Universite Libre de Bruxelles

Institut de Recherches Interdisciplinaires
IRIDIA MM <t de Développements en Intelligence Artificielle

Adaptive Swarm Robotics in
Rough Terrain Navigation

Rehan O’GRADY

4 N\
IRIDIA — Technical Report Series

Technical Report No.
TR/IRIDIA /2005-017
October 2005

IRIDIA — Technical Report Series
ISSN 1781-3794

Published by:

IRIDIA, Institut de Recherches Interdisciplinaires
et de Développements en Intelligence Artificielle

UNIVERSITE LIBRE DE BRUXELLES

Av F. D. Roosevelt 50, CP 194/6

1050 Bruxelles, Belgium

Technical report number TR/IRIDIA /2005-017

Revision history:
TR/IRIDIA /2005-017.001 October 2005

The information provided is the sole responsibility of the authors and does not necessarily
reflect the opinion of the members of IRIDIA. The authors take full responsability for
any copyright breaches that may result from publication of this paper in the IRIDIA —
Technical Report Series. IRIDIA is not responsible for any use that might be made of
data appearing in this publication.

Adaptive Swarm Robotics in
Rough Terrain Navigation

by

Rehan O’Grady

Université Libre de Bruxelles, IRIDIA
Avenue Franklin Roosevelt 50, CP 194/6, 1050 Brussels, Belgium
rogrady@ulb.ac.be

Supervised by

Marco Dorigo, Ph.D.

Directeur de Recherches du FNRS
Université Libre de Bruxelles, IRIDIA
Avenue Franklin Roosevelt 50, CP 194/6, 1050 Brussels, Belgium
mdorigo@ulb.ac.be

August, 2005

A thesis submitted in partial fulfilment of the requirements of the
Université Libre de Bruzxelles, Faculté de Sciences Appliquées for the

DIPLOME D'ETUDES APPROFONDIES (DEA)

Abstract

A recent trend in robotics research has been the application of the so-
cial insect metaphor to groups of autonomous robots. This research field
is known as swarm robotics. In this DEA thesis we investigate the appli-
cation in the swarm robotics context of an important collective mechanism
observed in social insects - functional self-assembly. Self-assembly is the
process in which autonomous agents connect to one another to form larger
aggregate structures. If a group of autonomous agents can self-assemble in
response to environmental conditions, then they are said to display adaptive
or functional self-assembly.

We present our design of a swarm robotic controller with the capacity for
functional self-assembly. Our system is built on the SWARM-BOT robotic
platform. We describe a series of experiments designed to test the adaptive
capabilities of our self-assembling system. All experiments were performed
using real robots. The task we consider requires a group of robots to navigate
over an area of unknown terrain towards a target light source. If possible, the
robots should navigate to the target independently. If, however, the terrain
proves too difficult for a single robot, the group should self-assemble into a
larger entity and collectively navigate to the target. Our results indicate for
the first time that self-assembly is a valid adaptive response mechanism for
a physical multi-robot system.

Acknowledgments

I would like to thank my supervisor Marco Dorigo. I would also like to
thank Roderich Gross for his help and guidance. I am grateful to all my
colleagues for being so helpful and for making IRIDIA such a pleasant
working environment.

Contents

1 Introduction

2

1.1 Overview e 1

1.2 Robotic Control Architectures 2

1.3 Multi Robot Systems 0. 5

1.3.1 Potential Advantages of Multi Robot Systems 5

1.3.2 Control Architectures for Multi Robot Systems 7

1.3.2.1 Swarm Robotic Control Architecture 7

1.3.3 Communication Strategies for Multi Robot Systems . 8

1.3.4 Cooperation in Multi Robot Systems 9

1.3.4.1 Self-Assembly 9

1.4 Self-organising Systems 10

1.4.1 The self-organisation phenomenon 10

1.4.2 Self Organisation in Natural Systems 11

1.5 Rough Terrain Navigation 12
1.5.1 Rough terrain navigation in specialised single robot

systems Lo Lo 13

1.5.2 Rough terrain navigation with reconfigurable systems 13

1.5.3 Rough terrain navigation in multi agent systems . . . 13

Experimental Setup 15

2.1 The S-bot 15

2.1.1 Overview 15

2.1.2 S-bot mechanical composition 15

2.1.3 Sensors e 16

2.1.4 Gripping Mechanism 18

2.1.5 CPU, Control Electronics and Software 19

2.2 The Experiment 19

2.2.1 The Environment 19

222 TheTask, 21

3 Control Strategy 23

3.1 Camera Image Processing 25
3.1.1 Coloured Object Detection 25
3.1.2 Target Direction Noise Filtering 25

3.2 Behaviour Arbitration 27

3.3 Solo Phototaxis Behaviour. 27

3.4 Avoid_Obstacle Behaviour 28

3.5 Retreat_to_Flat Behaviour 30

3.6 Aggregate Behaviour 30

3.7 Self _Assembly Behaviour 31

3.8 Assembly_Seed Behaviour 31

3.9 Group_Phototaxis Behaviour 33

4 Results 37

4.1 Overview 37
4.1.1 Trials with 3 s-bots in Environment A 37
4.1.2 Trials with a single s-bot in Environment B 37
4.1.3 Trials with 2 s-bots in Environment B 38
4.1.4 'Trials with 3 s-bots in Environment B 38

4.2 Analysis 40
421 SuccessRate 40
4.2.2 Timing analysis of 2-sbot trials in Environment B . . 41
4.2.3 Timing analysis of 3-s-bot trials in Environment B . . 43
4.2.4 Behavioural Analysis of a single 3 s-bot trial (trial 16) 46

5 Ongoing Research 49

5.1 Introduction., 49

5.2 Experimental Setup 50
5.2.1 The Environment 50
522 TheTask 50

5.3 The Controller 52

5.4 High level strategy 52

5.5 Calculating the swarm-bot’s orientation 52

5.6 Determining s-bot direction and speed 54

5.7 Results. 55

5.8 Further Development 57
5.8.1 Limitations of the current controller 57
5.8.2 Future controller development 57

VI

6 Conclusions 59

6.1
6.2

6.3

Overview of Results, 59
Future Research Directions 59
6.2.1 The Evolutionary Perspective 59
6.2.2 More sophisticated functional self assembly 60
Significance of thiswork 0. 60

VII

VIII

List of Figures

1.1

21
2.2

2.3
24

2.5

2.6

2.7

3.1

Self-assembly in a natural system. (Ecophilla longinoda
worker ants connect to one another to pull together large
leaves during nest construction.

The s-bot. e

Mechanical structure of an s-bot. Each s-bot is composed of
about 100 major parts.

Connected s-bots

S-bot gripper. The mechanism by which one s-bot connects
toanother.

Scale diagram of the two experimental environments (view
from above). Initially the s-bots are placed in the starting
area (candidate positions marked by crosses). To complete
the task the s-bots must enter the target area. In Environment
A (left figure) the s-bots are capable of accomplishing the
task independently. In Environment B (right figure) it is not
possible for the s-bots to complete the task unless they self-
assemble. Lo o

(a) Environment B from above. S-bots in random initial po-
sitions and orientations. (b) Cross section of Environment B

hill. The s-bot in the foreground is about to topple backwards. 20

The Task. (a) When faced with a simple hill the s-bots should
overcome the hill and navigate to the target independently.
(b) When faced with a hill too difficult for a single s-bot, the
s-bots should self-assemble and navigate over the hill to the
target source in a connected swarm.

Behaviour Based Architecture - Control Flow

IX

3.2

3.3

3.4

4.1

4.2

4.3

4.4

4.5

5.1

5.2

Camera based object detection and target direction filtering.
The black circles represent detected yellow objects. The cal-
culated target direction is shown by the bold arrow.

(a) A graphical representation of the feed-forward two-layer
artificial neural network (i.e., a perceptron) of the assembly
module. i1, 19,43, and i4 are the nodes which take input from
the s-bot’s sensors. g is the bias term. 01,09, and o3 are
the output nodes. (b) The equations used to compute the
network output values.

S-bot turret/chassis rotation based on target direction (view
from above). (Left) S-bot rotates turret o degrees clockwise.
Tracks going forwards. (Right) S-bot rotates turret § degrees
anticlockwise. Tracks in reverse.

A 2 s-bot swarm-bot fails to overcome the Environment B
hill. The failure is because the orientation of the swarm-bot
is parallel to the orientation of the hill. (a) The swarm-bot
approaches the hill (b) The swarm-bot climbs the hill and is
starting to topple. (c) The swarm-bot has toppled backwards.

(a) The s-bots start in a random configuration. (b) A sin-
gle s-bot detects a slope it cannot overcome alone and turns
blue (c¢) Other s-bots detect blue colour, turn blue themselves
and aggregate. One s-bot then seeds the assembly process
by turning red. (d) One s-bot has assembled to the seed and
thus turns red. (e) All s-bots are assembled, they collectively
overcome the hill. (f) The swarm-bot arrives in the target
ALEA. . . o e e e e e e e e e e e e

Timing analysis of 2 s-bot trials in Environment B (for further
explanation see text). L.
Timing analysis of 3 s-bot trials in Environment B (for further
explanation see text). L
Behavioural Ananlysis of 3 s-bot trial 16.

Diagram of the environment (view from above). To complete
the task the pre-assembled linear Swarm-bot must cross both
troughs and arrive in Target Area 2.

Photograph of the environment. In this photograph both
light sources are illuminated. During experiments only one
light source at a time is ever illuminated.

X

38

5.3

5.4

9.5

Motion vector calculation in a 3 s-bot linear swarm-bot. Two
scenarios are shown (A and B). In both cases, the rotation
vector direction and magnitude are determined by two key
factors: (i) the position of the s-bot within the swarm-bot
with respect to the direction of the light source (front, middle,
rear) (ii) the angle between the swarm-bot’s orientation and
the target vector direction. L.
Successful task completion. The linear swarm-bot adjusts its
rotation twice - once for each trough. In photograph (e) the
s-bot has arrived in Target Zone 1. At this point the exper-
imenter switches off Light Source 1 and switches on Light
Source 2. The swarm-bot carries on to successfully complete
the task by arriving in Target Zone 2.
Swarm-bot using old controller. S-bots use greedy algorithm
and head straight towards the target without considering

swarm alignment. The swarm-bot fails to overcome the trough. 57

XI

XII

List of Tables

3.1 Possible interpretation of camera detected colour objects. . . 24
3.2 Value constants used in s-bot control. Generated manually
through trial and error optimisation. 28

4.1 Percentage of s-bots succeeding for stages Self-Assembly (A)
and Completion of task (C). The first row shows the percent-
age of successful s-bots. Subsequent rows show the percentage
of s-bots that completed stages in groups of 1, 2 or 3 s-bots
or that failed.o 40

XIII

XIV

List of Algorithms

1 Camera Target Direction Noise Filter Algorithm 26
2 The Behaviour Arbitration Module 27
3 Solo Phototaxis Behaviour. 29
4 Avoid Obstacle Behaviour 29
5 Retreat_To Flat Behaviour 30
6 Aggregate Behaviour00, 31
7 Self_Assembly Behaviour 32
8 Assembly_Seed behaviour 33
9 Group_Phototaxis behaviour, 34

XV

XVI

Chapter 1

Introduction

1.1 Overview

Swarm robotics is a rapidly expanding area in robotics research. In the
last two decades multi-robot systems have already been the focus of much
dedicated research. Swarm robotics involves the study of a particular
type of multi-robot system. Taking inspiration from social insect be-
haviour, researchers in swarm robotics build robotic systems using swarm-
intelligence [10, 9] control principles such as decentralisation of control and
use of local information. Swarm robotics research provides insight into the
mechanisms of swarm intelligence in the animal kingdom. At the same time,
it holds the promise in the not too distant future of cheap, robust and flexi-
ble robotic systems with potential applications from nanosurgery to habitat
construction in space.

In this DEA thesis we investigate the application to swarm robotics of
a collective mechanism used by social insects. The mechanism we have
chosen to study is functional self-assembly [65]. We define self-assembly
as the process through which separate autonomous agents form a larger
group entity by physically connecting to one another. The group is said to
display functional self-assembly if the agents can autonomously choose to
self-assemble in response to the demands of their task and environment.

We conduct our investigation using the SWARM-BOT robotic plat-
form [49, 27]. This recently developed system consists of a number of au-
tonomous robotic agents called s-bots. The most innovative aspect of the
SWARM-BOT system lies in the s-bots’ ability to physically connect to one
another in order to form a larger group entity termed a swarm-bot. A swarm-
bot has the potential to complete tasks impossible for a single s-bot — for

2 CHAPTER 1. INTRODUCTION

example to cross chasms into which a single s-bot would fall or to overcome
hills too steep for a single s-bot.

To pursue our investigation, our first step was to design an experiment
which would require a group of s-bots to make adaptive use of self-assembly
— i.e. to display functional self-assembly. The next step was to develop
a distributed swarm control mechanism which would allow the s-bots to
tackle the task we gave them. Finally, we analysed the performance of our
system. This analysis also provided indications of potential directions for
future research.

The experiment we designed requires a group of s-bots to navigate to-
wards a target light source over unknown terrain. The s-bots must analyse
the terrain they are traversing and ‘decide’ whether or not it is necessary
for them to self assemble. We used two different environments in our exper-
iments — one in which the s-bots are capable of navigating independently
to the target light source, and one in which the s-bots have to self-assemble
in order to reach the target and complete their task (see Figure 2.7).

The structure of this DEA thesis is as follows. In the remainder of this
introductory chapter we present a review of our field and of related research.
In chapter two we discuss our experimental setup. We describe in detail the
SWARM-BOT robotic platform on which we conducted our experiments
and the nature of the task and environment. In chapter three we present
results of the experiments we conducted, and analyse the performance of
our controller. In chapter four we give details of our ongoing research in
this area. In chapter five we present our conclusions.

1.2 Robotic Control Architectures

Swarm robotics research is conducted with the long term goal of building
cheap, scalable and robust robotic systems. The design principles under-
lying swarm robotic systems reflect these goals. Swarm robotics control
mechanisms are usually distributed, heterogeneous and allow the use of lo-
cal information only. To understand the need for these design principles,
and indeed to understand the rational for Swarm robotics in general, it is
necessary to have an appreciation for alternative control paradigms. In this
section, therefore, we present an overview of robotic control architectures -
their strengths and weaknesses - and show where swarm robotics fits into
the overall picture.

1.2. ROBOTIC CONTROL ARCHITECTURES 3

The Deliberative / Planning Approach

Traditional robotic control architectures rely on top-down planner-based
or deliberative strategies. These strategies typically use a centralised
world model for verifying sensory information and generating actions in the
world [35, 19, 50, 43]. The information in the world model is used by the
controller to produce an appropriate sequence of actions (or plan) for the
agent.

Processing information in a complex noisy real world environment can,
however, be prohibitively difficult. For this reason most purely deliberative
systems have had limited success and their use has been largely restricted to
simplified artificial environments. These environments are usually of limited
complexity and are designed to make sensory input less noisy [53]. Even
when a useful representation can be extracted from sensory information,
changes in the environment can require frequent re-planning. The cost of
this re-planning is often prohibitive for complex systems. Planner-based
approaches have been criticised for scaling poorly with the complexity of
real-world problems, and making real-time reaction to sudden world changes
impossible. For a critique of this representational approach we refer the
reader to two seminal articles by Brooks [13, 12].

The Reactive Approach

Several methodologies for achieving real-time performance in autonomous
agents have been proposed. The purely reactive bottom-up approach is
a technique that has been successfully implemented in a number of sys-
tems. This approach involves embedding the agent’s control strategy into
a collection of preprogrammed condition-action pairs with minimal internal
state [11, 1, 20]. Reactive systems maintain no internal models. Typically,
they apply a simple functional mapping between stimuli and appropriate
responses, usually using some form of lookup mechanism.

These functional mappings rely on a direct coupling between sensing and
action as well as fast feedback from the environment. Purely reactive strate-
gies have proven effective for a variety of problems that can be completely
specified at design-time. Such systems have proven particularly successful in
terms of run-time efficiency due to their minimal computational overhead.
However, a major drawback is that their limited representational power re-
sults in a lack of run-time flexibility.

4 CHAPTER 1. INTRODUCTION

Hybrid Approaches

Both deliberative and reactive systems have severe runtime shortcomings.
Deliberative systems cope badly with noisy and/or dynamically changing
environments. Reactive systems have little or no flexibility.

Hybrid architectures represent one mechanism to try and combine the
best aspects of the reactive and deliberative approaches. Hybrid systems
usually employ a reactive system for low-level control and a planner for
higher-level decision making. Much research has been conducted in hybrid
systems. This includes (but is not limited to) reactive planning or reac-
tive execution used in Reactive Action Packages (RAPs), PRS (Procedural
Reasoning System), Schemas [3], Internalised Plans (Payton 1990) [57], Con-
tingency Plans [21].

The Behaviour Based Approach

The behaviour based approach has been proposed as an alternative way
to avoid the run-time problems of the deliberative and purely reactive ap-
proaches [62, 44, 59, 36]. The behaviour based approach is characterised by
its modular approach whereby control of the system is split among a number
of different behaviour modules. Individual behaviour modules are not linked
in a rigid serial or top down structure (which would mean that the overall
system reduces to one that could be implemented using a more traditional
centralised methodology). Instead, behaviour based systems require some
form of behaviour arbitration between modules. This arbitration is usually
a central feature of any behaviour based system.

In addition, behaviours tend to be relatively simple. Behaviours are,
nonetheless, more complex than the stimuli-response mechanisms used in the
reactive approach. A single behaviour is usually in control of the agent for a
period longer than the time span of an atomic action of the controlled agent.
Different behaviours interact with each other through the world rather than
internally through the system [4]. An example of a behaviour based robot is
Toto - a behaviour based navigating and path finding robot. Toto demon-
strated some higher level reasoning capabilities at the same time as robust
real-time reaction in a non-hybrid behaviour based system [47].

Controllers based on Artificial Neural Networks

Artificial neural networks (henceforth referred to as neural networks) are
information processing devices that attempt to imitate the way a human
brain works [6]. Their development was inspired by examination of neurons

1.3. MULTI ROBOT SYSTEMS 5

and synapses that make up the bio-electrical networks in the brain. A neural
network is a connected network of relatively simple processing elements. The
global behaviour is determined by the connections between the processing
elements and element parameters.

A neural network can be used as a robotic control mechanism. In such
controllers, the robot’s sensors provide input to the neural network. The
organisation and weights of the connections determine the output of the
network. The output is applied to the robot’s actuators.

Finding an appropriate set of connections and parameters for a neural
network is a complex non-linear task. Instead of directly programming neu-
ral networks, therefore, some form of learning mechanism is often used [55].

Recently, a technique known as artificial evolution has been applied to
the development of robotic neural network controllers with some success.
This technique involves using a darwinian paradigm to evolve generations
of neural networks to solve a particular task. The replication of individu-
als from generation to generation is based on a fitness function that some-
how gives a measure of well a neural network controller is able to solve the
task [54]. In principle, individuals from progressive generations will be in-
creasingly well adapted to solve the task. This technique is often used in
the development of swarm-robotic controllers.

1.3 Multi Robot Systems

Much research has been conducted in multi-robot systems in the last two
decades. Some tasks are particularly well suited to being carried out in
parallel by teams of robots. Even for tasks that can be successfully car-
ried out by traditional ‘monolithic’ robots, the multi robot approach can
often be valuable, providing gains in robustness, flexibility and costs. The
design of multi robot systems, however, presents a whole raft of new chal-
lenges. In particular, the interactions between the individual agents must
be considered.

1.3.1 Potential Advantages of Multi Robot Systems
Parallelism

Multi robot systems are capable of doing several (sometimes different) things
at the same time. This can greatly increase the efficiency of a system espe-
cially when the task itself is inherently parallel.

6 CHAPTER 1. INTRODUCTION

Geographical Distribution

Geographical distribution is one type of inherent parallelism that can be
exploited by multi-robot systems. Multi robotic systems can be effective in
disparate locations at the same time. This can be useful when the task itself
contains many subparts, each of which is distributed. Even when the task
is not distributed, geographical distribution of robotic agents can allow the
system to get more meaningful sensory input not available to a single robot
examining the task from a single location or perspective [41].

Task Decomposition

Task decomposition is a strategy that can enable parallel task execution.
Some tasks can be divided into sub-tasks. Multi robot systems are well
suited to tasks which can be broken down like this. Of course, methods
for task decomposition and task allocation must be incorporated into the
system [34].

Design Costs and Versatility

Multi-robot systems are often made up of numerous simple robots with iden-
tical hardware specifications. Manufacturing many identical simple robots
is usually cheaper than creating a single complex robot. Furthermore, a
single complex robot will often be tailor made for a particular task. A well
designed multi robot system will make use of modular generic components
that may be applicable in different problem domains. As well as adding
versatility, this can provide cost savings in the longer term.

Robustness and Fault Tolerance

A distributed robotic system may be better able to adapt to changing task
requirements and environmental factors than a single robot. In addition,
multi robot systems also often incorporate an element of redundancy. A
single robot system will often fail if a single component fails. Multi robot
systems can often continue to function when parts of robots or even whole
robots fail.

Swarm robotics research, in particular, is dedicated to the design of
systems with the characteristics of flexibility and robustness. To achieve
this goal, swarm robotics mimics the mechanisms that govern social insect
colonies.

1.3. MULTI ROBOT SYSTEMS 7

1.3.2 Control Architectures for Multi Robot Systems
Centralised vs Distributed Control

Multi robot systems can be divided into those which are controlled centrally,
and those in which the control is decentralised. The latter class of system
can be referred to as distributed control architecture systems. In a centrally
controlled system only a single control agent is present. This agent is solely
responsible for deciding the actions of all of the individual robotic agents.
By contrast, in a distributed system each agent is responsible for its own
control. It is possible to have a control system that uses both centralised and
distributed control mechanisms. For example each agent can be capable of
acting independently to some degree, while still subordinate to a centralised
control system that can override the individual agents when necessary [32].

Heterogeneous and Homogeneous Systems

A further distinction can be drawn between multi agent systems that are
comprised of identical agents (homogeneous) or different specialised agents
(heterogeneous). Systems can be considered heterogeneous if the robotic
agents differ either mechanically or behaviourally (different control). The
majority of multi robot research has been carried out to date using me-
chanically and behaviourally homogeneous systems. Balch investigated the
performance enhancement potential of using heterogeneous controllers (the
robots he used were still mechanically homogeneous) [8]. An example of a
mechanically heterogeneous system is the ALLIANCE multi robot system.
ALLIANCE consists of a distributed control architecture for robot teams
where team members can be either legged or wheeled robots [56].

1.3.2.1 Swarm Robotic Control Architecture

Swarm robotics is an area of collective robotics that takes inspiration from
social insect behaviour. Swarm robotics tries to take advantage of the mech-
anism of self-organisation and emphasises swarm intelligence [10] control
principles such as decentralisation of control and use of local information.
Swarm robotics controllers tend to be decentralised and homogeneous.

The controller presented in this DEA thesis is an example of a swarm
robotic controller. It is implemented on the SWARM-BOT robotic platform
(see section 2.1).

8 CHAPTER 1. INTRODUCTION

1.3.3 Communication Strategies for Multi Robot Systems

When designing a multi robot system, another important consideration is
the form of communication that will be used between individual agents. Of
course, communication in any form only becomes meaningful when at least
some measure of decentralisation is present.

Direct Communication

Direct Communication is conceptually the simplest inter-robot communica-
tion mechanism, but nonetheless tends to require a high level of technical
sophistication on the part of the communicating agents. When using direct
communication an agent either broadcasts a message or directly communi-
cates with other individual agents. Direct communication can be used in a
number of different ways, including task coordination [18, 33|, learning and
sensing. Jones and Mataric use communication to allow each individual in
a group of robots to build an overall picture of the state of task comple-
tion [41].

Sensing based communication

Sensing based communication relies on robotic agents perceiving the pres-
ence and/or actions of other robotic agents. Mataric coined the term Kin
Recognition to describe the ability to distinguish fellow agents from other
objects in the environment. Sensing of other agents’ actions has been stud-
ied by Kuniyoshi et al. [42]. Examples of sensing based group behaviour in
nature include herding, flocking and schooling behaviours. Swarm robotic
systems often make use of sensing based communication. Various studies
have been made of flocking, dispersing and pattern formation in the context
of multi-robot systems [7, 64].

Stigmergic communication

Stigmergy is a method of communication via modification of the environ-
ment [38]. There is no direct communication between the robots. Instead,
agents are indirectly aware of each others actions via their effects on the
environment. Pheromone trails in social ant colonies is one example of stig-
mergic communication. Swarm-robotic systems often make use of stigmergic
communication. For examples of robotic systems that use this form of com-
munication see [37, 5, 58].

1.3. MULTI ROBOT SYSTEMS 9

1.3.4 Cooperation in Multi Robot Systems

An important aspect of multi robot systems is the extent to which the
individual agents cooperate in order to achieve the given task [46]. We give
a brief summary of the two main types of cooperation.

Parallel Execution

Parallel Execution is the simplest form of cooperation. Here the robots do
not directly cooperate. The robots merely perform (parts of) the same task
at the same time.

Non-Physical Cooperation

Non-Physical Cooperation is cooperation where the robots affect each other’s
actions (for example through stigmergy or direct communication) during
task execution. However no direct physical interaction takes place between
the robots.

Physical Cooperation

Physical Cooperation is cooperation where robots physically help each other
to carry out tasks or sub tasks. Martinoli and Mondada carried out an
experiment where a group of robots were required to pull sticks out of the
ground. Due to constraints based on the limited physical abilities of the
individual robots, two robots were required to cooperate to remove a single
stick [45].

1.3.4.1 Self-Assembly

Self-assembly is a type of physical cooperation that is particularly relevant
to this DEA thesis. Self-assembly is the physical assembly of separate au-
tonomous agents into a larger group entity. Systems which make use of a
connection mechanism have been studied in the context of self-reconfigurable
robots [17, 51, 68]. The robotic units (also called modules) are usually de-
signed to operate within a configuration of pre-attached modules; in most
of the current systems, individual modules are not capable of autonomous
motion.

Functional Self Assembly is the type of self-assembly that we investigate
in this thesis. The term was coined by Trianni et al. [65] to describe a key
cooperation mechanism of distributed systems. Functional self-assembly is

10 CHAPTER 1. INTRODUCTION

defined as the capacity of a group of autonomous agents to choose whether
or not to self-assemble on the basis of task related and environmental factors.

Functional self-assembly has been observed in a number of natural sys-
tems. Several species of social insect utilise self-assembly to solve problems
collectively that are too large or complex for a single insect [2]. (See sec-
tion 1.4.2.) Note that self-assembly in the animal kingdom is always func-
tional self-assembly. Social insects invariably self-assemble in response to
the demands of a specific problem.

1.4 Self-organising Systems

In the previous two sections we have seen where swarm robotic controllers
fit in the larger world of robotic control mechanisms. As mentioned previ-
ously, swarm robotics takes inspiration from behaviours seen in the animal
kingdom and particularly among the social insects. The principal concept
borrowed from the social insects is that of self-organisation.

An understanding of self-organisation is thus essential in order to under-
stand swarm robotics. In this section we present an overview of self organi-
sation, and some key examples of self-organisation in the animal kingdom.

1.4.1 The self-organisation phenomenon

Camazine et al. [14] define Self-Organisation as follows:

Self-organisation is a process in which pattern at the global level
of a system emerges solely from numerous interactions among
the lower level components of the system. Moreover, the rules
specifying interactions among the system’s components are ex-
ecuted using only local information, without reference to the
global pattern.

The phenomenon of self-organisation has been investigated in many
scientific fields, including chemistry, physics, biology, cybernetics and eco-
nomics. In each case, the common characteristic is that system properties
at the global level are not specified directly but emerge from the inter-
actions of lower level components with each other and with the environment.

Self-organised systems have the following features in common:

1.4. SELF-ORGANISING SYSTEMS 11

Figure 1.1: Self-assembly in a natural system. (Fcophilla longinoda worker
ants connect to one another to pull together large leaves during nest con-
struction.

e Without any change of the characteristics of the underlying low
level components, such systems may switch between different semi-
stable states due to either intrinsic factors such as random fluctu-
ations within the system or extrinsic factors such as environmental
changes [23].

e Little or no knowledge of the global system and or environment is
needed by the lower level components. This is because rules specifying
interactions among these components only use local information.

e Self-organised systems are usually regulated by positive and negative
feedback. Positive feedback can be thought of as an amplifying ef-
fect, whereby the existence of a particular condition encourages that
same condition to become more prevalent. An example of positive
feedback can be seen in stock market investment bubbles. Negative
feedback is a mechanism which can stabilise a self organised system,
often acting as a counterbalance to keep positive feedback mechanisms
in check. Population explosions in animal populations, for example,
are often subject to the negative feedback mechanism of food supply
being exhausted.

1.4.2 Self Organisation in Natural Systems

Self-organisation has been observed many times in natural systems, partic-
ularly in social insect colonies [15, 16, 22, 26, 25, 31, 60, 61]. All of these
systems conform to the basic principles of self organisation: interactions

12 CHAPTER 1. INTRODUCTION

among individuals based on rules of thumb that involve (i) limited cognitive
ability and (ii) limited knowledge of the environment. Also observable are
random fluctuations as well as positive and negative feedback mechanisms.

Two types of self-organisation in the animal kingdom are particularly
relevant to this report: aggregation and self-assembly. An example of ag-
gregation is observed in the bark beetle larvae Dendroctonus micans [24].
These larvae search independently and randomly for a rich feeding site. Once
an individual has found a good feeding location, it emits a chemical signal
that diffuses in air (this is an example of stigmergic communication). This
triggers the aggregation process: in presence of a pheromone gradient, larvae
react by moving in the direction of higher concentration of pheromone. As
they start to emit pheromone themselves, they reinforce the chemical signal
coming from the aggregation site (positive feedback mechanism). The ag-
gregation ends when all the larvae have clustered in one location (negative
feedback through exhaustion of larvae).

Self-assembly mechanisms are also observed in many social insects. A
review of these observations is given by Anderson et al. [2]. During nest
construction, for example, (Ecophylla longinoda worker ants form connected
pulling chains by gripping each other with their mandibles. Examples of
rough terrain navigation with the aid of self-assembly include the ant species
Solenopsis germinata, members of which link together to form floating rafts
when their nest is flooded [52]. Collectively, they can pull leaves together
that are too large and stiff for a single ant to manipulate (see Figure 1.1).
Dolichoderus cuspidatus ants have been observed forming living bridges of
connected ants that other colony members then traverse.

1.5 Rough Terrain Navigation

Rough terrain navigation has always been an important goal for designers
of mobile robotic systems. This problem domain is also central to this DEA
thesis — the main experiment we conduct requires a group of robots to
navigate over terrain of variable roughness. The most important quality of
our system is the ability of the group of robots to adapt to the roughness of
the terrain. In this section we present an overview of previous and ongoing
research into robotic rough terrain navigation.

1.5. ROUGH TERRAIN NAVIGATION 13

1.5.1 Rough terrain navigation in specialised single robot
systems

Much research effort has been focused on developing specialised articulated
rovers. Examples include shrimp robot [29] and the Pathfinder rover used
on Mars [63]. Such systems are usually designed for operation by remote
control. Some research has also been done on autonomous control [66]. The
high level of interest in this area is demonstrated by the yearly DARPA
Grand Challenge. This yearly competition is based on a field test and is in-
tended to accelerate research and development in autonomous rough terrain
ground vehicles.

1.5.2 Rough terrain navigation with reconfigurable systems

Research in self-reconfigurable robots focuses on building modular systems
that are flexible and can walk, creep, and roll in rough environment con-
ditions. Examples of self-reconfigurable systems include PolyBot [67] and
CONRO - designed for earthquake search-and-rescue operations [17]. Again,
the focus has been on the mechanical capabilities of the systems rather than
sensory and autonomous action capabilities.

1.5.3 Rough terrain navigation in multi agent systems

Some researchers have also investigated multiple rovers for all-terrain explo-
ration [30, 28]. These systems try to leverage distributed design paradigms
to get higher levels of system robustness and thus better exploration perfor-
mance.

The system we present in this DEA thesis falls into this category. We
develop a multi-robot system which uses swarm mechanisms to detect and
overcome rough terrain.

14

CHAPTER 1. INTRODUCTION

Chapter 2

Experimental Setup

2.1 The S-bot

2.1.1 Overview

This study was conducted on the SWARM-BOT robotic platform [48, 49].
This system consists of a number of mobile autonomous robots (called s-
bots) which have the ability to physically connect and disconnect from one
another. When the s-bots are physically connected to each other, the result-
ing group artifact is referred to as a swarm-bot. The physical abilities of a
swarm-bot increase with the number of constituent s-bots.

2.1.2 S-bot mechanical composition

A close up photograph of an s-bot can be seen in Figure 2.1. The mechanical
structure of the s-bot is illustrated in Figure 2.2.

The s-bot is close to 12cm in diameter, and weighs 700g. It’s body is
comprised of two main parts — the chassis and the turret. The s-bot chassis
houses the battery and the traction system. The traction system is made
up of tracks and wheels. The tracks on the left and right hand sides of the
s-bot are independently controlled by different motors. This setup provides
the s-bot with high stability, efficient on the spot rotation and mobility on
terrain of moderate roughness.

The turret makes up the main body of the s-bot and is mounted above
the traction system. This turret can rotate with respect to the traction
system by means of a motorised axis. The turret houses the majority of
the s-bot sensing systems. A transparent T-shaped around the s-bot turret
contains 24 coloured LEDs in 8 different positions. In each position there

15

16 CHAPTER 2. EXPERIMENTAL SETUP

Figure 2.1: The s-bot.

is a blue, red, yellow and green LED. This T-shaped ring performs a dual
function - it is also shaped so as to be graspable by other s-bot grippers.

2.1.3 Sensors

Each s-bot is a fully autonomous mobile robot. This is in stark contrast with
the majority of self-reconfigurable robotic systems where the basic units in-
clude only one or two degrees of freedom and are usually centrally controlled.

To enable autonomous control, each s-bot is equipped with an array of
sensors. These sensors include an omni-directional colour camera, 16 lateral
and 4 down-facing infra-red proximity sensors, 24 light sensors, a 3-axis
accelerometer, microphones, two humidity sensors as well as incremental
encoders and torque sensors on each of the nine degree of freedom. The
accelerometers can be used to detect if the s-bot is in danger of toppling
over.

The omnidirectional camera is located inside the s-bot turret. It takes
360 degree pictures of the s-bot’s surroundings by means of a semi-spherical
mirror mounted in a transparent cylinder above the turret.

The combination of the camera and the s-bot LED ring allows an s-bot
to communicate its presence and even its internal state to other nearby s-
bots. Inside the gripper there is an optical light barrier that can detect the
presence of objects to be grasped. Other sensors provide the s-bot with

17

THE S-BOT

2.1.

Figure 2.2: Mechanical structure of an s-bot. Each s-bot is composed of

about 100 major parts.

18 CHAPTER 2. EXPERIMENTAL SETUP

Figure 2.3: Connected s-bots

information about its internal motors. This includes positional information
(e.g., of the rotating turret) and the torque information (e.g., of forces acting
on the tracks).

The s-bot sensors operate at a variety of different ranges. Infra-red prox-
imity (active) sensors are limited to very short range operation. The mi-
crophones can operate over a much longer range. The camera can be used
both for long and short range sensing, depending on the feature extraction
algorithm used.

2.1.4 Gripping Mechanism

Rigid connections between s-bots are implemented by a gripper mounted on
a horizontal active axis on the turret. The gripper is designed to mesh with
the T-shaped connection ring around the s-bot turret. If not completely
closed, the connection leaves some degrees of freedom. If completely closed,
the gripper ensures a rigid connection.

The shape of the gripper enables a very large acceptance area for grasp-
ing. This large acceptance area is an important feature of the SWARM-BOT
system, as it allows s-bots freedom to connect at different angles and in less
controlled situations. Again this is in contrast with interconnecting modules
in previous self-reconfigurable robotic systems where the exact position of
individual modules needs to be known or calculable, thus allowing for precise
positioning during interconnection.

Photographs of two connected s-bots and a close up of the gripping
mechanism can be seen in Figure 2.3. A diagrammatic representation of
the s-bot gripper is shown in Figure 2.4.

2.2. THE EXPERIMENT 19

Figure 2.4: S-bot gripper. The mechanism by which one s-bot connects to
another.

2.1.5 CPU, Control Electronics and Software

Distributed swarm-robotics controllers are not usually computationally in-
tensive. However, s-bots have many sensors which require fast preprocessing.
In addition, sophisticated monitoring and data collection capabilities facili-
tate software development and experimental analysis. The s-bots have thus
been equipped with a network of eleven processors, each of them responsible
for a sub-task in the system. The most powerful processor, an ARM based
processor running LINUX is in charge of the management of the system, of
the processing of the most complex sensors and of the communication with
a base station for monitoring purposes.

S-bot control software is written in C or C++4. It is copied using ssh
and wi-fi protocols onto the s-bot before being executed on the s-bots na-
tive Linux. The controller presented in this DEA thesis was implemented
in C++. Each behavioural module (see chapter 3) was implemented in a
separate C+-+ class.

2.2 The Experiment

2.2.1 The Environment

We conduct experiments in two different arenas, referred to as Environment
A and Environment B. Both have dimensions of 240 cm x 120 cm and consist
of three distinct areas: two areas of flat terrain (a starting area and a target
area) separated by an area of rough terrain (see Figure 2.5). Environments
A and B differ only in the nature of the rough terrain. In Environment
A, the rough terrain consists of a hill two centimetres high which can be
overcome by a single s-bot (see Figure 2.7a). In Environment B the rough
terrain consists of a hill 5cm high which a single s-bot cannot overcome
alone (see Figure 2.7b).

20 CHAPTER 2. EXPERIMENTAL SETUP

Starting Area Target Area Starting Area Target Area
/ /
Rough 0 P Rouglhy 0

[Terrain] - Terrain] -
~— ~—
Light xoxx Light

Source Source
Environment A Environment B

at Terrain =~ N imple Hill — Single s—bot succeeds alone .;.; ifficult Hill — Single s—bot fails
[] FlatTerrain R Simple Hill - Single s—b ds al B Difficult Hill - Single s—bot fail

Figure 2.5: Scale diagram of the two experimental environments (view from
above). Initially the s-bots are placed in the starting area (candidate posi-
tions marked by crosses). To complete the task the s-bots must enter the
target area. In Environment A (left figure) the s-bots are capable of accom-
plishing the task independently. In Environment B (right figure) it is not
possible for the s-bots to complete the task unless they self-assemble.

(a)

Figure 2.6: (a) Environment B from above. S-bots in random initial posi-
tions and orientations. (b) Cross section of Environment B hill. The s-bot
in the foreground is about to topple backwards.

2.2. THE EXPERIMENT 21

Figure 2.7: The Task. (a) When faced with a simple hill the s-bots should
overcome the hill and navigate to the target independently. (b) When faced
with a hill too difficult for a single s-bot, the s-bots should self-assemble and
navigate over the hill to the target source in a connected swarm.

2.2.2 The Task

At the beginning of each trial, the s-bots are positioned in the starting area.
The initial position of each robot is assigned randomly by uniformly sam-
pling without replacement from a set of 15 specific starting points. The
s-bot’s initial orientation is chosen randomly from a set of 4 specific di-
rections (Figure 2.6a shows S-bots in a random initial configuration). To
complete the task the s-bots must reach the target area without toppling
over.

Figure 2.6b shows a cross section close up of the environment B hill. An
s-bot has been placed on the hill in a position where it is about to topple
over backwards.

The s-bots have no a priori knowledge of the environment in which the
trial takes place. In Environment B the task cannot be accomplished by
the s-bots independently. To complete the task the s-bots must aggregate,
self-assemble and coordinate their movements over the rough terrain. In
Environment A single s-bots are capable of accomplishing the task inde-
pendently. It is unnecessary and inefficient for the s-bots to aggregate and
self-assemble.

Figure 2.7 shows the different successful task execution strategies for 3
s-bots in Environment A and Environment B. In Figure 2.7a (left figure)
the s-bots are in Environment A and are navigating independently over the
hill to the target light source. In Figure 2.7b (right figure) the s-bots are in
Environment B and have chosen to self-assemble in order to overcome the
hill and reach the target light source.

22

CHAPTER 2. EXPERIMENTAL SETUP

Chapter 3

Control Strategy

Swarm robotic systems tend to be scalable and robust. Because they rely
on the complexities of interactions between individual robots, however, such
controllers are often difficult to construct. In this section we present the
design and implementation of our swarm robotic controller.

This is the first time that a swarm robotics controller that demonstrates
functional self-assembly has been implemented on physical robots. Due to
the complexities of the real world environment, we used a building block
approach - we implemented a collection of simple basic behaviours corre-
sponding to the different phases of functional self-assembly as seen from
the perspective of the individual s-bot. We developed a behaviour based
controller by combining these building blocks.

In keeping with swarm robotic principles, each s-bot is fully autonomous.
The same controller is executed on all of the s-bots. Our controller is thus
a distributed behaviour based controller (see sections 1.2 and 1.3.2).

Prob(Become Seed)
and Close to Blue

Avoi d_Obst acl e and DOM ’Assenbl y_Seed (red) ‘ Timeout Over
I
S smpe N\ |]
— SeeRed .~ Group_Phot ot axi s (red
Sol o_Phot ot axi s Aggr egat e (blue)| sae Red Within Timeout (ge_e oo Wa't)()
Too/ /On
Steep Flat

’ Retreat _to_Fl at (blue)‘

]sm f_Assenbly (blue)

Close to Red Assembled

Figure 3.1: Behaviour Based Architecture - Control Flow

23

24 CHAPTER 3. CONTROL STRATEGY

Detected Colour Possible interpretation
YELLOW Target Light Source
BLUE S-bot executing Retreat_To_Flat behaviour
BLUE S-bot executing Aggregate behaviour
BLUE S-bot executing Self_Assembly behaviour
RED S-bot executing Assembly_Seed behaviour
RED S-bot executing Group_Phototaxis behaviour

Table 3.1: Possible interpretation of camera detected colour objects.

The control flow of the behaviour based s-bots is illustrated in Figure 3.1.
Limited local communication between the s-bots is implemented through the
use of colour. Some behaviours have an associated colour. When in one of
these states the s-bot lights up its coloured LED ring with the appropriate
colour. S-bots thus gain an indication of the presence and internal states
of nearby s-bots through camera based colour detection. If an s-bot can
detect any blue objects, for example, it means that there is at least one s-
bot either aggregating or assembling in its vicinity. Possible interpretations
for detected objects of a given colour are shown in table 3.1.

The s-bots always start in Solo_Phototaxis behaviour — the s-bots start
by independently performing phototaxis towards the target light source.
Based on its sensory input, an s-bot will start trying to aggregate if it deter-
mines that the task requires cooperation. This will happen either if it detects
a hill it cannot pass alone or if it detects a blue object which indicates the
presence of another s-bot executing Retreat_To_Flat behaviour, Aggregate
behaviour or Self_Assembly behaviour. The assumption is that if another
s-bot is executing one of these behaviours, it must already be aware of the
presence of such a hill. Self Assembly behaviour is triggered when one
aggregating robot probabilistically becomes the seed for the assembly (ini-
tiates Assembly_Seed behaviour and turns red). Assembled s-bots switch
to Group_Phototaxis behaviour. S-bots will start navigating collectively to
the target area once they can no longer detect any blue objects (aggregating
or assembling s-bots).

3.1. CAMERA IMAGE PROCESSING 25

3.1 Camera Image Processing

The s-bot camera plays a key role in the controller we have developed. As
mentioned above, coloured object detection is essential for the sensing based
communication that enables the swarm behaviour. In this section we de-
scribe how the controller processes and uses the images received from the
camera.

3.1.1 Coloured Object Detection

The Linux camera drive produces JPEG images. Using the following steps,
these JPEG images are converted into an array of objects with associated
colour and direction.

e Receive JPEG image (640 pixels x 480 pixels)

e Perform colour segmentation of each pixel in RGB colour space. Each
pixel is associated with one of three colours - red, yellow or blue.

e Divide image into grid of 16 pixel x 16 pixel blocks. Resulting grid
has dimensions: 40 blocks x 30 blocks.

e Perform majority voting algorithm for pixels of each block. As a result
each block is associated with a single colour.

e Use erosion and dilation based algorithm to refine block-colour asso-
ciation

e Return array of blocks with associated tuple: (colour, direction of
block relative to centre of image).

The last step of the above process thus produces the required output: an
array of objects. Each object has an associated colour (red, yellow or blue)
and an associated direction (0 degrees - 360 degrees).

3.1.2 Target Direction Noise Filtering

Whenever the s-bot has to perform phototaxis, it must be able to determine
the direction of the target light source. The light source is identified by
the above coloured object detection process as a cluster of yellow objects.
However, reflections in the arena (from arena walls, the arena floor and
other s-bots) are also often detected as yellow objects by the coloured object
detection process.

26 CHAPTER 3. CONTROL STRATEGY

Algorithm 1 Camera Target Direction Noise Filter Algorithm

getObjectsFromCamera()

biggestSegment «— getSegment WithMostObjects()
closestObject «— getClosestObjectInSegment(biggestSegment)
direction <+ getObjectDirection(closestObject)

90° /

¥e)

P

Terget Light Source

180° 0°

([B
Arena e o
wall o
Creates R
Reflection ’ o

270°

Figure 3.2: Camera based object detection and target direction filtering.
The black circles represent detected yellow objects. The calculated target
direction is shown by the bold arrow.

To cope with this noise, a target filtering algorithm was used (see Algo-
rithm 1. This is illustrated in Figure 3.2. For simplicity we only represent
detected yellow objects. These are represented in the diagram as small black
circles. The algorithm divides the s-bot’s horizontal plane into 24 segments
of 15 degrees each. The number of yellow objects in each segment is counted,
and only the segment with the most yellow objects is considered. More yel-
low objects are usually detected from the the light source than from any of
the reflections. This is because the light source is naturally brighter than
any of its reflections.

Having established the plane segment containing the light source, the
filtering algorithm picks the nearest object to the s-bot inside that segment.
The direction of this object is taken to be the direction of the target light
source. This resulting direction is shown in Figure 3.2 by the bold arrow.

3.2. BEHAVIOUR ARBITRATION 27

3.2 Behaviour Arbitration

Behaviour arbtitration is handled by an independent control module (not
represented in Figure 3.1). The logic for this simple module is presented
in Algorithm 2. Note that the individual behaviours choose when to hand
control over to another behaviour. Note also that the control step time
length is a tenth of a second.

3.3 Solo_Phototaxis Behaviour

Solo Phototaxis is the starting behaviour for each s-bot. The s-bot per-
forms phototaxis towards the target light source (the direction of which it de-
termines using its camera). On flat terrain the s-bot’s maximum track speed
is constant. On rough terrain the s-bot reduces its maximum track speed
as a linear function of its inclination (as measured by the accelerometers).
This is to prevent the s-bot toppling before Retreat_to_Flat behaviour has
time to be initiated.

The algorithm used in this behaviour is presented in Algorithm 3. The
hard turn in the algorithm is performed by rotating both s-bot tracks in
opposite directions. The soft turn is performed by rotating one s-bot track
at MAX-SPEED, and the other s-bot track at MAX-SPEED - SOFT-TURN-
INCREMENT.

The actual values used for MAX-SPEED and SOFT-TURN-
INCREMENT were optimised on the basis of pre-experimental evaluation.
Table 3.2 shows the exact values used for these constants, as well as for
constants used in other behaviours.

Algorithm 2 The Behaviour Arbitration Module
current Behaviour < Solo_Phototaxis
: loop
executeBehaviour(current Behaviour)
wait(maximum(100 milliseconds, behaviour ExecutionTime))
current Behaviour «— current Behaviour.getNextBehaviour()
end loop

A SR o A

28 CHAPTER 3. CONTROL STRATEGY

Constant Name Constant Value
MAX-SPEED 22
SOFT-TURN-INCREMENT 5
MAX-SLOPE 30
RETREAT-TIMEOUT 5
ASSEMBLY-SEED-TIMEOUT 5
PROXIMITY-THRESHOLD 10
BECOME-SEED 0.04

Table 3.2: Value constants used in s-bot control. Generated manually
through trial and error optimisation.

3.4 Avoid Obstacle Behaviour

Avoid_Obstacle behaviour is initiated from Solo_Phototaxis behaviour
or Aggregate behaviour when the readings from the s-bot’s 14 proximity
sensors exceed a certain threshold. The s-bot determines the direction of
the obstacle by comparing values from the different proximity sensors. The
s-bot moves away from the obstacle until the obstacle is no longer detected.

More precisely, the spatial relationship of the obstacle to the s-bot is
represented with a vector integrating the direction and magnitude of all 14
of the s-bot’s proximity sensors. This vector is calculated using equations 3.1
and 3.2.

The control logic for this behaviour is presented in Algorithm 4.

14
ObstacleVector, = Z — cos (Directionproz) * Magnitudepror (3.1)

prox=1

14
ObstacleVector, = Z —sin (Directiongreg) * Magnitudepror — (3.2)
prox=1
Based on this vector the s-bot determines if the obstacle is ahead and to
the left, ahead and to the right, behind and to the left or behind and to the
right. The s-bot then executes a soft turn (see section 3.3) away from the
obstacle

3.4. AVOID_OBSTACLE BEHAVIOUR 29

Algorithm 3 Solo_Phototaxis Behaviour

10:
11:
12:
13:
14:

slope «— getSlope()
if slope > MAX-SLOPE then
switchBehaviour(Aggregate)
else if detectColourObject(BLUE) or detectColourObject(RED)
then
switchBehaviour(Retreat_To_Flat)
else
getTargetDirection()
if targetHeading > 20 deg then
hardTurnToTarget()
else
speed — MAX-SPEED * (MAX-SLOPE - slope) / MAX-SLOPE
soft TurnToTarget(speed)
end if
end if

Algorithm 4 Avoid_Obstacle Behaviour

1:
2
3
4:
5
6:

repeat
prozimityReadings «— getProximityReadingsFromSensors()
obstVectX «— getObstacleVectorX(proximityReadings)
obstVectY «— getObstacleVectorY (proximityReadings)
soft TurnAwayFromVector(obstVectX, obstVectY)

until max(proximityReadings) < PROXIMITY-THRESHOLD

30 CHAPTER 3. CONTROL STRATEGY

3.5 Retreat_to Flat Behaviour

Retreat_to_Flat behaviour is initiated from Solo_Phototaxis behaviour
or Aggregate behaviour when information from the s-bot’s accelerometers
indicate that the s-bot is in danger of toppling over. The s-bot receives infor-
mation about its inclination in two planes from two separate accelerometers.
The s-bot adds these two values together. If this combined value is greater
than MAX-SLOPE, the s-bot determines that it is on a hill too steep to tra-
verse alone. Constant values have been manually optimised (see Table 3.2).

Once in Retreat_to_Flat behaviour, the s-bot determines the direction
of the slope with respect to its heading. The s-bot uses this information to
reverse down the slope as directly as possible - using soft turns to try and
keep the slope of the hill directly ahead. Once the s-bot is again on flat
terrain, the s-bot reverses away from the rough terrain, then rotates so that
it is facing away from the slope.

The control logic for this behaviour is presented in Algorithm 5.
Note that the downHillVect variable will always be calculated since the
Retreat_To_Flat behaviour will only be executed if the steepness threshold
has already been exceeded.

Algorithm 5 Retreat_To_Flat Behaviour
1. activateColourRing(BLUE)
2: loop
3: pitch «— getFrontBackInclination()
roll «— getLeftRightInclination()
totalInclination < pitch + roll
if totalInclination > MAX-SLOPE then
downHillVect « calculateDownHillVector(pitch, roll)
set TracksMoveDirection(downHillVect)
else
10: setTracksMoveDirection(downHillVect, RETREAT-TIMEOUT)
11: switchBehaviour(Aggregate)
12 end if
13: end loop

3.6 Aggregate Behaviour

The control logic for Aggregate behaviour is presented in Algorithm 6.
While executing Aggregate behaviour the s-bots locate and then approach

3.7. SELF_ASSEMBLY BEHAVIOUR 31

each other as a precursor to self-assembly.

The s-bot conducts a random walk until it detects either a blue or
a red object. If the s-bot detects a red object, (i.e. another s-bot
that is executing Assembly_Seed behaviour, Self-Assembly behaviour or
Group_Phototaxis_Behaviour) the s-bot will switch to Self_Assembly be-
haviour. If the s-bot detects a blue object, (i.e. another s-bot that is exe-
cuting Retreat_To_Flat behaviour or Aggregate behaviour), the s-bot will
approach the blue object, stop moving and wait until it sees a red object.

Algorithm 6 Aggregate Behaviour

1: activateColourRing(BLUE)

2: loop

3: if detectColourObject(RED) then

Close to Red — switchBehaviour(Self_Assembly)

Far from Red — approachRed()
else if detectColourObject(BLUE) then

Prob(BECOME-SEED)— switchBehaviour(Assembly_Seed)

Prob(1 - BECOME-SEED)— approachBlue()
else
10: randomWalk()
11: end if
12: end loop

3.7 Self Assembly Behaviour

The control logic for this behaviour is presented in Algorithm 7

Function f maps sensory input to motor commands. It is implemented
by a neural network which has been designed by artificial evolution in a
previous work [40]. The Self_Assembly behaviour has been extensively
tested with swarms of up to 16 physical s-bots in another previous work [39].

3.8 Assembly Seed Behaviour

Assembly_Seed behaviour is initiated probabilistically from Aggregate be-
haviour. Aggregating s-bots will switch to Self Assembly behaviour and
attempt to self-assemble as soon as they detect a red object. Once aggre-
gating s-bots have approached each other, therefore, one of the aggregating

32

CHAPTER 3. CONTROL STRATEGY

Algorithm 7 Self_Assembly Behaviour

1. activateColourRing(BLUE)

2: loop

3: (i1,12) < featureExtraction(camera)

4: (i3,14) < sensorReadings(proximity)

5: (01,02,03) — f(il,iz,ig,’i4)

6:

7. if graspingRequirementsFulfilled(03) then
8: grasp()

9: if successfullyConnected() then

10: switchBehaviour(Group_Phototaxis)
11: else

12: openGripper()

13: end if

14: end if

15: applyValuesToTracks(01,02)

16: end loop

1
0;: =
Tl 4e
4
xj = E wnjin
n=0

(b)

Figure 3.3: (a) A graphical representation of the feed-forward two-layer
artificial neural network (i.e., a perceptron) of the assembly module. i1, 9, i3,
and i4 are the nodes which take input from the s-bot’s sensors. i is the
bias term. 01,09, and o3 are the output nodes. (b) The equations used to
compute the network output values.

3.9. GROUP_PHOTOTAXIS BEHAVIOUR 33

s-bots must become red by switching to Assembly_Seed behaviour in order
for the self-assembly process to begin.

To prevent two s-bots from simultaneously entering Assembly_Seed be-
haviour, the s-bot waits for an initial period of 3 seconds to check that no
other red objects become visible. If the s-bot does see a red object in this
initial period, control is passed back to Aggregate behaviour. (If two s-bots
in the same vicinity switch to Assembly_Seed behaviour, both will revert to
Aggregate behaviour). If no red object is seen in this initial period, control
is passed to Group_Phototaxis behaviour.

The control logic for this behaviour is presented in algorithm 8.

Algorithm 8 Assembly_Seed behaviour
1: activateColourRing(RED)
2: loop
3: if withinTimeout(ASSEMBLY-SEED-TIMEOUT) then

4: if detectColourObject(RED) then
5: switchBehaviour(Aggregate)

6: end if

7. else

8: switchBehaviour(Group_Phototaxis)
9: end if

10: end loop

3.9 Group Phototaxis Behaviour

Group_Phototaxis behaviour is initiated from Self_Assembly behaviour or
Assembly_Seed behaviour. If the s-bot can see blue objects in the vicinity
it remains stationary (the assumption being that other s-bots are trying to
assemble to the swarm-bot). Otherwise the s-bot performs phototaxis to the
target.

The control logic for this behaviour is presented in algorithm 9.
Group phototaxis is more complicated than the phototaxis required in
Solo_Phototaxis behaviour. Because the s-bot is now part of a swarm-
bot, the orientation of the turret is fixed. To move towards the target the
s-bot continually rotates the traction system with respect to the turret so
that the tracks remain oriented towards the target. Depending on the angle
between the s-bot chassis heading and the target direction, the s-bot can
either move forwards or in reverse towards the target. This means that the

34 CHAPTER 3. CONTROL STRATEGY

turret /chassis rotation never exceeds 90 degrees in either direction.

The tracks speeds are set so that the chassis moves towards the target.
The target direction relative to the chassis is determined before the tur-
ret /chassis rotation mentioned above is carried out. Thus the turret/chassis
rotation and the track motion work together to ensure that the chassis
remains headed towards the target. The process of calculating the s-bot
turret/chassis rotation and track speeds can be seen in lines 6-11 of Algo-
rithm 9. Details of the rotation and track speed calculation are illustrated
in Figure 3.4.

Note that the control mechanism has a behaviour discontinuity point
when the target direction is close to 90 degrees away from the chassis head-
ing. This discontinuity is indicated with a dotted line in Figure 3.4. As the
target direction passes this point the s-bot needs to rotate the chassis so that
it is heading backwards instead of forwards to the target (or vise versa). At
the same time it reverses the rotation of the tracks. !

Algorithm 9 Group_Phototaxis behaviour
1: activateColourRing(RED)
2: loop
3: if detectColourObject(BLUE) then

4 setTrackSpeeds(0, 0)

5. else

6: turretT'argDirn «— getTargetDirection()

7 rotation «— getTurretRotation()

8 chassisTargDirn — getRelativeDirection(
turretTargDirn, rotation)

9: new Rotation < calculateRotation(targDirn)

10: rotateTurret(new Rotation)

11: set TracksMoveDirection(chassisTargDirn)

12 end if

13: end loop

In rare cases this can result in inefficient behaviour due to noisy sensor input when
the angle between the target direction and the chassis heading is close to 90 degrees. In
this case the s-bot can end up constantly changing the direction of motion and having to
repeatedly rotate the chassis almost 180 degrees.

3.9. GROUP_PHOTOTAXIS BEHAVIOUR 35

Target Direction

Target Direction

Tracks direction (after rotation)

,,,,,,,,, B(

Chassis Direction Chassis Direction

Tracks direction (after rotation)
Behaviour Discontinuity Behaviour Discontinuity
Tracks direction changes Tracks direction changes

Figure 3.4: S-bot turret/chassis rotation based on target direction (view
from above). (Left) S-bot rotates turret o degrees clockwise. Tracks going
forwards. (Right) S-bot rotates turret (3 degrees anticlockwise. Tracks in
reverse.

36

CHAPTER 3. CONTROL STRATEGY

Chapter 4

Results

4.1 Overview

We conducted a series of experiments in two different environments (see
Figure 2.5) with groups of 1, 2 and 3 s-bots.

4.1.1 Trials with 3 s-bots in Environment A

We conducted 20 trials. In every trial all 3 s-bots reached the target zone.
In 19 out the 20 trials the s-bots correctly navigated independently to the
target. In a single trial the s-bots self-assembled on the down slope of the hill
and then performed collective phototaxis to the target. The decision to self-
assemble was triggered when one of the s-bots misperceived a non-existent
blue object.!

4.1.2 Trials with a single s-bot in Environment B

We modified the controller so that the s-bot was prevented from switching
out of Solo_Phototaxis behaviour. The s-bot was thus limited to perform-
ing phototaxis towards the target taking no account of the terrain encoun-
tered.

We conducted 20 trials with a single s-bot. The s-bot failed to overcome
the hill in 20 out of 20 trials. In each trial the s-bot reached the hill and
then toppled backwards due to the steepness of the slope.?

"'We observed that such misperceptions can occur when the s-bots are in the immediate
vicinity of the target light source.

2We checked that a single s-bot was failing due to the intrinsic properties of the slope
by repeating this experiment at a number of different constant speeds.

37

38 CHAPTER 4. RESULTS

(a) (b) (¢)

Figure 4.1: A 2 s-bot swarm-bot fails to overcome the Environment B hill.
The failure is because the orientation of the swarm-bot is parallel to the
orientation of the hill. (a) The swarm-bot approaches the hill (b) The swarm-
bot climbs the hill and is starting to topple. (¢) The swarm-bot has toppled
backwards.

4.1.3 Trials with 2 s-bots in Environment B

We conducted 20 trials. The s-bots successfully detected the slope in every
trial. Furthermore the s-bots always succeeded in assembling into a 2 s-bot
swarm-bot. In 13 trials (65%) the swarm-bot succeeded in overcoming the
hill. In the other 7 trials (35%) the assembled swarm-bot failed to overcome
the hill. These failures happened when the swarm-bot approached the hill
with an orientation parallel to that of the hill. Figure 4.1 shows a sequence
of photos from one of these unsuccessful trials.

4.1.4 Trials with 3 s-bots in Environment B

We conducted 20 trials. The s-bots successfully detected the slope in every
trial. In 16 trials (80%) all of the s-bots successfully self-assembled into a 3
s-bot swarm-bot. In each of these 16 trials the 3 s-bot swarm-bot went on to
successfully reach the target area.

In the remaining 4 trials (20%) the s-bots still managed in each case to
self-assemble into a swarm-bot of 2 s-bots. In two of these 4 trials the 2 s-bot
swarm-bot went on to successfully reach the target area. In the two other
trials the 2 s-bot swarm-bot was obstructed by the third s-bot which failed
to self-assemble.

Figure 4.2 shows a sequence of images taken from a typical successful
trial.

4.1. OVERVIEW 39

(a) (b) (c)

(d) (e) (f)
Figure 4.2: (a) The s-bots start in a random configuration. (b) A single
s-bot detects a slope it cannot overcome alone and turns blue (c) Other s-
bots detect blue colour, turn blue themselves and aggregate. One s-bot then
seeds the assembly process by turning red. (d) One s-bot has assembled to

the seed and thus turns red. (e) All s-bots are assembled, they collectively
overcome the hill. (f) The swarm-bot arrives in the target area.

40 CHAPTER 4. RESULTS

Table 4.1: Percentage of s-bots succeeding for stages Self-Assembly (A) and
Completion of task (C). The first row shows the percentage of successful s-
bots. Subsequent rows show the percentage of s-bots that completed stages
in groups of 1, 2 or 3 s-bots or that failed.

1 s-bot trials | 2 s-bots trials | 3 s-bots trials

A C A C A C
% Successful (total) N/A 0.00 | 100.00 65.00 | 93.33 86.67
% Successful alone N/A 0.00 N/A 0.00 N/A 0.00
% Successful in 2 s-bot swarm-bot| ~N/a N/A 100.00 65.00 | 13.33 6.67
% Successful in 3 s-bot swarm-bot| n/a N/A N/A N/A 80.00 80.00
% Failed n/a - 100.00 0.00 35.00 | 6.67 13.33

4.2 Analysis

4.2.1 Success Rate

Table 4.1 presents a summary of the results achieved in the experiments
described above. The table shows the percentage of s-bots that successfully
self-assembled (A) and the percentage of s-bots that successfully completed
the entire task (C). The three columns distinguish between trials with 1
s-bot, 2 s-bots, and 3 s-bots.

The first row shows the total percentage of successful s-bots. Subsequent
rows show the percentage of s-bots that completed stages alone, or as part
of a 2 s-bot swarm-bot or as as part of a 3 s-bot swarm-bot, or that failed.
The ‘failed’ row represents the percentage of s-bots that did not succeed in
arriving in the target area without toppling over.?

The success rate for task completion increases with the number of robots.
A single robot always fails. In 2 s-bot trials, 65% of s-bots complete the task.
The 3 s-bot trials show a further clear improvement — 86.67% complete the
task.

The fourth row (% Successful in 3 s-bot swarm-bot) shows that in the 3-
s-bot trials 80% of s-bots successfully self-assemble into a 3 s-bot swarm-bot.
The same row shows us that 80% of s-bots also complete the task in 3 s-

3For example in the 3 s-bot trials 6.67% of s-bots completed the task as part of a 2
s-bot swarm-bot.

4.2. ANALYSIS 41

bot swarm-bot. Thus in 3 s-bot trials, whenever all the 3 s-bots successfully
self-assemble into a 3 s-bot swarm-bot they always go on to successfully
overcome the rough terrain. By contrast, in the 2 s-bot trials 100% of the
s-bots self-assemble into a 2 s-bot swarm-bot. Despite this only 65% of the
2 s-bot swarm-bots successfully overcome the hill.

As mentioned above, the failure of the 2 s-bot swarm-bot always de-
pended on the angle at which the assembled s-bots approached the hill. In
particular, whenever the s-bots approached the hill in parallel or close to
parallel, they toppled over backwards (see Figure 4.1). Any linear swarm-
bot that approaches the hill in parallel is likely to topple. Linear swarm-bot
formations become less likely with increasing numbers of s-bots. In our 3 s-
bot trials this never happened. Whenever the 3 s-bots successfully assembled
into a 3 s-bot swarm-bot, the swarm-bot always overcame the hill.

4.2.2 Timing analysis of 2-sbot trials in Environment B

We have identified five phases of task execution for the 2 s-bot trials in
Environment B. Figure 4.3 shows how the timing of task execution in the 20
trials is broken down between these phases. Note that these phases represent
the state of the system (both s-bots) rather than the state of individual s-
bots.* The five phases of task execution are discussed individually below.

¢ Independent Phototaxis. This initial phase is represented in Fig-
ure 4.3 by the black bar segment. During this phase all the s-bots
are performing independent phototaxis to the target light source. All
of the s-bots are executing Solo_Phototaxis behaviour. This phase
begins when the trial starts. The phase ends at the moment when the
hill is first detected by one of the s-bots.

The duration of this phase is fairly consistent between trials (between
3.6s and 18.58), and is dependent on the random initial configuration
of the s-bots.

e Group Hill Detection. This phase is represented in Figure 4.3 by
the white bar segment. During this phase the second s-bot becomes
aware of the presence of the hill. The phase ends when the second
s-bot becomes aware of the hill and switches to Aggregate behaviour.
This phase takes between 0.1s and 16.6s.

*A phase is a system (group) level property. Each phase represents a particular state
of the system. Phases are not inherent to the system - they are states we have identified
for analysis purposes. A behaviour is an inherent part of an individual s-bot controller.
At any moment in time an s-bot is unambiguously executing a single behaviour.

42 CHAPTER 4. RESULTS

e Aggregation & Assembly Seeding This phase is represented in
Figure 4.3 by the dark grey bar segment. In this phase the s-bots are
all executing Aggregate behaviour, or have temporarily switched to
Assembly_Seed behaviour. This phase takes between 3.0s and 58.8s.

During this phase the s-bots approach each other. This phase ends
when the assembly has been successfully seeded. That is, when one of
the two s-bots has successfully become the seed for the assembly - i.e.
switches to Assembly_Seed behaviour and remains in Assembly_Seed
behaviour beyond the initial timeout.

e Self-Assembly This phase is represented in Figure 4.3 by the grey
segment. In this phase the s-bots self-assemble. This tends to be the
longest phase, as we would expect, given that self-assembly is the most
complex part of the task. The phase ends when all of the s-bots have

O Group Phototaxis
= 8 _ I Self-Assembly
c I Aggregation & Assembly Seeding
8 O Group Hill Detection
o 2 M Independent Phototaxis
S 4
0 4
c
< o
QO o
£
]

60
I

1

40

20

1

{y

1 2 3 45 6 7 8 9 1011 12 13 14 1516 17 18 19 20
trial

Figure 4.3: Timing analysis of 2 s-bot trials in Environment B (for further
explanation see text).

4.2. ANALYSIS 43

switched to Group_Phototaxis_Behaviour. This phase takes between
10.4s and 62.1s.

e Group Phototaxis This phase is represented in Figure 4.3 by the
light grey segment. In this phases all of the s-bots navigate collectively
towards the target light source. In 7 trials the assembled s-bots failed
to accomplish this phase. In all of the successful trials this phase took
less than 13s. The phase ends when the entire swarm-bot is inside the
target area.

In some trials (5,8,9,10,11,15,18) this last phase is not shown in Fig-
ure 4.3. These are the trials in which the s-bots failed to reach the
target area. Note that even in these unsuccessful trials, the two s-bots
still succeeded in self-assembling, so the representation of the other
phases is still meaningful.

4.2.3 Timing analysis of 3-s-bot trials in Environment B

We have identified three phases of task execution for the 3 s-bot trials in
Environment B. Figure 4.4 shows how the timing of task execution in the
20 trials is broken down between these phases. The three phases of task
execution are discussed individually below.

Note that in the 3 s-bot trials we are not able to identify five distinct
phases as we could for the two s-bot trials in the previous section. For two s-
bots the Group Hill Detection phase, the Aggregation and Assembly
Seeding phase and the Self-Assembly phase were guaranteed to be time
ordered and distinct. For three s-bots this is no longer the case. For example,
two s-bots could in theory self-assemble and perform group phototaxis while
the other s-bot was still trying to aggregate. Therefore, for the three s-
bot analysis we have amalgamated these three phases into a single phase
- the Aggregation and Self-Assembly phase. In the two s-bot trials
the moment when knowledge of the hill spread through the group and the
moment when self-assembly was successfully seeded marked phase transition
boundaries. For the three s-bot trials as illustrated in Figure 4.4 we instead
mark these moments with a ’C’” and an ’S’ respectively.

e Independent Phototaxis This phase is represented by the black
bar segment. The phase lasts until one of the s-bots has detected the
presence of the hill. The duration of this phase is fairly consistent
between trials, and is dependent on the random initial configuration
of the s-bots. It never takes longer than 17 seconds before at least one
s-bot has detected a hill.

44

100 120 140 160 180
| | | | |

[]

time (in second)
80
|

60

40

7 S

ic
B
1

20

CS|
=
2

S

ic
=
3

(%]

c
=
4

o1 Illllllllllllllllllllllll‘%

S

S
=
6

S

c
=
7

CHAPTER 4. RESULTS

B Group Phototaxis
O Aggregation and Assembly
E Independent Phototaxis

0
(%)

20

Figure 4.4: Timing analysis of 3 s-bot trials in Environment B (for further
explanation see text).

4.2. ANALYSIS 45

e Aggregation and Self-Assembly This phase is represented by the
white bar segment. In this phase the s-bots approach each other
and self-assemble. During this phase the s-bots execute behaviours
Retreat_To Flat, Aggregate, Assembly_Seed, Self Assemble. The
phase ends once all s-bots are in Group_Phototaxis behaviour. This
phase took between 25s and 166s. The large percentage of total com-
pletion time can be explained by the relatively higher level of com-
plexity of this phase.

e Group Phototaxis This phase is represented by the grey bar seg-
ment. During this phase the assembled s-bots perform collective pho-
totaxis to the target. In all but one trial this phase was accomplished
fairly quickly taking between 4s and 20s. Trial 17 was an exception in
which the swarm-bot got stuck for some time in a particular configu-
ration on the hill.

The trials in which the two last phases are not shown (4,8,12,16) are
the trials in which the s-bots did not succeed in assembling into a 3
s-bot swarm-bot.

In Figure 4.4 the first time that the whole group becomes aware of the
presence of the hill is marked with a 'C’. This gives us an idea of the ef-
fectiveness of communication within the group. In the trials where point
'C’ is reached quickly, (e.g. trials 5 and 6), a single s-bot detects the rough
terrain and this knowledge is communicated very quickly to the other s-bots,
who are sufficiently close to see the blue colour of the s-bot that detected the
slope. This type of communication is at work in the trial shown in figure 4.2.
In other trials (e.g. trial 1 and 20) the s-bots are sufficiently far apart that
two s-bots discover the hill independently.

Note that such local communication happens more often than if the s-
bots were randomly distributed around the starting area. This is because
they each start in Solo_Phototaxis behaviour where they are all indepen-
dently trying to navigate towards the target light source. This increases
the probability of being close to each other when the first s-bot detects the
slope.® It is also interesting that the maximum length of time taken for hill
awareness to be communicated to the group is greater for the two s-bot trials
than it is for the three s-bot trials. This is because the greater density of
s-bots in the three s-bot trials increases the efficiency of local colour based
communication.

5Indeed we also observed that aggregation and self-assembly tended to consistently
occur near the base of the hill.

46 CHAPTER 4. RESULTS

|:| Solo Phototaxis I Retreat to Flat I Assembly Seed I Group Phototaxis

|:| Avoid I Aggregate |:| Self-Assemble

[o0]
©
O
)
T T T T T T T 1
0 10 20 30 40 50 60 70 80
time (s)
<
(V]
©
o)
)
T T T T T T T 1
0 80
™
[ap]
©
o)
)

[T T T T T T T 1

0 10 20 30 40 50 60 70 80
time(s)

Figure 4.5: Behavioural Ananlysis of 3 s-bot trial 16.

The ’S’ in figure 4.4 marks when self-assembly is seeded — the first
time that an s-bot switches into Assembly_Seed behaviour and remains in
Assembly_Seed behaviour beyond the initial timeout. We can see that this
usually happens early in the aggregation and self-assembly phase, indicating
that of these two activities, self-assembly is the most time consuming.

4.2.4 Behavioural Analysis of a single 3 s-bot trial (trial 16)

As with any self-organised system, the behaviour of the system as a whole
arises from the interactions between the individual components of the sys-
tem. In our behaviour based system, these components are not just the
s-bots, but the individual behaviours of the s-bots. To get a more detailed
understanding of how this complex behavioural interplay is functioning, we
present in Figure 4.5 a breakdown of the behaviours of the individual s-bots

4.2. ANALYSIS 47

over the course of a single 3 s-bot trial in Environment B. In contrast to
sections 4.2.2 and 4.2.3 above where we considered phases of the system
as a whole, we now analyse the internal behavioural states of the individual
s-bots and their interplay.

All the three s-bots start in Solo_Phototaxis behaviour. S-bot 18 and
s-bot 24 repeatedly switch in and out of Avoid_Obstacle behaviour as they
head towards the target. After 9.3s s-bot 24 detects the slope and switches
into Retreat_to_Flat behaviour. Within 2 seconds both s-bots 18 and 33
(10.9s and 10.66's respectively) have switched into Aggregate behaviour.
This is achieved through colour based local communication (both s-bots
notice the blue colour of s-bot 24).

At 11.4s s-bot 18 probabilistically switches into Assembly_Seed be-
haviour. At 11.7s s-bot 33 independently also probabilistically switches
into Assembly_Seed behaviour. Both are sufficiently close that they detect
each other and both switch back to Aggregate behaviour.

At 17.95s s-bot 33 again probabilistically switches into Assembly_Seed
behaviour. This time neither of the other two s-bots switch into
Assembly_Seed behaviour within the 3s timeout, so s-bot 33 switches to
Group_Phototaxis behaviour at 20.95s. At 18.57s s-bot 18 detects the
presence of the assembly seed (notices a red object) and switches into
Self_Assembly behaviour.

S-bot 24 meanwhile finishes retreating away from the hill at 22.2s. It
then switches from Retreat_to_Flat behaviour into Aggregate behaviour.
It then takes a further 8s to find and notice the assembly seed (s-bot 33) at
30.71s. At 39.0s s-bot 24 has successfully assembled to s-bot 33.

S-bot 33 and s-bot 24 are both now waiting for s-bot 18 to assemble before
they set off for the target. They don’t move as long as they continue to detect
a blue object (which is s-bot 18 still in the process of self-assembling).

S-bot 18 finally succeeds in self-assembling at 65.5s. At this point all
three successfully perform group taxis to the target. The task is completed
at 73.6s.

48

CHAPTER 4. RESULTS

Chapter 5

Ongoing Research

5.1 Introduction

The two s-bot trials in our experiments of the last chapter failed when the
two s-bot swarm-bot approached the hill with an orientation parallel to that
of the hill (see Figure 4.1). To improve the success rate of the 2 s-bot
trials, the assembled swarm-bot would need some form of control over its
orientation with respect to the environment. Observation of the three s-bot
experiments as well as initial work with larger numbers of s-bots also suggest
that the orientation of the swarm-bot is an important factor that affects the
ability of an assembled swarm-bot to traverse rough terrain.

We present some preliminary work on controlling the orientation of an
assembled swarm-bot. We restrict our attention for the time being to (pre-
assembled) swarm-bots connected in a linear configuration. Our goal is to
produce a swarm control mechanism that will prevent such a linear swarm-
bot from approaching an obstacle with an orientation parallel to that of the
obstacle.

For experimental simplicity we use troughs (long rectangular holes)
rather than hills as our rough terrain. Note that troughs create the same
“angle of approach” problems. If a linear swarm-bot approaches a trough
with an orientation parallel to that of the trough, the swarm-bot will fall into
the trough (see Figure 5.5). If, however, a swarm-bot approaches a trough
with an orientation perpendicular to that of the trough, the swarm-bot can
navigate over the trough (see Figure 5.4d).

We make one further important simplifying assumption: that the trough
is perpendicular to the direction of the target light source (at least from the
swarm-bot’s starting position). This allows us to perform adaptive swarm

49

50 CHAPTER 5. ONGOING RESEARCH

rotation on the basis of light source detection rather than by sensing the
rough terrain directly.

The task we investigate requires a pre-assembled linear swarm-bot to
traverse two troughs, one after the other. The two troughs are perpendicular
to each other. Thus whatever its random initial orientation, the swarm-bot
must be able to adaptively control its orientation (adaptively rotate) in order
to navigate over both troughs.

It is true that the assumptions we have made seriously limit the practical
use of the controller we present in this chapter. However, this chapter rep-
resents an initial investigation into swarm control mechanisms — we intend
to expand this work to be more generally applicable in the future.

In the following section we describe the experimental setup used to test
adaptive control of swarm rotation. In the subsequent two sections, we go on
to describe the controller and present some preliminary results. Finally we
discuss the limits of the controller we developed and how these limitations
might be overcome to make our control mechanism more generic.

5.2 Experimental Setup

5.2.1 The Environment

Our environment consists of two joined, overlapping rectangular areas, each
of dimensions 120 cm x 300cm. Each rectangular area has its own target
light source at the end furthest from the starting area. Each rectangular
area contains a trough. The two troughs are both of dimension 11 cm x 120
cm (both run the whole width of their respective rectangular areas). The
troughs are impassable by a two s-bot swarm-bot.

A diagram of the environment can be seen in Figure 5.1. A photograph
of the environment can be seen in Figure 5.2.

5.2.2 The Task

The s-bots start pre-assembled in a linear swarm-bot configuration. The
linear swarm-bot starts in a random orientation in the starting zone. At
the start of every trial, Light Source 1 is illuminated and Light Source 2 is
switched off. To complete the task the swarm-bot is required to navigate
first to Target Area 1, and then to Target Area 2 (see Figure 5.1).

The linear swarm-bot navigates to Target Area 1 by performing photo-
taxis towards Light Source 1. To arrive at Light Source 1 the swarm-bot must

5.2. EXPERIMENTAL SETUP

le) Light
\ m / Source
1

Target
Area 1

Starting Area

Trough (hole) - Unused Area Q S—bot

Figure 5.1: Diagram of the environment (view from above). To complete
the task the pre-assembled linear Swarm-bot must cross both troughs and

arrive in Target Area 2.

Figure 5.2: Photograph of the environment. In this photograph both light
sources are illuminated. During experiments only one light source at a time

is ever illuminated.

52 CHAPTER 5. ONGOING RESEARCH

also rotate as it performs phototaxis to ensure that it approaches Trough 1
with an orientation perpendicular to that of the trough.

If the swarm-bot successfully reaches Target Area 1, the experimenter
switches off Light Source 1 and illuminates Light Source 2. The swarm-bot
continues to perform phototaxis to Light Source 2. Again, adaptive swarm
rotation is required, this time in order to overcome Trough 2.

5.3 The Controller

5.4 High level strategy

The task as specified in the previous section requires adaptive swarm rota-
tion. In order to produce this in a distributed controller, it is necessary that
the individual s-bots have some way of determining the overall orientation
of the swarm-bot.

Based on the direction of the target direction and the orientation of
the swarm-bot each s-bot must independently determine a direction and
speed of movement. The combined result of the individual s-bot movements
must have a two-fold effect on the swarm-bot. The swarm-bot should move
towards the target light source. At the same time the swarm-bot should also
adaptively rotate until its orientation is parallel to the direction of motion.

5.5 Calculating the swarm-bot’s orientation

Calculation of the swarm-bot’s orientation is achieved by means of colour
sensing based communication. Each s-bot illuminates its red LEDs for the
duration of the controller execution. By detecting the density and direction
of red objects in its vicinity, an s-bot can both determine the orientation of
the swarm-bot and deduce its own position in the linear formation. (At least
it is possible to determine whether it is at the front of the swarm-bot, at
the rear of the swarm-bot, or somewhere in the middle). For noise reduction
purposes, only 8 possible orientation are considered. This works in a similar
fashion to the camera noise filtration algorithm (see section 3.1.2) — the
horizontal plane is divided into 8 segments, and all directions are mapped
to one of these segments.

5.5. CALCULATING THE SWARM-BOT’S ORIENTATION

/Q\ / Light Source

MYV - Motion Vector
RV - Rotation Vector
TV — Target Vector

TV (A)

\ /Q\ / Light Source

(B)

53

Figure 5.3: Motion vector calculation in a 3 s-bot linear swarm-bot. Two
scenarios are shown (A and B). In both cases, the rotation vector direction
and magnitude are determined by two key factors: (i) the position of the
s-bot within the swarm-bot with respect to the direction of the light source
(front, middle, rear) (ii) the angle between the swarm-bot’s orientation and

the target vector direction.

54 CHAPTER 5. ONGOING RESEARCH

5.6 Determining s-bot direction and speed

Each s-bot calculates two vectors. The first is the target vector. The direc-
tion of this vector is the direction the s-bot would move in if it were only
performing phototaxis. The second is the rotation vector. The direction of
this vector is the direction the s-bot would move in if it only needed to adap-
tively rotate the swarm-bot. These two vectors are then combined to give
the swarm-bot its motion vector. The s-bot direction and speed of motion
are set according to the direction and magnitude of the motion vector.! The
calculation of the motion vector is illustrated in Figure 5.3.

The target vector direction is calculated using the same target direction
noise filtering algorithm from our previous controller - see section 3.1.2.

If the swarm-bot is correctly oriented (orientation is parallel to target
vector direction), then the rotation vector direction is set parallel to the
target vector direction.

If the swarm-bot is incorrectly oriented, the s-bot first determines its
position within the swarm-bot with respect to the direction of the target
light source. If the s-bot can detect s-bots on both sides of it then it is in
the middle of the swarm-bot. Otherwise, if the direction of the nearest s-bot
(red object) is within 45 degrees of the direction of the target light source,
the s-bot is at the front of the swarm-bot. Otherwise, the s-bot is at the rear
of the swarm-bot.

Based on its position within the swarm-bot the s-bot chooses a rotation
vector perpendicular to the orientation of the swarm-bot. There are two
possible directions for this perpendicular rotation vector. One of these two
directions would move the s-bot closer to the target. The other would move
the s-bot away from the target. If the s-bot is at the front of the swarm-bot
or in the middle of the swarm-bot, the s-bot chooses the rotation vector that
moves it closer to the target. If the s-bot is at the rear of the swarm-bot
the s-bot chooses the rotation vector that moves it away from the target.
This choice of rotation wvector direction based on the relationship of the
swarm-bot’s orientation to the target vector can be seen in Figure 5.3.

The target vector is always given unit magnitude. The rotation vec-
tor has unit magnitude if the s-bot is at either the front or the rear of
the swarm-bot. Otherwise the rotation vector has magnitude 0.5. This en-
courages rotation where it is most needed - at the ends of the swarm-bot.
The maximum track speed for the s-bot is set based on the motion vector

1This is done using the same combination of turret/chassis rotation and track speeds
as used for collective motion in Group_Phototaxis behaviour (see section 3.9)

5.7. RESULTS 95

magnitude according to equation 5.1.

MAX _SPEED x (motion vector magnitude)
2

maximumTIrackSpeed =
(5.1)

5.7 Results

Preliminary experimentation with this new controller gave a success rate
of roughly 40% in trials with 4 s-bots. When, however, adaptive swarm
rotation was disabled (by setting the magnitude of the rotation vector to 0),
the success rate dropped to 0%.

A sequence of photographs of a typical successful trial can be seen in
Figure 5.4. Photographs of a failed trial with the non adaptive controller
can be seen in Figure 5.5.

The relatively low success rate of 40% is partly attributable to the high
difficulty level of the troughs we used. The troughs were wider than a single
s-bot. This meant that the leading s-bot would actually partially descend
into the trough. When the swarm-bot was perfectly aligned, the leading
s-bot’s tracks would grip the far wall of the trough and the track rotation
would help lift the s-bot over the lip of the trough. When the swarm-bot
was even slightly misaligned, this lifting effect would not occur, the leading
s-bot would get stuck in the trough and the swarm-bot would thus fail to
navigate the trough.

The low success rate was also partly attributable to continuing instabil-
ities in the system. Ideally we would like the swarm-bot to rotate until it
is aligned correctly, then cease all rotational activity and just head towards
the light source. What happened in reality was that the leading s-bot would
often over-rotate, and then have to adjust by rotating back in the other
direction. When the other s-bots tried to follow suite, this would result in a
snake-like motion towards the light source.

As discussed above, due to the difficult nature of the trough used, even
when the swarm-bot was only slightly misaligned it would fail to traverse
the trough. We therefore believe that refinement of the controller to avoid
the over rotation would result in much higher success rates.

56 CHAPTER 5. ONGOING RESEARCH

(a) (b) (c)

(d) (¢) (f)

(8) (h) (i)
Figure 5.4: Successful task completion. The linear swarm-bot adjusts its
rotation twice - once for each trough. In photograph (e) the s-bot has arrived
in Target Zone 1. At this point the experimenter switches off Light Source

1 and switches on Light Source 2. The swarm-bot carries on to successfully
complete the task by arriving in Target Zone 2.

5.8. FURTHER DEVELOPMENT 57

Figure 5.5: Swarm-bot using old controller. S-bots use greedy algorithm and
head straight towards the target without considering swarm alignment. The
swarm-bot fails to overcome the trough.

5.8 Further Development

5.8.1 Limitations of the current controller

Our new controller makes two key assumptions about the specific nature of
the task and environment we have set up. Because of these assumptions,
our new controller cannot be considered generic.

The first assumption is that the swarm-bot has been pre-configured into
a linear formation. Each s-bot deduces both the orientation of the swarm-bot
and its own position within the swarm-bot by observing the density of red
objects on either side of it. If the assembled structure were not linear, such
deductions would be invalid.

Secondly, the controller is making an assumption about the relationship
between the trough and the direction of the target light source. In particular,
the controller assumes that the orientation of the trough is perpendicular to
the direction of the target light source. If this were not the case, aligning
the swarm-bot with respect to the light source might be futile.?

5.8.2 Future controller development

The limitations discussed in the previous section immediately suggest two
areas of further study.

2This assumption may generalise to some extent. Our swarm controller tries to orient
the swarm-bot to be parallel to the direction of motion. Even without the assumption
holding true, this strategy would still make it almost impossible for the s-bot to approach
even a randomly oriented obstacle with an orientation parallel to that of the obstacle.
(Of course, the swarm-bot is unlikely to approach such an obstacle with an orientation
perpendicular to that of the obstacle.)

58 CHAPTER 5. ONGOING RESEARCH

The linear configuration assumption could be made valid by somehow
ensuring that the s-bots always self-assembled into a linear structure. This
could be achieved by modifying the Self_Assembly behaviour module so
that assembling s-bots selectively lit up relevant portions of their LED ring
to encourage linear connections.

The assumption about the relationship between the light source direc-
tion and the trough orientation is more fundamental. The swarm-bot needs
some way of adaptively rotating on the basis of the nature of the rough
terrain. This could possibly be done by sensing the rough terrain (be it hill
or trough), and generating the rotation vector on that basis. This is by no
means a trivial task, however — plenty of practical hurdles will have to be
overcome, including speed of sensing (s-bots might only detect rough terrain
when it is already too late) and differences in sensed information between
s-bots (some s-bots might realise the need to rotate, others might not).

Chapter 6

Conclusions

6.1 Overview of Results

In this thesis we have demonstrated that it is possible for a group of robots
to choose to self-assemble in response to the demands of their task and en-
vironment. In our study a group of robots faced with a simple hill overcome
it independently. When the same robots are faced with a hill too difficult
for a single robot to pass they self-assemble and overcome the hill together.

We also demonstrated that the benefits of self-assembly increase with
group size. In the experiments with the difficult hill no unassembled robots
ever succeeded in reaching the target area. With group sizes of 2 s-bots,
65% of the s-bots successfully carried out the task. A further clear improve-
ment could be seen for the 3 s-bot groups — 87% of the s-bots successfully
completed the task.

6.2 Future Research Directions

6.2.1 The Evolutionary Perspective

In a previous work conducted in a simplified simulation environment, Trianni
et al. [65] focused on evolving a single neural network controller integrating
the different aspects of functional self-assembly. Due to the complexities
involved in implementing functional self-assembly for the first time with
physical robots, we used a building block approach — we implemented a
collection of simple basic behaviours corresponding to the different phases of
functional self-assembly seen from the individual perspective. We developed
a behaviour based controller by combining these building blocks.

59

60 CHAPTER 6. CONCLUSIONS

We believe that it would be interesting to apply the evolutionary ap-
proach to the real robots. This might yield solutions that exploit hidden
properties of the robotic hardware or which make better use of the complex
group dynamics of the task [54].

6.2.2 More sophisticated functional self assembly

If functionally self-assembling swarm systems are ever to become a practical
reality for complex real world problems they will have to demonstrate the
following autonomous capabilities:

e Self-assembly in response to environmental conditions.

e Control over the self-assembly process. This would involve the cre-
ation of different assembled patterns to meet needs of the particular
problem being solved. For example, rough terrain navigation prob-
lems and object transport problems would require different assembled
formations.

e Control over the assembled swarm. The assembled robots must display
swarm behaviour appropriate to the task. The more complex the task,
the more complex this swarm behaviour will have to be.

e Disassembly in response to the environmental conditions. Robots
might, for example, need to assemble to cross some rough terrain,
then disassemble in order to go through a narrow passageway.

Over the course of this thesis we have shown that the first item above is
possible (albeit in a simple environment).

A sensible starting point for future research would, therefore, be to try
and make similar proof of concept demonstrations for items 2 — 4 above.
In the previous chapter we presented some initial work on the third item
above — control of the assembled swarm.

Once each capability has been addressed individually, the next step
would be to try and demonstrate all of these capabilities together in a single
System.

6.3 Significance of this work

Functional self-assembly is a key adaptive response mechanism in many
social insect species. Several species of social insect utilise self-assembly

6.3. SIGNIFICANCE OF THIS WORK 61

to solve problems collectively that are too large or complex for a single
insect [2].

Swarm robotics is a field that bases itself on principles learnt from such
natural systems. It is therefore surprising, given the ubiquity of functional
self-assembly as an adaptive response mechanism in the animal kingdom,
how little research has been done on the subject in swarm robotics.

We believe that our results represent a significant first step on the road
to utilising this important mechanism in real robotic systems. Now the same
mechanism must be applied to more complex tasks.

62

CHAPTER 6. CONCLUSIONS

Bibliography

1]

P.E. Agre and D. Chapman. Pengi: An implementation of a theory
of activity. In Proc. of AAAI-87, pages 268-272, Seattle, WA, 1987.
Morgan Kaufmann.

C. Anderson, G. Theraulaz, and J.-L. Deneubourg. Self-assemblage in
insects societies. Insectes Sociauz, 49:99-110, 2002.

R.C. Arkin. Towards the unification of navigational planning and reac-
tive control. In AAAI Spring Symposium on Robot Navigation, pages
1-5, Stanford University, CA, 1989.

R.C. Arkin. Behavior-Based Robotics. MIT Press, Cambridge, MA,
1998.

Ronald C. Arkin. Cooperation without communication: Multiagent
schema based robot navigation. Journal of Robotic Systems, 9(3):351—
364, 1992.

W.R. Ashby. Design for a Brain. Wiley & Sons, New York, 1952.

E Bahceci, O. Soysal, and E. Sahin. A review: Pattern formation and
adaptation in multi-robot systems. Technical Report CMU-RI-TR-03-
43, Robotics Institute, Carnegie Mellon University, Pittsburgh, PA,
2003.

T Balch. Learning roles: Behavioral diversity in robot teams. Technical
Report GIT-CC-97-12, Georgia Institute of Technology, Atlanta, GA,
1997.

G. Beni. From swarm intelligence to swarm robotics. In E. Sahin and
W.M. Spears, editors, SAB, volume 3342 of Lecture Notes in Computer
Science, pages 1-9, Berlin, Germany, 2004. Springer-Verlag.

63

64

[10]

[11]

[12]

[13]

[20]

[21]

BIBLIOGRAPHY

E. Bonabeau, M. Dorigo, and G. Theraulaz. Swarm Intelligence: From
Natural to Artificial Systems. Oxford University Press, New York, 1999.

R.A. Brooks. A robust layered control system for a mobile robot. IEEE
Journal of Robotics & Automation, 2(1):14-23, 1986.

R.A. Brooks. Elephants don’t play chess. Robotics and Autonomous
Systems, 6(1-2):3-15, 1990.

R.A. Brooks. Intelligence without reason. In J. Myopoulos and R. Re-
iter, editors, Proceedings of the 12th International Joint Conference
on Artificial Intelligence (IJCAI-91), pages 569-595, San Mateo, CA,
1991. Morgan Kaufmann.

S. Camazine, J.-L.. Deneubourg, N. Franks, J. Sneyd, G. Theraulaz,
and E. Bonabeau. Self-Organization in Biological Systems. Princeton
University Press, Princeton, NJ, 2001.

S. Camazine and J. Sneyd. A model of collective nectar source selec-
tion by honey bees: self-organization through simple individual rules.
Journal of Theoretical Biology, 149:547-571, 1991.

S. Camazine, J. Sneyd, M.J. Jenkins, and J.D. Murray. A mathemat-
ical model of self-organized pattern formation the combs of honeybees
colonies. Journal of Theoretical Biology, 1:295-311, 1990.

A. Castano, W.-M. Shen, and P. Will. CONRO: Towards deployable
robots with inter-robots metamorphic capabilities. Autonomous Robots,
8(3):309-324, 2000.

L. Chaimowicz, V. Kumar, and M. Campos. A paradigm for dynamic
coordination of multiple robots. Autonomous Robots, 17(1):7-21, 2004.

R. Chatila and J. Laumond. Position referencing and consistent world
modeling for mobile robots. In IEEE International Conference on
Robotics and Automation, Piscataway, NJ, 1985. IEEE Publications.

J. Connell. Minimalist Mobile Robotics: A Colony-style Architecture
for a Mobile Robot. Academic Press Professional, San Diego, CA, 1990.

J. Connell. A hybrid architecture applied to robot navigation. In Pro-
ceedings of the IEEE International Conference on Robotics and Au-
tomation, pages 2719-2724, Piscataway, NJ, 1992. IEEE Publications.

BIBLIOGRAPHY 65

[22]

23]

[24]

[28]

J.-L. Deneubourg, S. Aron, S. Goss, and J.M. Pasteels. The self-
organizing exploratory patterns of the argentine ant. Journal of Insect
Behaviour, 3:159-168, 1990.

J.-L. Deneubourg and S. Goss. Collective patterns and decision making.
Ethology Ecology Fvolution, pages 295-311, 1989.

J.-L. Deneubourg, J. C. Gregoire, and E. Le Fort. Kinetics of the larval
gregarious behaviour in the bark beetle Dendroctonus micans. Journal
of Insect Behavior, 3:169-182, 1990.

C. Detrain. Field study on foraging by the polymorphic ant species
pheidole pallidula. Insectes Sociauz, 37(4):315-332, 1990.

C. Detrain and J.-L. Deneubourg. Scavenging by Pheidole crassinoda:
a key for understanding decision-making systems in ants. Animal Be-
haviour, 53:537-547, 1997.

M. Dorigo, V. Trianni, E. Sahin, R. Grof}, T. H. Labella, G. Baldas-
sarre, S. Nolfi, J.-L. Deneubourg, F. Mondada, D. Floreano, and L. M.
Gambardella. Evolving self-organizing behaviors for a Swarm-bot. Au-
tonomous Robots, 17(2-3):223-245, 2004.

E.J.P. Earon, T.D. Barfoot, and G.M.T. D’Eleuterio. Development of a
multiagent robotic system with application to space exploration. In Pro-
ceedings of 2001 IEEE/ASME International Conference on Advanced

Intelligent Mechatronics, volume 2, pages 1267-1272, Piscataway, NJ,
2001. IEEE Publications.

T. Estier, Y. Crausaz, B. Merminod, M. Lauria, R. Piguet, and R. Sieg-
wart. An innovative space rover with extended climbing abilities. In
Proceedings of the ASCE Conference on Robotics for Challenging En-
vironments, pages 333-339, Dallas, TX, 2000. ASCE Publications.

Tara A. Estlin, Alexander Gray, Tobias Mann, Gregg Rabideau, Re-
becca Castano, Steve Chien, and Eric Mjolsness. An integrated system
for multi-rover scientific exploration. In Proceedings of the Sixteenth
National Conference on Artificial Intelligence, pages 613-620, Menlo
Park, CA, 1999. AAAT Press.

T.D. Fitzgerald. The tent caterpillars. Cornell University Press, Ithaca,
NY, 1995.

66

[32]

[33]

BIBLIOGRAPHY

T. Fukuda, S. Nakagawa, Y. Kawauchi, and M. Buss. Structure deci-
sion method for self organising robots based on cell structures-cebot.
In Proc. of the 1989 IEEE International Conference on Robotics and
Automation (Vol. 2), pages 695-700, Piscataway, NJ, 1989. IEEE Pub-
lications.

B.P. Gerkey and M.J Matari¢. Multi-robot task allocation: Analyzing
the complexity and optimality of key architectures. In Proc. of the IEEE
Intl. Conf. on Robotics and Automation (ICRA), Piscataway, NJ, 2003.
IEEE Publications.

B.P. Gerkey and M.J. Matari¢. A formal analysis and taxonomy of task
allocation in multi-robot systems. International Journal of Robotics
Research, 23(9):939-954, 2004.

G. Giralt, R. Chatila, and M. Vaisset. An integrated navigation and
motion control system for autonomous multisensory mobile robots. In
S. S. Iyengar and A. Elfes, editors, Autonomous Mobile Robots: Control,
Planning, and Architecture (Vol. 2), pages 254-277. IEEE Computer
Society Press, 1991.

D. Goldberg and M. Matari¢. Design and evaluation of robust behavior-
based controllers. In T. Balch and L.E. Parker, editors, Robot Teams:
From Diversity to Polymorphism. A K Peters, Wellesley, MA, 2002.

S. Goss and J.-L. Deneubourg. Harvesting by a group of robots. In To-
ward a Practice of Autonomous Systems, Proceedings of the First Fu-
ropean Conference on Artificial Life, pages 195-204, Cambridge, MA,
1991. MIT Press.

P.-P. Grassé. La reconstruction du nid et les coordination inter-
individuelles chez bellicositermes natalensis et cubitermes sp. la thérie
de la stigmergie: Essai d’interprétation du comportement des termites
constructeurs. Insectes Sociauz, 6:41-80, 1959.

R. Grof3, M. Bonani, F. Mondada, and M. Dorigo. Autonomous self-
assembly in mobile robotics. Technical Report IRIDIA /2005-2, IRIDIA,
Université Libre de Bruxelles, Brussels, Belgium, 2005.

R. Grof§ and M. Dorigo. Group transport of an object to a target that
only some group members may sense. In Parallel Problem Solving from
Nature — 8th International Conference (PPSN VIII), volume 3242 of

BIBLIOGRAPHY 67

[41]

[42]

[47]

[48]

Lecture Notes in Computer Science, pages 852-861, Berlin, Germany,
2004. Springer-Verlag.

C.V. Jones and M.J. Mataric. Automatic synthesis of communication-
based coordinated multi-robot systems. In IEFE/RSJ International
Conference on Intelligent Robots and Systems, pages 381-387, Piscat-
away, NJ, 2004. IEEE Publications.

Y. Kuniyoshi, N. Kita, S. Rougeaux, S. Sakane, M. Ishii, and
M. Kakikura. Cooperation by observation - the framework and ba-
sic task patterns. In Proceedings of the IEEE International Conference
on Robotics and Automation, pages 767774, 1994.

J.E. Laird and P. Rosenbloom. The evolution of the Soar cognitive
architecture. In David M. Steier and Tom M. Mitchell, editors, Mind
Matters: A Tribute to Allen Newell, pages 1-50. Lawrence Erlbaum
Associates, Inc., 1996.

P. Maes. The dynamics of action selection. In Proceedings of the 11th
International Joint Conference on Artificial Intelligence, pages 991—
997, San Francisco, CA, 1989. Morgan Kaufmann.

A. Martinoli, K. Easton, and W. Agassounon. Modeling swarm robotic
systems: A case study in collaborative distributed manipulation. In-
ternational Journal of Robotics Research, 23(4):415-436, 2004.

A. Martinoli and F. Mondada. Collective and cooperative group be-
haviours: Biologically inspired experiments in robotics. In Proceedings
of the Fourth International Symposium on Ezxperimental Robotics, pages
3-10, Berlin, Germany, 1995. Springer-Verlag.

M.J. Mataric. Behavior-based control: Examples from navigation,
learning, and group behavior. Journal of Experimental and Theoret-
ical Artificial Intelligence, 9(2-3):323-336, 1997.

F. Mondada, L. M. Gambardella, D. Floreano, S. Nolfi, J.-L.
Deneubourg, and M. Dorigo. SWARM-BOTS: Physical interactions
in collective robotics. Robotics & Automation Magazine, 12(2):21-28,
2005.

F. Mondada, G. C. Pettinaro, A. Guignard, I. V. Kwee, D. Floreano, J.-
L. Deneubourg, S. Nolfi, L. M. Gambardella, and M. Dorigo. SWARM-
BOT: A new distributed robotic concept. Autonomous Robots, 17(2—
3):193-221, 2004.

68

[50]

[51]

BIBLIOGRAPHY

H. Moravec and D.W. Cho. A bayesian method for certainty grids. In
AAAIT 1989 Spring Symposium Series, Symposium on Mobile Robots,
Stanford University, CA, 1989.

S. Murata, E. Yoshida, A. Kamimura, H. Kurokawa, K. Tomita,
and S. Kokaji. M-TRAN: Self-reconfigurable modular robotic system.
IEEE/ASME Transactions on Mechatronics, 7(4):431-441, 2002.

W. Mnch and W. Engels. Vorkommen der moor-knotenameise myr-
mica gallienii im riedgrtel des federsees (hymenoptera: Myrmicidae).
Entomologia Generalis, 19:15-20, 1994.

N.J. Nilsson. Shakey the robot. Technical Report 323, AI Center, SRI
International, Menlo Park, CA, 1984.

S. Nolfi and D. Floreano. FEvolutionary Robotics: The Biology, In-
telligence, and Technology of Self-Organizing Machines. MIT Press,
Cambridge, MA, 2000.

M. Ngrgaard, O. Ravn, N. Poulsen, and L. Hansen. Neural Networks
for Modelling and Control of Dynamic Systems. Advanced Textbooks
in Control and Signal Processing. Springer-Verlag, Berlin, Germany,
2000.

L. Parker. Alliance: An architecture for fault-tolerant multi-robot co-
operation. IEEE Transactions on Robotics and Automation, 14(2):220—
240, 1998.

D.W. Payton. Internalized plans: a representation for action resources.
Robotics and Autonomous Systems, 6:89-103, 1990.

D.W. Payton, M. Daily, R. Estowski, M. Howard, and C. Lee.
Pheromone robotic. Autonomous Robots, 11(3):319-324, 2001.

D.W. Payton, D. Keirsey, D. M. Kimble, J. Krozel, and J.K. Rosenblatt.
Do whatever works: A robust approach to fault-tolerant autonomous
control. Applied Intelligence, 2:225-250, 1992.

F. Saffre, R. Furey, B. Kraft, and J.L. Deneubourg. Collective decision-
making in social spiders: Dragline-mediated amplification process acts
as a recruiting mechanism. Journal of Theoretical Biology, 198:507-517,
1999.

BIBLIOGRAPHY 69

[61]

[62]

[63]

[64]

[65]

[66]

[68]

T.D. Seeley. The Wisdom of the Hive, pages 277-290. Harvard Univer-
sity Press, Cambridge, MA, 1995.

L. Steels. The artificial life roots of artificial intelligence. Artificial Life,
1:75-110, 1994.

H. Stone. Mars Pathfinder Microrover - A Small, Low-Cost, Low-Power
Spacecraft. In Proceedings of the 1996 AIAA Forum on Advanced De-
velopments in Space Robotics, Reston, VA, 1996. ATAA Publications.

V. Trianni, T.H. Labella, R. Gross, E. Sahin, M. Dorigo, and J.-L.
Deneubourg. Modeling pattern formation in a swarm of self-assembling
robots. Technical Report TR/IRIDIA /2002-12, IRIDIA, Université Li-
bre de Bruxelles, Brussels, Belgium, 2002.

V. Trianni, E. Tuci, and M. Dorigo. Evolving functional self-assembling
in a swarm of autonomous robots. In From Animals to Animats VIII.
Proceedings of the 8" International Conference on Simulation of Adap-
tive Behavior, pages 405-414, Cambridge, MA, 2004. MIT Press.

N. Vandapel, S. Moorehead, W. Whittaker, R. Chatila, and
R. Murrieta-Cid. Preliminary results on the use of stereo, color cam-
eras and laser sensors in Antarctica. In Proceedings of the International
Symposium on Experimental Robotics, Berlin, Germany, 1999. Springer-
Verlag.

M. Yim, D.G. Duff, and K.D. Roufas. PolyBot: a Modular Recon
gurable Robot. In Proceedings of the 2000 IEEE/RAS International
Conference on Robotics and Automation, volume 1, pages 514-520,
Cambridge, MA, 2000. IEEE Publications.

M. Yim, K. Roufas, D. Duff, Y. Zhang, C. Eldershaw, and S. Homans.
Modular reconfigurable robots in space applications. Autonomous
Robots, 14(2-3):225-237, 2003.

