0.02
prey 0.25 - 0.02 -

model is chosen to be sufficiently low. In order to have a somewhat acceptable sim-
ulation speed, a numerical solver is used to perform the calculations concerning the
collisions among objects and the body dynamics.?

The simulated s-bot model is an approximation of a real s-bot, currently manufac-
tured within the SWARM-BOTS project. A project’s description and an illustration
of a prototype of the real s-bot can be found in Section 1.3.4.

In general, simulation models have to be defined carefully, in case it is intended
to transfer control algorithms from simulated to real robots. Since we have not yet
gained much experience concerning the real s-bot prototype, we do not expect that
control algorithms let the s-bots behave in a simular way both in simulation and on
the real s-bots. However, focus is given on the application of techniques of Automatic
Programming that, in principle, can be applied directly on real s-bots. Finally, the
gained insight in the mechanism underlying simulated prey retrieval systems may
lead to a better understanding of the tasks in general.

The following two sections are dedicated to the description of the s-bots environ-
ment and the s-bot itself. The cgs metric system is used, so lengths are measured in
cm, masses are measured in grams, and time is measured in seconds.

2.1.1. The Environment

In the experiments described in this work, a flat ground of infinite size is present.
The gravity is set to 981 cm s 2.

In order to simulate reasonable frictional forces, different material types are used
to model the ground, the s-bot’s wheels, the s-bot’s torso and the prey (the s-bot is
illustrated in Figure 2.1). To calculate the frictional forces, an approximation based
on the Coulomb friction law is used. The friction coefficients concerning possible

contacts among material types are presented in Table 2.1.

2The core simulator system has been developed in cooperation with IDSIA (Dalle Molle Institute
of Artificial Intelligence Studies), Switzerland. It is based on libraries of the commercial physics
engine Vortex™ from CMLabs.
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Figure 2.1.: Front, side and top view of the s-bot: the cylindrical torso is equipped with
a small gripper element heading to the front, and a camera placed on the pillar. Two
passive, spherical wheels (white) are connected to the torso’s back and front part. Two
motorized, cylindrical wheels (gray) are connected to the torso on the left and right side.
Since the wheels intersect with the torso, collisions between wheels and the torso are
disabled.

The friction coefficient between the s-bot’s wheels and the ground is set to 0.8.
However, s-bots can still turn easily, and s-bots can pull or push each other, since a
slip between the wheels and the ground is defined.

The friction coefficient between the prey item and the ground is set to 0.25. This
value is low enough to avoid that a prey item starts jolting when pulled or pushed.

Prey are modeled as cylinders. Mass, radius and height are specified by each
experimental setup.

2.1.2. The S-bot

The s-bot model is shown in Figure 2.1. The body is composed of a cylindrical torso,
a gripper element that is fixed on the torso’s edge heading to the s-bot’s front, a long
cylindrical pillar placed on the top of the torso to support a visual camera system,
and four wheels: two active wheels on the left and right, and two passive ones in the
front and the back. The torso has a diameter of 13cm and the whole s-bot has a
height of 16.85cm. However, the center of mass is below a height of 4 cm, since the
torso element has a height of only 6.75cm and it is placed close to the ground (see
Figure 2.1).

The passive wheels are modeled using sphere geometries of radius 1.9 cm connected
to the torso via a ball-and-socket joint. The active wheels are modeled by cylinders
of radius 1.9 cm and height 1.9 cm connected to the torso via a motorized hinge joint.
They are not equipped with a steering system.

The mass of each wheel is 20g. The whole s-bot has a mass m = 660g. Since
gravity is set to 981 cms™2 the s-bot’s weight, i.e., the force that acts on the mass
due to gravity is equal to 660 g - 981 cm s~2 = 647,460 dyne.?

100,000 dyne = 1 Newton.
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The control system reads the sensory status and sets actuator activations every
0.1 seconds. This is equal to the control frequency that can be used by certain
real, mobile robots, for instance, the Khepera robot (Mondada et al., 1993). Too
high frequencies are not reasonable, due to several reasons. First, reading a sensor
value of a physical or chemical sensor needs a certain amount of time. Second, after
setting the activation of an actuator, there will not be an immediate response. And
third, the s-bot has only a limited amount of computational resources. In case of the
camera sensor for example, feature extraction algorithms will take some time to be
accomplished.

In the following two sections the actuators and sensors of the s-bots are detailed.

Actuators

The s-bot is equipped with two active wheels and a gripper element.

The active wheels are connected to the torso via a motorized hinge joint. The max-
imum torque that can act on an active wheel is 200,000 dyne cm. This corresponds
to a force (applied at a distance of 1cm) that is a little bit less than % of the s-bot’s
weight. An active wheel can be controlled by setting a desired angular speed that is
pursued respecting the given torque limit. If the desired speed is negative the wheel
turns backward. For both directions, the angular speed is restricted by the upper
bound 155~ !. Note that the wheel may slide in case the speed is too high.

To simulate an inaccurate behavior like it is known from real actuators, the desired
speed s for a wheel is changed according to the following algorithm:

&1 = GAUSS(1,0.05);
3:£r1'£7'2‘3;
if (|s| <&) s=0;

where GAUSS(u, o) provides a random value following the distribution N(u,0), i.e.,
the normal distribution with expected value p and standard deviation o. &, is
generated each time step specifying a current relative error for a particular wheel,
while (&2, &) specifies a permanent deviant behavior for a particular wheel persisting
for the whole simulation period. &,o gives a relative error like &1 does. & is a
threshold specifying the minimum non-zero absolute value of the desired speed the
wheel can be set to. £qo and & are determined for each life-time according to the
normal distribution N(1,0.02) and the uniform distribution U(0.1,0.5). In this way,
some wheels are biased to turn faster than others, the wheel’s speed is fluctuating,
and activations less than certain threshold values will not result in any movement of
the wheel.

The gripper element is a controllable, sticky box heading to the front. If the element
is in gripping mode, a connection will be established when the gripper element is in
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contact with a grippable object. This is realized by dynamically creating a ball-and-
socket joint connecting the s-bot’s torso and the object. The joint is positioned on
the gripper element. Once the gripper is set to the open mode, this joint will be
removed to release the object.

In our experiments, both the prey and the s-bots’ torsos are grippable objects.

The connection formed by the gripper element will break if too much force is
transmitted via the corresponding joint. This is a characteristic of the real s-bot and
of gripper elements in general. One strategy to transport a heavy item by multiple
robots is the formation of a chain pulling the item. However, as long as there is
no rope or something equivalent to transmit forces, the chain will break, if too high
forces appear. To overcome this problem, strategies might form structures having
multiple connections to the object and/or let the robots push the prey instead of
pulling it.

The limit for the force acting on the gripper element is 1,000,000 dyne (i.e., 10 Newton).
This limit still permits s-bots engaged in the transport of a heavy prey to form struc-
tures like small pulling chains.

Sensors

The s-bot is equipped with a camera and a gripper status sensor. These sensors have
their counterparts on the real s-bot. A summary of the information provided by each
sensor is presented in Table 2.2.

The camera is mounted on a pillar support that is fixed at the center of the torso’s
top. The camera sensor is situated 16.85cm above the ground. In principle, it is
able to sense objects in all horizontal directions having an infinite range. However,
the quality of the perceived signal decreases when the object’s distance is increased.
Therefore, the sensing range is restricted depending on the type of feature that is
supposed to be extracted.

The simulated camera provides data based not on recorded images but on infor-
mation available in the simulator, e.g. the distance to another object. The implicit
assumption here is that in case of the real s-bot, such information can be obtained
from the camera using feature extraction algorithms.

The camera sensor can provide information about a cylindrical prey object in the
surrounding, if the horizontal distance between the cylinder’s border and the camera
is at most R = 50cm. R can be called the sensing range. In particular, the camera
sensor is able to detect the horizontal distance between the s-bot and the closest
point of the prey’s border, and the horizontal angle to the corresponding point with
respect to the s-bot’s heading.

Moreover, the camera sensor is able to detect the horizontal direction of the highest
intensity of light perceived. Light is emitted by a single beacon that is placed in the
environment. The beacon distributes a light signal of infinite range. It can guide the
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Table 2.2.: List of information provided by the sensors. In the experiments described in this
chapter, the s-bots are equipped with the gripper status sensor and the camera sensor.

‘ Sensor device Information provided ‘

gripper status sensor status of being connected to another ob-
ject via the gripper element
camera sensor horizontal angle and distance to a cylin-

drical prey object (sensing range: 50 cm)
horizontal angle of highest intensity of
light perceived (a constant light signal is
emitted by a beacon)

s-bots involved in the transport task to indicate the direction, the prey is desired to
be moved. In practice, this kind of global information might not be available due to
environmental constraints like walls or a rough terrain.

The beacon might be replaced by systems where signals indicating the desired
direction of movement are emitted by specialized s-bots instead. These s-bots could
distribute themselves in the environment, to establish a path from the prey to the
target position, e.g., a nest. Such a chain of specialized light emitting s-bots could
guide the group of s-bots engaged in the transport of a prey from its current position
to the nest.

In case of real s-bots, the camera sensor will be affected by noise. Therefore, noise is
modeled in the simulation, too. In case of the light or the prey perceived, an angular
deviation r,, is added to the horizontal angle a;,q (radian measure) that indicates the
target direction to the light or the prey. r, is generated using the normal distribution
with expected value 0 and standard deviation 0.1. Also the measured distance (in
cm) to a perceived prey object is affected by noise. This is modeled by adding a
random variable following the normal distribution N (0, 1).

A gripper status sensor is able to perceive whether the gripper element is connected
to another object or not.

2.2. The Task

The Objective Our aim is to control a group of two simple s-bots to cooperatively
transport as far as possible a heavy prey of specific shape, size and mass within a
fixed time period into an arbitrary direction. The prey cannot be moved without
cooperative behavior.

The Environment The s-bots’ environment consists of a flat ground. A cylindrical
prey of radius 12 cm, height 10cm and mass 500 g is placed in the center. A light
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emitting beacon is placed 300 cm away. The s-bots are placed at random positions
and orientations, but not more than 25 cm away from the edge of the cylindrical prey.

The S-bot’s Capabilities The s-bots can localize the prey object and they can sense
the beacon that is placed in the environment. The s-bots are able to control their
gripper elements and they perceive whether a connection is established or not.

There is no explicit communication between s-bots. Moreover, here, s-bots are not
equipped with any sensor to perceive their teammates. However, due to the simulated
physical embodiments of s-bots, they are interacting with an environment that is in
turn changed by their action.

The s-bots sensors and actuators are affected by various types of noise. Moreover,
sensor and actuator devices of same type behave not identical.

2.3. Experimental Setup

2.3.1. The Neural Network Controller

Each s-bot of a group acting in a simulation environment is initially equipped with
an identical recurrent neural network. However, as recurrent neural networks are
not restricted to reactive behaviors, each individual s-bot can change its state during
life-time according to the sensory input it has perceived. Therefore, it is possible
that s-bots of the same group behave completely different, even if placed in the same
environmental context.

To control the s-bots, an Elman Network (Elman, 1990) is used. Elman networks
are recurrent neural networks having a fully interconnected hidden layer of neurons,
as can be seen in Figure 2.2. The set of neurons N of the Elman network can be
partitioned according to four different types of neurons: the bias neuron b, the set of
input neurons I, the set of hidden neurons H, and the set of output neurons O. The
set C' of connections among neurons is given by

C ={(i,5)|i € {b} UTUH,j € H}
U{(5,5)|i € {b} UH, j € O}.

For each connection (i,7) € C, let w(i,j) € R be a real value, assigning a weight
to the directed connection between neurons i and j.*

Let a¢(7) be the activation of a neuron 7 at time ¢. At time 0 the activations are
given by

“Here, the variables 7 and j refer to neurons, they are not indices.
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output layer

hidden layer

input layer

Figure 2.2.: Elman network having an input layer of three nodes, a hidden layer of three
nodes and an output layer of two nodes. There are two connection types, feed-forward
connections (solid lines) and recurrent connections (dashed lines). While feed-forward
connections pass a change in the activation of the input node to the output node without
delay, a recurrent connection always passes the activation of the last iteration. Note that
the hidden nodes are fully interconnected by recurrent connections.

0 ifjeN\{b}h
1 otherwise.

ao(j) = {

The bias neuron b has a constant activation a;(b) = 1, for ¢t > 0. The activations
ay(i),7 € I,t > 0 correspond to the s-bot’s sensor reading values at time ¢.
The activation a(i),7 € H,t > 0 is given by the following equation:

a(i) = f (w(b, i)+ ar(k) xw(k,i) + Y a1 (k) * w(k,z’)) ,
kel keH
where f(z) is a logistic function:

1

- ety

The activation a:(%),7 € O,t > 0 is given by the following equation:
ay(i) = f (w(b,i) + > a(k) W(k,i)) :
keH

In the experiments described in this chapter, the neural network controllers have
five input neurons, namely preyy, preyy, light directiong, light direction,, and gripper status. In
the following, the activation of each input neuron at time ¢ is described:
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e Let R = 50 be the sensing range, d; the horizontal distance between the s-bot
and the border of the prey object at time ¢, and a; the horizontal angle of the
perceived prey item with respect to the s-bot’s heading. In case no prey item
is perceived, the provided distance is R. The activation values are given by

(R — dt) sinoy if d; < R;
at(preyw) = 0

otherwise,

and
ar(orey) = (R—d¢)cosay if di < R;
t\PreYy) =3 otherwise.

o a;(light direction;) = ay(light direction,) = 0 in case no light is perceived. Otherwise,
the camera sensor provides the horizontal angle 8; in which the light emitted
by the beacon is perceived at time ¢. The activation values are given by

at(light directionw) = sin ,Bt, and

a4 (light direction,) = cos [3;.

e a;(gripper status) is set to 1 in case the s-bot is connected to another object via
the gripper element at time ¢, otherwise it is set to 0.

The activations of the three output neurons are within the interval (0,1). They are
used to control the actuators:

e For the desired angular speed of each motorized wheel, the corresponding out-
put is scaled in the range of —15s7! to 15571,

e The gripper actuator tries to grip if and only if the corresponding output is
greater than 0.5.

2.3.2. The Evolutionary Algorithm

The evolutionary algorithm used is a self-adaptive version of the (u + A\)-ES (see
Section 1.1.3). An individual is composed of real-valued object parameters X =
(z1,22,...,zn) specifying the weights of the Elman Network used to control the
s-bots, and real-valued strategy parameters S = (s1, S9,...,sn) specifying the mu-
tation strength used for each coordinate of the search space.

Initially, a population of randomly initialized individuals is generated. Object
parameters are set to random values within [—5, 5], and strategy parameters are set
to random values within [0.01,1]. In principle, object parameters are not limited to

30



2.3. Experimental Setup

this interval. Also strategy parameters can overcome the upper bound of 1. However,
there is a strict lower bound of 0.01 in order to avoid stagnation: in case of mutating
object parameters, the standard deviation should not converge to 0 because mutation
would not provide new solutions any more.

Before the evolution is started, a random walk strategy is performed in order to
generate a wide variety of somewhat acceptable starting solutions. The total number
of fitness evaluations during the random walk is equal to number of evaluations of
an evolution lasting ten generations.

In each generation all individuals are assigned a fitness. The p parent individuals
from the previous generation are re-evaluated due to the following reasons:

e The fitness of an individual is affected by noise and by some initial conditions
such as the s-bots’ placements in the environment. It has been observed that
strategies of pure average performance may reach very high fitness values in
a single try. In case elitism is used in an evolutionary algorithm with a noisy
fitness function, the best rated individuals tend to be overestimated. This
overestimation can be typical, in case large populations are used or if a con-
siderably big fraction of individuals can get comparatively high fitness values.
Re-evaluating parent individuals avoids a systematic over-estimation caused by
previous fitness evaluations in time. It is noted that over-estimation can have
the positive effect of protecting good solutions (Markon et al., 2001).

e Individuals of the same generation are evaluated under similar conditions, for
instance, the initial placement of the s-bots in the environment is identical.
For each generation, the conditions are changed randomly. Parent individuals
get re-evaluated under the same conditions that are used to evaluate offspring
individuals. Therefore, we expect to gain better comparability of the parent
and offspring fitness values during the selection phase.

The best u individuals create A offsprings. With a probability of 0.8 an offspring is
created by mutation, otherwise two parent individuals are selected and recombined.
In the latter case, the mutation operator is applied to the created offspring.

Mutation of strategy parameters is performed by multiplying the strategy param-
eter s; with a random variable using the lognormal distributional approach with the
parameters 7, and 7y (for details see Section 1.1.3). 7, is set to ﬁ and 7 is set to

—-L . Then, the object parameters z; are mutated by adding a random variable

2VN
according to the normal distribution N (0, s;).

Recombination combines two parents individuals by intermediate or discrete re-
combination (see Section 1.1.3), both with same probability.

The number of offspring has been chosen as A = 80 and the number of parents
is 4 = 20. Since the amount of parents in the total population is only 20%, there
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is substantial selection pressure. Besides, only 20% of fitness evaluations is spent to
re-evaluate parent individuals in the new generation.

2.3.3. The Fitness

The task is to control a small group of simple s-bots to cooperate to transport as far
as possible a heavy prey within a fixed time period. The direction of movement of
the prey is not predetermined.

The prey is modeled as a cylinder of radius 12 cm, height 10cm and 500 g mass.
The prey cannot be moved by a single s-bot. Therefore, coordination is necessary
although the s-bots cannot sense each other.

Each individual, i.e., a common controller for a group of s-bots, is evaluated by
performing five tests t1,t2 ..., 15 against a sample composed of S = 5 configurations
specifying the s-bots’ initial placements and the position of the beacon. S can be
called the sampling size. The sample is changed only once a generation, therefore,
all individuals that compete with each other are evaluated under similar conditions®.
This should increase the comparability of fitness values among individuals within the
same generation. Note that the y parent individuals that are copied into the next
generation by default get re-evaluated based on the new sample.

In each test, the simulation lasts 20 seconds. The prey item is placed in the center
of the environment. The s-bots are placed at random positions and orientations, but
not more than 25cm away from the prey. This ensures that the prey can initially
be detected by each s-bot. The beacon is placed at a random position 300 cm away
from the center of the environment. This is less than the distance the prey can be
moved within the simulation time of 20 seconds.

For each test t;,7 € {1,...,S} a quality measure ¢; (i.e., the transport quality)
evaluates the exhibited transport performance. The final fitness score f is computed
using a weighted average. Let ¢ be a permutation of {1,2,...,S} such that g4) <
gp2) < -+ < gg(s), then the fitness value is given by

S

F=Y (8 —i+1)qy0. (2.1)

i=1

In this way, tests exhibiting weak transport performance account more than oth-
ers. Due to the weighting, any fluctuation gets punished. Therefore, individuals that
emerge during evolution might get more resistant over time to the noise in the envi-
ronment, their sensors and their actuators. This strategy emphasizes solutions with
low performance fluctuations. Having a high average performance is not the only

5Settings concerning noise acting on sensors and actuators are not fixed by the sample’s configura-
tions.
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aim. It is desired to have a group of s-bots that is almost always able to complete
the transport task with an acceptable performance.

To emphasize the evolution of solutions that let all s-bots participate in the trans-
port activities, the transport quality accounts for the clustering performance of s-bots
around the prey. The clustering quality ¢; in a test ¢; is defined by

. 0 if 7 > 50;
=3¢, and =4 1 if d9) < 25; (2.2)
j=1 50—d .
o otherwise.

dz(] ) denotes the Euclidean distance (in cm) observed in test t; between the final
positions of the jth s-bot and the center of the prey minus the radius of the prey.

Therefore, s-bots that are not more than 25cm away from the perimeter of the
prey get the maximum clustering performance value of 1. In this way, any structure
of two collaborating s-bots pushing or pulling the prey item cannot be punished.
S-bots that are more than 50 cm away cannot sense the prey item any more and get
the lowest possible clustering performance value of 0.

The transport quality g; in a test ¢; is defined as

_Joa if D; = 0;
= 1+ (R++/D;)c;®  otherwise,

where D; denotes the Euclidean distance (in cm) observed in test ¢; between the
prey’s initial and final positions, and R = 1 is a constant reward.

In case the prey item has not been moved in test ¢;, the transport quality g; is given
by the clustering quality ¢; € [0,1]. Otherwise, the fitness is at least 1. In this case
the clustering quality again has an important influence. Therefore, it is very likely
that successfully evolved controllers encourage the s-bots to remain in the vicinity of
the prey.

The term R + +/D; is composed of R = 1, a small, distance independent reward,
and the root of the distance D;. D; should not exceed a distance of 150 cm (see next
section). The root function is applied as scaling function in order to emphasize small
differences for smaller distances and to weaken differences for bigger distances.

(2.3)

2.4. Results

The experimental setup described above has been used in ten independent evolution-
ary runs. Each one was performed for 150 generations. One run lasted a little bit
less than a week on a machine equipped with 512 MB of memory and a 1,537 MHz

processorS.

SAMD Athlon XP™ 1800+
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Group Transport to an Arbitrary Direction
2 s—bots; prey: 500 g mass, cylinder of radius 12 cm

fitness (10 runs)
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Figure 2.3.: Box-and-whisker plot (see also description of Figure 2.5) providing information
about the evolutionary progress in ten runs. Characteristics about three types of obser-
vations are displayed (partitioned into groups of five generations): the best fitness value
of a population (dark gray boxes), the average fitness value of all individuals of a popu-
lation (white boxes), and the average of the fitness values obtained by the re-evaluation
of the parent individuals that have produced the population (light gray boxes). Since a
random walk instead of the evolutionary algorithm has been performed for the first ten
generations, two boxes concerning the average of the parent individuals’ fitness values are
missing.

In the following, the transport performance of the evolved controllers as well as the
obtained behaviors and their ability to scale using larger group sizes are discussed.

2.4.1. Performance and Robustnhess

The transport quality of a group (as defined by Equation 2.3) in a test depends on
the genotype specifying the neural network controller, the s-bots’ initial positions and
orientations, the position of the beacon in the environment, the particular offset and
threshold values of each sensor and actuator, and the amount of noise that affects
sensors and actuators at each time step. Of course, the ultimate goal is to generate
genotypes that perform well under every potential condition. However, the number of
different conditions is uncountable, and during evolution the solutions are evaluated
using just a sample of five different conditions per generation.

Figure 2.3 displays the development of the best and average fitness for certain sets
of individuals over all ten evolutionary runs:

34



2.4. Results

Transport Quality of Parent Individuals of Generation 150
2 s—bots; prey: 500 g mass, cylinder of radius 12 cm
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Figure 2.4.: Box-and-whisker plot visualizing characteristics of the transport quality values
observed for the u parent individuals of the final generation of one particular run. All
parents exhibit similar performance.

e The dark gray boxes correspond to the observed fitness values of the best rated
individuals for every population. Each box covers a period of five generations.
As discussed in Section 2.3.2, these fitness values tend to over-estimate the
corresponding individuals.

e The average fitness values of the y parent individuals of each population are
illustrated by the light gray boxes. Parent individuals get re-evaluated in the
subsequent generation (for reasons see Section 2.3.2). Here, the average fitness
value of the parent individuals is computed based on the set of re-evaluated
fitness values. Although the average fitness of the re-evaluated parent individ-
uals may fluctuate, there is no systematic over-estimation caused by previous
fitness estimations, since the re-evaluation takes place after selection is applied.

e The white boxes correspond to the average fitness values of the entire populat-
ion.

Looking at Figure 2.3 one can see that, in all cases, the fitness values tend to
increase. Within the first 60 generations, often, the parent individuals exhibit a
much higher fitness in average than the entire population of individuals.

Since the fitness values are computed using a weighted average, it is hard to es-
timate the attained quality level. Moreover, the fitness values are affected by noise.
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It is not obvious what quality level has been reached and which individuals can be
considered best.

The set of the ;1 = 20 parent individuals of a final generation comprises all genetic
material that would be exploited in subsequent generations in case the evolution
would be continued. Therefore, the y best individuals of the final generation of all
ten evolutionary runs are post-evaluated on a sample of 500 different tests. Perform-
ing this post-evaluation, it has been observed that parent individuals of the final
generation of the same evolutionary run exhibit a quite similar performance; one
example is provided by Figure 2.4.

In the analysis focus is given on two types of individuals from the final generation
of each evolutionary run that are considered best:

e the individual with the highest average of the transport quality values observed
in the 500 tests during the post-evaluation of the y = 20 parent individuals is
called the type 1 individual;

e the individual with the lowest standard deviation of the transport quality values
observed in the 500 tests during the post-evaluation of the y = 20 parent
individuals is called the type 2 individual.

For every evolutionary run, both types of individuals are post-evaluated for a
second time, on a random but fixed set of 1,000 tests.

Figure 2.5 shows a box-and-whisker plot presenting the transport quality values
observed in the 1,000 tests for both types of best individuals for all evolutionary runs.
The first five solutions displayed make essential use of the gripper element.

According to Equation 2.3, the transport quality ¢; observed in a test ¢; is 1 +
(R + v/D;)c;® and therefore at least 1 in case the prey object has been moved, and
¢i € [0,1] otherwise. Looking at Figure 2.5, it can be seen that the prey has been
moved in almost all cases, since almost all observed transport quality values are in the
range 2 to 15. If ¢; > 2, the distance D; the prey has been moved is at least (g; —2)2.
If ¢; < 1, D; is bigger than (g; —2)2. Assuming the worst case for the distance moved,
i.e., a perfect clustering quality ¢; = 1, some examples for pairs of moved distance
D; and the corresponding transport quality ¢; are given in the following table:

Qi 113(4(5(6 (7 (8 |9 (101112 |13 |14
Di(incm) |[0|1]4]9|16|25|36|49 |64 |81 |100 | 121 | 144

Let us consider a setup in which a group of s-bots, structured in a connected,
linearly aligned chain, is pulling the prey item for a period of 20 seconds. The
first s-bot of the chain is connected to the prey right from the start. All s-bots
are controlled by a handwritten controller: each s-bot moves backwards applying
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Transport Quality (type 1 and type 2 individuals)
2 s—bots; prey: 500 g mass, cylinder of radius 12 cm
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Figure 2.5.: Box-and-whisker plot visualizing certain characteristics of the transport quality
of the best individuals of each final generation. The box comprises observations ranging
from the first and third quartile. The median is indicated by a special line, dividing the
box into the upper and lower part. The whiskers extend to the most extreme data point
which is no more than 1.5 times the length of the box away from the box. Data points
which lie beyond the extremes of the whiskers are marked as circles.

the maximum angular speed to the wheels; the gripper element remains closed. If
a chain of two s-bots is placed in such a structural configuration, the distance the
object can be moved within the simulation time of 20 seconds is around 149.64 cm.
This corresponds to a transport quality of approximately 14.23. A pushing chain of
two s-bots exhibits an equal transport quality. During these measurements, no noise
function has been applied to the wheels. If noise is not discarded, the wheel’s speed is
fluctuating around the desired setting, leading to similar performances for a pulling
chain, and lower performances for a pushing chain.

However, during the fitness evaluation the s-bots are not placed in such an initial
structure that can be used to retrieve the prey: the s-bots are scattered in the en-
vironment at random positions and with random orientation. Therefore, the s-bots
have to approach the item and to coordinate themselves in some way, before a struc-
ture is formed that can be used to retrieve the item. If we assume that the randomly
placed s-bots need ten seconds to form a chain like the one described, this structure
could only pull the prey for the remaining ten seconds of simulation time. During
this period, the item can be moved 74.50 cm, corresponding to a transport quality of
approximately 10.63. If only five seconds are available to move the prey, a distance
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of 36.90cm can be reached, corresponding to a transport quality of approximately
8.07.

The median transport quality exhibited by half of the type 1 individuals is in
range [10.03,11.73]. The observed standard deviation concerning half of the type 2
individuals is in range [0.91,1.30].

Overall, we have evolved a number of controllers of respectable performance. Some
of them exhibit only low performance fluctuations. Therefore, the controlled groups
of s-bots act quite robustly with respect to various kinds of noise concerning the
sensors and actuators devices.

In the following, the obtained behaviors are briefly described.

2.4.2. Behavioral Analysis

The evolutionary runs have generated a variety of high performing solutions. In case
of the five solutions on the left side of Figure 2.5 the gripper element is an essential
part of the transport strategy. The performances of these solutions are more varying
than the performances of solutions not relying on the gripper element.

Some solutions let the s-bots drive forward in order to push the prey. In this case,
the gripper element is used to establish a connection and sometimes even a pushing
chain of two s-bots moving like a snake is formed. Other solutions let the s-bots
drive backwards. In this case, the s-bot’s torso is in direct contact with the prey,
since the gripper element is heading in the opposite direction. In one case, solutions
even combine both strategies: s-bots may push the prey driving in both orientations.
None of the best solutions exploits gripping in order to pull the prey.

Usually, s-bots orbit around the prey until they perceive a certain direction of
light. Then they start trying to move the prey. In most solutions the prey is moved
towards the light, or in the opposite direction. In one evolutionary run, solutions let
move the prey perpendicular to the direction of light perceived, therefore, the prey
circuits around the beacon. Within the short simulation period, this behavior is not
punished substantially.

The question arises whether the behaviors are scalable, i.e., are evolved individuals
able to cooperate in transport of a heavier prey using a larger group size?

2.4.3. Scalability

For each evolutionary run, the type 1 individual, i.e., the individual with best average
performance is evaluated against tests with a prey of mass 1,250 g and a group of five
s-bots. In most cases, the exhibited performance is weak. Having five s-bots around
a prey of same size seems to increase the inter-individual competition for the limited
space in which the desired direction of light is perceived.
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Scalability Test (type 1 individuals)
5 s—bots; prey: 1,250 g, cylinder of radius 30 cm
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Figure 2.6.: Scalability test: for each evolutionary run, the individual for which the best
average performance has been observed (the type 1 individual) is evaluated 500 times
using a group of five s-bots and a prey of radius 30 cm and mass 1,250 g. The simulation
period is extended by ten additional seconds, since it requires more time for each s-bot to
orbit around the prey. The first five individuals make essential use of the gripper element.

However, in case the perimeter of the prey is multiplied by the same factor the
number of s-bots is increased, all solutions are able to move the prey, and the ones
not relying on the gripper exhibit an acceptable performance (see Figure 2.6).

2.5. Conclusions

In this chapter, we addressed the problem to control a group of two simple s-bots
to cooperatively transport a heavy prey of specific shape, size and mass as far as
possible into an arbitrary direction within a fixed period of time. The prey cannot
be moved without cooperative behavior. There is no explicit communication among
s-bots. Moreover, the s-bots are not able to sense each other. The communication
structure is limited to interactions via the environment.

In all of the ten evolutions that have been carried out, controllers exhibiting an ac-
ceptable performance under most of the tested 1,000 conditions have been generated.
In half of the runs controllers reach high performance levels while having quite low
performance fluctuations. Moreover, many solutions can be applied to larger groups
to move prey items of bigger size and mass. In general, the controllers’ performances
are very sensitive with respect to the size of prey. Further on, we observed that the
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performances of those solutions that make essential use of the gripper element are
more fluctuating than the performances of other ones.

Some solutions perform quite robustly with respect to various kinds of noise con-
cerning the sensor and actuator devices. However, since only two s-bots are available,
the system cannot transport the prey if one of them fails.
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Evolving Cooperative Transport Strategies
for Small Swarms

In the previous chapter, we have seen that we can evolve neural networks able to
control a group of two s-bots in order to move a prey of specific shape, mass and
size as far as possible into an arbitrary direction. The evolved controllers act very
efficient on the vast majority of 1,000 tested different conditions concerning the s-
bots’ initial placement and behavioral deviations of sensor and actuator devices. It
has been shown that the best evolved solutions perform fairly well when applied to
larger groups of s-bots moving bigger and heavier prey.

However, we have seen that the evolved solutions exhibit poor performance if there
is too much inter-individual competition for the limited space around the perimeter
of prey. It seems that the strategies are not able to let the s-bots form functional
structures of several layers in order to pull or push the prey. Therefore, small but
heavy prey object are not moved successfully.

In the experiments presented in this chapter, the utilization of the gripper element
and the construction of structures are emphasized:

e During fitness estimation, the controller to be evaluated gets a reward for each
s-bot being part of a self-assembled structure if the structure is connected to the
prey. However, the same reward is realized if a solitary s-bot connects to the
prey. There is no reward for self-assembled structures that are not connected
to the prey. Like that, we expect that direct connections to the prey are likely
to be established. Structures of self-assembled s-bots may occur, for example,
if the prey item is small.

e The s-bots are provided a new degree of freedom to rotate an upper part (the
turret with the gripper element) with respect to a lower part (the chassis).
Therefore, s-bots that are connected to other s-bots or to the prey retain more
flexibility.

¢ Finally, the s-bots that are used in the experiments described in this chapter
can sense the proximity of near teammates. This may give an advantage when
building structures composed of multiple s-bots.
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In this chapter, we apply an artificial evolution to synthesize neural networks in
order to control a group of four s-bots engaged in a cooperative transport task.
Again, we consider the case that only one single prey is present. Furthermore, no
advanced search or recruitment techniques are necessary, since the s-bots are placed
in the immediate vicinity of the prey. The evolved controllers are expected to be
applied in the context of prey retrieval tasks in which the s-bots tend to reach the
prey from a direction that is somewhat similar to the one the prey should be moved
to. For example, some s-bots could be guided from a nest (that serves as starting
point as well as the final target) to the prey (and the other way around) by some
other specialized teammates. A group of these specialists could construct a chain
of visually connected s-bots (that serve as sub-targets) connecting the nest with the
prey.

Two sets of experiments are performed:

e in the first set, the prey object is a cylinder of a specific shape (radius 8 cm
and height 12 cm). Since the prey item is rather small, we expect that some of
the evolved controllers will let the group of s-bots form structures of assembled
s-bots to move the prey.

e in the second set, the prey object is modeled by cylinders and cuboids of various
sizes. Depending on the prey’s height and the s-bots’ positions, prey objects
may shadow the target that indicates the desired direction of transport. In
general, we expect that this task is more difficult due to high varying sizes and
shapes of prey.

As in the previous experiments, there is no explicit communication between s-
bots. However, interactions via sensing are possible (see Section 1.3.3). To be able
to recognize the surface of prey objects of various shape and size, a new type of prey
sensor (realized by the camera device) is introduced. This sensor can be actively
controlled by the s-bot’s control system in order to scan the surrounding for prey. A
similar approach is utilized in order to perceive other s-bots in the vicinity.

The following two sections introduce the underlying simulation framework and the
task that is studied. In Section 3.3 the experimental setup is detailed. Section 3.4.1 is
devoted to briefly survey the skills and limitations of the new prey sensor introduced.
In Section 3.4.2 and Section 3.4.3 the results for the two sets of experiments on
cooperative transport are presented. In Section 2.5 conclusions are drawn.

3.1. Simulation Framework

Certain aspects of the simulation model have been modified for two reasons:

e to cope new information available about the developing prototype of the real
s-bot, and
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Table 3.1.: Friction coefficients belonging to pairs of material types in contact. The “”-
symbol indicates that no contact of the corresponding pair of material types will occur in
the experiments described in this chapter.

ground | wheels torso prey
ground | - 0.54 - 0.25
wheels 0.54 0.2 0.2 0.2
torso - 0.2 0.2 0.2
prey 0.25 0.2 0.2 -

e to exploit the manifold abilities of the real s-bot’s sensors and actuators.

In addition prey objects of various shape, size and mass are available in simulation.

The friction coefficients concerning possible contacts among material types are
presented in Table 3.1. Since in the new model, the s-bot’s passive wheels are not
fully covered by the chassis (see Figure 3.2 and Figure 1.2), the wheels can get into
contact with objects other than the ground.

3.1.1. The Prey

Prey objects are modeled as cylinders or cuboids of different size and mass. There
are prey objects of two different heights: prey taller than an s-bot (20 cm height) and
prey shorter than an s-bot (12cm height). Tall prey objects are of special interest
since they may prevent any visual contact between two s-bots or between an s-bot
and a beacon. Objects of height 12cm have a uniform mass distribution. Taller
objects are modeled as a stack of two geometrically equal objects of different mass
(see Figure 3.1). The mass of the object on the top of the stack is set to 25% of the
total mass. This permits the use of tall prey objects with relative small bases that
do not topple down when pushed or pulled by the s-bots.

In order to model an accurate rotational behavior of a prey object of a certain
distribution of mass, it is important to properly model its moment of inertia. This
is detailed in Appendix A.

3.1.2. The S-bot

The new s-bot model is shown in Figure 3.2. The main difference with the previous
one (see Section 2.1.2) is that the new s-bot model provides another degree of freedom
that enables the rotation of the s-bot’s upper part (the turret) with respect to the
lower part (the chassis) by means of a motorized axis (Mondada et al., 2002a).

The chassis provides the support for the two passive and two active wheels. Con-
cerning the wheels’ physical properties and alignment, as well as the ground clearance
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@ )

Figure 3.1.: Prey objects composed of a lower part with mass m; and an upper part with
mass my. Each part has a uniform density. (1) cuboid and (2) cylinder.
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Figure 3.2.: Front, side and top view of the s-bot: the upper part (the turret) can rotate
with respect to the lower part (the chassis) by means of a motorized axis. The turret
is composed of a cylindrical torso, a small gripper element heading to the front, and a
camera placed on a pillar. Two passive, spherical wheels (white) are connected to the
chassis’ back and front part. Two motorized, cylindrical wheels (gray) are connected
to the chassis on the left and right side. Collisions between wheels and the chassis are
disabled.

the new model corresponds to the previous one. The chassis is modeled by a cylinder
of diameter 4.5 cm, height 3.75 cm and mass 300 g.

The turret consists of a cylindrical torso, the gripper element that is fixed on the
torso’s edge heading to the s-bot’s front, and a long cylindrical pillar placed on the
top of the torso to support a visual camera system. The torso is modeled by a cylinder
of diameter 11.5cm, height 4.75cm and mass 200g. The gripper element and the
pillar have a mass of 40 g each. The whole s-bot has a height of 16.85 cm and a total
mass of 660g.

In the following two sections, the actuators and sensors of the s-bots are detailed.
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Actuators

The s-bot’s actuators for the active wheels and the gripper element are already de-
scribed in Section 3.1.2. The only difference with the previous model concerns the
gripper element: to model the level of stability achieved with the last prototype of the
gripper element of the real s-bot, the joint that is created by the simulated gripper
element can transmit forces up to 30/N. In case higher forces occur the connection
will be released automatically (see Section 2.1.2).

The s-bot’s turret can rotate with respect to the chassis since both bodies are linked
with a motorized hinge joint. The torque that can act in order to rotate the turret to
a given angle with respect to the heading of the chassis is limited by 750,000 dyne cm.
The maximum angular speed is 257!,

To simulate the inaccurate behavior known from real actuators, the desired angle
of rotation is slightly modified by adding a random variable which follows the normal
distribution N (0,0.0025).

Sensors

In the experiments described in this chapter, the s-bot is equipped with a gripper
status sensor, a rotation sensor to perceive the orientation of the turret with respect
to the chassis, and an omnidirectional camera. The information provided by these
sensors is summarized in Table 3.2.

The rotation sensor provides the current angular offset oy, between the orien-
tations of the turret and the chassis. Since it might take up to several seconds to
reach a desired orientation of the turret, the current offset value that is perceived by
this sensor can differ from the value the rotational actuator is set to. aye (radian
measure) is modified slightly by adding a random variable which follows the normal
distribution N (0,0.0025).

The camera sensor has already been introduced in the description of the previous
experiments (see Section 2.2). In the s-bot model that is used in this chapter, the
camera, is fixed on the turret that can rotate with respect to the chassis. We assume
that we can extract features like angular positions of perceived objects with respect
to the heading of the s-bot’s chassis, since the rotational offset between the chassis
and the turret is available.

In the set of experiments presented in the previous chapter, the camera sensor has
provided

e the distance to the closest point that belongs to the edge of a prey object, and

e the angle concerning the direction to that particular point with respect to the
chassis’ orientation.
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Table 3.2.: List of information provided by those sensors that are used in the experiments
described in this chapter.

‘ Sensor device Information provided ‘

gripper status sensor | status of being connected to another object via
the gripper element

camera sensor prey proximity, i.e., the distance to the first in-
tersection point of a visible prey object with a
sensing ray oriented to a specified horizontal an-
gle (sensing range: 50 cm)

s-bot proximity, i.e., the distance to the first in-
tersection point of a visible s-bot’s turret with
a sensing ray oriented to a specified horizontal
angle (sensing range: 50 cm)

horizontal angle the common sensing ray of the
prey and s-bot proximity sensors is oriented to
horizontal angle in which the highest intensity
of light is perceived (a constant light signal is
emitted by a beacon)

rotation sensors angular offset between turret and chassis

Since only cylindrical prey objects have been utilized, the direction to the closest
point of the prey object’s edge, is also given by the direction to the center of the
prey.

Since we are interested in transporting prey objects of various shapes, we equip
the simulated s-bot with a new prey sensor that is based on the camera sensor again.
The idea is to provide the s-bot with the ability to scan the edge of a prey. The
s-bot should be able to scan for prey into different directions. This ability should be
available also in case the s-bot has lost its mobility, since it is part of an assembled
structure.

The camera sensor can provide the horizontal distance to the next visible prey
concerning a specified angle in the horizontal® plane (see Figure 3.3) - we also refer
to this using the term prey proximity sensor. The sensing range is limited to objects
not more than 50 cm away from the s-bot. The five rays illustrated in Figure 3.3
correspond to five sensor readings - each time the prey proximity sensor is aligned
into a different horizontal direction.

Given such a flexible sensor, the s-bot’s controller might actively select configu-
rations suitable to perceive its environment. Active perception that is the process
of selecting sensory patterns by motor actions can turn hard discrimination prob-

1With respect to the body frame of the s-bot’s chassis, i.e., the s-bot’s own coordinate system.
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O

Figure 3.3.: Mode of action of prey proximity sensor: top view on a 2D environment with
four different prey objects (gray) and an s-bot (white circle) placed in the center. The
s-bot’s sensing range of 50cm is indicated by the light gray circle. The camera sensor
provides a default value if no prey is perceived in the specified direction. Otherwise, it
provides the horizontal distance to the closest position in which the object and the sensing
ray intersect. Five example rays all having an intersection are displayed. The rays are
labeled with the corresponding distances (without being affected by noise).

lems into simpler ones (Nolfi, 1998). Further on, Nolfi has studied a system using
a 3-segments arm with six degrees of freedom in order to discriminate a spherical
and a cubic object (Nolfi and Marocco, 2002). Within the context of vision process-
ing, “feature-selection mechanisms and behavior of autonomous robots” have been
co-evolved for shape discrimination and navigation tasks (Kato and Floreano, 2001;
Marocco and Floreano, 2002).

In the experiments described in this chapter, s-bots are able to sense each other:
the camera sensor can provide the horizontal distance to a visible? torso of an s-bot
that is placed within the sensing range of 50 cm. Like for the prey proximity sensor,
the sensing area is restricted to a certain horizontal direction that can be specified.
This new sensor is referred also by the term s-bot prozimity sensor.

The sensor readings of the s-bot and prey proximity sensors are affected by various
types of noise. The specified angle that indicates the sensing direction is modified
slightly by adding a random variable from the normal distribution N (0,0.0025). If
an object is perceived, the distance is multiplied by a random variable which follows
the normal distribution N(1,0.02). Further on, the sensing range of each s-bot is
modified once for the whole simulation period by adding a random variable from the
normal distribution N(0,1) (in cm).

2Visible means that the torso is not shadowed by any other object.
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3.2. The Task

The Objective Our aim is to control a group of four s-bots to cooperatively trans-
port a heavy prey within a fixed period of time as close as possible to a light emitting
beacon. Depending on the mass that is varying among different prey objects, the
prey can be moved efficiently only by cooperative behaviors of two, three or all four
s-bots.

The Environment The s-bots’ environment consists of a flat ground. The prey is
placed in the center. A light emitting beacon is placed 300 cm away. The s-bots are
placed at random positions and orientations within a semi-circle around the prey (see
Section 3.3.3).

The S-bot’s Capabilities The s-bot can actively scan its surrounding for prey and
teammates using the prey and s-bot proximity sensors (see Section 3.1.2) that are
aligned in a common direction specified by the s-bot’s control system (see Sec-
tion 3.3.1). Moreover, an s-bot can sense the beacon as long it is not shadowed
by the prey or other s-bots. The s-bot is able to control its gripper element and it
perceives whether a connection is established or not. Further, it is able to rotate
its turret with respect to the chassis. The s-bot can sense the current angular offset
between the turret and chassis.

The sensors and actuators are affected by various types of noise. Moreover, sensor
and actuator devices of same type behave not identical.

3.3. Experimental Setup

3.3.1. The Neural Network Controller

The architecture used in order to control the s-bots is a neural network evolved by
an evolutionary algorithm. Each s-bot of a group acting in a simulation environment
is initially equipped with an identical neural network.

To control the s-bots, an Elman Network like the one used in the previous set
of experiments is utilized (see Section 2.3.1). Elman networks are recurrent neural
networks having a fully interconnected hidden layer of neurons.

The network used in the set of experiments described in this chapter is illustrated
in Figure 3.4. In the following the network inputs and outputs are explained.

The neural network controllers have six input neurons corresponding to the current
sensory information, i.e., the status of the gripper element, the current angle of the
turret’s rotation, the horizontal direction to the beacon (if not shadowed), the prey
and s-bot proximity values, and the common angle the proximity sensors are oriented
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Figure 3.4.: Elman network having an input layer of six nodes, a fully interconnected hidden
layer of six nodes and an output layer of six nodes. All connections from and to the third
node of each layer are visualized. The output labeled Proximity Sensor Shift is used to
move the proximity sensors to a new horizontal angle. The inputs Prey Prozimity and
S-bot Proximity are the readings of the proximity sensors. The current angular orientation
(that both sensors have in common) is provided by the input Prozimity Sensor Angle.

to (see Figure 3.4). In the following the activation a;(-) of each input neuron at time
t is described:

o a;(gripper status) is set to 1 if the s-bot is connected to another object via the
gripper element at time ¢, otherwise it is set to 0.

Reading values from the rotation sensor are in range [—m,7]. To compute the
activation ay(turret rotation), the reading value is linearly scaled to [0,1].

ay(light direction) is set to 0 in case the light emitted by the beacon is not perceived
at time ¢t. This is possible because there might be an object placed between the
beacon and the camera. Otherwise, the camera sensor provides the horizontal
angle f3; € [0,27] in which the light emitted by the beacon is perceived at time
t. The activation value is given by

ay(light direction) = 0.5 + 0.55—;.

If the prey proximity sensor does not perceive any prey in the specified di-
rection at time ¢, the corresponding activation value is set to 0. Otherwise,
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a(prey proximity) € [0.1,1.0]: let d; be distance provided by the prey proximity
sensor at time ¢. Then the activation value is given by

dt—’l‘
R—71’

at(prey proximity) =1.0-0.9

where R is the sensing range that is around® 50cm, and r = 5.75cm is the
minimum distance given by the radius of the cylindrical turret.*

e The calculation of the activation of the input neuron corresponding to the s-bot
proximity sensor is analog to the one of the prey proximity sensor. Both sensing
devices are aligned in a common horizontal direction that is determined by the
sequence of outputs of the neural network (see below and see Figure 3.4).

e The (common) angle the prey and s-bot proximity sensors are oriented to at
time ¢, serves as an input to the neural network, too. To compute the activation
value of the corresponding input neuron, the sensor reading is linearly scaled
from the range [—m,7] to [0,1].

The activations of the six output neurons o0i,09,...,0 are used to control the

actuators:

e At time ¢, the left wheel is set to a desired speed of (16 a;(0o1) — 8) s~! and the
right wheel is set to a desired speed of (16 as(02) — 8) s~ 1.

e The gripper actuator tries to grip at time ¢ if the activation a;(03) exceeds 0.5.
Otherwise, the gripper element does not try to grip.

e The desired rotation v; of the turret with respect to the chassis at time ¢ is
given by
Ve = (at(04) — az(0s))m.

e Let 0; be the horizontal angle of the prey/s-bot proximity sensor at the control
step t; by default g is 0. The new angle d;11 of the prey/s-bot proximity sensor
is given by

3The sensing range of each s-bot is slightly different. Moreover, it is affected by noise (see Sec-

tion 3.1.2).

4Since the experiments are carried out on a flat plane, and since the simulated gripper element is
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T T
011 = 04 + - — —.

t+1 ¢ +a¢(os) 510
Therefore, the proximity sensors can be shifted not more than 18 degrees within
one single control step (i.e., every 100 ms).

3.3.2. The Evolutionary Algorithm

The evolutionary algorithm used is almost identical to the one described in Sec-
tion 2.3.2. There are only two differences: the first one is that the random walk for
the initial ten generations is skipped. The second difference is that A is chosen to be
60. Therefore the population size u + X is reduced from 100 to 80.

3.3.3. The Fitness

The task is to control a group of four s-bots to transport as far as possible a heavy
prey within a fixed period of time. The desired direction of movement of the prey is
indicated by a beacon that is placed in the environment. The mass of prey is varying
in the range 500 to 1,000g. Depending on the mass, the prey can only be moved
efficiently if two, three, or if all four s-bots coordinate their activities.

Each individual, i.e., a common controller for a group of s-bots, is evaluated by
performing five tests t1,%o...,%t5 against a sample composed of five configurations.
Each configuration specifies the s-bots’ initial placements, the mass of the prey, and
that part of the noise (affecting sensor and actuator devices) that is fixed for the whole
life-time of 20 seconds of simulation time. For each sample, the preys’ masses of the
five configurations are 500, 625, 750,875,1,000g. The sample is changed only once
a generation. Therefore, all individuals that compete with each other are evaluated
under similar® conditions.

In each test, the simulation lasts 20 seconds. The prey item is placed in the
center of the environment, the beacon is placed at a distance of 300cm. In the
experiments described in this chapter, an s-bot group of pre-determined size is placed
in the immediate vicinity of the prey. Therefore, no advanced search or recruitment
techniques are necessary in order to accomplish the task. The s-bots are placed
with random orientation at random positions 40 to 50 cm away from the center. As
mentioned at the beginning of this chapter, the evolved controllers are expected to
be applied in the context of prey retrieval tasks in which the s-bots tend to reach the
prey from a direction somewhat similar to the one the prey should be moved to. To
take into account the assumed non-uniform distribution of the directions from which

5There is also noise acting on sensors/actuators that changes each time step. This type of noise is
not determined by the sample’s configurations.
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indicated by a light
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Figure 3.5.: Example of initial placement: the prey object (black) is a cylinder with radius
8 cm. It is placed in the center and it has to be moved in the direction of a light emitting
beacon (downward, as indicated by the arrow). Four s-bots (gray) are placed at random
positions within a semi-circle, at least 40 cm and at most 50 cm away from the center.

the s-bots reach the prey, the s-bots are placed randomly within a semi-circle that is
oriented toward the target (see Figure 3.5).

Initially, the prey object is just within the s-bot’s sensing range of 50cm. It
would take several seconds for the s-bot’s controller to scan successively the entire
surrounding with a sufficient accuracy for the small and distant prey object, since
the controller is activated only ten times per second. Therefore, the proximity sensor
is initially set to an orientation towards the prey in order to simplify localization and
approach. In this case, the horizontal angle the prey sensor is oriented to is strongly
affected by noise: a random variable that follows the normal distribution N(0,0.1)
is added to the angle (radian measure). During the first second of simulation time,
the proximity sensor is oriented towards the prey. For the remaining period of 19
seconds the sensor direction is controlled by the output of the neural network (see
Section 3.3.1).

The beacon is placed 300 cm away from the center of the prey. This is less than
the distance the prey can be moved within the simulation time of 20 seconds.

For each test t;,7 € {1,...,5} a quality measure g; (i.e., the transport quality)
evaluates the exhibited transport performance. The final fitness score f is computed
as the average of all transport quality values of the sample. Different from the fitness
estimation method used in previous experiments (see Section 2.3.3), no weighted
average technique is used to compute the final fitness score: since the masses of the
prey objects range from 500 to 1,000 g, the transport quality values are expected to
fluctuate within the sample. The weighted average described in Section 2.3.3 was
chosen in order to punish any fluctuation and to emphasize the evolution of robust
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controllers with respect to the system’s noise and the s-bot’s initial placement.

The main goal to be achieved by the group of s-bots is to move the prey object as
far as possible towards the beacon. In this set of experiments we want to emphasize
the emergence of self-assembled structures that are appropriate to transport the prey.
In particular, the use of the gripper element to establish a connection in order to move
the prey is rewarded.

The transport quality ¢; of test ¢; can be computed based on the following data:

e D; = max(0, D) — D), where D! is the Euclidean distance (in ¢cm) between
the prey and the beacon in test ¢; after ¢ seconds of simulation time.

e d!(j) reflects the distance between s-bot j and the closest point of an edge of
the prey in test ¢; at time ¢. In order to compute this data, each s-bot utilizes
its prey proximity sensor to scan in 36 different (horizontal) directions of its
surrounding:

35
d!(;) = min DISTANCE[i, j, ¢, —2x],
a=0 36
where DISTANCE]3, j, 1, ] is the distance given in test ¢; at time ¢ as observed
by the prey proximity sensor of s-bot j scanning in the horizontal direction
specified by angle a.

e M} is the set of s-bots that are directly or indirectly connected to the prey in
test t; at time ¢t. M} C {1,2,3,...,n} can be defined as the set of minimal
cardinality with the following properties:

s-bot j has gripped the prey at time ¢ in test t;, = j € Mf, (3.1)
j € M} A s-bot k has gripped s-bot j at time ¢ in test t; =k € M}. (3.2)

These s-bots are structured in a set of acyclic graphs. Under certain assump-
tions each s-bot 7 engaged in test t; could assess at time ¢ whether the statement
(j € M}) is true or false by solely exploiting local information. An s-bot could
use the LED ring (that is available for the real s-bot) to spread its status of
being a member of M} to other s-bots that are connected to it. One limitation
of this is that the distribution of the status signals would take some time to be
accomplished.

The structure quality s; of test ¢; is given by

20 n
si= 1 > o8, (3.3)

t=10 j=1
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st(j) is defined by

1 if j € M};
0 if di(j) > 50 A5 ¢ M}

tray VUL Y

si1) =19 o5 if di(j5) <25 A j ¢ M}; (3.4)
50—dt ()

g 0.65 + 0.1 otherwise.

The structure quality accounts only for those structures that are observed after
ten seconds of simulation time. Since the s-bots start disassembled at positions up to
50 cm away from the prey, the structures exhibited during the first half of simulation
time are neglected.

Finally, the transport quality g; is defined as

if Di = 0;

J— 84
4= { 1+ (R++/Dj)s;®> otherwise, (3.5)

where R =1 is a constant reward.

If the prey item has not been moved in test ¢;, the transport quality ¢; is equal
to the structure quality s; € [0,1]. Otherwise, the fitness is at least 1. In this case
the structure quality again has an important influence. Therefore, it is likely that
successfully evolved controllers let the s-bots remain in the vicinity of the prey and
to establish physical connection to retrieve the prey.

The term R + +/D; is composed of R = 1, a small, distance independent reward,
and the root of the distance D;. The root function is applied as scaling function in
order to emphasize small differences for smaller distances and to weaken differences
for bigger distances.

3.4. Results

In the following, the results concerning three series of experiments are presented.
The first part addresses a test concerning a particular aspect of the simulation model,
while the following two parts address the problem of cooperative transport introduced
previously (see Section 3.2):

e In Section 3.4.1 the skills and limitations of the new controllable prey prozimity
sensor are briefly tested in the context of a discrimination task: a single s-bot is
placed in an environment with a cuboid and a cylindrical object in its vicinity,
both objects have random size. The task is to approach the cuboid and to
avoid the cylinder. The s-bot is expected to control the new sensor in order to
distinguish the shapes of the two objects.
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e Section 3.4.2 presents the results concerning a set of ten evolutionary runs
aimed at solving the problem of controlling a group of four s-bots in order to
transport small prey of a particular shape, and different masses.

e Section 3.4.3 presents the results concerning a set of ten evolutionary runs
aimed at solving the problem of controlling a group of four s-bots to transport
prey of different shapes, sizes and masses.

3.4.1. A Discrimination Test

In order to briefly survey the skills and limitations of the new controllable prey
prozimity sensor introduced previously, the following experiment has been performed.
A single s-bot is placed in the center of the environment with random orientation.
Two static prey objects oriented randomly are placed at a distance of 35cm from
the s-bot (one prey on the opposite side than the other with respect to the s-bot
location). One prey object is a cuboid of height 10cm and the (horizontal) side
lengths by and by. by and by are uniformly distributed independent random variables
in the range of 10 to 16 cm. The other prey object is a cylinder of height 10 cm; its
diameter is a uniformly distributed random variable also in range 10 to 16 cm.

The s-bot perceives the current angle of the prey proximity sensor (i.e., the hor-
izontal direction to which the sensors is pointing to) as well as the reading of the
prey proximity sensor. The actuators available are the two active wheels and the
horizontal angle for the orientation of the prey proximity sensor that has to be spec-
ified. An Elman network with three hidden nodes is used as control architecture (see
Section 3.3.1).

The s-bot’s task is to approach the cuboid within 20 seconds of simulation time.
The task requires the s-bot to be capable of disambiguating the cuboid from the
cylinder through its prey proximity sensor. This task is particularly hard, since the
prey objects are rotated randomly, and the size of each one is varying randomly for
each test (up to a factor of 1.6). Therefore, multiple sensor readings are necessary to
distinguish the cuboid from the cylinder.

The fitness function is illustrated and explained in Figure 3.6. A sampling tech-
nique with sampling size 10 is used. The final fitness score of an individual is com-
puted using the arithmetic average of the corresponding ten values obtained during
evaluation.

The fitness of an optimal solution is 5.0. For an s-bot that employs a strategy by
which it cannot distinguish the cuboid from the cylinder, the expected fitness score
is at most 2.5.

Ten evolutions have been carried out in order to evolve controllers to let the s-bot
accomplish the task. The population size is 80 (u = 20, A = 60). The fitness curve
is illustrated in Figure 3.7: already after 50 generations some evolved solutions are
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C; p

Figure 3.6.: Initial configuration in a discrimination test (top view): the s-bot (marked by
S) is initially placed in the center. Two prey objects (marked by P) - a cylinder and a
cuboid - are placed on the left and on the right, each 35 cm away. The task is to reach a
position close to the cuboid within the simulation period of 20 seconds. If the s-bot’s final
position is not more than 25 cm away from the center of the cuboid, the controller gets a
maximum reward of 5. If at the end of the simulation period no prey object is within the
sensing range of 50 cm, the controller is punished with a fitness value of -10. Otherwise,
if the s-bot has selected the wrong item, or if the correct item is not in sensing range the
fitness score is 0. Otherwise the fitness score is 1 or 2 depending on the position, as can
be seen in the figure.
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able to distinguish the cuboid from the cylinder, even if they might fail on some
particular problem instances or because of the noise affecting sensors and actuators.
Due to the noisy fitness estimation, the fitness values of the best rated individuals
tend to be overestimated (see Section 2.3.2). The average value of the re-evaluated
20 parent individuals is not biased, since the re-evaluation takes place after selection
is applied. It can serve as an approximation for a lower bound of the fitness of the
best individual.

The symmetric problem to move to the cylinder within 20 seconds of simulation
time, seems to be more difficult than the problem to move to the object that is not
the cylinder: Figure 3.8 presents the development of fitness values for ten evolutions
concerning the analog task. It seems that within the period of 200 generations no
solution has been evolved that is able to solve the task with a low failure rate.

The results of the evolutions concerning the task to approach the cuboid outper-
form the results obtained concerning the symmetric problem. We believe that the
reason for this is that a cuboid has properties (the corners) that are easier to be
detected. Therefore, evolved solutions tend to rest at places near a corner.

Since the round shape of the cylinder’s side looks similar to the flat side of a cuboid,
it might be more difficult to identify cylinders in systems where sensor readings are
highly affected by noise. For the symmetric problem, it might be that a potential
solution in which the s-bot firstly detects the object with a corner and then moves
towards the other object, has not been evolved due to the time-limits imposed on the
task.
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Discrimination Task: Move to Cuboid!
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Figure 3.7.: Box-and-whisker plot providing information about the evolutionary progress in
ten runs. Characteristics about three types of observations for each population are dis-
played (partitioned into groups of ten generations): the best fitness value of a population
(dark gray boxes), the average fitness, i.e., the average of the fitness values of all indi-
viduals of a population (white boxes), and the average of the fitness values obtained by
the re-evaluation of the parent individuals that have produced the population (light gray
boxes). The fitness of an optimal solution is 5.0. For a solution that is not able to distin-
guish the cuboid from the cylinder, the expected fitness score is at most 2.5. This bound
is marked by the horizontal line. For example, a strategy that always let the s-bot move
close to the first prey that is scanned by the controllable prey proximity sensor, has an
expected fitness score of 2.5.

3.4.2. Transport of Prey of a Particular Shape and Different Masses

In this section, we present the results concerning the evolution and analysis of trans-
port behaviors of groups of s-bots moving small prey objects of a particular shape
and different masses.

A set of ten independent evolutionary runs has been performed for 750 generations
each. One single run lasted three to four weeks of computational time.

The samples that have been used to evaluate individuals during evolution are
composed of five tests each. In each test, the prey is modeled as a cylinder of radius
8 cm and height 12 cm. The masses of prey in the five tests of each sample are 500,
625, 750, 875 and 1,000 g respectively.

In the following, some features of the evolved solutions, such as the transport per-

5Machines equipped with 512 MB of memory and a 1,537 MHz processor (AMD Athlon XP™ 1800+)
are utilized.
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Discrimination Task: Move to Cylinder!
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Figure 3.8.: Ten evolutions have been performed in order to solve the symmetric problem -
to let the s-bot approach the cylinder instead of the cuboid. The fitness of an optimal
solution is 5.0. For a solution that is not able to distinguish the cuboid from the cylinder,
the expected fitness score is at most 2.5. This bound is marked by the horizontal line.
A strategy that always let the s-bot move close to the first prey that is scanned by the
controllable prey proximity sensor, has an expected fitness score of 2.5.

formance, the obtained behaviors, the flexibility, and the ability to scale using larger
group sizes are analyzed. In Section 3.4.2.1, the performances of evolved controllers
are analyzed for every evolutionary run. Focus is given on a measure reflecting the
distance the prey has gained with respect to the target. Well performing individuals
are selected to be analyzed in the subsequent sections. In addition, robustness of
the s-bot groups with respect to a different initial positioning method is analyzed.
In Section 3.4.2.2, the behaviors obtained at the level of an s-bot and at the group
level are described. The ability of the group to adapt to environmental changes is
evaluated in Section 3.4.2.3. The group engaged in the transport task shall adapt
the direction of movement according to a new target (indicated by a beacon) that
appears dynamically. Finally, in Section 3.4.2.4, the ability of the evolved individu-
als to control groups of increased size in order to transport prey objects of increased
mass is assessed.

3.4.2.1. Performance and Robustness

Among the ten evolutionary runs the fitness level, attained by the best evolved in-
dividuals in each run, is varying considerably ranging from very poor to remarkably
high fitness values. In this section, for every evolutionary run some individuals are
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Figure 3.9.: Box-and-whisker plot providing information about the evolutionary progress
concerning the four most successful evolutionary runs (total number of runs: ten). Char-
acteristics about three types of observations for each population are displayed (partitioned
into groups of 50 generations): the best fitness value of a population (dark gray boxes),
the average fitness, i.e., the average of the fitness values of all individuals of a population
(white boxes), and the average of the fitness values obtained by the re-evaluation of the
parent individuals that have produced the population (light gray boxes).
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Figure 3.10.: Box-and-whisker plot providing information about the evolutionary progress
concerning the six least successful evolutionary runs (total number of runs: ten). Charac-
teristics about three types of observations for each population are displayed (partitioned
into groups of 50 generations): the best fitness value of a population (dark gray boxes),
the average fitness (white boxes), and the average of the fitness values obtained by the
re-evaluation of parent individuals (light gray boxes).
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selected for a performance analysis. For four particular evolutions, a well performing
individual is selected to be analyzed in the subsequent sections. The four most suc-
cessful evolutionary runs and the six least successful ones are illustrated in Figure 3.9
and Figure 3.10 respectively. Both figures show the development of the best fitness
(dark gray boxes), average fitness of all individuals of a population (white boxes),
and the average fitness of re-evaluated parent individuals (light gray boxes).

Since the fitness evaluation procedure is affected by noise, and since the eval-
uations are based on varying initial conditions, individuals exhibit fluctuations in
performance. Thus, the best fitness values that refer to the best rated individuals
in the particular generations are likely to be over-estimated (for details see also Sec-
tion 2.3.2). However, since the u parent individuals that are copied into the next
generation due to the elitism of the plus-strategy used get re-evaluated (for reasons
see Section 2.3.2), there is at least no tendency to a systematic over-estimation due
to previous fitness evaluations. The average of the re-evaluated fitness values may
fluctuate, but is not biased since the re-evaluation takes place after selection is ap-
plied. It can serve as an approximation for a lower bound of the fitness of the best
individual.

It can be seen that in average there is a continuous, sub-linear increase of fitness
values for the entire range of 750 generations. We suppose that the average quality
of results can be improved by increasing the total number of generations.

Each fitness value is computed as the average of the observed transport quality
values q1, ¢2, ¢3, g4 and g5 concerning five tests against a sample of different conditions.
The transport quality accounts for the transport distance as well as for the group
structure (see Equations 3.3, 3.4 and 3.5 in Section 3.3.3). In the following analysis,
we focus on a measure related to the transport distance.

The new measure to evaluate the performance of a solution exhibited in a test is
the distance gain. The distance gain G; in a test t; is defined by

o /DY — D2 if DY > D, 56)
' —4/D2° — DY otherwise, .

where D! denotes the Euclidean distance (in cm) between the prey and the beacon
in test t; after ¢ seconds of simulation time. Therefore, G; is the distance gained
concerning the prey object’s transport (with respect to the beacon) during the entire
simulation period in test ¢; scaled by a root function. If the prey gets closer to the
beacon, the distance gain is positive. If the prey is moved away from the beacon, the
distance gain is negative. The root function is applied as scaling function in order to
emphasize small differences for smaller distances and to weaken differences for bigger
distances.

Table 3.3 lists the observed distance gains corresponding to a setup in which a
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Table 3.3.: Distance gain (within 20 seconds) using a perfectly aligned pulling chain (of pre-
connected s-bots) that is initially attached to the prey. The root function is used for
scaling purposes (see Equation 3.6). Here, any noise acting on sensors or actuators is
completely disabled.

500g 625g 750 g 875g 1,000g
2 s-bots | 11.99 10.21 8.03 4.99 0

3 s-bots | 13.99 13.00 11.93 10.75 9.426
4 s-bots | 14.94 14.26 13.54 12.78 11.98

group of s-bots, structured in a connected, linearly aligned chain, is pulling the prey
item for a period of 20 seconds towards the beacon. The first s-bot of the chain is
connected to the prey right from the start. All s-bots are controlled by a handwritten
controller: each s-bot moves backwards applying the maximum angular speed to the
wheels; the gripper element remains closed. Here, there is no noise affecting the
wheels, and all wheels behave identically, to ensure that the chain remains in its
linear structure. Several combinations of chain sizes and prey masses are tested to
gives us an idea about the potential distance gain within 20 seconds.

However, we expect that the distance gain values obtained by the evolved con-
trollers will be lower than the distance gain values listed in Table 3.3, since the
s-bots will be evaluated starting disassembled from random locations up to half a
meter away from the prey.

Post-evaluation of Individuals’ Performances As done in the analysis of the pre-
vious experiments (see Section 2.4), the y = 20 parent individuals of each final
generation are re-evaluated on a fixed and common sample of 500 different tests” to
compute the transport quality (as defined by Equation 3.5 in Section 3.3.3).

For each evolutionary run, the individual with the highest average of the observed
transport quality values (i.e., the type 1 individual) and the one with the lowest
standard deviation of the observed transport quality values (i.e., the type 2 indi-
vidual) are selected.

The type 1 and the type 2 individuals are post-evaluated for a second time on a
random but fixed set of 2,500 tests.

Figure 3.11 presents the distance gains observed in these 2,500 tests for both types
of best individuals, for all evolutionary runs (ordered by the median performance of
the type 1 individuals). In some cases the prey has not been moved towards the
beacon. However, this has happened only occasionally: for each of all type 1 and
type 2 individuals the fraction of observations having a distance gain of less than -2

"For each particular mass of the prey (i.e., 500, 625, 750, 875 and 1,000 g) 100 tests are performed.
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Distance Gain in Transport (type 1 and type 2 individuals)
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Figure 3.11.: Distance gain in transport by the individuals of type 1 and type 2 of each
evolutionary run. The distance gain is a measure of the total change of distance (in cm)
between the prey and the target (the beacon) during 20 seconds simulation time. The
root function is used for scaling purposes (see Equation 3.6). Positive values indicate that
the target has been approached.

Distance Gain in Transport (type 1 individuals)
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Figure 3.12.: Distance gain in transport by type 1 individuals concerning different prey
masses.
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is less than 3.5%.% The type 1 individual of the evolutionary run number 10 exhibits
a remarkable performance: in more than 90% of the tests, the distance gained is
between 50 and 140 cm and the distance gain is never negative.

The mass of the prey should have a high influence on the distance that is gained.’
Transporting heavy prey objects might require a more complex coordination among
the s-bots in order to be performed efficiently.

Figure 3.12 illustrates the performance deviations with respect to different masses
of prey. In general the individuals of run 1 and 2 exhibit very weak performances.
For the type 1 individuals of runs 3 to 6 the median values of the distances that
the lightest prey is moved towards the beacon are 17.55cm, 22.45cm, 21.00 cm and
23.62cm. For runs 7 to 10 the corresponding median values are 33.93 cm, 38.22 cm,
85.67cm and 104.08 cm. In addition, the latter runs (especially runs 9 and 10)
produced individuals that exhibit an acceptable performance concerning prey masses
up to 1,000 g. The median values of the distance gain concerning all observations of
the type 1 individuals of run 9 and 10 are 54.95cm and 83.72 cm.

Obviously, when looking at the observations corresponding to a particular mass,
the fluctuations in performance exhibited in the 500 tests by the type 1 individual of
run 10 are remarkably low. The standard deviations of the observed distance gains
concerning masses of 500, 625, 750, 875 and 1,000g are 1.04, 1.51, 1.44, 1.46 and
1.64.

In the remaining part of this chapter, we focus on the analysis of the four type 1
individuals from the evolutionary runs 7, 8, 9 and 10.

Transport Performance Concerning a Different Initial Positioning In some of the
following analysis, an alternative positioning method concerning the s-bots’ initial
placement is utilized (see Figure 3.13). This alternative method is referred to as the
full-circle positioning. 1t is similar to the one used in the experiments of the previous
chapter, and it allows to place s-bots up to 50 cm away from the center of prey in
all horizontal directions. The minimal distance between the initial location and the
center of prey is 25cm. During the evolutions, the s-bots have been placed 40 to
50 cm away from the center of prey to emphasize the evolution of s-bot controllers
that are able to approach the prey once placed in its vicinity. Moreover, the s-bots
have been placed within a semi-circle that is oriented towards the beacon. Using the
full-circle positioning method enables us to investigate groups of sizes up to 20 s-bots
without the use of an additional recruitment mechanism.

8This corresponds to a movement of the prey of at least 4cm away from the beacon.

9Note that a) the force necessary to overcome the frictional forces increases with the mass of the
prey, b) the angular speed and the force driving the s-bot’s wheels are limited, c) the wheels
might slide, if an object is pulled or pushed, and d) acceleration is lower for objects that are
heavy when applying a constant force.
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Figure 3.13.: Example of initial placement: the prey object (black) is a cylinder with radius
8 cm. It is placed in the center of the environment and it has to be moved in the direction
of a light emitting beacon (downward, as indicated by the arrow). According to our
original positioning method, four s-bots (gray) are placed at random positions within
a semi-circle, at least 40cm and at most 50 cm away from the center. The alternative
positioning method places the s-bots at random locations within the full circle but at
least 25 cm and at most 50 cm away from the center. With both positioning methods, the
s-bots are oriented to random directions.

Changing the initial placement of s-bots might diminish the group’s performance.
The four type 1 individuals of the evolutionary runs 7 to 10 are evaluated on 1,250
tests using the full-circle positioning method. The results are shown in Figure 3.14.
The white boxes correspond to the original initial placement. The (light and dark)
gray boxes refer to the full-circle positioning.

By comparing the white and light gray boxes it can be seen that the new placement
method results in a performance decrease for all four individuals. However, in case of
the individuals of runs 9 and 10, the attained performance levels are still acceptable.

In both considered cases the tests last 20 seconds each. If we extend the simulation
period for additional ten seconds, the performances of the individuals increase. Un-
fortunately, the availability of additional time does not reduce the increased amount
of fluctuations in performance (as indicated by the dark gray boxes and the whiskers)
of the individuals of run 8 and 10.

3.4.2.2. Behavioral Analysis

In the following, certain aspects concerning the behaviors of single s-bots or whole
groups of s-bots are analyzed.
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Robustness with Respect to Initial Positioning Strategy
prey: different masses, cylindrical shape (8 cm radius 12 cm height)
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Figure 3.14.: Test to what extend the s-bot groups are robust with respect to two different
initial placement methods. Each white box refers to 1,250 observations concerning the
original initial placement that is used during the evolutionary runs. The other boxes refer
to observations (1,250 each) for the full-circle positioning method.

S-bot Behavior In order to gain insight into the mode of operation of an s-bot
controlled by an evolved individual, certain variables, such as the wheels’ speed, have
been monitored during the whole simulation period of 20 seconds. The obtained data
concerning an s-bot controlled by the best performing evolved controller individual
(i.e., the type 1 individual of run 10) is visualized in Figure 3.15.

For the whole period of simulation, the right wheel is set to a desired speed of
around 8s~!. The left wheel and the rotational degree of the turret are used to
adjust the direction of motion. At the beginning the s-bot turns on the spot and
the turret is rotated for approximately 180 degrees with respect to the chassis. The
s-bot approaches the prey moving backward; however, the gripper is heading in the
direction of movement. Once a connection to a prey or to another s-bot has been
established by the gripper element, the chassis is once again rotated for 180 degrees
in order to start pulling the gripped object. It can be seen that the gripper element
is always in gripping mode. After 4.5 seconds the s-bot has connected to another
object.

According to the experimental setup the prey and s-bot proximity sensor is heading
to the prey for the first second of simulation time (see Section 3.3.3). For the re-
maining 19 seconds it is controlled by the angular shift that is plotted in Figure 3.15.
As long as the gripper has not established any connection, the s-bot tries to keep or
get contact to the prey. In this period, the prey sensor is aligned in the direction
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Figure 3.15.: Certain variables have been monitored during the life-time of one particular
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s-bot engaged in group transport: a) the direction of light perceived (with respect to
the chassis), b) the status of the gripper element, c¢) the current angular offset between
the turret and the chassis, d) the activation of the neural network output used to set
the gripping mode, e) the orientation of the prey/s-bot proximity sensor, f) the prey
proximity, g) the s-bot proximity, and h) the desired speed settings of the left and right
wheels (before the noise functions are applied).
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Figure 3.16.: List of possible structural configurations of four s-bots (directly or indirectly)
connected both to each other and the prey. Concerning 2,500 tests for the type 1 individual
of evolutionary run 10, the frequency and the median distance gain for every particular
structure is presented. Note that the observed structures are recorded at the end of the
simulation, while the distance gain is the result of the group behavior during the entire
simulation.

of the gripper element.!? As soon as the s-bot has connected to another object, the
sensor scans the environment circulating around the s-bot perceiving two s-bots and
one prey with a frequency of 0.5s !. It seems that the perceived proximity of the

prey affects the speed of the left wheel.

Group Behavior The fitness function used by the evolutionary algorithm rewards
the presence of assembled s-bot structures connected to the prey (see Section 3.3.3).
To get a maximum reward, each s-bot should establish a connection either directly
to the prey or to another s-bot that is directly/indirectly connected to the prey.
Given a group of four s-bots, there are 17 possible structural configurations of s-bots
connected both to each other and to the prey.!! These structures are illustrated in
Figure 3.16. Note that in this illustration the concrete locations of the connection
points are chosen arbitrarily.

Concerning 2,500 tests of the type 1 individual of run 10, the frequency of oc-

10The sensor is set to an angle of around 180 degree with respect to the chassis. The angular offset
of the turret (including the gripper element) and the chassis is also around 180 degree.
1 Structures that are isomorphic only count once.
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Figure 3.17.: Frequency and distance gain of structures observed during 2,500 tests with the
type 1 individual of evolutionary run 9. The structure indices correspond to the structures
shown in Figure 3.16.

currence of each particular structure at the end of the simulation and the median
distance gain of all observations with this structure are displayed in Figure 3.16.

16 out of 17 structures have appeared for the individual of run 10, five structural
configurations among them appeared less than ten times. In 46.88% of the cases an
s-bot chain of length two as well as two solitary s-bots are connected to the prey. In
27.20% of the observations all s-bots are directly connected to the prey. In 11.51%
of the cases less than four s-bots are part of the structure (left side of Figure 3.16).

Figure 3.17 shows the frequencies and the distance gains corresponding to the
structures that have been observed during 2,500 tests of the type 1 individual of
run 9. For this individual all structures have appeared; however, some with very low
frequency. Again the case that an s-bot chain of length two as well as two solitary s-
bots are connected to the prey occurs the most often (25.60%). There are numerous
of other well performing structures that occur frequently. For this individual, the
case that all s-bots are directly connected to the prey has occurred in less than 5%
of the observations.

3.4.2.3. Flexibility

In the experiments described in this chapter, the simulated environment is equipped
with a single, light emitting beacon indicating the desired direction of transport.
The beacon is placed 300cm away from the prey. The neural network controllers
synthesized in the evolutions let the group of s-bots form a structure in order to
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Figure 3.18.: Flexibility test: ability of a group engaged in the transport of a prey to adapt
the direction of transport according to a new target. The distance gained within the
second part of the simulation and with respect to the new target is illustrated (scaled by
root function). Eight different angular displacements between the old and the new target
are considered (1,250 observations each).

transport the prey into the desired direction.

In this section, we analyze to what extend a group of s-bots engaged in the trans-
port of a prey is able to adapt dynamically the direction of transport according to a
new target.

The simulation period of each test is doubled from 20 to 40 seconds. Concerning
the first half of the simulation period, the basic experimental setup has been retained
unchanged: the s-bots are placed within a semi-circle around the prey and the beacon
is located 300 cm away from the prey (for details see Section 3.3.3).

As soon as the first half of the simulation period is elapsed, the beacon (i.e., the
target) is re-placed to a new position fulfilling the following two conditions:

e The new position has the same height and it is 300 cm away from the current
location of the prey.

e The (horizontal) angular displacement of the beacon with respect to the prey
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can be 0, 45, 90, 135, 180, 225, 270 or 315 degrees.

For each angular displacement the type 1 individuals of the runs 7, 8, 9 and 10 have
been evaluated on 1,250 tests. As can be seen in Figure 3.18 the controller individual
of run 8 acts robust with respect to angular displacements of all magnitudes, while
the performance of the individuals of run 7, 9 and 10 decreases especially in case the
beacon is placed in the opposite direction (180 degrees). It is interesting that the
decrease of performance is not fully symmetric concerning angular displacements to
the left or to the right.

The individual of run 7 performs weak in case the angular displacement to the
left or to the right exceeds 90 degrees. For the other three controllers, the median
performances concerning all tested angles of displacement correspond to transport
distances of at least 42cm. We conclude that three out of four controllers are able
to respond efficiently to a dynamic repositioning of the target.

3.4.2.4, Scalability

In this chapter, so far we have considered the case that a group of four s-bots is
engaged in the transport task. We have evolved controllers that let such a group
transport prey items from 500 to 1,000g. Objects of 500 g require the coordination
of two or more s-bots to be moved efficiently (see Table 3.3). In case of an object of
weight 1,000 g three to four s-bots need to coordinate properly in order to transport
the prey in an efficient way, and still benefit can be gained by using five or more
s-bots. Most of the evolved individuals are able to let a group of four s-bots move
prey of mass 500 g with an acceptable performance.

In this section, we analyze the controllers’ abilities to scale from group size 4 to
the group sizes 8, 12 and 16. The mass of the prey item is also modified linearly from
500 to 1,000, 1,500 and 2,000 g.

For each individual of the evolutionary runs 7 to 10 and for each group size, 250
tests have been performed. Since recruitment techniques are not taken into account,
we have to ensure a proper placement of groups up to 16 s-bots in the immediate
vicinity of the prey. The prey has to be located within the rather small sensing range
of 50 cm of each s-bot. Therefore, the full-circle positioning method described and
analyzed in Section 3.4.2.1 is utilized. Compared to the default placement strategy,
this method causes a performance decrease in our systems with group size 4 if the
mass of the prey is chosen randomly from 500, 625, 750, 875 or 1,000 g. However, we
have observed that the type 1 individuals of the runs 8, 9 and 10 are at least robust
enough to reach an acceptable performance level, especially if the simulation period
is increased.

In this analysis, the simulation period has been extended to 30 seconds.

Figure 3.19 presents the results concerning 250 tests per individual and for each
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Scalability Test (group sizes: 4,8,12 and 16)
_ prey: 500-2000 g mass, cylindrical shape (8 cm radius, 12 cm height)
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Figure 3.19.: Scalability test: distance gain within 30 seconds of simulation time with groups
of size 4, 8, 12 and 16 transporting prey objects of mass 500, 1,000, 1,500 and 2,000 g.

group size. Overall, the observed scaling abilities are not satisfying. It seems to be
infeasible for the evolved individuals to let the s-bots transport prey of arbitrary high
masses by adapting the group size linearly with respect to the mass.

However, it can be seen that for the particular group sizes 4, 8, 12 and 16 the
evolved individuals attain an acceptable performance level: the individual type 1 of
run 10 is able to transport the prey objects with a group size 8 to 12 without loosing
much efficiency. Also if 16 s-bots are used the performance is still fairly good: in 75%
of the cases the prey is moved towards the beacon for more than 40 cm. In half of the
observations, the distances gained are bigger than 75cm. Also the performance of
the type 1 individual of run 9 is acceptable for all group sizes. Only the performance
of the individual of run 8 concerning group size 16, as well as the performance of
individual 7 concerning the group sizes 12 and 16 are not satisfying.

We suppose that the performance decrease in case of larger group sizes is mainly
caused by the increased fraction of s-bots that do not connect directly or indirectly
to the prey. Concerning the scalability tests of this section, Figure 3.20 shows the
distribution of the number of s-bots that are part of the (connected) transport struc-
ture for different group sizes at the end of each test. The skewness of the distribution
observed for group size 4 tends to dissappear with increasing group sizes. As we can
see in Figure 3.21, structures of bigger size tend to perform better than smaller ones.

In case of the tested combinations of group size and mass the prey can be retrieved
even if some s-bots fail to get involved, since there is redundancy. However, benefit
could be gained if the fraction of s-bots actively engaged in the transport would be
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Figure 3.20.: Frequency of occurrence of different structure sizes: for the 1,000 tests in which
the type 1 individual of run 10 controls a group of 4, 8, 12 or 16 s-bots in order to transport
a prey of mass 500 to 2,000 g, the structure size, i.e., the number of s-bots directly or
indirectly connected to the prey object has been recorded. Here, the frequencies that
have been observed for each group size are given.

Distance Gain with Respect to Structure Size (group size: 16)
prey: 2,000 g mass, cylindrical shape (8 cm radius, 12 cm height)
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Figure 3.21.: Distance gain for different structure sizes. For 250 tests of the type 1 individual
of run 10 controlling a group of 16 s-bots in order to transport a prey of mass 2,000 g,
the distance gain is plotted against the size of the corresponding assembled transport
structure observed at the final time step of each test.
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increased.

We conclude that the performances of all controller individuals decrease in case
both group size and mass of the prey are increased linearly. However, some solutions
attain still a level of performance that is acceptable for group sizes of up to 16 s-bots.
We suppose that these solutions cannot be applied successfully to groups much larger
than 20 s-bots.

3.4.3. Transport of Prey of Different Shapes, Sizes and Masses

In this section, the results concerning the evolution and analysis of transport behav-
iors of groups of s-bots moving prey objects of different shapes, sizes and masses are
presented.

Ten independent evolutionary runs have been performed for 850 generations each.
One single run lasted four weeks of computational time.!?

The samples that have been used to evaluate individuals during evolution are
composed of five tests each. For every sample, the masses of prey corresponding to
the five tests are 500, 625, 750, 875 and 1,000 g respectively. In each test the prey
object is modeled either as a cylinder or as a cuboid (see Section 3.1.1), both shapes
are selected with equal probability. In addition, the prey’s size is chosen randomly
(and independent from the mass) for each test:

e The height of the prey in each test is set randomly to either 12 or 20 cm, each
choice with equal probability. If a tall prey is located between an s-bot and
the light emitting beacon that indicates the desired direction of transport this
s-bot is not able to perceive the target.

As in the previous experiments an s-bot that is located in front of a prey
object cannot perceive other teammates that are on the opposite side. On the
other hand, an s-bot can still detect the prey in case another s-bot is placed in
between.!3

e If the prey is modeled as a cylinder the radius is chosen randomly according to
a uniformly distributed variable within the bounds of 6 and 15 cm.

e If the prey is modeled as a cuboid, the length [ of one horizontal side is cho-
sen according to a uniformly distributed random variable ranging from 12 to
40 cm. The other horizontal side length is set to a uniformly distributed random
variable with the lower bound of 12 cm and the upper bound of min(l, 20) cm.
Therefore, the cuboid can only have one edge longer than 20 cm.

12Machines equipped with 512 MB of memory and a 1,537 MHz processor (AMD Athlon XP™ 1800+ )
are utilized.

13The s-bot’s camera system can detect another s-bot as long as its torso is visible. In these
experiments, the prey objects are in any case taller then the s-bots’ torsos.
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Figure 3.22.: The prey object that has to be transported in a given direction can be a cuboid
or a cylinder of different size and mass. In this top-view, prey of the most extreme sizes
are visualized (by the black objects) to give an idea about the variation of the sizes among
prey objects as well as the proportions with respect to the size of the s-bots (gray objects).

The mass of the prey does not depend on its shape or the size. Therefore, the smallest
prey can be of the biggest mass.

Figure 3.22 illustrates the proportions of different prey objects with respect to the
s-bot’s size.

Most of the following analyses take place in the same way as they have been car-
ried out in Section 3.4.2. Again, the transport performance, the obtained behaviors,
the flexibility, and the ability to scale using larger group sizes are discussed. In
Section 3.4.3.1 the performances of evolved controllers are analyzed for every evo-
lutionary run. It is evaluated to what extend the performance of the s-bots’ group
is affected by different shapes, sizes and masses of prey. Promising individuals are
selected for further analysis. In addition, robustness of the s-bot groups with respect
to a different initial positioning method is analyzed. In Section 3.4.3.2 the behaviors
obtained at group level are described. The ability of the group to adapt to environ-
mental changes is evaluated in Section 3.4.3.3. The group engaged in the transport
task shall adapt the direction of movement according to a new target (indicated by
a beacon) that appears dynamically. Finally, in Section 3.4.3.4 the ability of the
evolved individuals to control groups of increased size in order to transport prey
objects of increased mass is assessed.

3.4.3.1. Performance and Robustness

In this section, for every evolutionary run some individuals are selected for a perfor-
mance analysis. For six particular evolutions, well performing individuals are selected
for further analysis.

Figure 3.23 shows the development of the best fitness (dark gray boxes), average
fitness (white boxes), and average fitness of re-evaluated parent individuals (light
gray boxes). It can be seen that in average there is a continuous increase of fitness
values for the entire range of 850 generations. We suppose that the average quality of
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Group Transport Towards a Target (4 s—bots)
prey: cuboid or cylindrical shapes, different masses and sizes
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Figure 3.23.: Box-and-whisker plot providing information about the evolutionary progress in
ten evolutionary runs. Characteristics about three types of observations for each popu-
lation are displayed (partitioned into groups of 50 generations): the best fitness value of
a population (dark gray boxes), the average fitness, i.e., the average of the fitness values
of all individuals of a population (white boxes), and the average of the fitness values ob-
tained by the re-evaluation of the parent individuals that have produced the population
(light gray boxes).

results can be improved significantly by increasing the total number of generations.

Post-evaluation of Individuals’ Performances As done in the analysis of the pre-
vious experiments, for each evolutionary run two types of individuals are selected
from the final population. Therefore, the y = 20 parent individuals of each final
generation are re-evaluated on a fixed and common sample of 500 different tests'* to
compute the transport quality (as defined by Equation 3.5 in Section 3.3.3).

For each evolutionary run, the individual with the highest average of the observed
transport quality values (the type 1 individual) and the one with the lowest stan-
dard deviation of the observed transport quality values (the type 2 individual) are
selected.

Both types of individuals are post-evaluated for a second time on a random but
fixed set of 2,500 tests. This time, the performance measure used is the distance gain
(see Equation 3.6 in Section 3.4.2.1).

Figure 3.24 presents a box-and-whisker plot concerning the distance gains observed

“For each particular mass of the prey (i.e., 500, 625, 750, 875 and 1,000 g) 100 tests are performed.
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Distance Gain in Transport (type 1 and type 2 individuals)
4 s-bots; prey: different masses, shapes and sizes

12 - — =

1

¥

o
-1

»—~
o
Il
o
mpam o
1
4o
@ avo
o
1
1
i
1
1
1

AUEDUUA

N
i
L)
AUI:I:}“‘““
- [
UUI:I:IUAUU
[T
i
.
e

L

omoh
comm |
©oo amm}-----

distance gain (2,500 observations)
o
Il

DR . L I
i I o st . 53
° °
-6 - E E E ! : o o ° 8 o ©°
8. 1§ o s ° o
-8 °
° 8 °
_10,
12 @ individual type 1
O individual type 2
-4 - T T T T T T T T 1
1 2 3 4 5 6 7 8 9 10

index of evolutionary run

Figure 3.24.: Distance gain in transport by the individuals of type 1 and type 2 of each
evolutionary run. The distance gain is a measure of the total change of distance (in cm)
between the prey and the target (the beacon) during 20 seconds simulation time. The
root function is used for scaling purposes (see Equation 3.6). Positive values indicate that
the target has been approached.

Distance Gain in Transport
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Figure 3.25.: Distance gain in transport for different prey masses. For each evolution the
individual with the best median transport quality has been selected from Figure 3.24.
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in the 2,500 tests for both types of individuals and for all evolutionary runs. The
performance deviations with respect to different masses of prey are illustrated in
Figure 3.25. The evolutionary runs are ordered from the left to the right by the
median performance observed for the type 1 individuals.

In comparison with the performance levels attained by type 1 and type 2 individu-
als concerning the evolutionary runs of the previous experiments (see Section 3.4.3.1)
no individual achieved a remarkable performance; however, a larger amount of indi-
viduals attained an acceptable level of performance: the fraction of type 1 individuals
that are able to let a group of s-bots move the prey in 50% of all observations for
25 cm towards the beacon (i.e., a distance gain of 5) or even more is twice as big as
in the previous set of experiments.

The best median performance is achieved by a type 2 individual, the one taken
from the evolutionary run 9. In this case, the median distance gain corresponds to
39 cm.

In the remaining parts of this chapter, we focus on the analysis of six individuals
from the evolutionary runs 5, 6, 7, 8, 9 and 10. Since for the evolutionary run 9
the type 2 individual is superior to the type 1 individual with respect to the median
performance exhibited in the second phase of post-evaluation, we prefer to select the
type 2 individual for further analysis. In all other cases, the type 1 individual is
selected.

Transport Performance Concerning Different Shapes of Prey The 2,500 tests to
evaluate the performance of the best individuals of each evolutionary run during the
post-evaluation are based on prey objects of different shapes and masses. For every
test the prey is modeled as a cuboid or as a cylinder; each of these shapes is selected
with equal probability. The size of the prey is chosen randomly and independently
from its mass (see the beginning of Section 3.4.3 for details).

Although the geometrical properties of the prey have no influence on the magnitude
of the frictional forces that arise during transport, the group’s performance can be
affected significantly by shape and size of the prey. For example, larger prey offer
more potential space around the perimeter to be grasped directly than smaller prey.
We have observed that the evolved individuals concerning the experiments described
in Chapter 2 exhibit an acceptable level of transport performance only if the prey item
is big enough; in this case each member of a group of two to five s-bots that is trying
to push the prey is able to get in direct contact with the prey on the preferential'®
side (see Section 2.4.3).

To evaluate the robustness of evolved controllers with respect to the shape and the
size of prey, the data concerning the 2,500 tests for the evaluation of the performance
of the best individuals for each evolutionary run is partitioned according to different

15The direction that is not heading to the beacon.
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Figure 3.26.: Distance gain concerning transport of cylindrical prey objects for different in-
tervals of radii referred by Al,A2,...,A6 (the radii increase from the left to the right).
All cylinders have a radius between 6 and 15cm. For the six selected individuals of the
evolutions 5, 6, 7, 8, 9 and 10, the distance gain concerning tests for the different sets is
illustrated by a notched box-and-whisker plot. If the notches of two plots do not overlap
then the medians are significantly different at the five percent level. Each box represents
205 to 229 observations.

classes of prey:

e The sets A1,A2,..., A6 comprise the data concerning cylindrical prey objects.
Ai corresponds to tests in which the cylinders’ radii reside in the range [6 +
1.5(i — 1), 6 + 1.5).

e The sets B1,B2,...,B6 comprise the data concerning prey objects with cuboid
shape. B1,B2,...,B6 refer to tests in which the longer side length is within
the ranges [12,16), [16,20), [20,25), [25,30), [30,35) and [35,40). The length
of the shorter side is always in the range of 12 to 20 cm.

e The sets H1 and H2 referring to the data concerning tests with prey of 12 cm
and 20 cm height.

Concerning the sets H1 and H2 the median performance observed for the individ-
uals of the evolutions 5 to 10 are almost identical for the short prey objects (H1)
and the tall ones (H2): the relative deviation is at most 2%. Due to the positioning
method used, the s-bots are initially placed within a semi-circle around the prey.
Since this semi-circle is oriented towards the beacon the s-bots can initially sense the
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Figure 3.27.: Distance gain concerning transport of cuboid prey objects of different size:
B1,B2,...,B6 refer to six sets of tests in which cuboids have to be transported. The
longer side of a each cuboid is 12 to 40cm long. For the six selected individuals of
the evolutions 5, 6, 7, 8, 9 and 10, the distance gain concerning tests for the different
sets is illustrated by a notched box-and-whisker plot. Each box represents 188 to 215
observations.

target direction. The use of tall prey objects might lead to a performance decrease
in case other positioning methods are used.

Figure 3.26 shows the observed distance gain concerning the sets A1,A2,..., A6,
i.e., for different ranges of radii of the cylindrical prey. It can be seen that most indi-
viduals perform quite robust with respect to the size of the cylinder. All individuals
exhibit a performance decrease in case of the sets Al and A2 corresponding to tests
in which the cylinders’ radii are smaller than 9 cm.

Figure 3.27 shows the observed distance gain concerning the sets B1,B2,...,B6,
i.e., for different lengths of the longer side of cuboid prey. It can be seen that most
individuals perform fairly robust with respect to the length of the longer side. All
but one individual exhibit a performance decrease in case of set B1 corresponding to
tests in which the length of each cuboid’s side is in the range of 12 to 16 cm.

Transport Performance Concerning a Different Initial Positioning As for the pre-
vious experiments we evaluate the robustness of the evolved controllers with respect
to the full-circle positioning method that is utilized in the scalability analysis to place
larger groups of s-bots in the vicinity of the prey (see Section 3.4.3.4). Changing the
strategy of initial placement of s-bots near the prey has shown to diminish the group’s
performance of evolved controllers in previous experiments (see Section 3.4.3.1).
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The selected individuals of the evolutionary runs 5, 6, 7, 8, 9 and 10 having the
best median performance are evaluated on 1,250 tests using the full-circle positioning
method. The results are shown in Figure 3.28. The white boxes correspond to the
original placement method. The (light and dark) gray boxes refer to the full-circle
positioning.

Comparing the white and light gray boxes it can be seen that the new placement
method results in a relatively big performance decrease for the individuals concerning
the evolutions 5, 6, 8 and 9. The median distance gain of the individual of evolution
10 is slightly decreasing from 6.12 to 5.50. In case of the individual of evolution 7
the median distance even slightly increases from 5.31 to 5.87.

In both considered cases the tests last 20 seconds. If we extend the simulation
period for ten additional seconds, the median performances of all individuals increase
again (dark gray boxes). Concerning the evolutions 5, 6 and 8, the additional time
of ten seconds is enough to compensate the loss of performance caused by the new
placement strategy: the differences of the observed median distance gains concerning
the white and dark gray boxes of the evolutions 5, 6 and 8 are rather low (— 0.43, 0.04
and 0.1). In case of the other three evolutions the individuals perform even better,
if the new placement strategy is used and ten additional seconds are available: the
median distance gains of the dark gray boxes for the evolutions 7, 9 and 10 exceed
the median values of the corresponding white boxes by 2.12, 1.31 and 1.24. However,
also the standard deviations increase. Concerning the observed distance gain values
for the evolutions 5, 6, 7, 8, 9 and 10 the standard deviations using the full-circle
positioning method and having 30 seconds of simulation time are 3.09 (+0.81), 2.67
(+0.78), 3.45 (+0.65), 3.43 (+0.41), 3.95 (+ 1.29) and 2.7 (+ 0.5). The numbers in the
parentheses refer to the difference with respect to the semi-circle positioning strategy
and a simulation time of 20 seconds.

In comparison with the performance attained in a similar'® test by the individuals
selected for the analysis concerning the evolutionary runs of the previous experiments
(see Section 3.4.3.1) the controllers that have been generated in this experiment seem
to be slightly more robust with respect to the new positioning strategy.

3.4.3.2. Behavioral Analysis

The fitness function used by the evolutionary algorithm rewards the presence of as-
sembled s-bot structures connected to the prey (see Section 3.3.3). To get a maximum
reward, each s-bot should establish a connection either directly to the prey or to an-
other s-bot that is directly or indirectly connected to the prey. Given a group of
four s-bots, there are 17 possible structural configurations of s-bots connected both
to each other and to the prey.!” These structures are illustrated in Figure 3.29. Con-

1811 the previous experiments only prey objects of one specific shape and size are utilized.
17Structures that are isomorphic only count once.
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Robustness with Respect to Initial Positioning Strategy
prey: different masses, shapes and sizes
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Figure 3.28.: Test to what extend the s-bot groups are robust with respect to two different
initial placement methods. Each white box refers to 1,250 observations concerning the
original initial placement that is used during the evolutionary runs. The other boxes refer
to observations (1,250 each) for the full-circle positioning method.

cerning 2,500 tests of the type 1 individual of run 10, the frequency of occurrence of
each particular structure at the end of the simulation and the median distance gain
of all observations with this structure are displayed.

In Figure 3.30 and Figure 3.31 the frequencies and the distance gain values are
plotted against the structures of the selected individuals of the evolutionary runs 9
and 10.

For both individuals all structures have appeared at least once, some with very
low frequency. Comparing the two figures, it can be seen that structures that are
composed of less than four s-bots (i.e., structures of indices 1 to 8) have appeared
with higher frequency for the individual of run 9 (52.56%) than for the one of run 10
(18.96%).

For almost all cases of structures including three or four s-bots (i.e., structures of
indices from 5 to 17), at least two s-bots are directly connected to the prey (corre-
sponding to the structure indices 5, 6, 9, 10, 11, 12 and 14). The cases in which
only one single s-bot of an assembling structure is directly connected to the prey
(i.e., structures of indices 7, 8, 13, 15, 16 and 17) appear rather seldom for both the
individuals analyzed in this section and the individuals concerning the previous set
of experiments (see Section 3.4.2.2).

On the other hand, structure 9, i.e., the configuration in which all four s-bots are
connected directly to the prey, has never been observed to be the most frequent one.

81



Chapter 3. Evolving Cooperative Transport Strategies for Small Swarms

fraregan ) snaz o9
structure (median) 6.75
ﬂ 1.12% (28) ﬂ 37.96% (949)

-0.76

2] 3.64% (91)
0.94

6.65

1] 6.56% (164)
6.37

(]

10.56% (264) 112] 65206 (163)

3.63 6.63

@°
&3

41 2,600 (65) g 123 0.08% 2
OSOO
G0
@0
OO000

H 12.52% (313)
5.97

5
0.20% (5)
778

E 1.32% (33)
4.96

0.72% (18)
5.18

[~]

116] 0.0 (5)
6.42

0.08% (2)
4.97

[oo]

117 1 769 (44)
453

JHEEIE

0.04% (1)
6.87

Figure 3.29.: List of possible structural configurations of four s-bots connected (directly or in-
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structures shown in Figure 3.29.
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Figure 3.31.: Frequency and distance gain of structures observed during 2,500 tests with
the best individual of the evolutionary run 10. The structure indices correspond to the
structures shown in Figure 3.29.

In most cases just two or three connections are established; structure 10 appears the
most often for all individuals that have been analyzed. Therefore, the individuals
exploit both, multiple connections to the prey object as well as connections to other
teammates.

3.4.3.3. Flexibility

In the experiments described in this chapter, the simulated environment is equipped
with a single, light emitting beacon indicating the desired direction of transport.
The beacon is placed 300 cm away from the prey. The neural network controllers
synthesized in the evolutions let the group of s-bots form a structure in order to
transport the prey into the desired direction.

Similar!® to the analysis in Section 3.4.2.3, we evaluate to what extend a group of
s-bots engaged in the transport of a prey is able to adapt dynamically the direction
of transport according to a new target.

The simulation period of each test is doubled from 20 to 40 seconds. Concerning
the first half of the simulation period, the basic experimental setup has been retained
unchanged: the s-bots are placed within a semi-circle around the prey and the beacon
is located 300 cm away from the prey. As soon as the first half of the simulation period
is elapsed, the beacon (i.e., the target) is re-placed to a new position. The (horizontal)

18Here, the prey item can be of different shape and size.
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Figure 3.32.: Flexibility test: ability of a group engaged in the transport of a prey to adapt
the direction of transport according to a new target. The distance gained within the
second part of the simulation and with respect to the new target is illustrated (scaled by
root function). Eight different angular displacements between the old and the new target
are considered (1,250 observations each).

angular displacement of the beacon with respect to the prey can be 0, 45, 90, 135,
180, 225, 270 or 315 degrees (for details see Section 3.4.2.3).

For each angular displacement the selected individuals of the runs 5, 6, 7, 8, 9 and
10 have been evaluated on 1,250 tests.

As can be seen in Figure 3.32 the performance of all individuals is affected by
the angular displacements of the target. Similar to previous experiments (see Sec-
tion 3.4.2.3) we observe a decrease of performance that is not symmetric concerning
angular displacements to the left or to the right.

As long as the angle of displacement does not exceed 45% degrees to the left or to
the right, the decreases in performance are quite small. The individuals concerning
runs 9 and 10 obtained an acceptable level of performance for all angular displace-
ments: the lowest median performances correspond to transport distances of 33 cm
and 24 cm respectively.
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Scalability Test (group sizes: 4,8,12 and 16)
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Figure 3.33.: Scalability test: distance gain within 30 seconds of simulation time with groups
of size 4, 8, 12 and 16 transporting prey objects of mass 500, 1,000, 1,500 and 2,000 g.

3.4.3.4. Scalability

In this section, we analyze the controllers’ abilities to scale from group size 4 to the
group sizes 8, 12 and 16. The mass of the prey item is also modified linearly from
500 to 1,000, 1,500 and 2,000 g.

For each individual of the evolutionary runs 5 to 10 and for each group size, 250
tests have been performed. The simulation period has been extended to 30 seconds
(see also Section 3.4.2.4). To ensure a proper placement of groups up to 16 s-bots
in the immediate vicinity of the prey, the full-circle positioning method (see Sec-
tion 3.4.2.1) is utilized. Compared to the default placement strategy, this method
has shown to cause a performance decrease for the majority of evolved individuals
controlling a group of four s-bots to transport prey of masses from 500 to 1,000 g
(see Section 3.4.3.1). However, we have observed that the selected individuals of the
runs 5 to 10 are robust enough to reach an acceptable performance level, especially
in case the simulation period is increased.

Figure 3.33 presents the results concerning 250 tests per individual and for each
group size. Overall, the observed scaling abilities are not satisfying. It seems to be
infeasible for the evolved individuals to let the s-bots transport prey of arbitrary high
masses by adapting the group size linearly with respect to the mass.

However, it can be seen that for the particular group sizes of 4, 8, 12 and 16
some of the evolved individuals attain an acceptable performance level. The selected
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Figure 3.34.: Frequency of occurrence of different structure sizes: for the 1,000 tests in which
the type 1 individual of run 9 controls a group of 4, 8, 12 or 16 s-bots in order to transport
a prey of mass 500 to 2,000 g, the structure size, i.e., the number of s-bots directly or
indirectly connected to the prey object has been recorded. Here, the frequencies that
have been observed for each group size are given.

individuals of run 9 and 10 are able to transport all the prey objects with group sizes
from 4 to 16 with an acceptable performance: in the majority of the observations
concerning the group size 16 the prey has been moved for more than 43 cm and 31 cm
respectively. Also the performances of the selected individuals of run 5 to 8 are fairly
good concerning group size 8 and is still acceptable for groups up to 12 s-bots.

We suppose that the performance decrease for larger group sizes is partly caused
by the increased fraction of s-bots that do not connect directly or indirectly to the
prey. For the selected individuals of run 9 and 10, Figure 3.34 and Figure 3.35 display
distributions of the number of s-bots that are part of the (connected) transport struc-
ture for different group sizes at the end of the simulation of each test. The skewness
observed for the distribution of group size 4 tends to get smaller for increased group
sizes. The number of observations in which more than 75% of the s-bots are part of
the connected structure decreases continuously.

As we can see in Figure 3.36, structures of bigger size tend to perform better than
smaller ones. In case of the tested combinations of group size and mass the prey
can be retrieved even if some s-bots fail to get involved, since there is redundancy.
However, benefit could be gained if the fraction of s-bots actively engaged in the
transport would be increased.
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Figure 3.35.: Frequency of occurrence of different structure sizes: for the 1,000 tests in which
the type 1 individual of run 10 controls a group of 4, 8, 12 or 16 s-bots in order to transport
a prey of mass 500 to 2,000 g, the structure size, i.e., the number of s-bots directly or
indirectly connected to the prey object has been recorded. Here, the frequencies that

have been observed for each group size are given.
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3.5. Conclusions

In this chapter, we have addressed the problem to control a group of four s-bots to
cooperatively transport a heavy prey as close as possible to a light emitting beacon
within a fixed period of time. Depending on the mass that is varying among dif-
ferent prey objects, the prey can be moved efficiently only by cooperative behavior
of two, three or all four s-bots. Within two independent series of experiments, both
small prey of a particular shape and size, and prey of different shapes and sizes are
considered.

To control each s-bot of a group, a neural network controller synthesized by an
artificial evolution is utilized. About half of the evolutions have evolved fairly good
performing individuals. These have been further analyzed.

For most solutions, the transport performances, i.e., the distance gain with respect
to the target, observed in 2,500 tests are varying considerably. To some degree this is
caused by the variation of mass among prey items ranging from 500 to 1,000 g. One
evolved individual of the first series of experiments, i.e., the experiments with prey
of a particular shape and size, exhibits remarkable few performance fluctuations and
attains a respectable level of performance. The individuals of the second series of
experiments have shown to act fairly robust with respect to prey of different shapes
and sizes. Only in case of very small prey objects, the performance of some controllers
decreases considerably.

In order to move the prey, the s-bots form various types of assembled transport
structures using the gripper element. The formation of structures has been empha-
sized by the fitness functions that have been used during evolution in both series
of experiments. Concerning most observations, several direct connections between
the prey and solitary or assembled s-bots have been established. In the majority of
observations, an assembled group of s-bots is part of the transport structure that is
connected to the prey.

Most of the analyzed controllers fail to perform robust with respect to the full-circle
positioning method (a strategy applied during the scalability analysis). Nevertheless,
many controllers are still able to preserve an acceptable level of performance if the
simulation period is extended for ten additional seconds.

Several controllers are able to respond efficiently to a dynamic repositioning of
the target during simulation concerning eight different angular displacements. Some
controllers fail to adapt the direction of movement of the prey if the new target is
located in a direction opposite to the previous one (with respect to the prey).

The performance of all analyzed controller individuals decreases to some extend in
case both group size and prey mass are increased linearly by the factors 2, 3 or 4,
corresponding to groups of 8, 12 and 16 s-bots transporting prey objects of 500 to
2,000 g mass. Nevertheless, some solutions still attain a level of performance that is
acceptable for group sizes up to 16. However, we suppose that these solutions cannot
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be applied successfully to groups much larger than 20 s-bots.

For the scalability analysis, the individuals have been exposed to tests in which a
new positioning strategy (the full-circle positioning) is utilized to ensure proper place-
ments of large groups of s-bots in the immediate vicinity of the prey. This full-circle
positioning has caused a decrease in performance for most individuals. Furthermore,
we have observed that for bigger group sizes many s-bots are not actively engaged
in the transport task. We suppose that the efficiency, robustness and scalability of
the evolved solutions could be improved by an incremental evolution. Here, a bigger
group size of 8 to 10 s-bots and the full-circle positioning could be applied.

3.6. Future Work

In this work a swarm-robotic system, called swarm-bot, is introduced. A swarm-
bot is a self-assembling and self-organizing artifact composed of a swarm of simple
autonomous mobile robots, called s-bots that are able to establish (and to release)
physical connections between each other and to other objects.

We have designed neural networks controlling groups or swarms of simple s-bots
engaged in the cooperative transport of heavy prey by using Artificial Evolution. The
communication structure among s-bots has been limited to interactions via the envi-
ronment or (additionally) interactions via sensing. Prey objects of different masses,
shapes and sizes have been considered.

We have analyzed the obtained transport strategies with respect to desired prop-
erties such as efficiency, robustness, flexibility and scalability.

Some particular controllers are able to perform flexibly and efficiently for groups
of 2 to 16 s-bots. However, the performance of all solutions decreases with growing
group size. It seems to be not feasible for any of the evolved individuals to let the
s-bots transport prey of arbitrary high masses and constant size by adapting the
group size linearly with respect to the mass. As discussed in the previous section, we
expect that the efficiency, robustness and scalability of the evolved solutions could
be improved by incremental evolution.

Each evolution we have performed in the context of cooperative transport lasted
several weeks on a single machine. To evaluate a single individual, five computa-
tionally expensive physical simulations with multiple robots are performed. In the
future, we will consider techniques

e to distribute the evolutionary algorithm used,
e to reduce the huge amount of fitness evaluations,
e to improve the evolvability of the problem, and

e to decrease the execution time of the simulator.
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So far, we have considered the case that a group of predetermined size is placed
in the immediate vicinity of a prey that has to be moved towards a target. In the
future we want to address the problem of cooperative prey retrieval in environments
in which multiple prey items are present. Search and recruitment techniques will be
of special interest. We want to design strategies that enable a swarm of s-bots

e to choose collectively the prey objects to be retrieved, and

e to seek for an appropriate group size of s-bots engaged in the transport of each
particular prey.

Last but not least, we want to control a group of real s-bots. Therefore either
controllers will be transfered from the simulated to the real s-bots, or the evolutionary
approach will be applied directly on the real s-bots. In any case, the real s-bot system
will be used for further validation and improvements of the simulation model.
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Appendix A.
Moment of Inertia

The moment of inertia I, of a solid body of density p(z) with respect to a given axis
a is defined by the volume integral

1, = / p(&)ra(e)2ds,

where 7,(z) is the perpendicular distance of point z from the axis a of rotation.

The moment of inertia of a cuboid of mass m, side length a, b and ¢, and uniform
density (see Figure A.1 (1)) for rotation about the three basic axis through the center
of mass is given by:

1
Jr = ﬁm(b2 + ),
_ 1 2, .2
Jy - 12m(a +c )’
1
J, = Em(a2 + b?).

The moment of inertia for a cylinder of mass m, radius r, height A and uniform
density (see Figure A.1 (2)) is given by:

1 1
Jy = Eth + Zmrz,
_ 1 2, 1 4
Jy—12mh +
I, = Zmr?
e = gmr

Lets consider an object composed of two rigidly connected cuboids B; and Bs
having a uniform density each (see Figure A.2 (1)). Both cuboids have identical
side length a, b and ¢. Cuboid B; has a mass of m; and cuboid By has a mass of
by. Therefore the objects total mass is mi + mo. Given a coordinate system with
the point of origin in the geometrical center of the object and the axis z, y and z
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Figure A.1.: Objects with uniform density: (1) cuboid and (2) cylinder
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Figure A.2.: Objects composed of a lower part with mass m; and an upper part with mass
mg. Each part has a uniform density. (1) cuboid and (2) cylinder.

oriented parallel to the sides a, b and ¢ of the cuboids, the object’s center of mass is
at (0,0, %—%f;z;)

If the moment of inertia J, of a body about an axis a passing through its center
of mass is known, the moment of inertia .J, of the body about another axis a’ that

is parallel to axis a can be determined as

Jy = Jg +md?,

where m is the mass of the body, and d is the separation of axes a and axes a'.
This formula is known as the parallel-axis or Steiners theorem.

Applying Steiners theorem, the moment of inertia of the object shown in Figure A.2
(1) for rotation about the three basic axis through the object’s center of mass can be
derived as:
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1 2 2
Jr = —(m1 + 'mg)(b2 + 02) + mq (ﬂ) + mg (ﬂ)

12 mi + msg mi + my
1 cmo 2 cmy 2
J = 2, 2
y —12(m1 +mg)(a”® + ) + my <m1 +m2) + Mo (m1 +m2>
1
J, = E(ml + my)(a® + b?)

The moment of inertia for the object composed of two cylinders of mass m; and
mg and with radius r and height h each (see Figure A.2 (2)) for rotation about the
three basic axis through the object’s center of mass is given by:

1 1 h 2 h 2
Jg = (M +m2)(ﬁh2 +=r%) +my (&> + me ($>

4 m1 + mo m1 + mo

1 1 hma \° hmi
J, = Ry 2 e e
y = (m1+ma)(5h™+ 4r) +m <m1+m2> e (m1+m2

1
J, = E(ml + m2)7‘2

93



94



Bibliography

Anderson, C. (2002). Self-organization in relation to several similar concepts:
Are the boundaries to self-organization indistinct? The Biological Bulletin,
202(3):247-255.

Arkin, R. (1992). Cooperation without communication: Multiagent schema-based
robot navigation. Journal of Robotic Systems, 9(3):351-364.

Asama, H., Matsumoto, A., and Ishida, Y. (1989). Design of an autonomous and
distributed robot system: Actress. In Proceedings of the 1989 IEEE/RSJ In-
ternational Workshop on Intelligent Robots and Systems, pages 283-290, Los
Alamitos, CA. IEEE Computer Society Press.

Ashby, W. (1947). Principles of the self-organizing dynamic system. Journal of
General Psychology, 37:125.

Balch, T. (1997a). Behavioral diversity in robot teams. In In Collected Papers from
the 1997 AAAT Workshop on Multiagent Learning, pages 7-12. AAAI Press,
Cambridge, MA.

Balch, T. (1997b). Social entropy: A new metric for learning multi-robot teams.
In Proceedings of 10th International Florida Artificial Intelligence Research
Symposium, pages 272-277, Daytona Beach, FL. Florida AT Research Society.

Balch, T. (1999). The impact of diversity on performance in multi-robot foraging.
In Proceedings of the Third International Conference on Autonomous Agents
(Agents’99), pages 92-99, Seattle, WA. ACM Press.

Balch, T. and Arkin, R. C. (1994). Communication in reactive multiagent robotic
systems. Autonomous Robots, 1(1):27-52.

Banzhaf, W. (2002). Self-organizing systems. In Encyclopedia of Physical Science
and Technology, volume 14, pages 589-598. Academic Press, New York, NY.

Banzhaf, W., Nordin, P., Keller, R., and Francone, F. (1998). Genetic program-
ming — an introduction; on the automatic evolution of computer programs and
its applications.

Barhen, J., Dress, W., and Jorgensen, C. (1987). Applications of concurrent neuro-
morphic algorithms for autonomous robots. In Eckmiller, R. and Malsburg, C.,
editors, Neural Computers, pages 321-333. Springer-Verlag, Berlin, Germany.

95



BIBLIOGRAPHY

Becker, R., Holland, O., and Deneubourg, J.-L. (1994). From local actions to global
tasks: Stigmergy and collective robotics. In Brooks, R. A. and Maes, P., editors,
Proceedings of the Fourth International Workshop on the Synthesis and Simu-
lation of Living Systems, pages 181-189, Cambridge, MA. MIT Press/Bradford
Books.

Beer, R. and Gallagher, J. (1992). Evolving dynamic neural networks for adaptive
behavior. Adaptive Behavior, 1(1):91-122.

Beni, G. (1988). The concept of cellular robotic system. In Proceedings of Third
IEEF International Symposium on Intelligent Control, pages 5762, Los Alami-
tos, CA. IEEE Computer Society Press.

Beyer, H.-G. (1993). Toward a theory of evolution strategies: Some asymptotical
results from the (1, +\)-theory. Evolutionary Computation, 1(2):165-188.

Beyer, H.-G. (1994). Towards a theory of evolution strategies: Progress rates and
quality gain for (1,+)) -strategies on (nearly) arbitrary fitness functions. In
Parallel Problem Solving from Nature, volume 3, pages 58—67.

Beyer, H.-G. (1995). Toward a theory of evolution strategies: On the benefit of sex
- the (u/p,lambda)-theory. Evolutionary Computation, 3(1):81-111.

Beyer, H.-G. (1996). Toward a Theory of Evolution Strategies: Self-Adaptation.
Ewvolutionary Computation, 3(3):311-347.

Beyer, H.-G. (2001). The Theory of Evolution Strategies. Springer Verlag, Berlin,
Germany.

Billard, A., Ijspeert, A., and Martinoli, A. (1999). A multi-robot system for adap-
tive exploration of a fast changing environment: Probabilistic modelling and
experimental study. Connection Science, 11:359-379.

Bonabeau, E., Dorigo, M., and Theraulaz, G. (1999). Swarm Intelligence: From
Natural to Artificial Systems. Oxford University Press, New York, NY.

Bond, A. H. and Gasser, L. (1988). Readings in Distributed Artificial Intelligence.
Morgan Kaufmann, San Mateo, CA.

Booker, L., Goldberg, D., and Holland, J. (1989). Classifier systems and genetic
algorithms. Artificial Intelligence, 40(1-3):235-282.

Brooks, R. (1986). A robust layered control system for a mobile robot. IEEE
Journal of Robotics and Automation, RA-2(1):14-23.

Brooks, R. (1992). Artificial life and real robots. In Varela, F. and Bourgine,
P., editors, Torward a Practice of Autonomous Systems: Proceedings of the
First European Conference on Artificial Life, pages 3-10, Cambridge, MA.
MIT Press/Bradford Books.

96



BIBLIOGRAPHY

Camazine, S., Deneubourg, J.-L., Franks, N., Sneyd, J., Theraulaz, G., and
Bonabeau, E. (2001). Self-Organization in Biological Systems. Princeton Uni-
versity Press, Princeton, NJ.

Cao, Y. U., Fukunaga, A. S., and Kahng, A. B. (1997). Cooperative mobile
robotics: Antecedents and directions. Autonomous Robots, 4(1):7-23.

Chance, M. R. and Jolly, C. J. (1970). Social Groups of Monkeys, Apes and Men.
Dutton, London, UK.

Cliff, D., Harvey, I., and Husbands, P. (1993). Explorations in evolutionary
robotics. Adaptive Behavior, 2:73-110.

Colombetti, M. and Dorigo, M. (1994). Training agents to perform sequential be-
havior. Adaptive Behavior, 2(3):247-275.

Coveney, P. and Highfield, R. (1995). Frontiers of Complexity - The Search for
Order in a Chaotic World. Ballantine Books, Inc.

Cramer, N. L. (1985). A representation for the adaptive generation of simple se-
quential programs. In Grefenstette, J. J., editor, Proceedings of an Interna-
tional Conference on Genetic Algorithms and the Applications, pages 183-187,
Pittsburgh, PA. USA Navy. publisher not known, sponsored by USA Navy.

Sahin, E., Labella, T., Trianni, V., Deneubourg, J.-L., Rasse, P., Floreano, D.,
Gambardella, L., Mondada, F., Nolfi, S., and Dorigo, M. (2002). SWARM-
BOTS: Pattern formation in a swarm of self-assembling mobile robots. In
El Kamel, A., Mellouli, K., and Borne, P., editors, Proceedings of the IEEE
International Conference on Systems, Man and Cybernetics, pages 145-150,
Hammamet, Tunisia. Piscataway, NJ: IEEE Press.

Darwin, C. (1859). On the Origin of Species by Means of Natural Selection. London.

Deb, K. and Beyer, H.-G. (1999). Self-Adaptation in Real-Parameter Genetic Al-
gorithms with Simulated Binary Crossover. In Banzhaf, W., Daida, J., Eiben,
A., Garzon, M., Honavar, V., Jakiela, M., and Smith, R., editors, GECCO-99:
Proceedings of the Genetic and Evolutionary Computation Conference, pages
172-179, San Francisco, CA. Morgan Kaufmann.

Deneubourg, J. and Goss, S. (1989). Collective patterns and decision-making.
FEthology, Ecology and FEvolution, 1:295-311.

Deneubourg, J., Goss, S., Sandini, G., Ferrari, F., and Dario, P. (1990). Self-
organizing collection and transport of objects in unpredictable environments.
In Proceedings of Japan - U.S.A Symposium on Flexible Automation, pages
1093-1098, Kyoto, Japan. ISCIE.

Deneubourg, J.-L., Goss, S., Franks, N., and Pasteels, J. (1989). The blind leading
the blind: Modeling chemically mediated army ant raid patterns. Journal of

97



BIBLIOGRAPHY

Insect Behaviour, 2:719-725.

Dobzhansky, T. (1937). Genetics and the Origin of Species. Columbia University
Press.

Donald, B. R., Jennings, J., and Rus, D. (1994). Analyzing teams of cooperating
mobile robots. In Proceedings - IEEE International Conference on Robotics
and Automation, volume 3, pages 130-135, Los Alamitos, CA. IEEE Computer
Society Press.

Dorigo, M. (1995). ALECSYS and the AutonoMouse: Learning to Control a Real
Robot by Distributed Classifier Systems. Machine Learning, 19:209-240.

Dorigo, M. and Colombetti, M. (1998). Robot Shaping: An Ezperiment in Behavior
Engineering. MIT Press/Bradford Books, Cambridge, MA.

Dorigo, M., Trianni, V., Sahin, E., Labella, T., Gross, R., Baldassarre, G.,
Nolfi, S., Deneubourg, J.-L., Mondada, F., Floreano, D., and Gambardella, L.
(2003). Evolving Self-Organizing Behaviors for a Swarm-bot. Technical Report
TR/IRIDIA /2003-11, IRIDIA - Université Libre de Bruxelles, Belgium.

Drogoul, A. and Ferber, J. (1993). From tom thumb to the dockers: Some exper-
iments with foraging robots. In Proceedings of the Second International Con-
ference on Simulation of Adaptive Behavior, pages 451-459, Cambridge, MA.
MIT Press/Bradford Books.

Durfee, E. H. and Rosenschein, J. S. (1994). Distributed problem solving and mul-
tiagent systems: Comparisons and examples. In Klein, M., editor, Proceedings
of the 13th International Workshop on DAI, pages 94-104, Lake Quinalt, WA.

Elman, J. (1990). Finding structure in time. Cognitive Science, 14:179-211.

Endo, K., Maeno, T., and Kitano, H. (2002). Co-evolution of morphology and walk-
ing pattern of biped humanoid robot using evolutionary computation - from
simulation to the real robot. In Bidaud, P. and Ben Amar, F., editors, Pro-

ceedings of the 5th International Conference on Climbing and Walking Robots
(CLAWAR), pages 783-790. Professional Engineering Publishing.

Floreano, D. and Mondada, F. (1994). Automatic creation of an autonomous agent:
Genetic evolution of a neural-network driven robot. In Cliff, D. and Husbands,
P., editors, From Animals to Animats 3, Proceedings of the Third Interna-
tional Conference on Simulation of Adaptive Behavior (SAB’94), pages 421
430, Cambridge, MA. MIT Press/Bradford Books.

Floreano, D. and Mondada, F. (1996). Evolution of homing navigation in a real
mobile robot. IEEE Transactions on Systems, Man, and Cybernetics, 26:396—
407.

98



BIBLIOGRAPHY

Fogel, L. (1962). Toward inductive inference automata. In Proceedings of the Int.
Federation for Information Processing Congress Conference, pages 395—-399.

Fogel, L., Owens, A., and Walsh, M. (1966). Artificial Intelligence through Simu-
lated Fvolution. Wiley & Sons, New York, NY.

Fukada, T. and Nakagawa, S. (1987). A dynamically reconfigurable robotic sys-
tem. In Proceedings of the International Conference on Industrial Electronics,
Control, and Instrumentation (IECON), pages 588-595.

Garis, H. (1991). Genetic programming: Artificial nervous systems, artificial em-
bryos and embryological electronics. In Schwefel, H.-P. and Ménner, R., edi-
tors, Parallel Problem Solving from Nature, pages 117-123, Berlin, Germany.
Springer-Verlag. Lecture Notes in Computer Science 496.

Gasser, L. and Huhn, M. N. (1989). Distributed Artificial Intelligence, volume 2
of Research Notes in Artificial Intelligence. Pitman Publishing and Morgan
Kaufmann, London, UK.

Gen, M. and Cheng, R. (2000). Genetic Algorithms and Engineering Optimization.
Wiley & Sons, New York, NY.

Goldberg, D. (2002). The Design of Innovation: Lessons from and for Competent
Genetic Algorithms. Kluwer Academic Publishers, New York, NY.

Goldberg, D. and Matari¢, M. J. (1999). Coordinating mobile robot group behav-
ior using a model of interaction dynamics. In Etzioni, O., Miiller, J. P., and

Bradshaw, J. M., editors, Proceedings of the Third International Conference on
Autonomous Agents (Agents’99), pages 100-107, Seattle, WA. ACM Press.

Goldberg, D. E. (1989). Genetic Algorithms in Search, Optimization, and Machine
Learning. Addison-Wesley, Reading, MA.

Goss, S. and Deneubourg, J.-L. (1992). Harvesting by a group of robots. In Pro-
ceedings of the First FEuropean Conference on Artificial Life, pages 195-204,
Cambridge, MA. MIT Press/Bradford Books.

Grassé, P. (1959). La reconstruction du nid et les coordinations inter-individuelles
chez bellicoitermes natalenis et cubitermes sp. la theorie de la stigmergie: Essai
d’interpretation des termites constructeurs. Insect Societies, 6:44-83.

Haken, H. (1988). Information and Self-Organization. A Macroscopic Approach to
Complexr Systems. Springer-Verlag, Berlin, Germany.

Hayes, A., Martinoli, A., and Goodman, R. (2000). Comparing distributed explo-
ration strategies with simulated and real autonomous robots. In Proceedings of

the Fifth International Symposium on Distributed Autonomous Robotic Systems
DARS-00, pages 261-270, Berlin, Germany. Springer-Verlag.

99



BIBLIOGRAPHY

Heylighen, F. (2002). The science of self-organization and adaptivity. In The En-
cyclopedia of Life Support Systems. EOLSS Publishers Co. Ltd.

Holland, J. H. (1962). Outline for a logical theory in adaptive systems. Journal of
the Association for Computing Machinery, 9(3):297-314.

Holland, J. H. (1975). Adaptation in Natural and Artificial Systems. MIT Press,
Cambridge, MA.

Holldobler, B. (1983). Territorial behavior in the green tree ant (oecophylla smarag-
dina). Biotropica, 15:241-250.

Holldobler, B. and Wilson, E. (1990). The Ants. Harvard University Press, Cam-
bridge, MA.

Hopfield, J. J. (1982). Neural networks and physical systems with emergent col-
lective computational abilities. In Proceedings of the National Academy of Sci-
ences, volume 79, pages 2554-2558.

Huhns, M. N. (1987). Distributed Artificial Intelligence, volume 1 of Research Notes
in Artificial Intelligence. Pitman Publishing and Morgan Kaufmann, London,
UK.

Husbands, P. and Harvey, 1. (1992). Evolution versus design: Controlling au-
tonomous robots. In Proceedings of the Third Annual Conference on Artificial
Intelligence, Simulation and Planning, pages 139-146, Los Alamitos, CA. IEEE
Computer Society Press.

Jakobi, N. (1998). Minimal Simulations for FEwvolutionary Robotics. PhD thesis,
University of Sussex.

Kato, T. and Floreano, D. (2001). An evolutionary active-vision system. In Pro-
ceedings of the 2001 Congress on Evolutionary Computation CEC2001, pages
107-114, Los Alamitos, CA. IEEE Computer Society Press.

Komosinski, M. (2000). The world of framsticks: Simulation, evolution, interaction.
In Heudin, J.-C., editor, Proceedings of the Second International Conference
on Virtual Worlds, volume 1834, pages 214-224, Berlin/Heidelberg, Germany.
Springer-Verlag. Lecture Notes in Artificial Intelligence.

Koza, J. R. (1990). Evolution of subsumption using genetic programming. In
Varela, F. J. and Bourgine, P., editors, Proceedings, First European Confer-
ence on Artificial Life, pages 110-119, Cambridge, MA. MIT Press.

Koza, J. R. (1992). Genetic Programming: On the Programming of Computers by
Means of Natural Selection. MIT Press, Cambridge, MA.

Koza, J. R., Keane, A., Streeter, M., Mydlowec, W., Yu, J., and Lanza, G. (2003).
Genetic Programming IV: Routine Human-Competitive Machine Intelligence.
Kluwer Academic Publishers, New York, NY.

100



BIBLIOGRAPHY

Koza, J. R. and Rice, J. P. (1992). Automatic programming of robots using ge-
netic programming. In Proceedings of Tenth National Conference on Artificial
Intelligence, pages 194-201, Cambridge, MA. AAAI Press/MIT Press.

Kube, C. and Zhang, H. (1992a). Collective robotic intelligence. In Meyer, J.,
Roitblat, H., and Wilson, S., editors, Proceedings of the Second International

Conference on Simulation of Adaptive Behaviour, pages 460-468, Cambridge,
MA. MIT Press.

Kube, C. R. and Bonabeau, E. (2000). Cooperative transport by ants and robots.
Robotics and Autonomous Systems, 30(Issue 1/2):85-101. ISSN: 0921-8890.

Kube, C. R. and Zhang, H. (1992b). Collective robotics: From social insects to
robots. Adaptive Behaviour, 1994, 2(2):189-218.

Kube, C. R. and Zhang, H. (1995). Stagnation recovery behaviours for collec-
tive robotics. In Proceedings 1994 IEEE/RSJ/GI International Conference on
Intelligent Robotics and Systems, pages 1883-1890, Los Alamitos, CA. IEEE
Computer Society Press.

Kuniyoshi, Y., Kita, N., Rougeaux, S., Sakane, S., Ishii, M., and Kakikura, M.
(1994). Cooperation by observation - the framework and basic task patterns.
In Proceedings of the 1994 IEEE International Conference on Robotics and
Automation, pages 767-774, Los Alamitos, CA. IEEE Computer Society Press.

Lamarck, J. B. (1809). Philosophie zoologique. Paris.

Langdon, W. B. and Poli, R. (2002). Foundations of Genetic Programming.
Springer-Verlag, Berlin, Germany.

Lipson, H. and Pollack, J. (2000). Automatic design and manufacture of robotic
lifeforms. Nature, 406:974-978.

Markon, S., Arnold, D. V., Baeck, T., Beielstein, T., and Beyer, H.-G. (2001).
Thresholding - a selection operator for noisy ES. In Proceedings of the 2001
Congress on Evolutionary Computation CEC2001, pages 465-472, Los Alami-
tos, CA. IEEE Computer Society Press.

Marocco, D. and Floreano, D. (2002). Active vision and feature selection in evolu-
tionary behavioral systems. In Hallam, J., Floreano, D., Hayes, G., and Meyer,
J., editors, From Animals to Animats 7: Proceedings of the Seventh Interna-
tional Conference on Simulation of Adaptive Behavior, pages 247-255, Cam-
bridge, MA. MIT Press/Bradford Books.

Martinoli, A. and Easton, K. (2003). Optimization of swarm robotic systems via
macroscopic models. In Proceedings of the Second International Workshop on
Multi-Robots Systems, pages 181-192, New York, NY. Kluwer Academic Pub-

lishers.

101



BIBLIOGRAPHY

Martinoli, A. and Mondada, F. (1995). Collective and cooperative group be-
haviours: Biologically inspired experiments in robotics. In Khatib, O. and
Salisbury, J., editors, Proceedings of the Fourth Symposium on Ezxperimental
Robotics ISER-95, pages 3-10, Berlin, Germany. Springer Verlag. Lecture Notes
in Control and Information Sciences.

Martinoli, A., Yamamoto, M., and Mondada, F. (1997). On the modelling of bio-
inspired collective experiments with real robots. In Husbands, P. and Harvey, 1.,
editors, Fourth Furopean Conference on Artificial Life ECAL-97, pages 28-31,
Cambridge, MA. MIT Press.

Mataric, M. J. (1992a). Designing emergent behaviors: From local interactions to
collective intelligence. In Proceedings of the Second International Conference on
Simulation of Adaptive Behavior, pages 432-441, Cambridge, MA. MIT Press.

Mataric, M. J. (1992b). Minimizing complexity in controlling a mobile robot popu-
lation. In Proceedings of the 1992 IEEFE International Conference on Robotics
and Automation, pages 830-835, Los Alamitos, CA. IEEE Computer Society
Press.

Mataric, M. J. (1994). Interaction and Intelligent Behavior. PhD thesis, MIT.

Mataric, M. J. (1995). Issues and approaches in the design of collective autonomous
agents. Robotics and Autonomous Systems, 16:321-331.

Mataric, M. J., Nilsson, M., and Simsarian, K. (1995). Cooperative multi-robot
box-pushing. In Proceedings 1994 IEEE/RSJ/GI International Conference on
Intelligent Robotics and Systems, pages 556561, Los Alamitos, CA. IEEE
Computer Society Press.

Mayr, E. (1942). Systematics and the Origin of Species. Columbia University Press.

Mayr, E. (1988). Ewolution, chapter Evolution, pages 8-19. Spektrum der Wis-
senschaft Verlag, Heidelberg, Germany.

Mayr, E. (2001). What Evolution is. Basic Books, New York, NY.

Mendel, G. J. (1866). Versuche iiber Pflanzen-Hybriden. In Verhandlungen des
Naturforschenden Vereines in Brinn, volume 4, pages 3-47, Czechoslovakia.
Natural History Society of Briinn. Engl. title: Experiments in Plant Hybridiza-
tion.

Mitchell, M. (1996). An Introduction to Genetic Algorithms. MIT Press/Bradford
Books, Cambridge, MA.

Moffet, M. (1988). Cooperative food transport by an asiatic ant. National Geoy.
Res., 4:386-394.

Mondada, F., Franzi, E., and Ienne, P. (1993). Mobile robot miniaturization: A
tool for investigation in control algorithms. In Yoshikawa, T. and Miyazaki,

102



BIBLIOGRAPHY

F., editors, Proceedings of the Third International Symposium on Experimental
Robots, pages 501-513, Berlin, Germany. Springer-Verlag.

Mondada, F., Guignard, A., Colot, A., Floreano, D., Deneubourg, J.-L., Gam-
bardella, L., Nolfi, S., and Dorigo, M. (2002a). Swarm-bot: A new concept of
robust all-terrain mobile robotic system. Technical report, LSA2 - 12S - STI,
Swiss Federal Institute of Technology, Lausanne, Switzerland.

Mondada, F., Pettinaro, G. C., Kwee, 1., Guignard, A., Gambardella, L., Flore-
ano, D., Nolfi, S., Deneubourg, J.-L., and Dorigo, M. (2002b). SWARM-BOT: A
swarm of autonomous mobile robots with self-assembling capabilities. In Hemel-
rijk, C. and Bonabeau, E., editors, Proceedings of the International Workshop
on Self-organisation and Evolution of Social Behaviour, pages 307-312, Ascona,
Switzerland. University of Zurich.

Nicolis, G. and Prigogine, 1. (1977). Self-Organization In Non-Equilibrium Systems.
Wiley & Sons, New York, NY.

Nolfi, S. (1998). Evolutionary robotics - exploiting the full power of self-
organization. Connection Science, 10(3-4):167-184.

Nolfi, S. and Floreano, D. (2000). Evolutionary Robotics: The Biology, Intelligence,
and Technology of Self-Organizing Machines. MIT Press, Cambridge, MA.

Nolfi, S., Floreano, D., Miglino, O., and Mondada, F. (1994). How to evolve au-
tonomous robots: Different approaches in evolutionary robotics. In Brooks, R.

and Maes, P., editors, Proceedings of the Fourth International Conference on
Artificial Life, pages 190-197, Cambridge, MA. MIT Press.

Nolfi, S. and Marocco, D. (2002). Active perception: A sensorimotor account of
object categorization. In Hallam, B., Floreano, D., Hallam, J., Hayes, G., and
Meyer, J.-A., editors, From animals to animats 7 - The Seventh International
Conference on the Simulation of Adaptive Behavior, pages 266—271, Cambridge,
MA. MIT Press.

Parker, L. E. (1994). Heterogeneous Multi-Robot Cooperation. PhD thesis, MIT.

Parker, L. E. (1998). Alliance: An architecture for fault-tolerant multi-robot co-
operation. IEEE Transactions on Robotics and Automation, 14(2):220-240.

Parker, L. E. (1999). Adaptive heterogeneous multi-robot teams. Neurocomputing,
28:75-92. Special issue of NEURAP 98: Neural Networks and Their Applica-
tions.

Parker, L. E. (2000). Current state of the art in distributed autonomous mobile
robotics. In Parker, L. E., Bekey, G., and Barhen, J., editors, Distributed Au-
tonomous Robotic System 4, pages 3—12, Tokyo, Japan. Springer-Verlag. ISBN:
4-431-70295-4.

103



BIBLIOGRAPHY

Premvuti, S. and Yuta, S. (1990). Consideration on the cooperation of multiple au-
tonomous mobile robots. In Proceedings of the IEEE/RSJ International Work-
shop of Intelligent Robots and Systems IROS 90, pages 59-63, Los Alamitos,
CA. IEEE Computer Society Press.

Rechenberg, 1. (1965). Cybernetic Solution Path of an Ezperimental Problem. PhD
thesis, Royal Aircraft Establishment, Hants Farnborough, UK. Reprinted in
‘Evolutionary Computation : The fossil record’, D. B. Fogel, Ed., chap. 8, pp.
297-309, IEEE Press 1998.

Rechenberg, 1. (1973). Evolutionsstrategie. Optimierung technischer Systeme nach
Prinzipien der biologischen Evolution. Frommann-Holzboog.

Reynold, C. W. (1994). Evolution of corridor following in a noisy world. In Cliff, D.,
Husbands, P., Meyer, J.-A., and Wilson, S., editors, From Animals to Animats
3: Proceedings of the Third International Conference on Simulation of Adap-
tive Behaviour (SABY/), pages 402-410, Cambridge, MA. MIT Press/Bradford
Books.

Reynolds, C. (1993). An evolved, vision-based model of obstacle avoidance behav-
ior. In Langton, C. G., editor, Artificial Life III: Proceedings of the Workshop
on Artificial Life, volume 16, pages 327-346, Reading, MA. Addison-Wesley.

Robson, S. and Traniello, J. (1998). Resource assessment, recruitment behavior,
and organization of cooperative prey retrieval in the ant formica schaufussi
(hymenoptera: Formicidae). J. Insect Behavior, 11:1-22.

Schwefel, H.-P. (1974). Adaptive Mechanismen in der biologischen Evolution und
ihr Einflu auf die Evolutionsgeschwindigkeit. Technical Report Re 215/3, TU
Berlin. Technical Report of the Working Group of Bionics and Evolution Tech-
niques at the Institute for Measurement and Control Technology.

Schwefel, H.-P. (1975). Evolutionsstrategie und numerische Optimierung. PhD the-
sis, TU Berlin.

Sen, A., Sekaran, M., and Hale, J. (1994). Learning to coordinate without sharing
information. In Proceedings of the Twelfth National Conference on Artificial
Intelligence, pages 426-431, Menlo Park, CA. AAAI Press.

Shannon, C. and Weaver, W. (1949). The Mathematical Theory of Communication.
University of Illinois Press, Urbana, Illinois.

Sims, K. (1994a). Evolving 3d morphology and behavior by competition. In Brooks,
R. and Maes, P., editors, Proceedings of the 4th International Workshop on the
Synthesis and Simulation of Living Systems (Artificial Life IV), pages 28-39,
Cambridge, MA. MIT Press.

Sims, K. (1994b). Evolving virtual creatures. In Glassner, A., editor, Computer
Graphics (Siggraph 94 Proceedings), pages 15-22. ACM Press.

104



BIBLIOGRAPHY

Sudd, J. (1963). How insects work in groups. Discovery, 24:15-19.
Sudd, J. (1965). The transport of prey by ant. Behaviour, 25:234-271.

Traniello, J. and Beshers, S. (1991). Maximization of foraging efficiency and re-
source defense by group retrieval in the ant formica schaufussi. Behav. Ecol.
Sociobiol., 29:283-289.

Trianni, V., Grof; R., Labella, T. H., Sahin, E., Rasse, P., Deneubourg, J.-L.,
and Dorigo, M. (2003). Evolving aggregation behaviors in a swarm of robots.
In ECAL 2003: Proceedings of the 7Tth European Conference on Artificial Life,
Berlin, Germany. Springer-Verlag.

Tung, B. and Kleinrock, L. (1993). Distributed control methods. In Proceedings of
the 2nd International Symposium on High Performance Distributed Computing,
pages 206-215, Piscataway, NJ. IEEE Press.

Viola, P. (1988). Mobile robot evolution. Bachelors thesis, MIT, Cambridge, MA.

105



106



Acknowledgments

I want to express my thanks to all my colleagues at IRIDIA for always being kind,
helpful and open to fruitful discussions. Special thanks to Shervin Nouyan, Martin
Villwock, Vito Trianni, Keno Albrecht, Elio Tuci, Martin Fiedler, Halva Labella,
Joshua Knowles, and Patrick Gundlach who contributed innumerable suggestions
and encouragements. Furthermore, I thank my supervisor Marco Dorigo for giving
me the opportunity to work at IRIDIA.



