
Université Libre de Bruxelles
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Summary

We detail a modeling methodology developed to study and analyze

distributed, self-organized swarm intelligence systems. Swarm intel-

ligence systems are composed of a multitude of agents that interact

in a self-organized manner without using any sort of centralized con-

trol. These systems are appealing for their properties of robustness,

scalability and flexibility that allow engineers to address real world

problems that cannot be tackled with classical centralized approaches.

However, the design of swarm intelligence systems is non-trivial. In-

deed, a desired collective behavior of the swarm is achieved through the

definition of local agent’s control rules. The local interactions among

the agents are characterized by strong non-linearities and it is hard to

understand a priori the swarm-level effect of a particular agent-level

control rule. Mathematical analysis is thus an essential step in the

design of swarm intelligence systems. Mathematical models allow de-

signers to study swarm intelligence systems without the need of time-

consuming physics-based simulations and real robot experiments. We

propose a modeling methodology based on the well-known formalism

of time-homogeneous Markov chains. In particular, we employ absorb-

ing Markov chain to define macroscopic models of swarm intelligence

systems. The applicability of the proposed methodology is illustrated

using two different case studies: First, we consider opinion dynamics in

a collective decision making scenario for a swarm of robots. Second, we

study the performance of a distributed communication protocol that

allows a heterogeneous swarm of robots to achieve spatially targeted

communication.
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Chapter 1

Introduction

Artificial swarm intelligence systems are distributed, decentralized and

self-organizing systems formed by a collective of agents (Bonabeau

et al., 1999; Kennedy and Eberhart, 2001; Şahin, 2005). The pri-

mary source of inspiration of artificial swarm intelligence is nature.

When defining collective strategies, designers often consider in their

work the behavior of social insects (e.g., colonies of ants or termites,

swarms of bees or wasps) and gregarious animals (e.g., schools of fish,

flocks of birds). In a swarm intelligence system, agents can be either

virtual or embodied in a physical body. In the first case, swarms of

virtual agents are used to address optimization and other soft comput-

ing tasks (Kennedy and Eberhart, 2001). In the second case, swarms

of embodied agents correspond to distributed robotic systems and are

more commonly referred to as swarms of robots (Şahin, 2005). In this

thesis, we focus on the study of swarm robotics systems without taking

into consideration systems consisting of virtual agents.

The interest of the scientific community in the study of swarms of

robots is motivated by their primary properties: scalability, flexibility

and robustness (Brambilla et al., 2013). Control strategies for swarms

of robots are scalable and flexible because they are independent from

the number of agents in the swarm and from the particular environ-

mental conditions. Control strategies only focus on the individual agent

and its local perception of the system resulting in behaviors that adapt

to the environment. Swarm of robots are robust because none of the

members of the swarm play a critical role. In case of failure of an agent

its neighboring swarm-mates obviate to the loss. Such properties are a

result of the local interactions of individual components of the swarms
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2 Chapter 1. Introduction

— the robots — and make swarm robotics systems very appealing to

engineers for applications where a centralized approach is unfeasible.

In contrast to a centralized (robotic) system, in swarm robotics no

particular robot plays the role of the leader. The overall behavior of

the swarm is the result of local interactions between its components.

A robot in the swarm is unaware of what is happening throughout the

rest of the swarm and it solely relies on local information to decide

the actions to perform or the goals to pursue. This peculiarity allows

systems composed of thousands of robots to be scalable, flexible and

robust. However, it also gives rise to the main challenge in swarm

robotics: How to design an appropriate set of control rules for the

individual robots that allows the system to achieve a desired goal at

the swarm level?

In swarm robotics, as well as in other research fields that study dis-

tributed systems, mathematical models are in general defined at two

different levels (cf. Brambilla et al., 2013). The individual level, or mi-

croscopic level, considers all the characteristics of the individual agents

and their interactions. The swarm level, or macroscopic level, models

instead the behavior of the swarm as a whole disregarding details of the

individual agents. The mapping between microscopic and macroscopic

levels is a particularly tough problem in swarm robotics and no general

technique exists to solve it. That is, there is no general approach that

allows designers to define desired macroscopic properties of the system

as a whole and to translate them into a set of control rules for the in-

dividual robot. Usually, designers needs to proceed through a trial and

error process in which the control strategy of the single robot is repeat-

edly refined until the desired collective behavior is achieved (Brambilla

et al., 2013). Therefore, analysis becomes an essential phase during the

design of a swarm robotics system.

The aim of this report is to improve the modeling techniques avail-

able to analyze swarm robotics systems. Indeed, through modeling

and analysis, designers can check whether a certain property of the

systems holds, for which range of control parameters the property is

present, and up to which level of noise the property still manifests it-

self. Furthermore, the ability to define proper mathematical models

of swarm robotics systems allows designers to study their properties

avoiding the burden of extensive physics-based simulations and exper-

iments with real robotic platforms, tasks that in general are very time
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consuming. In this work, we focus on modeling swarm robotics systems

from a macroscopic viewpoint. Our approach is built on the formal-

ism of Markov chains (Kemeny and Snell, 1976; Norris, 1997). We put

particular emphasis in the definition of models based only on agents’

control parameters, i.e, models that do not require to estimate or to as-

sume the values of free parameters. The proposed technique is applied

to two different case studies. Firstly, we analyze a collective decision-

making system in which a swarm of robots needs to collectively agree

on the shortest path between the two available paths in the classical

double bridge problem (Goss et al., 1989; Montes de Oca et al., 2011).

Secondly, we analyze a distributed communication protocol for hetero-

geneous robotics swarms that allows the swarm to achieve spatially

targeted communication (Mathews et al., 2010a).

The reminder of this report is organized as follows. In Chapter 2,

we first review the primary theoretical results of Markov chains used

throughout the report; then, we introduce the modeling methodolo-

gies developed in this study. In Chapter 3, we apply the proposed

techniques to the first case study of a collective decision system where

robots are required to collectively agree on the most favorable action

to perform. In Chapter 4, we move to the second case study, spa-

tially targeted communication, and we define a Markov chain model

to study the performance of an existing communication protocol for

heterogeneous swarms of robots. Finally, we conclude with Chapter 5

by discussing the contributions of this report and providing future lines

of research.
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Chapter 2

Methodology

In this chapter, we briefly review the concepts underlying the theory

of time-homogeneous Markov chain that are relevant for the under-

standing of this work. The material presented here focuses on finite

absorbing Markov chains and summarizes the presentation of Norris

(1997) and that of Kemeny and Snell (1976); for a deeper introduction

to the topic of Markov chain the reader can refer to (Kemeny and Snell,

1976; Norris, 1997). We formally introduce the methodology utilized

throughout the report to define macroscopic models of swarm robotics

systems. We clarify the conditions in terms of agents’ control strategy

necessary to the application of this modeling approach and we sum-

marize the primary macroscopic quantities that can be studied in this

way.

2.1 Time-homogeneous Markov chain

Let N represent the set of naturals. Each element i ∈ Ω is called a

state and the finite set Ω ⊂ N is called the state-space. We say that the

vector λ = (λi : i ∈ Ω) is a probability distribution on Ω if 0 6 λi 6 1

for all i ∈ Ω and
∑

i∈Ω λi = 1. We consider the random variable X

with values in Ω and we set

λi = P(X = i),

where the function P gives the probability of any event. The random

variable X models a random state which takes value i with probability

λi and λ defines the distribution of X.

Let P = (pij : i, j ∈ Ω) be a stochastic matrix, i.e., a matrix in

which every row (pij : j ∈ Ω) is a probability distribution. We say that

5



6 Chapter 2. Methodology

the sequence of random variables {Xn : n ∈ N} is a Markov chain with

initial distribution λ and stochastic transition matrix P if

i. X0 has probability distribution λ;

ii. for n ∈ N, conditional on Xn = i, Xn+1 has probability distribution

(pij : j ∈ Ω) and is independent of X0, . . . , Xn−1.

The first condition states that the probability distribution λ defines

the distribution of the initial state X of the chain at step n = 0. The

second condition defines the Markov property of a stochastic process:

the lack of memory. More explicitly, the future state of a Markov

process depends only on the present state and is independent of its

past (Kemeny and Snell, 1976; Norris, 1997). That is, given Xn = i, the

entry pij of the stochastic transition matrix P gives the probability that

the next state Xn+1 will be equal to j. Notice that P is independent

of the time n, which results in the time-homogeneous property of the

chain. In general, the probability that the state of the chain at step n

will be equal to j ∈ Ω is

P(Xn = j) = (λP n)j,

where the function (·)j returns the j-th element of a vector.

The state-space Ω of the Markov chain is divided into equivalence

classes of states — also known as communicating classes — in which

one can go from any state to any other state in the same class (not

necessarily in one step). If, from a state i of the equivalence class A it

is not possible to go to a state j of any other equivalence class, A is

said to be closed and their states are called ergodic states, otherwise the

states are considered transient. Under this conditions, we have that,

if a process leaves a transient class it can never return to this class,

while if it once enters a closed class, it can never leave it. In particular,

an ergodic class that consists of a single state i results in a state that

cannot be left and that is called absorbing state. An absorbing state i is

thus characterized by pii = 1 and pij = 0,∀j 6= i. A Markov chain that

has at least one absorbing chain is called absorbing and the process on

the chain will eventually be trapped in one absorbing state.

2.2 Macroscopic models of swarm of robots

Let us consider a system composed by a swarm of N agents that are

driven by some set of control rules. In order to apply the theory of
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Markov chains, either from a microscopic or macroscopic viewpoint, it

is essential that the system fulfills the Markov property, i.e., the lack

of memory, and thus, that the agent’s control strategies do not require

memory1.

Among the different design approaches for swarm intelligence sys-

tems (see Brambilla et al., 2013), the behavior-based design approach

results in control strategies that are reactive, often represented by prob-

abilistic finite state machines (PFSMs), and which are well-suited to

Markov theory (Martinoli et al., 2004). Control strategies designed in

such a way are characterized by a finite set of agent’s states and a

set of transition probabilities among pairs of states. At any time, an

agent driven by a (purely) reactive strategy decides the next action to

perform on the basis of its current state and sensory inputs. We thus

focus on the task of modeling such behavior-based strategies.

We consider each agent of the swarm to be characterized by a fi-

nite set of states possibly with several attributes. The combinations

of state and attributes define the set of quantities that we need to

keep track of in order to define a mathematical model. We denote

by S = {s1, . . . , sm} the set of agent’s attribute-state combinations,

henceforth simply state, and we assume the individual agent to be at

any time in a unique state s ∈ S. We refer to the state at time t of the

agent i with the notation xi(t). In principle, we would like to study

the time evolution of the states of the whole swarm of N agents and

thus of x1(t), . . . , xN(t). This task implies the definition of a micro-

scopic model of the system whose state-space is given by the Cartesian

product of all agents’ state-spaces. However, as soon as the size N of

the swarm and the set of states S increase, such a microscopic model is

subject to a state-space explosion that compromises its mathematical

tractability. That is, the model becomes so complex that any analysis

would be computationally unfeasible. In contrast, macroscopic models

are less affected by the state-space explosion problem and allow design-

ers to broaden the class of systems that can be studied following this

approach.

A macroscopic model of a system composed of N agents, each of

which characterized by m states, is equivalent to a model of a process in

which N balls are repeatedly redistributed into m different bins. Such

1It is always possible, even if sometimes may not be computationally tractable, to

model a stochastic process with finite memory by means of a Markov chain of order m.
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a model needs to keep track of the number of balls that are in each bin,

which in terms of the swarm corresponds to N1(t), . . . , Nm(t). In other

terms, a macroscopic model completely disregards which agent is in a

particular state and only focus on the number of agents in a given state.

Assuming N � m, the macroscopic viewpoint on the system strongly

delays the state-space explosion effect and allows designers to study

swarm intelligence systems with several different states and thousands

of agents. As we will show in Chapter 3 and Chapter 4, a further

reduction of the state-space can be achieved in some cases through

intuition and insights into the dynamics of the system by eliminating

unfeasible attribute-state configurations. Nonetheless, for increasing

values of N and m, the macroscopic model will eventually become

intractable as well and the study of the system will demand different

mathematical approaches.

In order to study swarm intelligence systems, we propose the use

of absorbing Markov chains to model the time evolution of the vec-

tor (N1, . . . , Nm) of the number of agents in each state. We employ

absorbing models for two different classes of scenarios:

i. Processes that end in a finite time with a single known outcome

(e.g., spatially targeted communication protocols end when a com-

munication channel is established) are modeled by chains with a

single absorbing state. The process ends when it reaches the ab-

sorbing state and the focus of the model is on the time to absorp-

tion.

ii. Processes that continue for an infinite amount of time but that

reach a particular absorbing macroscopic state among different pos-

sibilities (e.g., the opinion dynamics in a collective decision system

evolves for an infinite time but in finite-size system consensus is

reached in finite time) are modeled by chains with more absorb-

ing states. The process ends when it reaches one of the possible

absorbing states and the focus of the model is to predict both the

time to absorption and the absorption probabilities for each state.

The analysis and definition of a macroscopic model as an absorbing

Markov chain do not depend on the number of absorbing states2. In

2Indeed, the only difference between a chain with a single absorbing state and a chain

with more absorbing states lies in the absorption probabilities that can be computed only

for the second chain.
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the reminder of this section we thus consider a process with more than

one absorbing state.

We take into account an absorbing, time-homogeneous Markov chain

{Xn : n ∈ N} whose state space Ω = {1, . . . , w} enumerates the subset

of feasible configurations of the vector (N1, . . . , Nm). The conditions

under which a configuration is considered feasible depend on the par-

ticular case study. Nonetheless, we can in general assume the conser-

vation of the number of agents, i.e.,
∑m

i=1 Ni = N , which results in a

strong reduction of the state space Ω. At any time step n, a process on

the chain in the state Xn = i corresponds to a particular macroscopic

configuration (N i
1, . . . , N

i
m) of the swarm intelligence system under con-

sideration. The state-space Ω includes a number r of absorbing states.

These states identify macroscopic configurations of the swarm that are

relevant to the purposes of the model (e.g, establishment of a commu-

nication link, consensus on a particular opinion). Finally, by properly

setting the entries of the stochastic transition matrix P , the Markov

chain model is completely defined and it can be used to study the

system.

The definition of the transition probabilities between pairs of states

of the chain depends on the particular swarm intelligence system under

consideration. Nonetheless, we can still provide some general assump-

tions and guidelines on the definition of P . We consider the nature of

the interactions among the agents of the swarm. In the most trivial

case, the agents in the swarm do not interact with each other, as will

be the case of the model in Chapter 4, and are thus considered com-

pletely independent. In more complex scenarios, agents in the swarm

have pairwise interactions or even higher order interactions. An exam-

ple of this scenario is provided by the model developed in Chapter 3.

In this case, to define a valid Markov chain it is essential to assume a

uniform distribution of the states of the agents that may interact with

each other. That is, an agent has the same probability to interact with

any other agent in the same physical region (e.g., in the nest, along

a path). Therefore, only the proportions of the different states are of

interest when defining a model. This assumption is called the well-

mixed assumption — also known as the well-stirred assumption — and

is also considered one of the primary mechanisms underlying natural

swarms (Nowak, 2006).

Once the Markov chain is completely defined, the stochastic transi-
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tion matrix P can be used to answer a number of questions regarding

the performance of the system. To this end, the first step of the analy-

sis consists in finding the canonical form of P (see Kemeny and Snell,

1976). By a reordering of the states in Ω it is possible to write the

stochastic transition matrix P as

P =

(
I O

R Q

)
.

The matrix Q is a (w − r)× (w − r) matrix of transition probabilities

between transient states, R concerns the probabilities to go from a

transient state to an absorbing state, O consists entirely of 0’s, and

the identity matrix I whose size is r × r defines the absorbing states.

Notice that, as a consequence of the absorbing nature of the Markov

chain, the entries of Qn tend to 0 as n→∞. That is, the probability to

find the process in a transient state vanishes as the time passes. This

result provides sufficient conditions for the existence of the inverse of

I −Q, called fundamental matrix, and given by

F = (I −Q)−1 = I +Q+Q2 + · · · =
∞∑
k=0

Qk.

Each entry fij of the fundamental matrix F gives the mean time that a

process started in the transient state i spends in the transient state j.

By means of the canonical decomposition of P we can derive a

number of interesting macroscopic quantities regarding the dynamics

of the swarm. At first, we are interested in the probability that a

system initially started in the state X0 = i will eventually be absorbed

in the absorbing state Xn = j for some time step n. Considering all

possible initial states i and all possible absorbing states j, we have the

set of absorption probabilities that is given in matrix form by

B = FR.

The entry bij thus provides the absorption probability for the pair of

initial and absorbing states (i, j). Besides absorption probabilities, we

may want to study the time to absorption, i.e., the number of steps

necessary to the process on the chain to enter one absorbing state. Let

us denote with ϑ the random variable that counts the number of steps

to absorption. The expectation and the variance of ϑ are given by

E[ϑ] = Fξ,
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V[ϑ] = (2F − I)E[ϑ]− Esq[ϑ].

In the above formulas, the term ξ identifies a column vector of all 1’s

and the vector Esq[ϑ] corresponds to a version of E[ϑ] with squared

entries. The i-th entry of the vectors E[ϑ] and V[ϑ] gives, respectively,

the expectation and the variance of the time to absorption for a sys-

tem initially started in state i. Finally, we can derive the cumulative

distribution function G(ϑ) of the time to absorption, and thus the prob-

ability mass function g(ϑ) as well, for a given initial state X0 = i as

the infinite series

G(ϑ) = 1−
∑
j∈Ω

Qn
i,j, for n→∞. (2.1)

The subcomponent
∑

j∈ΩQ
n
i,j of the above equation gives the prob-

ability that the process will be in a transient state at step n. The

complement of this value provides the probability of entering the ab-

sorbing state prior to step n.
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Chapter 3

Case study I: Collective

Decision Making

In this chapter1, we apply the methodology proposed in Chapter 2 to a

collective decision making problem. This case study consists in a swarm

of robots that has to collectively agree on the fastest path within the

boundaries of the classical double bridge problem (Goss et al., 1989).

We first introduce the swarm robotics system and discuss previous

modeling approaches. Next, we formally introduce a Markov chain

model of the collective decision system and we provide an analysis of

its dynamics. Finally, we conclude with a discussion of the contribution

and with a proposal for future directions of research.

3.1 Majority Rule with Differential Latency

We analyze a swarm robotics system originally proposed by Montes de

Oca et al. (2011). Robots in the swarm need to collectively decide be-

tween two possible actions to perform, henceforth referred to as action

A and action B. Actions have the same outcome but different execu-

tion times. The goal of the swarm is to reach consensus on the action

with the shortest execution time. In particular, Montes the Oca et al.

studied this system in a collective transport scenario where robots in

the swarm need to transport objects from a source area to a destination

area. To this end, robots can choose between two possible paths. This

corresponds to perform action A or action B. The two paths differ in

1This chapter is based on the author’s article (Valentini et al., 2013) published in the

Proceedings of the European Conference on Complex Systems.

13



14 Chapter 3. Case study I: Collective Decision Making

length and thus in the traversal time. Each robot in the swarm has

an opinion for a particular path. Moreover, an object is too heavy for

a single robot to be transported. A team of 3 robots is needed. The

team collectively decides which path to take considering the opinion

favored by the majority.

Opinion formation models, such as the majority-rule model by Galam

(1986), allow us to study and analyze this kind of systems. Krapivsky

and Redner (2003) provided an analytical study of the majority-rule

model under the assumption of a well mixed2 population of agents.

Later, Lambiotte et al. (2009) extended the work of Krapivsky and

Redner introducing the concept of latency. In the model of Lambiotte

et al., when an agent switches opinion as a consequence of the applica-

tion of the majority rule, it turns in a latent state for a latency period

that has stochastic duration. A latent agent may still participate in

voting, thus influencing other agents, but its opinion does not change

as a result of the decision. This extension gives rise to a richer dynam-

ics depending on the duration of the latency period. Based on these

works, Montes de Oca et al. (2011) proposed the differential latency

model where the duration of the latency period depends on the partic-

ular opinion adopted. After a decision, differently from the model of

Lambiotte et al., the agents in the team become latent with a common

latency period and are not involved in further voting until the end of

the latency period. Montes de Oca et al. showed that the differential

latency in the majority-rule model steers the agents towards consensus

on the opinion associated to the shortest latency. These results have

been applied to the study of the swarm robotics system described above

by modeling actions of the robots as opinions and their execution times

as the latency periods of different duration.

In the context of swarm robotics, a number of works have been de-

voted to the differential latency model. Montes de Oca et al. (2011)

first proposed a fluid-flow analysis of this model — using a system of

ODEs — aimed at studying the dynamics leading to consensus. This

analysis, derived in the thermodynamic limit, deterministically predicts

consensus as a function of the initial configuration of the system. How-

ever, in a finite population, random fluctuations may drive the system

to converge to the long path, even when the fluid-flow model predicts

2In a well mixed population each agent has the same probability to interact with each

other agent (Nowak, 2006).
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that it should converge to the short one. Later, Scheidler (2011) ex-

tended the previous analysis using methods from statistical physics —

e.g., master equation and Fokker-Planck equation — to derive contin-

uous approximations of a system with a finite population size. With

this approach, Scheidler was able to study the exit probability, i.e., the

probability that the system eventually reaches consensus on the opin-

ion associated to the shortest latency, and the expectation of the time

necessary to reach consensus. Finally, Massink et al. (2012) provided

a specification of the system using a stochastic process algebra. On

the basis of this specification, the authors obtained a statistical model

checking and a fluid-flow analysis.

Continuous approximations provide reliable predictions only when

the number of robots is relatively large — e.g., thousands of robots.

However, swarm robotics aims to design scalable control policies that

operate for swarms of any size, ranging from tens to millions of robots.

These models cover only the upper part of this range. Besides, using a

continuous approximation model it is usually hard to derive statistics

different from the expectation of a metric, which in turn, often gives

a poor representation of the underlying distribution — e.g., when the

variance is large compared to the expectation or when the distribution

is not symmetric.

The aim of this work is to study the majority rule with differential

latency with an approach able to cope with the limitations of previous

approaches. Inspired by the work of Banisch et al. (2011), we use

the formalism of absorbing, time homogeneous Markov chains with

finite state space (Kemeny and Snell, 1976) to model the dynamics of

the system. This approach allows us to consider swarms of finite size

and to derive reliable estimations of both the exit probability and the

distribution of the number of decisions necessary to reach consensus.

3.2 Markov Chain Model

We model the majority rule with differential latency in a system of

M robots as an absorbing Markov chain (Kemeny and Snell, 1976).

Robots can be latent or non-latent. Only non-latent robots, once

grouped in a team of 3 members, take part to the decision-making

mechanism. As in Montes de Oca et al. (2011), we consider a scenario

where the number k of latent teams is constant, and where the latency
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period follows an exponential distribution whose expectation depends

on the team’s opinion. Without loss of generality, we consider the ex-

pected latency periods to be 1 for opinion A and 1/λ with 0 6 λ 6 1

for opinion B. Moreover, we are interested in the number ϑ of appli-

cations of the majority rule, thus, we consider each application of the

decision-making mechanism as one step of the process along the chain.

At each step ϑ we consider 3 stages:

i. A latent team becomes non-latent (it finishes its latency period).

ii. A new team of 3 robots is randomly formed out of the set of non-

latent robots.

iii. The team applies the majority rule to decide the team’s opinion.

Next, it turns in a latent state.

We are interested in the evolution over ϑ of the number of robots

with opinion A — the opinion associated to the shortest latency. Let

N be the set of naturals. The state of the Markov chain is a vector

s = (sl, sn), where sl ∈ {l : l ∈ N, 0 6 l 6 k} is the number of latent

teams with opinion A and sn ∈ {n : n ∈ N, 0 6 n 6 M − 3k} is the

number of non-latent robots with opinion A. The state space of the

Markov chain consists of m states, where m = (k + 1)(M − 3k + 1) is

the cardinality of the Cartesian product of the domains of sl and sn.

By si and sj we refer to two generic states. By sa and sb we refer to the

consensus states in which the whole swarm agrees on opinion A and

B, respectively. Notice that sa and sb are the absorbing states of the

chain, that is, states that once reached can never be left (cf. Kemeny

and Snell, 1976).

At the generic step ϑ, the process moves from s(ϑ) = si to s(ϑ +

1) = sj following the aforementioned 3 stages. At stage i., a latent

team finishes its latency period, becomes non-latent and disbands. The

probability pi that this team has opinion A is:

pi =
sli

sli + λ(k − sli)
. (3.1)

The set of non-latent robots with opinion A increases of c = 3 units, if

the disbanding team has opinion A; and of c = 0, otherwise. At stage

ii., 3 random robots form a new team in the set of non-latent robots.

We are interested in the probability qi that the new team has a number
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0 6 d 6 3 of preferences for opinion A. This probability is given by

the hyper-geometric distribution

qi(d; c) =

(
sni +c
d

)(
M−3k−sni +3−c

3−d

)(
M−3k+3

3

) (3.2)

of the M − 3k + 3 preferences in the current set of non-latent robots,

composed of sni +c votes for opinion A and M−3k−sni +3−c votes for

opinion B. At stage iii., the majority rule is applied and the outcome

is determined by the value of d. Eventually, the process moves to the

next state s(ϑ+ 1) = sj.

Equations (3.1) and (3.2) allow us to define the transition proba-

bilities between each possible pair of states si and sj. These probabil-

ities are the entries of the stochastic transition matrix P , which com-

pletely defines the dynamics of a Markov chain (Kemeny and Snell,

1976). However, not all pairs of states define a feasible move of the

process along the chain according to the rules of the system, i.e., not

all pair of states are adjacent. Two states si and sj are adjacent if

∆ijs = (∆ijs
l,∆ijs

n) = sj − si appears in the first column of the fol-

lowing table. The corresponding transition probability Pij is given in

the second column:

(∆ijs
l,∆ijs

n) Pij stage 1) stage 2)

(−1, 3)

piqi(3−∆ijs
n; 3)

A 3B

(−1, 2) A A2B

(0, 1) A 2AB

(0, 0)
piqi(3−∆ijs

n; 3) A 3A

+(1− pi)qi(|∆ijs
n|; 0) B 3B

(0,−1)

(1− pi)qi(|∆ijs
n|; 0)

B A2B

(1,−2) B 2AB

(1,−3) B 3A

Columns three and four provide the corresponding events observed in

stages i. and ii., respectively: the opinion of the robots in the next

latent team finishing its latency period and the opinions of the robots

that randomly form a new team in the set of non-latent robots. For

values of ∆ijs not included in column one, the transition probability is

Pij = 0.

The probabilistic interpretation of P is straightforward: at any step

ϑ, if the process is in state s(ϑ) = si it will move to state s(ϑ+ 1) = sj
with probability Pij. It is worth noticing that, being the consensus
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states sa and sb two absorbing states, the probability mass of sa and

sb is concentrated in the corresponding diagonal entries of P , that is:

Paa = 1 and Pbb = 1.

3.3 Analysis of Opinion Dynamics

In order to analyze the dynamics of the majority rule with differential

latency, we consider the matrices Q, R, and N of Kemeny and Snell

(1976) derived from the canonical decomposition of P (see Section 2.1).

Q describes transitions between transient states, R gives the probability

to move from a transient state to an absorbing state, and N = (I−Q)−1

is the fundamental matrix with I being the identity matrix. From

matrices Q, R, and N of the Markov chain model we study the behavior

of the system. We validate the predictions of the model with the results

of Monte Carlo simulations3 averaged over 1000 independent runs for

each choice of the parameters of the system.

First, we derive the exit probability E(si), i.e., the probability that

a system of M robots that starts in the initial configuration s(ϑ0) = si
reaches consensus on the opinion associated to the shortest latency —

opinion A. This probability is given by the entries associated to the

consensus state sa of the product NR, which corresponds to the matrix

of the absorption probabilities (Kemeny and Snell, 1976).

Figure 3.1 reports the predictions of the exit probability over the

initial density δ = (3sli+sni )/M of robots favoring opinion A for several

configurations of the system. As found by Scheidler (2011), the larger

is the expected latency period 1/λ associated to opinion B, the smaller

is the initial number of preferences for opinion A such that the exit

probability is E(si) > 0.5. Moreover, when the number of robots M

increases, the exit probability approaches a step function around the

critical density. It is worth noticing that the Markov chain model

predicts the outcome of the simulations with great accuracy, regardless

of the number of robots. A result that in general cannot be achieved

3We simulated two sets of robots: latent teams characterized by an opinion and a la-

tency, and non-latent robots described only by their opinions. The simulation proceeds

as follow until consensus is reached: 1) the latent team having minimum latency is dis-

banded and its component robots are added to the set of non-latent robots, 2) 3 robots

are randomly sampled from the set of non-latent robots and the majority rule is applied

among them, 3) the new team is added to the set of latent teams and its latency is drawn

from the exponential distribution according to the team’s opinion.



3.3. Analysis of Opinion Dynamics 19

Exit probability

δ = (3si
l + si

n) M
0.0 0.2 0.4 0.6 0.8 1.0

0.0

0.2

0.4

0.6

0.8

1.0
E

(s
i)

● ● ●●●● ● ● ●
●

●

●●

●
●

●

●

●

●

●
●

●
● ● ● ● ●●●● ●

●λ=1.0, N=50
λ=0.5, N=20
λ=0.5, N=50
λ=0.5, N=101
λ=0.25, N=50

Figure 3.1: Probability E(si) to reach consensus on opinion A versus initial proportion

δ of robots favoring that opinion for different settings of the system: (M = 20, k =

6, λ = 0.5), (M = 50, k = 16, λ ∈ {1, 0.5, 0.25}) and (M = 101, k = 33, λ = 0.5).

Lines refer to the predictions of the Markov chain model, symbols refer to the average

results of 1000 Monte Carlo simulations for each initial configuration of the system.

using continuous approximations approaches.

Next, we analyze the number τ of applications of the majority rule

necessary to reach consensus. As stated above, we consider each step

along the chain as one application of the decision-making mechanism.

The expected value of τ is given by τ̂ = ξN , where ξ is a column

vector of all 1s. The entries of τ̂ correspond to the row sums of the

fundamental matrixN . In turn, N gives the mean sojourn time for each

transient state of a Markov chain (Kemeny and Snell, 1976), that is,

the expected number of times that a process started in state s(ϑ0) = si
passes from state sj. The variance of τ is given by τ̂2 = (2N−I)τ̂− τ̂sq,
where I is the identity matrix and τ̂sq is τ̂ with squared entries (Kemeny

and Snell, 1976).

Figures 3.2 and 3.3 show the predictions of the expectation τ̂ and

the variance τ̂2 of the number of decisions necessary before consensus

for a system with M = 50 robots. Again, the Markov chain model

predicts the Monte Carlo simulations with great accuracy. Similarly

to the findings of Scheidler (2011) for the consensus time, the value of

τ̂ is maximum near the critical density of the initial number of robots

favoring opinion A. However, the expected number of decisions, which
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Figure 3.2: Expectation τ̂ of the number τ of applications of the majority rule necessary

to reach consensus for a system of M = 50 robots, k = 16 teams and λ ∈ {1, 0.5, 0.25}.
Lines refer to the predictions of the Markov chain model, symbols refer to the average

results of 1000 Monte Carlo simulations for each initial configuration of the system.

is related to the consensus time in (Scheidler, 2011), is not a reliable

statistics for this system. Indeed, the variance τ̂2 is about three orders

of magnitude larger than τ̂ .

Finally, we derive the cumulative distribution function P (τ 6 ϑ; si)

of the number of decisions before consensus as well as its probability

mass function P (τ = ϑ; si). From a swarm robotics perspective, we are

interested in the dynamics of a system initially unbiased, i.e., a system

that starts with an equal proportion of preferences for the opinions A

and B. Let s(ϑ0) = su represents this initial unbiased configuration.

Recalling that Q is the matrix of the transition probabilities for the

transient states, we have that the entries Qϑ
uj of the ϑth power of Q give

the probabilities to be in the transient state sj at step ϑ when starting

at su. Thus, the row sum of the uth row of Qϑ gives the probability

to still be in one of the transient states. From this probability, we

can derive the cumulative distribution function P (τ 6 ϑ; su) simply by

computing the series {1−
∑

j Q
ϑ
uj} for values of ϑ such that Qϑ → 0.

Figure 3.4 shows the cumulative distribution function P (τ 6 ϑ; su)

for a system of M = 50 robots that starts unbiased. Obviously, the

longer is the latency period 1/λ of opinion B, the larger is the num-

ber of applications of the majority rule necessary to reach consensus.
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Figure 3.3: Variance τ̂2 of the number τ of applications of the majority rule necessary to

reach consensus for a system of M = 50 robots, k = 16 teams and λ ∈ {1, 0.5, 0.25}.
Lines refer to the predictions of the Markov chain model, symbols refer to the average

results of 1000 Monte Carlo simulations for each initial configuration of the system.

Figure 3.5, provides the probability mass function P (τ = ϑ; su), to-

gether with details of mode, median, and mean values of τ . As can be

seen, the values of the mode, median and mean statistics diverge for

increasing values of the ratio 1/λ of the two expected latency periods.

Moreover, when 1/λ → ∞ the shape of the distribution P (τ = ϑ; su)

tends to a flat function, thus revealing that the variance dominates the

system.

3.4 Conclusion

We designed an absorbing Markov chain model for collective decisions

in a system with a finite number of robots based on the majority rule

with differential latency. Using our model, we derived the probability

that a system of M robots reaches consensus on the opinion associated

to the shortest latency period, and the distribution of the number of

applications of the majority rule necessary to reach consensus. This

latter reveals that the system is characterized by a large variance of

the number of decisions necessary before consensus, and thus, that its

expected value, which was mainly adopted in previous studies, is a poor

statistic for this system. In contrast to continuous approximations, we
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Figure 3.4: Cumulative distribution function P (τ 6 ϑ; su) of the number τ of applica-

tions of the majority rule necessary to reach consensus for a system of M = 50 robots,

k = 16 teams and λ ∈ {1, 0.5, 0.25}. Lines refer to the predictions of the Markov chain

model, symbols refer to the average results of 1000 Monte Carlo simulations for each

initial configuration of the system.

explicitly model the state space of the system — which is discrete —

and the transition probabilities governing its dynamics. This approach

allows us to always derive reliable predictions of a system regardless of

its size.

Our contribution is relevant from a swarm robotics perspective not

only for the reliability of its predictions; but also, because it allows

us to perform a deeper analysis of the system. The analysis of our

Markov chain model, with particular regard to the distribution of the

number of decisions necessary to consensus, gives the possibility to

perform statistical inference on certain interesting aspects of the sys-

tem. Moreover, the approach can be easily extended to other voting

schemata, allowing the comparison at design time of different choices

for the decision-making mechanism.

In real-robot experiments, latency periods are unlikely to be expo-

nentially distributed. Moreover, it is hard to ensure a constant number

of teams in time. These assumptions represent hard constraints for a

swarm robotics system. Massink et al. (2012) propose to cope with

these constraints modeling the latency period with an Erlang distribu-

tion. We plan to extend our approach in a similar way and to validate



3.4. Conclusion 23

Probability Mass Function

ϑ 103
0.0 0.5 1.0 1.5 2.0 2.5

0.0

0.5

1.0

1.5

2.0

2.5

3.0
P

(τ
=

ϑ,
 s

u)
10

−3

Mode/Median/Mean

1 2 4 8 16

0

1

2

3

1 λ

ϑ
10

3

mode
median
mean

λ=1.0 λ=0.5 λ=0.25

Figure 3.5: Probability mass function P (τ = ϑ; su) with details of mode, median and

mean values of the number τ of applications of the majority rule necessary to reach

consensus for a system of M = 50 robots, k = 16 teams and λ ∈ {1, 0.5, 0.25}. Lines

refer to the predictions of the Markov chain model, symbols refer to the average results

of 1000 Monte Carlo simulations for each initial configuration of the system.

the resulting model with physics-based simulations and real-robot ex-

periments.
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Chapter 4

Case study II:

Communication Protocols

In this chapter1, we show the application of the methodology proposed

in Section 2 to a different case study: spatially targeted communica-

tion (Mathews et al., 2010a). We first review the mechanism underly-

ing the considered swarm robotics system. Next, we formally introduce

a Markov chain model of the communication protocol. We provide an

analysis of the performance of the systems through the Markov chain

model by comparing its predictions with both physics-based simula-

tions and real robot experiments. Finally, we conclude the chapter

with a discussion of the contribution and with a proposal for future

directions of research.

4.1 Spatially Targeted Communication:

One-to-One link

We analyze spatially targeted communication — distributed and situ-

ated communication protocols originally proposed by Mathews et al.

(2010a). These protocols have been specifically designed to permit sit-

uated communication in heterogeneous robotic swarms composed of

ground based wheeled robots and aerial robots in which members of

the swarm cannot be uniquely identified. In such scenarios, members

of the swarm of wheeled robots can be supervised by aerial robots that,

exploiting their superior perception of the environment, can precisely

1This chapter is based on an author’s ongoing research in collaboration with the authors

of (Mathews et al., 2010a).

25
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(a) (b)

Figure 4.1: Illustration of a possible scenario of a one-to-one spatially targeted com-

munication link. (a) the aerial robot perceive a wheeled robot to far from the swarm

and begins the establishment of a communication link with the one-to-one selection al-

gorithm. (b) the one-to-one communication link has been established: the aerial robot

can now instruct the wheeled robot on the position of the swarm. (Images reproduced

courtesy of N. Mathews)

instruct specific robots of the swarm. Spatially target communication

allows an aerial robot to establish a communication channel with a par-

ticular robot on the ground and to extend this channel to a cohesive

group of robots (Mathews et al., 2010a,b). In Figure 4.1 for example,

after establishing a one-to-one communication link, the aerial robot

instructs a lost wheeled robot about the current position of the swarm.

Mathews et al. (2010a) designed two different protocols for spatially

targeted communication that differ in the nature of the communication

channel established: on the one hand, a one-to-one link between an

aerial robot and a wheeled robot; on the other hand, a one-to-many

link between an aerial robot and a group of wheeled robots. In both

cases, robots in the swarm achieve spatially targeted communication

by iteratively displaying different colors through their LEDs and by

perceiving them with their on-board cameras. Depending on the color

displayed at each iteration by the aerial robot, some wheeled robots on

the ground may understand that are not the targets of the communi-

cation, and therefore, they exit the process.

Here, we focus on the study of the performance of the one-to-one

selection algorithm that allows a heterogeneous swarm of robots to es-

tablish a one-to-one communication link between a pair of members.

We formally describe the distributed selection process from a macro-

scopic viewpoint by means of an absorbing, time-homogeneous Markov
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chain (Kemeny and Snell, 1976). The Markov chain model is subject

to validation with both physics-based simulations and real robot ex-

periments. The robotic platforms employed in this study are the com-

mercial aerial robot AR.Drone (Bristeau et al., 2011), and the ground-

based wheeled robot marXbot (Bonani et al., 2010). The physics-based

simulator chosen for the study is the open-source, multi-robot simulator

ARGoS (Pinciroli et al., 2012).

Given a set C := {c1, . . . , cs : s ≥ 3} of signals available to both

robot types, the aerial robot can establish a spatially targeted com-

munication with a particular wheeled robot through an iterative se-

lection process. Henceforth, we refer to this particular wheeled robot

as the target robot. The set C consists of the designated signal c1

used to initialize and terminate the elimination process and the subset

Cs := {c2, . . . , cs} that is allocated to the iterative component of the

elimination process. The nature of the signals depends on the par-

ticular robotic platform adopted. In our case the robots exploit their

on-board LEDs and cameras to visually communicate by means of col-

ors. Moreover, we assume that the aerial robot has already selected a

target robot with which it wishes to communicate.

Let consider a scenario where a one-to-one communication link has

to be formed in a swarm of robots having signals C := {red, blue, green}
and thus Cs := {blue, green}. The aerial robot first attracts the at-

tention of all wheeled robots in visual range by signaling red, the SOS

signal. All wheeled robots able to perceive the SOS signal register to

the iterative selection process by replying with blue. The aerial robot

responds to this initial registration with a matching handshake using

blue. Next, the iterative selection process starts. At each iteration,

every wheeled robot that is still part of the selection process randomly

chooses and illuminates a color from the set Cs. The aerial robot reacts

by illuminating its LEDs to match the color chosen by the target robot.

At the end of the iteration, only those robots whose color matches that

of the aerial robot remain part of the selection process. The wheeled

robots which are not part of the selection process do not illuminate

any color. The iterative selection process continues until the target

robot is the only illuminated robot. At this point, the aerial robot in-

dicates the termination of the selection process to the target robot by

repeating red signal. Finally, the target robot acknowledges this signal

by matching the aerial robot’s color. The aerial and the target robots
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have now established a spatially targeted communication link.

4.2 Markov Chain Model

Given a swarm of N wheeled robots, we are interested in the time

necessary for an aerial robot to establish a one-to-one communication

link with a particular wheeled robot. Here we consider time to be

discrete due to (i) the behavioral nature of the robot controllers that

are discrete and defined using FSMs (cf. Martinoli et al., 2004), and

(ii) because the actual time spent by the swarm in solving the task

heavily depends on the particular robotic platform and communication

medium adopted, details that we want to abstract from at this stage

of the study while focusing on the performance of the algorithm.

In our model, each time step n corresponds to one iteration of the

selection process. An iteration of the selection process comprises the

completion by all the (remaining2) wheeled robots of the sub-tasks:

choosing and displaying a random color; and assessing the match or

mismatch of this with the color showed by the aerial robot. It is worth

noticing that the cost in terms of time of each iteration is independent

of the number of remaining robots involved in the process since the

computation is done in parallel by each robot.

The one-to-one selection algorithm described so far gives rise to a

memory-less process. Indeed, at each iteration, a wheeled robot acts

only on the basis of its current state and of the color displayed by the

aerial robot. Thus, the future state of the robot is independent of its

past, fulfilling the Markov assumption (Kemeny and Snell, 1976; Norris,

1997). Moreover, the reactive nature of the communication protocol

introduces a synchronization among the robots in the swarm and allows

us to consider the system from a macroscopic point of view. Given that

the robots are synchronized, we can abstract from behaviors performed

by individual robots and focus on subsets of the swarm performing

the same behavior. As a consequence, we employ a time-homogeneous

Markov chain to define a macroscopic model of the one-to-one selection

algorithm.

Let N be the set of naturals. We define our process as a Markov

2This because, as iterations lapse, the number of wheeled robot actively involved in

the selection process decreases, thus we have to consider only those robots that are still

part of the process.
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chain {Xn, n ∈ N} with N + 1 states. Hence, one state more than the

number of robots N . The random variable X ∈ Ω := {1, . . . , N + 1}
represents the state of the process. Each state X = x is characterized

by the number ηx = N + 1− x of wheeled robots that are still part of

the selection process. All the states of the chain are transients except

for X = N + 1 which is absorbing. That is, once the process enters

the state X = N + 1 it will never leave it. Intuitively, in the state

X = N + 1 the number of wheeled robot involved in the process is

ηx = 0, which corresponds to the completion of the selection task.

At the generic time step n, the process will move from the current

state Xn = i to the next state Xn+1 = j with a probability πij. We

define the stochastic transition matrix Π := (πij : i, j ∈ Ω) of the

Markov chain as
πij = C

ηj−1
ηi−1 p

ηj−1(1− p)ηi−ηj , for i < N, i 6 j 6 N ,

πij = 1, for i > N, j = N + 1,

πij = 0, otherwise.

(4.1)

The first equation in (4.1), which concerns the transition probability

between transient states, gives the probability πij that ηi − ηj wheeled

robots will leave the selection process during the transition i→ j. This

probability follows a binomial distribution with parameters ηi − 1, the

number of wheeled robots still part of the process minus the target, and

p = 1/|CS|, the probability for one of them to select the same color as

the target robot. The second equation in (4.1) says that the transition

from Xn = N to Xn+1 = N + 1 will occur with probability πij = 1.

This choice models the final handshake between the aerial robot and

the target robot at the last iteration of the selection algorithm. Besides,

it also tells that the state X = N + 1 is absorbing. Finally, the third

equation in (4.1) says that all other possible transitions will never occur.

4.3 Model Analysis

The stochastic transition matrix Π formally describes the dynamics of

the process and allows us to study the performance of the one-to-one

selection algorithm. Let us introduce the random variable ϑ whose

meaning is defined as the number of iterations necessary to select the

target robot. To study the distribution of ϑ, we consider the matrices

Γ and Σ derived from the canonical decomposition of Π (Kemeny and

Snell, 1976). Γ provides the transition probabilities between transient
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Figure 4.2: Cumulative distribution function F (ϑ) plotted against its empirical coun-

terpart F̂ (ϑ) acquired from simulations for swarm size N = 50. Lines with filled

symbols represent predictions of the model, empty symbols represent the result of 1000

physics-based simulations.

states. The fundamental matrix Σ, given by (I − Γ)−1 with I being

the identity matrix, gives the expectation of the number of visits to

each transient state. In what follows, we first validate the accuracy

of the Markov chain model by comparing model predictions with data

acquired from physics-based simulations and real robots experiments.

Then, we use the model to analyze the performance of the process

through a scalability study of the one-to-one selection algorithm.

Model Validation. We validate the accuracy of the model predictions

by comparing the distribution of ϑ with the empirical data acquired

from simulation. The cumulative distribution function F (ϑ) = P (ϑ 6
n, x0) can be obtained for a given initial state X0 = x0 as the infinite

series

P (ϑ 6 n, x0) = 1−
∑
j∈Ω

Γnx0,j, for n→∞.

Indeed,
∑

j∈Ω Γnx0,j gives the probability that the process will still be

in a transient state at step n. The complement of this value provides

the probability to be absorbed prior to step n.

Figure 4.2 shows the cumulative distribution function F (ϑ) provided

by the model together with the empirical distribution function F̂ (ϑ)
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Figure 4.3: Probability mass function f(ϑ) plotted against its empirical counterpart

f̂(ϑ) acquired from simulations for swarm size N = 50. Lines with filled symbols

represent predictions of the model, empty symbols represent the results of 1000 physics-

based simulations.

obtained from 1000 simulation runs for N = 50 and different values

of |Cs|. The theoretical predictions of the model are shown to closely

match the empirical observations independently of the number of colors

|Cs| available to the swarm of robots.

Once computed F (ϑ) it is also interesting to have a look at P (ϑ =

n, x0), the probability mass function of ϑ, since it provides a better view

of the performance of the system. As shown in Fig.4.3, the probability

mass function is right-skewed, with the probability mass concentrated

on the left side of the figure. This implies the possibility of long exe-

cutions of the one-to-one selection algorithm. However, as we increase

the number of colors available to the swarm, the variance of ϑ shrinks

considerably reducing the probability mass under the right tail, and

thus, the occurrence of long executions.

Real Robot Experiments. We performed a series of experiments

with real robots using an AR.Drone placed on top of N ∈ {2, 4, 6, 8, 10}
marXbots distributed in a 1 m x 1.5 m arena with |CS| = 2 colors. For

each value of N , we have done 30 repetitions of the one-to-one selec-

tion algorithm. In each run, the marXbots are placed in the arena with

random orientations and positions together with a light source identify-
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Figure 4.4: Empirical probability mass function f̂(ϑ) computed from real robot ex-

periments with varying sizes of N and |Cs| = 2. Boxplots depict 30 runs, errorbars

correspond to predictions of the model (E[ϑ]±
√

V[ϑ]).

ing the point-of-interest (hereafter refered to as POI) to the AR.Drone.

The AR.Drone chooses as target robot the closest marXbot to the POI.

Fig. 4.4 shows the results of these experiments together with predic-

tions of the Markov chain model. The latter, plotted as errorbars, show

the expectation value E[ϑ] and the standard deviation
√
V[ϑ] of the

number of iterations necessary to establish a one-to-one communication

link.

From matrices Γ and Σ, we compute the expectation E[ϑ] and the

variance V[ϑ]:

E[ϑ] = ξΣ, (4.2)

and

V[ϑ] = (2Σ− I)E[ϑ]− Esq[ϑ]. (4.3)

In Eq. (4.2), the term ξ consists in a column vector of all 1’s. That is,

for every (transient) initial states, the expectation value of ϑ is given by

the row sum of the fundamental matrix Σ. In Eq.(4.3), I corresponds

to the identity matrix and Esq[ϑ] is E[ϑ] with squared entries.

By means of Eq (4.2) and Eq. (4.3), we compare the empirical dis-

tribution of the results obtained from real robot experiments with the

predictions of the Markov chain model defined in (4.1). As shown in

Figure 4.4, the agreement between empirical observations and theoreti-
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Figure 4.5: Scalability study based on data produced by the model for large N and

|Cs|. The shaded areas correspond to E[ϑ]±
√
V[ϑ].

cal predictions is rather high. In particular, the theoretical expectation

of ϑ approximates well the median value showed in the boxplots of real

robots experiments. Moreover, real robots experiments show a vari-

ance larger than the theoretical variance for the greatest values of N ,

(namely for N ∈ {6, 8, 10}). We argue that this discrepancy is due to

the limited number of observations gathered during real robots exper-

iments, and thus negligible. While the size of N in this set of experi-

ments was increased by a factor of 5 (i.e., form 2 to 10 marXbots), the

average number of iterations only experienced an increase by a factor

of 1.6 (i.e., from 3.8 for 2 marXbots to 6.1 iterations for 10 marXbots).

This may indicate promising scaling properties of the one-to-one selec-

tion algorithm. In the next section, we further investigate this property

using the Markov chain model.

Scalability Study. We use Eq. (4.2) and Eq. (4.3) to study how the

distribution of the expectation of ϑ scales for increasing values of N and

|Cs|. As the results presented in Fig. 4.5 show, E[ϑ] is characterized by

a logarithmic trend indicating high scalability for increasing values of

N . The same trend applies to the variance of ϑ: given a certain value

for |Cs|, V[ϑ] grows logarithmically for increasing N .

The results also show that as |Cs| increases, the variance of ϑ de-

creases considerably, increasing the reliability of the expectation as
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an aggregated indicator of the performance of the process (e.g., com-

pare the width of the shaded areas for N = 80 between |Cs| = 2 and

|Cs| = 1000 in Fig. 4.5). As it turns out, in the limit of |Cs| → ∞, the

probability for a wheeled robot to randomly choose the same color as

the target robot tends to zero. The variance of ϑ vanishes and the one-

to-one selection algorithm approaches a deterministic behavior that

lasts exactly for 2 iterations: at the first iteration all wheeled robots

except the target robot are eliminated, while in the second iteration

the target robot performs the final handshake with the aerial robot.

4.4 Conclusion

In this chapter, we introduced an absorbing, time-homogeneous Markov

chain model of a distributed communication protocol for a heteroge-

neous swarm of robots. We showed the applicability of the modeling

methodology proposed in Chapter 2 to a different case study from

that of collective decision-making provided in Chapter 3. The Markov

chain model developed for the one-to-one spatially targeted selection

algorithm has been extensively validated through both physics-based

simulations and real robots experiments. The predictions of the model

closely match the behavior of the robots in the experiments, and thus,

can be reliably used at design time. Furthermore, the analysis of the

Markov chain model tells us that the one-to-one selection algorithm

has promising scalability properties. Indeed, the expectation of the

number of iterations necessary to establish a one-to-one link is shown

to scale logarithmically with the number of wheeled robots involved in

the process.

In the near future, we plan to extend the modeling approach intro-

duced here to study the performance of the one-to-many communica-

tion protocol introduced by Mathews et al. (2010a).
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Conclusions

In this report, we proposed a modeling methodology to define macro-

scopic mathematical models of swarm intelligence systems. The pro-

posed approach is based on the use of the formalism of time-homogeneous

Markov chains (Kemeny and Snell, 1976; Norris, 1997) and, in partic-

ular, through finite state-space, absorbing Markov chains. This ap-

proach allows designers to define tractable mathematical models of a

swarm intelligence systems and to analyze in depth their dynamics

and performance. By defining the Markov chain models from a macro-

scopic viewpoint, it is possible to describe systems with finite number

of agents without demanding for continuous approximations. With re-

spect to a microscopic model, the macroscopic model is characterized

by a reduced state-space. This feature delays the state-space explosion

effect and strongly broadens the family of swarm intelligence systems

that can be studied with this approach. We have illustrated the appli-

cability of the proposed modeling methodologies to two different case

studies in swarm robotics.

In Chapter 3, we have analyzed the dynamics of the opinions in

a collective binary decision-making system composed of a swarm of

ground-based robots (Montes de Oca et al., 2011). We have defined

an absorbing Markov chain with two absorbing states corresponding,

respectively, to complete consensus of the swarm to opinion A and opin-

ion B. We have derived the cumulative distribution function as well

as the probability mass function of the number of applications of the

majority rule necessary to reach consensus. With respect to previous

studies (Massink et al., 2012; Montes de Oca et al., 2011; Scheidler,

2011), we have showed that the majority rule with differential latency

35
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model is characterized by a variance of the time to consensus that is

several orders of magnitude greater than the expectation. Hence, we

remarked that the expectation of the time to consensus, primary used

in previous studies, is not a reliable statistics of this system.

In Chapter 4, we analyzed the performance of a distributed com-

munication protocol for heterogeneous robotic swarms. We defined an

absorbing Markov chain of the one-to-one selection algorithm proposed

in (Mathews et al., 2010a,b). In this case, the chain is characterized

by a single absorbing state that identifies the completion of the selec-

tion algorithm. Thanks to the Markov chain model, we have provided

a in-depth study of the number of iterations necessary to establish a

one-to-one communication link between an aerial robot and a target

wheeled robot. With respect to previous theoretical studies, we have

showed that the one-to-one selection algorithm scales logarithmically

with the number of wheeled robots involved in the process.

As future directions of research, we plan to extend the proposed

modeling approach with mechanisms that allow designers to define

models based on more complex assumptions on the spatial interac-

tions of the agents in the swarm while maintaining the non-spatial

characteristic of the models.
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