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Abstract

The interest in using the Ant Colony Optimization (ACO) metaheuristic to
solve continuous or mixed discrete-continuous variable optimization prob-
lems is increasing. One of the most popular Ant Colony Optimization (ACO)
algorithms for the continuous domain is ACOR. In this thesis, we propose
an incremental ant colony algorithm with local search for continuous opti-
mization (IACOR-LS), and we present an ant colony optimization algorithm
for mixed discrete-continuous variable optimization problems (ACOMV).

We start by a detailed experimental analysis of ACOR and based on
the obtained insights on ACOR, we propose IACOR-LS. This mechanism
consists of a growing solution archive with a special initialization rule ap-
plied to entrant solutions. The resulting algorithm, called IACOR, is then
hybridized with a local search procedure in order to enhance its search inten-
sification. Automatic parameter tuning results show that IACOR-LS with
Lin-Yu Tseng’s Mtsls1 local search algorithm (IACOR-Mtsls1) significantly
outperforms ACOR, and it is also competitive with state-of-the-art algo-
rithms.

We also show how ACOR may be extended to mixed-variable optimiza-
tion problems. The proposed ACOMV algorithm allows to declare each vari-
able of the considered problem as continuous, ordered discrete or categorical
discrete. Based on the solution archive framework of ACOMV, a continu-
ous relaxation approach (ACOMV-o), a native mixed-variable optimization
approach (ACOMV-c), as well as ACOR are integrated to solve continuous
and mixed-variable optimization problems. An additional contribution is a
new set of artificial mixed-variable benchmark functions, which can simulate
discrete variables as ordered or categorical. After automatically tuning the
parameters of ACOMV on artificial mixed-variable benchmark functions, we
test generic ACOMV on various real-world continuous and mixed-variable
engineering optimization problems. A comparison to results from literature
proves ACOMV’s high performance, and demonstrates its effectiveness and
robustness.
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Chapter 1

Introduction

Metaheuristics are a family of optimization techniques, which have seen
increasingly rapid development and application to numerous problems in
computer science and other related fields over the past few years. One of
the more recent and actively developed metaheuristics is ant colony opti-
mization (ACO). ACO was inspired by the ants’ foraging behavior [24]. It
was originally introduced to solve discrete optimization problems [24,25,87],
in which each decision variable is characterized by a finite set of components.
Many successful implementations of the ACO metaheuristic have been ap-
plied to a number of different discrete optimization problems. These ap-
plications mainly concern NP-hard combinatorial optimization problems in-
cluding problems in routing [37], assignment [87], scheduling [86] and bioin-
formatics [14] problems and many other areas.

Although ACO was proposed for discrete optimization problems, its
adaptation to solve continuous optimization problems has taken an increas-
ing attention [10, 32, 67, 83]. This class of optimization problems requires
that each decision variable takes a real value from a given domain. Re-
cently, the ACOR algorithm has been proposed [83]. It was successfully
evaluated on some small dimensional benchmark functions [83] and was ap-
plied to the problem of training neural networks for pattern classification in
the medical field [82]. However, ACOR and other ACO based continuous al-
gorithms were not tested intensively on widely available higher dimensional
benchmark such as these of the recent special issue of the Soft Comput-
ing journal [46, 64] (Throughout the rest of the report, we will refer to this
special issue as SOCO) to compete with other state-of-the-art continuous
solvers. The set of algorithms described in SOCO consists of differential
evolution algorithms, memetic algorithms, particle swarm optimization al-
gorithms and other types of optimization algorithms [64]. In SOCO, the
differential evolution algorithm (DE) [85], the covariance matrix adaptation
evolution strategy with increasing population size (G-CMA-ES) [7], and the
real-coded CHC algorithm (CHC) [35] are used as the reference algorithms.
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It should be noted that no ACO-based algorithms are tested in SOCO.
The aforementioned discrete and continuous optimization problems cor-

respond to discrete variables and continuous variables, respectively. How-
ever, many real engineering problems are modeled using a mix of types of
decision variables. A common example is a mix of discrete variables and
continuous variables. The former usually involve ordering characteristics,
categorical characteristics or both of them. Due to the practical relevance of
such problems, many mixed-variable optimization algorithms have been pro-
posed, mainly based on Genetic Algorithms [38], Differential Evolution [85],
Particle Swarm Optimization [51] and Pattern Search [92]. However, few
ACO extensions are used to tackle mixed-variable optimization problems.

In this report, we propose an improved ACOR algorithm for the contin-
uous domain, called IACOR-LS, that is competitive with the state of the
art in continuous optimization. We first present IACOR, which is an ACOR
with an extra search diversification mechanism that consists of a growing
solution archive. Then, we hybridize IACOR with a local search procedure
in order to enhance its search intensification abilities. We experiment with
three local search procedures: Powell’s conjugate directions set [76], Powell’s
BOBYQA [77], and Lin-Yu Tseng’s Mtsls1 [93]. An automatic parameter
tuning procedure, Iterated F-race [9,13], is used for the configuration of the
investigated algorithms. The best algorithm found after tuning, IACOR-
Mtsls1, obtains results that are as good as the best of the 16 algorithms
featured in SOCO. To assess the quality of IACOR-Mtsls1 and the best
SOCO algorithms on problems not seen during their design phase, we com-
pare their performance using an extended benchmark functions suite that
includes functions from SOCO and the Special Session on Continuous Op-
timization of the IEEE 2005 Congress on Evolutionary Computation (CEC
2005). The results show that IACOR-Mtsls1 can be considered to be a
state-of-the-art continuous optimization algorithm.

Next, we present an ACOR extension for mixed-variable optimization
problems, called ACOMV. ACOMV integrates a component of a continu-
ous relaxation approach (ACOMV-o) and a component of a native mixed-
variable optimization approach (ACOMV-c), as well as ACOR and allows to
declare each variable of the mixed variable optimization problems as con-
tinuous, ordered discrete or categorical discrete. We also propose a new
set of artificial mixed-variable benchmark functions and their constructive
methods, thereby providing a flexibly controlled environment for training pa-
rameters of mixed-variable optimization algorithms and investigating their
performance. We automatically tune the parameters of ACOMV on bench-
mark functions, then compare the performance of ACOMV on four classes
of eight various mixed-variables engineering optimization problems with the
results from literature. ACOMV has efficiently found all the best-so-far so-
lution including two new best solution. ACOMV obtains a 100% success
rate in seven problems. In five of these seven problems, ACOMV reaches
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them in the smallest function evaluations. When compared to 26 other algo-
rithms, ACOMV has the best performance on mixed-variables engineering
optimization problems from the literature.

The thesis is organized as follows. Chapter 2 introduces the basic prin-
ciple of the ACO metaheuristic and the ACOR algorithm for the continu-
ous domains. In chapter 3, we propose the IACOR-LS algorithm, which is
competitive with state-of-the-art algorithms for continuous optimization. In
Chapter 4, we show how ACOR may be extended to mixed-variable optimiza-
tion problems and we propose the ACOMV algorithm. We also propose a
new set of artificial mixed-variable benchmark functions, which can simulate
discrete variables as ordered or categorical. The experimental comparison
to results from literature proves ACOMV’s high performance. In Chapter
5, we summarize some conclusions and directions for future work.





Chapter 2

Ant Colony Optimization

Ant Colony Optimization (ACO) algorithms are constructive stochastic search
procedures that make use of a pheromone model and heuristic information
on the problem being tackled in order to probabilistically construct solu-
tions. A pheromone model is a set of so-called pheromone trail parameters.
The numerical values of these pheromone trail parameters reflect the search
experience of the algorithm. They are used to bias the solution construction
over time towards the regions of the search space containing high quality
solutions. The stochastic procedure in ACO algorithms allows the ants to
explore a much larger number of solutions, meanwhile, the use of heuristic
information guides the ants towards the most promising solutions. The ants’
search experience is to influence the solution construction in future iterations
of the algorithm by a reinforcement type of learning mechanism [89].

Ant System (AS) was proposed as the first ACO algorithm for the well
known traveling salesman problem (TSP) [30]. Despite AS was not com-
petitive with state-of-the-art algorithms on the TSP, it stimulated further
research on algorithmic variants for better computational performance. Sev-
eral improved ACO algorithms [31] for NP-hard problems that have been
proposed in the literature. Ant Colony System (ACS) [29] andMAX–MIN
Ant System (MMAS) algorithm [87] are among the most successful ACO
variants in practice. For providing a unifying view to identify the most im-
portant aspects of these algorithms, Dorigo et al. [28] put them in a common
framework by defining the Ant Colony Optimization (ACO) meta-heuristic.
The outline of the ACO metaheuristic [28] is shown in Algorithm 1. After
initializing parameters and pheromone trails, the metaheuristic iterates over
three phases: at each iteration, a number of solutions are constructed by the
ants; these solutions are then improved through a local search (this step is
optional), and finally the pheromone trails are updated.

In ACO for combinatorial problems, the pheromone values are associ-
ated with a finite set of discrete values related to the decisions that the ants
make. This is not possible in the continuous and mixed continuous-discrete
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Algorithm 1 Outline of ant colony optimization metaheuristic
Set parameters, initialize pheromone trails
while termination criterion not satisfied do
ConstructAntSolution
ApplyLocalSearch /*optional*/
Update pheromones

end while

variables cases. Thus, applying the ACO metaheuristic to continuous do-
mains is not straightforward. The simplest approach would be to divide
the domain of each variable into a set of intervals. A real value is then
rounded to the closest bound of its corresponding interval in a solution
construction process. This approach has been successfully followed when
applying ACO to the protein ligand docking problem [53]. However, when
the domain of the variables is large and the required accuracy is high, this
approach is not viable [27]. Except this approach, there have been some
other attempts to apply ACO-inspired algorithms to continuous optimiza-
tion problems [33, 62, 67, 75]. The proposed methods often took inspiration
from some type of ant behaviors, but did not follow the ACO metaheuris-
tic closely. For this reason, An ACO-inspired algorithm named ACOR [83]
was proposed, which can handle continuous variables natively. ACOR is an
algorithm that conceptually directly follows the ideas underlying the ACO
metaheuristic. It is now one of the most popular ACO-based algorithms for
continuous domains.

2.1 ACOR: Ant Colony Optimization for
Continuous Domains

The fundamental idea underlying ACOR is substituting the discrete proba-
bility distributions used in ACO algorithms for combinatorial problems with
probability density functions in the solution construction phase. To do so,
the ACOR algorithm stores a set of k solutions, called solution archive, which
represents the algorithm’s “pheromone model.” The solution archive is used
to create a probability distribution of promising solutions over the search
space. Initially, the solution archive is filled with randomly generated solu-
tions. The algorithm iteratively refines the solution archive by generating
m new solutions and then keeping only the best k solutions of the k + m
solutions that are available. The k solutions in the archive are always sorted
according to their quality (from best to worst). Solutions are generated
on a coordinate-per-coordinate basis using mixtures of weighted Gaussian
functions. The core of the solution construction procedure is the estimation
of multimodal one-dimensional probability density functions (PDFs). The
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mechanism to do that in ACOR is based on a Gaussian kernel, which is
defined as a weighted sum of several Gaussian functions gij , where j is a so-
lution index and i is a coordinate index. The Gaussian kernel for coordinate
i is:

Gi(x) =
k∑
j=1

ωjg
i
j(x) =

k∑
j=1

ωj
1

σij
√

2π
e
−

(x−µi
j

)2

2σi
j

2
, (2.1)

where j ∈ {1, ..., k}, i ∈ {1, ..., D} with D being the problem dimensionality,
and ωj is a weight associated with the ranking of solution j in the archive,
rank(j). The weight is calculated using a Gaussian function:

ωj = 1
qk
√

2π
e
−(rank(j)−1)2

2q2k2 , (2.2)

where q is a parameter of the algorithm.
During the solution generation process, each coordinate is treated in-

dependently. First, an archive solution is chosen with a probability pro-
portional to its weight. Then, the algorithm samples around the selected
solution component sij using a Gaussian PDF with µij = sij , and σij equal to

σij = ξ
k∑
r=1

|sir − sij |
k − 1 , (2.3)

which is the average distance between the i-th variable of the solution sj
and the i-th variable of the other solutions in the archive, multiplied by a
parameter ξ. The solution generation process is repeated m times for each
dimension i = 1, ..., D. An outline of ACOR is given in Algorithm 2. In
ACOR, due to the specific way the pheromone is represented (i.e., as the
solution archive), it is in fact possible to take into account the correlation
between the decision variables. A non-deterministic adaptive method is pre-
sented in [83]. Each ant chooses a direction in the search space at each step
of the construction process. The direction is chosen by randomly selecting a
solution sd that is reasonably far away from the solution sj chosen earlier as
the mean of the Gaussian PDF. Then, the vector ~sjsd becomes the chosen
direction. The probability of choosing solution su at step i is the following:

p(sd|sj)i = d(sd, sj)4
i∑k

r=1 d(sr, sj)4
i

(2.4)

where the function d(., .)i returns the Euclidean distance in the (n− i+ 1)-
dimensional search sub-space 1 between two solutions of the archive T . Once
this vector is chosen, the new orthogonal basis for the ant’s coordinate sys-
tem is created using the Gram-Schmidt process [39]. Then, all the current

1At step i, only dimensions i through n are used.
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Algorithm 2 Outline of ACOR
Input: k, m, D, q, ξ, and termination criterion.
Output: The best solution found

Initialize and evaluate k solutions
// Sort solutions and store them in the archive
T = Sort(S1 · · ·Sk)
while Termination criterion is not satisfied do
// Generate m new solutions
for l = 1 to m do
// Construct solution
for i = 1 to D do
Select Gaussian gij according to weights
Sample Gaussian gij with parameters µij , σij

end for
Store and evaluate newly generated solution

end for
// Sort solutions and select the best k
T = Best(Sort(S1 · · ·Sk+m), k)

end while

coordinates of all the solutions in the archive are rotated and recalculated
according to this new orthogonal base. At the end of the solution construc-
tion process, the chosen values of the temporary variables are converted back
into the original coordinate system.

2.2 Further Investigation on ACOR

The original implementation of ACOR is in R [48] that is a language and
environment for statistical computing and graphics. For a higher execution
efficiency, we developed a C++ implementation. Figure 2.1 and 2.2 shows
the coincident performance of two different implementation and illustrates
the validity of C++ implementation. Moreover, Figure 2.1 is shown on
both non-rotated and rotated functions to demonstrate the positive effect
of variable correlation handling method in ACOR on rotated functions. The
formula of the non-rotated and rotated functions are given in Table 2.1.

When ACOR constructs a solution, a Gram-Schmidt process is used for
the new orthogonal basis of the ant’s coordinate system. Although, it helps
to handle variable correlation, the calculation of the Gram-Schmidt process
for each variable for each constructive step incurs a very high computational
demand. When the dimension of the objective function increases, the time
used by ACOR with this variable correlation handling increases rapidly. For
this reason, we also developed a C++ implementation of ACOR that does
not consider variable correlation handling part (it is referred as Sep-ACOR
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Table 2.1: The formula of the non-rotated and rotated benchmark functions
for Figure 2.1

The objective functions
ellipsoid(~x) =

∑n

i=1(100
i−1
n−1 xi)2

rotatedellipsoid(~x) =
∑n

i=1(100
i−1
n−1 zi)2

tablet(~x) = 104x1
2 +
∑n

i=2 xi
2

rotatedtablet(~x) = 104z1
2 +
∑n

i=2 zi
2

cigar(~x) = x1
2 + 104∑n

i=2 xi
2

rotatedcigar(~x) = z1
2 + 104∑n

i=2 zi
2

The definition of the variables
~z = (~x)M, ~x ∈ (−3, 7)
M is a random, normalized n-dimensional rotation matrix

throughout the rest of this thesis).
To illustrate the execution time issue of ACOR, Figure 2.3 shows the av-

erage execution time of Sep-ACOR and ACOR in dependence of the number
of dimensions of the problem after 1000 evaluations. We fitted quadratic
functions to the observed computation times. As seen from Figure 2.3, the
fitted model for Sep-ACOR can be treated as linear due to the tiny coefficient
for the quadratic term. The execution time of ACOR scales quadratically
with the dimensions of the testing problems. Taking the Rastrigin bench-
mark function for example, the execution time of ACOR that corresponds
to 40 dimensions after 1000 function evaluations is about 50 seconds. Since
the time cost of each function evaluation is similar, ACOR need about 9
hours for 1000 dimensional Rastrigin function every 1000 evaluations. We
can predict that ACOR need about 5 years for 1000 dimensional rastrigin
function after 5000*D (D=1000) evaluations, which is the termination cri-
terion for the large scale continuous optimization benchmark problems [46].
Sep-ACOR only needs about 5 seconds and 7 hours for 1000 dimensional
rastrigin function after 1000 evaluations and 5000*D (D=1000) evaluations,
respectively. With this variable correlation handling method, ACOR is dif-
ficult and infeasible to apply to higher dimensional optimization problems.
Therefore, Sep-ACOR is usually substituted for ACOR and it is extended to
apply to many large scale optimization problems.

Figures 2.4 and 2.5 show the performance of Sep-ACOR with different
parameter configurations on selected 100 dimensional benchmark functions.
We investigate the four different combinations of parameters q and k in
the ACOR algorithm (q ∈ (0.0001, 0.1), k ∈ (50, 100)), with the default
parameters m = 2 and ξ = 0.85. Although Sep-ACOR has shown a good
performance for continuous domains with certain parameter configurations,
the gap with the-state-of-art continuous solvers is still considerable, which
is shown in the following Chapter 3. The different performances caused
by different parameter configurations in Figures 2.4 and 2.5 indicate that a
automatic parameter tuning method may help to improve the performance
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of Sep-ACOR. In the following Chapter 3, an improved ACO algorithm is
presented.
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Figure 2.1: The box-plot comparison between C++ and R implementation
of ACOR on different dimensionality. ACOrC is the C++ implementation
of ACOR and ACOrR is the original R implementation. The left box plots
are shown the numbers of function evaluations when achieving the threshold
of solution quality in non-rotated functions, on the right box-plots those of
rotated functions. We set the threshold of solution quality to 1e−10. The
adopted parameter configurations of ACOR are shown in the legends.
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Figure 2.2: The box-plot comparison of C++ and R implementation of
ACOR on different dimensionality of benchmark functions. ACOrC is the
C++ implementation of ACOR and ACOrR is the original R implementa-
tion. The box plots are shown the numbers of function evaluations when
achieving the threshold of solution quality. We set the threshold of solution
quality to 1e−04 for ackley and rosenbrock functions.
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Figure 2.4: The development of the solution quality over the number of
function evaluations for Sep-ACOR with different parameter configurations.
The adopted parameter configurations for Sep-ACOR are shown in the leg-
ends.
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Figure 2.5: The box-plots show the solution quality after 1E+06 function
evaluations for Sep-ACOR with different parameter configurations.





Chapter 3

An Incremental Ant Colony
Algorithm with Local Search

As we have seen in Chapter 2, ACOR [83] and Sep-ACOR were further eval-
uated and analyzed on selected benchmark functions. The main drawbacks
are the high execution time cost for ACOR and the performance gap with
the-state-of-art continuous solvers, respectively. How to improve ACOR is
therefore an important work. Recently, Leguizamón and Coello [57] pro-
posed a variant of ACOR that performs better than the original ACOR on
six benchmark functions. However, the results obtained with Leguizamón
and Coello’s variant are far from being competitive with the results obtained
by state-of-the-art continuous optimization algorithms recently featured in
a special issue of the Soft Computing journal [64] (Throughout the rest
of this chapter, we will refer to this special issue as SOCO). The set of
algorithms described in SOCO consists of differential evolution algorithms,
memetic algorithms, particle swarm optimization algorithms and other types
of optimization algorithms [64]. In SOCO, the differential evolution algo-
rithm (DE) [85], the covariance matrix adaptation evolution strategy with
increasing population size (G-CMA-ES) [7], and the real-coded CHC algo-
rithm (CHC) [35] are used as the reference algorithms. It should be noted
that no ACO-based algorithms are featured in SOCO.

In this chapter, we propose an improved ACOR algorithm, called IACOR-
LS, that is competitive with the state of the art in continuous optimization.
We first present IACOR, which is an ACOR with an extra search diversi-
fication mechanism that consists of a growing solution archive. Then, we
hybridize IACOR with a local search procedure in order to enhance its search
intensification abilities. We experiment with three local search procedures:
Powell’s conjugate directions set [76], Powell’s BOBYQA [77], and Lin-Yu
Tseng’s Mtsls1 [93]. An automatic parameter tuning procedure, Iterated
F-race [9, 13], is used for the configuration of the investigated algorithms.
The best algorithm found after tuning, IACOR-Mtsls1, obtains results that
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are as good as the best of the 16 algorithms featured in SOCO. To assess
the quality of IACOR-Mtsls1 and the best SOCO algorithms on problems
not seen during their design phase, we compare their performance using an
extended benchmark functions suite that includes functions from SOCO and
the special session on continuous optimization of the IEEE 2005 Congress
on Evolutionary Computation (CEC 2005). The results show that IACOR-
Mtsls1 can be considered to be a state-of-the-art continuous optimization
algorithm.

3.1 The IACOR Algorithm

IACOR is an ACOR algorithm with a solution archive whose size increases
over time. This modification is based on the incremental social learning
framework [70, 72]. A parameter Growth controls the rate at which the
archive grows. Fast growth rates encourage search diversification while slow
ones encourage intensification [70]. In IACOR the optimization process be-
gins with a small archive, a parameter InitArchiveSize defines its size. A new
solution is added to it every Growth iterations until a maximum archive size,
denoted by MaxArchiveSize, is reached. Each time a new solution is added,
it is initialized using information from the best solution in the archive. First,
a new solution Snew is generated completely at random. Then, it is moved
toward the best solution in the archive Sbest using

S′new = Snew + rand(0, 1)(Sbest − Snew) , (3.1)

where rand(0, 1) is a random number in the range [0, 1).
IACOR also features a mechanism different from the one used in the

original ACOR for selecting the solution that guides the generation of new
solutions. The new procedure depends on a parameter p ∈ [0, 1], which
controls the probability of using only the best solution in the archive as a
guiding solution. With a probability 1 − p, all the solutions in the archive
are used to generate new solutions. Once a guiding solution is selected,
and a new one is generated (in exactly the same way as in ACOR), they
are compared. If the newly generated solution is better than the guiding
solution, it replaces it in the archive. This replacement strategy is different
from the one used in ACOR in which all the solutions in the archive and all
the newly generated ones compete.

We include an algorithm-level diversification mechanism for fighting stag-
nation. The mechanism consists in restarting the algorithm and initializing
the new initial archive with the best-so-far solution. The restart criterion is
the number of consecutive iterations, MaxStagIter, with a relative solution
improvement lower than a certain threshold.



3.2 IACOR with Local Search 17

3.2 IACOR with Local Search
The IACOR-LS algorithm is a hybridization of IACOR with a local search
procedure. IACOR provides the exploration needed to locate promising solu-
tions and the local search procedure enables a fast convergence toward good
solutions. In our experiments, we considered Powell’s conjugate directions
set [76], Powell’s BOBYQA [77] and Lin-Yu Tseng’s Mtsls1 [93] methods
as local search procedures. We used the NLopt library [49] implementation
of the first two methods and implemented Mtsls1 following the pseudocode
found in [93].

In IACOR-LS, the local search procedure is called using the best solution
in the archive as initial point. The local search methods terminate after
a maximum number of iterations, MaxITER, have been reached, or when
the tolerance, that is the relative change between solutions found in two
consecutive iterations, is lower than a parameter FTOL. Like [71], we use
an adaptive step size for the local search procedures. This is achieved as
follows: a solution in the archive, different from the best solution, is chosen
at random. The maximum norm (|| · ||∞) of the vector that separates this
random solution from the best solution is used as the local search step size.
Hence, step sizes tend to decrease over time due to the convergence tendency
of the solutions in the archive. This phenomenon in turn makes the search
focus around the best-so-far solution.

For fighting stagnation at the level of the local search, we call the local
search procedure from different solutions from time to time. A parameter,
MaxFailures, determines the maximum number of repeated calls to the lo-
cal search method from the same initial solution that does not result in a
solution improvement. We maintain a failures counter for each solution in
the archive. When a solution’s failures counter is greater than or equal to
MaxFailures, the local search procedure is not called again from this solu-
tion. Instead, the local search procedure is called from a random solution
whose failures counter is less than MaxFailures.

Finally, we use a simple mechanism to enforce boundary constraints
in IACOR-LS. We use the following penalty function in Powell’s conjugate
directions method as well as in Mtsls1:

P (x) = fes ·
D∑
i=1

Bound(xi) , (3.2)

where Bound(xi) is defined as

Bound(xi) =


0, if xmin ≤ xi ≤ xmax

(xmin − xi)2, if xi < xmin

(xmax − xi)2, if xi > xmax

(3.3)

where xmin and xmax are the minimum and maximum limits of the search
range, respectively, and fes is the number of function evaluations that



18 An Incremental Ant Colony Algorithm with Local Search

have been used so far. BOBYQA has its own mechanism for dealing with
bound constraints. IACOR-LS is shown in Algorithm 3. The C++ imple-
mentation of IACOR-LS is available in http://iridia.ulb.ac.be/supp/
IridiaSupp2011-008/.

3.3 Experimental Study

Our study is carried out in two stages. First, we evaluate the performance of
ACOR, IACOR-BOBYQA, IACOR-Powell and IACOR-Mtsls1 by comparing
their performance with that of the 16 algorithms featured in SOCO. For this
purpose, we use the same 19 benchmark functions suite (functions labeled
as fsoco∗). Second, we include 211 of the benchmark functions proposed for
the special session on continuous optimization organized for the IEEE 2005
Congress on Evolutionary Computation (CEC 2005) [88] (functions labeled
as fcec∗).

In the first stage of the study, we used the 50- and 100-dimensional
versions of the 19 SOCO functions. Functions fsoco1–fsoco6 were originally
proposed for the special session on large scale global optimization organized
for the IEEE 2008 Congress on Evolutionary Computation (CEC 2008) [90].
Functions fsoco7-fsoco11 were proposed at the ISDA 2009 Conference. Func-
tions fsoco12-fsoco19 are hybrid functions that combine two functions belong-
ing to fsoco1–fsoco11. The detailed description of these functions is available
in [46,64]. In the second stage of our study, the 19 SOCO and 21 CEC 2005
functions on 50 dimensions were considered together. Some properties of
the benchmark functions are listed in Table 3.1. The detailed description is
available in [46,88].

We applied the termination conditions used for SOCO and CEC 2005
were used, that is, the maximum number of function evaluations was 5000×
D for the SOCO functions, and 10000×D for the CEC 2005 functions. All
the investigated algorithms were run 25 times on each function. We report
error values defined as f(x)−f(x∗), where x is a candidate solution and x∗

is the optimal solution. Error values lower than 10−14 (this value is referred
to as 0-threshold) are approximated to 0. Our analysis is based on either the
whole solution quality distribution, or on the median and average errors.

3.3.1 Parameter Settings

We used Iterated F-race [9, 13] to automatically tune algorithm parame-
ters. The 10-dimensional versions of the 19 SOCO functions were randomly
sampled as training instances. A maximum of 50,000 algorithm runs were
used as tuning budget for ACOR, IACOR-BOBYQA, IACOR-Powell and

1From the original 25 functions, we decided to omit fcec1, fcec2, fcec6, and fcec9 because
they are the same as fsoco1, fsoco3, fsoco4, fsoco8.

http://iridia.ulb.ac.be/supp/IridiaSupp2011-008/
http://iridia.ulb.ac.be/supp/IridiaSupp2011-008/
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Algorithm 3 Outline of IACOR-LS
Input: : ξ, p, InitArchiveSize, Growth, MaxArchiveSize, FTOL, MaxITER, MaxFailures,

MaxStagIter, D and termination criterion.
Output: The best solution found
k = InitArchiveSize
Initialize and evaluate k solutions
while Termination criterion not satisfied do

// Local search
if FailedAttemptsbest < MaxFailures then

Invoke local search from Sbest with parameters FTOL and MaxITER
else

if FailedAttemptsrandom < MaxFailures then
Invoke local search from Srandom with parameters FTOL and MaxITER

end if
end if
if No solution improvement then

FailedAttemptsbest||random + +
end if

// Generate new solutions
if rand(0,1)<p then

for i = 1 to D do
Select Gaussian gibest
Sample Gaussian gibest with parameters µibest, σ

i
best

end for
if Newly generated solution is better than Sbest then

Substitute newly generated solution for Sbest
end if

else
for j = 1 to k do

for i = 1 to D do
Select Gaussian gij
Sample Gaussian gij with parameters µij , σij

end for
if Newly generated solution is better than Sj then

Substitute newly generated solution for Sj
end if

end for
end if

// Archive Growth
if current iterations are multiple of Growth & k < MaxArchiveSize then

Initialize new solution using Eq.3.1
Add new solution to the archive
k + +

end if
// Restart Mechanism
if # of iterations without improving Sbest = MaxStagIter then

Re-initialize T but keeping Sbest
end if

end while
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Table 3.1: Benchmark functions
ID Name/Description Range Uni/Multi Sepa- Rotat-

[Xmin, Xmax]D modal rable ed
fsoco1 Shift.Sphere [-100,100]D U Y N
fsoco2 Shift.Schwefel 2.21 [-100,100]D U N N
fsoco3 Shift.Rosenbrock [-100,100]D M N N
fsoco4 Shift.Rastrigin [-5,5]D M Y N
fsoco5 Shift.Griewank [-600,600]D M N N
fsoco6 Shift.Ackley [-32,32]D M Y N
fsoco7 Shift.Schwefel 2.22 [-10,10]D U Y N
fsoco8 Shift.Schwefel 1.2 [-65.536,65.536]D U N N
fsoco9 Shift.Extended f10 [-100,100]D U N N
fsoco10 Shift.Bohachevsky [-15,15]D U N N
fsoco11 Shift.Schaffer [-100,100]D U N N
fsoco12 fsoco9 ⊕0.25 fsoco1 [-100,100]D M N N
fsoco13 fsoco9 ⊕0.25 fsoco3 [-100,100]D M N N
fsoco14 fsoco9 ⊕0.25 fsoco4 [-5,5]D M N N
fsoco15 fsoco10 ⊕0.25 fsoco7 [-10,10]D M N N
fsoco16 fsoco9 ⊕0.5 fsoco1 [-100,100]D M N N
fsoco17 fsoco9 ⊕0.75 fsoco3 [-100,100]D M N N
fsoco18 fsoco9 ⊕0.75 fsoco4 [-5,5]D M N N
fsoco19 fsoco10 ⊕0.75 fsoco7 [-10,10]D M N N
fcec3 Shift.Ro.Elliptic [-100,100]D U N Y
fcec4 Shift.Schwefel 1.2 Noise [-100,100]D U N N
fcec5 Schwefel 2.6 Opt on Bound [-100,100]D U N N
fcec7 Shift.Ro.Griewank No Bound [0,600]D† M N Y
fcec8 Shift.Ro.Ackley Opt on Bound [-32,32]D M N Y
fcec10 Shift.Ro.Rastrigin [-5,5]D M N Y
fcec11 Shift.Ro.Weierstrass [-0.5,0.5]D M N Y
fcec12 Schwefel 2.13 [-π,π]D M N N
fcec13 Griewank plus Rosenbrock [-3,1]D M N N
fcec14 Shift.Ro.Exp.Scaffer [-100,100]D M N Y
fcec15 Hybrid Composition [-5,5]D M N N
fcec16 Ro. Hybrid Composition [-5,5]D M N Y
fcec17 Ro. Hybrid Composition [-5,5]D M N Y
fcec18 Ro. Hybrid Composition [-5,5]D M N Y
fcec19 Ro. Hybrid Composition [-5,5]D M N Y
fcec20 Ro. Hybrid Composition [-5,5]D M N Y
fcec21 Ro. Hybrid Composition [-5,5]D M N Y
fcec22 Ro. Hybrid Composition [-5,5]D M N Y
fcec23 Ro. Hybrid Composition [-5,5]D M N Y
fcec24 Ro. Hybrid Composition [-5,5]D M N Y
fcec25 Ro. Hybrid Composition [2,5]D† M N Y
† denotes initialization range instead of bound constraints.

IACOR-Mtsls1. The number of function evaluations used in each run is
equal to 50,000. The best set of parameters, for each algorithm found with
this process is given in Table 3.2. The only parameter that we set manually
was MaxArchiveSize, which we set to 1,000.
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Table 3.2: Best parameter settings found through iterated F-Race for
ACOR, IACOR-BOBYQA, IACOR-Powell and IACOR-Mtsls1. The param-
eter FTOL is first transformed as 10FTOL before using it in the algorithms.

ACOR
q ξ m k

0.04544 0.8259 10 85

IACOR-BOBYQA p ξ InitArchiveSize Growth FTOL MaxITER MaxFailures MaxStagIter
0.6979 0.8643 4 1 -3.13 240 5 20

IACOR-Powell
p ξ InitArchiveSize Growth FTOL MaxITER MaxFailures MaxStagIter

0.3586 0.9040 1 7 -1 20 6 8

IACOR-Mtsls1 p ξ InitArchiveSize Growth MaxITER MaxFailures MaxStagIter
0.6475 0.7310 14 1 85 4 13

3.3.2 Experimental Results and Comparison

Figure 3.1 shows the distribution of median and average errors across the
19 SOCO benchmark functions obtained with ACOR, IACOR-BOBYQA,
IACOR-Powell, IACOR-Mtsls1 and the 16 algorithms featured in SOCO.2
We marked with a + symbol those cases in which there is a statistically
significant difference at the 0.05 α-level with a Wilcoxon test with respect
to IACOR-Mtsls1 (in favor of IACOR-Mtsls1). Also at the top of each plot,
a count of the number of optima found by each algorithm (or an objective
function value lower than 10−14) is given.

In all cases, IACOR-Mtsls1 significantly outperforms ACOR, and is in
general more effective than IACOR-BOBYQA, and IACOR-Powell. IACOR-
Mtsls1 is also competitive with the best algorithms in SOCO. If we consider
medians only, IACOR-Mtsls1 significantly outperforms G-CMA-ES, CHC,
DE, EVoPROpt, VXQR1, EM323, and RPSO-vm in both 50 and 100 di-
mensions. In 100 dimensions, IACOR-Mtsls1 also significantly outperforms
MA-SSW and GODE. Moreover, the median error of IACOR-Mtsls1 is be-
low the 0-threshold 14 times out of the 19 possible of the SOCO benchmark
functions suite. Only MOS-DE matches such a performance.

If one considers mean values, the performance of IACOR-Mtsls1 de-
grades slightly. This is an indication that IACOR-Mtsls1 still stagnates
with some low probability. However, IACOR-Mtsls1 still outperforms G-
CMA-ES, CHC, GODE, EVoPROpt, RPSO-vm, and EM323. Even though
IACOR-Mtsls1 does not significantly outperform DE and other algorithms,
its performance is very competitive. The mean error of IACOR-Mtsls1 is be-
low the 0-threshold 13 and 11 times in problems of 50 and 100 dimensions,
respectively.

We note that although G-CMA-ES has difficulties in dealing with mul-
timodal or unimodal shifted separable functions, such as fsoco4 , fsoco6 and
fsoco7, G-CMA-ES showed impressive results on function fsoco8, which is a
hyperellipsoid rotated in all directions. None of the other investigated al-

2For information about these 16 algorithms please go to
http://sci2s.ugr.es/eamhco/CFP.php
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gorithms can find the optimum of this function except G-CMA-ES. This
result is interesting considering that G-CMA-ES showed an impressive per-
formance in the CEC 2005 special session on continuous optimization. This
fact suggests that releasing details about the problems that will be used
to compare algorithms induces an undesired “overfitting” effect. In other
words, authors may use the released problems to design algorithms that
perform well on them but that may perform poorly on another unknown
set of problems. This motivated us to carry out the second stage of our
study, which consists in carrying out a more comprehensive comparison
that includes G-CMA-ES and some of the best algorithms in SOCO. For
this comparison, we use 40 benchmark functions as discussed above. From
SOCO, we include in our study IPSO-Powell given its good performance as
shown in Figure 3.1. To discard the possibility that the local search pro-
cedure is the main responsible for the obtained results, we also use Mtsls1
with IPSO, thus generating IPSO-Mtsls1. In this second stage, IPSO-Powell
and IPSO-Mtsls1 were tuned as described in Section 3.3.1.

Table 3.4 shows the median and average errors obtained by the compared
algorithm on each of the 40 benchmark functions. Two facts can be noticed
from these results. First, Mtsls1 seems to be indeed responsible for most
of the good performance of the algorithms that use it as a local search
procedure. Regarding median results, the SOCO functions for which IPSO-
Mtsls1 finds the optimum, IACOR-Mtsls1 does it as well. However, IACOR-
Mtsls1 seems to be more robust given the fact that it finds more optima than
IPSO-Mtsls1 if functions from the CEC 2005 special session or mean values
are considered. Second, G-CMA-ES finds more best results on the CEC
2005 functions than on the SOCO functions. Overall, however, IACOR-
Mtsls1 finds more best results than any of the compared algorithms.

Figure 3.2 shows correlation plots that illustrate the relative performance
between IACOR-Mtsls1 and G-CMA-ES, IPSO-Powell and IPSO-Mtsls1.
On the x-axis, the coordinates are the results obtained with IACOR-Mtsls1;
on the y-axis, the coordinates are the results obtained with the other algo-
rithms for each of the 40 functions. Thus, points that appear on the left
part of the correlation plot correspond to functions for which IACOR-Mtsls1
has better results than the other algorithm.

Table 3.3 shows a detailed comparison presented in form of (win, draw,
lose) according to different properties of the 40 functions used. The two-
sided p-values of Wilcoxon matched-pairs signed-ranks test of IACOR-Mtsls1
with other algorithms across 40 functions are also presented. In general,
IACOR-Mtsls1 performs better more often than all the other compared al-
gorithms. IACOR-Mtsls1 wins more often against G-CMA-ES; however, G-
CMA-ES performs clearly better than IACOR-Mtsls1 on rotated functions,
which can be explained by the covariance matrix adaptation mechanism [42].
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3.4 Conclusions
In this chapter, we have introduced IACOR-LS, an ACOR algorithm with
growing solution archive hybridized with a local search procedure. Three
different local search procedures, Powell’s conjugate directions set, Powell’s
BOBYQA, and Mtsls1, were tested with IACOR-LS. Through automatic
tuning across 19 functions, IACOR-Mtsls1 proved to be superior to the other
two variants.

The results of a comprehensive experimental comparison with 16 algo-
rithms featured in a recent special issue of the Soft Computing journal show
that IACOR-Mtsls1 significantly outperforms the original ACOR and that
IACOR-Mtsls1 is competitive with the state of the art. We also conducted
a second comparison that included 21 extra functions from the special ses-
sion on continuous optimization of the IEEE 2005 Congress on Evolution-
ary Computation. From this additional comparison we can conclude that
IACOR-Mtsls1 remains very competitive. It mainly shows slightly worse
results than G-CMA-ES on functions that are rotated w.r.t. the usual coor-
dinate system. In fact, this is maybe not surprising as G-CMA-ES is the only
algorithm of the 20 compared ones that performs very well on these rotated
functions. In further work we may test ACOR in the version that includes
the mechanism for adjusting for rotated functions [83] to check whether
these potential improvements transfer to IACOR-Mtsls1. Nevertheless, the
very good performance of IACOR-Mtsls1 on most of the Soft Computing
benchmark functions is a clear indication of the high potential hybrid ACO
algorithms have for this problem domain. In fact, IACOR-Mtsls1 is clearly
competitive with state-of-the-art continuous optimizers.



24 An Incremental Ant Colony Algorithm with Local Search

DE

CHC

G−CMA−ES

SOUPDE

DE−D40−Mm

GODE

GaDE

jDElscop

SaDE−MMTS

MOS−DE

MA−SSW

RPSO−vm

IPSO−Powell

EvoPROpt

EM323

VXQR1

ACOr

IACOr−Bobyqa

IACOr−Powell

IACOr−Mtsls1

1
e
−

1
4

1
e
−

0
9

1
e
−

0
4

1
e
+

0
1

1
e
+

0
6

+
+

+
+

+
+

+
+

+
O

p
ti
m

a
6

0
4

9
1
2

7
1
0

1
2

1
2

1
4

1
1

5
9

4
5

6
3

5
6

1
4

Median Errors of Fitness Value

DE

CHC

G−CMA−ES

SOUPDE

DE−D40−Mm

GODE

GaDE

jDElscop

SaDE−MMTS

MOS−DE

MA−SSW

RPSO−vm

IPSO−Powell

EvoPROpt

EM323

VXQR1

ACOr

IACOr−Bobyqa

IACOr−Powell

IACOr−Mtsls1

1
e
−

1
4

1
e
−

0
9

1
e
−

0
4

1
e
+

0
1

1
e
+

0
6

+
+

+
+

+
+

+
+

O
p
ti
m

a
6

0
2

8
9

6
9

1
2

1
2

1
4

9
4

5
0

5
6

2
5

6
1
3

Average Errors of Fitness Value

(a
)
50

di
m
en

sio
ns

(b
)
50

di
m
en

sio
ns

DE

CHC

G−CMA−ES

SOUPDE

DE−D40−Mm

GODE

GaDE

jDElscop

SaDE−MMTS

MOS−DE

MA−SSW

RPSO−vm

IPSO−Powell

EvoPROpt

EM323

VXQR1

ACOr

IACOr−Bobyqa

IACOr−Powell

IACOr−Mtsls1

1
e
−

1
4

1
e
−

0
9

1
e
−

0
4

1
e
+

0
1

1
e
+

0
6

+
+

+
+

+
+

+
+

+
+

+
O

p
ti
m

a
6

0
3

9
1
1

6
1
1

1
2

1
2

1
4

1
0

5
8

3
6

6
3

5
6

1
4

Median Errors of Fitness Value

DE

CHC

G−CMA−ES

SOUPDE

DE−D40−Mm

GODE

GaDE

jDElscop

SaDE−MMTS

MOS−DE

MA−SSW

RPSO−vm

IPSO−Powell

EvoPROpt

EM323

VXQR1

ACOr

IACOr−Bobyqa

IACOr−Powell

IACOr−Mtsls1

1
e
−

1
4

1
e
−

0
9

1
e
−

0
4

1
e
+

0
1

1
e
+

0
6

+
+

+
+

+
+

+
+

+
O

p
ti
m

a
6

0
2

8
9

6
9

1
0

1
2

1
3

8
4

5
0

4
5

2
5

6
1
1

Average Errors of Fitness Value
(c
)
10

0
di
m
en

sio
ns

(d
)
10

0
di
m
en

sio
ns

Figure 3.1: The box-plots show the distribution of the median (left) and average
(right) errors obtained on the 19 SOCO benchmark functions of 50 (top) and 100
(bottom) dimensions. The results obtained with the three reference algorithms
in SOCO are shown on the left part of each plot. The results of 13 algorithms
published in SOCO are shown in the middle part of each plot. The results obtained
with ACOR, IACOR-BOBYQA, IACOR-Powell, and IACOR-Mtsls1 are shown on
the right part of each plot. The line at the bottom of each plot represents the 0-
threshold (10−14). A + symbol on top of a box-plot denotes a statistically significant
difference at the 0.05 α-level detected with a Wilcoxon test between the results
obtained with the indicated algorithm and those obtained with IACOR-Mtsls1.
The absence of a symbol means that the difference is not significant with IACOR-
Mtsls1. The numbers on top of a box-plot denotes the number of optima found by
the corresponding algorithm.
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Figure 3.2: The correlation plot between IACOR-Mtsls1 and G-CMA-ES,
IPSO-Powell and IPSO-Mtsls1 over 40 functions. Each point represents a
function. The points on the left part of correlation plot illustrate that on
those represented functions, IACOR-Mtsls1 obtains better results than the
other algorithm.
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Table 3.3: The comparison is conducted based on median and average errors
of objective value and the results of IACOR-Mtsls1 are presented in form
of (win, draw, lose), respectively. The tested 40 functions were divided
into different properties for details. The two-sided p-values of Wilcoxon
matched-pairs signed-rank test of IACOR-Mtsls1 at a 0.05 α-level with other
algorithms are also presented

Median Errors

Properties IACOR-Mtsls1 IACOR-Mtsls1 IACOR-Mtsls1
of vs vs vs

Functions G-CMA-ES IPSO-Powell IPSO-Mtsls1
Separable (3, 1, 0) (0, 4, 0) (0, 4, 0)

Non-Separable (18, 2, 16) (22, 7, 7) (16, 13, 7)
Non-Separable (7, 2, 8) (6, 6, 5) (6, 6, 5)(Non-Hybrid)
Non-Separable (11, 0, 8) (16, 1, 2) (10, 7, 2)(Hybrid)

Unimodal (6, 1, 3) (1, 5, 4) (1, 5, 4)
Multimodal (15, 2, 13) (21, 6, 3) (15, 12, 3)
Non-rotated (16, 2, 6) (10, 8, 6) (10, 8, 6)
Rotated (5, 1, 10) (12, 3, 1) (12, 3, 1)
SOCO (15, 2, 2 ) (6, 8, 5) (1, 14, 4)

CEC 2005 (6, 1, 14) (16, 3, 2) (15, 3, 3)
In total (21, 3, 16) (22, 11, 7) (16, 17, 7)
p-value 8.33E−01 6.03E−03 1.32E−02

Average Errors

Properties IACOR-Mtsls1 IACOR-Mtsls1 IACOR-Mtsls1
of vs vs vs

Functions G-CMA-ES IPSO-Powell IPSO-Mtsls1
Separable (3, 1, 0) (1, 3, 0) (1, 3, 0)

Non-Separable (21, 0, 15) (26, 3, 7) (23, 6, 7)
Non-Separable (10, 0, 7) (9, 3, 5) (8, 4, 5)(Non-Hybrid)
Non-Separable (11, 0, 8) (17, 0, 2) (15, 2, 2)(Hybrid)

Unimodal (6, 1, 3) (4, 2, 4) (2, 4, 4)
Multimodal (18, 0, 12) (23, 4, 3) (22, 5, 3)
Non-rotated (20, 1, 3) (13, 5, 6) (11, 7, 6)
Rotated (4, 0, 12) (14, 1, 1) (13, 2, 1)
SOCO (16, 1, 2 ) (10, 4, 5) (8, 7, 4)

CEC 2005 (8, 0, 13) (17, 2, 2) (16, 2, 3)
In total (24, 1, 15) (27, 6, 7) (24, 9, 7)
p-value 4.22E−01 1.86E−03 1.66E−03
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Table 3.4: The median and average errors of objective function values ob-
tained with G-CMA-ES, IPSO-Powell, IPSO-Mtsls1, and IACOR-Mtsls1 on
40 functions with D = 50. The lowest values were highlighted in boldface.
The values below 10−14 are approximated to 0. The results of fcec1, fcec2,
fcec6, fcec9 are not presented to avoid repeated test on the similar functions
such as fsoco1, fsoco3, fsoco4, fsoco8. At the bottom of the table, we report
the number of times an algorithm found the lowest error.

Median errors Mean errors
FunctionG-CMA-ESIPSO-PowellIPSO-Mtsls1IACOR-Mtsls1FunctionG-CMA-ESIPSO-PowellIPSO-Mtsls1IACOR-Mtsls1
fsoco1 0.00E+00 0.00E+00 0.00E+00 0.00E+00 fsoco1 0.00E+00 0.00E+00 0.00E+00 0.00E+00
fsoco2 2.64E−11 1.42E−14 4.12E−13 4.41E−13 fsoco2 2.75E−11 2.56E−14 4.80E−13 5.50E−13
fsoco3 0.00E+00 0.00E+00 6.38E+00 4.83E+01 fsoco3 7.97E−01 0.00E+00 7.29E+01 8.17E+01
fsoco4 1.08E+02 0.00E+00 0.00E+00 0.00E+00 fsoco4 1.05E+02 0.00E+00 1.31E+00 0.00E+00
fsoco5 0.00E+00 0.00E+00 0.00E+00 0.00E+00 fsoco5 2.96E−04 6.72E−03 5.92E−04 0.00E+00
fsoco6 2.11E+01 0.00E+00 0.00E+00 0.00E+00 fsoco6 2.09E+01 0.00E+00 0.00E+00 0.00E+00
fsoco7 7.67E−11 0.00E+00 0.00E+00 0.00E+00 fsoco7 1.01E−10 4.98E−12 0.00E+00 0.00E+00
fsoco8 0.00E+00 1.75E−09 2.80E−10 2.66E−05 fsoco8 0.00E+00 4.78E−09 4.29E−10 2.94E−05
fsoco9 1.61E+01 0.00E+00 0.00E+00 0.00E+00 fsoco9 1.66E+01 4.95E−06 0.00E+00 0.00E+00
fsoco10 6.71E+00 0.00E+00 0.00E+00 0.00E+00 fsoco10 6.81E+00 0.00E+00 0.00E+00 0.00E+00
fsoco11 2.83E+01 0.00E+00 0.00E+00 0.00E+00 fsoco11 3.01E+01 8.19E−02 7.74E−02 0.00E+00
fsoco12 1.87E+02 1.02E−12 0.00E+00 0.00E+00 fsoco12 1.88E+02 1.17E−11 7.27E−03 0.00E+00
fsoco13 1.97E+02 2.00E−10 5.39E−01 6.79E−01 fsoco13 1.97E+02 2.65E−10 2.75E+00 3.03E+00
fsoco14 1.05E+02 1.77E−12 0.00E+00 0.00E+00 fsoco14 1.09E+02 1.18E+00 5.26E−01 3.04E−01
fsoco15 8.12E−04 1.07E−11 0.00E+00 0.00E+00 fsoco15 9.79E−04 2.62E−11 0.00E+00 0.00E+00
fsoco16 4.22E+02 3.08E−12 0.00E+00 0.00E+00 fsoco16 4.27E+02 2.80E+00 2.46E+00 0.00E+00
fsoco17 6.71E+02 4.35E−08 1.47E+01 6.50E+00 fsoco17 6.89E+02 3.10E+00 7.27E+01 6.19E+01
fsoco18 1.27E+02 8.06E−12 0.00E+00 0.00E+00 fsoco18 1.31E+02 1.24E+00 1.68E+00 0.00E+00
fsoco19 4.03E+00 1.83E−12 0.00E+00 0.00E+00 fsoco19 4.76E+00 1.19E−11 0.00E+00 0.00E+00
fcec3 0.00E+00 8.72E+03 1.59E+04 8.40E+05 fcec3 0.00E+00 1.24E+04 1.62E+04 9.66E+05
fcec4 4.27E+05 2.45E+02 3.88E+03 5.93E+01 fcec4 4.68E+05 2.90E+02 4.13E+03 7.32E+01
fcec5 5.70E−01 4.87E−07 7.28E−11 9.44E+00 fcec5 2.85E+00 4.92E−06 2.32E−10 9.98E+00
fcec7 3.85E−14 0.00E+00 0.00E+00 0.00E+00 fcec7 5.32E−14 0.00E+00 0.00E+00 0.00E+00
fcec8 2.00E+01 2.00E+01 2.00E+01 2.00E+01 fcec8 2.01E+01 2.00E+01 2.00E+01 2.00E+01
fcec10 9.97E−01 8.96E+02 8.92E+02 2.69E+02 fcec10 1.72E+00 9.13E+02 8.76E+02 2.75E+02
fcec11 1.21E+00 6.90E+01 6.64E+01 5.97E+01 fcec11 1.17E+01 6.82E+01 6.63E+01 5.90E+01
fcec12 2.36E+03 5.19E+04 3.68E+04 1.37E+04 fcec12 2.27E+05 5.68E+04 5.86E+04 1.98E+04
fcec13 4.71E+00 3.02E+00 3.24E+00 2.14E+00 fcec13 4.59E+00 3.18E+00 3.32E+00 2.13E+00
fcec14 2.30E+01 2.35E+01 2.36E+01 2.33E+01 fcec14 2.29E+01 2.34E+01 2.35E+01 2.31E+01
fcec15 2.00E+02 2.00E+02 2.00E+02 0.00E+00 fcec15 2.04E+02 1.82E+02 2.06E+02 9.20E+01
fcec16 2.15E+01 4.97E+02 4.10E+02 3.00E+02 fcec16 3.09E+01 5.22E+02 4.80E+02 3.06E+02
fcec17 1.61E+02 4.54E+02 4.11E+02 4.37E+02 fcec17 2.34E+02 4.46E+02 4.17E+02 4.43E+02
fcec18 9.13E+02 1.22E+03 1.21E+03 9.84E+02 fcec18 9.13E+02 1.18E+03 1.19E+03 9.99E+02
fcec19 9.12E+02 1.23E+03 1.19E+03 9.93E+02 fcec19 9.12E+02 1.22E+03 1.18E+03 1.01E+03
fcec20 9.12E+02 1.22E+03 1.19E+03 9.93E+02 fcec20 9.12E+02 1.20E+03 1.18E+03 9.89E+02
fcec21 1.00E+03 1.19E+03 1.03E+03 5.00E+02 fcec21 1.00E+03 9.86E+02 8.59E+02 5.53E+02
fcec22 8.03E+02 1.43E+03 1.45E+03 1.13E+03 fcec22 8.05E+02 1.45E+03 1.47E+03 1.14E+03
fcec23 1.01E+03 5.39E+02 5.39E+02 5.39E+02 fcec23 1.01E+03 7.66E+02 6.13E+02 5.67E+02
fcec24 9.86E+02 1.31E+03 1.30E+03 1.11E+03 fcec24 9.55E+02 1.29E+03 1.30E+03 1.10E+03
fcec25 2.15E+02 1.50E+03 1.59E+03 9.38E+02 fcec25 2.15E+02 1.18E+03 1.50E+03 8.89E+02

# of best 18 15 18 21 # of best 14 10 10 22





Chapter 4

Ant Colony Optimization for
Mixed Variable Problems

Recently, many real world problems are modeled using a mixed types of de-
cision variables. A common example is a mixture of discrete variables and
continuous variables. The former usually involve ordering characteristics,
categorical characteristic or both of them. Due to the practical relevance of
such problems, many mixed-variable optimization algorithms have been pro-
posed, mainly based on Genetic Algorithms [38], Differential Evolution [85],
Particle Swarm Optimization [51] and Pattern Search [92]. In many cases,
the discrete variables are tackled as ordered through a continuous relaxation
approach [23,40,55,56,79,94] based on continuous optimization algorithms.
In many other cases, the discrete variables are tackled as categorical through
a native mixed-variable optimization approach [6, 22, 74] that simultaneous
and directly handles both discrete and continuous variables without relax-
ation. However, It is mentioned that the available approaches are indiffer-
ent with either categorical or ordering characteristics of discrete variables.
Therefore, there is lack of a generic algorithm which allows to declare each
variable of the considered problem as continuous, ordered discrete or cate-
gorical discrete.

While ant colony optimization (ACO) was originally introduced to solve
discrete optimization problems [24, 25, 87], its adaptation to solve continu-
ous optimization problems enjoys an increasing attention [10,32,67] as also
discussed in the previous chapter. However, few ACO extensions are applied
to mixed-variable optimization problems.

In this chapter, we present ACOMV, an ACOR extension for mixed-
variable optimization problems. ACOMV integrates a component of a
continuous relaxation approach (ACOMV-o) and a component of a native
mixed-variable optimization approach (ACOMV-c), as well as ACOR and al-
lows to declare each variable of the mixed variable optimization problems as
continuous, ordered discrete or categorical discrete. We also propose a new
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set of artificial mixed-variable benchmark functions and their constructive
methods, thereby providing a flexibly controlled environment for investigat-
ing the performance and training parameters of mixed-variable optimization
algorithms. We automatically tune the parameters of ACOMV by the it-
erated F-race method [9, 13]. Then, we not only evaluate the performance
of ACOMV on benchmark functions, but also compare the performance of
ACOMV on 4 classes of 8 mixed-variables engineering optimization prob-
lems with the results from literature. ACOMV has efficiently found all the
best-so-far solution including two new best solution. ACOMV obtains 100%
success rate in 7 problems. In 5 of those 7 problems, ACOMV requires the
smallest number of function evaluations. To sum up, ACOMV has the best
performance on mixed-variables engineering optimization problems from the
literature.

4.1 Mixed-variable Optimization Problems

A model for a mixed-variable optimization problem (MVOP) may be for-
mally defined as follows:

Definition A model R = (S,Ω, f) of a MVOP consists of

• a search space S defined over a finite set of both discrete and continuous
decision variables and a set Ω of constraints among the variables;

• an objective function f : S→ R+
0 to be minimized.

The search space S is defined as follows: Given is a set of n = d + r
variables Xi, i = 1, . . . , n, of which d are discrete with values
vji ∈ Di = {v1

i , . . . , v
|Di|
i }, and r are continuous with possible values

vi ∈ Di ⊆ R. Specifically, the discrete search space is expanded to be defined
as a set of d = o+ c variables, of which o are ordered and c are categorical
discrete variables, respectively. A solution s ∈ S is a complete assignment in
which each decision variable has a value assigned. A solution that satisfies
all constraints in the set Ω is a feasible solution of the given MVOP. If the
set Ω is empty, R is called an unconstrained problem model, otherwise it
is said to be constrained. A solution s∗ ⊆ S is called a global optimum if
and only if: f(s∗) ≤ f(s) ∀s∈S. The set of all globally optimal solutions
is denoted by S∗ ⊆ S. Solving a MVOP requires finding at least one s∗ ⊆ S∗.

The methods proposed in the literature to tackle MVOPs may be divided
into three groups.

The first group is based on a two-partition approach, in which the mixed
variables are decomposed into two partitions, one involving the continuous
variables and the other involving the discrete variables. Variables of one
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partition are optimized separately for fixed values of the variable of the
other partition [78]. The approach usually leads to a large number of ob-
jective function evaluations [84] and the dependency of variables may lead
to a sub-optimal solution. More promising are the other two groups. The
second group is a continuous relaxation approach. Discrete variables are
relaxed to continuous variables, but are repaired when evaluating the ob-
jective function. The repair mechanism is used to return a discrete variable
in each iteration. The simplest repair mechanisms are by truncation and
rounding [40, 55]. The performance depends on the continuous solvers and
the repair mechanisms. The third group is a native mixed-variable opti-
mization approach that simultaneously and directly handles both discrete
and continuous variables without relaxation. It is indifferent to the ordering
character of the discrete variables. Genetic adaptive search, pattern search,
and mixed bayesian optimization are among the approaches that have been
proposed in [6, 22,74].

A particular class of MVOPs is known as mixed variable programming
(MVP) problems [6]. They are characterized by a combination of continuous
and categorical variables. The latter are discrete variables that take their
values from a set of categories [4]. Categorical variables often identify non-
numeric elements of an unordered set (colors, shapes or type of materials)
and characterize the structure of problems [65]. Therefore, the discreteness
of categorical variables must be satisfied at every iteration when considering
potential iterative solution approaches [2].

However, MVP problems are not considered about the ordering nature of
discrete variables, and the solvers for MVP problems are almost based on a
native mixed-variable optimization approach. Therefore, Those solvers may
not efficiently handle highly ordered variables owing to the lack of continuous
relaxations.

In another aspect, [1] claims modeling without categorical variables so
that continuous relaxations may be used to handle categorical variables. But
the performance of continuous relaxations may decline with an increasing
number of categories. Therefore, a possible more rigorous way of classifying
MVOPs is to consider whether the discrete variables are ordered or categor-
ical ones, since they are both important characters for discrete variables.

Whereas, researchers often take one specific group of approaches to de-
velop mixed-variable optimization algorithms and test on MVOPs with one
specific type of discrete variables, finally obtain reasonable good results,
rather than investigating those algorithms on MVOPs with other types of
discrete variables. Therefore, there is lack of rigorous comparisons between
continuous relaxation approach and native mixed-variable optimization ap-
proach, let alone taking the advantage of the strategies of the both ap-
proaches to improve algorithms performance on more general and various
MVOPs. However, in our study, we have done those work in Section 4.4 and
Section 4.6.
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4.2 ACOMV Heuristics for Mixed-Variable
Optimization Problems

We start by describing the ACOMV heuristic framework, and then, we de-
scribe the probabilistic solution construction for continuous variables, or-
dered discrete variables and categorical variables, respectively.

4.2.1 ACOMV framework

The basic flow of the ACOMV algorithm is as follows. As a first step, the
solution archive is initialized. Then, at each iteration a number of solutions
is probabilistically constructed by the ants. These solutions may be im-
proved by any improvement mechanism (for example, local search or gradi-
ent techniques). Finally, the solution archive is updated with the generated
solutions. In the following we outline the archive structure, the initialization
and the update of the archive in more details.

ACOMV keeps a history of its search process by storing solutions in a
solution archive T of dimension |T | = k. Given an n-dimensional MVOP
and k solutions, ACOMV stores the values of the solutions’ n variables and
the solutions’ objective function values in T . The value of the i-th variable
of the j-th solution is in the following denoted by sij . Figure 4.1 shows the
structure of the solution archive. It is divided into three groups of columns,
one for categorical variables, one for ordered discrete variables and one for
continuous variables. ACOMV-c and ACOMV-o handle categorical variables
and ordered discrete variables, respectively, while ACOR handles continuous
variables.

Before the start of the algorithm, the archive is initialized with k random
solutions. At each algorithm iteration, first, a set ofm solutions is generated
by the ants and added to those in T . From this set of k +m solutions, the
m worst ones are removed. The remaining k solutions are sorted according
to their quality (i.e., the value of the objective function) and stored in the
new T . In this way, the search process is biased towards the best solutions
found during the search. The solutions in the archive are always kept sorted
based on their quality, so that the best solution is on top. An outline of the
ACOMV algorithm is given in Algorithm 4.

4.2.2 Probabilistic Solution Construction for Continuous
Variables

Continuous variables are handled by ACOR [83], which has been further
explained in Chapter 2.1.
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Figure 4.1: The structure of the solution archive of ACOMV. The solutions
in the archive are sorted according to their quality, i.e., the value of the
objective function f(si)), hence, the position of a solution in the archive
always corresponds to its rank.

4.2.3 Probabilistic Solution Construction for Ordered
Discrete Variables

If ordered discrete variables are defined, a component of the continuous
relaxation approach, ACOMV-o, is used. The natural ordering of the values
for these variables may have little to do with their actual numerical values
(and they may even not have numerical values, e.g., x ∈ {small, big,huge}).
Hence, instead of operating on the actual values of the ordered discrete
variables, ACOMV-o operates on their indexes. The values of the indexes
for the new solutions are generated as real numbers, as it is the case for the
continuous variables. However, before the objective function is evaluated,
the continuous values are rounded to the nearest valid index, and the value
at that index is then used for the objective function evaluation. At the
algorithm level, ordered discrete variables are transformed into continuous
variables for probabilistically constructing solution.
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Algorithm 4 Outline of ACOMV
Initialize decision variables

Categorical varables → array(C)
Ordering discrete varables → array(O)
Continuous varables → array(R)

// Initialize pheromones
Initialize solution archive(T ) of size K
while termination criterion not satisfied do
// ConstructAntSolution
for n = 1 to Nants do
// ConstructSolution(S1 · · ·SNants)
Probabilistic Solution Construction for ACOMV-c
Probabilistic Solution Construction for ACOMV-o
Probabilistic Solution Construction for ACOR

end for
Tnew= Firstk ⇐ Rank(S(T ) ∪ S1 · · ·SNants)
// Update pheromones
Update solution achive(T )

end while

4.2.4 Probabilistic Solution Construction for Categorical
Variables

While ordered discrete variables are relaxed and treated in the original
ACOR, categorical variables are treated differently in a component of the
native discrete optimization approach, ACOMV-c, as for this type of vari-
ables there is no pre-defined ordering. The pheromone representation (i.e.,
the solution archive) as well as the general flow of ACOMV does not change.
Hence, we focus here on presenting how the discrete variables are handled
without the ordered information in the domain. The values for these vari-
ables are generated with a different method—one that is closer to the regular
combinatorial ACO.

In standard ACO (see [26]), solutions are constructed from solution com-
ponents using a probabilistic rule based on the pheromone values. Dif-
ferently, in ACOMV there are no static pheromone values, but a solution
archive. As in standard ACO, in ACOMV-c, the construction of solutions
for categorical variables is done by choosing the components, that are, the
values for each of the categorical decision variables. However, since the
pheromone model of standard ACO are replaced by the solution archive,
the probabilistic solution construction rule is modified as follows.

Similarly to the case of continuous variables, each ant constructs the
categorical discrete part of the solution incrementally. For each categorical
variable i, each ant chooses probabilistically one of ci available values vil ∈
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Figure 4.2: Calculating probabilities of choosing different categorical values
for a given decision variable. First, the initial probabilities are generated
using a normal distribution and based on the best ranked solution that uses
given value (left plot, dashed bars). Then, they are divided by the number
of solutions using this value (left plot, solid bars), and finally a fixed value
is added (right plot, dotted bars) in order to increase the probability of
choosing those values, which are currently not used. The final probabilities
are presented on the right plot, as solid bars.

Di = {vi1, ..., vici}. The probability of choosing the l-th value is given by:

oil = wl∑c
r=1wr

, (4.1)

where wl is the weight associated with the l-th available value. It is calcu-
lated based on the weights ω and some additional parameters:

wl = ωjl
uil

+ q

η
. (4.2)

The final weight wl is hence a sum of two components. The weight ωjl is
calculated according to Equation 2.2, where the jl is the index of the highest
quality solution that uses value vil for the i-th categorical variable. In turn,
uil is the number of solutions using value vil for the i-th categorical variable
in the archive. Therefore, the more popular the value vil is, the lower is its
final weight.

The second component is a fixed value (i.e., it does not depend on the
value vil chosen): η is the number of values from the ci available ones that
are unused by the solutions in the archive, and q is the same parameter of
the algorithm that was used in Equation 2.2.
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The graphical representation of how the first component ωjl
ui
l

is calculated
is presented on the left plot of Figure 4.2. The dashed bars indicate the
values of the weights ωjl obtained for the best solutions using the available
values. 1 The solid bars represent the weights ωjl divided by the respective
number of solutions uil that use values vil . It is shown for the available set
of categorical values used, vil ∈ {a,b, c,d, e, f, g} in this example.

Some of the available categorical values vl may be unused for a given
i-th decision variable in all the solutions in the archive. Hence, their initial
weight is zero. In order to enhance exploration and to prevent premature
convergence, in such a case, the final weights w are further modified by
adding to all of them the second component. Its value depends on the
parameter q and on the number of unused categorical values ηi, as shown in
Equation 4.2.

The right plot in Figure 4.2 presents the normalized final probabilities for
an example in which the solution archive has size k = 10, and where the set
of categorical values is {a,b, c,d, e, f, g}, with values {a} and {g} unused by
the current decision variable. The dotted bars show the value of q/η added
to all the solutions, and the solid bars show the final resulting probabilities
associated with each of the available categories. These probabilities are then
used to generate the value of the i-th decision variable for the new solutions.

4.2.5 Auxiliary Explanations of ACOMV

The following are some auxiliary explanations of ACOMV. ACO algorithms
in general do not exploit correlation information between different deci-
sion variables (or components). In ACOMV, due to the specific way the
pheromone is represented (i.e., as the solution archive), it is in fact possible
to take into account the correlation between the decision variables. A non-
deterministic adaptive method is presented in [83], which will take effect
on rotated benchmark functions proposed in Section 4.3, and also handle
variable dependency of engineering problem in Section 4.6.

For simplification of ACOMV, The uniform random sampling in the
range of decision variables is used for initial solution archive. For fight-
ing stagnation, a simple restart strategy consists in restarting the algorithm
but keeping the best-so-far solution in archive. The restart criterion is the
number of iterations of ants updating the archive with a relative solution
improvement lower than a certain threshold ε. ACOMV is implemented in
C++.

1If a given value is not used, the associated index is indefinite, and thus its initial
weight is zero.
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4.3 Artificial Mixed-variable Benchmark
Functions

The mixed-variable benchmark problems found in the literature often
originate from the mechanical engineering field, which can not be easily
parametrized and flexibly manipulated for investigating the performance of
mixed-variable optimization algorithms.

In this section, we propose a set of new, artificial mixed-variable bench-
mark functions for a sufficiently controlled environment for the investigation
of the performance and the automatic parameter tuning of algorithms. Our
proposed artificial mixed-variable benchmark functions are defined in Ta-
ble 4.1. The expressions of objective functions originate from some typical
continuous functions in IEEE CEC 2005. The decision variables consist of
discrete and continuous variables. n is the number of dimensions including
discrete variables and continuous variables and M is a random, normalized
n-dimensional rotation matrix. The continuous variables’ global optima are
shifted to avoid a bias of population based methods towards the center of
the search space [34]. It allows 3 settings for discrete variables, one involv-
ing ordered discrete variables, one involving categorical variables and one
involving mixed ordered discrete and categorical variables.

In order to make it easier to understand and visualize the benchmark
functions, we use the two dimensional, not shifted, randomly rotated Ellip-
soid mixed-variable functions as an example to illustrate the principle of how
to construct artificial mixed-variable benchmark functions. Equation 4.3 is
randomly rotated Ellipsoid continuous function.

fEL(~x) =
n∑
i=1

(β
i−1
n−1 zi)2,

{
~x ∈ (−3, 7)n,
~z = M~x,

(4.3)

In order to transform this continuous function into a mixed-variable one,
we have divided the continuous domain of variable x1 ∈ (−3, 7) into a set
of discrete values, T = {θ1, θ2, ..., θt} : θi ∈ (−3, 7). This results in the
following mixed-variable test function:

fELMV
(~x) = z2

1 + β · z2
2 ,


x1 ∈ T,
x2 ∈ (−3, 7),
~z = M~x.

(4.4)

The set T is created by choosing t uniformly spaced values from the original
domain (−3, 7) in such a way that ∃i=1,...,t θi = 0. This way, it is always
possible to find the optimum value fELMV

(0, 0) = 0, regardless of the chosen
t discrete values.

In the following, we will explain the first two setups of discrete variables
to simulate each benchmark function, respectively: (i) with ordered discrete
variables, and (ii) with categorical variables. In the first setup, the discrete
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Table 4.1: Artificial mixed-variable benchmark functions

The objective functions
fEllipsoidMV

(~x) = ∑n
i=1(β

i−1
n−1 zi)2,

fAckleyMV
(~x) = −20e−0.2

√
1
n

∑n

i=1(z2
i ) − e

1
n

∑n

i=1(cos(2πzi)) + 20 + e,

fRastriginMV
(~x) = 10n+∑n

i=1(z2
i − 10 cos(2πz2

i )),
fRosenbrockMV

(~x) = ∑n−1
i=1 [100(zi+1 − z2

i )2 + (zi − 1)2],
fSphereMV

(~x) = ∑n
i=1 z

2
i ,

fGriewankMV
(~x) = 1

4000
∑n
i=1 z

2
i −

∏n
i=1 cos( zi√

i
) + 1,

The definition of mixed variables
~xd ∈ T,T = {θ1, θ2, ..., θt} : θi ∈ (MinRange,MaxRange)
~xr ∈ (MinRange,MaxRange),
~x = ~xd ⊕ ~xr, ~x ∈ (MinRange,MaxRange)n,
n = |d|+ |r|,
~z = (~x− ~o)M,

~oglobal optima = [01, 02, ..., 0D, o1, o2, ..., oC ] :
The 1st setting for ~xd: ~xd involves ~xordered
The 2nd setting for ~xd: ~xd involves ~xcategorical
The 3rd setting for ~xd: ~xd involves ~xordered ⊕ ~xcategorical

intervals for variable x1 are naturally ordered. Such a setup simulates a
problem where the ordering of the discrete variables may be easily defined.
The left plot in Figure 4.3 shows how the algorithm sees such a naturally
ordered rotated ellipsoid function, with discrete x1 variable.2 The test func-
tion is presented as a set of points representing different solutions found
by the ants and stored in the solution archive. The darker the point, the
higher the quality of the solution. In the second setup, the intervals are
ordered randomly, that is, for each run of the algorithm a different ordering
was generated. This setup allows to investigate how the algorithm performs
when the optimum ordering of the intervals is not well defined or unknown.
The right plot of Figure 4.3 shows how the algorithm sees such modified
problem for a given single random ordering. Therefore, the discrete vari-
ables become categorical without natural ordering. Clearly, compared to
the natural ordering, the problem appears to be quite different.

The artificial mixed-variable benchmark functions also consist of the

2Please note that Figure 4.3 uses the value of β = 5, as it is clearer for visualization.
This simply means that the ellipsoid is less flat and more circle-like.
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Figure 4.3: Randomly rotated ellipsoid function (β = 5) with discrete vari-
able x1 ∈ T, |T| = t = 30. The left plot presents the case in which the
natural ordering of the intervals is used, while the right one presents the
case in which a random ordering is used.

characteristics such as non-separable, ill-conditioned and multi-modal. Non-
separate functions often exhibit intricate dependencies between decision
variables. Ill-conditioned functions, like fRosenbrockMV

, often lead to prema-
ture convergence. Multi-modal functions, like fAckleyMV

, fRastriginMV
and

fGriewankMV
, serves to find effectively a search globally in a highly multi-

modal topography [43]. For example, in the continuous study of [8], we
can see PSO performs well on the separable problems. However, on non-
separable problems, PSO exhibits a strong performance decline, and PSO
also performs very poorly even on moderately ill-conditioned functions, let
alone in mixed-variable optimization cases. Therefore, the proposed arti-
ficial mixed-variable benchmark functions are expected to lead a challenge
for different mixed-variable optimization algorithms. In anther aspect, the
flexible discrete intervals and dimensions of the proposed benchmark func-
tions are not only helpful for investigating the performance scalability of
mixed-variable optimization algorithms, but also provide a convenient en-
vironment for automatic parameter tuning in mixed-variable optimization
solvers generalization, thereby facing unseen real-world complex engineering
optimization problems.

4.4 Performance Evaluation of ACOMV-o and
ACOMV-c

ACOMV-o and ACOMV-c represent a continuous relaxation approach and a
native mixed-variable optimization approach on handling discrete variables,
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respectively. We evaluate the performance of ACOMV-o and ACOMV-c on
two different setups of mixed-variable benchmark functions proposed in pre-
vious Section 4.3. The first setups of benchmark functions involve ordered
discrete variables. The second setups of benchmark functions involve cat-
egorical variables. The goal of the first setups is to evaluate and compare
the performance of ACOMV-o and ACOMV-c in the case that the discrete
variables are ordered. The objective of the second setups is to evaluate and
compare the performance of ACOMV-o and ACOMV-c in the case that the
discrete variables are categorical. Based on the experimental results, we can
find that hybrid of ACOMV-o and ACOMV-c in ACOMV consist in tak-
ing the respective advantage for handling corresponding setup of discrete
variables.

4.4.1 Experimental Setup

For both setups of six benchmark functions in previous Section 4.3, we
evaluate the performance of ACOMV-o and ACOMV-c on a different num-
ber t of intervals t ∈ {2, 5, 10, 20, ..., 90, 100, 200, ...900, 1000} and on the
dimensions (2, 6 and 10)3. It not only shows solution quality on different
dimensions, also shows the impact of the interval size on the algorithm per-
formance. For each setup of discrete variables, we conduct 18 groups of
experiments for comparison in total, involving 6 different benchmark func-
tions with 3 different dimensions. In every group of experiment, in order to
ensure a fair comparison of ACOMV-o and ACOMV-c, we tuned their pa-
rameters using the same tuning procedure: the Iterated F-race method [9,13]
which combines F-Race [11,12] with a process capable of generating promis-
ing candidate configurations. In the training set of off-line tuning, we
use 200 instances of same benchmark function with the same dimension,
but involving ordered discrete and categorical variables, random intervals
t ∈ {2, 5, 10, 20, ..., 90, 100, 200, ...900, 1000} and random function’s coeffi-
cients. The tuning budget is set up to 2000 evaluations. In a production
phase, we have conducted 21 4 comparison experiments across the intervals
in every group of experiment. In total, we have conducted 378(21× 6× 3)5

times of comparison experiments for each setup of discrete variables. Every
time of experiment, we investigate solution quality by 50 independent runs
to compare ACOMV involving ACOMV-o and involving ACOMV-c, with-
out restart mechanism6. The pure random search method is included as a
baseline for comparison.

3In this study, the dimensionality of mixed-variable functions consists in the half di-
mensional discrete variables and the other half dimensional continuous variables.

421 intervals t ∈ {2, 5, 10, 20, ..., 90, 100, 200, ...900, 1000}
521 intervals, 6 benchmark functions and 3 different dimensions
6It is for the pure comparison of ACOMV-o and ACOMV-c. Restart mechanism is

included in ACOMV for the performance evaluation in later sections
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4.4.2 Comparison Results

In the case of first setups involving ordered discrete variables, Wilcoxon
rank-sum test with significance level 0.05 is used on each comparison of 378
comparison experiments. Totally, the comparison result of ACOMV-o and
ACOMV-c is (0.63, 0.35, 0.02), which indicates that ACOMV-o outperform
ACOMV-c with a probability 0.63, while outperformed by ACOMV-c with
a probability 0.02. Their statistical insignificance is a probability of 0.35.
Similarly, the comparison result of ACOMV-o and random search is (0.98,
0.02, 0). The comparison result of ACOMV-c and random search are (0.93,
0.07, 0). In the case of second setups involving categorical variables, the
comparison result of ACOMV-o and ACOMV-c is presented (0.07, 0, 0.93),
which indicates that ACOMV-o outperform ACOMV-c with a probability
0.07, while outperformed by ACOMV-c with a probability 0.93. Similarly,
the comparison result of ACOMV-o and random search is (0.78, 0.12, 0.10).
The comparison result of ACOMV-c and random search are (0.96, 0.04, 0).

We conclude statistically that, in ACOMV, ACOMV-o is more efficient
than ACOMV-c in the case that discrete variables of mixed-variable prob-
lems are ordered, while ACOMV-c is more efficient than ACOMV-o in the
case that discrete variables of mixed-variable problems are categorical vari-
ables, for which no obvious ordering exists. Meanwhile, The experimental
results illustrate the advantage of hybrid the ACOMV-o and ACOMV-c for
handling corresponding class of discrete variables. Figures 4.4 and 4.5 are
some examples in the comparisons.

As seen from those figures, the mean performance of ACOMV-c does
not differ from the two different setups of the benchmark functions. The
mean performance of ACOMV-c decreases slightly with the increase of the
number of intervals. This shows that the ordering of the intervals should
not matter for a native mixed-variable optimization approach. Its efficiency
depends only on the number of intervals. The more there are intervals,
the more difficult it becomes to find the optimal one. However, the mean
performance of ACOMV-o differ greatly from two different setups. There is
no obvious trend as the increase of the number of intervals.

4.5 Performance Evaluation of ACOMV

We automatically tune the parameters of ACOMV by Iterated F-Race.
Then, we investigate the performance of ACOMV on artificial mixed-variable
benchmark functions in Section 4.3, as well as the restart mechanism of
ACOMV on fighting stagnation by analyzing the algorithmsâ qualified run-
length distributions (RLDs).
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Figure 4.4: The mean value evaluation of ACOMV-o and ACOMV-c on
6 dimensional benchmark functions after 10000 evaluations, with intervals
t ∈ {2, 5, 10, 20, ..., 90, 100, 200, ..., 900, 1000}

.

4.5.1 Parameter Tuning of ACOMV

A crucial aspect of mixed-variable algorithms’ parameter configuration is
generalization. Given a set of artificial mixed-variable benchmark functions
as training instances, our goal is to find high-performing algorithm param-
eters that perform well on unseen problems that are not available when de-
ciding on the algorithm parameters [13]. Therefore, we avoid over-tuning by
applying Iterated F-Race to artificial mixed-variable benchmark functions
rather than the engineering problems , which ACOMV are tested and com-
pared in Section 4.6. For the generalization of parameters, the instances of
training set are designed across six mixed-variable benchmark functions with
mixed dimensions(2, 4, 6, 8, 10, 12, 14) [61], involving two setups of bench-
mark functions,(i) with ordered discrete variables, and (ii) with categorical
variables. We use 300 random instances and 5000 budget of experimental
evaluations in the automatic tuning procedure. The parameters obtained
are in Table 4.2. it is used for performance evaluation of ACOMV later ,
and also for real world engineering optimization problems in Section 4.6.
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Figure 4.5: The mean value evaluation of ACOMV-o with ACOMV-c on
2 dimensional benchmark functions after 10000 function evaluations, with
intervals t ∈ {2, 5, 10, 15, ..., 490, 495, 500}

Table 4.2: Summary on the tuned parameters of ACOMV.

Parameter Symbol Value
Number of ants m 5

Speed of convergence ξ 0.05099
Locality of the search q 0.6795

Archive size k 90

4.5.2 The Performance of Fighting Stagnation

Firstly, we evaluate the performance of ACOMV on the two setups of arti-
ficial mixed-variable benchmark functions proposed in Section 4.3 with di-
mensions (2, 6, 10). Table 4.3 shows the experimental results on the discrete
variables’ intervals t = 100. ACOMV solved all 2 dimensional benchmark
functions with 100% success rate. ACOMV found the optimal solution of
all the 6 dimensional benchmark functions. On the 10 dimensional bench-



44 Ant Colony Optimization for Mixed Variable Problems

Ackley− categorical variables

Number of function evaluations

P
ro

b
a

b
ili

ty
 o

f 
s
o

lv
in

g
 t

h
e

 p
ro

b
le

m
 

10
2

10
3

10
4

10
5

10
60

.0
0

.2
0

.4
0

.6
0

.8
1

.0

Non−restart

Restart

Dim=2 Dim=6

Dim=10

Griewank− categorical variables

Number of function evaluations

P
ro

b
a

b
ili

ty
 o

f 
s
o

lv
in

g
 t

h
e

 p
ro

b
le

m
 

10
2

10
3

10
4

10
5

10
60

.0
0

.2
0

.4
0

.6
0

.8
1

.0

Non−restart

Restart

Dim=2 Dim=6

Dim=10

Figure 4.6: The RLDs obtained by ACOMV with restarts and without
restarts. The solution quality demanded is E-10

mark functions with ordered discrete variables, ACOMV found the optimal
solution of fAckleyMV

, fRosenbrockMV
, fSphereMV

and fGriewankMV
. On the 10

dimensional benchmark functions with categorical variables, ACOMV found
the optimal solution of fAckleyMV

, fSphereMV
and fGriewankMV

. With the in-
crease of dimensionality, it is more difficult for ACOMV to find the optimal
solution. Anyway, ACOMV obtained 100% success rate to solve fAckleyMV

and fSphereMV
with both setups on the dimensions (2, 6, 10), and obtained

more than 80% success rate to solve fGriewankMV
with both setups on the

dimensions (2, 6, 10). For a detail level, Figure 4.6 shows a analysis about
RLDs of the fAckleyMV

and fGriewankMV
involving categorical variables. The

RLD methodology is explained in [47, 69]. Theoretical RLDs can be es-
timated empirically using multiple independent runs of an algorithm. An
empirical RLD provides a graphical view of the development of the proba-
bility of finding a solution of a certain quality as a function of time. In the
case of stagnation, the probability of finding a solution of a certain quality
may be increased by a periodic restart mechanism. The restart criterion
of ACOMV is the number of iterations of ants updating the archive with a
relative solution improvement lower than a certain threshold ε. The num-
ber of periodic iterations without significant improvement is MaxStagIter.
MaxStagIter = 650, ε = 10−5 are tuned then used in restart mechanism of
ACOMV. As seen from Figure 4.6, the performance of ACOMV is improved
owing to the restart mechanism on fighting against stagnation. With in-
crease of dimensionality from 2 to 6 and 10, the success rate of ACOMV for
solving fAckleyMV

still maintains 100%, while the success rate of ACOMV
without restart drops strongly. As for fGriewankMV

, the success rates of
ACOMV still maintains more than 80% with the increase of dimensionality
from 2 to 6 and 10, while the success rate of ACOMV without restart drops
to about 20%.
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Table 4.3: Experimental results of ACOMV with dimensions D = 2, 6,
10. F1 − F6 represent fEllipsoidMV

, fAckleyMV
, fRastriginMV

, fRosenbrockMV
,

fSphereMV
and fGriewankMV

,respectively. The discrete variables’ intervals
t = 100. The results are summarized over 50 independent runs, and the
values below 1.00E-10 are approximate to 0.00E-10, which is highlighted in
boldface.
D Functions

Two upsets of discrete variables
Ordered discrete variables Categorical variables

Avg. Median Max. Min. Avg. Median Max. Min.

2

F1 0.00e+00 0.00e+00 0.00e+00 0.00e+00 0.00e+00 0.00e+00 0.00e+00 0.00e+00
F2 0.00e+00 0.00e+00 0.00e+00 0.00e+00 0.00e+00 0.00e+00 0.00e+00 0.00e+00
F3 0.00e+00 0.00e+00 0.00e+00 0.00e+00 0.00e+00 0.00e+00 0.00e+00 0.00e+00
F4 0.00e+00 0.00e+00 0.00e+00 0.00e+00 0.00e+00 0.00e+00 0.00e+00 0.00e+00
F5 0.00e+00 0.00e+00 0.00e+00 0.00e+00 0.00e+00 0.00e+00 0.00e+00 0.00e+00
F6 0.00e+00 0.00e+00 0.00e+00 0.00e+00 0.00e+00 0.00e+00 0.00e+00 0.00e+00

6

F1 8.47e−03 0.00e+00 1.65e−01 0.00e+00 1.31e+00 4.13e−01 1.26e+01 0.00e+00
F2 0.00e+00 0.00e+00 0.00e+00 0.00e+00 0.00e+00 0.00e+00 0.00e+00 0.00e+00
F3 1.91+00 1.78e+00 4.38e+00 0.00e+00 2.10e+00 2.29e+00 4.38e+00 0.00e+00
F4 7.82e−01 0.00e+00 1.04e+01 0.00e+00 1.00e+01 6.90e+00 5.95e+01 0.00e+00
F5 0.00e+00 0.00e+00 0.00e+00 0.00e+00 0.00e+00 0.00e+00 0.00e+00 0.00e+00
F6 2.43e−07 0.00e+00 1.22e−05 0.00e+00 8.41e−04 0.00e+00 1.26e−02 0.00e+00

10

F1 1.99e+00 1.40e+00 1.10e+01 1.17e−01 1.20e+01 7.32e+00 5.48e+01 5.84e−01
F2 0.00e+00 0.00e+00 0.00e+00 0.00e+00 0.00e+00 0.00e+00 0.00e+00 0.00e+00
F3 1.37e+01 1.48e+01 2.46e+01 2.93e+00 1.03e+01 9.65e+00 2.03e+01 3.77e+00
F4 1.23e+01 1.32e+01 3.74e+01 0.00e+00 4.37e+01 1.91e+01 1.80e+02 1.03e+01
F5 0.00e+00 0.00e+00 0.00e+00 0.00e+00 0.00e+00 0.00e+00 0.00e+00 0.00e+00
F6 2.54e−03 0.00e+00 4.67e−02 0.00e+00 4.52e−03 0.00e+00 4.67e−02 0.00e+00

Table 4.4: Summary on the classification of engineering optimization
problems.

Groups The type of decision variables
Group I Continuous variables†
Group II Continuous and ordered discrete variables
Group III Continuous and categorical variables
Group IV Continuous, ordered discrete and categorical variables
† continuous variables should be a particular class of mixed variables
with empty set of discrete variables. ACOMV is also capable to
solve continuous optimization.

4.6 Application in Engineering Optimization
Problems

We have classified the engineering optimization problems in the literature
into 4 groups according to the types of decision variables (see Table 4.4).

Group I include Welded beam design problem case A [17–19, 44, 45, 50,
59, 98]; Group II include pressure vessel design problem [15, 17, 19, 22, 36,
40, 44, 45, 50, 54, 58, 63, 80, 81, 91, 95, 96, 98] and the coil spring design prob-
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Table 4.5: Comparison of the best solutions for welded bean design problem
case A. The infeasible solutions are highlighted in italics

Methods x1(h) x2(l) x3(t) x4(b) f(x)
GA1 [17] 0.208800 3.420500 8.997500 0.210000 1.748309
GA2 [19] 0.205986 3.471328 9.020224 0.206480 1.728226
EP [18] 0.205700 3.470500 9.036600 0.205700 1.724852

(µ+ λ)ES [66] 0.205730 3.470489 9.036624 0.205729 1.724852
CPSO [45] 0.202369 3.544214 9.048210 0.205723 1.728024
HPSO [44] 0.205730 3.470489 9.033624 0.205730 1.724852

NM-PSO [98] 0.205830 3.468338 9.033624 0.205730 1.724717
PSOLVER [50] 0.205830 3.468338 9.033624 0.205730 1.724717

SS [59] 0.205729 3.470489 9.033624 0.205730 1.724852
ABC [5] 0.205730 3.470489 9.033624 0.205730 1.724852
ACOMV 0.205729 3.470489 9.033624 0.205730 1.724852

lem [20, 22, 40, 56, 80, 96]. Group III include the thermal insulation sys-
tems design [3, 6, 52]. Group IV include welded beam design problem case
B [21, 23, 95]. In this section, we compare the results obtained with those
reported in the literature in order to illustrate the performance of ACOMV.
In experimental setup, the tuned parameters configuration on benchmark
functions are used. For outstanding the performance of ACOMV heuristics
and simplifying the algorithm, the most fundamental constraints handling
technique, "death penalty", is used. 100 independent runs were performed
for each engineering problem. The mathematical formulation of problems
are described in Appendix 6.1.

4.6.1 Group I : Welded Beam Design Problem Case A

Recently, many methods previously have been applied into Welded beam
design problem case A in Appendix 6.1.1. The best solutions are compared
and list in Table 4.5. It should be noted that the results produced by
NM-PSO [98] and PSOLVER [50] are infeasible solution because the third
constraints had been violated. Table 4.5 illustrates ACOMV obtained the
best-so-far solution. Table 4.6 illustrates the standard deviation of ACOMV
results is the smallest and ACOMV require the smallest number of functions
evaluation, 2303. The successful rate of ACOMV for best-so-far solution is
100%. Accordingly, ACOMV is the most efficient and robust among the
literature in this problem. Additionally, the mean and minimum number of
evaluations of ACOMV are 2122 and 1888, respectively.
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Table 4.6: Statistical results for welded bean design problem case A. The
infeasible solutions are highlighted in italics

Methods fBest fMean fworst Sd FEs

GA1 [17] 1.748309 1.771973 1.785835 1.12E-02 N/A
GA2 [19] 1.728226 1.792654 1.993408 7.47E-02 80000
EP [18] 1.724852 1.971809 3.179709 4.43E-01 N/A

(µ+ λ)ES [66] 1.724852 1.777692 NA 8.80E-02 30000
CPSO [45] 1.728024 1.748831 1.782143 1.29E-02 200000
HPSO [44] 1.724852 1.749040 1.814295 4.01E-02 81000

NM-PSO [98] 1.724717 1.726373 1.733393 3.50E-03 80000
PSOLVER [50] 1.724717 1.724717 1.724717 1.62E-11 297

SS [59] 1.724852 1.747429 1.928811 4.67E-02 83703
ABC [5] 1.724852 1.741913 NA 3.10E-02 30000
ACOMV 1.724852 1.724852 1.724852 1.74E-12 2303

4.6.2 Group II: Pressure Vessel Design Problem Case A, B,
C and D

There are four distinctive cases (A, B, C and D) of pressure vessel design
problem defined in the literature. These cases differ by the constraints posed
on the thickness of the steel used for the heads and the main cylinder. In
case A, B, C (see Table 4.7), ACOMV obtained the best results in a 100%
success rate. The number of evaluations are also the smallest. Case D is
more difficult to solve because of the larger range of side constraints for
decision variables. It should be noted that the solution of NM-PSO is not
feasible for this problem because the values of x1 and x2 given for NM-PSO
are not integer multiples of 0.0625. Table 4.8 illustrates ACOMV obtained
the best-so-far solution except the infeasible solution reported by NM-PSO .
Table 4.9 illustrates ACOMV has 100% success rate to obtain the best-so-far
results with smallest standard deviation, which is competitive to PSOLVER.
ACOMV require 30717 function evaluations. The mean and minimum num-
ber of evaluations is 9448 and 1726. PSOLVER is more efficient in the aspect
of the number of functions evaluations. However, it should be noted that
In [50] PSOLVER is only designed for continuous optimization rather than
mixed-variable optimization, therefore, PSOLVER is difficult to solve cate-
gorical variables. Moreover, PSOLVER ever reported an infeasible solution
in the previous welded beam design problem case A.

4.6.3 Group II: Coil Spring Design Problem

In coil spring design problem, most of the research reported in the literature
focused on finding the best solution. Only the recent work by [54] and [20]
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Table 4.7: Results for Case A,B,C of the pressure vessel design problem. The
mean number of evaluations of the successful runs is given in parentheses.

Case A [80] [36] [54] ACOMV
fbest 7867.0 7790.588 7019.031 7019.031

Success rate 100% 99% 89.2% 100%
FEs - - 10000 1737

(1500)
Case B [80] [63] [96] [54] [40] ACOMV
fbest 7982.5 7197.734 7207.497 7197.729 7197.9 7197.729

success rate 100% 90.2% 90.3% 90.2% - 100%
FEs - - - 10000 - 1764

(1470.48)
Case C [58] [15] [91] [54] [81] ACOMV
fbest 7127.3 7108.616 7006.9 7006.358 7006.51 7006.358

success rate 100% 99.7% 98.3% 98.3% - 100%
FEs - - 4800 10000 10000 1666

(1433.42)

Table 4.8: Comparison of the best solutions for pressure vessel design prob-
lem case D. The infeasible solutions are highlighted in italics

Methods x1(Ts) x2(Th) x3(R) x4(L) f(x)
GA1 [17] 0.8125 0.4375 40.3239 200.0000 6288.7445
GA2 [19] 0.8125 0.4375 42.0974 176.6540 6059.9463

(µ+ λ)ES [66] 0.8125 0.4375 42.0984 176.6366 6059.7143
CPSO [45] 0.8125 0.4375 42.0913 176.7465 6061.0777
HPSO [44] 0.8125 0.4375 42.0984 176.6366 6059.7143
RSPSO [95] 0.8125 0.4375 42.0984 176.6366 6059.7143
NM-PSO [98] 0.8036 0.3972 41.6392 182.4120 5930.3137
PSOLVER [50] 0.8125 0.4375 42.0984 176.6366 6059.7143

ABC [5] 0.8125 0.4375 42.0984 176.6366 6059.7143
ACOMV 0.8125 0.4375 42.0984 176.6366 6059.7143

gave some attention to the number of functions evaluations to reach the best
solution. A comparison of the results obtained is presented in Table 4.10.
Only [54] and ACOMV obtained the best-so-far results, 2.65856. The result
of [20] is very close to the best-so-far. ACOMV has the 100% success rate
while [54] has a 95% success rate. Though ACOMV require relative more
function evaluations than [54], it is noted that [54] does not consider to han-
dle categorical variables . The mean and minimum of function evaluations
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Table 4.9: Statistical results for pressure vessel design problem case D . The
mean number of evaluations of the successful runs is given in parentheses.
The infeasible solutions are highlighted in italics

Methods fBest fMean fworst Sd FEs

GA1 [17] 6288.7445 6293.8432 6308.1497 7.413E+00 N/A
GA2 [19] 6059.9463 6177.2533 6469.3220 1.309E+02 80000

(µ+ λ)ES [66] 6059.7143 6379.938037 NA 2.10E+02 30000
CPSO [45] 6061.0777 6147.1332 6363.8041 8.645E+01 200000
HPSO [44] 6059.7143 6099.9323 6288.6770 8.620E+01 81000
RSPSO [95] 6059.7143 6066.2032 6100.3196 1.33E+01 30000
NM-PSO [98] 5930.3137 5946.7901 5960.0557 9.161E+00 80000
PSOLVER [50] 6059.7143 6059.7143 6059.7143 4.625E-12 310

ABC [5] 6059.7143 6245.3081 NA 2.05E+02 30000
ACOMV 6059.7143 6059.7143 6059.7143 3.45E-12 30717

(9448.08)

Table 4.10: Results for the coil spring design problem. The mean number
of evaluations of the successful runs is given in parentheses.

[80] [16] [96] [54] [40] [20] ACOMV
N 10 9 9 9 9 9 9

D [inch] 1.180701 1.2287 1.227411 1.223041 1.223 1.223044 1.223041
d [inch] 0.283 0.283 0.283 0.283 0.283 0.283 0.283
fbest 2.7995 2.6709 2.6681 2.65856 2.659 2.658565 2.65856

success rate 100% 95.4% 95.3% 95.0% - <100% 100%
FEs - - - 8000 - 3711560

(2270994)
19588

(4808.19)

of ACOMV are 9948 and 1726. [20] does not report a success rate, but the
corresponding objective value vary in the range of (2.658565, 2.658790), the
numbers of function evaluation vary in the range of [539960, 3711560].

4.6.4 Group III: Thermal Insulation Systems Design
Problem

The thermal insulation systems design problem is one of the few benchmark
engineering problems used in the literature that deals with categorical vari-
ables. In previous studies, the categorical variables describing the type of
insulators used indifferent layers were not considered as optimization vari-
able, but rather as parameters. Only the more recent work of Kokkolaras
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et al [52] and Abramson et al [3], which are able to handle such categori-
cal variables properly. we show that ACOMV can performs comparably to
MVP [52] and FMGPS [3]. Table 4.11 present the new best-so-far solution
of ACOMV after 10000 function evalutations.

4.6.5 Group IV: Welded Beam Design Problem Case B

Welded beam design problem case B is taken from Deb and Goyal [21] and
Dimopoulos [23]. It is a variation of case A and is extended to include or-
dered discrete and categorical variables together. Table 4.12 shows ACOMV
obtained a new best-so-far solution with a 100% success rate. The maxi-
mum, mean and minimum number of evaluations of is 4883, 1436 and 692,
respectively. Table 4.14 verifies the best results obtained by ACOMV not to
violate the constraints.

4.6.6 Related Work on Engineering Optimization Problems

For a detail level analysis on engineering optimization problems, we inves-
tigate ACOMV RLDs on fighting against stagnation by restart mechanism.
An experiment is also conducted to compare the performance of the generic
restart mechanism of ACOMV with a problem tailored restart mechanism,
called cut-off restart. The later is based on an approximation of exponen-
tial distribution. It is possible to estimate, from an empirically estimated
RLD, the number of function evaluations needed to find the required solu-
tion with a probability greater than or equal to z if an optimal restart policy
is supposed to be used. This estimation is sometimes called computational
effort [69,73] and it is defined as

effort = min(l)
{
l · ln(1− z)
ln(1−RLq(l))

}
(4.5)

The solution l of the computation effort is the cut-off evaluations to peri-
odically restart in a simulation of estimate model. RLq(l) is the algorithm’s
RLD, defined as RLq(l) = P (Lq ≤ l), where Lq is the random variable
representing the number of function evaluations needed to find a solution
of quality q, and P (Lq ≤ l) is the probability that Lq takes a value less
than or equal to l function evaluations. The cut-off restart improves the
performance of algorithms as seen from Figure 4.7. However we also see
that the tuned restart mechanism of ACOMV needs less functions evalua-
tions to have 100% success rate than the cut-off restart, even if latter one
is problem-tailored. Taking the pressure vessel design problem case D of
Figure 4.7 for example, the cut-off restart starts at the point (2243 function
evaluations with a 23% success rate), and obtain a 99% success rate with
44400 function evaluations, while the tuned restart mechanism of ACOMV
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Figure 4.7: the RLDs analysis of ACOMV on engineering optimization prob-
lems. pvdD is the pressure vessel design problem case D. Csd is the coil
spring design problem. WbdB is the welded beam design problem case B

needs 30717 function evaluations to obtain a 100% success rate. Addition-
ally, it is mentioned that in the welded beam design case A and the pressure
vessel design problem case A, B and C, we found that ACOMV without
restarts mechanism has not met any stagnation cases and has 100% success
rate to give the best-so-far solution. So, we analyze on the problems, in
which the restart mechanism takes effect.

4.7 Conclusions

In this chapter, we have shown how ACOR is extended to ACOMV for tack-
ling mixed-variable optimization problems. Based on the solution archive
framework of ACOMV, ACOMV integrates a component of a continuous
optimization solver (ACOR), a continuous relaxation approach (ACOMV-
o) and a native mixed-variable optimization approach (ACOMV-c) to solve
continuous and mixed-variable optimization problems. In addition, we pro-
posed artificial mixed-variable benchmark functions as well as constructive
methods. They provide a sufficiently controlled environment for the in-
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vestigation of the performance of mixed-variable optimization algorithms,
and they provide a training environment for parameter tuning. Based on
the benchmark functions, a rigorous comparison between ACOMV-o and
ACOMV-c was conducted, so that we can conclude from these results of this
comparision that ACOMV-o is better than ACOMV-c in the case that the
discrete variables of mixed-variable problems are ordered, while ACOMV-c
is better than ACOMV-o in the case that discrete variables of mixed-variable
problems are categorical variables. The experiments illustrate the advantage
of combining of ACOMV-o and ACOMV-c, and also suggest that discarding
of scratching one of them to handle mixed-variable optimization problems is
not a good idea. The experimental results for real-world engineering prob-
lems illustrate that ACOMV not only can tackle various classes of decision
variables robustly, but also it is efficient in finding high-quality solutions. In
the welded beam design case A and the pressure vessel design problem case
A, B, C, ACOMV is the only available algorithm that obtains the best-so-far
solution with a 100% success rate as well as the required smallest number of
function evaluations. In the pressure vessel design problem case D, ACOMV
obtains the best-so-far solution with a 100% success rate. In the coil spring
design problem, ACOMV is the only one that obtains the best-so-far solu-
tion with a 100% success rate. In the thermal insulation systems design
problem, ACOMV obtains the new best-so-far solution. In the welded beam
design problem case B, ACOMV obtained the new best-so-far solution with
a 100% success rate and the smallest number of function evaluations.
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Table 4.11: Comparison of the best solutions for the thermal insulation
systems

Solution information MVP [52] FMGPS [3] ACOMV
Continuous variable

xi(cm)
1 0.3125 4.5313 4.9506
2 5.4688 6.7188 7.9729
3 3.9062 4.8437 12.8448
4 6.5625 4.2188 17.07978
5 5.7812 7.3438 9.4420
6 5.1562 9.8438 10.1077
7 13.2812 24.948 0.02811
8 21.4062 12.135 7.3080
9 8.5938 7.5 11.9592
10 9.2188 6.4063 12.1872
11 20.3125 11.5105 6.1197

Ti(K)
1 4.2188 6.125 6.1003
2 7.3438 10.55 11.0841
3 10 14.35 21.2509
4 15 17.994 38.2608
5 20 24.969 51.8508
6 25 36.006 70.1000
7 40 71.094 71.0001
8 71.0938 116.88 99.4475
9 101.25 156.88 153.1701
10 146.25 198.44 236.8358
11 300 300 300

Categorical variable
Ii
1 N N N
2 N N N
3 N N N
4 N N N
5 N N T
6 N N E
7 N T T
8 E E E
9 E E E
10 E T T
11 T T T

Power(PLA ( Wcm)) 25.294 25.58 24.299
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Table 4.12: Comparison of the best solutions for welded beam design design
problem case B

Methods x1(h) x2(l) x3(t) x4(b) x5(M) x6(Joint) f(x)
GeneAS [21] 0.1875 1.6849 8.2500 0.2500 Steel 4-sided 1.9422
PSOA [23] 0.2500 2.2219 8.2500 0.2500 Steel 2-sided 1.7631
RSPSO [95] 0.1875 1.6842 8.25 0.25 Steel 4-sided 1.9421
ACOMV 0.225 1.272373 8.25 0.225 Steel 4-sided 1.502942

Table 4.13: Statistical results for welded beam design design problem case
B

Methods fMean Sd FEs

GeneAS [21] N/A N/A N/A
RSPSO [95] N/A N/A N/A
PSOA [23] 1.7631 0 6570
ACOMV 1.502942 0 1436

Table 4.14: Constrains analysis for welded beam design design problem case
B

Constraints GeneAS [21] PSOA [23] RSPSO [95] ACOMV
g1 -0.1621 0 N/A 0
g2 -380.1660 N/A -380.1653 -148.8186
g3 -0.0625 0 N/A 0
g4 -3.4399 -3.3838 N/A -3.562618
g5 -0.0625 -0.1250 N/A -0.1
g6 -0.2346 -0.2344 N/A -0.2349907
g7 -402.0473 -412.5254 N/A -1630.64



Chapter 5

Conclusions and Future
Work

5.1 Conclusions

In this thesis, we have proposed two improved ant colony optimization algo-
rithms for continuous and mixed discrete-continuous optimization problems.
These are IACOR-LS and ACOMV, respectively.

In Chapter 2, based on the new C++ implementation of ACOR and
Sep-ACOR, we further investigated their performance and addressed their
possible drawbacks.

Then, we proposed IACOR-LS, an ACOR algorithm with growing solu-
tion archive hybridized with a local search procedure in Chapter 3. Three
different local search procedures, Powell’s conjugate directions set, Powell’s
BOBYQA, and Mtsls1, were tested with IACOR-LS in order to enhance
its search intensification. The very good performance of IACOR-Mtsls1 is
a clear indication of the high potential hybrid ACO algorithms have for
the continuous domain. In fact, IACOR-Mtsls1 is clearly competitive with
state-of-the-art continuous optimizers.

In Chapter 4 , we have shown how ACOR is extended to ACOMV
for tackling mixed-variable optimization problems. Based on the solu-
tion archive framework of ACOMV, ACOMV integrates a component of
a continuous optimization solver (ACOR), a continuous relaxation approach
(ACOMV-o) and a native mixed-variable optimization approach (ACOMV-
c) to solve continuous and mixed-variable optimization problems. In addi-
tion, we proposed artificial mixed-variable benchmark functions as well as
constructive methods. They provide a sufficiently controlled environment
for the investigation of the performance of mixed-variable optimization al-
gorithms, and they provide a training environment for parameter tuning.
Based on the benchmark functions, a rigorous comparison between ACOMV-
o and ACOMV-c was conducted, so that we can conclude from these results
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of this comparision that ACOMV-o is better than ACOMV-c in the case
that the discrete variables of mixed-variable problems are ordered, while
ACOMV-c is better than ACOMV-o in the case that discrete variables of
mixed-variable problems are categorical variables. The experiments illus-
trate the advantage of combining of ACOMV-o and ACOMV-c, and also
suggest that discarding of scratching one of them to handle mixed-variable
optimization problems is not a good idea. The experimental results for
real-world engineering problems illustrate that ACOMV not only can tackle
various classes of decision variables robustly, but also it is efficient in finding
high-quality solutions. In the welded beam design case A and the pressure
vessel design problem case A, B, C, ACOMV is the only available algorithm
that obtains the best-so-far solution with a 100% success rate as well as the
required smallest number of function evaluations. In the pressure vessel de-
sign problem case D, ACOMV obtains the best-so-far solution with a 100%
success rate. In the coil spring design problem, ACOMV is the only one that
obtains the best-so-far solution with a 100% success rate. In the thermal
insulation systems design problem, ACOMV obtains the new best-so-far so-
lution. In the welded beam design problem case B, ACOMV obtained the
new best-so-far solution with a 100% success rate and the smallest number
of function evaluations.

5.2 Future Work

In practice, high dimensional and highly variable-correlated continuous opti-
mization problems also need to be optimized. Therefore, a new effective and
efficient variable correlation method for ACOR is one of our ongoing works.
Moreover, for implementing a high-performing continuous algorithm, we are
investigating and fairly benchmarking state-of-the-art continuous optimiza-
tion algorithms. Since, different continuous optimization algorithms may
be preferably depending on the characteristics of problems, one promising
direction we intend to research on is to automatically select and configure
continuous optimizers from components, thereby facing challenging contin-
uous instances with different characteristics.

In the aspect of ACO for mixed discrete-continuous optimization, the
solution archive of ACOMV consists in a flexible framework that allows to
bring in a resizing population strategy and a hybrid with a subsidiary local
search procedure. The incremental population social learning mechanism
with local search [60, 68, 70, 71] in Chaper 3 is an interesting modification
for ACOMV. Powell’s conjugate directions set [76], Powell’s BOBYQA [77],
and Lin-Yu Tseng’s Mtsls1 methods [93] and Hansen’s CMA-ES [41] are
being considered to be hybridized with ACOMV for continuous variables
and ordered discrete variables. Some typical local search in discrete opti-
mization are considered for handling categorical variables. We also intend
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to develop an effective constraint-handling technique based on the ACOMV
framework to tackle highly challenging constrained mixed-variable optimiza-
tion applications. Finally, a tuning-in-the-loop approach [71] is to be used to
redesign ACOMV. A promising application of ACOMV is that the heuristics
of ACOMV meet the variables arising in the algorithm configuration prob-
lem [13], in which typically not only the setting of numerical parameters
but also that of categorical parameters needs to be determined. Recently,
in [97], several continuous algorithms have been used with F-race [12] to
automatically tune parameters from real variable and large ordinal integer
variables. ACOMV with F-race to tackle mixed-variable parameters includ-
ing categorical variable is also our following work.





Chapter 6

Appendix

6.1 Mathematical formulation of engineering
problems

6.1.1 Welded Beam Design Problem Case A

The mathematical formulation of the welded beam design problem is given
in Table 6.1. The schema is shown in Figure 6.1

6.1.2 Welded Beam Design Problem Case B

The welded beam design problem case B is a variation of case A. It is
extended to include two types of welded joint configuration and four possible
beam materials. The changed places with respect to the formulation in Table
6.1 are shown in Equation 6.1.

Figure 6.1: Schematic of welded beam design problem case A.
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Table 6.1: The mathematical formulation of the welded beam design prob-
lem case A.

min f(~x) = 1.10471x2
1x2 + 0.04811x3x4 (14 + x2)

g1 τ(~x)− τmax ≤ 0
g2 σ(~x)− σmax ≤ 0
g3 x1 − x4 ≤ 0
g4 0.10471x2

1 + 0.04811x3x4 (14 + x2)− 5 ≤ 0
g5 0.125− x1 ≤ 0
g6 δ(~x)− δmax ≤ 0
g7 P − Pc(~x) ≤ 0
g8 0.1 ≤ x1, x4 ≤ 2.0
g9 0.1 ≤ x2, x3 ≤ 10.0

where τ(~x) =
√

(τ ′)2 + 2τ ′τ ′′ x2
2R + (τ ′′)2

τ ′ = P√
2x1x2

, τ ′′ = MR
J ,M = P (L+ X2

2 )

R =
√

x2
2

4 + (x1+x3
2 )2

J = 2
{√

2x1x2
[
x2

2
12 +

(x1+x3
2
)2]}

σ(~x) = 6PL
x4x2

3
, δ(x) = 4PL3

Ex3
3x4

Pc(~x) = 4.013E
√

x2
3x

6
4

36
L2

(
1− x3

2L

√
E
4G

)
P = 6000lb, L = 14in., E = 30× 106psi,G = 12× 106psi

τmax = 1360psi, σmax = 30000psi, δ = 0.25in.

Table 6.2: Material properties for the welded beam design problem case B

Methods x5 S(103psi) E(106psi) G(106psi) c1 c2

Steel 30 30 12 0.1047 0.0481
Cast iron 8 14 6 0.0489 0.0224
Aluminum 5 10 4 0.5235 0.2405

Brass 8 16 6 0.5584 0.2566

min f(~x) = (1 + c1)x2
1x2 + c2 x3x4 (14 + x2)

S − τmax ≤ 0
J = 2

{√
2x1x2

[
x2

2
12 +

(x1+x3
2
)2]}

, if x6 : two side
J = 2

{√
2x1x2

[
x2

2
12 +

(x1+x3
2
)2]}

, if x6 : four side
τmax = 0.577 · S

(6.1)
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Figure 6.2: Schema of the pressure vessel to be designed.

Table 6.3: The mathematical formulation of the cases (A, B, C and D) of
the pressure vessel design problem.

No Case A Case B Case C Case D
min f = 0.6224TsRL+ 1.7781ThR2 + 3.1611T 2

s L+ 19.84T 2
sR

g1 −Ts + 0.0193R ≤ 0
g2 −Th + 0.00954R ≤ 0
g3 −π R2L− 4

3π R
3 + 750 · 1728 ≤ 0

g4 L− 240 ≤ 0
g5 1.1 ≤ Ts ≤ 12.5 1.125 ≤ Ts ≤ 12.5 1 ≤ Ts ≤ 12.5 0 ≤ Ts ≤ 100
g6 0.6 ≤ Th ≤ 12.5 0.625 ≤ Th ≤ 12.5 0 ≤ Th ≤ 100
g7 0.0 ≤ R ≤ 240 10 ≤ R ≤ 200
g8 0.0 ≤ L ≤ 240 10 ≤ L ≤ 200

6.1.3 Pressure Vessel Design Problems

The pressure vessel design problems requires designing a pressure vessel
consisting of a cylindrical body and two hemispherical heads such that the
cost of its manufacturing is minimized subject to certain constraints. The
schematic picture of the vessel is presented in Figure 6.2. There are four
variables where values must be chosen: the thickness of the main cylinder
Ts, the thickness of the heads Th, the inner radius of the main cylinder
R, and the length of the main cylinder L. While variables R and L are
continuous, the thickness for variables Ts and Th may be chosen only from a
set of allowed values, these being the integer multiples of 0.0625 inch. The
mathematical formulation for the cases (A, B, C and D) is given in Table 6.3.

6.1.4 Coil Spring Design Problem

The problem consists in designing a helical compression spring that will
hold an axial and constant load. The objective is to minimize the volume
of the spring wire used to manufacture the spring. A schematic of the coil
spring to be designed is shown in Figure 6.3. The decision variables are the
number of spring coils N , the outside diameter of the spring D, and the
spring wire diameter d. The number of coils N is an integer variable, the
outside diameter of the spring D is a continuous variable, and finally, the
spring wire diameter is a discrete variable, whose possible values are given
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Figure 6.3: Schematic of the coil spring to be designed.

Table 6.4: Standard wire diameters available for the spring coil.

Allowed wire diameters [inch]
0.0090 0.0095 0.0104 0.0118 0.0128 0.0132
0.0140 0.0150 0.0162 0.0173 0.0180 0.0200
0.0230 0.0250 0.0280 0.0320 0.0350 0.0410
0.0470 0.0540 0.0630 0.0720 0.0800 0.0920
0.1050 0.1200 0.1350 0.1480 0.1620 0.1770
0.1920 0.2070 0.2250 0.2440 0.2630 0.2830
0.3070 0.3310 0.3620 0.3940 0.4375 0.5000

Figure 6.4: Schematic of the thermal insulation system.

in Table 6.4. The mathematical formulation is in Table 6.5. The penalty
function was defined in Equation 6.2, which is the similar to [56] for a more
rigorous heuristics comparison between ACOMV and Differential Evolution.

f = fc
∏8
i=1 c

3
i ,

ci =
{

1 + sigi if gi > 0,
1 otherwise,

s1 = 10−5, s2 = s4 = s6 = 1, s3 = s5 = s7 = s8 = 102.

(6.2)
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Table 6.5: The mathematical formulation for the coil spring design problem.

min fc(N,D, d) = π2 Dd2(N+2)
4

No Constraint
g1

8CfFmaxD
π d − S ≤ 0

g2 lf − lmax ≤ 0
g3 dmin − d ≤ 0
g4 D −Dmax ≤ 0
g5 3.0− D

d ≤ 0
g6 σp − σpm ≤ 0
g7 σp + Fmax−Fp

K + 1.05(N + 2)d− lf ≤ 0
g8 σw − Fmax−Fp

K ≤ 0
where Cf = 4D

d
−1

4D
d
−4 + 0.615 d

D

K = Gd4

8ND3

σp = Fp
K

lf = Fmax
K + 1.05(N + 2)d

6.1.5 Thermal Insulation Systems Design Problem

The schema is shown in Figure 6.4. The basic mathematical formulation
of the classic model of thermal insulation systems is defined in Table 6.6.
The effective thermal conductivity k of all these insulators varies with the
temperature and does so differently for different materials. Considering that
the number of intercepts n is defined in advance, and based on the presented
model, we may define the following problem variables:

• Ii ∈M, i = 1, ..., n+1 — the material used for the insulation between
the (i− 1)-st and the i-th intercepts (from a set M of materials).

• ∆xi ∈ R+, i = 1, ..., n + 1 — the thickness of the insulation between
the (i− 1)-st and the i-th intercepts.

• ∆Ti ∈ R+, i = 1, ..., n+ 1 — the temperature difference of the insula-
tion between the (i− 1)-st and the i-th intercepts.

This way, there are n + 1 categorical variables chosen form a set M of
available materials. The remaining 2n+ 2 variables are continuous.
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Table 6.6: The mathematical formulation for the coil spring design problem.

f(x,T) = ∑n
i=1 Pi = ACi

(
Thot
Ti
− 1

)∫ Ti+1
Ti

kdT

∆xi −
∫ Ti
Ti−1

kdT

∆xi−1


No Constraint
g1 ∆xi ≥ 0, i = 1, ..., n+ 1
g2 Tcold ≤ T1 ≤ T2 ≤ ... ≤ Tn−1 ≤ Tn ≤ Thot
g3

∑n+1
i=1 ∆xi = L

where C = 2.5 if T ≥ 71K
C = 4 if 71K > T > 4.2K

C = 5 if T ≤ 4.2K
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