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Faculté des Sciences Appliquées
CODE - Computers and Decision Engineering
IRIDIA - Institut de Recherches Interdisciplinaires
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Abstract

En Multi-robot exploration and navigation is a challenging task, especially
within the swarm robotics domain, in which individual robots have limited ca-
pabilities and have access to local information only. An interesting approach to
exploration and navigation in swarm robotics is social odometry, that is, a coop-
erative strategy in which robots exploit odometry for individual navigation, and
share their own position estimation through peer-to-peer local communication
to collectively reduce the estimation error. In our research, the robots have to
localize both a home and resources of various quality. They then forage from the
later as they navigate back and forth between resources and nest. The way in
which the resources location information is aggregated influences both the effi-
ciency in navigation/exploitation between the two areas, and the self-organized
selection of better paths. We propose three new parameter-free mechanisms for
information aggregation and we provide an extensive study to ascertain their
properties in terms of navigation efficiency and collective decision.

Fr En robotique, l’exploration collaborative d’une zone et sa navigation est
une tâche difficile, en particulier dans le domaine de la robotique essaim, dans
lequel chaque robot possède des capacités limitées et ne perçoit que localement
son environnement. L’odométrie sociale s’avère être une approche intéressante
concernant l’exploration et la navigation, plus particulièrement au sein d’un es-
saim robotique. Il s’agit d’une stratégie de coopération dans laquelle les robots
utilisent l’odométrie afin d’avoir une indication sur leur déplacement personnel,
et partagent cette estimation avec les robots environnants dans un contexte pair-
à-pair, réduisant ainsi l’erreur d’estimation de leur position. Dans la recherche
présentée, les robots doivent localiser deux types de zone, un nid et des zones de
ressources de qualité variée. Leur objectif est alors de naviguer entre ces deux
zones afin de retourner au nid en possession d’objets (symbolique). La manière
dont les informations de localisation des ressources sont rassemblées par l’essaim
influence à la fois l’efficacité de la navigation/exploitation et la sélection autoor-
ganisée des meilleurs chemins. Nous présentons ici trois nouveaux mécanismes
dénués de paramètres, définissant la manière dont cette information est partagée
au sein de l’essaim. Chacun de ces mécanismes est étudié afin de déterminer ses
propriétés en termes d’efficacité pour la navigation, l’exploitation de ressources
et la capacité des robots à prendre une décision collective.
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Introduction

The goal of the proposed research is to develop a cooperative exploration and
resource exploitation strategy based on a peer-to-peer exchange of information
between robots in a swarm, and to understand its resulting dynamics. The
associated task is characterised by valuable resources spread in the environment
that have to be found and exploited by a robotic swarm. In such a task, the
environment is usually not completely known in advance, forcing the robots to
explore it to discover the position of the resources. Moreover, the environment is
also dynamic since resources may get depleted as robots accomplish their work.
When multiple robots are sharing such a task, allocating them efficiently and
dynamically to the available evolving resources is not a trivial task. In this case,
cooperative strategies can be used to improve both exploitation efficiency and
adaptability. This is particularly useful in the swarm robotics domain in which
individual robots cannot rely on global information or complex algorithms. In
this work, we propose information aggregation mechanisms that allow the swarm
to adapt to the evolution of the resources in the environment despite individual
robots keeping the same individual behaviour. We then study the resulting
dynamics of the swarm, both in simulation and with real robots.

The general experimental conditions mentioned above fit various applica-
tions, from search & rescue operations where robots explore disaster areas and
bring victims back to a safe place, to mining where robots explore large po-
tentially dangerous areas (mines, deep water excavations) and are expected to
be mining for valuable resources or bringing back specific items. What these
applications have in common is an environment with a set of areas contain-
ing resources that robots need to reach and a home location where the robots
gather back. We created an experimental setup with robots capable of locating,
grabbing and securing items spread in an arena, which realistically models and
isolates various aspects of such exploration/exploitation tasks.

In these scenarios, two tasks are interlinked: exploration/navigation and ex-
ploitation. First the robots have to locate, reach, and navigate efficiently back
and forth between target areas; second they have to exploit the resources de-
pending on their quality. The presented research relies on experimental scenario
to study first the navigation issue, and then with regard to these results, the
exploitation task.

Exploration and navigation strategies in swarm robotics should present a
low complexity to match the limited capabilities of the individual robots, which
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is why simple dead-reckoning techniques such as odometry are favoured. Being
quite error prone, there is a need to reduce the estimation errors that robots
accumulate over travelled distance. This error can be reduced through the
shared effort of multiple robots exchanging structured information (Martinelli
et al., 2005). By sharing the estimated position of a landmark, the robots
can collectively reduce the overall odometric error. This is a straightforward
mechanism that easily lends itself to implementation on very simple robots.
Therefore, the collective reduction of odometry errors can be instantiated also
in swarm robotics contexts, as it complies with the inherent limitations of the
robots.

This mechanism was first introduced by Gutiérrez et al. (2009) and is referred
to as social odometry. In this approach, the robots estimate the navigation path
between two target areas in the environment (i.e., home and goal locations)
using odometry and attach to this estimate a confidence level that decreases
with the distance travelled. At the same time, the robots share their navigation
information within the swarm in a local peer-to-peer manner. Thanks to this
process, information about target areas spreads gradually within the swarm,
helping reduce the error in the position estimation. Overall, this decentralized
process results in an increased efficiency in the swarm navigation abilities.

An interesting aspect of social odometry is that it naturally leads to the
emergence of collective decisions within the swarm (Gutiérrez et al., 2010). In-
deed, when there are multiple goal areas to localize (e.g., multiple resources to
exploit), by sharing the available information the robots not only improve the
accuracy of their localization but can also decide which area to target. The
sum of individual decisions leads to a self-organized behaviour that makes the
swarm choose between focusing on a single area/resource or exploiting in parallel
several ones.

In the navigation studies, the only variable of the arena setup that impacts
the decision of the swarm is the distance of the resources to the nest. This
condition changes in the second part of our study in which we focus on the
exploitation case. In this case, the resources are defined both by their distance
from home and by their quality (e.g., rate of regeneration and size of a resource).
When the resources vary in quality, they are not only valued based on their
distance from home but also on the ease in finding/processing items from them.
In this case, the swarm must adapt to the dynamics of the environment and
find a balance between exploiting close resources which are easier to reach or
farther resources that might be of better quality. In doing so, the swarm must
continuously choose between focusing on one single goal or splitting among
many.

The efficiency of social odometry as a navigation and resource exploitation
mechanism and the resulting collective dynamics of decision-making depend
heavily on the way information is shared and aggregated in the robot swarm.
In particular, we found that even small variations in some parameters of the
individual behaviour may lead to huge differences in the swarm dynamics. For
this reason, in this work we propose three new parameter-free mechanisms for
information aggregation and processing that make the swarm adapt to resource
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allocation in the environment.
We expect that our information aggregation mechanisms will not only find

the best split among resources at a given time, but will also react to the upcom-
ing variations in quality as the resources get depleted and hence continuously
exploit the environment in an efficient way. For that, we expect a fine balance
between exploration and exploitation so that the swarm can react quickly to
variations while keeping a steady pace of exploitation.

Following this introduction and after describing the state of the art in both
navigation and communication in swarm robotics, we describe social odometry
and the three information processing mechanisms we have devised. The two
following chapters present the experimental setups and results for respectively
the navigation experimentations, and the exploitation experimentations. We
then discuss the obtained results and conclude with some final remarks.
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Chapter 1

State of the Art

Exploiting from resources in an environment is not a new topic in robotics,
would that be for simple robots or in the context of swarm robotics. When
robots are faced with this high level objective, various lower level tasks arise,
would that be how to explore an environment, how to self-localise and/or the
targeted areas, how to communicate and reach a consensus with other robots,
or how to exploit resources. Before presenting our work in details, this chapter
presents a few way to tackle these issues.

1.1 Navigation for Single Robots

The simplest way for a robot to explore and navigate in a closed area is through
random walk. While not being the most efficient way, it assures that the robots
reach every part of the environment, even if this may require a long time. In
order to improve on a purely random exploration, the robots can memorize and
map their surroundings to avoid previously explored zones (Thrun, 2008) to
reach specific areas of interest. For this purpose, each robot can position itself
on the map and navigate in an environment using dead-reckoning techniques
such as odometry. Odometry relies on the integration over time of the movement
vector—as perceived through the robots’ (proprioceptive) sensors—, in order to
maintain an estimate of the robots’ position. However, this approach is quite
error prone since estimation errors are cumulated over time, therefore requiring
techniques for error reduction such as Kalman filters (Thrun et al., 2005).

1.2 Navigation in Swarm Robotics

There are various ways to improve navigation through information-sharing within
a swarm (Martinelli et al., 2005). Ducatelle et al. (2011) model a swarm as a
communication network that propagates relevant information. Each robot in the
swarm maintains a table with navigation information about all known robots,
similar to how nodes in a mobile ad hoc network maintain routing tables. Then,

11



12 CHAPTER 1. STATE OF THE ART

the robots propagate the available information and use the table to find the best
path to reach a target robot within the swarm. Sperati et al. (2011) also study
navigation in a swarm robotics context. In this case, communication is per-
formed through visual signals only and therefore the information exchanged is
much less structured. For this reason, they used artificial evolution to synthesize
effective navigation strategies.

Several studies in swarm robotics implement navigation and exploration al-
gorithms without sharing structured information, sometimes exploiting robots
as physical landmarks. Rekleitis et al. (2001) divided the swarm into two teams,
one moving and the other stationary, serving as a reference for navigation. The
teams alternate between stationary and moving states. Nouyan et al. (2009) ex-
ploit robots to form complex structures such as chains, in which one end of the
chain connects to a central place while the other end explores the environment.
Once the goal location is reached, the chain can be exploited by other robots
for navigation purposes, or a bucket brigade method can be used to transport
objects along the chain (Ostergaard et al., 2001).

1.3 Collective Decisions

When there are several goal/resource locations present in the environment, the
robots may make a collective decision and focus on the exploitation of a single
one. This can be beneficial if it is necessary to aggregate a sufficient number
of robots in support of collective localization, or if exploitation requires several
robots at the resource. However, this may lead to congestion (i.e., the path
to the resource is overused and the robots have trouble navigating) or overex-
ploitation of the resource. In this case, the swarm is better off exploiting several
resources in parallel.

In order to agree on one option, the robots can either switch to the best
option available in their neighbourhood, or average out all the available infor-
mation. Social odometry allows doing both simply by tuning a single parameter
(Gutiérrez et al., 2010). Olfati-Saber et al. (2007) study the swarm as a multi-
agent network and present a theoretical framework for analysing consensus algo-
rithms. It is also possible to obtain collective decisions by amplifying the various
opinions present in the swarm. Following this approach, the more an opinion
is represented in the swarm, the higher the probability of disagreeing robots
switching their opinion (Garnier et al., 2007, 2009; Montes de Oca et al., 2011).
This approach requires gathering the opinion of several neighbours, while social
odometry works with peer-to-peer interactions, which is easier to implement.

1.4 Exploitation of Resources

Tasks in which the robots have to exploit resources are classic test-bed appli-
cations in swarm robotics (Winfield, 2009) in which collective behaviours are
studied and compared. In this application, robots have to retrieve items (preys)
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spread around the environment or in specific goal areas (resources) and to bring
them back to a specific location (nest). Such exploitation patterns are often
found in biological systems. Among others species, ants display complex forag-
ing behaviours through which they are successfully able to adapt to a dynamic
environment and retrieve preys (Camazine, 2003).

In order to more efficiently locate the various resources and to optimally for-
age from them, Gutiérrez et al. (2010) developed a strategy based on consensus
reaching, on which we base our present work. In this strategy, robots locally
interact by sharing information on the position of resources, aggregate this in-
formation and decide which resource to forage from based on their respective
distance to there current position. When robots forage from the same resource,
interferences arise as congestion builds up. Rybski et al. (2007) showed in their
work that the introduction of communication in real foraging experiments does
not always increase the performance of the system because of an increase in
interference. In order to tackle this problem and reduce interferences among
robots, task allocation methods can be used (Campo and Dorigo, 2007; Liu
et al., 2007). Shell and Mataric (2006) use a bucket brigade method in which
the robots do not directly travel back and forth between the preys and the nest
but instead have a limited radius of operation.

While not using task allocation to limit the effect of interferences, we studied
the impact of these interferences over our various social mechanisms in order to
find optimal behaviours for different setups.
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Chapter 2

Social odometry

In our experiments, the goal of the robots is to locate both a home area and a
goal/resource area and then to efficiently navigate/forage between them. In all
our scenarios and experiments, once a target area is discovered, its position is
kept in memory and updated using odometry.

The information about target areas is shared with other robots upon en-
counter, following the social odometry principle. The way in which the infor-
mation exchanged is shared and processed is independent from the individual
behaviour of the robots, which is different in the two scenarios we present in this
report. Therefore, we start by introducing the information processing mecha-
nisms we have devised.

2.1 Information Sharing

While robots navigate between target areas, they share the information they
have on the relative locations in order to counterbalance the dropoff in in-
formation confidence. How and when this information is shared has a strong
influence on the overall quality of the information in the swarm, and on its
decision-making. Not all information is shared at the same time. When ran-
domly exploring, the robots share the sole information they have. In the other
cases, the robots share only the information of the last visited location.

Given that robots do not share a global coordinates system or a common
reference frame, a transformation of the shared position is needed in order to
fit the frame of the receiving robot (Gutiérrez et al., 2009). To that end, the
robots use as a reference the communication axis defined by the usage of their
range&bearing device. This transformation is presented in Fig. 2.1 for two
robots i and j , j receiving a message from i.

For that transformation to be possible, robot i first needs to know the di-
rection of robot j. To make it happen, our communication protocol follows a
ping-pong method in which robots constantly broadcast their needs (nest or
resource) while the other robots in range answer back with relevant information

15
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only when they possess it. When receiving calls for information, the robots not
only come to know which information they should share but also the direction
of the robot (γi).

Communication axis

Communicated direction

dy

φ
α

Y Axis

Y Axis

AREA A

γ

α

ROBOT i

dy

ROBOT j

X axis (Robot’s heading)
i

i

γ iφi

i

ji

j

j
j

j

X Axis (Robot’s heading)j

λ

Figure 2.1: Diagram of the transformation of the shared position of area A
between the frame of reference of robot i (emitting) and robot j (receiving),
reprinted from Gutiérrez et al. (2009)

Once robot i receives a call for information from robot j, it shares back the
distance (dyi) to the relative area as well as its direction (α), the later in the
new frame of reference defined by the axis of communication: α = φi − γi

Now j needs to transforms the received data in its own frame of reference.
For that it must first find the communicated direction of robot i: φj = γj+α−π.
It can then calculate the position of the target area in its own coordinate system:

dyix = λij · cos(γj) + dyi · cos(φj)

dyiy = λij · sin(γj) + dyi · cos(φj)

with λij being the distance between two robots, provided by the range&bearing
device.

2.2 Information Processing

Once the information is received by robot i, it is aggregated with the robot’s own
knowledge. The way this aggregation is performed depends on the information
processing mechanism implemented. Let pi, pj be the estimated position of an
area (either home or goal) for robots i and j, and ci, cj be the confidence over
their respective estimation. The result of any aggregation is the updated couple
〈pi, ci〉.

Here, we first describe the information aggregation mechanism used by
Gutiérrez et al. (2009), and then we introduce our contributed mechanisms.
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Fermi distribution The aggregation mechanism used by Gutiérrez et al.
(2009) is based on a Fermi distribution. A weight is calculated from the differ-
ence in confidence in order to make a linear combination of the positions:

〈pj , cj〉 ← k · 〈pj , cj〉+ (1− k) · 〈pi, ci〉

k =
1

1 + e−β(cj−ci)

The parameter β measures the importance of the relative confidence levels
in the information aggregation. For low values, the aggregation is close to an
average, ignoring the confidence. For higher values, the aggregation is stiff: only
the information with highest confidence is kept.

Finding the right value of β is often a process of trial and error. Our con-
tribution in this paper is the introduction of three parameter-free aggregation
mechanisms: Hard Switch (HS ), Random Switch (RS ) and Weighted Average
(WA).

Hard Switch (HS) In this winner-take-all mechanism, the robots keep the
information with highest confidence (either the current information or the re-
ceived one) and discard the other one. This mimics the Fermi mechanism with
a high β.

〈pj , cj〉 ← 〈px, cx〉, x = arg max
k∈{i,j}

ck

Random Switch (RS) As in the mechanism above, here the robots keep one
piece of information and discard the other. In this case, however, the switch
is stochastic: the higher the confidence, the higher the probability of accepting
the information. In practice, this mechanism is a stochastic version of the HS.

P (〈pj , cj〉 ← 〈pi, ci〉) =
ci

cj + ci

Weighted Average (WA) This mechanism consists in a linear combination
of both estimated positions with their confidence as weight. On the one hand
this implies no loss of information; on the other, when information about dif-
ferent goals is aggregated, the new position may not coincide with a real goal
location, leading to the apparition of artefacts. While the Fermi mechanism
focuses on the difference between the two confidences, here we directly use each
of them as weights.

〈pj , cj〉 ←
〈
cj · pj + ci · pi

cj + ci
,
cj + ci

2

〉
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Chapter 3

Navigation Task

In this chapter, we focus on the navigation ability of the swarm as supported
by the social odometry navigation mechanism. To this purpose, robots have
to navigate between target areas represented as grey circles painted on the
ground. We will study the influence that the different information aggregation
mechanisms described in Chapter 3 have on navigation efficiency and collective
decisions.

First of all, we introduce the individual behaviour of the robots. Then, we
introduce the experimental setup and finally we discuss the obtained results.

3.1 Individual Behaviour

The behaviour of the robot is defined by a finite state automaton with five
states: Explore, Go Home, Go to Goal, Leave Home, Leave Goal (Fig. 3.1).
Robots start in the Explore state and return to it whenever they lack relevant
information. The other four states form a loop that corresponds to the robot
navigating back and forth between the target areas: go to a target area, enter
and leave it, then go to the next one. On top of these control states, both short
and long range collision avoidance are implemented.

The robots start without any prior knowledge about the location of the
target areas. Therefore, they first have to explore the arena. When in the
Explore state, the robots perform a random walk until they discover the position
of both target areas (home and goal). This can happen in two ways: either they
receive relevant information from team-mates or they stumble upon a target
location (Got(Area) becomes true, with Area ∈ {Home,Goal}). In both the Go
to Goal and Go Home states, the robots move straight to the target location,
possibly avoiding other robots and obstacles. Along their way, they update
the target areas location using odometry and update their confidence in the
information. The confidence is defined as the inverse of the distance that the
robot had travelled from the target area. Therefore, a straight path results in
a higher confidence than a curved one.

19
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Explore

Go to Goal

Leave Home

Leave Goal

Go Home!Know(Home)

!In(Home)

In(Home)

In(Goal)

!Know(Goal)

Got(Goal)

Got(Home)
In(Home)

In(Goal) !In(Goal)

Figure 3.1: Robot’s finite-state automaton. The circles define the states while
the arrows define the transitions. In(Area), Area ∈ {Home,Goal}, is true when
the robot senses the grey level of the area, Know(Area) is true when the robot
knows the position of the area, Got(Area) is true when it just gets this estima-
tion. The robots start in the Explore state.

Once a robot reaches an area (i.e., In(Area) is true), it traverses it in a
straight line (possibly dodging other robots to avoid collisions) and stores the
area location. In order to get an estimated position closer to the center of the
area, the robot averages its entering and its exiting positions. No matter how
many goals there are in the arena, the robots always memorize only one home
and one goal (the last seen or agreed upon).

3.2 Experiments

We used an experimental setup with as few variables as possible: a circular
arena (radius: 11 m) with the home in the center and the goals scattered around
(Fig. 3.2). The goals are defined by their distance from home (di) and the angle
between each other (αij ∈ [π/3, π]). Both goal and home are of a radius of
50 cm, and are differently coloured in grey levels to be distinguished by the
robots.

Our experiments are performed in the ARGoS open source multi-robot sim-
ulator (Pinciroli et al., 2012) and the robots we use are the marXbots (Bonani
et al., 2010). To accomplish their task, the robots are equipped with several
sensorimotor and communication devices. In our experiments, the robots use
the infrared ground sensors to check whether they entered an area and to de-
tect its type (home or goal) depending on the area’s grey level. They also
use the infrared proximity sensors for short range collision avoidance and the
range&bearing device for both communication and long range collision avoid-
ance among robots (Bonani et al., 2010). This last device gives both the angle
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Home

Goal i

di

αij

Goal j

dj

Figure 3.2: Setup of the experimental arena. The home area is placed in the
center of a circular arena of an 11 m radius, surrounded by walls. The goals
are characterised by their distance to the home di, dj and the angles they form
with each other αij .

and distance between neighbouring robots and allows them to send short mes-
sages. Wheel encoders provide the movement vector for odometry. A simulated
gaussian noise with a 5% standard deviation models the odometry estimation
error. The control loop is executed 10 times per second. Unless stated otherwise,
we used 75 robots spawned randomly.

By varying the number of goals, we study different aspects of the collective
behaviour, such as the impact of the density of robots on their navigation abil-
ities, the collective decision made by the swarm in a two goals setup, and how
this generalizes in multiple goals setups. In the following, we briefly describe
the experiments we present in this paper.

Single Goal When a single goal is present, we expect that all robots will
converge on the same path. The more robots in the arena, the harder it is for
them to avoid each other. As density rises, the robots have to handle more and
more congestion on their path, which leads them to travel bigger distances and
to accumulate more error. This also corresponds to fewer round trips between
the home and goal, hence lowering the efficiency of the swarm. We define the
density on a path as the number of robots on it divided by its length.
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In order to study the impact of density on navigation, we devised an ex-
perimental setup in which we vary both the distance between the home and
goal and the number of robots. All three information processing mechanisms
are tested and compared with a benchmark condition in which the robots are
provided with perfect information (PI ) about the goal and home locations. In
each experiment, we measure the navigation speed, computed as the number
of round trips over time. We study its evolution for values of density between
2 and 40 robot/m. For each density value, we run 100 trials in which we ran-
domly draw the distance between the home and goal in the interval [3,8] m, and
we compute the corresponding number of robots to obtain the specified density
value (which is in the range [6,320]).

Two Goals When there is more than one goal, a decision has to be made
about how to spread the robots among the available paths. In this setup, we
study if and how the robots converge on a single path as well as the implications
of such a convergence on efficiency. In order to study this decision-making
process, we count the number of robots committed to each goal, as well as the
uncommitted ones. Given that robots do not distinguish between different goals
and only store one estimated position pg, a robot is considered to be committed
to a goal i among n possible if it has information about both goal (cg 6= 0) and
home (ch 6= 0), and if goal i is the closest one to the robot’s estimated goal
position pg.

In this setup, we have two goals which can either be at a short distance (5 m)
or a long distance (8 m). We run experiments with both equal and different
distances for the goals: Short/Short (SS ), Short/Long (SL) and Long/Long
(LL). For each condition, we perform 1000 replications by randomly varying the
angle between the sources with αij ∈ [π/3, π] (cf. Fig. 3.2).

Multiple Goals The environment in which a swarm evolves is rarely as simple
as in the two goals setup. Through a multiple goals setup, we enquire about the
scalability of the previously gathered results. M goals are uniformly distributed
around the home location, with an angular separation between adjacent goals
of π/M , where M ∈ [3, 6]. To investigate both the navigation and the decision-
making abilities, we test three different conditions. Either all goals are at the
same distance, short (SSS ) or long (LLL), or a single goal is closer to home
(SLL). For each condition, we performed 250 trials.

3.3 Results

Each trial in all the previous setups lasts 20 minutes of simulated time. We use
the same random initialization in all the runs for the different opinion process-
ing. For each run we compute the number of robots on each path to study the
dynamics of collective decisions, the number of round trips to study the navi-
gation efficiency and the error made by the robots on the estimated position of
the nest to gauge the quality of information in the swarm
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3.3.1 Congestion

As we can see in Fig. 3.3, all the proposed mechanisms and the control condition
with perfect information (PI ) follow the same tendency. For low densities, we
can observe a linear increase in the number of round trips. With higher densities,
the growth slows down. As expected, robots with perfect information are the
most efficient at first, but their efficiency reaches a peak because of the artefacts
created by perfect information. With PI, since all robots aim for the center of
the target areas (either home or goal), as the density rises they have increased
difficulties avoiding collisions and entering or exiting the target areas.
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Figure 3.3: Impact of density on navigation efficiency for each mechanism and
in the perfect information control condition. Each line is the mean over 100
trials.

Congestion has a lower impact on navigation efficiency with social odome-
try. In this case, WA proves to be more resilient to congestion than HS and RS.
This is due to a smoother navigation in the surrounding of the home and goals,
where robots try to enter small and densely populated area. First, since the
WA mechanism never discards information but averages it, the precision on the
estimated position is better than with HS or RS. Second, the reception of even
slightly better information is smoothly integrated in the WA mechanisms result-
ing in better average information (Fig. 3.4), while in both HS and RS it may
cause a large leap of the new location, which may be difficult to reach in case of
high densities. Contrary to what could be expected, the quality of such infor-
mation does not rise with the density of robots. Once there are enough robots
to manage a steady connexion between locations, the quality of information is
virtually at its best. As the number of robots rises, congestion creates issues
for them to reach each location, implying longer travelling distances and hence
worse information kept in memory, despite enhanced communication relying on
a denser net of robots.



24 CHAPTER 3. NAVIGATION TASK

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 0  5  10  15  20  25  30  35  40

E
rr

o
r 

o
n
 h

o
m

e
 p

o
si

ti
o
n
 (

m
e
tr

e
)

Density (robot per metre)

HS
RS
WA

Figure 3.4: Evolution of the error of the estimated position of the centre of the
nest for each mechanisms. Each line is a mean over 100 trials.

3.3.2 Collective Decision

Congestion explains why sometimes it is better to spread along multiple paths
when there is more than one goal/resource. This decisions impacts not only the
efficiency but also the spatial arrangement of the swarm and the way it reacts
to changes in the environment.

Decision

The decision pattern of the swarm results from the sum of local decisions made
by the robots. The dynamics of the collective decision are shown in Fig. 3.5,
which plots the convergence pattern generated by the HS and WA mechanisms
when confronted with the SL experimental condition. In all cases, the swarm
decides to focus on the closest area/resource and most robots converge on the
associated path. This behaviour is typical of all three social mechanisms when
there is a goal closer to home. We can already see a strong difference between
the two mechanisms, where HS converges quicker, with less variations among
experiments.

We can observe three different phases. At first (0-120 s), most robots are
uncommitted and explore for goal areas, reinforcing each as they discover them.
Then (120-400 s), a competition among the two alternative paths occurs. The
shorter path is reinforced more because of the improved information the robots
have when encountering robots coming from the other goal. Eventually, the
swarm enters a maximization state in which mostly one path is exploited while
uncommitted robots continue to join.

Fig. 3.6 shows the percentage of robots that choose path A (i.e., the short-
est path in the SL condition). We note that in the SL case, all information
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aggregation mechanisms lead to a single path convergence of at least 90% of the
robots. Both HS and RS always lead to a convergence on the closest goal. The
same is the case for WA, which, however, also presents a low probability for
the robots to converge on the distant goal. This happens because with WA no
information is discarded. When a large number of robots discovers the distant
goal early in the experiment, they may influence the whole swarm despite the
lower confidence of their information. This cannot happen with HS and RS,
because low quality information is instantly discarded. In both the SS and LL
experimental conditions, when there is no better choice, HS and RS lead to a
split in the swarm, and robots spread among the two paths (Fig. 3.6). In these
experimental conditions, the more robots on a path, the higher the congestion,
and the larger the distance the robots travel. This causes robots to have worse
confidence in their information with respect to these from a less congested path.
Therefore, switches to the other path are very likely. Congestion creates a sort of
negative feedback that leads to an oscillating dynamic in which no decision ends
up being taken. On the contrary, WA is not affected by such negative feedback
and systematically leads to convergence (randomly on either path, the setup
being symmetrical). Indeed, the poorr confidence that results from congestion
is counterbalanced by the larger number of robots with which the information
is shared and averaged. Therefore, the swarm converges to the more populated
path.
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Figure 3.5: Evolution of the
robots’ repartition between
the two target areas us-
ing Hard Switch (top) and
Weighted Average (bottom)
in the Short/Long condi-
tion. Bold lines indicate the
mean over 1000 repetitions,
and the shaded areas indi-
cate the standard deviation.
These two figures present
the two extremes in conver-
gence pattern in case of the
existence of a shorter path.
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Figure 3.6: Robots repartition on path A. Each histogram shows the observed
frequencies of the number of robots committed to path A (the shortest possible
path).

Efficiency

The robot behaviour does not explicitly encode the ability to make collective
decisions. Instead, it is conceived to provide efficient navigation ability thanks
to the information shared within the swarm. The decision process is an emergent
result of this behaviour and so is the variation in efficiency depending on the
setup and the mechanisms involved, as shown in Fig. 3.7. In the SL condition,
all three mechanisms make the robots converge on the closest path, therefore
resulting in density of 15 robot/m. As shown in Fig. 3.3, WA is more resilient
to congestion, which is why it is the most efficient mechanism in this setup,
followed by RS and HS. In the SS condition, both HS and RS result in the
swarm splitting between the two paths as discussed above. By exploiting two
paths with a low density of 7.5 robot/m (instead of one with high density of 15
robot/m) the robots create less congestion, which explains why the performance
for HS and RS is slightly better than in the WA case. Indeed, WA makes the
swarm converge on a single path with a high density, and navigation is slightly
less efficient. Congestion has a lower impact in the LL conditions as both
densities (9.4 robot/m on a single path, 4.7 robot/m on two paths) fall in the
linear part of the congestion curve (see Fig. 3.3), explaining why the mechanisms
result in the same efficiency.

Switching Patterns

Social odometry and the various mechanisms studied above not only influence
the efficiency of navigation and decision-making, but also the physical shape
of the swarm. This can be seen not only by studying the movement of the
robots, but by focusing on their switching patterns. A robot switches from one
resource to another when it encounters better information that directs it to
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Figure 3.7: Efficiency of the swarm for two goals, for all mechanisms and con-
ditions. Each box represents the inter-quartile range, whiskers extend to 1.5
times the corresponding quartiles, and the dots represent outliers.

another resource. The switching patterns for each mechanism are displayed in
Fig. 3.4, in case of both resources being at the same distance, or in the presence
of a closer resource.

First, we note that most of the switches occur in or near the nest. This is
because the nest is the destination that all robots have in common, no matter
their choice of resource. This is where the density of information, and even
more its variety, is at its highest. Furthermore, as mentioned above, robots do
not share and request both pieces of information (the nest’s and the resource’s
position) at the same time. In order to switch from one resource to another, a
robot has first to enter the nest to request new directions. The halo of switches
around the nest is the result of the range of communication allowed by the
range&bearing device. Its shape varies for different arena setup (for instance
more centred when the resources are on each side of the nest).

All mechanisms do not show the same pattern of switches. For instance,
when there is a better solution, the HS mechanism only needs a few switches
for all the robots to converge on the closest resource. On the contrary, RS and
WA sport a much higher number of switches. Both observations are coherent
with the speed of each mechanism’s convergence. When no closer resource is
present, all mechanisms present a high number of switches, as robots oscillate
between one possible solution and another. WA converges as in the previous
condition, but with a higher number of switches.

In both LL and SL conditions, the switches pattern displayed have the ten-
dency to grow toward the barycentre of both resource. This effect is even
stronger in the case of WA because of its averaging aggregation of information.
This leads to the creation of a trail of switches, in which they are no longer the
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result of a communication with the nest, but with either path connecting the
resources.

Figure 3.8: Cloud dot of the positions of the robots’ switches from one resource
to another. In red are the switches to the red resource (north, always the
closest to the nest) and in blue the switches to the blue resource. Red switches
are drawn on top of the blue switches. Top: SL setup condition, bottom: LL
setup condition - in both case the resources form a 90◦ angle. From left to right:
Hard Switch, Random Switch and Weighted Average.

3.3.3 Generalization to Multiple Goals

The dynamics we observe with multiple goal locations are similar to the ones
displayed in the two goals setup, no matter the number of added goals. Fig. 3.10
shows the percentage of robots that choose path A (i.e., the shortest path in the
SLL condition), when multiple goal locations are present. All mechanisms leads
to convergence in the SLL case, even if WA sometimes leads to the selection of
one of the distant goals, for the same reasons discussed in the two goals setup.
We can observe a similar splitting behaviour in the SSS and LLL conditions
for both HS and RS, while convergence is observed for WA. When the swarm
splits, the repartition of robots is no longer centred on 50% but is closer to 33%,
implying that the repartition is no longer between only two paths. Nonetheless,
not all are exploited at the same time, as can be inferred from the existence of
paths selected by no robot. This can be explained by the oscillation dynamics
discussed earlier. When the amplitude of the oscillations is greater than the
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Figure 3.9: Efficiency of the swarm for multiple goals and all mechanisms and
conditions. Each box represents the inter-quartile range, whiskers extend to 1.5
times the corresponding quartiles, and the dots represent outliers.

number of robots on a path, all the robots on this path switch to another one.
This happens in the case of multiple goals because the robots are spread among
more paths, and their number on each is therefore lower.

To better understand the exploitation of the available resources/goals, in
Tab. 3.1 we report the average percentage of robots on the different paths,
ordered from the most to the least exploited path. We note that the number
of exploited goal locations is usually no greater than 3. This explains why the
efficiency of the swarm does not vary with the number of available resources,
as shown in Fig. 3.9. The slight increase in performance can be attributed to
the fact that the more goals there are, the easier it is for uncommitted robots
to join a path earlier in the experiment. Overall, we note similar patterns over
efficiency between the multiple goals condition and the two goals condition.

When there are multiple goals, WA in the SLL condition leads to a frequent
selection of a distant goal instead of the closest one, as shown in Fig. 3.10. If
several distant locations are present, they end up reinforcing each other as their
angular distance becomes smaller. In other words, two distant goal locations
that are close to each other attract more robots than a single closer location.
This explains why the chance of WA leading to the selection of a distant goal
increases with the number of goals.
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Table 3.1: Repartition in percentage of robots for 3, 4, 5 and 6 goals. The
1st goal is the one associated with the highest number of robots. The mean
and maximum of the standard deviation is (4.7, 10.5) for HS and RS and (6.1,
16.9) for WA.

SL SS LL

HS RS WA HS RS WA HS RS WA

1st 98.5 98.1 96.0 48.0 52.6 93.0 48.8 47.0 90.8

2nd 0.1 0.6 2.3 34.3 37.3 5.7 33.4 32.5 7.0

3rd 0.0 0.0 0.0 17.2 9.7 0.0 17.4 19.7 0.1

1st 98.4 97.7 95.2 50.6 54.1 92.3 44.8 43.8 89.5

2nd 0.2 1.0 3.6 35.2 38.0 6.8 32.0 31.0 9.2

3rd 0.0 0.1 0.0 12.5 6.9 0.0 17.6 17.2 0.1

4th 0.0 0.0 0.0 2.1 0.7 0.0 5.1 7.0 0.0

1st 98.6 97.3 92.4 51.1 51.1 94.8 44.9 42.6 89.4

2nd 0.2 1.0 6.8 35.2 37.0 4.5 31.6 30.0 9.5

3rd 0.0 0.1 0.0 12.5 10.4 0.2 17.7 17.7 0.5

4th 0.0 0.0 0.0 1.1 1.1 0.0 5.1 7.3 0.0

5th 0.0 0.0 0.0 0.0 0.0 0.0 0.3 1.4 0.0

1st 98.6 97.3 93.6 50.1 53.0 94.7 43.7 42.4 88.5

2nd 0.2 1.5 5.4 34.9 36.1 4.7 31.7 28.2 10.4

3rd 0.0 0.1 0.5 13.5 9.2 0.2 17.2 17.3 0.6

4th 0.0 0.0 0.0 1.4 1.3 0.0 6.0 8.3 0.0

5th 0.0 0.0 0.0 0.1 0.2 0.0 0.8 2.3 0.0

6th 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.3 0.0

3.3.4 Discussion

The experiments above reveal the specificities of the three information aggre-
gation mechanisms. WA leads to convergence to a single path in all conditions,
but this is slower and error-prone. On the whole, WA leads to better cohesion
of the swarm and deals better with congestion thanks to more accurate infor-
mation about the target areas. HS and RS also lead to convergence when there
is a shorter path to exploit, and handle better the presence of multiple distant
goal locations. When congestion results in inefficient navigation, both mecha-
nisms lead to the exploitation of multiple paths, spreading the load of robots in
a balanced way with similar dynamics, although HS appears to be stiffer than
RS.
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Figure 3.10: Robots repartition on path A for different number of goal areas
(3,4, 5 and 6). Each histogram shows the observed frequencies of the number
of robots committed to path A (the shortest possible path).
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Chapter 4

Exploitation Task

In this chapter, we focus on the exploitation ability and patterns of the swarm
as supported by the social odometry navigation mechanism. To this end, the
resources are represented as a spreading of cylindrical items on the ground. By
using objects, we give a topology to the goal areas, and hence we can study how
the different information aggregation mechanisms described in Chapter 3 react
when confronted with physical resources, and their exploitation efficiency.

As in the previous chapter, we start by introducing the now updated indi-
vidual behaviour of the robots. Then, we introduce the experimental setup and
finally discuss the obtained results.

4.1 Individual Behaviour

In this chapter, the behaviour of the robot is defined by a slightly different finite
state automaton (Fig. 4.1). The state Leave Goal is now replaced by the state
Grab Item for resources are no longer painted areas on the ground but items
to be retrieved. The robots now go toward the goal area, grab an item, return
home, drop the item, and start again following the foraging loop defined by
the states Go to Goal, Grab Item, Go Home and Leave Home. When lacking
information, the robots fall back to the Explore state in which they start at the
beginning of each experiment. On top of these control states, both short and
long range collision avoidance are implemented.

In the Go to Goal state, the robot moves straight to the target location,
possibly avoiding other robots and obstacles. As in previous experiments, each
robot updates its information (position and confidence) using odometry. When-
ever a robot sees a resource item, it probabilistically enters the Grab Item state
with a probability P (grabbing). We wanted on average to allow the robots to
cross the resource, which led to P (grabbing) = 1/(v · d), where v is the speed of
the robots and d is two times the standard deviation of the Gaussian spread of
items characterising all resources. If the robot reaches the estimated location of

33
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Explore

Go to Goal

Leave Home

Grab Item

Go Home

!In(Home)
In(Home)

See(Item) & P(grabbing)

Have(Item)
See(Item) & P(grabbing)

In(Home)

!See(Item)

Know(Goal) & !Have(Item)

Know(Home) & Have(Item)

!Know(Home) & P(explore)

!Know(Goal) || P(explore)

Figure 4.1: Robot’s finite-state automaton. The circles define the states while
the arrows define the transitions. In(Home) is true when the robot senses a
grey colour on the ground. Know(Area), Area ∈ {Home,Goal}, is true when
the robot has an estimation of the position of the area. Have(Item) is true when
the robot is holding an item. See(Item) is true when the robot is able to see a
grabbable item with its camera sensor. P (grabbing) is the probability a robot
will go grab the closest item.

the target goal before getting to grab an item, it goes back to the Explore state.
The robot has a small probability P (explore) of going back to the explore state,
which ensures that the robot does not remain idle in case it cannot reach the
estimated position of the goal area. This allow the swarm to reach a balance
between the maximisation of currently known resources and the exploration of
potential new ones.

Once in the Grab Item state, the robot moves toward the closest item. Then,
once in contact, it grabs it and at the same time stores the resource location as
the average position of all grabbable items in sight. The robot always selects
and goes toward the closest grabbable item, which may change over time due
to robot movements or changes in the environment. Having grabbed the item,
the robot enters the Go Home state. If for any reason no further items are in
sight, the robot goes back to the Go to Goal state.

The Go Home state works closely as the Go to Goal state. In this case,
the robot moves straight toward home. If it reaches the grey painted area, it
enters the Leave Home state, and iterates the loop anew. If not, it goes back
to the Explore state, either because it has reached its estimated position of
the home location (without entering the grey area, implying that the robots
had bad information memorised), or because of the probability P (explore) to
explore again.

Finally, when in the Leave Home state, the robot moves in the home area fol-
lowing a random walk pattern (possibly dodging other robots to avoid collisions)
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and probabilistically drops its item with probability P (dropping). Once out, it
stores the home location as the average of its entering and exiting positions.

When a robot is out of the foraging loop, it is in the Explore state. In
this state, it performs a random walk, either searching for grabbable objects or
for the home location. If the robot sees an item, it enters the Grab Item state
with probability P (grabbing). Otherwise, the robot exits from the Explore state
only when it obtains the position of either the goal or home, either from its own
sensors or through social interaction.

4.2 Experiments

At the beginning of an experiment, the robots are spread inside an arena con-
taining a home (circular grey area painted on the ground) and one or more goals
of varying quality, as depicted in Fig. 4.2. The goals are regions with items to
be grabbed and brought back home. Using real objects lets us shape these re-
gions and define their topology through the items themselves, as opposed to
as regions painted on the ground, which are defined symbolically (allowing for
only abstract interactions). Goals/resources are Gaussian scatterings of items
around their centre with a fixed standard deviation of 0.5. Goal regions were
intended not as a dense bulk of numerous items (forcing interaction only on its
edge) but as a balanced spread of object between which the robots can man-
age to get around. For this purpose, we introduced a minimum distance dmin
between the cylinders equal to 5 times the robot’s radius.

Furthermore, using real objects has the added effect of making the resources
more complex, allowing for greater variations. The main motivation for using
real objects (despite growing closer to real life situation and conditions) was to
integrate a notion of quality in the new goal areas. The quality characterises
the number of items present in a source at a given time. It is defined by the
maximum number of items and their rate of replenishment, expressed in item
per second. This way, the quality of a resource is grounded in reality and shares
common proprieties with real life conditions. In the following experiment, we
focus on the study of the rate of replenishment: the maximum number of items
in a resource is fixed at 35, which means that higher qualities are provided by
higher rates of replenishment.

In all the following experiments we measure when possible: the number of
items brought back home per second from each resource, the number of objects
in each resource, the number of robots exploiting each goal/resource, the robots’
switches among goals, and the quality of their localization information.

Congestion in the presence of items Our first objective is to understand
the swarm behaviour with respect to navigation between the home and the re-
sources, and the impact of the presence of physical items on previous congestion
results. In order to compare painted area goals and spread item goals, resources
should always have enough items for robots to grab in this setup. For that, the
resources need to have a high constant number of grabbable items, implying
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Figure 4.2: Setup of the experimental arena for the exploitation task. The home
area is placed in the center of a circular arena of an 11 m radius, surrounded
by walls. In this setup, the goals are resources, defined as a Gaussian spread of
items with a minimum distance between them of dmin (five times the robots’
radius). They are characterised by their distance from home di, dj , the angles
they form with each other αij and their respective quality.

an infinite quality. When an object is grabbed, it is immediately replaced by
another one in the same position, so that the resource size remains constant
over time. This way, we focus on the navigation dynamics only.

Similar to the preceding congestion experiment, here we study the impact
of the density of robots on congestion and hence navigation. For that, we use
a setup with only one resource. We vary both its distance from home and the
number of robots to reach the wanted robot density values.

The following two sets of experiments focus on the exploitation of resources
of varying quality, and the way a swarm of robots using social odometry reacts
to a dynamic environment.

Optimal exploitation of a single source As mentioned above, the main
interest of using real objects is the ability to study the impact of the quality of
a resource on the decision-making process of the swarm. In this experimental
setup, we redo the same experience than as above (one resource of items, varying
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density of robots), but with a finite rate of replenishment. We vary its rate
(0.1 item/s, 0.5 item/s and 1.0 item/s) and study how various density of robots
(5 robot/m to 23 robot/m) manage to exploit a resource bearing this rate. While
the density variations are made by varying the number of robots, in this setup
the distance between the resource and the nest is constant, at the average of
both the previously defined short and long distance (i.e., d = 6.5 m). Through
these experiences, we search for optimum rates of a resource’s exploitation and
their link with density and the rate of replenishment.

Optimal exploitation of two sources Finally, we study how the swarm
decides and adapts in the presence of two sources. We study both the impact of
the distance among sources as well as the impact of the rate of replenishment.
For that, we choose among two possible distances (dshort = 5 m and dlong =
8 m) and two possible rates (ratemin = 0.1 item/s and ratemax = 1 item/s)
for the resources. We will study each possibility. First, same rate and distance
and same rate but different distance (to compare with the previous results).
Then same distance but different rate (to study the impact of the rate). And
last, different rate and different distance with the further resource having the
best replenishment rate (to compare the effect of the rate and the distance from
home). Through these experiments, we explore the dynamics of the swarm and
its ability to balance between the distance and quality of a resource, and switch
dynamically among goals in order to maximise its efficiency.

4.3 Results

In this section we present the current results over each experimental setup de-
scribed above and compare them to the results presented in chapter 3. We kept
the same duration for the trials (20 minutes of simulated time) and the same
random seeds. For each run we compute the number of robots on each path
to study the dynamics of collective decisions. We also compute the number of
round trips to study the navigation efficiency, as well as the error made by the
robots on the estimated position of the nest to gauge the quality of information
in the swarm.

4.3.1 Congestion

As can be seen in Fig. 4.3 left, all mechanisms follow a commonly shared ten-
dency (sharp rise in low value of density, stalling for higher values). We can not
make a direct comparison with results on density from chapter 3 because the
resources are not defined in the same way. For instance, the actual perceived
distance can be much smaller for resources modelized through items because the
spread can grow closer to the nest than a static painted ground area would be.
Furthermore, in the updated individual behaviour, each robot has the probabil-
ity P (grabbing) to stop exploiting the current source and explore. The density
values output in Fig. 4.3 are starting densities. In previous experimentations,
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the robots had no possibility to go back to explore. We observed then a much
erratic curve, a quick stall and even a drop in efficiency as density rose. Allowing
the robots to explore again when they are stuck on the exploitation path not
only give the swarm an opportunity to find better source, but helps the swarm
exploiting the current source at an optimal rate by reducing the interferences
between robots. In this experimental setup, the swarm self-organises to find a
balance in the number of robots: too few would be a loss of potential, too many
would make navigation non-practical.
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Figure 4.3: Left: Impact of density on navigation efficiency for each mechanism
and in the perfect information control condition. Each line is the mean over 100
trials. HS Nav and PI Nav are taken from our previous results from chapter
3 on congestion with simple painted goals, for reference. Right: Evolution of
the error of the estimated position of the centre of the nest for each mechanism.
Each line is a mean over 100 trials.

If we cannot actually compare the efficiency in absolute value, we can com-
pare the evolution of this efficiency. HS Nav and PI Nav references of previous
results shows us that the tendencies of results in each arena setup are similar,
with a slightly stronger RS compared to both WA and HS. As in the previous
setup, congestion has too a lower impact on navigation efficiency with social
odometry. We note that WA is more resilient to congestion than HS and RS
for the same reasons mentioned in section 3.3.1. The same trends as with pre-
vious arena setup can be seen for the evolution of error (Fig. 4.3 right): error
grows with density and WA is doing better through its averaging process.

Finally, if both physical setups differ a lot, the end results are similar.
This proves first that adding physical interaction with items and the result-
ing updated individual behaviour do not change dramatically the higher level
behaviour of the swarm. Second, such similarity indicates that our first abstrac-
tion of the physical setup is pertinent in a simple case with one nest and one
resource.

4.3.2 Optimal Rate of Exploitation

Using infinite rate allows us to study only the navigation aspect of the exploita-
tion task. If we want to understand the dynamics of the swarm while exploiting
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Figure 4.4: Impact of density on navigation and exploitation efficiency for each
mechanism and for resources of various replenishment rate. From top to bottom,
the rate is 0.1, 0.5 and 1.0. Each line is the mean over 100 trials.
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a source, we need to study how the swarm reacts to the presence of a resource
of various finite rates (Fig. 4.4).

As in previous subsection, we plotted the efficiency of the swarm over its
density. The three chosen rates show the three archetypical results. The top
figure corresponds to a low rate (0.1 item/s) and display a virtually constant
efficiency, no matter the number of robots. Indeed, in this case the rate is so low
that even a small number or robots is enough to deplete the source and hence
exploit it in an optimal manner. In the bottom figure, the rate is high (1 item/s)
and the trends of each mechanism displayed in the plot are similar to the ones
displayed in previous subsection. In this case, for all density values tested, the
resource had a high enough rate not to be depleted. Last, the middle figure has
an in between rate (0.5 item/s). If at first increasing the density increase the
efficiency, the curve reaches quickly a plateau around a density of 13 robot/m.
After that, the rate is not high enough to withstand so many robots; increasing
the density would only increase the number of exploring robots.

4.3.3 Exploitation of Two Resources

In this section, we study in a similar way as in section 3.3.2 the swarm dynamics
and the collective decision when resources have varying distances and rates.

Decision

In this section, we find on average similar tendencies than in the previous exper-
imental setup with two goal area painted on the ground (Fig. 4.5). WA always
converges, even if sometimes on the longer path. HS and RS converge when a
closer resource exists. If such a resource does not exist, then the swarm is split
over the possible paths.

The plotted histograms reveal a few differences compared to previous exper-
iments with two goals. First, the convergences are not as strong as previously
observed. This is a result of the possibility for the robots to go back to explore
when they are already on a path. Second, we see that when there is a compe-
tition between a closer source and a source with a better replenishment rate,
the later is the one toward which the swarm converges. Last, we note that in
the perfectly symmetrical setup (LL with equal rate for both resources), the
results are not symmetrical. The reason for this asymmetry is the now signifi-
cant number of uncommitted robots. Each path bear in average less robots, the
effect of which is that all the graphs are translated toward the left. Since the
graphs are not symmetrical anymore, it can be hard to spot a convergence just
by looking at the histogram. Fig. 4.6 makes this convergence clearer by showing
the evolution of the number of robots.

The black separators (at 120 s and 400 s) present in Fig. 4.6 correspond to
the three different phases previously observed in chapter 3 (exploration, com-
petition and maximization). They show that despite both experimental setup
having different swarm dynamics, their resulting evolution of the number of
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robots follow a same rhythm.

Despite a clear spread of robots in the histograms, we observe in Fig. 4.6
top a clear convergence on the path with a better rate of replenishment for
the HS mechanism. The remaining robots are not committed to the other
path but mainly exploring the environment. In this experimental setup, HS
converges even in the case of resources at similar distance, but only if their rate
of replenishment differs. Here the swarm self-organise and proves that not only
it can value a resource on its distance from home but also on its rate on its own.

The Middle figure corresponds to the same conditions, but for the WA mech-
anism. The evolution of the number of robots follows a similar trend with the
HS mechanism. It also converges more strongly on the path linked to the best
replenishment rate resource. If all over chapter 3 the number of exploring robots
was strictly decreasing over time, it’s not the case here anymore. After the num-
ber of robots on the longer path reaches its peak, the number of exploring robots
starts rising again. It happens closely at the average time at which the resource
with lower replenishment rate gets depleted, inclining the robots committed to
this resource’s path to go explore. Such exploring robots are then integrated in
the better path.

Finally, the bottom figure presents a competition between a higher replen-
ishment rate and a closer source while using the WA mechanism. We observe
that if at first robots converge on the closest source, the later depletes quickly.
Then, the robots previously on the shortest path go back to explore and finally
join the further but substantial resource.
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Efficiency

We saw that the decision process is not only influenced by the distance of the
resources from home, but also by the resources’ replenishment rate. Fig. 4.7
displays the variation in overall efficiency over all mechanism and experimental
setup when two resources defined as a spread of items are present.

When both resources’ replenishment rate are equals, the boxplots describing
the efficiency of the swarm are similar to those found in section 3.3.3. The main
difference is an overall lower efficiency (a slower swarm), due to the physical
interaction with the resources’ items. When resources bear different rate, they
are on average doing worse than when they have the same rate. This can be
explained by the fact that the overall rate is higher when the two sources have
the same rate. Another reason is that a setup with same rate will incline the
swarm to split among two paths, which makes the swarm more efficient as we
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proved in section 3.3.3.
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Last, in the SL D condition, the swarm is less efficient than in the SL E
condition. The reason for that is that the closest (but with low rate) resource is
regularly rediscovered and depleted, distracting the robots from the substantial
resource. This creates a cycle in which the closest source is regularly depleted
and abandoned until it grows back enough for exploring robots to discover it
again. These robots then come back home with information in which they are
very confident, and hence recruit even more robots. This cycle is even more
pronounced for the HS mechanism when just one single robot can spread its
information to numerous one as long as its confidence is better.
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Conclusion

In this paper we presented an extensive analysis of three parameter-free infor-
mation processing mechanisms for social odometry with abstract goal locations
and with resources defined using physical objects. We studied the impact of
these mechanisms on both the navigation and exploitation efficiency and on
the dynamics of the swarm. In particular, we observed how the information
processing mechanism can either lead to a convergence on the exploitation of
a single path, or to a split over multiple comparable options. These results
are meant to give future designers a guideline of which mechanism they should
choose depending on the situation and objectives at hand.

For instance, if the cohesion of the swarm is an important issue, then the
AW mechanism should be select as it ensures that the group never splits over
multiple resources. As for the navigation efficiency, we observed that it highly
depends of the congestion on the selected paths. As a consequence, HS and
RS lead to the exploitation of multiple paths whenever congestion results in
inefficient navigation. When physical objects are present, the resources’ rate
of replenishment influence strongly both the efficiency of the swarm and its
dynamics. We observed that variations in this rate has an even stronger impact
on the efficiency than the distance alone.

Our first results are showing similar trends among both kind of experimental
setups, with more realistic interactions in the case of resources defined as spreads
of objects. In all setups, the swarm displays a behaviour in which it balance the
robots’ load over the possible paths (splitting when necessary), implementing
a sort of load-balancing mechanism. In our future work, we plan to investigate
this issue further in order to provide an optimal load-balancing behaviour, which
can maximize the exploitation of different paths to relevant areas/resources.
Not only would the swarm choose the best distribution of robots among the
available paths, but it would also be able to react in real time to changes in its
environment.

A number of possible extensions to the presented mechanisms are envisaged.
The first straightforward extension is to provide for our social odometry mech-
anisms to provide a way to deal with more complex paths, for instance in the
presence of obstacles. Robots may also be provided with the ability to memorize
multiple goal locations, implying that the competition among paths would not
be only at the swarm level but also at the individual robots level.

45



46 CHAPTER 4. EXPLOITATION TASK

Last, heterogeneity can be added in the swarm. On the one hand, individ-
ual robots may get committed to a goal with different individual preferences,
leading to a better exploration of the environment. On the other hand, multiple
tribes of robots could compete for the best source, each of them having differ-
ent information aggregation mechanisms, leading to a different exploitation of
resources among different groups.
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