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Abstract

Timetabling is an interesting combinatorial optimization problem. Its def-
inition comes from real world situations, where timetables have to be created
– such as in schools, universities, hospitals, etc. There exist several different
variants of this problem.

We shortly present the general idea of the timetabling problem and then a
few distinctive variants of this problem. We identify the general characteristics
of these variants and highlight the differences and similarities. We show that
complexity of the timetabling problems in general is NP-complete due to sev-
eral different factors. Eventually we choose one of the presented variants of a
timetabling problem, and perform a bit more in-depth analysis of it. We clearly
define the variant that we would tackle and present the test instances that we
would use for evaluating the algorithms for solving this problem.

We then present a set of five metaheuristics that may be used for tackling
the timetabling problem. They include: simulated annealing, iterated local
search, tabu search, evolutionary algorithm, and ant colony optimization. We
briefly present the key ideas, their origins and applications. For each of them
we provide a short algorithmic overview of their operation.

We later focus on one of the metaheuristics – Ant Colony Optimization –
to see how it may be applied to the timetabling problems. As it is one of the
first attempts to use Ant Colony Optimization metaheuristic for these kind of
problems, we discuss several design considerations. We implement the MAX -
MIN Ant System for the University Course Timetabling Problem. Our algo-
rithm makes use of a local search procedure, but we show that our algorithm
is significantly better than the local search alone by comparing it to a random
restart local search algorithm. Using another ant algorithm – the Ant Colony
System – developed by some other researchers1 we are able to show how differ-
ent ant algorithms perform on the same timetabling problem. Also, based on
the results of other people developing other metaheuristics for the timetabling
problems1 we are able to show how our MAX -MIN Ant System compares to
them.

After the initial experiments with the MAX -MIN Ant System we gather
enough experience to propose a second, improved version of this algorithm –
MMAS2. We present the changes introduced with regard to the initial algo-
rithm and discuss their importance. We present some considerations of choosing
proper parameters for this new algorithm, which we support by experimental re-
sults. Eventually, we show how much improvement in the performance has been
archived with the new algorithm comparing to the previous one. We discuss the
results obtained.

1See acknowledgment section for details.



During the research we have published several papers. Some of them con-
cerned multiobjective agent systems, and other dealt clearly with the topics
covered by this work. These were the papers on timetabling problems and the
ant colony optimization metaheuristic. The published papers are listed towards
the end of this work. The full versions of the papers are attached as Appendix A.
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Chapter 1

The Timetabling Problem

The Timetabling Problem (TTP) [39, 14, 15] is a combinatorial optimization
problem. The task is to assign a set of participants into particular events, and/or
the events into places and timeslots. Depending on the variant of the problem
there may be different participants, events, places, and timeslots. The TTP is
a constraint satisfaction type of problem. It usually defines several hard and
soft constraints. The hard constraints determine the feasibility of the timetable,
and the soft constraints determine further its quality. Solving the TTP usually
means finding such an assignment, so that no hard constraints are violated
(timetable is feasible), and the number of violations of soft constraints is as low
as possible (so that the feasible timetable is as good as possible). Alternatively,
the aim may also be to state that a feasible solution does not exist to a given
problem. The hard constraints usually include:

• no participant can be in two different places at the same time;

• only one event can take place in one place at given timeslot;

• assigned place has to fulfil certain requirements of the event (size, features,
etc).

The soft constraints are very much problem specific. They depend on the ad-
ditional qualities (features) of the places and events, additional requirements for
the participants schedule, personal preferences, organizational issues, physical
/ geographical location of the places, etc.

There are many purely academic combinatorial optimization problems tack-
led by a number of researchers (and algorithms) in the world. Those pure
academic problems are usually simple to define in a quite abstract way, but
difficult to solve. They may not be always clearly related to real life situations.
The TTP is another kind of problem. Its definition comes from real life applica-
tions. Initially people manually created timetables and only later they started
using computers for this purpose. There existed (and still exists) a number of
interactive approaches to timetabling, where manual actions were coupled with
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some automated timetabling. Here, we focus on the automated timetabling, i.e.
the timetabling done fully by algorithms without any human interaction in the
process.

1.1 Variants of the Timetabling Problem

Since the timetabling problem has not been defined in an utterly artificial way,
but clearly came from real life situations, there are several types and variations
of the TTP. They mostly differ by the types and the number of participants,
timeslots, and places. Each problem also usually specifies different constraints.
Some of the more popular types include:

• High School Timetabling,

• University Timetabling,

• Employee Timetabling.

However, many more exist. The following subsections present the basic
characteristics of those more popular variations of the timetabling problem.

1.1.1 High School Timetabling

High School Timetabling usually refers to the problem of constructing timetables
(or schedules) for high schools. The typical characteristics of such problem
include:

• the participants are divided into teachers and (whole) classes;

• the places are the available classrooms;

• the timeslots are the available periods;

• additional information is provided on the given class curriculum (fre-
quency of teachers having courses in the given class)

The example of the hard constraints for this problem may include [12, 45]:

• every teacher and every class must be present in the timetable in a pre-
defined number of hours;

• there may not be more than one teacher in the same class on the same
hour;

• no teacher can be in two classes on the same hour;

• there can be no ”uncovered hours” (that is, hours when no teacher has
been assigned to a class).

Additionally there may be a number of soft constraints defined. They may
refer to particular organizational issues (teachers prefer to have a day off, classes
should not have too many hours during one day, everyone should have a lunch
break, etc.).

4



1.1.2 University Timetabling

The University Timetabling Problem (UTP) is a problem that is periodically
faced by any university in the world. Depending on the definition, it involves
scheduling number of courses or exams into rooms and timeslots. Hence, it is
sometimes called the Examination Timetabling, or University Course Timetabling.
The typical hard constraints for this problem are:

• no student should have two courses/exams at the same time;

• there may be only one course/exam in a given room at a given time;

• the room has to fulfill the requirements of the course/exam (size, features,
etc.).

This is probably the most common type of the TTP found in the litera-
ture [10, 39, 16, 8]. There is a large number of types of this variant of the
problem. These types differ mostly by the number and type of soft constraints.
In fact, it seems that each university has a different opinion how a good timetable
should look like. Some want to optimize the room use, some want to include
student preferences, and yet some have very specific other requirements.

1.1.3 Employee Timetabling

The Employee Timetabling Problem (ETP) is often defined as the problem of
assigning a set of employees to tasks and work-shifts [32]. Employees have a set
of skills, while the tasks have a set of recommendations. The work-shifts are
assumed to be fixed in time. The examples of the ETP may be:

• assignment of nurses to shifts in a hospital,

• assignment of workers to cash registers at a large store,

• assignment of phone operators to shifts and stations in a service-oriented
call-center.

The ETP usually involves an institution with a set of tasks to be completed,
a set of employees that have a certain skills, a time schedule for completion of
the tasks, and availability of the employees. There also may be a number of
hard and soft constraints influencing possible assignments of employees to tasks
and work-shifts.

The goal is usually to fulfill the constraints defined, or achieve some general
objectives, such as minimal tasks completion time, minimization of the number
of employees, or equitable division of work.
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1.2 Common Framework

There have been numerous attempts to develop a common framework for tack-
ling all types of timetable problems. However, none seems to be widely adopted
by the people involved in the timetabling research. The efforts in this area focus
on developing a common specification of timetable problems. There have been
some generic structures and languages developed. Examples include STTL [25],
UniLang [37], and others [9, 11].

The major difficulty however with such a generalized approach to timetabling
is that the more general is the description of the problem tackled, the less
efficient becomes the algorithm to solve it. Another words, in order to have an
efficient algorithm for a given type of the timetabling problem, it has to be as
narrowly defined as possible.

1.3 Complexity of Timetabling Problems

It has been shown that timetabling problems are difficult combinatorial opti-
mization problems. The timetabling is sometimes compared to a more pure
academic problem – the graph coloring problem [35]. Usually however, the
timetabling problem appears to be much harder to solve than just graph col-
oring, and in order to present it as a graph coloring problem requires some
simplifications [15, 8]. In particular it has been shown that they may be trans-
formed (through reduction) to graph coloring problems [14]. In turn, it has been
shown previously that graph coloring is a NP-complete type of problem [24].

Also, [14] shows that usually the timetabling problems are in fact NP-
complete due to number of factors. It shows that there may be a set of subprob-
lems defined on the basis of a timetabling problem, each of which is NP-complete
on its own. It is hence quite clear that the timetabling problems are some of
the most difficult problems to solve.

1.4 Problem Tackled:
University Course Timetabling

We present in this section the actual variant of the problem that we tackled
in our research – the University Course Timetabling Problem (UCTP). The
problem involves scheduling number of courses into set of timeslots and rooms.
We present here a clear definition of the version of the problem tackled, and also
the problem instances that were used for testing and evaluating the algorithms.

1.4.1 UCTP Definition

The University Course Timetabling Problem [38][5, 6] consists of a set of events
E = {e1, . . . , e|E|} to be scheduled in a set of timeslots T = {t1, . . . , t|T |}, and a
set of rooms R = {r1, . . . , r|R|} in which events can take place. Two additional
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Figure 1.1: Timetable of |T | timeslots and |R| rooms (|P | = |T | · |R| places).
Some events from the set E have already been placed.

sets are defined: a set of students S who attend the events, and a set of features
F satisfied by rooms and required by events. Each student is already preassigned
to a subset of events. The solution to the UCTP is a mapping of events into
particular timeslots and rooms. Fig. 1.1 shows an example of a timetable. The
problem may be defined in a more formal way. Let:

a indicate students attendance:

a(si,ej) =
{

1, if student si attends event ej ,
0, otherwise, (1.1)

g indicate which rooms are suitable for which events (i.e. the room provides all
the features that the event requires and has the right size):

g(rl,ej) =
{

1, if room rl is suitable for the event ej ,
0, otherwise, (1.2)

p indicate the placement of events:

p(ej ,tk,rl) =
{

1, if event ej is placed in timeslot tk and room rl,
0, otherwise, (1.3)

A feasible timetable is one in which all events have been assigned a timeslot
and a room, so that the following hard constraints are satisfied:

• hc1 : no student attends more than one event at the same time;

• hc2 : the room is big enough for all the attending students and satisfies
all the features required by the event;

• hc3 : only one event is taking place in each room at a given time.

The hard constraints may be then presented in the from of the following
conditions, respectively:

7



hc1 : ∀s∈S∀t∈T

|E|∑

j=0

|R|∑

l=0

a(s,ej) · p(ej ,t,rl) ≤ 1 (1.4)

hc2 : ∀e∈E

|T |∑

k=0

|R|∑

l=0

p(e,tk,rl) · g(rl,e) = 1 (1.5)

hc3 : ∀t∈t∀r∈R

|E|∑

j=0

p(ej ,t,r) ≤ 1 (1.6)

The infeasible timetables are worthless and are considered equally bad re-
gardless of the actual level of infeasibility. In addition, a feasible candidate
timetable is penalized equally for each occurrence of the following soft con-
straint violations:

• sc1 : a student has a class in the last slot of the day;

• sc2 : a student has more than two classes in a row (one penalty for each
class above the first two);

• sc3 : a student has exactly one class during a day.

Also the soft constraints may be defined in more formal way. They are
respectively:

sc1 =
4∑

d=0

|R|∑

l=0

|E|∑

j=0

|S|∑

i=0

p(ej ,t9d+8,rl) · a(si,ej) (1.7)

sc2 =
4∑

d=0

|S|∑

i=0

9d+7∑

k=9d

h(), (1.8)

h() =

{
1, if

∑2
n=0

∑|R|
l=0

∑|E|
j=0 p(ej ,tk+n,rl) · a(si,ej) = 3

0, otherwise,

where d indicates the day of the week and h() indicates whether the student si

has three consecutive classes starting with timeslot tk.

sc3 =
4∑

d=0

|S|∑

i=0

q(), (1.9)

q() =

{
1, if

∑9d+9
k=9d

∑|R|
l=0

∑|E|
j=0 p(ej ,tk,rl) · a(si,ej) = 1

0, otherwise,

where q() indicates whether the student si has exactly one class during the day
d.
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Table 1.1: Parameter values for the three UCTP classes.
Class small medium large
Num events 100 400 400
Num rooms 5 10 10
Num features 5 5 10
Approx features per room 3 3 5
Percent feature use 70 80 90
Num students 80 200 400
Max events per student 20 20 20
Max students per event 20 50 100

The goal of solving the problem formulated in such a way is to minimize the
number of soft constraint violations:

min #scv = sc1 + sc2 + sc3 (1.10)

1.4.2 UCTP Instances

There were two general types of instances used for evaluation of our algorithms
for UCTP:

• Metaheuristics Network (MN) instances – a set of instances chosen by the
Metaheuristic Network1 for evaluation of the metaheuristics developed in
the course of the Metaheuristics Network project, and

• competition instances – a set of instances provided by the organizers of
the International Timetabling Competition2.

Instances of the UCTP of both types were constructed using a generator
written by Paechter3. The generator makes instances for which a perfect so-
lution exists, that is, a timetable having no hard or soft constraint violations.
The generator is called with eight command line parameters that allow various
aspects of the instance to be specified, plus a random seed.

Three classes of the MN instances have been chosen, reflecting realistic
timetabling problems of varying sizes. These classes are defined by the val-
ues of the input parameters to the generator, and different instances of the class
can be generated by changing the random seed value. The parameter values
defining the classes are given in Tab. 1.1. There were several instances of each
class generated.

The second type of instances used for algorithm evaluation, were the in-
stances that have been proposed as a part of the International Timetabling

1http://www.metaheuristics.org .
2http://www.idsia.ch/Files/ttcomp2002/ .
3http://www.dcs.napier.ac.uk/~benp .
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Competition. They were also generated with the same generator, however the
parameters used to generate them were not made available. There were 20
instances created.
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Chapter 2

Metaheuristics

The timetabling problems being difficult and often encountered in the real world,
have been tackled by many algorithms. Also metaheuristics have been used to
solve such problems.

In this chapter we present some general information about the metaheuristics
that have been used in the past for tackling the timetabling problems. The
metaheuristics covered include:

• Simulated Annealing,

• Iterated Local Search,

• Tabu Search,

• Evolutionary Algorithms,

• Ant Colony Optimization.

In this chapter we provide general description of these metaheuristics. Chap-
ter 3 provides a more focused view on one of these metaheuristics (the Ant
Colony Optimization) as used for UCTP, as well as results obtained by other
metaheuristics as a reference.

2.1 Simulated Annealing

The Simulated Annealing (SA) is considered to be the oldest metaheuristic. It
was first proposed by Kirkpatrick et al. [26]. It is a Monte Carlo approach to
optimization and its origins are in statistical mechanics (Metropolis algorithm).

The term simulated annealing derives from the roughly analogous physical
process of heating and then slowly cooling a substance to obtain a strong crys-
talline structure. In simulation, a minima of the cost function corresponds to
this ground state of the substance. The simulated annealing process lowers
the temperature by slow stages until the system freezes and no further changes
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Algorithm 1 Simulated Annealing
initialize T
s ← initial solution
while termination condition not met do

s′ ← random solution from neighborhood N(s)
if f(s′) < f(s) then

s ← s′

else
s ← s′ with probability e

−(f(s′)−f(s))
T

end if
update T

end while

occur. At each temperature the simulation must proceed long enough for the
system to reach a steady state or equilibrium. This is known as thermaliza-
tion. The time required for thermalization is the decorrelation time; correlated
microstates are eliminated. The sequence of temperatures and the number of
iterations applied to thermalize the system at each temperature comprise an
annealing schedule.

To apply simulated annealing, the system is initialized with a particular
configuration, and the so-called temperature parameter T is initialized. A new
configuration is constructed by imposing a random displacement. If the energy
of this new state is lower than that of the previous one, the change is accepted
unconditionally and the system is updated. If the energy is greater, the new
configuration is accepted probabilistically: a solution s′ from the neighborhood
N(s) of the solution s is accepted as new current solution depending on f(s),
f(s′) and T . The probability is generally computed following the Boltzmann dis-

tribution e
−(f(s′)−f(s))

T . This is the Metropolis step, the fundamental procedure
of simulated annealing. This procedure allows the system to move consistently
towards lower energy states, yet still jump out of local minima due to the prob-
abilistic acceptance of some upward moves. If the temperature is decreased
algorithmically, simulated annealing guarantees an optimal solution.

The temperature T is decreased during the search process, thus at the be-
ginning of the search the probability of accepting uphill moves is high and it
gradually decreases, converging to a simple iterative improvement algorithm.
Regarding the search process, this means that the algorithm is the result of
two combined strategies: random walk and iterative improvement. In the first
phase of the search, the bias toward improvements is low and it permits the
exploration of the search space; this erratic component is slowly decreased thus
leading the search to converge to a (local) optimum. The probability of ac-
cepting uphill moves is controlled by two factors: the difference of the objective
functions and the temperature. On the one hand, at fixed temperature, the
higher the difference f(s′) − f(s), the lower the probability to accept a move
from s to s′. On the other hand, the higher T , the higher the probability of

12



Algorithm 2 Iterated Local Search
s ← initial solution
s∗ ← LocalSearch(s)
while termination condition not met do

s′ ← Perturbation(s∗, history)
s∗′ ← LocalSearch(s′)
if AcceptanceCriteria(s∗, s∗′, history) then

s∗ ← s∗′

end if
end while

uphill moves.
The basic mode of operation of a simulated annealing algorithm is shown in

Alg. 1. The simulated annealing may be further improved by introducing local
search heuristic [31].

2.2 Iterated Local Search

Iterated Local Search (ILS) is a simple idea, but has a long history. Its redis-
covery by many authors has lead to many different names for ILS like iterated
descent [7], large-step Markov chains [30], iterated Lin- Kernighan [23], chained
local optimization [31], and combinations of these [28].

In short, the idea of the iterated local search metaheuristic relies on the
multiple runs of a given local search algorithm (that being either a heuristic or an
exact algorithm) iteratively. The important difference between the ILS and the
RRLS (Random Restart Local Search) is the choice of the subsequent starting
points. While in case of the RRLS each starting point is chosen at random,
in the ILS the subsequent starting points are chosen based on the previous
best solution found. A perturbation is applied to the previous best solution
that yields a new solution to be improved again with the use of local search
procedure. The performance of the ILS algorithm depends very significantly on
the perturbation used.

The ILS essentially transforms the search space from a set of all possible
solutions S to a set of local optima S∗. The power of the ILS relies on the idea
of this reduction of the search space and biased sampling of this reduced search
space. Also, often the closer the search progresses to the global optimum, the
more local optima are in the proximity. This is for instance true for the Traveling
Salesman Problem (TSP).

The general mode of operation of the ILS is the following. A random solution
s ∈ S is chosen. This solution s is improved by the local search procedure to
obtain a local optimum s∗ ∈ S∗. A perturbation is applied to s∗ in order
to obtain s′ ∈ S. Then the local search routine is used to improve s′ and
obtain s∗′ ∈ S∗. Some acceptance criteria is than used whether s∗′ should
become the s∗. Then another perturbation is performed. Often, some history

13



Algorithm 3 Tabu Search
k ← 1
s ← initial solution
s∗ ← s
while termination condition not met do

identify neighborhood set N(s)
identify tabu set T (s, k)
identify aspiration set A(s, k)
s ← best of N(s, k) = N(s)− T (s, k) + A(s, k)
if f(s) < f(s∗) then

s∗ ← s
end if
k ← k + 1

end while

of perturbations is used in order to further enhance the guidance on the search
process. Alg. 2 presents the overview of a typical ILS.

There exist numerous variants of the ILS algorithm. They vary by the ac-
ceptance criteria used, the history, and also the neighborhood used. ILS is
currently the state-of-the-art metaheuristic for number of combinatorial opti-
mization problems.

2.3 Tabu Search

The Tabu Search (TS) metaheuristic was first proposed by Glover [20, 21].
Similarly to the ILS described earlier, TS also employs the idea of local search.
However it does not restart the local search in order to recover from local opti-
mum, but employs a special technique of accepting worse solutions. It allows the
search to explore solutions that do not decrease the objective function value only
in those cases where these solutions are not forbidden. This is usually obtained
by keeping track of the last solutions in term of the action used to transform
one solution to the next. When an action is performed it is considered tabu (i.e.
forbidden) for the next t iterations, where t is the tabu list length. A solution
is forbidden if it is obtained by applying a tabu action to the current solution.

Tabu search assumes that a given solution s may be improved by making
small changes. Those solutions s′ obtained by modifying solution s are called
neighbors of s. Hence the notion of the neighborhood of s denoted as N(s).
The local search algorithm starts with some initial solution and moves from
neighbor to neighbor as long as possible while decreasing the objective function
value. The main problem with this strategy is to escape from local minima
where the search cannot find any further neighborhood solution that decreases
the objective function value. Different strategies have been proposed to solve
this problem. Tabu search is one of the most efficient of these strategies.

At each step k the tabu search identifies the neighborhood N(s) of current
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solution s, current tabu list T (s, k), and current aspiration set A(s, k). The
aspiration set identifies the possible solutions that are on the tabu list T (s, k)
but should nevertheless be accepted. This may be for instance the case if a
solution s′ ∈ T (s, k) is better than current best solution s∗. Alg. 3 presents the
overview of the TS operation.

2.4 Evolutionary Algorithms

The term Evolutionary Algorithms (EA) refers to the study of the foundations
and applications of certain heuristic techniques based on the principles of nat-
ural evolution. In spite of the fact that these techniques can be classified into
three main categories, this classification is based on some details and historical
development facts rather than on major functioning differences. In fact, their
biological basis is essentially the same.

Essentially the evolutionary algorithms may be divided into the following
heuristic techniques: genetic algorithms [22], evolution strategy [36], evolution-
ary programming [19], and genetic programming [27].

Originally the evolutionary algorithms attempted to mimic some of the pro-
cesses taking place in natural evolution. Although the details of biological evo-
lution are not completely understood (even nowadays), there were some points
strongly supported by experimental evidence:

• Evolution is a process operating over chromosomes rather than over or-
ganisms. The former are organic tools encoding the structure of a living
being, i.e, a creature is built by decoding a set of chromosomes.

• Natural selection is the mechanism that relates chromosomes with the effi-
ciency of the entity they represent, thus allowing those efficient organisms
which are well-adapted to the environment to reproduce more often than
those which are not.

• The evolutionary process takes place during the reproduction stage. There
exists a large number of reproductive mechanisms in Nature. Most com-
mon ones are mutation (that causes the chromosomes of offspring to be
different to those of the parents) and recombination (that combines the
chromosomes of the parents to produce the offspring).

All types of evolutionary algorithms have some qualities in common. They
operate on a population of individuals. Each individual represents a potential
solution to the problem being solved. This solution is obtained by means of a
encoding/decoding mechanism. Initially, the population is randomly generated
(perhaps with the help of a construction heuristic). Every individual in the
population is assigned, by means of a fitness function, a measure of its goodness
with respect to the problem under consideration. This value is the quantitative
information the algorithm uses to guide the search. An Evolutionary Algorithm
(EA) is an iterative and stochastic process that operates on this set of individu-
als (population). Depending on the type of the EA, many different reproduction
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Algorithm 4 Evolutionary Computation
generate initial population P (0)
t ← 0
while termination condition not met do

evaluate P (t)
P ′(t) ← Select(P (t))
P ′′(t) ← ApplyReproductionOperators(P ′(t))
P (t + 1) ← Replace(P (t),P ′′(t))
t ← t + 1

end while

operators may be used, but they all are usually some form of mutation or re-
combination operators. All variants of the EAs also use some type of selection
mechanism (which individuals form the population take part in the reproduc-
tion process), as well as replacement mechanism (which individuals stay in the
population and which are discarded). Alg. 4 presents a general skeleton of an
EA.

It can be seen that the algorithm comprises three major stages: selection,
reproduction and replacement. During the selection stage, a temporary popula-
tion is created in which the fittest individuals (those corresponding to the best
solutions contained in the population) have a higher number of instances than
those less fit (natural selection). The reproductive operators are applied to the
individuals in this population yielding a new population. Finally, individuals
of the original population are substituted by the new created individuals. This
replacement usually tries to keep the best individuals deleting the worst ones.
The whole process is repeated until a certain termination criterion is achieved
(usually after a given number of iterations or certain computation time).

2.5 Ant Colony Optimization

ACO is a metaheuristic proposed by Dorigo et al. [18]. The inspiration of ACO
is the foraging behavior of real ants. The basic ingredient of ACO is the use of
a probabilistic solution construction mechanism based on stigmergy. ACO has
been applied successfully to numerous combinatorial optimization problems in-
cluding the traveling salesman problem [41], quadratic assignment problem [40],
scheduling problems [33], and others.

ACO algorithms are based on a parameterized probabilistic model – the
pheromone model – that is used to model the chemical pheromone trails. Artifi-
cial ants incrementally construct solutions by adding solution components to a
partial solution under consideration. In order to accomplish that, artificial ants
perform randomized walks on a completely connected graph G = (C, L), whose
vertices are the solution components C and the set L are the connections. This
graph is commonly called the construction graph. When a constrained combi-
natorial optimization problem is considered, the problem constraints are built
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Algorithm 5 Ant Colony Optimization
initialize the pheromone table τ
s ← random initial solution
while termination condition not met do

ants construct the set of solutions S′

update and evaporate the pheromone table
s ← best of s′ ∈ S′ and s

end while

into the ants’ constructive procedure in such a way that in every step of the con-
struction process only feasible solution components can be added to the current
partial solution. In most applications, ants are implemented to build feasible
solutions, but sometimes it is desirable to also let them build unfeasible solution
that later may be repaired.

The construction process performed by the ants is influenced by the pheromone
trail parameter. The value of such a parameter is usually denoted by τi. The
set of all pheromone trail parameters is denoted by τ and is often referred to as
the pheromone matrix.

The ants traverse the construction graph making at each node of the graph a
probabilistic decision which path to choose. This probabilistic decision is based
on two types of information:

• heuristic information,

• pheromone information.

The probability is calculated by each ant using the following equation:

p(i,j) =
τα
(i,j)η

β
(i,j)∑n

k=1 τα
(i,k)η

β
(i,k)

where τ(i,j) is the pheromone level associated with trail going from node i to
node j, and η(i,j) is the heuristic information associated with the same trail (i.e.
this could be the distance in case of TSP, or some other heuristic measure in case
of other combinatorial optimization problems). α and β are scaling coefficients.

Once all the ants have constructed their solutions, some of them (sometimes
all of them) return along the same path and update the pheromone trails. Also
at each iteration of the algorithm the pheromone trails evaporate a bit. Alg. 5
presents the operation of ACO in greater detail. Some recent results in the
literature [41, 29, 43] show that ACO performs especially well when coupled
with a local search routine.
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Chapter 3

Ant Colony Optimization
for the UCTP

Main focus of our work concerned the development and evaluation of ant al-
gorithms that could solve the UCTP. In this section we present some design
considerations that we investigated as well as the choices eventually made. Also
we present the results obtained by our algorithms, and we try to annalize the
properties of the algorithms solving the UCTP to gain their better understand-
ing.

3.1 Task Definition

One of the very first things to be decided on upon tackling any specific problem,
is the very definition of a task that we wanted to accomplish. As the development
of the ant algorithms was a part of the effort of the Metaheuristic Network
project, the task was clearly defined and some modules have been supplied.
The supplied modules included in particular:

• a deterministic matching algorithm that performed a proper matching of
events into rooms for any given timeslot, and

• a local search allowing to improve the solutions found by the and algo-
rithm.

Because of these ready-to-use modules provided, the task associated with
developing the ant algorithm for UCTP was a bit reduced and restricted. Ants
were to assign the the events into timeslots only. The proper assignment of
events into the rooms is later done by the matching algorithm, and eventually
improved with the local search.
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3.1.1 Matching Algorithm

The deterministic matching algorithm based on a network flow algorithm was
designed to assign events to particular rooms within each timeslot. This algo-
rithm was provided by the Metaheuristic Network. It deterministically tried
to fit a set of events into a set of rooms for a given timeslot. If it was not
possible to properly fit all the events, the maximal possible number of events
was assigned to rooms, and the rest was simply assigned randomly to any of the
(appropriate) rooms.

3.1.2 Local Search

Local search – also provided by the Metaheuristic Network – aimed at improving
the solutions found by the ants. The local search used three possible neighbor-
hood structures:

N1 – neighborhood defined by moving a single event from one timeslot to
another;

N2 – neighborhood defined by swapping two events from different timeslots;

N3 – neighborhood defined by performing a 3-opt move.

The local search had two distinctive phases of operation. Initially it was
guided by the number of hard constraints – it aimed at decreasing their num-
ber until the solution was feasible. Once that happened, only the moves that
decreased the number of soft constraints and did not introduce any hard con-
straints, were approved.

It was possible to specify the number of possible iterations of this local
search, probability of making a move from certain neighborhood (p1, p2, and p3

respectively), and also the upper limit of the CPU time spent inside the local
search.

3.2 Representation

Before any ant algorithm may tackle a combinatorial optimization problem, the
problem has to be properly represented. This includes the definition of the
construction graph that the ants may traverse constructing the solutions, the
definition of the pheromone matrix, i.e. how the solution is represented by the
pheromone, and also what type of heuristic information is used and how. In
this section we present the representation possibilities that we investigated, and
the decisions we finally made.

3.2.1 Construction Graph

One of the cardinal elements of the ACO metaheuristic is the mapping of the
problem onto a construction graph [17, 18], so that a path through the graph
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Figure 3.1: Each ant follows a list of virtual timeslots, and for each such timeslot
t′ ∈ T ′, it chooses an event e ∈ E to be placed in this timeslot. At each step an
ant can choose any possible transition

Figure 3.2: Each ant follows a list of events, and for each event e ∈ E, an ant
chooses a timeslot t ∈ T . Each event has to be put exactly once into a timeslot,
and there may be more than one event in a timeslot, so at each step an ant can
choose any possible transition

represents a solution to the problem. In our formulation of the UCTP we are
required to assign each of |E| events to one of |T | timeslots. In the most direct
representation the construction graph is given by E × T ; given this graph we
can then decide whether the ants move along a list of the timeslots, and choose
events to be placed in them, or move along a list of the events and place them
in the timeslots. Fig. 3.1 and Fig. 3.2 depict, respectively, these construction
graphs.

As shown in Fig. 3.1, the first construction graph must use a set of virtual
timeslots T ′ = {t′1, . . . , t′|E|}, because exactly |E| assignments must be made
in the construction of a timetable, but in general |T | ¿ |E|. Each of the
virtual timeslots maps to one of the actual timeslots. To use this representation
then, requires us to define an injection ι : T ′ → T , designating how the virtual
timeslots relate to the actual ones. One could use for example the injection
ι : t′g 7→ th with h =

⌈
g·|T |
|E|

⌉
. In this way, the timetable would be constructed
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sequentially through the week. However, for certain problems, giving equal
numbers of events to each timeslot may be a long way from optimal. Other
injection functions are also possible but may contain similar implicit biases.

The simpler representation of the construction graph (Fig. 3.2), where ants
walk along a list of events, choosing a timeslot for each, does not require the
additional complication of using virtual timeslots and does not seem to have
any obvious disadvantages. In fact, it allows us the opportunity of using a
heuristically ordered list of events. By carrying out some preprocessing we
should be able to order the events so that the most ‘difficult’ events are placed
into the timetable first, when there are still many timeslots with few or no
occupied rooms. For these reasons we choose initially to use this representation.

3.2.2 Pheromone Matrix

In a first representation, we let pheromone indicate the absolute position where
events should be placed. With this representation the pheromone matrix is
given by τ(Ai) = τ, i = 1, . . . , |E|, i.e., the pheromone does not depend on the
partial assignments Ai. Note that in this case the pheromone will be associated
with nodes in the construction graph rather than edges between the nodes.

A disadvantage of this direct pheromone representation is that the absolute
position of events in the timeslots does not matter very much in producing a
good timetable. It is the relative placement of events which is important. For
example, given a perfect timetable, it is usually possible to permute many groups
of timeslots without affecting the quality of the timetable. As a result, this
choice of representation can cause slower learning because during construction of
solutions, an early assignment of an event to an ‘undesirable’ timeslot may cause
conflicts with many supposedly desirable assignments downstream, leading to a
poor timetable. This leads to a very noisy positive feedback signal.

In a second representation the pheromone values are indirectly defined. To
do this we use an auxiliary matrix µ ∈ RE×E

+ to indicate which events should
(or should not) be put together with other events in the same timeslot. Now,
the values τ(e,t)(Ai) can be expressed in terms of µ and Ai by

τ(e,t)(Ai) =
{

τmax if A−1
i (t) = ∅,

mine′∈A−1
i (t) µ(e, e′) otherwise.

Giving feedback to these values µ, the algorithm is able to learn which events
should not go together in the same timeslot. This information can be learned
without relation to the particular timeslot numbers. This representation looks
promising because it allows the ants to learn something more directly useful to
the construction of feasible timetables. However, it also has some disadvantages.
For solving the soft constraints certain inter- timeslot relations between events
matter, in addition to the intra-timeslot relations. This pheromone representa-
tion does not encode this extra information at all.

Some experimentation with the two different pheromone matrices indicated
that the first one performed significantly better when the local search proce-
dure was also used. Even though it is not ideal for the reasons stated above,
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it is capable of guiding the ants to construct timetables which meet the soft
constraints as well as the hard ones. The problem of noisy feedback from this
representation is also somewhat reduced when using the local search.

Clearly, other pheromone representations are possible, but with the variety
of constraints which must be satisfied in the UCTP, it is difficult to design one
that encodes all the relevant information in a simple manner. For the moment,
the direct coding is the best compromise we have found.

3.2.3 Heuristic Information

We now consider possible methods for computing the heuristic information
η(e,t)(Ai−1). A simple method is the following:

η(e,t)(Ai−1) =
1.0

1.0 + V(e,t)(Ai−1)

where V(e,t)(Ai−1) counts the additional number of violations caused by adding
(e, t) to the partial assignment Ai−1. The function V may be a weighted sum
of several or all of the soft and hard constraints. However, due to the nature
of the UCTP, the computational cost of calculating some types of constraint
violations can be rather high. We can choose to take advantage of significant
heuristic information to guide the construction but only at the cost of being able
to make fewer iterations of the algorithm in the given time limit. We conducted
some investigations to assess the balance of this tradeoff and found that the use
of heuristic information did not improve the quality of timetables constructed
by the algorithm with local search. Without the use of LS, heuristic information
does improve solution quality, but not to the same degree as LS.

3.3 MAX -MIN Ant System

3.3.1 Approach

As there are quite a few existing types of ant systems, we had to make a decision
which one to choose for tackling the UCTP. As there was already some work
being done on using Ant Colony System for UCTP at that time [38], we decided
to take a closer look at the MAX -MIN Ant System (MMAS), as it is known
to perform well on number of problems. Hence, we attempted to develop a
MAX -MIN Ant System for the UCTP.

3.3.2 Algorithm Description

Our MAX -MIN Ant System for the UCTP is shown in Alg. 6. A colony of m
ants is used and at each iteration, each ant constructs a complete event- timeslot
assignment by placing events, one by one, into the timeslots. The events are
taken in a prescribed order which is used by all ants. The order is calculated
before the run based on edge constraints between the events. The choice of
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Algorithm 6 MAX -MIN Ant System for the UCTP
input: A problem instance I
τmax ← 1

ρ

τ(e, t) ← τmax ∀ (e, t) ∈ E × T
calculate c(e, e′) ∀ (e, e′) ∈ E2

calculate d(e)
sort E according to ≺, resulting in e1 ≺ e2 ≺ · · · ≺ en

while time limit not reached do
for a = 1 to m do
{construction process of ant a}
A0 ← ∅
for i = 1 to |E| do

choose timeslot t randomly according to probabilities pei,t for event ei

Ai ← Ai−1 ∪ {(ei, t)}
end for
C ← solution after applying matching algorithm to An

Citeration best ← best of C and Citeration best

end for
Citeration best ← solution after applying local search to Citeration best

Cglobal best ← best of Citeration best and Cglobal best

global pheromone update for τ using Cglobal best, τmin, and τmax

end while
output: An optimized candidate solution Cglobal best for I

which timeslot to assign to each event is a biased random choice influenced
by the pheromone level τ(e,t)(Ai). The pheromone values are initialized to a
parameter τmax, and then updated by a global pheromone update rule.

At the end of the iterative construction, an event-timeslot assignment is
converted into a candidate solution (timetable) using the matching algorithm.
After all m ants have generated their candidate solution, one solution is chosen
based on a fitness function. This candidate solution is further improved by the
local search routine. If the solution found is better than the previous global
best solution, it is replaced by the new solution. Then the global update on the
pheromone values is performed using the global best solution. The values of the
pheromone corresponding to the global best solution are increased and then all
the pheromone levels in the matrix are reduced according to the evaporation
coefficient. Finally, some pheromone values are adjusted so that they all lie
within the bounds defined by τmax and τmin. The whole process is repeated,
until the time limit is reached.

Some parts of Alg. 6 are now described in more detail. In a pre-calculation
for events e, e′ ∈ E the following parameters are determined:

c(e, e′) := 1 if there are students following both e and e′, 0 otherwise, and
d(e) := |{e′ ∈ E \ {e} | c(e, e′) 6= 0}| .
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We define a total order ≺ on the events by

e ≺ e′ :⇔ d(e) > d(e′) ∨
d(e) = d(e′) ∧ l(e) < l(e′) .

Here, l : E → N is an injective function that is only used to handle ties. We
define Ei := {e1, . . . , ei} for the totally ordered events denoted as e1 ≺ e2 ≺
. . . ≺ en.

s =
{

parameter m if j = 0,
100 otherwise, (3.1)

Only the solution that causes the fewest number of hard constraint viola-
tions is selected for improvement by the LS. Ties are broken randomly. The
pheromone matrix is updated only once per iteration, and the global best solu-
tion is used for update. Let Aglobal best be the assignment of the best candidate
solution Cglobal best found since the beginning. The following update rule is used:

τ(e,t) =
{

(1− ρ) · τ(e,t) + 1 if Aglobal best(e) = t,
(1− ρ) · τ(e,t) otherwise,

where ρ ∈ [0, 1] is the evaporation rate. Pheromone update is completed using
the following:

τ(e,t) ←




τmin if τ(e,t) < τmin,
τmax if τ(e,t) > τmax,
τ(e,t) otherwise.

3.3.3 Algorithm Performance

Following the development of the MMAS, we wanted to evaluate its perfor-
mance. One of the first things that we wanted to test, was the comparison of
our MMAS with a Random Restart Local Search (RRLS). Such a comparison
provides a clear evidence whether a metaheuristic is actually doing something
useful, or is it only the local search that helps to solve the problem. Before any
comparison could be made however, proper parameters for the MMAS had to
be chosen.

Parameters

The development of an effective MMAS for an optimization problem also re-
quires that appropriate parameters be chosen for typical problem instances.
We tested several configurations of our MMAS on problem instances from the
classes listed in Tab. 1.1. The best results were obtained using the parameters
listed in Tab. 3.1.

The values of τmin were calculated so that at convergence (when one ‘best’
path exists with a pheromone value of τmax on each of its constituent elements,
and all other elements in the pheromone matrix have the value τmin) a path
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Table 3.1: Parameter configurations used in the comparison.
Parameter small medium large
ρ 0.30 0.30 0.30
τmax = 1

ρ 3.3 3.3 3.3
τmin 0.0078 0.0019 0.0019
α 1.0 1.0 1.0
β 0.0 0.0 0.0
m 10 10 10

Algorithm 7 Random Restart Local Search
input: A problem instance I
while time limit not reached do

for a = 1 to m do
{random solution creation number a}
A0 ← ∅
for i = 1 to |E| do

choose timeslot t randomly
Ai ← Ai−1 ∪ {(ei, t)}

end for
C ← solution after applying matching algorithm to An

Citeration best ← best of C and Citeration best

end for
Citeration best ← solution after applying local search to Citeration best

Cglobal best ← best of Citeration best and Cglobal best

end while
output: An optimized candidate solution Cglobal best for I

constructed by an ant will be expected to differ from the best path in 20 % of
its elements. The value 20 % was chosen to reflect the fact that a fairly large
‘mutation’ is needed to push the solution into a different basin of attraction for
the local search.

Random Restart Local Search

To assess the developed MMAS, we consider whether the ants genuinely learn
to build better timetables, as compared to a random restart local search (RRLS).
This RRLS iterates the same LS as used by MMAS from random starting
solutions and stores the best solution found. Alg. 7 presents briefly the RRLS
used.
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Table 3.2: Median of the number of soft constraint violations observed in inde-
pendent trials of MMAS and RRLS on different problem instances, together
with the p-value for the null hypothesis that the distributions are equal. In
the cases where greater than 50 % of runs resulted in no feasible solution the
median cannot be calculated. Here, the fraction of unsuccessful runs is given.
(In all other cases 100 % of the runs resulted in feasible solutions.) All infeasi-
ble solutions are given the symbolic value ∞. This is correctly handled by the
Mann-Whitney test.

Instance Median of #scv p-value
MMAS RRLS

small1 1 8 < 2 · 10−16

small2 3 11 < 2 · 10−16

small3 1 8 < 2 · 10−16

small4 1 7 < 2 · 10−16

small5 0 5 < 2 · 10−16

medium1 195 199 0.017
medium2 184 202.5 4.3 · 10−6

medium3 248 (77.5 %) 8.1 · 10−12

medium4 164.5 177.5 0.017
medium5 219.5 (100 %) 2.2 · 10−16

large 851.5 (100 %) 6.4 · 10−5

Results

We tested both the developed MMAS and the RRLS on previously unseen
problem instances made by the generator mentioned in Sect. 1.4.2. For this test
study, we generated eleven test instances: five small, five medium, and one large.
For each of them, we ran our algorithms for 50, 40, and 10 independent trials,
giving each trial a time limit of 90, 900, and 9000 seconds, respectively. All
the tests were run on a PC with an AMD Athlon 1100 MHz CPU under Linux
using the GNU C++ compiler gcc version 2.95.3. As random number generator
we used ran0 from the Numerical Recipes [34]. For the reproducibility of the
results on another architecture, we observed that on our architecture one step of
the local search has an average running time of 0.45, 1.4, and 1.1 milliseconds,
respectively.

Boxplots showing the distributions of the ranks of the obtained results are
shown in Fig. 3.3. The Mann-Whitney test (see [13]) was used to test the
hypothesis H0 that the distribution functions of the solutions found by MMAS
and RRLS were the same. The p-values for this test are given in Tab. 3.2, along
with the median number of soft constraint violations obtained.
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small5 RRLS

small5 MMAS
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small1 MMAS
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Figure 3.3: Boxplots showing the relative distribution of the number of soft
constraint violations for MMAS (shadowed) and RRLS (white) on all test
instances. This is the distribution of the ranks of the absolute values in an
ordered list, where equal values are assigned to the mean of the covered ranks.
A box shows the range between the 25 % and the 75 % quantile of the data.
The median of the data is indicated by a bar. The whiskers extend to the most
extreme data point which is no more than 1.5 times the interquantile range from
the box. Outliers are indicated as circles
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For each of the tested problem instances we got with very high statistical
significance the result that MMAS performs better than RRLS. For some test
instances of medium and large size some runs of RRLS resulted in infeasible
solutions. In particular, the RRLS was unable to produce any feasible solution
for the large problem instance.

3.4 MAX -MIN Ant System
vs Ant Colony System

Following the encouriging results obtained by the MMAS, when compared to
the RRLS, we wanted to investigate how the MMAS compares to other types
of ant algorithms. Our choice became the Ant Colony System (ACS), as such
an algorithm has been developed in parallel by some other researchers in our
group.

3.4.1 Ant Colony System

The algorithms compared – the MMAS and the ACS – differ in the way they
use the existing information (both stigmergic and heuristic), and the way they
use local search. Also the rules of updating the pheromone matrix are different.
The MMAS has been presented in detail in Sec. 3.3.2. Here, we will focus on
the description of the ACS that was used for comparison.

In ACS not only the global update rule is used, but also a special local
update rule. After each construction step a local update rule is applied to the
element of the pheromone matrix corresponding to the chosen timeslot tchosen

for the given event ei:

τ(ei,tchosen) ← (1− α) · τ(ei,tchosen) + α · τ0 (3.2)

The parameter α ∈ [0,1] is the pheromone decay parameter, which controls
the diversification of the construction process. The aim of the local update rule
is to encourage the subsequent ants to choose different timeslots for the same
given event ei.

At the end of the iteration, the global update rule is applied to all the entries
in the pheromone matrix:

τ(e,t) ←
{

(1− ρ) · τ(e,t) + ρ · g
1+q(Cglobal best)

if (e, t) is in Cglobal best

(1− ρ) · τ(e,t) otherwise,
(3.3)

where g is a scaling factor, and the function q has been described above.
This global update rule is than very similar to the one used by MMAS with
the exception of not limiting the minimal and maximal pheromone level.

Another important difference between the implementations of the two algo-
rithms, is the way that they use heuristic information. While MMAS does not
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Table 3.3: Parameters used by the algorithms.

Parameter Name MMAS ACS
m number of ants
ρ pheromone evaporation

s(j) number of steps of the local search
τ0 value with which the pheromone matrix is initialized

τmax maximal pheromone level -
τmin minimal pheromone level -
α - local pheromone decay
β - weight of the hard constraints
γ - weight of the soft constraints
g - scaling factor

use any heuristic information, the ACS attempts to compute it before making
every move. In ACS the heuristic information is an evaluation of the con-
straint violations caused by making the assignment, given the assignments al-
ready made. Two parameters β and γ control the weight of the hard and soft
constraint violations, respectively.

The last difference between the two ant algorithms concerns the use of the
local search. In the case of MMAS, only the solution that causes the fewest
number of constraint violations is selected for improvement by the local search
routine. Ties are broken randomly. The local search is run until reaching a local
minimum or until assigned time for the trial is up – whichever happens first.
The local search in case of ACS is run according to a two phase strategy: if
the current iteration is lower than a parameter j the routine runs for a number
of steps s1, otherwise it runs for a number of steps s2. In case of ACS all
candidate solutions generated by the ants are further optimized with the use of
local search.

Tab. 3.3 summarizes the parameters used by the two algorithms.

3.4.2 Performance of the Ant Algorithms

For each class of the problem, a time limit for producing a timetable has been
determined. The time limits for the problem classes small, medium, and large
are respectively 90, 900, and 9000 seconds. These limits were derived exper-
imentally. All the experiments were conducted on the same computer (AMD
Athlon 1100 MHz, 256 MB RAM) under a Linux operating system. The ant al-
gorithms were compared against the best metaheuristics on those instances [38],
which were the Iterated Local Search and Simulated Annealing; also against a
reference random restart local search algorithm (RRLS) [5], which simply gen-
erated a random solution and then tried to improve it by running just the local
search. Since all algorithms were run on the same computer, it was easy to
compare their performance and a fair comparison could be achieved.
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Table 3.4: Parameter settings used by the algorithms.
Parameter MMAS ACS

m 10 10
ρ 0.3 0.1

s(j) 10 000 000
{

50 000 j ≤ 10
20 000 j ≥ 11

τ0 3.3 10.0
τmax 3.3 -
τmin 0.019 -
α - 0.1
β - 3.0
γ - 2.0
g - 1010

A time limit for producing a timetable has been determined. The comparison
of both ant algorithms was performed on the competition instances. The
running time on the same computer was set to 672 seconds. The time limit
has been calculated with the use of the benchmark program provided by the
organizers of the International Timetabling Competition.

Tab. 3.4 presents the actual parameters used for running the ant algorithms.
The same parameters were used for all runs of both ant algorithms.

In case of the set of medium instances, the algorithms were run 40 times on
each. For the large instances the algorithms were run 10 times, and for the
competition instances, the algorithms were run for 20 independent trials.

Fig. 3.4 presents the comparison of the performance of ant algorithms on
competition instances. We run the mentioned earlier RRLS algorithm on
these instances, but as it did not provide feasible solutions for any of the in-
stances, we did not include it in the comparison. Hence, the ant algorithms
are compared only among themselves. The results show statistically significant
better performance of MMAS in comparison to ACS. Note that Fig. 3.4 con-
tains also additional results obtained by the modified versions of the ACS and
MMAS algorithms, as described in Sec. 3.4.4.

3.4.3 Comparison – Conclusions

Based on the results of comparison, it is clear that the two ant algorithms
perform differently. The MMAS performs better than ACS on all instances
tested. The difference in performance of the two ant algorithms may be due to
one or more of the following factors:

• While MMAS does not use the heuristic information, the ACS uses it
extensively. The improvement provided by the heuristic information does
not make up for the time lost on its calculation (which in case of the
UCTP may be quite high).
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Figure 3.4: Rank comparison of the results obtained by the two ant algorithms
(ACS and MMAS) on ten competition instances of the problem. Also the
performance of the versions of those algorithms (NEWACS and NEWMMAS)
modified as described in Sec. 3.4.4 are presented.

• The ACS has a different strategy in using local search thanMMAS. While
ACS runs the local search for a particular number of steps, the MMAS
tries always to reach the local optimum by specifying extensive number of
steps.

• The MMAS uses local search to improve only one of the solutions gener-
ated by the ants, while the ACS tries to improve all the solutions gener-
ated. While the approach of MMAS may lead to discarding some good
potential solutions, the approach of ACS may mean that two (or more)
very similar solutions will be further optimized by local search, which may
be an inefficient use of time.
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3.4.4 Further Investigation

In order to check the hypothesis that due to the design choices made, the ACS
actually takes longer to run one iteration, we calculated the number of iterations
done by both algorithms. We counted the number of iterations of both ant
algorithms for 5 runs on a single competition instance. While the MMAS
performed on average 45 iterations, in case of ACS it was only 21.6. This shows
that in fact a single iteration of ACS takes more than twice the amount of time
of a single MMAS iteration. Thus, it is most probable that the first and third
of the factors presented above influence the performance of the ant algorithm.

We found it interesting to investigate the topic further. Hence, we decided
to run some additional experiments. This time, we tried to make the features
of both algorithms as similar as possible, to be able to see which of the factors
presented above may be in fact the key issue. We modified the MMAS so
that it runs the local search on each solution generated by the ants. We also
modified the ACS features so that they resembled more the features of the
MMAS. Hence, we removed the use of heuristic information, and introduced
the same parameter for the use of local search as in case of MMAS (10 000
000 steps). The results shown in Fig. 3.4 clearly indicate that the performance
of ACS has improved significantly reaching almost the level of performance of
MMAS. Therefore, it is clear that the key factor causing differences in the
original ant algorithms was the use of local search.

It is important to note that the new version of MMAS performed best
with only one ant (this was the value used to produce the results presented in
Fig. 3.4), while the ACS obtained its best results with 10 ants. This discrepancy
can be explained by the inherent properties of the two types of ant algorithms.
In case of MMAS the more ants are used in each iteration, the higher the
probability that some ants will choose exactly the same path, thus not exploring
the search space efficiently. In case of ACS – thanks to the local pheromone
update rule – each subsequent ant in one iteration is encouraged to explore a
different path. Thus, while adding more ants in case of ACS is theoretically
advantageous, it is not quite the same in case of MMAS.

The results presented indicate that there is a large dependency of the par-
ticular design decisions on ant algorithm performance. Similar algorithms using
the same local search routine performed quite differently. The results also show
that well designed ant algorithm may successfully compete with other meta-
heuristics in solving such highly constrained problems as the UCTP. Further
analysis and testing is needed in order to establish in more detail the influence
of all the parameters on ant algorithm performance.

3.5 MMAS vs Other Metaheuristics

After the comparison of theMMAS to Random Restart Local Search algorithm
and also another ant algorithm, we wanted to see, how the performance of
the MMAS compares to some other metaheuristics. In order to achieve this,
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we used the results of comparison of several different metaheuristics presented
in [38].

The metaheuristics compared in [38] included:

• Ant Colony Optimization1,

• Genetic Algorithm,

• Simulated Annealing,

• Iterated Local Search,

• Tabu Search.

As we have shown in Sec. 3.4 that MMAS outperforms the ACS used in
this comparison, we only show here how the MMAS compares to the other
four metaheuristics.

It is important to mention that the local search routine that the MMAS
used, was exactly the same one as the one used by the other metaheuristics.
Our algorithm was run exactly the same number of times on the same problem
instances as the other metaheuristics. The test were performed on the same
computer system with the same time limits. Our MMAS has been trained on
separate training set of instances – different from the ones used for performance
evaluation.

We present here the results of the comparison of theMMAS with the results
obtained by other metaheuristics for only selected instances that have been
tested for two out of three problem classes. We decided not to focus on the
small class of problems, as most metaheuristics (including MMAS) managed
to obtain equally good (optimal) results. Instead we focused on medium and
large problem classes.

We chose for illustration one instance from the medium problem class and
one instance from the large problem class. Results for other instances of these
classes of the problem indicate that the results presented are representative.
Fig. 3.5 presents the comparison of results obtained by the reference mata-
heuristics as well as MMAS on a medium problem instance. The figure shows
the actual solutions found, rank comparison, and also the percentage of infea-
sible solutions found. Fig. 3.6 presents the similar data for one of the large
instances.

In order to evaluate the performance of the MMAS comparing to other
metaheuristics, we used pairwise Wilcoxon rank sum test. The obtained p-
values were then adjusted using the Holm method. Tab. 3.5 presents the p-
values obtained.

1More particular: Ant Colony System – the very same one that we used for comparison
with MMAS presented in Sec. 3.4
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Figure 3.5: Charts showing the relative performance of MMAS compared to
other reference metaheuristics on medium02 problem instance. All algorithms
used the same neighborhood structure and local search (when applicable).
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Figure 3.6: Charts showing the relative performance of MMAS compared to
other reference metaheuristics on large02 problem instance. All algorithms
used the same neighborhood structure and local search (when applicable).
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Table 3.5: Pairwise comparisons using Wilcoxon rank sum test (p-value adjust-
ment method: holm)

Algorithm medium02 large02
GA 9.5e-13 1.2e-07
ILS 3.7e-06 0.41
SA 3.5e-16 8.0e-08
TS 5.6e-12 4.1e-07

3.6 MMAS2

Following the development of the MMAS algorithm, we thought of ways to fur-
ther improve its performance. We noticed in case of the MMAS that reaching
feasibility took quite a long time (especially for large problem instances). It
was especially obvious that the local search takes very long time before reaching
local optimum for those types of problems. Hence, the first idea was to substi-
tute the local search that was supplied by the Metaheuristic Network with the
one written by us.

Apart from changing the local search we decided also to add some prepro-
cessing stage that could help to reduce the problem a bit. Also, we decided
to change slightly the representation and redefine the job for the ants – now
they not only should choose the timeslot for the events, but also the room.
Hence, we resigned from using the matching algorithm, which we found quite
time consuming.

The sections below present those new design considerations in more detail.

3.6.1 Preprocessing Problem Data

Before the problem is tackled by the algorithm, there is number of steps that
are done in the preprocessing phase. Apart from the obvious actions such as
reading the problem file and command line parameters, the following actions
are performed:

• The number of students per each event is calculated and stored.

• A matrix indicating student clashes between events is created.

• For each event a list of possible rooms is created, (this is done by analyz-
ing room sizes, features provided by rooms, and also number of students
attending each event, and features required by each event).

• For each room it is established how many events may be placed in it (based
on lists of possible rooms for each event).

• Based on dependencies between possible rooms for events and number of
events that may go into a given room, the lists of possible rooms for each
event are further restricted, if possible:
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If there are exactly 40 events2 that may only be placed into room r,
this means that all other events must be placed into other rooms even
though they theoretically may fit into room r.

If the optimal timetable has to use fully all the 40 optimal timeslots3,
and if there are exactly 40 events that may be placed into room r, they
must be placed into this room and not any other room that they may
perhaps also fit into.

• A list of rooms sorted (ascending) based on the number of events that
may go into them is created.

• A list of events is created, sorted (ascending) based on the number of
rooms that they may go into, with ties broken by number of students that
events have in common with all other events (descending)4.

3.6.2 Representation

The timetable is represented in the form of a integer matrix tt with |T | rows
and |R| columns. Each position in the matrix – or place – is then described
by a timeslot-room pair (t, r) – timeslot t and room r. The value of element
e = tt[t][r] is the event that has been placed in the timeslot t, room r. The
value of e = −1 at any position in the matrix indicates that there is no event
placed at that position. Since place p = t · |R|+ r, each position in the matrix
may be also described in terms of p:

{
t = p÷ |R|
r = p mod |R| (3.4)

It is important to note that such a representation does not allow to encode
all possible assignments of events into places. In particular, it does not allow
to encode any assignment such that any two (or more) events share the same
place. However, such assignment is by definition not feasible, and hence should
be anyway avoided. The representation chosen is able to encode any feasible
assignment, though.

Further, we have decided not to allow any assignment that could cause the
timetable to be infeasible. This means that an event may be placed in the
timetable only in such a way that it does not violate any hard constraints.
Hence, not only we do not allow to put two events in the same room in the
same timeslot, but also an event may only be placed in a room that satisfies
all the requirements in terms of size and required features. Also an event may
be placed in a given timeslot only if there is not already other event in that
timeslot that has any students in common with the newly placed event.

2Note that optimal timetable must use not more than 40 timeslots.
3It is the case if

|E|
|R| = 40

4This way of sorting the events is based on the experiments of different event sorting done
by Olivia Rossi-Doria from Napier University. We have also experimented with other ways of
sorting the events, but this one appeared to be the best.
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As number of possible infeasible assignments exceeds by far the number of
feasible ones for the problem tackled, it is not trivial to find a feasible assign-
ment. In order to make it easier, we allowed the timetable to actually use more
than 45 timeslots. If in fact more than 45 timeslots are used, the timetable
may not be of course considered feasible as it does not fulfil the requirements
specified in problem definition. The timetable becomes feasible only when it
uses at most 45 timeslots.

Fitness Function

Due to the specific way of representing the solution, the fitness function had to
be defined accordingly. The calculation of the fitness of the solution depends
whether the solution is feasible or not.

If the solution is feasible, the fitness of the solution is expressed by the
number of soft constraint violations. The smaller the number, the better the
solution. However, for an infeasible solution it does not make sense to calculate
number of soft constraint violations. Due to the specific representation chosen,
also calculating number of hard constraint violations is not possible, as none
hard constraints are violated. Hence, for infeasible solutions the fitness is cal-
culated based on number of timeslots that are used by the timetable over the
allowed 45. This number is then multiplied by a large constant (10 000), so that
any infeasible solution is much worse than any feasible solution.

Such approach has an advantage that calculating the fitness function for an
infeasible solution is very fast. It is much easier to establish how many timeslots
are being used, than it would be to establish the exact number of hard constraint
violations, if an infeasible timetable was fit into 45 timeslots.

3.6.3 The Algorithm

The basic mode of operation of the new MAX -MIN Ant System is as follows.
At each iteration of the algorithm, each of the ants constructs a complete assign-
ment C of events into timeslots and rooms (or places). Following a pre-ordered
list of events (see Sec. 3.6.1), the ants choose the timeslot and room for the given
event probabilistically, guided by stigmergic information. This information is
in the form of a matrix of pheromone values τ . Alg. 8 presents the algorithm
operation in greater detail.

Some problem specific knowledge (heuristic information) is also used by the
algorithm. The place for an event (i.e. the timeslot and room combination)
is chosen only from the ones that are suitable for the given event - placing the
event there will not violate any hard constraint. If, at some point of time during
the construction of the assignment, there is no such a place available, a list of
timeslots is extended by one5, and the event is placed in one of the rooms of this
additional timeslot. This of course results in an infeasible solution as number

5Initially |T | = 45

38



Algorithm 8 MAX -MIN Ant System
while time limit not reached do

for a = 0 to m− 1 do
{construction process of ant a}
C0 ← ∅
for e = 0 to |E| − 1 do

choose place p randomly from set P ′ places suitable for event e, ac-
cording to probabilities probep for event e and place p
Ce ← Ce−1 ∪ {ep}

end for
C ← solution after applying local search algorithm to C|E|−1

Citeration best ← best of C and Citeration best

end for
Cglobal best ← best of Citeration best and Cglobal best

global best or local best pheromone update (according to γ) for τ using
Cglobal best, τmin, and τmax

end while

of timeslots used from now on exceeds 456. This also means that pheromone
matrix has to be extended as well.

Once all the ants have constructed their assignment of events into places, a
local search routine is used to further improve the solutions. More details about
local search routine are provided in Sec. 3.6.4. Finally the best solution of each
iteration is compared to the global best solution found so far. Only the better
of the two is kept as the new global best.

If the differences between extreme pheromone values were too large, all ants
would almost always generate the same solutions, which would mean algorithm
stagnation. TheMAX -MIN Ant System introduces upper and lower limits on
the pheromone values – τmax and τmin respectively [44] – that prevent this. The
maximal difference between the extreme levels of pheromone may be controlled,
and thus the search intensification versus diversification may be balanced.

The pheromone table τ is updated either by the best assignment of a given
iteration(i.e. local best), or by the global best assignment. We probabilistically
choose which one to use. The local best update is chosen with probability prob
proportional to its quality compared to the quality of the global best solution,
and also the exploration rate γ:

prob = γ · [q(Cglobal best)
q(Clocal best)

]α (3.5)

where α is an additional scaling parameter. The pheromone update rule is
as follows (for the particular case of assigning event e into place p):

τep ←
{

(1− ρ) · (τep + ∆τep) if ep is in Cbest

(1− ρ) · τep otherwise, (3.6)

6Only for this particular ant, and only in this iteration.
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where Cbest is either local or global best, and ∆τep is the pheromone update
value, which is calculated based on the level of usage of rooms in given timeslot:

∆τep = τmax · n

|R| (3.7)

where 1 ≤ n ≤ |R| is the number of rooms used in timeslot t = p / |R|.
Pheromone update is completed using the following:

τep ←




τmin if τep < τmin,
τmax if τep > τmax,
τep otherwise.

(3.8)

3.6.4 Local Search

The LS used here by the MMAS solving the UCTP consists of two major
modules. First module tries to improve an infeasible solution, so that it becomes
feasible. Since its main purpose is to produce a solution that does not contain
any hard constraints violations, we call it HardLS. The second module of the LS
is run only, if a feasible solution is available (either generated by an ant directly,
or obtained after running the HardLS). This second module tries to increase the
quality of the solution by reducing number of soft constraint violations (#scv),
and hence is called the SoftLS.

Hard Constraints

As described in section Sec. 3.6.2, the possible infeasibility of the solution gen-
erated by an ant, may only lay in the fact that more timeslots 45 are actually
used by the timetable. The HardLS tries to reduce the number of timeslots used
by:

• moving single events from their places to other suitable places,

• swapping pairs of events (so they still end up in suitable places.

By a suitable place for an event we understand a place such that placing that
event there will not violate any hard constraints. Note that a suitable place may
still be in a timeslot t > 45.

The HardLS starts improving the timetable at a randomly selected place, and
then loops through all the places trying to reduce number of timeslots used. It
exits, when a feasible solution has been found, or when in last |P | iterations no
improvement has been made. The HardLS is fairly fast, since the only measure
it uses to judge the improvement of the solution is the number of timeslots used.

Soft Constraints

The SoftLS also rearranges the events. It however aims at increasing the quality
of the already feasible solution, without introducing infeasibility. In case of the
SoftLS, an event may only be placed in timeslot t < 45. This part of the LS
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routine is much slower than HardLS, as the improvement may only be measured
through evaluating the number of soft constraints violations. Even though a
fast delta evaluation is used, it is a computationally expensive operation.

The SoftLS performs two basic types of operations just like the HardLS
module. It however accepts only moves that do not make the quality of the
solution worse, and that do not introduce any infeasibility. In the initial stage
of the search (for first 100 iterations of the algorithm) only the first operation
is performed (moving events). Later both are executed in each iteration, until
none is making any improvement.

The SoftLS is run only if the solution is already feasible. It is much slower
than the HardLS module, as the evaluation of the fitness function is slower and
more complicated.

3.6.5 Parameters

We investigated the choice of parameters for the MMAS2 with regard to the
imposed time limits [3]. We chose two typical MMAS parameters: evaporation
rate ρ and pheromone lower bound τmin. We chose these two parameters among
others, as they have been shown in the literature [42, 43, 44] to have significant
impact on the results obtained by a MAX -MIN Ant System.

We generated 110 different sets of these two parameters. We chose the
evaporation rate ρ ∈ [0.05, 0.50] with the step of 0.05, and the pheromone lower
bound τmin ∈ [6.25 · 105, 6.4 · 103] with the logarithmic step of 2. This gave 10
different values of ρ and 11 different values of τmin – 110 possible pairs of values.
For each such pair, we ran the algorithm 10 times with the time limit set to
672 seconds. We measured the quality of the solution throughout the duration
of each run for all the 110 cases. Fig. 3.7 presents the gray-shade-coded grid
of ranks of mean solution values obtained by the algorithm with different sets
of the parameters for four different run-times allowed (respectively 8, 32, 128,
and 672 seconds)7. The results presented, were obtained for the competition04
instance.

The results indicate that the best solutions – those with higher ranks (darker)
– are found for different sets of parameters, depending on the allowed run-time
limit. In order to be able to analyse the relationship between the best solutions
obtained and the algorithm run-time more closely, we calculated the mean value
of the results for 16 best pairs of parameters, for several time limits between 1
and 672 seconds. The outcome of that analysis is presented on Fig. 3.8. The
figure presents respectively: the average best evaporation rate as a function of
algorithm run-time: ρ(t), the average best pheromone lower bound as a function
of run-time: τmin(t), and also how the pair of the best average ρ and τmin,
changes with run-time. Additionally, it shows how the average best solution
obtained with the current best parameters change with algorithm run-time:
q(t).

It is clearly visible that the average best parameters change with the change
7The ranks were calculated independently for each time limit studied.
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Figure 3.7: The ranks of the solution means for the medium problem instance
with regard to the algorithm run-time. The ranks of the solutions are de-
picted (gray-shade-coded) as function of the pheromone lower bound τmin, and
pheromone evaporation rate ρ.

of run-time allowed. Hence, similarly as in case of the local search, the choice
of parameters should be done with close attention to the imposed time limits.
At the same time, it is important to mention that the probabilistic method
of choosing the configuration that worked well in the case of the SoftLS, is
rather difficult to implement in case of the MMAS specific parameters. Here,
the change of parameters’ values has its effect on algorithm behavior only after
several iterations, rather than immediately as in case of LS. Hence, rapid changes
of these parameters may only result in algorithm behavior that would be similar
to simply using the average values of the probabilistically chosen ones.

The algorithm accepts number of command line parameters that are used
to tune its performance. Table 3.6 presents the parameters used together with
short description and the values used for obtaining the results submitted to the
International Timetabling Competition.

42



Table 3.6: Parameters used by the algorithm.
Parameter Value Description

m 3 number of ants used
ρ 0.15 pheromone evaporation rate

τmin 2.5E-05 minimal pheromone level
τmax 6.67 maximal pheromone level

γ 0.65 exploration rate
α 1.0 scaling parameter

3.6.6 Performance Analysis

Finally once the new MMAS2 algorithm has been developed, we wanted to
see how the improvements made in MMAS2 over the MMAS translate into
performance. We made a comparison of the performance of MMAS2 and
MMAS using the same test instances that were used for comparing theMMAS
with other metaheuristics.

Fig. 3.9 shows the comparison of performance of both MAX -MIN ant
algorithms on the medium02 problem instance and Fig. 3.10 the performance
on large02 problem instance. It is clear that performance of the MMAS2 is
much better than the performance of MMAS. In fact the solution obtained by
the MMAS2 entirely dominate all the solution obtained by previous version of
MMAS.
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quality of the solutions obtained with the current best parameters as a function
of run-time (lower charts).
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Figure 3.9: Charts showing the relative performance of the MMAS2 compared
to the MMAS on medium02 problem instance. All algorithms used the same
neighborhood structure and local search (when applicable).
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Figure 3.10: Charts showing the relative performance of theMMAS2 compared
to the MMAS on large02 problem instance. All algorithms used the same
neighborhood structure and local search (when applicable).

46



Chapter 4

Conclusions

We have presented the timetabling problem. We have shown that there are
several variants of the problem, yet they all are quite complex to solve. They
appear to be NP-complete due to several factors. We focused on one particular
variant – the University Course Timetabling Problem, and we have presented
its definition, characteristics, and test instances. We have analysed the problem
and shown possible approaches for tackling this problem. We have developed the
MAX -MIN Ant System for solving this problem and shown that the results
obtained are comparable and sometimes event better from other approaches.

We devised a construction graph and a pheromone model appropriate for
university course timetabling. Using these we were able to specify the first
MMAS for this problem. Compared to a random restart local search, it showed
significantly better performance on a set of typical problem instances, indicat-
ing that it can guide the local search effectively. Our algorithm underlined the
fact that ant systems are able to handle problems with multiple heterogeneous
constraints. Even without using problem-specific heuristic information it is pos-
sible to generate good solutions. With the use of a basic first-improvement local
search, we found that MMAS permits a quite simple handling of timetabling
problems. With an improved local search, exploiting more problem specific
operators, we would expect a further improvement in performance.

Later we compared the performance of the MMAS with the Ant Colony
System. The results presented indicate that there is a large dependency of the
particular design decisions on ant algorithm performance. Similar algorithms
using the same local search routine performed quite differently. The results
also show that well designed ant algorithm may successfully compete with other
metaheuristics in solving such highly constrained problems as the UCTP. Fur-
ther analysis and testing is needed in order to establish in more detail the
influence of all the parameters on ant algorithm performance.

We have done some research on the parameterization of the ACO algorithms.
Based on the examples presented, it is clear that the optimal parameters of the
MAX -MIN Ant System may only be chosen with close attention to the run-
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time limits. Hence, the time-limits have to be clearly defined before attempting
to fine-tune the parameters. Also, the test runs used to adjust the parameter
values should be conducted under the same conditions as the actual problem
solving runs.

The possible solution for further improvement of the results obtained is to
make the parameter values variable throughout the run of the algorithm. The
variable parameters may change according to a predefined sequence of values, or
they may be adaptive – the changes may be a derivative of a certain algorithm
state.

This last idea seems especially promising. The problem however is to define
exactly how the state of the algorithm should influence the parameters. To make
the performance of the algorithm independent from the time limits imposed on
the run-time, several runs are needed. During those runs, the algorithm (or at
least algorithm designer) may learn what is the relation between the algorithm
state, and the optimal parameter values. It remains an open question how
difficult it would be to design such a self-fine-tuning algorithm, or how much
time such an algorithm would need in order to learn.

Eventually we developed a second version of the MMAS algorithm which
clearly outperformed the previous version as well as all other metaheuristics
presented in this paper. However, it is important to notice that other meta-
heuristics presented here were constrained by the neighborhood structure and
local search used. Hence, their results may be better should for instance a
more efficient local search be used. So much improvement in the performance
was possible due to improvement of the representation, additional preprocessing
phase, and improved local search.

4.1 Future Work

In the future, we plan to investigate further the relationship between different
ACO parameters and run-time limits. This should include the investigation of
other test instances, and also other example problems. We will try to define
a mechanism that would allow a dynamic adaptation of the parameters. Also,
it is very interesting to see if the parameter-runtime relation is similar (or the
same) regardless of the instance or problem studied (at least for some ACO
parameters). If so, this could permit proposing a general framework of ACO
parameter adaptation, rather than a case by case approach.

We believe that the results presented in this paper may also be applicable
to other combinatorial optimization problems solved by ant algorithms. In fact
it is very likely that they are also applicable to other metaheuristics as well1.
The results presented in this paper do not yet allow to simply jump to such
conclusions however. We plan to continue the research to show that it is in fact
the case.

1Of course with regard to their specific parameters.
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Another important line of research that we plan to pursue is application of
ant algorithms to the multiobjective optimization problems. The UCTP may
be used as the first sample problem. When each soft constraint is considered a
separate objective, this problem becomes a multiobjective optimization problem.
It will be quite interesting how well may the ants deal with such problems
and whether a multiobjective approach would perhaps help solving the single
objective version.

Also there is a clear need for better understanding of the search landscape of
the timetabling problems. So far there has been little research into the landscape
analysis of this problem. A better understanding would facilitate development
of more efficient algorithms. The algorithms available today, even though they
are able to tackle the problem, they have rather large difficulty in solving more
difficult problems to optimality. More research into landscape analysis should
help to improve on that.
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