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Abstract

In this work, we present a swarm robotic approach to exploration and nav-
igation. Taking inspiration from swarm intelligence methods, we address
the problem of solving complex tasks with the group of robots while using
simple control strategies for an individual robot. In particular, our approach
consists in visually connected robotic chains, where neighbouring members
of a chain can perceive each other with a camera. A chain of robots can
be used to establish a path between different locations, in this way allowing
other robots to exploit the chain to navigate along the formed path. We
present the results of two series of experiments. While in the first one we
analyse the general capabilities of chain formation, in the second one the
robots have to find a goal location and establish a path towards it starting
from a home location. Three chain formation strategies are tested, differing
in the degree of movement allowed to the robots which are aggregated into
a chain.
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Chapter 1

Introduction

In this work we address the problem of controlling a robotic swarm to col-
lectively solve exploration and navigation tasks. We want to apply swarm
intelligence methods [6], which take inspiration from social insect colonies,
to allow the swarm of robots to solve complex tasks, while using simple
control strategies for an individual robot.

In real ant colonies the problem of exploration and navigation is solved
by establishing paths. This is done in a very simple and distributed manner.
Ants lay trails of pheromone, a chemical substance that attracts other ants.
Deneubourg et al. [13] showed that the process of laying a pheromone trail
is a good strategy for finding the shortest path between a nest and a food
source, thereby establishing a path that others can follow.

Inspired by this methodology of path establishment by pheromone lay-
ing, our approach to exploration is to use a chain of robots, a concept pre-
viously introduced by Goss et al. [22], where the robots themselves act as
trail markers, or beacons, in place of pheromone trails. We define a robotic
chain to be a sequence of robots, where two neighbouring robots can sense
each other and the distance between them never exceeds a certain maximum
sensing range. In our case, the robots can visually sense each other by means
of an omni-directional camera.

Robotic chains can be described by five characteristics. First, robots can
form a chain by following simple rules relying on locally perceived informa-
tion only. Second, in particular for open environments, a chain of robots
has the advantage that it keeps a connection to a base station, thereby lim-
iting the risk of robots to get lost. Third, a robotic chain can establish
connections between different locations, in this way allowing other robots to
exploit these connections in order to navigate along them. Fourth, the dis-

1



CHAPTER 1. INTRODUCTION 2

tance between such locations can be bigger than the perceptual range of one
robot. Thus, the group of robots forming a chain can collectively overcome
the limitations of a single robot. Finally, the approach of robotic chains
is scalable to large groups of robots without the need of a more complex
control strategy, a quality that is fundamental to swarm robotics.

Combining these characteristics, robotic chains can be clearly distin-
guished from other exploration strategies. For instance, planner based sys-
tems, which often rely on map-learning and path-planning strategies [31],
may enable a robot to memorize important features of the perceived envi-
ronment, thereby avoiding that the robot gets lost and possibly enabling
it to navigate between distant locations. On the other hand, for a robot
to create an internal map representation of its environment, complex con-
trol strategies are required that rely on idiothetic sensors,1 which provide
internal information about the robot’s movements. As such idiothetic sen-
sors involve an integration process, they are subject to cumulative error.
Their quality accordingly decreases continually. Furthermore, the control
complexity increases rapidly when applied to groups of robots. At the other
end of the control spectrum, purely reactive approaches to exploration may
enable the use of simple control strategies, and are often scalable to large
groups of robots [5], but they are neither able to avoid the risk for a robot to
get lost in open environments, nor do they provide a mechanism to navigate
between distant locations.

In this work, we present the results obtained from ongoing work of
the SWARM-BOTS project.2 In the following section, we introduce the
SWARM-BOTS project in more detail, giving a detailed description of the
project’s goals and putting them into relation with our work. Afterwards,
we summarize the contents of this report in Section 1.2.

1.1 The Swarm-Bots Project

The goal of the SWARM-BOTS project is the development of a new robotic
system, called a swarm-bot [12, 14, 34, 33]. A swarm-bot is defined as an
artifact composed of a swarm of s-bots. An s-bot has simple acting, sensing
and computational capabilities, and can therefore only solve a limited class
of problems. In a swarm of s-bots, on the other hand, the collectivity is able
to overcome the limitations of an individual, in this way solving problems

1Idiothetic sensors are often referred to as propriocective sensors.
2A project funded by the Future and Emerging Technologies Programme (IST-FET)

of the European Community, under grant IST-2000-31010.
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(a) (b)

(c) (d)

Figure 1.1: A scenario describing the goal of the SWARM-BOTS project.

that single s-bot cannot cope with. Swarm robotics can be considered as an
instance of the more general field of collective robotics (see for instance [8, 26]
for an overview of the field), which takes inspiration from the social insect
metaphor and emphasizes aspects like decentralized control, simple control
strategies for and individual robot, limited and local communication among
the robots, and robustness.

The SWARM-BOTS project addresses the problem of developing control
strategies that enable a swarm of robots to solve tasks such as coordinated
motion, hole avoidance, collective transport of heavy objects, and—the sub-
ject of this work—collective exploration and navigation. A scenario (Fig-
ure 1.1) has been described that integrates these tasks and represents one
of the main goals of the SWARM-BOTS project.

Figure 1.1(a) shows a swarm of s-bots, represented by white circles, which
is situated in an environment containing a heavy object on the left part, and
a goal location on the right part. Furthermore, the environment contains
several hazards such as holes and walls. The s-bots have to transport the
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object from its initial position to the goal location. The weight of the object
is such that its transportation requires the coordinate effort of more than
one s-bot.

As the goal location is not visible from the object, a path has to be estab-
lished between the two locations. In Figure 1.1(b), this path is represented
by a chain of four coloured s-bots. There are several possible paths connect-
ing the initial and the goal location, which may have different lengths. The
s-bots forming a chain have to choose the shortest connection and avoid the
holes and the walls. The remaining s-bots aggregate around the object in or-
der to collectively transport it and eventually reach the goal (Figures 1.1(c)
and (d)).

Within this scenario, our work addresses the exploration of the environ-
ment in order to locate the object and the goal location, and the establish-
ment of a path between them in the form of a robotic chain.

1.2 Report Layout

This report is organized as follows. In Chapter 2 we discuss the state-of-
the-art in robotic exploration and navigation. In particular, we describe
a hierarchy of navigation strategies based on the classification schemes of
Trullier et al. [38] and Franz et al. [18]. Most of the strategies in the naviga-
tion hierarchy refer to the single robot domain. Therefore, we additionally
give some examples that were applied to groups of robots, detailing previ-
ous approaches to chain formation and the differences between them and
our work.

In Chapter 3, we give a description of the experimental framework we
used. After introducing the hardware implementation and the simulation
model of the s-bot, we describe the behaviour based controller that is used
for the chain formation.

In a first set of experiments, which is the subject of Chapter 4, we try to
reveal the general capabilities of a robot group performing chain formation
by analysing the number of formed chains and their length when varying
two probabilistic system parameters.

Then, we discuss the results of a second set of experiments in Chapter 5,
where a group of 10 robots has to find a prey object that is placed in the
environment, and establish a connection between the prey object and a base
station.

Finally, in Chapter 6 we draw some conclusions from our experiments
and indicate the future directions of our work.



Chapter 2

Robotic Exploration and

Navigation

The term navigation originates from nautics and refers to the science and
skill of sailing from one place to another. The navigator of a ship has
to determine the ship’s position, relate it to the desired destination, and
accordingly set an adequate course for the ship. This description has entered
into the domain of robotics nearly unchanged. For instance, Levitt et al. [24]
define navigation by the following three questions: (i) “Where am I?”; (ii)
“Where are other places relative to me?”; (iii) “How do I get to other places
from here?”.

The first question refers to the problem of localization, which is the pro-
cess of identifying the robot’s specific position. Answering this question does
not necessarily have to yield the specific position within a global reference
frame, but may more generally let the robot identify certain characteristics
of its position. The second question denotes the process of putting the cur-
rent position within a global representation of the environment. The answers
to these two questions lays the basis for extracting the required actions to
move towards a desired position, which is the object of the third question.

This interpretation of navigation is used by many robot navigation sys-
tems [23]. However, none of these systems has yet reached the flexibility
and performance of animals such as bees, ants, birds or fish [18]. This has
led robotics researchers to investigate more closely the navigation mecha-
nisms applied in biological systems, which gave birth to the research field of
biomimetic robot navigation. Navigation mechanisms in animals, the main
source of inspiration for biomimetic navigation, do not necessarily rely on
answering all or even any of the above mentioned three questions. On the

5



CHAPTER 2. ROBOTIC EXPLORATION AND NAVIGATION 6

other hand, the most important issue appears to be the identification of how
to reach the goal, which does not always require a localization or planning
process.

In the following section, we introduce the hierarchy of biologically in-
spired navigation strategies as defined by Trullier et al. [38] and extended
by Franz et al. [18]. Most of the discussed strategies refer to the single
robot domain. Therefore, in Section 2.2 we discuss some implementations
of exploration and navigation strategies in the multi-robot domain.

2.1 Navigation Hierarchy

Table 2.1 summarizes the six strategies in the hierarchy according to their
behavioural prerequisites and navigation competences. The table is split
into local navigation strategies and way finding strategies. Local navigation
strategies have also been called tactics [41] or local control strategies [23].
An agent chooses its action on the basis of current sensory or internal infor-
mation only, without representing any objects outside the current sensory
horizon. Way finding strategies, on the other hand, also store and make use
of global information.

2.1.1 Random Search

In the simplest form of navigation, a robot randomly explores the environ-
ment. A robot only requires the basic competences of locomotion and goal
recognition. Compared to the strategies presented in the following sections,
random search requires a large amount of time to detect the goal, but can
be used as a backup strategy when the agent is not able to detect the goal.

2.1.2 Target approaching

Navigation would not be possible without the basic ability of approaching
a perceived object. In biology, target approaching can be observed in most
animals that are capable of locomotion. For a robot, to approach a target
is a basic navigational requirement. To do so, the sensory information has
to be used in order to orient the robot in the direction of the goal, often
referred to as “body alignment”. The robot must then be able to move
toward the goal.

Braitenberg [7] shows that minimal sensory information and a very sim-
ple controller suffice to approach a target. Several studies address the target
approaching behaviour in insects. For instance, Webb [27, 39] developed a
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Table 2.1: The hierarchy of biologically inspired navigation strategies. Six
strategies are classified with respect to the information they store and their
characteristics.

Strategy Used information Characteristics

Local Navigation Strategies

Random search Goal recognition Backup strategy

Target approaching Goal recognition Basic requirement
for body alignment for navigation

Guidance Extraction of goal Local navigation
direction from local
landmark-configuration

Way Finding Strategies

Recognition- Set of landmark- Global guidance
triggered configurations
response for each sub-goal

Topological Set of landmark- Topological detours
navigation configurations linked by

topological relationships

Metric Set of landmark- Metrical detours
navigation configurations linked by Metric shortcuts

metrical relationships

controller that mimics the sound approaching behaviour observed in female
crickets, by using a mechanism that is able to discriminate the relative phase
and the different travel times of incoming sound signals. Webb implemented
this on a mobile robot that was able to find an artificial sound source [39].
This system was later extended so that the robot was able to find real crick-
ets [27].

2.1.3 Guidance

Guidance is the process of extracting the direction towards a goal from the
local landmark-configuration.1 Bees and ants are able to use visual guidance
to find a goal location which is only defined by an array of locally visible

1Landmarks, also referred to as beacons, are usually tall objects that can be perceived
from comparably far distances, or even globally in the environment.
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landmarks (for a review see [9]). Experiments suggest that to do this, an
insect needs to memorize a snapshot of the spatial relationship between itself
and the landmarks when it is located at the goal position. Later, when it is
searching the goal position, it attempts to move so as to replicate this view.

This simple form of guidance has inspired several robot implementations
as it enables a robot to find a goal that cannot be directly perceived, without
requiring a complex representation of the environment. For instance, Franz
et al. [19] applied a snapshot-based guidance method using a miniature robot
with a conical mirror camera. Robust performance was shown in a number
of experiments in a realistic low contrast environment. Möller et al. [32]
successfully implemented a similar method using the Sahabot 2 on a flat
plane in the Sahara desert with four black cylinders as landmarks.

2.1.4 Recognition Triggered Response

Guidance is a local navigation strategy as it requires only to process the
locally available information. On the other hand, recognition triggered
response, requiring the global localization of the robot, is a way finding
method. Recognition triggered response is in many ways similar to guid-
ance, as it relies on the perceived landmark configuration. It can be con-
sidered as an extension of the simple guidance strategy as, instead of just
memorizing one landmark configuration, a set of landmark configurations
is saved, each one connecting two locations by means of local navigation.
In order to associate the appropriate local navigation method with the cur-
rent landmark configuration, this method not only involves the recognition
of the goal, but also of the starting location. The sequence of recognition
triggered responses leads an agent to follow a route step by step, where the
arrival at one sub-goal triggers the next step. In this way, a robot can navi-
gate between locations that cannot be reached by local navigation methods
alone.

Insects can associate movement decisions with visual landmarks. Ants,
for instance, may learn to always pass a landmark on the right side [10]. This
association persists even when the order of the landmarks or their relative
positions to the nest are changed. Bees are able to learn routes, that is, a
sequence of recognition triggered responses [11].

Recognition triggered response has been used for numerous robotic nav-
igation systems. Gaussier and Zrehen [20], for instance, presented a robot
that learned associations between compass directions and landmark con-
figurations. The landmark configurations were extracted from panoramic
images obtained from a rotating camera. A place was characterized by a
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sequence of local landmark views and bearings connected by camera move-
ments. The system could find its goal from any position inside an office
room. Other implementations of recognition triggered response methods
can be found in [35, 37].

2.1.5 Topological Navigation

The recognition triggered response method is only capable to lead an agent
always through the same sequences of locations. There is no planning in-
volved in the navigation process, possibly causing problems, for instance, if
a part of the route is blocked by an obstacle. In that case the robot would
have to perform a random search to find a known place again. This can be
avoided if the spatial representation of the environment is goal-independent.
To do so, a robot needs to be able to detect whether different routes pass
through the same place, and in case they do, merge them by route integra-
tion. Integrated routes then become a topological global representation of
the environment, which can be expressed as a graph with vertices represent-
ing locations, and edges representing the local navigation method to connect
two vertices. Typically stored are the locations of objects, corridors, rooms
and entrances to such rooms. By planning alternative routes, an agent us-
ing topological maps can dynamically adapt its route when encountering
obstacles.

Biological systems seem to construct topological representations by inte-
grating routes in a bottom-up manner [25]. This ability has been observed
in many animals, ranging from honeybees [16] to humans [21]. Implementa-
tions on robots mostly follow such a bottom-up approach and mainly differ
in the used place recognition, local navigation and route integration strate-
gies.

Matarić [30], for instance, developed a behaviour-based controller for
topological navigation. In contrast to most other approaches, the recogni-
tion of places in the environment was only determined by their context, that
is, by the sequence of actions preceding the current one. The only informa-
tion stored in the topological graph representation were actions, not place
descriptions. The robot was capable of acquiring routes autonomously by
following the walls of the experimental room. Routes were integrated as
soon as the robot encountered previously visited locations. Mallot et al. [28]
used a miniature robot to explore hexagonal mazes. Between junctions,
the robot travelled by means of corridor following using infrared proximity
sensors. Mallot et al. did not integrate views into a common place represen-
tation. Instead, the view graph was learned by a neural architecture that
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associated sequences of views with movement decisions.

2.1.6 Metric Navigation

While for topological navigation a robot only memorizes key locations in the
environment, metric navigation requires to learn all known places and their
position in a global reference frame. In contrast to topological navigation,
where the spatial relations are known between two directly connected lo-
cations only, in metric navigation the spatial relationship between any two
locations can be extracted. An agent using metric navigation is able to
find new paths through unknown terrain, as the integration of the current
location into the reference frame allows it to deduce the spatial relations
to previously visited locations. This includes, for example, shortcuts and
detours around obstacles.

As for topological navigation, there is a vast literature concerning im-
plementations of metric navigation on real robots. For a detailed review, we
refer to [17, 31].

2.2 Multi Robot Exploration and Navigation

The navigation strategies detailed in the previous section have been success-
fully applied to the single robot domain. For multiple robots, however, there
are additional challenges as well as opportunities for exploration and navi-
gation of an environment, that may require extended or different strategies.
In this section, we give some examples of implementations in the multi-robot
exploration and navigation domain. In particular, we detail the previous ap-
proaches to chain formation and discuss the differences with our approach.

The concept of robotic chains was introduced by Goss et al. [22]. The
robots act as trail markers or beacons that can be perceived by other robots.
Robots are initially positioned around an initial beacon (the nest) and ran-
domly explore its neighbourhood up to a certain distance dmax. The robots
are prevented from exploring areas that are farther than this maximum dis-
tance from the nest. If a robot reaches the border of this area, it becomes a
beacon itself and communicates this to the other robots by emitting a signal,
thereby allowing them to explore its neighbourhood as well. This process
leads to the formation of one or more chains of robots. In order to give a
direction to the chain and enable in this way other robots to navigate to its
end or back to the nest, the signal emitted by a robot in a chain contains
a number i indicating how many robot-beacons are between robot i and
the nest. Figure 2.1 shows an example for a group of 10 robots forming two
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Figure 2.1: Robotic chains. Original concept of a directional robot chain by
Goss et al. [22], where each robot has a number representing its global rank
in the chain.

chains directly connected to the nest. Note that the left chain splits into two
branches: branching of a chain occurs when more than one robot connect
to a same robot-beacon.

Drogoul et al. [15] implemented in simulation several controllers inspired
by the foraging behaviour of ants and extended these to obtain robotic chains
that connect a nest with clusters of prey objects that have to be retrieved
back towards the nest.

Werger et al. [40] used chains of real robots for a prey retrieval task as
well. In their case, neighbouring robots within a chain sense each other by
means of physical contact: one robot in the chain has to regularly touch the
next one in order to communicate and maintain the chain.



Chapter 3

Chain Formation:

Our Approach

The goal of this chapter is to give a detailed description of our approach to
chain formation. It is therefore introductory to the following two chapters,
where the experimental results will be presented. In the following section
we give a definition of the chain formation problem. Then, in Section 3.2
we describe the differences of our work to the previous approaches to chain
formation. In Section 3.3, we detail the experimental setup and introduce
the hardware implementation and the simulation model of the s-bot we uti-
lized in our experiments. The s-bots are controlled by a behaviour based
controller. In order to form chains the robots have to perform different ac-
tions at different times. This is obtained by defining a set of states for a
robot, each one activating a different set of behaviours. The s-bot controller
is presented in Section 3.4, describing in detail the different states of our
control system, and the respectively active sets of behaviours.

3.1 Problem Definition

As mentioned previously, we are in general interested in developing control
methods that enable groups of robots to collectively solve exploration and
navigation tasks, and we have chosen chain formation as our basic methodol-
ogy. As will be detailed in the following chapters, we use open environments
without any borders. Initially, all robots are positioned in the proximity of
a reference object which can be considered as the home or the nest of the
robots. In order to explore the environment, the robots have to form one or
more chains, each one consisting of a sequence of robots, where the distance

12
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between two neighbouring robots never exceeds the maximum sensing range.
A basic requirement for a robot chain is that neighbouring robots within a
chain conserve their connection. This also involves a connection to the nest,
which can be regarded as the root of each chain. Robots that are aggregated
into a chain need to be distinguishable from other robots. Furthermore, a
chain has to be directional in the sense that a robot that navigates along
a chain is able to determine whether it moves away from or towards the
nest. When a goal location is encountered by a chain, a connection has to
be established, in this way forming a path that connects nest and goal, and
that allows other robots to navigate between the two locations.

3.2 Differences to Previous Approaches

Adopting the idea of robotic chains from the previous approaches [22, 15, 40],
we realized our system mainly modifying the original concept at four levels.
The first important difference consists in the way the robots in a chain are
numbered, as shown in Figure 3.1. In the original approach (Figure 3.1(a))
by Goss et al. [22] the chains are ordered with increasing numbers. On the
other hand, in our approach (Figure 3.1b) the same shape of chains as in
is ordered with a periodic sequence of three numbers. This can be done
exploiting only local information—the state of neighbouring robots—and
without the need of complex or symbolic communication, as will be shown
in Section 3.4. The use of a sequence of three numbers to form a directional
chain keeps the amount of information that has to be signalled by a robot
in a chain constant. This makes it easy to signal the sequence of three
numbers via, for instance, colours. In the original concept, on the contrary,
the amount of information transmitted with such a signal, and thereby the
complexity of the communication among the robots, increases for longer
chains. Thus, we expect our concept to lead to a better scalability for larger
group sizes.

The second difference of our work consists in the fact that Goss et al.
used an extremely simplified, basically a point simulator without any mod-
eling of embodiment, sensors or actuators. As opposed to this, we use a
physics-based 3D simulator and a model of the s-bot that closely matches the
attributes and behaviour of the real one, as tested for various settings [33].
Therefore, we believe that it will not be too difficult to validate our results
on the real s-bots in the future. Werger et al. use real robots for their ex-
periments. Nevertheless, their concept of chain formation relies on physical
contacts between neighbouring robots by regularly touching each other. In
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Figure 3.1: Robotic chains. (a) Original concept of a directional robot chain
by Goss et al. [22], where each robot has a number representing its global
rank in the chain. (b) Our concept, in which each robot in the chain has
one out of three numbers. The sequence of these numbers determines the
direction of the chain.

order to be able to do this, neighbouring robots in a chain have to stay very
close to each other, thereby significantly shortening the potential length of
the chain. Additionally, a chain has to be aligned, eliminating in this way the
possibility of branches in the chain. The possibility of branches in a chain is
of fundamental importance for our work as we investigate basic attributes
of the chain formation process such as the shape formed by a chain.

This leads us to the third difference of our work, which is reflected by
our different goal. While Goss et al. [22] and Werger et al. [40] use the idea
of chain formation for prey retrieval tasks, our ultimate goal is environment
exploration. In particular, we aim at controlling the shape of the formed
chains and the speed of the chain formation process by manipulating control
parameters in an individual robot.

Finally, the last difference consists in the fact that we extend the original
concept by introducing two additional control strategies that extend the
capabilities of the formed chains. In the original system, members of a
chain do not move at all. In a first robots that are aggregated into a chain
extension, we allows minimal movement in order to adjust their positions
such that the chain aligns itself. In a second extension, the members of a
chain collectively move so that the formed chain as a whole explores the
environment.

3.3 Experimental Setup

The s-bot has been designed within the SWARM-BOTS project. While an
individual s-bot is very simple and limited in its actions, a swarm of s-bots
should be able to efficiently overcome these limitations.
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Figure 3.2: One of the two first s-bot prototypes.

As the real s-bots are still in the construction phase at the time of writ-
ing, we have conducted all our experiments in simulation. Two s-bot pro-
totypes have been built and their specifications have been used to design
the simulation software Swarmbot3D, based on the SDK VortexTM toolkit,
which provides a 3D simulation that takes into account the dynamics and
the collisions of rigid bodies.

3.3.1 Hardware Implementation

Figure 3.2 shows one of the first two hardware prototypes of the s-bot. The
mobility of an s-bot is provided by a combination of two tracks and two
wheels, which is called Differential Treels c© Drive. It performs very well for
straight motion, where tracks ensure a powerful displacement, and in sharp
turns, where the wheels, bigger than the tracks and placed on a bigger
radius, play a key role and ensure a very good rotation. Furthermore, treels
lead to a good mobility on moderately rough terrain.

To enable an s-bot to grip an object or another robot, it is equipped
with a rigid and a flexible gripper. The rigid gripper can also be used to
lift objects, and is powerful enough to lift another s-bot if necessary. The
flexible gripper is controlled by three servo-motors mounted on the s-bot
turret, providing three degrees of freedom to extend the gripper, and to
move it laterally or vertically.

For signalling purposes, each s-bot is provided with 24 LEDs—8 groups
of red, green and blue LEDs—positioned on a ring around the robot. This
LED ring is of particular importance for our work because, as mentioned
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earlier, our concept of directional chains is based on signalling one out of
three colours. Furthermore, each s-bot is equipped with a standard colour
web-cam with a resolution of 640x480 pixels. A spherical mirror mounted
on top of an s-bot allows a 360◦ panoramic view. As shown for instance by
Marchese et al. [29], such a camera may be used to approximate the distance
towards a perceived object with good accuracy. Using this camera, an s-bot
can perceive the presence of other objects in the surrounding, particularly
other s-bots signalling their state through their LED rings. In order to
perceive its immediate vicinity, an s-bot is also endowed with 16 lateral
infra-red proximity sensors.

The main processor is an ARM-based processor with a clock frequency
of up to 400 MHz running a Linux operating system. Tests have shown that
this processor can process simple algorithms on full colour images (640x480)
in 100-200 ms. The power supply of an s-bot is ensured by two Lithium-Ion
accumulators placed between the tracks. Given their capacity of 10Wh and
an approximate power consumption of 3-5 W, the batteries should ensure
continuous operation for at least two hours.

In addition to the mentioned features, an s-bot has various sensor and ac-
tuator devices such as for instance light sensors, ground sensors, directional
microphones or a sound emitting system. For more information concerning
the hardware implementation of an s-bot, we refer to the project web-site
(http://www.swarm-bots.org) and to Mondada et al. [33].

3.3.2 Simulation Model

Given the hardware implementation, we have defined a simple s-bot model
for running experiments in simulation. The simulation software Swarm-
bot3D, based on the SDK VortexTM toolkit, provides the necessary function-
alities to develop an accurate 3D dynamic simulation. The model, shown in
Figure 3.3, reproduces all the important features of the prototype needed for
our experiments. There is no need for physical connections between s-bots
or between the s-bots and other objects, as for the formation of chains visual
contact between the s-bots suffices. For this reason the grippers are omit-
ted in our simulation model of the s-bot, thereby significantly increasing the
simulation speed. The s-bot is modeled as a cylinder (radius: 6 cm, height
6 cm). The model is equipped with four spherical wheels (radius: 1.5 cm),
two lateral and two passive wheels in the front and in the back. The lateral
wheels are responsible for the motion of the s-bot. The two passive wheels
model the balancing role of tracks, but, not being motorized, they do not
contribute to the motion of the s-bot.
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Figure 3.3: The s-bot model, reproducing all important features required for
our experiments.

As will be shown later in this chapter, our control system relies on the
detection of other robots that activated their LED ring in one specific colour.
We expect to be able to extract this information from the environment with
the omni-directional colour camera. In principle, it would be possible to
simulate the camera by rendering a robots view.1 However, simulating the
camera in this way is computationally very expensive. Therefore, we use
a simplified method to simulate the camera, in which we directly employ
extracted features of the environment instead of processing the raw image.
It is easy to access position and orientation of a simulated robot. These
data can be used to compute the relative visibility between the robots, also
taking into account the possibility for a robot to be shadowed and therefore
not visible. In this way, the simulated camera collects the data and returns
a vector with 360 entries, each one containing the approximate distance and
colour of the first visible object for the degree. Some noise is added to both
the perception of the distance and the colour.

For the purpose of collision avoidance, the control of an s-bot relies on
the infra-red proximity sensors. They are simulated by utilizing a sampling
technique based on data obtained for the Khepera robot [36], which has
infra-red proximity sensors similar to those of the s-bot. Using a similar
technique, we will soon collect samples from the s-bot proximity readings.

1In fact, in the SWARM-BOTS project there is ongoing work concerning this topic.
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3.4 Controller

In this section, we describe the controller used by the robots to form chains.
We start by qualitatively describing the different tasks involved in the for-
mation of chains in the following section. Afterwards, an overview of the
different states is given in Section 3.4.2. Finally, Section 3.4.3 details the
behaviours executed by the robots in the different states and explains the
specifications of the three different chain formation strategies we compared.

3.4.1 A Qualitative Description

In the introduction we described a scenario representing one of the goals of
the SWARM-BOTS project. In the scenario, a group of s-bots has to find
a prey item and establish a path to the nest that can then be exploited by
other robots to navigate towards and retrieve the prey. This work addresses
the search of the prey and the establishment of a path. As mentioned in
the previous chapter, our approach consists in exploiting the local inter-
actions between the robots, resulting in the dynamic formation of chains
representing a path. In the following, we give a qualitative description of
the behaviours governing the aggregation of the robots into chains.

Figure 3.4 presents a virtual scenario with ten robots at six different
phases of chain formation. As shown in Figure 3.4(a), all robots are initially
positioned around an object representing their home, the nest, and randomly
explore its neighbourhood up to a certain distance. A prey item has to be
found by the robots, and is positioned at a distance from the nest bigger
than the perceptual range of one robot. The exploring robots, hereafter
referred to as explorers, are prevented from exploring areas that are farther
than a maximum distance from the nest.

Triggered by a probabilistic event, a robot may become a robot beacon,
in this way allowing the other robots to explore its neighbourhood as well.
A robot beacon, hereafter referred to as chain-member, communicates to
the other robots by emitting a colour with its LED ring. This distributed
process leads to the formation of one or more chains of robots, as indicated
in Figure 3.4(b), where three robots activated their blue LEDs to signal
that they are connected to the nest, which is in fact also perceived as a
chain-member, but can be distinguished from other chain-members by its
unique colour. The colour attracts explorers in the vicinity as they tend
to move away from the nest.

In order to give a direction to the chain and enable in this way other
robots to navigate towards its end or back to the nest, the colours emitted by



CHAPTER 3. CHAIN FORMATION: OUR APPROACH 19

(a) (b)

(c)

(e) (f)

(d)

nest

nest nest

nest

nestnest

prey

prey

prey prey

prey

robots navigating
along a chain

to the prey

prey

from their chains
robots disaggregated 

chain with connection

into a chain
robots aggregated

Figure 3.4: The images show six snapshots of a virtual scenario. The small
circles represent the exploring robots (white) and the ones aggregated into a
chain (blue, green or red). The formation of chains is shown from an initial
situation (a) where all robots are positioned around the nest, represented by
a larger yellow cylinder. In (b) and (c) several chains are formed until one
of the formed chains eventually finds the prey in (d), thereby automatically
establishing a path between nest and prey. In (e) the members of the chains
that are not connected to the prey disassemble from the tail of a chain, and
finally reach the prey in (f).

the robots in a chain are ordered in a periodic sequence of the three colours
blue, green and red, as demonstrated in Figure 3.4(c). In Figure 3.4(d),
one of the formed chains finds the prey and establishes a path between the
prey and the nest, in this way enabling other robots to reach the prey by
navigating along the chain.

Similar to the aggregation of an explorer to a chain-member, the dis-
aggregation from a chain is also triggered by a probabilistic event. In Fig-
ure 3.4(e) two chain-members disaggregated from their chains and are mov-
ing back towards the nest.

The members of the chain which is connected to the prey, do not disag-
gregate as the last chain-member perceives the prey, thereby preventing the
others from disaggregating. On the contrary, all other robots will release



CHAPTER 3. CHAIN FORMATION: OUR APPROACH 20

themselves and reach the prey item by navigating along the only chain that
is maintained. This is indicated in Figure 3.4(f). Note that in this way the
robots reach the prey without being explicitly signalled that the prey was
found or where it was found. No central controller is required, and commu-
nication among robots takes place only through signalling an internal state
with the LED ring.

We designed our control system keeping the described desired behaviour
in mind. In the next section we explain the state model that we employed.

3.4.2 The State Model

The robots have to perform different actions at different times. To realize
this we defined a set of states for each robot. Depending on its state, a robot
performs a different set of behaviours. As already mentioned in the previous
section, we distinguish two main states: explorer, active when a robot
navigates along a chain to explore the environment, and chain-member,
active when a robot is aggregated into a chain. Furthermore, a third state
called lost, is active when a robot has lost contact with a chain or with
other robots.

The controller of a robot is discretized in time. The time step tcontrol

defines the length of the interval between the execution of two control se-
quences. The state of a robot is determined by its state during the last
timestep and its current perception. Transitions between the states are trig-
gered by probabilistic events and the local perception. Figure 3.5 gives an
overview of the basic model. A circle represents a state and an arc in combi-
nation with a condition represents a switch from one state to another. The
conditions are detailed in Table 3.1 and explained in the following.

In the next section we explain a basic model that contains the switches
between the three main states. The basic model suffices to understand the
basic rules governing the control system. However, the control of a robot
is not purely reactive within a main state, but may differ depending on the
past or current perception. In order to have a reactive control for a state,
each main state is split into two sub-states. This leads to an extended state
model with six states, which we refer to as the complete state model, and
which is described in Section 3.4.2.2.

3.4.2.1 The Main States

At the beginning of an experiment, an s-bot is in the explorer state, and
moves around the nest searching for chains that it can follow in order to get
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away from the nest. If an s-bot does not perceive a chain it will with proba-
bility Pexpl→chain per control time step tcontrol connect itself to the nest and
become a chain-member (condition 1 ). Otherwise, if it perceives a chain,
the explorerwill follow it until it perceives exactly one chain-member. This
restriction is necessary as, for instance, two perceived chain-members could
be aggregated into two different chains. Otherwise, when two perceived
chain-members are aggregated into the same chain, a connection would
create a loop between the three chain-members as our approach of chain
formation is based on the sequence of three colours, each chain-member

activating his LEDs in one of them. Thus, condition 1 avoids inter-chain
connections and loops within a chain. If one chain-member is perceived, a
probabilistic event will trigger the explorer to aggregate into the chain.

Two conditions restrict the disaggregation of a robot from a chain. First,
the chain-member should be situated on the tail of the chain in order to
guarantee the stability of a chain, as otherwise parts of chains could loose
contact to the nest. Second, the chain-member may not perceive any ex-
plorers in its neighbourhood. This ensures that explorers, which always
rely on a chain-member to navigate and return back to the nest, do not
loose contact to a chain (second part of condition 2 ). If these conditions are
fulfilled, a chain-member will with probability Pchain→expl per control time
step tcontrol disassemble from the chain and become an explorer.2

In addition to this probabilistic disaggregation from a chain, we intro-
duce another rule that can lead a chain-member to leave the chain and
become an explorer, as expressed by condition 3. More details concerning
this rule will be given in Section 3.4.3.2. Basically, condition 3 expresses
the possibility for two chain-members to merge if they have activated the
same colours with their LED ring. This leads to an attraction of the two
chain-members and causes one of them to disaggregate from its chain in
case the distance between the two is smaller than a threshold dmerge.

Finally, a robot may lose contact with the group, thereby entering the
state lost. We distinguish the case in which a robot cannot detect another
robot or the nest (condition 6 ), or if it detects no chain-member (condition
5 ). If a robot resumes contact to a chain (condition 4 ), it enters the state
explorer.

2We refer to the previous (next) chain colour as to the logically preceding (following)
chain colour in the sequence of three colours shown in Figure 3.4
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Figure 3.5: Transitions between the three main states. The states are rep-
resented by circles and the transitions by arcs. The conditions are detailed
in Table 3.1.

Table 3.1: The six conditions concerning the transitions between the main
states.

Condition Explanation

condition 1 probabilistic event Pexpl→chain and
exactly one chain-member detected

condition 2 probabilistic event Pchain→expl and
only previous chain colour detected

condition 3 distance between two chain-members

of the same colour
is smaller than dmerge

condition 4 chain-member detected

condition 5 no chain-member, but other robot de-
tected

condition 6 no robot detected

3.4.2.2 Complete State Model

The previously introduced basic model describes the three main states and
the switches between them. In the complete state model each of the main
states is split into two sub-states, leading to a total of six states. In this
section we explain the switches among the three pairs of states. The condi-
tions for the transitions between the three main states remain as previously
explained. Three conditions, summarized in Table 3.2, are added to express
the internal transitions among the sub-states.

For a chain-member, the two substates distinguish whether the robot
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Figure 3.6: The complete state model. The six states are represented by
circles and the transitions by arcs. Pairs of states belonging to the same
main state are surrounded by a dotted box. The conditions are represented
by numbers and detailed in Tables 3.1 and 3.2.

is the last member of its chain or not. This is decided on the basis of the
perception of the next chain colour. If it is perceived (condition 7 ), the
robot is in the state chain-member not last, otherwise (condition 8 ) it is in
the state chain-member last.

For an explorer, the distinction is made for whether it moves along
a chain in the direction away from the nest (forward-explorers) or back
towards the nest (backward-explorers). Initially, an explorer moves away
from the nest. After aggregating into and disaggregating from a chain, a
robot re-enters the explorer state, and then moves back towards the nest.
Once it perceives the nest (condition 9 ), it changes its internal state to find
another chain that leads it away from the nest again. This mechanism aims
at the dynamic creation of new chains and the destruction of old ones.

Finally, a lost robot is either in the state lost-chain or lost-robots
based on whether it lost contact to all other robots (condition 6 ), or it lost
contact to a chain but still perceives other explorers (condition 5 ).

3.4.3 Behaviours

All behaviours have been implemented following the motor schema
paradigm [1, 2, 3, 4]. Within each state, a set of behaviours is active in
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Table 3.2: The three conditions which trigger the transitions among the
main states.

condition 7 next chain colour detected

condition 8 next chain colour not detected

condition 9 nest detected

parallel. Active behaviours are synchronized in time, computing indepen-
dently for each control time step a vector that represents the desired di-
rection of movement with respect to the robot’s heading. The vectors of
all active behaviours are added and the resulting vector is translated into
movement of the wheels (see Section 3.4.3.4). In the following we detail the
sets of behaviours that are active in each of the six sub-states. We employed
three different strategies, static, aligning and moving, which only differ for
the behaviours of a chain-member. Their specifications will be described
along with the sets of behaviours for a chain-member in Section 3.4.3.2. All
parameters introduced in this section are summarized in Table 3.3.

3.4.3.1 Explorer

The qualitative behaviours of the two explorer sub-states differ in either
leading the explorer away from the nest (forward-explorer) or towards
it (backward-explorer). Both states are implemented using the same three
behaviours, differing only in the environmental context they refer to. Two
of the behaviours, adjust distance and move perpendicular, are executed
with respect to one chain-member. In order to select this chain-member,
an explorer determines the two closest ones and then chooses one of them
based on a lookup list as shown in Figure 3.7. A forward-explorer al-
ways chooses the chain-member that leads it away from the nest, while a
backward-explorer respectively chooses the opposite one. If the two clos-
est chain-members have identical colours, the robot chooses the closer one.
This is the only difference between the two states.

After having chosen a chain-member, the behaviours adjust distance and
move perpendicular each compute a vector, based on the relative position
to the chosen chain-member. This is shown in figure 3.8, where the white
and blue circles represent an explorer and a chain-member. Based on the
relative heading α and the distance d of the chosen chain-member, adjust
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Table 3.3: The most important parameters used by the controller.

Parameter Explanation Value

rs−bot s-bot radius 5.9 cm

dcamera camera sensing range 50 cm

dchain desired distance between two neigh-
bouring chain-members

40 cm

dexpl desired distance between an explorer

and his chosen chain-member

15 cm

vmax maximum speed for an s-bot 7.5 cm
s

tcontrol control time step 100 ms

gad gain value for adjust distance 5

gmp gain value for move perpendicular 1

gac gain value for avoid collisions 1

gal gain value for align 1

gmerge gain value for the merge behaviour 1

dlost desired distance for a lost robot to
other detected robots

10 cm

dmerge distance threshold for two
chain-members to merge into one

3 cm

choiceforward explorer backward explorer

Figure 3.7: Mechanism for an explorer to choose one chain-member.
The two coloured circles in the centre represent the colours of the two
closest perceived chain-members. The arcs represent the choice for a
forward-explorer, always choosing the one that leads it away from the
nest, and a backward-explorer, choosing the opposite.

distance computes a vector Fad that leads either to repulsion or attraction:

Fad =
dexpl − d

dcamera

·

(

cos(α)
sin(α)

)

, (3.1)
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Figure 3.8: The two behaviours that are executed with respect to the rel-
ative position to the chosen chain-member, in this case a blue one. Based
on relative heading α and distance d, adjust distance computes a vector Fad

that leads either to repulsion or attraction. The behaviour move perpendic-
ular returns a vector Fmp that is right-angled in a clockwise sense to the
chain-member. In combination, the two behaviours lead to movement that
turns around the chain-member at a particular distance.

where d is the current distance from the chain-member, dexpl = 15 cm is
the desired distance, and dcamera = 50 cm is the camera sensing range. If
d < dexpl the vector Fad will point away from the chain-member, and vice
versa.

The behaviour move perpendicular returns a vector Fmp that is right-
angled in a clockwise sense to the blue chain-member, and therefore only
depends on the relative heading α:

Fmp =

(

−sin(α)
cos(α)

)

. (3.2)

The third behaviour, avoid collisions, is controlled by the proximity sen-
sors and returns a vector that leads to repulsion from objects that are too
close. The normed activation Aj of a proximity sensor j results in a repulsion
vector that is opposed to the source of activation:

Fac = −
numProx

∑

j=1

Aj ·

(

cos(βj)
sin(βj)

)

, (3.3)

where βj denotes the direction of proximity sensor j with respect to the
robot’s heading.

The vector Fexpl describes the overall behaviour of the explorer and is
a weighted sum of the vectors given by the three behaviours:

Fexpl = gad · Fad + gmp · Fmp + gac · Fac, (3.4)
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Figure 3.9: The difference between a forward-explorer and a
backward-explorer. A chain of the robots, indicated by the small coloured
circles, is connected to the nest. The arcs indicate the path taken by robots
that are controlled by two different explorer states.

where the gain values are gad = 5, gmp = 1, and gac = 1. The combination of
the three behaviours leads to a movement that smoothly adjusts the robot’s
heading to turn around a chain-member at a certain distance, and at the
same time avoids collisions with other objects in the vicinity. As indicated
in Figure 3.9, these behaviours combined with the mechanism of choosing a
chain-member cause an explorer to either move to the end of the chain or
back to its root—the nest.

3.4.3.2 Chain Member

As mentioned earlier, we employ three different strategies for a
chain-member, differing in the degree of movement involved in the be-
haviours.

In the simplest strategy, static, a chain-member may not move at all.
The second strategy, aligning, allows minimal movement. Members in a
chain align themselves so that the chain takes a linear structure. The most
dynamic strategy, called moving, additionally allows movement of the last
chain-member, so that a chain as a whole moves around the nest, thereby
continuously exploring the environment. In the following the strategies are
explained in more detail.

Static Strategy: The control for a static chain-member is very simple.
When an explorer connects to a chain, it has to find the appropriate po-
sition, that is, a position at distance dchain or greater, with respect to the
previous member of the chain. Then, it activates the appropriate LEDs on
its ring with respect to its position in the chain and thereby enters the state
chain-member. The chain-member keeps its position and does not move
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Figure 3.10: The two behaviours that are executed with respect to the
relative position to two neighbouring chain-members. The adjust distance
behaviour only differs from the one used for explorers by the distance
constant. The adjust angle behaviour computes a vector Faa that leads to
a linear structure of the chain.

until it disaggregates from the chain. There is no difference between the
behaviours of the two chain-member sub-states.

Aligning Strategy: The aligning strategy executes up to three be-
haviours depending on the robot’s perception. Two of the three behaviours
are executed with respect to the previous and the next member in the chain.
These two behaviours are illustrated in Figure 3.10.

If the previous member is detected, the robot adjusts its distance to it
with the adjust distance behaviour already used for explorers, differing
only in the desired distance of dchain = 40cm:

Fad =
dchain − d

dcamera

·

(

cos(α1)
sin(α1)

)

, (3.5)

where α1 is the angle to the previous chain-member with respect to the
robot’s heading.

If both a previous and a next member are detected, the adjust angle
behaviour is executed in addition. It results in a movement between the two
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neighbouring chain-members:

Faa =

(

cos(α1) + cos(α2)
sin(α1) + sin(α2)

)

, (3.6)

where α2 is the angle to the next chain-member with respect to the robot’s
heading.

A robot may perceive multiple robots that activated the previous or next
chain colour. In this case it always chooses the closest ones. It is possible
that no previous chain-member is detected. This may occur for instance
if an explorer is shadowing the chain-member. In this case there is no
reference point for any movement. Therefore, the robot remains still.

After some preliminary experiments we recognized that due to the move-
ment implied in the behaviours for the aligning strategy, different chains
may interact with each other in some way. We observed that an inter-
action between different chains may result in a chaotic behaviour of the
chain-members, possibly lead to loops and the splitting of chains. We in-
troduce a new rule (condition 3 ) that, as shortly mentioned before, may lead
different chains to merge into one if their members perceive each other. The
behaviour merge consists in attraction between two chain-members of the
same colour, and the disassembly of one of the two chain-members in case
the distance between is lower than a certain threshold distance dmerge. This
is indicated in Figure 3.11, where two chains with three members merge into
one:

(a) The members of the two chains perceive each other. Due to the merge
behaviour each chain-member feels attracted to its counterpart in the other
chain as expressed by the vector Fme with:

Fme =
dcamera − d

dcamera

·

(

cos(α)
sin(α)

)

, (3.7)

where d is the current distance between two chain-members with the same
colour and α is the relative heading.

(b) The distance between the two blue chain-members has reached the
threshold dmerge so that the upper one of the two disassembles from its
chain. In order to have an unambiguous rule for merging, the one that
releases itself from the chain is always the chain-member that perceives its
counterpart in a clockwise direction with respect to its previous neighbour,
in this case the nest.

(c) The other two pairs of chain-members have merged as well as the
distances between them are lower than dmerge. The robot that previously
merged with the blue chain-member is already on its way back to the nest.
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Figure 3.11: Three snapshots to illustrate the merging behaviour. (a) Two
chains of each three robots are close to each other. Members of the chains
signalling the same colour feel attracted to each other as indicated by the
vectors Fmerge. (b) The distance between the blue robots has undercut the
threshold distance dmerge, so that one of the robots disassembles from the
chain. In our rule, the one that releases itself from the chain is always the
chain-member that perceives its counterpart in a clockwise direction with
respect to its previous neighbour, in this case the nest. (c) The same process
takes place for the other pairs of the chains too.

Finally, the already introduced avoid collisions behaviour is active for
each chain-member. We obtain the vectors Falign,last and Falign,notLast that
describe the overall behaviours for the aligning strategy:

Falign,last = gad · Fad + gac · Fac + gme · Fme, (3.8)

Falign,notLast = gad · Fad + gac · Fac + gme · Fme + gal · Fal, (3.9)

where the gain value gad is set to 5 and all other values are 1.
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Moving Strategy: The moving strategy is an extension of the aligning
strategy. One behaviour is added, and affects only the last member in a
chain. While for the aligning strategy the last chain-member only adjusts
its distance with respect to its precedent, in the moving strategy the move
perpendicular behaviour also used for explorers is employed in addition.
In this way the last chain-member turns around the previous one. As the
rest of the chain continuously tries to align itself, the movement of the last
member results in a clockwise movement of the whole chain around the nest.
The last chain-member acts as a kind of leader that triggers the chain as
a whole to move in a circle around the nest. The angular speed of a chain
is determined by the speed of its last member and its length. However, the
move perpendicular behaviour is only active for the last member of a chain
when it perceives no explorer. As an explorer shadows the perception of
a nearby chain-member, a chain-member can only be sure to be the last
member of the chain when no explorer is perceived. This, however, has
to be assured as the movement of a chain-member which is not situated at
the tail of the chain can possibly break up the chain and leave a part of the
chain without connection to the nest.

We obtain the vectors Fmoving,last and Fmoving,notLast for the two
chain-member states:

Fmoving,last = gad · Fad + gac · Fac + gme · Fme + gmp · Fmp,(3.10)

Fmoving,notLast = gad · Fad + gac · Fac + gme · Fme + gal · Fal, (3.11)

where the gain values are set to gad = 5, gmp = 0.7, and the value 1 for the
others.

3.4.3.3 Lost

An explorer uses a chain to navigate in the environment, explores new
areas and find a way back to the nest. Therefore, if it does not perceive any
chain-members, it is lost as it has no reference point. A chain-member,
on the other hand, is not necessarily lost in case it perceives no other
chain-members as they might be shadowed by explorers. We discrimi-
nate a lost robot by whether it still perceives other explorers or not, and
detail the respective behaviours in the following.

Lost Chain: If a robot perceives no chain-member, but one or more
exploring robots, it tries to stay near them. The idea is that the perceived
robots may have contact to a chain. Therefore, following them can lead
the robot back to a chain. We implement this by executing the previously
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discussed adjust distance behaviour for each detected robot, and summing
them up:

Fad =

numDetectedRobots
∑

j=1

dlost − dj

dcamera

·

(

cos(αj)
sin(αj)

)

, (3.12)

where dlost = 10cm is the desired distance, dj is the current distance, and
αj is the relative heading to a detected robot j. Additionally, the avoid
collisions behaviour is active.

Lost Robots: In case no other robots can be detected, a robot does
not move at all and waits until it detects other robots again.

3.4.3.4 Low Level Motor Control

Once the active behaviours have been summed up, the resulting vector Fres

has to be translated into movement of the two wheels. This is done by the
following function:

(

lSpeed

rSpeed

)

=
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where lSpeed and rSpeed denote the speed of left and right wheel, and αres

is the desired direction of movement with respect to the current heading.



Chapter 4

Chain Formation

In the last chapter we gave a detailed description of the control system.
The goal of this chapter is to show the chain formation capabilities of the
robotic swarm and to analyse the impact of two control parameters, namely
the probability Pexpl→chain for an explorer to aggregate into a chain and
the probability Pchain→expl for a chain-member to disaggregate from one,
on the group behaviour.

We present a first series of experiments that we conducted in order to
test the control system, and evaluate it by observing the robot group while
forming chains, in this way putting the focus on the analysis of the basic
attributes of chain formation.

Section 4.1 explains the experimental setup, specifying the environment,
the control parameters we applied, and the performance measures we used to
evaluate the system. Afterwards, Section 4.2 discusses the results. Finally,
Section 4.3 draws some conclusions and summarizes the results.

4.1 Experimental Setup

We employ the simplest possible environment, only consisting of the nest
and the s-bots themselves. Walls are omitted as well as obstacles, holes or
any other objects. By doing so, we can concentrate on analysing the features
of chain formation without having to take care of any kind of environmental
hazards. In the future, we will extend the capabilities of the control system
to enable it to cope with more complex environments. However, also with
the basic environment used for this work, we were able to extract interesting
insights. Furthermore, for what concerns the basic analysis and the under-
standing of chain formation, we consider it to be advantageous to start with
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such a simple environment.
In the following, we give a detailed description of the technical specifi-

cations we used for the first series of experiments.

4.1.1 Environment and Parameters

At the beginning of a trial, all s-bots are in the behavioural state
forward-explorer and randomly positioned within a circle around the nest
with radius rinit = 50 cm. The nest is a cylindrical object with radius
rnest = 12 cm, which is approximately twice the size of an s-bot. As the nest
is initially within the camera sensing range dcamera of all robots, each s-bot
can perceive it unless it is shadowed by another robot. Each trial is charac-
terized by the two control parameters Pexpl→chain and Pchain→expl, and by
a seed that initializes a random number generator to determine the initial
positions of the robots, and their probabilistic choices during an experiment.
For each of the two probabilities Pexpl→chain and Pchain→expl ten different
values are applied:

Pexpl→chain

Pchain→expl
∈ {0.001; 0.002; 0.005; 0.01; 0.02; 0.05; 0.1; 0.2; 0.5; 1.0},

resulting in 100 different combinations. For each combination, 100 seeds
are used to initialize an experiment. An experiment runs for texp = 1, 000
simulated seconds, corresponding to 10, 000 control time steps. Furthermore,
we vary the number of robots, using a group size of either 5 or 10 robots.
Table 4.1 summarizes the parameters.

Table 4.1: Complementing Table 3.3, the table shows the additional param-
eters concerning the experimental setup.

Parameter Explanation Value

rinit radius from the nest concerning the
circle within which the s-bots are ini-
tialized

50 cm

rnest nest radius 12 cm

texp duration of one experiment 1, 000 s
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4.1.2 Performance Measures

For this basic experimental setup, we analyse two attributes of the system:
the number of formed chains and the largest distance from the nest covered
by a chain. Both performance measures are recorded at the end of each
experiment.

In view of using robotic chains for connecting different locations in the
environment, the shape of the chains, mainly determined by the number
of formed chains, is of fundamental interest. We aim at controlling the
number of formed chains by varying the probabilistic control parameters.
Different shapes may be advantageous for certain environmental conditions,
and disadvantageous for others. For instance, if the s-bots form a single long
chain, the advantage is that the chain can reach areas that are comparably
far away. On the other hand, a single chain is directed towards one direction
only, and therefore, unlike a system forming multiple chains, it does not
thoroughly cover the area around the nest. The number of formed chains is
computed by counting the number of chain-members directly connected to
the nest.

The second performance measure is the distance between the nest and
the farthest member of a chain. It is an important indicator for the efficiency
of the system as it represents the potential length of a path that can be
formed.

4.2 Results

In this section, we analyse the impact of the two probabilistic control pa-
rameters on the structure of the formed chains. Furthermore, we compare
the three strategies, which differ in the amount of chain movement. In the
simplest strategy, static, members of the chain cannot move. They act as im-
mobile beacons that form a static path. As a first extension of this basic ap-
proach, the aligning strategy allows limited movement to chain-members. A
chain-member can align itself with respect to the previous and next member
of the chain, so that a linear chain is formed. In the last and most dynamic
strategy, moving, the last member of a chain turns around its precedent
chain-member. All other chain-members only align themselves. This leads
to a coordinated collective movement of the whole chain around the nest.
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4.2.1 Qualitative View on the Three Strategies

Before presenting the quantitative results of our experiments, we qualita-
tively describe the behaviour resulting from the three strategies. Figure 4.1
shows a selection of snapshots from a simulation with three robots applying
(a) the static strategy, (b) the aligning strategy, and (c) the moving strat-
egy. The snapshots are taken just after the s-bots were initialized (top row),
after one minute (centre row), and after 5 minutes (bottom row). In order
to give an impression about the explored area, the trajectories of the s-bots
are displayed.

For each strategy, the robots are initialized at the same positions around
the nest. After one minute, the robots have already formed one or two
chains. While the chains of the static and the aligning strategy do not move,
the chain in the moving strategy turns around the nest and has therefore

(a) (b) (c)

Figure 4.1: Snapshots of experiments with three robots controlled by (a)
the static strategy, (b) the aligning strategy and (c) the moving strategy.
The pictures are taken at the beginning of the experiments (top row), after
one minute (centre row) and after five minutes (bottom row).
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explored a larger part of the environment than the other two strategies. In
the last row, as indicated by the trajectories, the s-bots controlled by the
moving strategy have completed a whole circle while staying aggregated, in
this way exploring all the area they could without getting disconnected from
the nest. In the other two strategies, the exploration of the environment only
takes place by destructing a chain and forming another one somewhere else.

4.2.2 Number of Chains

Introducing our numerical results, Figure 4.2 displays the number of formed
chains for the three strategies as a function of Pexpl→chain and Pchain→expl,
and a group size of 5 s-bots. The two probabilities are scaled logarithmically
on the horizontal axes. Both (a) the mean value and (b) the standard
deviation over 100 repetitions are given.

Looking at the graphs, we can first of all recognize that for all control
parameters and all strategies, the system forms in average between 1 and
3 chains. The results for the static and the aligning strategy are very sim-
ilar. A maximum number of roughly three formed chains is reached for
Pchain→expl close to 0, and Pexpl→chain close to 1.

Pexpl→chain determines the speed of the chain formation process. In
other words, a high value for Pexpl→chain leads to a system that forms chains
very quickly. In fact, for Pexpl→chain = 1, a forward-explorer immediately
aggregates into a chain in case only one chain-member is perceived. As
there are no chains at the beginning of the experiment, the s-bots directly
form as many chains as possible. The behaviour of a forward-explorer can
then be described as impatient because it tends to become a chain-member

as quickly as possible. On the other hand, when Pexpl→chain is set to a low
value, only one chain is formed in most of the cases. The explorers can
be described as rather patient, as the low probability to aggregate into a
chain causes the robots to search for existing chains rather than starting
one. Note that an explorer requires approximately 10–15 seconds to make
one complete circle around the nest. If the probability Pexpl→chain is set to
10−3, the expected time before it is triggered to aggregate into a chain is at
least 50 s,1 which is enough time to turn three times around the nest, and
probably also enough time to find a chain, if there is any. Therefore, only
one chain is formed in most cases for low values of Pexpl→chain.

1This results from E(texpl→chain) ≥ tcontrol

2·Pexpl→chain
. Only a lower bound can be given,

because constraints related to the conditions that restrict a state transition may cause a
further delay.
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(a) (b)

Figure 4.2: Mean (a) and standard deviation (b) over 100 runs for the num-
ber of formed chains for a group of 5 s-bots and the three strategies. The two
control parameters Pexpl→chain and Pchain→expl are scaled logarithmically on
the horizontal axes.

The second control parameter, Pchain→expl, determines the speed of chain
destruction, and therefore has a strong effect on the lifetime of a chain. For
high values, chain-members disaggregate very quickly. In the extreme case
of Pchain→expl = 1 the last member of a chain immediately releases itself
from the chain unless it perceives an explorer. In average, a lower num-
ber of chains is formed than for a system with a lower value of Pchain→expl.
In particular, shorter chains have a significantly shorter lifetime and there-
fore disband very fast in favour of longer ones. Therefore, fewer chains are
formed. Nevertheless, Pchain→expl only has an impact on the number of
formed chains when the other control parameter, Pexpl→chain, is set to a
rather high value, where the group of robots in general tends to form more
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chains.
For the moving strategy, the number of formed chains is in general lower

than for the other two strategies. Usually, no more than two chains are
formed, and for a wide area of parameter combinations there is just one.
The main reason can be found in the merging mechanism, which causes an
attraction between two chain-members of the same colour, so that one of the
two may disaggregate from the chain. Even though the merging behaviour
is also employed for the other two strategy, it has no impact there because
the chains themselves are static, thereby preventing interactions between
different chains. On the contrary, in the moving strategy chains encounter
each other and merge frequently.

It is worth noting that for the moving strategy, low values of both prob-
abilities lead to a very low standard deviation. This further confirms that
the moving strategy nearly always leads to the creation of a single chain
when using such experimental setting.

In Figure 4.3, the same measure is displayed for an increased group
size of 10 s-bots. Similar to the results for 5 s-bots, the number of formed
chains is roughly in the range [1, 3] for the static and the aligning strategy,
and in the range [1, 2] for the moving strategy. As the number of formed
chains does not scale with the robot group size, we can assume that that
there is an upper bound to the number of formed chains. An explorer

may only aggregate itself into a chain in case it perceives no more than one
chain-member including the nest. For a certain number of chains around
the nest, an explorer in the vicinity of the nest always perceives at least one
chain-member. Therefore, if there are already several chains, an explorer

cannot form a new chain and navigates along one of the existing chains. For
the given nest size, our experiments have shown that in most cases three
chains suffice to prevent the creation of new ones. When using a bigger nest,
more than three chains can be formed.

4.2.3 Distance from Nest

Concerning the number of formed chains, the results are very similar for the
static and the aligning strategy. For our second performance measure, the
distance of the farthest chain-member from the nest, there are significant
differences between the two. This is shown in Figure 4.4, where the length of
the longest chain at the end of each trial is displayed for a group size of five
robots. The distances range from 70 to 160 cm for the static, and from 90
to 210 cm for the aligning and moving strategy. In all three strategies, the
chains reach longer distances for smaller values of both control parameters.
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A distance of 210 cm corresponds to approximately four times the sensory
range of a single robot.

For all 100 combination of the two probabilities Pexpl→chain and
Pchain→expl, the aligning strategy and the moving strategy reach higher dis-
tances from the nest than the static strategy. For the moving strategy this
can be explained by the fact that there are in general fewer and longer
chains. Nevertheless, for certain parameter combinations the number of
formed chains is similar, but the distances differ. This difference arises from
the adjust angle behaviour, which is executed for the aligning and the mov-
ing strategy. It results in a linear structure of the chains, which thereby
reach locations that are farther away from the nest. On the contrary, for
the static strategy, the structure of the chains is not necessarily linear and
can take various forms.

(a) (b)

Figure 4.3: Mean (a) and standard deviation (b) over 100 runs for the
number of formed chains for a group of 10 s-bots and the three strategies.
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Figure 4.4: Longest distance covered by one chain for a group of 5 s-bots
and the three strategies.

The aligning and the moving strategy reach approximately the same
distances from the nest. However, for the moving strategy high distances are
reached for a wider parameter range. In particular, for Pchain→expl = 10−3,
the chains are always at least 160 cm long, while for the static strategy the
length decreases to about 120 cm. This can be explained by considering the



CHAPTER 4. CHAIN FORMATION 42

Figure 4.5: Mean over 100 values of the longest distance covered by one
chain for a group of 10 s-bots and the three strategies.

merging mechanism, which results in a lower number of longer chains.
Figure 4.5 displays the distances reached by the three strategies for a

group of 10 s-bots. For this increased group size, the distances range from
105 to 275 cm for the static, from 160 to 390 cm for the aligning, and
from 160 to 420 cm for the moving strategy. The differences between the
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three strategies are basically the same as for a group size of 5 robots, but
unlike the number of chains, their length increases approximately linearly
with a growing number of robots. This results from the more or less linearly
increasing number of robots per chain.

4.3 Conclusions

In the presented results, we tried to reveal the general capabilities of a robot
group performing chain formation. Governed by local behaviours, the in-
dividuals in the group aggregate into chains to collectively overcome the
limitations of a single robot. The two control parameters have a significant
effect on the overall behaviour of the robot swarm. In particular, low values
for Pexpl→chain result in a patient behaviour of the explorers, so that in
most of the cases a single chain is formed. On the contrary, for Pexpl→chain

close to 1, the robots’ behaviour can be considered as rather impatient, seek-
ing to form many chains as fast as possible. The second control parameter,
Pchain→expl, determines the stability of the formed chains. Setting it high
decreases the lifetime of the formed chains and increases the frequency of
chain disbandment. By varying the two probabilities, several attributes of
the global structure can be controlled. This concerns in particular the num-
ber and length of the formed chains, and the speeds of the processes that
lead to the formation and the destruction of chains.

Among the three strategies, the moving strategy is the most active one,
as the robots aggregated into a chain explore their environment by moving
around the nest in circles. In the other two strategies, the chains are rather
immobile. While for the static strategy a chain-member is restricted from
any movement, chain-members controlled by the aligning strategy align
themselves with respect to their neighbouring members in the chain, in this
way forming linear structures. For these two strategies, the exploration of
unvisited areas in the environment only takes place through the destruction
of existing chains and the formation of new ones. Therefore, we expect
the moving strategy to be the most effective one concerning the exploration
of the environment. In order to test this, we conducted a second series
of experiments, where we compare the performance of the three strategies
when the group of robots has to find a goal item, as detailed in the following
chapter.



Chapter 5

Goal Search

In this chapter, we present a second series of experiments, in which a group
of ten s-bots has to find a goal item—the prey—placed at varying distances
from the nest. We will describe the experimental setup in the following
section. Afterwards, Section 5.2 will discuss the results of our experiments.
Finally, we will summarize our insights and draw some conclusions in Sec-
tion 5.3.

5.1 Experimental Setup

In this section we detail the specifications used for the second series of exper-
iments and introduce the measures that we applied to assess the performance
of the robot groups in each trial.

5.1.1 Environment and Parameters

Most of the parameters used for the previous experiments remain unchanged.
The s-bots are initialized in the same circle around the nest, and in the state
forward-explorer. We conducted our experiments for 100 combinations of
the two control parameters Pexpl→chain and Pchain→expl, applying for each
one ten values in the range [0.001, 1]. Again, each trial lasts for 1000 s. A
cylindrical prey item is added to the environment, representing the robots’
goal. Having approximately twice the size of an s-bot, the prey has the same
radius as the nest. It is characterized by a unique colour, and can in this way
be recognized by the robots. In all trials, the number of s-bots is fixed to
ten. For this particular group size, we vary the difficulty of the experiment
by positioning the prey at six different distances from the nest.
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Figure 5.1: A chain of three s-bots forming a path between nest and prey.
The distance dprey is chosen in such a way that the chain has to be aligned
and directed towards the prey in order to perceive it.

In the simplest setup at least three robots are required to aggregate
into a chain to connect the nest with the prey. For each additional setups
the prey distance was increased in such a way that one additional robot is
required to aggregate into the chain that establishes the connection, leading
to at least eight required robots for the largest prey distance.

Figure 5.1 illustrates the method we applied to choose the distance be-
tween nest and prey. The image shows a chain of three s-bots connecting
nest and prey. The prey is located at a distance dprey from the nest, such
that the chain can only locate it in case it is directed towards the prey and all
the chain-members are aligned. The distance dprey depends on the distance
between two neighboured chain-members dchain, the s-bot radius rs−bot and
the camera sensing range dcamera, and can be calculated as follows:

dprey = n · dchain + (n − 1) · rs−bot + dcamera; n ε {3, 4, 5, 6, 7, 8},

where n is the minimum number of s-bots required in a chain to establish
a path between nest and prey. For the given range of n, the distances vary
between 180 and 410 cm, respectively requiring between 30 and 80% of the
robots to be aggregated into the same chain pointing in the direction of the
prey in order to find it.

5.1.2 Performance Measures

In the first series of experiments we discussed the basic capabilities of the
three strategies, focussing on the number of formed chains and the length



CHAPTER 5. GOAL SEARCH 46

they reach. The quantitative results revealed the differences between the
strategies and the impact of the control parameters.

After having analysed these attributes of the chain formation process,
the goal search task gives us the possibility to assess the potential of a robot
group in exploring the environment by forming chains, and to compare this
for the three strategies. We define two performance measures: success rate
and completion time. The success rate represents the percentage of suc-
cessful trials for a particular parameter combination and the 100 seeds. An
experiment is considered to be successful if the robots are able to establish
a path between nest and prey within 1000 s.

The completion time additionally considers the time required by the
group of s-bots to locate the prey. For a successful run, the completion time
is set to the time at which the prey was found. In case the robots do not
find the prey, the completion time is set to 1000 s.

5.2 Results

Our results are sorted by strategy, first discussing the static strategy, then
the aligning strategy, and finally the moving strategy. For each strategy, we
present the average value of the success rate, and both the average value
and the standard deviation of the completion time.

5.2.1 Static Strategy

For the static strategy we conducted experiments with three different exper-
imental setups, placing the prey at either 180, 225 or 270 cm, respectively
requiring at least three, four or five robots to be aggregated into a same
chain in order to find the prey. The results are summarized in Figure 5.2,
showing the average success rate, and in Figure 5.3, displaying the average
completion time and its standard deviation.

When applying the easiest setup, 30% of the ten s-bots are required to
connect nest and prey. For the best parameter combinations, the robots are
able to successfully solve the task in approximately 95% of the cases, and in
average within less than 250 s. However, the highest success rates diminish
to 60% when the distance to the prey requires four robots in a chain to find
it, and to 34%, when five robots are required.

The system performs best when the probability to disassemble from
a chain, Pchain→expl, is close to 1. This can be explained by the higher
exploration speed related to higher values of Pchain→expl. High values of
Pchain→expl lead the robots to disassemble from the tail of a chain rather
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Figure 5.2: Success rate of finding the prey for the static strategy and three
prey distances requiring at least three (dprey = 180 cm), four (dprey =
225 cm), or five (dprey = 270 cm) s-bots to be aggregated into a same chain
to find the prey.

fast. Consider for instance a chain that is not directed towards the prey.
Such a chain is not able to locate the prey. Therefore, it is advantageous
if such a chain is disassembled and a new chain is formed into a different
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Figure 5.3: Mean (a) and standard deviation (b) of the completion time to
find the prey, the static strategy and three prey distances requiring at least
three (dprey = 180 cm), four (dprey = 225 cm), or five (dprey = 270 cm)
s-bots to be aggregated into a same chain to find the prey.

direction. Low values of Pchain→expl increase the time it takes the system to
give up chains and form new ones, thereby decreasing the efficiency in ex-
ploring unknown areas of the environment. Thus, high values of Pchain→expl

increase the success rate of the s-bots to find the prey.
Interestingly, the most successful values of the other parameter, the prob-

ability to aggregate into a chain, Pexpl→chain, do not remain constant for dif-
ferent distances of the prey. While for the shortest distance between nest and
prey, the values of Pexpl→chain are around 0.1, they decrease to around 0.01
for increasing distances of the prey. This is not surprising when the results
of the previous chapter are taken into account, where we have shown that
the higher Pexpl→chain, the higher is the number of formed chains. When
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the prey is placed far away from the nest, a high number of chains may be
disadvantageous as, given the limited number of available s-bots, the chains
could be too short to reach the prey. Therefore, for high prey distances,
low values of Pexpl→chain are more successful, leading to the formation of
fewer and longer chains. For short prey distances, on the other hand, short
chains may suffice to find the prey. Higher values of Pexpl→chain, leading to
the simultaneous formation of several chains, are then more successful, as
they lead the robots to explore different areas of the environment in parallel.
Therefore, there is not one particular value of Pexpl→chain that maximizes
the performance of the system, but the value depends on the amount of
robots that are required to aggregate into a same chain in order to establish
a connection between nest and prey.

5.2.2 Aligning Strategy

For the aligning strategy we have conducted experiments using the same
three setups as for the static strategy. The difference between the aligning
and the static strategy consists in the behaviour of a chain-member. If it
is controlled by the static strategy, a chain-member does not move at all.
On the other hand, the aligning strategy leads a chain-member to adjust its
position in order to reach a certain distance and angle with respect to its
neighbours, resulting in the alignment of the chains.

Our results, which are summarized in Tables 5.4 and 5.5, show that this
difference suffices to lead to a better performance of the robots in finding
the prey. The aligning strategy outperforms the static one for all prey
distances in both the success rate and the completion time. When the prey
is 180 cm away, there is a wide range of parameter combinations that lead to
high success rates. In particular, high values for both probabilities are very
successful, leading to an average completion time of less than 200 s. When
the prey is further away, the performance decreases, with maximum success
rates of 78% for a prey distance of 225 cm and 56% for a prey distance of
270 cm. However, the decrease in performance is still more modest than for
the static strategy, where the success rates drop to 60 and 34%.

As shown in the previous chapter, the alignment of the chains allows
them to reach further distances from the nest when compared to the static
strategy. Due to the alignment, a formed chain is linearly directed towards
one direction. Therefore, two different chains with the same number of
chain-members always reach approximately the same maximum distance
from the nest. This is not the case for the static strategy, where a chain is
not aligned, and therefore not linear. The distance reached by a chain then
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depends on its shape. The alignment of the chains maximizes the distance
reached from the nest, and in this way increases the efficiency in exploring
the environment.

Figure 5.4: Success rate of finding the prey for the aligning strategy and
three prey distances requiring at least three (dprey = 180 cm), four (dprey =
225 cm), or five (dprey = 270 cm) s-bots to be aggregated into a same chain
to find the prey.
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Figure 5.5: Mean (a) and standard deviation (b) of the completion time to
find the prey, the aligning strategy and three prey distances requiring at
least three (dprey = 180 cm), four (dprey = 225 cm), or five (dprey = 270 cm)
s-bots to be aggregated into a same chain to find the prey.

Despite the difference in performance, there are several similarities be-
tween the two strategies. For both, already formed chains do not contribute
any more to a further exploration of the environment as the chains as a whole
remain static. Exploration is then restricted to the destruction of chains and
the formation of new ones into previously undiscovered directions. As this
process is mainly governed by the two probabilistic parameters, the most
successful combinations are very similar for the two strategies. The values
of Pchain→expl are close to 1, which leads to a high destruction rate, and the
most successful values of the second parameter, Pexpl→chain, decrease with
increasing distances of the prey.

Low values of Pexpl→chain decrease the number of formed chains, an
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attribute that is advantageous if the robots have to find a prey that is
far away. However, a low value of Pexpl→chain also decreases the probability
that a chain is formed into a new direction. Imagine, for instance, that all
s-bots are aggregated into one chain. With probability Pchain→expl at each
time step the last member of this chain will disaggregate and move back
towards the nest. Once the robot perceives the nest, there are two possible
actions: (i) it starts a new chain by connecting itself to the nest, or (ii) it
moves around the nest until it perceives the chain from which it previously
disconnected and then moves along this chain and finally reconnects to it.
Which one of the two cases occurs depends solely on the time that the robot
turns around the nest without being triggered to become a chain-member,
which in turn is inversely proportional to the value of Pexpl→chain. The lower
the value of Pexpl→chain, the lower is the probability that the robot starts a
new chain, and the higher is the probability to move along the chain from
which it previously disconnected.

This is particularly problematic for a task with a high prey distance,
where a high percentage of the available robots have to be aggregated into
the same chain in order to reach the prey. On the one hand, a low value of
Pexpl→chain is advantageous and even required, as it leads to the formation
of fewer and longer chains. On the other hand, as stated above, a low value
of Pexpl→chain decreases the probability that new chains are formed into
new directions. An already formed chain tends to persist rather than to
disaggregate in favour of new ones, and in this way it blocks the exploration
of the environment. Therefore, whether the prey is found or not strongly
depends on the initial direction of the first formed chain.

5.2.3 Moving Strategy

The moving strategy differs from the other two strategies by allowing the
formed chains to collectively move. This movement is led by the last member
of a chain. While all behaviours of the aligning strategy remain active, the
last chain-member executes one additional behaviour that leads it to turn
around its predecessor in a clockwise sense. As all other chain-members

adjust their position and angle with respect to their neighbours, the chain
as a whole continuously realigns itself, in this way following the movement
of the last member of the chain.

Being controlled by the moving strategy, the robots’ exploration of the
environment is not any more restricted to the destruction of already cre-
ated chains and the recreation of new ones, as is the case for the static
and the aligning strategy, but additionally takes place through the collec-
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tive movement of a formed chain, which thereby actively contributes to the
exploration process. Therefore, the moving strategy should lead to a higher
efficiency in locating a prey item. This is confirmed by our results as shown
in Figure 5.6, displaying the success rates, and in Figure 5.7, displaying the
average and standard deviation of the completion time for the same exper-
iments as conducted for the two other strategies with the prey distances of
180, 225 and 270 cm.

For the shortest prey distance there is a wide parameter range that leads
to high success rates. Only when a small value for Pexpl→chain of less than
0.01 is applied the performance drops below 70%. The best performing
combinations of the two parameters lead the robots to find the prey, in
average, in less than 100 s, compared to respectively 250 and 200 s for
the static and the aligning strategy. Unlike the other two strategies, the
moving strategy is still able to produce success rates of close to 1 when the
prey distance is increased to 225 and 270 cm. The completion time then
increases to approximately 200 and 320 s, compared to respectively 630 and
790 s for the static, and 480 and 680 s for the aligning strategy.

Given the better performance of the moving strategy, we conducted three
additional experiments on more difficult setups where the prey distance was
increased to 315, 360 and 405 cm, requiring at least six, seven or eight s-bots
to be aggregated into the same chain to connect nest and prey. The success
rate and completion time are summarized in Figures 5.8 and 5.9. The s-bots
reach success rates of up to 93, 84 and 74 % in the three experiments. These
values are obtained for Pchain→expl=0.001 and 0.005≤Pexpl→chain≤0.02.

Opposed to the other two strategies, the s-bots’ performance is maxi-
mized for a very low probability to disaggregate from a chain. As previously
explained, for the other strategies exploration is restricted to the destruction
and recreation of chains into new directions. Contrary to that, s-bots con-
trolled by the moving strategy explore the environment mainly when they
are aggregated into a chain by collectively moving around the nest. A high
value of Pchain→expl is disadvantageous for two reasons. First, it disturbs the
collective movement of the chain. Whenever a chain-member disaggregates
from the tail of a chain, the chain as a whole stops to move. Remember that
in order to maintain the stability of a chain, the last member of a chain may
only move around its predecessor in case it perceives no explorer. If an
s-bot disconnects from a chain, the new tail of the chain perceives this s-bot
as explorer and may not move, thereby stopping the movement of the chain
as a whole. Therefore, applying a low value for Pchain→expl maximizes the
time that the chain moves and the efficiency in exploring the environment.

The second reason why a high value of Pchain→expl is disadvantageous
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Figure 5.6: Success rate for finding the prey for the moving strategy and
three prey distances requiring at least three (dprey = 180 cm), four (dprey =
225 cm), or five (dprey = 270 cm) s-bots to be aggregated into a same chain
to find the prey.

is related to its impact on the length of a chain. As shown in the previous
chapter, a higher probability to disaggregate from a chain leads to a decrease
in the length of a chain. For short prey distances this may not be a problem
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Figure 5.7: Mean (a) and standard deviation (b) of the completion time
to find the prey, the moving strategy and three prey distances requiring at
least three (dprey = 180 cm), four (dprey = 225 cm), or five (dprey = 270 cm)
s-bots to be aggregated into a same chain to find the prey.

because the prey can be found by a short chain as well. However, for high
prey distances only values of Pchain→expl that maximize the length of a chain
reach high success rates.

In the static and in the aligning strategy, the most successful values
of the probability to aggregate into a chain decrease for increasing prey
distances. This is partly true for the moving strategy, too. For short prey
distances all values with Pexpl→chain ≥ 0.005 reach a very high performance.
However, the only values that lead to a high success for higher prey distances
as well are 0.005 and 0.01. There are several reasons why these two values
perform best. First, they lead the system to form one chain, which is an
advantage as the interference between different moving chains merging into
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Figure 5.8: Success rate for finding the prey for the moving strategy and
three prey distances requiring at least six (dprey = 315 cm), seven (dprey =
360 cm), or eight (dprey = 405 cm) s-bots to be aggregated into a same chain
to find the prey.

each other results in a slowdown of the exploration. Another advantage is,
again, the higher distance from the nest that can be reached by one single
chain. These two arguments also hold for values of Pexpl→chain lower than
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Figure 5.9: Mean (a) and standard deviation (b) of the completion time
to find the prey, the moving strategy and three prey distances requiring at
least six (dprey = 315 cm), seven (dprey = 360 cm), or eight (dprey = 405 cm)
s-bots to be aggregated into a same chain to find the prey.

0.005, but for such low probabilities to aggregate into a chain, the process
of chain formation significantly slows down. Thus, the two values 0.005 and
0.01 are the most successful ones because they result in the fastest formation
of a single chain.

5.3 Conclusions

In this chapter we have presented experiments to reveal the capabilities of a
group of 10 s-bots controlled by the three different chain formation strategies
to locate a prey in the environment and establish a connection between the
nest and the prey. We controlled the difficulty of the task by varying the
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distance between the prey and the nest.
When the static or the aligning strategy are applied, already formed

chains do not contribute to a further exploration of the environment be-
cause the chains as a whole do not move. Exploration is then restricted to
the destruction of old chains and the creation of new ones into unexplored
directions. This process is mainly governed by the two probabilistic parame-
ters. In general, a high probability to disaggregate from a chain, Pchain→expl,
leads to a high destruction rate of formed chains and in this way to a higher
success rate in finding the prey. The best performing values of the second
parameter, the probability to aggregate into a chain Pexpl→chain, decrease for
increasing distances of the prey. High values of Pexpl→chain perform better
for a short prey distance, as they result in the parallel formation of several
chains which concurrently explore different directions from the nest. How-
ever, for higher prey distances, it is necessary that the robots aggregate into
a single chain as otherwise the chain is too short to reach the nest. There-
fore, lower values of Pexpl→chain are more successful. Between the static and
the aligning strategies, the latter performs better as the alignment of the
chains results in farther distances that can be reached from the nest.

The moving strategy in general performs better than the other ones be-
cause robots aggregated into a chain contribute to the exploration process by
collectively moving around the nest. In opposition to the other two strate-
gies, a lower probability to disaggregate from a chain results in a higher
success rate because low values of Pchain→expl decrease the frequency of sit-
uations in which a chain may not move, in this way increasing the time
during which a chain can explore the environment. The most successful val-
ues of the probability to aggregate into a chain are in the range [0.005, 0.01].
Higher values lead to the formation of more than one chain, and lower values,
while leading to a single chain, result in a slower chain formation process.
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Conclusions

In this work we have addressed the problem of collective exploration and
navigation by a swarm of robots. Adopting the idea by Goss et al. [22], our
approach consisted in the use of chains of visually connected robots. Chains
of robots can be used to establish connections between different locations
in the environment, and in this way enable other robots to exploit the con-
nections in order to navigate between the locations. Based on this idea, we
developped a behaviour based controller that makes use of local information
only. Three different control strategies were implemented and analyzed. The
static strategy, the most basic one, results in the formation of entirely static
chains, where a robot does not perform any kind of movement once it is
aggregated into a chain, which is a characteristic of all previous approaches
to chain formation as well. The aligning strategy, a first extension to this
basic approach, leads the members of a chain to adjust their position in
order to reach a certain distance and angle with respect to their neighbours,
resulting in the alignment of the chains. Finally, the moving strategy, fur-
ther extending the aligning strategy, results in the collective movement of
chains, which is led by the last member of each chain, that turns around
its predecessor. As all other chain-members adjust their position and angle
with respect to their neighbours, the chain as a whole continuously realigns
itself, in this way collectively moving around the nest.

6.1 Experiments

In a first set of experiments we tried to analyse the general capabilities of a
robot group performing chain formation. We varied two control parameters,
the probability to aggregate into a chain Pexpl→chain, and the probability to

59
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disaggregate from one Pchain→expl. These two parameters have a significant
effect on the overall behaviour of the robots. In particular, low values for
Pexpl→chain result in a patient behaviour of the exploring robots, so that in
most of the cases a single chain is formed. On the contrary, for Pexpl→chain

close to 1, the robots’ behaviour can be considered as rather impatient, seek-
ing to form many chains as fast as possible. The second control parameter,
Pchain→expl, determines the stability of the formed chains. Setting it high
decreases the lifetime of the formed chains and increases the frequency of
chain disbandment. Furthermore, by varying the two control parameters,
several attributes of the global structure can be controlled. This concerns
in particular the number and length of the formed chains, and the speeds of
the processes that lead to the formation and the destruction of chains.

Having analyzed the basic attributes of chain formation, we presented
the results of a second set of experiments, in which the robots have to locate
a prey object in the environment and establish a connection between the
nest and the prey. We controlled the difficulty of the task by varying the
distance between the prey and the nest. A comparison of the three control
strategies has shown that for the given task the moving strategy in general
performs better than the other ones because robots aggregated into a chain
contribute to the exploration process by collectively moving around the nest.
For the static and the aligning strategy, on the other hand, the exploration of
the environment is restricted to the destruction of chains and the formation
of new ones into previously undiscovered directions because already formed
chains remain static.

6.2 Future Work

In order to understand the basic attributes of chain formation, we have so
far analysed our system in rather simple environments. One of the first
things we want to do in the future is to take into account more complex en-
vironments including obstacles such as walls, holes or objects to be avoided.
Furthermore, we want to analyse the performance of our chain formation sys-
tem in dynamic environments, where prey objects are dynamically placed
in, and removed from, the environment.

In such dynamically changing environments, it would be interesting to
use an adaptive algorithm. In particular, we are interested in finding a
method which allows the robots to locally adjust the values of the two control
parameters to a particular environmental situation so that for instance the
robots learn to form longer and fewer chains in an environment where the
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prey objects are placed far away from the nest, and shorter and more chains
when the prey objects are close.

Another way for the robots to adapt to dynamically changing environ-
ments could be implemented by means of task allocation, where resources,
that is, the robots, are dynamically allocated to find a prey only when this is
required by the robot swarm, and otherwise remain in the nest. Therefore,
we would want to analyse the impact of the number of robots on a particular
task in order to find a way to measure the efficiency of the system and the
optimal number of robots to be allocated.

Finally, an important issue that we want to address is to verify our
simulation results on real robots as soon as these will be available.
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