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Summary

There are even increasing efforts in searching and developing algorithms that
can find solutions to combinatorial optimization problems. In this way, the
Ant Colony Optimization Metaheuristic takes inspiration from biology and
proposes different versions of still more efficient algorithms. Like other meth-
ods, Ant Colony Optimization has been applied to the traditional Traveling
Salesman Problem.

The original contribution of this master thesis is to study the possibility of
a modification of the basic algorithm of the Ant Colony Optimization family,
Ant System, in its application to solve the Traveling Salesman Problem. In
this version that we study, the probabilistic decision rule applied by each
ant to determine his next destination city, is based on a modified pheromone
matrix taking into account not only the last visited city, but also sequences
of cities, part of previous already constructed solutions.

This master thesis presents some contribution of biology to the develop-
ment of new algorithms. It explains the problem of the Traveling Salesman
Problem and gives the main existing algorithms used to solve it. Finally, it
presents the Ant Colony Optimization Metaheuristic, applies it to the Travel-
ing Salesman Problem and proposes a new adaptation of its basic algorithm,
Ant System.

Résumé

De nombreux efforts sont effectués en recherche et développement
d’algorithmes pouvant trouver des solutions à des problèmes d’optimisation
combinatoire. Dans cette optique, la Métaheuristique des Colonies de Four-
mis s’inspire de la biologie et propose différentes versions d’algorithmes tou-
jours plus efficaces. Comme d’autres méthodes, l’Optimisation par Colonies
de Fourmis a été appliquée au traditionel Problème du Voyageur de Com-
merce.

La contribution originale de ce mémoire est d’étudier une modification
de l’algorithme de base de la famille des algorithmes issus de l’Optimisation
par Colonies de Fourmis, Ant System, dans son application au Problème du
Voyageur de Commerce. Dans la version que nous tudions, la règle de décision
probabiliste appliquée par chaque fourmis pour déterminer sa prochaine ville
de destination, est basée sur une matrice de phéromones modifiée, qui tient
compte non seulement de la dernière cité visitée, mais aussi de séquences de
cités qui font partie de solutions construites antérieurement.
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Ce mémoire présentera d’abord l’apport de certains concepts de la biologie
au développement de nouveaux algorithmes . Il parlera ensuite du problème
du voyageur de commerce ainsi que des principaux algorithmes existants
utilisés pour le résoudre. Finalement il développe la Métaheuristique des
Colonies de Fourmis, l’applique au Problème du Voyageur de Commerce et
propose une nouvelle adaptation de l’algorithme de base, Ant System.
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Preface

The working environment

IRIDIA is the artificial Intelligence research laboratory of the Université Libre
de Bruxelles, deeply involved in theoretical and applied research in soft-
computing. The major domains of competence are: (i) belief representation
and AI techniques for process control and classification, (ii) nature inspired
heuristics for the solution of combinatorial and continuous space optimization
problems.

For the representation of quantified beliefs, IRIDIA has developed the
transferable belief model, based on belief function, and is studying its rela-
tions with probability theory, possibility theory and fuzzy sets theory. This
model has been applied to problems of diagnosis, decision under uncertainty,
aggregation of partially reliable information and approximate reasoning.

For process control and classification, IRIDIA is developing and applying
fuzzy sets theory and neural networks to problems of automated control,
autonomous robotics, learning and classification encountered in the industrial
applications.

For nature inspired heuristics Iridia has proposed the ant colony meta-
heuristic for combinatorial optimization problems, such as the traveling sales-
man problem, the quadratic assignment problem, the vehicle routing prob-
lem.

In all work of IRIDIA, there is still a close connection between funda-
mental research on imprecision and uncertainty and the development of soft
computing techniques applied to industrial problems.

Overview of the master thesis

This master thesis is divided into six chapters:

Chapter 1 presents a quick introduction to the context problem and the
objectives of this work.

Chapter 2 explains first Ant Colony Optimization, which is one contribu-
tion of biology in computing science. It presents after a general description
of the Ant Colony Metaheuristic.

Chapter 3 first presents the Traveling Salesman Problem as a NP-
complete problem. It gives then an overview of the main existing algorithms -
not based on the Ant Colony Metaheurisitic - that were used to bring optimal
or near-optimal solutions to this problem.
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In chapter 4 we apply the Ant Colony Metaheuristic to the Traveling
Salesman Problem and give an overview of the main existing algorithms of
the Ant Colony Optimization family.

In chapter 5 we first explain the new idea, concerning mainly the
pheromone matrix, we want to introduce in the existing basic ACO algo-
rithm, Ant System. Then we present the different procedures that are part
of this basic algorithm and the adaptations that have been made to program
the new idea.

In chapter 6 we present some experimental results obtained with the new
algorithms and discuss a way to improve them.
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Glossary

(artificial) ant: is a simple computational agent which constructs a solution
to the problem at hand, and may deposit an amount of pheromone ∆τ
on the arcs it has traversed.

ant colony optimization (ACO): is a particular metaheuristic(*) in-
spired by the foraging behavior of ants.

approximate (or approximation) algorithm: is an algorithm that typ-
ically makes use of heuristics in reducing its computation but produces
solutions that are not necessarily optimal.

asymmetric TSP (ATSP): is the case of the Traveling Salesman problem
where the distances between the cities are dependent of the direction
of traversing the arcs.

exact algorithm: is an algorithm that always produces an optimal solution.

heuristic value: the heuristic value, also called heuristic information, rep-
resents a priori information about the problem instance or run-time
information provided by a source different from the ants.

intractable: problems that are known not to be solvable in polynomial time
are said to be intractable.

memory depth: indicates the length of the sequence of the last cities vis-
ited by an ant.

metaheuristic: is a set of algorithmic concepts that can be used to define
heuristic methods applicable to a wide set of different problems.

self-organization: is a set of dynamical mechanisms whereby structures
appear at the global level of a system from interactions among its lower-
level components.

stigmergy: is an indirect interaction between individuals, where one of them
modifies the environment and the other responds to the new environ-
ment at a later time.

swarm intelligence: is the emergent collective intelligence of groups of sim-
ple agents.
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symmetric TSP: is the case of the Traveling Salesman problem where the
distances between the cities are independent of the direction of travers-
ing the arcs.

tractable: problems that are known to be solvable in polynomial time are
said to be tractable.

trail pheromone: is a specific type of pheromone that some ant species
use for marking paths on the ground. In algorithmic it encodes a long-
term memory about the entire search process and is updated by the
ants themselves.

worst-case time complexity: The time complexity function of an algo-
rithm for a given problem Π indicates, for each possible input size n,
the maximum time the algorithm needs to find a solution to an instance
of that size.

viii



Chapter 1

Introduction

1.1 The existing context

Ant Colony Optimization (ACO) is a population-based approach for solving
combinatorial optimization problems that is inspired by the foraging behavior
of ants and their inherent ability to find the shortest path from a food source
to their nest.

ACO is the result of research on computational intelligence approaches
to combinatorial optimization originally conducted by Dr. Marco Dorigo, in
collaboration with Alberto Colorni and Vittorio Maniezzo.

The fundamental approach underlying ACO is an iterative process in
which a population of simple agents repeatedly construct candidate solutions;
this construction process is probabilistically guided by heuristic information
on the given problem instance as well as by a shared memory containing
experience gathered by the ants in previous iteration.

ACO Algorithm has been applied to a broad range of hard combinatorial
problems. Among them, we have the classic Traveling Salesman Problem
(TSP), where an individual must find the shortest route by which to visit a
given number of destinations.

This problem is one of the most widely studied problems in combina-
torial optimization. The problem is easy to state, but hard to solve. The
difficulty becomes apparent when one considers the number of possible tours
- an astronomical figure even for a relatively small number of cities. For
a symmetric problem with n cities there are (n-1)!/2 possible tours, which
grows exponentially with n. If n is 20, there are more than 1018 tours.
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2 1.2. THE ORIGINAL CONTRIBUTION

Many algorithmic approaches were developed to find a solution - optimal or
near optimal - to this problem. Of course, it plays also an important role in
ACO research: the first ACO algorithm, called Ant System, as well as many
of the ACO algorithms proposed subsequently, was first tested on the TSP.

1.2 The original contribution

In Ant Colony Optimization, problems are defined in terms of components
and states, which are sequences of components. Ant Colony Optimization
incrementally generates solutions in the form of paths in the space of such
components, adding new components to a state. Memory is kept of all the
observed transitions between pairs of solution components and a degree of
desirability is associated to each transition depending on the quality of the
solutions in which it occurred so far. While a new solution is generated, a
component y is included in a state, with a probability that is proportional
to the desirability of the transition between the last component included
in the state, and y itself. From that point of view, all the states finishing
by the same component are identical. Further research (Birattari M., Di
Caro G. and Dorigo M. (2002)) maintains that a memory associated with
pairs of solution components is only one of the possible representations of
the solution generation process that can be adopted for framing information
about solutions previously observed.

In this master thesis, we try in a very simple way to distinguish states that
are identical in Ant Colony Optimization, using a definition of the desirability
of transition based on the new added component and a subsequence of the
last components of the states, in place of their last component. By such
modification, we hope to obtain better information about solutions previously
observed and to improve the quality of the final solution.

The original contribution of the author includes the adaptation of the
existing basic Ant System algorithm, mainly through the implementation of
the modified memory. The adapted programs were applied on tested files. A
discussion of some experimental results is given in Chapter 6.



Chapter 2

Ant Colony Optimization
Metaheuristic

In this chapter, we will briefly present some basic biological notions that
inspired computer scientists in their search of new algorithms for the resolu-
tion of optimization problems. We will then expose the basic elements of the
Ant Colony Optimization (ACO) metaheuristic resulting of the application
of these ideas in computing science.

2.1 Some contribution of biology in comput-

ing science

2.1.1 Social insects cooperation

The social insect metaphor for solving problems has become a hot topic in
the last years. This approach emphasizes distributedness, direct or indirect
interactions among relatively simple agents, flexibility, and robustness. This
is a new sphere of research for developing a new way of achieving a form of
artificial intelligence, swarm intelligence(Bonabeau, E., Dorigo M., & Ther-
aulaz G (1999)) - the emergent collective intelligence of groups of simple
agents. Swarm intelligence offers an alternative way of designing intelligent
systems, in which autonomy, emergence and distributed functioning, replace
control, preprogramming, and centralization.
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4 2.1. SOME CONTRIBUTION OF BIOLOGY IN COMPUTING SCIENCE

Insects (ants, wasps and termites) that live in colonies, are able to perform
different sophisticated activities like foraging, corpse clustering, larval sort-
ing, nest building, transport cooperation and dividing labor among individ-
uals. They solve these problems in a very flexible and robust way: flexibility
allows adaptation to changing environments, while robustness endows the
colony with the ability to function even though some individuals may fail to
perform their tasks.

Although each individual insect is a complex creature, it is not sufficient to
explain the complexity of what social insect colonies can do. The question is
to know how to connect individual behavior with the collective performances,
or, in other words, to know how cooperation arises.

2.1.2 Self-organization in social insects

Some of the mechanisms underlying cooperation are genetically determined,
like for instance, anatomical differences between individuals. But many as-
pects of the collective activities of social insects are self-organized. Theories
of self-organization (SO), originally developed in the context of physics and
chemistry to describe the emergence of macroscopic patterns out of process
and interactions defined at the microscopic level, can be extended to social in-
sects to show that complex collective behavior may emerge from interactions
among individuals that exhibit simple behavior: in these cases, there is no
need to invoke individual complexity to explain complex collective behavior.

The researches in entomology have shown that self-organization is a major
component of a wide range of collective phenomena in social insects and that
the models based on it only consider insects like relatively simple interacting
entities, having limited cognitive abilities.

If we now consider a social insect colony like a decentralized problem-
solving system, comprised of many relatively simple interacting entities, we
discover that self-organization provides us with powerful tools to transfer
knowledge about social insects to the field of intelligent system design. The
list of daily problems solved by a colony (finding food, building a nest, effi-
ciently dividing labor among individuals, etc.) have indeed counterparts in
engineering and computer science. The modeling of social insects by means
of self-organization can help design decentralized, flexible and robust artifi-
cial problem-solving devices that self-organize to solve those problems-swarm
intelligent systems.



CHAPTER 2. ANT COLONY OPTIMIZATION METAHEURISTIC 5

MAIN IDEA

The main idea is to use the self-organizing principles of insect soci-
eties to coordinate populations of artificial agents that collaborate
to solve computational problems.

Self-organization is a set of dynamical mechanisms whereby structures ap-
pear at the global level of a system from interactions among its lower-level
components. The rules specifying the interactions among the system’s con-
stituent units are executed on the basis of purely local information, without
reference to the global pattern, which is an emergent property of the system
rather than a property imposed upon the system by an external ordering
influence. For example, the emerging structures in the case of foraging in
ants include spatiotemporally organized networks of pheromone trails.

Self-organization relies on four basic ingredients:

1. Positive feedback (amplification) is constituted by simple behavioral
rules that promote the creation of structures. Examples of positive
feedback include recruitment and reinforcement. For instance, recruit-
ment to a food source is a positive feedback that relies on trail laying
and trail following in some ant species, or dances in bees. In that
last case, it has been shown experimentally that the higher the quality
of source food is, the higher the probability for a bee is to dance, so
allowing the colony to select the best choice.

2. Negative feedback counterbalances positive feedback and helps to sta-
bilize the collective pattern: it may take the form of saturation, exhaus-
tion, or competition. In the case of foraging, negative feedback stems
for the limited number of available foragers, satiation, food source ex-
haustion, crowding at the food source, or competition between food
sources.

3. Self-organization relies on the amplification of fluctuations (random
walks, errors, random task-switching). Not only do structures emerge
despite randomness, but randomness is often crucial, since it enables
the discovery of new solutions, and fluctuations can act as seeds from
which structures nucleate and grow. For example, although foragers
may get lost in an ant colony, because they follow trails with some
level of error, they can find new, unexploited food sources, and recruit
nestmates to these food sources.



6 2.1. SOME CONTRIBUTION OF BIOLOGY IN COMPUTING SCIENCE

4. All cases of self-organization rely on multiple interactions. Although
a single individual can generate a self-organized structure, the self-
organization generally requires a minimal density of mutually toler-
ant individuals. They should be able to make use of the results of
their own activities as well as others’ activities: for instance, trail net-
works can self-organize and be used collectively if individuals use others’
pheromone. This does not exclude the existence of individual chemical
signatures or individual memory which can efficiently complement or
sometimes replace responses to collective marks.

When a given phenomenon is self-organized, it can usually be characterized
by a few key properties:

1. The creation of spatiotemporal structures in an initially homogeneous
medium. Such structures include nest architectures, foraging trails,
or social organization. For example, a characteristic well-organized
pattern develops on the combs of honeybee colonies, consisting of three
concentric regions: a central brood area, a surrounding rim of pollen,
and a large peripheral region of honey.

2. The possible coexistence of several stable states (multistability). Be-
cause structures emerge by amplification of random deviations, any
such deviation can be amplified, and the system converges to one among
several possible stable states, depending on the initial conditions. For
example, when two identical food sources are presented at the same
distance from the nest to an ant colony that resorts to mass recruit-
ment (based solely on trail-laying and trail-following), both of them
represent possible attractors and only one will be massively exploited.
Which attractor the colony will converge to depends on random initial
events.
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3. The existence of bifurcations when some parameters are varied. The
behavior of a self-organized system changes dramatically at bifurca-
tions. For example, some species of termite use soil pellets impregnated
with pheromone to build pillars. In a first phase, the noncoordination
is characterized by a random deposition of pellets. This phase lasts
until one of the deposits reaches a critical size. Then the coordina-
tion phase starts if the group of builders is sufficiently large: pillars or
strips emerge. The accumulation of material reinforces the attractiv-
ity of deposits through the diffusing pheromone emitted by the pellets.
But if the number of builders is to small, the pheromone disappears
between two successive passages by the workers, and the amplification
mechanism cannot work; only the noncoordinated phase is observed.
Therefore, the transition from the noncoordinated to the coordinated
phase doesn’t result from a change of behavior by the workers, but is
merely the result of an increase in group size.

2.1.3 Stigmergy

Self-organization in social insects often requires interactions among insects:
such interactions can be direct or indirect. Direct interactions consist ob-
viously and mainly of visual or chemical contacts, trophallaxis, antennation
between individuals. In the second possibility, we speak about indirect inter-
action between two individuals when one of them modifies the environment
and the other responds to the new environment at a later time. Such an
interaction is an example of stigmergy.

This concept is easily overlooked, as it does not explain the detailed mech-
anisms by which individuals coordinate their activities. However, it does
provide a general mechanism that relates individual and colony-level behav-
iors: individual behavior modifies the environment, which in turn modifies
the behavior of other individuals.
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All these examples share some features. First they show how stigmergy can
easily be made operational. That is a promising first step to design groups of
artificial agents which solve problems. The second feature is the incremen-
tal construction, which is widely used in the context of optimization: a new
solution is constructed from previous solutions. Finally, stigmergy is often
associated with flexibility: when the environment changes because of an ex-
ternal perturbation, the insects respond appropriately to that perturbation,
as if it were a modification of the environment caused by the colony’s activi-
ties. When it comes to artificial agent, it means that the agents can respond
to a perturbation without being reprogrammed to deal with that particular
perturbation.

Ant colony optimization (ACO) is one of the most successfull examples of
new algorithms based on those biological concepts. It is inspired by the for-
aging behavior of ant colonies, through their collective trail-laying and trail-
following comportment, and targets discrete optimization problems. The
next section will discribe it.

2.2 The ACO metaheuristic description

The combinatorial problems are easy to state but very difficult to solve.
Many of them are NP-hard, i.e. they cannot be solved to optimality within
polynomially bounded computation time. The question of NP completeness
is discussed in section 3.1

2.2.1 The metaheuristic concept

To solve large instances of combinatorial problems, it is possible to use exact
algorithms, but without the certainty to obtain the optimal solution within
a reasonable short time. Another strategy would then to give up the exact
result, and to use approximate methods, providing near-optimal solutions in
a relatively short time. Such algorithms are loosely called heuristics and often
use some problem-specific knowledge to either build or improve solutions.

Among them, some constitute a particular class called METAHEURISTIC:

METAHEURISTIC

A metaheuristic is a set of algorithmic concepts that can be used
to define heuristic methods applicable to a wide set of different
problems.



CHAPTER 2. ANT COLONY OPTIMIZATION METAHEURISTIC 9

The use of metaheuristics has significantly increased the ability of find-
ing very high-quality solutions to hard, practically relevant combinatorial
optimization problems in a reasonable time.

As explained in previous section, a particular successful metaheuristic is
inspired by the behavior of real ants. She is called Ant Colony Optimization
(ACO) and will be the subject of our interest in the next paragraphs.

ACO METAHEURISTIC

The ACO metaheuristic is a particular metaheuristic inspired by
the behavior of real ants.

In order to apply the ACO metaheuristic to any interesting combinatorial
optimization problems, we have to map the considered problem to a repre-
sentation that can be used by the artificial ants to build a solution.

2.2.2 Problems mapping

What follows is the definition of mapping presented in (Dorigo, M., Stützle
T. (2004) Chapter 2)

Let us consider the minimization (respectively maximization) problem (
�
, f ,

Ω), where
�

is the set of candidate solutions, f is the objective function which
assigns an objective function (cost) value f (s) 1 to each candidate solution
s ∈ S, and Ω 2 is a set of constraints. The parameter t indicates that the
objective function and the constraints can be time-dependent, as is the case
in applications to dynamic problems.

The goal is to find a globally optimal feasible solution s∗, that is, a
minimum (respectively maximum) cost feasible solution to the minimization
(respectively maximization) problem.

1f can be dependent in time, when we consider dynamic problems.
2Ω can be dependent in time, when we consider dynamic problems.
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The combinatorial optimization problem (
�
, f , Ω) is mapped on a problem

that can be characterized by the following list of items:

• A finite set C = {c1, c2, . . . , cNC
} of components is given, where NC is

the number of components.

• The states of the problem are defined in terms of sequences x =
〈ci, cj, . . . , ch, . . .〉 of finite length over the elements of C . The set of
all possible states is denoted by X . The length of a sequence x , that
is, the number of components in the sequence, is expressed by |x|.
The maximum length of a sequence is bounded by a positive constant
n < +∞.

• The set of (candidate) solutions S is a subset of X (i.e., S ⊆ X ).

• A set of feasible states X̃ , with X̃ ⊆ X , defined via a problem-
dependent test that verifies that it is not impossible to complete a
sequence x ∈ X̃ into a solution satisfying the constraints Ω. Note that
by this definition, the feasibility of a state x ∈ X̃ should be interpreted
in a weak sense. In fact it does not guarantee that a completion s of x
exists such that s ∈ X̃ .

• A non-empty set S∗ of optimal solutions, with S∗ ⊆ X̃ and S∗ ⊆ S.

• A cost g(s,t) is associated with each candidate solution s ∈ X . In
most cases g(s,t) ≡ f(s,t), ∀s ∈ X̃ , where X̃ ⊆ X is the set of feasible
candidate solutions, obtained from S via the constraints Ω(t).

• In some cases a cost, or the estimate of a cost, J(x,t) can be associated
with states other than candidates solutions. If xj can be obtained by
adding solution components to a state xi, then J(xi, t) ≤ J(xj, t). Note
that J(s,t) ≡ g(s,t).

Given this formulation, artificial ants build solutions by performing random-
ized walks on a completely connected graph GC = (C, L) whose nodes are
the components C, and the set of arcs L fully connects the components C.
The graph GC is called construction graph and elements of L are called con-
nections.

The problem constraints Ω(t) are implemented in the policy followed by
the artificial ants and is the subject of the next section; this choice depends
on the combinatorial optimization problem considered.
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2.2.3 Example of problem mapping: the graph colour-
ing problem

The graph colouring problem is an example of problem mapped to the ACO
logic. This problem can be formulated in the following way. A q-colouring
of a graph (Costa, D. and Hertz, A.(1997)) G = (V,E) with vertex set
V = {v1, . . . , vn} and edge set E is a mapping c: V→ {1, 2, . . . , q} such that
c(vi) 6= c(vj) whenever E contains an edge [i, j] linking the vertices vi and vj.
The minimal number of colours q for which a q-colouring exists is called the
chromatic number of G and is denoted χ(G). An optimal colouring is one
which uses exactly χ(G) colours.

Keeping in mind the mapping of a problem as defined in the previous
section, and the description of the graph colouring problem G = (V,E), we
first consider V as the finite set of components. The states of the problem,
elements of X , are defined in terms of sequences of finite length, in which ver-
tices have already been assigned to colours. Defining a stable set as a subset
of vertices whose elements are pairwise nonadjacent, then a candidate solu-
tion s, element of S of the colouring problem is any partition s=(V1, . . . ,Vq)
of the vertex set V into q stable sets (q not fixed). The objective is then
to find an optimal solution s∗ ∈ S∗, which corresponds to a q-coloring of G
with q as small as possible.

Considering n the number of vertices of V and m the number of
colours,the mathematical formulation of the problem is the following:

Since it is always possible to colour any graph G=(V,E ) in n =| V |
colours, we set m=n.

We define the boolean variables xij for vertex i and colour j :

x ij =

{

1 if vertex i receives colour j
0 otherwise

If the admissible set of colours for vertex j is given by:

Ji = {1, . . . , n} 1 ≤ i ≤ n

then we have that:

∑

j∈Ji

xij = 1 1 ≤ n
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The objective function to minimize is given by:

f(x) =
n
∑

k=1

k.δ

(

n
∑

l=1

xlk

)

where δ(z) =

{

1 if z > 0
0 otherwise

This function f (x) adds up the numbers associated with the colours used
in the colouring x. In this way an optimal colouring uses necessarily all
consecutive colours between 1 and χ(G).

A last set of constraints expressed by:

Gj(x) =
∑

[vi,vk]∈E
xij.xkj ≤ 0 1 ≤ j ≤ n

avoid edges with both endpoints having the same colour.

2.2.4 The pheromone trail and heuristic value con-
cepts

In ACO algorithms, artificial ants are stochastic constructive procedures that
build solutions by moving on a construction graph GC = (C, L), where the
set L fully connects the components C. The problem constraints Ω are built
into the ants’ constructive heuristic. In most applications, ants construct
feasible solutions.

Components ci ∈ L and connections lij ∈ L can have associated a
pheromone trail τ (τi if associated with components, τij if associated
with connections), and a heuristic value η (ηi and ηij, respectively):

PHEROMONE TRAIL

The pheromone trail encodes a long-term memory about the entire
ant search process, and is updated by the ants themselves.

HEURISTIC VALUE

The heuristic value, also called heuristic information, represents a
priori information about the problem instance or run-time informa-
tion provided by a source different from the ants.

In many case, this is the cost, or an estimation of the cost, of adding
the component or connection to the solution under construction.
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The variables storing pheromone trail values contain informations read or
written by the ants. These values are used by the ant’s heuristic rule to make
probabilistic decisions on how to move on the graph. They permit the indi-
rect communication between those artificial agents, and so their cooperation,
which is a key design component of ACO algorithm. The ants act concur-
rently and independently; the good-quality solution they found is then an
emergent property of their cooperative interaction.

Considering the ACO Metaheuristic from the more general point of view
of the Learning Process, we can say :

DISTRIBUTED LEARNING PROCESS

In a way, the ACO Metaheuristic is a distributed learning process
in which the single agents, the ants, are not adaptive themselves
but, on the contrary, adaptively modify the way the problem is
represented and perceived by other ants.

We will now look in details the properties that characterize each artificial
agent.

2.2.5 The ants’ representation

What follows is the definition of ant’s representation presented in (Dorigo,
M., Stützle T. (2004) Chapter 2)
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Each ant k of the colony has the following properties:

• It exploits the construction graph GC = (C, L) to search for optimal
solutions s∗ ∈ S∗.

• It has a memoryMk that it can use to store information about the path
it followed so far. Memory can be used to (1) build feasible solutions
(i.e., implement constraints Ω); (2) compute the heuristic values η; (3)
evaluate the solution found; and (4) retrace the path backward.

• It has a start state xk
s and one or more termination conditions ek.

Usually, the start state is expressed either as an empty sequence or
as a unit length sequence, that is, a single component sequence.

• When in state xr = 〈xr−1, i〉, if no termination condition is satisfied,
it moves to a node j in its neighborhood N k(xr), that is, to a state
〈xr, j〉 ∈ X . If at least one of the termination conditions ek is satisfied,
then the ant stops. When an ant builds a candidate solution, moves to
infeasible states are forbidden in most applications, either through the
use of the ant’s memory, or via appropriately defined heuristic values η.

• It selects a move by applying a probabilistic decision rule. The
probabilistic decision rule is a function of (1) the locally available
pheromone trails and heuristic values (i.e., pheromone trails and
heuristic values associated with components and connections in the
neighborhood of the ant’s current location on graph GC); (2) the
ant’s private memory storing its current state; and (3) the problem
constraints.

• When adding a component cj to the current state, it can update
the pheromone trail τ associated with it or with the corresponding
connection.

• Once it has built a solution, it can retrace the same path backward and
update the pheromone trails of the used components.
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2.2.6 The implementation of the metaheuristic

An ACO algorithm is the interplay of three procedures: ConstructAntsSolu-
tions, UpdatePheromones, and DaemonActions.

ConstructAntsSolutions manages a colony of ants that concurrently and
asynchronously visit adjacent states of the considered problem by moving
through neighbor nodes of the problem’s construction graph GC .

In their moves, ants apply a stochastic local decision policy, using both
pheromone trail and heuristic information. In this way, ants incrementally
build solutions to the optimization problem.

Once an ant has built a solution, or while the solution is being built,
the ant evaluates the (partial) solution that will be used by the Up-
datePheromones procedure to decide how much pheromone to deposit.

UpdatePheromone is the process by which the pheromone trails are mod-
ified. If the ants deposit pheromone on the components or connection they
use, they increase the trails value. On the other hand, the pheromone evap-
oration contributes to decrease the trails value.

The deposit of new pheromone increases the probability that those com-
ponents/connections that were either used by many ants or that were used
by at least one ant and which produced a very good solution will be used
again by future ants.

The pheromone evaporation implements a useful form of forgetting by
avoiding a too rapid convergence of the algorithm toward a suboptimal re-
gion, therefore favoring the exploration of new areas of the search space.

The DeamonActions procedure is used to implement centralized actions
which cannot be performed by single ants, being not in possession of the
global knowledge. As examples of deamon actions, we have : the activation
of a local optimization procedure, or the collection of global information
that can be used to decide whether it is useful or not to deposit additional
pheromone to bias the search process from a nonlocal perspective.
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The ACO metaheuristic is described in pseudo-code in figure 2.1. As said
before, the DeamonActions is optional.

procedure ACOMetaheuristic
ScheduleActivities

ConstructAntsSolutions
UpdatePheromones
DaemonActions % optional

end-ScheduleActivities
end-procedure

Figure 2.1: The pseudo-code of the ACOMetaheuristic procedure

The main procedure of the ACO metaheurisitc manages the schedul-
ing of the three above-discussed components of ACO algorithms via the
ScheduleActivities construct : (1) management of the ants’ activity, (2)
pheromone updating, and (3) daemon actions.

The ScheduleActivities construct does not specify how these three
activities are scheduled and synchronized. The designer is therefore free to
specify the way these three procedures should interact, taking into account
the characteristics of the considered problem.



Chapter 3

The NP-Complete problems
and the Traveling Salesman
Problem

In this section, we will first quickly introduce the concepts of combinatorial
problem and computational complexity. We will then define a specific combi-
natorial problem called the “ Traveling Salesman Problem ” (TSP), his main
interests and variants. We will briefly describe the different algorithms used
to find optimal or near-optimal solutions to this problem.

3.1 Combinatorial optimization and compu-

tational complexity

Combinatorial optimization problems involve finding values for discrete vari-
ables such that the optimal solution with respect to a given objective function
is found. They can be either maximization or minimization problems which
have associated a set of problem instances.

The term problem refers to the general problem to be solved, usually
having several parameters or variables with unspecified values. The term
instance refers to a problem with specified values for all the parameters.

17
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An instance of a combinatorial optimization problem Π is a triple (
�
, f , Ω),

where
�

is the set of candidate solutions, f is the objective function which
assigns an objective function (cost) value f (s) 1 to each candidate solution
s ∈ S, and Ω 2 is a set of constraints. The solutions belonging to the set
S̃ ⊆ S of candidate solutions that satisfy the constraints Ω are called feasible
solutions. The goal is to find a globally optimal feasible solution s ∗.

When attacking a combinatorial problem it is useful to know how difficult
it is to find an optimal solution. A way of measuring this difficulty is given by
the notion of worst-case complexity: a combinatorial optimization problem
Π is said to have worst-case time complexity O(g(n)) if the best algorithm
known for solving Π finds an optimal solution to any instance of Π having
size n in a computation time bounded from above by const.g(n).

In particular, we say that Π is solvable in polynomial time if the maximum
amount of computing time necessary to solve any instance of size n of Π is
bounded from above by a polynomial in n. If k is the largest exponent of
such a polynomial, then the combinatorial optimization problem is said to

be solvable in O(nk) time.

A POLYNOMIAL TIME ALGORITHM

A polynomial time algorithm is defined to be one whose compu-
tation time is O(p(n)) for some polynomial function p, where n is
used to denote the size.

EXPONENTIAL TIME ALGORITHM

Any algorithm whose computation time cannot be so bounded is
called an exponential time algorithm.

An important theory that characterizes the difficulty of combinatorial
problems is that of NP-completeness. This theory classifies combinatorial
problem in two main classes: those that are known to be solvable in poly-
nomial time, and those that are not. The first are said to be tractable, the
latter intractable. For the great majority of the combinatorial problems, no
polynomial bound on the worst-case solution time could be found so far.
The Traveling Salesman Problem (TSP) is an example of such intractable
problem. The graph coloring problem is another one.

1f can be dependent in time, when we consider dynamic problems.
2Ω can be dependent in time, when we consider dynamic problems.
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TRACTABLE and INTRACTABLE PROBLEM

Problems that are solvable in polynomial time are said to be
tractable. Problems that are not solvable in polynomial time are
said to be intractable.

The theory of NP-completeness distinguishes between two classes of
problems: the class P for which an algorithm outputs in polynomial time
the correct answer (“yes” or “no”), and the class NP for which an algorithm
exists that verifies for every instance in polynomial time whether the answer
“yes” is correct.

A particularly important role is played by procedures called polynomial
time reductions. Those procedures transform a problem into another one by
a polynomial time algorithm. If this last one is solvable in polynomial time,
so is the first one too. A problem is NP-hard, if every other problem in
NP can be transformed to it by a polynomial time reduction. Therefore, an
NP-hard problem is at least as hard as any of the other problem in NP .
However, NP-hard problems do not necessarily belong to NP . An NP-
hard problem that is in NP is said to be NP-complete. The NP-complete
problems are the hardest problems in NP : if a polynomial time algorithm
could be found for an NP-complete problem, then all problems in the NP-
complete class could be solved in polynomial time; but no such algorithm
has been found until now. A large number of algorithms have been proved
to be NP-complete, including the Traveling Salesman Problem.

For more details on computational complexity, we recommend to consult the
reference Garey, M.R., & Johnson, D.S. (1979).

Two classes of algorithms are available for the solution of combinatorial
optimization problems: exact and approximate algorithms. Exact algorithms
are guaranteed to find the optimal solution and to prove its optimality for
every finite size instance of a combinatorial optimization problem within an
instance-dependent run time.
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If optimal solutions cannot be efficiently obtained in practice, the only pos-
sibility is to trade optimality for efficiency. In other words, the guarantee of
finding optimal solutions can be sacrificed for the sake of getting very good
solutions in polynomial time. Approximate algorithms, often also loosely
called heuristic methods or simply heuristics, seek to obtain good, that is
near-optimal solutions at relatively low computational cost without being
able to guarantee the optimality of solutions. Based on the underlying tech-
niques that approximate algorithm use, they can be classified as being either
constructive or local search methods.

A disadvantage of those single-run algorithms is that they either generate
only a very limited number of different solutions, or they stop at poor-quality
local optima. The fact of restarting the algorithm several times from new
starting solutions, often does not produce significant improvements in prac-
tice.

Several general approaches, which are nowadays often called metaheuris-
tics, have been proposed which try to bypass these problems. A metaheuristic
is a set of algorithmic concepts that can be used to define heuristic methods
applicable to a wide set of different problems. In particular, the ant colony
optimization is a metaheuristic in which a colony of artificial ants cooperate
in finding good solutions to difficult discrete optimization problems.

3.2 Interest of the traveling salesman prob-

lem

The TSP is an important NP-complete optimization problem; its popularity
is due to the fact that TSP is easy to formulate, difficult to solve and has a
large number of applications, even if many of them seemingly have nothing
to do with traveling routes.

An example of an instance of the TSP is the process planning problem
(Helsgaun, K. (2000)), where a number of jobs have to be processed on a
single machine. The machine can only process one job at a time. Before a
job can be processed the machine must be prepared. Given the processing
time of each job and the switch-over time between each pair of jobs, the task
is to find an execution sequence of the jobs making the total processing time
as short as possible.

Many real-world problems can be formulated as instances of the TSP. Its
versatility is illustrated in the following examples of applications areas:
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•Computer wiring
•Vehicle routing
•Determination of protein structures by X-ray crystallography
•Route optimization in robotic
•Drilling of printed circuit boards
•Chronological sequencing
•Maximum efficiency or minimum cost in process allocation

3.3 Description of the traveling salesman

problem

Intuitively, the traveling salesman problem is the problem faced by a salesman
who, starting from his home town, wants to find the shortest possible trip
through a given set of customer cities, visiting each city once before finally
returning home.

The TSP can be represented by a complete weighted graph G = (N,A)
with N being the set of n = |N| nodes (cities), A being the set of arcs fully
connecting the nodes. Each arc (i, j) ∈ A is assigned a weight dij which
represents the distance between cities i and j, with i, j ∈ N.

The traveling salesman problem (TSP) is then the general problem of
finding a minimum cost Hamiltonian circuit in this weighted graph, where a
Hamiltonian circuit is a closed walk (a tour) visiting each node of G exactly
once.

An optimal solution to an instance of the TSP can be represented as a
permutation π of the node (city) indices {1, 2, . . . , n} such that the length
f (π) is minimal, where f (π) is given by :

f(π) =
n−1
∑

i=1

dπ(i)π(i+1) + dπ(n)π(1).

where dij is the distance between cities i and j, and π is a permutation of
〈1, 2, . . . , n〉.

An instance IN(D) of the TSP problem over N is defined by a distance
matrix D=(d)ij.

A solution of this problem is a vector π where j = π(k) means that city j
is visited at step k.
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3.4 Different variants of the traveling sales-

man problem

We may distinguish between symmetric TSPs, where the distances between
the cities are independent of the direction of traversing the arcs, that is,
dij = dji for every pair of nodes, and the asymmetric TSP (ATSP), where at
least for one pair of nodes (i,j ) we have dij 6= dji. The factor dij are used to
classify problems.

SYMMETRIC TSP (STSP)

If dij = dji,∀i, j ∈ N, the TSP problem is said to be symmetric.

ASYMMETRIC TSP (ATSP)

If ∃i, j ∈ N : dij 6= dji, the TSP problem is said to be asymmetric.

Based on the triangle inequality, we can also say that:

METRIC TSP (MTSP)

If the triangle inequality holds (dik ≤ dij + djk,∀i, j, k ∈ N), the
problem is said to be metric.

And finally, based on the euclidean distances between points in the plane,
we have:

EUCLIDEAN TSP (ETSP)

If dij are Euclidean distances between points in the plane, the prob-
lem is said to be Euclidean. A Euclidean problem is, of course, both
symmetric and metric.

3.5 Exact solutions of the traveling salesman

problem

The NP-Hardness results indicate that it is rather difficult to solve large
instances of TSP to optimality. Nevertheless, there are computer codes that
can solve many instances with thousands of vertices within days.
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EXACT ALGORITHM

An exact algorithm is an algorithm that always produces an optimal
solution.

There are essentially two methods useful to solve TSP to optimality: the
integer programming approach and the dynamic programming.

3.5.1 Integer programming approaches

The classical integer programming formulation of the TSP (Laburthe, F.
(1998)) is the following: define zero-one variables xij by

x ij =

{

1 if the tour traverses arc (i,j )
0 otherwise

Let dij be the weight on arc (i,j ). Then the TSP can be expressed as:

min
∑

i,j

dijxij

∀i,
∑

j

xij = 1

∀j,
∑

i

xij = 1

∀S ⊂ V, S 6= ∅,
∑

i∈S

∑

j /∈S
xij ≥ 2

The first set of constraints ensures that a tour must come into vertex j
exactly once, and the second set of constraints indicates that a tour must
leave every vertex i exactly once. There are so two arcs adjacent to each
vertex, one in and one out. But this does not prevent non-hamiltonian cy-
cles. Instead of having one tour, the solution could consist of two or more
vertex-disjoint cycles (called sub-tours). The role of the third set of con-
straints, called sub-tour elimination constraints is to avoid the formation of
such solutions.
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The formulation without the third set of constraints is an integer pro-
gramming formulation of the Assignment Problem that can be solved in
time O(n3), each city being connected with its nearest city such that the to-
tal cost of all connection is minimized. A solution of the Assignment Problem
is a minimum-weight collection of vertex-disjoint cycle C1, . . . , Ct spanning
the complete directed graph. If t=1, then an optimal solution of ATSP has
been obtained. Otherwise, one can consider two or more subproblems. For
example, for an arc a ∈ Ci, one subproblem could require that arc a be in
the solution, and a second subproblem could require that arc a not be in the
solution. This simple idea gives a basis for branch-and-bound algorithms for
ATSP. Other algorithms were also developed, adding more sub-tour elimina-
tion constraints. They are called branch and cut and are more efficient for
solving the TSP.

3.5.2 Dynamic programming

The dynamic programming (Laburthe, F. (1998)) is a general technique for
exact resolution of combinatorial optimization problems, and consisting to
explicitly enumerate the all set of solutions of the problem. This technique
needs a recurrent formulation of the TSP problem. Calling an hamiltonian
chain every path containing only once every vertex, if V = {0, . . . , n}, for
∈ {1, . . . , n} and S ⊆ {1, . . . , n}, x /∈ S, we write f (S,x ) the length of the
smallest hamiltonian chain starting from 0, visiting all vertices of S and
finishing in x. f can be calculated with the recurrent function:

f(S, x) = min
y∈S(f(S− {y}, y) + d(y, x))

and the value of the optimal tour length is f({1, . . . , n}). The calculation of
the optimal tour needs to store n2n values of f : 2n parts of {1, . . . , n} for
the first argument and all the values of {1, . . . , n} for the second argument.

The interest of the dynamic programming lies in the rapidity of the cal-
culations for one part, and in the possibility of integration of new constraints
(for instance time windows). The disadvantage comes from the memory size
which is necessary for the calculations. For this last reason, this method is
limited to small problems of at most 15 nodes.
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3.6 Heuristic solutions of the traveling sales-

man problem

Exact Algorithms cannot be relied upon for applications requiring very fast
solutions or ones that involve huge problem instances. Although approximate
algorithms forfeit the guarantee of optimality, with good heuristics they can
normally produce solutions close to optimal. In the case of the TSP, the
heuristics can be roughly partitioned into two classes (Nilsson, CH.): con-
struction heuristics and improvement heuristics.

APPROXIMATE ALGORITHM

An approximate (or approximation) algorithm is an algorithm that
typically makes use of heuristics in reducing its computation but
produces solutions that are not necessarily optimal.

CONSTRUCTION HEURISTICS

Approximate algorithms based on construction heuristics build a
tour from scratch and stop when one is produced.

IMPROVEMENT HEURISTICS

Approximate algorithms based on improvement heuristics start
from a tour and iteratively improve it by changing some parts of it
at each iteration.

When evaluating the empirical performance of heuristics, we are often not
allowed the luxury of comparing to the precise optimal tour length, since
for large instances we typically do not know the optimal tour length. As
a consequence, when studying large instances it has become the practice to
compare heuristic results to something we can compute; the lower bound
on the optimal tour length due to Held and Karp, noted (HKb). In case
of the TSP, this bound is the solution to the linear programming relaxation
of the integer programming formulation of this problem. The excess over
Held-Karp lower bound is given by:
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H(IN (D))−HKb(IN (D))

HKb(IN (D))
.100%

where IN (D) is an instance of the TSP problem on a set N of n cities, with
D being the matrix of distances between those cities.

We will first consider the heuristic methods coming under the tour construc-
tion.

3.6.1 Tour construction

The algorithms based on tour construction stop when a solution is found and
never try to improve it. For each algorithm, the time complexity is given.

Nearest neighbor

This is the simplest and most straightforward TSP heuristic. The key of this
algorithm is to always visit the nearest city.

Nearest Neighbor, O(n2)

1. Select a random city.

2. Find the nearest unvisited city and go there.

3. If there are unvisited cities left, repeat step 2.

4. Return to the first city.

The Nearest Neighbor algorithm will often keep its tours within 25 % of the
Held-Karp lower bound.

Greedy heuristic

The Greedy heuristic gradually constructs a tour by repeatedly selecting the
shortest edge and adding it to the tour as long as it doesn’t create a cycle
with less than N edges, or increases the degree of any node to more than 2.

Greedy, O(n2log2(n))
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1. Sort all edges.

2. Select the shortest edge and add it to our tour if it doesn’t violate any
of the above constraints.

3. If we don’t have N edges in the tour, repeat step 2.

The Greedy algorithm normally keeps within 15-20% of the Held-Karp lower
bound.

Insertion heuristics

The basics of insertion heuristics is to start with a tour of a subset of all
cities, and then inserting the rest by some heuristic. The initial subtour is
often a triangle or the convex hull. One can also start with a single edge as
subtour.

Nearest Insertion, O(n2)

1. Select the shortest edge, and make a subtour of it.

2. Select a city not in the subtour, having the shortest distance to any of
the cities in the subtour.

3. Find an edge in the subtour such that the cost of inserting the selected
city between the edge’s cities will be minimal.

4. Repeat steps 2 and 3 until no more cities remain.

Convex Hull, O(n2log2(n))

1. Find the convex hull of our set of cities, and make it our initial subtour.

2. For each city not in the subtour, find its cheapest insertion (as in
step 3 of the Nearest Insertion). Then choose the city with the least
cost/increase ratio, and insert it.

3. Repeat step 2 until no more cities remain.

For big instances, the insertion heuristic normally keeps within 29% of the
Held-Karp lower bound.

Clarke-Wright or savings algorithm

Clarke-Wright, O(n2log2(n))
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The Clarke-Wright savings heuristic (Johnson, D.S., McGeoch, L.A. (1997))
is derived from a more general vehicle routing algorithm due to Clarcke and
Wright. In terms of the TSP, we start with a pseudo-tour in which an
arbitrarily chosen city is the hub and the salesman return to the hub after
each visit to another city. For each pair of non-hub cities, let the savings
be the amount by which the tour would be shortened if the salesman went
directly from one city to the other, bypassing the hub. The next step proceeds
analogously to the the Greedy algorithm, going through the non-hub city
pairs in non-increasing order of savings, performing the bypass so long as
it does not create a cycle of non-hub vertices or cause a non-hub vertex to
become adjacent to more than two other non-hub vertices. The construction
process terminates when only two non-hub cities remain connected to the
hub, in which case we have a true tour.

For big instances, the savings algorithm normally keeps within 12% of the
Held-Karp lower bound.

Christofides

The Christofides heuristic extends the Double Minimum Spanning Tree al-
gorithm (complexity in O(n2log2(n))) with a worst-case ratio of 2 (i.e. a tour
with twice the length of the optimal tour). This new extended algorithm has
a worst-case ratio of 3/2.

Christofides Algorithm, worst-case ratio 3/2, O(n3).

1. Build a minimal spanning tree from the set of all cities.

2. Create a minimum-weight matching on the set of nodes having an odd
degree. Add the minimal spanning tree together with the minimum-
weight matching.

3. Create an Euler cycle from the combined graph, and traverse it taking
shortcuts to avoid visited nodes.

The Christofides’ algorithm tends to place itself around 10% above the Held-
Karp lower bound.

3.6.2 Tour improvement

Once a tour has been generated by some tour construction heuristic, it is
possible to improve it by some local searches methods. Among them we
mainly find 2-opt and 3-opt. Their performances are somewhat linked to the
construction heuristic used.
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2-opt and 3-opt

The 2-opt algorithm (see figure 3.1) removes two edges from the tour (edges
(t4, t3) and (t2, t1)), and reconnects the two paths created (edges (t4, t1) and
(t3, t2)). There is only one way to reconnect the two paths so that we still
have a valid tour. This is done only if the new tour will be shorter and stop
if no 2-opt improvement can be found. The tour is now 2-optimal.

t4

t2 t1

t3

t2

t4

t1

t3

Figure 3.1 A 2-opt move

The 3-opt algorithm (see figure 3.2) works in a similar fashion, but three
edges (x1, x2 and x3) are removed instead of two. This means that there are
two ways of reconnecting the three paths into a valid tour (for instance y1, y2

and y3). A 3-opt move can be seen as two or three 2-opt moves. The search
is finished when no more 3-opt moves can improve the tour.

x2

x1

x3

y2

x2

y1

x1

y3

x3

Figure 3.2 A 3-opt move
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The 2-opt and 3-opt algorithms are a special case of the k -opt algorithm,
where in each step k links of the current tour are replaced by k links in such
a way that a shorter tour is achieved. The k -opt algorithm is based on the
concept k-optimality :

K-OPTIMAL

A tour is said to be k-optimal (or simply k -opt) if it is impossible
to obtain a shorter tour by replacing any k of its links by any other
set of k links.

Running the 2-opt heuristic will often result in a tour with a length less than
5% above the Held-Karp bound. The improvements of a 3-opt heuristic will
usually give a tour about 3% above the Held-Karp bound.

About the complexity of these k-opt algorithms, one has to notice that a move
can take up to O(n) to perform. A naive implementation of 2-opt runs in
O(n2), this involves selecting an edge (c1, c2) and searching for another edge
(c3, c4), completing a move only if dist(c1, c2) + dist(c3, c4) > dist(c2, c3) +
dist(c1, c4).

The search can be pruned if dist(c1, c2) > dist(c2, c3) does not hold. This
means that a large piece of the search can be cut by keeping a list of each
city’s closest neighbors. This extra information will of course take extra time
to calculate (O(n2log2n)). Reducing the number of neighbors in the lists will
allow to put this idea in practice.

By keeping the m nearest neighbors of each city, it is possible to improve the
complexity to O(mn). The calculation of the nearest neighbors for each city
is a static information for each problem instance and needs to be done only
once. It can be reused for any subsequent runs on that particular problem.

Finally, a 4-opt algorithms or higher will take more and more time and will
only yield a small improvement on the 2-opt and 3-opt heuristics.

Lin-Kernighan

The Lin-Kernighan algorithm (LK) is a variable k -opt algorithm. The main
idea is to decide at each step which k is the most suitable to reduce at
maximum the length of the current tour.

Those k -opt moves are seen as a sequence of 2-opt moves. Every 2-opt move
always deletes one of the edge added by the previous move. The algorithm
is described below:
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Let T be the current tour. At each iteration step, the algorithm attempts to
find two sets of links, X = {x1, . . . , xr} and Y = {y1, . . . , yr}, such that, if
the links of X are deleted from T and replaced by the links of Y, the result
is a better tour. This interchange of links is a r -opt move. The two sets X
and Y are constructed element by element. Initially, X and Y are empty. In
step i a pair of links, xi and yi, are added to X and Y respectively.

In order to achieve a sufficient efficient algorithm, only links that fulfill the
following criteria may enter X and Y.

1. The sequential exchange criterion (see figure 3.3): xi and yi must share
an endpoint, and so must yi and xi+1. If t1 denotes one of the two
endpoints of x1, we have in general that: xi = (t2i−1, t2i), yi = (t2i, t2i+1)
and xi+1 = (t2i+1, t2i+2) for i ≥ 1.

t2i+1

t2i+2

t2i t2i−1

xi+1

xi

yi

yi+1

Figure 3.3 Restricting the choice of xi, yi, xi+1 and yi+1.

2. The feasibility criterion: It is required that xi = (t2i−1, t2i) is chosen
so that, if t2i is joined to t1, the resulting configuration is a tour. This
criterion is used for i ≥ 3 and guarantees that it is possible to close up
a tour.

3. The positive gain criterion: It is required that yi is always chosen so
that the gain, Gi, from the proposed set of exchanges is positive. If we
suppose gi = c(xi)− c(yi) is the gain from exchanging xi with yi, then
Gi is the sum g1 + g2 + . . . + gi.

4. The disjunctivity criterion: It is required that the sets X and Y are
disjoint.

So the basic algorithm limits its search by using the following four rules:
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1. Only sequential exchanges are allowed.

2. The provisional gain must be positive.

3. The tour can be ’closed’.

4. A previously broken link must not be added, and a previously added
link must not be broken.

In order to limit or to direct the search even more, additional rules were
introduced:

1. The search for a link to enter the tour, yi = (t2i, t2i+1), is limited to the
five nearest neighbors to t2i.

2. Th search for improvements is stopped if the current tour is the same
as previous solution tour.

3. When link yi(i ≥ 2) is to be chosen, each possible choice is given the
priority c(xi+1)− c(yi).

The two first rules save running time (30 to 50 percent), but sometimes at
the expense of not achieving the best possible solutions. If the algorithm
has a choice of alternatives, the last rule permits to give priorities to these
alternatives, by ranking the links to be added to Y. The priority for yi is the
length of the next link to be broken, xi+1, if yi is included in the tour, minus
the length of yi. By maximizing the quantity c(xi+1) − c(yi), the algorithm
aims at breaking a long link and including a short link.

The time complexity of LK is O(n2.2), making it slower than a simple 2-opt
implementation. This algorithm is considered to be one of the most effective
methods for generating optimal or near-optimal solutions for the TSP.

Tabu-search

A neighborhood-search algorithm searches among the neighbors of a can-
didate solution to find a better one. Such process can easily get stuck in a
local optimum. The use of tabu-search can avoid this by allowing moves with
negative gain if no positive one can be found. By allowing negative gain we
may end up running in circles, as one move may counteract the previous. To
avoid this, the tabu-search keeps a tabu-list containing illegal moves. After
moving to a neighboring solution the move will be put on the tabu-list and
will thus never be applied again unless it improves the best tour or the tabu
has been pruned from the list.
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There are several ways to implement the tabu list. One involves adding the
two edges being removed by a 2-opt move to the list. Another way is to
add the shortest edge removed by a 2-opt move, and then making any move
involving this edge tabu.

Most implementations for the TSP in tabu-search will take O(n3), making
it far slower than a 2-opt local search. Given that we use 2-opt moves, the
length of the tours will be slightly better than that of a standard 2-opt search.

Simulated annealing

Simulated Annealing (SA) has been successfully adapted to give approximate
solutions for the TSP. SA is basically a randomized local search algorithm
allowing moves with negative gain. An implementation of SA for the TSP
uses 2-opt moves to find neighboring solutions. The resulting tours are com-
parable to those of a normal 2-opt algorithm. Better results can be obtained
by incorporating neighborhood lists, so that the algorithm can compete with
the LK algorithm.

Genetic Algorithms

Genetic Algorithms (GA) work in a way similar to nature. An evolution-
ary process takes place within a population of candidate solutions. A basic
Genetic Algorithm starts out with a randomly generated population of candi-
date solutions. Some (or all) candidates are then mated to produce offspring
and some go through a mutating process. Each candidate has a fitness value
telling us how good they are. By selecting the most fit candidates for mating
and mutation the overall fitness of the population will increase.

Applying GA to the TSP involves implementing a crossover routine, a
mutation routine and a measure of fitness. Some implementations have shown
good results, even better than the best of several LK runs, but running time
is an issue.
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3.7 Synthesis of the different algorithms

The following table present a synthesis of the different algorithms previously
presented. For 2-opt and 3-opt, m represents the nearest neighbors of each
city. In the following table, HK means Held-Karp lower bound.

Algo. Complexity Sol. quality
Near. Neighbor O(n2) 25% HK
Greedy O(n2log2(n)) 15%-20% HK
Insertion O(n2log2(n)) 29% HK
Christofides O(n3) 10% HK
2-opt 3-opt O(mn) 3% HK
Saving Algo. O(n2log2(n)) 12% HK
Sim. Annealing O(n2) 3% HK
Lin-Kernighan O(n2.2) 318 cities in 1

sec; optimal so-
lution for 7397
cities

Tabu Search O(n3) 3% HK



Chapter 4

Ant Colony Optimization and
the Traveling Salesman
Problem

4.1 Application of the ACO algorithms to the

TSP

ACO can be applied to the TSP in a straightforward way.

• Construction graph: The construction graph is identical to the problem
graph: the set of components C is identical to the set of nodes (i.e.,
C=N ), the connections correspond to the set of arcs (i.e., L=A), and
each connection has a weight which corresponds to the distance dij

between nodes i and j. The states of the problem are the set of all
possible partial tours.

• Constraints: The only constraint in the TSP is that all cities have to
be visited and that each city is visited at most once. This constraint is
enforced if an ant at each construction step chooses the next city only
among those it has not visited yet (i.e., the feasible neighborhood N k

i

of an ant k in city i, where k is the ant’s identifier, comprises all cities
that are still unvisited).
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• Pheromone trails and heuristic information: The pheromone trails τij

in the TSP refer to the desirability of visiting city j directly after i.
The heuristic information ηij is typically inversely proportional to the
distance between cities i and j, a straightforward choice being ηij =
1/dij.

• Solution construction: Each ant is initially placed in a randomly chosen
start city and at each step iteratively adds one unvisited city to its
partial tour. The solution construction terminates once all cities have
been visited.

Tours are constructed by applying the following simple constructive pro-
cedure to each ant: after having chosen a start city at which the ant is
positioned, (1) use pheromone and heuristic values to probabilistically con-
struct a tour by iteratively adding cities that the ant has not visited yet,
until all cities have been visited; and (2) go back to the initial city.

4.2 Ant system and its direct successors

The first ACO algorithm, Ant System (AS), was developed by Professor
Dorigo in 1992 (Dorigo, 1992). This algorithm was introduced using the TSP
as an example application. AS achieved encouraging initial results, but was
found to be inferior to state-of-the-art algorithms for the TSP. The impor-
tance of AS therefore mainly lies in the inspiration it provided for a number of
extensions that significantly improved performance and are currently among
the most successful ACO algorithms. In fact most of these extensions are
direct extensions of AS in the sense that they keep the same solution construc-
tion procedure as well as the same pheromone evaporation procedure. These
extensions include elitist AS, rank-based AS, and MAX −MIN AS. The
main differences between AS and these extensions are the way the pheromone
update is performed, as well as some additional details in the management
of the pheromone trails. A few other ACO algorithms that more substan-
tially modify the features of AS were also developed; those algorithms are the
Ant Colony System (ACS), the Approximate Nondeterministic Tree Search
and the Hyper-Cube Framework for ACO. Only the ACS will be briefly pre-
sented; for the others, we invite the reader to consult the reference (Dorigo,
M., Stützle T. (2004) Chapter 3).

Those algorithms are presented in the order of increasing complexity in
the modifications they introduce with respect to AS.
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4.2.1 The ant system

In the early 1991, three different versions of AS (Dorigo, M., Maniezzo,
V., Colorni, A. (1991a)) were developed: they were called ant-density, ant-
quantity and ant-cycle.Whereas in the ant-density and ant-quantity versions
the ants updated the pheromone directly after a move from one city to an
adjacent city, in the ant-cycle version the pheromone update was only done
after all the ants had constructed the tours and the amount of pheromone
deposited by each ant was set to be a function of the tour quality. Due
to their inferior performance the ant-density and ant-quantity versions were
abandoned and the actual AS algorithm only refers to the ant-cycle version.

The two main phases of the AS algorithm are the ants’ solution construc-
tion and the pheromone update. The initialization of the pheromone trails
is made by a value slightly higher than the expected amount of pheromone
deposited by the ants in one iteration; a rough estimation of this value is ob-
tained by setting, ∀(i, j), τij = τ0 = m/C nn, where m is the number of ants,
and C nn is the length of a tour generated by the nearest-neighbor heuristic.

The reason for this choice is that if the initial pheromone values τ0’s are
too low, then the search is quickly biased by the first tours generated by the
ants, which in general leads toward the exploration of inferior zones of the
search space. On the other hand, if the initial pheromone values are too high,
then many iterations are lost waiting until pheromone evaporation reduces
enough pheromone evaporation, so that pheromone added by ants can start
to bias the search.

Tour construction

In AS, m artificial ants concurrently build a tour of the TSP. At each
construction step, ant k applies a probabilistic action choice rule, called ran-
dom proportional rule, to decide which city to visit next. In particular, the
probability with which ant k currently at city i, chooses to go to city j is

pk
ij =

[τij]
α[ηij]

β

∑

l∈Ni
k

[τij]
α[ηij]

β , if j ∈ Ni
k, (4.1)
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where ηij = 1/dij is a heuristic that is available a priori, α and β are two
parameters which determine the relative influence of the pheromone and the
heuristic information, and N k

i is the feasible neighborhood of ant k when
being at city i, that is, the set of cities that ant k has not visited yet. By this
probabilistic rule, the probability of choosing a particular arc (i, j ) increases
with the value of the associated pheromone trail τij and of the heuristic
information value ηij.

The discussion about the values of the parameters α and β is the follow-
ing: if α= 0, the closest cities are more likely to be selected; if β= 0, only
the pheromone is at work, without any heuristic bias. This generally leads
to rather poor results and, in particular, for α > 1 it leads to the rapid emer-
gence of a stagnation situation, that is, a situation in which all the ants follow
the same path and construct the same tour, which, in general, is strongly
suboptimal.

Each ant k maintains a memory Mk which contains the cities already
visited, in the order they were visited. This memory is used to define the
feasible neighborhood N k

i in the construction rule given by equation (4.1).
This memory also allows ant k both to compute the length of the tour T k

it generated and to retrace the path to deposit pheromone.

Update of pheromone trails

After all the ants have constructed their tours, the pheromone trails are
updated. First the pheromone values on all arcs are lowered by a constant
factor, after what pheromone values are added on the arcs the ants have
crossed in their tours. Pheromone evaporation is implemented by

τij ← (1− ρ)τij (4.2)

where 0 < ρ ≤ 1 is the pheromone evaporation rate. Evaporation avoids
unlimited accumulation of the pheromone trails and enables the algorithm
to forget bad decisions previously taken. After evaporation, all ants deposit
pheromone on the arcs they have crossed in their tour:

τij ← τij +
m
∑

k=1

∆τ k
ij, ∀(i, j) ∈ L, (4.3)

where ∆τ k
ij is the amount of pheromone ant k deposits on the arcs it has

visited. It is defined as follows:
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∆τ k
ij =

{

1/C k, if arc (i, j ) belongs to T k;
0, otherwise;

(4.4)

where k, the length of the tour T k built by the k -th ant, is computed as the
sum of the lengths of the arcs belonging to T k. By means of equation (4.4),
the better an ant’s tour is, the more pheromone the arcs belonging to this
tour receive. In general, arcs that are used by many ants and which are part
of short tours, receive more pheromone and are therefore more likely to be
chosen by ants in future iterations of the algorithm.

4.2.2 The elitist ant system

A first improvement on the initial AS, called the elitist strategy for Ant
System (EAS), was introduced by Dorigo (Dorigo, 1992; Dorigo et al., 1991a,
1996). The idea is now to provide strong additional reinforcement to the arcs
belonging to the best tour found since the start of the algorithm; this tour
is denoted T bs (best-so-far tour) in the following.

Update of pheromone trails

The additional reinforcement of tour T bs is achieved by adding a quantity
e/C bs to its arcs, where e is a parameter that defines the weight given to the
best-so-far tour T bs, and C bs is its length. The equation for the pheromone
deposit is now:

τij ← τij +
m
∑

k=1

∆τ k
ij + e∆τ bs

ij , (4.5)

where ∆τ k
ij is defined as in equation(4.4) and ∆τ bs

ij is defined as follows:

∆τ bs
ij =

{

1/C bs, if arc (i, j ) belongs to T bs;
0, otherwise;

(4.6)

In EAS, the pheromone evaporation stay implemented as it is in AS.
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4.2.3 The ranked-based ant system

In the next improved version, called the rank-based version of AS (ASrank)
(Bullnheimer et al., 1999c), each ant deposits an amount of pheromone that
decreases with its rank. Additionally, as in EAS, the best-so-far ant always
deposits the largest amount of pheromone in each direction.

Update of pheromone trails

Before updating the pheromone trails, the ants are sorted by increasing tour
length and the quantity of pheromone an ant deposits is weighted according
to the rank r of the ant. In each iteration only the (w -1) best-ranked ants and
the ant that produced the best-so-far tour are allowed to deposit pheromone.

The best-so-far tour gives the strongest feedback, with weight w ; the r -th
best ant of the current iteration contributes to pheromone updating with the
value 1/C r multiplied by a weight given by max{0,w−r}. Thus, the ASrank

pheromone update rule is:

τij ← τij +
w−1
∑

r=1

(w − r)∆τ r
ij + w∆τ bs

ij , (4.7)

where ∆τ r
ij = 1/C r and ∆τ bs

ij = 1/C bs.

4.2.4 The max-min ant system

The next version, called MAX −MIN Ant System (MMAS) (Stützle &
Hoos, 1997, 2000; Stützle, 1999), introduces four main modifications with
respect to AS.

First, it strongly exploits the best tours found: only either the iteration
best-ant, that is, the ant that produced the best tour in the current iteration,
or the best-so-far ant is allowed to deposit pheromone. Unfortunately, such
a strategy may lead to a stagnation situation in which all the ants follow the
same tour, because of the excessive growth of pheromone trails on arcs of a
good, although suboptimal, tour.

To counteract this effect, a second modification has been introduced by
MMAS: the limitation of the possible range of pheromone trail values to
the interval [τmin, τmax].
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Third, the pheromone trails are initialized to the upper pheromone trail
limit, which, together with a small pheromone evaporation rate, increases
the exploration of tours at the start of the search.

Finally, inMMAS, pheromone trails are initialized each time the system
approaches stagnation or when no improved tour has been generated for a
certain number of consecutive iterations.

Update of pheromone trails

After all ants have constructed a tour, pheromones are updated by ap-
plying evaporation as in AS, followed by the deposit of new pheromone as
follows:

τij ← τij + ∆τ best
ij , (4.8)

where ∆τ best
ij = 1/C best. The ant which is allowed to add pheromone may

be either the best-so-far, in which case ∆τ best
ij = 1/C bs, or the iteration-best,

in which case ∆τ best
ij = 1/C ib, where C ib is the length of the iteration-best

tour. In general, in MMAS implementations both the iteration-best and
the best-so-far update rules are used, in an alternate way.

Pheromone trail limits

In MMAS, lower and upper limits τmin and τmax on the possible
pheromone values on any arc are imposed in order to avoid search stag-
nation. In particular, the imposed pheromone trail limits have the effect of
limiting the probability pij of selecting a city j when an ant is in city i to
the interval [τmin, τmax], with 0 < pmin ≤ pij ≤ pmax ≤ 1.

Update of pheromone trails

At the start of the algorithm, the initial pheromone trails are set of the
upper pheromone trail limit. This way of initializing the pheromone trails, in
combination with a small pheromone evaporation parameter, causes a slow
increase in the relative difference in the pheromone trail levels, so that the
initial search phase ofMMAS is very explorative.

As a further means of increasing the exploration of paths that have only a
small probability of being chosen, inMMAS pheromone trails are occasion-
ally reinitialized. Pheromone trail reinitialization is typically triggered when
the algorithm approaches the stagnation behavior or if for a given number
of algorithm iterations no improved tour is found.
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4.2.5 The ant colony system

In this new version, called ACS (Dorigo & Gambardella, 1997a,b), a new
mechanism based on idea not included in the original AS is introduced. It
differs from this last one in three main points.

First, it exploits the search experience accumulated by the ants more
strongly than AS does through the use of a more aggressive action choice
rule. Second, pheromone evaporation and pheromone deposit take place only
on the arcs belonging to the best-so-far tour. Third, each time an ant use an
arc (i, j ) to move from city i to city j, it removes some pheromone from the
arc to increase the exploration of alternative paths.

Tour Construction

In ACS, when located at city i, ant k moves to a city j chosen according
to the so called pseudorandom proportional rule, given by

j =

{

argmaxl∈N k

i

{τil[ηil]
β} if q ≤ q0;

J, otherwise;
(4.9)

where q is a random variable uniformly distributed in [0, 1], q0(0 ≤ q0 ≤ 1), is
a parameter, and J is a random variable selected according to the probability
distribution given by equation (4.1) (with α = 1).

The ant exploits the learned knowledge with probability q0, making the
best possible move as indicated by the learned pheromone trails and the
heuristic information, while with probability (1 − q0) it performs a biased
exploration of the arcs. Tuning the parameter q0 allows to modulate the
degree of exploration and to chose of whether to concentrate the search of
the system around the best-so-far solution or to explore other tours.

Global Pheromone Trail Update

In ACS only one ant (the best-so-far ant) is allowed to add pheromone after
each iteration. The update in ACS is implemented by the following equation:
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τij ← (1− ρ)τij + ρ∆τ bs
ij ,∀(i, j) ∈ Tbs, (4.10)

where ∆τ bs
ij = 1/Cbs. The main difference between ACS and AS is that the

pheromone trail update, both evaporation and new pheromone deposit, only
applies to the arcs of Tbs, not to all the arcs. As usual, the parameter ρ
represents the pheromone evaporation; unlike in AS’s equations (4.3) and
(4.4), in equation (4.9) the deposited pheromone is discounted by a factor
ρ; this results in the new pheromone trail being a weighted average between
the old pheromone value and the amount of pheromone deposited.

Local Pheromone Trail Update

In ACS the ants use a local pheromone update rule that they apply imme-
diately after having crossed an arc (i,j ) during the tour construction:

τij ← (1− ξ)τij + ξτ0, (4.11)

where ξ, 0 < ξ < 1, and τ0 are two parameters. The value for τ0 is set to
be the same as the initial value for the pheromone trails. Experimentally, a
good value for ξ was found to be 1/nCnn, where n is the number of cities in
the TSP instance and Cnn is the length of a nearest-neighbor tour.

The effect of the local updating rule is that each time an ant uses an arc
(i,j ) its pheromone trail τij is reduced, so that the arcs becomes less desirable
for the following ants. This strategy allows an increase in the exploration
of arcs that have not been visited yet and has the effect that the algorithm
does not show a stagnation behavior.

Finally, in ACS, this local pheromone update rule asks for a tour con-
struction in parallel by the ants, while it did not matter in the algorithms
previously explained.
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4.2.6 Synthesis of the different algorithms

The following table present a synthesis of the different algorithms previously
explained.

Algo. Tour Construct. Evaporation Updating
AS random propor-

tional rule
all arcs lowered
with constant
factor ρ

deposit on all
arcs visited by
all ants

EAS random propor-
tional rule

all arcs lowered
with constant
factor ρ

AS with ad-
ditional rein-
forcement of
best-so-far tour

ASrank random propor-
tional rule

all arcs lowered
with constant
factor ρ

ants sorted by
increasing tour
length; deposit
weighted ac-
cording to the
rank of each
ant

MMAS random propor-
tional rule

all arcs lowered
with constant
factor ρ

deposit only ei-
ther by the iter-
ation best-ant,
or the best-so-
far ant; interval
[τmin, τmax]

ACS pseudorandom
proportional rule

only arcs of the
best-so-far tour
are lowered

deposit only on
arcs of the best-
so-far tour
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4.2.7 Experimental parameters for the different algo-
rithms

The experimental study of the various ACO algorithms for the TSP has iden-
tified parameter settings that result in good performance. In the following
table, parameter n represents the number of cities in a TSP instance and m
is the number of ants.

ACO Algorithm α β ρ m τ0

AS 1 2 to 5 0.5 n m/Cnn

EAS 1 2 to 5 0.5 n (e + m)/ρCnn

ASrank 1 2 to 5 0.1 n 0.5r(r− 1)/ρCnn

MMAS 1 2 to 5 0.02 n 1/ρCnn

ACS - 2 to 5 0.1 10 1/nCnn

In EAS, the parameter e (which defines the weight given to the best-so-far
tour - see formula 4.5) is set to e = n. In ASrank, the number of ants that
deposit pheromones is w=6 and parameter r is the rank (see formula 4.7).



46 4.2. ANT SYSTEM AND ITS DIRECT SUCCESSORS



Chapter 5

The Effect of Memory Depth

As explained in the introduction, there are theoretical reasons to hope an
improvement of the solution obtained with the classical version of Ant Al-
gorithm. In this work we tried to observe this effect by modifying in a very
simple way the pheromone matrix τ . The first section exposes the reason of
the modifications to the pheromone matrix; the next section concentrates on
the adaptation of the pheromone matrix; finally the last section explores the
idea of a serialization of the algorithms developed with the new pheromone
matrix.

5.1 The modified pheromone matrix TAU

In the existing versions of the AS algorithm, the pheromone values are stored
in a symmetric n2 matrix. For each connection (i, j) between city i and
city j, a number τij corresponding to the pheromone trail associated with
that connection is stored in this matrix. The symmetry of our test problem
(TSP) implies that ∀i, j, τij = τji and explains the symmetric property of the
pheromone matrix. As expected, with the pheromone matrix so defined, AS
works well and produces near-optimal solutions to TSP problem.

This construction of the τ matrix is clearly overgeneralizing. It doesn’t
take into account, in the solution under construction, of the sequences already
used by the ants as they were constructing previous solutions. Considering
pheromone values now associated to sequences of visited cities, we hope to
observe a general improvement of the quality of solutions, better than those
obtained with AS.

47
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The choice of the city to move to will now take into account not only the
current city i where the ant stands, but also the previous cities where the
ant stood before arriving at city i. Working this way, the decision for the
next movement will be seen as a continuation of previous sequences, which
are part of solutions constructed before. Each pheromone value will now be
attached to a certain sequence of n already visited cities, and stored in a new
pheromone matrix called Tau. This remembrance of the most recent already
visited cities is called the memory depth and is at the base of a possible
improvement of the resulting solutions issued from the algorithm. Only the
global memory of the learning process has been modify, in a sense of taking
into account not only the last visited city, but also the cities already visited
just before.

MAIN IDEA

In traditional ACO, each pheromone value in the global indirect
memory is associated to a pair current city (where an ant stands) -
next city (possibly to be visited by this ant). In the modified ver-
sion of the pheromone matrix, each pheromone value of the global
indirect memory is still associated to a pair where the first element
is now a sequence of visited cities (the last one of this sequence be-
ing the current city where an ant stands), and the second element
is the next city (possibly to be visited by this ant).

In this way we hope that the entire process will converge to a more precise
near optimal solution than this one found with the classical version of AS
algorithm.

5.1.1 The classical and the modified pheromone ma-
trix

We will here describe both the actual and new forms of the pheromone matrix
presented before. It is clear that this new matrix will have an influence on
some procedures of the AS algorithm. The detailed description of the AS
algorithm, and his adaptations are the subject of the next section.
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The classical pheromone matrix. ACO is characterized as being a dis-
tributed, stochastic search method based on the indirect communication
of a colony of artificial ants, mediated by artificial pheromone trails. The
pheromone trails in ACO serve as distributed numerical information, used
by the ants to probabilistically construct solutions to the problem under
consideration, and so constitutes an indirect form of memory of previous
performance. The ants modify the pheromone trails during the algorithm’s
execution to reflect their search experience. This memory is a key element
in the global learning process of the ants, working to construct a solution.

The goal of this work is to modify the pheromone matrix in such a way
that it will make more efficient the search process of the ants. We expect
finally to obtain a better solution, than with the actual version of AS algo-
rithm. This one is based on a pheromone matrix described hereafter (fig-
ure5.1):

1 2 3 . . . j n

1 - τ1,2 τ1,3 . . . τ1,j τ1,n

2 τ2,1 - τ2,3 . . . τ2,j τ2,n
...

...
. . .

...
...

...
. . .

...
i τi,1 - τi,j τi,n
...

...
. . .

...
...

...
. . .

...
n τn,1 τn,2 . . . τn,j τn,n−1 -

Figure 5.1: The classical pheromone matrix, for a set of n cities. There
are no pheromone values on the diagonal.

This is a square matrix of size n2, where n is the maximum number of cities in
the considered instance problem. There are of course no pheromone values on
the diagonal of this matrix. This matrix is also symmetric, i.e. that τij = τji

∀i, j with i 6= j.
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The new pheromone matrix. The previous description of the pheromone
matrix is possibly overgeneralizing. Each pheromone value is only based on
the city where the ant stands, and the city where this ant eventually wants
to move to. It doesn’t consider the ordered sequence of the previous already
visited cities standing before the last visited city by the ant. If we consider
for instance a sequence of three last visited cities, the new pheromone matrix,
called TAU, to be considered is (figure 5.2):

1 2 . . . i . . . j . . . k . . . m . . . n

...
i x τi,j
...
ik x τik,j x
...
ikm x τikm,j x x
...

Figure 5.2: The new pheromone matrix TAU for a set of n cities, considering
sequences constituted by the three last visited cities. “x” indicates forbidden
pheromone values.

This is no more a square matrix. On the top of this table we find the indeces
of the cities to be visited; each index defines a column of the matrix; on
the left side of the table we find sequences of cities index. We first consider
the sequences constituted of one city, then all possible ordered sequences
constituted from couple of cities, and finally all possible ordered sequences
constituted from three cities. Each previous sequence (from 1,2 or 3 cities)
defines a line of the matrix. It will be necessary in the implementation to
calculate the number of a line, knowing the index of each city being part of
a sequence.

The first block of the matrix is constituted by the pheromones τi,j asso-
ciated to a couple of cities, city i that the ant is just leaving and city j that
the ant is moving to; at city i corresponds a line of the matrix and at city j
a column of the matrix; this block is used by the algorithm during the first
iteration, when the partial solution of each ant comprises only one city, the
departure city. In this block, there are no pheromone values in case index i
= index j.
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The second block of the matrix is constituted by the pheromones τik,j

associated to three cities, city k that the ant is just leaving, city i that was
visited just before city k and city j that the ant is moving to; at the sequence
of two cities i and k corresponds a line of the matrix and at city j corresponds
a column of the matrix; this block is used by the algorithm during the second
iteration, when the partial solution of each ant comprises only two cities, the
initial departure city i of each ant and the first city k just visited after. In
this block, there are no pheromone values in case index i = index j or index
k = index j.

Finally, the third block is constituted by the pheromones τikm,j associated
to three cities, city k that the ant is just leaving, city i that was visited just
before city k and city j that the ant is moving to; at the sequence of three
cities i, k and m corresponds a line of the matrix and at city j corresponds
a column of the matrix; this block is used by the algorithm for all iterations
since the third, when the partial solution of each ant comprises at least three
cities, the last visited city m by an ant, the city k just visited before city m
and the city i just visited before city k. In this block, there are no pheromone
values in case index i = index j or index k = index j or index m = index j.

It is clear that the size of the new matrix Tau will increase more rapidly
than with the classical matrix τ . In the new matrix, the number of lines will
be proportional to nγ, where n is the total number of cities to be visited and
γ is the memory depth, i.e. the maximum size of the sequences of cities.

PERSONNAL CONTRIBUTION

To implement the new pheromone matrix, the procedures for mem-
ory allocation and initialization of the matrix have been modified,
taking into account the new dimension of the matrix.

5.1.2 Working in serialization

Another possible improvement should be to realize a serialization of the pre-
vious algorithms, in order of their increasing memory depth. The pheromone
values corresponding to the best result found for a given value of memory
depth n-1 will initialize the pheromone matrix used for the next memory
depth n. In this way, we hope to converge more quickly to a near optimal
solution of the TSP.
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PERSONNAL CONTRIBUTION

The basic version of the AS algorithm was implemented in series
with the modified AS algorithm of memory depth 2, followed by
the same algorithm with memory depth 3.

5.2 Construction of a solution in ACO algo-

rithms

In this section, we will consider the different steps of the ACO algorithms, to
construct a solution (Dorigo, M., Stützle T. (2004) Chapter 3). In fact tours
are constructed by applying the following simple constructive procedure to
each ant:

1. choose, according to some criterion, a start city at which the ant is
positioned;

2. use pheromone and heuristic values to probabilistically construct a tour
by iteratively adding cities that the ant has not visited yet, until all
cities have been visited;

3. go back to the initial city;

After all ants have completed their tour, they may deposit pheromone on the
tour they have followed. In some cases, before adding pheromone, the tours
constructed by the ants may be improved by the application of a local search
procedure. Such procedure will not be applied in the present work.

This high-level description applies to most of the published ACO algo-
rithms for the TSP, described in chapter 4, section 4.2, with an exception for
the Ant Colony System in subsection 4.2.5, where the pheromone evaporation
is interleaved with tour construction.

When applied to the TSP and to any other static combinatorial optimiza-
tion problem, most ACO algorithms employ a more specific algorithm scheme
than the general one of the ACO metaheuristic given in figure 2.1, subsection
2.2.6. This new algorithm’s scheme is shown in figure 5.3 hereafter.
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procedure ACOMetaheuristicStatic
Set parameters, initialize pheromone trails
while(termination condition not met)do

ConstructAntsSolutions
ApplyLocalSearch % optional
UpdatePheromones

end
end

Figure 5.3: The pseudo-code of the ACO Metaheuristic Static procedure

After initializing the parameters and the pheromone trails, these ACO algo-
rithms iterate through a main loop, consisting in three steps: first all of the
ants’ tours are constructed; then an optional phase takes place in which the
ants’ tours are improved by the application of some local search algorithm;
finally the pheromone trail are updated, involving pheromone evaporation
and the update of the pheromone trails by the ants to reflect their search
experience.

5.2.1 Implementing AS algorithm for the TSP

Data structures.

The first step to implement the AS algorithm for the TSP is to define the
basic data structures. These must allow storing the data about the TSP
instance and the pheromone trails, and representing artificial ants.

Figure 5.4 gives a general outline of the main data structures that are
used for the implementation of the AS algorithm, which includes the data
for the problem representation and the data for the representation of the
ants.

% Representation of problem data
integer dist[n][n] % distance matrix
integer nn listdist[n][n] % matrix with nearest neighbor lists of depth nn
real pheromone[n][n] % pheromone matrix
choice info dist[n][n] % combined pheromone and heuristic information
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% Representation of ants
structure single ant
begin

integer tour length % the ant’s tour length
integer tour[n+1] % ant’s memory storing (partial) tours
integer pheromone[n][n] % visited cities

end
single ant[m] % structure of type single ant

Figure 5.4: Main data structures for the implementation of the AS algorithm
for the TSP.

Problem representation.

A symmetric TSP instance is given as the coordinates of a number of n
points. All the intercity distances are precomputed and stored in a symmetric
distance matrix with n2 entries. Although for symmetric TSPs we only need
to store n(n-1)/2 distinct distances, it is more efficient to use an n2 matrix
to avoid performing additional operations to check whether, when accessing
a generic distance d(i,j ), entry (i,j ) or entry (j,i) of the matrix should be
used. For a reason of code efficiency, the distances are stored as integers.

Nearest-Neighbor Lists. In addition to the distance matrix, we also store
for each city a list of its nearest neighbors. Let di be the list of the distances
from a city i to all cities j, with j = 1, . . . n and i 6= j (we assume here that
the value dii is assigned a value larger than dmax, where dmax is the maximum
distance between any two cities).

The nearest-neighbor list of a city i is obtained by sorting the list di

according to nondecreasing distances, obtaining a sorted list d’i. The position
r of a city j in city i’ s nearest-neighbor list nn list [i ] is the index of the
distance dij in the sorted list d’i, that is, nn list [i ][r ] gives the identifier of
the r -th nearest city to city i (i.e., nn list [i ][r ] = j ).
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Nearest-neighbor lists for all cities can be constructed in O(n2logn). An
enormous speedup is obtained for the solution construction in ACO algo-
rithms, if the nearest-neighbor list is cut off after a constant number nn of
nearest neighbors, where typically nn is a small value ranging between 15
and 40. An ant located in city i firstly chooses the next city among the
nn nearest neighbors of i ; in case the ant has already visited all the nearest
neighbors, then it makes its selection among the remaining cities. This re-
duces the complexity of making the choice of the next city to O(1), unless
the ant has already visited all the cities in nn list [i ]. A disadvantage to the
use of truncated nearest-neighbor lists is that it can make impossible to find
the optimal solution.

Pheromone Trails. It is also necessary to store for each connection (i,j )
a number τij corresponding to the pheromone trail associated with that con-
nection. As in the case for the distance matrix, it is more convenient to use
some redundancy and to store the pheromones in a symmetric n2 matrix.

PERSONNAL CONTRIBUTION

In this work, the pheromone matrix has been redefined. Each
pheromone value in the new matrix is associated on the one hand
to a sequence of the immediate last visited cities, and on the other
hand to the next city to be visited.

Combining Pheromone and Heuristic Information. When construct-
ing a tour, an ant located on city i chooses the next city j with a probability
which is proportional to the value of [τα

ij][η
β
ij]. Because these very same values

need to be computed by each of m ants, computation times may be signifi-
cantly reduced by using an additional matrix choice info, where each entry
choice info[i ][j ] stores the value [τα

ij][η
β
ij]. As in the case of the pheromone

and the distance matrices, a matrix is more convenient to store those values.

PERSONNAL CONTRIBUTION

In this work, for implementation facilities, the choice info matrix
is not used. Each ant always consults the new pheromone matrix
and calculate the value [τα

ij][η
β
ij].



56 5.2. CONSTRUCTION OF A SOLUTION IN ACO ALGORITHMS

Representing ants.

An ant is a single computational agent which constructs a solution to the
problem at hand, and may deposit an amount of pheromone ∆τ on the arcs
it has traversed. To do so, an ant must be able to:

1. store the partial solution it has constructed so far; this can be satisfied
by storing, for each ant, the partial tour in an array of length n + 1,
where at position n + 1 the first city is repeated. This choice makes
easier some of the other procedures like the computation of the tour
length.

2. determine the feasible neighborhood at each city; the knowledge of the
partial tour at each step is sufficient to allow the ant to determine, by
scanning of the partial tour, whether a city j is in its feasible neigh-
borhood or not; this involves an operation of worst-case complexity
O(n) for each city i, resulting in a high computational overhead. The
simplest way around this problem is to associate with each ant an ad-
ditional array visited whose values are set to visited [j ] = 1 if city i
has already been visited by the ant, and visited [j ] = 0 otherwise. This
array is updated by the ant while it builds a solution.

3. compute and store in the tour length variable the objective function
value of the solution it generates; the computation is done by summing
the length of the n arcs in the ant’s tour.

An ant is then represented by a structure that comprises one variable
tour length to store the ant’s objective function value, one (n+1)-dimensional
array tour to store the ant’s tour, and one n-dimensional array visited to store
the visited cities.

The algorithm.

The main tasks to be considered in an ACO algorithm are the solution con-
struction, the management of the pheromone trails, and the additional tech-
niques such as local search. In addition, the data structures and parameters
need to be initialized and some statistics about the run need to be main-
tained. Figure 5.3 gives a high-level view of the algorithm.
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Data Initialization In the data initialization, (1) the instance has to be
read; (2) the distance matrix has to be computed; (3) the nearest-neighbor
lists for all cities have to be computed; (4) the pheromone matrix and the
choice info matrix have to be initialized; (5) the ants have to be initialized;
(6) the algorithm’s parameters must be initialized; and (7) some variables
that keep track of statistical information, such as the used CPU time, the
number of iterations, or the best solution found so far, have to be initialized.
Figure 5.5 shows a possible organization of these tasks into several data
initialization procedures.

procedure InitializeData
ReadInstance
ComputeDistances
ComputeNearestNeighborLists
ComputeChoiceInformation
InitializeAnts
InitializeParameters
InitializeStatistics

end-procedure

Figure 5.5: Procedure to initialize the algorithm.

Solution Construction The tour construction is managed by the proce-
dure ConstructSolutions, shown in figure 5.6

procedure ConstructSolutions
for k = 1 to m do

for i = 1 to n do
ant [k ].visited [i ] ← false

end-for
end-for
step ← 1
for k = 1 to m do

r ← random{1, . . . , n}
ant [k ].tour [step] ← r
ant [k ].visited [r ] ← true

end-for
while (step < n) do

step ← step + 1
for k = 1 to m do
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NeighborListAsDecisionRule(k,step)
end-for

end-while
for k = 1 to m do

ant [k ].tour [n + 1 ] ← ant [k ].tour [1 ]
ant [k ].tour length ← ComputeTourLength(k)

end-for
end-procedure

Figure 5.6: Pseudo-code for the solution construction procedure for AS.

The solution construction requires the following phases:

1. The ant’s memory must be initialized, by marking all the cities as
unvisited, that is, by setting all the entries of the array ants.visited to
false for all the ants;

2. Each ant has to be assigned a random initial city; the function random
returns a number chosen according to a uniform distribution over the
set {1, . . . , n};

3. Each ant constructs a complete tour; at each construction step the ants
apply the AS action choice rule. The procedure NeighborListASDeci-
sionRule implements the action choice rule and takes as parameters the
ant identifier and the current construction step index. This procedure
exploits candidate lists and is discussed below;

4. Finally, the ants move back to the initial city and the tour length of
each ant’s tour is computed.

The solution construction of all ants is synchronized in such a way that the
ants build solutions in parallel.

Action Choice Rule with Candidate Lists Figure 5.7 shows the
pseudo-code for the action choice rule with candidate list. In the action
choice rule, an ant located at city i probabilistically chooses to move to an
unvisited city j based on the pheromone trails τα

ij and the heuristic informa-

tion ηβ
ij [see equation (3.1)].
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procedure NeighborListASDecisionRule(k,i)
input k % ant identifier
input i % counter for construction step
c ← ant [k ].tour [i - 1 ]
sum probabilities ← 0.0
for j = 1 to nn do

if ant [k ].visited [nn list [c][j ]] then
selection probability [j ] ← 0.0

else
selection probability [j ] ← choice info[c][nn list [c][j ]]
sum probabilities ← sum probabilities + selection probability [j ]

end-if
end-for
if (sum probabilities = 0.0) then

ChooseBestNext(k,i)
else

r ← random[0,sum probabilities ]
j ← 1
p ← selection probability [j ]
while (p < r) do

j ← j + 1
p ← p + selection probability [j ]

end-while
ant [k ].tour [i ] ← nn list [c][j ]
ant [k ].visited [nn list [c][j ]] ← true

end-if
end-procedure

Figure 5.7: AS with candidate lists: pseudo-code for the action choice rule.

The procedure works as follows:

1. the current city c of ant k is determined;

2. when choosing the next city, one needs to identify the appropriate city
index from the candidate list of the current city c; this is the object of
the first for loop;
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3. to deal with the situation in which all the cities in the candidate
list have already been visited by ant k (characterized by the variable
sum probabilities still at 0.0), the procedure ChooseBestNext is used to
identify the city with maximum value [τα

ij][η
β
ij] as the next to move to;

this process is the object of the test if-then-else.

Figure 5.8 shows the pseudo-code for the procedure ChooseBestNext.

procedure ChooseBestNext(k,i)
input k % ant identifier
input i % counter for construction step
v ← 0.0
c ← ant [k ].tour [i - 1 ]
for j = 1 to n do

if not ant [k ].visited [j ] then
if choice info[c][j ] > v then

nc ← j % city with maximal ταηβ

v ← choice info[c][j ]
end-if

end-if
end-for

ant [k ].tour [i ] ← nc
ant [k ].visited [nc] ← true

end-procedure

Figure 5.8: AS: pseudo-code for the procedure ChooseBestNext.

By using candidate lists the computation time necessary for the ants to
construct solutions can be significantly reduced, because the ants choose
from a smaller set of cities. In fact the computation time is reduced only if
the procedure ChooseBestNext does not need to be applied too often.

PERSONNAL CONTRIBUTION

In this work, according to the new pheromone matrix TAU, both
procedures NeighborListASDecisionRule and ChooseBestNext have
been adapted mainly in the programming of the action choice rule,
i.e. in the calculation of the ταηβ.
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The Pheromone Update

The last step in an iteration of AS is the pheromone update, implemented
by the procedure ASPheromoneUpdate (see figure 5.9), which comprises
two pheromone update procedures: the pheromone evaporation and the
pheromone deposit.

procedure ASPheromoneUpdate
Evaporate
for k = 1 to m do

DepositPheromones(k)
end-for
ComputeChoiceInformation

end-procedure

Figure 5.9: AS: Management of the pheromone updates.

The procedure Evaporate decreases the value of the pheromone trails on all
the arcs (i,j ) by a constant factor ρ. The procedure DepositPheromone adds
pheromone to the arcs belonging to the tours constructed by the ants. Finally
the procedure ComputeChoiceInformation computes the matrix choice info to
be used in the next algorithm iteration.

PERSONNAL CONTRIBUTION

In this work, according to the new pheromone matrix TAU, both
procedures Evaporate and DepositPheromone have been modified.
The modification doesn’t concern the evaporation or updating
process. It concerns the way the number of the line in the ma-
trix Tau is computed, based on a sequence of indeces of cities.

5.3 Modifications of the existing AS algo-

rithm

As explained in the previous subsections, the procedures used for the man-
agement of the pheromone matrix or for the calculation of a solution based
on the information of that matrix have been adapted. The experimental
setup and the results obtained are the object of the next chapter.
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PERSONNAL CONTRIBUTION

All procedures of the basic AS algorithm concerned by the new
pheromone matrix have been adapted. Those procedures concern
mainly the memory allocation, the initialization of the matrix, the
construction of a solution, mainly through the procedure imple-
menting the action choice rule, the evaporation and the updating
of the pheromones.



Chapter 6

Experimental Results

In this chapter, we present the results obtained with the new algorithms
applied on tests files of 50 cities. We discuss those results and propose some
ways to improve the new algorithms.

6.1 Available software package

The ACO family algorithms for the TSP is available as a software package
freely available subject to the GNU General Public Licence. This software
package called ACOTSP was developed, in his Version 1.0, by Thomas Stützle
in connection with the book “Ant Colony Optimization” [Dorigo, M., Stützle
T. (2004)] and is available from http://www.aco-metaheuristic.org/aco-code.
The software was developed in ANSI C under Linux, using the GNU 2.95.3
gcc compiler. The software is distributed as a gzipped tar file.

This software package provides an implementation of various Ant Colony Op-
timization (ACO) algorithms for the symmetric Traveling Salesman Problem
(TSP). The ACO algorithms implemented are Ant System (AS), MAX-MIN
Ant System, Rank-based version of Ant System, Best-Worst Ant System,
and Ant Colony System. It was developed to have one common code for the
various known ACO algorithms that were at some point applied to the TSP
in the literature.

63
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The contents of the package is the following:

1. The main control routines, main: acotsp.c;

2. The procedures to implement the ants behaviour: ants.c and ants.h;

3. The input, output and statistics routines: InOut.c and InOut.h;

4. The procedures specific to the TSP: TSP.c and TSP.h;

5. The local search procedures: ls.c and ls.h;

6. The additional useful and helping procedures: utilities.c and utilities.h;

7. The command line parser: parse.c and parse.h;

8. The time measurement: timer.c and timer.h;

Some problem instances from TSPLIB are also available. For this work, we
produced our own test files. The coordinates of the cities were randomly
generated using a random generator as described in “Numerical Recipes in
C”. They were stored in set of 100 test files.

6.2 Specific parameters and command line

Given the large number of ACO algorithms available in the package, also the
number of command line options is relatively large. We give hereafter those
that were useful for our work, i.e. those that were used in the execution of
our new versions of the AS algorithms. They are given in their short and
long options.

-r, –tries # number of independent trials
-s, –tours # number of steps in each trial
-t, –time # maximum time for each trial
-i, –tsplibfile # inputfile (TSPLIB format necessary)
-a,–alpha # alpha (influence of pheromone trails)
-b,–beta # beta (influence of heuristic information)
-e, –rho # rho (pheromone trail evaporation)
-u,–as # apply basic Ant System if selected
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PERSONNAL CONTRIBUTION

For our work, a new parameter was added to introduce the concept
of memory depth. The parsing procedures were also modified.

All those options take some default values; the parameter “-i, –tsplibfile” is
the only mandatory option, because the program may not work without an
input file.

For each test file, it is possible to execute several times the same algo-
rithm; at each trial, the pheromone matrix is reinitialized but not the nearest
neighbor list. In this work we decide to execute only one run for each test
file.

6.3 Experimental settings

The original AS algorithm has been adapted for the cases where the memory
depth is equal to 2 and 3. The table 6.1 hereafter presents the evolution of
the number of lines and the number of pheromones values to be stored, of
the matrix Tau, in function of the total number of cities and the memory
depth.

Nbr. cities Mem. depth Nbr. lines(106) Nbr. val.(106)
25 2 0,0006 0,016
25 3 0,014 0,361
25 4 0,318 7,951
50 2 0,025 0,125
50 3 0,120 6,005
50 4 5,6 282,3
100 2 0,01 500,0
100 3 0,98 2450,5
100 4 95,1 4754,5

Table 6.1: Evolution of the number of pheromone values to be stored, in
function of the number of cities and the memory depth.
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Very simply, we decided to store the new matrix Tau fully in memory. Fol-
lowing the previous table, as the number of pheromone values grows rapidly
with the total number of cities and the memory depth, we decided to adapt
the AS algorithm only for the case where the memory depth is equal to 2 or
3. Even in this situation, the first tests evolved slowly when the size of the
test files was bigger or equal to 50 cities, especially for a memory depth equal
to 3. So we came to the conclusion to fix the number of cities in each test
file to 25, and this for both algorithm with memory depth equal to 2 and 3.

The structure of each test file comprises mainly the name of the file, the
total number of the cities, the metric used and the list of the coordinates
of the nodes. Those coordinates are generated using a procedure producing
random numbers uniformly distributed in [0,1] (see Press, W.H., Teukolsky
S.A., Numerical recipes in C). The final integer coordinates range from 0 to
100. The list of the coordinates finish by an EOF mark. As explained before,
we fixed the total number of cities to 25 and the metric used is the euclidean
one.

At the beginning of the execution of an algorithm, the name of the test
file is given as a parameter. The parsing of the command line includes the
analysis of the test file. It produces the calculation of the distance matrix,
which characterizes this instance of the problem.

Our experimental process is driven by a main script program called
“Param” written in PERL (see annexe). This program first prepares the
directories and the tables to store the results produced during the execu-
tion of an algorithm; it also prepares the tables which register the parameter
used during each run. It makes then a call to another program called “ran-
dom.c”, which generates randomly 100 test files, using the random procedure
previously presented.

The program “Param” is now ready to process each execution script we
want to submit to our different algorithms. Each script may redefine every
parameter to be used by the algorithms. When a parameter is not redefined
in the script, the algorithm uses the default value for this parameter. A
command line is build with all the parameters and is given to a procedure
called “Exec”. To write our different scripts, we focused on the following
parameters: the exponents α and β used in the probabilistic decision rule
(see equation 4.1) and the evaporation parameter ρ. Although it is possible
to execute an algorithm more than one time with the same test file, we
decided to limit this number of independent trial to 1. Finally the first tests
we made showed us that the results obtained didn’t evolve significantly after
an execution time of 15 seconds. We fixed then the execution time to this
value for all algorithm.
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The “Exec” procedure (available in the annexe) is written in PERL and
executes two embedded loops. The first loop covers the different algorithms
by increasing order of memory depth. The first algorithm to be executed will
be the classical Ant System; the second one will be our version with memory
depth equal to 1 and the third one our version with memory depth equal to 3.
For each algorithm, the second loop executes the command line received from
the calling program “Param”, and this for the 100 generated test files. The
results are stored in dedicated directories. The “Exec program” also process
those directories to produce two registering tables. Those tables register, for
each algorithm, for each test file and for each script, in one table the values
of the parameters, and in the other table the results corresponding to this
set of parameters.

When all the scripts registered in the program “Param” have been
processed, a last call to a procedure called “commands3.r” is made. This
procedure is written in R and is available in the annexe. It process the table
produced by the program “Exec”, registering the results by algorithm, by test
file, by script. For each algorithm, the program “commands3.r” calculate the
mean of the results over the 100 test files.

The results generated by an algorithm consist in the length of the best-
so-far tour build by the ants. Only an improvement in the obtained tour
length is registered, with its corresponding CPU time and its corresponding
number of iterations. An iteration is counted when all the ants of the colony
have constructed one tour at the end of the procedure “ConstructSolutions”
(see section 5.2.1). The presentation of the final results in the graphic can
be made with the CPU time or the iteration number in abscissa. We chose
to work by parity of iterations.

We give hereafter a resume of the experimental settings used for our tests:

1. Three algorithms are tested: the classic Ant System, its new version
with a memory depth of 2 and its version with a memory depth of 3;

2. 100 test files are randomly generated;

3. This set of test files is the same used by each algorithm;

4. For each algorithm, the number of trial for a given test file is fixed to
1;

5. Each test file comprises the euclidean coordinates of 25 cities, randomly
generated in a uniform distribution ranging from 0 to 100;
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6. Our scripts modify the value of the parameters α, β and ρ;

7. The maximum execution time is fixed to 15 seconds.

6.4 Results of the experiments

6.4.1 Results by algorithm

Different tests have been made. We always have modified one parameter at
a time, keeping the others unchanged.

Impact if we modify α. In a first step, we modified the value of α from
0.5 to 2, keeping β(= 2) and ρ(= 0.5) constant (see figure 6.1 to 6.4). We
wanted to see how the new algorithms (AS2 and AS3) would react if we put
more or minder emphasis to the new pheromones.

If α = 0.5, we see that AS2 reaches a better result than the classical Ant
System (AS1), but this last one is out of its optimal range of parameters,
where α must be equal to 1. So with α = 0.5, AS2 gives a better result than
AS1, but this result is not better than this obtained by AS1 when it works
in its normal range of parameters. As3 gives a bad quality result.

If α = 1, we see that AS1 and AS2 reach a similar result. But AS2 doesn’t
provide a better result than AS1. The quality of the solution of AS3 stays
bad.

If α = 1.5, we see that AS2 reaches a good quality result, but needs for
that a bigger amount of iterations. The quality of the solution for AS1 is still
decreasing, because we are still far from the optimal range of its parameters.
The quality of the solution of AS3 is still decreasing.

As a conclusion, we can say that AS2, for every studied values of α, gives
similar results as AS1, when this algorithm is in its optimal conditions. But
never gives AS2 a better result than AS1. AS3 seems to stay worst than AS1
and AS2 for every value of α. It comes quickly to stagnation and reaches a
bad quality solution, in regards of the result of the two previous algorithms.
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Figure 6.1: Best tour length versus number of iterations, for α = 0.5, β = 2
and ρ = 0.5
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Figure 6.2: Best tour length versus number of iterations, for α = 1, β = 2
and ρ = 0.5
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Figure 6.3: Best tour length versus number of iterations, for α = 1.5, β = 2
and ρ = 0.5
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Figure 6.4: Best tour length versus number of iterations, for α = 2, β = 2
and ρ = 0,5
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Impact if we modify β. In a second time (see figure 6.5 to 6.8), we
considered the situation where the values of the parameters are the following:
α = 2 and ρ = 0.5, the value of β being modified from 2 to 5, giving more
emphasis to the heuristic. We wanted to see if it was possible to improve the
results obtained with AS2, and possibly to reach a better solution than this
obtained with AS1, when it works in its normal range of parameter values.

For every values of β we have tested (from 2 to 5), we observe that AS2
gives a better solution than AS1 and AS3. AS1 and AS3 come quickly to
stagnation (after maximum 2000 iterations); AS2 reaches later its best result
(after 6000 iterations). We also observed that the higher the value of β we
have, the more the three algorithms converge. But never AS2 gives a better
result than AS1 in its optimal range of parameters. As a conclusion, the fact
to increase the value of β doesn’t improve the quality of results provided by
AS2; AS3 stay bad for every values but converges to the results of AS1 and
AS2 as β increases.

Finally, we didn’t observe that evaporation had a significant impact on
the quality of the final results (No graphics included).
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Figure 6.5: Best tour length versus number of iterations, for α = 2, β = 2
and ρ = 0,5
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Figure 6.6: Best tour length versus number of iterations, for α = 2, β = 3
and ρ = 0,5
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Figure 6.7: Best tour length versus number of iterations, for α = 2, β = 4
and ρ = 0,5
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Figure 6.8: Best tour length versus number of iterations, for α = 2, β = 5
and ρ = 0,5
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6.5 Results with the three algorithms in cas-

cade

The three algorithms, the basic version corresponding to a memory depth
equals to 1, and the two new versions (with memory depth equal to 2 and 3)
were programmed in a serial way, in increasing order of the memory depth.
At the end of the execution of one algorithm, the last pheromone matrix
corresponding to the best final solution serves to initialize the corresponding
bloc of the pheromone matrix of the next algorithm, for the following value of
memory depth. So the pheromone matrix obtained at the end of Ant System
will initialize the corresponding part of the Tau matrix for the algorithm with
a memory depth equal to 2. The other part of the same matrix, dedicated to
the sequences of two cities, will be initialized as usual, with a tour length build
by one ant. Again for the algorithm with a memory depth equal to 3, the
part of the Tau matrix dedicated to sequences with one city will be initialized
with the pheromone values of Ant System, corresponding to the best tour
found with this algorithm. The part of the Tau matrix dedicated to sequences
constituted of two cities will be initialized with the corresponding pheromones
of the Tau matrix for the algorithm with memory depth of 2. Finally, the
pheromones dedicated to sequences of three cities will be initialized with a
tour length build by one ant.

The experimental setup is slightly modified in regard of this one used for
the three algorithms. The number of cities for each test file (25) and the total
number of generated test files (100) stay the same. The main difference is
that we have now a fourth algorithm, called “ASChained” constructed with
the three previous one. Each script written in “Param” will also be executed
for this new algorithm. The execution for the three first algorithm (AS1,
AS2 and AS3) follows the same plan as explained in section 6.3. The new
algorithm follows also the same plan; in fact the adaptation mainly concerns
the programs “Exec” and “commands3.r”, where some loops have to include
this new version.

By this way, we hope to observe a improvement in the quality of the final
solution. Unfortunately, this is not the case and we didn’t observe such effect,
as we can see in figure 6.3. In fact, this way of initializing the pheromone
matrix of each algorithm is not the more adapted. It would be correct to
implement the serialization so that the transition between each algorithm
happens at a certain iteration and would be visible on the graph. On our
graph ASChained is only the result of AS3 initialized with the pheromone
matrix of AS1 and AS2 at the end of their run.
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Figure 6.9: Serialization of the algorithms AS1, AS2 and AS3, giving AS-
Chained
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6.6 Conclusion of the experiments

As a conclusion for the set of experiments we have realized, in the experimen-
tal conditions we have used, it is not possible to observe any improvement in
the final results obtained with AS2 and AS3, related to the new pheromones
values based on the couple “sequence of last visited cities-cities”. The second
algorithm AS2 provides some better results than AS1, always when this last
one is out of its best running conditions. The Third algorithm AS3 provides
always bad results, in every experimental situation. This could indicates a
problem with the way we implement this algorithm. A possible solution is
discussed in the next section.

6.7 Possible improvements

It is obvious that the algorithm with memory depth equal to 3 provides in
general bad results. A possibility to improve it is to replace the way we
calculate the number of the line of the TAU matrix, making intensive calls to
modulo operator, with the following formula (in the case of a memory depth
equal to 3): N 2(v1 − 1) + N(v2 − 1) + v3 where v1, v2andv3 are the number
of the three last visited cities, in the order of their classification in the test
file, and N is the total number of cities in the test file. This formula permits
to calculate the number of all possible combination (with repetition of three
cities. The size of the matrix will increase because of the combinations with
repeated cities; the total number of lines will be of N 3 + N2 + N and the
number of columns will be equal to N.



Chapter 7

Conclusion

The ACO metaheuristic was inspired by the foraging behavior of real ants
and is characterized as being a distributed, stochastic search method based
on the indirect communication of a colony of artificial ants, mediated by
artificial pheromone trails.

The ACO metaheurisitc can be applied to any combinatorial optimization
problem for which a solution construction can be conceived. An interesting
case is the TSP problem, not only for its applications but also because it
constitutes a test bed problem for new algorithmic ideas, in particular ACO.

In the ACO approach, one key element is the indirect form of memory
of previous performance. This role is played by the pheromone matrix. The
first basic algorithm was Ant System (AS) and has been introduced using
the TSP as an example application. AS achieved encouraging initial results,
but was found to be inferior to state-of-the-art algorithms for the TSP. His
importance is more in the inspiration it provides for a number of extensions
that significantly improved performance.

In this work, we tried in a very simple way to define the memory in
another way than those envisaged by the formal definition of Ant Colony
Optimization. In the version we have developed, we try to make a difference
between states that are identical from the point of view of Ant Colony Op-
timization, associating the memory with pairs of “sequence of components -
component”. We didn’t observe within the limits of our experimental condi-
tions any improvement.
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Annexes

The reader will also find hereafter, first the program “ Param ”, written in
Perl, fixing the different parameters for the execution of the ants’ algorithms.
It permits to program the different scripts of execution. The second program
“ Exec ”, written in Perl and called by the “ Param ” program, constructs
the tables with the results provided by the execution of the ants’ algorithms.
Finally the third program, “ commands3.r ”, written with the R software
and called by the “ Param ” program, uses the data stored in the tables
generated by the “ commands3.r ” program to produce final graphics (CPU
Time or Iteration versus Tour Length).



 
Program Param : execution scripts 
 
 
#!/usr/bin/perl 
 
use Exec; 
 
system 'rm -f /home/ddarquennes/ACOTSPV10sp1/resultats/*'; 
system 'rm -f /home/ddarquennes/ACOTSPV10sp2/resultats/*'; 
system 'rm -f /home/ddarquennes/ACOTSPV10sp3/resultats/*'; 
system 'rm -f /home/ddarquennes/ACOTSPV10sp4/resultats/*'; 
system 'rm -f /home/ddarquennes/resultats/*'; 
 
system 'rm -f /home/ddarquennes/ACOTSPV10sp1/F*.tsp'; 
system 'rm -f /home/ddarquennes/ACOTSPV10sp2/F*.tsp'; 
system 'rm -f /home/ddarquennes/ACOTSPV10sp3/F*.tsp'; 
system 'rm -f /home/ddarquennes/ACOTSPV10sp4/F*.tsp'; 
system 'rm -f /home/ddarquennes/F*.tsp'; 
 
system 'rm -f /home/ddarquennes/instance0603.dat'; 
system 'rm -f /home/ddarquennes/values0603.dat'; 
system 'rm -f /home/ddarquennes/datas0603.dat'; 
system 'rm -f /home/ddarquennes/resfin0603.dat'; 
 
system "gcc -o random random.c"; 
 
system "nice -19 ./random"; 
 
system 'cp /home/ddarquennes/F* /home/ddarquennes/ACOTSPV10sp1'; 
system 'cp /home/ddarquennes/F* /home/ddarquennes/ACOTSPV10sp2'; 
system 'cp /home/ddarquennes/F* /home/ddarquennes/ACOTSPV10sp3'; 
system 'cp /home/ddarquennes/F* /home/ddarquennes/ACOTSPV10sp4'; 
 
open(RESULT, ">>values0603.dat"); 
open(INST, ">>instance0603.dat"); 
 
$param = 1; 
 
$titre[1]  = "Sp "; 
$titre[2]  = " I_nam "; 
$titre[3]  = " Param "; 
$titre[4]  = "  Nc "; 
$titre[5]  = " MTr "; 
$titre[6]  = " MTo "; 
$titre[7]  = " Opt"; 
$titre[8]  = " Maxim_Time "; 
$titre[9]  = "NAn "; 
 
 



 
 
$titre[10]  = " NNe "; 
$titre[11] = "   Alpha   "; 
$titre[12] = "   Beta   "; 
$titre[13] = "     Rho   ";                   
$titre[14] = "     Q_0   "; 
$titre[15] = "    Br_up   "; 
$titre[16] = " Ls "; 
$titre[17] = " Rr "; 
$titre[18] = " Elit"; 
$titre[19] = "   Nn ";                   
$titre[20] = " Dlb"; 
$titre[21] = " As "; 
$titre[22] = " Ea "; 
$titre[23] = " Ra "; 
$titre[24] = " Mm "; 
$titre[25] = " Bw "; 
$titre[26] = " Ac ";             
for($L = 1 ; $L < 27 ; $L++){ 
   print INST $titre[$L];   
} 
print INST "\n"; 
 
$res[1] = "Sp  "; 
$res[2] = "  I_nam  "; 
$res[3] = " Param  "; 
$res[4] = "Last   ";              
$res[5] = "   Value  ";           
$res[6] = "   Iter   "; 
$res[7] = "   Time"; 
for($L = 1 ; $L < 8 ; $L++){ 
   print RESULT $res[$L]; 
} 
print RESULT "\n";      
 
$tpar[1]  = " -r 1 ";           # number of independent trials 
$tpar[2]  = " -s 100 ";         # number of steps in each trial 
$tpar[4]  = " -t 15 ";          # maximum time for each trial 
$tpar[5]  = " -o 1 ";           # stop if tour better or equal optimum is found 
$tpar[6]  = " -m 25 ";          # number of ants 
$tpar[7]  = " -g 20 ";          # nearest neighbours in tour construction 
$tpar[8]  = " -a 0.5 ";           # alpha (influence of pheromone trails) 
$tpar[9]  = " -b 4 ";           # beta (influence of heuristic information) 
$tpar[10] = " -e 0.5 ";         # rho: pheromone trail evaporation 
$tpar[11] = " -q 0.0 ";         # q_0: prob. of best choice in tour construction 
$tpar[12] = " -c 100 ";         # number of elitist ants 
$tpar[13] = " -f 6 ";           # number of ranks in rank-based Ant System 
 
 



 
 
$tpar[14] = " -k 20 ";          # No.of nearest neighbours for local search 
$tpar[15] = " -l 0 ";           # 0: no local search 1: 2-opt 2: 2.5-opt 3: 3-opt 
$tpar[16] = " -d 1 ";           # 1 use don't look bits in local search 
$tpar[17] = " --as ";           # apply basic Ant System 
$tpar[18] = " --eas ";          # apply elitist Ant System 
$tpar[19] = " --ras ";          # apply rank-based version of Ant System 
$tpar[20] = " --mmas ";         # apply MAX-MIN Ant System 
$tpar[21] = " --bwas ";         # apply best-worst Ant System 
$tpar[22] = " --acs ";          # apply Ant Colony System 
 
#1 
$tpar[10] = " -e 0.0025 ";  
$com1 = $tpar[1].$tpar[2]; 
$com2 = $tpar[4].$tpar[8].$tpar[9].$tpar[10].$tpar[15].$tpar[17]; 
$param =  execut($com1,$com2,$param); 
system 'rm -f /home/ddarquennes/ACOTSPV10sp1/resultats/*'; 
system 'rm -f /home/ddarquennes/ACOTSPV10sp2/resultats/*'; 
system 'rm -f /home/ddarquennes/ACOTSPV10sp3/resultats/*'; 
system 'rm -f /home/ddarquennes/ACOTSPV10sp4/resultats/*'; 
system 'rm -f /home/ddarquennes/resultats/*'; 
 
#2                   
$tpar[10] = " -e 0.0050 ";   
$com1 = $tpar[1].$tpar[2]; 
$com2 = $tpar[4].$tpar[8].$tpar[9].$tpar[10].$tpar[15].$tpar[17]; 
$param =  execut($com1,$com2,$param); 
system 'rm -f /home/ddarquennes/ACOTSPV10sp1/resultats/*'; 
system 'rm -f /home/ddarquennes/ACOTSPV10sp2/resultats/*';     
system 'rm -f /home/ddarquennes/ACOTSPV10sp3/resultats/*';      
system 'rm -f /home/ddarquennes/ACOTSPV10sp4/resultats/*';    
system 'rm -f /home/ddarquennes/resultats/*'; 
 
#3 
$tpar[10] = " -e 0.0075 "; 
$com1 = $tpar[1].$tpar[2]; 
$com2 = $tpar[4].$tpar[8].$tpar[9].$tpar[10].$tpar[15].$tpar[17];  
$param =  execut($com1,$com2,$param); 
system 'rm -f /home/ddarquennes/ACOTSPV10sp1/resultats/*'; 
system 'rm -f /home/ddarquennes/ACOTSPV10sp2/resultats/*';                 
system 'rm -f /home/ddarquennes/ACOTSPV10sp3/resultats/*';                  
system 'rm -f /home/ddarquennes/ACOTSPV10sp4/resultats/*'; 
system 'rm -f /home/ddarquennes/resultats/*'; 
 
#4 
$tpar[10] = " -e 0.01 "; 
$com1 = $tpar[1].$tpar[2]; 
 
 



 
 
$com2 = $tpar[4].$tpar[8].$tpar[9].$tpar[10].$tpar[15].$tpar[17]; 
$param =  execut($com1,$com2,$param); 
system 'rm -f /home/ddarquennes/ACOTSPV10sp1/resultats/*'; 
system 'rm -f /home/ddarquennes/ACOTSPV10sp2/resultats/*'; 
system 'rm -f /home/ddarquennes/ACOTSPV10sp3/resultats/*'; 
system 'rm -f /home/ddarquennes/ACOTSPV10sp4/resultats/*'; 
system 'rm -f /home/ddarquennes/resultats/*'; 
 
 
system 'R < commands3.r --save'; 
 
#fin 
#system 'rm -f /home/ddarquennes/ACOTSPV10sp1/F*.tsp'; 
#system 'rm -f /home/ddarquennes/ACOTSPV10sp2/F*.tsp'; 
#system 'rm -f /home/ddarquennes/ACOTSPV10sp3/F*.tsp'; 
#system 'rm -f /home/ddarquennes/ACOTSPV10sp4/F*.tsp'; 
#system 'rm -f /home/ddarquennes/F*.tsp'; 
 



 
Exec program : construction of data tables 
 
package Exec; 
require Exporter; 
 
our @ISA    = qw(Exporter); 
our @EXPORT = qw(execut); 
 
#### definition fonction 
 
sub execut { # debut sous-programme 
 
   $com1  = shift(@_); 
   $com2  = shift(@_); 
   $param = shift(@_); 
 
   open(RESULT, ">>values0603.dat"); 
   open(INST, ">>instance0603.dat"); 
 
   for($j = 1; $j < 5; $j++) { 
      $part1 = "cd ACOTSPV10sp"; 
      $part2 = "; for fichier in \$(ls F*.tsp); do echo \"test avec sp \" "; 
      $part3 = "; nice -19 ./acotsp "; 
      $part4 = "; done"; 
      $commande1 = $part1.$j.$part2.$j.$part3.$com1." -p ".$j.$com2." -i \$fichier ".$part4; 
 
      system $commande1; 
 
      $part11 = "cp /home/ddarquennes/ACOTSPV10sp"; 
      $part12 = "/resultats/* /home/ddarquennes/resultats"; 
 
      $commande2 = $part11.$j.$part12; 
 
      system $commande2; 
 
      $rep = "/home/ddarquennes/resultats"; 
      opendir DH, $rep or die "Impossible d'ouvrir $rep : $!"; 
      foreach $fichiers (readdir DH) { # begin foreach 
         if($fichiers ne "." and $fichiers ne "..") { # if 
            $fichiers =  $rep."/".$fichiers; 
 
            open(TITI, $fichiers) or die "impossible d'ouvrir $fichiers : $!"; 
            $nbl = 0; 
            LIGNE: while($ligne = <TITI>) { # LIGNE 
               $nbl++;      
            } # LIGNE     
            close TITI; 
 
 



 
 
            open(TOTO, $fichiers) or die "impossible d'ouvrir $fichiers : $!"; 
            select INST; 
            $i = 1;                 
            $nbli = 0; 
            LIGNE1: while($ligne = <TOTO>) { # LIGNE1 
               $nbli++; 
               last LIGNE1 if $i > 25; 
               $der = rindex($ligne, "\t"); 
               substr($ligne, 0, $der + 1) = " "; 
               $dern = rindex($ligne, "\n"); 
               substr($ligne, $dern, $dern + 1) = "  "; 
               if ($i == 2){   
                  $tab[$i] = $ligne."   ".$param."    "; 
                  } else { 
                  $tab[$i] = $ligne;   
                  }      
               if ($i == 1){ $Sp = $ligne;} 
               if ($i == 2){ $Inst = $ligne;} 
               print $tab[$i]; 
               $i++; 
               } # E LIGNE1 
             print "\n"; 
             select RESULT; 
             LIGNE2: while($ligne = <TOTO>) { # LIGNE2 
               if ($i < 26) { 
                  $i++;  
                  next LIGNE2; 
               } 
               $nbli++; 
               $_ = $ligne; 
               s/[a-z]+/   /; 
               s/[a-z]+/   /;                
               s/[a-z]+/   /; 
               if($nbli == $nbl){ 
                             } else { 
                 $last = 0; 
               }          
               $_ = $Sp."   ".$Inst."    ".$param."    ".$last."     ".$_; 
               print "$_";     
               $i++; 
             } # E LIGNE2   
          } # end if     
          close TOTO;       
       } # end foreach 
    } # end for               
    $param++;            
    return $param;             
} # end sous-programme $last = 1; 



 
Commands3.r program : final graphics 
 
Val <- read.table("values0603.dat", header=TRUE) 
 
u <- subset(Val, Val$Last==1) 
write.table(u, file="datas0603.dat", quote=TRUE, row.names=FALSE, col.names=TRUE) 
Val1 <- read.table("datas0603.dat", header=TRUE) 
resfin <- aggregate(Val1[,5:7], list(Sp=Val1$Sp, Param=Val1$Param), median) 
resfin 
write.table(resfin, append = TRUE, file="resfin0603.dat", quote=FALSE, col.names=TRUE) 
 
 
nbpa   <- 4 
# assign("pa", c(0.0025, 0.0050, 0.0075, 0.01))    # number of tested parameters 
nbsp <- 4                                                                # number of memory depth types 
nbfi <- 100                                                             # number of test files 
 
cnt  <- 0 
 
pa   <- 1:nbpa                                                        # vector for number of parameters 
sp   <- 1:nbsp                                                        # vector for number of memory depth type 
su   <- seq(0.05, 15.05, by=5)                              # vector for number of subdivision abscisse 
fi   <- 1:nbfi                                                          # vector for number of test files 
 
t    <- length(pa)*nbsp*length(su)                        # max number of final results 
z    <- seq(1, t, by=1)                                            # size of vector for final-results 
o    <- 1:length(su) 
abs  <- numeric(length(o))                                   # vector of abscisses 
 
 
sure <- numeric(length(fi))                                  # vector of sub-results 
fire <- numeric(length(z))                                    # vector of final-results 
 
 
for(i in 1:length(pa)) { 
   for(k in 1:length(sp)) { 
      for(n in 1:length(su)) { 
         for(m in 1:length(fi)) { 
            j <- subset(Val, Val$Param == i & Val$Sp == k & Val$I_nam == m) 
            sure[m] <- min(j$Value[j$Time <= su[n]]) 
         } 
         cnt <<- cnt + 1 
         fire[cnt] <- mean(sure) 
      } 
   } 
} 
 
 
 



 
 
opar <- par() 
pdf() 
 
cnt <- 0 
 
for(i in 1:length(pa)) { 
   plot(su, abs, type="n", xlab="CPU Time", ylab="Tour length", xlim=c(0, 15), ylim=c(400,        
          700)) 
   legend(10, 700, legend=c("Algo 1", "Algo 2", "Algo 3", "Algo 4"), pch=1:4) 
   switch(i, title("Alpha=0.5 Beta=4 Evap=0.0025"), title("Alpha=0.5 Beta=4 Evap=0.0050"),  
                  title("Alpha=0.5 Beta=4 Evap=0.0075"), title("Alpha=0.5 Beta=4 Evap=0.01")) 
   for(k in factor(sp)) { 
      for(n in 1:length(su)) { 
          cnt <<- cnt + 1 
          abs[n] <- fire[cnt] 
      } 
      switch(k, points(su, abs, pch=1), points(su, abs, pch=2), points(su, abs, pch=3), points(su,  
                      abs, pch=4)) 
      switch(k, lines(su, abs, lty=1), lines(su, abs, lty=1), lines(su, abs, lty=1), lines(su, abs,  
                      lty=1)) 
   } 
} 
 
write.table(fire, file="resf0603.dat", quote=FALSE, row.names=FALSE, col.names=TRUE) 


