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Mâıtre de Recherches du FNRS
Université Libre de Bruxelles, IRIDIA

Avenue Franklin Roosevelt 50, CP 194/6, 1050 Brussels, Belgium
mdorigo@ulb.ac.be

——–

May, 2003

A thesis submitted in partial fulfillment of the requirements of the
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Abstract

In this work, we introduce a swarm robotic system, called a swarm-bot. A
swarm-bot is a self-assembling and self-organizing artifact composed of a
swarm of s-bots, mobile robots with the ability to connect to/disconnect
from each other. In particular, we address the problem of synthesizing
controllers for the swarm-bot using Artificial Evolution. We describe the
motivation behind the choice of the evolutionary approach and we provide
examples of its application, detailing the results obtained in different tasks,
namely coordinated motion and hole avoidance. We show how evolution is
able to produce simple but effective solutions, which lead to the emergence
of self-organization in the swarm-bot.
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Chapter 1

Introduction

This work addresses the problem of defining the control system for a group
of autonomous robots. In particular, we apply techniques derived from
Artificial Evolution, and we show how they can produce simple but effective
and robust solutions.

There are multiple motivations that lay behind the choice of Artificial
Evolution as a tool for synthesizing controllers for a group of robots. First,
Artificial Evolution can bypass many difficulties encountered in the hand
design. In fact, even in a single-robot domain, the problem of designing the
control system is not trivial at all. The designer must discover the rules that
must be encoded into the controller, in order to achieve a certain goal. To
do so, it is necessary to know the environment in which the robot should act,
and to predict the outcome of a sequence of actions performed by the robot.
When the environment is dynamic and unpredictable, designing the control
system could be very challenging. In a distributed multi-robot domain, this
problem is worsened by the fact that each robot is an independent unit that
can take its own decisions depending on the current sensory pattern and
its internal state. Furthermore, robots interact with each other, making
the system much more dynamic and unpredictable. In a similar scenario,
Artificial Evolution may perform well as it directly tests the behavior dis-
played by the robot embedded in their environment. This approach, working
in a bottom-up direction, bypasses the decomposition problems given by a
top-down approach, typical of behavior-based or rule-based systems. Fur-
thermore, Artificial Evolution can exploit the richness of solutions offered
by the complex dynamics resulting from robot-robot and robot-environment
interactions.

In this work, we present the results obtained from the ongoing work

1



CHAPTER 1. INTRODUCTION 2

within the SWARM-BOTS project1. The aim of the SWARM-BOTS project
is the development of a new robotic system, called a swarm-bot [44, 33].
The swarm-bot is defined as an artifact composed of simpler autonomous
robots, called s-bots. An s-bot has limited acting, sensing and computational
capabilities, but can create physical connections with other s-bots, thereby
forming a swarm-bot that is able to solve problems the single individual
cannot cope with.

A basic ability that a swarm-bot should display is coordinated motion,
that is, the ability to move coherently across the environment as a result
of the cooperation of the s-bots assembled in the swarm-bot. We chose to
study coordinated motion not only because it is of fundamental importance,
but also because it represents the first step toward the solution of many
other cooperative problems, like navigation on rough terrains or collective
prey retrieval. In this work, we present the results obtained in a coordinated
motion task, where a swarm-bot is composed of 4 s-bots connected in a linear
formation. We also present the case in which the same swarm-bot is placed
in an arena with holes, where it should display hole avoidance behaviors. We
show that the evolved controllers are efficient and present also generalization
properties both to changes in size and shape of the swarm-bot, and to the
introduction of obstacles in the environment.

In the rest of this chapter, we will first present the state-of-the-art, de-
scribing the research fields that constitute the starting point of this work.
This is the topic of Section 1.1. In Section 1.2, we present in detail the
SWARM-BOTS project and the swarm-bot. Finally, Section 1.3 briefly sum-
marize the contents of this report.

1.1 Background

In the last decade there has been a growing interest in the development of
complex robotic systems which could present features like versatility, robust-
ness or capacity to perform complex task in unknown environments. In order
to achieve these features, the single-robot approach was often abandoned in
favor of more complex systems, involving multiple robots working in strict
cooperation. In fact, developing and controlling a single, multi-purpose
robot is a complex task, and it may also be very expensive. Moreover, the
single-robot approach suffers the problem that even small failures may pre-
vent the accomplishment of the whole task. A group of simple and cheap

1A project funded by the Future and Emerging Technologies Programme (IST-FET)
of the European Community, under grant IST-2000-31010.
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robots may be able to efficiently accomplish many tasks that go beyond the
capabilities of the individual robot. This idea is at the base of the research in
the Collective Robotics field and in the Metamorphic Robotics field, which
cover most of the related research done so far. On a parallel track, the re-
search in autonomous robotics has faced the challenge of synthesizing the
controllers for such robotics systems. Among the different approaches that
have been proposed, we are mainly interested in the study of Evolution-
ary Robotics, which applies techniques derived from Artificial Evolution to
the definition of controllers for autonomous robots (for a review see [37]).
In this section, we present the state-of-the-art in all these research fields,
which constitutes the starting point of our research.

1.1.1 Collective Robotics

The field of Collective Robotics focuses on the study of robotic systems
that are composed of a number of autonomous robots which concurrently
act in order to reach a common goal (for an overview of the field, see for
example [39]). The main motivation behind the study of collective robotic
systems lays in the possibility to decompose the solution of a complex prob-
lem into sub-problems that are simpler and that can be faced by simple
robotic units.

Collective robotics research has mainly focused on the achievement of
coordination of several systems. For example, Gerkey and Matarić [21]
propose a dynamic task allocation method based on auction exchange in
order to achieve cooperation in a group of robots. Agassounon et al. [1] use
a scalable algorithm based on a threshold model for the allocation of robots
in a puck collecting and clustering task. Melhuish [31] describes a clustering
task collectively performed by a group of cooperating robots.

Another interesting aspect of collective robotics is given by the robust-
ness that can be achieved by providing redundancy to the whole system.
For example, Parker [38] defined a software architecture for fault tolerant
control of heterogeneous robots which allows a robot to select the correct
action to be performed depending on the requirement of the mission, the
activities of the other robots, the environmental conditions, and its own in-
ternal state. Goldberg and Matarić [22] demonstrate the effectiveness of a
behavior-based approach for the definition of robust and easily modifiable
controllers for distributed multi-robot collection tasks.

A controversial aspect in the collective robots community is given by
the use of communication. In some cases, communication can be useful for
modeling the internal state of other agents, or for committing the execution
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of a particular action to a teammate. Bonarini and Trianni [8] have shown
that the communication of “cooperation proposals” can help learning coop-
erative behaviors. Matarić [30] showed how communication can be used to
transmit sensory information to other robots in order to increase the coordi-
nation of the group. Communication was also used as a mean to distribute
reward to other members of the group in a reinforcement learning task. Balk
and Arkin [4] have shown that cooperation can emerge in a group of robots
if they are not able to independently accomplish a given task. They show
that, depending on the task, communication may or may not be helpful,
and that often very simple forms of communication are sufficient to the
accomplishment of a cooperative task.

1.1.2 Metamorphic Robotics

The major effort in Metamorphic Robotics research has been to study single
robots composed of a collection of identical modules where each module is
a simpler robot. Usually, every module is in contact with at least another
module so that a more complex structure is defined. All modules have the
same physical structure and each module is autonomous from the viewpoint
of computation and communication.

Chirikjian et al. [13] describe a metamorphic robot composed of iden-
tical hexagonal modules that can aggregate as a two-dimensional structure
with varying geometry. Robot configuration is computed by a centralized
control that uses mathematical properties of the lattice connectivity graph
associated to the structure. The work is closer to geometrical and kinemat-
ics research where the goal is to compute the minimum number of moves
to reach a given configuration rather than to the problem of controlling
in real time a complex robot structure. Yim et al. [54] have developed
PolyBot, a metamorphic robot defined by a sophisticated basic module with
on-board computing capabilities. Also in this case, however, the robot shape
is defined by a centralized control. Murata et al. [34] consider a system of
2D modules called Fracta that can achieve planar motion by walking over
each other. The reconfiguration motion is actuated by varying the polarity
of electromagnets that are embedded in each module. Kamimura et al.[27]
have developed MTRAN, which get a lot of attention due to excellent results
with real hardware. This system uses a large number of modules with only
one degree of freedom, exists physically and can self-reconfigure. Despite
the very good hardware flexibility, it has a centralized control algorithms.
Shen at al. [47, 12] with CONRO proposed another work that follows the
above-mentioned directions. Robot morphology is ensured by modular iden-
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tical structures strongly coupled by physical connectors. Robot shapes are
predefined and module moves are precomputed by planners based on global
information while no effort is made on distributed/on-line control, adapta-
tion and self-reconfiguration. Only recently, a decentralized control has been
developed for this system by Støy et al. [49]. This system allows to manu-
ally change the position of the hardware modules in the structure while the
system is running and each module autonomously re-adapts its behavioral
role in the system.

1.1.3 Evolutionary Robotics

The problem of defining a controller for a robotic system has been ap-
proached from many different directions: inferential planners, behavior-
based robotics and learning classifier system are only some example of the
possible ways of controlling a robot. Among these, Evolutionary Robotics
is a very promising technique for the synthesis of robot controllers [37]. It
is inspired on the Darwinian principle of selective reproduction of the fittest
individual in a population and makes use of genetic algorithms [26]. Starting
from a population of genotypes, each encoding the control system (and some-
times the morphology) of the robot, the evolutionary process evaluates the
performance of each individual controller, letting the robot free to act in its
environment following the genetically encoded rules. The fittest robots are
allowed to reproduce generating copies of their genetic material, which can
be changed by several genetic operators (e.g., mutation, crossover). This
process is iterated a number of times (generations) until a satisfying con-
troller is found that meets the requirements stated by the experimenter in
the performance evaluation (fitness function).

Many difficult control problems have been easily solved relying on the
evolutionary approach. For example, Nolfi [36] successfully evolved a con-
troller for the Khepera robot [32] in order to find and stay close to a target
object. The Khepera, equipped only with infrared proximity sensors, was
placed in a rectangular arena surrounded by walls and containing the target
cylindrical object that had to be found. The evolved controller outperformed
the behavior-based one, as this task is difficult to be solved by hand design,
In fact, a difficult discrimination must be performed between the sensory
pattern generated by a wall and the one generated by the target obstacle.
Harvey et al. [24] addressed the problem of navigation acquiring information
about the evironment from a camera. They evolved both the morphology of
the visual receptive field and the architecture of the neural network. Using
these settings, they successfully synthesized an individual for approaching a
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triangular shape painted on a wall and contemporary avoiding a rectangu-
lar one, guided by the vision system. Floreano and Mondada [20] evolved a
homing navigation behavior for a Khepera robot, using a recurrent neural
network. They showed that the internal dynamics of the recurrent network
could encode a sort of map of the environment that leads to an efficient
homing behavior.

More recently, the evolutionary robotic community has approached the
problem of defining collective behaviors. For example, Baldassare et al. [6]
evolved group behaviors for simulated Khepera robots, which had to aggre-
gate and navigate toward a light target. Quinn [41] evolved coordinated
motion behaviors with two Khepera. On the same track, Quinn et al. [42]
studied coordinated motion with three wheelchair robots.

1.2 Swarm Robotics:

the SWARM-BOTS Project

Swarm robotics is a novel approach to the design and implementation of
robotic systems. These systems are composed of swarms of robots which
tightly interact and cooperate to reach their goal. Swarm robotics can be
considered as an instance of the more general field of collective robotics (see
Section 1.1.1). It is inspired by the social insect metaphor and emphasizes
aspects like decentralization of the control, limited communication abilities
among robots, emergence of global behavior and robustness. In a swarm
robotic system, although each single robot composing the swarm is a fully
autonomous robot, the swarm as a whole can solve problems that the single
robot cannot solve because of physical constraints or limited abilities.

As mentioned above, this work is carried out within the SWARM-BOTS
project, whose aim is the development of a swarm robotic system, called
swarm-bot. A swarm-bot is defined as an artifact composed of a swarm
of s-bots, mobile robots with the ability to connect to/disconnect from each
other (for more details regarding the hardware, see Section 3.1). S-bots have
simple sensors and motors and limited computational capabilities. Their
physical links are used to assemble into a swarm-bot able to solve problems
that cannot be solved by a single s-bot (see Figure 1.1).

The swarm-bot concept lies between the two main streams of robotics
research described above, that is, collective robotics and metamorphic
robotics. In fact, in collective robotics, autonomous mobile robots inter-
act with each other to accomplish a particular task, but, unlike s-bots, they
do not have the ability to attach to each other by making physical connec-
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Figure 1.1: Graphical visualization of an s-bot.

tions. On the other hand, a self-reconfigurable robotic system consists of
connected self-contained modules that, although autonomous in their move-
ments, remain attached to each other, lacking the full mobility of s-bots.

Some examples can be useful to clarify the capabilities of this robotic
system. In the swarm-bot form, the s-bots are attached to each other and
the robotic system is a single whole that can move and reconfigure along
the way when needed. For example, it might have to adopt different shapes
in order to go through a narrow passage or overcome an obstacle. Physical
connections between s-bots are important for building pulling chains, as for
example in an object retrieval scenario (see Figure 1.2a). They can also
serve as support if the swarm-bot is going over a hole larger than a single s-
bot, as exemplified in Figure 1.2b, or when the swarm-bot is passing through
a steep concave region, in a navigation on rough terrain scenario. Anyway,
there might be occasions in which a swarm of independent s-bots is more
efficient: for example, when searching for a goal location or when tracking
an optimal path to a goal.

The above examples represent the family of tasks a swarm-bot should
be able to perform. Although these tasks present many differences from
each other, they share many common aspects, among which the capability
to perform aggregation and to distributely coordinate the activity of the
group. Aggregation is of particular interest because it is a prerequisite for the
development of other forms of cooperation: for example, in order to assemble
in a swarm-bot, s-bots should first be able to aggregate. Therefore, the
aggregation ability can be considered as the precondition for the realization
of other tasks that the swarm-bot is expected to be able to carry out. On the
other hand, the ability to coordinate the activities of the group is crucial
for the effectiveness of a swarm-bot : for example, when carrying a heavy
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(a) (b)

Figure 1.2: Graphical visualization of possible scenarios involving a swarm-
bot. (a) Retrieving a circular object. (b) Passing over a trough.

object that a single s-bot cannot move, all s-bots should coordinate and
pull or push in the same direction, in order to maximize the performance
of the swarm-bot. Similarly, when two or more of such objects have to
be transported, it is desired that the whole group of s-bots coordinates its
activity focusing on a single object rather than having small and inefficient
groups attempting to move different targets. The aggregation task has been
studied in previous research activities and solved both with hand design and
using artificial evolution [44, 50]. In this work, we focus on the coordinated
activity task, trying to solve the problem of coordinated motion in a swarm-
bot, as described in Chapter 4.

1.3 Report Layout

This report is organized as follows. In Chapter 2 we discuss about the
motivation that led us to the choice of Artificial Evolution as a tool for
synthesizing controllers for the swarm-bot. We describe the features and
challenges of a swarm robotic system like the swarm-bot. We introduce
the notion of self-organization, which can be exploited for gaining useful
insights about the working principles of swarm robotic systems. We detail
the problems that have to be addressed when designing a control system for
the swarm-bot, and we show how Artificial Evolution can cope with them.

In Chapter 3, we present the experimental setup used in the experiment
we performed. In particular, we describe the simulation model defined for an
s-bot and its sensory-motor configuration. We also describe the evolutionary
algorithm we employed in all the performed experiments.

In Chapter 4, the results obtained in the attempt to evolve coordinated



CHAPTER 1. INTRODUCTION 9

motion behavior for the swarm-bot are presented. We describe the task
and the peculiarity of the experiments performed. We show that we were
able to evolve efficient behaviors, that generalize to different situation in
which the swarm-bot has size and shape different from those used during the
evolution. Besides, we show how the behavior also generalizes in situations
where obstacles are added into the environment.

In Chapter 5, we present the hole avoidance task, which consists of co-
ordinated motion in an environment with holes. These hazards have to be
recognized and avoided by the swarm-bot, as the holes are too big to let the
swarm-bot pass over. We present the peculiarity of the experimental setup
and the results achieved evolving three different neural network architec-
tures, and we analyze their performance. Finally, we show how the evolved
strategies are able to display generalization properties.

In Chapter 6, we draw the conclusions of this work, highlighting the
important aspects of this research. Finally, we indicate the future directions
to be followed.



Chapter 2

Why Artificial Evolution?

In this chapter, we describe the challenges we are facing in developing a
control system for a swarm-bot and the methodologies we can apply to
the solution of the design problem. In particular, we highlight the principal
features of a swarm robotic system and we explain how exploiting the notion
of Self-Organization can be of fundamental importance for a complex system
like a swarm-bot. We also discuss the possible solutions to the design of a
control system for the s-bots, that could allow them to self-organize. Among
these, Artificial Evolution can be considered very promising, as it allows the
evolution of a controller in a bottom-up approach, without much intervention
from the designer.

2.1 The Challenges of Swarm Robotics

As mentioned above, swarm robotics is characterized by the presence of
swarms of robots that tightly interact in order to reach their goals. Con-
trolling such robotic systems is a challenging task: decentralization, robust-
ness, adaptivity, embodiment, complex dynamics are features that have to
be taken into account when developing a control system. All these features
characterize the behavior of insect colonies and other animal societies, which
are the main source of inspiration for swarm robotics. In this section, we
will discuss the advantages these features can bring to a swarm-bot, along
with the challenges they issue. During the discussion, we will also provide
examples of natural systems which exhibit these important features.

10
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2.1.1 Decentralization

When developing the controller for a multi-agent system like the swarm-
bot, the first problem to be faced concerns the choice between a centralized
and a distributed approach. In literature, we can find many examples of
both, and there are also many intermediate approaches, in which control is
decentralized only to some extent.

Speaking in general words, the centralized approach can be defined as a
single machine/agent/entity that takes decisions for all the other agents that
have to be controlled. For example, a group of robots that has to perform
a foraging task could receive instructions from a remote workstation that,
knowing the environment and the position of all the robots, could drive them
toward the food sources, possibly optimizing the number of robots that can
exploit each food source. The centralized planning of the instructions to
be sent to each robot requires the combination of the state space of all
the robots in a single space, whose dimension grows exponentially with the
number of robots [29]. Furthermore, a communication medium must be
provided between the centralized controller and the robots, and this medium
must be reliable, because loosing contact with some robots will make them
useless. Because of these requirements, the cost of centralization increases
exponentially with respect to the size of the group.

On the contrary, decentralization leads to the distribution of the decision
making process among all the agents composing the group. Each agent is
responsible for its own actions, which are taken independently from the other
individuals, leading to a noticeable reduction in the complexity of the control
systems. In this way, the behavior of a single agent can be very simple, but
the entire group can still display complex behaviors. A striking example
of decentralization is given by many animal societies. For example, insects
like ants or bees take most of their decisions in a distributed way without
being governed by any leading individual in the colony, and at the same
time achieving an extremely efficient and organized behavior at the colony
level. Ants are able to trace the shortest path from the nest to a food source
without any a priori knowledge about the environment [14]. This behavior
is a result of the decisions taken individually by each ant and by the local
interactions among ants and between ants and environment. Similarly, a fish
school can move in a very coherent way, but there is no leader that instructs
the group on the direction to take and the turns to perform. In fact, the
flocking behavior of the fish school is a result of individual decisions and
local interactions (for a review, see also [9]).

We mentioned local interactions as a mean to achieve coordination in
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a group. In some cases, these interactions can be thought of as a sort of
communication among agents. Indeed, in a decentralized system, a com-
munication medium among agents is often provided, as communication can
favor cooperation [30]. Direct communication turns to be required when it
is necessary to know the internal state of other agents in order to take some
decision, and it is difficult to infer the internal state from the observation
of the other agent’s behavior. However, not always direct communication
can increase the efficiency in solving a problem, but often simpler form of
communication are sufficient [4]. In a swarm-bot, we intend to use indirect
communication among individuals (stigmergy [23]), thus limiting the use
of direct communication. Stigmergy takes places if an individual modifies
the environment in a way that can be sensed by other individuals or that
can influence their behavior. Stigmergy is a form of communication that
takes place trough the environment, favoring local interactions among in-
dividuals, thus coordinating and regulating the activity of the group. This
phenomenon is often observed in insect societies. For example, ants lay a
chemical substance, called pheromone, which attracts other ants: using this
simple signal, ants can efficiently perform tasks like foraging, recruiting and
nest building.

2.1.2 Robustness

Robustness is directly linked to decentralization. In a centralized system, in
fact, the failure of the central controller would affect the whole group, while
a decentralized system, not relying on a single controller, can continue to
work even if some of its parts are not available any more.

However, a distributed control alone is not enough to obtain robustness.
For example, let us consider a group of agents that are able to achieve
their goal performing an ordered sequence of sub-tasks, each executed by a
specialized agent. In this case, the system may be decentralized, but not
robust, because the failure of one agent will lead to the failure of the entire
group. In the swarm robotic system, the main way to achieve robustness
is to provide redundancy to the system, replicating its parts many times.
Thereby, the removal of some components will not affect the functionality
of the system, but it will lead to a graceful degradation of the performance.
Redundancy and the consequent robustness are typical features of insect
colonies, that are able to function even after the removal of many individuals.
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2.1.3 Adaptivity

In some cases, robustness in a system can be a direct consequence of its
adaptivity. A striking example of robustness as a result of adaptivity is
given by ant species of the Pheidole genus. In most species of this genus
workers are physically divided into two fractions: the small minors, who
fulfill most of the quotidian tasks, and the larger majors, who are responsible
for seed milling, abdominal food storage, defense or a combination of these.
Wilson [53] experimentally changed the proportion of majors to minors. By
diminishing the fraction of minors, majors get engaged in the tasks usually
performed by minors and replace them efficiently. Wilson [53] observed,
that within one hour of the ratio change, majors adapt themselves to the
new situation and take over the minors’ work. The colony is able to achieve
robustness by adapting to the new, unexpected situations. Similarly in a
swarm-bot, this kind of adaptation can lead to a dynamic division of labor
that is very important in order to perform complex tasks.

Adaptivity at the colony level is one of the most important characteristics
displayed by social insects. Colonies with thousands of individuals need to
adapt to changing conditions very quickly. The individual behaviors are
flexible to several internal and external factors such as food availability,
climatic conditions or phase of colony development. In a similar way, a
swarm-bot should be able to adapt to changing environmental conditions,
in order to obtain the best achievable performance.

2.1.4 Embodiment and Complex Dynamics

Adaptivity of the system is even more important when the system is em-
bodied and physically interacts with its environment. The result of physical
interactions is difficult to predict and requires that the system is able to
adapt to many different situations.

Speaking in general words, embodiment stresses the importance of phys-
ical aspects of the system (like mass, friction, shape) and its interaction
with the environment. Therefore, an embodied system is characterized by
complex dynamics that are the result of the agent-environment interaction.
Exploiting this complexity can be useful in order to produce complex be-
haviors with relatively simple controllers. An experimental evidence is given
in [37], where the task of discriminating walls from cylindrical obstacles is
presented. The results showed that this task cannot be efficiently solved by
a disembodied neural network that was trained using the back-propagation
algorithm. However, the task was successfully solved by the same network
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embodied in a Khepera robot that was let free to move. This suggests that
physical interactions with the objects to be discriminated simplifies the task.

The importance of physical interactions is amplified in a swarm robotic
system, where each agent dynamically interacts not only with the environ-
ment, but also with all the other agents. In other words, a swarm robotic sys-
tem is characterized by very complex dynamical interactions among agents
and between agents and environment. In a swarm-bot, physical connections
between s-bots increase the complexity of the system’s dynamic. This con-
firms the importance of the study of embodied controllers in a swarm-bot,
where s-bots can influence each other also by creating physical forces.

2.2 Self-Organization and Swarm Robotics

In the previous section, we discussed about the main features of a swarm
robotic system like the swarm-bot. The inherent complexity of a swarm-
bot suggests that the design of its controller is a particularly challenging
task. Unfortunately, there are no basic principles that can be followed in
order to design a controller for swarm robotic systems. However, we can
approach the solution of this problem looking at complex system theories.
In particular, useful insights can be found in the notion of self-organization.

Self-organization can be defined as “the appearance of structure or pat-
tern [in a system] without an external agent imposing it” [25]. More pre-
cisely, self-organization explains how, in a system, global level order emerges
from the numerous local interactions that takes place among the lower-level
components of the system. In other words, a system self-organizes driven
by its own components, which interact relying only on local information,
without any reference to the system as a whole.

The notion of “self-organization” started to be discussed in the mid-
dle of the 20th century by a multi-disciplinary group of scientists, like the
thermodynamicist Nicolis and Prigogine or the cyberneticians Ashby and
Von Foerster [35, 3, 51]. Prigogine won the Nobel prize for his study of
dissipative systems, that is, systems able to continuously dissipate energy
preserving a particular dynamic state. These systems are able to maintain
constant or decrease their own entropy dissipating the excess energy in the
surroundings. A well known example is given by the Bénard convection
cells that can be observed when heating a thin layer of a vegetable oil. The
vertical temperature gradient in the horizontal oil layer causes an ordered
movement of the molecules in the liquid that results in a global hexagonal
pattern, which can be observed on the substrate. Prigogine suggested that
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self-organization typically takes place in non-linear systems far from their
thermodynamic equilibrium point.

In the same period, Ashby and von Foerster begun their work on self-
organization. Ashby noted that a self-organizing system is a system that
evolves toward a state of equilibrium, called attractor. On the other hand,
Von Foerster supported the notion of “order form noise”, claiming that
injecting noise in a system can move it across its state space, with the
possibility of ending in a more stable (ordered) state.

Starting from these pioneers, the importance of self-organization has
been recognized in the study of many complex systems, ranging from chem-
istry to biology. As mentioned above, global order in a self-organizing sys-
tem is the result of local interactions among the individuals composing the
system. When in the disordered state, individual actions and interactions
are deeply influenced by randomness or noise, and result in the so called
random fluctuations of the system around its state. Then, self-organization
may emerge from the interplay of two basic mechanisms: positive and nega-
tive feedback. Positive feedback consists in the amplification of the random
fluctuations of the system: it can be seen as a snowball effect that increases
exponentially and drive the system toward a stable state. On the contrary,
negative feedback serves as a regulatory mechanism, and it is often a result
of the amplification itself, that exhausts the resources of the system. Neg-
ative and positive feedback are responsible for maintaining a system in its
stable state, restoring the organization after any deviation caused by some
external influence.

As an example, let us consider again the Bénard convection cells men-
tioned above. When heating the thin layer of oil, a temperature gradient
is created between the bottom and the top of the layer. However, the sys-
tem remains in a stable state where heat is dissipated by conduction until a
certain threshold is reached. At this point, random fluctuations and local in-
teractions may trigger the self-organization process. In fact, a small portion
of the liquid at the bottom may rise slightly because of random movements
of the molecules (random fluctuations). It will be surrounded by a colder
region, and, being less dense, it will be pushed up (local interactions). The
more it rises, the colder the surroundings and the higher the rising force
(positive feedback). The same mechanism applies to a cold portion of liquid
at the top: a small downward movement caused by random fluctuations is
amplified by the interaction with the warmer (and thus lighter) liquid in
the surroundings. The amplification process terminates once all the liquid
present convection cells, that is, when the resources of the system have been
exhausted (negative feedback).
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Self-organization can be of particular interest for studies in swarm-
robotics in general, and specifically for the swarm-bot as it can explain the
behavior of many biological systems, like ant colonies or fish schools, from
which swarm robotics takes inspiration. Moreover, a particular form of self-
organization taking place in insect societies, called self-assembling, is strictly
related to the SWARM-BOTS project: self-assembling is the self-organized
creation of structures as a result of connections among individuals composing
the system (for a review of self-assembling in insect societies see [2]). Animal
societies present multiple forms of self-organization and self-assembling. In
such systems, the interactions among individuals are made using rules of
thumb that require: (i) a limited cognitive ability and (ii) a limited knowl-
edge of the environment [9, 10, 11, 15, 17, 19, 43, 45, 46]. Also in this case,
we can recognize the basic features of self-organization: local interactions,
random fluctuations, positive and negative feedback mechanisms. As an ex-
ample, we can mention aggregation in the bark beetle larvae Dendroctonus
micans [16]. Normally, these larvae individually search for a fruitful feed-
ing site, moving randomly (random fluctuations). When they start feeding
in a good location, they start to emit a chemical signal, a pheromone that
diffuses in air and serves as communication medium (local interactions, stig-
mergic communication). At this point, the aggregation process is triggered:
in presence of a pheromone gradient, larvae react by moving in the direction
of higher concentration of pheromone, thus reinforcing the chemical signal
coming from the aggregation site (positive feedback mechanism). The ag-
gregation ends when all the larvae have clustered in one location (negative
feedback mechanism resulting from the exhaustion of larvae) [16].

The above example shows how order in a system, that is, the aggregate,
can emerge from simple individual rules and local interactions. This kind
of behavior corresponds to what we want to observe in a swarm-bot. Then,
why not designing a swarm-bot able to self-organize? In fact, self-organizing
systems hold the features we want to provide to a swarm-bot, which have
been discussed in Section 2.1:

Decentralization. All the elements of a self-organizing system are, by def-
inition, autonomous: there is no leader that drives the organization of
the system, which is not a result of some recipe, blueprint or template.
The control is distributed, and all parts of the system contribute to the
emergence of the organization. Furthermore, every element of a self-
organizing system relies only on local information and interacts locally
with the other elements of the system, suggesting that its behavior can
be modeled with simple rules.
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Robustness. When a self-organizing system reaches its stable state, it will
be very difficult to destabilize it, because it has the natural tendency
to return in its stable configuration, which constitutes an attractor
for the system. This is mainly a result of the feedback mechanisms
that continuously maintain the organization in the system. A self-
organizing system is thus robust to environmental changes, but also
to the failure of some of its components, given its high redundancy.

Adaptivity, Embodiment, Complex Dynamics. A system that self-
organize naturally adapts to its environment, because it reaches a sta-
ble state driven by internal forces and by the interaction with the
environment itself. Furthermore, a self-organizing system presents
non-linearities and complex far-from-equilibrium dynamics, that is,
the system reaches a stable state that is not an equilibrium point: this
make it possible to have a dynamic system with fast reactions, which
favors adaptation to environmental changes and the production of new
responses to new, unexpected situations. The physical properties of
the system have a big influence on its dynamics, and on the type of
organization that will be reached: for example, the viscosity of the oil
determines the size of the Bénard convection cells. This confirms the
importance of embodiment in the study of self-organizing systems

In conclusion, a swarm-bot should be self-organizing in order to exploit
all the advantageous features that pertain to self-organizing systems. How-
ever, we still have to understand how to design the control system in order to
obtain self-organization. This “design problem” is the topic of the following
section.

2.3 The Design Problem

As mentioned above, we want to design the control system for the s-bots in
order to obtain self-organization in a swarm-bot. However, designing such a
of control system is not a trivial task. It is necessary to discover the relevant
interactions between s-bots that lead to the emergence of the global organi-
zation. In other words, the challenge is given by the necessity to decompose
the global behavior that result in the desired organization in simple mecha-
nisms and simple interactions among the system components. Furthermore,
even if we know the mechanisms that lead to the emergence of the global
organization, we still have to consider the problem of encoding them into
the controller of each s-bot. As we already mentioned, in doing this, the
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environment in which the s-bots are embedded must be taken into account
because of its importance on the dynamics of the system and its role as
communication medium, allowing different forms of stigmergy. Figure 2.1
exemplifies this process. The self-organized system displays a global behav-
ior interacting with the environment (Figure 2.1, left ). In order to define
the controller for the s-bots, it is necessary to first decompose the global
behavior into individual behaviors and local interaction among s-bots and
between s-bots and environment (center). Then, the individual behaviors
must be encoded into the control program that drives each s-bot (right).

environment

environment

control
program

individuals

system
self−organizing

Figure 2.1: A representation of the design problem. In order to have the
swarm-bot self-organize, we should first decompose the global behavior of
the system (left) into individual behaviors and local interactions among s-
bots and between s-bots and environment (center). Then, the individual
behavior must be in some way encoded into a control program (right).

Summarizing, from an engineering perspective, the design problem is
generally decomposed into two different phases: (i) the behavior of the sys-
tem should be described as the result of interactions among individual be-
haviors, and (ii) the individual behaviors must be encoded into controllers.
Both phases are complex because they attempt to decompose a process (the
global behavior or the individual one) that emerges from a dynamical inter-
action among its subcomponents (interactions among individuals or between
individual actions and environment).

Nolfi and Floreano [37] claim that, since the individual behavior is the
emergent result of the interaction between agent and environment, it is dif-
ficult to predict which behavior results from a given set of rules, and which
are the rules that will create a given behavior. Similar difficulties occurs
in the decomposition of the organized behavior of the whole system into
interactions among individual behaviors of the system components. Here,
the understanding of the mechanisms that lead to the emergence of self-
organization must take into account the dynamic interactions among indi-
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vidual components of the system and between components and environment.
Thus, it is difficult to predict, given a set of individual behaviors, which be-
havior at the system level will emerge, and it is also difficult to decompose
the emergence of a desired global behavior in simple interactions among
individuals.

The decomposition from the global to the individual behaviors could
be simplified taking inspiration from natural systems, like insect societies,
that could show us the basic mechanisms to be exploited. This approach
finds its roots in the recent studies on swarm intelligence [7]. Starting from
the animal society metaphor, swarm intelligence has emerged as a novel ap-
proach to the design of “intelligent” systems inspired by the efficiency and
robustness observed in social insects in performing global tasks. The swarm-
intelligent approach to the design problem starts from the observation of a
natural phenomenon, followed by a modeling phase, which is of fundamental
importance to “uncover what actually happens in the natural system” ([7],
page 8). The developed model can then be used as a source of inspiration
for the designer, who can try to replicate certain discovered mechanisms
into the artificial system, in order to obtain dynamics similar to the natural
counterpart. As exemplified in Figure 2.2, this approach requires a first de-
composition step that models the phenomena observed in nature to find out
which are the basic mechanisms and individual interactions. This knowledge
is than exploited in the design phase, where these mechanisms are encoded
into the control program.

control
program

environment dx/dt = y+q(x)

dy/dt = yx+p(y)

observations
and modeling

design?
self−organizing
natural system

Figure 2.2: The swarm-intelligent approach to the design problem: a natural
self-organizing system (left) can be observed and its global behavior modeled
(center), obtaining useful insights on the mechanisms underlying the self-
organization process. The model can be used as a source of inspiration
for the following design phase, which leads to the definition of the control
program (right).

However, it is not always possible to take inspiration from natural pro-
cesses because they may differ from the artificial systems in many important
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aspects (e.g., the physical embodiment, the type of possible interactions be-
tween individuals and so forth), or because there are no natural systems
that can be compared to the artificial one. Moreover, the problem of en-
coding the individual behaviors into a controller for the s-bots remains to
be solved. Our working hypothesis is that these problems can be efficiently
solved relying on Artificial Evolution[37], as discussed in the next section.

2.4 Artificial Evolution of Group Behaviors

In this section, we will motivate why Artificial Evolution can efficiently solve
the design problem. In fact, artificial evolution eliminates the problem of
decomposition at both the level of finding the mechanisms that lead to the
emergent global behavior, and the level of implementing those mechanisms
into a controller for the s-bots. Artificial evolution relies on the evaluation
of the system as a whole, that is, on the emergence of the desired global
behavior starting from the definition of the individual ones. This approach
is exemplified in Figure 2.3: the controller encoded into each genotype is
directly evaluated looking at the resulting global behavior. The evolution-
ary process is responsible of selecting the “good” behaviors and discarding
the “bad” ones. Moreover, the controllers are directly tested in the environ-
ment, thus they can exploit the richness of solutions offered by the dynamic
interactions among s-bots and between s-bots and environment, which are
normally difficult to be exploited by hand design.

environmentcontroller

self−organizing
system

Figure 2.3: The evolutionary approach to the design problem: controllers
(left) are evaluated for their capability to produce the desired group behavior
(right). The evolutionary process is responsible for the selection of the
controllers, testing them in the environment where they should work.

It is worth noting that, while the hand design normally proceeds in a top-
down direction, following a divide and conquer approach, the evolutionary
process proceed in the bottom-up direction, directly evaluating controllers
for their suitability to the requirements defined by the designer. Artificial
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Evolution does not need any arbitrary decomposition of the problem into
sub-problems, but it relies on the automatic process of selection and repro-
duction (which is often referred to be self-organized itself).

The main problem of the divide and conquer approach is well explained
by Nolfi and Floreano [37]. The decomposition of a global behavior into
sub-components is often performed from a distal description of the behavior,
that is, a description from the observer point of view. On the other hand,
the control rules correspond to a proximal description of the behavior, that
is, a description of the coupling of sensory (and internal) states to motor
actions. The distal description of the behavior is a result of the agent-
environment interactions, and therefore it may be impractical to define the
controller at the proximal level. The divide and conquer approach may
fail when, following the distal description, the global behavior is arbitrarily
decomposed in sub-parts that does not have a one-to-one mapping with the
sub-components of the control system. On the contrary, the evolutionary
approach can overcome this problem defining a controller at the proximal
description level, while testing and evaluating it at the distal level. In this
way, no arbitrary choice is performed by the designer, but the process is left
free to choose and test any possible solution that can produce the desired
global behavior.

The application of the evolutionary approach to group behaviors has
already been successfully applied in previous work, where we evolved an
aggregation behavior for a group of s-bots [50]. We observed that evolution is
able to find simple but efficient solutions to the aggregation task, producing
self-organizing behaviors similar to those observed in natural systems, like
the one shortly described in Section 2.2.

Before concluding, it is worth mentioning that the advantages offered
by Artificial Evolution are not costless. On the one hand, it is necessary
to identify initial conditions that assure evolvability, i.e., the possibility to
progressively synthesize better solutions starting from scratch. On the other
hand, artificial evolution may require long computation time and it is often
unfeasible to apply it on real robots. For this reason, software simulations
are often used. The simulations must save as much as possible the inter-
esting features of the robot-environment interaction. Therefore, we have
chosen to develop our simulations using a rigid body dynamics simulator,
which can accurately simulate the dynamics and collisions of our s-bots in
a 3-D environment. In Chapter 3, we will describe the setup of our ex-
periments, introducing the simulated model of the s-bot and describing the
evolutionary algorithm we used for the synthesis of self-organizing behaviors
for the swarm-bot.



Chapter 3

Experimental Setup

This chapter is dedicated to the description of the experimental setup. It
is thus introductory to the following chapters, in which the experiments we
performed are described in detail. In particular, we will introduce the s-bot
hardware and the simulated model in Section 3.1. In Section 3.2, the sensor
and actuator configuration used throughout all the experiments is detailed.
Finally, in Section 3.3, we describe the evolutionary algorithm we used in
order to evolve coordinated movement behaviors.

3.1 The S-bot Model

In this section, we describe the s-bot hardware and the simplified simulation
model we devised in order to run the evolutionary experiments. Figure 3.1
shows the first s-bot prototype that has been produced1. The mobility of
the s-bot is ensured by a combination of two tracks and two wheels, called
Differential Treels c© Drive which are mounted on a chassis containing motors
and batteries. Each track is connected to the wheel of the same side and it is
controlled by an independent motor. This particular combination of tracks
and wheels allows an efficient rotation on the spot due to the position of the
wheels and makes navigation simpler on moderately rough terrains, while
more complex situations can be tackled by a swarm-bot. The chassis can
rotate with respect to the main body (turret) by means of a motorized axis.
This ensures an independent movement of the turret where the sensors and
the grippers for physical connections to other s-bots or objects are located.

1Details regarding the hardware and simulation of the swarm-bot can also be found
in [40] and in the project web-site (http://www.swarm-bots.org).

22
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The s-bots have two different way of creating physical interconnections to
self-assemble into a swarm-bot configuration: rigid and semi-flexible. Rigid
connections between s-bots are implemented by a gripper mounted on the
s-bot turret. This gripper can also be used to lift another s-bot if necessary.
Semi-flexible connections are implemented by a flexible arm actuated by
three servo-motors mounted on the turret. These three degrees of freedom
allow to extend and move laterally and vertically the arm. The s-bot grippers
can grasp other s-bots on a T-shaped ring around the s-bot turret.

Figure 3.1: The first s-bot prototype, provided of the tracks system, the
body holding the rigid and the flexible grippers, and many sensor systems.

Given the hardware implementation, we have defined a simple s-bot
model in order to develop fast simulations, which could preserve the features
of the real s-bot we are interested in (see Figure 3.2). For this purpose, we
relied on the VortexTM SDK, which offers the necessary functionalities to
develop accurate 3-D dynamic simulators. The s-bot turret is modeled as a
cylinder (radius: 6cm, height 6cm), connected to the chassis by a motorized
hinge joint. The chassis is a sphere (radius: 1.4 cm) to which 4 spherical
wheels are connected (radius: 1.5 cm), two lateral and two passive wheels in
the front and in the back, which serves as support. The lateral wheels are
connected to the chassis by a motorized joint and a suspension system, thus
they are responsible for the motion of the s-bot. In this way, a differential
drive mechanism is implemented, modeling the external wheels of the physi-
cal realization. On the contrary, the other wheels are not present in the real
s-bot, which is provided of tracks instead. These wheels model the balanc-
ing role of tracks, but, being not motorized, they do not contribute to the



CHAPTER 3. EXPERIMENTAL SETUP 24

motion of the s-bot. Connections between s-bots are simulated dynamically
creating a joint between the two bodies. However, in this work, s-bots are
always assembled into a swarm-bot, thus we do not consider the problem of
dynamically creating connections.

Figure 3.2: The simulated s-bot model. The body is transparent to show
the chassis (center sphere), the motorized wheels (lighter spherical wheels)
and the passive wheels (darker spherical wheels). The position of the vir-
tual gripper is shown with an arrow painted on the s-bot ’s body. On the
contrary, the front direction of the chassis is not shown. In the following,
we will display the direction of forward motion drawing a cone in place of
the spherical chassis

The s-bot model is thus simple enough to obtain fast simulations. Wheels
are modeled as spheres and not as cylinders in order to simplify both the
collisions detection between the wheels and the ground, and the computa-
tion of the dynamics of the different bodies. The chassis, having no other
functionality than connecting the different parts of the s-bot, is modeled as
a sphere, which is the simplest object to be simulated. The s-bot turret on
the contrary is modeled as a cylinder, the simplest shape close to the real
s-bot. This allows to simulate in a realistic way collision among s-bots and
between s-bots and walls or obstacles. On the contrary, the computation of
collisions involving wheels, chassis, walls and obstacles are all disabled, as
these objects cannot collide, thus improving the performance of the simula-
tor.

3.2 Sensor and Actuator Configuration

The hardware realization of an s-bot includes many sensor systems, among
which infrared proximity sensors, light sensors, directional microphones and
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an omni-directional camera. Even if these sensors are provided by the devel-
oped simulator, they are not used in this work. On the contrary, we provide
each s-bot with a traction sensor, placed at the turret-chassis junction and
able to detect the direction and the intensity of the traction force that the
turret exerts on the chassis. This particular kind of sensor proved to be of
fundamental importance for coordinated movement tasks [6], and it is at the
moment of writing under development on the real s-bot.

The working principle of the traction sensors is very simple (see Fig-
ure 3.3): when s-bots are connected in a swarm-bot configuration, their
movement can produce pulling/pushing forces on other s-bots. In particu-
lar, the turret of each s-bot physically integrates the forces that are applied
to the s-bot by the other s-bots, and takes also into account the movements
of the s-bot ’s chassis. As a consequence, the traction sensor provides the
s-bots with an indication of the average direction toward which the swarm-
bot is trying to move as a whole. More precisely, it measures the mismatch
between the directions toward which the entire team and the s-bot chassis
are trying to move. The intensity of the traction is also an indication of the
size of this mismatch.

t

s

t = s−c

c

α

Figure 3.3: Traction sensor working principle: the traction ~t is the resultant
of the vectorial summation of all the forces applied by other s-bots on the
turret (~s) minus the force exerted by the movement of the chassis (~c). α is
the resulting direction of the traction, while |~t| is the resulting intensity.

Besides traction sensors, in this work we also make use of ground sen-
sors, which are merely proximity sensors pointed to the ground. The use
of these sensors is justified by the fact that, when exploring an unknown
environment, the s-bots should be able to recognize the presence of hazards
like holes or troughs and behave in order to avoid to fall into them. Also,
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these sensors can be used as a measure of the roughness of the terrain on
which they are moving, and used to select different strategies of exploration.
The real s-bot is provided with 4 ground sensors, positioned along the axis
of the chassis, as can be observed in Figure 3.4a. In the simulated s-bot we
tried a different configuration that we consider to be more useful to avoid
hazards. In this case, the 4 ground sensors are evenly distributed around
the chassis of the s-bot, starting at 45 degrees from the direction of move-
ment (see Figure 3.4b). This sensor distribution will be implemented in the
hardware exploiting some of the proximity senors present on the turret.

(a) (b)

Figure 3.4: Ground sensors. (a) a graphical representation of the hardware
implementation, where ground sensors are positioned along the axis of the
chassis. (b) The simulated ground sensors, displayed as lines exiting from
the s-bot are positioned around the body in order to better recognize the
direction of hazards like holes in the ground.

Concerning the actuators, each s-bot can control its wheels indepen-
dently. In order to do so, the control system can specify a desired angular
speed to be reached and a maximum torque to be applied by the motor
controlling the lateral wheels. The maximum speed values has been set to
10 rad/s, which correspond to a maximum speed of the s-bot of 0.15 m/s.
The maximum torque to be applied is set to 0.2 Nm. In addition to the
wheels, the movements of the s-bot are also influenced by the motor con-
trolling the rotation of the turret with respect to the chassis. However, it is
not independently controlled with respect to the wheels, its desired angular
speed ωt being defined as

ωt =
ωl − ωw

2
, (3.1)

where ωl and ωr are the desired angular speed of the left and right wheel
respectively. The maximum speed and torque values are the same as for the
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wheel motor. This way of controlling the rotation of the turret is designed
in order to help the re-orientation of the tracks when, due to the roughness
of the terrain or to pulls or pushes coming from other s-bots, one or both
wheels do not touch the ground. In these cases, the torque applied to the
turret motor will result in a rotation equivalent to what would result from
the action of the wheels.

As already mentioned before, we are interested in evolving behaviors
for coordinated movement in an already assembled swarm-bot, while the
problem of self-assembling will be considered in future research. Thus, the
gripper actuators are not used in this context, as s-bots are always connected
to each other. The connections are rigid and do not allow relative motion of
the s-bots. In some test experiments, we made connections flexible to study
the effect of relative position change on the evolved controllers.

3.3 The Evolutionary Algorithm

In this section, we describe the evolutionary algorithm used to evolve con-
trollers for coordinated motion. The details of the evolved controller and of
the fitness function may change from experiment to experiments, and they
will be described later.

We use a generational evolutionary algorithm for the evolution of the
s-bot neural controller. The initial population is composed by µ randomly
generated genotypes. Each genotype is binary encoded, and can be mapped
into a controller for a single s-bot. The length L of the genotype is fixed
and depends on the controller that is evolved. This controller is cloned in
each of the n s-bots involved in the experiment [5]. The fitness F of each
genotype is estimated allowing the group of s-bots to “live” for M “epochs”
and then averaging the obtained value:

F =

M
∑

e=1

Fe, (3.2)

where Fe is the fitness estimation obtained from a single epoch. The value
Fe depends on the evolved behavior. Each epoch e lasts a maximum of T
simulation cycles, each cycle corresponding to 100 ms of real time.

The best λ genotypes of each generation are allowed to reproduce, each
generating µ/λ offspring2. Each bit has a probability p/L of being replaced
by the opposite value. The reproduction is asexual, as no recombination is

2For sake of simplicity, we use λ values that are divisors of µ values.
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performed. Furthermore, parents are not copied to the offspring population
(no elitism). The evolutionary process is stopped after a maximum value of
N generations.

This algorithm is very simple and straight forward, but we found that is
enough to evolve simple but efficient controllers for group of robots [50, 5, 6].
Table 3.1 summarizes the parameters that have to be set for defining an
evolutionary run, and it gives also some default values that are common to
all the experiments presented here.

Table 3.1: The parameters of the evolutionary algorithm. Default values
common to all the experiments performed in this work are also shown.

Parameter Explanation Default

µ Population Size 100

L Length of the genotype (bits) —

n Number of s-bots involved in the ex-
periment

4

M Number of epochs per fitness estima-
tion

5

T The duration of a single epoch e (sim-
ulation cycles)

—

λ

The number of parents allowed to re-
produce in order to build the popula-
tion of the following generation

20

p

The average number of bits mutated
in a genotype, resulting from a prob-
ability p/L of mutation per bit

2

N Maximum number of generations 100



Chapter 4

Evolving Coordinated

Motion

Coordinated motion is a basic capability that should be provided to a swarm-
bot. In fact, when assembled into a swarm-bot, s-bots partly loose their
autonomy, as they are physically connected to other s-bots. Nonetheless, the
autonomy in motion of the swarm-bot as a whole must be preserved. This
implies that s-bots should coordinate in order to move as a single being,
collectively avoiding obstacles or aiming to a particular location.

The problem of coordinated motion in a swarm-bot, which is detailed in
Section 4.1, has been studied by Baldassarre et al. [6], and was efficiently
solved using Artificial Evolution. In this chapter, we present the results
obtained replicating the experiments presented in [6], adapting them to the
simulation model presented in Section 3.1. The experimental setup of these
experiments is described in Section 4.2. We show that we are able to obtain
comparable results and similar generalization features of the evolved con-
troller (see Section 4.3 and 4.4). The experiments presented in this chapter
can be considered as the starting point for the solution of the hole avoidance
problem, which is presented in Chapter 5.

4.1 The Coordinated Motion Task

Generally, the first problem to be faced when trying to control an au-
tonomous robot is how to make it move efficiently in a given environment.
Depending on the robot, this task can be very simple or incredibly complex.
For example, a wheeled robot can be easily controlled by setting the speed
of its wheels. On the contrary, the motion of a humanoid robot is still an

29
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open problem in the robotic community. Also the environment in which the
robot is placed may influence the complexity of the motion: a flat terrain
without obstacles does not create many problems, while a rough terrain with
holes and obstacles is clearly more challenging. A different source of com-
plexity is present in the coordinated motion task, where the robotic system
is composed of a number of independent entities that have to coordinate
their actions in order to move coherently.

Coordinated motion is a well studied behavior in biology, being observed
in many different species. For example, we can think of flocks of starlings
coordinately flying or to schools of Atlantic cods swimming in perfect uni-
son. These examples are not only fascinating for the charming patterns
they create, but they also represent interesting instances of self-organizing
behaviors. Many researchers have provided models for schooling behaviors
of fish, and replicated them in artificial life simulations [9]. These model
explain the coordinated movement only with simple attraction and repul-
sion rules between individuals (positive and negative feedback), which are
based only on local information about the position and heading of neighbor-
ing fish. Similarly, the behavior of groups of artificial fish (called e-boids)
has been evolved to display schooling behaviors, obtaining interesting re-
sults [52]. Finally, evolutionary computation has been used also to evolve
coordinated motion behaviors in group of physical robots [41, 42]. In this
case, groups of 2 and 3 robots where asked to move as far as possible from
their starting location, and the results showed the emergence of coordinated
motion, notwithstanding the limited sensing abilities of the robots.

In this work, coordinated motion is performed in a group of physically
linked s-bots. This additional constraint limits the individual abilities of
each s-bot in the group, because physical connections prevent most of the
possible movements. Furthermore, the motion of one s-bot can influence
the dynamics of the whole swarm-bot because physical links transmit the
forces applied by one s-bot to the rest of the group. However, the s-bots
can orient their rotating chassis toward a common direction and move in a
coherent way. Therefore, a very precise coordination in the orientation of
the rotating bases is necessary, because even a small difference can affect
the performance in the motion of the swarm-bot.

4.2 Experimental Setup

The experiment performed in this work replicates those presented in [6].
Here, the swarm-bot is formed by 4 assembled s-bots in a linear configuration,
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as shown in figure 4.1. Physical connections are rigid, so that no relative
movement is allowed between s-bots. Initially, the chassis of each s-bot is
randomly oriented. In this way, the s-bots have to solve the problem of
collectively choosing a common direction where to move and then have to
cover the maximum possible distance.

Figure 4.1: The initial configuration for the evolution of coordinated move-
ment behaviors. The swarm-bot is composed of 4 s-bots linearly connected
(physical links are not drawn). The red line on top of each s-bot indicates
the intensity and direction of the traction felt by each s-bot.

4.2.1 Controller Setup

In these experiments, the s-bot is equipped with a traction sensor that pro-
vides compact information about the average direction where the swarm-bot
in trying to move (see Section 3.2). The information provided by the trac-
tion sensor refers to both intensity and direction of traction. We encoded
these two values in 4 variables, in order to limit the discontinuities of the
information on the direction of traction, which can directly pass from −π
to π or the other way round, and may cause problem at the control level.
These four variables vi encode the intensity of the traction from four differ-
ent preferential orientations with respect to the chassis θi = i · π/2, having
i ∈ {0, 1, 2, 3}. In particular, for each preferential orientation θi, this inten-
sity decreases linearly with respect to the absolute difference between the
sensor’s preferential orientation and the direction of traction, and is 0 when
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this difference is bigger than π/2:

vi =

{

I ·
(

1 − |α−θi|
π/2

)

if |α − θi| ≤
π
2

0 otherwise
, i ∈ {0, 1, 2, 3}, (4.1)

where α is the direction of the traction and I is its intensity, linearly scaled
in the interval [0, 1].

Each s-bot controller is a neural network with 4 sensory neurons that
receive the variables vi, plus one bias neuron. These are directly connected
with 2 motor neurons. The activation state of the motor units is normalized
between [−10,+10] and used to set the desired angular speed of the two cor-
responding wheels and the turret-chassis motor, as described in Section 3.2.

The connection weights of the neural controller of the s-bots are evolved
following the algorithm described in Section 3.3. Each connection weight is
represented in the genotype by 8 bits that are transformed into a number
in the interval [−10,+10]. Therefore, the total length of the genotype is
10 × 8 = 80 bits. The other parameters of the algorithm are set to their
default value (see Table 3.1).

4.2.2 Fitness Estimation

To allow the swarm-bot to move as fast and as straight as possible, we
devised a fitness estimation Fe based on the Euclidean distance between the
center of mass of the team at the beginning and at the end of each epoch:

Fe =
‖X(0) −X(T )‖

D
, (4.2)

X(t) =
1

n

n
∑

j=1

Xj(t), (4.3)

where n is the number of s-bots involved in the experiment, Xj(t) is the
coordinates vector of the jth s-bot at cycle t, X(t) is the resulting coordinates
vector of the center of mass of the group, and D is the maximum distance
that a single s-bot can cover in T cycles by moving straight at maximum
speed. The duration T of each epoch is fixed to 150 simulation cycles, and
corresponds to 15 seconds of real time.

In Table 4.1, we summarizes the parameters of the evolutionary algo-
rithm specific to the coordinated motion task. Along with the definition of
the fitness estimation Fe, they complete the description of the evolutionary
algorithm given in Section 3.3.
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Table 4.1: Parameters of the evolutionary algorithm specific to the coordi-
nated motion experiments.

Parameter Explanation Value

L Length of the genotype (bits) 80

T The duration of a single epoch e (sim-
ulation cycles)

150

4.3 Results

The experiment were replicated 10 times, starting with different randomly
generated populations. The average fitness over the 10 replications is shown
in Figure 4.2. The plot indicates that the evolutionary experiment was
successful, as a very good performance was achieved in all replications.
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Figure 4.2: Average fitness over the 10 replications of the experiment for
the evolution of coordinated motion. The best and the average fitness of the
population are plotted versus the number of generations.

We tested the best controllers produced in each replication, evaluating
them for 100 epochs. The average fitness values are presented in Table 4.2.
It shows that most of the evolved controllers display a satisfactory average
performance.

The behaviors obtained in each replication present many similarities.
Direct observation has shown that at the beginning of each epoch, the s-
bots start to move in the direction they were positioned, but the physical
connections transform this disordered motion into traction forces, which are
exploited to coordinate the group. When an s-bot feels a traction force, it
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Table 4.2: Average performance of the best controller evolved in each repli-
cation of the experiment.

Replication Performance

1 0.87888

2 0.83959

3 0.88338

4 0.71567

5 0.79573

6 0.75209

7 0.83425

8 0.85848

9 0.87222

10 0.76111

rotates its chassis in order to cancel this force. Once the chassis of all the
s-bots are oriented toward the same direction, the traction forces disappear
and the coordinated motion of the swarm-bot starts (see Figure 4.3). This
is possible because, as mentioned in Section 3.2, the traction sensor gives an
indication of the mismatch between the direction of the chassis of the s-bot
and the average direction of motion of the swarm-bot. Thus, a high value
returned by the traction sensor corresponds to high mismatch, and results
in a fast rotation of the chassis in order to compensate this mismatch.

An example of the coordination activity is given in Figure 4.4, showing

Figure 4.3: Trajectories drawn by a swarm-bot during coordinate motion.
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the dynamics of the coordination. Figure 4.4a plots the angular distance be-
tween the chassis of each s-bot and the average orientation of all the chassis
in the swarm-bot, scaled in the interval [0, 1]. It shows that after a transi-
tory period, the s-bots converge toward a common orientation. Similarly,
Figure 4.4b plots the traction intensity felt by each s-bot, also scaled in the
interval [0, 1]. Also in this case, a transitory period is followed by a stable
state in which the traction intensity is zero, indicating that the coordination
has been achieved. It is worth noting the similarities between the two graphs,
which confirms that an high traction correspond to an high mismatch in the
direction of the chassis and triggers a fast reaction, as explained above. Fig-
ure 4.4 also highlights how the reaction of an s-bot to the traction intensity
and angle variation presents complex dynamics that have been exploited by
the evolutionary algorithm to synthesize an efficient controller.
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Figure 4.4: Coordination dynamics. (a) Angular distance between the chas-
sis of each s-bot and the average orientation of the chassis in the swarm-bot.
The average orientation is normalized between the values [0,1], and is plot-
ted against the simulations cycles. (b) the traction intensity felt by each
s-bot, scaled in the interval [0, 1] and plotted against the simulation cycles
elapsed.

The obtained results are qualitatively similar to those presented in [6].
Nonetheless, a quantitative difference is present in the performance, due to
the different simulation models used. These differences result in different
dynamics of the swarm-bot with respect to similar initial conditions in the
two cases. This also confirms the importance of the embodiment in the
design of the controllers.
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4.4 Generalization Properties

The evolved strategy for coordinated motion is very robust, being able to
work in many different settings. For example, this strategy scales very well
with the number of s-bots forming in the chain: also in this case, coordi-
nated motion emerges after a transitory phase in which the s-bots collectively
choose a common direction. This generalization property can be explained
by the fact that the traction sensor still integrates the forces applied on the
turret by other s-bots. However, the transmission of forces is less efficient
with increasing chain size and causes a longer duration of the coordination
phase.

The evolved strategy generalizes well also to different shapes of the
swarm-bot. Figure 4.5 shows the trajectories drawn by each s-bot in a swarm-
bot having a star formation. This reveals that the information coming from
the traction sensor has the same property, and the evolved behavior is able
to exploit it, no matter the configuration of the swarm-bot.

Figure 4.5: Generalization of the coordinated motion behavior to a different
number of s-bots and a different shape.

The coordinated motion behavior displays another interesting feature:
it is able to perform collective obstacle avoidance. When an s-bot hits an
obstacle with its body, the turret exerts a force on the chassis in a direction
opposite to the obstacle. This force is felt as a traction pulling the s-bot away
from the obstacle. In response to this traction, the s-bot rotates its chassis
in order to cancel the traction, as explained above. Moreover, the rigid
connections between s-bots transmit the force resulting from the collision to
the whole group, which triggers a fast change in the direction of movement



CHAPTER 4. EVOLVING COORDINATED MOTION 37

of the whole group. This behavior is shown in Figure 4.6, where 4 s-bots
forming a chain move in a square arena and, once they hit a wall, collectively
change direction of motion, without remaining stuck against the wall. It is
worth noting that the traction sensor works as an omni-directional bumper
distributed on the whole body of the swarm-bot, allowing collective obstacle
avoidance.

Figure 4.6: Generalization of the coordinated motion behavior to obstacle
avoidance. Here, the traction sensor works as a distributed, omni-directional
bumper.

Finally, we tested the evolved behaviors using flexible connections be-
tween s-bots, allowing relative motion between connected s-bots. Flexible
connections allow the connecting s-bot to rotate around the body of the
connected s-bot, without changing the distance. Using this type of connec-
tions, the shape of the swarm-bot can change during motion, and traction is
transmitted by means of the connection only to some extent. Nevertheless,
the evolved strategy still works. Figure 4.7 shows the case of a chain of 8
s-bots with flexible connections, placed in a squared arena with cylindrical
obstacles. The initial coordination phase makes the chain deform, but after
a while the swarm-bot displays coordinated motion. Also the collision with
an obstacle leads to a change in the shape, which enable the swarm-bot to
pass through narrow passages and restart the coordinated motion afterward.

In conclusion, we have shown that the evolved strategy displays very
robust behavior, which is able to cope with both changes in the number
of s-bots forming the swarm-bot, and variations of the shape of the swarm-
bot. Also environmental changes, like the presence of walls or obstacles, do
not degrade the performance of the evolved controllers, which are able to
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Figure 4.7: Generalization of the coordinated motion behavior to the intro-
duction of flexible links between robots. The swarm-bot is able to change
shape and efficiently avoid obstacles.

display a collective obstacle avoidance behavior. Artificial evolution was able
to exploit the complex group dynamics arising from the physical interactions
among s-bots, producing a behavior that presents the typical features of self-
organization. In the following chapter, we will show how similar features can
be produced also for the hole avoidance task.



Chapter 5

Evolving Hole Avoidance

In the previous chapter we presented the coordinated motion task, and we
showed how evolution can synthesize simple but efficient and robust con-
trollers for the s-bots. In this chapter, we face a similar problem, that is,
coordinated motion in an environment that presents hazards like holes or
troughs, that have to be avoided by the swarm-bot. This task is presented
in Section 5.1. The experimental setup for the evolution of hole avoidance
behaviors is detailed in Section 5.2. Finally, Section 5.3 presents the results
obtained using artificial evolution for different types of neural controllers.

5.1 The Hole Avoidance Task

The hole avoidance task can be considered as an instance of the family of
“navigation on rough terrain” tasks. The ability to cope with rough terrains,
holes, gaps or narrow passages is a very important feature for an intelligent
robotic system, that can open many possible application scenarios, like res-
cue in a collapsed building or space exploration. Research in this direction
has focused mainly on the development of rovers provided with articulated
wheels or tracks, like the pathfinder [48], well known for the big impact
on mass media resulted from the mission on Mars. A different approach
to rough terrain navigation is presented by reconfigurable robotics, where
robots can adopt different shapes in order to cope with different environ-
mental conditions [12, 49, 54].

In the swarm-bot case, navigation on rough terrain is achieved by means
of the cooperation between s-bots which can self-assemble and build struc-
tures that can cope with hazardous situations like avoiding a hole or passing
over a trough. In such cases, rigid connections serve as support for those
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s-bots that are suspended over the gap. This approach to rough terrain
navigation also as a natural counterpart in ants of the species Œcophilla
longinoda [28], which are able to build chains connecting one to the other,
creating bridges that facilitate the passage of other ants.

In this work, we study the problem of coordinated motion in an environ-
ment that presents holes too large to be traversed by a swarm-bot. Thus,
holes must be recognized and avoided, so that the swarm-bot does not fall
into them. The difficulty in this task lays in the fact that s-bots, having only
limited sensing capabilities, cannot feel the presence of a hole until they are
very near to its edge. Therefore, when not joining a swarm-bot, s-bots may
fall into holes being unable to efficiently react, above all when edges present
irregularities like convex angles. In the swarm-bot configuration, physical
connections serve as support for those s-bots that are near an edge, making
the swarm-bot able to safely react. However, it is necessary to communi-
cate the presence of a hole to the whole group, which must consequently
reorganize to choose a safer direction of motion.

5.2 Experimental Setup

In order to study the hole avoidance task, we designed an arena that presents
holes with both concave and convex angles (see Figure 5.1). The arena is a
square box (side 3 m), having 4 square holes (side 60 cm). The hole edges
present convex angles, which are difficult to detect by an s-bot. Besides, the
borders of the arena itself are hazards to be avoided and present concave
angles.

Figure 5.1: The arena employed for the hole avoidance task.

Also in this case, the swarm-bot consists of a linear structure made by 4
s-bots. The sizes of the arena and of the holes have been chosen in order to
leave enough space for the passage of the swarm-bot, no matter the orienta-
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tion of the chain. This can allow an efficient navigation in the arena once
the s-bots are able to avoid holes.

5.2.1 Controller Setup

The s-bots are provided with a traction sensor, which returns direction and
intensity of the traction exerted by the turret on the chassis. These values
are encoded in 4 virtual sensors, as described in Section 4.2.1. Besides the
traction sensors, an s-bot can exploit the information coming from 4 ground
sensors positioned around the chassis of the s-bot (see Section 3.2). The value
returned by each ground sensor is normalized in the interval [0, 1] and passed
to the neural controller. Thus, the neural network has 8 sensory inputs
coming from traction and ground senors, and 2 motor outputs controlling
the wheels and the turret-chassis motor.

We performed 3 different sets of experiments, each characterized by a dif-
ferent type of controller. In the first set, we used a simple perceptron, where
the sensory units and a bias unit were directly connected to the motor units.
The weights of the perceptron were evolved. Each weight, ranging in the
interval [−10, 10], was represented in the genotype by 8 bits, corresponding
to a genotype length L1 = 18 × 8 = 144 bits.

In the other two sets of experiments, we used recurrent neural networks
in order to test whether internal dynamics of the neural network could lead
to an adaptive advantage in the hole avoidance task. In the second set of ex-
periments, we employed an Elman architecture [18], characterized by a fully
recurrent hidden layer made by 4 neurons, which are also fully connected to
the input and output layers. In total, there are 62 connection weights to be
evolved, which corresponds to a genotype length L2 = 62 × 8 = 496 bits.

In the last set of experiments we used a modified Elman architecture,
called dynamic network. Here, each hidden neuron i has a time constant
τi, so that the activation state Hi of the unit is computed by means of a
moving average:

Hi(t + 1) = τi · Hi(t) + (1 − τi) · Ai, τi ∈ [0, 1] (5.1)

where Ai is the sum of the activation coming from all the connecting neurons.
Also time constants were under the control of the evolutionary algorithm,
and were represented in the genotype by 8 bits. In this case, the length
of the genotype is L3 = 66 × 8 = 528 bits. In all sets of experiments, the
remaining parameters were set to their default values given in Table 3.1.
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5.2.2 Fitness Estimation

In order to evolve hole avoidance behaviors, we devised a fitness function
that favors coordinated motion, exploration of the arena and a fast reaction
to the detection of the hole’s borders. The fitness estimation Fe is given by
the average of two components:

Fe =
Fe1

+ Fe1

2
(5.2)

In order to compute the fitness components, we divide each epoch e
into two sub-epochs, e1 and e2. In the former, we test the genotype for
its ability to perform coordinated motion in a flat environment, having a
fitness estimation Fe1

computed with Equation (4.2). This sub-epoch lasts
Te1

= 150 cycles. Here the s-bots start connected in a linear chain, having
the orientation of their chassis randomly initialized, and having to learn to
move coordinately.

In the latter sub-epoch, the fitness estimation Fe2
is given by

Fe2
= Fs × Fx, (5.3)

where Fs is a survival sub-component and Fx is an exploration sub-
component. The survival sub-component Fs is designed to reward only
those genotypes that reach the end of the epoch without falling into a hole.
It is computed as follows:

Fs =

{

1 if Ts = Te2

0 otherwise
, (5.4)

where Te2
is the length of the sub-epoch e2 and Ts is the number of cycles

the swarm-bot “survived” without falling into a hole. This sub-component
penalizes every fall, even if it happens at the end of the sub-epoch, thus
favoring more robust behaviors.

The second sub-component is designed in favor of those genotype that
are able to explore the arena in depth. In this case, the arena is virtually
divided in 25 squared zones of 60 cm side. The genotype is rewarded for the
number of visited zones during the sub-epoch, as formalized as follows:

Fx =
z(Ts)

Z(Te2
)
, (5.5)

where z(t) is the number of visited zones at cycle t and Z(t) corresponds
to the maximum number of zones that can be visited in t cycles. This sub-
component also has the side effect of favoring coordinated motion, because,
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in order to explore, the swarm-bot must be able to efficiently move. However,
without the component Fe1

, Fx is not sufficient to evolve efficient motion.
Some tests we performed using only Fx as fitness function showed that the
evolved behaviors exploited the shape of the arena, kept constant during the
evolution. In fact, the swarm-bot learned to circle around one hole, without
learning to avoid falling in different situations.

In sub-epoch e2, s-bots are positioned at the center of the arena and
start in the usual chain configuration, but their chassis are all initialized
with the same random orientation. Also the chain is randomly oriented
at the beginning of each sub-epoch. In this way, there is no need of a
coordination phase at the beginning of the sub-epoch, the focus being put
on hole avoidance. The sub-epoch lasts Te2

= 200 cycles.
Table 5.1 summarizes the parameters of the evolutionary algorithm spe-

cific for the hole avoidance task. It also specifies the parameter specific
for the different sets of experiments performed. Along with the definition
of the fitness estimation Fe, these values complete the description of the
evolutionary algorithm given in Section 3.3.

Table 5.1: Parameters of the evolutionary algorithm specific for the hole
avoidance task and different sets of experiments.

Parameter Explanation Value
Perceptron Elman Dynamic

L Length of the genotype
(bits)

144 496 528

Te1

The duration of a single
sub-epoch e1 (simulation
cycles)

150

Te2

The duration of a single
sub-epoch e2 (simulation
cycles)

200

5.3 Results

In this section, we present the results obtained evolving hole avoidance be-
haviors using the three different controllers described above. For each con-
troller, we replicated the evolutionary experiments 10 times. The average
fitness values, computed over all the replications, are shown in Figure 5.2.
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The average performance of the best individual and of the population are
plotted against the generation number. All different neural architectures
perform well, reaching a high fitness value. There is no clear difference
among the plot of the different architectures, except for the fact that the
perceptron evolves faster than the other two networks.
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Figure 5.2: Average fitness over 10 replications of the experiment.

In order to test the performance of the evolved controllers, we evaluated
the best individuals of the last generation of each replication of the experi-
ments. The corresponding results are shown in Table 5.2. It can be noted
that the average performance of every controller is significantly lower than
the average values achieved during the evolutionary runs. This is due to a
super-estimation of the individual performance related to random initializa-
tion and a small sampling size (5 epochs per fitness estimation). This fact,
however, does not disturb the evolutionary process, because at each genera-
tion all the individuals are evaluated with the same random initializations,
thus ensuring a fair comparison between individuals.

Table 5.2 also highlights the best controllers evolved for each of the three
different neural architectures. From these data, it is possible to see that the
best evolved controller is the dynamic network obtained in the 6th replica-
tion, performing better than the best controllers of both the perceptron and
the Elman architectures (evolved, respectively, by the 7th and 6th replica-
tion). Performing a Wilcoxon signed rank test with continuity correction,
the dynamic neural network resulted statistically better (p-value of 0.007511
in the dynamic/perceptron test, 0.002356 in the Dynamic/Elman test).

It is worth noting that the dynamic architecture presents some replica-
tion with a low fitness. In particular, the 10th replication did not end with
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Table 5.2: Mean performance of the best individuals of each replication of
the experiments, averaged over 100 epochs. The best evolved individuals of
each neural network architecture are highlighted in bold.

Replication Performance
Perceptron Elman Dynamic

1 0.6640 0.6564 0.6870

2 0.6541 0.6715 0.5696

3 0.6502 0.6257 0.6701

4 0.6079 0.6241 0.6075

5 0.5835 0.5951 0.5297

6 0.6376 0.6894 0.7287

7 0.6866 0.5942 0.6564

8 0.6397 0.6592 0.6005

9 0.6640 0.5798 0.6935

10 0.6458 0.6500 0.3913

an efficient solution. This can be explained by the fact that the search space
is big and evolution may require more generations to find a suitable solution.

Direct observation of the behaviors evolved showed that all efficient solu-
tions rely on similar strategies. Coordinated motion is achieved in the same
way as described in Section 4.3. Concerning hole avoidance, when one s-bot
detects an edge, it rotates the chassis and changes the direction of motion
in order to avoid falling. This change in direction is felt by the other s-bots
by means of the traction sensors, and triggers a coordination phase that
ends up in a new direction of motion away from the edge. A key role in the
functioning of this strategy is played by the motor controlling the rotation
of the chassis with respect to the turret of an s-bot. In fact, this motor has
a stabilizing effect on the rotation of the chassis even if one of the wheels
is suspended on the edge. This gives the chance of changing its direction
of motion to an s-bot, even when partially suspended and, consequently,
it can cause a traction force that can be felt by the other s-bots. If the
turret-chassis motor were not provided any rotation of the wheel touching
the ground would cause a rotation of the chassis and consequently the loss
of contact with the ground, loosing the possibility to influence the behavior
of other s-bots. Figure 5.3 shows the trajectory displayed by a swarm-bot
performing a hole avoidance task.

This kind of strategy may fail mainly for two reasons: the inertia of the
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Figure 5.3: Trajectories displayed by a swarm-bot performing a hole avoid-
ance task. It can be seen that, during the last turn, one s-bot was partially
suspended, as the trajectory goes out from the border. However, falling was
successfully avoided also using the turret-chassis motor (see text for more
details).

swarm-bot and movements during the coordination phase. Inertia can cause
problems mainly when the direction of motion of the swarm-bot is more or
less perpendicular to the edge of the hole. In this case, only the s-bot at the
head of the chain can feel the presence of the hole. If the swarm-bot is moving
at full speed toward the edge, the heading s-bot may not be able to rapidly
change direction of motion because of the high inertia of the swarm-bot,
given also that the other s-bots are unaware of the presence of the hole and
continue moving at full speed. The avoidance can still be performed if the
next s-bot feeling the hole is able to change direction of motion. However, in
this case it often happens that the swarm-bot falls during the coordination
phase. Movements and rotations of the swarm-bot during the coordination
phase are the second main cause of failure of the evolved strategies. In fact,
it may happen that while coordinating, the swarm-bot reaches an edge and
the lack of coherence in the movements may cancel the avoidance effort of
those s-bots that feel the presence of the hole. This may happen mainly
after a successful avoidance, when the swarm-bot is close to a corner of the
arena.
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5.3.1 Robustness Properties

The causes of failure described above occur in many evolved behaviors, also
in the best rated behavior produced by the dynamic neural network. This
means that in some cases the evolved behavior is not robust enough to cope
with all possible hazardous situation.

In order to understand to what extent the evolved behavior are robust
with respect to the hole avoidance task, we performed some evaluations
of the performance of the best controllers of each replication. To do so,
we defined two performance metrics related to the fitness function used in
these experiments, but slightly modified in order to test the robustness of
the controller. The first is a “survival factor”, which corresponds to the
fraction of time the swarm-bot survives without falling into a hole, and is
given by:

Ps =
Ts

Tp
, (5.6)

where Ts is the number of cycles the swarm-bot survived without falling, and
Tp is the total amount of cycles used for this performance evaluation. This
metric is clearly related to the fitness component Fs, but it gives more infor-
mation about the robustness of the behavior with respect to the avoidance
of falling.

The second performance metric is the “exploration factor” Px, related
to the fitness component Fx, given by

Px =
z(Ts)

Z(Tp)
, (5.7)

where z(t) and Z(t) have the same meaning as in Equation (5.5), but are
computed with a different number of cycles. This metric gives us an idea
on how good a controller is in exploring the environment. In particular, it
penalizes a situation in which the swarm-bot remains trapped in a particular
location while trying to avoid to fall. Given that swarm-bots that are able to
survive longer have also more time to explore the arena, we have combined
the previous metrics in a single “exploration per survival cycle” performance
metric, given by:

P =
Px

Ps
, (5.8)

which should give a fair comparison of the capability of exploring the arena
while not falling into a hole.

These performance metrics are evaluated for Tp = 10000 cycles (1000
seconds), a very long duration with respect to the one used in the fitness
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estimation. As a consequence, we have Z(Tp) = 25, which corresponds to
the exploration of the whole arena. The long evaluation time is intended
to let the swarm-bot test many different situations while navigating in the
arena, situations that could have never appeared before and to which the
swarm-bot should prove to be robust enough. We repeated the performance
measures 100 times for the best individual produced by every replication of
the experiment. The results are shown in Figure 5.4.

The box-plot shows that most of the evolved controllers have a small
survival factor with an average in general lower than 0.2, which corresponds
to 2000 cycles spent without falling (see Figure 5.4a). This suggests that
there exist situations that evolved controller cannot cope with. However,
there are 3 controllers that outperform the others, that is the the Elman
networks of the 1st and 6th replications and the dynamic network of the
7th replication. There are no perceptron networks that can be considered
robust with respect to surviving. Therefore, we can suppose that Elman and
dynamic networks are more robust than a simple perceptron concerning the
hole avoidance task, particularly with respect to the capacity to avoid falling
into holes.

The exploration factor confirms that the networks best rated by the sur-
vival factor were able also to explore efficiently the environment, as it can
be seen in Figure 5.4b. However, it is clear that these controllers, being able
to survive longer, have also more time to explore the arena. In fact, the
discounted exploration metric, plotted in Figure 5.4c, penalizes them with
respect to the other controllers. However, the results obtained with the
exploration factor are interesting, as they reveal that the controllers that
survive longer are also able to coordinately move trough the environment,
without being blocked in the attempt to avoid a hole. Their exploration
speed is anyway slow with respect to other controllers, as shown in Fig-
ure 5.4c.

In conclusion, these data reveal that it is possible to evolve neural net-
works with complex architecture (Elman and dynamic) that show good ro-
bustness with respect to the hole avoidance task, while simple perceptrons
do not seem to be comparable. However, in order to consistently evolve such
robust behaviors, it is necessary to devise a fitness function that explicitly
rewards robustness. A similar fitness function must test the controller in
as many difficult situations as possible and for long time. The drawback is
that such fitness estimation may require an excessive amount of time. There
clearly is a trade-off between the desired robustness and the time needed to
achieve it.
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Figure 5.4: Performance evaluation for the robustness of the evolved be-
haviors: (a) survival factor (Ps); (b) exploration factor (Px); (c) combined
performance metric (Px/Ps).



CHAPTER 5. EVOLVING HOLE AVOIDANCE 50

5.4 Generalization Properties

The generalization properties of the coordinated motion task, described in
Section 4.4, are a result of the physical connections among s-bots and, above
all, of the traction sensors we used. Given that the hole avoidance task in-
herits many features from the coordinated motion task, we expect to observe
the same generalization properties. However, we mentioned above that the
reaction to the edge detection is influenced by the orientation of the chain
and by its inertia. Varying the size and the shape of the swarm-bot will
worsen this conditions, and may lead to inefficient behaviors.

First, we tested the obstacle avoidance generalization, surrounding the
arena used for the hole avoidance task with walls. As shown by Figure 5.5,
the swarm-bot is able to avoid both holes and obstacles, efficiently exploring
the arena. The obstacle avoidance behavior is similar to the one described
in Section 4.4, that is, traction sensors work as a distributed bumper for the
swarm-bot.

Figure 5.5: Generalization properties: obstacle avoidance. The swarm-bot
is placed in an arena containing holes and surrounded by walls, and it is
able to survive avoiding both holes and obstacles.

The second generalization test was performed using different size and
shape for the swarm-bot. Figure 5.6 shows the case of a star formation in
a squared arena without holes, but with open borders. We do not show a
case with internal holes in the arena for presentation purposes: in fact, when
working with a high number of s-bots and rigid connections, the passages
between holes are to narrow to be traversed by the swarm-bot without having
one or more s-bots that sense a hole and trigger a direction change. In these
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cases, the trajectories were too confusing to be understood. The case we
show in Figure 5.6 is anyway representative of the generalization behavior.
The star formation is able to avoid to fall out of the arena, but it can be seen
that some of the s-bots’ trajectories lay outside of the arena. This is due
to the higher inertia of the star formation, which can easily push an s-bot
out, without being able to stop. It is a penalizing factor for the generalized
behaviors, as they become less efficient in avoiding holes. However, given the
higher number of s-bots forming the group, the fall can be avoided when the
edge is sensed by other s-bots approaching it, so, in general, the performance
is satisfying.

Figure 5.6: Generalization properties: size and shape change. The swarm-
bot is composed of 8 s-bots rigidly connected to form a star formation. In
this case, the swarm-bot is able to avoid falling, but its high inertia makes
the behavior less efficient.

In the last generalization test, we use flexible links in the swarm-bot
so that it can change shape during the exploration (see Figure 5.7). We
performed tests with both a star and a chain formation composed of 8 s-bots
each. The flexible star formation case is shown in Figure 5.7a, where the
swarm-bot was placed in a squared arena with four big cylindrical obstacles
and no walls on the printer. Figure 5.7a shows that the flexible formation was
able to perform coordinated motion, obstacle and hole avoidance, changing
shape when it had to go through a narrow passage having an obstacle on
the left and the arena border on the right. It can be noticed that the
flexible formation adapts more easily adapt to the environment, and in some
situations can avoid holes more efficiently than a rigid structure. In fact, the
s-bots do not completely feel the inertia of the swarm-bot, because they can
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move deforming the structure and adapting to the edge of the hole. This
fact is even more evident in Figure 5.7b, where a chain formation was placed
in the original arena. Here, when the chain reached the edge, it completely
deformed without having a single s-bot being pushed out of the arena.

(a)

(b)

Figure 5.7: Generalization properties: hole and obstacle avoidance with flex-
ible structures. (a) The swarm-bot is composed of 8 s-bots flexibly connected
in a star formation. The arena contains big obstacles, which create some
narrow passages with the border of the arena itself. (b) The swarm-bot is
composed of 8 s-bots flexibly connected to form a chain. The arena contains
holes, but no obstacles.
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Conclusions

In this work, we have presented a new robotic concept, called a swarm-bot,
defined as an artifact composed of simpler autonomous robots, called s-bots.
An s-bot has limited acting, sensing and computational capabilities, but can
create physical connections with other s-bots, thus forming a swarm-bot that
is able to solve problems an individual cannot cope with. We presented the
results obtained in the attempt to control a swarm-bot. In particular, we
chose to exploit Artificial Evolution for synthesizing the controllers for the s-
bots, and for obtaining self-organization in the robotic system. The solutions
found by evolution are simple, general and in many cases they generalize to
different environmental situations. This demonstrates that evolution is able
to produce a self-organized system that relies on simple and general rules,
a system that is consequently robust to environmental changes and to the
number of s-bots involved in the experiment.

6.1 Obtained Results

We presented a set of experiments for the evolution of coordinated motion
behaviors in a group of simulated s-bots that are physically connected to
form a swarm-bot. We showed that the problem can be solved in a rather
simple and effective way by providing the s-bots with a traction sensor and by
evolving the neural controllers. The evolved strategy exploits the fact that
the body of a swarm-bot physically integrates the effects of the movements of
the single s-bots. The traction sensor allows s-bots to detect the result of this
integration. In this way, the problem of producing coordinated movements
can be easily solved. In fact, these sensors allow s-bots to have direct access
to global information about what the entire group is doing.

53
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In a second set of experiments, we described how coordinated motion can
be performed in an environment presenting holes, that have to be avoided in
order to not fall into them. Here, the evolved strategies strongly rely on the
traction forces produced by those s-bots that feel the presence of an hazard.
Using the information given by the traction sensors, the whole group can
change the direction of motion when heading toward a hole.

We also showed how neural controllers are able to generalize in rather
different circumstances, even if they were evolved for a particular case, that
is, for the ability to produce coordinated movement and hole avoidance
in a swarm-bot composed of four s-bots forming a linear structure. We
have observed that (i) evolved controllers produce coordinated movements
in swarm-bots with varying size, topology, and type of links, and (ii) they
display obstacle avoidance when placed in an environment with obstacles.
These results suggest that this strategy might constitute a basic functional-
ity that, complemented with appropriate additional functions, might allow
swarm-bots to display a large number of interesting behaviors.

The traction sensor was found to be a very powerful mean of achieving
coordination in the swarm-bot. In fact, it allows to exploit the complex
dynamics arising from the interaction among s-bots and between s-bots and
environment. It provides robustness and adaptivity features with respect to
environmental or structural changes of the swarm-bot. It is very versatile, as
it also functions as a distributed bumper for the swarm-bot used for obstacle
avoidance. Besides, traction forces are used as a sort of communication of the
presence of an hazard. This communication among s-bots is neither direct
nor explicit, but can be considered as an implicit stigmergic communication,
as it takes place through the environment, that is, through the bodies and
the physical connections between s-bots.

Concerning the hole avoidance task, we performed three sets of exper-
iments evolving different neural network architectures: simple perceptrons
and two recurrent architectures (Elman and dynamic neural networks). We
were able to obtain satisfying controllers using all the three types of neural
networks. However, a robustness analysis showed that not all the behaviors
were equally efficient. We found that, among the evolved strategies, only
some recurrent networks resulted in robust solutions, while the behaviors
produced by simple perceptrons never displayed a similar performance.
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6.2 Future Work

In this work, we tried to evolve neural networks with complex architectures
in order to understand if internal dynamics of the network could provide
adaptive advantage in the hole avoidance task. We showed that some of the
evolved networks are more robust than simple perceptrons, but the collected
data cannot state that they are consistently better. The understanding
of the dynamics of the evolved networks can give useful insights on the
mechanisms that produce the observed behaviors. Thus, we plan to analyze
in detail the evolved neural networks, performing neuro-ethological analysis
(lesion and correlation studies). Such analysis can help us understanding
the functionality of the sub-components of the neural network, in order to
state if the better performance displayed was effectively a result of the higher
complexity of the neural network. If this is the case, we will perform new
experiments aiming at consistently evolving those features that are relevant
for a robust and efficient hole avoidance behavior.

The hole avoidance task represents the first step toward the solution of
more difficult problems. We plan to continue studying problems that be-
long to the “navigation on rough terrain” family, like passing over a trough
or coping with rough terrain. Finally, we will face the challenge given by
functional self-assembling for all-terrain navigation, that is, we will study
the problem of forming or disbanding swarm-bots given the environmen-
tal conditions, in order to maximize the efficiency in the navigation task.
This problem also requires the formation of suitable shapes, which must be
adapted to the environment the swarm-bot is coping with. For example, if
the swarm-bot has to pass over a trough that is as large as a single s-bot,
then the optimal shape is a circle with a radius bigger than the diameter of
an s-bot because in this way the trough can be traversed no matter which is
the orientation of the swarm-bot. This is a very particular case, but in gen-
eral the optimal shape depends on the number of s-bots available and on the
environmental conditions. Thus, the shape formation must be an emergent
result of the interaction among s-bots and between s-bots and environment.
Therefore, s-bots should be able to self-organize and self-assemble in order
to build the most suitable swarm-bot.
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