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Abstract

La tesi si propone di sviluppare e implementare Ant Task Allocation (ATA), un algoritmo basato
sul modello di divisione del lavoro osservato in colonie di formiche per risolvere un problema di
scheduling. Le prestazioni di ATA sono confrontate con quelle di altri algoritmi multi-agente
presenti in letteratura.

La tesi sostiene che per diverse classi di istanze del problema e per una determinata fun-
zione obiettivo, l'algoritmo sviluppato ottiene dei risultati migliori rispetto agli altri algoritmi
considerati.

Il problema studiato e’ un problema di scheduling, non-deterministico, con macchine paral-
lele e parte dell’informazione disponibile solo durante la risoluzione del problema stesso. Un
ambiente industriale di verniciatura pud essere portato come esempio di questo problema: dei
camion escono da una linea di assemblaggio e devono essere assegnati a delle cabine di verni-
ciatura. Le cabine possono avere le stesse caratteristiche oppure differire per la loro velocita di
verniciatura. Un loro cambio di colore implica un ritardo temporale ed un costo. Il problema ¢
complicato dal fatto che nessuna informazione sul colore dei camion da verniciare ¢ conosciuta
fino a quando questi non escono dalla linea di assemblaggio. L’ obiettivo & quello di assegnare
i camion alle cabine minimizzando il makespan, ovvero il tempo che intercorre dall’inizio della
prima attivitd al completamento dell’ultima attivita del sistema.

L’algoritmo proposto, che si basa sul lavoro di Cicirello et al. e sul modello a soglie presen-
tato da Bonabeau et al. ispirato alla metodologia di suddivisione del lavoro osservata in colonie
di insetti, definisce una serie di regole comportamentali delle cabine di verniciatura. Ogni
cabina ¢ considerata come un agente autonomo (formica) che richiede e vernicia dei camion
(attivita da svolgere). Il risultato ¢ un sistema plastico ai cambiamenti dell’ambiente sperimen-
tale dove gli agenti tendono a specializzarsi su un determinato tipo di lavoro in funzione delle
loro caratteristiche e del loro stato.

Per sostenere la tesi, le prestazioni del sistema presentato sono state confrontate con quelle
di altri algoritmi multi-agente presenti in letteratura tramite una analisi empirica su due classi
di istanze del problema: una fabbrica di grosse dimensioni con cabine identiche ed una di
medie dimensioni con cabine di differenti caratteristiche. La comparazione avviene tra ATA,
la soluzione proposta da Cicirello et al., un altro algoritmo insect-based di Campos et al., un
algoritmo market-based proposto da Morley ed un algoritmo non adattativo introdotto come
punto di riferimento per il confronto delle prestazioni. Particolare attenzione ¢ stata data alle
condizioni sperimentali che hanno visto 1'utilizzo di un generatore di istanze delle classi del
problema, una ricerca dei parametri ottimali usando algoritmi genetici, e un’analisi statistica
rigorosa.

Per completezza, ’analisi sperimentale mostra inoltre il contributo che ogni regola in-
trodotta porta alla funzione obiettivo.
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Chapter 1

Introduction

The use of Multi-Agent Systems (MAS) is rapidly increasing in a variety of fields
of computer science, engineering and artificial intelligence in the last years. A
multi-agent system can be described as a loosely coupled network of agents in-
teracting to collectively solve problems which are beyond the capabilities of each
individual agent [12]. Agents are autonomous systems capable of adapting to
changing environments and able to exhibit goal-directed behaviors [31].

Systems that reflect the previous definitions are for example insect colonies.
Social insect colonies use intelligent and distributed methods to collectively solve
complex problems. Cooperation among individual insects is largely self-organized
and does not require any supervision. The collective behavior that emerges from
a group of social insects is referred to as swarm intelligence. The research area
that deals with applying swarm intelligence to various problems has come un-
der increasing attention in the research community in the last years [10]. One
of the early studies of swarm intelligence investigated the foraging behavior of
ants. Ants lay trails of pheromone, a chemical substance that attracts other ants.
Deneubourg et al. [9] showed that this process of laying a pheromone trail that
others can follow, is a good strategy for finding the shortest path between a nest
and a food source. In experiments with an Argentine ant species, Deneubourg
et al. constructed a bridge with two branches, one twice as long as the other,
separating the nest from a food source. Within few minutes the ants mostly se-
lected the shorter branch. Based on the idea of pheromone laying and following,
Dorigo et al. [11] developed a way to solve the well known and NP-hard' Trav-
eling Salesman Problem (TSP). The TSP is the problem of finding the shortest
route that goes through a given number of cities exactly once. The algorithm,
implemented by Dorigo et al. has obtained near optimal solutions.

In this thesis our interest is in using multi-agent algorithms to solve the Dy-
namic Task Allocation (DTA) problem. The DTA problem is an online, non-
deterministic scheduling problem, that is, a decision-making process for assigning

!For a definition of the concept of NP-Hardness and NP-Completeness we refer the reader
to [13].
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tasks to agents working in parallel. Each task belongs to a particular type and
if a working agent changes the type of task it performs, a setup is required and
a given cost is incurred. In the DTA problem different agents can have different
processing times for different task types. If this is the case, the DTA problem
is said heterogeneous; otherwise, if all the agents are identical, the problem is
said homogeneous (DTAem). The objective for this problem is to minimize the
makespan, that is, the time until all tasks in the system have been processed.

Different work has been done using multi-agent algorithms on the homogeneous
case of the problem. Most of the proposed algorithms use paradigms based on
the specialization concept, where agents tend to specialize for one type of task,
to avoid unnecessary reconfiguration and in this way increase the efficiency of
the system. Morley [18] is the first one that solved a painting problem similar to
the homogeneous case of the DTA problem. His algorithm was adopted in the
GM facility and was found that his system performs 10% better than the previ-
ously used centralized scheduler. Later, Campos et al. [6] proposed to solve the
same problem with an insect-based approach. Subsequently, Cicirello et al. |7]
proposed another insect-based algorithm introducing concepts not considered by
Campos et al.

In this thesis, we present Ant Task Allocation (ATA), an algorithm for the ho-
mogeneous case of the problem based on the work of Cicirello et al. The algorithm
of Cicirello et al., especially for problems in which demands change dynamically,
often takes much time to re-adapt or does not succeed to re-adapt at all. In order
to overcome this problem we propose some modifications and additional rules to
speed up the adaptation process.

Applying these algorithms to the heterogeneous case of the DTA problem, we
found that they perform poorly because the agents do not consider their process
speed to perform a task. Therefore, we propose a Different Process Speed (DPS')
rule applicable to all the considered insect-based algorithms. This rule is inspired
by division of labor as observed in different castes of Pheidole ants.

We compare all presented algorithms on the DTA problem. Additionally, we
introduce a non-adaptive algorithm in the experimental analysis in order to have
a performance reference. The comparison considers two possible real-world sit-
uations: a big painting factory with identical agents and a medium dimension
factory with two heterogeneous subsets of agents. Particular attention has been
payed to the experimental conditions; in fact, we have used two instance gener-
ators in order to obtain the two classes of instances of the problem and we have
done a rigorous parameters tuning for each used algorithm. Furthermore, a sta-
tistical analysis has been done to study the data obtained. We will show that our
algorithm achieves the best results for both the considered class of homogeneous
and heterogeneous problems. Moreover, we will show that all adaptive algorithms
in all situations achieve better results than the non-adaptive algorithm. Again,
Campos’ et al. algorithm does not obtain good results in both the experiments



but we are grateful to him because his work has the merit of having introduced
the insect-based approach to solve this problem. Moreover, the performance of
the insect-based algorithms are ranked according to the time they was made. In
fact the algorithm of Campos’ et al. does not obtains good results, the algorithm
of Cicirello et al. gives a significant improvement to the performance obtained
by Campos’ et al. as they show in paper [7] and our algorithm improves again
the results of the solution of Cicirello et al.

Another set of experiments deals with the analysis of the proposed rules.
First of all we show that ATA with all the introduced rules performs better than
the original algorithm of Cicirello et al. Moreover, we observe that one of the
proposed rules gives a large contribution to reduction in the makespan, two oth-
ers a significant contribution to it and the last one does not give any apparent
contribution to the results. Finally, we show that the DPS rule improves the

performances of all the insect-based algorithms on the heterogeneous case of the
DTA problem.

In Chapter 2 we give a formal description of the DTA problem and use the
metaphor of a painting facility to describe it in a simple way. Chapter 3 presents
the related work for the homogeneous case of the DTA problem. We present two
approaches: the market-based approach with the algorithm of Morley and the
insect-based approach with the algorithms of Campos et al. and Cicirello et al..
Afterwards, Chapter 4 introduces ATA, our algorithm for the DTAp,,, problem.
In Chapter 5 we describe the DPS rule which is applicable to the insect-based
algorithms in the heterogeneous case of the problem. Chapter 6 details the ex-
perimental setup and the instance generators. Furthermore, a summary of the
algorithms and of the parameter is given. In the second part of this chapter, we
analyze the obtained results. Finally, we conclude in Chapter 7.
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Chapter 2

Problem definition

The problem considered here is a particular non-deterministic scheduling problem
that we refer to as the Dynamic Task Allocation (DTA) problem. This problem
is a decision-making process for assigning tasks to parallel working machines. In
the DTA the machines differ in their process speed. Moreover, tasks information
is only known at execution time. A very similar problem, with identical machines,
was presented and solved by Morley [18] for painting trucks at General Motors.

The DTA problem can be described by considering a painting factory envi-
ronment.

Painting facility. Trucks roll off an assembly line at the end of which there is
a storage where each truck waits to be assigned to a painting booth. The number
of available colors is fixed and a truck’s color is predetermined by a customer
order. The distribution of colors of trucks and the truck release dates are not
specified.

A painting booth is an agent able to paint with all the available colors. Booths
may be identical or may have different process times for the same type of tasks.
This situation may happen for example in a factory with old and new machines,
where the new ones require less time to accomplish a same task. Another pos-
sibility is that a set of agents do some work faster than another and vice versa.
Moreover, each booth has a fixed queue length which can be filled by trucks. If
the color of a painting booth must be changed, a setup time is necessary. For
example, if a booth is applying red and the next truck to be processed by that
painting booth requires white, a fixed flush time is taken. If no setup is necessary,
the booth starts immediately to paint the next truck in its queue. A setup may
also be related to a monetary cost that for example is the amount of paint lost
during a swap.

The objective of this problem is to assign trucks to painting booths minimiz-
ing the makespan, that is, the completion time of the last truck in the system.
We also analyze the number of setups and the storage dimension that should be
kept as low as possible.
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2.1 Dynamic task allocation (DTA) problem

According to Pinedo [20] we formalize the scheduling problem introduced by the
following notation
< Qm|rj,sj7h|C’MAX >, (21)

where each variable has the following meaning:

e Machines in parallel Qm: in the system there are m machines in parallel
that are in charge of m booths in the paint facility. Machines may have
different process times for different types of tasks. Groups of machines can
be grouped in different subsets S;. The process times of a subset S; for the
types of tasks ¢; is given by t,.,.(5;, ¢;). The setup time ¢, is identical for
all the working machines. Furthermore, each machine k£ has a queue that
can be filled with up to ¢; tasks. If all machines have the same processing
time t,,,, for all types of tasks, we refer to the homogeneous case of the
problem (DTApom)-

e Release date r;: this is the time at which a task j is released to the
painting facility. The value of 7; is not available at the beginning of the
experiment. It is the earliest time at which the task j can start being
processed. Each tasks j requires a single operation and may be processed
on any one of the m machines. Furthermore, each task j belongs to a
particular type c; which is the color to be painted and also this information
is not available at the beginning of the experiment.

e Sequence dependent setup times s;;: represents the sequence depen-
dent setup time between two tasks j and h. If ¢; = ¢, no setup is required
and s;;, = 0. This means that the respective machine can immediately
start processing task h after having finished to process task j. If ¢; # ¢,
a configuration time t,., is needed. The setup time between task j and
task A is independent of the machine.

e Makespan C);4x: the objective of the DTA problem is to minimize the
makespan that is the time until all tasks in the system have been processed.

In the DTA problem, the task generation process is not specified. For instance,
the release dates and the types of the tasks may be distributed exponentially or
normally. This distributions may vary dynamically so that at a random time the
probability mix changes and the machines need to adapt to the new environment.
It also may happen the extreme case of all tasks being create before the scheduling
process start. This last example would make the DTA instance a very simple
scheduling problem requiring only a simple algorithm to optimize a schedule
because everything in known a priori.



Chapter 3

Related work

In the previous chapter we used a painting facility as a real world example of the
DTApyom problem. This example originates from Morley [18], who was given the
task of optimizing a scheduler for a General Motors truck painting facility. Morley
used a decentralized market-based approach that, compared to the previously
used centralized scheduler, improved the performance in terms of decreasing the
amount of paint lost. In the following section we give a short overview of market-
based algorithms for problems that are related to the DTApg,,, problem. In
particular, we detail Morley’s approach.

Independently of each other, Campos et al. [6] and Cicirello et al. [7] used
similar insect-based approaches to solve the same problem. They were inspired
by a threshold model proposed by Bonabeau et al. |2, 3] and Theraulaz et al. [27].
In Section 3.2 we first introduce the threshold model and then explain the two
approaches.

3.1 Market-based approach

Market-based approaches are often used for coordinating asynchronous scheduling
operations in the face of imperfect knowledge [8, 17, 16]. The decision process is
based on a decentralized bidding mechanism where autonomous agents bid for a
task or a resource, which is then assigned to the agent with the highest bid. The
agents dynamically adjust their bids according to their capability to solve a task
or according to the availability of a resource.

For example, Waldspurger et al. [29] presented a computational system called
Spawn, in which each task bids for the use of machines on a network. According
to its priority, each task is given a certain budget, which it has to use such that
it will be assigned to the resources it requires. Prices are adjusted dynamically
and are based on the demands of other tasks.

Another example is given by Schwartz et al. [25] that use the bidding mech-
anism for data allocation of self-motivated data servers with no common pref-

7



8 Chapter 3. Related work

erences and no central controller. The location of each data unit is determined
using a bidding mechanism where the server bidding the highest price for ob-
taining the data will actually obtain it. This market-based approach yields an
efficient and fair solution, a simple implementation and the bidders are motivated
to offer efficient prices.

Clearwater et al. [15] also use a market-based approach for a thermal resource
distribution problem: computational agents that represent individual tempera-
ture controllers bid to buy or sell cool or warm water air.

All these examples show that market mechanisms provide methods to deal
with coordinating asynchronous operations in the face of imperfect knowledge.
A computational system set up along market rules can allow the system as a whole
to adapt to changes in the environment or disturbances to individual members.
Additionally, the price mechanism behind this approach simplifies the design of
adaptive algorithms.

3.1.1 Morley’s algorithm

The following algorithm definition originates from the paper of Campos et al. [6].
In fact, the algorithm developed by Morley is a manufacturing application and
many details are protected.

Morley [18] proposed a market-based algorithm to solve an example of the
homogeneous case of the DTA problem which was applied to a General Motors
factory. We refer to his algorithm as Market-Based Approach (MBA). In his
market-based approach booths bid for trucks to paint them. For each booth the
intensity of the bid for a particular truck is based on the amount of time and
the additional costs that would be related to an assignment. If the queue of a
booth is full, it does not participate to the bidding process. Morley proposed a
bid function applied to each booth that considers the importance of the tasks,
the color of the presented task, and the state of the booth. More precisely, if we
consider a task j of color ¢; that is in the storage, a booth k that does not have
a full queue participates in the bidding process with a range of values given by:

Bi(j) = P xw), *ilT:(j(;*L* e(k,j))’

(3.1)

where w; gives the importance of the task, e(k,j) is a function that is 1 if the
color of the last truck in the queue is equal to ¢;, and 0 otherwise. P, C, and
L are parameters that weight each component. ATy (j) is the time until task j
starts to be painted, and is determined by the following equation

ATk(]) =q* tproc +n x tsetup + tworkmga (32)

where ¢ is the number of trucks in the queue of booth k, ¢, is the time required
to paint one truck, n is the number of setups between trucks in the booth’s queue,
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tsetup 1S the time required for a setup, and fyopming is the time necessary to finish
the truck currently being painted.

The assignment process is very simple. For all trucks each booth with space
in its queue bids for them according to Equation 3.1 and the respective truck is
assigned to the end of the queue of the highest bidder. If all the queues are full no
booth can bid and the truck stays in the storage. If more than one booth submits
the same highest bid, the respective truck is assigned to the booth that requires
no setup to paint it. In the case that all competing booths require a setup, the
winner is chosen randomly. If none of the booths requires a setup, the truck is
assigned to the booth with the shortest queue size or, in case all the booths have
the same queue length, it is assigned randomly.

3.2 Insect-Based approach

Campos et al. [6] and Cicirello et al. [7] used an insect-based approaches to solve
the DTAgon, problem which are inspired by the methodology of division of la-
bor in social insect. Insect societies perform different activities simultaneously
exploiting specialized individuals. This parallelism is undoubtedly more efficient
than sequential task performance by unspecialized workers because individual
specialization leads to a higher grade of colony efficiency as specialized individ-
uals don’t switch between one type of task and another, a process that often
requires time. Moreover, a specialized individual can perform a type of tasks
more efficiently.

A key feature of division of labor is plasticity. The ratios of workers perform-
ing the different tasks can vary in response to internal and external challenges.
Factors such as food availability, climatic conditions or phase of colony develop-
ment influence the specialization of the colony’s workers. In the Pheidole ant
species, for example, there are minor workers that are smaller and morpholog-
ically distinct from major workers. Minor and major workers tend to perform
different tasks: while majors cut large preys and defend the nest, minors feed the
brood or clean the nest. Wilson [30] showed experimentally that when removing
minors, majors get engaged in the tasks usually performed by minors to replace
them.

The fixed threshold model In order to explain Wilson’s [30] observations,
Bonabeau et al. [4] have developed a simple model that relies on response thresh-
old [22, 21]. The idea behind the fixed threshold model is that each individual has
a threshold value for every kind of task available in an environment. A threshold
represents the level of specialization of an agent for a particular task. A task
emits a stimulus to attract the individuals’ attention. Based on the stimulus, an
individual will or will not accept to start performing the respective task. The
higher the intensity of a stimulus the higher the attraction toward workers to
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Figure 3.1: Response curve P(s,#) with different thresholds.

accept that task. This model is said to be with fized thresholds because these
thresholds do not change over time.

The first question that we have to answer is: how do we formally define a
response threshold? Assume that m tasks need to be performed. Each task j is
associated with a stimulus s;, the level of which increases if it is not satisfied.
Let us assume that there are N agents, denoted by i, with response threshold 0, ;
(t=1,...,N) for each task j. In the threshold model, individual i engages in task
7 with probability

52

P(sj, 0:;) = —1-. 3.3
(50h0) = g7 (33)
This equation shows that for s; < 6, ; the probability of an individual ¢ to be
engaged in task j is close to 0 and for s; > 6, ; the probability is close to 1.
Therefore, agents ¢ with a lower threshold 0;; are more likely to respond at a
lower level of stimulus s;.

The fixed threshold model assumes that agent’s thresholds are fixed over
time and so their level of specialization for a given task does not change in
time. As a consequence, this model does not take into account the plasticity
characteristic of the colony because it assumes that individuals are differentiated
by their preassigned threshold values. Therefore, it is valid only over sufficiently
short time scales, where thresholds can be considered constant. Finally, the model
is not consistent with experiments with honey bees |23, 5|, showing that aging
and/or learning play a role in task allocation.

The dynamic threshold model In order to take these limitations into ac-
count, Theraulaz et al. |27] extended the threshold model by allowing thresholds
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to vary in time following a simple reinforcement process: the threshold associ-
ated to a task decreases when the corresponding task is performed, and increases
otherwise.

Let & be the coefficient that describes learning (specialization) and ¢ be the
coefficient that describes forgetting characteristics of an insect colony. If we
consider a time-incremental model, individual ¢ specializes when performing task
j during a time period of duration At by changing its threshold as follows:

Oi,j — Oi,j - £At, (34)

and it forgets if it does not perform task j during a time period of duration At
by by changing its threshold as follows:

(‘)i,j — Qi,j + (pAt (35)

Now, let x; ; be the fraction of time spent by individual 7 in task j: within A¢,
individual ¢ performs task j during time x; ;At, and other tasks during (1—z; ;) At.
Let £ and ¢ be identical for all tasks, and the dynamics of 6; ; be restricted to
an interval [0,,in, Omaz]- Therefore, threshold values vary continuously in time
according to:

ot
where ©(-) is the Heaviside function with O(y) =0if y < 0, O(y) =1 if y > 0.

The probability of an individual ¢ to be engaged in task j is still described by
equation 3.3, but now 0; ; is dynamic in time and therefore:

= [(1 - xz’,j)(p - xi,jf]@(ei,j - emm)@(emax - ei,j)a (36)

s3(t)

P(s;(t),0;5(t) = ’

s5(t) +07,(t) (3.7)

As explained above, z; ; is the fraction of time spent by individual ¢ in per-
forming task j. Its value increases according to the threshold 0; ; of agent i for
task j. x;; varies in time according to:

8@-7]-

ot

= P(s;,0,,)(1 = > wix) — pryg + V(i j, 1), Yk # j, (3.8)
k=1

where 1 — > 7" | x; ), is the fraction of time potentially available for performing
tasks. The term px;; expresses that an active individual gives up task perfor-
mance and becomes inactive with probability p per unit time (identical for all
workers and all tasks). The average time spent by an individual in task j perfor-
mance before giving up this task is 1/p. W(4, 7, t) is a centered Gaussian stochastic
process with variance o2, which is uncorrelated in time, among individuals and
among tasks.
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For simplicity, the stimulus dynamics for a task j increases at a fixed rate
per unit time if no agent bids for it. The differential equation that describes the
variation of s; in time is

0s; a
79 5 = E .
at 6 N(i:1 x%])’ (39)

where 0 is the increase in stimulus intensity per unit time, and « is a scale factor
measuring the efficiency of task performance. It is assumed that both factors are
identical for all tasks, and that « is fixed and identical for all individuals.

In reality, however, a could vary as a result of specialization. The amount of
work performed by active individuals is again scaled by the number of individuals
N.

3.2.1 Campos’ algorithm

Campos’ et al. [6] solved the DTAp,,, problem with an algorithm based on the
dynamic threshold model as shown in the previous chapter. They developed
this algorithm to show similarities between the insect-based approach and the
market-based approach. We call their algorithm Ant-Based Approach (ABA).
In this approach agents are in charge of booths and autonomously bid to paint
trucks. In Campos’ model, a stimulus s.; is associated to the color ¢; of a truck
J. Each agent k has a threshold value 6y, ., for each available color. The stimulus
s¢, for each color is given by the sum of the stimuli of the unassigned tasks for
each particular color. The equation that describes the stimulus demand is:

Se; = Z si0(ci — ¢j), (3.10)

where ¢; is the color of truck 7 waiting in the storage and c¢; is the color of the
considered truck j. d(-) is the Dirac function and the sum is taken over all trucks.
The probability of the booth k£ to get engaged in task j in given by:

82

P(se;, One;) = sz +aby, + AT? (3:11)

where ¢; is the color of truck j and 0y, is the threshold of agent (booth) & for
color ¢;. o and 3 are parameters and AT is the waiting time necessary before the
truck starts to be painted by that booth. AT is computed like in equation 3.2. If
there are no bidders because all the queues are full the truck stays in the storage.
For this algorithm, values of P(s.,,0,.,) for different agents are compared and
the tasks is assigned to the booth with the highest value.

Only when a truck j is assigned to booth k, the threshold values are updated
for all booths. 6y, .. decreases by an amount &:

9k7cj — ek,(:j — f, (312)
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and the thresholds 0,,., of all other paint booths for color ¢; increase by an
amount ¢
Omc; = Omye; + 0, Ym # k. (3.13)

Variations of 0, ., take place within the bounds 0., and 0,,,,. Equation 3.12
expresses the fact that booth % tends to specialize on color ¢; because it increases

its probability of responding to a truck with color ¢; by decreasing its response
threshold 6y .

3.2.2 Cicirello’s algorithm

Cicirello et al. [7] proposed a similar algorithm to solve the DTAp,,, problem
called R-WASP that is also inspired by the dynamic threshold model.

The algorithm incorporates aspects which have been ignored by Campos. In
particular, in Cicirello et al.’s algorithm, each task j in the system sends to all
agents a stimulus s; that is equal to the length of time the task is already waiting
to be assigned to an agent and does not depend on its color.

Campos’ algorithm uses the probability function to determine the booth to as-
sign the truck. Cicirello et al.’s model instead uses P(s;, Ox.,) as a pre-disposition
to respond to a stimulus. Therefore, P(s;, 0y ;) represents the probability for a
booth to bid for a task. In the algorithm of Cicirello et al., the pre-disposition
to respond to a stimulus is given by:

52

P(s;,0pe) = =2 3.14
(8], /f,]) S?‘*’@iq ( )

where c¢; represents the color or the type of task j.

Furthermore, in Campos’ approach, thresholds are updated only when a truck
is assigned to a paint booth and that rule involves only thresholds of the respective
color. In Cicirello et al.’s approach, each agent k, at each time step, updates its
own thresholds 0 . according to the following rules. At each time step, if the
agent k is processing or setting up for a task j of color ¢; the agents’ thresholds
are updated according to:

Qk,cj- - ek,c]- - 5, (315)

ek&. — ek&. + (V2 \V/Z 7é j (316)

Otherwise, if the agent k is currently not processing any task, a third update rule
is used for each threshold:

Ok,ci = Ok, — 0, Vi, (3.17)

where ¢ represents the number of time steps in which the agent is already idle.
The rule given in Equation 3.17 increases the value of P(6s.,,s;) to encourage
an idle agent k to take whatever tasks it can get rather than remaining idle.
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When two or more agents of the colony want the same task, they interact
with each other in a dominance contest. If this interaction takes place, the agent
with the higher social rank has a higher probability of dominating in the chal-
lenge. Through such interactions, insects within the colony self-organize into a
dominance hierarchy. The dominance contest rules are applied if two or more
agents respond positively to the same stimulus. In this case there is a kind of
challenge between bidders and the winner is assigned the task. The idea is that
each participant k£ has a force value Fj:

Fk; =1+ Tproc + Tsetupa (318)

where T}, is the sum of the processing times t,,,. for all the tasks in the queue
of booth k and T, is the sum of their setup times ¢c4,,. For a booth k, a lower
force value F}, corresponds to a shorter queue and leads to a higher probability
to win in a dominance contest. The rule to determine the probability for agent
k to win against all the others competitors, is:

Z;‘;k F?
(n—1) Z?:l Fz‘2

If more than one agent competes for a given task, a single dominance contest
is used to determine the winner.

P(Fy, ... F,) =

(3.19)



Chapter 4

ATA: An improved algorithm for
the homogeneous case

The agent-based algorithm proposed by Cicirello et al. shows a good level of spe-
cialization of the paint booths. This characteristic is desirable because it avoids
unnecessary reconfigurations. The way the solution is achieved is completely dis-
tributed and no global information is required. We used the algorithm of Cicirello
et al. initializing all working agents with the same threshold for all types of tasks.

In general, we observed that during the experiment the agents become spe-
cialized in one type of task and the performances of this algorithm are better
than these obtained by one of the non-adaptive algorithms. However, we have
observed that R-WASP requires some amount of time to initially adapt to the
product mix as well as to dynamically re-adapt to a changing product demand.
For example, Cicirello et al. consider in their experiments a case with two types
of task, an asymmetric probability distribution and a product mix that changes
at the half of the simulation. They show that the adaptation process to the new
probability mix takes more than one third of the experimental time.

In order to overcome this problem we propose three modifications on the
original algorithm and one additional rule to speed up the adaptation process.
We call this improved algorithm Ant Task Allocation (ATA) and specify it in the
following two sections. Afterwards, in Section 4.3 we show the plasticity of ATA
in a particularly dynamic environment by discussing an example.

4.1 DModifications of existing rules

Threshold Update Rules (TUR): The update rules proposed by Cicirello et al.
depend on the type of the task (the color ¢;) which is currently used by a booth.
We remark that an agent may have a queue of several tasks behind itself. These
tasks in the queue are not necessarily of a same type. For example, an agent
might be processing a task of type 1 and have only one task in its queue that is

15
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of type 2 like in Figure 4.1. This means that, as long as the task of type 1 is not
finished, the corresponding threshold for 1 is decreased and the threshold value
for 2 is increased. If the agent is offered two tasks, one of type 1 and one of type
2, the probability to take the task of type 1 is higher than the probability to pick
task 2. This is not desirable because it can cause additional setups. We have
chosen to modify the update rules by letting the last task in an agent’s queue
determine which threshold values are updated in order to reduce the number of
necessary setup and consequently, the makespan.

Agent's queue

O 0

Agent

Figure 4.1: This agent is currently processing a task of type 1 and in its queue
there is a waiting task of type 2.

Calculation of the Force Variable (CFV): The dominance contest introduced
by Cicirello et al. tries to find a good solution to choose among several booths
competing for a same task. The force value is defined as the sum of the process
times and setup times of the tasks waiting in the queue of a booth. Figure 4.2
shows a situation where two agents with the same queue length bid for the same
task. In the algorithm of Cicirello et al the probability to win in the dominance
contest is the same. This does not take into account a possibly required setup
for the task they are bidding for. We modify the force value according

Fk(]) =1+ Tproc + Tsetup + tsetup,ja (4]-)

where ., ; Tepresents the setup time between the last task in the booth’s queue
and the current truck j.

Agent 1: setup required

© 006606

Agent 1

(2]

Agent 2

Agent 2: no setup required

Figure 4.2: Two agents with the same queue length that bid for the same task.

DOminance Contest (DOC): Using the dominance contest rule as specified
in Equation 3.19, the more machines compete with each other in a dominance
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contest, the smaller are the differences between the probabilities to win. In general
the probability for one competitor to win a dominance contest with n competitors
is never higher than ﬁ In order to avoid this, we introduce this new rule:

1
P
3

Pk(Fla 7FTL> = an
itk F2

(4.2)

4.2 Additional rule to optimize the threshold val-
ues

Idle Machine does not Bid (IMB): Equation 3.17 offers a threshold update rule
for idle agents in order to encourage them to bid for tasks of any type. This
update rule decreases all threshold values by a value that exponentially increases
in time. The idea is that a machine may stay idle for same time rather than being
forced to take any task immediately. We observed that this can cause agents to
stay idle for very long and therefore has a negative effect on several performance
measures. We propose a new update rule, which is employed in case an idle agent
refuses to bid for a task it is offered:

ek,c]- — ek,c]- - . (43)

In this case, the corresponding threshold 6y, of the refused task of type c; is
decreased by the fixed value 7. Variations of 0y ., takes place within the bounds
Qmin and emaz-

4.3 Example

In this section we present an example that shows the plasticity of ATA to the
dynamic changes on the DTApy,,, problem environment. In the paper of Cicirello
et al. a very similar situation is presented where the adaptation process to the
environmental changes takes more than one third of the experimental time. We
will show using ATA that this process is very quick. We think that the proposed
improvement rules are essential to achieve this behavior.

In order to show this, we consider a simple problem instance with 4 identical
agents. Fach agent has a queue size of 5 trucks. To paint a truck a booth
requires 5 time steps. Another 10 time steps are needed for a setup. Trucks exit
the assembly line during 420 time steps. If one step is equal to a minute, trucks
enter in the system during seven hours. The number of trucks to be painted is in
average equal to 336. This number is chosen because it is in the given time the
maximum number of trucks that 4 booths can paint considering the process time,
no setups and no idle states. The number of trucks that exit the assembly line
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is equally distributed during the 420 time steps. In this example trucks can be
painted in two colors only: type 1 and type 2. In order to analyze the plasticity
capability of the system, we chose a particular color probability mix: for the
first 210 time steps the tasks of type 1 appear three times more frequently than
those of type 2. Afterwards, these probabilities swap so that the type of task
that appeared more frequently appears more rarely. We refer to this probability
mix as CHANGE. The parameter set used for ATA is the same as those used in
Section 6.1.3 for the DTAp,,, problem instances.

For this example we expect that for the first half of the experiment a higher
number of agents becomes specialized in task 1 and that this swaps for the second
half. Figure 4.3 shows a typical ATA behavior on this configuration. At the
beginning agents that are in the same starting conditions become specialized and
start performing the tasks. From the time step 210 the demand of type 2 tasks
becomes high and the relative stimulus increases (Figure 4.3(a)). At the same
time, agents working on type 1 tasks wait for more tasks of the same type but
none becomes available. Initially these agents do not bid for type 2 tasks. Until
here the behavior of the agents of ATA is similar to the agents of R-WASP.
Then, in ATA the IMB rule takes effect and decreases the threshold of each
agent that prefers to rest idle and not bid for type 2 tasks. The effect of the
stimulus increment and of the IMB rule is that two agents become specialized
for type 2 tasks (Figure 4.3(d) and (e)). The others agents do not change their
specialization level. This behavior do not change until the end of the experiment.
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Figure 4.3: The graphs show the sums of the tasks stimuli, the number of working
agents for each type of task and the dynamic of thresholds of each agent. Graphs
(c), (d) and (e) show that for the first half of the experiment agents 1, 2 and
partially 3 are specialized on tasks of type 1 (low thresholds). This behavior is
confirmed by graph (b). Graph (f) shows that agent 4 becomes specialized on
tasks of type 2. At time 210 the probability mix reverse. Agents still remain
specialized to the previous mix. The stimulus of type 2 tasks increases (a) and
the agents remain idle. At time 250 (graph (d) and (e)) agents 2 and 3 adapt
themselves to the new environment. From this moment to the end of the experi-
ment there are three agents working on tasks of type 2 and one on tasks of type
1 (b).
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Chapter 5

Extension of the algorithms to the
heterogeneous case

The DTA problem definition considers agents that can have different processing
times for different task types. The insect-based algorithms presented give satisfy-
ing results on the homogeneous case of the DTA problem but if they are applied
on the heterogeneous case the performances are not so acceptable. The problem
is that agents bid for a task considering only their specialization level, without
taking into account their own characteristics, that is, their capacity to process a
task quickly or slowly. In order to have better results, we extend the algorithms
so that the faster an agent can perform a task, the higher is the probability to bid
for it. In Section 5.1 we present this extension that is applied to the presented
insect-based algorithms and is inspired by the caste subdivision of labor observed
in social insects. Afterwards, in Section 5.2 we show its impact by discussing an
example.

5.1 Different process speed (DPS) rule

In an insect colony different castes of agents have a different response to a consid-
ered task. Wilson [30] observed a division of labor between insect casts studying
ant species Pheidole. In normal conditions some castes have higher probability
of obtaining a task than others. If in the environment there is a high demand to
perform a particular task or a subset of castes is eliminated from the environment,
the behavior of the ants in the system changes so that they start to perform tasks
for which they are not predisposed. To reproduce this behavior in the considered
insect-based algorithms, we introduce the process speed that an agent k has for
a task j of type c; in the probability function P(s;,0.;). The most promising
probability function is obtained modifying Equation 3.14 as follow:

2
Sj

P(sj,ek,cj) = (51)

3 2 . :
Sj + ek,cj- * (tproc,k,cj — tmmpmcycj + 1)

21
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Figure 5.1: The threshold response function that one agent of subset S1 and one
agent of subset S2 have for a task of type 1 with different specialization levels.

where £y, 1 ; is the processing time that agent £ has for task j and tminyc ¢, is
the minimum processing time in the system for the type of task c¢;. The added
term performs like a weight to the specialization level during the bidding process.
We study the probability function in a simple instance of the DTA problem
where there are two sets of working agents with two booths for each set and two
types of task. The process time is given in Table 5.1(a) whereas the relative
probability function P(s;,0;) is presented in Figure 5.1. The figure shows that
agents of subset S1 always have a higher probability to bid for tasks of type 1
than agents of subset S2. An important characteristic of this function is that the
distance between the response to a stimulus of an agent k of the first subset and
the same response by an agent of the second set is constant and independent from
the specialization value 0y .,. This improvement allows a correct distribution of
work between agents with a behavior that still maintains a high plasticity level
to the environmental changes. When an insect-based algorithm uses the DPS
rule, we refer to it with a letter ¢ at the end of the respective name (ABAc,
R-WASPc, ATAc). Finally, we observe that, if we use these extended algorithms
on a DTApy,, problem instance, they perform as the original ones.

5.2 Example

The aim of this example is to analyze the division of labor among agents of a
DTA instance using ATAc algorithm. We consider a situation where there is an
asymmetric demand of types of tasks. The considered instance has 2 subsets of
working agents (S1 and S2) with 2 booths within each subset. Trucks can be
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Table 5.1: Values for a DTA problem instance with two subsets of working agents,
two agents for each subset and two different types of tasks.

(a) Process time matrix. (b) Number of worked tasks.
Type 1 Type 2 Type 1 Type 2
subset S1 3 9 subset S1 278 0
subset S2 9 3 subset S2 30 138

painted in two colors: type 1 and type 2. Each agent has a queue size of 5 trucks.
10 time steps are needed for a reconfiguration. Trucks exit the assembly line
during 420 minutes. Process times are described in Table 5.1(a). The number of
trucks to be painted is on average equal to 446. This number is the maximum
number of trucks paintable in 420 minutes by the system considering that three
booths work for one type of task, the fourth one works on the other type of
task and no setups and idle times are necessary. The color probability mix is
asymmetric with a higher number of type 1 tasks: a truck of type 1 has probability
0.77619 to appear at each time step and a truck of type 2 has probability 0.332.
We refer to this probability mix as DIFF. The parameter set used by ATAc is
the same as that used in Section 6.1.3 for the DTA problem instances.
Before running the example we expect this behavior:

e In a normal condition tasks are executed by agents that need short time to
process them.

e [f there is a high demand of a type of tasks and there are no more agents
that perform it quickly, agents that perform it slowly start working for it.

e If an agent that performs a type of task quickly and an other agent that
performs the same type slowly are both specialized for that type, the quicker
agent should have a higher probability to process it.

Figure 5.2 shows a typical ATAc behavior on this particular DTA problem in-
stance. At the beginning of the experiment agent 1 and 2 within subset S1 start
to perform type 1 tasks and become specialized on it (Figure 5.2(b), times 0-150).
Instead, agent 3 and 4 within subset S2 that are able to perform type 2 tasks
quickly, become specialized on that type (Figure 5.2(c)).

The asymmetric probability mix at time 100 increases the demand of type 1
tasks (Figure 5.2(a)) but in the system all the agents of subset S1 are busy so
at time 150 the high stimulus of type 1 leads agent 4 of the subset S2 to work
on type 1 tasks (Figure 5.2(g), time 150). From time step 150 agent 4 becomes
specialized in tasks of type 1. In fact, its threshold for that type of task is close
to 0 (Figure 5.2(g), time 150-end). Agent 3 still works on tasks of type 2. In fact,
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Figure 5.2: The graphs show the tasks stimuli, the number of working agents
for each type of task and the dynamics of the threshold values of each agent.
At the beginning of the experiment only agents 1 and 2 work on type 1 tasks
(Figure (b)), and only agents 3 and 4 on type 2 (Figure (c)). Type 1 stimuli
increases from time 100 to 150 (Figure (a)) until when the agent 4 (Figure (g))
starts to work on this type. From time 150 to the end of the experiment type 1
stimuli become low (Figure (a)). From this time on, all the agents of the subset
S1 (Figure (b)) and one agent of the subset S2 work for tasks of type 1. Agent 3
is enough to satisfy the low demand of type 2 tasks.
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its threshold value for that type of task is close to 0 (Figure 5.2(f), time 0-end).
Table 5.1(b) represents the number of worked tasks at the end of the experiment
and confirms that type 1 tasks are performed principally by subset S1 and type
2 tasks by subset S2, that is, agents that are able to perform tasks quickly, using
the DPS rule, really process them.
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Chapter 6
Empirical analysis

Previous works on the homogeneous case of the DTA problem [6, 7, 19] analyze

few and sometimes simple instances of the problem where it is difficult to show

that an algorithm performs better than another one. It is possible that a simple

modification of the instance leads to a drastic performance decrease. Moreover,

little or no analysis has be done to show the contribution of the proposed rules.
The aim of this chapter is to compare all the presented algorithms on the

DTA problem and analyze the influence of each presented rule on the makespan.
We have introduced two type of rules with the objectives to:

1. improve the algorithm of Cicirello et al. to particularly dynamic DTA g,
problem instances.

2. extend all the insect-based algorithms with the DPS rule to improve the
performance on DTA problem instances.

According to this, we present two experiments: one that uses a class of instances
of the homogeneous problem and another one that uses a class of instances of the
heterogeneous problem.

In the following section we describe the instance generators, a summary of
the algorithms we use in the experiments and the methodology to tune their
parameters. Afterwards, Section 6.2 describes the obtained results.

6.1 Setup

A lot work has been done to make a strict configuration and evaluation of the
experiments. First of all in our experiments we consider classes of instances of
the problem. A class contains problem instances that differ by variables such
as the number of working agents, the task types and the color probability mix.
In this section we define two problem classes in order to describe two real-world
painting environments. Afterwards, for each considered algorithm we present the

27



28 Chapter 6. Empirical analysis

Table 6.1: Summary of the classes of instances of the DTA and DTAp,,, problem
considered in the experiments.

DTAg,,, Class DTA Class

Subsets of agents 1 2

Max. number of agents 24 12

Broken probability 0.02 0.02

Queue length 10 )

Process Time 5 3-9

Setup Time 10 10

Simulation Time 420 420

Number of Tasks 2016 840

Avg. types of tasks 12 10

Types mixes 1)P(l.n/4)=3P(n+1/4.n) 1)P(1..n/2)=3P(n+1/2..n)
2)like 1, switch after 210 steps  2) like 1, switch after 210 steps

Probability between mixes 0.5 0.5

best combination of the parameter values tuned by an Evolutionary Algorithm
(EA). Moreover, we summarize all the algorithms we use in the experiments and
we introduce a simple, non-adaptive algorithm in order to emphasize during the
results analysis the differences between adaptive and non-adaptive systems.

6.1.1 Instance generators

An instance generator is a tool able to generate various instances from a class of
the problem. We consider two instance generators able to obtain two classes of
instances of the DTA problem. While the first one creates instances of the homo-
geneous problem, the second one creates instances of the heterogeneous problem.
The first class of instances contains all instances with identical agents. On this
class we are able to compare all the presented algorithms and to study the per-
formance of each rule introduced in ATA. The second class of instances contains
two subsets of agents, the first one able to perform quickly half of the types of
tasks, while the second one has the opposite behavior. Applying on this class
the original algorithms for the DTAp,,, problem and the insect-based algorithms
with the DPS rule, we are able to compare the performance of each algorithm
and to understand the contribution of the introduced rule. Table 6.1 summarizes
the configurations of the two considered classes of instances. Instances within a
same class may differ by the number of agents, the number of task types and the
type of the probability mix of the tasks. In the following we describe each class
separately.
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0.8

Probability

Figure 6.1: Probability distribution of the number of colors for the DTAp,,
experiment.

DTApy,, class

This class contains all instances of the homogeneous problem where the agents are
identical. In this class we try to simulate a typical working day of a big painting
factory. According to this, the experimental time is equal to 420 minutes, that
is, 7 working hours. The agents are 24 identical painting booths. In order to
simulate the possibility to have some booths broken we introduce a variability
on the number of maximum booths each instance has. We refer this variability
to as broken probability. The broken probability for this class of the problem is
equal to 0.02. Here the agents have a queue size equal to 10. The process time
of each booth is equal to 5 minutes, 10 minutes are needed for a reconfiguration.

The number of trucks that exit the assembly line is equal to 2016 and is
independent of the number of agents. This number is chosen because it is the
maximum number of trucks that 24 booths can paint considering the process
time, no setups and no idle time.

For this class we extract the number of colors from the probability distribution
presented in Figure 6.1. Color types are assigned to the trucks according to the
two mixes:

1. A part of the n colors have an higher probability than the others:
n/4 . n .
ZZ‘L:1 : P(i) = SZj:Ln/4J+1 P(j)

P(1) =---=P([n/4])
P(|n/4]+1)=---= P(n)

2. like the previous one, but after 210 minutes types that appear more fre-
quently appear more rarely and vice versa.

Each instance uses with the same probability one mix or the other.
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0.8
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Figure 6.2: Probability distribution of the number of colors for the DTA experi-
ment.

DTA class

This class contains instances of the heterogeneous problem where the agents differ
by their processing speed. In this class we try to simulate a typical working day
of a medium painting factory. Trucks exit from the assembly line for 420 minutes.
We consider 12 painting booths with a probability of being broken that is equal
to 0.02. Each agent has a queue size equal to 5. In this case there are two subsets
of agents: one needs 3 minutes to process the first half of the available types of
tasks and 9 minutes for the other half instead the other subset has the opposite
behavior. For both the subsets the setup time is equal to 10 minutes.

The number of trucks exiting the assembly line is always equal to 840, which is
the maximum number of trucks that 12 booths can paint considering an average
process time of 6 minutes, no setups and no idle time.

For this class we extract the number of colors from the probability distribution
presented in Figure 6.2. Color types are assigned to the trucks according to the
two mixes:

1. A part of the n colors have an higher probability than the others:

ZZLZSJ P(i) = 32?:@/2]4@ P(j)
P(1)=---=P([n/2])
P(|n/2]+1)=---=P(n)

2. like the previous one, but after 210 minutes types that appear more fre-
quently appear more rarely and vice versa.

Each instance uses with the same probability one mix or the other.
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Table 6.2: Summary of the algorithms applied in both the experiments.

DTApg,,, Class DTA Class
MBA MBA -
ABA ABA ABAc

LOCUST LOCUST -
R-WASP R-WASP R-WASPc
ATA ATA ATAc

6.1.2 Algorithms summary

Table 6.2 summarize all the algorithms we use during the empirical analysis.
We consider a class of instances of the homogeneous (DTAp,,,) problem and a
class of the heterogeneous (DTA) problem. We run on the DTAp,, problem
instances the market-based algorithm MBA of Morley described in Section 3.1.1,
the insect-based algorithm ABA of Campos et al. described in Section 3.2.1, the
insect-based algorithm R-WASP of Cicirello et al. described in Section 3.2.2 and
our proposed algorithm ATA described in Section 4. For the DTA problem we
run all the original algorithms and the three insect-based algorithms with the
DPS rule.

In the following we present LOCUST, a dummy, non-adaptive algorithm used
as a base-line for evaluationg the performances of the presented algorithms. In
both the experiments we apply also this algorithm in order to have a compar-
ison between adaptive and non-adaptive systems. LOCUST has functionalities
inspired by the presented algorithms but it does not consider the specialization
of each agent. It is described in the following.

The LOCUST algorithm

In this algorithm agents are independent units that autonomously bid to obtain
tasks using a force value which is obtained by the sum of the time the agent needs
to finish the working task plus the sum of processing times of each task in its
queue and the current task plus the possible setup times between each queued
task. At each time step agents bid to obtain tasks if their queue are not full.
The agent with the lower force is assigned the task at the end of its queue. If
two or more agents have the same force, the winner is chosen randomly. If no
agents bid for a task, the task remains in the storage. For this simple algorithm
no parameter tuning is necessary.
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6.1.3 Parameters tuning

The aim of the tuning is to find a good set of parameter values for each algorithm.
We apply the tuning for all the algorithms considered in this thesis because each
one has some parameters to determine. In the MBA algorithm we tune the three
constants in Equation 3.1. In the ABA algorithm we tune the constants a and
0 of Equation 3.11 and the two constants used in the update rules. In the R-
WASP algorithm we tune the constants presented in the three update rules and
in the ATA algorithm the same constants of R-WASP plus the one for the new
IMB rule. For the insect-based algorithms we fix the range of the thresholds to
O,min = 1 and 0,,,;, = 500. The initial threshold 6,,; is fixed to 1.

Table 6.3 describes for each algorithm used in this experiment which parame-
ters are tuned, the relative range and the values found. To tune the parameters of
the algorithms we use an Evolutionary Algorithm (EA). The evaluation has been
done as follows: we define a cost function, that in our case is the makespan to be
minimized. Each population of the EA is composed by 20 individuals. An indi-
vidual represents a set of values of the parameters to be tuned. Each individual
is evaluated on 40 instances of the considered problem class and the average of
the makespan values is its cost value. For each instance we execute a single run of
the algorithm to be tuned. Individuals of a population are evaluated on the same
40 instances of the considered class. In this tuning we stop after 40 generations
because normally after 15 generation the cost function becomes stable. Between
generations the instances are changed to avoid using not representative instances
of the class. Additionally, the tuning considers the elitism between generations so
that the best 4 individuals of the previous generation are used in the new one and
the other 16 individuals are generated using a self-adaptive (u + A) evolutionary
strategy [26, 1]. If an algorithm is used in both the experiments we apply the
parameters tuning twice.

Data show a kind of symmetry in the insect-based algorithms between the in-
crement and the decrement of threshold update factors. It means that the agents
become specialized during the experiment. Further information concerning the
EA, the tuning logs, the generations values, the best individual of each generation
and all the cost function values, are available at the thesis web page with address
http://iridia.ulb.ac.be/"rghizzioli/dta/.

6.2 Results

In this section we present and compare the results obtained by the algorithms in
the two sets of experiments: the homogeneous case is presented in Section 6.2.1
and the heterogeneous case is presented in Section 6.2.2. The results are achieved
running the algorithms of Table 6.2 on the classes of instances summarized in
Table 6.1 using the parameters of Table 6.3 on 1000 problem instances. Our
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Table 6.3: Summary of the parameter values for all algorithms used in the empir-
ical analysis for both experiments. In the first column there is the names of the
algorithm and the names of the tuned parameters. The second column contains
the range for each parameter. The third and the fourth column contain the values
tuned by the Evolutionary Algorithm. If a value is equal to 0, this means that
for that contest the respective rule is not important.

Range  DTAp,, Class DTA Class

MBA

P (0-100) 46 11
C (0-10000) 7200 5710
L (0-5) 2.78 2.25
ABA

19 (0-500) 475 215
© (0-500) 67.5 30
o (0-100) 44.6 78
16} (0-50) 2 2.5
R-WASP

19 (0-500) 345 310
© (0-500) 480 26
) (0-500) 490 0
ATA

19 (0-500) 165 224
© (0-500) 205 115
1) (0-500) 1.2 0
vy (0-500) 34 0
ABAc

19 (0-500) - 430
© (0-500) - 450
o (0-100) - 98
I} (0-50) - 2.95
R-WASPc

19 (0-500) - 395
© (0-500) - 6
1) (0-500) - 0.5
ATAc

19 (0-500) - 95
© (0-500) - 65
) (0-500) - 0
ol (0-500) - 25
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Table 6.4: Summary of the makespan values for all the algorithms run on the
class of instances of the DTAg,,, problem. The table shows the quantile values,
the mean, the minimum and the maximum values achieved by each algorithm.
The median values show that ATA performs better than the other algorithms.
ATA, compared with the other algorithms, is also a stable algorithm because has
smaller difference between the 1st and the 3rd quantile. For a graphical view see
Figure 6.3. For a statistical analysis see Table 6.5.

ATA R-WASP ABA LOCUST MBA
Min. 472.0 588.0 717.0 803.0 464.0
Ist Qu. 497.0 749.0 843.8 944.0 484.0
Median  509.0 812.5 887.0 980.0 531.5
Mean 513.4 808.0 895.9 984.1 599.2
3rd Qu. 525.0 864.0 940.3 1017.0 706.0
Max. 699.0 1066.0  1156.0 1217.0 1042.0

main performance measure is the makespan. For completeness and for a better
understanding we also present the number of setups per agent and the storage
dimension. For each experiment we show the contribution to the makespan given
by each introduced rule.

6.2.1 DTAp,, class

The homogeneous case of the DTA problem considers a single set of identical
agents. In this case agents should specialize on one type of task in order to
minimize the required number of setups. A good distribution of the task types
between the agents allows a low makespan. Results about the makespan are
shown in Table 6.4 and in Figure 6.3. ATA achieves the best results because, as
we showed, it has a high level of plasticity to the environmental changes. Further-
more, the 1000 makespan values produced by ATA are very similar and compared
with the results obtained by the other algorithms it seems that ATA is not in-
fluenced by the variability between instances in the class. In the next paragraph
we show the significance of each rule introduced in ATA. As can be observed, the
algorithm of Campos et al. does not obtain good results for this class of instances
of the DTAg,,, problem. It is also interesting to show a linear performance im-
provement in time of the insect-based algorithms. Moreover, the market-based
algorithm MBA reaches good performance for this class of instances.

To be sure of the real significance of the obtained results we apply a Wilcoxon
Paired Rank Sum Test as presented in Table 6.5. The values show that different
results of the makespan between algorithms are significantly different with a
confidence level of 95%.
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Figure 6.3: Box plot of the values and of the ranks of the makespan for all the
algorithms run on the class of instances of the homogeneous problem. ATA is the
algorithm that has the lower makespan and the smaller quantile representation
area.
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Table 6.5: Paired Wilcoxon Rank Sum Test applied on the makespan values of
the algorithms on the class of instances of the homogeneous problem. Values are
obtained with a confidence level of 95%. All results given by this table assure
that differences between algorithms on the median values of the makespan are
significant.

ABA R-WASP LOCUST MBA
R-WASP < 22716 - - -
LOCUST < 22e 16 < 22e716 - -
MBA <22e7 16 «22e716 <2266 -
ATA <22e716 < 22e710 <2276 < 29e716

Figure 6.4 and Figure 6.5 show the box plot of the number of setups per agent
and the storage dimension for each algorithm applied to the DTAp,,, class.
These graphs have are similar to the makespan box plot of Figure 6.3. They
reconfirm that ATA has the best performances also considering the number of
setups and storage dimension.

The average number of setups of an agent for the ATA algorithm is 3.939 and,
on average, 61.47 trucks wait in the storage.

The significance of the introduced rules for the DTAy,,, problem

ATA is the solution we propose to solve the homogeneous case of the DTA prob-
lem. ATA is an extension of R-WASP with all the proposed rules TUR,CFV,
DOC and IMB activated. Here we perform a statistical analysis to understand
the contribution that each rule gives to the makespan.

First of all, as shown in Figure 6.6, we use a binary notation for each possible
configuration of ATA. For example 0000 indicates that no rules are activated,
1000 only TUR, 0100 only CFV, 0010 only DOC, 0001 only IMB, 0110 CFV and
DOC, etc. Makespan data are collected by running all these 16 configurations
on 1000 instances on the DTAp,, problem after a parameter tuning of each of
them. The evolutionary algorithm and the methodology used are described in
Section 6.1.3. Parameters belonging to unused rules are not tuned.

A first analysis of these data is shown in Figure 6.7(a) and in Figure 6.7(b).
Our results show that, on average, configuration 1011 performs better than all
the others and that ATA is very close to it. Moreover, all possible configurations
have a lower makespan than the solution of Cicirello et al. (configuration 0000).
Figure 6.7(b) shows that results in the right part of the graph, with the TUR
rule activated, are significativelly better than those in the left part of the graph
where the rule is deactivated.

Figure 6.8 and Figure 6.9 show the contribution that each rule gives to the
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low makespan implies a low number of setups and a low storage usage.
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Ranks on the number of Setups
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1111

/TN

TUR CFV DOC IMB

Figure 6.6: Coding system used to indentify the 16 configurations of the proposed
algorithm.

Table 6.6: Analysis of variance. The asterisks indicates significance.

Df Sum Sq Mean Sq F-value Pr(>F)

TUR 1 4258.2 4258.2 60415.9493 < 2.2e-16 ***
CFV 1 0.1 0.1 1.1285 0.2881

DOC 1 31.3 31.3 4441618 < 2.2e-16  ***
IMB 1 107.5 107.5 1525.5993 < 2.2e-16  ***
TUR:CFV 1 9.5 9.5 134.4396 < 2.2e-16  ***
TUR:DOC 1 0.001543 0.001543 0.0219 0.8824
CFV:DOC 1 3.4 3.4 48.7311 3.051e-12 ***
TUR:IMB 1 10.9 10.9 155.3420 < 2.2e-16 ***
CFV:IMB 1 3.7 3.7 51.7992 6.421e-13 ***
DOC:IMB 1 2.4 2.4 34.5107 4.323e-09 ***
TUR:CFV:DOC 1 29.5 29.5 418.5021 < 2.2e-16  ***
TUR:CFV:IMB 1 3.6 3.6 50.5260 1.226e-12 ***
TUR:DOC:IMB 1 2.0 2.0 28.4315 9.839e-08 ***
CFV:DOC:IMB 1 16.1 16.1 228.8127 < 2.2e-16  ***
TUR:CFV:DOC:IMB 1 2.1 2.1 30.1007 4.164e-08 ***
Residuals 15984 1126.6 0.1

makespan averaged on all configurations where a considered rule is activated
independently the other rules. We clearly observe that if TUR is activated there
is a large difference on the makespan values. Instead, the CFV rule does not give
any apparent contribution to the results. Finally, DOC and IMB give similar
contribution to the makespan.

In order to formally assess the contribution of the different rules and their
interactions, according to [28], we have considered an ANOVA analysis. As it
can be observed in Figure 6.10, the residual of the makespan data does not
meet the hypothesis of the ANOVA test, that is, linearity and heteroskedasticity.
Therefore, the analysis was not conducted on makespan data but on the following
transformation: ' = log(420 — x) where = represents a single makespan result.
Figure 6.11 shows that after transforming the makespan values the residuals are
reasonably fine.

An ANOVA analysis on this model is show in Table 6.6. The data show that
TUR gives a large contribution to the makespan while CFV does not. Further-
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Figure 6.7: Makespan values obtained by each configuration of ATA activating
and deactivating the proposed rules on the DTAg,,, problem class. For the coding

system used to refer to the algorithms see Figure 6.6.

Min. 1st Qu. Median Mean 3rd Qu. Max.
0000 588 749.0 812.5 808.0 864.0 1066
0001 544 644.0 703.5 714.5 774.3 1020
0010 476 650.8 709.0 7174 772.0 1003
0011 521 612.0 669.0 684.0 741.0 999
0100 546 660.0 716.5 725.3 784.0 1040
0101 511 625.0 682.0 693.4 751.0 992
0110 554 699.0 756.0 760.8 817.3 1060
0111 517 607.0 665.0 678.8 738.0 976
1000 488 515.0 526.0 533.3 544.0 702
1001 474 500.0 513.5 516.1 527.0 687
1010 481 512.0 525.0 530.5 541.3 714
1011 474 496.0 508.0 512.6 523.0 681
1100 487 515.0 528.0 533.4 543.0 714
1101 489 518.0 531.0 537.6 548.0 740
1110 473 510.0 522.0 526.9 537.0 706
1111 472 497.0 509.0 5134 525.0 699
(a)
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Figure 6.8: Makespan values on the ranked instances considering the rules TUR
and CFV.
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Figure 6.9: Makespan values on the ranked instances considering the rules DOC
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6.2. Results 43
Normal Q-Q Plot
o (o] o
< 4
~
[}
2
IS
©
p=3
(o4
k)
Q.
E ©
©
n
o
I
o 00
(o]
<
! T T T T T
-4 -2 0 2 4
Theoretical Quantiles
(a)
o | 8 fo)
s 85 § 0 °
8 s 2o ° o
28 8
X ; .
8 o 8 o g
N o 0g 0 g
o]
:
< :
=]
h=]
[
jo}
) !
o
o |
-
I
5] Q
g © 2
) ° ° 8
[e]
T T T T T T
550 600 650 700 750 800

Fitted

(b)

Figure 6.10: Residual check of the linear model using makespan data.



44 Chapter 6. Empirical analysis

Normal Q-Q Plot

Sample Quantiles

T T T T T
-4 -2 0 2 4

Theoretical Quantiles

(a)

000

0 @O

Residuals
10 0000
O @ @O 0o
oan oco® a O
C ) @00 OO
e —————
o
» O
o O 00
DO o

T T T T T T T
4.6 4.8 5.0 5.2 5.4 5.6 5.8

Fitted

(b)

Figure 6.11: Residual check of the linear model using a transformation of the
makespan data.
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Table 6.7: Summary of the makespan values for all algorithms run on the class
of instances of the heterogeneous problem. We compare the original algorithms
and the insect-based algorithms with the Different Process Speed (DPS) rule ac-
tivated. The median values show that algorithms with the DPS rule perform
better than the respective algorithms without this rule. Again, ATA is the algo-
rithm that has better performance compared with the others original algorithms.
For a graphical view of these results see Figure 6.12. For a statistical test on
these data we refer to Table 6.8.

ATA R-WASP ABA LOCUST MBA ATAc R-WASPc ABAc
Min.  427.0 487.0 428.0 647.0 429.0 428.0 426.0 426.0
Ist Qu. 521.0 795.0 884.0 928.0 861.8 471.0 460.0 678.0
Median 548.0 847.0 941.5 952.0 906.0 486.0 506.0 837.0
Mean 557.5 845.6 917.8 959.5 896.4 485.6 525.6  790.7
3rd Qu.578.0 897.3 979.0 977.3 944.0 499.0 561.0 913.0
Max. 956.0 1273.0 1341.0 1329.0 1321.0622.0 1018.0 1311.0

more, also IMB and DOC bring a contribution less important than TUR but
still significant.

6.2.2 DTA class

This experiment considers two subsets of agents: one performs fast in half of the
available types of tasks and slow in the second half and the other one vice versa.
Agents should bid for tasks that they are able to process quickly. Moreover, they
take into account the task type in their queue to minimize the number of setups.
If an algorithm achieves this behavior it should obtain a low makespan. A low
makespan implies a low number of setups and a low storage usage. In this ex-
periment are compared all the original algorithms presented and the insect-based
algorithms with the DPS rule activated. The algorithms used in the previous ex-
periments are applicable to the heterogeneous case of the DTA problem. In fact
they consider the different process times during the dominance contest. Com-
paring the algorithms with and without the DPS rule we are able to study its
contribution.

Table 6.7 summarizes the makespan values achieved by each algorithm for this
class of instances. The respective box plot is presented in Figure 6.12. For this
experiment ATAc obtains the best results concerning the makespan and it is very
close to the makespan lower bound (420 minutes). Moreover, we observe that the
performance order of the original algorithms is the same as observed in Figure 6.3.
Again, we confirm that adaptive algorithms perform better than the non-adaptive
algorithm LOCUST. Only MBA has a worsening of performance. Algorithms
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Figure 6.12: Box plot of the makespan values and ranks for all the eight algo-
rithms run on the class of instances of the DTA problem. The figure confirms
that ATAc is the algorithm that achieves the best results and that the extended
algorithms perform better than the original ones. The DPS rule gives a high
improvement of the performance especially to the R-WASP algorithm.
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Table 6.8: Paired Wilcoxon Rank Sum Test applied on the makespan of the
algorithms on the class of instances of the heterogeneous problem. Values are
obtained considering a confidence level of 95%. The table assures that differences
between algorithms on the median values are significant.

ABA R-WASP ABAc R-WASPc ATAc LOCUST MBA

R-WASP < 2.2¢ 16 - - - - - -
ABAc < 22716 < 2.9¢716 - - - - -
R-WASPc < 2.2e716 < 2.2¢716 < 2.92¢~16 - - - -
ATAc <2216 <2276 < 220716 < 22716 - - -
LOCUST < 22716 < 22716 < 22716 < 292716 < 29716 - -
MBA < 2271622716 < 220716 « 22716 <« 22716 < 29716

ATA < 226716 <2276 < 220716 £ 226716 < 226716 < 2.9¢716 < 22,716

with the DPS rule applied perform better than the respective algorithms without
this rule. A deeper analysis about the makespan contribution of this rule is in
the following paragraph.

To be sure of the real significance of the obtained results we applied a Wilcoxon
Paired Rank Sum Test. The results presented in Table 6.8 show that different
results of the makespan between algorithms are significantly different with a
confidence level of 95%.

Figure 6.13 shows a box plot of the number of setups per agent and the storage
dimension. Again, the trend is similar to the makespan plot of Figure 6.12. MBA
has bad performances for setups and storage.

The significance of the DPS rule on the DTA problem

The introduced rule gives a high bid probability to an agent that has a low
process time for the current task. In this experiment we saved for each instance
the makespan value that each algorithm achieves. For each pair of the insect-
based algorithms and for each of the 1000 instances we evaluated and sorted the
makespan differences. The results are presented in Figure 6.15. In most cases,
differences are positive so the makespan of the original algorithm is higher than
the extended algorithm. This behavior is similar for all the three algorithms
considered. R-WASPc is the algorithm that receives the highest advantage from
this rule.
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Figure 6.13: Number of setups per agent and storage dimension for the experi-
ment with heterogeneous agents. Both graphs are similar to that in Figure 6.12.
Again, values of the ATAc algorithm are the best ones. The DPS rule gives a
significant increment also on these performances.



49

6.2. Results

Ranks on the number of Setups
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Figure 6.15: Makespan differences for the three insect-based algorithms without
and with the DPS rule. The graphs show that for all the algorithms and for
the major number of the 1000 instances considered the difference between the
algorithm without and with the DPS rule is positive. This means that the DPS
rule gives clearly a benefit to the makespan values.



Chapter 7

Conclusions

In this thesis we presented Ant Task Allocation (ATA), an algorithm inspired by
the division of labor of social insects and based on the work presented by Cicirello
et al. [7]. ATA introduces four rules in order to speed up the adaptation process
for particularly unpredictable instances of the homogeneous case of the Dynamic
Task Allocation (DTA) problem. Moreover, we presented the Different Process
Speed (DPS) rule inspired by the division of labor observed in castes of social
insects and applied to all the insect-based algorithms. Its aim is to increase the
performance for the heterogeneous case of the DTA problem. This rule takes into
account the different process time that agents have for different types of tasks
during the bidding process. To understand the impact of the proposed algorithm
we conducted a comparison with other solutions available in the literature for the
DTA problem. We considered two possible real-world situations: a big painting
factory with identical working agents and medium factory with two heterogeneous
subsets of working agents. Particular attention was put on the experimental
conditions and on the statistical analysis.

We have shown that ATA achieves the best results for the considered class
of homogeneous problems and that ATA with the DPS rule activated (ATAc)
achieves the best results for the considered class of heterogeneous problems. We
have also observed that all adaptive algorithms always achieve better results than
the non-adaptive LOCUST algorithm. Furthermore, we have shown that the
Market Based Approach (MBA) achieves interesting results for the homogeneous
case of the problem but not for the heterogeneous case. Moreover, the perfor-
mance of the insect-based algorithms are ranked according to the time they was
made. In fact the algorithm of Campos’ et al. does not obtains good results, the
algorithm of Cicirello et al. gives a significant improvement to the performance
obtained by Campos’ et al. as they show in paper [7] and our algorithm improves
again the results of the solution of Cicirello et al.

Another important contribution of this thesis has been the understanding the
contribution of each introduced rule to the makespan. We have shown that ATA

ol
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with the four active rules performs better than the original algorithm proposed by
Cicirello et al. [7]. Moreover, our results show that the introduced rule Threshold
Update Rule (TUR) gives a large contribution to the makespan while the rule
Calculation of the Force Variable (CFV') does not. Furthermore, also the rule
Idle Machine does not Bid (IMB) and the rule DOminance Contest (DOC') bring
a contribution less important than TUR, but still significant. Finally, we showed
that the DPS rule significantly improves the performances of all insect-based al-
gorithms on the heterogeneous case of the DTA problem.

We believe that this thesis, beside introducing some original algorithms, also
gives a clear and simple methodology to perform the experiments. Furthermore,
it summarizes the work made until now on the DTA problem.

To complete this thesis we have built a web site http://iridia.ulb.ac.be/
“rghizzioli/dta/ where it is possible to find the results, the source code of the
instance generator, the algorithms and the EA tuner with interesting literature
links. We hope other researchers will use this work as a starting point for new
DTA problem extensions or to propose new algorithms to solve it.
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Appendix A

The experimental environment

During the thesis work the experimental design and the software development
required a significant amount of time. We developed a simulator of the algorithm
that works both in command line mode and in GUI mode. Moreover, we built
two instance generators. The software was written in C++ because we needed
fast computation. To be able to deploy the applications on different platforms,
we used the Trolltech QT API Framework. Moreover, we used the standard tech-
nology XML for the interchange of data between applications. In the following
we describe the structure of the main application we developed.

A.1 The algorithms simulator

This application meets two requirements: the performance evaluation of the pre-
sented algorithms and the tuning of their parameters. In the second case the
application has to communicate with the evolutionary algorithm tuner. The core
of this application is the structure of the algorithms that was built using an object-
oriented paradigm. Figure A.1, according to [24], shows the UML class diagram.
The software implements three main classes: Agent that is in charge of a booth
in the DTA problem painting facility, Task that is a truck to be painted and
Algorithm that implements methods to assign trucks to the booths. Obviously,
most of the methods of these classes are abstract because they do not depend
on a specific implementation. A first extension of these classes is a set of classes
whose names end with INSECT and implement the threshold model inspired
by the division of labor in social insects. The algorithms R-WASPc and ABAc
extend these classes. Furthermore, ATAc extends R-WASPc. Finally, MBA and
LOCUST that do not use the threshold model extend the basic classes. The
simulator uses different classes able to manage the input/output. Input classes
read algorithm preferences and the problem instances. Output classes write log
files.

For more information about the software usage we refer to the thesis web site
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Appendix A. The experimental environment
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Figure A.1: UML class diagram of the simulator.
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at the address http://iridia.ulb.ac.be/"rghizzioli/dta/.
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