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Deutscher Titel

Ameisenbasierte Methoden fiir die Cluster-Analyse und die Generierung to-
pographischer Karten: Verbesserung, Evaluierung und Vergleich zu Alterna-
tiv-Verfahren

Deutsche Zusammenfassung

Mit der stetigen Zunahme der Rechen- und Speicherkapazititen von Grof3-
rechnern und Personalcomputern wird die Speicherung und Verarbeitung
immer groferer Datenmengen moglich. Zur besseren Nutzung dieser Daten
ist die Entwicklung von neuen und leistungsfahigeren Verfahren zur Analyse
und Visualisierung notwendig. Die derzeit boomenden Forschungsfelder des
“Document-Retrieval” und der Bioinformatik sind dabei treibende Krafte.

Der Schwerpunkt dieser Arbeit sind zwei verschiedene Ansitze im Be-
reich des “Data-Mining”: zum einen die Cluster-Analyse groflerer Daten-
mengen, und zum anderen ihre Visualisierung mittels topographischer Karten.
Beide haben im Rahmen der Datenanalyse beziehungsweise der Datenvisua-
lisierung grofle Bedeutung und sind aus diesem Grund aktive Forschungs-
bereiche. Sowohl die Cluster-Analyse, als auch die Generierung topographi-
scher Karten konnen als Optimierungsprobleme aufgefasst werden — die
spezifischen Optimierungskriterien sind jedoch nicht eindeutig definiert, son-
dern generell auflerst problemabhangig. Diese Tatsache erschwert es, die
Leistung eines individuellen Algorithmus losgelost von einer bestimmten
Anwendung zu beurteilen, und macht es ebenfalls schwierig, wenn nicht gar
unmoglich, einen Algorithmus zu entwickeln, der mit gleichbleibend guter
Qualitat bei jeder denkbaren Datenverteilung anwendbar ist.

Daher ist eine griindlichen Evaluierung der Algorithmen und ihr Ver-
gleich auf einer weiten Spanne von Benchmark-Daten unentbehrlich, da sie
eben nur in unmittelbarem Bezug auf die Eigenschaften der verwendeten
Daten und im direkten Vergleich mit anderen Algorithmen wirklich bewer-
tet werden konnen.

In dieser Arbeit versuchen wir, diesem Anspruch im Zusammenhang mit
einem bestimmten Algorithmus gerecht zu werden. Der behandelte Algorith-
mus ist ein heuristisches Verfahren, das vom Verhalten natiirlicher Ameisen
inspiriert ist, und dessen Verwendung sowohl fiir die Cluster-Analyse, als
auch fir die Generierung topographischer Karten vorgeschlagen worden ist.
Eine griindliche Analyse der tatsachlichen Qualitat der generierten Lésungen
ist jedoch bisher nicht durchgefithrt worden.

Unser Ziel einer solchen Analyse realisieren wir hier in mehreren Schrit-
ten. Wir fiithren zunichst eine Reihe von Verdnderungen des Algorithmus
ein, die seine Robustheit, die Qualitit der erzeugten Losungen und seine
Laufzeit verbessern. Dies umfasst auch die Beschreibung einer Methode



zur Bestimmung angemessener Parameter fur unterschiedliche Datenvertei-
lungen, und einer Technik, die die objektive und unverfalschte Evaluierung
der erzeugten Losungen ermoglicht. Schlieflich untersuchen wir die tatséch-
liche Leistung des Algorithmus und vergleichen ihn mit Standardtechniken
fiir die Cluster-Analyse und die Generierung von topographischen Karten.
Zu diesem Zweck verwenden wir eine Anzahl unterschiedlicher analytischer
Evaluierungsfunktionen, einen umfangreichen Satz von kiinstlichen Bench-
mark-Daten, sowie zusatzliche Datensatze aus der Praxis.

Unsere Experimente unterstreichen die Eignung des Algorithmus fiir die
Cluster-Analyse: die Qualitat der erzeugten Losungen ist iiberzeugend, und
die Fahigkeit des Algorithmus, die Anzahl der vorhandenen Cluster automa-
tisch zu bestimmen, sticht dabei besonders ins Auge. Fiir die Generierung
topographischer Karten erweist sich der Algorithmus jedoch als weniger
geeignet. Wir belegen, dass die generierten Darstellungen dem Anspruch
der Bewahrung der Daten-Topologie kaum gerecht werden, und erlautern,
warum bisherige Forschungsergebnisse zu einer falschen Einschiatzung der
tatsichlichen Leistung des Algorithmus fithren konnten.



Abstract

All around us, impacting on all aspects of life, we are witnessing the storage
and processing of increasingly large amounts of data as available comput-
ing power continues its inexorable rise. In order to fully benefit from all
these data, the development of novel and improved techniques for both data
analysis and data visualisation is imperative. Currently, two of the main
driving forces in this respect are the research fields of document retrieval
and bioinformatics.

In this thesis we focus on two tasks, clustering and topographic mapping,
which are both of great importance within the context of data analysis
and data visualisation and have been subject of active research in the past
few years. Both clustering and topographic mapping can be considered
as optimisation tasks — however, their respective optimisation criteria are
not uniquely defined, but must usually be tailored according to the problem
domain. This makes it (1) hard to evaluate the performance of an algorithm
without respect to a particular application and (2) hard, if not impossible,
to develop one best algorithm. These properties increase the necessity of a
thorough evaluation and comparison of these techniques on broad ranges of
benchmark data, as the quality of a particular method can only be judged
with respect to particular data properties and its relative performance when
compared to others.

In this thesis, we make an effort to satisfy these demands concerning one
particular algorithm, ant-based clustering and sorting. Introduced in the
field of nature-inspired heuristics, it has been claimed that this method can
perform clustering and topographic mapping, but, so far, it has not been
subject to thorough analytical analysis.

Towards the goal of a full evaluation of the algorithm, we proceed in
several steps. First, we introduce several modifications that improve the
robustness of ant-based clustering and sorting, and its performance in terms
of quality and runtime. This includes a method for the derivation of appro-
priate parameter settings across differing data sets. Secondly, we describe a
scheme that permits the unbiased interpretation of the obtained clustering
results. Finally, we investigate the claims made on the algorithm’s perfor-
mance, and compare it to standard techniques for clustering and topographic
mapping. This is done using a set of analytical evaluation functions and a
range of synthetic and real data collections.

Our experiments confirm the ability of ant-based clustering and sorting
to automatically identify the number of cluster inherent to a data collection
and to produce high quality solutions. However, the results obtained for
topographic mapping are very poor. We provide evidence that the solutions
generated by the ant algorithm are barely topology-preserving, and we ex-
plain in details why results have — in spite of this — been misinterpreted in
previous research.
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The purpose of computing is insight, not numbers.
(Hamming)

1 Introduction

The data volumes arising in the fields of document retrieval and bioinfor-
matics are two prominent examples of a trend in a wide range of different
research areas. Novel techniques (such as the Internet in document retrieval,
multi-array experiments in bioinformatics, physical simulations in scientific
computing and many more) give rise to enormous amounts of data, which
can only be handled and processed by means of computers, which, in turn,
their increased storage and computing power renders possible nowadays.

Still, this trend requires and triggers a continuous development in database
technology and processing techniques. The automatic analysis of the data
and the comprehensible presentation (of the data and/or the results of the
analysis process) to humans is of particular importance in this context, as
it is only when the data is interpreted, that it becomes meaningful and can
provide new information and insight. The research field addressing these
major challenges is generally referred to as data-mining, which is itself only
one step in the knowledge discovery process.

The focus of this work is on two subproblems encountered in data-mining,
namely cluster analysis and topographic mapping.

1.1 Cluster analysis

Cluster analysis is concerned with the division of data into homogeneous
subgroups. Informally, the objectives of this division are twofold: data
items within one cluster are required to be similar to each other, while those
within different clusters should be dissimilar.

Formally, the clustering problem can be defined as an optimisation prob-
lem [7]:



Definition 1.1: The clustering problem

INSTANCE: A finite set X, a distance measure 6(i,j) € R{
for 4,5 € X, two positive integers K and B, and
a criterion function J(C,d(-,-)) on a K-partition
C ={Ci,...,Ck} of X and measure J(-,").

QUESTION: Is there a partition of X into disjoint sets
Cy,...,Ck such that J(C,d(-,-)) < B?

OPTIMISATION: Find the partition of X into disjoint sets
Ci,...,Ckg that minimises the expression

J(C,6(-,-))-

The number R(K, N) of possible solutions for the division of a data set
of size N into K partitions is given by the Stirling number of the second
kind: P N

1 (K K
RUKN) = 7 (D" Z(J(z)N ~ o
Hence, even with a fixed number of partitions K, the search space for the
clustering problem grows exponentially and cannot be scanned exhaustively
already for medium sized problems. Indeed, the clustering problem is known
to be NP-complete in many of its definitions [7].

Definitions of the clustering problem vary in the optimisation criterion J,
and the distance function §(-,-) used. A multitude of possible optimisation
criteria exists, examples are the minimisation of the intra-cluster variances
or the maximisation of the inter-cluster distances. Possible choices for the
distance function include the Euclidean distance, the Cosine similarity or
the Correlation coefficient. While it is know that an NP-complete clustering
problem remains intractable regardless of the employed distance function,
there are optimisation criteria like the minimum-variance criterion for which
the conservation of NP-completeness has not yet been shown.!

As we will see in Section 2, the choice of the distance function and the
optimisation criterion crucially determines the type of cluster that can be
identified using one particular algorithm. Most clustering methods therefore
intrinsically make assumptions on the number of clusters, their shape, or the
degree of spatial separation between clusters.

The selection of a clustering algorithm must therefore always account
for the properties of the clustering problem being tackled. Similarly, the

'However, no polynomial-time algorithm is known for the minimisation of the intra-
cluster variance and NP-completeness has been proven for optimisation criteria, which,
intuitively, appear to be simpler (such as the definition of an upper bound on all intra-
cluster distances).
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Figure 1: Two possible partitions of the same data set. Dependent on the opti-
misation criterion either of them could be considered of better quality. Different
clustering algorithms will produce differing results.

Figure 2: The exact number of clusters in the data is not always objectively clear.
The displayed data set can be considered to consist of either one or two clusters.

performance of one particular clustering algorithm can only be judged with
regard to a particular problem structure. This is also reflected by the diffi-
culty to devise performance measures for the quality of a clustering solution.?
Again, there is not one measure, which is valid for all application domains,
but the available measures all imply some knowledge about the structure of
the problem (e.g., the use of the minimum variance criterion makes sense
only in the presence of circularly shaped clusters).?

2Note that this only applies to performance measures that do NOT compare to the cor-
rect partitioning. If the solution is a priori known (i.e., on benchmark data), performance
measures are straightforward.

3This becomes intuitively clear if we think about clustering in terms of an optimisation
problem. If an invariably valid evaluation function existed, we could use this function in
an optimisation procedure, thereby obtaining an algorithm applicable regardless of the
problem domain.



Figure 3: Two elliptical clusters. On this data set, the minimum variance criterion
fails to separate the two clusters, as Cluster 2’s left tail is closer to the cluster centre
of Cluster 1.

1.2 Topographic mapping

We have seen above that the principal goal of cluster analysis is to identify
related groups in the data. By this means, a notion of relation (in general
similarity) is established between the data elements grouped within one
cluster. Algorithms performing topographic mapping go one step further.
Like clustering algorithms they aim to capture the main structure in the
data. However, they are not limited to the detection of homogeneous groups
within the data but they attempt to pinpoint additional information. This
is (1) relationships between individual clusters (i.e., gradations in the degree
of dissimilarity) and (2) relationships between data items belonging to one
cluster (i.e., gradations in the degree of similarity).

Algorithms performing topographic mappings try to capture neighbour-
hood relations by providing a two-dimensional (possibly also three- or higher-
dimensional) visualisation of the high-dimensional data-space (in the follow-
ing the low-dimensional space used for visualisation will be referred to as
map-space). In the literature the resulting topographic maps are also termed
neighbourhood-preserving, topological, topology-preserving, ordering or sys-
tematic maps.

The main assumption underlying this scheme is that the data items,
although located within a high-dimensional space, are restricted to a lower-
dimensional manifold (embedded in the high-dimensional space), which can
therefore be ‘unrolled’ in map-space. It is intuitively clear that the dimen-
sionality of this manifold crucially determines the quality of the topographic
map that can possibly be obtained. A perfect topographic mapping only ex-
ists if the dimensionality intrinsic to the manifold coincides with that of the
map-space. A deviation in dimensionality will naturally involve a certain
loss of neighbourhood information. In data visualisation, we will, in the
majority of cases, have to deal with such a reduction of dimensionality.

Formally, the definition of topological equivalence is as follows [25]:



Definition 1.2: Topological equivalence

Let (X,6(.,.)), (Y,d(.,.)) be identical metric spaces with
countable dense subsets. Let © : X — Y be a bijection such
that:

Vi, j, k0 € X :6(i,7) < d(k,l
= d(6(¢),0(5)) < d(O(k), ©
Vi ],klEY d(z 7) < d(k,l
= 6(071(1),071(4)) <40 (k),071(1))

Then © is a homeomorphism, and X and Y are topologically
equivalent (see [25] for a proof).

)
@)
)
1

This theorem shows that a ‘perfectly neighbourhood-preserving’ map is
not uniquely defined. It depends on the definition of a neighbourhood in
both data- and map-space (reflected by the distance functions d(-,-) and
d(-,-)). Also, the above notion of topological equivalence only requires the
preservation of similarity-orderings (relative distances) within the data. De-
pendent on the application, additional constraints on the mapping might
also be possible, for example it could be desirable to preserve similarities
(absolute distances).

In order to judge the performance of different neighbourhood-preserving
algorithms, analytical means to assess the quality of the resulting maps are
crucial. Again, as with the clustering problem, the quality of a solution
cannot be judged without regard to the application context.

At first sight, the derivation of criteria for a perfectly neighbourhood-
preserving map appears to be rather straightforward, given the aim of
distance-preservation and a metric distance measure within data- and map-
space. Yet, both the definition of the neighbourhood and the aim of distance-
preservation already introduce a large amount of problem-specific assump-
tions. In fact it is not clear at all under which circumstances an intuitively
‘perfect’ mapping (i.e., perfect in the sense of similarity-preservation) is su-
perior to all other ones. In many applications different mappings might be
more useful: those that sacrifice precise similarity-preservation in order to
accentuate the principal structures.

It is even more difficult to devise evaluation functions for the degree of
discrepancy to a perfect mapping. Mappings with topological defects will
have to play a certain trade-off between the preservation of local neighbourhood-
structures and global relationships. Which of these aspects is desired to
dominate the mapping process very much depends on the application.

All of these issues will be further explored in Section 3.



Figure 4: Two different topographic mappings of the same data set. The left map
reproduces the exact data positions, while the right one emphasises the underlying
phenomenon. It depends on the application, which representation is more desirable.

1.3 Implications for ant-based clustering and sorting

We have seen above, that both clustering and topographic mapping are
highly application-dependent tasks. This makes clear that the notion of the
performance of a particular algorithm for clustering or topographic mapping
only becomes meaningful within the context of a specified problem domain.
The problem type will also be decisive for the kind of evaluation function to
be used.

Hence, it is only through detailed analysis and comparison of algorithms
on different kinds of test problems, that we can gain increased insight into
the performance of one particular method. This comprises information on
(1) which types of problems the method is suited for and (2) how the results
on these problems compare to those obtained with alternative (suitable)
methods.

The aim of this work is to apply these principles to the evaluation of
the performance of ant-based clustering and sorting, an algorithm emerging
from the field of nature-inspired heuristics, which has recently been applied
to tasks of clustering and topographic mapping. In particular, it has been
claimed that this algorithm is, like self-organising maps, capable of perform-
ing both of these tasks simultaneously.

Yet, so far there hasn’t been any thorough analysis of the algorithm’s
real performance. Experiments on artificial data have been limited to very
few and simple toy problems. The evaluation of the results on this data has
mostly been based on visual observation and only very little analytical eval-
uation has been carried out. In fact, those analytical results available even
raise doubts on the algorithm’s suitability for tasks of topographic mapping.
The reported experiments on real data are similarly limited and have even
less been subject to analytical evaluation. Finally, for both artificial and real
test data there have been hardly any comparisons to alternative methods.

In an effort to fill this gap it is the main goal of this work to compare



the performance of ant-based clustering and sorting to a number of standard
techniques of both clustering and topographic mapping, employing a range
of artificial and real test data and a number of selected analytical evaluation
functions.

The remainder of this thesis is structured as follows. In an attempt to
provide an overview on the wide research field of cluster analysis, Section 2
introduces the main categories of clustering algorithms. A selection of algo-
rithms for topographic mapping are then discussed in Section 3. Section 4
summarises the basic concepts of ant-based clustering and sorting and gives
a survey of previous research in this field. The literature review closes in
Section 5 with an overview of analytical measures for the evaluation of clus-
tering and mapping results.

The second part of this thesis describes our work purely related to ant-
based clustering and sorting. Section 6 starts with a description of the
algorithm used, and then introduces a number of algorithmic changes that
improve the algorithm’s robustness, and its performance in terms of quality
and runtime. Experimental results demonstrating the impact of individual
modifications are presented. In preparation of a thorough analytical eval-
uation of the algorithm, we present a scheme to derive parameter settings
across arbitrary data sets, and a method that permits the unbiased evalua-
tion of the clustering results.

The third part of this thesis finally consists of the comparative study,
which has been the main goal of this work. It starts with a description
of the experimental setup in Section 7, where the selection of algorithms,
evaluation functions and benchmarks is motivated, and a short description
of each of these is given. Subsequently, the results obtained for clustering
and topographic mapping are presented. Section 8 discusses future work
and concludes.

1.4 Notation

In the above definitions of clustering and topographic mapping, we have
introduced the distance functions (4, j) and d(©(%),©(5)). d(i,5) gives the
dissimilarity between the data items 7 and j (in data-space): in this work, we
use numerical data only, and d(z;, z;) is either the Euclidean distance or the
Cosine distance between the data vectors of elements 7 and j (this depends on
the type of data used and is detailed in Section 7). The mapping operation
O assigns a position in map-space to each data item, and d(©(7), ©(j)) gives
the Euclidean distance between the map-positions of two data items.

We will, in the following, use the following simplified notation: for two
data items i and j, §(7, j) indicates the dissimilarity of the data items, and
d(i, ) gives the distance of their assigned positions in map-space.



The notion of finding ‘natural groups’
tends to imply that the algorithm should
passively conform like a wet teeshirt.
(Anderberg)

2 Cluster analysis

Clustering problems arise in a variety of different disciplines ranging from so-
ciology and psychology to commerce, biology and computer science. Many
of these are tasks of knowledge discovery, but clustering can also be ap-
plied in different contexts, for example to tackle the issue of efficient cod-
ing/compression and data transfer in computer science. From an informa-
tion theoretic point of view, the common theme in all of these applications
is that large volumes of data have to be modelled in a compact way while
retaining a maximum of information.*

Clustering methods have been studied for many years, but they continue
to be the subject of active research. In recent years particular attention has
been paid to scalability issues, that is, the applicability of clustering methods
to very large and /or high-dimensional sets of data. Due to the long tradition
of research, there is a wide range of clustering methods available nowadays,
which differ not only in the principles of the algorithm used (which of course
determine runtime behaviour and scalability) but also in many of their most
basic properties, such as:

e The types of attributes handled
Many algorithms can only handle numerical data (as opposed to cat-
egorical data and proximity data) as they require, for example, the
explicit computation of cluster centres.

4Information-theoretical principles are therefore applicable in cluster analysis. As an
example, minimum description length (MDL, [67]) can be applied to determine the optimal
number of clusters (given a specific cluster model) within a given data set [13].



e The shapes of identifiable clusters
Clustering algorithms that use an explicit optimisation criterion might
be restricted to the identification of a particular type of cluster, for
example convex or circularly shaped clusters.

e The kind of partitioning generated
While most algorithms use ‘hard’ assignments (i.e., each data element
is assigned to exactly one cluster), ‘fuzzy’ approaches (where grad-
ual and multiple memberships are possible) also exist. Furthermore,
some algorithms pay particular attention to outliers within the data,
whereas others need to assign each data element to a cluster, with
the effect that (1) outliers are not identified and (2) the final solution
might be significantly affected by them.

The four main classes of clustering algorithms available nowadays are par-
titioning methods, hierarchical methods, density-based clustering and grid-
based clustering. In the following, we will shortly introduce the basic con-
cepts of these categories and, for each one of them, we will survey the best-
known representatives. For a more extensive survey the reader is referred

to [6].

2.1 Partitioning methods

Partitioning methods are among the most popular approaches to clustering,
which is mainly due to their ease of implementation and their favourable
runtime behaviour. Clustering methods of this type start with an initial
partitioning of the data, and iteratively improve it by means of a greedy
heuristic: data items are repeatedly reassigned to clusters according to a
specific optimisation criterion.

The K-means algorithm [53] is the best-known algorithm within this
class. The criterion-function used by K-means is that of minimum vari-
ance, that is, the sum of squares of the differences between data items and
their assigned cluster centres is minimised. Starting from a random parti-
tioning, the algorithm repeatedly (1) computes the current cluster centres
and (2) reassigns each data item to the cluster centre closest to it.> K-
means terminates when no more reassignments take place, which is usually
the case after only few iterations. This algorithmic scheme therefore results
in a runtime complexity linear in the number of data elements.

However, like all clustering algorithms, K-means also has its limitations,
some of which can only partially be overcome.

e The final result highly depends on the initial partitioning as K-means’

5This is the batch version of K-means. Note that a second ‘online’ version exists, in
which cluster centres are recomputed after each individual point relocation.



greedy optimisation approach is prone to converge to suboptimal so-
lutions.

e The number of clusters K has to be provided as an input parameter,
which poses a problem in applications where the correct number of
clusters is not known a priori.

e K-means frequently generates empty clusters. If empty clusters are
continuously reinitialised in order to enforce the generation of K clus-
ters, this can lead to convergence problems.

e Due to the use of the minimum variance criterion, K-means is best-
suited for the identification of spherically shaped clusters. It can com-
pletely fail for clusters with other shapes.®

e As K-means requires the computation of explicit cluster centres, it
can only be applied to numerical data.

e The algorithm does not scale well for high-dimensional data, as the
distances between the cluster centres and all data items have to be
recomputed in each iteration.”

Due to the popularity of the algorithm, much work has been done to over-
come several of these limitations.

K-means’ disposition to converge to suboptimal solutions is commonly
reduced by repeatedly running the algorithm (starting from different initial
partitionings) and keeping the solution with the minimum variance only.
Also, different heuristic initialisation schemes have been introduced in the
literature (see [62] for a comparison).

Similarly, the most suitable number of clusters K can usually be deter-
mined (automatically or semi-automatically) by the generation of multiple
partitionings (using different numbers of clusters) and their evaluation un-
der one or several performance measures. In plots of the performance versus
the cluster number, the best K then generally shows in a significant ‘knee’,
but it may also be determined using advanced optimisation schemes like
simulated annealing or genetic algorithms [33].

Bisection K-means [73] employs ideas from divisive hierarchical cluster-
ing (cf. Section 2.2) to improve K-means’ performance in terms of quality.
Starting from only one cluster, an iteration of bisection steps is used, which
are simply based on local K-means applications (with K = 2). Steinbach
et al. show that this simple strategy provides results competitive to those

In these cases it is only if the clusters are very well separated that K-means will
perform well.

"Note, that no precomputed distances can be used, as the cluster centres do not cor-
respond to actual data points in the set and can therefore change in each iteration.
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obtained with hierarchical clustering methods, while maintaining K-means’
favourable time-complexity.

In order to permit working with any attribute type, K-modes [39] and
K -medoids [43] algorithms have been introduced, which use a cluster repre-
sentation based on modes® and medoids ? respectively. While the K-medoids
algorithms have the additional advantage of a reduced sensitivity to outliers,
their original representative PAM (“Partitioning around Medoids”, [43]) suf-
fered from scalability problems. This weakness has been addressed by the
use of a simple sampling technique in CLARA (“Clustering Large Appli-
cations”, [43]), where a partitioning is computed for several small subsets
of the data. The resulting clusters are used as stereotypes to partition the
complete data set, the objective values for all corresponding partitionings
of the entire set are computed, and the best solution is selected. A further
development is the algorithm CLARANS (“Clustering Large Applications
based upon Randomised Search”, [59]), which performs iterated local search
in the space of all sets of medoids. Neighbouring sets in this search space
are all those that differ by exactly one medoid.

Finally, while all methods above generate crisp clustering solutions, a
fuzzy variant of K-means also exists. Many of the ideas presented in this
section directly carry over to the application to Fuzzy C-means [31].

2.2 Hierarchical methods

Hierarchical algorithms take a quite different approach to cluster analysis.
They do not start with an initial partitioning that already contains the cor-
rect (and final) number of clusters, but they successively generate partition-
ings of different granularities. Here, divisive and agglomerative methods can
be distinguished. Divisive methods start with one single cluster (containing
all data elements), and gradually refine it through the division of one cluster
(possibly more) in each iteration. Agglomerative clustering algorithms [79]
take the inverse approach. They start with the finest partitioning possible
(i.e., singletons, each representing an individual cluster), and then merge the
most similar clusters in each iteration. Both classes of methods terminate
once an appropriate stopping criterion is met, for example, when a partic-
ular number of clusters has been reached. In spite of the higher potential
of divisive strategies to capture the global relationships between clusters,
most hierarchical algorithms are based on agglomerative strategies, as clus-
ter division entails particularly high computational costs (because possible

8The mode of a cluster is defined as the vector that minimises the sum of its dissimilarity
to all data items within the cluster. Here, the definition of the dissimilarity function can
account for categorical attributes. The medoid is not necessarily an actual element of the
data set.

®The medoid of a cluster is the data item, which best represents it (e.g., the data item
that is closest to the precise cluster centre). Hence, it always corresponds to an actual
data point, thus permitting the work with precomputed dissimilarity data.

11



subsets of one cluster have to be considered).

Classical hierarchical algorithms can be further categorised by means
of their linkage metric, that is, the criterion used to decide which sets of
points are to be subdivided or merged respectively in each iteration. The
linkage metric has to be computed for all candidate sets of data points in
the current partition: in agglomerative clustering this candidate set usually
simply consists of all pairs of clusters, in divisive clustering subsets of clusters
have to be analysed.

The three most popular linkage metrics are those of single link, complete
link and average link, which are also named graph metrics.'® They operate
on two sets of points C; and Cy, which correspond to individual clusters in
the agglomerative case and to one of many possible bisections of a cluster
in the hierarchical case. Each of these three linkage metrics then requires
the computation of the distances between all N = |C||Cs| possible pairs of
data items ¢ and j, where ¢ € Cy and j € C5. Their values are defined as

5slink(iaj) = iECI?ijIéCQ 5(1’])

5clink(i>j) = ieé’??}écz 5("7])

1
Oatink (1, 7) = —=—=— 0(i, 7
almk( 5.7) |C1||C2| iec§602 ( 7.7)
Contrarily to this cluster representation purely based on point sets, geo-
metric metrics explicitly describe clusters by means of their cluster centre.
Examples of this type of metric are those based on the distance between
cluster centroids, the distance between cluster medians, or the impact of a
merging operation on the intra-cluster variance. For more details on linkage
metrics and their efficient computation see [60].

While the advantages of hierarchical linkage-based clustering methods
are their simplicity, the implicit generation of a hierarchical structure (which
permits the easy retrieval of clustering information on different levels of
granularity) and the capacity of most linkage metrics to work with any kind
of data, they are also limited in a number of respects.

e The hierarchical representation does not necessarily reflect any sig-
nificant information about actual meaningful relationships between
clusters.

e If the correct number of clusters is not known, it can be difficult to
derive an appropriate stopping criterion.

10This name refers to the operation of these metrics on the completely connected graph
whose vertices represent the individual data items and whose edges give the distances
between them.

12



sind

57
FRA1 228
rpnl37&hlplo|d

T

%

=

4

: TR0 e
% Rl

i 4d ha[pm?a I

T ————— i

3 ste ] 1 (Waploid)

el sbe?éhapold]

i sbe 8 [haphoid

% she {2 (haploid]

=] fas3, kss 1 [ aghoid)

4 5

i S aber]

Fom
i 2 ﬁt‘ﬂ
0 [
— e e _——— '3 FE L ET
—— 3 crd

T 1

&

5

4

2

2

Figure 5: Part of the dendrogram generated by a hierarchical clustering algorithm.

e The classical hierarchical clustering methods never reconsider the choices
taken in the past, which can result in highly suboptimal solutions.

e The applied linkage metric significantly affects the final clustering solu-
tion, as it incorporates assumptions about the structure of the data.'!

e Hierarchical clustering methods based on linkage metrics do not scale
well for large data sets, as they have an overall time complexity quadratic
in the number of data elements.

Attempts to improve on hierarchical methods have mainly been concerned
with the development of new cluster representations and splitting and merg-
ing criteria, as these crucially affect the algorithms’ time performance and
their ability to handle outliers or to detect clusters of various shapes.

The algorithm BIRCH (“Balanced Iterative Reducing and Clustering
using Hierarchies”, [82]) uses a two-level approach, which first compresses
data in a hierarchical tree structure and, subsequently, applies a clustering
algorithm to individual leaf nodes. While these features ensure scalability
and make the algorithm particularly interesting for the use with large data
sets, BIRCH performs badly for non-spherical and unbalanced clusters.

CURE (“Clustering using Representatives”, [29]) combines ideas of graph
and geometric linkage metrics. It describes clusters by a representative set of
points (rather than by all points or just the cluster centre or medoid), which
are chosen to be ‘well distributed’ and are ‘shrunk’ towards the cluster cen-
tre. An agglomerative clustering algorithm based on the single link metric
is applied to these representative point sets. CURE has been extended for
the use with categorical data, resulting in the algorithm ROCK (“Robust
Clustering Algorithm for Categorical Data”, [30]), which works on a derived
sparse proximity graph (vertices are removed according to a user-specified

"Por example, the single link metric only works well with clusters that are spatially well
separated. On the other hand it is the only one of out the three linkage criteria introduced
above that has the capacity to discover clusters of non-convex shapes.
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Figure 6: The spiral data set consisting of two intertwined spirals. This is one
of the typical benchmark data sets used to illustrate an algorithm’s capability to
identify clusters of arbitrary shape.

threshold) and applies a distance measure based on shared neighbours (links)
of data points. Both algorithms can detect non spherically-shaped clusters
and are insensitive to outliers; however, their performance depends very
much on the (user-defined) shrinking factor and the method of point selec-
tion.

Finally, CHAMELEON [42] also operates on a sparse proximity graph.
Different to ROCK, vertex removal is based on a k-nearest neighbours strat-
egy, and the merging criterion takes the differences between cluster intra
and inter-connectivity into account. It uses a two-stage process: based on
a graph-partitioning method a number of small clusters are initially con-
structed, which are then combined using an agglomerative approach. While
CHAMELEON has been shown to be very effective in clustering, it cannot
handle noise and requires several crucial user-specified parameters (includ-
ing a scaling parameter for the linkage criterion and the number of desired
nearest neighbours).

2.3 Density-based methods

CHAMELEON’s merging criterion incorporates the notion of clusters as con-
nected components, which is also one of the underlying principles of density-
based clustering methods. These algorithms directly apply the concepts of
density, connectivity and boundary to identify clusters in the input data. In
this context, two main approaches exist: (1) Algorithms of density-based
connectivity, which analyse the density and connectivity for individual data
points. (2) Algorithms using density functions, which attempt to model
the underlying data distribution. A particular strength of density-based
algorithms is their ability to identify clusters of arbitrary shape.

14



The main representative of the first category is the algorithm DBSCAN
(“Density Based Spatial Clustering of Applications with Noise”, [21]). It
uses the e-neighbourhoods N H (i) of a data item 4 and the set of core objects

cOo
NH(i) ={j € X| 6(i,5) < ¢}

CO={i € X| |[INH.(i)| > MinPts}

to define the notions of density-reachability dr(i,co) of item 7 with respect
to a core-object co € CO, and the density-connectivity dc(i,j) of two data
items ¢ and j

dr(i,co) <> Jeg..en, € X 1 €; € Ne(ej—1) Neg =coNey, =1

de(i, j) <> Jeo € CO : (dr(i,co) A dr(j,co))

Here, eg..e, is a ‘chain’ of data elements that connect data item ¢ and core
object co, and € and MinPts are user-defined parameters. All core ob-
jects are considered internal points of the cluster, while all those that are
merely density-reachable make up the cluster borders. Data points that are
not density-reachable from any core object are considered as outliers. The
notion of neighbourhood can be easily extended as long as the reflexivity

and symmetry of the neighbourhood relation is ensured.'? Limitations of
DBSCAN are:

e The effective computation of the e-neighbourhood poses a problem
for high-dimensional data (for low-dimensional data indexing schemes
exist that allow an overall worst-case complexity of O(Nlog(N)).

e The parameters e and MinPts crucially determine the outcome of the
clustering process. Also, if cluster densities vary, different values may
be required across the same data set. This challenge is tackled in
the algorithm OPTICS (“Ordering Points to Identify the Clustering
Structure”, [3]).

The second type of density-based clustering algorithm takes a quite different
approach. The precursor in this category, the algorithm DENCLUE uses a
distance function, which is the superposition of several influence functions,
to model the density distribution:

LG =" f6,5)

jEL

12The reflexivity and symmetry of the neighbourhood relation are necessary in order to
guarantee that dc(z1, z2) <> de(z2, x1). This ensures that the algorithm is independent of
data ordering!
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Here, L is usually restricted to a local neighbourhood around j (in order
to make the approach computationally feasible) and f(7,7j) is a decreasing
function of the distance §(i, 7). The algorithm uses hill-climbing techniques
to identify local maxima of the density function, which are then interpreted
as clusters. Its advantages include the handling of outliers and its time
complexity, which scales sublinearly due to the additional integration of
grid-based techniques.

2.4 Grid-based methods

Unlike the first three categories of clustering algorithms, the class of grid-
based methods does not describe a set of algorithms with similar cluster
concepts and a similar construction process, but rather a very versatile set
of methods that can themselves be partitional, hierarchical or density-based
and which, at some stage during the clustering process, employ a segmen-
tation of the data-space.

A partitioning of the input space in hyperrectangles is particularly ad-
vantageous for the application to large data sets; additionally it potentially
reduces noise and data-order dependency. Many partitioning methods im-
plicitly use grid-based techniques as (possibly continuous) ranges of numer-
ical values are discretised. Examples of hierarchical grid-based methods
are the algorithms GRIDCLUST [70] and STING (“Statistical Information
Grid-based Method”, [80]). The two best-known grid-based algorithms are
density-based: the algorithm CLIQUE (“Clustering in Quest”, [1]) and its
successor MAFIA (“Merging of Adaptive Finite Intervals”, [58]).

A very interesting approach is taken in the algorithm WaveCluster [72],
which employs methods from signal processing. In order to detect clusters, a
Wavelet Transformation of the discretised data is followed by the application
of a low-pass filter.!®

13In the frequency domain cluster borders show as high frequencies; interior cluster
points give rise to low frequencies with high amplitude values.
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All things are difficult before they are easy.
(Fuller)

3 Topographic mapping

Like cluster analysis, methods of topographic mapping have their origin in
the social sciences, where they have, for many decades, been applied to the
visualisation and analysis of proximity data arising for example in sociology,
psychology or archaeology.'* By comparison, the use of map-like represen-
tations in computer science (and its fields of application) is a very recent
development. Yet, a fundamental difference between the classical use and
the domains tackled nowadays, is the enormous size of the data collections
encountered in today’s data-mining applications.

Visualisations in two and three dimensions are most familiar to humans
and, for exactly this reason, are probably also the most intuitive. Most
mapping-based approaches to visualisation have therefore focused on two- or
three-dimensional representations, even though most of the methods applied
for the mapping process itself can be generalised to arbitrary dimensions.'®

We can distinguish between two main types of algorithms that can be
applied to reduce the dimensionality of a data set. On the one hand, theo-
retically well-founded and mathematically exact algorithms that are usually
based on the explicit computation of the mapping from data- to map-space.
Unfortunately, these techniques do not necessarily generate the visually most
effective representation and may often be computationally expensive. On
the other hand, there are approximation methods that gradually improve an
optimisation criterion (which does not always need to be explicitly known).

MNote that, in statistics, methods of topographic mapping are more commonly referred
to by the term of multidimensional scaling. This term is however ambiguous, as it also
refers to the actual class of multidimensional scaling algorithms (cf. Section 3.2) and, for
the sake of clarity, we will therefore retain the term topographic mapping in the following.

5For some methods the dimensionality of the map-space might be restricted to be less
or equal to that of data-space, as, for example, in the case of principal component analysis.
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Even though these are usually prone to suboptimal solutions, they have been
shown to perform well in many applications.

Apart from these distinctions on an algorithmic level, there are again
basic differences as far as the algorithms’ applications and results are con-
cerned.

e The types of attributes handled
Again, not all algorithms can handle data sets that are purely de-
scribed by means of dissimilarity data, but many need an explicit
data description by means of numerical vectors.

e The level of topology-preservation
While some methods are predominantly concerned with the preserva-
tion of global relationships, others solely focus on the preservation of
local neighbourhood-relations. For many applications combined ap-
proaches would be desirable.

In the following sections we attempt to give an overview of the best-
known classes of methods for topographic mapping. First, principal com-
ponent analysis, as a representative of linear projection methods, is intro-
duced. Then, multidimensional scaling algorithms are surveyed and, finally
topology-preserving neural networks are discussed.

3.1 Principal component analysis

The application of principal component analysis (PCA) to the task of di-
mensionality reduction is straightforward. Given a set of N data items,
each described by a data vector of dimensionality D, these vectors are to
be projected to an m-dimensional space with m < min(D, N), while main-
taining a maximum of information. Towards this end, all data vectors are
gathered in a data matrix I, with the rows corresponding to individual
data vectors and the columns representing the values assumed by individ-
ual variables across the entire set of data. Next, the covariance matrix
Cou(I,I) = (I —I)(I —1) is constructed and its eigenvectors and eigen-
values are computed. The first m principal directions (corresponding to
orthogonal directions of maximal variance) are the eigenvectors associated
with the m largest eigenvalues. Each data vector is projected to the space
spanned by these m principal directions.

Thus, for a two-dimensional representation of a given data set, only
the first two principal directions are selected. The two-dimensional vectors
resulting from the projection of each data item onto these two directions
directly reflect the new coordinates in the map-space. Unfortunately, the
sole'® use of PCA for the generation of topographic mappings does have
several disadvantages.

16 An alternative technique is to use PCA with only little dimensionality reduction (i.e.,
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e The use of PCA is restricted to numerical data collections.

e In spite of the development of relatively efficient techniques for PCA
(such as singular value decomposition (SVD) or Cholesky decomposi-
tion [63]), the time complexity remains O(N?).

e For large data sets the covariance matrix (which is of size N x N)
may be too large to be explicitly computed. Although neural network
techniques for PCA exist, which may be applied in these cases,'” these
often have prohibitive runtimes.

e PCA only captures the structure of linear manifolds within the data.
This limitation is overcome by non-linear projection methods, such as
Non-linear autoassociators [69], Kernel PCA [71], Projection pursuit
[23], or Principal curves [36)].

e As PCA is not concerned with local structures in the data, it may
entirely fail to reveal actual cluster structures. Again, non-linear pro-
jection methods can help in this context. The combination of several
local linear PCAs also improves the modelling of the data and it has
been studied by several authors (see e.g. [11, 17, 37]).

While the non-linear and local projection techniques mentioned above are
better suited for the identification of cluster structures and of non-linear
manifolds within the data, none of them is currently computationally as
efficient as PCA. PCA therefore still remains one of the most commonly used
techniques for dimensionality reduction. Additional advantages of PCA are
its straightforward concepts, and the easy interpretability of the resulting
projection space. For a more comprehensive survey of projection methods
see [12].

3.2 Multidimensional scaling

The term multidimensional scaling (MDS, [81]) encompasses the traditional
statistical techniques used to discover structure within a data set that is
presented in the form of prorimity data. That is, rather than dealing with
data elements defined by points (vectors) in high-dimensional space, the

keeping most of the principal components) as a preprocessing stage to another visualisation
technique. This has the major advantage that, due to the orthogonality of the coordinate
system, variables within the space of principal components are uncorrelated. This property
is, for example, exploited in Latent Semantic Indexing (LSI, [14]) in information retrieval.

1"Neural networks (NNs) for PCA do not explicitly compute the covariance matrix. The
memory consumption may therefore be limited to the storage of the input data and the
principal components. Examples of NNs for PCA are Autoassociators [10], which learn
the space of principal components by ‘squeezing’ data through a hidden layer of m units.
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Figure 7: A Principal Component Analysis reducing the data-space from 2D to
1D. The linear projection on the direction of maximum variance fails to reveal the
cluster structure of the data.

individual items are merely described by their respective dissimilarities.'®
These so-called disparities do not necessarily have to be distances (in a
metric space) in the mathematical sense, that is, they need not be positive,
nor symmetric, nor fulfil the triangle inequality.

Starting from this proximity data, MDS constructs a low-dimensional
representation of the data, while attempting to preserve relations between
data items. The adequacy of the generated mapping is determined using an
optimisation criterion, traditionally referred to as stress function. Various
variations of the stress function exist and we review the two most popular
ones in Section 5. In its general form its is given as

Y (£ (80, 5)) — d(i,5))?

scalefactor

stress =

where f is a monotonic function, N is the number of data items and, for
each pair of data elements 7 and j, 6(7,7) is the associated disparity, and
d(i,7) is their distance in map-space.

There is the distinction between metric and non-metric multidimensional
scaling, which refers to the type of proximity data being tackled (which,
of course, determines what kind of optimisation criterion can be used).
While metric multidimensional scaling can be applied to quantitative data
(i.e., when absolute distances between data items are defined), non-metric
multidimensional scaling tackles the problem of visualising qualitative data
(i.e., when only similarity-orderings of the distances between data items are
given).

180f course every data set given in terms of high-dimensional data vectors can easily be
transformed to proximity data by means of a distance function.
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Dependent on the stress function, the low-dimensional representation
can either be computed analytically (i.e., the mapping function is explicitly
determined), or it has to be approximated through an iterative approach.
The properties of the obtained embedding very much depend on the defini-
tion of stress that has been applied.

MDS has a number of properties that affect its suitability for topographic

mapping.

e Many stress measures tend to enforce the preservation of large dis-
tances while neglecting violations of neighbourhood relationships on a
more local basis. This can prevent the identification of cluster struc-
tures.

o Results of the iterative optimisation approaches depend on the starting
configuration and are likely to be suboptimal.

e Its time complexity is quadratic in the number of data items. Hence,
while MDS is very fast for small data sets, its performance deteriorates
quickly as the number of data elements increases.

Research efforts aimed at overcoming these weaknesses have mainly focused
on amended stress measures, which use an additional scaling and weighting
of the distances in order to improve the amount of structure perceivable
within the generated mappings. Also, different initialisation and iteration
schemes have been investigated.

3.3 Topology-preserving neural networks

The original and best-known example of topology-preserving neural net-
works are Kohonen’s Self-Organising Maps (SOMs, [45]). SOMs are two-
layered unsupervised neural networks that adapt a set of weight vectors to
approximately model the input data. Each of these weight vectors is associ-
ated with one of the neurons in the neural layer that are themselves arranged
in the form of a rectangular (or possibly hexagonal) grid. If the grid (which
can be one-, two- or even higher-dimensional) has the dimensionality of the
desired map-space, the association of weight vectors with particular neurons
(i.e., their respective coordinates on the grid) can be interpreted as a map-
ping of the high-dimensional data-space to this low-dimensional map-space.

When presented with new input data, a SOM traverses a three-stage
process. First, all weight vectors are initialised. This can either be done
randomly or with regard to the input data (e.g., by ensuring a uniform
distribution of the weight vectors in the sector of data-space that is occupied
by the input data). Next, during the training phase, individual input vectors
Z are successively presented to the network. For each of these vectors, the

21



900000
O

i

Figure 8: (a) A two-dimensional self-organising map. In the example, the input
data is also two-dimensional. Therefore, each of the map neurons is associated with
a two-dimensional weight vector. The two neurons of the input layer are connected
to all neurons of the map layer. (b) For each input data item the winning neuron
is determined (here, marked by the blue dot). The weight vectors of all nearby
neurons are then updated. For each neuron the update is a function of the difference
between the input element and its own weight vector and its grid distance to the
BMU.

best-matching unit (BMU, the neuron whose weight vector is most similar
to the stimulus vector) is determined. The BMU and its local neighbours
then'® update each weight vector w according to the learning rule

W B+ € - h(F,0)(Z — B)

Here, h(Z,0) is a neighbourhood function that is centred around the BMU
Z and whose spread is determined by the parameter o (typically h will be
of Gaussian or ‘Bubble’ shape). In order to ensure convergence, both the
learning rate € and the spread o usually need to be decreased during the
training process. Finally, once a SOM has been trained, it can be used
for classification. When presented with new input data, each item will be
mapped to its BMU on the grid.

One fundamental application of SOMs is their use for vector quantisa-
tion, as the main facets of the data are captured by the weight vectors.
Besides, SOMs have certain (local) topology-preserving properties, a prop-
erty that emerges from the update of neighbourhoods (rather than single
neurons) during training. However, the topology-preservation obtained by
SOMs is limited in some respects.

19 An alternative for the learning process is to use batch-training, where the update of
weight vectors is performed only after a sequence of input stimuli has been presented.
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e While SOMs preserve local neighbourhood relations, they do not pe-
nalise false ones.

e Global relationships within the data are not necessarily captured.

e A further disadvantage of SOMs is the long training phase, which may
be a drawback for some applications.

There has been extensive research on improvements related to the topology-
preserving capacities of SOMs, and many extended versions have been de-
veloped. In particular, dynamic models have been introduced, which adapt
their grid-topology during the learning process to better approximate the
input data. Dynamic models comprise two sub-categories, dimensionality
reducing networks on one hand and topology constructing networks on the
other hand.

Examples for dimensionality reducing networks are the algorithms GCS
(“Growing Cell Structures”, [24]), GSOM (“Growing SOM”, [5]) and TS-
SOM (“Tree-Structure SOM”, [46]). While all three algorithms adapt their
grids by inserting additional neurons in crowded grid regions, only the GCS
can additionally increase grid dimensionality. The TS-SOM is an example
of a hierarchical model: it constructs a hierarchy of grid layers of different
resolutions, resulting in a ‘hyperpyramide’, which renders searches for the
BMU more effective.

Topology constructing networks modify the actual topological connec-
tions in map-space. An example is the algorithm NeuralGas [55] that uses
a fixed number of neurons and constructs the connectivity matrix of these
neurons during training only. Growing Neural Gas is an extension of this
method, which can additionally introduce new neurons. The combination of
these ideas with those of hierarchical models results in the algorithm Split
Net [64]. For a detailed discussion of the different approaches we refer to
[64].

23



Go to the ant, thou sluggard;
consider her ways, and be wise.
(The Holy Bible)

4 Ant-based clustering and sorting

4.1 Nature-inspired algorithms

For many years now, researchers in the field of computer science have used
nature as an inspiration to devise new efficient and effective algorithms. In
particular processes observed in biology and physics have served as paradigms
for state-of-the art methods in a large range of different application areas.
Examples are artificial neural networks for feature extraction (e.g. in image
processing) and robotics control, artificial immune-systems with their ap-
plication in network security, and important heuristic optimisation methods
such as evolutionary algorithms and simulated annealing. A variety of algo-
rithms inspired by natural swarm behaviour have also been introduced [9].
Their use includes applications like the simulation of flocking behaviour in
computer graphics, however, the main focus is on their use for optimisation.
In this respect the two new fields of particle swarm optimisation and ant
colony optimisation have only recently emerged.

4.2 Ant colony optimisation

Ant-colony optimisation (ACO, [18]) is a relatively new metaheuristic,2°
which has been successfully applied to a range of NP-hard optimisation

20 A metaheuristic is a set of concepts useful for defining heuristic methods that can be
applied to a wide set of different problems. In other words, a metaheuristic can be seen as a
general framework which can be applied to different optimisation problems with relatively
few modifications to make them adapted to a specific problem. Examples of metaheuristics
include simulated annealing, tabu search, iterated local search, evolutionary algorithms
and ant colony optimisation. (Definition from the European Metaheuristics Network)
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problems, including quadratic assignment, timetabling, scheduling and fre-
quency assignment.

It is inspired by the foraging behaviour of ant colonies and their aston-
ishing capability to solve shortest path problems. Like its natural paradigm,
ACQO is a distributed process. The basic algorithm employs multiple elemen-
tary agents and positive feedback mechanisms in order to solve complex opti-
misation tasks. It imitates the trail-laying-trail-following behaviour observed
in real ants, where ants deposit chemical substances, called pheromones,
in order to transmit information about their selected path. This indirect
communication via the environment has been first reported by Grassé [28]
and is commonly referred to as stigmergy. In ACO algorithms, artificial
pheromones are introduced to serve as stigmergic variables. An extensive
introduction to the field is given in [19].

4.3 Ant-based clustering and sorting

While ACO comprises a number of largely different implementations, it can
itself be classed in the more general and broad category of ant algorithms,
that is, algorithms that model “some behaviour” observed in real ants.?!
Ant-based clustering and sorting, the algorithm this project focuses on, also
forms part of this category and indeed also works by positive feedback and
local information processing. However, it differs from ACO in some funda-
mental respects.

e Ant-based clustering and sorting draws its inspiration from the clus-
tering and sorting (not the foraging) behaviour observed in real ants.

e It is not a metaheuristic. In contrast, it tackles only the specific task
of clustering and sorting.

e Unlike ACO it does not make use of artificial pheromones.

e In the basic algorithm no synergetic effect can be observed, that is, the
algorithm’s performance is mostly?? independent of population size.

In the following, the basic principles of this particular ant algorithm
will be described in detail, and previous research efforts related to the im-
provement, evaluation, comparison and application of the algorithm will be
surveyed.

2'Without doubt, however, ACO is currently the most successful and best-known type
of ant algorithm.

22In order to ensure the function of the algorithm it is important that the number of
ants is clearly inferior to the number of data items being sorted.
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Figure 9: Tasks of clustering and sorting in real ant colonies. (a) Clustering of
corpses in Pheidole pallidula. (b) Sorting in Leptothorax unifasciatus.

4.4 Deneubourg’s basic clustering model

Ant-based clustering and sorting was first introduced by Deneubourg et
al. [16] in 1990. As its name implies, two types of natural ant behaviour
are modelled by this algorithm. First, clustering, where ants gather items
to form heaps. An example for this is the cemetery formation (i.e., the
clustering of dead corpses) observed in the species of Pheidole pallidula.
Second, sorting, where ants discriminate between different kinds of items and
spatially arrange them according to their properties. This type of activity
can, for example, be observed in nests of Leptothorax unifasciatus where
larvae are arranged dependent on their size. In their paper, Deneubourg et
al. proposed a continuous model to describe these behaviours and derived a
Monte Carlo model, which was experimentally validated. The experiments
reported were limited to the clustering of one or two types of data items and
the main focus was on obtaining a model applicable to groups of robots.
In the Monte Carlo simulation ants are modelled by simple agents, which
randomly move in their environment, a square grid with periodic boundary
conditions. Data items that are scattered within this environment can be
picked up, transported and dropped by the agents. The picking and drop-
ping operations of each individual agent are biased by the probabilities
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Here, f(4) is an estimation of the fraction of data items in an ant’s immediate
environment that are similar to the data item the ant currently considers
to pick up or drop respectively. In Deneubourg’s algorithm this estimate
is obtained using a short-term memory of each agent, where the contents
of the last encountered grid cells are stored. This choice of the neighbour-
hood function f(i) was mainly motivated by the ease of its realisation for
simple robots. The parameters k™ and k£~ determine the influence of the
neighbourhood function f(7), and were fixed to 0.1 and 0.3 respectively.

In the described model ants are thus likely to pick up data items that
are either isolated or surrounded by dissimilar ones. On the other hand they
tend to drop them in the vicinity of similar ones. In this way a clustering
and sorting of the elements on the grid is obtained.

We can now see that the mechanism of positive feedback at work in this
algorithm is quite different from the one used in ant colony optimisation.
The ants do not employ artificial pheromones for indirect communication,
but it is the distribution of data items itself that serves as stigmergic variable.

4.5 Behavioural studies

Several aspects of Deneubourg’s model have been analysed by other re-
searchers. Gutowitz introduced complezity-seeking ants that tend to con-
centrate their actions within regions of high interest, thus speeding up the
clustering process [32]. Regions of high interest are determined using a lo-
cal measure of complexity: cells in the grid can assume two possible states
(occupied or empty) and the complexity measure simply counts the number
of pairs of unequal neighbouring cells. Hence, complexity is 0 for regions
that are either entirely occupied or entirely empty, while it is highest for a
checkerboard pattern.

In [54], a minimal model for ant-based clustering was introduced. Here,
deterministic pick up and deposition rules were used. The displacement rule
was also modified in order to enable straighter movements of the agents,
which improves time performance. Martin et al. also demonstrated that the
algorithm’s performance seems to be independent of the number of agents
used.

4.6 Lumer and Faieta’s extension to sorting

Shifting away from the use in robotics and towards the algorithm’s appli-
cation to data analysis, Lumer and Faeita introduced a number of modifi-
cations that enabled it to work with numerical data, and improved solution
quality and the algorithm’s convergence time.

e In Lumer and Faieta’s work, data items are described by numerical
vectors. The distance between these vectors is computed using the
Euclidean distance. In general, the algorithm can be applied to all
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those types of data, for which a measure of dissimilarity (or, equiva-
lently, similarity?®) between individual data items can be defined.

Using this kind of discrimination between data elements, the neigh-
bourhood function is redefined®* as

R A ®)
0 otherwise

Here, 6(i,7) € [0,1] is a dissimilarity function defined between points

in data space, a € [0,1] is a data-dependent scaling parameter, and

o? is the size of the local neighbourhood (typically, o2 € {9,25}).

The agent is located in the centre of this neighbourhood; its radius of

perception in each direction is therefore 07*1

Hence, an agent deciding whether to manipulate an item ¢ considers
the average similarity of 7 to all elements j in its local neighbourhood of
size 02. As f(i) is computed as a sum over the entire neighbourhood,
empty grid cells are indirectly penalised (as they prevent a positive
contribution of this particular cell), such that a tight clustering, rather
than just a loose sorting, is induced.

e Lumer and Faieta introduce the use of a short-term memory to keep
track of the last transported data items and their respective dropping
locations. After a picking operation, ants identify the remembered
data item, which most closely matches the newly encountered data
element, and, subsequently, steer towards its (assumed??) location.

e The use of inhomogeneous populations of agents, that is, agents with
different individual parameter settings, is also an idea first proposed
in [51]. This concept was limited to the use of a range of different step-
sizes (the stepsize describes the number of grid cells an agent can cross
in one random move), and an adaptation of the neighbourhood func-
tion dependent on this ‘speed’: through an additional scaling factor
slow ants are biased to be more selective than quicker ants.

e In spite of the above modifications, the algorithm suffers from conver-
gence problems. With an increasing number of data items, ant-based
clustering and sorting often generates several small clusters of each
data type, which are not merged within reasonable computation time.

23Using a normalisation to the interval [0,1], the similarity s(i,j) between two data
items 7 and j can easily be transformed to a dissimilarity as §(z,j) = 1.0 — s(z, ).

2" Even though this hasn’t been done in Lumer and Faieta’s original paper, it is useful
to assume that the dissimilarities are normalised to the interval [0, 1] in this definition.

%5In a multi-agent system, the data item may have been removed by another ant in the
meantime.
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In order to overcome this difficulty, Lumer and Faeita introduced be-
havioural switches that permit the ants to switch from ‘cluster con-
struction’ to ‘cluster destruction’ once the sorting process seems to
stagnate.

In [51], results obtained on a simple artificial data set (400 data points
sampled with equal probabilities from the four two-dimensional Gaussian
normal distributions (N(0,2), N(0,2)), (N(0,2),N(8,2)), (N(8,2), N(0,2))
and (N (8,2),N(8,2)) were reported. While the authors indicated that com-
parable results had been obtained on various synthetic data sets, issues aris-
ing with more complex data (such as the determination of a suitable value
for the data-dependent parameter « in Equation 3) were not addressed in
the paper. Also, evaluation was limited to visual observation and measure-
ments of entropy and average fit (cf. Section 5.2.4), which provide only very
limited insights into the overall sorting quality.

It was in this paper, that the ants’ sorting process was for the first
time termed a “heuristic mapping of a possibly high-dimensional and sparse
data set on a plane, in a way which preserves neighbourhood relationships
as much as possible”, that is, as an approximate topographic mapping (as
opposed to a pure clustering). However, the results presented in the paper
do not suffice in any way to support this claim. The analytical measures
used do not capture the preservation of inter-cluster relationships at all, and
even intra-cluster sorting is only reflected to a very limited degree.

4.7 Kuntz, Layzell and Snyer’s application to graph parti-
tioning

Following Lumer and Faeita’s work, a study of the algorithm’s applicability
to graph partitioning was presented in [47, 48, 49]. While the algorithmic
model was adopted mainly unchanged, a dissimilarity measure for pairs of
graph nodes had to be derived. For a graph G = (V, E), where V is the set
of vertices and F is the set of edges F, the distance between two vertices v;
and v; was defined as

Vi, v;) = [p(vi) Ap(v;)]
d(vi,v;) lo(vi)| + |p(v;)]

where A indicates the symmetric difference and

p(vi) ={v; € V | {vi,v;} € E} U{v;}

Under this measure, vertices that have many shared and few distinct neigh-
bours have a small dissimilarity.

Experiments were performed on a class of fairly small pseudo-random
graphs (at most 900 nodes, with most analytical results reported for sizes
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Figure 10: Graph partitioning using ant-based clustering and sorting. Initially,
all graph nodes are randomly scattered on the two-dimensional grid. Subsequently,
the ants form clusters of closely related vertices.

of 200 and 400 respectively). Apart from the entropy measure, a number of
additional performance measures were used in [49]. The clustering capabil-
ities of the algorithm were evaluated using the percentage of misclassified
vertices and the percentage of inter-cluster edges (using an upper bound
delivered by the classical Fidduccia-Mattheyses procedure for graph parti-
tioning [22]). For this purpose, the ‘intuitively’ visible clusters had to be
made explicit, which was done by running a K-means algorithm on the grid
positions of all data elements.

The Pearson correlation (cf. Section 5.2.2) of the dissimilarities between
pairs of data items in data space and their respective spatial distances on
the grid was computed in order to support the claims made on the ants’
capability to generate an isometric embedding. For a graph of 200 nodes
a convergence of the Pearson correlation towards 0.65 was reported, and it
was concluded that the gap towards a ‘perfect’ correlation of 1.0 was due to
the gathering of “vertices with a small dissimilarity”. In Section 7.8 we will
see in detail why these claims have to be considered with much care.
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Comparisons to alternative embedding algorithms were limited to very
few results for a metric multidimensional scaling approach. In [48] plots on
the deviations from the ‘optimal stress value’ (as obtained by multidimen-
sional scaling) were given. The ant-based heuristic consistently performed
worse, which the authors explained by the “local optimisation approach” due
to which “large values may be modified in the representation”. Now, the
limited deviation in stress was taken as an affirmation that “a certain dis-
tance preserving embedding is guaranteed for small distance values”, which
was however not further evaluated. In spite of the inferior results in terms
of metric stress, the authors saw the algorithm’s advantage in its “quasi-
linear complexity that allows this ant-based heuristic to handle very large
graphs that can hardly be processed by other algorithms”. While the claim
on “quasi-linearity” was supported by graphs on the heuristic’s mean con-
vergence time (again limited to graphs of up to 900 nodes), no results on
the relative time performance of alternative approaches were given.

4.8 Applications to the categorisation and visualisation of
document collections

Building upon this work on the algorithm’s applicability to topographic
mapping, several authors have investigated the use of ant-based clustering
and sorting for the two-dimensional visualisation of document collections in
the form of topic-maps.

In [38], the basic algorithm (without Lumer and Faieta’s extensions) was
adopted unchanged, and results on a small selection of web pages (84 pages)
were demonstrated. Analytical results were provided only for one single run
of the algorithm: values of 0.63 and 0.56 were obtained for the measures
of cluster entropy and purity (cf. Section 5.1.1) respectively. While these
values seem to be rather low, it is difficult to judge about the degree of
difficulty of the used data set, as no comparative results for other methods
were given.

Ramos and Merelo [65] used a modified version of the algorithm to vi-
sualise a collection of 931 words taken from Spanish newspapers. However,
the main focus of this work was on the algorithmic changes introduced and
the demonstration that results comparable to the Lumer and Faeita version
of the algorithm could be obtained. In the paper, this was demonstrated
using one artificial test set, visual observation and the entropy measure. Re-
sults provided for the actual text data were very limited: merely one visual
mapping result was shown, which, as the authors readily acknowledged, was
far from being optimal.

In [34], Handl and Meyer used a combination of multidimensional scaling
and ant-based clustering to dynamically generate topic maps representing
the results of Internet-queries. In the course of this work, a number of
modifications were introduced in order to meet the time constraints of online-
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Figure 11: An ant-generated topic map of 1000 Internet documents retrieved for
the query “Granada”.

queries and to deal with arbitrary data collections. These changes included
the following.

e Eager ants
In the original algorithm, ants only contribute to the sorting progress
when carrying data elements. These idle phases can easily be avoided
by the introduction of ants that directly carry out a picking operation
after each dropping operation. An additional index structure was used
to keep track of data items on the grid.

e Jumps
Through the use of very large step sizes, the algorithm’s runtime can be
significantly reduced, and its performance in terms of quality equally
improves, as the dissolution of preliminary small clusters is facilitated.

e Adaptive scaling
A first scheme to automatically adapt the parameter « for a given data
set was introduced.

e Stagnation control
Failure counters were used to avoid the blocking of ants by outliers
in the data (which the ants have difficulties to dispose of). After a
certain number of unsuccessful dropping attempts with the same data
element, ants drop it deterministically.

32



In [35], Pearson correlation, inter-cluster correlation and intra-cluster
correlation (cf. Section 5.2.2) were used to evaluate the algorithm’s perfor-
mance on artificial and real test data. In particular the results obtained in
terms of the inter-cluster correlation raised first doubts on the suitability of
pure ant-based clustering and sorting for tasks of topographic mapping, as
no clear correlation between the relative distances of clusters in data-space
and in map-space could be observed. The algorithm’s hybridisation with
multidimensional scaling was an attempt to improve the seemingly random
positioning of clusters.

4.9 Monmarché’s application to numerical data analysis

While the work summarised in the previous sections mostly dealt with the
algorithm’s assumed capability to combine clustering and topographic map-
ping, ant-based clustering and sorting has also been applied to pure cluster-
ing tasks.

In particular, Monmarché [57] introduced ANTCLASS, a hybridised ver-
sion of the algorithm that uses one or more alternating sweeps of the ant
algorithm and K-means. The combination of these two algorithms is an
attempt to counter-balance the advantages and disadvantages of both ap-
proaches.

e The ant algorithm provides an estimate of the correct number of clus-
ters K to K-means, thus sparing the automatic or manual determina-
tion of an appropriate parameter.

e K-means is initialised with the centres of the clusters generated by the
ant-algorithm, which reduces its initialisation problem.

e The generally ‘noisy’ results of the ant algorithm can be improved by
the subsequent application of K-means.

In order to accommodate for the ‘pure’ clustering task, Monmarché fun-
damentally modified the algorithm. Instead of manipulating individual data
items solely, ants now operate on piles of data items. Entire piles can be
transported or, alternatively, one or several data items can be added to a
pile or be removed from it.

Naturally, this requires an adaptation of the biases for picking and drop-
ping probabilities, which no longer depend on the neighbourhood function
defined in Equation 3, but which take dissimilarities both between piles and
within individual piles into account.

Experimental results for ANTCLASS were presented for eight artificial
data sets of sizes up to 1100 data items and six real data sets adopted from
[8]. The performance was evaluated using the number of clusters detected
and the classification error (which is in fact just the negated Rand index,
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cf. Section 5.1.1) and compared to that of 10-means and 100-means (i.e.,
K-means with K set to 10 and 100 respectively for all test sets), and an
idealised K-means (initialised with the correct clustering solution). Not
surprisingly, ANTCLASS consistently performed better than 10-means and
100-means and worse than the idealised K-means. Qur main criticism is
this respect is that a comparison to a practically usable K-means may have
been more informative as to ANTCLASS’s relative performance.

4.10 Parallelisation

Likewise to other ant algorithms, the implicit parallelism of ant-based clus-
tering and sorting has often been underlined in the literature. However, so
far only one actual parallel implementation has been reported [2], which uses
a partitioning of the grid. Unfortunately, no results on the used number of
partitions and the obtained speed-up were provided.

Interestingly, no parallelisation scheme based on the assignment of agents
to individual processors has so far been reported, even though this is the type
of parallelisation essentially suggested by the notion of implicit parallelism.
However, in the case of ant-based clustering and sorting such an approach
is likely to suffer from an impractically large communication overhead.

In fact, recent results in the field of ant colony optimisation show that,
even on a shared memory architecture, the use of individual processors for
single ants greatly suffers from the required synchronisation overhead [15].
In ACO, more promising results are obtained by multi-colony approaches,
which assign ‘ant colonies’ to individual processors that cooperate by oc-
casional information exchange only, thus reducing communication and syn-
chronisation costs [56, 74].
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What the hell is quality?
(Pirsig)

5 Analytical Evaluation Measures

In Section 2 and 3 we have seen that a variety of different techniques for
cluster analysis and topographic mapping exist, many of which are based
on quite different considerations as to the conceptual idea of the quality of a
solution. However, there is a certain agreement on some properties a good
clustering and/or mapping solution should possess, which have lead to the
introduction of a number of quantitative evaluation measures. The most
important of these are revised in the section on hand.

5.1 Measures for cluster analysis
5.1.1 External measures

The first group of analytical evaluation functions available for cluster anal-
ysis are those devised for benchmark problems in which the right number
of clusters and the correct classification for each data item is known. Eval-
uation becomes far more straight forward in these cases, as the desired
properties of a partitioning (which are, up to a certain degree, a matter of
the problem definition) can be neglected, and we can merely focus on the
validity of the obtained cluster assignments.

e Number of clusters
Naturally, when the real structure of the data is known, the number of
determined clusters is a first indicator of an algorithm’s performance.
It is particularly important to keep track of this figure, as the identifi-
cation of too many or too few clusters crucially affects other analytical
performance measures.?

26For example, the performance both in terms of the purity and the intra-cluster variance
improves, if too many small clusters are determined.
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e Measures based on the distribution of the known class labels
The next three measures we discuss all directly apply the knowledge of
the class labels, in that they are concerned with the purity and/or the
completeness of the generated clusters with respect to the true class
memberships.

The purity of a cluster C} € C is defined as the percentage of the
predominant data type according to the known real class labels t € T,
that is,

where N is the size of the cluster Ci, and Ny is the number of
elements of class ¢ within this cluster. The purity P(C) of an entire
partitioning is then computed as the mean purity of all clusters. It is
limited to the range ]0, 1] and it is wanted to be maximised.

Also, the relative degree of randomness of a partitioning can be eval-
uated using the notion of cluster entropy. It is a more comprehensive
measure than the purity, as it takes the distribution of all classes within
each cluster into account. The entropy of a cluster is

! Nek1og( Ntk

and, again, the overall entropy E(C) is computed by averaging over
the set of all clusters. The cluster entropy is limited to the range
[0,1].27 Tt is wanted to be minimised.

Finally, the F-measure [76] adopts the ideas of precision and recall from
information retrieval. Each class t (inherent to the data) is regarded
as a the set of Ny items desired for a query; each cluster Cy (generated
by the algorithm) is regarded as the set of Ny items retrieved for a
query; Ny gives the number of elements of class ¢ within cluster Cy.
For each class ¢t and cluster C}, precision and recall are then defined as
Prec(t,Cy) = ]]\\T,—t’f and Rec(t,Cy) = NT‘Z“, and the corresponding value
under the F-measure is

(b2 + 1) - Prec(t, Cy) - Rec(t, Cy,)
b2 - Prec(t,Cy) + Rec(t, C)

where equal weighting for Prec(t,Cy) and Rec(t,Cy) is obtained if
b = 1. The overall F-value for the partitioning is computed as
Ny

F(C)=S" 12 F t.C
(C) tEZT éﬁ%’é( meas(t, Cy))

Fmeas(t,Cy) =

2TA value of 1 reflects a uniform mixture of classes within each cluster, a value of 0
indicates the sole presence of pure clusters.
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It is limited to the interval [0, 1] and should be maximised.

Indices for the comparison between two partitionings

Other methods that are commonly applied to compare the obtained
clustering result to the known cluster structure are indices based on
statistics of the pairwise relative cluster assignments, which can also
generally be applied to evaluate the compliance between two partition-
ings of the same data set.

Given the partitionings U and V, the quantities a, b, c and d are com-
puted for all possible pairs of data points 7 and j and their respective
cluster assignments cy (7), cy(j), ey (7) and cy (j), where

a={i,5 | cv(i) = cu(j) Nev (i) = cv ()}
b= {i,j | cv(i) = cu(j) Nev(i) # cv ()}
c={i,j | cv(i) #cu(j) Nev(i) = cv(h)}
d=|{i,j | cu(i) #cu(j) Nev (i) # cev(h)}

Hence, a and d keep track of correspondences between the two parti-
tionings, whereas b and c count clear deviations. The most well-known
index is the Rand index [66], which is defined as

a+d
RUV)=—7—"———
( ) a+b+c+d
Obviously, R is limited to the interval [0,1]. A value of 1 is only
obtained for a perfect correspondence between the cluster assignments
of the partitionings U and V, and smaller values show an increasing
discrepancy between the two solutions.

A number of variations of this index exist, such as the adjusted Rand
index [40], which introduces a statistically induced normalisation in
order to yield values close to 0 for random partitionings, or the Jacard
Coefficient [41], which is given as J = thus applying a stricter
definition of correspondence.

a
a+b+c?

5.1.2 Internal measures

If data sets are tackled whose real structure is unknown, the evaluation of
the clustering results becomes much more involved. Measures that can be
applied in these cases try to capture the two objectives of cluster analysis
that were informally outlined in Section 1.1: the minimisation of intra-
cluster distances (resulting in compact clusters) and the maximisation of
inter-cluster distances (resulting in well-separated clusters). Additionally,
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the size of the individual clusters might be taken into account, in order to
favour well-balanced solutions.?

e Intra-cluster variance [50]
The popular intra-cluster variance or sum-of-squared-errors minimum
variance criterion, the measure locally optimised by the K-means al-
gorithm, is based on the first of the above concepts, the minimisation
of intra-cluster distances. It is given as

V(C) =D > 8 m)?

CLECIEC),

where C' is the set of all clusters, u; is the centroid of cluster Cj
and 4(.,.) is the distance function employed to compute the deviation
between the data item ¢ and its advised cluster centre.

The lower bound of the obtainable variance depends on the data and
the number of clusters used, but can at best be equal to zero.

e Combined approaches
More enhanced approaches combine measurements on intra-cluster
and inter-cluster distances, which is either done linearly or non-linearly.

An example for a linear combination is the SD-validity index [33],
which is given as

SD(C) = aScat(C) + Dis(C)

Here, « is a weighting term, which trades off the relative importance
of the average scattering for clusters Scat(C) and the total separation
between clusters Dis(C), where

_ 1 |0 (C)|
Scat(C) = I Ckzec N, ()]

and D
Dis(C) = % SO s m))
mn CreC CeC

% denotes the ratio between the maximum and the minimum inter-
cluster distance found in C, o(C) is the standard deviation of data
items from their assigned cluster centres, o(Cy) is the standard devi-
ation computed for an individual cluster Cj, and Nj is the number of
data items assigned to cluster Cj.

281f the size of the clusters is not considered, trivial solutions for the maximisation of
inter-cluster distances and the minimisation of intra-cluster distances may exist. This
becomes an issue, if the evaluation measure is directly used as an optimisation criterion.
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The alternative, a non-linear combination, is, for example, used in
Dunn and Dunn-like indices [20, 61]. They measure the ratio between
cluster distances and cluster diameters, which should be large in a
good clustering solution. The Dunn index is defined as

DU(C) = min (min( 5(,Ukall'l) ))
CreC \CieC maxc,, cc diam(e)
Here, the diameter diam(Cy,) of a cluster Cy, is simply computed
as the maximum intra-cluster distance. Dunn-like indices use a more
enhanced scheme for the computation of these diameters, which makes
the approach more robust to the presence of noise.

Note, that all measures introduced in this section can not only be used for
evaluation purposes, but also as explicit optimisation criterion in a cluster-
ing algorithm. Additionally, they find application for the semi-automatic
determination of the number of clusters that best describe a given data
set. For a comprehensive overview of other indices and clustering validation
techniques, the reader is referred to the comprehensive survey in [33].

5.2 Measures for topographic mappings

In light of the essential differences between the mapping techniques intro-
duced in Section 3 (not so much in terms of algorithmic implementation, but
mainly in terms of their specific understanding of topology-preservation), it
becomes clear that the quantitative evaluation of a topographic mapping is a
complex undertaking. Before surveying evaluation functions that have been
introduced towards this goal in the literature, we will therefore revise the
different demands that can be made with respect to topology-preservation.

5.2.1 Categorisation of topographic mappings

The different choices for the definition of a perfectly neighbourhood-preserving
mapping can be grouped into three main categories [25, 26, 27].

e Preservation of similarities
This is the strongest demand that can be imposed on a topographic
embedding. It requires distances in data-space to be exactly matched
by those in map-space. In a plot of the distances in data-space versus
those in map-space, the resulting figure would be a straight line at a
45 degree angle.

e Perfect correlation of similarities
This criterion is slightly weaker than the one above. Distances in
data-space and map-space are required to coincide only up to a multi-
plicative and/or additive constant. The corresponding plot would be
a line at an arbitrary angle and offset.
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e Preservation of similarity orderings
In this category no constraints on the relationships between absolute
distances are imposed. Instead, a ranking of pairwise distances in
both spaces (according to their size) is established and the obtained
ranks are required to match. In a plot the preservation of similarity
orderings shows in the distances in data- and map-space being related
by any monotonically increasing function.

If the intrinsic dimensionalities of data-space and map-space differ, none
of these criteria can usually be perfectly satisfied. Analytical evaluation
measures are therefore necessary, which capture the degree of discrepancy
from a perfect topographic mapping.

While, at first sight, a natural choice of categorisation for these mea-
sures seems to be the type of neighbourhood-preservation obtained by each
one of them, we will see in the following that most of them only partially
comply with the above definitions. A large number of evaluation functions
additionally take considerations related to the relative importance of local
neighbourhood structures into account. For a categorisation of the differ-
ent measures we therefore distinguish between those that account for the
preservation of relationships on various scales and those that merely focus
on immediate neighbourhood relations.

5.2.2 Measures accounting for topology-preservation on various
scales

The measures that deal with topology-preservation both globally and locally,
do so with different trade-offs, as they are based on different concepts of
topology-preservation.

e Stress-based evaluation

The stress [81] function used in metric multidimensional scaling di-
rectly captures the discrepancy towards the perfect preservation of
absolute distances. Given the mapping © that assigns a position in
map-space to each data item, the pairwise dissimilarities d(z,j) be-
tween elements ¢ and j in data-space, and the corresponding pairwise
distances d(%, j) in map-space, the traditional stress function is defined
as

N
$(©) =% (8(i,5) — d(i, 5))*
i=1j<i
that is, minimising stress corresponds to minimising the sum of squares
of the deviations between the distances in data-space and the distances
in map-space. The measure yields 0 for the perfect preservation of the
absolute distances.
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Variations of this stress measure introduce an additional weighting
term that takes the scale of the dissimilarities in either data- or map-
space into account. This way, for example, deviations in the mapping
of small dissimilarities can be penalised more heavily than deviations
in the mapping of large dissimilarities. One example of such a stress
function is the Sammon measure [68], which is defined as

SM(©) = ZZ —d(i,5))?
E'L 1Ej<z (Z .] i=1j<i 17.7)

Correlation-based evaluation

The Pearson correlation coefficient [63] provides information on the de-
gree of linear relationship between the distributions of two variables.
In the context of topographic mappings it can therefore be employed
to determine the degree to which a mapping preserves a linear rela-
tionship between the distances in data-space and those in map-space.
The Pearson correlation is computed as

\/sdd s 1))(555 )

c(©) =

where

sd =YY "d(i,j)

i=1 j<i

N
s6=_> 6(i,j)

i=1 j<i

N
sdd =" d(i,])?

i=1 j<i

s66 =Y 4(i,5)°

i=1 j<i

N
sds = 3° " di, )60, )

i=1 j<i

C(©) takes values in the interval [—1,1], with 1 signifying perfect
positive correlation, —1 signifying perfect negative correlation, and 0
signifying a complete lack of correlation. A useful property of the
Pearson correlation is its invariance under the scaling of the dissim-
ilarities by a constant factor. Its drawbacks are, however, that it is
strongly affected by outliers and heteroscedastic data.
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If we are purely interested in the preservation of similarity orderings,
the Pearson correlation can be applied to the ranks of the pairwise
dissimilarities instead of the absolute distances. This results in the
so-called Spearman rank correlation [63].

When the real cluster distribution is known, the correlation of the
respective distances between cluster centres in data-space and in map-
space can additionally be computed. This gives insight into the preser-
vation of global relationships, that is, the relative distances between
clusters. We refer to this measure as the inter-cluster Pearson corre-
lation.

Similarly, the Pearson correlation can be applied to obtain more de-
tailed information on the sorting within individual clusters. The cor-
relation coefficient computed for the dissimilarities of the data items
belonging to individual clusters provides information about the preser-
vation of more local relationships. We refer to this measure as the
intra-cluster Pearson correlation.

Evaluation based on nearest-neighbour-lists

A number of very recent approaches towards the evaluation of topology-
preservation all work with nearest-neighbour-list, that is, they are
purely concerned with the violations of similarity orderings.

The topographic product [4] has been explicitly designed to capture
neighbourhood violations on a global scale and to be largely insensitive
to local distortions of the map. It requires the computation of kth-
nearest-neighbour-lists in both data-space and map-space. For each
data item 4, its [th nearest neighbour in data-space is denoted as n;(l)
and its [th nearest neighbour in map-space is denoted as 7;(l). The
quantity

then provides information about the preservation of the neighbourhood
relations of data item ¢, while limiting the sensitivity to permutations
of similarity orderings to the level k (i.e., for each data item only de-
viations in the neighbourhood-relation with data items that are NOT
within the set of the kth nearest neighbours are taken into account).
The deviation from the value of 1 then reflects the discrepancy towards
an ideal mapping. Finally, in order to obtain an indication of the map’s
overall quality, the average value of log(Ps(i,k)) for all data items i
and all degrees of locality k is computed, resulting in the topographic
product
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1 N-1
TP(©) = N > log(Pi(©,k))

i=1 k=1

which is 0 for perfect preservation of similarity orderings.

All measures of map quality that have been introduced above are
purely based on the comparison of distances or distance-orderings in
data- and in map-space. None of them takes the shape of the mapped
data manifold into account, which makes them prone to fail in the case
of non-linear data manifolds. In Villmann et al. [78] the topographic
function [78] is therefore introduced. It uses a definition of topology-
preservation that imposes the preservation of immediate-neighbour re-
lations in both mapping directions from data- to map-space and the
inverse. While neighbours in map-space are given by the grid struc-
ture, Delaunay triangulation is used to to determine neighbours in
data-space. The topographic function of the mapping © between data-
space and map-space is then given as

1 N :
LN Vi(o,k) itE#0
. N ()
TF(®,k) = { TF(©,1) + TF(©,-1) ifk=0

where V;(0,k) counts the neighbourhood-violations in both mapping
directions and is defined as

_ ) i [ dmax(4,5) > kA 6(i,5) =1} if k>0
Vi(®, k) = { {j | d(i,5) =1A0(,5) > |k} ifk<0

where the distance computation in map-space is based on the maxi-
mum norm dmax(i,7) for k > 0, and the Euclidean distance d(3, j) for
k < 0. The topographic function is constant zero only if the mapping
is perfectly topology-preserving with respect to Villmann et al.’s defi-
nition. Otherwise its distribution provides information about the level
at which violations of neighbourhood-relations occur.

5.2.3 Measures accounting for local topology-preservation

A number of measures also exist that are purely concerned with local topology-
preservation. These have primarily been introduced for the evaluation of the
performance of different types of self-organising maps.

e Topological defect [64]
The topological defect is a restriction of the topographic function, that
only takes the preservation of immediate neighbourhood relations in
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the mapping direction from data-space to map-space into account
(hence, ‘false’ neighbours are not penalised).

It is defined as

N
TD(O,k) =>_>5i(6,])
i=1 1>k
where S;(©,1) counts the number of data items, which are immediate
neighbours of 7 in data-space and [ steps apart in map-space

Sil) = {7 [ (i, 5) =1A6(,5) =1}

The largest &k for which TD(©, k) > 0 corresponds to the largest topo-
logical defect in the output space.

e Topographic error [44]
The topographic error also captures topological defects on a local scale.
It has been first introduced for the analysis of self-organising maps and
it is defined as

1 N
TE(©) = - 3. Ui®)
=1

where U;(©) indicates discontinuities in the mapping from data- to
map-space.

1 best and second best matching unit for ¢ are not adjacent
0 otherwise

Ui(©) = {

e Minimal distortion [52]
The principle of minimal distortion reflects the error introduced to the
data through a successive mapping from data. to map-space and back
to data-space.

In the context of self-organising maps, this is simply the computation
of the average distance between each data vector and its best matching
unit, also referred to as quantisation error.

5.2.4 Additional measures introduced for ant-based methods

In this section we will finally introduce the measures of entropy, mean fit and
mean dissimilarity, which are the ones most commonly used in the literature
on ant-based clustering and sorting. All of these three measures are very
limited in scope and they have not been used in the general data-mining
literature.

Given a spatial distribution of data items, a measure of entropy [51] can
be defined that reflects the degree of clustering on the grid. For this means,
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the grid is divided into a set R of evenly sized square regions and the number
of data items IV, within each region r € R is determined. The entropy of
the entire grid is then given by

B(©) =~ 3 Ny log(3)

reR N
where N is the total number of data items on the grid. Using different
resolutions of grid regions, this measure permits to perceive the emergence
of clusters (of different scales) on the grid. However, as no information about
the similarity of the clustered data items is provided, the measure by itself
is not very expressive in the context of either cluster analysis or topographic
mapping.

The neighbourhood function f(%) can be used to compute the average
local fit [51] of the spatial distribution of the data elements on the grid. For
each item 4, the neighbourhood function f(7) is evaluated resulting in the
formula

F(©)= v ) f(0)
=0

where N is the total number data items on the grid. Recall that the neigh-
bourhood function is defined as

f(z.):{ Ly -2y it () >0

0 otherwise

The mean fit takes values in the interval [0, 1] and, during the sorting process,
it is to be maximised. While this evaluation function reflects the local sorting
on the grid to some degree, it is hard to interpret for two reasons.

e The obtainable range of values depends on the parameter «, which
varies for different data distributions. This makes it hard to summarise
evaluations across different test sets.

e The neighbourhood function takes both the similarity and the density
of the local neighbourhood into account. While this is a necessary
feature of the neighbourhood function for the clustering process, it is
not entirely useful for evaluation purposes. It makes it hard to infer the
actual average similarities observed within the neighbourhood, that is,
to distinguish between low mean fit values due to (1) a high density
with low similarity values and (2) a low density with high similarity
values (cf. Figure 12).

These difficulties can be partly overcome by summing over the modified
neighbourhood function

1
5(i, j
NOCC; (i, 5)

k(i) =
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(a) (b)

Figure 12: Two distributions of similarities. "X’ signifies the reference data element
(i-e., the current ant position), -’ signifies an empty grid cell. Under the measure
of mean fit both distributions take the value of 0.4. The measure of dissimilarity, in
contrast, gives a dissimilarity of 0 for (a) and 0.6 for (b), which is more appropriate.

where N, is the number of actually occupied grid cells within the local
neighbourhood of data item ¢ on the grid. The resulting measure is that of
mean dissimilarity [47).

46



Parvula (nam exemplo est) magni formica
Ore trahit, quodcunque potest, atque addit
Quem struit; hand ignara ac non incauta.

(Horacius)

6 Modifications to ant-based clustering and sort-
ing

In Section 4 an overview of previous research on ant-based clustering and
sorting has been given. In sight of the evaluations and comparisons per-
formed for the algorithm so far, one is inclined to ask the following ques-
tions.

(1) Why have evaluation measures for cluster analysis found so little appli-
cation?

Certainly not for a lack of measures, when, as we have seen in the previ-
ous section, the data-mining literature provides a large pool of evaluation
functions. The main problem is one related to the nature of the algorithm’s
outcome: it does not generate an explicit partitioning but a spatial distri-
bution of the data elements. While this may contain clusters ‘obvious’ to
the human observer, an evaluation of the clustering performance requires
the retrieval of these clusters, and it is not trivial to do this without human
interaction (e.g., ‘marking’ of the clusters) and without distorting the re-
sulting partitioning (e.g., by assuming that the correct number of clusters
has been identified).

(2) Why has evaluation been limited to such a small range of benchmark
data?

This is, at least partly, due to the difficulty of devising appropriate parameter
settings for ant-based clustering and sorting on different types of data, which
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makes its application to new data sets rather tedious.

A rigorous evaluation of the performance of ant-based clustering and
sorting requires a solution to both of the above problems. In this section,
we address these issues in order to prepare the ground for the comparative
study presented in Section 7.

We start by investigating a number of modifications to the algorithm
and their potential to improve the algorithm’s performance. In this context,
we pay particular attention to two properties of the spatial distribution gen-
erated by the ant algorithm: the compactness of individual clusters and the
spatial separation between them. Both of these are crucial for the unambigu-
ous interpretation of the resulting partitioning, and for the working of the
scheme of cluster retrieval that we present subsequently. Finally, we describe
how suitable parameter settings can generally be derived from the data and
present a new scheme of self-adaptation for the scaling parameter a.

6.0.5 Basics

The basic ant algorithm (see Algorithm 1) starts with an initialisation phase,
in which (i) all data items are randomly scattered on the toroidal grid; (ii)
each agent randomly picks up one data item; and (iii) each agent is placed
at a random position on the grid. Subsequently, the sorting phase starts:
this is a simple loop, in which (i) one agent is randomly selected; (ii) the
agent performs a step of a given stepsize on the grid; and (iii) the agent
(probabilistically) decides whether to drop its data item. In the case of a
‘drop’-decision, the agent drops the data item at its current grid position
(if this grid cell is not occupied by another data item), or in the immediate
neighbourhood of it (it locates a nearby free grid cell by means of a random
search). It then immediately searches for a new data item to pick up. This
is done using an index that stores the positions of all ‘free’ data items on the
grid: the agent randomly selects one data item 7 out of the index, proceeds
to its position on the grid, evaluates the neighbourhood function f*(7), and
(probabilistically) decides whether to pick up the data item. It continues
this search until a successful picking operation occurs. Only then the loop
is repeated with another agent.

For the picking and dropping decisions Deneubourg et al.’s threshold
formulae (also see Equation 1 and 2) are used:

. kT 9
ppick(z) = (m)

and )
, i
pdrop(z) = (k)_ + f*(z) )2
Here, we use k¥ = 0.3 and ¥~ = 0.1, and f*(i) is a modified version of
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Algorithm 1 basic_ant

1:

e e e e e
DD O R W NN = O

17:
18:
19:
20:
21:
22:
23:

begin
INITTALISATION PHASE
Randomly scatter data items on the toroidal grid
for each j in 1 to #agents do
i := random_select(remaining_items)
pick_up(agent(j), )
g := random_select(remaining_empty_grid_locations)
place_agent(agent(j), g)
end for
MAIN LOOP
for each it_ctr in 1 to #iterations do
j := random_select(all_agents)
step(agent(j), stepsize)
i := carried_item(agent(j))
drop := drop_item?(f*(i)) // see equations 2 and 4
if drop = TRUE then
while pick = FALSE do
i := random _select( free_data_items)
pick := pick_item?(f*(i)) // see equations 1 and 4
end while
end if
end for
end
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Lumer and Faieta’s [51] neighbourhood function (see Equation 3):
S e s enrs . 50
f*(z.):{ Ly = Dy i (fr() > 0 AV (1 — %) 5 ) n

0 otherwise

This definition of f*(i) combines two important properties. First, as in the
original neighbourhood function f (%), the division by the neighbourhood size
02 penalises empty grid cells, thus inducing a tight clustering (rather than
just a loose sorting). Secondly, the additional constraint Vj (1 — %) >0
serves the purpose of heavily penalising high dissimilarities, which signifi-
cantly improves spatial separation between clusters.

If not indicated otherwise, the parameter settings and the adaptive scal-
ing scheme described in Section 6.0.11 are used in the experiments discussed
in this section.

6.0.6 Short-term memory with ‘look-ahead’

The clustering process on the grid can be significantly accelerated by the
use of a ‘short-term memory’ as introduced in [51]. Recall that in Lumer
et al.’s approach, each agent remembers the last few carried data items and
their respective dropping positions. When a new data item is picked up,
the position of the ‘best matching’ memorised data item is used to bias the
direction of the agent’s random walk. Here, the ‘best matching’ item is the
one of minimal dissimilarity &(4, j) to the currently carried data item i. We
have extended this idea as follows.

In a multi-agent system the items stored in the memory might already
have been removed from the remembered position. In order to determine
more robustly the direction of bias, we therefore permit each ant to ‘look
ahead’. An ant situated at grid cell p, and carrying a data item ¢, uses its
memory to proceed to all remembered positions, one after the other. Each
of them is evaluated using the neighbourhood function f*(i), that is, the
suitability of each of them as a dropping site for the currently carried data
item 7 is examined. Subsequently, the ant returns to its starting point p.

Out of all evaluated positions, the one of ‘best match’ is the grid cell for
which the neighbourhood function yields the highest value. For the following
step of the ant on the grid, we replace the use of a biased random walk with
an agent ‘jump’ directly to the position of ‘best match’. However, this
jump is only made with some probability, dependent on the quality of the
match; the same probability threshold that we use for a dropping operation
is used for this purpose. If the jump is not made, the agent’s memory is
de-activated, and in future iterations it reverts to trying random dropping
positions until it successfully drops the item.

This modification slightly speeds up the clustering process, which, in
Figure 13, is reflected in the quicker rise of the overall and intra-cluster
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Figure 13: Results for ants with and without look-ahead on the Squarel test set
(cf. Section 7.6.1 for a description of this data set). Mean values and standard
deviations for 50 runs. (a) Evolution of the intra-cluster Pearson correlation. (b)
Evolution of the overall Pearson correlation. (¢) Evolution of the entropy. (d)
Average runtime per time step.

Pearson correlation values. It also encourages the compactness of clusters,
which can be seen in the lower entropy values. It should also be noted that
no significant increase in runtime can be observed.

6.0.7 Increasing radius of perception

The size of the local neighbourhood perceived by the ants limits the infor-
mation used during the sorting process. It is therefore attractive to employ
larger neighbourhoods in order to improve the quality of the clustering and
sorting on the grid. However, the use of a larger neighbourhood is not only
more expensive (as the number of cells to be considered for each action grows
quadratically with the radius of perception), but it also inhibits the quick
formation of clusters during the initial sorting phase.

We therefore use a radius of perception that gradually increases over
time. This saves computations in the first stage of the clustering process
and prevents difficulties with the initial cluster formation. At the same time
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Figure 14: Results for ants with and without increasing radius of perception on the
Squarel test set (cf. Section 7.6.1 for a description of this data set). Mean values
and standard deviations for 50 runs. (a) Evolution of the intra-cluster Pearson
correlation. (b) Evolution of the overall Pearson correlation. (c) Evolution of the
mean fit (for o2 = 49). (d) Average runtime per time step.

it accelerates the dissolution of preliminary small clusters, a problem that
has already been addressed in [51, 35]. In the current implementation, we
start with an initial perceptive radius of 1 and linearly increase it to be 5 in
the end. While doing so, we leave the scaling parameter U% in Equation 4
unchanged, as its increase results in a loss of spatial separation.

In Figure 14 we again show results on a synthetic data set. While the in-
creasing radius improves the sorting quality within individual clusters (which
is reflected by the average intra-cluster Pearson correlation and the mean
fit), the overall gain is not as large as expected. It is particularly interesting
that the first increase of the radius (from 1 to 2) triggers a significant rise of
the mean fit; however, this is not the case for any of the further increments.
On the other hand, the large radius contributes to a better spatial separation
between the clusters, which is the main reason for the significant rise in the
value of the overall Pearson correlation (see Section 5.2.2 for a discussion
of the effects of spatial separation on the values obtained under the overall
Pearson correlation). The plot of the average runtime per time step clearly
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(a) ()

Figure 15: Spatial distribution on the grid at different stages. (a) After the initial
clustering phase: the clusters touch. (b) After the interlude with the modified
neighbourhood function: the clusters occupy individual grid regions. (c) Final
result: the clusters are clearly separated.

shows the quadratical increase of time complexity at each increment of the
radius of perception.

6.0.8 Spatial separation

As stated above, the spatial separation of clusters on the grid is crucial in
order for individual clusters to be well-defined. Spatial closeness, when it
occurs, is, to a large degree, an artefact of early cluster formation. This
is because, early on in a run, clusters will tend to form wherever there are
locally dense regions of similar data items; and thereafter these clusters tend
to drift only very slowly on the grid. After an initial clustering phase, we
therefore use a short interlude (from time tsqr¢ t0 tenq) with a modified
neighbourhood function, which replaces the scaling parameter 0—12 by Nicc
Equation 4, where N, is the actual observed number of occupied grid cells
within the local neighbourhood. Hence only similarity, not density, is taken
into account, which has the effect of spreading out data items on the grid
again, but in a sorted fashion; the data items belonging to different clusters
will now occupy individual ‘regions’ on the grid. Subsequently, we turn back
to using the traditional neighbourhood function. Once again, clear clusters
are formed, but they now have a high likelihood of being generated along the
centres of these ‘regions’, due to the lower neighbourhood quality at their
boundaries.

In order to give a better idea of the functioning of this strategy, Figure 15
provides three snapshots of the spatial distribution on the grid, at different
times of the clustering process. Analytically, the improved spatial separation
can again be observed in plots of the overall Pearson correlation (not shown
here).

in
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Figure 16: Results for flat and weighted neighbourhoods on the Squarel test set
(cf. Section 7.6.1 for a description of this data set). Mean values and standard
deviations for 50 runs. (a) Evolution of the intra-cluster Pearson correlation. (b)
Evolution of the mean fit (for 02 = 49). (c) Evolution of the entropy. (d) Average

In all previous versions of the algorithm flat neighbourhoods have been used,
that is, in the computation of the neighbourhood function f*(z) (Equation 4)
all grid cells have the same impact. Here, we investigate the effect of weighted
neighbourhoods, that is, a neighbourhood function where the similarity value
for each data item in the local neighbourhood is multiplied by an additional
weight term w(3, j), to improve the sorting on a local scale.

>0

Hence, the conventional neighbourhood function would be the special case
of w(i,j) =1 for all data items j. We use



where p is the radius of perception and d; (i, j) and dy (%, j) are the distances
(in horizontal and vertical direction) of data item 7 and j on the grid. Hence,
the weights are bounded to the interval [%, 1], with higher emphasis being
given to the grid cells closest to the ant’s position.

In Figure 16 the two different types of neighbourhoods are compared for
p = 3. The improvement of the local sorting quality (see the plots of the
intra-cluster Pearson correlation and the mean fit) obtained through the use
of a weighted neighbourhood is evident, however, the overall quality is still
rather low. Unfortunately, the weighting also results in looser clusters (see
the plot of the entropy) and a largely augmented runtime.

6.0.10 Modified threshold functions

We also introduce a set of threshold functions that are different to those
proposed by Deneubourg and Lumer and Faeita. The probability threshold
for a picking operation is now determined as

. [ 10 iffr() < 1.0
Ppick(i) = { b else (5)

and for a dropping operation we compute

Pirop(i) = { Lo 0210 .

These functions have two advantages over the traditional probability thresh-
olds. First, they are computationally cheaper, and, second, they avoid the
introduction of the parameters k* and k™.

Equations 5 and 6 have been experimentally derived, but in order to
further clarify their characteristics, the graphs in Figure 17 compare them
to those used by Lumer and Faieta (with k¥ = 0.1 and k= = 0.3). Clearly,
the dropping strategy shaped by the new threshold function is far more
conservative than that defined by Lumer and Faeita’s version. The proba-
bilities in the ‘low-similarity‘ region of the threshold function are lowered;
high similarities, in contrast, are additionally rewarded. In fact, the drop-
ping of data elements is completely deterministic for neighbourhood values
f*(i) > 1.0. Similarly, picking operations are deterministic for the entire
range f*(i) € [0,1]. Only for neighbourhood values f*(i) > 1 picking oper-
ations become less likely.

Note that the above given threshold formulae are quite different from
the ones suggested by Deneubourg et al. and are not applicable to the basic
ant algorithm. They have been experimentally derived for the use with our
enhanced version (including an increasing radius of perception, a short-term
memory with lookahead and an interlude with a modified neighbourhood
function), for which they significantly speed up the clustering process. In
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Figure 17: Old and new threshold functions. (a) Dropping operation. (b) Picking
operation.

particular, they have to be seen in light of the shift of the range of attainable
values f*(i) resulting from our increase of the radius of perception (see
Section 6.0.7).

In the starting phase of the algorithm, f*(i) is limited to the interval
[0, 1]; the upper bound, however, increases with each increment of the neigh-
bourhood radius, such that, in our implementation, f*(i) can yield values
within the interval [0, 15] after the last increment.?® Consequently, the pick-
ing operation is purely deterministic in the beginning, and, at this stage, it
is the dropping operation solely that favours dense and similar neighbour-
hoods. Gradually, with the rise of f*(i), an additional bias towards the
picking of misplaced data items is introduced. The shift of the values of
f*(i) combined with the use of the threshold functions py, . (i) and pj, (%)
(Equations 5 and 6) has the effect of decreasing the impact of density for
the dropping threshold while, simultaneously, increasing it for the picking
threshold. This results in an improved spatial separation between clusters.

Figure 18 shows the outcome of experiments that compare two enhanced
versions of the algorithm: the first making use of Lumer and Faieta’s thresh-
olds, and the second using our new probability functions. The plot of the
entropy shows that this scheme initially results in a very quick reduction of
the entropy, as small clusters are more unstable. In fact, all data items are
aggregated in one single cluster with a limited degree of sorting. As there is
no spatial separation between clusters at this stage, the overall Pearson cor-
relation is noticeably lower to the case when Lumer and Faieta’s threshold
functions are used. However, the increment of the radius quickly provokes
a separation of the clusters, such that the final overall Pearson correlation
values are higher than those obtained with Lumer and Faieta’s thresholds.

This can be easily seen: The final radius of perception is 5, hence, the similarities of
1200 grid cells are summed up, which can, at best, yield a value of 120. As we do NOT
update the scaling parameter o when increasing neighbourhood size, it is still set to 8,

and we therefore obtain f = 122 = 15.
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Figure 18: Track of the sorting progress for the new and old threshold functions.
Mean values and standard deviation for 50 runs. (a) Evolution of the overall Pearson
correlation. (b) Evolution of the entropy. (¢) Average runtime per time step.

Also, the clusters are more dense and distinctively separated, which can be
seen visually and can also be analytically assessed by the frequency of failure
of our scheme of cluster retrieval (see Section 6.0.12). The most interest-
ing property is, however, the significant decrease in runtime afforded by the
modified thresholds that comes at no costs in terms of quality.

6.0.11 Parameter settings

Ant-based clustering requires a number of different parameters to be set,
some of which have been experimentally observed to be independent of the
data. These include the number of agents, which we set to be 10, the size of
the agents’ short-term memory, which we equally set to 10, and ¢4+ and
tend, which we set to 0.45 - #iterations and 0.55 - #iterations.

Parameters to be set as a function of the size of the data set

Several other parameters should however be selected in dependence of the
size of the data set tackled, as they otherwise impair convergence speed.
Given a set of Njems items, the grid (comprising a total of Ngs cells)
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should offer a sufficient amount of ‘free’ space to permit the quick dropping
of data items (note that each grid cell can only be occupied by one data
item). This can be achieved by keeping the ratio roccupied = ]X}t—zl’;” constant.

A good value, found experimentally, is 7occupied = 11—0. We obtain this by
using a square grid with a resolution of v/10N;tems X v/ 10Njems grid cells.
The stepsize should permit sampling of each possible grid position within
one move, which is obtained by setting it to stepsize = 1/20Njiems. The
total number of iterations has to grow with the size of the data set. Linear
growth proves to be sufficient, as this keeps the average number of times
each grid cell is visited constant. Here, #iterations = 2000N;iems, with a
minimal number of 1 million iterations imposed.

Activity-based a-adaptation

An issue already addressed in [35] is the automatic determination of the
parameter a (recall that « is the parameter scaling the dissimilarities in the
neighbourhood function f*(7)), which the functioning of the algorithm cru-
cially depends on. During the sorting process, a determines the percentage
of data items on the grid that are classified as similar, such that: a too small
choice of a prevents the formation of clusters on the grid; on the other hand,
a too large choice of « results in the fusion of individual clusters, and in the
limit, all data items would be gathered within one cluster.

Unfortunately, a suitable choice of the parameter « depends on the dis-
tribution of pairwise dissimilarities within the collection and, hence, cannot
be fixed without regard to the data. However, a mismatch of « is reflected
by an excessive or extremely low sorting activity on the grid. Therefore,
an automatic adaptation of a can be obtained through the tracking of the
amount of activity, which is reflected by the frequency of the agents’ suc-
cessful picking and dropping operations. The scheme for a-adaptation used
in our experiments is described below.

A heterogenous population of agents is used, that is, each agent makes
use of its own parameter a. All agents start with an « parameter randomly
selected from the interval [0, 1]. An agent considers an adaptation of its own
parameter after it has performed Nty moves. During this time, it keeps
track of the number of failed dropping operations Nyq;. The rate of failure

is determined as 74 = VIZM where Nycpive is fixed to 100. The agent’s

ctive

individual parameter « is then updated using the rule

a+0.01 if rpe > 0.99
a—0.01 if T fail < 0.99

which has been experimentally derived. « is kept adaptive during the entire
sorting process. This makes the approach more robust than an adaptation
method with a fixed stopping criterion. Also, it permits for the specific
adaptation of o within different phases of the sorting process.
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Figure 19: Results for the adaptive and non-adaptive scheme on the Squarel test
set (cf. Section 7.6.1 for a description of this data set). Mean values and standard
deviations for 50 runs. (a) Evolution of the entropy. (b) Evolution of the overall
Pearson correlation. (c) Evolution of « for the adaptive scheme.

The aim of this adaptive scheme is to obtain results which are compa-
rable to those with a suitable manually determined «-parameter, as this
manual determination is extremely tedious even when being familiar with
the algorithm. Results on our test sets lead to the conclusion that this aim
is met. In general, the non-adaptive algorithm is even slightly outperformed
by the adaptive version. Additionally, the adaptive version permits a very
quick convergence of the algorithm, as initially large o values favour the
quick crystallization of clusters, which are subsequently refined when the
values of a decrease. In contrast to this, the non-adaptive version takes a
far longer warm-up time before clusters eventually emerge.

6.0.12 Cluster-retrieval

As stated before, the analytical evaluation of the clustering results requires
the derivation of an automatic method to retrieve the ‘visually’ obvious clus-
ters from the grid. In [54] methods from pattern recognition were employed
to identify the size of the clusters on the grid and to examine their density.
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For our purpose, we chose to to apply a clustering algorithm to the grid
positions of all data items. In [49], a K-means algorithm was used towards
this goal, this approach, however, has the disadvantage that the number
of clusters must be specified, which either requires user interaction (if the
visually apparent number of clusters is provided by a human) or distorts the
final results (if the correct number of clusters is provided).

We therefore apply an agglomerative hierarchical clustering algorithm
to the positions of the data items on the grid. The algorithm starts by
assigning each data item on the grid to an individual cluster, and proceeds
by merging the two least distant clusters (in terms of their spatial distance
on the grid) in each iteration, until a stopping criterion is met.

Given two clusters C7 and C5 on the grid and, without loss of generality,
|C1| < |Cyl, we define their spatial distance in grid-space as

weighted_singlelink(C1, Cy) = singlelink(C1, C2) - weight(C1, Cs)

Here, singlelink(C1,C5) is the standard linkage metric of single link, that
is, the minimal distance between all possible pairs of data elements ¢ and j
with ¢ € C1 and 7 € Cs. In our case, the distance between two data elements
is given by the Euclidean distance between their grid positions. The term
weight(C1, Cs) is an additional scaling factor taking the relative sizes of the
clusters into account:

weight(Cy,Ce) = 1.0 + log;((1.0 + 9.0 - %)
Clearly, weight(C1,Cb) is restricted to the range (1,2].

Given compact clusters and a distinct spatial separation between clus-
ters, an agglomerative algorithm based on the single link criterion will clearly
work very well and a stopping criterion for the clustering algorithm can
easily be derived. However, as data items around the cluster borders are
sometimes slightly isolated (so that they are prone to mislead the single link
metric by establishing individual clusters or ‘bridging’ gaps between clus-
ters), we have introduced the additional weighting term weight(C7, C2) that
encourages the merging of these elements with the ‘core’ clusters.

The radius of perception used within the last phase of the ant-based
algorithm signifies the minimum distance clusters should have on the grid,3°
and therefore provides a suitable stopping criterion for the agglomerative
clustering algorithm. The merging of clusters stops once all the distances
between the clusters have reached a value larger than this radius.

6.0.13 Overall improvement

From the changes introduced in this section, we adopt the following for the
ant algorithm used in our comparative study: the data-derived parameter

30Provided that the grid is large enough for all clusters to be well separated, of course.
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Figure 20: Results for the different versions of the algorithm on the Squarel
test set (cf. Section 7.6.1 for a description of this data set). Mean values and
standard deviations for 50 runs. (a) Evolution of the overall Pearson correlation.
(b) Evolution of the dissimilarity.

settings and the scheme of a-adaptation, the increasing radius of perception,
the interlude with a modified neighbourhood function, the short-time mem-
ory with look-ahead and the new probability thresholds. We refrain from
using the weighted neighbourhoods due to their significant computational
costs.

To conclude this section, we provide graphs on the overall improvement
obtained as compared to the baseline algorithm without any extensions.
Figure 20 gives the algorithms’ performance in terms of the overall Pearson
correlation and the mean fit. The plots show that the modifications improve
the local sorting quality and the algorithm’s performance in terms of the
overall Pearson correlation. Most importantly, the generated clusters are
compact and spatially well separated. Analytically, this is reflected in the
performance of our scheme of cluster retrieval: it works robustly for the
results obtained by the enhanced algorithm, whereas it frequently fails for
those of the old version.

61



At the heart of quantitative reasoning
s a single question: Compared to what?

(Tufte)

7 Comparison of ant-based clustering and sorting
to alternative methods

In this section, the primary contribution of this thesis is finally presented,
which is the experimental investigation of the performance of ant-based clus-
tering and sorting, and its comparison to traditional data-mining techniques.
We start by reviewing the main scientific questions that we attempt to an-
swer, and that have shaped the experimental setup. Next, the setup itself
is described, including a motivation and description of the algorithms, the
evaluation functions and the test data used. Subsequently, the obtained
results are presented and discussed.

7.1 Questions of interest

The literature survey in Section 4 has shown that previous research on ant-
based clustering and sorting has left several questions related to the algo-
rithm’s performance widely unanswered, many of which fall into one of the
following three categories.

e Clustering performance
Seen purely as a clustering algorithm, how does the ant algorithm
perform? How do its results compare to those obtained using classical
clustering methods from the data-mining literature? In particular, are
its solutions competitive in terms of quality and runtime?

e Sorting performance
To what degree is the spatial embedding generated by the ant algo-
rithm topology-preserving? Are neighbourhood relations preserved on
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a local or a global scale, or both? How do its results compare to those
obtained using classical methods for topographic mapping from the
data-mining literature? In particular, are its solutions competitive in
terms of quality and runtime?

e Sensitivity to data properties
How robust is the ant algorithm’s clustering and sorting performance
with respect to different data properties? In particular, how strong is
it affected by the use of high dimensional and/or large data sets, by
increasing overlap between clusters, or distinct deviations in the sizes
of individual clusters?

The above aspects reflect the main issues investigated in the following com-
parative study. For their objective and general analysis a number of different
issues needed to be resolved, many of which are not trivial.

7.2 Challenges

Both the comparison of the clustering and the sorting performance requires
the selection of appropriate contestants from the large variety of existing
data-mining methods. As we have seen these methods differ however in the
problem definition and the (implicit or explicit) optimisation criterion used,
such that the choice of the algorithms must be closely coupled with the
selection of suitable evaluation functions.

The evaluation of the quality of a topographic mapping is particularly
precarious, as, even for synthetic data sets, the ‘ideal’ solution is not clearly
defined and the applicable measures only capture certain aspects of the
generated solution. Also, quality assessment based on individual measures
can be heavily misguiding (cf. Section 7.8.2), and a close feedback loop
between visual and analytical analysis is therefore indispensable in order to
understand and correctly interpret results.

The analytical assessment of the clustering performance poses the ad-
ditional problem of an unbiased cluster retrieval, an issue that we have
addressed in Section 6.0.12.

Most importantly, the algorithms selected for comparison should (i) be
general and well-known enough to permit an interpretation of the results
by a larger audience while (ii) being sufficiently enhanced to pose a chal-
lenge to the investigated ant-algorithm. In this context, it is also crucial to
pay attention to introduce as little bias as possible through the selection of
evaluation measures and data sets used.

Table 1 and Table 2 summarise the algorithms and evaluation measures
we have decided to use in our comparative study. We will shortly moti-
vate these choices in the following and outline the implementation of the
individual algorithms.
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Table 1: Overview of algorithms.

Cluster Analysis Topographic mapping

K-means MDS

average link lower bound
1D-SOM 2D-SOM
ant-based clustering ant-based sorting

7.3 Algorithms for cluster analysis

In Section 2 the main classes of available clustering methods have been intro-
duced. Out of these, we have selected two of the most commonly used algo-
rithms for the comparison to ant-based clustering: the partitioning method
K-means, and a hierarchical agglomerative approach based on the linkage
criterion of average link. While K-means has a favourable (linear) runtime
behaviour, average link agglomerative clustering is known for its high qual-
ity solutions, such that a comparison against both of them provides a good
basis for judgements on the performance of the ant-algorithm. Additionally,
one-dimensional self-organising maps (1D-SOM) were used, a choice moti-
vated by the fact that SOMs combine the tasks of clustering and topographic
mapping (just as claimed for ant-based clustering and sorting).

Both K-means and 1D-SOM usually require the a priori determination of
the desired number of clusters K; for the agglomerative clustering algorithm
an appropriate stopping criterion must be derived. In order to avoid the
introduction of an additional source of error, we decided to directly provide
the correct number of clusters K to each of the three algorithms, thus giving
the same advantage to each of them. Hence, in our study the ant-based
algorithm is the only clustering method that automatically derives K from
the data. The implementations of the four contestants are shortly described
below.

7.3.1 K-means

The implementation of the K-means algorithm is based on the batch version
of K-means, that is, cluster centres are only recomputed after the reassign-
ment of all data items. As K-means can sometimes generate empty clusters,
these are identified in each iteration and are randomly reinitialised. This
enforcement of the correct number of clusters can prevent convergence, and
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we therefore set the maximum number of iterations to 1000. To reduce
suboptimal solutions K-means is run repeatedly (20 times) using random
initialisation, and only the best result in terms of intra-cluster variance is
returned.

7.3.2 Average link agglomerative clustering

The implementation of average link agglomerative clustering uses a distance
matrix of the pairwise distances between clusters that is incrementally up-
dated. Initially, this is simply the data set’s complete dissimilarity matrix.
After each merging step this matrix is updated using Ward’s formula: the
fusion of the two clusters C; and C} to form cluster Cj requires the com-
putation of the distances between C} and each remaining cluster Cj; these
distances are given as

|Cil

d(C, C)) = i+ d(C;, Cy) +

1G]

— . d(C;, C
G+ 1oy 4G )

The algorithm terminates when the correct number of clusters has been
obtained.

7.3.3 One-dimensional self-organising maps

The implementation of 1D-SOM is based on the guidelines given in the de-
scription of the SOM Toolbox [77]. The correct number of clusters K is used
to set the grid resolution to 1 x K (rectangular grid cells); the weight vec-
tors are uniformly randomly initialised. The SOM is trained in two training
phases, a first ‘coarse’ approximation phase and a second fine-tuning phase.

The first phase starts with a neighbourhood size of ns§!%"* = max(1.0, iK )

which is exponentially decreased to ns$™ = max(1.0, insft‘m). The learn-
ing rate during this phase is Ir; = 0.5. The second phase starts with the
final neighbourhood size of phase 1, that is, ns§** = ns{"¢ and continues
to decrease it to ns§"® = 1.0. The learning rate in phase 2 is Iro = 0.05. The
number of iterations for each phase are i¢; = 10 and ite = 40 respectively,
and, in each iteration, all data items are presented to the SOM in random
order. Finally, in the classification step all data items are assigned to the
best matching output neuron. Each output neuron is interpreted as one

cluster.

7.3.4 Ant-based clustering

Like average link agglomerative clustering, the ant algorithm uses a pre-
computed matrix of pairwise dissimilarities between data elements. Of the
enhancements explained in Section 6 the following ones are used: data-
derived parameter settings, the a-adaptation scheme, a short-term memory
with look-ahead, an increasing radius of perception, the interlude with a
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modified neighbourhood function and the new threshold functions. The
method of cluster retrieval introduced in Section 6.0.12 is applied to convert
the spatial mapping to an explicit clustering solution. In the following, we
refer to this algorithm as ant-based clustering.

7.3.5 Gap statistic

For the evaluation of ant-based clustering’s performance at identifying the
correct number of clusters in the data, we additionally compare against
the results returned by the Gap statistic, a recently proposed automated
method for the determination of the number of clusters in a data set [75].
This statistic is based on the expectation that the most suitable number
of clusters shows in a significant ‘knee’ when plotting the performance of
a clustering algorithm as a function of the number of clusters K. For this
purpose, the clustering problem is solved for a range of different values of
K and, for each K, the resulting partitioning C' = {C1, ..,Ck} is evaluated
by means of the intra-cluster variance, which is given by

V(C)= ) > (6, k)
CLECiEC),

Here CY, is the kth cluster in the partitioning, iy is the corresponding cluster
centre, and d(%, uy) gives the dissimilarity between data item 4 and py. The
intra-cluster variance is affected by the number of clusters, such that a plot
Var(K) showing the evolution of V(C) as a function of the input parameter
K exhibits a decreasing trend that is solely caused by the finer partitioning
and not by the actual capturing of structure within the data. The Gap
statistic overcomes this effect through a normalisation of the performance
curve. B reference curves Ry(K) (with b € {1,...B}) are computed, which
are the performance curves obtained with the same clustering algorithm
for uniform random reference distributions. Using these, the normalised
performance curve (‘Gap curve’) for Var(K) is then given as

B
Gap(K) = 5 3" log(Ry(K) ~ log(V ar(K))
b=1

The most suitable number of clusters is determined by finding the first
significant local maximum of Gap(K).

For our implementation of the Gap statistic we use the above described
K-means algorithm. We compute the performance curves for K € {1, ...,20},
and, for each K, we generate B = 20 reference distributions.

7.4 Algorithms for topographic mapping

Section 3 has provided a survey of the types of methods known for to-
pographic mapping. From this pool, we have selected two alternative ap-
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proximation methods. These are, first, an iterative approach to non-metric
multidimensional scaling, and, second, two-dimensional self-organising maps
(2D-SOM), both established visualisation methods. A strong motivation for
the use of 2D-SOM was the similarity of its solutions to those of ant-based
clustering and sorting: both are grid-based, whereas in MDS data items are
assigned continuous positions (which permits additional precision that is not
necessarily evident to the human observer but may show in an analytical
evaluation). In addition, we use a simple randomised method to obtain a
lower bound on map quality.

7.4.1 Non-metric multidimensional scaling

The iterative approximation scheme used for non-metric multidimensional
scaling is a gradient descent method that (locally) minimises non-metric
stress. The method starts by normalising dissimilarities to cover the inter-
val [0,1]. At the beginning of each iteration all data items are randomly
permuted. One after the other, each data item is then ‘pinned’ and the
positions of all other data items are shifted (in horizontal and vertical di-
rection) with respect to the pinned item. With data element p pinned, the
update of item %’s position in direction z is

d(pa ’L) — 6(1), Z)
d(p,1)

where Ir = 0.05, d(.,.) is the Euclidean distance between data items in
map-space, dg(.,.) is the deviation in direction z between data items in
map-space, and §(,.) is the dissimilarity between data items in data-space.
The update dy (in direction y) is computed analogously.

dxr = —Ir x - dg(p,1)

7.4.2 Two-dimensional self-organising maps

For 2D-SOM, a square grid was used, with the number of rectangular cells
equal to the collection size, that is, using a grid resolution of v/Ngyes X
vV Ngoes- All further implementation details are identical to those for 1D-
SOM.

7.4.3 Lower bound

A lower bound on map quality is obtained using the known cluster structure
of the data. For each cluster (as described by the class labels), we randomly
determine a position on the grid. The data elements of the individual clus-
ters are then randomly scattered on the grid cells in the close proximity of
the respective grid position (one data item per grid cell only).

During the generation of the cluster positions care is taken that clusters
have a sufficient spatial distance: the Euclidean distance between each pair
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Table 2: Overview of evaluation functions.

Cluster Analysis Topographic mapping

F-measure Pearson correlation

Rand index Inter-cluster Pearson correlation
Inner variance Intra-cluster Pearson correlation
Dunn index Spearman rank correlation

Topographic error

of cluster positions must be at least —Cﬂ% otherwise one of the colliding
positions is regenerated. Here, N ¢, gives the overall number of grid cells
and K is the number of clusters in the data set.

It is intuitively clear that the resulting ‘mapping’ is not topology-preserving,
as it does not provide more information than a pure clustering.

7.4.4 Ant-based sorting

The implementation of the ant algorithm for topographic mapping is iden-
tical to the pure clustering version (cf. Section 7.3.4). Merely the post-
processing phase for cluster retrieval has been removed. We refer to this
algorithm as ant-based sorting.

7.5 Evaluation measures

From the evaluation functions introduced in Section 5, we have selected a
set of four measures for the analysis of the clustering results and a set of five
measures for the analysis of the topographic mappings. Each of these reflects
a different aspect of the clustering and sorting quality respectively, so that,
combined, they provide an overall picture of the algorithms’ performance.

7.5.1 Measures for cluster analysis

As all experiments are run on benchmark data with the correct class labels
known, we have the chance to use external evaluation measures. For this
purpose we have chosen the Rand index and the F-measure, which both have
a tradition of use in the general clustering literature and have previously
been applied for the evaluation of ant-based clustering [57, 38]. A weakness
of the Rand index is its high sensitivity to the number of clusters identified,
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which makes it difficult to compare partitionings with a different number of
clusters; this is counterbalanced by the use of the F-measure, which is less
affected by deviations in the number of clusters.

While we don’t rely on the use of internal evaluation methods, their
use in the experiments is interesting for two reasons. First, the application
of ant-based clustering in real clustering tasks will require the evaluation
of the obtained result in the absence of knowledge on the correct solution.
It is therefore interesting to study the performance of the algorithm under
internal evaluation functions. Second, these functions provide additional
information about the structure of the obtained solutions and can therefore
help to understand and analyse results.

We have decided to use the measure of the intra-cluster variance, as this
is the function optimised by the K-means algorithm. Its use can therefore
provide additional insight in the cases where K-means generates suboptimal
solutions, or where the criterion of the intra-cluster variance is misleading.
As a second measure we apply the Dunn index, as it captures an aspect
of the solution quality that is not reflected by the intra-cluster variance,
namely the ratio between inter- and intra-cluster distances.

For each experiment, we also provide the average number of identified
clusters3! (the reader should keep in mind that this number is automatically
only determined by the ant algorithm).

7.5.2 Measures for topographic mapping

For the analysis of topographic mappings, we have decided to use the Pear-
son correlation, which permits us to compare our results with those of previ-
ous studies [34, 48]. While the stress function has also been used in previous
work on ant-based clustering and sorting, we have decided against its use,
as it is not invariant under scaling. Invariance under scaling is an important
issue in our comparison, as grid sizes for the ant algorithm are required to
be much larger than those for self-organising maps.

Given our knowledge of the cluster structure for all data sets, we can
additionally compute the inter-cluster and the intra-cluster Pearson corre-
lation (averaged over all clusters), which provide valuable insights into the
composition of the overall Pearson correlation. As a last correlation mea-
sure, we additionally use the Spearman rank correlation in order to abstract
from absolute distance values.

All of these correlation measures predominantly capture neighbourhood
preservation on a global scale. This can put the self-organising maps at a
disadvantage, as they optimise topology-preservation on a local scale. We
therefore use an extended implementation of the topographic error as an

311t is important to note, that none of the used measure is completely insensitive to
the number of identified clusters. In fact, the objective comparison of partitionings with
a differing number of clusters is a prevailing problem in the data-mining community.
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additional measure. It determines the percentage of data items that are
nearest neighbours in data-space, and have a distance of more than one grid
cell in the (discretised) map-space.>?

Whilst this measure helps to give an idea of the algorithms’ local pre-
cision, the reader should note that a comparison of the resulting values
between 2D-SOM, MDS and ant-based sorting is quite problematic. This
is because, in the mappings generated by 2D-SOM and MDS, grid cells can
be occupied by several data items, whereas ant-based sorting permits only
one data element per grid cell. Also, the grids used by 2D-SOM are smaller
than those of ant-based sorting and MDS (the mapping generated by MDS
is scaled and then discretised to yield the same size and resolution as that
generated by ant-based sorting). However, a direct comparison is possible
for the solutions of ant-based sorting and those of the lower bound method.

7.5.3 Time measurements

In addition to the average performance under these evaluation measures,
runtimes of the individual algorithms are also provided. Time and space
complexity of the algorithms are summarised in Table 3. The experiments
for topographic mapping have been run on a mobile AMD Athlon(tm) XP
2200+ (1.8MHz) with 512 MB main memory. Those for cluster analysis
have been run on an AMD Athlon(tm) XP 2400+ (2MHz) with 512 MB
main memory.

32Note that a use of the original definition of the topographic error is not possible as it
is based on the concept of the “best matching unit”, which is only defined for 2D-SOM.
The reason why we do not simply determine the percentage of data items that are nearest
neighbours in both data-space and map-space is the following: in the solutions generated
by 2D-SOM data items can have a large number of nearest neighbours in map-space (all
those assigned to directly neighbouring neurons), whereas there can be at most four for
ant-based sorting (the data items located at any of the four directly neighbouring cells),
and there is usually only one for MDS (as long as the grid positions are kept continuous).
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Table 3: Time and space complexity of the different algorithms. N is the
size of the data set and D is the dimensionality of the data.

Cluster Analysis Time Complexity Space Complexity
K-means O(DN) O(N)

average link O(N?) O(N?)

1D-SOM O(DN) O(D)

ant-based clustering O(N) O(N?)

Topographic mapping Time Complexity Space Complexity

MDS O(N?) O(N?)
2D-SOM O(DN?) O(DN)
ant-based sorting O(N) O(N?)

7.6 Experimental data

Altogether, three different types of benchmark data sets are used. First, a
range of two-dimensional data sets with fixed cluster properties that permits
the modulation of specific data properties. Second, several data sets with
randomly determined cluster properties. And, finally, several real data sets
taken from the Machine Learning Repository [8].

7.6.1 Fixed cluster properties

In the first class of synthetic data each cluster is described by a two-dimensional
normal distribution N(ji, ). The number of clusters, the sizes of the indi-
vidual clusters, and the mean vector ji and vector of the standard deviation
& for each normal distribution are manually fixed. In each run of the exper-
iments, a new set of data is sampled from these distributions.

Table 4 gives the definition of the benchmarks, and Figure 21 shows four
sample instances. The benchmarks are variations of the Square data set, a
data set that has been frequently employed in the literature on ant-based
clustering. It is two-dimensional and consists of four clusters of equal size
(250 data items each), which are generated by normal distributions with a
standard deviation of 2 in both dimensions and are arranged in a square.

The data sets Squarel to Square7 only differ by the distance between the
individual clusters (i.e., the length of the edges of the square), which is 10,
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Figure 21: Four sample instances of the Squarel, the Square, the Sizes! and the
Sizess benchmark data.

9, 8,7, 6,5 and 4 respectively. They were generated in order to study the
relative sensitivity of the algorithms to increasing overlap between clusters.

In the Sizes! to Sizess data sets, edge length and standard deviation are
kept constant, and, instead, they differ in the sizes of the individual clusters.
In particular, the ratio between the smallest and the largest cluster increases
from the Sizes! (where it is 2) to the Sizess data (where it is approximately
10). This is used to investigate the algorithms’ sensitivity to unequally-sized
clusters.

7.6.2 Random cluster properties

The above data sets are useful for the analysis of the algorithms’ performance
with respect to specific data properties. However, for sake of generality,
we have additionally introduced a range of synthetic test sets, which are
(almost) completely randomly generated. These test sets are denoted as
xD-yC, where = indicates the dimensionality of the data and y gives the
number of clusters. Each one of them sets consists of 50 different instances
and each individual instance is generated as follows.

We specify a set of y z-dimensional normal distributions N (i, &) from
which we sample the data items for the y different clusters in the instance.
The sample size s of each normal distribution, the mean vector i and the
vector of the standard deviation & are themselves randomly determined
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Table 4: Summary of the used data sets with fixed cluster properties. D is
the dimensionality, C gives the number of clusters, and N; gives the number
of data elements for cluster . The test sets are generated by multidimen-
sional Normal Distributions N (i, &), where [ is the vector of means and &
is the vector of the standard deviations.

Name C N; D Source
Squarel 4 4 x 250 2 N([0,0],[2,2]), N([10,10],[2,2))
N([0,10],(2,2]), N([10,0],[2,2])
Square2 4 4 x 250 2 N([0,0],[2,2]), N([9,9],[2,2])
N([0,9],2,2]), N([9,0],[2,2])
Square3 4 4 x 250 2 N([0,0],[2,2]), N(8,8],[2,2)
N([0,8],[2,2]), N([8,0],[2,2])
Squared 4 4 x 250 2 N([0,0],[2,2]), N([7,7],[2,2])
N([0,7],12,2]), N([7,0],[2,2])
Square5 4 4 x 250 2 N([0,0],[2,2]), N([6,6],[2,2])
N([0,6],[2,2]), N([6,0], 2,2])
Square6 4 4 x 250 2 N([0,0],[2,2)), N([5,5],[2,2])
N([0,5],12,2]), N([5,0],[2,2])
Square? 4 4 x 250 2 N([0,0],[2,2)), N([4,4],[2,2])
N([0,4],12,2]), N([4,0],[2,2])
Sizesl 4 400,200,200,200 2 N([0,0],[2,2]), N([10,10], 2, 2])
N([0,10],[2,2]), N([10,0],[2,2])
Sizes2 4 571,143,143,143 2 N([0,0],[2,2]), N([10,10], [2,2])
N([0,10],[2,2]), N([10,0],[2,2])
Sizes3 4 667,111,111,111 2 N([0,0],[2,2]), N([10,10], 2, 2])
N([0,10],(2,2]), N([10,0],[2,2])
Sizesd 4 727,91,91,91 2 N([0,0],[2,2]), N([10,10],[2,2])
N([0,10],[2,2]), N([10,0],[2,2])
Sizes5 4 769,77,77,77 2 N([0,0],[2,2]), N([10,10],[2,2])
N([0,10],[2,2]), N([10,0],[2,2])
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Table 5: Summary of the used real data sets from the Machine Learning
Repository. D is the dimensionality, C' gives the number of clusters, and N;
gives the number of data elements for cluster 3.

Name C N N; D Type

Iris 3 150 3 x50 4  Continuous

Wine 3 178 59,71, 48 13 Continuous

Zoo 7 101 41,20, 5, 13, 4, 8, 10 16 Boolean

Wisconsin 2 699 458, 241 9 Integer

Yeast 10 1484 463, 429, 244, 163, 51 8  Continuous
44, 37, 30, 20, 5

Dermatology 6 366 112, 61, 72, 49, 52, 20 34 Integer

Digits 10 3498 363, 364, 364, 336, 364 16 Integer
335, 336, 364, 336, 336

using uniform distributions over fixed ranges (with s € [50,450], u; € [0, 100]
and o; € [0,5]).

Consequently, the expected size of instances of xD-4C and zD-10C is
1000 and 2500 data items respectively. During the generation process, clus-
ter centres are rejected if the resulting distributions would have more than
3% overlap. A different instance is used in each individual run of the exper-
iments. Results are presented for six synthetic data sets of this type: these
are the sets 2D-4C, 2D-10C, 10D-4C, 10D-10C, 100D-4C and 100D-10C.

7.6.3 Data sets from the Machine Learning Repository

Table 5 shortly describes the real data sets taken from the Machine Learning
Repository. A variety of different benchmarks has been chosen in order
to account for different problem sizes and problem structures (such as a
differing number of clusters, clusters of varying sizes etc.).

7.6.4 Data Processing

Prior to clustering/topographic mapping, all types of data are subject to
the following preprocessing steps: the data vectors are normalised in each
dimension. For the ant-based algorithm, average link agglomerative cluster-
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ing and multidimensional scaling all pairwise dissimilarities are precomputed
and normalised to the interval [0,1]. Both K-means and 1D-SOM require
the computation of distances between data items and cluster representatives
(which do not necessarily correspond to data items and possibly change in
each iteration), such that a precomputation of the distances is not possible
for these two algorithms (the same applies to 2D-SOM). This clearly involves
an additional computational overhead for these methods, which rises with
increasing dimensionality of the tackled data.3

The distance functions used are as follows: For the synthetic data sets
we use the Euclidean distance, which, for two D-dimensional data items ¢
and j, is defined as

deuclidean (i, .7) =

The advantage of using the Euclidean distance is the straightforward inter-
pretation and visualisation of the data, which facilitates the derivation of
appropriate test sets and the analysis of the results. Also, the Euclidean
distance is known to work well if clusters are spatially well separated.

For the real data benchmark set, we use a distance function based on
the Cosine measure of similarity. It is given as

S0k Jk
(Choik k) (o Jk * Jk)

Hence, we compute the Cosine of the two data vectors, translate and scale
the resulting value to lie within the interval [0,1], and finally convert this
similarity value to a dissimilarity value by subtracting it from 1.0. The
Cosine measure is the similarity measure generally used with the data sets
from the Machine Learning Repository, and, in fact, results obtained with
it are, on this data, clearly superior to those obtained with the Euclidean
distance.?*

dcosine(iaj) =1.0-0.5" (1.0 +

33Note that the use of a precomputed dissimilarity matrix for average link agglomerative
clustering and ant-based clustering and sorting is possible only if data collections are small
enough for the complete triangular dissimilarity matrix to fit into the main memory. This
is no limitation within our study but it would become an issue in VLDB applications.

34The reader should note that the distance function used can crucially affect the perfor-
mance of a clustering algorithm. The differences between the Euclidean and the Cosine
measure can be illustrated as follows: The Euclidean distance simply computes the spatial
distance between vectors in data space. The Cosine measure, in contrast, first projects
all data points on a hypersphere with radius 1 around the origin. The similarity between
two data points is then given by the Cosine of the angle between the vectors pointing
to the projections of the data points. Obviously, it depends on the data whether such a
projection is advantageous or disadvantageous: it can facilitate the clustering problem,
but it can also eliminate relevant information (e.g., when the projections of two separate
clusters falls together).
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Figure 22: Performance as a function of the distance between the cluster centres
on the Square data sets. (a) F-measure (b) Number of identified clusters.

7.7 Results for cluster analysis

We now summarise the results obtained in our comparison of the ant-based
clustering algorithm with the standard clustering techniques K-means, aver-
age link agglomerative hierarchical clustering and 1D-SOM. We first discuss
the results obtained on the two types of synthetic data sets and, subse-
quently, analyse additional aspects of the algorithm’s performance revealed
by its application to the real data sets. The complete tables accompanying
the presented results can be found in the appendix.

7.7.1 Sensitivity to overlapping clusters

We study the sensitivity to overlapping clusters using the Square! to Square7
data sets. It is clear that the performance of all four algorithms necessarily
has to decrease with a shrinking distance between the clusters, as points
within the region of overlap cannot be correctly classified. It is however
interesting to see whether the performance of the individual algorithms de-
grades gracefully or more catastrophically, as a graceful degradation would
indicate that the main cluster structures are still correctly identified.

Figure 22a shows a plot of the algorithms’ performance (as reflected
by the F-measure) versus the distance between neighbouring clusters. A
number of trends can be observed in this graph. There is the very strong
performance of K-means, which performs best on the first four data sets.
The 1D-SOM starts on a lower quality level, but its relative drop in per-
formance is less than that of K-means: it clearly profits from its topology
preserving behaviour, which makes it less susceptible to noise. Average link
agglomerative clustering, in contrast, has trouble in identifying the principal
clusters and performs quite badly, especially on the data sets with a lower
inter-cluster distance.
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Figure 23: Theoretical density distribution along the connecting line between
two cluster centres in the Squares, the Square6 and the Square7 test set (from
left to right). Constructed as the superimposition of two one-dimensional normal
distributions with standard deviation 2 and a distance of 6, 5 and 4 respectively.

The results of ant-based clustering are very close to those for K-means
on the simplest data set, Squarel, but its performance drops slightly more
quickly. Still, it performs significantly better than average link on the first
five test sets. Also, in spite of the fact that the cluster ‘touch‘, the ant-
algorithm reliably identifies the correct number of clusters on the first three
test sets, and it can thus be concluded that the algorithm does not rely
on the spatial separation between clusters, but that distinct changes in the
density distribution are sufficient for it to detect the clusters.

For the Square6 and Square7 test data, the performance of ant-based
clustering drops significantly, as it fails to reliably detect the four clusters.
For the Square6 test set the number of identified clusters varies between
1 and 4, for Square7 only 1 cluster is identified. However, a plot of the
theoretical density distribution along the ‘edge’ between two neighbouring
clusters in this data set puts this failure into perspective: Figure 23 makes
clear, that, due to the closeness of the clusters, the density gradient is very
weak for the Square6 data, and the distribution of data items is nearly
uniform for the Square7 data.

The reader should keep in mind that, different from its competitors, ant-
based clustering has not been provided with the correct number of clusters.
In order to get a more precise idea of the performance of ant-based cluster-
ing, we therefore additionally analyse its success at identifying the correct
number of clusters in the data. The comparison in Figure 22b shows that
ant-based clustering performs very well, it is much less affected by the lack
of spatial separation between the clusters than the Gap statistic.

7.7.2 Sensitivity to differing cluster sizes

The sensitivity to unequally-sized clusters is studied using the Sizesl to
Sizesd data sets. Again, we show the algorithms’ performance on these data
sets as reflected by the F-measure (Figure 24a).

Ant-based clustering performs very well on all five test sets, in fact it is
hardly affected at all by the increasing deviations between cluster sizes. Out
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Figure 24: Performance as a function of the ratio between cluster sizes on the
Sizes data sets. (a) F-measure (b) Number of identified clusters.

of its three contestants, only average link agglomerative clustering performs
similarly robustly. 1D-SOM is very strongly affected by the increase of the
ratio between cluster sizes, and the performance of K-means also suffers.
The performance of the Gap statistic is again very weak when compared to
ant-based clustering (see Figure 24b).

7.7.3 Summary of the performance on synthetic data

To give an overall impression of the average performance of the four algo-
rithms on more general data, we now provide results on the zD-yC data sets.
Here, we focus on the relative quality of the clustering solutions, as assessed
by the four different measures. The runtimes of the individual algorithms
are then discussed in the subsequent section.

The graphs in Figure 25 show that ant-based clustering performs quite
well on all of these data sets. It is only beaten by average link agglomerative
clustering that performs marginally better on four out of the six data sets.
For the other two data sets (10D-4C and the 100D-4C), both ant-based
clustering and average link agglomerative clustering perform the same: they
fully reproduce the correct partitioning in each individual run.

By comparison, K-means and 1D-SOM are well beaten. While they also
obtain the ‘perfect‘ solution in a few cases, they frequently generate largely
suboptimal solutions, in particular on the zD-10C data sets.

Running the Gap statistic on the xD-yC sets demonstrates that it is
not trivial to identify the correct number of clusters K in this data. Again,
ant-based clustering clearly outperforms the Gap statistic, whose results are
less accurate and highly deviate (see Table 8.1). This somewhat relativises
the merit of average link agglomerative clustering on these benchmarks, as
it relies on the specification of K.
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Figure 25: Relative performance of ant-based clustering, K-means, average link
agglomerative clustering and one-dimensional self-organising maps on the six xD-
yC data sets. For each method, the frequency of the obtained ranks under (a) the
F-measure, (b) the Rand index, the (c) Intra-cluster variance and (d) the Dunn
index is given.

7.7.4 Summary of the performance on real data

Finally, we provide results on the algorithms’ performance on the seven real
data sets taken from the Machine Learning Repository. Figure 26 again
shows a graph on the frequencies of the obtained ranks for each algorithm
and each measure.

The overall picture obtained is far less uniform in this case. No algorithm
consistently dominates the others, in particular, a clear discrepancy can be
observed between the ranks returned by the individual measures.

Different to the synthetic benchmarks, ant-based clustering repeatedly
fails to identify the correct number of clusters in this data. In particular,
the number of clusters determined on the Zoo, the Digits, the Dermatology
and the Yeast data sets is distinctively too low, which obviously affects the
values obtained under the external measures (the F-measure and the Rand
index). In spite of this the obtained values are worst only on one of these
test sets (the Digits data) and ant-based clustering even shows a very good
performance under one of the internal measures (the Dunn index).
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Figure 26: Relative performance of ant-based clustering, K-means, average link
agglomerative clustering and one-dimensional self-organising maps on the seven real
data sets. For each method, the frequency of the obtained ranks under (a) the F-
measure, (b) the Rand index (c¢) the Intra-cluster variance and (d) the Dunn index
is given.

These results indicate that the clusters identified by ant-based cluster-
ing correspond to actual structure within the data. Seemingly, the data
sets contain cluster structures on various levels. While several classes in the
data are not well-separated (neither spatially nor by a clear density gra-
dient), more distinct cluster structures can be observed on a coarser level
(i.e., there seems to be a clear spatial separation between certain groups of
clusters). Ant-based clustering only manages to identify these upper-level
structures and fails to further distinguish between groups of data within
them. Our impression of a lack of separation between some classes of this
data is confirmed by both the likewise poor performance of all other clus-
tering methods and the number of clusters predicted by the Gap statistic,
which is frequently too low (see Table 8.1).

The results obtained on the Zoo data set reveal a second weakness of the
ant-based algorithm. Due to the current definition of the neighbourhood
function, ant-based clustering requires clusters to have a minimum size in
order to construct stable clusters on the grid. The Zoo data contains a
number of extremely small clusters (the smallest is of size 4) that ant-based
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clustering fails to identify and consequently assigns to larger clusters. While
this is a clear limitation of the algorithm, it could possibly be overcome
through the use of a modified neighbourhood function.

7.7.5 Time performance

For small data sets, the time performance of ant-based clustering is distinc-
tively inferior to that of K-means, average link agglomerative clustering and
1D-SOM. However, it shows a favourable scaling behaviour, such that, with
an increase in the dimensionality and the size of the data set, it quickly
starts to outperform its contestants (e.g., on the 100D-10C data set).

Figure 27 gives plots of the runtime for all individual instances of the zD-
yC data sets (which differ both in their dimensionality and their size). For an
increase in the number of data elements, a quadratic rise in runtime can be
observed for average link agglomerative clustering, whereas K-means, 1D-
SOM and ant-based clustering all three scale linearly. On the other hand,
ant-based clustering, average link agglomerative clustering and 1D-SOM
are not affected by the rise in dimensionality, whereas K-means starts to
have convergence problems for the higher dimensional data. This causes K-
means to exceed the upper limit of iterations (1000 in our implementation)
in almost all runs, which results in excessive runtimes.

7.7.6 Discussion

In conclusion, we can say that there are a number of properties that make
ant-based clustering an interesting candidate as an algorithm for cluster
analysis.

It is one of the few clustering algorithm that has the intrinsic capabil-
ity to identify the number of clusters K in the data. Most other clustering
methods (like K-means, average link agglomerative clustering and 1D-SOM)
rely on the specification of K as an input parameter. This requires a priori
knowledge or the interaction with another algorithm, which can be prob-
lematic, as current methods for the automatic determination of the number
of clusters in a data set are rather limited.

On the other hand, the impossibility to specify K can also be considered
a disadvantage of ant-based clustering. In specific applications the user
might have precise ideas about the number of clusters to be identified, and
in ant-based clustering, there is currently no possibility to adjust the number
of clusters that are to be generated.

As far as the quality of the generated partitionings is concerned, ant-
based clustering’s robustness with respect to different data properties is
quite impressive. In our comparison, it is the only algorithm to perform
consistently well on all synthetic data sets, whereas K-means, 1D-SOM and
average link agglomerative clustering all have their individual problems. K-
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Figure 27: Time performance of ant-based clustering, K-means, average link and
1D-SOM.

means and 1D-SOM are significantly affected by differences in the sizes of
the clusters and the performance of average link agglomerative clustering
strongly decreases for an increasing overlap between clusters. Yet, the results
obtained on real data also show the limitations of ant-based clustering: if
cluster structures on several levels exist, it only identifies the upper level

ones.

A recursive application of the algorithm on the resulting clusters
might be possible to overcome this problem.
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7.8 Results for topographic mapping

In this section, the capacity of ant-based sorting to generate a topology-
preserving embedding is analysed using visual inspection and analytical eval-
uation functions. To put the results into perspective, we compare to those
obtained by multidimensional scaling and two-dimensional self-organising
maps, and we additionally present results obtained for a random lower
bound.

7.8.1 Summary of the performance on synthetic and real data

Extensive experiments on both synthetic and real data permit us to gain an
impression of the algorithms’ strengths and weaknesses. The data sets used
are the same as those employed for our study on cluster analysis, that is, we
present results on the Square, the Sizes, the zD-yC and the real data sets
from the Machine Learning Repository. The full result tables can again be
found in the appendix, and here, we summarise the most interesting results.

Note, however, that we do not discuss the results obtained on the differ-
ent types of data sets in isolation, as the overall picture is much more uniform
for topographic mapping. This is not surprising, if we think about the dif-
ferences between the two applications, clustering and topographic mapping.
A clustering algorithm relies on the correct identification of the structures
in the data, and its capacity to identify them very much depends on the
properties of the data set tackled (e.g., the degree of spatial separation be-
tween clusters). If its fails to discover the principal clusters, this usually
results in solutions that are fundamentally different solutions: if a cluster
centre is misplaced, a cluster is wrongly split, or two clusters are wrongly
merged, this will, in general, cause a change in cluster memberships not only
for individual data items but for a large number of elements. Naturally, this
is then distinctively reflected by the performance measures. Most methods
of topographic mapping, on contrast, work on a much finer level. They do
not attempt to identify structures, but their focus is on optimising the map
positions of individual data points. For this reasons, changes in a solution
are by far more gradual, and the algorithms are therefore less sensitive to
particular data properties.

Multidimensional scaling

In all of our experiments, multidimensional scaling shows a very strong per-
formance and it is the clear winner under all of the measures that reflect the
preservation of global relationships in the data, that is, the overall Pearson
correlation, the Spearman Rank correlation and the inter-cluster Pearson
correlation.

For the two-dimensional data (e.g., the Square data sets, see Figure 28a),
where no topological defect needs to occur, all correlation values are close to
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Figure 28: Results under the correlation measures for the Square data sets. (a)
MDS (b) 2D-SOM (c) ant-based sorting (d) the random lower bound.

the maximum value of 1.0, and a scatterplot of the distances in data-space
versus those in map-space reveals that distance ratios are nearly perfectly
preserved (see Figure 30a). With an increase in dimensionality both global
and local topology-preservation suffer. We show this gradual drop in per-
formance on the zD-10C data sets in Figure 29a. An interesting additional
aspect of this plot is the increasing gap between the overall Pearson correla-
tion and the intra- and inter-cluster correlation, an issue we will come back
to in Section 7.8.2.

Two-dimensional self-organising maps

While MDS clearly preserves local topology to a significant degree (see the
plots of the intra-cluster correlation in Figure 28a and Figure 29a), it is, in
this respect, repeatedly outperformed by the 2D-SOM, especially for higher-
dimensional data.

When looking at the correlation values obtained by 2D-SOM (see Fig-
ure 28b and Figure 29b), it is interesting that the overall correlation and the
intra-cluster correlation almost perfectly coincide: the overall Pearson cor-
relation obtained seems to be a result of local topology-preservation only. A
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Figure 29: Results under the correlation measures for the xD-10C data sets. (a)
MDS (b) 2D-SOM (c) ant-based sorting (d) the random lower bound.

look at the inter-cluster correlation confirms this. Even for two-dimensional
data (where no topological defect would need to occur), its average value is
close to 0 with an extremely high standard deviation, showing that cluster
positions are mostly randomly determined.

These results are in conformation with the particular focus of the two
methods, MDS and 2D-SOM. While MDS trades off both global and lo-
cal topology-preservation, 2D-SOM is primarily concerned with the opti-
misation of local topology. Whilst it could be argued that local topology-
preservation might induce topology-preservation on a more global scale, our
analytical evaluation shows that this is not the case. Consequently, 2D-
SOM is quite far from a perfect preservation of distance ratios even for
two-dimensional data (also see the scatterplot in Figure 30b). Its advantage
is, however, that, due to its focus on local topology, it seems to cope much
better with a rise in dimensionality.

Ant-based sorting

Ant-based sorting does not perform best under any of the applied evalua-
tion measures. It does, however, obtain reasonably high values under the
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Figure 30: Scatterplots of the distances in data-space versus those in map-space
for a solution generated on the Squarel data set by (a) MDS (b) 2D-SOM (c)
ant-based sorting (d) the random lower bound.

measures of the Pearson correlation and the Spearman rank correlation,
where it repeatedly beats 2D-SOM. This is in agreement with the results
reported by other researchers [48] that have supported the claims on the
topology-preserving properties of the algorithm.

However, these results are contradictory to those obtained under all other
evaluation measures (the inter-cluster correlation, the intra-cluster correla-
tion and the topographic error): on a large number of data sets, the intra-
cluster correlation is very low or even close to zero. Similarly the average
inter-cluster correlation is often very low or close to zero, in these cases the
standard deviations reveal a wild oscillation, which seems to indicate a ran-
dom positioning of the clusters (as in the case of 2D-SOM). Scatterplots of
the distances in map-space versus those in data-space give an additional idea
of how poor topology-preservation is (see Figure 30c). Finally, for the to-
pographic error, the results obtained for ant-based sorting are even weaker:
for all data sets the results obtained are very close to the worst obtainable
value of 1.0.
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7.8.2 The pitfalls of the Pearson correlation

The discrepancy observed between the overall Pearson correlation, the inter-
cluster correlation and the intra-cluster correlation obtained for ant-based
sorting seems particularly strange, when one might assume that both inter-
and intra cluster correlation comprise the overall correlation value. Our
results show that this is not necessarily true.

The high correlation values obtained for ant-based sorting primarily
emerge as an artefact of the preservation of cluster memberships and the
clear spatial separation between clusters on the grid: this ensures that small
distances in data-space are matched by small distances in map-space and,
similarly, large ones are matched by large ones. Such a matching of extremes
without any more precise discrimination is enough to yield reasonably high
correlation values. Note that a similar effect can, to a lesser degree, be ob-
served for MDS on the zD-y(C data sets. In these data sets, the distance be-
tween the individual clusters increases with increasing dimensionality. This
is the reason why, in Figure 29a we could observe a growth in the gap be-
tween the values obtained for the overall correlation and the inter- and intra-
cluster correlations.

7.8.3 Is ant-based sorting better than random cluster mapping?

In order to demonstrate the above more clearly, that is, to show that a
high Pearson correlation value can emerge purely as a result of clustering
and no sorting, we evaluate the mappings generated by our lower bound
method. Recall that this method generates an embedding that preserves
cluster memberships, but randomly positions the clusters and performs no
sorting within individual clusters.

When we look at the scatterplots obtained for both ant-based sorting
and the lower bound method, clear similarities can be observed (compare
Figure 30c and Figure 30d). Analytical evaluation reveals that the Pearson
correlation obtained for the lower bound is almost as high as that for ant-
based sorting. This is the case for almost all data sets, except for a few of the
real data benchmarks: on the Zoo, the Wisoncin, the Dermatology, the Yeast
and the Digits data sets, the correlation values obtained by random cluster
mapping are close to zero. This seems to be an indication that at least some
of the classes in this data are spatially not (well) separated, such that their
mapping to spatially well separated clusters has a negative impact on the
overall correlation. By comparison, the high correlation values obtained for
ant-based sorting show that those clusters identified by the ant algorithm
correspond to distinctive structures within the data (recall that ant-based
sorting frequently discovers a too low number of clusters on the real data).

Under the inter-cluster correlation our lower bound method shows an
oscillation very similar to that observed in the ant algorithm. However, the
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average value is always close to zero, whereas ant-based sorting usually has
a positive bias, the degree of which varies for different data sets. As far
as local sorting (as reflected by the intra-cluster correlation) is concerned
ant-based sorting also outperforms random positioning on several data sets.
On the other hand, it is never precise enough to significantly beat the lower
bound under the measure of the topographic error.

7.8.4 Data-dependency

It is interesting that, differently to MDS and 2D-SOM, the performance of
ant-based clustering varies strongly dependent on the data set tackled. In
particular, the results obtained under the intra-cluster and the inter-cluster
correlation are far from uniform.

First, the degree of oscillation and the positive bias of the inter-cluster
correlation highly differ for different degrees of overlap between the clusters
(see Figure 28c). Recalling the clustering results presented in Section 7.7
we can understand this phenomenon more clearly. We have seen that, for
the Square6 and the Square7 data sets, the density gradient is not sufficient
for ant-based clustering to identify individual clusters, and the algorithm
therefore gathers all four clusters in an individual cluster on the grid. Yet,
a visual representation of this resulting cluster shows a rough sorting of
the data elements into four distinct regions, which are sorted in the correct
order. This is the reason for the high inter-cluster correlation obtained on
this data.

Second, alternating values are obtained for the intra-cluster correlation.
Whilst a notable degree of intra-cluster sorting can be observed for the
Square and some of the real data sets, the intra-cluster correlation is close
to zero on the zD-yC data sets. This effect is caused by the different dis-
tance ratios in these data sets: in the zD-y( data, the maximum distance
found between elements is very large when compared to the distance be-
tween elements belonging to the same cluster. This ratio is by far smaller
for the Square data, in particular it decreases with an increasing overlap
between clusters (see the plot of the intra-cluster correlation in Figure 28c).
This permits the ant algorithm to obtain a better intra-cluster sorting, as it
succeeds to distinguish more precisely between gradations in distance.?3

7.8.5 Time performance

For sake of completeness, we also provide graphs on the runtimes of the three
algorithms. We show the runtimes for all instances of the zD-yC data sets
(all of which differ in size). Hence, again, the plots shows both the increase

35Note however, that, even then, the algorithm’s precision is not sufficient to significantly
beat the random lower bound method in terms of the topographic error.
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Figure 31: Time performance of (a) MDS (b) 2D-SOM (c¢) ant-based sorting.

of runtime as a function of the number of data items, and the impact of a
rise in dimensionality.

MDS and ant-based sorting both work with precomputed dissimilarity
matrices, such that only 2D-SOM is affected by a rise in dimensionality.
Additionally, the plots confirm that ant-based sorting is the only one out of
the three algorithms that scales linearly with regard to the size of the data
set tackled. This is a nice property, but, given the clear inferiority of the
produced mapping, it is not very beneficial.

7.8.6 Discussion

In conclusion, we must state that we do not find ant-based sorting to be a
satisfactory method for topographic mapping. Both its capacity of intra- and
inter-cluster sorting is very limited and unreliable and it therefore does not
prove to be competitive to the established methods of MDS and 2D-SOM.
In particular, our results indicate that the overall Pearson correlation is un-
reliable as a means of characterising topology-preservation, unless great care
with it is taken. This observation explains why earlier work on ant-based
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sorting reported that it exhibited topology-preserving properties, whereas
we find little evidence for such behaviour. Using intra- and inter-cluster
correlations, and comparison with random mappings, we have been better
able to distinguish true topology preservation from ‘mere’ clustering. We
find the latter a more realistic explanation for the sometimes high values of
Pearson correlation reported.

While the quantitative performance of MDS is impressive, one disad-
vantage of the algorithm becomes apparent when visualising data sets that
contain a larger number of clusters (e.g., K = 10). As the algorithm is pri-
marily concerned with global relationships, local structures can be lost: even
if clusters in data-space are well separated, MDS frequently fails to spatially
separate them in the two-dimensional representation. This is a limitation,
as the clear visibility of cluster structures is definitely an important issue
for a good visualisation. 2D-SOM shows similar deficiencies in this respect,
as it tends to outstretch clusters on the grid. In the resulting visualisation
all clusters touch and cluster boundaries are not clearly revealed.

A two-level approach using a combination of a clustering algorithm and
a multidimensional scaling method might therefore be beneficial: after run-
ning a clustering algorithm to identify the main clusters, cluster positions
could be determined using MDS. The data element of the individual clusters
could then again be arranged by MDS. Such a method would have the ca-
pacity to preserve both cluster structures and global relationships (up to a
certain limit, of course), and simultaneously have a more favourable runtime
complexity.
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Maintenant le principal est fait.

Je tiens quelques évidences dont je ne
peuz me détacher. Ce que je sais, ce qui
est sur, ce que je me peux nier, ce que
je me peux rejeter, voild ce qui compte.

(Camus)

8 Conclusion

In the preceding chapters we have presented the key issues and insights re-
sulting from our work of the last six months. The path towards this point
hasn’t always been as straight as this thesis might suggest. One property of
ant-based clustering and sorting is that the impact of individual algorithmic
modifications is very hard to predict. While this is, of course, one of its fas-
cinating properties, it can also make working with the algorithm extremely
frustrating when results repeatedly contradict expectation and intuition.
The reader should note that in this thesis we can only describe a fraction
of our investigations — it is, however, a summary of those results that we
believe are most interesting and meaningful, and we hope that they will
serve to answer some of the open questions about ant-based clustering and
sorting. In particular, we see the key contributions of this thesis as follows.

e A detailed survey of previous work on ant-based clustering and sort-
ing has been given. We have discussed the results provided by other
authors and indicated weaknesses and open questions.

e A new and improved version of ant-based clustering and sorting has
been introduced, and we have shown its robust performance across a
variety of benchmark data sets.

e Several issues related to the analytical and thorough evaluation of the
algorithm have been resolved. These are the derivation of parameter
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settings that are generally applicable, a self-adaptation scheme for the
data-dependent parameter o, and a method for ‘cluster retrieval’.

e A comparison of ant-based clustering to more traditional clustering
techniques has been given. The results demonstrated the robust per-
formance of ant-based clustering. The algorithm is largely unaffected
by data sets in which the clusters are unequally sized, and it suc-
ceeds at reliably separating clusters up to a high degree of overlap.
Additionally, an important strength of the algorithm is its capacity
to automatically identify the correct number of clusters in the data.
However, results on real data also indicated a weakness in this respect:
if cluster structures on several levels exist, the algorithm only succeeds
to identify the top-level ones.

e A comparison of ant-based sorting to alternative methods for topo-
graphic mapping has been given and revealed a very weak performance
of the ant algorithm in this respect. The ambiguity of earlier results
that has led to their misinterpretation in previous research has been
explained and discussed.

The last two points constituted the main goal of this work. We wanted to
investigate if (and under what circumstances) the application of ant-based
clustering and sorting to real data-mining tasks can make sense, or whether
it has to be considered an (interesting) academic toy algorithm. Our results
seem to indicate that its use for clustering task can indeed be useful: in cases
where the number of clusters in the data is not known, the application of
the algorithm may be very interesting. It could either be used on its own, or
in combination with another clustering method to provide an initialisation
or the input parameter K. As far as topographic mapping is concerned, we
would advise against its use, as much better methods exist for this purpose.

8.1 Future work

There are a number of directions in which research on ant-based clustering
can be continued. We are convinced that there is still room for improvement
of the algorithm, it will however get increasingly harder to obtain more than
marginal performance gains. In our eyes, the hybridisation of the algorithm
with alternative clustering methods might therefore be a more rewarding
and promising line of research.

One aspect of ant-based clustering that we find particularly interesting
is its common points with other clustering methods, which we come about
when we reflect on the reasons why the algorithm works. Omne possibility
is to contemplate ant-based clustering as a randomised partitioning method
with a cluster representation based on representative point sets. Different to
other clustering algorithms this point set is not fixed but constantly being
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resampled. Ant-based clustering also has certain similarities with density-
based methods, in particular the scaling parameter « plays a role similar to
the density thresholds in density-based clustering. Studying the algorithm’s
working principles in more detail would be a fascinating research topic and
might yield a slimmer version of ant-based clustering that incorporates the
algorithm’s essential mechanisms only.
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Appendix

Table 6: Average number of clusters identified by ant-based clustering and
the Gap statistic on the synthetic and real data sets.
the table shows the correct number of clusters, and the results returned by
ant-based clustering and the Gap statistic (means and standard deviations

for 50 independent runs).

For each data set

Bold face indicates the better out of the two

algorithms.
Data Set #(Cluster) ant-based clustering Gap statistic
Squarel 4 4 (0) 2.16 (0.945727)
Square2 4 4 (0) 2.48 (1.15308)
Square3 4 4 (0) 1.68 (1.08517)
Squared 4 3.74 (0.482079) 1.18 (0. 622575)
Square5 4 1.72 (1.07778) 0 (0.0)
Square6 4 1.02 (0.14) .0 (0.0)
Square7 4 1.02 (O 14) 0 (0.0)
Sizesl 4 4 (0) (1 0247)
Sizes2 4 4 (0) 2 44 (1.08)
Sizes3 4 3.98 (0.14) 1.94 (0. 237487)
Sizes4 4 4.02 (0.14) 8 (0.4)
Sizes5 4 3.96 (0.195959) 1.82 (0. 384187)
2D-4C 4 4.0 (0.282843) 3.74 (1.1456)
2D-10C 10 10.4 (1 14891) 2.96 (2.74925)
10D-4C 4 0 (0.0) 4.62 (0.745386)
10D-10C 10 10 0 (0.0) 9. 32 (1.25603)
100D-4C 4 0 (0.0) 8 (1.13137)
100D-10C 10 10.02 (0.14) 9. 62 (1.01764)
Tris 3 3.02 (0 4) 3.1 (0.412311)
Wine 3 0 (0.0) 3.16 (0.366606)
Zoo 7 3.88 (0 430813) 6.44 (1.45822)
Wisconsin 2 0 (0.0) 4.64 (0.685857)
Yeast 10 5.36 (1 17915) 2.86 (2.23616)
Dermatology 6 4.36 (0.62482) 6.28 (1.04)
Digits 10 5.3 (0.806226) 9.48177 (1.93475)
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Table 7: Results for K-means, average link agglomerative clustering, 1D-SOM and ant-based clustering on the Squarel,
Square2, Squere3 and Square4 data sets. The quality of the partitioning is evaluated using the F-measure, the Rand index,

the intra-cluster variance and the Dunn index. Cluster numbers (which are automatically determined only for the ant

algorithm) and runtimes (in seconds) are additionally provided. The table Shows means and standard deviations (in brackets)
for 50 independent runs. Underlined bold face indicates the best, bold face the second best and italic face the third best

result out of the four algorithms.

squarel K-means average link SOM ant-based clustering
#(Cluster) 4 (0) 4 (0) 4 (0) 4 (0
F-measure 0.988041 (0.00320642) 0.977153 (0.00707426) 0.979799 (0.00405734 0.983819 (0.00435382
Rand index 0.988167 (0.00313909) 0.977675 (0.00671268)

variance
Dunn index

0.461881 (0.00705653)

3.80823 (0.234739)

0.4669 (0.00863353)
3.50722 (0.261244

0.464587 (0.00853489

)

0.980161 (0.00391002)
)

3.31952 (0.246082)

0.463177 (0.00783808

)

)

0.984049 (0.00423965)
)

3.67166 (0.257414)

)

Runtime 1.76 (1.10562) 8.84 (0.417612) 5.86 (0.346987) 16.56 (1.51208
square2 K-means average link SOM ant-based clusterlng
#(Cluster) 4 (0) 4 (0) 4 (0) 4 (0
F-measure 0.976256 (0.00491627) 0.955406 (0.0217865 0.96353 (0.00651575 0.969519 (0.00562039
Rand index 0.976735 (0.00473009) 0.95777 (0.0168531

variance
Dunn index

0.501385 (0.00755009)

3.62332 (0.204665)

)

)

0.515397 (0.0327065)
3.24286 (0.297836)

)

0.507721 (0.00845559

)

0.964697 (0.00611194)
)

3.12957 (0.255628)

0.503898 (0.00718242

)

)

0.970268 (0.00535272)
)

3.44473 (0.200323)

)

Runtime 1.8 (0.87178) 8.86 (0.346987 5.96 (0.195959) 17.0 (1.44222
square3 K-means average link SOM ant-based clusterlng
#(Cluster) 4 (0) 4 (0 4 (0) 4 (0
F-measure 0.954443 (0.00545993) 0.920771 (0.0415269 0.937636 (0.00814053 0.940436 (0.0088255
Rand index 0.956059 (0.00507544) 0.927905 (0.0304267

variance
Dunn index

0.544842 (0.00746298)

3.46342 (0.231103)

)

)

)

0.574133 (0.0600876)
3.06976 (0.313649)

)

0.553732 (0.00705513

)

0.94089 (0.00732938)
)

2.90054 (0.246289)

0.556063 (0.0109956

)

)

0.943159 (0.00800785)
)

3.22049 (0.216672)

)

Runtime 1.46 (1.02391) 8.9 (0.412311 6.14 (0.4005) 19.82 (2.25113
square4 K-means average link SOM ant-based clusterlng
#(Cluster) 4 (0) 4 (0 4 (0) 4 (0
F-measure 0.92108 (0.00881463) 0.853638 (0.0608153 0.903298 (0.0112447 0.892116 (0.0163831
Rand index 0.92583 (0.00776612) 0.872861 (0.0450943 0.910911 (0.00938209

variance
Dunn index
Runtime

0.592795 (0.00844398)

3.17589 (0.453882)
1.12 (1.10707)

2.76794 (0.4123

)

|

0.660846 (0.0847222)
)

8.84 (0.366606)

2.75991 (0. 208915

)

)

0.602413 (0.00897376)
)

0 (0)

0.615184 (0.0137716
2.9464 (0.214225

)

)

0.901146 (0.0136203)
)

)

19.32 (1.55486)




Table 8: Results for K-means, average link agglomerative clustering, 1D-SOM and ant-based clustering on the Squared,
Square? and Square’f data sets. The quality of the partitioning is evaluated using the F-measure, the Rand index, the intra-

cluster variance and the Dunn index. Cluster numbers (which are automatically determined only for the ant algorithm
and runtimes (in seconds) are additionally provided. The table shows means and standard deviations (in brackets) for 5
independent runs. Underlined bold face indicates the best, bold face the second best and italic face the third best result out

of the four algorithms.

v01

square5b K-means average link SOM ant-based clustering
#(Cluster) 4 (0 0) 4 (0) 3.74 (0.482079)
F-measure 0.842628 (0.106302 0.739308 (0. 0739826) 0.844211 (0.0127359) 0.790195 (0.0608991)
Rand index 0.855423 (0.106648 0.780255 (0.0604478) 0.863385 (0.00937061) 0.819128 (0.0502641)
variance 0.670585 (0.121274 0.797797 (0.116236) 0.651501 (0.00990396) 0.725234 (0.0886343)
Dunn index 2. 8305 (0.707372 2.35972 (0.336774) 2.54349 (0.235635) 2.507 (0.364797)
Runtime 0.68 (0.904212 8.94 (0.310483) 5.98 (0.244131) 20.86 (1.45616)
square6 K-mean average link SOM ant-based clustering
#(Cluster) 4 (0 4 (0 4 (0) 1.72 (1.07778
F-measure 0.766903 (0.102714 0.634444 (0.0832669 0.770903 (0.0143257 0.491562 (0.131618
Rand index 0.811144 (0.00912988 0.409461 (0.220565

variance
Dunn index

0.722366 (0.140473
2.65029 (0.697334

0.889196 (0.138232

)

)

0.675218 (0.126033)
)

2.27643 (0.266617)
)

)
)
0.698338 (0.00788449)
)

2.3269 (0.208696

)
)
)
1.15306 (0.21033)
0.732724 (1.00939)

)

Runtime 0.44 (1.20266 8.96 (0.28 5.56 (0.496387) 23.58 (2.8989
square7 K-mean average link SOM ant-based clustering
#(Cluster) 4 (0 4 (0 4 (0) 1.02 (0.14
F-measure 0.655234 (0.103482 0.501443 (0.0761824 0.674396 (0.0252717 0.400392 (0.00274269
Rand index 0.718062 (0.115858 0.755204 (0.00996076

variance
Dunn index
Runtime

2. 02627 0.770842

)

)

)

)

)

)

S

|
0.792551 (0.12242)
)

)

)

S

)

)

)

)

)
0.458258)

(

(
0.776582 (0.149036

(

0.3 (

1.0834 (0.149385
2.29646 (0.453341
(

9.06

)

)

0.504965 (0.161455)
)

)

0.237487)

2.09199 (0.17229
5.68 (0.466476

)
)
0.732029 (0.00842417)
)
)

1.2799 (0.0165206
0.036072 (0.252504
31.22 (0.4274)

)
)
0.252228 (0.0155994)
)
)
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lntra—clustcr variance and the Dunn index. Cluster numbers (which are automatically determined only for the ant algorithm
and runtimes (in seconds) are additionally provided. The table shows means and Standard deviations (in brackets) for

es2,
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B

independent runs. Underlined bold face indicates the best, bold face the second best and italic face the third best result out

of the four algorithms.

siz€S1 K-means average link SOM ant-based clustering
#(Cluster) 4 (0) 4 (0 4 (0) 4 (0)
F-measure 0.98885 (0.00314078) 0.978326 (0.00677288 0.969586 (0.0138175 0.983886 (0.00436117)
Rand index 0.988728 (0.0032478) 0.977904 (0.00693731 0.983664 (0.00447799)

variance
Dunn index

0.468845 (0.00591086)
3.92726 (0.184942)

)

|

0.474835 (0.00789492)
$.53855 (0.239409)

)

0.478909 (0.0119723

)

0.970237 (0.0138122)
)

3.30924 (0.330923)

0.47158 (0.0070551)
3.67819 (0.20114

Runtime 0.58 (0.695414) 8.92 (0.271293 5.88 (0.324962) 17.06 (1.33282)
siz€s? K-means average link SOM ant-based clustering
#(Cluster) 4 (0) 4 (0 4 (0) 4 (0)
F-measure 0.987388 (0.0036442) 0.977764 (0.014801 0.760593 (0.0152671 0.985997 (0.00438333
Rand indez 0.985809 (0.00434821 0.97629 (0.0109345 0.984 (0.00510024

variance
Dunn index

0.501456 (0.00794104)
4.12039 (0.218286)

)

)

)

0.512786 (0.0258971)
3.74687 (0. 316446)

)

0.623132 (0.00839578

)

0.791182 (0.00877124)
)

0.925382 (0.186032)

)

)

0.505443 (0.007825)
3.8295 (0.344227)

)

Runtime 0.16 (0.366606) 00 5.68 (0.466476) 17.1 (1.13578
siz€sJ K-means average link SOM ant-based clustering
#(Cluster) 4 (0) 4 (0) 4 (0) 3.98 (0.14
F-measure 0.970663 (0.0778138 0.984842 (0.00499006) 0.72883 (0.01171 0.984034 (0.0180635
Rand index 0.961533 (0.100878 0.981967 (0.00683158) 0.73445 (0.00637083

variance
Dunn index

0.565313 (0.131301
4.14052 (0.791194

— N

0.54156 (0.00776823)
4.02168 (0.326728)

)
)
0.62418 (0.0117779)
0.905042 (0.0600104)

0.545097 (0.030049

)

)

0.980536 (0.0201617)
)

4.03043 (0.379447)

)

Runtime 0.42 (1.40129 9.1 (0.3) 6 (0.489898) 18.02 (1.33402
siz€s? K-means average link SOM ant-based clustering
#(Cluster) 4 (0) 4 (0) 4 (0) 4.02 (0.14)
F-measure 0.95081 (0.111774) 0.984256 (0.00726937) 0.70401 (0.0113016) 0.987779 (0.00413597)
Rand index 0.937989 (0.133983) 0.979396 (0.0108746) 0.686895 (0.00640328) 0.984014 (0.00607009)
variance 0.617169 (0.156553) 0.579399 (0.0105544) 0.641455 (0.0112817) 0.577871 (0.00923551)
Dunn index 4. 02909 (1.19551) 4.17943 (0.349621) 0.943912 (0.0552057) 4.11362 (0.565701)
Runtime 0.7 (1.88944) 9.08 (0.271293) 6 (0.489898) 19.4 (0.916515)
siz€8o K-means average link SOM ant-based clustering
#(Cluster) 4 (0) 4 (0) 4 (0) 3.96 (0.195959)
F-measure 0.949652 (0.109392) 0.985862 (0.00626907) 0.678249 (0.0160914) 0.985737 (0.0186955)
Rand index 0.929428 (0.147586) 0.981381 (0.00949521) 0.641374 (0.0108568) 0.981681 (0.0215735)
variance 0.650721 (0.152824) 0.609517 (0.0112156) 0.661137 (0.0113542) 0.611679 (0.0321076)
Dunn index 4.2761 (1.34627) 4.28963 (0.362929) 0.979409 (0.0692235) 4.34447 (0.453915)
Runtime 0.26 (0.438634) 9.3 (0.538516) 6.36 (0.685857) 20.76 (1.42211)
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Table 10: Results for K-means, average link agglomerative clustering, 1D-SOM and ant-based clustering on the 2D-4C, 2D-
10C, 10D-4C and 10D-10C data sets. The quality of the partitioning is evaluated using the F-measure, the Rand index, the

intra-cluster variance and the Dunn index. Cluster numbers (which are automatically determined only for the ant algorithm ())
and runtimes (in seconds) are additionally provided. The table shows means and Standard deviations (in brackets) for 5
independent runs. Underlined bold face indicates the best, bold face the second best and italic face the third best result out

of the four algorithms.

2D-4C K-means average link SOM ant-based clustering
# (Cluster) 4 (0) 4 (0) 4 (0) 4 (0.282843)
F-measure 0.972734 (0.0740772) 0.997365 (0.018445) 0.953895 (0.0560186) 0.990371 (0.0354898)
Rand index 0.983066 (0.0464064) 0.998241 (0.012311) 0.971536 (0.036236) 0.99155 (0.031725)
varialice 0.177598 (0.16193) 0.127346 (0.0372185) 0.199594 (0.103416) 0.133784 (0.062165)
Dunn index 4.45335 (2.09255) 5.10569 (1.61428) 3.68615 (2.12704) 5.02245 (1.78885)
Runtime 0.74 (1.09197) 8 (4.36807) 7.64 (3.39859) 15.68 (6.60739)
2D-10C K-means avcragc link SOM ant-based clustering
# (Cluster) 0 (0) 0 (0) 10 (0) 0.4 (1.14891)

F-measure 0.925724 (0. 0745782) 0.99152 (0. 0208668) 0.938804 (0.0390634) 0.972183 (0.0362037)
Rand index 0.9792 (0.0244765) 0.997517 0.00784073) 0.982783 (0.0145204) 0.991252 0.0129368)
variallce 0.129456 (0.0701149) 0.0926216 (0.013906) 0.139949 (0.031185) 0.0971026 (0.0187272)
Dunn index 1.49877 (1.12043) 2.82852 (0.677426) 1.25126 (0.770043) 1.87951 (1.55127)
Runtime 6.08 (7.14658) 77.58 (36.7962) 57.18 (24.0804) 21.96 (4.40436)
10D-4C K-means average link SOM ant-based clustering
#(Cluster) 0) 4 (0) 4(0) 4 (0)
F-measure 0.991297 (0. 0444016) 1.0 (0.0) 0.97624 (0.0424158) 1.0 (0.0)
Rand index 0.995198 (0.0263031) 0 (0.0) 0.987584 (0.0241659) 0 (0.0
varialice 0.517712 (0.232325) 0.479945 (0. 0891802) 0.632428 (0.26593) 0.479945 (0. 0891802)
Dunn index 13.5572 (5.1778) 13.9513 (4.61918) 10.5125 (5.78808) 13.9513 (4.61918)
Runtime 2.74 (2.71153) 9 (3.91024) 6.22 (3.02185) 17.42 (4.56986)
10D-10C K-means average link SOM ant-based clusterlng
# (Cluster) 0 (0) 0 (0) 10 (0) 0 (0)
F-measure 0.971745 (0. 0410038) ( 0) 0.956233 (0.0283843) 0.999986 (0. 0000960888)
Rand index 0.995207 (0.0118778) 0 (0.0) 0.990942 (0.00765172) 0.999995 (0.0000318648)
variallce 0.411021 (0.160722) 0.331714 (0. 0305796) 0.517608 (0.119397) 0.331777 (0.0305041)
Dunn index 8.22036 (6.67596) 13.6787 (1.90435) 4.18333 (4.70773) 13.445 (2.36789)
Runtime 46.04 (13.1559) 83.26 (33.2955) 54.64 (19.1141) 19.54 (3.21378)
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Table 11: Results for K-means, average link agglomerative clustering, 1D-SOM and ant-based clustering on the 100D-4C
and 100D-10C data sets. The quality of the partitioning is evaluated using the F-measure, the Rand index, the intra-cluster

variance and the Dunn index. Cluster numbers (which are automatically determined only for the ant algorithm) and runtimes
(in seconds) are additionally provided. The table shows means and standard deviations (in brackets) for 50 independent runs.

Underlined bold face indicates the best, bold face the second best and italic face the third best result out of the four algorithms.

100D-4C K-means average link SOM ant-based clustering
#(Cluster) 4 (0) 4 (0) 4 (0) 4 (0)
F-measure 0.975685 (0.0586472) 1.0 (0.0) 0.98469 (0.031972) 1.0 (0.0)
Rand indez 0.98752 (0.0310639) 0 (0.0) 0.994124 (0.0131139) 0 (0.0)
variance 1.9766 (0.777986) 1.65947 (0 157138) 2.01234 (0.763501) 1.65947 (0 157138)
Dunn indez 05142 (23.4023) 58.8131 (11.5432) 48.975 (22.7296) 58.8131 (11.5432)
Runtime 51.72 (23.0834) 6.34 (3.91208) 8.26 (3.64313) 012 (2.96709)

100D-10C K-means average link SOM ant-based clustering
#(Cluster) 10 (0) 10 (0) 10 (0) 10.02 (0.14)
F-measure 0.973905 (0.03722) 1.0 (0.0) 0.956352 (0.0281009) 0.999174 (0.00578442)
Rand indez 0.992684 (0.0109855) 0 (0.0) 0.992309 (0.00648917) 0.999728 (0.00190061)
variance 1.55422 (0.567023) 1.13759 (O 038661) 1.8793 (0.418234) 1.13758 (0.0386526)
Dunn indez 54.8165 (39.6492) 84.9771 (8.84828) 11.6349 (21.2545) 83.2411 (14.7135)
Runtime 271.48 (61.301) 85.42 (42.6371) 59.24 (24.7148) 21.76 (3.17213)
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Table 12: Results for K-means, average link agglomerative clustering, 1D-SOM and ant-based clustering on the /RIS, WINE,

Z00 and WISCONSIN data sets.

The quality of the partitioning is evaluated using the F-measure, the Rand index, the

intra-cluster variance and the Dunn index. Cluster numbers (which are automatically determined only for the ant algorithm ())
and runtimes (in seconds) are additionally provided. The table shows means and Standard deviations (in brackets) for 5
independent runs. Underlined bold face indicates the best, bold face the second best and italic face the third best result out

of the four algorithms.

IRIS K-means average link SOM ant-based clustering
# (Cluster) 3 (0) 3 (0) 3(0) 3.02 (0.14)
F-measure 0.824521 (0.0848664) 0.809857 (0.0) 0.861415 (0.00773914) 0.816812 (0.0148461)
Rand index 0.816599 (0.101288) 0.822311 (0.0) 0.857342 (0.00554881) 0.825422 (0.00804509)
variallce 0.922221 (0.221044) 0.900175 (0.0) 0.894906 (0.00147313) 0.880333 (0.00405812)
Dunn index 2.65093 (0.4201) 2.5186 (0.0) 2.07881 (0.253375) 2.9215 (0.298826)
Runtime 0.16 (0.366606) 0.02 (0.14) 0.08 (0.271293) 3.36 (0.48)
WINE K-means average link SOM ant-based clustcring
# (Cluster) 3 (0) 3 (0) 3(0) 3 (0)
F-measure 0.931275 (0.0615274) 0.925527 (0.0) 0.844292 (0.00492265) 0.876083 (0.0208369)
Rand index 0.916761 (0.065321) 0.904494 (0.0) 0.825494 (0.00444023) 0.855493 (0.0191702)
variallce 2.58276 (0.089766) 2.5783 (0.0) 2.58392 (0.00191894) 2.56946 (0.0125923)
Dunn index 3.7622 (0.354202) 3.94448 (0.0) 4.03727 (0.15908) 4.18856 (0.207914)
Runtime 0.08 (0.271293) 0.02 (0.14) 0.12 (0.324962) 2.82 (0.433128)
700 K-means average link SOM ant-based clustering
# (Cluster) 0) 7 (0) 7 (0) 3.88 (0.430813)
F-measure 0.793335 (0. 0683366) 0.839231 (0.0) 0.826222 (0.0569534) 0.81886 (0.0470189)
Rand index 0.886615 (0.0320711) 0.926674 (0.0) 0.916267 (0.0291636) 0.937202 (0.0383113)
variallce 2.15164 (0.0529296) 2.27059 (0.0) 2.23617 (0.0585116) 2.5721 (0.146938)
Dunn index 3.9967 (0.911945) 6.15496 (0 0) 3.9438 (1.10343) 6. 07854 (0.693924)
Runtime 0.06 (0.237487) 0 (0) 0.08 (0.271293) 6 (0.489898)
WISCONSIN K-means average > Tink SOM ant—based clusterlng
# (Cluster) 2 (0) 2 (0) 2 (0) 2 (0)
F-measure 0.965825 (0.0) 0.965966 (0.0) 0.965766 (0.000861166) 0.967604 (0.00144665)
Rand index 0.933688 (0.0) 0.933688 (0.0) 0.933583 (0.00159676) 0.93711 (0.00273506)
variallce 1.61493 (0.0) 1.63441 (0.0) 1.61494 (0.000870785) 1.61257 (0.000838131)
Dunn index 5.47121 (0.000178411) 4.91649 (0.000000284355) 5.45811 (0.015952) 5.4424 (0.0957218)
Runtime 0.06 (0.237487) 1.44 (0.496387) 2.52 (0.466476) 10.54 (0.498397)
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Table 13: Results for K-means, average link agglomerative clustering, 1D-SOM, ant-based sorting on the YEAST, DERMA-
TOLOGY and DIGITS data sets. The quality of the partitioning is evaluated using the F-measure, the Rand index, the

intra-cluster variance and the Dunn index. Cluster numbers (

which are automatically determined only for the ant algorithm

and runtimes (in seconds) are additionally provided. The table shows means and standard deviations (in brackets) for 5
independent runs. Underlined bold face indicates the best, bold face the second best and italic face the third best result out

of the four algorithms.

YEAST K-means average link SOM ant-based clustering
#£(Cluster) 10 (0) 10 (0) 10 (0) 5.36 (1.17915)
F-measure 0.431505 (0.00443954) 0.448316 0.406728 (0.0174483) 0.435396 (0.0345797)
Rand index 0.750657 (0.00124985) 0.742682 0.75227 (0.00267426) 0.678131 (0.0752791)
variallCe 1.53798 (0.001611) 1.60028 (0.00000000652216) 1.69317 (0.0201931) 1.89537 (0.115468)
Dunn index 1.69692 (0.109608) 1.55563 (0.000000120366) 1.22087 (0.154187) 1.88049 (0.207959)
Runtime 1.7 (1.0247) 14.04 (0.488262) 12.16 (0.417612 9.22 (0.54)
DERMATOLOGY K-means average link SOM ant-based clustering
#£(Cluster) 6 (0) 6 (0) 6 (0) 4.36 (0.62482)
F-measure 0.948479 (0.0264577) 0.898637 (0.0) 0.806417 (0.0139962) 0.845738 (0.0491325)
Rand index 0.973853 (0.0134017) 0.95497 (0.0) 0.904861 (0.00932017) 0.921871 (0.0345612)
variafice 3.79081 (0.00294317) 3.85732 (0.00000000876454) 4.05837 (0.0202633) 4.04908 (0.141142)
Dunn index 3.8394 (0.0706464) 4.70806 (0.00000014988) 3.84977 (0.239219) 5.32128 (0.402198)
Runtime 0.34 (0.514198) 4.70806 (0.00000014988) 0.58 (0.493559) 2.84 (0.463033)
DIGITS K-means average link SOM ant-based clustering
## (Cluster) 10 (0) 10 (0) 10 (0) 5.3 (0.806226)
F-measure 0.731753 (0.017948) 0.596675 (0.0) 0.630484 (0.0225114) 0.503542 (0.0310281)
Rand index 0.920426 (0.00662569) 0.865701 (0.0) 0.897649 (0.00533422) 0.809809 (0.0312331)
variallce 2.13684 (0.00386531) 2.39675 (0.0000000155022) 2.24289 (0.0207932) 2.7052 (0.128086)
Dunn index 3.15963 (0.0960701) 3.7286 (0.00000047151) 2.5773 (0.239102) 3.68081 (0.295242)
Runtime 6.5 (3.25115) 174.12 (3.25355) 9.9 (2.71477) 32.34 (0.907965)
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Table 14: Results for MDS, 2D-SOM, ant-based sorting and the lower bound on the Squarel, Square2, Squared and Square4
data sets. The quality of the mapping is evaluated using the overall Pearson correlation, the inter- and intra-cluster Pearson

correlation, the Spearman rank correlation and the topographic error. Runtimes (in seconds) are additionally provided. The
table shows means and standard deviations (in brackets) for 50 independent runs. Underlined bold face indicates the best,

bold face the second best result and italic fact the third best out of the four algorithms.

squarel MDS SOM ant-based sorting Lower Bound
Pearson 0.998052 (0.00223397) 0.593754 (0.134905) 0.649971 (0.0895103) 0.633483 (0.0800831)
Inter 0.98658 (0.0141674) -0.0760479 (0.42808) 0.122131 (0.522214) 0.0824321 (0.441095)
Intra 0.998264 (0.00203184) 0.593944 (0.134624) 0.225642 (0.0337886) 0.000083418 (0.00990187)
Toperror 0.33082 (0.0327443) 0.18664 (0.0233425) 0.98802 (0.00433354) 0.98686 (0.00432671)
Spearman 0.985936 (0.00616601) 0.585377 (0.139087) 0.572273 (0.105737) 0.558739 (0.0894701)
Runtime 7.64 (2.33889) 40.44 (0.962497) 26.36 (8.39466) 0.02 (0.14)
square2 MDS SOM ant-based sorting Lower Bound
Pearson 0.99816 (0.0023534) 0.583481 (0.128066) 0.619098 (0.0841792) 0.591872 (0.0978331)
Inter 0.985898 (0.0157033) 0.0253889 (0.411938) 0.153803 (0.475741) 0.0651346 (0.484388)
Intra 0.998359 (0.00213593) 0.583655 (0.128151) 0.273298 (0.0278273) -0.00145089 (0.00995137)
Toperror 0.35834 (0.0408938) 0.1861 (0.0219611) 0.98804 (0.00390364) 0.98682 (0.00467628)
Spearman 0.990434 (0.00483227) 0.578825 (0.132345) 0.556479 (0.0905213) 0.535054 (0.0954124)
Runtime 6.62 (0.485386) 41.44 (1.15169) 20.18 (1.38116) 0.02 (0.14)
square3 MDS SOM ant-based sorting Lower Bound
Pearson 0.998461 (0.00228256) 0.626441 (0.143237) 0.576335 (0.0899368) 0.550222 (0.0820071)
Inter 0.988202 (0.01347) 0.0161074 (0.331508) 0.125454 (0.485955) -0.0420097 (0.497772)
Intra 0.998656 (0.00199927) 0.626671 (0.143454) 0.310412 (0.0207632) -0.00232552 (0.0119472)
Toperror 0.36572 (0.0329381) 0.18052 (0.0225524) 0.98842 (0.00540404) 0.9882 (0.00419047)
Spearman 0.994399 (0.00309339) 0.627103 (0.144352) 0.523253 (0.0947519) 0.495671 (0.0820482)
Runtime 6.76 (0.471593) 40.94 (1.1386) 20.96 (1.68476) 0.06 (0.237487)
square4 MDS SOM ant-based sorting Lower Bound
Pearson 0.998018 (0.00283233) 0.606938 (0.135459) 0.539295 (0.0740858) 0.492626 (0.0933278)
Inter 0.984031 (0.0160746) 0.101099 (0.384349) 0.288078 (0.432039) -0.00194626 (0.493937)
Intra 0.998279 (0.00237883) 0.606973 (0.135395) 0.32363 (0.0346576) -0.00226389 (0.0129229)
Toperror 0.38678 (0.0376336) 0.18276 (0.024563) 0.98816 (0.00453149) 0.98852 (0.00426727)
Spearman 0.995126 (0.00293726) 0.60921 (0.134109) 0.500651 (0.0825801) 0.466379 (0.084985)
Runtime 6.76 (0.51225) 41.26 (0.97591) 22.88 (1.8071) 0.04 (0.195959)




Table 15: Results for MDS, 2D-SOM, ant-based sorting and the lower bound on the Sguared, Square6 and Square7 data sets.
The quality of the mapping is evaluated using the overall Pearson correlation, the inter- and intra-cluster Pearson correlation,

the Spearman rank correlation and the topographic error. Runtimes (in seconds) are additionally provided. The table shows
means and standard deviations (in brackets) for 50 independent runs. Underlined bold face indicates the best, bold face the

second best result and italic fact the third best out of the four algorithms.

TTI

square5b MDS SOM ant-based sorting Lower Bound
Pearson 0.997062 (0.00387012) 0.602062 (0.15058) 0.477987 (0.0675938) 0.435375 (0.0682281)
Inter 0.976511 (0.0235049) -0.131523 (0.39489) 0.328466 (0.319278) -0.0528227 (0.484992)
Intra 0.997453 (0.0033401) 0.602601 (0.150517) 0.332467 (0.034818) -0.00250014 (0.00821582)
Toperror 0.3739 (0.0385721) 0.18156 (0.0255532) 0.98976 (0.00450138) 0.9902 (0.00373631)
Spearman 0.995832 (0.00351596) 0.60921 (0.150595) 0.451446 (0.0671786) 0.410945 (0.0699801)
Runtime 7.18 (1.21145) 53.68 (7.6248) 27.74 (6.60548) 0.04 (0.195959)
square6 MDS SOM ant-based sorting Lower Bound
Pearson 0.998675 (0.00148479) 0.59929 (0.143526) 0.539863 (0.124996) 0.35057 (0.0611516)
Inter 0.982383 (0.0121828) 0.0132959 (0.302664) 0.56711 (0.339713) -0.0633044 (0.443296)
Intra 0.99879 (0.0013935) 0.599941 (0.143397) 0.383291 (0.0709834) -0.00171855 (0.0115306)
Toperror 0.36056 (0.0375042) 0.17914 (0.0289876) 0.9875 (0.00516624) 0.99112 (0.00339199)
Spearman 0.998119 (0.00139441) 0.607054 (0.143968) 0.54539 (0.122962) 0.334897 (0.0574042)
Runtime 6.52 (0.4996) 40.02 (0.734575) 26.1 (7.22011) 0.04 (0.195959)
square7 MDS SOM ant-based sorting Lower Bound
Pearson 0.998168 (0.00307702) 0.596644 (0.132162) 0.601304 (0.0910511) 0.285073 (0.0451556)
Inter 0.974787 (0.0198741) 0.0335117 (0.372051) 0.802072 (0.287686) 0.0335516 (0.446518)
Intra 0.9983 (0.00285127) 0.597087 (0.132306) 0.45104 (0.0838871) 0.000221359 (0.0106784)
Toperror 0.33594 (0.0355789) 0.18158 (0.0292336) 0.9872 (0.00408901) 0.99204 (0.00334042)
Spearman 0.998087 (0. 00242407) 0.606822 (0.133915) 0.595083 (0.0946682) 0.267373 (0. 0459184)
Runtime 5 (0.5) 40.16 (0.611882) 31.96 (8.34736) 0.0 (0.0)




Table 16: Results for MDS, 2D-SOM, ant-based sorting and the lower bound on the Sizes!, $iz€52; Sizes3, Sizes{ and $iz€55
data sets. The quality of the mapping is evaluated using the overall Pearson correlation, the inter- and intra-cluster Pearson

correlation, the Spearman rank correlation and the topographic error. Runtimes (in seconds) are additionally provided. The
table shows means and standard deviations (in brackets) for 50 independent runs. Underlined bold face indicates the best,

bold face the second best result and italic fact the third best out of the four algorithms.

¢ll

sizesl MDS SOM ant-based sorting Lower Bound
Pearson 0.99894 (0.00151814) 0.595063 (0.113708) 0.664638 (0.0796616) 0.626958 (0.0784301)
Inter 0.990254 (0.0107545) -0.0182768 (0.385184) 0.129883 (0.488785) -0.0290228 (0.38463)
Intra 0.999004 (0.00145053) 0.595026 (0.113355) 0.926773 (0.0357858) | -0.000120192 (0.00992925)
Toperror 0.31718 (0.0280183) 0.18378 (0.0212549) 0.98774 (0.00343983) 0.98626 (0.0043672)
Spearman 0.988081 (0.00520663) 0.591721 (0.114082) | 0.603931 (0.0896666) 0.570691 (0.0741016
Runtime 6.52 (0.4996) 40.12 (0.552811) 19.62 (1.63573) 0.04 (0.195959)
siz€S2 MDS SOM ant-based sorting Lower Bound
Pearson 0.998515 (0.00171947) 0.52041 (0.128352) 0.705604 (0.0605257) 0.666442 (0.0842159)
Inter 0.983255 (0.0174002) -0.000170522 (0.332815) 0.093993 (0.431632) -0.0153753 (0.514561)
Intra 0.998254 (0.00196566) 0.521315 (0.129004) 0.235049 (0.0373928) -0.000916508 (0.0110987)
Toperror 0.30354 (0.0326247) 0.18524 (0.0240753) 0.98954 (0.0045087) 0.98838 (0.00516484)
Spearman 0.991824 (0. 00336719) 0.530576 (0.128352) 0.69805 (0.054497) 0.661191 (0.0720088)
Runtime ( 5) 39.98 (0.616117) 19.54 (1.16979) 0.02 (0.14)
siz€S3 DS SOM ant-based sorting Lower Bound
Pearson 0.998603 (0. 00163089) 0.498574 (0.153093) 0.713627 (0.0581983) 0.689128 (0.0803637)
Inter 0.987588 (0.00981932) 0.0099596 (0.352388) 0.0639132 (0.474238) 0.0516798 (0.524273)
Intra 0.989054 (0.024263) 0.499576 (0.15194) 0.226497 (0.0502727) -0.000797458 (0.0110066)
Toperror 0.2779 (0.0260002) 0.1877 (0.0255814) 0.98832 (0.00434714) 0.98874 (0.00339299)
Spearman 0.994412 (0. 00270917) 0.520764 (0.155495) 0.719256 (0.0392552) 0.691499 (0.0555984)
Runtime 5 (0.5) 40.18 (0.653911) 0.2(1.31149) 0.02 (0.14)
siz€sd MDS SOM ant-based sorting Lower Bound
Pearson 0.998017 (0.00244587) 0.482008 (0.120913) 0.711733 (0.051975) 0.68275 (0.0737974)
Inter 0.976541 (0.0231726) 0.0383082 (0.30288) 0.0164102 (0.451099) -0.0580613 (0.443404)
Intra 0.991305 (0.0201628) 0.48042 (0.122503) 0.226325 (0.0483923) 0.000428467 (0.0172332)
Toperror 0.26594 (0.0214405) 0.19016 (0.0224752) 0.98864 (0.00416538) 0.9883 (0.00463573)
Spearman 0.9951 (0. 00205092) 0.51418 (0.11906) 0.713411 (0.0296426) 0.670571 (0.0545861)
Runtime 5 (0.5) 40 (0.6) 21.62 (1.05622) 0.06 (0.237487)
siz€S9 MDS SOM ant-based sorting Lower Bound
Pearson 0.998775 (0.00142566) 0.468981 (0.123809) 0.714699 (0.0526231) 0.682098 (0.0715692)
Inter 0.981139 (0.0155562) 0.0384139 (0.331701) | 0.0542928 (0.408042) -0.000318306 (0.437207)
Intra 0.990384 (0.0236018) 0.468036 (0.12355) 0.924297 (0.0612896) -0.00125337 (0.0153861)
Toperror 0.25028 (0.0213664) 0.18938 (0.0275426) 0.98882 (0.00366437) 0.98856 (0.00406527)
Spearman 0.996703 (0.00133379) 0.51496 (0.126982) 0.694167 (0.0296506) 0.6403 (0. 0478808)
Runtime 4.48 (0.607947) 44.52 (14.1467) 18.94 (1.74826) 0.0 (0.0)




Table 17: Results for MDS, 2D-SOM, ant-based sorting and the lower bound on the 2D-4C, 2D-10C, 10D-4C and 10D-10C
data sets. The quality of the mapping is evaluated using the overall Pearson correlation, the inter- and intra-cluster Pearson

correlation, the Spearman rank correlation and the topographic error. Runtimes (in seconds) are additionally provided. The
table shows means and standard deviations (in brackets) for 50 independent runs. Underlined bold face indicates the best,

bold face the second best result and italic fact the third best out of the four algorithms.

eIl

2D-4C MDS SOM ant-based sorting Lower Bound
Pearson 0.980987 (0.0208763) 0.662493 (0.0750375) 0.711142 (0.117188) 0.68326/4 (0.122291)
Inter 0.866605 (0.187444) 0.00388271 (0.379593) -0.0202273 (0.511556) -0.0569968 (0.413447)
Intra 0.967465 (0.0641785) 0.662079 (0.0760368) 0.0269852 (0.04267) -0.00220186 (0.0112236)
Toperror 0.0404122 (0.0184413) 0.173258 (0.0264479) 0.989658 (0.00417041) 0.988517 (0.00452798)
Spearman 0.801872 (0.102195) 0.679568 (0.0778839) 0.609252 (0.131988) 0.593275 (0 117368)
Runtime 5.98 (2.70917) 49.54 (22.0791) 3.0 (11.5966) 0.0 (0.0)
2D-10C MDS SOM ant-based sorting Lovver Bound
Pearson 0.991595 (0.0115903) 0.604537 (0.138094) 0.567181 (0.0972705) 0.442158 (0.097196)
Inter 0.983814 (0.0222875) 0.0142648 (0.180278) 0.284452 (0.159889) 0.0000611714 (0.141343)
Intra 0.993106 (0.0173586) 0.604585 (0.13803) 0.0190925 (0.0116238) -0.000602806 (0.00667409)
Toperror 0.0421871 (0.0138191) 0.174887 (0.0177502) 0.990285 (0.00291396) 0.98816 (0.00268826)
Spearman 0.88141 (0.0482212) 0.599231 (0.142089) 0.493767 (0.111133) 0.325025 (0.112398)
Runtime 37.04 (13.2679) 300.08 (105.614) 45.06 (9.03418) 0.04 (0.195959)
10D-4C MDS SOM ant-based sorting Lower Bound
Pearson 0.955704 (0.0302416) 0.594676 (0.0560784) 0.8037 (0.0505642) 0.801205 (0.0788317)
Inter 0.61285 (0.320177) 0.0261163 (0.471431) 0.103564 (0.422442) 0.0554841 (0.428656)
Intra 0.717532 (0.0844408) 0.594984 (0.0563076) 0.0232682 (0.0286069) 0.000143623 (0.0106157)
Toperror 0.611766 (0.109569) 0.38358 (0.037626) 0.989093 (0.00580587) 0.986344 (0.00689397)
Spearman 0.699344 (0.117308) 0.542985 (0.079302) 0.6305 (0.104271) 0.632799 (0.12192)
Runtime 3 (2.53969) 52.18 (23.9997) 24.74 (8.74027) 0.02 (0.14)
10D-10C MDS SOM ant-based sorting Lower Bound
Pearson 0.86113 (0.0277) 0.524181 (0.0598761) 0.628333 (0.0562995) 0.612477 (0.0544629)
Inter 0.690403 (0.083748) 0.00606256 (0.151321) 0.180513 (0.157866) -0.0211447 (0.101533)
Intra 0.570103 (0.0413675) 0.524741 (0.0592961) 0.0086634 (0.0101216) -0.000113265 (0.00848473)
Toperror 0.645234 (0.0751831) 0.423383 (0.01799) 0.990372 (0.00258523) 0.987981 (0.00276698)
Spearman 0.695228 (0.0677271) 0.407863 (0.109523) 0.429298 (0.0950472) 0.323902 (0. 0888157)
Runtime 36.88 (10.3935) 342.58 (92.6825) 4.98 (5.89742) 0.0 (0.0)




Table 18: Results for MDS, 2D-SOM, ant-based sorting and the lower bound on the 100D-/C and 100D-10C data sets. The
quality of the mapping is evaluated using the overall Pearson correlation, the inter- and intra-cluster Pearson correlation,

the Spearman rank correlation and the topographic error. Runtimes (in seconds) are additionally provided. The table shows
means and standard deviations (in brackets) for 50 independent runs. Underlined bold face indicates the best, bold face the

second best result and italic fact the third best out of the four algorithms.

VIl

100D-4C MDS SOM ant-based sorting Lower Bound
Pearson 0.941623 (0.0212687) 0.60636 (0.0460589) 0.832398 (0.0368285) 0.818357 (0.055765)
Inter 0.198686 (0.410089) 0.0675924 (0.530676) 0.00161503 (0.438826) 0.0264746 (0.475601)
Intra 0.484044 (0.0754636) 0.6064 (0.0470262) 0.0161612 (0.021677) 0.000262384 (0.0131929)
Toperror 0.666086 (0.0829733) 0.63131 (0.0397462) 0.988622 (0.0037382) 0.988263 (0.00444671)
Spearman 0.652196 (0.154471) 0.500846 (0.0818755) 0.621364 (0.0916314) 0.635913 (0.116727)
Runtime 5.66 (2.58929) 145.88 (67.5626) 20.16 (5.45293) 0.02 (0.14)
100D-10C MDS SOM ant-based sorting Lower Bound
Pearson 0.756192 (0.0213985) 0.518027 (0.0220537) 0.633438 (0.0438062) 0.659992 (0.0375568)
Inter 0.471694 (0.112744) 0.00871748 (0.163685) 0.0361436 (0.13503) -0.0160813 (0.150202)
Intra 0.256738 (0.0249201) 0.51955 (0.0218987) 0.00550127 (0.00923007) 0.00100231 (0.00803465)
Toperror 0.626329 (0.0540881) 0.729864 (0.017215) 0.989775 (0.00276281) 0.988229 (0.00254421)
Spearman 0.52491 (0.078794) 0.305811 (0.0871427) 0.324658 (0.100384) 0.308057 (0.109892)
Runtime 38.16 (13.2384) 902.12 (297.709) 40.16 (7.61409) 0.02 (0.14)
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Table 19: Results for MDS, 2D-SOM and ant-based clustering, and the lower bound on the IRIS, WINE, ZOO and WIS-
CONSIN data sets. The quality of the mapping is evaluated using the overall Pearson correlation, the inter- and intra-cluster

Pearson correlation, the Spearman rank correlation and the topographic error. Runtimes (in seconds) are additionally pro-
vided. The table Shows means and standard deviations (in brackets) for 50 independent runs. Underlined bold face indicates

the best, bold face the second best result and italic fact the third best out of the four algorithms.

IRIS MDS SOM ant-based sorting Lower Bound
Pearson 0.974947 (0.00240082) 0.612105 (0.0954194) 0.798703 (0.0693128 0.530764 (0.144448)
Inter 0.858549 (0.049507) 0.132489 (0.739822) 0.856618 (0.102589) -0.0490503 (0.734462)
Intra 0.925226 (0.00317158) 0.617727 (0.0916112) 0.39357 (0.0674407) -0.0224151 (0.0204314)
Toperror 0.340533 (0.0303707) 0.1828 (0.0393297) 0.954667 (0.0198214) 0.9604 (0.0199738)
Spearman 0.737839 (0.0989799) 0.643817 (0.090443) 0.757699 (0.0757227) 0.495647 (0 13947)
Runtime 0.06 (0.237487) 0.96 (0.397995) 11.44 (0.983056) 0.0 (0.0)
WINE MDS SOM ant-based sorting Lower er Bound
Pearson 0.899512 (0.00385896) 0.53004 (0.0837611) 0.669822 (0.0300067) 0.602912 (0.0517487)
Inter 0.432494 (0.14829) -0.0324514 (0.731613) 0.521239 (0.424535) 0.0282289 (0.775795)
Intra 0.647269 (0.00752832) 0.530648 (0.0865037) 0.159461 (0.035831) -0.048989 (0.0131521)
Toperror 0.875393 (0.0181066) 0.271348 (0.0326665) 0.958652 (0.0189605) 0.954831 (0.0178351)
Spearman 0.630209 (0.0280505) 0.529309 (0.08701) 0.662186 (0.0482374) 0.560322 (0.0488458)
Runtime 1(0.3) 1.7 (0.5) 8.56 (0.897998) 0.02 (0.14)
Z00 MDS SOM ant-based sorting Lower Bound
Pearson 0.876567 (0.030239) 0.569825 (0.0608407) 0.701093 (0.0258439) 0.0132542 (0.00896525)
Inter 0.123958 (0.120388) -0.137493 (0.200788) 0.0614492 (0.231029) 0.0216274 (0.177167)
Intra 0.851628 (0.0201897) 0.566951 (0.0988059) 0.70855 (0.046781) -0.109336 (0.0592585)
Toperror 0.353861 (0.0329458) 0.101584 (0.0245584) 0.93802 (0.0234141) 0.98495 (0.0156222)
Spearman 0.603469 (0.0324946) 0.503301 (0.0725183) 0.697777 (0.0209604) 0.00624919 (0. 00983746)
Runtime 0.06 (0.237487) 0.56 (0.496387) 7.04 (0.564269) 0.0 (0.0)
WISCONSIN MDS SOM ant-based sorting Lower er Bound
Pearson 0.979929 (0. 00352834) 0.600172 (0.0368993) 0.339405 (0. 0526479) -0.0179488 (0. 00723965)
Inter” 0 (0.0) 0 (0.0) 0 (0.0) 0 (0.0)
Intra 0.981203 (0. 00345273) 0.6007 (0. 0369377) 0.342096 (0. 0525964) -0.00400793 (0. 00853926)
Toperror 0.502003 (0.00858965) 0.262346 (0.0140693) 0.990186 (0.00376347) 0.993047 (0.00355081)
Spearman 0.83105 (0.0585367) 0.648869 (0.0334919) 0.310401 (0.0447107) -0.0120124 (0.00650127)
Runtime 2.12 (0.324962) 3.78 (1.40414) 31.82 (1.66961) 0.02 (0.14)

“For a two-cluster data set, the inter-cluster correlation is necessarily 1.0.
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Table 20: Results for MDS, 2D-SOM and ant-based clustering, and the lower bound on the YEAST, DERMATOLOGY
and DIGITS data sets. The quality of the mapping is evaluated using the overall Pearson correlation, the inter- and intra-

cluster Pearson correlation, the Spearman rank correlation and the topographic error. Runtimes (in seconds) are additionally
provided. The table shows means and standard deviations (in brackets) for 50 independent runs. Underlined bold face

indicates the best, bold face the second best result and italic fact the third best out of the four algorithms.

YEAST MDS SOM ant-based sorting Lower Bound
Pearson 0.70202 (0.00626577) 0.35712 (0.0391684) 0.378197 (0.0485247) 0.000368857 (0.00551728)
Inter 0.425819 (0.141841) 0.520747 (0.242438) 0.00186549 (0.180457) -0.0126154 (0.136607)
Intra 0.72025 (0.00544137) 0.854477 (0.0597174) 0.373985 (0.0633439) -0.00895364 (0.0243345)
Toperror 0.912399 (0.00490944) 0.334272 (0.0143734) 0.987561 (0.00306796) 0.995916 (0.00246454)
Spearman 0.588083 (0.0366792) 0.353531 (0.0435066) 0.329932 (0.0564289) 0.0108658 (0.00784111)
Runtime 0.14 (0.346987) 100.06 (1.47526) 16.64 (0.889044) 0.06 (0.237487)
DERMATOLOGY MDS SOM ant-based sorting Lower Bound
Pearson 0.841184 (0.00932192) 0.521828 (0.0685706) 0.694782 (0.040132) 0.0178542 (0.00536327)
Inter 0.0376024 (0.216176) 0.297729 (0.417333) -0.0888879 (0.195882) -0.0342341 (0.249856)
Intra 0.855238 (0.00861104) 0.523111 (0.0667635) 0.713158 (0.0395792) 0.00138671 (0.0124873)
Toperror 0.868361 (0.0202384) 0.318798 (0.0217445) 0.97235 (0.0114967) 0.970546 (0.011176)
Spearman 0.637396 (0.0207703) 0.464162 (0.0828382) 0.603801 (0.0584961) 0.0151547 (0.00874899)
Runtime 0.54 (0.498397) 8.16 (0.611882) 5.72 (0.491528) 0.0 (0.0)
DIGITS MDS SOM ant-based sorting Lower Bound
Pearson 0.845455 (0.0031926) 0.395746 (0.0724766) 0.178435 (0.0286044) -0.000149016 (0.00240739)
Inter -0.226339 (0.0629175) 0.0279154 (0.165654) 0.00956845 (0.172233) 0.0150002 (0.161204)
Intra 0.845208 (0.00315283) 0.395929 (0.0726598) 0.178839 (0.0286443) -0.000833506 (0.00212894)
Toperror 0.904688 (0.00844458) 0.294608 (0.0075264) 0.99745 (0.00109509) 0.999148 (0.000622373)
Spearman 0.646727 (0.0360438) 0.365161 (0.0779491) 0.186743 (0.0264507) -0.000146374 (0.0025251)
Runtime 8.04 (5.73048) 696.98 (0.0866) 321.58 (8.08972) 0.06 (0.237487)




