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Sommario

Scopo di questa ricerca è stata la definizione di una metodologia formale per

il confronto di differenti strategie di apprendimento automatico, nell’ambito

della Swarm Robotics. Questo settore della robotica, sviluppatosi negli ul-

timi anni, trae ispirazione dal comportamento riscontrato in alcune specie di

insetti sociali, come formiche o termiti. Esso prevede l’uso di un gruppo di

semplici robot (definito anche sciame o colonia) che possano portare a ter-

mine compiti complessi, potenzialmente impossibili per i singoli agenti, senza

tuttavia comunicare tra loro.

Per migliorare il coordinamento tra gli individui della colonia in vari am-

biti applicativi, sono stati proposti numerosi algoritmi di apprendimento au-

tomatico, che permettono di adattare il comportamento del singolo in base

agli stimoli diretti da lui percepiti. Al momento in cui scriviamo, non siamo

a conoscenza di alcuno studio volto alla formalizzazione di una metodologia

che consenta il confronto diretto tra differenti strategie di adattamento, né

dell’esistenza di confronti empirici di qualsiasi tipo tra diversi algoritmi nel

campo della Swarm Robotics.

Il nostro obiettivo è stato quindi di stabilire una procedura corretta e rig-

orosa, basata su principi largamente accettati in molti altri campi scientifici,

che permetta di valutare le performance di questi algoritmi, risparmiando

anche tempo e risorse grazie alla riduzione del numero richiesto di esperi-

menti con robot reali. Il confronto consente di trarre utili conclusioni per la

realizzazione di sistemi di adattamento più efficaci con tempistiche ridotte e

costi contenuti.

Il metodo da noi descritto prevede di rincondurre tutti gli algoritmi da

valutare a condizioni sperimentali omogenee, in modo tale che il confronto
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possa avvenire nella maniera più equa possibile. Ciò comporta la scelta di un

campo di test adeguato per la sperimentazione, la definizione del parametro

o dei parametri su cui focalizzare l’adattamento e la preparazione di esper-

imenti che vengano ripetuti variando solo l’algoritmo di apprendimento da

testare. In questa fase, è ovviamente anche necessario specificare una misura

univoca per valutare le performance degli algoritmi analizzati.

La procedura contempla l’uso di un simulatore, il cui sviluppo segua al-

cuni principi base indispensabili per garantirne l’affidabilità. Gli esperimenti

di confronto vengono quindi effettuati in simulazione. Sui risultati ottenuti

si eseguono specifici test statistici, volti a evidenziare eventuali differenze tra

le performance degli algoritmi e la loro eventuale entità.

Infine, si devono convalidare i valori ottenuti in simulazione con un nu-

mero adeguato di esperimenti condotti con i robot reali. Per far ciò, è suf-

ficiente riprodurre anche nella realtà un sottoinsieme dei test condotti in

simulazione che rappresenti un campione statisticamente significativo, ma

tale anche da non sprecare le risorse limitate a disposizione. Si eseguono

anche su questi ultimi risultati i test statistici impiegati per la simulazione e

si confrontano i valori ottenuti nei due ambiti.

Se simulazione e realtà offrono valori coerenti, la validità del simulatore

può essere confermata, cośı come le valutazioni da lui supportate per quanto

concerne gli algoritmi analizzati.

Abbiamo applicato la metodolgia fin qui brevemente descritta a tre di-

versi algoritmi di apprendimento, realizzati, nel nostro caso, in ambiti di-

versi e per scopi leggermente differenti. Come terreno di confronto, abbiamo

scelto il problema conosciuto nella letteratura specializzata come prey re-

trieval o foraging. Gli agenti coinvolti in questo compito devono individuare,

raccogliere e riportare in una specifica posizione particolari oggetti sparsi

nell’ambiente. Data una colonia di agenti impegnata in questo compito, il

numero di individui che dovrebbero essere coinvolti attivamente nella ricerca

dovrebbe adattarsi alla ricchezza dell’ambiente in termini di prede (gli oggetti

da recuperare) e alla dimensione dello sciame.

Abbiamo scelto di valutare le performance di tali algoritmi in base alla

efficienza della colonia (ossia il rapporto tra il numero di prede recuperate e



il costo che tale operazione ha comportato per la colonia stessa), la quantità

di oggetti effettivamente recuperati e il grado di specializzazione raggiunto

dallo sciame alla fine degli esperimenti.

Abbiamo quindi lievemente adattato, quando necessario, la struttura

degli algoritmi per focalizzarne le dinamiche di apprendimento sul tempo che

ciascun agente trascorre in inattività. Gran parte dei nostri sforzi sono stati

volti alla realizzazione di un simulatore adeguato alle specifiche esigenze del

dominio applicativo scelto e dell’implementazione hardware dei robot impie-

gati.

Agli esperimenti condotti in simulazione, sono stati poi affiancati quelli

che prevedono l’uso dei robot reali, tecnicamente più impegnativi e di lunga

preparazione. I risultati ottenuti nei due ambiti hanno dimostrato una per-

fetta coerenza, permettendoci di confermare le differenze tra le performance

apprezzate tra i tre algoritmi grazie ai già citati test statistici.

La nostra metodologia formale di confronto si è quindi dimostrata molto

efficace e adattabile a differenti ambiti della Swarm Robotics.





Contents

Acknowledgments iii

Sommario v

1 Introduction 1

1.1 Goals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.2 Motivations . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.3 Innovative Contributions . . . . . . . . . . . . . . . . . . . . . 3

1.4 Outline of the Thesis . . . . . . . . . . . . . . . . . . . . . . . 4

2 Multi Robot Systems 7

2.1 A Taxonomy for Multi Robot Systems . . . . . . . . . . . . . 9

2.2 An Overview on Multi Robot Systems . . . . . . . . . . . . . 11

2.3 Swarm Robotics . . . . . . . . . . . . . . . . . . . . . . . . . . 15

2.3.1 The Swarm-Bots Project . . . . . . . . . . . . . . . . . 19

3 Prey Retrieval 23

3.1 Prey Retrieval in Biology . . . . . . . . . . . . . . . . . . . . . 23

3.2 Swarm Robotics and Prey Retrieval . . . . . . . . . . . . . . . 25

3.2.1 The Division of Labor . . . . . . . . . . . . . . . . . . 25

4 The Experimental Setup 27

4.1 The Research Methodology . . . . . . . . . . . . . . . . . . . . 27

4.2 The Real Robot Environment . . . . . . . . . . . . . . . . . . 29

4.2.1 The MindS-Bots . . . . . . . . . . . . . . . . . . . . . 29

4.2.2 Arena and Prey . . . . . . . . . . . . . . . . . . . . . . 31

ix



4.2.3 The Experiments . . . . . . . . . . . . . . . . . . . . . 32

4.3 The MindS-miss Simulator . . . . . . . . . . . . . . . . . . . . 35

4.3.1 Simulated Physics . . . . . . . . . . . . . . . . . . . . . 36

4.3.2 Tuning the Parameters . . . . . . . . . . . . . . . . . . 39

4.3.3 The Simulated Experiments . . . . . . . . . . . . . . . 40

4.3.4 Better than Reality . . . . . . . . . . . . . . . . . . . . 41

5 Three Different Strategies 45

5.1 A Specific Prey Retrieval Algorithm . . . . . . . . . . . . . . . 45

5.1.1 States and Behaviours . . . . . . . . . . . . . . . . . . 46

5.1.2 How Robots Learn . . . . . . . . . . . . . . . . . . . . 48

5.2 ALLIANCE . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

5.2.1 ALLIANCE on Prey Retrieval . . . . . . . . . . . . . . 51

5.3 Distributed Learning in Swarm Systems . . . . . . . . . . . . 56

5.3.1 Learning on Prey Retrieval . . . . . . . . . . . . . . . . 59

6 Results 65

6.1 Parameters of Interest . . . . . . . . . . . . . . . . . . . . . . 65

6.2 Simulation Results . . . . . . . . . . . . . . . . . . . . . . . . 66

6.2.1 Labella’s Algorithm . . . . . . . . . . . . . . . . . . . . 66

6.2.2 ALLIANCE . . . . . . . . . . . . . . . . . . . . . . . . 71

6.2.3 Li’s Algorithm . . . . . . . . . . . . . . . . . . . . . . . 74

6.2.4 The Algorithms Compared . . . . . . . . . . . . . . . . 77

6.3 Real Robot Results . . . . . . . . . . . . . . . . . . . . . . . . 87

6.4 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92

7 Discussion 93

7.1 An Overview of the Research . . . . . . . . . . . . . . . . . . 93

7.2 Evaluation of the Results . . . . . . . . . . . . . . . . . . . . . 95

7.3 Further Work . . . . . . . . . . . . . . . . . . . . . . . . . . . 96

A Simulator UML 105



B Statistical Tests 111

B.1 Friedman two-way analysis of variance by ranks . . . . . . . . 111

B.2 Random permutation test for paired replicates . . . . . . . . . 112





List of Figures

2.1 A swarm of honey bees . . . . . . . . . . . . . . . . . . . . . . 16

2.2 Leaf-cutting ants retrieving pieces of leaves . . . . . . . . . . . 17

2.3 Simulated and hardware-implemented versions of an s-bot . . . 20

2.4 Swarm-bot : experiments on hole avoidance . . . . . . . . . . . 21

4.1 Model of a MindS-bot . . . . . . . . . . . . . . . . . . . . . . 30

4.2 Pictures of a MindS-bot . . . . . . . . . . . . . . . . . . . . . 31

4.3 The starting positions of the MindS-bots at the beginning of

an experiment . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

4.4 A simulated MindS-bot . . . . . . . . . . . . . . . . . . . . . . 38

4.5 Starting positions for six simulated MindS-bots . . . . . . . . 39

4.6 A simulated six MindS-bot colony . . . . . . . . . . . . . . . . 42

5.1 Control program of the robots . . . . . . . . . . . . . . . . . . 47

5.2 Li’s original algorithm . . . . . . . . . . . . . . . . . . . . . . 58

6.1 Efficiency diagram in simulated environment with Labella’s

learning strategy . . . . . . . . . . . . . . . . . . . . . . . . . 68

6.2 Specialization diagrams with Labella’s algorithm . . . . . . . . 70

6.3 Efficiency diagram in simulated environment with ALLIANCE

learning strategy . . . . . . . . . . . . . . . . . . . . . . . . . 71

6.4 Specialization diagrams with the modified version of ALLIANCE 73

6.5 Efficiency diagram in simulated environment with Li’s learning

strategy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74

6.6 Specialization diagrams with Li’s modified algorithm . . . . . 76

6.7 Comparison among efficiency results of the three algorithms . 79

xiii



6.8 The algorithms compared. Specialization diagrams of a two

robot colony in an environment where prey probability is equal

to 0.005. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84

6.9 The algorithms compared. Specialization diagrams of a four

robot colony in an environment where prey probability is equal

to 0.01. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85

6.10 The algorithms compared. Specialization diagrams of a six

robot colony in an environment where prey probability is equal

to 0.02. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86

6.11 Real robot experiments. Specialization diagrams of a four

robot colony in an environment where prey probability is equal

to 0.01. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91

A.1 The complete UML class diagram of MindS-miss . . . . . . . . 106

A.2 UML class diagram of the robot control system . . . . . . . . 107

A.3 UML diagram of the class Robot . . . . . . . . . . . . . . . . . 108

A.4 UML class diagram of a portion of the simulator . . . . . . . . 109



List of Tables

4.1 Different setups in simulated experiments . . . . . . . . . . . . 41

5.1 States and behaviours of prey retrieval algorithm . . . . . . . 48

5.2 Variables in the modified version of Li’s algorithm . . . . . . . 61

5.3 Initialization values of the variables in the modified version of

Li’s algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

5.4 Values of the parameters in the modified version of Li’s algorithm 62

6.1 Percentage of captured prey using Labella’s learning strategy . 67

6.2 Percentage of captured prey using ALLIANCE learning strategy 72

6.3 Percentage of captured prey using Li’s learning strategy . . . . 75

6.4 Comparison among the percentages of captured prey using the

three learning algorithms . . . . . . . . . . . . . . . . . . . . . 80

6.5 Real robot experiments: comparison among the percentages

of captured prey . . . . . . . . . . . . . . . . . . . . . . . . . . 89

xv





List of Algorithms

1 Variable Delta Rule . . . . . . . . . . . . . . . . . . . . . . . . 49

2 Li’s Algorithm on Prey Retrieval . . . . . . . . . . . . . . . . 63

xvii





Chapter 1

Introduction

With the increase in interest in robotics, researchers have considered the

advantages of using a group of simpler robots (Multi Robot Systems), instead

of a single, complex agent, to solve a number of different problems.

This kind of approach leads to systems that are more robust and have a

superior fault tolerance to hardware failures. The main drawback to the new

robotic conception has proved to be the need of a robust, complex coordina-

tion among the agents deployed on the field.

Swarm Robotics offers new solutions to this kind of problems. It takes

deep inspiration from biological examples, especially from social insects like

ants and bees. These animals show complex collective behaviours even if

they use very little direct communication. Only locally available information

is exploited and indirect communication is obtained by modifications of the

environment (stigmergy).

The agents used in Swarm Robotics replicate the simple insects that in-

spired this new field. They have mostly reactive behaviours, their hardware

implementation is kept as simple as possible and they are intended to work

only in scalable swarms. In order to improve the performances of these

swarms, many adaptation strategies have been proposed, based on dynamic

learning.

The complexity of Multi Robot Systems in general, and of Swarm Robotic

Systems in particular, makes any comparison among the learning strategies
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a very hard task.

Our work intends to propose a new analysis methodology that allows

different learning strategies to be compared on a common test field. We

also want to define specific parameters that could be used to evaluate the

performances of each new algorithm.

1.1 Goals

Our research aims to define a methodology to compare different learning

strategies designed for Multi Robot Systems and, more specifically, for swarms

of robots. We show the effectiveness of our methodology by comparing three

different learning algorithms.

The application domain used for the experiments is prey retrieval, also

known as foraging. It is a widely studied task in the robotic literature. We

decided to focus the learning process on the Time in Nest parameter, that

is, the time each robot spends in the nest before starting a new prey retrieval

trial. We analyse the algorithms in terms of their efficiencies, performances

and the degree of specialisation that they can induce in the group of robots.

We tested the algorithms both in simulation and with real robots. Both

were intentionally developed for this purpose. The hardware implementation

of the agents is made with the MindS-bots, simple robots built with Lego

bricks, while we developed our simulator using also a physics library, in order

to reproduce in the most accurate way the interactions among agents, prey

and environment.

Most of the experiments were carried out in simulation. The simulator can

run experiments faster than real time and allows us to test each algorithm in

several setups, thus sparing a lot of resources. The results are then validated

replicating some experiments also with the real robots.
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1.2 Motivations

In the last years, many researchers have focused their attention on Swarm

Robotics. This field takes a different approach to traditional Multi Robot

Systems and it has received deep inspiration from biological examples. It

studies how collectively intelligent behaviours can emerge from complex local

interactions among agents and between agents and environment.

Swarm Robotics has been applied to a wide range of tasks and many

learning algorithms have been developed as well. The goal was to automati-

cally improve the performances of the agents on a specific task.

Nevertheless, the studies conducted so far, to the best of our knowledge,

have never introduced a method to evaluate the performance of the swarm

comparing it with other researches. “There are no generally accepted global

criteria to evaluate a swarm system’s performance” (Rybski et al., 2003).

There are in literature some authors that propose analytical models of

Swarm Robotic Systems. (Lerman et al., 2001). Following this approach, it

is possible to derive a set of equations and study, for instance, the effect of dif-

ferent parameters and/or algorithms. The major drawback of this approach

is that usually one needs to make a number of assumptions and simplifica-

tions in order to be able to obtain the equations. Given the importance of

the complexity of interactions in Swarm Robotics, it might happen that some

important features of the system get lost in the simplification phase.

Our aim is to propose another approach to the evaluation and analysis

of Swarm Robotic Systems. Our approach tests the systems “on the field”,

therefore no previous assumption is required. It can be considered orthog-

onal to the analytical approach and it introduces more formality in Swarm

Robotics research.

1.3 Innovative Contributions

The main contribution of our work is the introduction of a rigorous exper-

imental methodology in the field of Swarm Robotics. To the best of our

knowledge, none of the works in literature make use of the concepts that we
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introduce in this thesis, or at least explicitly mention it. The advantages of

this methodology are threefold:

1. It allows the researcher to draw scientifically sounder conclusions.

2. It allows the researcher to spare resources, in terms of time to conduct

the experiments and number of experiments.

3. It clearly states which are the practical differences between algorithms.

Sounder conclusions come from the wise application of the correct sta-

tistical tests for the analysis of the results. The right use of the tests and

the right design of the experiments, can lead to statistically significant dif-

ferences with fewer experiments. Especially when working with real robots,

experiments are the most consuming part of a research. They not only re-

quire a lot of time, but they use other resources like people, free rooms for

the experiments, and also money (think, for instance, about the maintenance

of the robots after several experiments). Finally, the methodology can tell

whether an algorithm is better than another, giving precious information

to the designer of a swarm robotic system that wants to use it for actual

applications.

We limit the application of our methodology to some specific cases, focus-

ing on foraging as test field for our research and evaluating the effectiveness

of only three algorithms. But the case study we present is just a possible

application of the rigorous procedure that we define. This methodology, we

hope, can be used in a wide range of other researches in the Swarm Robotics

field, to compare new learning algorithms with the employ of different test

fields.

1.4 Outline of the Thesis

In Chapter 2 we describe some important background information and the

state of the art about Multi Robot Systems and, in particular, about Swarm

Robotics. Chapter 3 introduces the task we chose as test field for our re-

search, discussing also its importance both in nature and in Swarm Robotics
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studies. The experimental setup we prepared is then presented in Chap-

ter 4, where we discuss about the hardware implementation of our agents

and about the simulator we used to expand our research. The three learning

algorithms we decided to compare are presented in Chapter 5, as well as the

modifications we had to introduce to adapt their structure to a prey retrieval

task. Chapter 6 shows the results we obtained both in simulation and with

real robots. Statistical tests are used to compare the data we collected and

to ensure the soundness of our simulator. Finally, in Chapter 7, we present

some concluding remarks and some ideas for future works.
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Chapter 2

Multi Robot Systems

During the last years, a number of researchers have considered the problems

and the advantages in using a group of robots, instead of a single, and often

much more complex unit, in order to achieve one or more specific tasks.

For some specific robotic tasks, such as exploring an unknown

planet, pushing objects or cleaning up toxic waste, it has been

suggested that rather than sending one very complex robot to

perform the task it would be more effective to send a number of

smaller, simpler robots (Dudek et al., 1996).

The advantages of this kind of approach are evident: simpler robots are

usually cheaper and the whole system may be more economical, scalable and

it may also have a superior fault tolerance compared to more complex and

larger robots. Of course, “it is essential that the collective have an overall

behaviour or set of actions that accomplishes the same behaviour or action

that was required of the single more complex robot” (Dudek et al., 1996).

It is evident that there are tasks that will not take advantages of a multi-

agent approach (i.e., when the goal can be reached only through a series of

actions that must be done in a specific order, one after the other), but there

are many, even in our every day life, that are very suitable for this kind of

method.

Tasks that require simultaneous actions in different places, often cannot

be accomplished by a single robot, no matter how capable, because it is

7
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spatially limited (Cao et al., 1997).

Even when the presence of more than one robot is not strictly required,

we can identify highly parallelized tasks that could be solved more efficiently

by a Multi Robot System (MRS). This happens when we have an overall

improvement if different actions of the task can be performed at the same

time by different agents.

For instance, if we were planning to design an automatic system for

garbage collection in a town, it would be pointless to create a single robot to

achieve the task, while a colony or swarm of simpler robots could be a more

reliable and efficient solution.

There are also other tasks that seem ideally suited to MRS. For instance,

Gage (1992) identifies some military applications, such as mine deployment,

mine sweeping, surveillance, sentry duty, maintenance inspection, ship hull

cleaning and communications relaying, that are characterized by high po-

tential for damage to each single agent involved in the operation. Using a

large number of relatively simple, inexpensive, interchangeable, autonomous

elements, rather than a complex, very expensive, highly sophisticated unit,

the risk of total failure of the task is decreased and thus the reliability of the

whole system is increased.

Another example could be the already mentioned planet exploring prob-

lem, discussed by Aylett and Barnes (1998). The idea is to use a number of

rovers that cooperate with each other in an unknown and hazardous envi-

ronment.

In MRS, robots usually cooperate to achieve one or more goals, but there

are also systems where competition is required, among single elements or

different teams. An example of this kind of behaviour can be found in the

RoboCup competition, a world tournament where teams of robots play soccer

games. This is only one of the many examples that could be found where

robots are required to be be competitive, and the study of such field raises

many interesting issues, both practical and scientific, as strategy acquisition

(to overcome the opponent), real-time reasoning, multi-agent collaboration

and sensor-fusion (Kitano et al., 1997).
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2.1 A Taxonomy for Multi Robot Systems

The design of a MRS is a very arduous task, because of the size and com-

plexity of the space of the possible designs. Dudek et al. (1996) suggest a

taxonomy to classify MRS according to several natural dimensions, that ad-

dress the characteristics of the collective rather than the architectural details

of the single elements:

Size of the Collective The collective can be composed by one single robot,

two robots (“the simplest group”) or by a number n of robots. Increas-

ing n until n � 1, we can assume the collective as composed by an

infinite number of elements.

Communication Range There could be no communication at all among

the elements of the collective or the communication range could be lim-

ited (each robots is supposed to communicate with those nearby).

If no bounds exist on the range, then we assume that robots can com-

municate with any other collective mate. This assumption becomes

often impractical when the size of the collective is � 1.

Communication Topology Designing a collective of robots, four different

communication strategies can be identified and used. The elements of

the collective can broadcast their messages to all the robots at the same

time or they can communicate with each single robot by name or ad-

dress. If the communication network among the robots is implemented

as a general graph or as a tree, then each agent has to respect the

communication chain and will be allowed to transmit to those nearby

in the chain.

Communication Bandwidth This classification dimension considers the

cost of the communication. If the communication is free, we can design

robots that behave as if there was a central intelligence, because there

is a full information sharing (infinite bandwidth).

The independence of the robots grows when the communication costs

increase. Communication may have the same cost of moving the robots
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between locations or even a higher cost (for instance, the radio link can

require a high amount of electrical power because the robots are far

from each other). When robots are unable to sense each other, then

the bandwidth is reduced to zero.

Collective Reconfigurability The spatial arrangement of the robots can

be static (elements of the collective have fixed positions and they move

without changing their relative placement), coordinated using commu-

nication or dynamic with arbitrary changes.

Processing Ability This dimension considers the model of computation of

each collective unit. It is useful to note that the entire collective can

have an overall computational ability more powerful that the ones of

each single component.

The controller of each robot can be modeled as a simple neural net-

work, a finite state automaton, a push-down automaton or as a Turing

machine equivalent.

Collective Composition The elements of the collective can be identical,

which means they have the same physical and behavioral characteris-

tics, homogeneous (or physically uniform) or heterogeneous.

The described taxonomy “serves the dual functions of allowing concise

description of the key characteristics of different collectives, and describing

the extent of the space of possible designs” (Dudek et al., 1996, p. 26).

In our work, the collective is composed by identical robots and it has a

limited size, even if the final aim should be the use of a swarm. No direct

communication will be allowed among elements, so communication topology

and bandwidth will not be considered. The topological reconfigurability is

dynamic and not coordinated. The behaviour of each robot can be modeled

as a finite state automaton.

We focus our attention on cooperative robotics, i.e., where there is no com-

petition among robots, and more specifically on the task of prey retrieval,

also known in literature as foraging. This is considered one of the canoni-

cal domains for Multi Robot Systems (Cao et al., 1997) and “it consists of
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searching for objects in the environment and bringing them to a region called

home or nest” (Labella, 2003, p. 13).

2.2 An Overview on Multi Robot Systems

In order to analyze the issues related to MRS, we can start studying the

problems that arise in a single agent approach, characterizing also the envi-

ronment where our robots will act.

The main objective of a robot is to perform one or more tasks. That

means the necessity for its controller to lead it to a goal state, given a starting

condition of both the robot and the environment where the robot has to

operate. The controller will perceive its environment through sensors and

will act upon that environment through actuators, changing it if necessary.

We can describe the environment that surrounds the robot using six in-

dependent dimensions, as proposed by Russel and Norvig (2003):

Fully observable vs. partially observable If the agent is able to per-

ceive every relevant aspect of the environment at each point in time,

then we can consider the environment as fully observable. A partial ob-

servability might come from noisy sensors or from sensors’ limitations.

Deterministic vs. stochastic We label an environment as deterministic,

when the next state is completely determined by the current state and

the action executed by the agent.

Episodic vs. sequential If the environment is episodic, each action of the

agent does not depend on the previous ones.

Static vs. dynamic An environment is dynamic for an agent, if it changes

while the agent is deliberating.

Discrete vs. continuous This dimension can be applied to the state of

the environment, to the perceptions and actions of the agent and to

the way time is handled.
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Single agent vs. multi-agent This dimension is defined by the number of

agents acting in the environment.

Our robots must move in a non deterministic world and their sensors are

subject to error and noise. This means that the exact behaviour of one single

agent is difficult to foretell, even when the controller is made implementing

the simplest of algorithms (Matarić, 1995).

When we have more than one robot, then, the complexity of the system

increases, so every accurate prediction of future states is impossible.

From point of view of each robot, the actions of the other agents make

the environment even more dynamic, changing it continuously. Even when

communication among robots is allowed, noisy or limited sensors lead to an

important lack of information. Then, the controller of a single agent has to

take decisions with a partial knowledge of the overall situation.

We can deduce that, when we consider Multi Robot Systems, we have to

deal with a partially observable, sequential, continuous, multi agent, dynamic

and usually stochastic environment.

We can broadly distinguish two approaches to the decision process (La-

bella, 2003). A controller can be reactive, when it considers only the current

state and binds it to a specific action, or based on a planning approach. In

the second case, the best action is selected according to predictions of future

states, evaluated using a model of the environment.

The planning approach, even if sometimes more efficient in simple envi-

ronments or for simple tasks, becomes harder to implement when we have to

deal with complex situations, with more than one task to be performed in

a specific order by different agents and with noisy information. Interactions

among robots, the possibility of failure of both the agents and the communi-

cation channel (if any) contribute to create possible inconsistent predictions

of the future states.

We can find some drawbacks also in a fully reactive control system. For

instance, when we have to deal with a small group of agents and with a

complex task in a known environment, it can be inefficient and even inad-

equate in accomplishing some specific goals that require some planning or



2.2. AN OVERVIEW ON MULTI ROBOT SYSTEMS 13

cooperation.

Both approaches are still widely used in mobile robotics. In our work

we will mainly focus on the reactive one, but good examples of the planning

strategy can be found in a number of real applications, such as the robot

navigation system proposed by Bruce and Veloso (2002). It uses rapidly-

exploring random trees (RRTs) to elaborate paths for the robots and the

results show a good performance of the algorithm, making it suitable for real

time and constrained applications, such as the already mentioned RoboCup.

Matarić (1995) identifies interference as a problem directly related to

MRS. When the agents share the same goals, then the interference arises as

competition for shared resources (resource competition). On the other hand,

when robots’ goals differ, more complex conflicts can arise, such as deadlocks

(goal competition).

At the present time, there is a vast literature about problems that could be

solved in a more efficient way with MRS rather than with a single robot. The

work done in the field of cooperative mobile robotics can be essentially cate-

gorized in two groups: swarm-type approach, that will be widely described in

the next section, and robots that use intentional cooperation (Parker, 1998).

While both of them deal with achieving a strict synergy among robots in

order to perform some (sometimes sequentially related) tasks, they take very

different approaches to reach their goals.

In Swarm Robotics, the actions of the agents are triggered by robot-robot

and robot-environment interactions, exploiting only local information. On

the other hand, traditional robotics usually uses approaches borrowed from

operations research, such as planning, and the overall coordination if often

obtained thanks to a direct communication channel among the agents.

Cao et al. (1997) identify three specific tasks that are now traditionally

associated with the research related to MRS: traffic control, box pushing (or

cooperative manipulation) and foraging. Such tasks are particularly useful

in this field because they consider problems that do not arise with a single

robot and we can identify a number of real tasks strictly related to the testing

ones (for instance, an algorithm elaborated to solve a foraging problem can

be adapted for the garbage collection in a town).
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With a growing number of robots working on the same field and the

requirement of a strong coordination, the issue of task allocation has become

the focus of many interesting works. Gerkey and Matarić (2004), in a recent

publication, elaborate a deep analysis of the problem in Multi Robot Systems,

using theory from operations research and combinatorial optimization both

in the understanding of existing approaches and in the elaboration of new

ones.

Another important issue on which the research has focused is learning.

Learning is a major topic with single robots, but it is more challenging when

there are more agents acting at the same time, that need to know if their

behaviour is leading the group to the solution of the overall problem, having

only a partial knowledge of the situation.

When a centralized store of complete world knowledge is not available,

what we have to solve is a (often confounding) credit assignment problem,

that is “the problem of properly assigning credit or blame for overall perfor-

mance changes (increase and decrease) to each of the system activities that

contributed to that changes” (Weiß, 1995).

Matarić (1997) addresses the issue in a foraging problem, where the ob-

jects to be collected are pucks deployed in a squared arena. The decision

process uses behaviours, activated by the arising of specific conditions, as

the basic representation level for control and learning. The learning is then

obtained in two ways: heterogeneous reward functions and progress estima-

tors. The reward functions, in particular, are composed by three main sub

functions. The first one considers internal events triggered by the accom-

plishment of a behaviour (i.e., a puck is dropped at home), the second one

takes care of the distance from the other robots and the third one measures

the progress in the retrieving of a puck after it has been grasped. This ap-

proach only uses local information available to the robot thanks to its sensors

and no communication is implemented to check the situation of other agents.

A totally different approach to the learning problem can be taken when

communication is allowed among the robots. In this case, the behaviour of

the agents on the field is equally determined by the internal status of each

robot and by the information it gets from the teammates around it. A more
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deep knowledge of the overall situation is then obtained, even if we can-

not exclude possible errors and sensor noise. The architecture ALLIANCE

(Parker, 1998) and its extension, L-ALLIANCE (Parker, 1997), use this kind

of approach to better coordinate the heterogeneous robots deployed on the

field and to let them learn by comparing their results in accomplishing some

specific tasks with the ones of the teammates.

For years, the simultaneous use of more than one robot and the related

problem of cooperation among agents has been faced as an extension of the

single robot approach. Matarić (1998) suggests that this is not the best

way to address the issue, proposing a new way to design the robots’ control

systems, with which the overall desired behaviour is obtained as a result of

the interaction dynamics between the robots and their environment.

In the next section we discuss the part of the work done in multi-robotics

where the interactions among agents are not regarded as problems to face,

but they are instead exploited to solve the proposed task.

2.3 Swarm Robotics

Swarm Robotics takes a different approach to MRS. It receives deep inspi-

ration from biological examples, especially from social insects like ants, bees

and termites (Bonabeau et al., 1999) and it can “be loosely defined as the

study of how collectively intelligent behaviours can emerge from local inter-

actions of a large number of relatively simple physically embodied agents”

(Dorigo and Şahin, 2004).

Nature is rich of examples of relatively simple animals that cooperate

efficiently to complete tasks impossible for the single unit. Ants are probably

the most studied and cited one: they can carry big prey thanks to coordinate

efforts, find the shortest path to the nearest food source or build huge nests.

Also bees show great aptitude in exploiting the best food source, while the

ability of the termites to build complex nests is well known to the biologists.

It can be observed that those animals use very little direct communication

(if any), even if they carry on works in huge groups. They use only locally

available information, exploit features present in the environment and use
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Figure 2.1: Honey bees are one of the best examples in nature of social insects
with high self-organization capabilities.

indirect communication.

A particular form of indirect communication, used by social insect to

coordinate their work, is stigmergy. This term was first introduced by Grassé

(1959) in a study that focused on two species of termites, Bellicositermites

natalensis and Cubitermes, and their behaviours during the complex activity

of nest building. It indicates the form of indirect communication obtained

by modifications of the environment. The use of the term was later extended

also to other social insects (Theraulaz and Bonabeau, 1999), such as ants

and wasps.

Using this natural strategy, social insects can accomplish tasks that tran-

scend the abilities of individuals, even when the environment is noisy and no

global communication is allowed or possible.

The goal of the swarm robotics research is to design controllers inspired

by the collective behaviour of such social insect colonies, in order to obtain

robust MRS, capable of operating even in a noisy environment and exploit-

ing only local information. Swarm Robotics does not assume each robot as



2.3. SWARM ROBOTICS 17

Figure 2.2: A swarm of leaf-cutting ants retrieving pieces of leaves back to
their nest.

a standalone independent unit, but, on the contrary, it assumes that the

mission is the result of a joint action of simple agents.

The challenge introduced by this approach is about finding simple be-

haviours based on local knowledge that can produce complex global patterns.

Answering to this question for a specific problem can lead to a better under-

standing of the natural phenomena and, consequently, to an improvement of

the artificial system.

We can find three main advantages in using swarm of robots instead of

classic MRS. First of all, scalability. Since our agents exploit only local

information in their decision process and they are independent, the control
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architecture of each single robot is kept the same, no matter how many units

we intend to use. Second, the system will be flexible. Changing the size of

the swarm during the task execution should not affect the behaviour of other

units. Third, robustness. The design of the robots will be more minimalistic

than in complex MRS and, even more important, the redundancy of the

abilities of each unit will lead to a greater fault-tolerance.

Control algorithms in Swarm Robotics must be kept as simple as possible.

Complex representations of the environment are usually not needed, because

the achievement of a task is based on simple interactions triggered by reactive

behaviours. The use of probabilistic decisions is also common and learning

has proved to be a good way to increase the efficiency of the collaboration

among units, as shown by Labella (2004, 2003).

Ijspeert et al. (2001) address a task that requires strict collaboration

among robots. It consists in finding and pulling out from the ground of a

circular arena a number of sticks. Because of the length of each stick, a single

robot is not capable to accomplish the task working alone. The paper shows

that even with limited sensor capabilities and without any direct communi-

cation among the agents, the task can be accomplished, if the parameters

that lead the robots’ behaviours are rightly tuned. For this experiment also

a simulator and a probabilistic model have been used. The first is a physical,

sensor-based simulation of realistic robots (Webots), while the second is a

model that is intended to represent the dynamics of a group of robots as a

series of stochastic events. The results obtained with those two models have

been validated with real robot experiments and it has been showed that even

simple simulations can provide very good predictions on the real behaviour

of the swarm.

In his Master Thesis, Li (2002) continues the analysis on the strictly

collaborative problem of the stick pulling experiment, introducing distributed

learning to better tune the parameters that trigger the behaviours of each

robot. Li et al. (2004) study the emergent specialization in a swarm of robots

where each unit starts with homogeneous parameters, using a distributed

learning system and measuring the improvement in task accomplishment as

a consequence of the specialization.
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Rybski et al. (2003) evaluate the performance of a swarm of robots on

foraging experiments. In the paper, the efficacy of using localization instead

of random walk is tested, as well as the use of communication versus ran-

dom walk without communication. Only real robots are employed, because

the authors deny the usefulness of a simulated environment. This approach

differs from ours, as we show in the next chapters.

2.3.1 The Swarm-Bots Project

To better understand the issues and the goals of Swarm Robotics, in this

section we briefly describe one of the best projects developed in this field.

Swarm-Bots was a project, sponsored by the Future and Emerging Tech-

nologies program of the European Community and coordinated by Dr. Marco

Dorigo, that lasted 42 months and was successfully completed on March 31,

2005. At the time we write, the project is considered the state of the art in

the field of self-assembling, self-organizing autonomous robotics.

The aim of the project was the study of a new approach to the design and

the implementation of self-organising and self-assembling artifacts, inspired

by recent researches on swarm intelligence shown by social insects.

The goal, fully reached at the end of the project, was the design and

the hardware implementation of a swarm-bot, a metamorphic robotic sys-

tem composed by a number of smaller devices, the s-bots. Each s-bot is a

self-contained module, capable of independent movements and with its own

control system. The behaviour of the swarm-bot is the result of the interac-

tions among the simple independent entities. Collaboration is achieved by

mean of indirect and non-symbolic communication.

The prototype of such robotic system had then to accomplish a number

of tasks and to show some particular features, such as the ability to self-

assemble into different geometric configurations, the possibility to move on

rough terrain and the capability to adapt to match environmental variability.

Mondada et al. (2002b) introduce the principal ideas behind the project,

illustrating the swarm-bot main concept, the inspiration from self-organizing

capabilities of social animals and a first mechanical concept of each s-bot.
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(a) (b)

Figure 2.3: Figure 2.3(a) shows a detailed simulated version of an s-bot. Fig-
ure 2.3(b) is a picture of the hardware implementation of an s-bot prototype.

The authors focus also on the need of a simulated environment, important

to make possible the first studies on the behaviour of the robotic system.

Şahin et al. (2002) describe a first imaginary scenario where the s-bots

are challenged with a task that requires dynamic shape formation, naviga-

tion on rough terrain and the capability of pushing/pulling heavy objects.

Preliminary results on the formation of patterns are also presented, obtained

with a newly developed simulator.

Mondada et al. (2002a) delineate more in detail the mechanical concept of

the future s-bots, illustrating sensors, interconnections and control electronics

needed to build each single unit of the swarm.

The evolution of the project has been accompanied by a number of pub-

lications that explained the results reached.

Mondada et al. (2003), for instance, present the first s-bot working pro-

totypes from a mechatronic prospective. The result is an autonomous small

unit, equipped with a drive system obtained by the combination of tracks

and wheels and with two grippers (one rigid, the second placed at the end

of a semi-flexible arm) for physical interconnections. Each s-bot has been

also loaded with a number of sensors, like an omnidirectional camera, four

microphones, proximity sensors, both around and at the bottom of the robot,

humidity and temperature sensors, optical barriers on grippers and a three

axis accelerometer.



2.3. SWARM ROBOTICS 21

Figure 2.4: Three s-bots navigating in an arena with open borders. The red
lights around one of the robots indicate the emission of a tone to communicate
the presence of a hole.
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Trianni et al. (2004) focus on the software development, and in particular

on the progresses made with artificial evolution to synthesize the controller

for the single agents in order to obtain coordinated motion and an efficient

solution to the hole avoidance task.

Also the prey retrieval task is used as a test field for the new robotic sys-

tem. Labella et al. (2004a) address this issue, studying a simple adaptation

mechanism to increase the group efficiency. The algorithm, inspired by ants’

behaviour and based only on local information available to each robot, is

designed to minimize the interferences between agents during the execution

of the task.

Our work is strictly related to the research done on prey retrieval in the

frame of the Swarm-Bots project. The robots used to perform our experi-

ments are less sophisticated than the s-bots, but this is uninfluential for our

purposes, as we see in the next chapters.



Chapter 3

Prey Retrieval

The aim of our work, as we already said, is to provide a methodology to

compare the performances of different learning algorithms presented in dis-

tinct robotic researches. To the best of our knowledge, a comparison has not

been possible so far, because each algorithm has been studied in a particular

environment with some specific goals.

Looking for a task suitable for our experiments, our choice falls on prey

retrieval, a traditional test field for Multi Robot Systems, deep inspired from

biological systems and possibly useful for a number of real applications.

3.1 Prey Retrieval in Biology

Prey retrieval, also known as foraging, is a task common to a wide range of

different species of social insects. An efficient division of labor among the

nest-mates is essential to guarantee to the colony the necessary amount of

food without waisting time and precious resources. The mechanisms that

govern the emergence of some of the behaviours observed during prey scav-

enging or the search for building material remain unclear.

Nevertheless, a number of studies have been conducted over different

species, with a particular interest for ants. The general behaviour of ant

foragers is efficient but rather simple. When they find a prey, after a random

search in the environment, they try to carry it to the nest. If the prey is too

23
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heavy, then they can either recruit nest mates with chemical signals, or cut

the prey and retrieve smaller parts of it.

The use of chemical trails, as well as recruitment in the nest, have been

observed in many species. Some of the problems about coordination of the

ants and their decision process are often poorly understood. What seems

evident is that the global cooperation in a colony emerges from simple in-

teractions among individuals and between individuals and the prey. For in-

stance, coordination in collective transport seems to occur also through the

item transported. The actions of the ants performing prey retrieval seem to

generate new stimuli perceived by other team mates that react continuing the

task and generating information to the other group members (Labella, 2003).

We can suppose that the simple fact that the ants perceive the movement

of the prey indicates that the force applied is sufficient and that no other

foragers are needed. This is an example of the already mentioned stigmergy.

Some ant species, such as Pheidole pallidula or Lasius niger, provide good

models for the understanding of prey retrieval. In particular, the studies

carried on the Lasius niger (Mailleux et al., 2003; Portha et al., 2002; Devigne

and Detrain, 2002; Mailleux et al., 2000) investigate how those ants perform

environmental exploration and how works the process of trail recruitment,

according to the amount and quantity of food sources around the nest.

Ant colonies show also an effective division of labor among workers and

a good adaptation to changes in the environment.

Deneubourg et al. (1987) developed a simple mathematical model of learn-

ing. The model is capable to reproduce the individual foraging pattern ob-

served in ants (Pachycondyla apicalis) or in bumblebees. The model was

developed observing that a Pachycondyla apicalis forager that returns to the

nest retrieving a prey rests in the nest less time than other foragers that re-

turn without a prey. The authors proposed a learning mechanism as a way to

get social organization. In total absence of communication among workers,

a simple learning strategy can lead to an efficient distribution of foragers in

the environment. Moreover, it can also lead to a balanced division of initially

identical potential foragers into highly active and largely inactive ones.
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3.2 Swarm Robotics and Prey Retrieval

Foraging is widely considered a canonical test domain for collective robotics

(Cao et al., 1997). It involves exploration of an environment, detection of

objects of interest and retrieval of those objects to a specific location (the

nest). Moreover, it is a good prototype for actual useful tasks, such as

locating and marking land mines, distributed mapping of the area, collective

surveillance and many more.

As the social insects from which they take inspiration, the robots compos-

ing a swarm have only local sensing and communication capabilities. Then,

the adaptation of the agents must be left to a control system capable to

adapt the simple behaviours of each agent according only to local available

information.

Foraging is a good application domain for testing the interactions among

the agents on the field and their behaviour in unpredictable situations. It

has already been used in many swarm robotic research works as test field for

adaptation processes (Groß, 2003; Labella, 2003).

Since our goal is to describe a formal method to compare learning algo-

rithms for swarm of robots, foraging is the most suitable task to be employed

in our experiments.

3.2.1 The Division of Labor

Swarm Robotics, in order to improve the scalability of the system, do not use

a central knowledge unit where agents can find global information about the

environment and the amount of prey available to be retrieved. Therefore,

there is the need of a mechanism that allows the agents to autonomously

adapt to the overall situation, to exploit in the most efficient way the envi-

ronmental resources and to reduce negative interferences among them.

One of the most challenging issues that arise in such situation is how to

tune the division of labor among the agents. Task allocation is effective in

exploiting mechanical differences among the robots, introducing specializa-

tion in the robot activities (Labella et al., 2004b). This way, the elements of

the swarm can autonomously try to determine the optimal size of the group
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that cooperate in a foraging application.

What Robots Can Learn: The Time in Nest Parameter

In order to properly tune the number of foragers (that is, the robots that

actively search for prey in the environment), we use a method inspired by

biology that exploits positive and negative feed-backs as usually done by

self-organized systems (Labella et al., 2004b; Camazine et al., 2001).

This method does not require direct communication among the agents

or any kind of human intervention. The learning process is focused on one

single parameter, that is, the Time in Nest.

According to the success or failure of each prey retrieval trial, each robot

adjusts autonomously its Time in Nest parameter. In other words, the el-

ements of the colony decide how long they should stay in the nest before

trying again to search for prey. A robot with a short resting time is part of

the group of the foragers, while the agents that rest in the nest for longer

periods are considered as loafers (that is, elements not actively involved in

the retrieval task).

If the dynamics of the method are quite simple, it is not obvious how

the robots learn and according to which rules they change their behaviour.

For instance, Labella (2003) proposed a probabilistic method to improve

the task allocation among agents, as we see in Section 5.1. Other learning

algorithms could directly fix the time the elements of the swarm must wait

before starting another trial.

We intend to compare different learning strategies and to evaluate the

effectiveness of different ways to tune the Time in Nest parameter.



Chapter 4

The Experimental Setup

We decided to use both real and simulated robots. This choice is motivated

by the constraints we have performing experiments with real agents. For

instance, the number of robots we can use in a single experiment is limited

to the ones we have, while in simulation we can extend the colony beyond

these constraints. A reliable simulator, as it is explained in Sections 4.3.3 and

4.3.4, allows us to explore a wider range of different setups and to conduct

our research in more various situations. This chapter does not detail how we

validate the results obtained with the simulator. This topic is discussed in

Section 6.3.

In the following, we first introduce the methodology we set up to have a

fair comparison among algorithms, then the hardware we chose for our ex-

periments with real robots. We explain also the procedure we use to perform

the experiments. Finally, we describe the simulator we coded to complete

our work.

4.1 The Research Methodology

The focus of our research is to compare learning algorithms, evaluating their

performances on a common test field we already chose (see Chapter 3).

Therefore, we must test all the strategies under the same conditions and

minimize all the possible random fluctuations. This allows us to directly
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correlate the results of our research to the effectiveness of each learning al-

gorithm, because it is the only aspect that varies among experiments.

It is important to notice that we have no need of a particularly advanced

hardware technology. If all the strategies are tested under the same condi-

tions, using the same robots, the results and the adaptation process of the

agents are likely to be dependent only on the learning algorithm used. In fact,

any problem related to the robots affects all the experiments and disturbs

equally all the strategies tested.

To classify simulated and real experiments, we define two different vari-

ables, size of the swarm and prey probability. The size of the swarm is a

self-explaining variable, that indicates the number of robots involved in a

single experiment. The prey probability, on the other hand, is the probability

of a prey to appear at each second of the experiment in a random position

of the arena. Modifying this variable, we change the rate at which the envi-

ronment is filled by prey and, consequently, the number of foragers needed

to collect as many prey as possible. Each combination of these two variables

identifies a different experimental setup.

In order to make the comparison among the learning algorithms as fair as

possible, we decide to apply another important procedure, both in real and

in simulated experiments. This procedure is called blocking design (Mont-

gomery, 2000). It consists in arranging the experimental units in groups

(blocks) which are similar one to another. It leads to a reduction of the

variance of the results.

To implement the blocking design, we coded a small program that accepts

as parameter the prey probability and randomly generates a file (an instance)

where there is indicated the number of prey that have to appear during the

experiment, their timing and the exact location where they have to be placed.

Using every instance only once for each algorithm and employing the same

instances we use with real robots also in simulation, we reduce the influence

of random fluctuations in prey generation on the results of our experiments.

Before preparing the setting for our research with both real and simu-

lated robots, we must decide exactly how to measure the goodness of each

algorithm we compare. We want to know how many prey the colony captures
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during each experiment and we intend to compare this score with the total

number of prey appeared.

We want also to determine if the agents of the colony become specialized

and what is the cost for the whole colony of the prey captured during the

experiment. The cost can be expressed by the colony duty time, that means

the sum of the times each agent spends outside the nest, searching for prey.

A good measure for the income-cost ratio can be found in the work of

Labella (2003). We adopt the efficiency value defined in the mentioned paper

as the main parameter to evaluate our algorithms.

η =
number of retrieved prey

colony duty time
(4.1)

We wrote a program to parse the log files generated both in simulation

and with real robots, to summarize the results and to calculate the efficiency

value.

4.2 The Real Robot Environment

This section introduces the MindS-bots, the robots we chose to employ in

our work, as well as the environment where they act.

4.2.1 The MindS-Bots

The MindS-bots have been built using the Lego MindstormTM , a line of

Lego products that provide a standard set of Lego TechnicTM bricks and

some more special pieces, such as motors, light sensors and bumpers, useful

to build simple but properly working robots.

The main block of a MindstormTM box is the RCX, that contains an

Hitachi H8300-HMS 1 MHz microprocessor, 32 KB of RAM, a Read Only

Memory, 6 slots for AA batteries and a beeper. On the upper side of the

RCX there are six special brick slots, used to connect the main robot body

to actuators and sensors, four buttons and a Liquid Crystals Display, that

we used for debugging purposes. In the front side of the block is positioned
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(a) (b)

Figure 4.1: Figure 4.1(a) shows the model of a MindS-bot obtained with
Leocad, a CAD specifically designed to reproduce Lego bricks. Figure 4.1(b)
is the rendered version of the same model.

an infrared receiver/transmitter that allows the robot to transmit data to a

special Lego USB Tower and then to a PC.

The operating system provided with each MindstormTM box has been

made for simple entertainment and it is not useful for our purposes. Instead

of the original one, we chose to use BrickOS.1 This software embodies a cross-

compiler for the standard C language and supports priority-based preemptive

multitasking, a programming paradigm widely used in our code.

When the RCX is turned on, the default program in the Read Only Mem-

ory is executed. It loads the operating system using the infrared interface.

Then, once BrickOS is loaded and executed on the RCX, it is possible to

upload to the robot the program we want to run.

At the end of each experiment, using the infrared interface and the Lego

USB Tower, it is then possible to download from the robot to a common PC

the data we need for our analysis.

The MindS-bots we use in our work have been designed by Labella (2003)

and employed in his research. In Figure 4.1(a) is shown the model of a MindS-

bot, generated with Leocad,2 a CAD specifically designed to reproduce Lego

bricks.

1http://brickos.sourceforge.net
2http://www.leocad.org
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(a) (b)

Figure 4.2: Pictures of a MindS-bot. Figure 4.2(a) shows a front view of the
robot. The light sensor is active, as it is used during experiments. In the side
view (Figure 4.2(b)) we can see the two motors that move the tracks and, on
top of them, the third motor, linked to the gripper’s arms by an elastic ring
and a Lego axle.

Each robot has three motors and four sensors. The motors are activated

independently and they control the two tracks, used for the movement of the

robot, and the gripper. The latter is composed by two arms, placed in the

front part of the main body, that have a synchronized movement.

The sensor set of each robot consists of two bumpers and two light sensors.

The bumpers are situated in the front and in the back of the main body. Each

of them is connected to a structure assembled with Lego axles that enhances

the obstacle detection.

The front light sensor, placed on top of the gripper, is employed to detect

the presence of a prey and to estimate its proximity. The back light sensor

helps the robot to find its way back to the nest (the nest is marked by a light

source in the middle of the arena, as we see later on in the chapter).

The front and side view of a real MindS-bot are shown in Figure 4.2.

4.2.2 Arena and Prey

The environment in which our robots move is a circular arena with a diameter

of 240 cm. For the geometry of the arena, we chose a circle instead of a square

to guarantee a perfect symmetry. A symmetric shape of the test ground
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should eliminate any possible “privileged zone” during experiments. The

existence of such places could influence the results of the research, affecting

the fairness of the comparison among the learning algorithms.

The inner part of the arena represents the nest, where the robots are

placed at the beginning of each experiment and where they have to bring

the captured prey. No prey can be placed inside the nest and when a robot

completes its task and deposits a prey inside the drop area, the retrieved

object is immediately removed.

A light source is positioned in the exact center of the arena. At the end

of a trial, successful or not, the MindS-bots can then find the nest using their

back light sensors.

To reduce the erroneous readings of the light sensors of the robots, the

floor of the arena, as well as the walls that surround it, have been painted in

white.

The real representations of the prey are plastic cylinders covered by black

curly cotton and partially filled with water. Their color, contrasting with the

one of the arena, allows the front light sensors of the MindS-bots to properly

identify the prey.

4.2.3 The Experiments

For each experimental setup (that is, a combination of the two variables, size

of the colony and prey probability), we perform a fixed number of experiments,

repeating every one of them with the three different algorithms we consider.

Since we want to highlight any difference among the learning strategies,

we have to perform a number of experiments sufficient to show statistically

relevant differences. We found out that five runs were sufficient for our

purposes, thanks to the care we took in reducing external influences.

We fixed the length of each experiment at 3600 seconds (one hour). At

the end of that period, the robots reach a steady state and we can then

analyze the results using the log recorded in each agent. This log keeps trace

of the main events occurred to the robot during the experiment (exit from

the nest, prey successfully retrieved, etc.) and it can be downloaded to a
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Figure 4.3: At the beginning of each experiment, the MindS-bots are placed
on the inner border of the nest. They have a symmetric disposition and the
light source marking the center of the arena is behind them.

common PC using a specific software and the Lego USB Tower we already

mentioned.

The robots start each experiment in a fixed position, as shown in Fig-

ure 4.3. They are placed in the nest, in a symmetric disposition, giving their

backs to the light source that marks the center of the arena.

When the starting signal is given (it is necessary to activate each robot by

means of a run button placed on their upper side), another program running

on a common PC is launched as well. This small program starts a counter

and parse the file describing the prey generation (instance) for the running

experiment. When a prey has to be placed, a sound alert is played and its

coordinates are displayed. The prey is then placed by hand inside the arena,

as indicated. Should be noted that there might be some delays and small

misplacements of the prey due to human intervention. The effects of these

errors are however counterbalanced by having always the same experimenter

for all the instances. In this way, her/his errors influence equally all the

algorithms.
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Prey removal is performed as well. A prey is taken away from the arena

when it has been dropped inside the nest by a robot after a successful re-

trieval.

The MindS-bots communicate their failure (when they give up), their

success and the act of leaving the nest in two ways. The first one is evident

during the experiments. They play three different music pieces according

to the event they have to signal. The second way is to record the event in

their logs, that are analyzed only at the end of each experiment and then

compared to the ones of the other robots.

Not all the experiments are considered as successful and then included

in the analysis. When a major failure of a robot occurs, the experiment is

halted and then started again from the beginning. We adopt this procedure

because we focus on the efficiency of the learning strategies and not on the

hardware implementation of the robots and their reliability. A major hard-

ware failure of an agent could influence the results of the experiment, even if

the mechanical factor is not related to our topic of research.

The experiments we perform are time consuming. Each experiment re-

quires at least one hour of work and, after this period, additional time must

be spent to download the log files from the robots to a PC, to recharge the

batteries and to prepare the environment for a new start up. Moreover, the

failed experiments must be discarded and repeated.

Considering the amount of time needed to accomplish one single successful

experiment, we limit the study on the real robots to two different setups. The

choice of the two setups has been made considering many factors, such as the

number of agents at our disposal and, even more important, the first results

obtained in simulation. We recreate in the real environment the situations

where the differences among the algorithms are emphasized.

In the first setup, we set the size of the colony to four agents and the

prey probability to 0.005 (it means that a prey has probability 0.005 to appear

each second of the experiment and that the average value of prey appeared

in one hour is eighteen).

In the second one, we set the prey probability to 0.01 (that means an

average value of prey appeared in one hour equal to thirty-six) and we hold
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the value of the size of the swarm to four agents. An increment of the size

to six elements would lead to a huge number of unacceptable experiments,

because of the higher risk of hardware major failures.

As already said, we perform five successful experiments for each learning

algorithm. Such amount is sufficient to have statistically significant differ-

ences, that are used to validate the results obtained with the simulator.

4.3 The MindS-miss Simulator

It is our opinion that simulations can be a useful tool to investigate the

dynamics of a swarm, if the simulator is reliable and its results are validated

with a sufficient number of real robot experiments.

With a simulator, we can investigate interesting setups we cannot analyze

in laboratory. As in biology, in a swarm-type approach to a problem, the

number of agents involved can be really huge. The number of hardware-

implemented agents at our disposal is limited as well as their robustness,

while in a virtual environment we can increase the amount of agents in the

colony without reducing its reliability.

Another important issue that led us to the use of simulations is that

they are a fast way to conduct experiments, because they do not require

the continuous attention of an operator and they can be run in parallel on

different machines.

In the past years, many critiques have been appointed to the use of sim-

ulators in the robotic research field. According to some authors, the use of

a simulator was dangerous, because it does not reproduce the world where

the real robots are supposed to act, but it reflects the programmer’s beliefs

about the world itself. Moreover, control programs that work in a simu-

lation probably will not work when applied to real robots, because of the

differences between the simulated actuators and sensors and the real ones

(Brooks, 1992).

A new concept of simulator was then introduced by Jakobi et al. (1995).

The authors focused on the development of control systems for autonomous

robots through the use of artificial evolution in simulation, that would be
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later employed on hardware-implemented agents.

Some important guidelines for the realization of a reliable simulator emerge

from their work. The authors assert that a simulation must be designed us-

ing empirical information measured in real world. More important, it has

to be regularly validated by data produced by real experiments. Artificial

noise should be used at each level to emulate erroneous sensor readings and

environmental disturbs, in order to obtain sufficiently robust programs.

Another key issue discussed in the same paper is which part of the reality

must be simulated. According to the authors, only the important features

have to be included in the model. These features are chosen intuitively and

they vary according to the kind of simulation or controller we want to build.

The validation of the model will then assure the correctness of the choice.

A simulator that includes only the strictly necessary features and that

introduces noise (to emulate environmental disturbs) can be defined as a

minimal one.

One of the most tough task we had to accomplish during our research

work was the design and the implementation of the MindS-miss simulator.

To validate the results of the virtual environment, we use the ones obtained

in real robot experiments (to be more precise, we control that the differences

among the three strategies detected in simulation are the same that we find

in real robot experiments).

The MindS-miss is not a fully minimal simulator. It introduces noise to

robot readings, but we decided to use an accurate physical engine, because

we estimated that physical interactions among agents and between agents

and prey could be very important in our case study.

The UML schema of the simulator can be found in Appendix A.

4.3.1 Simulated Physics

In order to obtain an accurate reproduction of the reality, we built our sim-

ulator employing a physical simulator engine. We began to work with the

VortexTM libraries but then we switched to the Open Dynamics Engine,3 a

3http://ode.org
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free, high-quality library for simulating articulated rigid body dynamics.

Another important side tool we used in the development of our simula-

tor is KODEX.4 This wrapper has been coded by Kovan Laboratory5 and it

is intended to provide model loading facilities similar to VortexTM . More-

over, it translates the function calls to the VortexTM libraries into the ODE

equivalent, creating, when necessary, additional data structures.

Unfortunately, the KODEK version we used6 still contained a huge num-

ber of bugs. To avoid dangerous problems, the final version of our simulator

included a significant number of direct calls to the ODE library and sev-

eral bug reports were sent to the Kovan Laboratory in order to improve the

development of their wrapper.

All the relevant elements of the experiments, as well as the interactions

among them, are modeled and reproduced in MindS-miss. The circular arena

is represented as a solid floor surrounded by a finite number of squared walls.

In the center of the experimental field, a sphere indicates the nest of the

colony. The prey are reproduced as solid black cylinders that appear and

disappear from the environment.

Each robot has been modeled with a limited number of polygons. Main

body, front and back bumpers, six wheels (three at each side of the main

body, that replace the tracks of the real robots) and an additional led to

indicate the gripper activity are introduced in the virtual environment as

independent bodies and then linked with special joints.

The movement of the robot is decided by its controller applying a torque

force to the six wheels. The simulation of the gripper is somewhat simplified

because it is obtained creating a temporary joint between the robot main

body and the cylinder representing the grasped prey. Gripping time, needed

by the arms of a real robot to open and close, is modeled as a delay introduced

when the joint is created and deleted.

The core of MindS-miss is represented by the independent controllers

used by each robot involved in a specific simulation. They have the same

4Kovan ODE eXtensions
5http://kovan.ceng.metu.edu.tr
6KODEX version 0.5.2
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Figure 4.4: Each simulated MindS-bot is a simplified but physically accurate
version of the original ones. In fact, the behaviour of the virtual robots is
the same that we can observe on the hardware-implemented agents.

structure of the ones we coded for the real robots and they are invoked every

100 ms.

At each simulation step,7 the Open Dynamics Engine checks the con-

tacts among the objects present in the simulation and applies the forces that

are necessary to resolve physical contacts and constraints. When a bumper

touches another body, a special callback function we wrote in MindS-miss

passes the information to the control system of the concerned robot, simu-

lating a touch sensor.

In order to speed up the simulation, the central sphere and the walls are

declared as frozen. This way, the physics engine does not need to calculate

the forces applied to those objects. Another trick we use to improve the per-

formance is to disable every possible check over the collisions among objects

that will never touch each other (i.e., the wheels on the right side of a robot

will never collide with the ones placed on the other side).

7The simulation step is invoked with a sensibly higher frequency than the control step
because it has to ensure the coherence of the physics in the simulated world.
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Figure 4.5: Colony composed by six simulated MindS-bots in their starting
positions, at the beginning of an experiment. The black cylinder is the
representation of a prey.

All the objects in the simulation and their properties are described in

XML files parsed recursively. The main program loads the root file (World.me)

and then all the other ones referenced by it.

All the bodies are created at start-up but the prey, that need to be created

and destroyed according to a special timing file (prey_timing.sam), which

is also loaded at the beginning of the simulation.

Even if usually no rendering is used during the simulated experiments, a

renderer is available and it was used to make a first visual control over the

behaviour of the colony in the virtual environment. The renderer is based

on OpenGL libraries and a picture of the simulated world where our robots

act is shown in Figure 4.5.

4.3.2 Tuning the Parameters

As we said in section 4.3, one of the main critiques appointed to the simula-

tors was the lack of coherence with the real world. ODE has proved to be a

robust and reliable library, but in order to obtain a valid simulated environ-

ment we had to tune all the parameters that describe each object represented

in the virtual world.
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As suggested by Jakobi et al. (1995), we based our work on empirical ob-

servations. Weight and physical dimensions of every real object were carefully

measured, scaled and included in the XML description of the correspondent

simulated body.

Parameters that were not easily measurable, such as the coefficient of

dynamic friction between two objects or the exact speed of the tracks of the

MindS-bots, were reasonably guessed and then hand tuned, comparing the

real behaviour and the simulated one.

To obtain a reliable model of the two light sensors placed on top of each

robot, we used the sampling technique. We sampled sensor readings in the

real environment (according to the distance and the angle of visibility among

the objects). With the obtained values, we compiled a table (look-up table)

for each sensor. At each control step, the main simulation engine computes

the position of the objects in the arena and, for the sensors of each robot,

finds in the respective look-up tables the readings to pass to the specific

controller. A probabilistic error that simulates the environmental noise is

then added to the values found and the final results are what the controller

really reads from the simulated sensors.

4.3.3 The Simulated Experiments

The simulated experiments reflect the real ones in every possible detail. As

we said in the previous sections, the controller of the virtual MindS-bots has

been ported with no major modifications from the one running on the real

robots. The use of a virtual class Controller and of three other derived

classes (one for each learning algorithm we want to compare) allows a fast

and easy change in the learning strategy of the robots.

The length of each experiment is set to 3600 seconds and no visual in-

terface is employed to speed up the simulation. Accurate log files are saved

during each run. The logs collect the same data recorded by real robots and

some additional information.

Since we have at our disposal a high performing, multi processor cluster,

we decide to run more than five experiments for each setup and we set the
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prey probability
0.005 0.01 0.02

2 40 40 40
size 4 40 40 40

6 40 40 40

Table 4.1: This Table shows the different setups we use in the simulated
environment. They are classified by the values of two independent variables.
Size of the colony indicates the number of robots employed in the experiment,
while prey probability is the probability at each second for a prey to appear
in the arena. Forty runs are performed for each experimental setup.

number of runs to forty.

As for the real experiments, we want a comparison among the learning

algorithms as fair as possible. We use the same instances for prey timing

already employed in experiments with real robots. Additional ones are also

generated to fulfill our needs in simulation.

The random number generator of the simulator, used by robot controllers,

accepts an initialization value, called seed. Passing twice the same seed to

the simulator at the beginning of a run ensures that the two sequences of

generated random numbers during the experiments are exactly the same.

Since we intend to simulate forty runs for each experimental setup, we prepare

also a list of forty seeds that are paired with the instances of prey appearance

already mentioned.

4.3.4 Better than Reality

The possibilities of the simulated environment are far beyond the ones we

have with the real robots. We can change more freely the two variables that

define the experimental setup, the size of the colony and the prey probability.

The use of a higher number of robots does not increase the probability of

a major hardware failure that may invalidate the experiment. Moreover,

the simulator can introduce in the arena an arbitrary number of prey. An

example of setups run only in simulation can be observed in Figure 4.6, where

a colony of six MindS-bots is searching for prey in the virtual arena.

We intend to test the learning strategies under as many different condi-
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Figure 4.6: The simulator allows us to perform experiments with a higher
number of robots. In this example, a colony of six MindS-bots is searching
for prey in the arena.

tions as possible. Consequently, we decide to try nine setups. The setups

are characterized by three different values of both variables, size and prey

probability, as illustrated in Table 4.1. The setups corresponding to {size=4,

prey probability=0.005} and {size=4, prey probability=0.01} are the ones we

test also with real experiments.

The total number of runs we perform for each learning strategy is then

equal to 360. Among these simulations, we discard the ones that present run

time problems. ODE and KODEX are still under development and, testing

our simulator, we noticed that a low percentage of trials terminated their

execution prematurely.

As we verified, the problems do not arise from our code, but they are

linked to infrequent run-time errors that emerge in the mentioned libraries
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and that simply cause the immediate end of the program. The detection of

these occurrences is very easy and the correspondent log files can be then

excluded from the final data analysis.
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Chapter 5

Three Different Strategies

In this chapter we present the original version of the three algorithms we

chose for our research, as well as the reasons why we chose them and the

modifications we introduced to let them fit our experimental setup.

We also show how the learning strategy of the algorithms is applied to

the parameter we need to adapt, the Time in Nest.

5.1 A Specific Prey Retrieval Algorithm

The first algorithm on which we focus was designed by Labella (2003). The

aim of the original work was to prove that swarm intelligence techniques can

be used in a prey retrieval task to improve the performance of the system.

Communication among agents is not allowed and the dynamic adaptation

of the agents in the environment is obtained by exploiting only local infor-

mation. A learning strategy, based on probabilistic parameters, is the core

of the adaptation process.

The work was later extended by the author, that focused on the impor-

tance of task allocation in prey retrieval (Labella et al., 2004a) and on the

efficiency improvements obtained through collaboration among agents (La-

bella, 2004).

Since our work originated from the research made by Labella, this algo-

rithm was the natural starting point for our comparison.

45
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In order to extend the original work described in the mentioned papers,

we decide also to use as test field for our real robots the experimental setup

realized for Labella’s tests, as already seen in previous chapters.

This thesis focus on the comparison among different learning strategies

applied to a specific parameter that controls the time agents spend in the

nest. Therefore, we want to keep as constant as possible the control archi-

tecture of the robots, with the only exception of the learning algorithm used

to update the parameter of interest.

We made this choice in order to directly link the performance of the

swarm to the efficiency of each learning strategy. It is up to them to create

the right level of specialization among the agents. If we do not vary the

main structure of the robot architecture, we eliminate the interference of any

other variable, not related to the core of our research, that could influence

the experimental results.

In the next sections, we analyze in detail the phases in which the prey

retrieval task has been decomposed to implement the main control system.

5.1.1 States and Behaviours

The control program of the agents can be summarized with a finite state

machine, as represented in Figure 5.1.

The main states described represent the different phases that compose

the prey retrieval task. The transitions are executed under some specific

self-explicative conditions highlighted in the schema.

Each state can be considered as an independent sub-task:

Rest The MindS-bot stays in the nest, waiting until the predicate can go

changes its value to true. When it happens, the agent becomes active

and starts searching. The time it takes to can go to become true is

controlled by the learning algorithms.

Search The robot explores the environment, searching for prey. The moving

direction is chosen randomly and obstacles are avoided. When a prey

is found and grasped (that is, have prey is true), the agent switches its
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Figure 5.1: This diagram is a high level representation of a slightly modified
version of the control program realized for the MindS-bots by Labella (2003).

state to Retrieve. If the searching time expired and no prey is spotted

in front of the robot, then it has to give up.

Retrieve The MindS-bot carries the prey to the nest, avoiding obstacles if

needed.

Deposit When the robot arrives in the nest, it drops the prey. As soon

as the operation is completed and the retrieving has been successfully

completed, it starts resting and updates the parameter that determines

how long it will stay in the nest (this parameter expresses a probability

value in Labella’s algorithm).

Give up The robot gives up. It comes back to the nest after a failure and

updates its parameter for nest resting.

The reaction to external stimuli is achieved with a number of behaviours.

These behaviours allow the execution of the sub-tasks and are triggered by

some activation conditions directly related to sensor readings.

Each state uses only a restricted number of behaviours, as it can be seen

in Table 5.1.
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State Behaviour Conditions

Search

gripping hit prey ∧ gripper open
avoiding ( front bumper ∧

gripper open ∧ ¬prey in gripper )
∨ back bumper

releasing gripper closed ∧ ¬prey in gripper
exploring gripper open ∧ ¬front bumper

∧ ¬back bumper

Retrieve
avoiding back bumper
back light following ¬back bumper

Give Up
avoiding back bumper
back light following ¬back bumper

Deposit
depositing have prey
back light following ¬have prey ∧ ¬in nest

Rest nest exiting

Table 5.1: List of behaviours used by every possible state in the control sys-
tem of a MindS-bot. Each behaviour is triggered by the activation conditions
listed in the last column of the table. The execution of a behaviour inhibits
the activation of all others listed below.

5.1.2 How Robots Learn

The aim of this algorithm is easily explained: given a colony (or swarm) of

homogeneous robots employed in a foraging task, they should self-organize to

improve the overall efficiency with a dynamic task allocation. The goal, fully

achieved in the original research, was to insure the creation of two classes

of agents, foragers (agents with a low latency time in the nest) and loafers

(robots that rest for longer periods), according to the prey availability in the

environment.

The difference among the robots lies in the amount of time they spend

in the nest before leaving to search for prey. In this algorithm, this is not a

fixed time, but it is determined by a probabilistic value, Pl.

A specific algorithm, called Variable Delta Rule, was created by the au-

thor to adjust the probability to leave the nest of each agent. This system,

specified in Algorithm 1, rewards the robot when it successfully retrieves a

prey, raising its Pl value. An agent reporting a failure, on the other hand,



5.1. A SPECIFIC PREY RETRIEVAL ALGORITHM 49

Algorithm 1 Variable Delta Rule.
Pl is the probability for the agent to leave the nest

initialization:

successes ← 0
failures ← 0
Pl ← INITIAL VALUE

if prey retrieved then

successes ← successes + 1
failures ← 0
Pl ← Pl + success * ∆
if Pl > Pmax then

Pl ← Pmax

end if

else if timeout then

failures ← failures + 1
successes ← 0
Pl ← Pl - failures * ∆
if Pl < Pmin then

Pl ← Pmin

end if

end if

will see its probability reduced.

The amount to be added or subtracted to Pl is not constant, but it varies

according to the consecutive failures or successes reported by the agent. Pl

is also bounded. If it were not bounded, an agent could reach a Pl value

too high or, on the opposite side, equal to 0. In the second case, the agent

would be never again allowed (during the current experiment) to leave the

nest, stopping the process of dynamic adaptation chased by the author.

In the original version of the algorithm, as well as in ours, Pl=[0.0015,

0.05] and the initialization value of Pl is fixed to 0.033.

When an agent rests in the nest, its controller casts a random generated

number between 0 and 1 at each second. If the value is less or equal to the

value of Pl, then the robot is allowed to leave the nest and the can go flag

displayed in Figure 5.1 is set to true.

The search time for each agent is fixed to 228 seconds. After that period,
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if no prey is in sight, the agent comes back to the nest, reporting a failure.

The timeout value was decided by Labella after having analysed the mean

time a MindS-bot need to find a prey.

5.2 ALLIANCE

The second control architecture we chose for our research is ALLIANCE.

Designed by Parker (1998), it is a fully distributed, behaviour-based soft-

ware architecture, developed to obtain fault tolerant cooperative control of

teams of mobile robots. We chose this algorithm because of the similarities

it shows with Labella’s one (robots learn and adapt their behaviour in an

automatic way, even when a centralized knowledge is absent) and it is a well

known and widely used learning strategy in mainstream robotics.

It is interesting that ALLIANCE was not specifically designed for swarm

robotics. We want to investigate if the modifications introduced to the algo-

rithm to let it fit our experimental setup do not lead to a loss of efficiency. We

can see if an algorithm designed for multi-robot cooperation can be employed

using the more restrictive constraints of swarm robotics. It is also worth to

note that the missions for which Parker’s algorithm has been designed are

much more complex than a simple prey retrieval task.

ALLIANCE allows reliable cooperation among small or medium-sized

teams of heterogeneous mobile robots. The teams are employed in missions

composed by different tasks that can have ordering dependencies.

An important assumption in ALLIANCE is that not all tasks can be

performed by all team members. Moreover, even if more than one robot can

accomplish a specific task, they can perform it with different efficiency. This

is not the case in our experimental setup, because in prey retrieval all robots

can perform the single task required.

The environment where the agents act is considered dynamic and it is

assumed that the robots of the team have a probability greater than 0 to

detect the effect of their own actions through their sensors.

The control architecture has been designed for intentional cooperation.

It means that there is communication among the agents and that each agent
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does not lie to other team mates. Nevertheless, the availability of the com-

munication medium is not guaranteed, as well as the reliability of each agent.

The failure of an agent could be not communicated to team mates.

The goal of ALLIANCE is to allow each robot of the team to select

appropriate actions to perform during a mission. The choice is made con-

sidering the requirements of the mission, the activities of other robots (this

information is available through a broadcasted communication), the current

environmental conditions and the robot’s own internal status.

The whole mechanism is implemented using impatience and acquiescence,

two mathematically-modeled motivations that trigger the execution of high-

level behaviour sets. While impatience incentives a robot to perform tasks

in which other robots fail, acquiescence enables a robot to handle situations

when the robot itself fails to accomplish its task.

Each behaviour set has a parameter, the threshold of activation (θ), that

determines the level of motivation beyond which the behaviour set will be-

come active.

Parker (1997) extended the original architecture in L-ALLIANCE. It

implements an adaptation of the parameters controlling motivational rates

based on learning. This extension is not considered in our work, since it is

not useful when agents cannot communicate among them.

5.2.1 ALLIANCE on Prey Retrieval

ALLIANCE has not been designed to be implemented on swarms of robots

and the author supposed that a communication channel is available to the

agents. Moreover, in the original version of the architecture, the robots are

not homogeneous and the missions they have to accomplish are more complex

than prey retrieval, where there is only one high level behaviour set.

In order to adapt ALLIANCE to our purposes, we had to introduce some

changes in its original design.1

1We tried to stick as much as possible to the original schema, but we hat to modify
it to have sound results. We contacted the author asking for some comments, but we
received no answer. When we refer to ALLIANCE in the following chapters, the reader
should keep in mind that we refer to our version of the algorithm.
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We start from the assumptions described by Parker (1998):

1. The robots of the team can detect the effect of their own actions, with

some probability greater than 0.

2. Robot ri can detect the actions of other team members for which ri

has redundant capabilities, with some probability greater than 0; these

actions may be detected through any available means, including explicit

broadcast communication.

3. Robots of the team do not lie and are not intentionally adversarial.

4. The communication medium is not guaranteed to be available.

5. The robots do not possess perfect sensors and effectors.

6. Any of the robot subsystems can fail, with some probability greater

than 0.

7. If a robot fails, it cannot necessarily communicate its failure to its team

mates.

8. A centralized store of complete world knowledge is not available.

As we said, in our work the robots are homogeneous, even if run time

problems or not intentional physical diversities could lead to different levels

of efficiency, and they cannot directly communicate.

In our experiments, there is only one high level behaviour set. It leads

the robots to search for prey in the environment and to retrieve what it has

been found to the nest or to come back after the expiration of a searching

time limit. We decide to set the time limit value to 228 seconds, as it is in

Labella’s algorithm.

To adapt the control architecture to our needs, we modify some of the

original assumptions in the following way:

1. The robots of the team can detect the effect of their own actions, with

some probability greater than 0.
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2. Robot ri cannot directly detect the actions of other team members

(MindS-bots do not have sensor capability to distinguish team mates

and their actions).

3. Robots of the team are not intentionally adversarial.

4. The direct communications medium is never available (in swarm

robotics direct communication among agents is not allowed. The only

kind of communication the robots may employ is the indirect one, as

insects use stigmergy to organize their collective behaviour).

5. The robots do not possess perfect sensors and effectors.

6. Any of the robot subsystems can fail, with some probability greater

than 0.

7. If a robot fails, it cannot directly communicate its failure to its

teammates.

8. A centralized store of complete world knowledge is not available.

Another important aspect that needs to be modified is the way with which

impatience and acquiescence are handled.

In the original algorithm a motivational behaviour works as follows. A

robot’s motivation to activate any behaviour set is initialized to 0. Then, the

robot’s motivation to perform a specific behaviour set is incremented at a fast

rate of impatience, as long as the task corresponding to that behaviour set

is not being performed by any other robot, or at a slow rate of impatience,

if some other robot is performing it. Impatience is modeled as a specific

mathematical function.

If the motivation level of a behaviour set exceeds the value of its threshold

of activation (θ), the behaviour set becomes active.

If a robot is performing a specific task, it may still give up if it perceives

that the task is not being accomplished in an acceptable period of time. The

giving up mechanism is handled with the acquiescence characteristic.
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We do not present here the full formal model described by Parker (1998).

In the following, we detail the modified version of ALLIANCE we used in

our work, its main parameters and mathematical formulas.

Motivation Motivation value is modeled as a mathematical function:

m(t) = [m(t− 1) + impatience(t)] ∗ acquiescence(t) (5.1)

When the value of the function is greater than the threshold of ac-

tivation2 θ, the robot is forced to exit from the nest and to look for

prey.

This function is calculated only when the robot is resting in the nest

and its increment is time dependent. The value of motivation can be

set to 0 only when acquiescence(t) = 0, that means the robot is giving

up and coming back to the nest to start resting.

We eliminated three other terms present in the original version of this

function. They modified the final value of motivation under circum-

stances that are not valid in our experimental setup, such as the com-

munication among team mates and the presence of more than one single

behaviour set.

Acquiescence This mathematically-modeled motivation is originally used

by the robot controller to evaluate when it is time to give up and to

come back to the nest.

The value of this function becomes really important when the behaviour

set is active (that is, when the robot is searching for prey). When the

time spent by the robot searching exceeds the timeout limit of 228

seconds, the function value is set to 0.

acquiescence(t) =







0 if timeout expired

1 else
(5.2)

2In our prey retrieval experiments, we have only one behaviour set that can be executed
by the robots. Therefore, when we generally refer to θ, we intend the threshold associated
to that behaviour set.



5.2. ALLIANCE 55

After giving up, the robot returns to the nest and it starts resting.

Motivation value is first reset and then it begins to increase again.

Once the resting period starts, acquiescence remains constantly equal

to 1.

As we did for motivation, we had to simplify the original acquiescence

function, to eliminate all the parameters dependent to direct commu-

nication among robots and to the presence of more than one high level

behaviour set.

Impatience Considering that in our case robots are not aware of the state

of the other agents, their impatience value grows independently, as it

is specified by the following functions:

impatience(t) = δ fast(t) (5.3)

δ fast(t) =
θ

(min-delay + (task-time(t) − low) ∗ scale factor)
(5.4)

Where:

task-time(t) = (average time over robot’s trials on prey retrieval task)

+ (one standard deviation of the times of these attempts)

We set the value of some parameters needed to calculate the impatience

function. The constant max-delay is set equal to 228 seconds (the

same value of timeout) and we experimentally estimate min-delay = 45

seconds. The latter represents the minimum possible delay employed

by a robot to exit the nest, to grab a prey and to retrieve it (to measure

the minimum value, we placed a prey just outside the nest’s perimeter

and in front of the robot).

We also decide the values for two additional parameters, high and low,

used in the original version of the algorithm:

low = min-delay
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high = max-delay

Our choice is motivated by the fact that in the modified version of the

algorithm it is not possible for an agent to record the performance of

its team mates. Then, we assign to the two parameters the minimum

allowed value. Finally, we calculate the scale factor

scale factor =
max-delay − min-delay

high − low
= 1 (5.5)

At the beginning of each experiment (both simulated and real), to avoid

that the robot starves in the nest for a long period before starting to look

for prey, we initialize its motivation value to 0.87 ∗ θ. With this correction,

the first exit from the nest is after about 30 seconds from the beginning of

the experiment, as it happens in average in Labella’s algorithm and at each

start up in the one described in the next section.

The low level behaviours, that compose the main behaviour set, are the

same we use in the first algorithm. What changes among the two strategies

is the time the robots spend in the nest and the way this time varies over

time. In the case of the modified version of ALLIANCE, it is the task-time

variable to lead the adaptation. It modifies the growing rate of the motivation

considering the performance of the robot over the past trials made.

5.3 Distributed Learning in Swarm Systems

The third candidate for comparison is an adaptive line-search algorithm pre-

sented by Li (2002) and Li et al. (2004). The goal of the algorithm is to

offer a method to improve the performance of an artificial swarm on a given

task. Learning has been chosen as an automatic way to adjust the control

parameters without a priori assuming the degree of heterogeneity needed by

the swarm.

The main idea behind the work of the authors is that, starting from an

homogeneous swarm of agents, the adaptation obtained with the learning

algorithm can lead to a diversification among the robots. This diversity
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can bring significant advantages to the swarm overall performance, since the

system becomes specialized.

Li et al. (2004) identify also a method to measure specialization in a

system, as a function of both diversity and overall performance of the swarm.

Specialization can be defined as “the part of diversity that is demanded for

better performance”.

This learning strategy has been tested in simulation over two generalized

versions of the stick-pulling experiment and over the original one as well.

The original version of that experiment was used by Martinoli and Mon-

dada (1995) and by Ijspeert et al. (2001) to investigate collaboration in non-

communicating robot swarms. In the first set-up, robots equipped with a

gripper and proximity sensors search for sticks in a circular arena to pull

them out of the ground. The length of each stick has been chosen in a

way that a single robot cannot succeed on its own in the task, but only a

collaboration between two agents with two successive grips can lead to the

accomplishment of the task. In the original version of the experiment, the

control system of the agents was quite simple. Each robot randomly moves

in the arena. When it identifies a stick, it tries to pull it out of the ground.

The agent can recognize by the speed of the elevation arm whether another

team mate is already holding the same stick or not. In the first case, the task

is completed; the robots leave the stick out of the ground and start searching

for new ones. In the second case, the robot holds the stick for a given time,

waiting for another agent to come and to complete the task.

The maximum delay that a robot waits holding the stick is called the

gripping time parameter (GTP). The experiments explained in the already

mentioned papers show the variation of the performance of the swarm when

both the GTP of each robot and the size of the swarm change.

The two generalized versions of the stick pulling experiment have been

introduced by Li et al. (2004) and tested only in simulation. They have

the same structure of the original experiment, but they extend its purposes

focusing on different aspects of the collaboration. Issues related to sequential

collaboration and to parallel collaboration are explored. The goal is achieved

using longer or heavier sticks. The former require the successful sequential
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Figure 5.2: The original learning algorithm designed to improve the swarm’s
performance by means of an adaptive change of the GTP parameter, as
presented by Li et al. (2004).

collaboration of a number k of robots, while the latter needs a kind of parallel

collaboration because k agents must act at the same moment to pull them

out of the ground.

The learning algorithm described by Li (2002) and Li et al. (2004) focuses

on the automatic and dynamic adaptation of the GTP in a swarm of inde-

pendent robots. The agents adapt their parameter in an independent way to

maximize the overall performance of the colony.

What makes this learning strategy particularly suitable as our third choice

is that, as Labella’s one, it was specifically designed for swarm robotics.

Moreover, it presents only one parameter that is adapted with learning.

In the stick pulling experiment, as well as in prey retrieval, every agent

has the same capabilities of the others. In the first case, they have to grip

sticks out of the floor, while in the second one the task is accomplished when

a robot retrieves a prey found in the environment. Finally, also the shape

of the arena used in the original stick pulling experiments is circular, as the

one we prepared for our experimental setup.

With the original learning algorithm, two different types of reinforcement

signal are used. A local one rewards the agent when it achieves a successful
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collaboration, pulling a stick out of the ground. The second one, a global

reinforcement signal, is broadcasted to all the agents and it specifies the

performance of the swarm. The global reinforcement signal is particularly

important in the generalized version of the stick pulling experiment that

requires sequential collaboration, because in this case only the the robot

that makes the final grip knows if the collaboration has been successful.

The schema of the original version of the learning algorithm is shown in

Figure 5.2. After the initialization of the variables that hold the offset and the

multiplication factor of the GTP (δ
−
, δ+, ∆

−
and ∆+), the main cycle starts.

Each agent first updates its GTP in a random chosen direction s. Then, after

a period Tm, the robot checks its performance using the two reinforcement

signals. If the performance is better than before, then the agent continues in

the same direction. Otherwise, it changes the direction and it also undoes the

last update made to the GTP. Offset and multiplication factor of the GTP

are also changed during learning in order to speed up the convergence of the

parameter to the optimal value. They are increased when the same direction

is chosen twice, while they are decreased when the performance oscillates.

5.3.1 Learning on Prey Retrieval

As we did for ALLIANCE, we describe now how the original algorithm de-

signed for the stick pulling experiment has been modified to fit our experi-

mental setup.

As already said, we do not use any communication media among the

robots or between the robots and a possible central unit. In the original

version of the algorithm both a local and a global reinforcement signal were

used. The second one allowed the robots to estimate the performance of

their behaviour even in situations where an immediate feedback was not

available, i.e., when sequential collaboration was required. In that case,

only the last robot, the one who pulled the stick out of the ground, knew

that the collaboration was successful. We limit our reinforcement signals

to the local one. This should not lead to information loss, because in prey

retrieval experiments each agent knows when its task has been successful (a
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prey retrieved to the nest is obviously a success, while the expiration of the

searching time without any finding must be considered as a failure). The

main loop of the algorithm is executed each time the robot comes back to

the nest.

In the original algorithm, the search direction s is chosen in a random

way, because it is not obvious if the GTP must be increased or decreased to

improve the performance of the system. In our case, we need to adapt the

Time in Nest parameter, that should be changed according to the amount of

prey found by the agents in the environment. Analyzing the task our robot

must achieve, we know that in case of success a robot will most likely find

another prey in the environment, while if it comes back to the nest after a

failure, the execution of another search task should be delayed.

We deduce that it would be pointless to change our parameter in a random

way. The reinforcement signal we use can be only positive or negative (prey

found or failure) and we associate the positive one to a reduction of the

Time in Nest parameter, while a failure would lead to an increase of the

value associated to the variable.

In order to make the three algorithms more homogeneous, we bound the

variable that holds the Time in Nest parameter:

WINT (Waiting In Nest Time) = {1, 667} (5.6)

The values of the variable are expressed in seconds. We chose 1 as lower

bound because in the first algorithm we presented each robot could leave the

nest in every moment since it starts its sleeping time. The upper bound is

equal to the average value of the time spent in the nest by a robot using

the first algorithm, when the value associated to its probability to leave the

nest is equal to 0.0015, that is, the minimum allowed (notice that in Labella’s

probabilistic algorithm the robots could theoretically wait an infinite amount

of time).

The initialization value for the WINT variable is 30 seconds The robots

leave the nest for the first time after a period equal to the one we employed

in the modified version of ALLIANCE. In Labella’s algorithm, the average
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Algorithmic variables:

Range Description
∆+ [2, 30]
∆

−
[-30,-2]

δ+ [1.1, 5]
δ
−

[0.2,0.9]
r0 {success, failure} ∪ {void} previous performance
r {success, failure} current performance

repeat boolean reinforcement flag
switch boolean direction flag

Table 5.2: Values and bounds of the variables in the modified version of the
algorithm designed by Li et al. (2004).

Variable Init value
∆+ 5
∆

−
-5

δ+ 2.4
δ
−

0.5

Table 5.3: Initialization values of the WINT enlarge and shrink factors and
offsets.

delay the agents spend in time at the beginning of the experiment is 30

seconds as well.

The other variables used by Li et al. (2004) are also employed in our

modified version. Nevertheless, we change some of the bounds of the original

GTP offsets and factors, as shown in Table 5.2.

We do these modifications in order to reduce the dependency of the re-

sults on other factors than the learning algorithm. As in the original prey

retrieval algorithm and in the adapted version of ALLIANCE, four consecu-

tive successful retrieval bring the WINT variable from its lower value to the

higher allowed value and vice versa.

Algorithm 2 details the structure of our modified version of the original

Li’s learning strategy.

In Tables 5.3 and 5.4 we present the initialization values of the variables

and also the constants we used in our adaptation of the algorithm.

The Tm parameter (average period for reinforcement signal) is useless for
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Algorithmic parameters:

Value Description
E 1.9 WINT offset enlarge factor
F 0.3 WINT factor enlarge ratio
U 2 WINT offset shrink divider
V 0.5 WINT factor shrink ratio

Table 5.4: In our modified version of the algorithm, we do not change the
values associated to the parameters. Therefore, these values are the same
employed by Li et al. (2004).

our purposes, because the reinforcement is assigned to each robot when it

comes back to the nest after a trial (successful or unsuccessful).
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Algorithm 2 Li’s Algorithm on Prey Retrieval.
WINT is the time an agent has to stay in the nest, expressed in seconds.

initialization:

Initialize ∆+, ∆
−

, δ+, δ
−

r ← no value ; repeat ← 0 ; WINT ← 30

if prey retrieved then

if r == no value then

repeat ← 0
else if r == success then

if repeat == 1 then

∆
−
← E * ∆

−

δ
−
← δ

−
+ F * ( δ

−
- 1 )

check if ∆
−

and δ
−

are out of bounds

end if

flip repeat
else if r == failure then

WINT ← ( WINT * 1

δ+
) - ∆+

check if WINT is out of bounds

∆+ ←
∆+

U

δ+ ← δ+ - V * ( δ+ - 1 )
check if ∆+ and δ+ are out of bounds

repeat ← 0
end if

WINT ← δ
−

* ( WINT + ∆
−

)
check if WINT is out of bounds

r ← success
else if timeout then

if r == no value then

repeat ← 0
else if r == failure then

if repeat == 1 then

∆+ ← E * ∆+

δ+ ← δ+ + F * ( δ+ - 1 )
check if ∆+ and δ+ are out of bounds

end if

flip repeat
else if r == success then

WINT ← ( WINT * 1

δ
−

) - ∆
−

check if WINT is out of bounds

∆
−
← ∆

−

U

δ
−
← δ

−
- V * ( δ

−
- 1 )

check if ∆
−

and δ
−

are out of bounds

repeat ← 0
end if

WINT ← δ+ * ( WINT + ∆+ )
check if WINT is out of bounds

r ← failure
end if
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Chapter 6

Results

In the following, we present the results we obtained applying our method-

ology. We detail the procedure we employed to prove the soundness of our

simulator and its efficiency as an instrument in the research.

We explain which are the parameters we are interested in comparing and

what results we obtained for each algorithm.1

Also, we show how our procedure allows us to draw final conclusions on

the performance of the algorithms we considered.

6.1 Parameters of Interest

Our research focuses on the individual, autonomous learning on one impor-

tant variable, that is, the time each robot spends in the nest before starting

a new prey retrieval task.

ALLIANCE and the learning algorithm designed by Li directly fix the

time the agent will wait after each successful or unsuccessful trial, while in

Labella’s Variable Delta Rule the adaptation is made indirectly by means of

the changes of a probabilistic value.

The main parameter we use to compare results is the already defined

efficiency (see Equation 4.1):

1The data analysis has been performed using GNU R, a language and environment for
statistical computing and graphics. It provides a wide variety of statistical and graphical
techniques.

65
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η =
number of retrieved prey

colony duty time

It allows to evaluate the income-cost ratio of the captured prey for the

whole colony, in terms of time spent searching outside the nest.

Another aspect we are interested in rating is the percentage of prey cap-

tured by the robots, for each setup and for each learning algorithm. It is

defined as:

∑N

i=1
prey captured in experiment i

∑N

i=1
prey appeared in experiment i

(6.1)

Finally, the last parameter we intend to compare is the degree of spe-

cialization we reach with each strategy. We want to evaluate if, at the end

of the experiments, our colony has been splitted in two different main cate-

gories, foragers (robots that frequently leave the nest to retrieve prey) and

loafers (robots that stay in the nest for longer periods), and if the size of

those groups changes according to the setup we are evaluating. We expect

that a good adaptation leads to an enlargement of the group of the foragers

when the prey probability increases. On the contrary, if we increment the

size of the colony (holding the prey probability) we expect a different kind of

distribution among the agents.

6.2 Simulation Results

We start our analysis explaining the results obtained in simulation for each

learning strategy. Later, in Section 6.2.4, we group the results together and

analyze the differences among algorithms.

6.2.1 Labella’s Algorithm

In this section we elaborate the data we obtained using the learning algorithm

designed by Labella (2003), the Variable Delta Rule.

Figure 6.1 summarizes the effects on efficiency coming from changes of

the two variables which define each experimental setup, prey probability and
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prey probability
0.005 0.01 0.02

2 79.20 70.66 41.92
size 4 81.46 86.49 70.83

6 86.98 86.92 77.07

Table 6.1: Percentage of captured prey over the total number of prey ap-
peared for each experimental setup, when we use Labella’s Variable Delta
Rule (see Equation 6.1).

size of the colony.

As we could expect, efficiency increases when prey probability is increased

as well. A higher amount of prey in the environment causes fewer failed trials

and, in average, an inferior amount of time spent searching before coming

back to the nest when the retrieval is successful. We can also notice that the

smallest colony (two robots) is the most efficient one in every condition and

it reaches its top efficiency in the richest environment.

The reduction in efficiency that we remark when the size of the swarm

is increased can be motivated by two different reasons. The Variable Delta

Rule could be not able to eliminate from the group of the foragers the robots

that are not strictly necessary. Another explanation could come from the

way we measure efficiency. Since the Pl value is always greater than 0, even

loafers leave the nest in average once every eleven minutes. Each trial they

do, when unsuccessful, increases the colony duty time.

The percentage of captured prey in each experimental setup is shown in

Table 6.1. These percentages are calculated using Equation 6.1 over all the

runs done in simulation for each setup.

Evidently, the percentage increases when we consider bigger colonies. We

can also see that, holding the size of the swarm, the lowest percentage always

corresponds to the higher value of prey probability. The explanation of this

result is straightforward: the colony is never big enough to totally exploit

the richest environment. In particular, we notice that the lowest value in

the whole table is obtained with the setup that displayed the best average

efficiency (size = 2 and prey probability = 0.02).

In a very rich environment, having a small colony, we would expect the
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Figure 6.1: Effects of prey probability and size of the colony on the efficiency
of prey retrieval in the simulation, using the algorithm designed by Labella
(2003). The bars report the results of forty experiments for each value of
prey probability (on the x axis) and for each size of the colony (different
colours of the boxes). The top and bottom limits of the boxes extend from
the first to the third inter-quartile of the distribution of the results. The line
drawn inside the boxes represents the median value of the distribution. The
whiskers extend to the most extreme data point, which is no more than 1.5
times the inter-quartile range from the box.

adaptation process to lead to a situation where all the agents involved in the

retrieval task are foragers. The learning strategy designed by Labella works

properly in this case, as we can see in Figure 6.2, on the right hand side of the

first row. This specific histogram holds the final probability values Pl of all

the simulated robots employed for the experiments of the setup where size =

2 and prey probability = 0.02. As it can be seen, with only a few exceptions,

all the agents show a very high Pl value. It means that the colony changed

itself into a group of foragers.

On the last row of Figure 6.2, in the middle position, we can observe

another example of the behaviour of the learning process with this algorithm.
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Here we find the final Pl values of the robots involved in the setup where the

size of the swarm is set to six elements and the prey probability is equal to

0.01 (that is, a prey appears in average every 100 seconds). In this case

the final situation changes. Not all the robots need to become foragers and

their final Pl value varies in all the allowed interval. Nevertheless, we can

distinguish two main groups in the diagram, near to the highest allowed

values of Pl and to the lowest ones. These groups identify the two classes of

foragers and loafers.
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Figure 6.2: Results of the specialization process in the nine different setups
we evaluated in our research. On the same row, we find the data concerning
a specific colony size, while each column corresponds to a different value of
prey probability. In the diagrams, we represent the Pl values of the robots at
the end of the experiments.
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Figure 6.3: Variation of efficiency with different values of prey probability and
size of the colony, using the ALLIANCE learning algorithm. For a detailed
explanation of the meaning of the symbols plotted, see Figure 6.1

6.2.2 ALLIANCE

We performed the same set of experiments we prepared for Labella’s learning

strategy using the ALLIANCE algorithm.

The first parameter of interest, efficiency, is analysed in detail in Fig-

ure 6.3. As we can see in the plot, increasing the prey probability value and

the size of the colony, we notice an increase also in the average value of

efficiency; but it is not the only change we observe. We can also see an en-

largement of the spread between the highest and the lowest value of efficiency

for each specific setup, as it can be deduced by the progressive elongation of

the whiskers in the diagram.

The percentages of captured prey are presented in Table 6.2. As it was

with Labella’s strategy, the lowest value in the table corresponds to the

experimental setup where we have the richest environment and the smallest

colony.
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prey probability
0.005 0.01 0.02

2 63.52 42.66 23.50
size 4 78.97 64.48 39.16

6 84.47 77.42 51.90

Table 6.2: Percentages of captured prey over the total number of prey ap-
peared in the environment in every one of the nine setups using ALLIANCE
(see Equation 6.1).

In this situation, we would expect that also the ALLIANCE adaptation

process would lead the agents of the colony to specialize as foragers, that is,

their final Task Time value should be low. This parameter is expressed in

seconds and represents the time the robots spend in the nest before starting

to search for prey, as it can be inferred by Equations 5.1, 5.3 and 5.4. But if

we look at the histogram on the right hand side of the first row, in Figure 6.4,

we notice that the bars are grouped in a central position, rather than on the

left hand side of the diagram.

We find a similar situation when we consider the experiments done using

this learning strategy, a colony composed of six elements and a prey proba-

bility value of 0.01 (Figure 6.4, last row, central position). Also in this case,

we see that the specialization process has led to a situation where most of

the robots are gathered in a small portion of the diagram, but there are no

classes that emerge from this distribution.

We discuss more about this in Section 6.2.4, where we compare the results.
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Figure 6.4: Distribution of the Task Time parameter final values (expressed
in seconds). These values have been obtained at the end of the learning
process with the ALLIANCE algorithm in each experimental setup. The
bars in the left hand side of each histogram represent the robots that rest
less time in the nest (foragers), while on the right hand side we find the
agents with a higher final value of the Task Time parameter (loafers).
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Figure 6.5: Statistical analysis of the efficiency values measured in the simu-
lated environment, using Li’s learning algorithm. Each box and its whiskers
represent about forty experiments performed on a specific setup. For the
explanation of the meaning of each symbol plotted in the diagram, see Fig-
ure 6.1

6.2.3 Li’s Algorithm

The overall situation of efficiency can be evaluated looking at Figure 6.5.

Also in this case, efficiency values increase when the colony reduces its size

and the environment becomes richer.

We can already notice that the spread between the highest and the lowest

value of efficiency for each experimental setup is less wide than the corre-

spondent we had for ALLIANCE. This means that the performance of this

learning algorithm is more constant among different runs and it is less influ-

enced by statistical fluctuations.

Table 6.3 summarises the percentage of captured prey in each setup. A

first, qualitative analysis of the data indicates that the distribution of the

values is the same we found with the other two learning algorithms. As

usual, they increase when we hold the prey probability and we expand the
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prey probability
0.005 0.01 0.02

2 77.42 68.56 47.88
size 4 85.22 85.71 73.53

6 85.63 85.57 83.16

Table 6.3: Percentages of captured prey obtained with the learning strategy
originally designed by Li (2002). Each cell holds the percentage of prey
retrieved to the nest by the robots over the total amount of prey appeared
in the environment during the runs of a specific setup (see Equation 6.1).

colony, with the only exception of the setup where we use six robots in an

environment with prey probability = 0.01. We can remark that this value is

very close to the one just above, on the same column.

Another common point among the three algorithms is that the lowest

value in the table is always associated with the setup where we observe the

highest efficiency, that is, when the colony is composed of two agents that

are exploiting the richest environment.

It is not surprising that in this case almost all the robots are in the group

of the foragers at the end of the experiments, as we show in Figure 6.6 (first

row, on the right). There are only very few exceptions, represented by the

small bar in the middle of the histogram, that, in this situation, can be

considered as loafers.

As we did for the other two algorithms, we analyze also the same kind

of plot for a different setup, where we have six robots in the colony and an

environment with a value of prey probability equal to 0.01 (Figure 6.6, last

row, middle position). While most of the agents have a final WINT value that

classifies them as foragers, we can notice also a small, but significant group

of loafers. The wide spread between the WINT values of the robots that

are likely to retrieve prey and the ones that are supposed to stay in the nest

indicates some level of specialization among agents that were homogeneous

at the beginning of the experiments.
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Figure 6.6: Distribution of the Waiting In Nest Time (WINT) final param-
eter values in each experimental setup. These values express the time the
agents spend in the nest at the end of the learning process and are recorded
when the experiments terminate. A low WINT value means that the agent
has become a forager, while the bars on the right hand side of each histogram
represent the robots that spend more time in the nest (loafers).
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6.2.4 The Algorithms Compared

While in the previous sections we analyzed in detail each single algorithm,

now we want to draw our conclusions about their performances.

Efficiency

We start our analysis from the results obtained in terms of efficiency, the

first parameter of interest defined in the previous sections.

Figure 6.7 shows the plots of the effects on efficiency of different learning

strategies, in environments where prey probability changes.

We see that, in average, ALLIANCE always performs better than the

algorithms designed by Labella and Li. Nevertheless, it shows the biggest

variance. It is evident, indeed, that the performance of this algorithm is less

constant over different runs of experiments prepared for the same setup.

In order to prove that there is a difference among the algorithms, we de-

cide to perform two nonparametric statistical tests (Siegel and Castellan Jr.,

1988). We must state a null hypothesis H0 and its alternative H1. The for-

mer is formulated with the express purpose of being rejected. If it is the

case, then the alternative hypothesis is supported. In our case, obviously,

H0 is that the three samples have been drawn from the same population or

identical populations.

We take as sample size the whole set of experiments we performed, under

all the explored experimental setups, and we set our significance level α

equal to 0.05. If the value that comes from the the test statistic falls into

the region of rejection,2 then our decision is to reject H0 and to support H1

(that is, there is a difference among the samples coming from the different

algorithms).

We start our statistical tests with the Friedman two-way analysis of vari-

ance by ranks. This method is intended for testing the null hypothesis that

three or more samples have been drawn from identical populations and it

2The sampling distribution includes all possible values that a test statistic can take on.
The region of rejection consists of a subset of these possible values, and it is chosen so
that the probability under H0 of the occurrence of a test statistic having a value which is
in that subset is α (Siegel and Castellan Jr., 1988).
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indicates if there is an overall difference among the samples. This is nec-

essary before picking up any pair of samples to test the significance of the

difference between them. If we began our analysis by comparing each of the

three samples with the other ones, using a two sample test, we would have

three chances, rather than only one, to reject the null hypothesis when it is

true (this is called type I error). We would take the risk to make a type I

error three times, instead of only one. Only when an overall test allows us

to reject the null hypothesis, it is justified to employ a procedure for testing

for differences between any two of the three samples.

More details about the Friedman test can be found in Appendix B.

As we said, we set the significance level α for our test equal to 0.05.

The Friedman test on the efficiencies returns F = 183.5161 and a p-value

� 0.001, that is, we can reject the null hypothesis that the three samples

have been drawn from identical populations and then there is a significant

difference among the efficiency shown by the three algorithms.

We are now justified in employing a procedure for testing for differences

between any two of the three samples.

For this purpose, we choose to perform the random permutation test for

paired replicates. This test involves paired replicates and is is intended to

establish whether two algorithms are different or if one is better that the

other. A description of rationale and method of this test can be found in

Appendix B.

As we expected, ALLIANCE is the best performing algorithm when we

consider their efficiency. When compared both to Li’s learning strategy and

to Labella’s Variable Delta Rule, the p-values we obtain are largely inferior

to 0.001. It means that we can reject the null hypothesis of no difference and

we can state that ALLIANCE shows the best efficiency values.

The comparison between the Variable Delta Rule and Li’s algorithm gives

us a p-value of 0.6426. Therefore there is no significant difference.
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Figure 6.7: Direct comparison among the efficiencies of the learning algo-
rithms. The results are grouped by the size of the colony. Figure 6.7(a)
refers to a two robot swarm. The boxes are categorized by prey probability
and the learning strategy to which they refer. The same kind of plot is pre-
sented also in Figures 6.7(b) and 6.7(c), that refer, respectively, to a four
and to a six robot colony. For a complete explanation of the meaning of
each symbol plotted in the diagrams, see Figure 6.1. It is evident that, in
average, ALLIANCE performs better than the other two algorithms, even if
the results are spread on a wider range of values.
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Labella’s Algorithm

prey probability
0.005 0.01 0.02

2 79.20 70.66 41.92
size 4 81.46 86.49 70.83

6 86.98 86.92 77.07
(a)

ALLIANCE

prey probability
0.005 0.01 0.02

2 63.52 42.66 23.50
size 4 78.97 64.48 39.16

6 84.47 77.42 51.90
(b)

Li’s Algorithm

prey probability
0.005 0.01 0.02

2 77.42 68.56 47.88

size 4 85.22 85.71 73.53

6 85.63 85.57 83.16
(c)

Table 6.4: The three tables summarize the percentages of captured prey in
the nine different setups. Each table groups the results of a learning strategy.
The best performance in a specific setup is indicated in bold characters.
ALLIANCE is always dominated by the algorithms designed by Li (2002)
and Labella (2003), that show a better performance, respectively, in four
and five setups.

Percentage of Captured Prey

The second parameter of interest is the percentage of captured prey over the

total number of prey appeared during experiments, when different learning

strategies are employed. The data, presented in the previous sections, are

now grouped and compared in Table 6.4.

Considering the methodology we employed in our research3 (see Chap-

ter 4), we can directly compare the results obtained in each particular setup.

For a two agent colony in an environment where prey probability is equal

to 0.005, for instance, we see that the best performing algorithm is the one

designed by Labella, with a percentage of captured prey of 79.20. The sec-

ond best score belongs to Li’s learning strategy, while the third place is for

3For each value of prey probability that we examine in our research, we prepared forty
instances of prey timing, as well as forty seeds to pass to the random number generator of
the simulator. We used those pairs (instance - seed) to run the set of experiments three
times, each time with a different learning algorithm.
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ALLIANCE.

The progress of the values in each table, when we consider a single learning

algorithm, is almost the same. In all the cases we examined, the lowest

percentage is placed in the cell corresponding to a two robot colony that

exploits a rich environment. The highest values, on the contrary, refer to

bigger swarms, when the prey probability is equal to 0.005 or 0.01.

We marked in bold characters the best performance for each experimental

setup. In most cases, we see that the results of ALLIANCE are strongly

inferior to the ones obtained by the two other algorithms. The best scores

are quite equally splitted between the two other learning strategies, that

show similar values almost in every experimental setup.

Also in this case, we perform both the Friedman test and the random

permutation test for paired replicates to have a statistical evidence of the

difference among the algorithms (see Section 6.2.4). The sample we consider

is composed of all the experiments we performed with each learning strategy,

and the values in each triplet are the number of captured prey during each

experiment.

The Friedman test returns F = 164.6674 and a p-value� 0.001. It allows

us to reject the null hypothesis that the three samples have been drawn from

identical populations and then there is a significant difference among the

values of captured prey shown by the three algorithms.

We continue our analysis with the random permutation test for paired

replicates. As we expected, in this case both Li’s algorithm and Labella’s

Variable Delta Rule show a better performance than ALLIANCE. Both the

p-values we obtain from the comparisons are largely inferior to 0.001. Then,

since we are performing a one-tailed test, we can state that the robots using

ALLIANCE as learning strategy captured an inferior number of prey than

the two other algorithms.

The p-value we get from the comparison between Labella’s algorithm

and the one designed by Li is 0.8858. In this case, we cannot reject the null

hypothesis that the former has a better performance than the latter when

we consider the number of captured prey.
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Specialization

Finally, we analyze the degree of specialization that the colony has reached

at the end of the experiments.

In order to have a fair comparison, we show the final distribution of 1

Pl

4

(Labella), Waiting In Nest Time (Li) and Task Time (ALLIANCE) values

in three different setups, one for each value we considered for prey probability

and size of the swarm.

The first case we examine corresponds to a two robot colony in an envi-

ronment where prey probability is set to 0.005 (Figure 6.8.)

As we can see, Labella’s Variable Delta Rule leads to a final situation

where the agents are splitted in two macro categories, that we already defined

as foragers (high Pl, then low 1

Pl

) and loafers (right hand side of the graph).

The final values of the Waiting In Nest Time shown by the robots using Li’s

algorithm are concentrated mostly in the left hand side of the histogram. This

means that the agents specialized themselves as foragers, even if small groups

among them present a significant higher value of WINT. Finally, the situation

is rather different when we look at the ALLIANCE final distribution. In this

case we notice that the values of the Task Time parameter are concentrated

in the middle part of the graph, with very small groups both on the left

hand side and on the right hand side. We insist that, in the case of Labella’s

algorithm, we did not plot the Pl values (Pl is the parameter on which the

learning is focused), but their inverses. This way, we obtain the average time

spent in the nest by each agent at the end of the learning process and we

can directly compare the results of Labella’s Variable Delta Rule with the

ones obtained with ALLIANCE and Li’s algorithm, because all of them are

expressed in seconds.

We find a similar situation analyzing another experimental setup. Fig-

ure 6.9 shows the final specialization of the agents using the three different

learning strategies when the size of the swarm is equal to 4 and the prey

4
Pl is the probability for a robot to leave the nest at each second. We decide to plot

the 1

Pl

value instead of Pl. It means that we plot the average time the agent spend in the
nest before leaving, rather than its probability to leave. This way, the measures of all the
three algorithm are expressed in seconds and, thus, the comparison is more evident.
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probability is set to 0.01. Both Li’s algorithm and Labella’s Variable Delta

Rule allow a categorization of their agents in the two mentioned categories,

even if, in the first case, we notice that the group of loafers is limited to

only a few robots. The histogram where we find the results for ALLIANCE

(Figure 6.9(b)) presents a totally different shape when compared to the other

two. As in the previous experimental setup, there is no real specialization,

because most of the Task Time values are grouped in the middle of the graph.

Finally, we examine the experimental setup where a colony of six agents

has to deal with the richest environment we considered. As we could ex-

pect, both Li’s algorithm (Figure 6.10(c)) and the Variable Delta Rule (Fig-

ure 6.10(a)) group their final results in a range where most of the agents

can be considered as foragers. Despite the rich environment, ALLIANCE

does not allow its robots to lower their Task Time values as much as the

environment could require. Indeed, most of the agents spend from 200 to

400 seconds resting, before starting a new prey retrieval task.
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Labella’s Algorithm ( size: 2 ; prey prob. = 0.005 )

Average time in nest (s)

N
um

be
r o

f r
ob

ot
s

0 100 200 300 400 500 600 700

0
10

20
30

40
50

60

(a)

ALLIANCE ( size: 2 ; prey prob. = 0.005 )

Task time (s)

N
um

be
r o

f r
ob

ot
s

0 100 200 300 400 500 600 700

0
10

20
30

40
50

60

(b)

Li’s Algorithm ( size: 2 ; prey prob. = 0.005 )

WINT − Waiting In Nest Time (s)

N
um

be
r o

f r
ob

ot
s

0 100 200 300 400 500 600 700

0
10

20
30

40
50

60

(c)

Figure 6.8: Degree of specialization reached at the end of the experiments by
a two robot colony in an environment where prey probability is equal to 0.005.
As it can be seen, Labella’s learning strategy (Figure 6.8(a)) splits the robots
in two different groups, foragers (on the left hand side of the histogram)
and loafers. Li’s algorithm (Figure 6.8(c)) offers a different situation, where
almost all the robots have become foragers, except for a very small group.
In ALLIANCE (Figure 6.8(b)), the final Task Time values of the robots are
concentrated in the middle of the plot. It is worth to note that, showing 1

Pl

instead of Pl for the robots that used Labella’s Variable Delta Rule, the values
on the x axis of the three histograms can be directly compared. While Task
Time and Waiting In Nest Time express the exact time the robot spends
in the nest before starting the retrieval task again, 1

Pl

represents the average
time it rests before leaving the nest.
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Labella’s Algorithm ( size: 4 ; prey prob. = 0.01 )

Average time in nest (s)

N
um

be
r o

f r
ob

ot
s

0 100 200 300 400 500 600 700

0
20

40
60

80
10

0
12

0

(a)

ALLIANCE ( size: 4 ; prey prob. = 0.01 )

Task time (s)

N
um

be
r o

f r
ob

ot
s

0 100 200 300 400 500 600 700
0

20
40

60
80

10
0

12
0

(b)

Li’s Algorithm ( size: 4 ; prey prob. = 0.01 )
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Figure 6.9: Final specialization for the three algorithms at the end of the
experiments of the setup where size = 4 and prey probability = 0.01. The
agents that learn by means of the Variable Delta Rule can be categorized in
two big groups, even if a very small amount of robots have their final value
distributed in the middle of the histogram (Figure 6.9(a)). In this situation,
most of the agents have become foragers. Also Li’s learning strategy leads
to a situation where most of the robots belong to the group of the foragers
(Figure 6.9(c)). Only a small group presents their final WINT value in the
right hand side of the graph. ALLIANCE shows a peculiar distribution
where almost all the final Task Time values are grouped in the middle of the
histogram (Figure 6.9(b)).
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Labella’s Algorithm ( size: 6 ; prey prob. = 0.02 )
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Li’s Algorithm ( size: 6 ; prey prob. = 0.02 )
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Figure 6.10: The last experimental setup for which we present the specializa-
tion histograms involves a six robot colony acting in the richest environment
we consider. As we could expect, both Li’s algorithm (Figure 6.10(c)) and
the Variable Delta Rule (Figure6.10(a)) bring most of the agents to be spe-
cialized as foragers. As in the previous situations, ALLIANCE’s Task Time
values are grouped between 200 and 400 seconds (Figure 6.10(b)).
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6.3 Real Robot Results

This section is intended to validate the results we obtained in simulation

using the ones we found with real robots. It is not possible to have a full

validation of the simulator. That is, it is not possible to have any proof that

the results of the simulations will always match those of the real robots for

every possible setup. This comes from the fact that a simulator implements a

model of the reality. The researcher chooses and develop the model according

to her/his understanding of the phenomena and her/his needs.

The process of validation shall not aim at proving the match between

simulation and reality. On the contrary, it shall aim at proving that the

simulation is not valid. A failure of such attempt increases the confidence in

the validity of the simulator and the correctness of its results.

We focused our attention on those values of prey probability and group size

that give in simulation either big or low differences among the algorithms.

Figure 6.7 shows that, when we consider efficiency, there are big differences

for prey probability values of 0.01 or 0.02 and colonies composed by four or

six elements.

It is difficult to perform experiments with real robots using colonies of

six agents, because of the risk of major hardware failures. Additionally, prey

probability equal to 0.02 leads to a so high rate of prey appearance that it is

often difficult for the experimenter to place them at the right time. Therefore,

we used four robots with a value of prey probability of 0.01, with the purpose

to show that in such conditions the big difference among algorithms does not

occur.

We tested five instances and performed the Friedman test to verify whether

there is a statistical difference among the three learning strategies in terms of

efficiency. The significance level α is set to 0.05, as it was for the simulated

experiments. Calculating this statistic, we obtain F = 7.6, with p-value

= 0.02237. It means that, using only five triplets of efficiency values, we

can reject the null hypothesis that the three samples come from the same

population or from populations with the same median.

This result allows us to perform the pairwise comparison between algo-
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rithms using the one-tailed random permutation test. As we did before, we

use the Holm correction for multiple testing to adjust the final p-values. The

results confirm what we found with the simulator. The direct comparisons

between ALLIANCE and Labella’s Variable Delta Rule, and between AL-

LIANCE and Li’s algorithm lead to the final p-values of 0.0255 and 0.026,

respectively. Both of them are smaller than 0.05, our significance level, and,

as a result, we can reject H0. Since we perform one-tailed tests, we can also

deduce that, when we consider efficiency, ALLIANCE is the best performing

algorithm of the three.

The direct comparison between the learning strategy designed by Li and

the Variable Delta Rule shows a p-value equal to 0.2201, that is not sufficient

to reject the null hypothesis.

The results obtained with the two statistical tests confirm the presence

of wide differences among the algorithms in this setup. Five real robot ex-

periments for each learning strategy allowed us to find the same kind of

differences we found in simulation. We are therefore not able to invalidate

the simulator in this case.

We focus then our attention on those parameters that show in the sim-

ulation a small difference. Figure 6.7 suggests three experimental setups:

{prey probability = 0.02, size = 2}, {prey probability = 0.005, size = 4} and

{prey probability = 0.005, size = 6}. For the same reasons as above, we chose

to use the setup where prey probability is equal to 0.005 and the colony is

composed by four robots. For this setup, our purpose is to show that there is

a relevant difference among the algorithms. As above, such difference should

appear with a few instances, if it exists in the real robots.

Performing the Friedman test over five instances, we obtain a p-value

greater than 0.05. It means that we cannot reject the null hypothesis that

the samples come from populations with the same median. This is a less

strong, but important evidence of the soundness of the simulator. Five runs

in this experimental setup are not sufficient to emphasize the differences

among the efficiency values. In order to find such a difference, we should

perform more experiments with real robots. Additional experiments would

be however a wast of resources. We are not interested in showing that there is
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Prey Probability
0.005 0.01

Labella’s Algorithm 81.72 87.13
ALLIANCE 68.89 74.85

Li’s Algorithm 84.94 91.81

Table 6.5: Percentages of captured prey in the two different setups we used
for real robot experiments. The colony is always composed by four robots.
The results are qualitatively close to the ones we showed for simulation. AL-
LIANCE never scores better than the other two learning strategies, while we
get close values from Labella’s Variable Delta Rule and from Li’s algorithm.

a difference, rather in showing that such difference is of a different magnitude

than in the simulator, which seems not to be the case with these parameters.

Table 6.5 shows the percentages of captured prey over all the prey ap-

peared in the environment during the experiments with real robots. As we

can see, the values are coherent with the ones we found in simulation. AL-

LIANCE displays scores sensibly lower than the other two algorithms. More-

over, Li’s algorithm and Labella’s Variable Delta Rule show close values in

both the experimental setups. As we did for simulated runs, we perform a

statistical analysis on the number of captured prey. We take all the exper-

iments we performed as sample size (N = 10). The Friedman test returns

F = 12.4118 and a p-value equal to 0.002018. This result, totally coher-

ent with the one obtained in simulation, allows us to refuse that the three

samples come from populations with the same median. The random per-

mutation test, finally, confirms what found in simulation, that is, both Li’s

algorithm and Labella’s Variable Delta Rule have a better performance than

ALLIANCE on the number of captured prey (p-values equal to 0.0096 and

0.01, respectively).

Finally, we can see in Figure 6.11 that also a qualitative analysis of the

third parameter of interest reflects what we observed in simulation. The his-

tograms can be directly compared with the ones in Figure 6.9. The scales on

the x and y axis are the same in the two figures and the overall arrangement

of the bars is the same, as we could expect from a reliable simulation.

ALLIANCE evidently does not specialize its agents and their final Task
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Time values are grouped in the middle of the diagram. On the other hand,

we can characterize two different groups in the two histograms corresponding

to Li’s algorithm and to Labella’s Variable Delta Rule.

All our attempts to invalidate the simulator failed. On the contrary, they

show a good agreement between simulation and real robots. These results

support the usefulness of the simulation as an instrument for our research.
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Average time in nest (s)

N
um

be
r o

f r
ob

ot
s

0 100 200 300 400 500 600 700

0
5

10
15

(a)

ALLIANCE ( size: 4 ; prey prob. = 0.01 )
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Li’s Algorithm ( size: 4 ; prey prob. = 0.01 )
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Figure 6.11: Final specialization of the real robots used in experiments where
the colony size was set to four agents and prey probability was equal to
0.01. It is evident the final result of the specialization process with Li’s
learning strategy (Figure 6.11(c)) and with Labella’s Variable Delta Rule
(Figure 6.11(c)). In both cases, we can notice that most of the robots that
can be categorized as foragers. On the other hand, ALLIANCE does not
specialize its agents and their final Task Time values are concentrated in the
middle of the histogram. As we did analyzing the results from simulation, also
in this case we show 1

Pl

instead of Pl for the robots that used Labella’s Variable
Delta Rule. This way, the values on the x axis of the three histograms can
be directly compared, because they are all expressed in seconds.
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6.4 Conclusions

What we can infer from the above analysis is very interesting. It is true

that ALLIANCE scores best on the first, and most important, parameter

of interest (efficiency), but this result is achieved never truly specializing

agents and, consequently, collecting a relatively low number of prey on the

total appeared. The Task Time final values are grouped in the middle of the

possible range in almost every experimental setup. It means that the robots

using ALLIANCE as learning strategy do not really change their behaviour

according to the environmental situation.

On the other hand, both Li’s algorithm and the Variable Delta Rule

designed by Labella (2003) show a better adaptation to the environmental

situation and to the size of the colony. Their robots, in average, spend more

time outside the nest (thus obtaining lower efficiency results) and collect a

remarkably higher number of prey (as it is evident from Tables 6.4(a), 6.4(c)

and 6.4(b)).

We present more practical conclusions about the results of the three al-

gorithms in Section 7.2.



Chapter 7

Discussion

In this last chapter, we draw some final conclusions about what has been done

in our research in terms of aims and major findings. We summarize here the

methodology we developed and applied to the different learning algorithms

studied and we evaluate the results that emerged from the data analysis.

Finally, we describe briefly what we could expect as further research work.

7.1 An Overview of the Research

It was our intention to detail a methodology to evaluate the performance of

different learning strategies applied to the Swarm Robotics field.

The procedure we explained in the previous chapters utilizes methods

already accepted in many other scientific fields, that is, to bring all the

learning algorithms to a common test field and to evaluate their performances

regardless of different hardware implementations or environmental variations.

First, we defined the test field where we intended to perform our analysis.

We chose prey retrieval as the task the robots must accomplish. Our choice

is motivated by the importance that this simple task has both in robotic

literature and in biology, which is the domain that mostly inspired Swarm

Robotics. Prey retrieval does not require direct communication among the

agents. The robots can exploit local information to evaluate their perfor-

mance and to adapt their behaviour to the environmental conditions.

93



94 CHAPTER 7. DISCUSSION

The second step we made was to define the experimental setups that

describe the conditions under which the learning algorithms were tested. We

delineated the setups by means of two variables: size of the colony and prey

probability. The second variable specifies the probabilistic rate at which prey

appear on the testing field.

Since we intended to compare learning strategies, regardless of hardware

effectiveness, we chose to employ very simple robots. The choice fell on the

MindS-bots, robots built with Lego MindStormTM bricks designed by Labella

(2003) that have sufficient sensor capabilities to perform a prey retrieval task.

Considering that real experiments are time consuming and in order to

expand our research to a wider number of different experimental setups,

we decided to use also a simulator. We coded a specific software, MindS-

miss, intended to emulate the MindS-bots and their interactions with the

environment in a slightly simplified but realistic way.

Our goal, fully achieved at the end of the research, was to test the algo-

rithms in simulation and then with real robots. The real experiments were

intended to validate the soundness of the simulator and to prove that the

results obtained in the virtual environment could be valid also in the real

world.

We prepared nine different experimental setups. For each of them we

decided to perform forty experiments in simulation. Each set of experiments

had to be performed as many times as the number of algorithms we intended

to examine. We wanted the comparison as fair as possible, thus we decided

to prepare forty instances of random generated prey timing for each possible

value of the prey probability variable. Each instance included the time at

which each prey has to appear in the environment and its exact position. We

coupled these instances with an equal number of seeds. The seeds are casually

generated numbers that were passed to the random number generator of the

simulator to have a fixed sequence of values produced at each simulation.

We chose two setups for the runs in the real world. Five experiments

for each experimental setup were sufficient to demonstrate the soundness of

the simulation and to validate the results obtained. For real robot trials we

employed a subset of the instances generated for the virtual environment.
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We decided to evaluate the performances of three learning algorithms.

The choice of the first candidate was straightforward. Since our work is in

some way the prosecution of Labella’s research (Labella, 2003), we evaluated

the performance of the Variable Delta Rule designed by the author.

The second algorithm we decided to include in our research is ALLIANCE.

Designed by Parker (1998), it was created for Multi Robot Systems. It

shows some similarities with Labella’s Variable Delta Rule (robots adapt

their behaviour in an automatic way even when a centralized knowledge is

not present) and it is well known in mainstream robotics.

The last candidate was an algorithm designed by Li (2002). It was par-

ticularly suitable for our purposes, because it is intended to specialize the

agents adapting only one parameter. Moreover, it was created to work with

swarms of robots.

The final part of the work was the run of the experiments and the statis-

tical analysis of the results.

7.2 Evaluation of the Results

The most important result we obtained in our work was to prove the robust-

ness of our methodology. Using specific statistical tests, we demonstrated

the soundness of the simulation with a very limited number of experiments

performed in the real environment. This led to a significant saving of both

resources and time. Moreover, we detailed guidelines to compare different

learning strategies in Swarm Robotics.

Also the parameters we chose to rate the performances of the three algo-

rithms led to interesting results. As we showed, ALLIANCE always scores

better than the other two when we consider efficiency, but it never reaches

the results of Labella’s Variable Delta Rule and of Li’s learning strategy in

terms of captured prey.

Analyzing the histograms we presented in the previous chapter, we notice

that ALLIANCE does not allow the agents to specialize according to different

environmental situations. The final Task Time values, that represent the

time each agent spends in the nest before starting a new prey retrieval trial,
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are almost constant in every experimental setup.

In conclusion, the choice of one of the three analyzed algorithms for real-

world applications depends on the situation where the agents have to be

employed. For instance, we could consider using ALLIANCE as learning

strategy when efficiency is more important than the number of captured

prey. It could be the case of a number of rovers that must retrieve samples

on a distant planet. On the other hand, it is evident that Li’s algorithm or

Labella’s Variable Delta Rule could give better results in terms of cleanliness,

performing the already mentioned garbage collection task on the streets of a

town.

7.3 Further Work

There are surely many ways to continue researching in the field we explored.

The first, and most obvious, is to consider new algorithms for comparison,

using the same test field we prepared for the three we examined in our work.

We could also explore a larger number of experimental setups, increasing the

number of robots in each colony or deploying them in environments with

different values of prey probability.

The case of heterogeneous colonies could also be explored, that is, the use

of robots having different specific capabilities or performances on a specific

task. In such a situation, it could be interesting to analyze if the learning

algorithms can lead to a different specialization degree among the agents.

Another interesting topic could emerge from the observation that, in our

research, we did not find experimental evidence of the reason why efficiency,

with all the strategies examined, decreases when the size of the swarm is

incremented. A possible further research could focus on this issue, evaluating

if this situation is caused by problems related to the learning strategies or,

alternatively, by the way we decided to measure efficiency in our work.

Nevertheless, considering the huge number of different tasks to which

Swarm Robotics is applied, we believe that the most interesting kind of

prosecution of our work could be to expand our methodology to new test

fields. Our procedure could allow swarm robotic system designers to improve



7.3. FURTHER WORK 97

their control algorithms sparing resources and time, drawing scientifically

sound conclusions about their performances with a limited number of real

experiments.
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Appendix A

Simulator UML

We present here four UML class diagrams of our simulator, MindS-miss.

The diagrams do not include all the classes external to our program, such as

KODEX or ODE.

After a first, global overview of the logical schema of the software, we

focus on three important groups of classes that are analyzed in more detail.
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AllianceBeh

+ AllianceBeh()
+ AllianceBeh(oldAlliance : const AllianceBeh&)
+ AllianceBeh(id : int)
+ ~ AllianceBeh()
+ step(inputs : const MeReal*, outputs : MeReal*) : void
+ getRetrievedPreys() : int
+ getEmptyReturns() : int
+ clone( : void) : Controller*

AllianceStarter

+ AllianceStarter()
+ ~ AllianceStarter()
+ init(robotIdNum : int) : void
+ updateForFailure(failureTime : long int) : void
+ updateForSuccess(successTime : long int) : void
+ startSleeping(time : long int) : void
+ checkIfTimeToLeave(time : long int) : bool

AvoidingBehaviour

+ AvoidingBehaviour()
+ ~ AvoidingBehaviour()
+ continueExec(actualTime : long int, inputs : const MeReal*, outputs : MeReal*) : void
+ canStop() : bool
+ init(startingTime : long int) : void

BackLightFollowingBehaviour

+ BackLightFollowingBehaviour()
+ ~ BackLightFollowingBehaviour()
+ continueExec(actualTime : long int, inputs : const MeReal*, outputs : MeReal*) : void
+ canStop() : bool
+ init(startingTime : long int) : void

Behaviour

+ Behaviour()
+ ~ Behaviour()
+ continueExec(actualTime : long int, inputs : const MeReal*, outputs : MeReal*) : void
+ canStop() : bool
+ init(startingTime : long int) : void
+ preySpotted() : bool

Controller

+ Controller()
+ ~ Controller()
+ clone( : void) : Controller*
+ step(inputs : const MeReal*, outputs : MeReal*) : void

ExitNestBehaviour

+ ExitNestBehaviour(starter : Starter*)
+ ~ ExitNestBehaviour()
+ continueExec(actualTime : long int, inputs : const MeReal*, outputs : MeReal*) : void
+ canStop() : bool
+ preySpotted() : bool
+ init(startingTime : long int) : void

ExploringBehaviour

+ ExploringBehaviour()
+ ~ ExploringBehaviour()
+ continueExec(actualTime : long int, inputs : const MeReal*, outputs : MeReal*) : void
+ canStop() : bool
+ init(startingTime : long int) : void

GrippingBehaviour

+ GrippingBehaviour()
+ ~ GrippingBehaviour()
+ continueExec(actualTime : long int, inputs : const MeReal*, outputs : MeReal*) : void
+ canStop() : bool
+ init(startingTime : long int) : void

HunterBeh

+ HunterBeh()
+ HunterBeh(oldHunter : const HunterBeh&)
+ HunterBeh(id : int)
+ ~ HunterBeh()
+ step(inputs : const MeReal*, outputs : MeReal*) : void
+ getRetrievedPreys() : int
+ getEmptyReturns() : int
+ clone( : void) : Controller*

HunterStarter

+ HunterStarter()
+ ~ HunterStarter()
+ init(robotIdNum : int) : void
+ updateForFailure(failureTime : long int) : void
+ updateForSuccess(successTime : long int) : void
+ startSleeping(time : long int) : void
+ checkIfTimeToLeave(time : long int) : bool

LiBeh

+ LiBeh()
+ LiBeh(oldLi : const LiBeh&)
+ LiBeh(id : int)
+ ~ LiBeh()
+ step(inputs : const MeReal*, outputs : MeReal*) : void
+ getRetrievedPreys() : int
+ getEmptyReturns() : int
+ clone( : void) : Controller*

LiStarter

+ LiStarter()
+ ~ LiStarter()
+ init(robotIdNum : int) : void
+ updateForFailure(failureTime : long int) : void
+ updateForSuccess(successTime : long int) : void
+ startSleeping(time : long int) : void
+ checkIfTimeToLeave(time : long int) : bool

ReleasingBehaviour

+ ReleasingBehaviour()
+ ~ ReleasingBehaviour()
+ continueExec(actualTime : long int, inputs : const MeReal*, outputs : MeReal*) : void
+ canStop() : bool
+ init(startingTime : long int) : void

Robot

StoppingBehaviour

+ StoppingBehaviour()
+ ~ StoppingBehaviour()
+ continueExec(actualTime : long int, inputs : const MeReal*, outputs : MeReal*) : void
+ canStop() : bool
+ init(startingTime : long int) : void

Starter

+ Starter()
+ ~ Starter()
+ init(robotIdNum : int) : void
+ updateForSuccess(successTime : long int) : void
+ updateForFailure(failureTime : long int) : void
+ startSleeping(time : long int) : void
+ checkIfTimeToLeave(time : long int) : bool

DepositingBehaviour

+ DepositingBehaviour()
+ ~ DepositingBehaviour()
+ continueExec(actualTime : long int, inputs : const MeReal*, outputs : MeReal*) : void
+ canStop() : bool
+ init(startingTime : long int) : void

Figure A.2: We detail here the structure of the portion of our software that
reproduces the control system of the robots. The classes that hold the mech-
anisms of the learning strategies we evaluated derive from two virtual classes,
Controller and Starter. All the controllers employ the same basic behaviours,
that are described in the lower part of the diagram.
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Robot

+ Robot()
+ Robot( : const McdModelID)
+ ~ Robot()
+ getListId( : void) : const int
+ getFrontBumperId( : void) : const McdModelID
+ getBackBumperId( : void) : const McdModelID
+ get1RightWheelId( : void) : const McdModelID
+ get2RightWheelId( : void) : const McdModelID
+ get3RightWheelId( : void) : const McdModelID
+ get1LeftWheelId( : void) : const McdModelID
+ get2LeftWheelId( : void) : const McdModelID
+ get3LeftWheelId( : void) : const McdModelID
+ getFrontBumperRprojointId( : void) : const MdtConstraintID
+ getBackBumperRprojointId( : void) : const MdtConstraintID
+ get1RightHingeId( : void) : const MdtConstraintID
+ get2RightHingeId( : void) : const MdtConstraintID
+ get3RightHingeId( : void) : const MdtConstraintID
+ get1LeftHingeId( : void) : const MdtConstraintID
+ get2LeftHingeId( : void) : const MdtConstraintID
+ get3LeftHingeId( : void) : const MdtConstraintID
+ getFrontBumperGraphic( : void) : const RGraphic*
+ getBackBumperGraphic( : void) : const RGraphic*
+ get1LeftWheelGraphic( : void) : const RGraphic*
+ get2LeftWheelGraphic( : void) : const RGraphic*
+ get3LeftWheelGraphic( : void) : const RGraphic*
+ get1RightWheelGraphic( : void) : const RGraphic*
+ get2RightWheelGraphic( : void) : const RGraphic*
+ get3RightWheelGraphic( : void) : const RGraphic*
+ getWheelsType( : void) : const int
+ getGrippingPosition(pos : MeVector3) : void
+ get1LeftWheelSpeed( : void) : MeReal
+ get2LeftWheelSpeed( : void) : MeReal
+ get3LeftWheelSpeed( : void) : MeReal
+ get1RightWheelSpeed( : void) : MeReal
+ get2RightWheelSpeed( : void) : MeReal
+ get3RightWheelSpeed( : void) : MeReal
+ getHalfLenght( : void) : MeReal
+ getHalfWidth( : void) : MeReal
+ getGripperStatus( : void) : int
+ getViewAngle(viewPoint : const MeVector3Ptr, viewDirection : MeReal, min : MeReal*, max : MeReal*) : void
+ getPreyProximitySensors( : void) : const MeReal*
+ getLightSensors( : void) : const MeReal*
+ getController( : void) : const Controller*
+ updateObjectData( : void) : void
+ setListId(id : int) : void
+ resetBumpersValue( : void) : void
+ setFrontBumperPressed( : void) : void
+ setBackBumperPressed( : void) : void
+ setFrontBumperId( : const McdModelID) : void
+ setFrontBumperRprojointId( : const MdtConstraintID) : void
+ setFrontBumperGraphic( : RGraphic*) : void
+ setBackBumperId( : const McdModelID) : void
+ setBackBumperRprojointId( : const MdtConstraintID) : void
+ setBackBumperGraphic( : RGraphic*) : void
+ set1LeftWheelId( : const McdModelID) : void
+ set1LeftHingeId( : const MdtConstraintID) : void
+ set1LeftWheelGraphic( : RGraphic*) : void
+ set2LeftWheelId( : const McdModelID) : void
+ set2LeftHingeId( : const MdtConstraintID) : void
+ set2LeftWheelGraphic( : RGraphic*) : void
+ set3LeftWheelId( : const McdModelID) : void
+ set3LeftHingeId( : const MdtConstraintID) : void
+ set3LeftWheelGraphic( : RGraphic*) : void
+ set1RightWheelId( : const McdModelID) : void
+ set1RightHingeId( : const MdtConstraintID) : void
+ set1RightWheelGraphic( : RGraphic*) : void
+ set2RightWheelId( : const McdModelID) : void
+ set2RightHingeId( : const MdtConstraintID) : void
+ set2RightWheelGraphic( : RGraphic*) : void
+ set3RightWheelId( : const McdModelID) : void
+ set3RightHingeId( : const MdtConstraintID) : void
+ set3RightWheelGraphic( : RGraphic*) : void
+ setGripperId( : const McdModelID) : void
+ setGripperHingeId( : const MdtConstraintID) : void
+ setGripperGraphic( : RGraphic*) : void
+ setWheelsType(wheelsType : int) : void
+ setGripper(gripperType : int) : void
+ setLeftWheelsSpeed(speed : MeReal) : void
+ setRightWheelsSpeed(speed : MeReal) : void
+ setHalfLenght(halfLenght : MeReal) : void
+ setHalfWidth(halfWidth : MeReal) : void
+ setController(controller : Controller*) : void
+ setDrawTrajectory(draw : bool) : void
+ sense( : void) : void
+ setInputs(numInputs : int, inputs : MeReal*) : void
+ setFuzzyInputs(numInputs : int, inputs : MeReal*) : void
+ applyOutputs(numOutputs : int, outputs : MeReal*) : void
+ control( : void) : void
+ changeTexture( : void) : void
+ disableCollisions(body : McdModelID, r1wheel : McdModelID, l1wheel : McdModelID, r2wheel : McdModelID, l2wheel : McdModelID, r3wheel : McdModelID, l3wheel : McdModelID) : void

Figure A.3: The class Robot holds all the physical information about each
agent acting in the simulation. It derives from the generic class Object and
specifies also which is the controller that is coordinating the robot movement.
In the class are present methods to specify the speed of the six wheels and
to check the situation of the bumpers.
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ConnectionGraph

+ ConnectionGraph()
+ ConnectionGraph(size : int)
+ ~ ConnectionGraph()
+ insertArc(iNode : int, jNode : int) : void
+ deleteArc(iNode : int, jNode : int) : void
+ getConnectionLevel(iNode : int, start : bool) : int
+ getConnectionList(iNode : int) : const bool*

Environment

+ Environment()
+ ~ Environment()
+ addRobot(robot : Robot*) : void
+ addPrey(prey : PreyObject*, preyPos : MeVector3) : bool
+ removePrey(preyListId : int) : void
+ addLight(light : LightObject*) : void
+ addWall(wall : WallObject*) : void
+ addGround(ground : Object*) : void
+ getRobots( : void) : Robot**
+ getRobot(i : int) : Robot*
+ getRobot(bulkId : McdModelID) : Robot*
+ getPreys( : void) : PreyObject**
+ getPrey(listId : int) : PreyObject*
+ getLights( : void) : LightObject**
+ getLight(listId : int) : LightObject*
+ getWalls( : void) : WallObject**
+ getWall(listId : int) : WallObject*
+ getGrounds( : void) : Object**
+ getGround(listId : int) : Object*
+ getRobotCount( : void) : const int
+ getPreyCount( : void) : const int
+ getLightCount( : void) : const int
+ getWallCount( : void) : const int
+ getGroundCount( : void) : const int
+ getNumPreysInExp( : void) : const int
+ getNumProximitySensors( : void) : const int
+ getNumLightSensors( : void) : const int
+ getNumPreyProximitySensors( : void) : const int
+ getPreyProximityRange( : void) : const MeReal
+ getLightRange( : void) : const MeReal
+ getLightBaseValue( : void) : const MeReal
+ getPreyProximityBaseValue( : void) : const MeReal
+ getLightMaxValue( : void) : const MeReal
+ getPreyProximityMaxValue( : void) : const MeReal
+ getParams( : void) : Params
+ getParamsPtr( : void) : Params*
+ getRobotController( : void) : Controller*
+ getUniverse( : void) : MstUniverseID
+ getControlCycle( : void) : int
+ getControlType( : void) : int
+ getSimulationSeed( : void) : long int
+ setSimulationSeed(seed : long int) : void
+ setParams(params : Params) : void
+ setObjectParams(p : ObjectParams*) : void
+ setRobotConnection(from : int, to : int) : void
+ resetRobotConnection(from : int, to : int) : void
+ getPreyProximityReadings(distance : MeReal, angle : MeReal) : const MeReal*
+ getLightReadings(distance : MeReal, angle : MeReal) : const MeReal*
+ getPreyTimingAndPosition(index : int) : const int*
+ loadSensorReadings(filename : const char*, type : char) : void
+ loadPreyTiming(filename : const char*) : void
+ setController(controller : char*) : void
+ setRobotRandomPosition(numRobots : int) : void
+ setRobotPosition(initFile : char*) : void
+ setLightRandomPosition(numLights : int) : void
+ updateObjectsData( : void) : void
+ applyRobotControl( : void) : void
+ resetRobotBumpers( : void) : void
+ usePvmCommunication( : void) : void
+ getCenterOfMassPosition(position : MeVector3, includePreys : bool) : void
+ drawCenterOfMassTrajectory( : void) : void
+ drawInitialPositions( : void) : void
+ writeFitness(out : ostream&) : void
+ runSimulation(numTimeSteps : int) : void

FileApp

+ FileApp()
+ FileApp(name : char*)
+ loadAll( : void) : void
+ loadGround( : void) : void
+ loadRobots( : void) : void
+ loadSingleRobot(x : MeReal, y : MeReal, a : MeReal) : void
+ loadLights( : void) : void
+ loadSingleLight(x : MeReal, y : MeReal) : void
+ loadPreys( : void) : void
+ createPrey(index : int, pos : MeVector3, rc : RRender*) : bool
+ loadWalls( : void) : void

Log

+ Log()
+ Log(fileName : char*)
+ ~ Log()
+ writeLog() : void
+ addLogLine(nRobot : int, logCode : int, time : long, oldProb : float, newProb : float) : bool
+ logPosition(type : int, num : int, pos : MeVector3, time : long) : bool

MindS-miss

+ main(argc : int, argv : const char*) : int

Figure A.4: The class Environment is a central part of the simulator. Its
methods are also used to load all the objects in the arena. The properties
and the number of such objects are read from XML files by the FileApp class.
The outputs of MindS-miss are log files, generated by the class Log, where
all the information about the running experiment is stored.
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Appendix B

Statistical Tests

To validate the results of our simulation, we used two different statistical

tests. In the following we summarize their procedures.

B.1 Friedman two-way analysis of variance

by ranks

The Friedman two-way analysis of variance by ranks can be applied when

the data from the matched samples1 are in at least an ordinal scale.2

It tests the null hypothesis that the three (or, more in general, the k)

repeated measures or matched groups come from the same population or

from populations with the same median. In our case, for the Friedman test,

the data are grouped in a table with three columns (k), that represent the

different algorithms, and N rows (the number of experiments performed for

each learning strategy). The scores in each row are ranked separately and

the test determines the probability that the different columns of ranks come

from the same population. If the null hypothesis were true, we would expect

1We recall that the experiments make use of the blocking design, which grants the
matching of data coming from different algorithms.

2Ordinal scale: the objects in one category of a scale are not only different from the
objects in other category of that scale, but also stand in some kind of relation to them.
Typical relations among classes are: higher, more preferred, more difficult, etc. (Siegel
and Castellan Jr., 1988).
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the distribution of the ranks in each column to be a matter of chance and

the sum of ranks in each column to be:

N(K + 1)

2
(B.1)

If the opposite case (null hypothesis H0 false), then the rank totals would

vary from one column to another. The Friedman test determines whether

the rank totals (Rj, where j is the column we consider) for each condition

(or learning algorithm, in our case) differ significantly from the values which

would be expected by chance. To do this test, we compute the value of the

statistic which we denote as F (Siegel and Castellan Jr., 1988).

F =
[ 12

Nk(k + 1)

k
∑

i=1

R2

i

]

− 3N(k + 1) (B.2)

Once we have the value of F , we can calculate the probability associated

with it.

For big sample sizes, a large-sample approximation can be used and the

statistic F is distributed approximately as χ2.

B.2 Random permutation test for paired repli-

cates

Permutation tests, under certain conditions, are the most powerful of the

nonparametric techniques and are appropriate whenever measurement is on

an interval scale,3 as it is in our case when considering efficiency values or the

percentages of captured prey. It utilises both the direction of the differences

within pairs and the relative magnitude, giving more weight to a pair which

shows a large difference between the two conditions than to a pair which

shows a small difference.

A permutation test assumes that the two scores observed in each pair

3Interval scale: a scale that has all the characteristics of an ordinal scale and where the
distances or differences between any two members of the scale have meaning.
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could be randomly assigned to the algorithms (say X and Y ) that generated

them. This is what we would expect if the null hypothesis of no difference

between the algorithms is true.

We define di = Xi − Yi as the difference for the ith pair and it is a

measure of the difference between algorithms, while
∑N

i=1
di is the sum of

the differences. If H0 was true, then the sign of each di would be a matter

of chance.

The sampling distribution consists of the permutation of the signs of the

differences to include all possible 2N (where N is the number of experiments)

occurrences of
∑N

i=1
di. The region of rejection consists of those outcomes

that have the most extreme
∑N

i=1
di’s and it is composed by 2N ∗ α occur-

rences. If the measured
∑N

i=1
di falls into the region of rejection, we can

discard the null hypothesis that the algorithms are equivalent. Moreover,

since we use a one-tailed test, we can also deduce which one is better than

the other.

Since we are using a large sample, the number of permutations to calculate

would be too large. We estimate the p-value by means of the Monte Carlo

method. We perform the pairwise comparison of the algorithms, then we

apply to the p-values the Holm correction for multiple test (Holm, 1979), in

order to have a strong control over the errors.
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