

POLITECNICO DI MILANO
FACOLTÀ DI INGEGNERIA

Corso di laurea in ingegneria delle telecomunicazioni
Dipartimento di elettronica e informazione

Progetto di intelligenza artificiale e robotica

Active Vision in a Collective Robotics Domain

Tesi di laurea di: Stefano Lanza
 Matricola 640898

Relatore: prof. Andrea Bonarini
Correlatori: ing. Vito Trianni
 prof. Marco Dorigo

Anno accademico 2004/05

ABSTRACT

This thesis discusses an innovative active vision system applied to the control of
multiple robots in a coordinate motion task. The vision system of each robot consists
in an omni-directional camera that acquires 360-degree views of the surrounding
environment. Afterward, a virtual retina, corresponding to an area of the image of
varying size and position, automatically scans the acquired images in order to extract
visual information relevant to the robotic task. Artificial evolution is employed to
synthesize controllers capable of exploiting the intrinsic relationship between motion
and vision in the robots, and also the complex interactions between the robots and
the environment where they operate.

The thesis presents three experiments of increasing complexity dealing with
robots driven by the developed vision system. The obtained results and the
generalization properties of the synthesized controllers are presented. In particular,
the thesis shows the successful synthesis of vision-guided controllers for the
coordinate motion of a group of robots. We demonstrate how the evolved vision
system is capable of actively selecting, through the retina, the visual features
pertaining to the accomplishment of the task expected from the robots. These results
open the way to future applications in robotics, employing the virtual retina as a tool
for the efficient processing of images in tasks guided by vision.

IV

ACKNOWLEDGEMENTS

First, I would like to thank my supervisor Vito Trianni for his assistance in writing
this thesis. Special thanks also to Marco Dorigo for giving me the opportunity to
work on this thesis in his laboratory IRIDIA. Many thanks and greetings to all the
people working there, who have become nice friends during my stay in Bruxelles.
Many thanks also to my family who supported me throughout my university studies.
And finally, special thanks to my nice girlfriend Dina who passed with me many
special moments during the time necessary for writing this thesis. She was always
ready to support my work and to comfort me when something went wrong, as Word
crashing every 10 minutes… Besides, she has taught me the few French words I have
learnt in Belgium.

CONTENTS

1 INTRODUCTION AND OVERVIEW ... 1
1.1 Overview.. 5

1.1.1 Active Vision ... 5
1.1.2 Collective Evolutionary Robotics.. 6

1.2 Contributions ... 7
1.3 Thesis Organization ... 8

2 SWARM ROBOTICS... 11
2.1 Swarm Intelligence .. 11

2.1.1 Self-Organization... 12
2.2 Controller Design... 13

2.2.1 Imitating Nature... 15
2.2.2 Artificial Evolution .. 16

2.3 SWARM-BOTS... 17
3 EXPERIMENTAL SETUP .. 19

3.1 The Simulator .. 19
3.2 The S-bot model... 20

3.2.1 Hardware.. 20
3.2.2 Simulation Model .. 22
3.2.3 Vision System. ... 23

3.3 The Evolutionary Algorithm.. 24
4 SIMULATION OF THE OMNI-DIRECTIONAL CAMERA 27

4.1 Ray-tracing... 27
4.2 Optimized Ray-tracing... 29

4.2.1 The Idea of Cube Map ... 30
4.2.2 Mapping Table... 32
4.2.3 Minimal Rendering .. 35
4.2.4 Quadtree Preprocessing... 36

5 VIRTUAL RETINA.. 39
5.1 General Characteristics .. 39
5.2 Rendering... 40

5.2.1 Filtering.. 40
5.3 Rectangular Retina... 41

5.3.1 Filtering.. 41
5.4 Circular Retina... 42

5.4.1 Filtering.. 43

VI

6 EVOLVING TASKS: FOCUS..45
6.1 The Focus Task...45
6.2 Experimental Setup ..46

6.2.1 Scene Setup ..46
6.2.2 Vision Setup ...46
6.2.3 Controller Setup..47
6.2.4 Fitness Estimation ..48

6.3 Results ..50
6.3.1 Robustness ..52
6.3.2 Generalization Properties ...53

7 EVOLVING TASKS: TARGETING...55
7.1 The Targeting Task...55
7.2 Experimental Setup ..56

7.2.1 Scene Setup ..56
7.2.2 Vision Setup ...57
7.2.3 Controller Setup..57
7.2.4 Fitness Estimation ..59

7.3 Results ..60
7.3.1 Robustness ..63
7.3.2 Generalization Properties ...65

8 EVOLVING TASKS: SWARMING..67
8.1 The Swarming Task..67
8.2 Experimental Setup ..68

8.2.1 Scene Setup ..68
8.2.2 Vision System...69
8.2.3 Controller Setup..70
8.2.4 Fitness Estimation ..70

8.3 Results ..72
8.3.1 Robustness ..76
8.3.2 Generalization Properties ...76

9 CONCLUSIONS ..79
9.1 Obtained Results...79
9.2 Future Work..81

LIST OF FIGURES

Figure 1: The design problem for multiple robots... 14
Figure 2: Imitating nature to design controllers... 15
Figure 3: Design through artificial evolution. ... 16
Figure 4: Robots in rigid formation can overcome small holes................................. 18
Figure 5: The first s-bot prototype... 21
Figure 6: S-bot model used in our experiments. .. 22
Figure 7: Left 3D scene with robot. Right: S-bot’s view... 23
Figure 8: Radial stretching... 24
Figure 9: One-point crossover ... 25
Figure 10: Mutation operator. .. 25
Figure 11: Optical process forming omni-directional images. 27
Figure 12: The principles of ray-tracing .. 28
Figure 13: Simplified ray-tracing. ... 29
Figure 14: 3D cube map of a scene and unfolded version... 30
Figure 15: Cube map setup. ... 30
Figure 16: Snell’s law of reflection ... 31
Figure 17: Reflected ray and its approximation... 31
Figure 18: Using the mapping table... 33
Figure 19: Example of minimal rendering... 35
Figure 20: First three levels of the quadtree. ... 36
Figure 21: Quadtree pre-processing... 37
Figure 22: Quadtree splitting of a rectangle. ... 37
Figure 23: 4 x 1 circular retina with an aperture of 180 degrees. 42
Figure 24: Scanline conversion of a triangle ... 43
Figure 25: Scanline conversion of a cell in a 2 x 1 retina.. 44
Figure 26: Evolution of the focusing ability.. 51
Figure 27: An example of evolved focusing behavior... 52
Figure 28: Fitness in function of the object’s luminance... 52
Figure 29: Fitness in function of the object’s distance from the camera. 53
Figure 30: Fitness in function of the object’s velocity around the camera................ 54
Figure 31: Sample scene for the targeting experiment .. 56
Figure 32: Neurons activation in function of the retina's angle................................. 58
Figure 33: Retina’s angles for encoding. ... 58
Figure 34: Evolution of the targeting ability. .. 61
Figure 35: An example of evolved targeting behavior .. 62

VIII

Figure 36: Targeting fitness in function of the robot’s distance from the object.63
Figure 37: Fitness in function of the object’s luminance. ..64
Figure 38: Targeting fitness in function of the object’s velocity.65
Figure 39: Simulated environment during evolution in the swarming experiment....69
Figure 40: Sensorial range of swarming robots..71
Figure 41: Evolution of the swarming ability...73
Figure 42: Evolved swarming configuration in the form of a chain74
Figure 43: Coordination dynamics ...75
Figure 44: Robots steer when they detect the black visual inputs..............................78

LIST OF TABLES

Table 1: Parameters of the rectangular retina. ... 41
Table 2: Parameters of the circular retina. ... 42
Table 3: Retinal parameters used in focusing experiment. .. 47
Table 4: EA parameters for focusing experiment. ... 50
Table 5: Average performance of the best controllers for the focusing task 51
Table 6: Retinal parameters in targeting experiment... 57
Table 7: EA parameters for targeting experiment. .. 61
Table 8: Average performance of the best controllers for the targeting task 62
Table 9: Retinal parameters in swarming experiment. .. 69
Table 10: EA parameters in the swarming experiment.. 72
Table 11: Average performance of the best controllers for the swarming task......... 74
Table 12: Average performance for different group sizes... 77

Active Vision in a Collective Robotics Domain - 1 -

1
INTRODUCTION AND OVERVIEW

This thesis discusses an innovative approach to artificial vision for the control of
single and multiple robots. We want to develop robotic controllers capable of
extracting the visual information necessary for the accomplishment of a common
objective, which in our case is the coordinate motion of a group of robots.

Artificial vision (computer vision or computational vision) is a research area
dealing with the analysis and correct interpretation of visual information extracted
from images. In robotics literature, there are two main approaches. The first approach
consists in applying hard-coded algorithms to images in order to extract relevant
information. Usually, this approach starts applying low-level filters that improve the
quality of the images, e.g. cleaning them from noise and enhancing their contrast.
Thereafter, predefined standard algorithms process the filtered images in order to
extract useful characteristics. Feature extraction mechanisms include edge and
motion detectors, depth from stereo disparity, shape from shading, and landmark
detection [42]. The second approach to artificial vision consists in exploiting some
form of unsupervised learning to reduce the great flow of information offered by
images to a subset of statistically invariant and optimal characteristics. This approach
requires off-line learning on a large set of available visual data and works well only
on certain probability distributions of input data.

Both approaches can be applied to the control of autonomous robots. However,
none takes into account the fact that vision is an intrinsic part of an organism’s
sensory-motor cycle [27]. In other words, the information gathered through vision
partly determines, after being processed, the organism’s behavior. On the other end,
the performed actions affect (directly or indirectly) the successive visual acquisition,
closing the analysis and response to visual stimuli into a loop that strictly
characterizes the organism’s behavior. Within the robotic context, the same
mechanism affects the behavior of vision-driven robots throughout the whole control
phase. For instance, in our experiments, robots respond to visual stimuli acquired by
an on-board camera and their behavior deeply influences the successive camera
acquisition. The camera indeed moves and rotates rigidly with a robot, thus
constantly perceiving the environment from different points of view according to the
robot’s actions. Furthermore, the aforementioned approaches to vision processing do
not consider the fact that the amount and type of information received by the vision

Active Vision in a Collective Robotics Domain - 2 -

system depends also on the physical characteristics and motion capabilities of the
robot, and on the environment where the robot is embedded [27].

In order to consider these aspects, the paradigm of active vision has been recently
proposed [3]. The main characteristic of an active vision system is the possibility of
actively changing both external and internal image formation parameters, e.g.
fixation point, focal length, etc. The vision system adapts its behavior in order to
extract the information that is important at the moment, instead of processing a huge
amount of information out of every image. Active vision can be thought of as a more
task driven approach than passive vision. Applied to robotics, an autonomous robot
can actively select from the available information, through its behavior, the
environmental features to directly exploit for the achievement of a certain objective.
On the contrary, a passive system would process all of the data to construct a global
picture before making decisions (in this sense it can be described as data driven).

We developed a novel active vision system for robotics control, inspired upon
recent works by Marocco and Floreano [43]. Within our system, every robot is
equipped with an omni-directional camera constantly acquiring panoramic, 360-
degree views of the surrounding environment. Because of complex dynamic
interactions between robots, vision system and environment, the acquired images
constantly change unpredictably. Moreover, the optical process characterizing the
robots’ camera determines strong distortions of the perceived environment.
Consequently, the classical approach to vision processing and features extraction
through hard-coded algorithms is complex and time-demanding. Besides,
unsupervised learning techniques are also unpractical because the environment where
robots interact is not known a priori, especially in experiments involving many
dynamic entities. We propose, as a solution, the active choice of the environmental
characteristics that can be useful to accomplish a given task.

At this purpose, we provide the robots’ vision system with a virtual retina,
capable of autonomously scanning the camera images and extracting relevant
information. The retina corresponds to a limited area of the image of varying size and
position, capable of moving across the image in search of relevant features, and
zooming in and out to extract features at different levels of detail. Kato and Floreano
[37] first introduced the idea of a virtual retina “inspired upon the evidence that
humans and other animals analyze images with rapid saccadic movements [39],
instead of providing immediate answers based on a single snapshot of the entire
image (as most computer vision techniques)” [43]. We also retain that this approach
might be useful for simplifying vision-based robotic control systems. A robot may
exploit the retina to direct its attention specifically on small regions which are
important at various times, avoiding to waste efforts in trying always to understand
the whole surroundings. Besides, the retina appears as an efficient solution to image
processing in systems having low computational capabilities, also outside the context
of robotics.

Active Vision in a Collective Robotics Domain - 3 -

The robot must learn to actively control the virtual retina to gather visual
information relevant at the moment to achieve its objective. One fundamental
problem is still unsolved. How shall the robot move and, at the same time, control
the retina in response to visual inputs received from the environment, in order to
carry out a predefined task? The problem is, in the end, finding the appropriate
mapping between retinal input and control output for a given task. At this purpose,
we employed artificial evolution to automatically synthesize neural networks
controlling robots and their active vision system according to a desired task. Within
the context of vision processing, artificial evolution is a powerful method to co-
evolve feature-selection mechanisms and behavior of autonomous robots because it
does not differentiate visual perception from behavior as in conventional system
engineering methods [15]. Moreover, artificial evolution tests robots directly in their
working environment, thus considering their complex interactions and their physical
characteristics in the process of synthesizing efficient controllers for the task at hand.

The work for this thesis is done entirely in simulation. The basic simulator already
reproduced the dynamics between robots and environment, through an accurate
simulation of the involved physical aspects. This thesis extends the simulator by
adding a graphical interface that allows the study of active vision through the
following features:

• Possibility of observing the environment from the point of view of an external
observer.

• Possibility of observing the environment from the point of view of each robot.
• Simulation of the omni-directional camera.
• Features extraction from the camera images through a virtual retina.
We developed a new graphical engine showing the simulated environments from

user-specified points of view, meeting the requirements of the first two features. The
third feature is particularly challenging given the complexity of the optical process
generating the camera images. In this regard, we devised a novel technique based on
ray-tracing [25], combining several concepts and techniques taken from the field of
Computer Graphics. Furthermore, we designed two artificial retinas of rectangular
and circular shape respectively; the former operates on generic images while the
latter better suits the omni-directional images processed by our robots, characterized
by peculiar features.

The primary objective of the thesis is that of synthesizing controllers that, by
exploiting the developed visual system, guide the coordinate motion of a group of
robots. In particular, the robots must learn to move coordinately in the group
exploiting visual information about their environment perceived by their camera and
subsequently extracted through a retina. This thesis reaches that objective by
presenting three experiments of increasing complexity.

 The first experiment applies artificial evolution to synthesize a virtual retina
capable of focusing on static objects viewed by an omni-directional camera. The

Active Vision in a Collective Robotics Domain - 4 -

object appears in the image as a bi-dimensional figure of varying shape, position and
color. The retina must localize the object in the image and then zoom in or out in
order to optimally focus on the object. This experiment has the lowest complexity
because the camera does not move, being detached from a robot, and acquires images
of static environments. Here, the aim is studying the evolved retinal behavior for the
recognition of objects in images, starting from a simple setup. We want to prove the
efficiency of the virtual retina in automatic features extraction that might be useful in
vision-based tasks. In particular, we are interested in the generalization properties of
evolved retinas, to certify their ability to work under generic conditions and to adapt
to dynamic contexts, a property strictly required if we want to exploit later the retina
for robotic navigation. Therefore, this experiment serves as a basis for the more
advanced tasks dealt by the other two experiments.

The second experiment improves over the first one by attaching the camera to a
single, mobile robot. Here, the robot must move towards a target object randomly
positioned in the environment. In doing that, the robot must learn to focus the retina
on the object viewed by the omni-directional camera, and then exploit the consequent
retinal information to build appropriate navigation trajectories. This experiment adds
a degree of complexity over the previous one because the robot’s perception of the
environment changes as the robot moves in response to the retinal input, according to
the sensory-motor loop we mentioned previously. We show how evolved robots are
capable of actively maintaining their focus on the target object, in order to efficiently
move towards it. This result is particularly interesting, showing how evolution can
discover efficient solutions taking into consideration all the complex characteristics
we have described so far.

The last experiment applies the developed active vision system in a collective
robotics context concerning the coordinate movement of a group of robots (swarming
or flocking). Robots must exploit local visual information coming from their vision
system (camera and retina) to move in a coordinate fashion while exploring the
environment. This behavior draws inspiration from that observed in schools of fishes
and birds. We expect small groups of robots (2 – 4) to accomplish the task first, and
then we will study how the evolved behaviors scale to larger groups. This experiment
is the most challenging because it aims at synthesizing an intelligent vision system
capable of driving independent robots towards a common objective (coordinate
movement in this case). In doing that, artificial evolution must discover the
interactions between vision and motion at the individual level, and among the robots
inside the group, which eventually determine the desired global behavior. We show
how the evolved robots control simultaneously their motion and vision in order to
achieve their task, by actively tracking the other robots through the virtual retina.

We believe that the work reported in this thesis represents one of the first
successful uses of evolutionary robotics to develop coordinated behavior in a
collective robotics system guided by active vision.

Active Vision in a Collective Robotics Domain - 5 -

1.1 Overview
The following sections give an overview of the fields of interest for this thesis.
Section 1.1.1 discusses recent works of Active Vision, with emphasis on their
application to robotics control and navigation. The other section reviews recent
works on Collective Evolutionary Robotics that are closely related to the experiments
described in this thesis.

1.1.1 Active Vision

The main source of inspiration for this thesis is the work done by Marocco and
Floreano on active vision for automatic features selection. In their paper [43], they
discuss recent work on the evolution of a simulated active retina for complex shape
discrimination. This retina operates on images showing at random triangles or
squares, and must recognize the correct shape by scanning the image. A simple
neural network drives the retina and recognizes the correct shape, receiving in input
the retinal data gives. The authors then extend this approach to a mobile robot
equipped with a mobile CCD pan/tilt camera capable of independently explore the
environment while the robot moves around. Here, the camera works as the active
acquisition device in place of the artificial retina of the previous experiment. The
robot is positioned in an arena and asked to navigate as far as possible without hitting
the walls. The robot’s controller receives input from the camera and determines in
output the movement of the robot, of the camera, and the type of filtering applied to
the camera image. The authors make use of artificial evolution to develop controllers
for their experiments of active vision. They show that evolved robots are capable of
selecting simple visual features and actively maintaining them on the same retinal
position in order to generate efficient navigation trajectories.

Our vision system combines the main ideas introduced in those experiments. We
employ an artificial retina to actively select the visual input relevant to control
robots. An important difference is that, in our experimental setup, robots are not
equipped with a mobile camera, but with a fixed omni-directional camera capable of
perceiving the surrounding environment from every direction. Lastly, we extend the
use of active vision from the single robot case to the control of multiple robots that
must cooperate to achieve a swarming behavior.

Many other authors reported on works on active vision applied to the control of
single robots. Harvey et al. [33] addressed the problem of navigation acquiring
information about the environment through a camera. They evolved both the
morphology of the visual receptive field and the architecture of the neural network.
Using these settings, they successfully synthesized an individual capable of
approaching a triangular shape painted on a wall while avoiding a rectangular one,
guided by the vision system. In his thesis [66], Carl-Johan Westelius discusses focus
of attention and gaze control of a robot active vision system. The robot is equipped

Active Vision in a Collective Robotics Domain - 6 -

with heterogeneously sample imaging systems, foveas, resembling the space varying
resolution of a human retina. It has a three-layer hierarchical gaze control system
based on rotation symmetries, linear structures and disparity, estimated from images
through proper filters. The author also presents a new focus of attention method
based on a filtering method, normalized convolution. Andrew John Davison [16]
studies mobile robot navigation using active vision. The core work of his thesis
concerns simultaneous localization and map building for a robot with a stereo active
head, operating in an unknown environment and using point features as visual
landmarks. The robot’s active camera allows the construction and maintenance of an
efficient navigation map by adopting a strategy for serially fixating on different
features during navigation. Li [40] built on the work of Du [22] in using an active
head to detect obstacles on the ground plane in front of a mobile robot, and also
performing some active tracking of features with a view to obstacle avoidance.
However, only limited results were presented, and in particular the robot did not
manoeuvre in response to the tracking information, and no attempt was made to link
the obstacle-detection and obstacle-avoidance modules. Beardsley et al. [7] used
precisely controlled motions of an active head to determine the affine structure of a
dense point set of features in front of a robot, and then showed that it was possible to
initiate obstacle avoidance behaviors based on the limits of free-space regions
detected. At NASA, Huber and Kortenkamp [35][36] implemented a behavior-based
active vision approach which enabled a robot to track and follow a moving target
(usually a person). Correlation-based tracking was triggered after a period of active
searching for movement, and extra vision modules helped the tracking to be stable.
The system was not truly an active vision navigation system, however, since sonar
sensors were used for obstacle detection and path planning.

1.1.2 Collective Evolutionary Robotics

The field of Collective Robotics studies robotic systems composed of autonomous
robots cooperating for the achievement of a common goal (see [49] for an overview).
The main motivation behind the study of collective robotic systems lays in the
possibility to decompose the solution of a complex problem into simpler sub-
problems that can be faced by simple robotic units. Within this context, the use of
artificial evolution as a methodology to synthesize behaviors for groups of robots has
been limited. Collective evolutionary robotics has often focused on coordinated
motion in a group of robots. Trianni [63] studied coordinate motion in a group of
physically linked s-bots sensing the traction exerted by other robots. The results
showed the emergence of good coordinate behaviors, capable of generalizing to new
conditions, as different size, topology and type of links in the group of robots.
Reynolds [54] evolved the control system of a group of creatures, called boids, which
were placed in an environment with static obstacles and a manually programmed
predator. The control system was evolved to avoid collisions and to escape from

Active Vision in a Collective Robotics Domain - 7 -

predators. Although the results described in the paper are rather preliminary, some
evidence indicates that coordinated motion strategies emerged. In a follow-up of this
work, Ward et al. [64] evolved e-boids, groups of artificial fishes capable of
displaying schooling behavior. Two populations of predator and prey creatures were
evolved and placed in a 2D environment containing randomly distributed food
elements. The analysis of the distance between prey, prey and food, and predator and
prey suggests that the emergence of the schooling behavior is correlated with: (i) an
advantage in the ability to find food clumps, and (ii) a better protection from
predation. Spector et al. [59] used genetic programming to evolve group behaviors
for flying agents in a simulated environment. Overall, the above mentioned works
suggest that artificial evolution can be successfully applied to synthesize effective
collective behaviors. Recently, Quinn [51] explored two ways of evolving controllers
for a group of robots while studying a coordinated motion task using two simulated
Khepera robots. In the first approach, called clonal, all members of the group share
the same genome. This is the same approach we used in the experiments presented in
this thesis. The second approach, called aclonal, provides each member of the group
with a different genome. In the aclonal evolution, the fitness of each robot is
computed separately, whereas in the clonal evolution the fitness of a robot is
calculated as the average fitness of the group. Results obtained indicated that aclonal
evolution produced better performing behaviors for this rather simple task. In fact,
with aclonal evolution it was possible to obtain different controllers for different
roles in the performance of the task. In a very recent work, Quinn et al. [53] studied
coordinated motion in small groups of real homogeneous robots provided with
minimal sensors, controlled by artificially evolved neural network controllers.
Analyzing the evolved behaviors, they were able to observe that robots adopt distinct
roles in the group. Few other works are loosely related to the evolution of swarming
behaviors. For example, Zaera et al. [66] carried out a series of experiments to study
the use of evolution as a methodology to develop collective behaviors for groups of
virtual fishes swimming in a rather realistic 3-D simulated environment. They were
able to evolve aggregation and dispersal behaviors fairly easily, but they observed
that these collective behaviors were not a result of interactions among the members
of the group, but rather between the individual fish and the environment (the
boundaries of the arena). Additionally, their attempts to evolve schooling behavior
were not very successful.

1.2 Contributions
To the best of our knowledge, this thesis discusses, for the first time in robotics, the
design and synthesis, through artificial evolution, of an active vision system for the
control of a group of robots cooperating on a common goal. The main contribution of
this thesis is the design of an innovative active vision system operating on small,

Active Vision in a Collective Robotics Domain - 8 -

computationally limited mobile robots (s-bots). The vision system acquires images of
the environment surrounding a robot through an omni-directional camera. In order to
synthesize vision-based controllers for our robots in simulation, we designed a novel
and highly efficient technique for the real-time simulation of the camera. The same
technique can be easily adapted to the simulation of different omni-directional
camera devices within other robotic projects. Moreover, the robots’ vision system is
equipped with an integrated software acquisition device, named virtual retina,
capable of efficient image processing and automatic features extraction. The retinal
device, previously introduced by other authors, here finds original application in the
automatic extraction of visual information relevant to the navigation of single and
multiple robots in the environment, according to the desired objective. In particular,
we developed a special retina of circular shape to optimally process the panoramic
images acquired by the omni-directional camera of each robot, in view of their
peculiar characteristics. The union of the retina and the omni-directional camera
form therefore a complete and efficient system of active vision for applications in
robotics control.

1.3 Thesis Organization
This thesis is organized as follows:
• Chapter 2 introduces Swarm Robotics, an emergent approach to the control of

multiple robots based on the collective intelligence of social insects in nature. We
discuss the most important advantages of this approach and the mechanism of
self-organization. Then, we detail the problems in controlling single and multiple
robots, proposing thereafter Artificial Evolution as solution for semi-automatic
controller design. The last section of chapter 2 describes the SWARM-BOTS
project, wherein this work has been conducted, which aims at developing an
innovative swarm robotics system.

• Chapter 3 presents the setup of our experiments. Initially, we describe the
simulator with details on its components and features. Then, we introduce the
hardware and simulated model of the s-bot, the robot developed within the
SWARM-BOTS project that we used for our experiments. The vision system of
these robots is then presented along with a brief description of their camera and
the particular characteristics of the camera images. Finally, we describe the
evolutionary algorithm that we employed to develop controllers for different
tasks.

• Chapter 4 describes the simulation of the omni-directional camera through a
highly optimized version of ray-tracing. The first section shows the optical
process generating the camera images, and then presents ray-tracing as a method
to replicate that process. The successive sections present several optimizations,

Active Vision in a Collective Robotics Domain - 9 -

mostly inspired by various computer graphics techniques, which allow the
application of the ray-tracing technique to evolutionary experiments.

• Chapter 5 discusses the virtual retina device used to extract features from the
images acquired by an omni-directional camera. The first section introduces the
general characteristics of a retina, and the related rendering and filtering
operations. The successive sections illustrate the rectangular and the circular
retina. Emphasis is given to the circular retina since it used in our experiments.

• Chapter 6, 7 and 8 describe the three experiments conducted for this thesis,
dealing with a focusing, targeting and swarming task respectively. The chapters
first introduce the respective task along with the motivations and challenges
behind it. The experimental setup is then presented, with details on the simulated
scenario, the vision system, the neural network controller and the fitness function
used to evaluate controllers for the task. Finally, the last section of each chapter
shows the obtained results and the analysis and generalization properties of the
evolved solutions.

• Chapter 9 draws the conclusions of our work, highlighting the important aspects
of the research. Finally, we indicate directions for future works.

Active Vision in a Collective Robotics Domain - 11 -

2
SWARM ROBOTICS

This chapter introduces the emergent field of Swarm Robotics. Section 2.1 describes
the main concepts of Swarm Intelligence. In particular, we describe the advantages
of this approach in the control of many agents and an important related concept, self-
organization. Next, section 2.2 discusses the problems in designing controllers for
single and multiple robots. In this section, we also illustrate the solutions we adopted
for our work to synthesize efficient controllers. The last section briefly describes the
SWARM-BOTS project, wherein this work has been conducted, which aims at
developing an innovative swarm robotics system.

2.1 Swarm Intelligence
Swarm Intelligence is the modeling of collective group behaviors found in social
insects and other animal societies [9]. This field is relatively new and developed
during the 90s as researchers looked for scalable and robust methods to handle
problems of information control. Many social insects and animals give inspiration to
scientists because they can naturally solve complex problems with no form of
centralized control. For example, ants can trace the shortest path between the nest
and the food source with no prior knowledge of the environment and with no single
ant directing the actions of the group [17]. This problem solving behavior emerges
from simple interactions among the ants.

We can apply the ideas of swarm intelligence for the control of swarms of robots
tightly cooperating on a common objective. This approach naturally brings many
advantages that simplify the design of control systems in collective robotics.

Decentralization: In a decentralized system, each individual takes decisions
independently from the others. For example, ants and bees take most of their
decisions alone without being governed by a leading individual. Even so, they are
able to achieve an extremely efficient and organized behavior at the colony level. A
distributed control system is much simpler in comparison to a centralized controller.
The latter in fact requires reliable communication channels between each robot and
the central controller. The planning of the instructions for all the robots is also
demanding [44]. For these reasons, the cost and complexity of a centralized system

Active Vision in a Collective Robotics Domain - 12 -

increases exponentially with the number of robots. On the contrary, robots in a
swarm are autonomously controlled agents. This simplifies the system’s design and
leads to lower costs and higher robustness.

Robustness: Robustness is directly linked to decentralization. Indeed, failures in a
centralized system of the controller or some components would imply in most cases
the complete failure of the whole system. Instead, in a decentralized system, the loss
or failure of a single agent is usually not particularly severe. However, the system
must also be redundant in order be robust, otherwise the loss of specialized agents
could compromise the correct functioning of the whole group. Redundancy and the
consequent robustness are typical properties of insect colonies, which are able to
function after the removal of many individuals. Applied to robotics, several robots
may fail without affecting the task completion.

Adaptivity: A further advantage is that swarms of agents can adapt naturally and
quickly to changing environmental conditions in order the preserve the best system’s
performance. The system can automatically create new responses to unexpected
situations through complex dynamics that arise from interactions between the
components and their environment.

Many potential applications of swarm-based robotics require miniaturization.

Very small robots, micro-and nano-robots, with severely limited sensing and
computation, may need to operate in very large groups or swarms to affect the
macroworld. Approaches directly inspired or derived from swarm intelligence may
be the only way to control and manage such groups of small robots.

2.1.1 Self-Organization

The concept of Self-Organization (SO) [9] is very important in many models of
swarm intelligence. It explains how the behavior of a system emerges from the local
interactions between its components. Most notably, this happens without any
external guidance or control and without central coordination. Simply, local
interactions produce emergent patterns and configurations that solve the problem
faced by the swarm. There are four key aspects in the concept of self-organization.

Positive feedback: An agent influences other agents to modify their behavior. The
classic example is that of an ant leaving a pheromone trail to a food source that other
ants follow. As each ant follows the trail, it adds its own pheromone attracting even
more ants to that specific trail.

Negative feedback: This feedback serves as a regulatory mechanism by somehow
discouraging a type of behavior. Common forms of negative feedback are
pheromone evaporation and food source exhaustion.

Active Vision in a Collective Robotics Domain - 13 -

Random fluctuations: Theories of SO show that randomness or fluctuations in
individual behavior, far from being harmful, may greatly enhance the system’s
ability to explore new behaviors and find new solutions. For an example, let us
consider an ant colony. Ants following a path to food will sometimes wander off the
path. This allows these ants to discover new food sources or possibly shorter paths to
a previously discovered food source.

Multiple Interactions: Individual agents use multiple rules to govern their next
decision. Often, for self-organization to appear, you need a sufficient number of
tolerant agents. For instance, in some social insects, piles of bodies, or graveyards
often form in predictable patterns. However, these graveyards only form when a
certain number of insects are moving bodies simultaneously. Without these multiple
interactions, the graveyard would not form.

The system starts in a disordered state with random fluctuations influencing

individual actions and interactions. Then, self-organization may emerge from the
interplay of the positive and negative feedbacks. These mechanisms lead the system
to a stable state and restore its organization after any deviation caused by external
forces [46][24].

We are particularly interested in self-organization because it allows a system of
simple components to solve complex problems. Besides, self-organization brings two
desired properties: robustness against possible failures of some components, and fast
adaptation to unexpected environmental changes. In fact, the system has the natural
tendency of returning to a stable configuration (even a different one) through
feedback mechanisms that continuously maintain the system organized.

Apart from ants, many other biological systems offer examples of self-
organization in nature. For example, the bark beetle larvae Dendroctonus are able to
aggregate using only local mechanisms [19]. In some insect colonies there is also a
particular type of self-organization called self-assembling, which is the creation of
structures through connections among the individuals composing the system [1].
Section 2.3 shows interesting applications of this concept in the field of robotics.

2.2 Controller Design
The design of controllers for robotic systems is challenging. The general problem is
determining how we should program simple robots to perform user-designed tasks.
This problem is particularly difficult in the case of many robots that tightly interact
and cooperate in the attempt to achieve a common goal. However, the control of a
single robot working in a complex environment is also challenging.

Active Vision in a Collective Robotics Domain - 14 -

Single Robot

The control of a single robot faces some challenges. First, we have to understand the
relevant interactions between the robot and the environment that lead to the desired
behavior. Then, we have to find out the rules that reproduce these interactions. This
operation is difficult because we cannot easily predict which behavior results from a
given set of rules, and which are the rules that determine a given behavior [48]. Once
we have determined these rules, we have to encode them in an appropriate control
system.

Multiple Robots

In the case of multiple robots, the field of swarm intelligence gives precious
indications on the properties and characteristics of efficient control systems for many
individuals. The main property, self-organization, regulates the emergence of global
behaviors capable of solving complex problems, through local interactions between
the system’s components. At the same time, the system becomes robust against
failures of some components, and capable of quickly adapting to unexpected
situations.

Given these strong advantages, we want to imitate nature by designing self-
organizing control systems for our robots. There are two main problems in obtaining
self-organization in a group of artificial individuals [63]. First, we have to discover
the important mechanisms and interactions among robots that produce the self-
organizing group behavior (Figure 1, center). In doing that, we have to consider the
environment where the robots are embedded because of its importance as a
communication channel. After we have discovered these simple mechanisms, we
have to translate them into rules for appropriate robotic controllers (Figure 1, right).

Figure 1: The design problem for multiple robots. Decomposition of the global behavior (left
to center). Encoding of individual behaviors in controllers (center to right).

We note that, until now, we implicitly assumed that all robots were identical units.
The situation becomes more complicated when the robots have different

Environment Environment

Self-organizing
system

Control program

Active Vision in a Collective Robotics Domain - 15 -

characteristics, respond to different stimuli, or respond differently to the same
stimuli. In this case, there is practically no theoretical guideline for the emergent
design and control of heterogeneous swarms.

Summarizing, from an engineering perspective, the design of controllers for both
single and multiple robots is very complex because, in both cases, we have to
understand and reproduce local behaviors starting from interactions between the
single robot and its environment, or interactions among multiple robots.

2.2.1 Imitating Nature

We can try to solve the aforementioned challenges by imitating the behavior of
insects or other organisms in natural systems. This is actually the approach of
swarm-intelligence for the control of multiple robots, but the same principle applies
also to the control of single robots. In both cases, we have to understand the basic
mechanisms that in nature regulate behaviors analogous to those we want to give to
our robots.

This approach starts from the observation of the natural phenomenon and then
proceeds with a modeling phase that tries to extract the rules that would reproduce
the behavior. After that, we have to replicate the developed model into the artificial
system in order to obtain dynamics similar to the natural counterpart. As shown by
Figure 2, this approach requires a first decomposition step that models the
phenomena observed in nature to find out the basic mechanisms and interactions.
Then, in the design phase, we have to encode these mechanisms into the control
program.

Figure 2: Imitating nature to design controllers.

The approach of imitating nature for the development of robotic controllers has
some drawbacks. The first one is that it can be very hard to predict which rules and
laws drive a model to produce useful behavior. Second, it is not always possible to
take inspiration from natural processes because they may differ from the artificial
systems in many important aspects (e.g., the physical embodiment, the type of
possible interactions between individuals and so forth), or because there are no

y1 = f(x1, x2, …)
y2 = g(x1, x2, …)

Environment

Natural organism
or system

Encoding Modeling

Active Vision in a Collective Robotics Domain - 16 -

natural systems that can be compared to the artificial one [63]. Moreover, the
problem of encoding the individual behaviors into appropriate controllers for the
robots remains unsolved. Our working hypothesis is that these problems can be
efficiently solved relying on Artificial Evolution, as discussed in the next section.

2.2.2 Artificial Evolution

Artificial evolution can efficiently solve the problem of designing controllers for
single or multiple robots. In fact, artificial evolution overcomes the two main
challenges we described in the previous section: the decomposition of global
behaviors in local interactions between agents and environment, and the encoding of
these interactions into rules processed by a controller.

Artificial Evolution first evaluates potential controllers according to the resulting
global behavior, and then it iteratively selects the best ones and discards those that
perform poorly. An essential aspect of this process is that controllers are directly
evaluated on robots embedded in their environment. Consequently, evolution can
automatically determine those interactions between robots and environment that are
relevant to obtain the desired global behavior. At the same time, evolution also
discovers the controller’s rules that reproduce individual behaviors. Figure 3 shows
this process.

Figure 3: Design through artificial evolution. Evolution evaluates how well controllers
produce the desired behavior testing them in the environment (left to right). Thereafter, the

best controllers are selected and iteratively improved throughout the evolution (right to left).

Another advantage is that artificial evolution can explore the rich variety of
solutions derived from the complex dynamics between the robot and the environment
and, for robot swarms, among all the robots. Often, we cannot absolutely predict all
these possible solutions with a hand design because the system, especially when
there are many robots, is very complex. In this case, hand design is not only complex
but also time-consuming and prone to errors. On the contrary, artificial evolution
automates the design process.

Environment

Self-organizing
system

Controller

Active Vision in a Collective Robotics Domain - 17 -

However, artificial evolution has some costs. First, we have to identify initial
conditions that guarantee the possibility of evolving solutions starting from an initial
random design. Second, we have to formulate effective evaluation functions that
allow significant incremental improvements of these solutions. Another important
disadvantage of artificial evolution is that it requires long computation times, being a
long iterative process that evaluates many potential controllers at each iteration. In
addition, the evaluation of controllers on real, physical robots is often unpractical and
considerably slow. For this reason, we artificially evolved controllers entirely in
simulation. The simulation’s accuracy is very important in order to preserve the
relevant mechanisms that happen in reality. Therefore, we developed a simulator that
can accurately reproduce the dynamics between the robots and the environment.
Chapter 3 describes the simulator, the robot model and the evolutionary algorithms
we used for our experiments.

2.3 SWARM-BOTS
The SWARM-BOTS project1 studies the design and implementation of self-
organizing and self-assembling robots. These robots are physically independent
mobile robots that are able to self-assemble by connecting to and disconnecting from
each other. In the project, single agents are named s-bots, and groups of jointed s-
bots working cooperatively are named swarm-bots. Swarm-bots can perform tasks
like exploration, transport of heavy objects and navigation on rough terrains, where a
single robot has major problems. The goals of this project include [56]:

Dynamic shape formation: The s-bots should be able to assemble into swarm-

bots when they cannot solve some tasks alone. The swarm-bots should then move
coherently without centralized control, and dynamically reconfigure along the way to
match environmental variability (for example, to go through a narrow passage).

Navigation on rough terrains: Swarm-bots should be able to navigate on uneven

terrains presenting holes and obstacles. The group should intelligently split and
assemble to overcome hostile situations, such as the passage of holes larger than a
robot (Figure 4) or the climbing of a tall obstacle.

Transport of objects: The s-bots should be able to transport heavy object by

collaborating on the transport, in a similar way of ants performing prey-retrieval.

In order to fulfill the above requirements, s-bots are equipped with a broad variety

of sensors and actuators, limited computational resources and physical links for the
connection to other s-bots (details on the hardware are in section 3.2.1).

1 www.swarm-bots.org

Active Vision in a Collective Robotics Domain - 18 -

Figure 4: Robots in rigid formation can overcome small holes.

Researchers working on the SWARM-BOTS project follow two different but
complementary directions to develop controllers for the s-bots. The former consists
in building control systems by mimicking the characteristics of biological systems
such as social insects. The latter consists in building control systems loosely inspired
from known mechanisms regulating real organisms, developed through a self-
organization process based on artificial evolution. By following the first approach,
robots able to aggregate were developed. Instead, by following the second approach,
s-bots able to display coordinate movements, collective obstacle avoidance, and
object pushing/pulling were developed. We followed the latter approach, designing
controllers for coordinate movement based on innovative solutions of active vision.
Chapters 6, 7, 8 describe our efforts and the obtained results.

Active Vision in a Collective Robotics Domain - 19 -

3
EXPERIMENTAL SETUP

This chapter illustrates the general setup of our experiments, described later in their
respective chapters. Section 3.1 is dedicated to the description of the simulator used
by all the experiments. Section 3.2 introduces the s-bot hardware, the simulated
model and the vision system. Finally, section 3.3 describes the evolutionary
algorithm employed to synthesize controllers for different tasks within our
experiments.

3.1 The Simulator
All the experiments presented in this thesis run in simulation. We completely
developed the simulator in house, apart from the physics engine, in C++ language.
The simulator is multi-platform working under both Windows and Linux. It features
a basic scripting support, through the LUA language2, for the configuration of the
experiments. In addition, the simulator features a graphical user interface (GUI) that
allows the user to interact with the simulated environment.

We can logically organize the simulator in four main components:

Dynamics engine: The dynamics engine simulates the physics of robots while they
interact with the environment, made of walls, obstacles and other moving robots. At
this purpose, we used the rigid body dynamics SDK Vortex™ (Critical Mass Labs,
Canada), which reproduces the dynamics, friction and collision detection between
physical bodies.

Graphics engine: The graphical engine displays the three-dimensional, simulated
objects in real-time. It uses OpenGL3 for multi-platform, accelerated hardware
rendering, and the SDL library4 for low-level access to input devices and 2D video.
The engine supports simple lighting of materials, according to the OpenGL lighting

2 www.lua.org
3 www.opengl.org
4 www.libsdl.org

Active Vision in a Collective Robotics Domain - 20 -

model. It also makes use of standard geometrical optimization techniques, as frustum
culling5, to accelerate rendering.

All the objects handled by the graphics engine, such as physical bodies, cameras
and lights, are characterized by a position and orientation in the scene, and optionally
by a 3D model for display purposes. The engine supports the loading of models from
file and the procedural creation of models from a set of primitive shapes, including
rectangle, sphere, and cone. All the primitives managed by the physics engine are
supported and thus displayable. For example, we can associate the model of a
cylinder to the wheel of a robot. In addition, we can link hierarchically some objects.
In our experiments, for instance, we link the omni-directional camera to the robot’s
turret to move and rotate it consistently with the robot.

The graphics engine interfaces with the physics engine through an intermediate
layer creating the graphical object and the 3D model associated to every simulated
physical body (the robots, obstacles, walls). The graphical object then automatically
receives updated position and orientation from the linked physical body, realizing a
perfect consistency between the physical simulation and the display of objects.

EA engine: This component of the simulator is responsible for the artificial
evolution of neural network controllers. The employed algorithm is described in
section 3.3.

Robotics engine: This component includes tools for the simulation of many objects,
for the control of robots and for the programming of experiments. Extensive
examples are given in the appendix.

3.2 The S-bot model
The robot employed for our research is the s-bot, the robot designed within the
SWARM-BOTS project. This section presents the s-bot hardware, the simplified
simulation model we used in our evolutionary experiments6, and the characteristics
of this robot’s vision system.

3.2.1 Hardware

An s-bot is a fully autonomous robot capable of performing basic tasks such as
autonomous navigation, perception of the environment and grasping of objects. One
s-bot is also able to physical connect to other s-bots in flexible ways and to
communicate with them. A formation of s-bots is called swarm-bot, capable of
performing tasks like navigation, exploration and transportation of heavy objects,

5 Frustum culling consists in discarding invisible objects before rendering, thus saving processing

power
6 Details regarding the hardware and simulation of the swarm-bot can be found on the project web-

site (http://www.swarm-bots.org).

Active Vision in a Collective Robotics Domain - 21 -

which a single robot cannot tackle without encountering major problems. Figure 5
shows the latest s-bot prototype produced.

Figure 5: The first s-bot prototype, provided of the tracks system, the body holding the rigid
and the exible grippers, and many sensor systems.

The mobility of the s-bot is ensured by a combination of two tracks and two
wheels, labeled Differential Treels© Drive. The same motor drives the wheel and
track on a same side, building a differential drive system controlled by two motors.
This hardware design allows an efficient rotation on the spot due to the position of
the wheels and makes navigation simpler on moderately rough terrains (a swarm-bot
can tackle situations that are more complex). The chassis can rotate with respect to
the main body (turret) by means of a motorized axis. This ensures an independent
movement of the turret where the sensors and the grippers for physical connections
to other s-bots or objects are located. Sensors and actuators are controlled by
electronics mainly included in the central s-bot body, integrated on a Linux board.

Sensors. Each s-bot is equipped with all the sensors necessary for navigation and
communication with other s-bots. The available sensors are infrared proximity
sensors, light and humidity sensors, accelerometers and incremental encoders on
each of the nine degrees of freedom. In addition, the robots have color LEDs, local
color detectors all around the body, one speaker and three microphones, as well as
one wireless LAN for remote debugging and monitoring. The robots also have one
omni-directional camera located over the body with the support of a transparent tube,
acquiring 360-degree panoramic views of the environment around the s-bot. The
robots can also receive information about physical contacts, efforts, and reactions at
the interconnection joints with other s-bots through additional sensors, like torque
sensors on most joints and traction sensors on the connection belt. Every sensor has a
definite range: infrared proximity sensors have a limited short range, while the
camera covers both short and long ranges, depending on the features extracted from
the image. Indeed, many researches on collective insects showed that collective

Active Vision in a Collective Robotics Domain - 22 -

behaviors are often based on multi-range and multi-modal sensing in order to
perceive and exchange signals at multiple levels.

Actuators. The s-bot actuators control the two differential treels for movement, 8
RGB LEDs and 2 speakers for communications, an elevation and a rotation motor,
and 2 servo grippers and an arm motor to lift or grasp rigidly other robots.

3.2.2 Simulation Model

The simulator provides s-bot models with the functionalities available on the real
s-bots. Almost all the sensor and actuator devices are correctly simulated. For our
experiments, we used only the omni-directional camera to acquire local information
about the robots’ environment. In particular, this thesis addresses in chapter 4 the
problem of simulating the images acquired by omni-directional camera. There are
four, different reference models with increasing levels of detail. The less detailed
models have been employed to speed up the process of designing neural controllers
through evolutionary algorithms. The most detailed models have been employed to
validate the evolved controllers before porting them on real hardware. For our
experiments, we used the model with a low level of detail (Figure 6) in order to run
fast simulations still preserving the relevant features of the real s-bot.

Figure 6: S-bot model used in our experiments.

Here, the s-bot turret is modeled as a cylinder, connected to the chassis by a
motorized joint. The chassis is a sphere to which 4 spherical wheels are connected,
two lateral and two passive wheels in the front and in the back. The wheels and the
chassis are modeled as spheres to speed up the computation of dynamics. The lateral
wheels are connected to the chassis with two hinge or car-wheel joints, depending on
the need of the simulation (flat or rough terrain, respectively), and they simulate the
treels system. The other two wheels are smaller and only serve as support, not being
motorized. They are connected to the chassis with a ball-and-socket joint positioned
at the center of the sphere, in order to leave the wheels free to rotate in every
direction. The gripper is not modeled in our experiments. In this model, the omni-
directional camera is an invisible object rigidly located over the robot’s turret.

We disabled collision detection between all the bodies composing the model, in
order to accelerate the physical simulation of the s-bot. Besides, all wheels and the

Active Vision in a Collective Robotics Domain - 23 -

chassis do not collide with any other objects in the environment, except with those
objects that constitute the ground. Therefore, only the turret can collide with other s-
bots, walls and obstacles.

A unit in the model corresponds to 2 cm. All the measures henceforth mentioned
throughout this thesis scale correspondingly.

3.2.3 Vision System.

Every s-bot acquires in real-time full images of the surrounding environment through
its omni-directional camera. This camera is placed above the robot’s body with the
support of a transparent tube. It is made of two devices: a spherical mirror and a
CCD camera. The mirror is an optical device that reflects rays of light coming from
the environment towards the camera, building a panoramic view. The latter is an
electrical device that transforms the received optical signals into electrical signals for
further processing.

 With reference to Figure 7, the acquired images have the following, main
characteristics:

- -

Figure 7: Left 3D scene with robot. Right: S-bot’s view.

Circular aspect. The spherical mirror reflects the environment towards the camera.
This optical process generates images of the environment that appear circularly
warped. For instance, the top and bottom edges of the cube in Figure 7 appear bent
instead of straight. Mathematically, the three dimensional representation of the
objects in the scene is reconstructed onto the camera image by a non-linear mapping,
introduced into the optical system by the spherical mirror. This leads to the distortion
of objects.

Radial stretching. Moreover, objects appear stretched in the radial direction because
the mirror does not preserve the scaling aspect of the reflected objects. The local
curvature of the mirror at the point of reflection determines the convergence or
divergence of bunches of rays, altering the proportion between distances from world
space to the image (see figure below). This process, when applied to the whole image
of an object, leads to radial distortion.

Active Vision in a Collective Robotics Domain - 24 -

Figure 8: Radial stretching

Invariants. Finally, the image always shows the reflected image of the s-bot in the
center (Figure 7, right). The reason is that the spherical mirror is rigidly located on
top of the robot and thus it always sees and reflects the robot downward on the
camera. Furthermore, the peripheral area of the image always shows the background
(the sky or ceiling). The pixels of this area in fact correspond to light rays arriving
from the background. This property breaks only in the unlikely case of one robot
losing contact with the horizontal ground.

In our experiments, the optical process creating these panoramic images is

simulated (chapter 4). The resulting images are colored bitmaps of 64x64 or 128x128
pixels resolution, subsequently processed by the robot’s vision system.

3.3 The Evolutionary Algorithm
As anticipated in section 2.2.3, we used artificial evolution to develop the neural
controllers for our experiments.

Evolutionary Algorithms (EA) are a method of finding solutions to optimization
or search problems by means of simulated evolution. Some processes based on
natural selection, crossover, and mutation are repeatedly applied to a population of
individuals, in the form of genotypes, that represent potential solutions. Over time,
the average performance of the individuals increases, until a good solution to the
problem is found. In our experiments, one individual genotype stores the weights of
a potential neural network, and EA must find iteratively the best neural network that
produces the desired behavior.

EA start from a population of randomly generated individuals. Next, the fitness of
all of the individuals in the population is evaluated, where the fitness is a criterion
that quantifies how well an individual performs the desired task. After that, EA
create a new population by performing operations such as reproduction, crossover,
and mutation on the individuals whose fitness has just been measured. These genetic
operations, in concert with the fitness measure, operate to improve the population.
Lastly, the algorithm discards the old population and iterates using the new one

Reproduction consists in making copies of the best individuals in the new
population. In our experiments, we implemented selective reproduction with the
roulette wheel method [48].

Active Vision in a Collective Robotics Domain - 25 -

Once selective reproduction has created the new population, offspring are
randomly paired, crossed over, and mutated, providing general heuristics for the
exploration of the landscape of potential solutions.

Crossover consists in swapping genetic materials between two individuals around
a random point of their genotype. In one-point crossover (figure below), two parent
genotypes are cut at the same point and offspring are formed by combining
complementary genes from the parents (i.e., the first part of parent 1 with the second
part of parent 2 and vice versa).

Figure 9: One-point crossover

While the crossover operation leads to a mixing of genetic material in the
offspring, no new genetic material is introduced, which can lead to lack of population
diversity and eventually stagnation - where the population converges on the same,
non-optimal solution. The mutation operator helps to increase population diversity
by introducing new genetic material. It consists in making a random change to one or
more randomly chosen genes in an individual (Figure 10). For binary
representations, mutation switches the value of the selected bit. For real value
representations, the real value is mutated with a small random number (usually
drawn from a Gaussian generator centered on zero).

Figure 10: Mutation operator.

In our experiments, an individual corresponds to a string of real values that are the
weights of a neural network under evolution. First, we clone the neural network in
each robot’s controller involved in the experiment. Next, we estimate the network
fitness according to the desired behavior, by averaging the fitness of some trials:

PARENTS

OFFSPRING

Active Vision in a Collective Robotics Domain - 26 -

∑ =
=

M

i eF
M

F
1

1

where eF is the fitness estimation obtained from a single trial, dependent on the
evolved behavior, and M is the number of trials. Each trial lasts a maximum of T
simulation cycles, each cycle corresponding to 100 ms of real time. The average of
M trials helps in correctly estimating poor individuals that obtain high fitness only
because of lucky experimental conditions.

We used neural networks controllers because they have the property that their
performance gracefully degrades with respect to alterations in weights and
thresholds, resulting in smoother evolutionary fitness landscapes [48]. Moreover, a
variety of authors have reported successful application of artificial evolution to
develop many types of neural networks for the control of robots [63][64][52][43].

The neural network controller, the fitness function and other settings of the
evolutionary algorithms vary from experiment to experiment and are described in the
respective chapters.

Active Vision in a Collective Robotics Domain - 27 -

4
SIMULATION OF THE OMNI-DIRECTIONAL

CAMERA

This chapter describes the simulation of the omni-directional camera. The first
section of the chapter illustrates the optical process that generates the images
acquired by the camera. Here, we introduce the technique of ray-tracing, taken from
the field of Computer Graphics, which correctly reproduces the images generated by
the real camera optics. In particular, the simulation uses novel techniques to heavily
optimize ray-tracing for real-time purposes, which are described in section 4.2.

4.1 Ray-tracing
The process that generates the camera images follows the rules of optical geometry:
rays of light arrive from the environment and eventually reach the spherical mirror
that is part of the whole camera device. The mirror then reflects the rays towards the
camera where the image is formed (see Figure 11).

Figure 11: Optical process forming omni-directional images.

The simulation of this optical system requires the technique of ray-tracing [25].
Ray-tracing is a well known rendering technique in the field of Computer Graphics
(CG) that naturally generates photorealistic images in the presence of reflective
surfaces. This technique essentially replicates the behavior of optical geometry in

MIRROR

CAMERA
IMAGE

Active Vision in a Collective Robotics Domain - 28 -

creating an image. Ray-tracing works as follows: the ray associated to every image
pixel is traced from the point of view back into the scene until it intersects an object
(the background in the limit). At this point, the ray is split in the corresponding
reflected and refracted rays according to the laws of physics and the material
properties of the intersected surface. These new rays, weighted by the surface
reflectance, are then recursively shot in the scene following the same procedure,
leading to a binary tree of rays (see figure below). Recursion stops when a ray
reaches the background or a certain threshold (number of rays, tree depth…) is
exceeded. The final tree of weighted rays determines the color of the pixel.

Figure 12: The principles of ray-tracing

Conventional rendering techniques running on common graphical hardware are
not feasible to simulate this optical process because they involve linear mappings of
geometrical representations from world space to image space. The spherical mirror
introduces a non-linear mapping that only ray-tracing techniques can naturally
handle.

In order to simulate the omni-directional camera of an s-bot, we use a simplified
version of ray-tracing that takes into account only first-order reflections of rays.
Every ray starting from the camera’s point of view is tested for intersection against
the spherical mirror and, in case, the corresponding reflected ray is traced in the
scene until it reaches an object. We then assign the color of the intersected point to
the image pixel. If the first or the reflected ray does not intersect any object, then we
set the pixel to the color of the background. Figure 13 shows this process.

Active Vision in a Collective Robotics Domain - 29 -

Figure 13: Simplified ray-tracing.

4.2 Optimized Ray-tracing
The above procedure has very weak points. First, the high number of intersection
tests slows down the process dramatically. In the worst case, we must test every ray
against the mirror and, if reflected, against all the geometrical primitives of the
scene. The model of an s-bot, especially the detailed one, is made of thousands of
primitives thus making the cost of ray-tracing prohibitive. Even with high-level
optimizations based on proper organization of scene geometry in friendly data-
structures, the procedure would be too demanding. Furthermore, ray-tracing needs
information about the reflective properties of the intersected surfaces (only the
material color in our simplified approach). In our experiments, the available
information consists of geometrical meshes, texture maps and simple lighting
properties, used by the graphic card to render the objects. A complete ray-tracing
scheme would then replicate in software the operations done by the graphic
hardware, mainly texture mapping and lighting, to retrieve the color of the
intersected points. The latter constraint makes ray-tracing in software unpractical.

 We have developed a hybrid technique to overcome the aforementioned limits.
This technique takes advantage of common graphic hardware to critically accelerate
the last, most expensive, step of ray-tracing. In addition, it relies on full pre-
computation of the operations involved in tracing rays from the camera to the mirror.
Further optimizations have been implemented as well. Thanks to this technique, the
simulation of the omni-directional camera becomes feasible for evolutionary
development of controllers for tasks of active-vision.

BACKGROUND

Active Vision in a Collective Robotics Domain - 30 -

4.2.1 The Idea of Cube Map

The technique exploits the idea of cube map. A cube map is a cube whose faces are
texture maps that show the projection on the cube of the scene around a point; each
face covers a 90-degrees field of view in the horizontal and vertical. One relevant
property of the cube map is that each pixel represents the scene viewed in the
direction going from the center to the pixel. For this reason, a cube map is often used
to store directional information about the scene around one point (the center of the
cube map), like the luminance in lighting techniques, or colors in our vision system,
as shown by Figure 14.

Figure 14: Left: 3D cube map of a scene. Right: unfolded version

We setup a cube map around the camera’s spherical mirror such that its center
coincides with the inner center of the mirror (Figure 15).

Figure 15: Cube map setup.

At each simulation step, we render the scene on each of the six textures of the
cube map using a perspective projection with a field of view of 90 degrees both in
the horizontal and vertical. The textures now show the scene around the mirror in all
directions.

Active Vision in a Collective Robotics Domain - 31 -

Our technique takes advantage of the cube map to significantly speed-up ray-
tracing. Again, we first shoot a ray from the camera’s center of projection towards
the mirror. If the ray meets the mirror, it is reflected in a direction dictated by the
well-known Snell’s law of reflection:

ri θθ =

where iθ , rθ are the angles between the mirror’s normal vector at the intersection
point and the incident ray and reflected ray respectively (Figure 16).

Figure 16: Snell’s law of reflection

Now, instead of tracing the reflected ray into the scene, we read the cube map
pixel corresponding to the direction of this ray. It is important to underline that the
cube map encodes the color correctly seen by rays having origin in the mirror’s
center. The rays reflected by the mirror instead start from the mirror’s surface, thus
we have to find the ray from the center that best approximates the reflected ray7. We
can easily obtain it by taking a point on the reflected ray far from the origin; the ray
connecting this point to the mirror’s center is the searched approximation (Figure
17).

Figure 17: Reflected ray (black) and its approximation (red).

7 Tests showed that this approximation does not affect the quality of simulation in a perceivable way.

 iθ rθ

Active Vision in a Collective Robotics Domain - 32 -

After that, we calculate the intersection between the approximated ray and the
cube map8, and we copy the intersected pixel to the image pixel. We must repeat this
process for all the pixels of the camera image.

The following algorithm summarizes the simulation of the omni-camera using the
cube-map.

setup a cube map centered on the mirror

…
for each control step

begin

 for each side of the cube map

 begin

 render the scene on this side

 read back side’s texture to system ram

 end

 perform ray tracing between the image and the cube map

end

The time required to update the cube map mainly depends on the speed of the
employed graphic card. On modern hardware, this time ranges from one to two
milliseconds on average for simple scenes with few robots. The graphical engine
uses frustum culling to alleviate the work done by the graphic card. This basic
optimization heavily reduces the amount of work necessary to render the scene six
times because it discards invisible objects before rendering them on the cube map’s
sides. Note that the cube map textures must be read back from video to system ram to
be processed by the final stage of the algorithm. We propose a solution to this
problem in the next section.

4.2.2 Mapping Table

At this point, our technique introduces a strong optimization that concerns the last
part of the algorithm. As already described, this part consists in finding, through ray-
tracing, which pixel of the cube map corresponds to each pixel of the camera image.
This is a time consuming process that involves one demanding ray-tracing for every
camera pixel at each control step.

8 Since the origin of the approximated ray coincides with the center of the cube, an optimized
intersection test is available. The maximum absolute coordinate of the ray gives the side where the
intersection occurs. The other two coordinates are then divided by this maximum and remapped from
the range [-1, +1] to the range [0, s], where s is the size of the texture map associated with that side
(supposed square). The resulting 2D coordinates are used to access the texture map.

Active Vision in a Collective Robotics Domain - 33 -

Luckily, this work turns out unnecessary because the image plane and the
spherical mirror have fixed relative positions. In a coordinate frame rigid with them,
the geometrical path of rays starting from the center of projection of the camera, and
possibly reaching the mirror and the cube map, does not change. Therefore, we can
completely pre-calculate which pixel of the cube map corresponds to every image
pixel. We store this information in a mapping table.

The mapping table has the same resolution of the camera image and tells, for
every image pixel, the corresponding side and pixel of the cube map (Figure 18). If
the viewing ray associated with the pixel misses the mirror, the table stores a special
code that indicates the background.

Figure 18: Using the mapping table

At run time, we update the cube map as usual by rendering the scene on its sides.
After that, we build the camera image by setting each image pixel to the
corresponding cube map pixel, according to the mapping table. Thanks to this
optimization, the cost of ray-tracing has been substituted by the cost of a table
lookup, making the algorithm already practical for evolutionary tasks requiring
maximum efficiency in the simulation phase. The new algorithm is the following:

setup a cube map centered on the mirror
pre-calculate ray-tracing in a mapping table
…
for each control step
begin

 for each side of the cube map

 begin

Side, pixel index

MAPPING TABLE

Active Vision in a Collective Robotics Domain - 34 -

 render the scene on this side

 read back side’s texture to system ram

 end

 copy the cube map on the image using the mapping table
end

The simulation of the omni-directional camera now runs partially on the graphic

card, which renders the cube map, and finally on the CPU, which performs the
mapping between the cube map and the camera image. This procedure presents a
serious performance bottleneck in the transfer of textures from video to system ram.
This transfer is quite slow on current AGP buses due to limited bandwidth.

The problem finds solution on modern graphic cards that support rendering to
textures and programmable hardware with dependent texture fetches. The first
feature means that the graphic card is capable of outputting rendering operations to
textures residing in video memory. The six textures of the cube map and the camera
image require this feature. The second feature means that the graphic card can
execute short programs running user-specified instructions to create a pixel. In our
case, we need a program that performs the mapping between the cube map and the
camera image directly in hardware. This program must read from the mapping table,
stored as a texture, the ray direction corresponding to each camera pixel, and use this
ray to fetch the cube map. This is an example of dependent fetching because we use
data read from a texture to access another texture. The new algorithm is the
following:

setup a cube map centered on the mirror
pre-calculate ray-tracing in a mapping texture
…
for each control step
begin

 for each side of the cube map

 begin

 render the scene on this side

 end

 render camera image using programmable hardware

 read back camera image for processing
end

The above process has the big advantage of running entirely on the graphic card,
on hardware heavily optimized for pixel operations, and without expensive data
transfers between the graphic and the system memory. Actually, we must read back
the camera image to process it on the CPU side, but this cost is marginal compared to
the cost of transferring six textures implied by the original algorithm. Unfortunately,

Active Vision in a Collective Robotics Domain - 35 -

we did not exploit this optimization because the required hardware was not available
on all the computers.

4.2.3 Minimal Rendering

The final high-level optimization of our technique concerns the update of the cube
map at every control step. As explained, this consists in rendering the scene six
times, one for each cube side. The update of all the sides is actually unnecessary
under some circumstances.

First, some sides of the cube map may never contribute to the creation of the
camera image (for example the top side). This happens when no rays reflected by the
mirror intersect those sides, in which case none of their pixels is mapped on the
camera image by our technique.

 Besides, the rendering of the whole camera image is not always required. Vision-
based controllers make use of a virtual retina, a region of the image of a certain shape
and size, moving and zooming on the image. The controllers process only the pixels
covered by the retina ignoring the rest of the image. Therefore, it is necessary to
update only the sides of the cube map that contribute to these pixels. Figure 19 shows
an example of the above situation, where only one side of the cube map influences
the image area corresponding to the retina.

Figure 19: Example of minimal rendering. Only the right side of the cube map is necessary
to render the retina region (in green).

Given a set of destination pixels (the retina or the full image), the optimization
task consists in finding which sides are strictly necessary to render these pixels. A
side is necessary if and only if it contains at least one pixel that will be mapped on at
least one image pixel.

Active Vision in a Collective Robotics Domain - 36 -

The solution to this problem is straightforward because the mapping table already
stores the index of the cube map’s side associated, through ray-tracing, to every pixel
of the camera image. Therefore, we must loop over all the destination pixels and
mark as active the corresponding side, read from the mapping table. Later, we will
update only the active sides of the cube map instead of all the six ones. The
following code describes this procedure.

mark all sides as non-active

for each destination pixel (x,y)

begin

 side = mappingTable(x,y):side

 side:active true

end

4.2.4 Quadtree Preprocessing

The operation of determining the sides of the cube map required to render the retina
or the full image involves a loop over all the destination pixels, which can become
rather costly for large regions. Given that the correspondence between a pixel and the
associated cube side is fixed at the beginning, we can conveniently pre-calculate the
necessary sides for predefined sub regions of the image.

We adopted a quadtree data structure to organize that information hierarchically.
A quadtree is a rooted tree where every internal node has four children. In our case,
every node in tree corresponds to a square region of the camera image; the root node
stands for the whole image while leaf nodes correspond to the minimum regions
handled by the pre-processing system.

Figure 20: First three levels of the quadtree.

Each node covers all the pixels of its four children, therefore it requires all the
sides required by its children together. In our implementation, every node stores a
byte that tells whether the sides of the cube map are necessary or not to render the
corresponding image region. The i-th bit of the byte is set to 1 if the i-th side is

Active Vision in a Collective Robotics Domain - 37 -

necessary, 0 if not. A logical OR between the bytes of two nodes gives the union of
the sides of both.

We pre-process the image in a bottom-up fashion taking into account this
property. First, we calculate the byte stored with each leaf node by looping over all
the node’s pixels, according to the procedure described in section 4.2.2. Then, we
pass this information from the leaf nodes up to the root, by calculating the byte of a
parent node as the logical OR of the children bytes.

Figure 21: Quadtree pre-processing.

Now, we want to determine the sides required by regions of generic shape and
size, as the virtual retina, taking advantage of the pre-calculated information stored in
the quadtree. At this purpose, we first calculate the bounding rectangle of the region,
which is the minimum rectangle that fully includes the region. Next, we have to
retrieve the largest nodes of the quadtree fully contained in that rectangle (Figure 22,
in blue), an operation achievable through a recursive splitting of the rectangle down
the quadtree. The bytes stored with these nodes tell the sides necessary to render the
corresponding parts of the rectangle. Finally, we must calculate the sides associated
to the remaining parts of the rectangle (Figure 22, in red) using the procedure
described in section 4.2.2.

Figure 22: Quadtree splitting of a rectangle.

At the end, we have the complete set of cube-map sides necessary to simulate the
omni-directional camera image in the area covered by the rectangle, which includes
the virtual retina we are interested in. The final algorithm is the following:

Active Vision in a Collective Robotics Domain - 38 -

setup a cube map centered on the mirror
pre-calculate ray-tracing in a mapping table
for each control step
begin

calculate bounding rectangle of region

determine active sides

for each active side of the cube map

begin

 render the scene on this side

 read back texture to system ram

end

copy the cube map on region using the mapping table
end

Active Vision in a Collective Robotics Domain - 39 -

5
VIRTUAL RETINA

This chapter is dedicated to the description of the virtual retina device used by the
vision system to extract relevant features from the images acquired by an omni-
directional camera. The first section introduces the general characteristics of a retina,
and the related rendering and filtering operations. Sections 5.2 and 5.3 illustrate two
kinds of retina: the rectangular retina and the circular one.

5.1 General Characteristics
The vision system of every robot is equipped with a virtual retina capable of
autonomously scanning the images acquired by the robot’s camera. The retina
corresponds to a limited area of the image, of variable position and size. It can zoom
in and out and move across the image to extract visual features. For example, an
intelligent retina would assume a large size when the vision task requires global
information on the environment seen by the camera. On the contrary, the retina
would zoom in to extract features from the image, as objects’ details. Thanks to this
ability, the retina can constantly detect and focus on environmental features,
providing relevant information for the achievement of tasks concerning robotic
navigation.

The retina is composed of an n-by-m matrix of visual cells whose receptive fields
receive input from the corresponding area of the image. In our experiments, every
retinal cell stores visual information about the environment and feeds one input
neuron of the neural network controlling a robot.

The resolution of the retina affects the performance of the vision system in two
ways. From one side, high resolutions imply a large size of the neural network fed by
the retina; therefore, the artificial evolution of the network becomes more complex
and time-consuming. On the other side, retinas characterized by a low resolution
cannot efficiently detect small details, which might be fundamental in advanced
vision tasks involving distant and small objects. As a compromise, we employed in
our experiments the intermediate resolution of 4x4 cells.

Theoretically, more retinas may work simultaneously for advanced image
processing. Practically, we do not suggest the use of multiple retinas because the
added complexity may overcome the benefits offered by a unique, simple retina.

Active Vision in a Collective Robotics Domain - 40 -

Additionally, the use of multiple retinas highly increases the computational time
required for artificially evolving controllers capable of governing such a vision
system correctly. As a result, in our experiments only one retina operates on the
camera images.

5.2 Rendering
The simulator renders the images of an omni-directional camera with optimization
strategies that take into account the virtual retina. Indeed, the vision system of each
robot processes through filtering only the pixels covered by the retina, ignoring the
rest of the image. Hence, we can optimize the camera simulation by rendering only
the pixels covered by the retina, according to the procedure described in section
4.2.3. Thereafter, the retina can operate directly on the image or, alternatively, on a
secondary buffer storing a copy of the retinal area (e.g. for writing operations that do
not change the original image). In our implementation, the retina works directly on
the simulated camera image.

5.2.1 Filtering

Every retinal cell covers a group of image pixels. The three R (Red), G (Green), B
(Blue) color channels of these pixels are filtered and the resulting values associated
to the cell. This triple of values (in our experiments, only their luminance) is then
passed in input to the neural network for processing.

Two basic filters are available: average and sampling. The average filter
calculates the arithmetical average of the filtered pixel colors:

)(1)(
1 , αα ∑ =

=
N

j jii pixel
N

cell

where N is the number of pixels belonging to the i-th cell and α is the color channel
(red, green and blue).

This filter has the advantage of considering all the pixels of a cell but it loses fine
details because it cuts the high frequencies of the filtered data. The sampling filter
instead takes the color of the first pixel as result.

)()(0, αα ii pixelcell =

This filter preserves the high frequency contents of the source image but it
samples only one pixel to represent the whole cell, which may lead to aliasing
problems on high-frequency images.

More filters are possible, based on different kernels. We can select one or the
other filter by hand or we can let the controller select the best filtering strategy. It

Active Vision in a Collective Robotics Domain - 41 -

would be even possible to let evolution develop the filtering kernel that best matches
the task under control. This would unfortunately lead to an intolerable increase in the
time and complexity of an evolution. For simplicity, we used the average filter by
default in our experiments.

Before filtering, we have to find the image pixels covered by a cell. This operation
is analogous to fill the interior of the cell (in our case, we have to read the pixels
instead of writing) and is achievable by means of scanline rasterization algorithms
[25]. The circular retina, described later, makes use of such an algorithm.

5.3 Rectangular Retina
The first devised retina is rectangular and aligned to the image (rotation is not
supported). This retina can move over the image both in horizontal and in vertical
direction in search of relevant features. It can also zoom in or out by changing its
size. The retina is divided in a grid of n-by-m visual cells receiving input from the
corresponding region of the image. Table 1 describes the retinal parameters, along
with their range.

Table 1: Parameters of the rectangular retina.

Parameter Description Range

Position Position of the top-left corner
of the retina, in pixels

x: from 0 to w-1, where w is the
width of the camera image

y: from 0 to h-1, where h is the height
of the camera image

Size Size of the retina’s sides, in
pixels

From one or two pixels per cell, to
the size of the whole image

The rectangular retina suits generic images. Therefore, we can use it even outside

the robotic context, for instance to efficiently process images on systems limited by
low-computational capabilities.

5.3.1 Filtering

The visual cells of this retina are rectangular, easing the problem of finding the
corresponding image pixels. The calculus involves two nested loops, in horizontal
and in vertical, over the image pixels covered by the cell. When the average filter is
selected, each cell takes the average value of the three R, G, and B color channels of
its pixels, calculated on the fly throughout the loop. Otherwise, when the sampling
filter is selected, the cell takes the value of its first pixel at the top-left corner.

Active Vision in a Collective Robotics Domain - 42 -

5.4 Circular Retina
The second retina we developed for our experiments has the shape of a circular
sector (Figure 23). This retina can rotate around the center of the image and can
translate in the radial direction. It can also zoom in or out by changing aperture and
length. The circular retina is divided in a matrix of n X m visual cells, obtained by
slicing the retina n times in the radial direction and m times in the angular. This kind
of retina optimally adapts to the images acquired by the omni-directional camera of
our robots, characterized by the circular projection of the perceived scene elements
around the image center. In addition, this retina automatically excludes from
processing the central area of the image, which always shows the reflection of the
robot mounting the camera and it is not interesting for the control of the robot itself.

Figure 23: 4 x 1 circular retina with an aperture of 180 degrees.

Table 2 describes the circular retina’s parameters and their range:

Table 2: Parameters of the circular retina.

Parameter Description Range

Angle Orientation of the retina around the
center of the image, in degrees

From 0 to 360 degrees

Distance Distance from the center of the image From 0 (nearest) to 1 (furthest)

Aperture Angular extension of the retina From 15 to 360 degrees

Length Radial extension of the retina From few pixels per cell (2, 3) to
about half diagonal of the image

The retina’s size and position are expressed in a coordinate system having origin

in the center of the image. The retina rotates around the image following changes of
the angle parameter. In the design of the neural network controlling the retina, we
chose to preserve correlation between successive retinal acquisitions, by limiting the

Active Vision in a Collective Robotics Domain - 43 -

variation of the angle parameter at every control step to 15 degrees (an empirical
value). We also employed a control method that gives a stable angular movement,
described in section 6.2.3.

5.4.1 Filtering

The cells of the circular retina have a convex contour defined by two straight lines
and two circular arcs at the top and bottom. Given these characteristics, the problem
of finding the pixels inside a cell is much more complex than in the case of the
rectangular retina.

As already explained, rasterization algorithms were designed to draw one shape
on a map of pixels (e.g. the screen). The standard algorithms determine the pixels
inside the shape line-by-line (scanline) through a process called scanline conversion.
This process consists in finding the intersections between horizontal scanlines and
the shape’s contour, which correspond to the extremes of rows of pixels (spans)
inside the shape. Figure 24 shows these concepts applied to a triangle.

Figure 24: Scanline conversion of a triangle

Conventional rasterizers work on convex polygons, characterized by the
geometrical property of having only one internal span for each scanline, whose
extremes are easily calculated by drawing the polygon’s edges with modified line-
drawing functions. There are extensions to these algorithms supporting concave
polygons and curved outlines at the cost of increased complexity.

We decided to develop our own algorithm for the circular retina. This algorithm
works again on the same basis of rasterizers for convex polygon to determine the
pixels inside a cell, with two differences. First, it handles the case of multiple spans
per scanline introduced by the cell’s concavity. Second, it adopts special drawing
functions designed for circular arcs to determine the points on the top and bottom
arcs of a cell.

In order to manage multiple spans per line, the algorithm maintains a table that
stores the points on the cell’s contour for each scanline. This table can store a

y

x

SPAN

SCANLINE

Active Vision in a Collective Robotics Domain - 44 -

maximum of 4 points per y coordinate, for a number of scanlines equal to the cell
height. It stores the 2D coordinates of points, along with a bit flag that classifies
points in entry or exit according to their orientation with respect to the interior of the
cell (see Figure 25). Internal spans are those connecting entry to exit points from left
to right.

Figure 25: Scanline conversion of a cell in a 2 x 1 retina. Yellow squares represent entry
points (start of spans), while green ones represent exit points (end of spans).

A modified line-drawing function calculates, for each y coordinate, the points
lying on the two lateral lines of the cell. Thereafter, these points are classified and
inserted into the table. Another function draws the top and bottom circular arcs of the
cell along the y direction. This task is more complex that in the case of straight lines.
In literature, there exists a variety of algorithms to draw circular arcs, most of them
derived from the well-known circle-drawing algorithm by Bresenham [10]. We
adapted one of these algorithms for our purposes. The algorithm determines, line by
line, the point(s) on the arc intersected by the working scanline (a scanline can
intersect an arc in one or two points).The points are then classified and inserted into
the table.

At the end of this work, the table stores the points that limit the spans internal to
the cell. For each scanline, we first sort these points from left to right according to
their x coordinate. Then, we examine the sorted points and we consider spans that
connect entry to exit points from left to right. When the average filter is selected, we
calculate the average, for the three R, G and B channels, of the pixels belonging to all
these spans. Otherwise, if the sampling filter is used, we set the cell’s value to the
color of its first pixel.

y

x

Active Vision in a Collective Robotics Domain - 45 -

6
EVOLVING TASKS: FOCUS

This chapter describes our first experiment of active vision. The first section
introduces the experiment along with the motivations behind it. Section 6.2 describes
the experimental setup, with details on the simulated scenario, the vision system, the
neural network controller and the fitness function used to evaluate controllers. The
last section, 6.3, discusses the obtained results and the generalization properties of
the evolved controllers.

6.1 The Focus Task
This experiment consists in evolving a virtual retina capable of focusing on static
objects viewed by an omni-directional camera. Here, the camera does not move
because it is not attached to a robot. It acquires at every control step images of the
scene containing a random object located in a black room. The object appears in the
image as a bi-dimensional figure of varying shape, position and color. The retina
must localize the object in the image and then zoom in or out in order to focus on the
object in the best possible way. This means that the retina must cover the whole
object, and not only a fraction of it, assuming the minimal size strictly necessary to
see the whole object.

This experiment represents the first step in the study of controllers capable of
features extraction from camera images. We want to prove, through this experiment,
that the virtual retina is an efficient tool to extract automatically from images
relevant features that can be useful to solve vision-based tasks. In this case, the task
coincides with the recognition and focusing of generic objects. In the next
experiments, we will use the same type of retina for more advanced tasks involving
mobile robots (dynamic targeting and swarming). We will show that the retina can
recognize objects in dynamic environments and provide information on the objects’
position. Robots can then use this information for tasks like navigation and
swarming.

Moreover, this experiment serves to validate the choices taken about the retina
and the controller, because we intend to adopt almost the same setup for the
successive experiments.

Active Vision in a Collective Robotics Domain - 46 -

Finally, this experiment constitutes an important ground to test the developed
vision system, with regard to the omni-camera simulation for image acquisitions, and
to the artificial retina for features extraction.

6.2 Experimental Setup
In the following sections, we describe the experimental setup used for the evolution
of the focusing task. Section 6.2.1 illustrates the setup of the simulated scenario,
including the object to focus, the background and lights. The successive section is
about the setup of the vision system, with details on the omni-directional camera and
on the employed virtual retina. Section 6.2.3 describes the neural network controlling
the retina. Finally, section 6.2.4 explains the fitness function used to evaluate
controllers for the task at hand.

6.2.1 Scene Setup

The simulated environment is very simple, being constituted only by the object to
focus on and by a ground. The background around these elements, like a virtual
room, is black. At the beginning of every evaluation, we randomly choose the
object’s shape, between a sphere and a cube, of fixed dimensions. We position the
object around the camera at a random direction and distance in the range [30, 80]
cms. We keep the distance below a maximum since very distant objects appear too
small in the camera image and the retina cannot focus on them. Moreover, we
randomly change the color of the object at every evaluation in order to evolve robust
controllers that work under generic conditions. Finally, we place a point light near
the camera to illuminate the scene, with settings that give high-contrast
illuminations. Since the distance and orientation between the object and the light is
random, the object’s luminance slightly varies at every task evaluation. This added
characteristic also contributes to develop a robust controller’s behavior.

6.2.2 Vision Setup

We place an omni-directional camera in the center of the scene. In this experiment,
the camera is not attached to a robot and so it cannot move. Since also the object
under focus does not move, the images captured by the camera never change. We
exploit this fact to optimize the simulation of the vision system during an evaluation,
by creating the camera image only once and not at every control step.

Here, we use a circular retina of 4 x 4 visual cells. This number represents a good
compromise between visual resolution and computational cost. On one side, lower
resolutions have larger cells whose value is the average of many pixels that might
belong either to the object or to the background. Consequently, these visual cells may
not give a significant response when they cover small object details or distant

Active Vision in a Collective Robotics Domain - 47 -

objects, especially in the initial control phase when the retina usually employees
large cells. On the other side, higher resolutions increase the computational cost of
evolution because the number of visual cells affects the size of the neural network
under evolution (details in the section about the controller setup). Table 3 shows the
retinal parameters used in this experiment:

Table 3: Retinal parameters used in focusing experiment.

Parameter Min Range Max Range

Aperture 15 [degrees] 360 [degrees]

Radius 0 [pixels] 63 [pixels]

Length 4 [pixels] 49 [pixels]

The retina operates on simulated images of 128 x 128 pixels resolution. We

initialize the retina at full size at the beginning of every experiment to give it an
immediate global view of the image. Note that here the camera does not see the
reflected image of the robot in the center of the image, as it happens in the other
experiments where the camera is attached to a robot. For this reason, we give the
retina complete freedom in the radial movement, expressed by the full range (0, 63
[pixels]) of the parameter radius. In addition, the retinal aperture and length have a
lower bound to keep the size over a minimum.

6.2.3 Controller Setup

The neural network is a perceptron having 17 input neurons that encode the state of
16 sensors and a bias unit (i.e. a unit whose activation state is always 1). Each
sensory neuron is directly connected to 5 output neurons controlling the artificial
retina. The transfer function of these neurons is a standard sigmoid function. The
connection weights are 85, ranging from -1 to +1, and they are genetically
determined.

Input neurons: The 16 sensors in input to the neural network encode the average
luminance of the 4 x 4 visual cells of the artificial retina. We update the color value
of these cells at each image acquisition by averaging the pixels of each cell (see
section 5.2.1). Then, we map the resulting color to grey scale, equal to the cell's
luminance:

cell i (l))(*114.0)(*587.0)(*299.0 bcellgcellrcell iii ++=

where the luminance (l) of the i-th cell is obtained by properly weighting the three
color components (r,g,b) associated to the cell (the above formula is standard in
Computer Graphic’s literature [25]).

Active Vision in a Collective Robotics Domain - 48 -

Operating on monochromatic data reduces the amount of information by a factor
of 3 and greatly simplifies the neural network controller. Anyway, we plan to run
experiments using colored, instead of monochromatic, information in future (for
instance, colors may be useful for advanced discrimination tasks).

Output neurons: The output neurons of the perceptron control the following retinal
parameters:

Parameter Range

Radial distance from the center 0 - 63 [pixels]. The retina cannot move
beyond the image borders.

Angular shift 0 - 15 [degrees]. We limit the maximum
shift to preserve the correlation between
successive sensorial inputs.

Angular shift direction
(clockwise or anticlockwise)

0 – 1 [units]. When the output is < 0.5,
the direction is clockwise, otherwise it is
counterclockwise.

Length 0 – 1 [units]. 0 represents the minimum
length, 1 the maximum.

Aperture 0 – 360 [degrees]. At 360 degrees the
retina sees in all directions.

Every output neuron ranges from 0 to 1 and is remapped to the corresponding

parameter range before the control phase takes place. Note that we used two distinct
neurons to control the retina’s angular movement for a better stability in the
movement. This stability is necessary in order to produce solid focus actions without
noisy oscillations of the retina. The reason is that if we use a single neuron encoding
the whole range of angular movement (-15, +15 [degrees]), a null movement (0
degrees) would correspond to the neural value 0.5. The precise value of 0.5 is
difficult to obtain using a perceptron network whose output neurons quickly saturate
to 0 or 1 in the presence of high synaptic values. Earlier experiments using a single
neuron to encode the retina’s angular shift confirmed this problem, producing focus
actions with undesired, high oscillations.

6.2.4 Fitness Estimation

The fitness function is a criterion that evaluates the performance of a neural network
in achieving the desired focusing task. At this purpose, we take into account the
different luminance between the object and the background. In the following, we

Active Vision in a Collective Robotics Domain - 49 -

consider one image pixel to belong to the object if its luminance exceeds a given
threshold, equal to the ground plane’s luminance (0.3 typically).

We calculate the fitness by combining two components evaluated at every control
step. The first component, l

iF , rewards the positioning and focusing of the retina on
the object, while the second component seeks to adjust the retinal dimensions for
optimal coverage.

With regard to component l
iF , we must calculate the average luminance of all the

pixels seen by the retina (rL) and of the object’s pixels in the whole image (iL). The
ratio between these values expresses the retina’s performance in targeting the object
in the image. For instance, when the retina misses the object or it is too large, its
average luminance is low because it sees mainly the dark background. Instead, when
the retina centers the object, it detects a higher luminance that may also exceed that
of the object. Fitness component l

iF is then:

()ir
l

i LLF ,1min=

This component is not enough to evolve a good focusing behavior because it
cannot discriminate, through the parameter rL , the whole object from an inner part of
it, in case they have the same average luminance. This fact allows the retina to focus
on small portions of the object, instead of optimally focusing on the entire object. In
order to overcome this problem, we introduce a second fitness component that
constraints the retina to cover the whole object. At this purpose, we must calculate
the number of object’s pixels both under the retina (rC) and in the whole image
(iC). The ratio between these two numbers gives the fitness component c

iF for the i-
th control step:

ir
c

i CCF =

According to the above formula, fitness component c
iF is low when the retina

does not cover all the object’s pixels in the image, which prevents the retina to
become smaller than the object. On the contrary, c

iF equals one when the retina
covers the whole object.

The product between the two fitness components gives the complete fitness of the
focus action for the i-th control step, having all the required properties.

f
iF = l

iF * c
iF

When the retina covers the whole object employing an excessive size, fitness l
iF

is low and fitness c
iF is high (unitary in the limit), giving an overall low fitness f

iF .

Active Vision in a Collective Robotics Domain - 50 -

Instead, when the retina focuses on part of the object, component l
iF is almost

unitary while component c
iF is small. The fitness f

iF reaches a maximum value
when the retina optimally outlines the object’s image. In any case, it is virtually
impossible to reach a unitary fitness because the retina cannot match perfectly the
shape of every generic object seen by the camera.

Finally, we want the retina to maintain a stable focus on the object over time. At
this purpose, we average the fitness f

iF over all the control steps in order to evolve a
stable focusing behavior. The final fitness evaluating the controller at a certain trial is
thus:

∑=
=

N

i
f

ie F
N

F
1

1

where N is the number of control steps and f
iF is the fitness of the focus action

calculated at the i-th control step.
The number of control steps for an evaluation is only 60 in order to generate a fast

behavior.

6.3 Results
We performed 10 replications of this experiment, starting with different randomly
generated populations at each replication. Table 4 summarizes the parameters of the
evolutionary algorithm used for this experiment.

Table 4: EA parameters for focusing experiment.

Parameter Value

Trials 5

Population size 100

Selected out 20

Mutation rate 0.15

Recombination rate 0.3

Genotype length 105

Genotype encoding REAL

Initial range of genes [-1, +1]

Standard deviation 0.3

Active Vision in a Collective Robotics Domain - 51 -

In the end, evolution produced successful controllers capable of focusing the
retina on generic objects. Figure 26 shows the average and best fitness over the 10
replications of the experiment.

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 50 100 150 200 250

fi
tn

e
ss

generation

best fitness
average fitness

Figure 26: Evolution of the focusing ability. The average and best fitness of the population
are plotted against the generation number.

We tested the best controllers produced in each replication, evaluating them for
500 trials of 100 control steps. The average fitness values are presented in Table 5.

Table 5: Average performance of the best controllers evolved in each replication of the
experiment.

Replication Fitness Replication Fitness
1 0.572 6 0.560
2 0.464 7 0.558
3 0.529 8 0.593
4 0.529 9 0.578
5 0.539 10 0.565

The evolved retinal behavior does well in almost all situations, with fluctuations

of the performance that depend only on the random initial conditions of the
experiment. This behavior is practically the same in all the evolved controllers and
consists in the following steps. Initially, the retina takes an average opening, of about
45 degrees, and a nearly zero degree orientation. Then, it starts rotating clockwise
until it detects the object. At this point, the retina adjusts its position and size in order
to cover optimally the object; the latter process takes about 10 cycles. Finally, the
retina keeps the focus on the object, with minor oscillations around it. In some cases,
depending on the object's luminance in the image, the retina stays perfectly still
without oscillations. Figure 27 shows an example of the described behavior.

Active Vision in a Collective Robotics Domain - 52 -

Figure 27: An example of evolved focusing behavior.

6.3.1 Robustness

We devised two tests to study the robustness of an evolved retina.
The first test consists in measuring the retina’s performance varying the

luminance of an object from dark to bright. At this purpose, we measure for 50 times
the fitness value on a set of 10 luminances, uniformly spanning the range [0.3, 1]; we
do not test luminances below the value 0.3, corresponding to the ground’s
luminance, because our fitness formulation cannot discriminate the object from the
ground in that case. At each evaluation, lasting 60 control steps, we initialize the
object with a random, short distance from the camera and with a random orientation.
Figure 28 shows the average and variance of the fitness values for each the 10
luminances. As shown, the performance of the retina is satisfactory over all the
possible values of luminance. The variance slightly increases on dark objects
because, being less distinguishable from the background, the retina sometimes
cannot focus on them optimally. On the contrary, the retina displays a better
robustness when operating on objects characterized by higher luminances; in the
plot, this is reflected as a smaller variance.

Figure 28: Fitness in function of the object’s luminance.

Active Vision in a Collective Robotics Domain - 53 -

The second test studies the performance of the retina varying the distance between
the object and the omni-directional camera. The test measures the fitness value 50
times on each of 10 distances in the range [20, 200] cms. As in the previous test, each
evaluation lasts 60 control steps and each time we randomly initialize the other
parameters of the object, in this case its luminance and its orientation around the
camera. The resulting graph (Figure 29) shows that the retina is capable of focusing
on the object until a distance of about 100 cms, slightly more than the maximum
distance used during evolution. After that, the fitness drops because the object
appears very small in the image acquired by the camera, and the retina cannot easily
focus on it. The ultimate reason is that the retina, when passing on far objects,
receives a visual input that is not sufficient to discriminate them from the
background. This result confirms the statement, often appearing throughout this
thesis, that the retina can hardly focus on far objects.

Figure 29: Fitness in function of the object’s distance from the camera.

6.3.2 Generalization Properties

The evolved behavior generalizes particularly well on moving objects. We studied
this property with a third test that measures the retina’s ability in focusing on moving
objects. We expect the retina to follow well objects moving not “too” fast. Indeed,
recall that the retina can move at each control step for a maximum of 15 degrees
(Table 2) in order to preserve correlation between successive visual inputs. Objects
moving too fast break this correlation and consequently the retina’s ability in keeping
its focus on them. The test evaluates the fitness value for 50 times on each of 10
distinct angular velocities of the object, spanning the range [-π, π] degrees per
control step. At each evaluation, running for 60 control steps, the object is initialized
at a random distance from the camera and with a random color. Figure 30 plots the

Active Vision in a Collective Robotics Domain - 54 -

obtained fitness values. As shown, the retina’s performance decreases as the object
moves faster but it still maintains a satisfactory level. This result is particularly
interesting because demonstrates how evolution can successfully produce controllers
that greatly adapt to different situations. The graph shows also an asymmetry in the
performance between negative and positive rotations. This actually depends on the
evolved strategy to focus on objects, sometimes implying clockwise rotations that
better suit objects moving in the same way, and other time counterclockwise
rotations.

Figure 30: Fitness in function of the object’s velocity around the camera.

Summarizing, the evolved retinas successfully focus on generic objects perceived
by an omni-directional camera. The behavior is very robust against different
conditions, as the object’s luminance, position and distance from the camera.
Besides, the retina can also focus on moving objects, thus demonstrating high
capacities of adaptation. The latter property is particularly interesting in the view of
our second experiment, described in the next chapter, which deals with a mobile
robot that must extract relevant information through the retina in a navigation task.

Active Vision in a Collective Robotics Domain - 55 -

7
EVOLVING TASKS: TARGETING

This chapter describes our second experiment, which concerns the evolution of a
targeting task guided by vision. The first section introduces the task and explains the
motivations and challenges behind it. Section 7.2 describes the experimental setup,
including the simulated environment, the vision system, the neural network
controller and the fitness function that evaluates potential controllers. Finally, the last
section discusses the results obtained in this experiment and the generalization
properties of the evolved controllers.

7.1 The Targeting Task
The second experiment of this thesis consists in developing a vision-guided
controller capable of driving a robot towards a target object. The robot perceives the
environment, consisting in the target object randomly placed over a ground, by
means of its omni-directional camera. The camera captures images that show 360-
degree views of the surrounding environment, and represent the only sensorial
information available to the robot to accomplish its task. At this purpose, the robot
must possess two abilities. The first ability consists in localizing the target object in
the scene. The artificial retina integrated in the robot’s vision system serves this
purpose through the recognition of the object in the camera images acquired. In
analogy to the previous experiment, the retina must find the object in the image and
then focus on it. As second ability, the robot must move towards the target object as
fast as possible. In doing this, the robot should constantly estimate the object’s
position in the scene by exploiting the visual information gathered by the retina.

This experiment has a fundamental difference with respect to the previous one:
the images processed by the retina are dynamic because the camera, moving with the
robot, regularly sees the surrounding environment from different points of view and
orientations. This fact alone adds a level of complexity over the previous experiment,
where evolution operated on static images of the environment. In addition, motion
and vision in the robot are related through a sensory-motor loop that strictly
characterizes the robot’s behavior during the whole control phase. On one side, the
motion of the robot highly influences its visual perception of the environment, often
in unpredictable ways in consequence of complex dynamics with the environment

Active Vision in a Collective Robotics Domain - 56 -

where it moves. On the other side, the information gathered by the retina operating
on the acquired images determines, through the controller, the motion of the robot.
Artificial evolution must therefore co-evolve the robot’s motion and vision, taking
into account their intrinsic and mutual relationship.

7.2 Experimental Setup
The following sections describe the experimental setup used for the evolution of the
targeting task. Section 7.2.1 is about the simulated environment. Section 7.2.2 deals
with the robot’s vision system. Section 7.2.3 describes the neural network controlling
the robot’s vision and motion. Section 7.2.4 then discusses the choice of the fitness
function we used to evaluate controllers for this task.

7.2.1 Scene Setup

The simulated environment includes one robot, the target object and the ground,
surrounded by a black background (an example of the simulated environment is
shown in Figure 31).

.

Figure 31: Sample scene for the targeting experiment, showing the target object (in blue) and
the robot (in white) over a ground plane.

At the beginning of a controller evaluation, we randomly place the robot on the
ground. In the simulation, the ground plane is rendered with a dark, highly detailed
texture, which is perceived as small noise by the robot’s vision. Next, we position a
sphere, representing the target object, at a random distance and orientation from the
robot. The distance varies in the range [60, 80] cms. It is limited because distant
objects appear too small (few pixels) in the image and cannot be easily recognized by
the virtual retina. As in the previous experiment, the color of the object randomly
varies at every evaluation in order to evolve robust controllers that work under
generic conditions. Still, the object’s luminance is greater than the background’s
luminance to make it possible the discrimination between these different entities.
Finally, we place a light in the centre of the scene to illuminate the object, the robot
and the ground. The luminance of these objects slightly varies at every task
evaluation because their distance and orientation from the light is random. This
characteristic further enhances the controller’s robustness.

Active Vision in a Collective Robotics Domain - 57 -

7.2.2 Vision Setup

The robot is provided with an omni-directional camera placed over its turret, which
acquires images of the surrounding environment in real-time. The turret, and thus the
camera, cannot freely rotate with respect to the chassis to prevent directional
aliasing. This means that the orientation between the camera and the chassis must be
consistent throughout the whole control phase. This is fundamental because, as we
show in the results, the evolved robots exploit the retina’s orientation for a correct
navigation towards the target object.

In this experiment, the retina has 4 x 4 visual cells and operates on images of
128x128 pixels. A higher-resolution retina would allow a more precise targeting of
distant objects appearing small in the image. However, it would also increase the
time and complexity of evolution, given the relationship between the number of
visual cells and the neural network’s size. The adopted resolution proved successful
in targeting objects placed within the distance range mentioned in the scene setup.
The retinal parameters are more or less the same used in the previous experiment, as
shown by Table 6.

Table 6: Retinal parameters in targeting experiment.

Parameter Min Range Max Range

Aperture 15 [degrees] 360 [degrees]

Radius 14 [pixels] 63 [pixels]

Length 4 [pixels] 49 [pixels]

Note that the radius of the bottom arc defining the circular retina starts from 14

pixels, equal to the robot’s radius in the image. This way, the retina never processes
the central area of the image, which always shows the reflection of the robot
mounting the camera and it is not interesting for the navigation of the robot itself.

7.2.3 Controller Setup

The neural network controlling the robot is a single-layer perceptron having 21 input
neurons, including a bias unit. The output neurons are 7 and control the artificial
retina and the robot’s movement. Overall, the connection weights are 144, ranging
from -1 to +1.

Input neurons: The first 16 neurons in input to the neural network encode the
average luminance of the 4 x 4 visual cells of the artificial retina, as in the previous
experiment. The remaining 4 neurons are associated to 4 directions iθ = { 0, π/2, π,
3π/2 } degrees, and encode the retina’s orientation according to the formula:

Active Vision in a Collective Robotics Domain - 58 -

cos(iθ -γ) | iθ -γ| <= π/2 { 0 otherwise

where iθ is the angle associated to the i-th neuron, and γ is the retina’s angle in
degrees. Figure 32 shows the activation state of the four neurons in function of the
retina’s angle.

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 0 1 2 3 4 5 6

n
e
u
ro

n
 a

ct
iv

a
ti
o
n

retina's orientation [radians]

neuron0
neuron1
neuron2
neuron3

Figure 32: Neurons activation in function of the retina's angle.

The above encoding has the property that the four directional neurons receive a
positive activation state only when the retina spans the associated angular range.
Consequently, the controller receives clearly distinct inputs in correspondence of
different retina’s orientations, which as shown later in the results, provide an
estimate of the object’s position in the scene. With reference to Figure 33, the retina
might focus on an object appearing on the right side of the camera image.

Figure 33: Retina’s angles for encoding.

The neuron corresponding to the direction of 0 degrees would then receive a high
activation state, while the other neurons would receive a null value. At this point, an
evolved robot would know how to exploit this particular input to correctly move in
the right direction towards the object. We argue that the adopted encoding, providing

0

90

270

180

Active Vision in a Collective Robotics Domain - 59 -

a fine distinction between different directions, eases navigation tasks driven by our
simple and reactive neural networks.

Output neurons: The output neurons control both the retina, like in the previous
experiment, and the robot's wheels. The following are the controlled parameters
along with their range.

Parameter Range

Radial distance from the center 14 - 63 [pixels]. The retina cannot move
beyond the image borders.

Angular shift 0 - 15 [degrees]. We limit the maximum
shift to preserve the correlation between
successive sensorial inputs.

Angular shift direction
(clockwise or anticlockwise)

0 – 1 [units]. When the output is < 0.5,
the direction is clockwise, otherwise it is
anticlockwise.

Length 0 – 1 [units]. 0 represents the minimum
length, 1 the maximum.

Aperture 15 – 360 [degrees]. At 360 degrees the
retina sees in all directions.

Left wheel’s speed -6,5 – +6,5 [radians/sec]

Right wheel’s speed -6,5 – +6,5 [radians/sec]

Every output neuron ranges from 0 to 1 and is remapped to the corresponding

parameter range before the control phase takes place. Note that the range of the
controlled retinal parameters is more or less the same as the previous experiment.
The only difference concerns the minimum value of the retina’s distance from the
center, which in this case starts from 14, equal to the robot’s radius in the image.
Again, we limit the maximum angular movement at each control step in order to
preserve correlation between successive visual inputs. This is a good property that
allows the robot to constantly keep its focus on the target object during navigation,
without accidental losses of focus that would interrupt its correct navigation for some
control steps.

7.2.4 Fitness Estimation

The fitness function evaluates the ability of a controlled robot in the targeting task.
We evaluate the required abilities of target focusing and approaching with two
dedicated fitness components.

Active Vision in a Collective Robotics Domain - 60 -

The fitness component evaluating the focusing ability is the same as the previous
experiment. An evolution guided by this fitness produces a retinal behavior that
constantly locates and focuses on the target object in the camera image. As already
explained, this ability allows the robot to estimate the object’s position in the scene,
before and while moving towards it.

We combine this fitness with a second component that rewards the movement of
the robot towards the target object. This component, called d

iF , is calculated at each
i-th control step as:

i
d

i DDF 01−= iD < 0D { d
iF = 0 otherwise

where 0D is the initial distance between the robot and the object, and iD is their
distance at the i-th control step. The component d

iF grows as the robot approaches
the target object, reaching a maximum value when their mutual distance is minimum.

Finally, we combine the two fitness components according to the formula:

()d
i

f
i

t
i FFF ∗+∗= 5.05.0

The previous formula implies a constant focusing ability and rewards the
movement of the robot in the direction of the focused object. The component t

iF is
then averaged over all control steps in order to evolve a robust behavior lasting in
time. The final fitness evaluating the controller is thus:

∑=
=

N

i
t

ie F
N

F
1

1

where N is the number of control steps and t
iF is the fitness of the targeting action

evaluated at the i-th control step.
In this experiment, each controller is evaluated for 200 control steps, which are

enough to let the robot reach the target object from any possible distance in the
initialization range. This number of control steps also influences the evaluation of a
controller because the robot should find, within the short, given time, efficient
strategies of movement in order to receive a high fitness.

7.3 Results
We replicated the experiment 10 times, using the parameters of the evolutionary
algorithms presented in Table 7.

Active Vision in a Collective Robotics Domain - 61 -

Table 7: EA parameters for targeting experiment.

Parameter Value

Trials 5

Population size 80

Selected out 20

Mutation rate 0.15

Recombination rate 0.3

Genotype length 147

Genotype encoding REAL

Initial range of genes [-1, +1]

Standard Deviation 0.3

Figure 34 shows the average and best fitness over the 10 evolutionary runs. As

shown, evolution reaches after approximately 300 generations a satisfactory fitness
value of nearly 0.64. A higher fitness is not realistic because the retina cannot
perfectly focus on the target object at every control step, which determines a fitness
component f

iF always below one. In addition, the robot necessarily takes some time
in reaching the target object, giving a sub-optimal fitness d

iF .

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 50 100 150 200 250 300

fi
tn

e
ss

generation

best fitness
average fitness

Figure 34: Evolution of the targeting ability.

We tested the best controllers produced in each replication, evaluating them for
500 trials. The average fitness values are presented in Table 8.

Active Vision in a Collective Robotics Domain - 62 -

Table 8: Average performance of the best controllers evolved in each replication of the
experiment.

Replication Fitness Replication Fitness
1 0.5625 6 0.6234
2 0.6345 7 0.6019
3 0.6119 8 0.5716
4 0.5988 9 0.5970
5 0.5865 10 0.6145

The evolved behaviors present differences in the initial control phase. According

to one controller, the retina initially assumes an aperture of about 110 degrees and an
orientation of 0 degrees. Next, the retina in the image and the robot in the
environment rotate clockwise (Figure 35, left). The retina stops rotating upon
reaching an orientation of nearly 180 degrees, which correspond to the left side of the
image. The robot instead stops rotating when the object appears under the retina,
which means on the left side of the camera image (Figure 35, center). At this point,
the retina starts focusing on the object and the robot begins to approach it, moving
forwards while constantly estimating its position through the retina. Once the robot
has reached the target object, sometimes it stops in front of it and sometimes it
rotates around the object, depending on the evolved controller (Figure 35, right). In
both cases, the robot maintains an orientation such that the object appears on the
bottom side of the image. Lastly, the retina always keeps a good focus on the object,
which allows the robot to constantly estimate the object’s position and never run
away from it.

 Figure 35: An example of evolved targeting behavior. Left: The robot rotates until the object
appears on the left side. Center: The robot approaches the object and the retina focuses on it.

Right: The robot stays close to the object, maintaining the focus on it.

Active Vision in a Collective Robotics Domain - 63 -

Another controller generates a different behavior at the beginning. Here, the robot
and the retina initially behave in order to bring the target object in an image position
that triggers the targeting action. From the right side of the image, the retina starts
rotating clockwise in search of the target object. Meanwhile, the robot stands still.
When the retina detects the object, it keeps rotating around the image, but also the
robot starts rotating clockwise in place. The robot stops rotating when the target
object appears on the left side of the camera image. Hereafter, the behavior is the
same as that previously illustrated.

7.3.1 Robustness

In order to study the robustness of the evolved controllers, we devised a series of
tests that measure the performance of the robot in targeting objects with different
properties.

The first test evaluates the performance of the robot varying the initial distance
between the robot and the target object. We evaluate the fitness value for 50 times on
each of 10 different distances, spanning the range [20, 200] cms. Each evaluation
lasts 300 control steps, more than during evolution, because the robot naturally needs
more time to reach distant objects. At every evaluation, we also initialize the object’s
color and shape at random. For this test, we measure the ability of the robot in
targeting the object through the fitness d

iF of the last control step. This way, we do
not penalize the analysis of robots operating on far object because they naturally
require more time to eventually reach the object. Figure 36 plots the measured fitness
values.

Figure 36: Targeting performance in function of the robot’s distance from the object.

Active Vision in a Collective Robotics Domain - 64 -

The fitness value maintains a high value up to a distance of nearly 100 cms. This
is a good result because the distance 100 corresponds to about 8 times the robot’s
diameter. After that, the fitness drastically drops because the robot is not capable of
targeting very distant objects. The primary reason is that the retina cannot detect and
focus on far objects and consequently the robot cannot estimate their position in the
environment while moving towards them. In future, we will study solutions that
might improve the robot’s performance with distant objects, perhaps using higher
retinal resolutions, different controllers (multi-layer) and better tuned evolutions.

We devised a second test to verify the robustness of the robot’s performance
under different colors of the target object, in the range [0.3, 1]. In view of the results
of the previous experiment, we expected a good performance in targeting bright
objects because they clearly differ in luminance from the ground. Moreover, the
performance should drop for dark objects because the retina cannot easily
discriminate them from the ground and consequently it cannot drive the robot
towards them. To verify this hypothesis, we average the value of the fitness
component d

iF over 500 times, testing a controller on 10 distinct luminances of the
object. Each evaluation lasts 200 control steps. The results are shown in Figure 37.

Figure 37: Fitness in function of the object’s luminance.

As shown, the robot maintains a high performance in targeting the object until a
luminance value around 0.5, demonstrating a good robustness in the evolved
controller. Below that value, the robot encounters difficulties in detecting and
moving towards the object because the object becomes less and less distinguishable
in luminance from the ground. The high variance of the fitness value for low
luminances further demonstrate that, in that range, the robot’s performance is not
particularly robust. In proximity of the value 0.3, the performance drops completely
because the target object practically has the same color of the ground and the robot

Active Vision in a Collective Robotics Domain - 65 -

cannot detect the object relying on vision only. For these situations, integration with
additional sensors (e.g. infrared sensors) may be a solution.

7.3.2 Generalization Properties

Preliminary tests showed that the evolved robots possess great capabilities in
targeting moving objects, demonstrating once more the flexibility of artificial
evolution in synthesizing an active vision system that can operate efficiently under
dynamic conditions.

In order to measure the targeting performance under such conditions, we devised
an additional test that measures the performance of the robot in targeting objects
moving at different velocities. At each evaluation of this test, we initially place the
target object at a short, random distance from the robot. We then let the robot target
the object. Whenever the robot arrives at a certain distance from the object, we
assign a velocity to the latter to move it away from the robot in the successive control
steps. The velocity vector points in the robot’s direction, perturbed by a slight
random orientation. From now on, the object will move away from the robot at the
imposed velocity and direction. The robot must thereafter follow and reach again the
object. According to this procedure, the object always moves away from the robot at
a certain velocity. We repeat this test for 10 distinct velocities, in the range [0, 2.6]
cms per control step, evaluating each 50 times. The upper limit is the highest velocity
the robot can move in one control step. Naturally, it is pointless to let the object
move faster than the robot is able to, because the robot must have the possibility of
reaching (following at least) the object. Figure 38 shows the obtained results.

Figure 38: Targeting fitness in function of the object’s velocity.

The graph shows that the robot is capable of following objects up to a velocity of
nearly 0.8 cms per control step. After this value, the average fitness drops essentially

Active Vision in a Collective Robotics Domain - 66 -

because the robot can maintain the retinal focus on the moving object less efficiently
and thus it cannot estimate correctly the object’s position in the environment. This
result agrees with that obtained in the previous experiment, where we showed how
the retina’s performance drops for increasing velocities of the object to focus.
Nevertheless, the graph demonstrates that the robot is capable of navigating towards
moving objects, although within a limited range of velocities. This behavior is
possible because the retina, by dynamically tracking the moving object, allows the
robot to constantly update its trajectory in direction of the object.

The described generalization property of the evolved controllers confirms the
efficiency of our active vision system in adapting to dynamic and unexpected
conditions. The most important result here is that the vision system can operate
efficiently on mobile robots perceiving dynamic objects. This is exactly the
experimental setup of the successive experiment that concludes our thesis. In that
experiment, we apply active vision to control a group of robots, having the task of
moving together in a coordinate fashion by exploiting visual information extracted
by each robot through a retina. The results here reported rise our expectations on the
success of the last experiment.

Active Vision in a Collective Robotics Domain - 67 -

8
EVOLVING TASKS: SWARMING

The final experiment of this thesis concerns the evolution of coordinate motion in a
group of s-bots driven by vision. Section 8.1 introduces the experiment along with its
motivations and challenges. Section 8.2 is about the experimental setup, with details
on the simulated scene, on the robots’ vision system and neural controller, and the
choice of an appropriate fitness function. Lastly, section 8.3 discusses the obtained
results and the generalization properties of the evolved solutions.

8.1 The Swarming Task
Coordinate motion is a basic capability strictly necessary in groups of autonomous
robots working collectively on some task. In order to overcome particular challenges,
as avoiding collisions or moving compactly to a certain location, the robots should
move as a single entity, implying a form of coordination. Nature provides many
examples of coordinate motion, as flocks of starlings, schools of cods. These
examples are particularly interesting because they represent cases of self-organizing
behaviors creating patterns of individuals moving coordinately. Many researchers
have provided models for the replication of flocking (swarming) behaviors in
artificial life simulations. These models are often based on hard-coded rules
controlling the behavior of individuals according to internal parameters and the state
of neighboring individuals. We follow a different approach, synthesizing controllers
for coordinate motion through artificial evolution on simple and purely reactive
robots.

In this work, we study coordinate motion in a group of physically independent
s-bots driven by the vision system developed throughout this thesis. Our purpose is
not that of replicating a perfect swarming as it happens in nature. Instead, we want to
study how evolved robots exploit vision to move together in a coordinate fashion. As
shown in section 8.3, the obtained results are promising and can be considered the
starting point for future research and applications.

This experiment, involving multiple robots, presents some of the characteristics
and challenges previously discussed in chapter 2.

The main characteristic is that robots act as autonomous entities, not explicitly
communicating information (i.e. via radio) about their internal state or behavior to

Active Vision in a Collective Robotics Domain - 68 -

other robots. Moreover, the system is decentralized, which means that robots do not
receive essential global information (e.g. the position of the nearest robot) from a
supervising system coordinating the group. The swarming behavior must arise, and
be maintained, solely through local interactions between individual robots.

Robots have a minimal perception of the environment through their vision system,
which acquires information through a retina operating on 360-degree views of the
surrounding environment, including the other robots and the ground. On the contrary,
many biological models of self-organizing coordinate movement assume that agents
are presented with significantly more information about their local environment. For
example, in models of flocking and shoaling, agents have ideal sensors that provide
the location, velocity and orientation of the nearest neighbors [64],[12].

Additionally, every robot has the same reactive controller and the same design.
However, we expect robots to undertake functionally different roles in the group in
order to solve the swarming task. For example, one robot may undertake the role of
group leader and the other robots of followers. This specialization cannot arise from
differences in the controller or morphology of robots, but must be the result of
interactions among the robots and their environment.

As in the previous experiment, each robot extracts information from the acquired
camera images through a virtual retina. For instance, one robot may exploit the retina
to focus its visual attention on a near robot, in order to stay close to it. A major
difference between this experiment and the previous ones is that the fitness function
(section 8.2.4) does not explicitly define the behavior expected from the retina. On
the contrary, in the targeting and focusing tasks, the retina was evolved with the
purpose of optimally focusing on objects. Here, we cannot establish a priori an
optimal retinal behavior because there are many robots in the environment and
constraining the focus of the retina may not be necessarily the best solution.
Consequently, we let evolution discover the best strategies to using the retina for the
accomplishment of the swarming task.

8.2 Experimental Setup
The following sections describe the setup of the simulated environment (8.2.1), the
robots’ vision system (8.2.2) and the setup of the robots’ controller (8.2.3). The last
section, 8.2.4, discusses an appropriate fitness function for the evolution of
controllers capable of producing a good swarming behavior.

8.2.1 Scene Setup

The simulated environment includes some s-bots, from three to eight, placed over a
ground plane free from obstacles. The background is black. The ground is rendered
with a high-frequency grey texture that is perceived as noise by the robots’ artificial
retina. Similarly to the previous experiment, the robots are brighter than the ground

Active Vision in a Collective Robotics Domain - 69 -

plane to help the discrimination between these different objects. At the beginning of
every evaluation, we randomly place the robots on the ground within a short,
reciprocal distance, such that each robot is in the sensorial range of one another. This
distance ranges from a minimum of 24 cms, to prevent initial overlapping positions,
to a maximum of 72 cms. The distance is limited because robots cannot easily
recognize other far robots through their vision system, as demonstrated by the
previous experiments. Robots are given the same initial orientation perturbed by a
random deviation in the range [-90, +90] degrees. Finally, we place a light in the
centre of the scene to illuminate the robots and the ground. Figure 39 shows an
example of the simulated environment:

Figure 39: Simulated environment during evolution in the swarming experiment.

8.2.2 Vision System

The vision system of each robot does not differ from that described in section 7.2.2
for the targeting task. Again, robots acquire panoramic views of the environment
through their omni-directional camera. An artificial retina then operates on the
acquired images in order to extract visual information about the environment. Here,
we still use a retina of 4x4 cells. However, the resolution of 3x3 might prove good
enough to solve this task with success, and we will study this possibility in future.
Instead, a higher resolution (e.g. 5x4 or 5x5) would be useful to target distant robots
but it would increase the cost of evolution because the retinal resolution directly
affects the neural network’s size. Besides, a good swarming behavior should keep the
robots in a tight formation, in which case there is no need for a high-resolution retina.
Table 9 shows the parameters of the retina.

Table 9: Retinal parameters in swarming experiment.

Parameter Min Range Max Range

Aperture 15 [degrees] 360 [degrees]

Radius 7 [pixels] 31 [pixels]

Length 6 [pixels] 24 [pixels]

Active Vision in a Collective Robotics Domain - 70 -

In this experiment, we simulate camera images of 64 x 64 pixels resolution, lower
than in the other experiments. This greatly accelerates the simulation phase,
involving at least three robots, and thus artificial evolution.

8.2.3 Controller Setup

The robots have the same neural network controller as in the targeting experiment, a
single-layer perceptron with 21 input neurons (including a bias) and 7 output
neurons. The input neurons encode the luminance of the 16 retinal cells and the
retina’s orientation. The output neurons control the retinal parameters and the robot’s
movement. The encoding of the input and output neurons is the same as the targeting
experiment, described in section 7.2.3.

8.2.4 Fitness Estimation

The fitness function evaluates the swarming ability of a group of s-bots. It is
expressed through two components that evaluate the group’s aggregation (a

iF) and
its coordinate movement (m

iF) respectively.
In our early attempts, we expressed the first component as the average distance of

robots from the center of mass of the group:

()∑ −=
N

i
a

i D
N

F
1

11 τ

where N is the number of robots (3 in our case), iD is the distance of the i-th robot
from the center of mass and τ is an upper bound for the distances.

Evolution driven by this function produced robots capable of aggregating in
circular formations, but unable to move towards a common direction. Actually, other
robotic configurations, as a chain (each robot following the previous) or eagle
formation (one leader and two followers), might better suit the swarming task, but
were not favored by this fitness function.

The important characteristic for a successful swarming behavior is that every
robot stays in the visual range of at least another robot because, in this way, no
robots will get lost. This property characterizes many compact formations and seems
particular appropriate for our needs.

We decided to use the fitness formulation devised by Quinn et al. [53] for the
evolution of coordinate motion in robots guided by infrared sensors. We associate
every robot with a sensor range, defining a circle centered on the robot (Figure 40).
The radius corresponds to the maximum range within which a robot can successfully
perceive other robots. Indeed, as demonstrated by the previous experiments, the
retina cannot effectively see objects after a certain distance. After some trials, we
tuned the sensor range to the value 18 units (equal to 36 cms).

Active Vision in a Collective Robotics Domain - 71 -

First, we calculate the distance iD of every robot from the sensorial range of the
nearest robot (see Figure 40). The quality of aggregation is then expressed by:

()[]i
a

i DF maxtanh1−=

The hyperbolic tangent sharply degrades as its argument increases, penalizing the
dispersion of robots. Note that when all robots are in the range of at least another
robot, the values iD are all null and a

iF equals 1.

Figure 40: Sensorial range of swarming robots. Robot 0 is lost being outside the range of the
other two robots. 0D is its distance from the range of its nearest robot (robot 2).

The second fitness component rewards the movement of the group in a certain
direction. It is calculated at each control step as:

(d –D)/10 d > D

m
iF = { 0 otherwise

where d is the distance between the current center of mass and the initial one, and D
is the maximum d reached so far; 10 corresponds to the maximum distance (in units)
that the group of robots can travel in one control step. This formula rewards
movement in a definite direction, constantly away from the previous position. We
also tried other formulas, for example the normalized distance from the previous
center of mass, but they often produced circular, sub-optimal trajectories.

The product of the two fitness components gives the complete swarming fitness at
the i-th control step.

D0
0

1

2

Active Vision in a Collective Robotics Domain - 72 -

iF = a
iF * m

iF

The final fitness eF of a trial is the average of iF over all control steps:

∑=
=

N

i ie F
N

F
1

1

where N is the number of control steps.
Finally, when a

iF equals 0 in a certain control step, we immediately terminate the
evaluation and assign 0 to eF in order to penalize controllers that separate robots.

Every trial in this experiment lasts 200 control steps in order to evaluate the
performance of the group of robots for a sufficiently long time. Naturally, we hope
that coordinate motion will evolve robust and consequently last even longer.

8.3 Results
Table 10 presents the parameters of the evolutionary algorithm used in this
experiment.

Table 10: EA parameters in the swarming experiment.

Parameter Value

Trials 5

Population size 80

Selected out 20

Mutation rate 0.15

Recombination rate 0.1

Genotype length 147

Genotype encoding REAL

Initial range of genes [-1, +1]

Bound range of genes unbounded

Standard Deviation 0.2

We replicated the experiment 10 times with different randomly generated

populations. The fitness of an evolutionary run is shown in Figure 41.

Active Vision in a Collective Robotics Domain - 73 -

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 20 40 60 80 100 120 140 160 180

fi
tn

e
ss

generation

best fitness
average fitness

Figure 41: Evolution of the swarming ability.

The plot indicates that the evolutionary experiment is partly successful, as a
maximum fitness of nearly 0.42 was achieved in all the replications after 140
generations. The reasons behind the low value achieved are essentially two: on one
end, the evolved controllers are not very robust because robots sometimes move in
opposite directions, thus determining an overall null fitness of a trial. On the other
end, robots moving in a coordinate fashion proceed at a speed inferior to the
theoretical maximum, determining a low value of the fitness component Fm.

The plot also shows high oscillations of the fitness against the generation number.
The main cause is that the swarming performance evaluated during evolution
depends on the initial conditions of the tested robots. For instance, let us consider an
initialization that creates three robots pointing in exactly the same direction. In this
case, a bad controller that simply moves the robots straight and unintelligently would
receive a high fitness. Evolution would then select this controller, which would
perform badly in the successive generations characterized by different conditions.
This mechanism explains the frequent drops in fitness shown by the graph. The
previous experiments lacked these oscillations because they employed fitness
formulations that were almost independent of the test initial conditions. In order to
solve this problem, we tried to force the initialization of robots to opposite directions,
in which case robots had to behave intelligently to agree on a common direction of
movement. Unfortunately, evolution with these settings did not start (bootstrap
problem), producing robots that immediately separated and were unable to aggregate.
In future, we will try other possible solutions. Probably, we should calculate the
fitness as the average of many more trials, not only 5, at the cost of a more time-
consuming evolution. The average would then mitigate the excessive evaluation of
lucky individuals in some trials because they would perform poorly in other trials
with different initial conditions for the robots.

Active Vision in a Collective Robotics Domain - 74 -

We tested the best controllers produced in each replication, evaluating them for
500 trials. The average fitness values are presented in Table 11.

Table 11: Average performance of the best controllers evolved in each replication of the
experiment.

Replication Fitness Replication Fitness
1 0.2493 6 0.2420
2 0.2687 7 0.2376
3 0.2118 8 0.3017
4 0.2934 9 0.2733
5 0.2358 10 0.2243

Nonetheless, direct observation on three robots has shown that the evolved

behaviors are often satisfactory. At the beginning, the robots start moving forwards
following their initial random orientation. Meanwhile, their retina takes an aperture
of nearly 270 degrees and an orientation in the image of 45 degrees. We interpret this
behavior saying that a wide retina, involving the perception of the environment all
around a robot, eases the detection of other robots in the environment and thus the
accomplishment of the task. Henceforth, different input patterns determine distinct
roles in the successive coordinate motion of the group. The robot perceiving all other
robots on the back undertakes the role of leader and autonomously proceeds, driving
the group in the exploration of the environment (Figure 42, a). Instead, the individual
that detects one robot on the front and the other on the back maintains thereafter the
role of middle robot in the formation; the retina correspondently perceives input on
the left and right side (Figure 42, b).

Figure 42: Evolved swarming configuration in the form of a chain. Leader (a), middle (b)
and rear robot’s view (c).

Lastly, the rear robot is the one viewing the other two robots on the front, which
are perceived by the retina as positive inputs in the right side of the image (Figure 42,
c). The three robots proceed afterwards in the exploration of the environment, always
maintaining a chain configuration. In some cases, some robots acquire similar
sensory patterns and accordingly behave in analogous ways; as discussed later, this
fact is partly responsible for the low robustness of coordinate motion under general

Active Vision in a Collective Robotics Domain - 75 -

initial conditions. Occasional collisions or random rotations can then break this
similarity and move the robots to the described configuration. Individuals initialized
at a certain distance from the center of mass of the group are also capable of
accelerating to reach the group.

Figure 43 plots the angular distance between the chassis of each s-bot and the
average orientation of the group, in radians. It shows that after a transition period, the
s-bots converge towards a common direction of movement. Thereafter, all the robots
maintain their orientation aligned and proceed in the same direction, with occasional
variations in an individual’s orientation when the group steers. The alignment
strategy is determined by the retinal input and depends on the role of each robot in
the group. For instance, the rear robot always adjusts its orientation in order to
maintain the perceived robots at the boundary between adjacent retinal cells on the
right side of the retina (Figure 42, c).

 0

 0.002

 0.004

 0.006

 0.008

 0.01

0 500 1000 1500 2000

sbot 1

 0

 0.002

 0.004

 0.006

 0.008

 0.01

0 500 1000 1500 2000

sbot 2

 0

 0.002

 0.004

 0.006

 0.008

 0.01

0 500 1000 1500 2000

sbot 3

 Figure 43: Coordination dynamics: angular distance between the chassis of each s-bot and
the average orientation of the group.

Active Vision in a Collective Robotics Domain - 76 -

8.3.1 Robustness
The main limit of the evolved behavior is that coordinate motion occurs only

when the robots are initialized with similar orientations. In the opposite case, the
robots often separate in the first control steps and by moving away they lose visual
contact with each other.

We tried to synthesize robust controllers by initializing the robots during artificial
evolution to completely random directions. Unfortunately, evolution with these
settings displayed bootstrap problems, being unable to synthesize controllers that
kept the robots together. Probably, the main cause of this limit is the use of a purely
reactive neural network controller. Since the perceptron moving the robots lacks
memory, it cannot easily discriminate the initial control phase, where robots may
need to establish a common direction of movement, from the secondary phase when
robots must swarm. Therefore, robots receiving similar inputs at the beginning of the
task behave in the same way, as leaders for instance, and often compromise the
swarming of the group. In future, we will replicate our studies in coordinate motion
using different neural architectures with memory. We hope that different controllers
will produce behaviors characterized by a greater robustness. The main disadvantage
over a simple reactive controller is that artificial evolution would require many more
generations to eventually produce acceptable solutions.

8.3.2 Generalization Properties

One of the objectives of this thesis is studying how controllers for the coordinate
motion of some s-bots scale to groups of different sizes.

At this purpose, we measure the swarming fitness on six groups with a different
number of robots, from 3 to 8. The evaluation is repeated 50 times for each group
and then averaged. The robots are always initialized with similar orientations
because, as mentioned in section 8.3, the evolved controllers do not work efficiently
when the robots initially point to divergent directions. We also randomly place the
robot at a short distance among each other of 24 cms (4 times a s-bot’s radius).
Testing a number of s-bots superior to three with the fitness function described in
8.2.4 introduces a problem: that fitness cannot detect the possibility that robots
divide in sub-groups that independently explore the environment. This particular
behavior is actually correct according to our fitness formulation since every robot
follows at least another one and no robots are lost. Moreover, this mechanism may be
useful in more advanced tasks involving the exploration of complex environments, in
which case it might be advantageous for robots to separate in small groups, each
thereafter exploring independently an area. Nevertheless, we decided to penalize the
separation in small groups. Therefore, we modified the fitness function illustrated in
8.2.4 as following: we additionally calculate the distance iD′ of each robot from the
sensorial range of the furthest robot. When this distance exceeds a maximum,
dependent on the number of robots, the robots receive a binary penalty according to:

Active Vision in a Collective Robotics Domain - 77 -

0 ∃ iD′│ iD′ > τ
iP = { 1 otherwise

where τ is a threshold equal to (N-1)*R, N is the number of s-bots and R is the
sensorial range of each robot. In other words, the penalty is null when one robot
cannot be linked, directly or indirectly through a chain of other robots, to the furthest
one, which happens when some robots separate from the group.

The fitness iF of the group now takes into account the penalty:

iF = a
iF * m

iF * iP

Robots that divide in sub-groups always receive a null penalty iP and
consequently a null swarming fitness iF .

Note that in calculating the fitness, we use a larger sensory range (36, equal to 72
cms) than the one used during evolution, in order to give robots a higher freedom of
movement. Furthermore, we do not interrupt the evaluation when one or more robot s
get lost, to give them the possibility to reunite with the main group.

Table 12 compares the performance of coordinate motion on different numbers of
robots, penalizing the division in sub-groups.

Table 12: Average performance for different group sizes

Number of s-bots Average performance
3 0.3722
4 0.2346
5 0.1468
6 0.1164
7 0.1059
8 0.1023

As shown, the performance decreases as we add more robots to the group. The

reason is that the evolved controllers are not sufficiently robust to handle all the
possible initial conditions determined by a large number of robots. Therefore, some
robots often separate from the group, especially in the initial phase, and the fitness
takes a null value. Anyway, direct observation of the group’s behavior showed that in
many cases groups of many s-bots are capable of swarming for long distances
maintaining a complete aggregation. This fact encourages further studies in this area
in the attempt to improve the robustness of the controllers. As already explained,
different controller architectures and better tuned evolutions might contribute to he
achieve an improved robustness over the one obtained so far. We will investigate this
possibility in the near future.

Active Vision in a Collective Robotics Domain - 78 -

 The coordinate motion behavior displays another interesting generalization
property in some of the evolved controllers: the robots steer to stay on the ground
when they detect the ground’s boundaries, corresponding to a black visual input.
This result suggests that controllers evolved the capability to discriminate three
different colors (white for robots, grey for ground and black for the background) and
react to them in different ways while respecting the assigned task. For instance, we
tried to place black obstacles in a small arena delimited by black walls. The robots
were able to coordinately explore the arena while avoiding in many cases collisions
with the obstacles and the walls. This behavior, though not explicitly requested
during evolution, confirms the flexibility of the retina device in advanced tasks
guided by vision. In the conclusions, chapter 9, we describe future applications to
extend our research.

Figure 44: Robots steer when they detect the black visual inputs.

Active Vision in a Collective Robotics Domain - 79 -

9
CONCLUSIONS

In this thesis, we have presented a novel active vision system applied to the control
of single and multiple robots. The vision system includes an omni-directional camera
acquiring panoramic, 360-degree views of the surrounding environment. Robots are
equipped with this camera in order to constantly acquire local, visual information
about their environment. The resulting camera images represent an extremely rich
source of information available to the robots’ controllers for the accomplishment of
predefined tasks. Hard-coded algorithms for image processing and features
extraction are not feasible because the acquired images have complex characteristics.
On one end, the optical process characterizing the omni-directional camera produces
images with strong distortions, in comparison to images acquired by common linear
cameras. Therefore, standard features extraction mechanisms, as edge detection,
depth from shading and so forth, do not immediately apply to these images. On the
other end, the images are highly unpredictable being the result of complex, dynamic
interactions between the perceiving robot and the environment, comprehensive of
other mobile robots in collective robotics tasks. In order to overcome these
challenges, we processed the images through a virtual retina, an acquisition device
corresponding to an area of the image of variable size and position, capable of
scanning the images and automatically extracting relevant information. This
information enters the robots’ neural network controller and eventually determines
the successive robots’ behavior in the form of actions affecting the robot’s motion
and vision system, according the active vision paradigm.

We applied a generational evolutionary algorithm to synthesize automatically
efficient controllers for different vision-based tasks. Artificial evolution, by testing
robots and their vision system directly in the working environment, allowed the
design of controllers considering the complex mechanisms that affect the robot in the
whole control phase. The solutions found by evolution are efficient and often
generalize to different environmental situations.

9.1 Obtained Results
We studied the developed vision system in three experiments of increasing
complexity. The first consisted in evolving a virtual retina capable of focusing on

Active Vision in a Collective Robotics Domain - 80 -

static objects placed in the environment and perceived by an omni-directional
camera. The results demonstrated the efficiency of the virtual retina in detecting and
focusing on objects under generic conditions using a minimal, purely reactive neural
network controller. Additionally, the evolved retinas are capable of tracking moving
objects, even if they were evolved in a static context.

These results served as a premise for the successive experiment, dealing with a
mobile robot with the task of targeting a distant object. The robot is equipped with
the developed active vision system, consisting in an omni-directional camera for the
perception of the environment, and in the virtual retina for image processing. We
have observed that the evolved robots can maintain the retinal focus on the object in
order to estimate its relative position in the environment and develop efficient
navigation trajectories towards it. Moreover, further analysis confirmed the
flexibility of the retina in the detection and tracking of objects. In fact, the evolved
robots are particularly robust, being capable of targeting objects of different colors,
distances and shapes. As a generalization property, robot can also follow and
possibly reach moving objects, despite artificial evolution evaluated robots in a static
context. The latter result is particularly important because it demonstrates that the
retina could work efficiently on mobile robots perceiving dynamic objects, exactly
the setup of the last experiment.

The third and last experiment is the most important of the thesis because, to the
best of our knowledge, it applies techniques of active vision in a collective robotics
context. The objective was that of evolving coordinate motion in a group of robots
exploiting only local, visual information, actively extracted from the environment.
The robot in particular had the task of moving in a coordinate fashion while
maintaining a compact formation, a behavior known as swarming or flocking in
some animal societies as fishes and birds. The task was particularly challenging
because the robots are autonomous and independent units, yet requested to behave
coherently as a group. Every robot is equipped with an omni-directional camera to
perceive the other robots around, and with the virtual retina to extract visual
information related to the other robots that could be useful for the swarming. We
evolved some reactive neural controllers that, despite their simplicity, produced
promising results. Robots starting from nearly the same orientation are capable of
coordinately moving towards a common direction while maintaining visual contact
with near robots. In particular, each robot exploits a wide retina to detect near robots
all around, in order to constantly align its trajectory and follow the group. This
behavior allows the formation of mobile robotic configurations maintained linked
only through visual information locally acquired by each robot composing the group.
By analyzing the evolved controllers, we have observed that the evolved strategy
allows the coordinate motion of groups of different sizes. Actually, the generalization
is not very robust because some robots often depart from the group, especially in the
initial control phase. However, groups of numerous s-bots are often able to move in a

Active Vision in a Collective Robotics Domain - 81 -

compact formation for long times by adopting the aforementioned strategy. In view
of the simple controllers here employed, we retain this result particularly brilliant. In
the next section we discuss our plans to improve and extend our research.

9.2 Future Work
The work done in this thesis opens the way to many possible future enhancements
and applications.

Our research will mainly focus on improving the synthesis of controllers for
groups of robots guided by the developed vision system. In particular, we want to
investigate improved solutions to the accomplishment of cooperative tasks by
extending the research done for the last experiment of this thesis. We will study
different design choices (e.g. non-reactive neural networks) to synthesize better
controllers, not only for a task of coordinate motion but also for more advanced
tasks. An idea is replicating the experiment by Trianni [63] concerning the synthesis
of controllers for hole avoidance in groups of robots. We would like to repeat that
experiment employing unlinked robots guided by vision. We will also study the
integration of the vision system with additional sensorial capabilities, which might
prove necessary in complex environments.

Within the robotic context, we also plan to devise other experiments with a single
robot. As an extension of the targeting experiment, we would like to evolve robots
capable of detecting and approaching specific objects in the environment,
characterized by particular colors or shapes, while at the same time avoiding
collision with obstacles and walls. The retina in this case would be useful for
tracking the target objects in the scene and for detecting the obstacles along the
robot’s trajectory.

Apart from the control of robots, the virtual retina can be used for the efficient
analysis of images in systems having low computational capabilities. In [43], the
retina was employed in a simple discrimination task. As a hint for future activity,
other researchers may extend that approach by exploiting our vision system to solve
complex tasks as recognition of facial features in photos or tracking of moving
objects in surveillance cameras, traditionally solved by massive neural networks or
by hard-coded image processing algorithms.

Active Vision in a Collective Robotics Domain - 83 -

BIBLIOGRAPHY

[1] C. Anderson, G. Theraulaz, and J.-L. Deneubourg. Self-assemblage in insects
societies. Insectes Sociaux, 49:99-110, 2002.

[2] N. Ayache. Artificial Vision for Mobile Robots: Stereo Vision and
Multisensory Perception. MIT Press, Cambridge MA, 1991.

[3] R. Bajcsy. Active Perception. Proceedings of the IEEE, 76:996-1005, 1998.

[4] T. Balch and R.C. Arkin. Communication in reactive multiagent robotic
systems. Autonomous Robots, 1(1):27-52, 1994.

[5] G. Baldassarre, S. Nolfi, and D. Parisi. Evolving Mobile Robots Able to
Display Collective Behaviors. In C.K. Hemelrijk and E. Bonabeau, editors,
Proceedings of the International Workshop on Self-organization and Evolution
of Social Behavior, pages 11-22, Monte Verità, Ascona, Switzerland,
September 8-13, 2002.

[6] D. Ballard. Animate vision. Artificial Intelligence, 48:57-86, 1991.

[7] P. A. Beardsley, I. D. Reid, A. Zisserman, and D. W. Murray. Active visual
navigation using non-metric structure. In Proceedings of the 5th International
Conference on Computer Vision, Boston, pages 58-65. IEEE Computer Society
Press, 1995.

[8] A. Blake, A. Zisserman, and R. Cipolla. Visual exploration of free-space. In A.
Blake and A. Yuille, editors, Active Vision. MIT Press, Cambridge, MA, 1992.

[9] E. Bonabeau, M. Dorigo, and G. Theraulaz. Swarm Intelligence: From Natural
to Artificial Systems. Oxford University Press, New York, NY, 1999.

[10] J. E. Bresenham. A linear algorithm for incremental digital display of circular
arcs. Communications of the ACM. Volume 20, issue 2, pages 100-106. ISSN
0001-0782, 1977.

[11] S. Camazine, J.-L. Deneubourg, N. Franks, J. Sneyd, G. Theraulaz, and E.
Bonabeau. Self-Organization in Biological Systems. Princeton University
Press, Princeton, 2001.

Active Vision in a Collective Robotics Domain - 84 -

[12] S. Camazine and J. Sneyd. A model of collective nectar source selection by
honey bees: self-organization through simple individual rules. Journal of
Theoretical Biology, 149:547-571, 1991.

[13] S. Camazine, J. Sneyd, M.J. Jenkins, and J.D. Murray. A mathematical model
of self-organized pattern formation the combs of honeybees colonies. Journal
of Theoretical Biology, 1:295-311, 1990.

[14] G.S. Chirikjian. Kinematics of a Metamorphic Robotic System. In E. Straub
and R. Spencer Sipple, editors, Proceedings of the International Conference on
Robotics and Automation. Volume 1, pages 449-455. IEEE Computer Society
Press, 1994.

[15] D.T. Cliff and J.Noble. Knowledge-based vision and simple vision machines.
Philosophical Transactions of the Royal Society of London: Series B,
352:1165-1175, 1997.

[16] A. J. Davison, I. D. Reid, and D. W. Murray. The active camera as a projective
pointing device. In Proceedings of the 6th British Machine Vision Conference.
Birmingham, pages 453-462, 1995.

[17] J.-L. Deneubourg, S. Aron, S. Goss, and J.M. Pasteels. The self-organizing
exploratory patterns of the argentine ant. Journal of Insect Behavior, 3:159-
168, 1990.

[18] J.-L. Deneubourg and S. Goss. Collective patterns and decision making.
Ethology Ecology Evolution, pages 295-311, 1989.

[19] J.-L. Deneubourg, J. C. Gregoire, and E. Le Fort. Kinetics of the larval
gregarious behavior in the bark beetle Dendroctonus micans. Journal of Insect
Behavior, 3:169-182, 1990.

[20] C. Detrain. Field study on foraging by the polymorphic ant species pheidole
pallidula. Insectes Sociaux, 37(4):315-332, 1990.

[21] M. Dill, R. Wolf, and M.Heisenberg. Visual pattern recognition in drosophila
involves retino-topic matching. Nature, 355:751-753, 1993.

[22] F. Du. Navigation in tight clearances using active vision. Technical Report
OUEL 2041/94, Department of Engineering Science, University of Oxford,
1994. First year transfer report.

Active Vision in a Collective Robotics Domain - 85 -

[23] D. Floreano and F. Mondada. Evolution of homing navigation in a real mobile
robot. IEEE Transactions on Systems, Man, and Cybernetics-Part B:
Cybernetics, 3(26):396-407, 1996.

[24] H. von Foerster. On Self-Organizing Systems and Their Environments. In M.C.
Yovits and S. Cameron, editors, Self-Organizing Systems, pages 31-50.
Pergamon Press, London, 1960.

[25] J. D. Foley, A. van Dam, A., S. K. Feiner, and J. F. Hughes. Computer
Graphics. Principles and Practice. Second edition. Addison-Wesley
Publishing Company. ISBN 0-201-12110-7, 1990.

[26] B.P. Gerkey and M.J. Matari_c. Sold!: Auction methods for multi-robot
coordination. IEEE Transactions on Robotics and Automation, 18(5):758-768,
2002.

[27] J.J. Gibson. The Ecological Approach to Visual Perception. Houghton Miffin,
Boston. Goldberg, D. E. (1989). Genetic algorithms in search, optimization
and machine learning. Addison-Wesley, Redwood City, CA, 1979.

[28] J. Gluckman and S. K. Nayar. Ego-motion and omnidirectional cameras. In
Proceedings of the 6th International Conference on Computer Vision, Bombay,
pages 999-1005, 1998.

[29] D. Goldberg and M. Matari_c. Design and evaluation of robust behavior-based
controllers. In T. Balch and L.E. Parker, editors, Robot Teams: From Diversity
to Polymorphism. A K Peters, 2002.

[30] C. G. Harris and J. M. Pike. 3D positional integration from image sequences.
In Proc. 3rd Alvey Vision Conference, Cambridge, pages 233-236, 1987.

[31] C. G. Harris and M. Stephens. A combined corner and edge detector. In Proc.
4th Alvey Vision Conference, Manchester, pages 147-151, 1988.

[32] C. G. Harris. Tracking with rigid models. In A. Blake and A. Yuille, editors,
Active Vision. MIT Press, Cambridge, MA, 1992.

[33] I. Harvey, P. Husbands, and D. Cliff. Seeing the light: Artificial evolution, real
vision. In D. Cliff, P. Husbands, J.-A. Meyer, and S.W.Wilson, editors, From
Animals to Animats 3: Proc. of the Third Int. Conf. on Simulation of Adaptive
Behavior, pages 392-401. The MIT Press, 1994.

[34] F. Heylighen. The Science of Self-Organization and Adaptivity. In The
Encyclopedia of Life Support Systems (EOLSS), Knowledge Management,

Active Vision in a Collective Robotics Domain - 86 -

Organizational Intelligence and Learning, and Complexity. Developed under
the Auspices of the UNESCO, Eolss Publishers, Oxford, UK, 2003.

[35] J. Holland. Adaptation in Natural and Artificial Systems. University of
Michigan Press, 1975.

[36] E. Huber and D. Kortenkamp. A behavior-based approach to active stereo
vision for mobile robots. To appear in Engineering Applications of Artificial
Intelligence Journal, 1998.

[37] E. Huber and D. Kortenkamp. Using stereo vision to pursue moving agents
with a mobile robot. In IEEE International Conference on Robotics and
Automation, May 1995.

[38] T. Kato and D.Floreano. An evolutionary active-vision system. In Proceedings
of the Congress on Evolutionary Computation (CEC01), Piscataway. IEEE
Press, 2001.

[39] E. A. Krupinski and R. M. Nishikawa. Comparison of eye position versus
computer identified microcalcification clusters on mammograms. Medical
Physics, 24:17-23, 1997.

[40] F. Li. Active Stereo for AGV Navigation. PhD thesis, University of Oxford,
1996.

[41] A. Lioni, C. Sauwens, G. Theraulaz, and J.-L. Deneubourg. Chain formation in
Œcophilla longinoda. Journal of Insect Behavior, 15:679-696, 2001.

[42] H. A. Mallot. Computational Vision. MIT Press, Cambridge, MA, 2000.

[43] D. Marocco and D. Floreano. Active Vision and Feature Selection in
Evolutionary Behavorial Systems. In Proceedings of the Seventh Conference
on Simulation of Adaptive Behavior, pages 247-255. MIT Press, 2002.

[44] M.J. Matarić. Issues and approaches in the design of collective autonomous
agents. Robotics and Autonomous Systems, 16:321-331, 1995.

[45] F. Mondada, G. C. Pettinaro, I. Kwee, A. Guignard, L. Gambardella, D.
Floreano, S. Nolfi, J.-L. Deneubourg, and M. Dorigo. SWARM-BOT: A
swarm of autonomous mobile robots with self-assembling capabilities. In C.K.
Hemelrijk and E. Bonabeau, editors, Proceedings of the International
Workshop on Self-organization and Evolution of Social Behavior, pages 307-
312, Monte Verità, Ascona, Switzerland, September 8-13, 2002.

Active Vision in a Collective Robotics Domain - 87 -

[46] G. Nicolis and I. Prigogine. Self-Organization in Non equilibrium Systems.
John Wiley & Sons, New York, 1977.

[47] S. Nolfi. Evolving non-trivial behavior on autonomous robots: Adaptation is
more powerful than decomposition and integration. In T.Gomi, editor,
Evolutionary Robotics, pages 21-48. AAI Books, Ontario (Canada), 1997.

[48] S. Nolfi and D. Floreano. Evolutionary Robotics: The Biology, Intelligence,
and Technology of Self-Organizing Machines. MIT Press/Bradford Books,
Cambridge, MA, USA, 2000.

[49] L.E. Parker, G Bekey, and J Barhen, editors. Distributed Autonomous Robotic
Systems 4. Springer, Tokyo, Japan, 2000.

[50] G.C. Pettinaro, I.W. Kwee, L.M. Gambardella, F. Mondada, D. Floreano, S.
Nolfi, J.-L. Deneubourg and M. Dorigo. Swarm robotics: A different approach
to service robotics. In Proceedings of the 33rd International Symposium on
Robotics, Stockholm, Sweden, October 7-11 2002. International Federation of
Robotics.

[51] M. Quinn. A comparison of approaches to the evolution of homogeneous
multi-robot teams. In Proceedings of the 2001 Congress on Evolutionary
Computation (CEC2001), pages 128–135. IEEE Press, Piscataway, NJ, 2001.

[52] M. Quinn. Evolving communication without dedicated communication
channels. In J. Kelemen and P. Sosik, editors, Advances in Artificial Life: Sixth
European Conference on Artificial Life (ECAL 2001), pages 357-366, Berlin,
2001. Springer-Verlag.

[53] M. Quinn, L. Smith, G. Mayley, and P. Husband. Evolving teamwork and role
allocation with real robots. In R.K. Standish, M.A. Bedau, and H.A. Abbass,
editors, Proceedings of the 8th International Conference on Artificial Life,
pages 302-311. MIT Press, 2002.

[54] C.W. Reynolds. An evolved, vision-based behavioral model of coordinated
group motion. In J.-A. Meyer, H. Roitblat, and S.W.Wilson, editors, From
Animals to Animats 2. Proceedings of the Second International Conference on
Simulation of Adaptive Behavior (SAB92), pages 384–392. MIT Press,
Cambridge, MA, 1993.

[55] S. Rougeaux and Y. Kuniyoshi. Robust real-time tracking on an active vision
head. In Proceedings of the IEEE Conference on Computer Vision and Pattern
Recognition, 1997.

Active Vision in a Collective Robotics Domain - 88 -

[56] E. Şahin, T.H. Labella, V. Trianni, J.-L. Deneubourg, P. Rasse, D. Floreano,
L.M. Gambardella, F. Mondada, S. Nolfi, and M. Dorigo. SWARM-BOTS:
Pattern formation in a swarm of self-assembling mobile robots. In A. El
Kamel, K. Mellouli, and P. Borne, editors, Proceedings of the IEEE
International Conference on Systems, Man and Cybernetics, Hammamet,
Tunisia, October 6-9, 2002. Piscataway, NJ: IEEE Press.

[57] E. Şahin and P. Gaudiano. Visual Looming as a range sensor for mobile robots.
In Pfeifer, R., Blumberg, B., Meyer, J., and Wilson, S., (Eds.), From Animals
to Animats V: Proceedings of the Fifth International Conference on Simulation
of Adaptive Behavior. MIT Press-Bradford Books, Cambridge, MA, 1998.

[58] T.D. Seeley. The Wisdom of Hive, pages 277-290. Harvard University Press,
Cambridge, 1995. T.D. Seeley, S. Camazine, and J. Sneyd. Collective decision-
making in honey bees: how colonies choose among nectar source. Behavioral
Ecology and Sociobiology, 28:277-290, 1991.

[59] L. Spector, J. Klein, C. Perry, and M.D Feinstein. Emergence of collective
behavior in evolving populations of flying agents. In E. Cantù-Paz et al., editor,
Proceedings of the Genetic and Evolutionary Computation Conference
(GECCO-2003), volume 2723 of Lecture Notes in Computer Science, pages
61–73. Springer-Verlag, Berlin, Germany, 2003.

[60] K. Støy, W.-M. Shen, and P. Will. Global locomotion from local interaction in
self-reconfigurable robots. In W.M. Shen, C. Torras, and H. Yuasa, editors,
Proceedings of the 7th international conference on intelligent autonomous
systems (IAS-7), pages 309-316. IOS Press, 2002.

[61] J. I. Thomas and J. Oliensis. Automatic position estimation of a mobile robot.
In IEEE Conference on AI Applications, pages 438-444, 1993.

[62] V. Trianni, R. Gross, T.H. Labella, E. Şahin, P. Rasse, J.-L.Deneubourg, and
M. Dorigo. Evolving Aggregation Behaviors in a Swarm of Robots. Technical
Report TR/IRIDIA/2003-07, IRIDIA -Université Libre de Bruxelles, Belgium,
February 2003.

[63] V. Trianni. Evolution of Coordinate Motion Behaviors in a Group of Self-
Assembled Robots. Technical Report TR/IRIDIA/2003-25, IRIDIA-Université
Libre de Bruxelles, Belgium, May 2003.

[64] C.R. Ward, F. Gobet, and G. Kendall. Evolving collective behavior in an
artificial ecology. Artificial Life, 7(2):191-209, 2001.

Active Vision in a Collective Robotics Domain - 89 -

[65] G. M. Werner and M. G. Dyer. Evolution of herding behavior in artificial
animals. In J.-A. Meyer, H. L. Roitblat, and S. W. Wilson, editors, From
Animals to Animats 2. Proceedings of the Second International Conference on
Simulation of Adaptive Behavior (SAB92), pages 393–399. MIT Press,
Cambridge, MA, 1992.

[66] C. J. Westelius. Focus of Attention and Gaze Control for Robot Vision.
Department of Electrical Engineering. Linköping University, S-581 83
LINKÖPING, Sweden, 1995.

[67] N. Zaera, D. Cliff, and J. Bruten. (Not) evolving collective behaviors in
synthetic fish. In P. Maes, M. Matarić, J.-A. Meyer, J. Pollack, and S. Wilson,
editors, From Animals to Animats 4. Proceedings of the Fourth International
Conference on Simulation of Adaptive Behavior (SAB96), pages 635–644. MIT
Press, Cambridge, MA, 1996.

Active Vision in a Collective Robotics Domain Appendix - 1 -

APPENDIX

Simulator Guide
The following is a guide to the programming of experiments within the simulator
developed for this thesis. Examples and extracts from working code are given to
illustrate the programming of new functionalities and the use of the available classes.
The simulator is written in C++, so knowledge of this programming language is
required. The whole software code is available upon request to the author at
steflanz@tin.it

Classes overview

The following diagram shows the organization of classes available at the moment
within the simulator. Extension of these classes is possible through the mechanism of
objects inheritance offered by the C++ language.

Figure: Classes organization in the simulator. A thick arrow means inherited from, a dotted
arrow means the class contains the other as member.

We will now explain the meaning of each class, along with the list of the most
significant functions for their manipulation, practical examples about their use, and

Entity

Controlled Controller

Vortex_entity

Light

Camera

Omni-camera

Image Retina

Retina_rect Retina_circle

Model

Perceptron

Robot

Hebbian

Ctrnn

Active Vision in a Collective Robotics Domain Appendix - 2 -

hints on extensions or alternative uses. For details on the implementation of each
class and of its member functions, please refer to the simulator’s source code.

Model stores geometrical information about a 3D model displayed by the simulator’s
graphical engine. The simulator can procedurally generate primitive shapes, as cone,
square, sphere, and load models from file.

Entity is a base class representing generic objects, as Vortex physical bodies, lights,
cameras, characterized by a position and orientation in the virtual environment.
Optionally, an entity can be associated to a 3D model to be displayed during the
simulation.

Main functions:
- set_origin (position): move the entity to a certain position.
- set_orientation (angles): rotate the entity according to the given angles.
- set_model (model_name): associate a 3D model to the entity for display

purposes.
- link_entity (child): link the entity to another one, establishing a hierarchy.
- show (): show the entity during rendering.
- hide (): hide the entity during rendering.
- update (frame_time, application_time): update the entity’s state.
- render (): render the entity if there is an associated 3D model.

Examples:
entity = new entity_t;

entity->set_origin(vec3(0,0,0));

entity->set_angles(vec3(0, 90, 0));

entity->set_model((“cone”);

This code generates a cone placed in the center of the scene and pointing upwards
(90 degrees). In order to define particular behaviors during the update of the object,
we have to inherit a new class from the basic entity and redefine the contents of the
function update, and then use this class when creating the object.

Vortex_entity represents physical bodies simulated by the Vortex (Critical Mass
Labs, Canada) physics engine. These bodies automatically update their position and
orientation by interfacing to the corresponding Vortex model, thus realizing a perfect
consistency between Vortex and our simulator.

Main functions:
- attach_Vortex_model (model): attach a Vortex model to this entity.
- attach_Vortex_body (body): attach a Vortex physical body to this entity.

Examples:
robot_wheel = new vortex_entity_t();

Active Vision in a Collective Robotics Domain Appendix - 3 -

robot_wheel->set_model (“sphere”);

robot_wheel->attach_Vortex_model (s-bot_wheel_modelID);

This code creates a wheel, rendered as a sphere, linked to a Vortex model
representing the wheel of an s-bot.

Camera represents virtual cameras acquiring three dimensional views of the
simulated environment. The basic class is a linear camera (CCD camera) acquiring
images through perspective projection, the standard in computer rendering.

Main functions:
- acquire_image (): render and project the scene on the camera’s image from the

camera’s point of view (POV).

Examples:
robot_chassis = new vortex_entity_t();

camera = new camera_t();

robot_chassis->link(camera);

…

camera->acquire_image();

The above code links a camera to the chassis of one robot; thereafter, the camera
will automatically acquire images of the environment from the point of view of the
chassis at each render call.

Omni_camera is the simulated omni-directional camera of the s-bots, whose
simulation is accurately described in chapter 4 of the thesis.

Main functions:
- acquire_image (): acquire panoramic images of the surrounding environment.
- add_retina (retina): add a virtual retina operating on the acquired images.
- setup_mirror (height, radius): setup the camera’s mirror with given parameters.

Examples:
robot_turret = new vortex_entity_t();

omnicamera = new omni_camera_t();

robot_turret->link(omnicamera);

This code creates an omni-directional camera and attaches it to the turret of one
robot, in order to acquire 360-degree views of the environment around the robot, as
used in our experiments.

Light represents lights with a position in the scene (even infinitely far in case of
directional lights), simulated by OpenGL lighting calls. Point, spot and directional
lights are supported.

Active Vision in a Collective Robotics Domain Appendix - 4 -

Main functions:
- set_diffuse (color): set the light’s diffusive color.
- set_specular(color) : set the light’s specular color.
- set_attenuation (value): set the light’s attenuation.
- set_ambient(color): set the light’s ambient color.
- render (): activate OpenGL’s lighting using this light’s parameters.

Examples:
robot_LED = new vortex_entity_t();

light = new light_t();

light->set_diffuse(vec3(1, 0, 0)); // red

robot_LED->link(light);

This code attaches a red light to the LED of one robot. The result is that the
environment will be dynamically illuminated by the LED as the robot moves around.

Image represents images acquired by a camera, or sub-regions of other images (as
the virtual retina).

Main functions:
- link (parent): make this image a region of a parent image

Examples:
retina = new retina_rect _t();

omnicamera = new omni_camera_t();

retina->link(omnicamera->get_image());

This code creates a square retina and links it to the images acquired by an omni-
directional camera. This way, the retina always automatically updates its contents by
reading them from the corresponding area of the camera image.

Retina is a generic virtual retina, used for the extraction of data from an associated
image.

Main functions:
- set_filter (filter): set the retina filtering method to sampling or averaging (box

filter).
- capture_image (): copy the retinal region from the associated image to an internal

buffer.
- filter_cells() : calculate the value of the retinal cells by filtering the

corresponding pixels.
- pan(param1, param2): pan the retina according to two parameters.
- zoom (param1, param2): zoom the retina according to two parameters.

Active Vision in a Collective Robotics Domain Appendix - 5 -

Retina_rect is a rectangular (usually square) retina, operating for instance on static
bitmaps or on images acquired by a linear camera.

Main functions:
- hit_border (): tells whether the retina has hit the image border or not.
- pan (radius, angle): move the retina from the current top-left corner.
- zoom (zoom_factor): zoom the square retina.

Examples:
retina = new retina_rect_t(64, 64, 32, 4, 4);

retina->pan(10, 0); // to the right

if (retina->hit_border())

 cout << “Retina hitted image border!”;

retina->zoom(0.5);

This code creates a square retina of 64x64 pixels, 32 bits per pixel, divided into
4x4 cells. Then it translates the retina to the right, check if the retina has hit the
image border and then halves the retina’s size by zooming in.

Retina_circle is a circular retina, used for the extraction of data from images
acquired by an omni-directional camera.

Main functions:
- pan (radius, angle): move the retina along the radial direction and rotate it of a

certain angle.
- zoom (length, aperture): modify the retina’s length and aperture.

Controlled is an abstract class representing objects, as robots or independent
cameras, controlled during the simulation.

Main functions:
- set_controller (controller): associate a neural network controller to this object.
- control (): control the object.
- sense (): acquire sensory input by “sensing” the environment.
- set_inputs (num_inputs, inputs): fill the input neurons of the network.
- apply_outputs (num_outputs, outputs): map the output neurons to the

corresponding actuators.

Controller is a base neural network, with input and output neurons, and weights.

Main functions:
- init (filename): initialize the neural network from file.
- init (genes, length): initialize the neural network with a corresponding genotype.
- step (): calculate the output neurons

Active Vision in a Collective Robotics Domain Appendix - 6 -

- reset (): reset the neural network.

Percepton, Hebbian, Ctrnn are three types of available neural networks, inherited
from the base class controller.

Example:
robot = new robot_t(); // inherited from controlled
… // read controller’s parameters from XML

robot->set_controller(new perceptron_t(num_inputs, num_outputs));

This code creates a new robot’s controller in the form of a perceptron.

Robot is the class for the simulation of s-bots. It contains as members a set of
vortex_entities representing robotic components as wheels, the turret, the bulk…
Moreover, it contains as member an omni-camera for images acquisition in our
experiments. Robot is inherited from controlled and defines its own control
functions.

Main functions:
- set_position (position): move the robot to a certain position.
- set_orientation (angles): rotate the robot.
- get_position (): return the robot’s position, useful in experiments.
- get_orientation(): return the robot’s orientation.
- get_params(): return parameters relative to the s-bot.
- attach_camera (camera): attach a camera to the s-bot for images acquisition.
- update (): update the robot’s state at every control step.
- control (): control the robot, by reading sensory inputs and then calculating and

passing the outputs to the actuators.
- sense (): sense the environment.
- set_inputs (num_inputs, inputs): passes the acquired sensorial data to the neural

inputs controlling the robot.
- apply_outputs (num_outputs, outputs): maps the neural outputs to the simulated

actuators moving the robot and its components.

Examples:
robot_t::control() {

 sense();

 // set the controller inputs

 inputs = controller->get_inputs();

 inputs.clear();

 set_inputs(controller->get_num_inputs(), inputs);

 // calculate outputs of the neural network

 controller->step();

Active Vision in a Collective Robotics Domain Appendix - 7 -

 // apply outputs

 outputs = controller->get_outputs().begin();

 apply_outputs(controller->get_num_outputs(), outputs);

}

The above code is the control phase of a simulated robot. The robot acquires
images through its omni-directional camera, calculates visual input through a virtual
retina, passes this input to the neural network, calculates the neural outputs and maps
them to the corresponding motor actuators.

Programming Experiments

Programming new experiments within the simulator is quite easy. In essence,
experiments are defined inside a corresponding C++ class inherited from a base class
task. Every experiment must redefine the following virtual functions.

Trial evaluation
- start_evaluation (): operations done at the beginning of an experiment, e.g.

reading from script some parameters, creating robots and their omni-camera,
initializing controllers, collision detection…

- close_evaluation(): operations done at the end of an experiment.
- start_trial (trial): operations done at the beginning of a trial, e.g. random

positioning of robots and obstacles in the scene.
- run_trial (trial, num_control_steps): operations done at each control step, as

updating the simulator’s entities (lights, cameras…), running Vortex simulation,
updating the fitness and rendering the environment.

Fitness tools
- compute_fitness (trial): compute the fitness of a trial. Refer to the thesis for

examples on the fitness formulations used for our experiments.
- compute_final_fitness (): compute the fitness that evaluates the experiment,

usually by averaging the fitness of each trial.
- dump_data(): save useful data to file.

Test and data analysis
- start_test (): initialize data used during tests (e.g. opening output file and reading

from script the desired type of test).
- close_test (): close data used for testing the experiment (e.g. closing the output

file).
- initialize_test (trial, num_control_steps): initialize trial-dependent tests, e.g.

varying the color or position of objects in function of the trial number.

Active Vision in a Collective Robotics Domain Appendix - 8 -

- control_test (trial, control_step, num_control_steps): perform operations at each
control step for testing the experiment. For example, in the focusing experiment,
here we rotate the camera to study its ability to focus on dynamic images.

- analyze_test (trial, num_control_steps): analyze data gathered throughout testing.
Here, we usually write to file the result of a test in multiple-columns format, for
successive plotting under Matlab or gnuplot.

Example

We will now illustrate the programming of an experiment concerning a robot
navigating in the environment driven by visual information acquired through a retina.
First, we have to inherit a new robot class, from robot, specifying the actions
performed at each control step and optionally additional components not already
present in the base robot class.

class navigator_robot_t : public robot_t {

 virtual void sense();

 virtual void set_input(…);

 virtual void set_output(…);

 …

}

The robot senses the environment by acquiring 360-degree images of the surrounding
environment, and then by extracting data through the retina.

sense(){

 omnicamera->acquire_image();

 omnicamera->get_retina(0)->filter_cells();

}

The robot then passes the grey value of the retinal cells as input to the neural
network.

set_input(…){

 for (int i = 0; i < num_retina_cells; i++) {

 neural_network->inputs[i] = grey_value(retina->cells[i]);

 }

}

Finally, the robot maps the neural outputs into the corresponding actuators activation
states, controlling in this case the robot’s wheels.

set_ouput(…){

 float lwheel = neural_network->remap(outputs[0], -max_speed,

 +max_speed);

 float rwheel = neural_network->remap(outputs[1], -max_speed,

 +max_speed);

 set_wheel_speed(0, lwheel); // left wheel

Active Vision in a Collective Robotics Domain Appendix - 9 -

 set_wheel_speed(1, rwheel); // right wheel

}

At this point, we have to program an experiment using the new robot, for example to
move it without collision with obstacles randomly placed in the environment. The
first step consists in initializing the experiment, by creating the involved objects:

start_evaluation () {

 robot = new navigator_robot_t();

 omni_camera = new omni_camera_t();

 omni_camera->setup_mirror(12, 0.2);

 robot->attach_camera(omni_camera);

 // create a circular virtual retina

 retina = new retina_circle_t(32, 4, 4); // 4x4 cells

 omni_camera->add_retina(retina);

 // create a number of spherical obstacles

 // NOTE: this is actually done automatically when reading the

 Vortex XML files describing the simulated world

 num_obstacles = X;

 for (int i = 0; i < num_obstacles; i++) {

 obstacles[i] = new vortex_entity_t();

 obstacles[i]->set_model(“sphere”);

 }

 …

}

The second step consists in describing the operations performed at the end of the
experiment, as deleting objects.

close_evaluation () {

 delete robot;

 delete omni_camera;

 …

}

Now, we describe some operations done at the beginning of each trial that vary from
trial to trial. In our case, we randomly position the robot and the obstacles in the
environment.

start_trial (int trial) {

 for (int i = 0; i < num_obstacles; i++)

 obstacles[i]->set_origin(some random position);

 robot->set_position(some random position);

 robot->set_orientation (a random orientation);

}

Active Vision in a Collective Robotics Domain Appendix - 10 -

The most important function describes the operations done within the experiment at
each control step, as rendering the virtual environment, updating the physical
simulation of bodies and controlling the robot.

run_trial (int trial, int num_control_steps) {

 fitness[trial] = 0.0;

 for (int i = 0; i < num_control_steps; i++) {

 viewer().update_frame();

 // run simulation for one step

 simulation().run(1);

 // update fitness

 fitness[trial] += compute_navigation_fitness();

 // render the virtual environment

 viewer().render();

 }

 // normalize fitness

 fitness[trial] /= (float)(num_control_steps);

}

The fitness function evaluates somehow the robot’s ability in navigating across the
environment while avoiding the obstacles.

compute_navigation_fitness() {

 fitness = …

 return fitness;

}

Next, we have to define a function returning the robot’s fitness. In our example, we
have already calculated the fitness throughout the control phase, so we simply return
the calculated fitness:

compute_fitness (int trial) {

 return fitness[trial];

}

Now, in order to analyze the evolved robot’s behavior, we can design some tests
through the following procedure: initially, we initialize the test, by opening a file to
write data to.

start_test(){

 output_file.open(“navigation.test”);

}

We must also close the file at the end of the test.
close_test){

 output_file.close();

}

Active Vision in a Collective Robotics Domain Appendix - 11 -

For this example, we propose a test consisting in randomly moving the obstacles in
the environment, in order to test the robot’s ability in avoiding collisions with them.
Initially, we arrange the obstacles in predefined positions.

initialize_test(int trial, int num_control_steps) {

 for (int i = 0; i < num_obstacles; i++) {

 obstacles[i]->set_origin(obstacle_pos[i]);

 }

}

Second, we move the obstacles at each control step:
control_test(int trial, int control_step, int num_control_steps) {

 for (int i = 0; i < num_obstacles; i++) {

 obstacles[i]->translate(random); }

 }

}

Note that we have to insert a call to control_test inside the loop defined in
run_trial. The loop then calculates the fitness taking into account the operations
defined for this test.

The last step regards the analysis of data. For example, we calculate and save to
file the number of collisions between the robot and the obstacles in function of the
number of control steps.

analyze_test(int trial, int control_step) {

 num_collisions += check_collision(robot, obstacle);

 output_file << control_step << “ “ << num_collisions << endl;

}

At the end of the experiment’s test, we can plot the output file “navigation.test”
inside any common plotting program, as gnuplot or Matlab.

Active Vision in a Collective Robotics Domain Estratto - 1 -

ESTRATTO

Questa tesi discute un innovativo sistema di visione attiva applicato al controllo di
un gruppo di robot. Vogliamo creare dei robot che siano in grado di estrarre
autonomamente dall’ ambiente le informazioni visive necessarie al completamento di
un compito comune, che nel nostro caso consiste nel moto coordinato di un gruppo
di robot.

La visione artificiale è un campo dell’intelligenza artificiale e dell’elaborazione
delle immagini che si occupa dell’analisi e della corretta interpretazione di
informazioni estratte dalle immagini. In letteratura esistono principalmente due
approcci: il primo consiste nell’ applicare algoritmi predefiniti per estrarre dalle
immagini caratteristiche di interesse. Il secondo approccio applica invece tecniche di
apprendimento nel tentativo di ridurre le immagini ad un insieme di caratteristiche
ottimali e statisticamente invarianti.

Entrambi gli approcci possono essere applicati al controllo di robot autonomi.
Tuttavia, essi non considerano il fatto che, in analogia con organismi viventi, la
visione e il comportamento di un robot sono intimamente legati in un ciclo senso-
motorio. Da una parte, le azioni svolte dal robot influenzano, direttamente o
indirettamente, la percezione che il robot ha dell’ambiente circostante. Si pensi ad
esempio a una telecamera montata sul robot; essa naturalmente vede l’ambiente
sempre da posizioni diverse in conseguenza dei movimenti del robot. Dall’altra parte,
le informazioni provenienti dalle immagini acquisite determinano, una volta
elaborate da un controllore, il successivo comportamento del robot. In aggiunta, i due
approcci menzionati precedentemente non considerano il fatto che la quantità e il
tipo di informazioni acquisite dipendono fortemente dalle caratteristiche fisiche del
robot e dalle sue capacità motorie.

In risposta a questi limiti, è stato recentemente proposto il paradigma della visione
attiva. Un sistema di visione attiva è in grado, a differenza di un sistema passivo, di
scegliere attivamente le informazioni visive che sono importanti al momento, invece
di elaborare tutte le informazioni disponibili ma non necessariamente utili. Nel
nostro caso, un robot dotato di visione attiva è in grado di scegliere quelle
informazioni visive relative al proprio ambiente che gli sono utili per il
completamento di un determinato compito.

Il sistema visivo sviluppato in questa tesi consiste innanzitutto in una telecamera
omni-direzionale per l’ acquisizione di immagini a 360 gradi dell’ ambiente
circostante. Successivamente, una retina virtuale, corrispondente a una regione dell’
immagine di dimensione e posizione variabile, può analizzare autonomamente l’

Active Vision in a Collective Robotics Domain Estratto - 2 -

immagine per estrarre informazioni che sono importanti per il compito del robot. Ad
esempio, la retina può cercare nelle immagini alcune caratteristiche di interesse, e
quindi zoomare per estrarle a diversi livelli di dettaglio.

L’ approccio adottato implica un problema fondamentale: come sintetizzare
controllori che siano in grado di guidare allo stesso tempo il sistema visivo e il
movimento dei robot, in modo che essi svolgano un compito predefinito? A questo
proposito, abbiamo adottato tecniche di evoluzione artificiale per creare dei
controllori che considerino l’intrinsico legame tra movimento e visione
caratterizzante il ciclo di controllo di un robot, ed inoltre le complesse interazioni tra
i robot e l’ambiente in cui operano (vedi la sezione 2.2.2). La sezione 3.3 della tesi
fornisce una breve introduzione agli algoritmi evoluzionari impiegati.

 Nel processo di sintesi di un controllore robotico bisogna tenere in
considerazione alcuni aspetti, quali decentralizzazione, robustezza e adattatività.
Queste proprietà caratterizzano in generale il comportamento di insetti sociali ed altri
animali, individui semplici che lavorando coordinatamente in gruppo sono in grado
di svolgere compiti complessi. Il campo della Swarm Intelligence (introdotto nella
sezione 2.1) studia i meccanismi che in natura regolano il comportamento degli
insetti ed altri animali per poi applicarli al controllo di individui artificiali come i
robot. Noi abbiamo cercato di applicare gli stessi principi al fine di riprodurre,
mediante evoluzione artificiale, comportamenti individuali e globali caratterizzati
dalle proprietà sopra menzionate.

Il lavoro discusso in questa tesi è svolto interamente in simulazione in modo da
accelerare notevolmente la sintesi dei controllori. Il robot impiegato nei nostri
esperimenti è l’s-bot, sviluppato all’ interno del progetto SWARM-BOTS, di cui la
sezione 2.3 fornisce una breve introduzione. L’ hardware, il modello simulato e il
sistema visivo dell’ s-bot sono descritti nella sezione 3.2 della tesi.

Abbiamo sviluppato un simulatore con molteplici funzionalità (capitolo 3).
Innanzitutto, grazie all’integrazione con il simulatore fisico Vortex (Critical Mass
Labs, Canada), è possibile simulare le dinamiche e le collisioni tra corpi fisici (robot,
ostacoli) con grande accuratezza, in modo tale da ottenere comportamenti fedeli alla
controparte reale. Abbiamo inoltre sviluppato un motore grafico per la
visualizzazione 3D in tempo reale dell’ ambiente simulato dal punto di vista di
osservatori esterni e dal punto di vista di ogni robot. Queste ultime caratteristiche
erano parte degli obbiettivi della tesi in quanto agevolano fortemente lo studio della
visione nei nostri esperimenti.

La parte decisamente più problematica consiste nel simulare il processo che, nella
telecamera omni-direzionale dei robot, genera immagini a 360 gradi dell’ambiente
circostante. Da un punto di vista ottico questo processo è relativamente semplice: i
raggi di luce provienti dall’ ambiente da tutte le direzioni sono riflessi da uno
specchio sferico in direzione della telecamera, formando immagini panoramiche con
caratteristiche peculiari (ampiamente descritte nella sezione 3.2.3). Questo processo

Active Vision in a Collective Robotics Domain Estratto - 3 -

può essere simulato in maniera naturale con la tecnica del ray-tracing presa dal
campo della computer graphics, come descritto nella sezione 4.1 della tesi. Tuttavia,
una implementazione immediata del ray-tracing in questo caso risulta essere
estramemente lenta, e quindi del tutto inadatta ai nostri scopi. Ricordiamo infatti che
i nostri esperimenti, utilizzando l’evoluzione artificiale, comportano lunghe e
reiterate valutazioni dei robot e quindi richiedono una simulazione il più veloce
possibile. A questo proposito, sono state introdotte numerose ottimizzazioni, anche
essere ispirate a tecniche di computer graphics, per accelerare criticamente la
simulazione di una telecamera omni-direzionale tramite ray-tracing. Queste tecniche,
descritte nel capitolo 4, sfruttano hardware grafico comune per simulare la visuale
omni-direzionale dello specchio che fa parte della telecamera. Successivamente,
ricostruiscono velocemente l’immagine della telecamera partendo dalla visuale dello
specchio sfruttando dati precalcolati. In aggiunta, è possibile ottimizzare
ulteriormente la simulazione dell’immagine in presenza di una retina virtuale.

Il simulatore sviluppato infine comprende strumenti per la sintesi di controllori
tramite algoritmi evoluzionari e altri strumenti per il controllo e la manipolazione ad
alto livello di vari oggetti simulati e per la programmazione di nuovi esperimenti.
L’appendice alla tesi fornisce esempi estesi sull’ utilizzo di questi strumenti.

Come anticipato, la retina virtuale è lo strumento tramite il quale i robot possono
estrarre informazioni dalle loro immagini dell’ambiente. Essa corrisponde a una
regione dell’immagine di dimensioni e posizione variabili, in grado di muoversi
nell’immagine e di zoomare. La retina è suddivisa in una matrice di celle che
ricevono input visivo dalla corrispondente area dell’ immagine. In particolare, ogni
cella assume come valore la media dei corrispondenti pixel dell’ immagine; questo
calcolo implica in generale determinare quali pixel dell’immagine sono coperti dalla
cella. Abbiamo sviluppato due tipi di retina: una rettangolare e una a settore
circolare, descritte rispettivamente nelle sezioni 5.3 e 5.4 della tesi. Il primo tipo
risulta di semplice implementazione ma poco si adatta alle immagini acquisite da una
telecamera omni-direzionale, caratterizzate da proprietà specifiche (sezione 3.2.3).
L’ altro tipo di retina invece è stato sviluppato ad hoc per operare su quel tipo di
immagini. Questa retina ha la forma di un settore circolare, di apertura e lunghezza
variabile. Può inoltre ruotare nell’ immagine in modo da estrarre informazioni sull’
ambiente che circonda un robot sotto varie direzioni. La forma particolare di questo
tipo di retina, convessa e con lati curvilinei, rende molto più difficile il calcolo del
valore di ogni cella. A questo proposito abbiamo sviluppato una tecnica basata su
algoritmi per il disegno di forme curve su schermo (sezione 5.4.1).

L’ obbiettivo finale della tesi è quello di generare dei controllori che, sfruttando il
sistema visivo sviluppato, guidino il moto coordinato in un gruppo di più robot
(capitolo 8). In particolare, i robot devono imparare a muoversi in gruppo sfruttando
le informazioni visive relative all’ ambiente percepite tramite la loro telecamera e

Active Vision in a Collective Robotics Domain Estratto - 4 -

successivamente estratte dalla retina virtuale. La tesi giunge al suo obbiettivo
presentando tre esperimenti di complessità crescente.

Il primo esperimento consiste nel sintetizzare tramite evoluzione artificiale una
retina capace di focalizzare un oggetto posto casualmente nell’ ambiente (focusing
task, trattato nel capitolo 6). Una telecamera omni-direzionale fissa cattura immagini
dell’ ambiente comprendente l’oggetto. Esso appare nell’ immagine come una figura
bidimensionale di dimensioni e posizione casuale. La retina deve cercare l’oggetto
nell’ immagine e quindi adattare le sue dimensioni per focalizzarlo al meglio. Il
controllore adottato qua e nei successivi esperimenti è un perceptron, cioè una rete
neurale puramente reattiva. Esso riceve in input il livello di grigio delle celle della
retina, e controlla in output il comportamento della retina, cioè la sua posizione e le
sue dimensioni.

Questo esperimento serve a studiare le proprietà della retina nell’ estrarre
caratteristiche dalle immagini partendo da un contesto semplice. I risultati sono
incoraggianti perché la retina mostra ottime prestazioni nel focalizzare oggetti di
varie caratteristiche, come diverse luminosità e distanze dalla telecamera. Un
risultato particolarmente interessante è il fatto che la retina è in grado di focalizzare
dinamicamente oggetti in movimento (sezione 6.4), sebbene essa sia stata evoluta su
oggetti statici. Questo risultato dimostra le grandi capacità di adattamento della
retina, e serve come solida premessa all’ esperimento successivo

Il secondo esperimento consiste nell’ evolvere in un robot mobile la capacità di
riconoscere nell’ ambiente un oggetto e quindi di muoversi verso di esso (targeting
task, capitolo 7). Il robot percepisce l’ambiente tramite la sua telecamera omni-
direzionale, e poi estrae informazioni dalle immagini acquisite tramite una retina
virtuale. Il robot deve imparare a focalizzare la retina sull’ oggetto e successivamente
a sfruttare l’input visivo fornito dalla retina per muoversi verso l’oggetto. In questo
esperimento il controllo del robot è caratterizzato dal ciclo senso-motorio discusso in
precedenza. L’ evoluzione artificiale deve dunque sintetizzare validi controllori
(ancora dei perceptron) co-evolvendo la visione e il movimento del robot.

I risultati ottenuti, descritti nella sezione 7.4, sono brillanti: la retina focalizza in
pochi passi di controllo l’oggetto target nell’ immagine. Il robot a questo punto si
muove velocemente verso l’oggetto stimandone la posizione tramite la retina, e
sempre mantenendo la sua attenzione visiva sull’oggetto. Le analisi dei controllori
ottenuti dimostrano un buon grado di robustezza nel comportamento del robot
rispetto a oggetti con diverse proprietà, come colore o distanza dal robot. Il risultato
però più interessante è la capacità del robot di inseguire oggetti in movimento.
Questa proprietà di generalizzazione anticipa la capacità del sistema visivo
sviluppato di operare su robot mobili che percepiscono altri oggetti in movimento,
esattamente lo scenario dell’ ultimo esperimento della tesi.

Come anticipato, il terzo e ultimo esperimento della tesi consiste nel sintetizzare
dei controllori basati sulla visione che guidino il moto coordinato di un gruppo di

Active Vision in a Collective Robotics Domain Estratto - 5 -

robot (swarming task, capitolo 8). In particolare, alcuni robot devono esplorare
l’ambiente procedendo compatti in una certa direzione comune. Ogni robot è una
unità autonoma che percepisce l’ambiente, comprensivo degli altri robot, tramite una
telecamera. Ancora una volta il robot deve imparare ad estrarre dalle immagini
acquisite le informazioni utili al suo compito, in questo caso muoversi
coordinatamente col gruppo. Alla luce dei risultati precedentemente conseguiti,
usiamo per ogni robot lo stesso controllore dell’ esperimento di targeting, un
perceptron che riceve in ingresso le informazioni estratte dalla retina e controlla in
uscita il movimento e il sistema visivo del robot.

Abbiamo sintetizzato controllori in grado di coordinare il moto di un gruppo di
robot in maniera soddisfacente. I robot sfruttano una retina di grande apertura per
estrarre informazioni da varie direzioni sugli altri robot posti nelle vicinanze. A
seconda dell’ input visivo acquisito, i robot assumono ruoli distinti nel successivo
moto coordinato del gruppo. Di solito, i robot procedono nell’ esplorazione dell’
ambiente in una configurazione a trenino, mantenendo, tramite la retina, contatto
visivo coi robot vicini per non perdersi. Ulteriori analisi (sezione 8.4) confermano
discrete proprietà di generalizzazione nei controllori evoluti. In particolare, abbiamo
studiato le prestazioni dei controllori usando di volta in volta un numero diverso di
robot. Sebbene i controllori non siano robustissimi, dato che spesso alcuni robot si
allontanano dal gruppo, riescono in molti casi a guidare con successo e per lungo
tempo lo swarming di molti robot. In futuro cercheremo di migliorare le prestazioni
del gruppo, magari impiegando controllori di diversa architettura (con memoria) per
superare i limiti di un comportamento puramente reattivo.

I risultati conseguiti in questa tesi aprono la strada a future applicazioni nel campo
della robotica che utilizzino la retina virtuale per l’analisi e l’elaborazione efficiente
di immagini in sistemi di controllo basati sulla visione. Il capitolo 9 della tesi
fornisce numerosi spunti per lavori futuri. In breve, la nostra ricerca si impegnerà a
migliorare la sintesi di controllori per gruppi di molti robot guidati dalla visione. In
particolare, vogliamo estendere l’ultimo esperimento della tesi a compiti più
avanzati, come il superamento di ostacoli. Studieremo inoltre l’integrazione del
sistema visivo con altre capacità sensoriali, in quanto essa potrebbe essere necessaria
per operare in ambienti complessi. Nuovi esperimenti saranno inoltre condotti su
robot singoli. Infine, un lavoro futuro potrebbe essere l’applicazione della retina
virtuale nell’ elaborazione di immagini in sistemi con limitate capacità
computazionali.

