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Abstract

We investigate a multi-agent algorithm inspired by the task allocation
behavior of social insects for the dynamic task allocation problem (DTA). The
problem is a non-deterministic scheduling problem, consisting of identical
machines and different types of tasks. A painting facility, consisting of trucks
and paint booths, can be taken as example for the DTA. Trucks roll off an
assembly line to get painted by paint booths. Crucial to this problem is the
time required by paint booths to reconfigure, that is, to change the color in
which they paint the trucks. Such reconfigurations are costly in time.

In the insect-based approach, agents are in charge of machines and au-
tonomously bid for tasks. The agents’ control is based on a threshold model
proposed by Bonabeau et al. [5], which is inspired by the methodology of
division of labour in social insects. Applying this threshold model to the
agents results in a robust system with the ability to adapt to changing de-
mands. The agents tend to specialize for one type of task, so that unnecessary
reconfigurations are prevented.

Our work is based on previously introduced models described by Cicirello
et al. [12] and by Campos et al. [9]. Several improvements are proposed.
These proposals introduce new rules into the model in order to speed up
the system’s adaptation, and modify existing rules of the model to overcome
some observed problems. In order to verify our proposals, we test them
on a wide set of DTA instances. The results of these tests are presented.
A detailed analysis shows that our proposals result in an improved overall
performance of the approach.
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Chapter 1

Introduction

In this thesis, an insect-based approach to a dynamic scheduling problem is
presented. In general, scheduling problems consist of resources and tasks,
which have to be allocated to the resources. In our system, which is based
on previously introduced approaches by Campos et al. [9] and by Cicirello et
al. [12], insect-like agents are in charge of the resources and bid for tasks.

Social insect colonies use intelligent and distributed methods to collec-
tively solve complex problems. Cooperation among individual insects is
largely self-organized and does not require any supervision. The collective
behavior that emerges from a group of social insects is referred to as swarm
intelligence. The research area that deals with applying swarm intelligence
to various problems has come under increasing attention in the research com-
munity in the last years [3]. One of the early studies of swarm intelligence
investigated the foraging behavior of ants. Ants lay trails of pheromone, a
chemical substance that attracts other ants. Deneubourg et al. [16] showed
that this process of laying a pheromone trail that others can follow, is a good
strategy for finding the shortest path between a nest and a food source. In
experiments with an Argentine ant species, Deneubourg et al. constructed
a bridge with two branches, one twice as long as the other, separating the
nest from a food source. Within few minutes the ants mostly selected the
shorter branch. Based on the idea of pheromone laying and following, Dorigo
et al. [19] developed a way to solve the well known and NP-complete! travel-
ing salesman problem (TSP). The TSP is the problem of finding the shortest
route that goes through a given number of cities exactly once (see Figure 1.1).
The algorithm, implemented by Dorigo et al., has obtained near optimal so-
lutions.

NP stands for nondeterministic polynomial. The TSP is NP-complete, as the number
of computational steps required for its solution, grows faster than the number of cities
raised to any finite power.
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Figure 1.1: Traveling Salesman Problem: finding the shortest route that goes
through a given number of cities exactly once. For a problem with fourteen
cities, like the displayed one, there are approximately 10! different routes.
Ants use a methodology of laying and following trails of pheromone that can
be used to find near-optimal solutions for the TSP very quickly.

The TSP is a classical and good example for applying swarm intelligence,
but it is by far not the only one. Swarm intelligence has inspired researchers
to create algorithms for a great variety of combinatorial optimization prob-
lems, as for instance, the quadratic assignment problem [29, 23], the job shop
scheduling problem [14], the graph coloring problem [15] or the vehicle rout-
ing problem [8]. In the field of telecommunications networks AntNet [18] is
a swarm intelligent approach to dynamic routing. A set of ants collectively
solves the problem by indirectly exchanging information through the network
nodes. They deposit information used to build probabilistic routing tables.
At the time it was published it outperformed state-of-the-art algorithms for
an extensive set of simulated situations. In robotics the recruitment of nest-
mates in some ant species inspired scientists to program robots in order to
achieve an efficient teamwork behavior [4].

For our insect-based approach, inspiration is taken from the methodol-
ogy of division of labor in social insects. In social insect societies, individuals
tend to specialize for a certain task. This is believed to be more efficient than
sequential task performance as it avoids unnecessary task switching, which
costs time and energy. In order to explain this methodology, Bonabeau et
al. [5] have developed a model of response thresholds, later applied by Cam-
pos et al. [9] and Cicirello et al. [12] for a dynamic scheduling problem, which
we define as the dynamic task allocation problem (DTA). The environment
for this problem can be compared to a painting facility, where trucks come
out of an assembly line and get painted by paint booths. If necessary, paint



booths can change their color, but doing so is related to a high cost in time,
and eventually in money, as colors might get mixed and therefore cause mis-
takes. Thus, a specialization of the paint booths is desirable, so that fewer
reconfigurations are required. The insect-based approach provides such a spe-
cialization. A set of agents, which represent the paint booths, autonomously
bids for tasks. The way the solution is achieved is totally distributed, as no
global information is used. One agent is not provided any information about
the other agents

We have reimplemented the work of Campos et al. [9] and Cicirello et
al. [12] and tested it on a wide set of DTA instances. The main contribution
of this master thesis is the detailed analysis of the insect-based approach
and improvement proposals in order to overcome some shortcomings of the
original system. Mostly, the performance, achieved by the original system,
was satisfying. However, especially for problems, where demands are dynam-
ically changing, the system often took very much time to re-adapt or didn’t
succeed to re-adapt at all. In order to overcome this problem, we propose two
additional rules to speed up the adaptation process. Moreover, we propose
three modifications on the original approach.

The thesis is structured as follows. In the next chapter, we introduce
scheduling problems. After describing a general model for deterministic
scheduling, we specify the main objectives and performance measures, and
show some common problem examples. Then, based on this information,
the DTA is defined and discussed in more detail. Chapter 3 provides a brief
overview of multi-agent systems (MAS). First, we define the terms agent and
MAS and describe some areas where they are applied. Afterwards, market-
based MAS are explained in more detail. Market-based MAS can be deployed
for distributed scheduling problems. Therefore we present a simple market-
based approach to the DTA that serves as comparison to the insect-based
approach. The methodology of division of labor in social insects is described
in Chapter 4. We start by giving an overview of the different forms of divi-
sion of labor, and then describe the terms stigmergy — which plays a major
role for the division of labor — and plasticity — which is one of the main
qualities of division of labor. As mentioned before, in order to explain the
methodology of division of labor, Bonabeau et al. [5] have developed a model
of response thresholds. This threshold model is explained in detail, first
for fixed thresholds, and then for dynamically changing thresholds. The
insect-based approach to the DTA is introduced in Chapter 5. We give a
formal description of the system and its rules. Chapter 6 is dedicated to
our improvement proposals. The motivations are declared and examples of
situations where we expect our proposals to be helpful are given. In Chap-
ter 7 we briefly describe the examined problem instances and the way we
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determined the values for the set of parameters. The experimental results
are provided in Chapter 8. First, we present the analysis of small problem
instances, where a detailed study of single entities of the problem is possible.
Then, we present large problem instances, that are meant to represent more
realistic factory environments. In Chapter 9 we summarize the work and our
results, and give a brief overview on future work.



Chapter 2

Scheduling Problems

The problem of scheduling applies to many important computing, business
and everyday problems. In very general terms, scheduling problems assume a
set of resources and a set of tasks which have to be allocated to the resources.
Based on certain constraints and rules on the tasks and resources, the goal
is to optimize or try to optimize a desired objective function.

In this chapter we will describe approaches to several forms of scheduling.
First, deterministic scheduling will be examined, giving a formal description
of the system’s entities, introducing the most widely used performance mea-
sures and presenting some examples of scheduling problems. At the end
of the chapter, we give a definition of the dynamic task allocation problem
(DTA), which is the problem considered in this thesis.

2.1 Deterministic Scheduling Problems

Deterministic scheduling assumes that all information governing the schedule
is known in advance. This includes for instance, task arrival and processing
times or the availability of resources.

2.1.1 General Model

The general model of deterministic scheduling problems describes resources,
task systems and performance measures dealt within deterministic schedul-
ing.

We define a set of resources R = {Ri,...,R,}. Resources generally
provide a certain utility. For instance, a resource can be thought of as a
computer, a machine in a factory, a server, or bandwidth in the internet.
Depending on the problem, these resources can be identical, different either
in functional capability or speed or different in both.
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A general task system for a given set of resources can be defined as a
five-tuple {7, <, [75], {R;}, [w,]} as follows:

1. T =A{T1,...,T,} is a set of tasks to be executed.

2. < is a partial order relation defined on 7 which determines the con-
straints on the task succession. For instance T; < 7Tj signifies that T;
needs to be finished before T; can begin.

3. [1;] is an m X n matrix of execution times. The entry 7;; is the time
required by resource R;,1 <7 < m, to execute task 75,1 < j < n. In
the case of identical resources the vector [7;] sufficiently denotes the
execution times of the tasks common to each resource.

4. {R;} = [R1(T}),...,Rn(T})],1 < j < n, assigns the value 1 to the ith
component, in case resource R; is required for execution of task 7;, and
the value 0 otherwise.

5. The weights w;,1 < j < n can be thought of as priorities or costs
related to tasks. For instance, task T; could be assigned a higher weight
for having a higher priority.

This general model covers a reasonably large number of scheduling problems,
and can be easily extended in order to cover others.

Figure 2.1 shows an example of a directed, acyclic graph to represent a
simple task system with ten different tasks. In this example 77,75, T3 and
Ty are so called initial vertices forming entry points and Ty, Ty and T, are
terminal vertices forming terminal points of the task system. The level of a
vertex 1" is the sum of execution times along a path from 7" to a terminal
vertex such that this sum is maximal. A path is called a critical path if the
path’s first vertex is at the highest level. In the example of figure 2.1 the
critical paths are Ty, T, Ty and Ty, Ty, T7, Ty as these paths require most time
in the system to be executed.

2.1.2 Performance Measures

The performance measure applied, usually depends on the aims of the con-
sidered scheduling problem. Two performance measures, the makespan' and
the mean weighted finishing (or flow) time, are probably utilized more of-
ten than other, more specific measures. The makespan f,,,(S) is the time
required by the schedule S to finish all tasks:

fmam(S) = max {f](S)}a

1<j<n

L Also known as the schedule-length or the mazimum finishing (or flow) time.
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Figure 2.1: Graphical representation of a simple task system with ten differ-
ent tasks and identical resources. The notation 7;/7; signifies the number of
the task T} and its execution time 7, respectively. The directed arcs display
the partial order in which tasks must be executed. For instance, the arcs
directed from the tasks 77,7, and T3 to task 7, express that 7, may only
start execution after the execution of 77,75 and T3 is finished. Task Tiq is
not connected to any other task, because 7T, does not need to follow any
constraints on the task succession.

where f;(S) denotes the finishing time of 7; when the schedule S is applied.
On the other side, the mean weighted flow time represents the average time
spent by a task in the system:

f(S) = %ijfj(S),

where w; denotes the weight. And if tasks are created during the schedule
execution:

T = 5 > wi((5) - ),

where a; the arrival time of 7.

Other performance measures of broad interest are the mean number of
tasks in the system and the mazimum and mean tardiness. The mean number
of tasks N(S) in the system over an interval [0,w(S)] is useful in computer
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scheduling to express expected inventory or storage requirements for tasks:

o w(S)
N(S) = % /0 N(t)dt,

with N(t) being the number of uncompleted tasks in the system at time t.

In order to define the mean and maximum tardiness performance mea-
sures we first need to extend the general model of Section 2.1.1 by assigning
to each task 7} a positive number d;, called the due date. The due date
expresses the time at which the task is desired to be finished with execution.
If the due dates must be respected, they are also called deadlines. Given
the definition of the due date, we can define the tardiness x; of task T; as
max{0, f;(S) — d;} if schedule S is applied:

Kmaz = IMAax {maX{O, fi(S) — dj}},

1<j<n

and for the mean tardiness:
.
R=- Z { max{0, f;(S) — dj}}.
j=1

In general, the optimization of more than one performance measure may
be eligible in a scheduling problem. For instance, from the point of view
of a client in the internet the minimization of the mean flow time might be
desirable in order to have short waiting times. On the other side, from the
server’s point of view the minimization of the makespan may be preferable,
desiring maximum throughput.

2.1.3 Problem Examples

Scheduling problems can be distinguished by a multiplicity of attributes.
First, a distinction between preemptive and nonpreemptive scheduling can
be made. Nonpreemptive scheduling makes the restriction that a task may
not be interrupted once it has begun execution. In other words, the task
must be allowed to run until its execution is finished. For instance, for fac-
tory applications of scheduling, this limitation is usually required. Preemp-
tive scheduling on the other hand permits a task to be interrupted and that
its execution can be continued at a later moment. Mostly the assumption
is made that there is no loss of execution time when a task is interrupted.
An example of preemptive scheduling is the execution of a program on a
processor. Figure 2.2 shows a simple task system with six tasks to be ex-
ecuted on two identical resources and the optimal solutions for preemptive
and nonpreemptive scheduling.
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Figure 2.2: A simple task system with six tasks and two identical resources.
The above optimal solution for preemptive scheduling interrupts 73 at re-
source 2 and continues later at resource 1. For nonpreemptive scheduling
execution interrupts are illegal. Grey shaded areas signify an idle resource,
i.e., a resource not busy with any task.

One of the best known and most studied fields in deterministic scheduling
problems is the area of Shop Scheduling problems, especially the Job Shop
Scheduling problem (JSP) and the Open Shop Scheduling Problem (OSP)
forming sub-instances of the more general Group Shop Scheduling problem
(GSP) [1]. The terminology of GSP, OSP and JSP uses the expressions job
instead of task and machine instead of resource, as they were inspired by
factory-like problems. However, we keep using the terminology as in the
precedent sections in order not to confuse the reader. To explain the GSP,
the general model of Section 2.1.1 needs to be enhanced by three attributes.
First, tasks are split into operations , i.e., for each task 7; there is a set
of operations {o0;1,...,0;,} that needs to be executed. Second, operations
within a task T; may form several groups {g;1,...,g;x}, with |g;;| > 0, |gji
denoting the number of operations in the group g;. Between groups within
the same task there is a strict partial order to be followed, whereas within
a group the order of operation execution is arbitrary. So, if there are two
groups gi; and g;; within the same task 77 and the partial order g;; < g1
is given, all operations contained in g;; must be finished before execution of
g1; may begin. Operations in different tasks may share the same resource to
be executed on. Operations sharing the same machine may not be executed
in parallel, i.e. at the same time. Now that the GSP is defined it is easy
to define the JSP and the OSP as they are special cases of the GSP. A
JSP simply is a GSP with |g;;| = 1 for all groups. This means that every
operation forms a group. So, there are in fact no groups and a partial order
must be defined for all operations within a task. A OSP on the other hand
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Figure 2.3: Graphical representation of a GSP, JSP and OSP problem with
three tasks and ten operations. Execution times are omitted. Operations
in the same box share the same group. “same machine” means that opera-
tions connected by the dashed line require the same machine. “independent”
means that operations within one task connected with the dotted line can be
executed without following any sequencing constraints. A similar example
can be found in [2].

is a GSP with |g;;| = |T;| Vtasks.? Therefore, a task is a group containing

2|T;| denotes the number of operations in T;.
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all the operations of the task. Thus, operation execution within a task does
not need to follow any constraints on the order of task succession. Figure 2.3
shows a graphical representation of a simple problem example for the GSP,
the OSP and the JSP with three tasks and ten operations.

2.2 The Dynamic Task Allocation Problem
(DTA)

The dynamic task allocation problem (DTA) was previously introduced in a
similar way by Campos et al. ([9]) and Cicirello et al. ([12]). The DTA task
allocation problem is said to be dynamic, as during problem execution the
environment may change.

Like all scheduling problems, the DTA consists of a set of resources and a
set of tasks. The constraints and rules within the problem are chosen in order
to simulate a factory-like environment. A real-world problem that expresses
very well the characteristics of the DTA is given by the problem of paint
booths painting trucks (see Figure2.4. This problem consists of a facility
containing trucks and paint booths. Trucks roll off an assembly line at a
certain rate in order to get painted by the paint booths. A truck’s color is
predetermined. Crucial to this problem is the time required by paint booths
to reconfigure, that is, to change the color in which they paint the trucks.
Such a reconfiguration is related to a high cost in time. Additionally, a
reconfiguration can cause a failure and by that be related to a monetary cost
as well. For instance a paint booth reconfiguring from black to white has
the danger of mixing the two colors while reconfiguring and thus painting
the next truck, that ought to be white, in grey. The number of required
reconfigurations should be held as low as possible.

2.2.1 Definition of the DTA

Based on the preceding example and the general definition of scheduling
problems from Section 2.1.1 we formally define the DTA as follows:

e M = {M,...,M,} is a set of resources or machines. Each machine
has a queue which can be filled with tasks. Tasks must be processed in
a first-in-first-out order. For a machine M; a number ¢,,,; gives the
maximum number of tasks that may be held in its queue.

o 7 = {Ty,...,T,} is a set of tasks to be executed by the machines.
Tasks are generated throughout a time-window [0, 7,¢] and released at
discrete times. The set of tasks 7 has to be considered as a “prototype”
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booth 1

Trucksin Queue
" may not switch places

Trucksthat are

T+ Th+Ts not allocated

booth 2

Te

T T

b To+TsTo+T5 Tp

booth 3

Figure 2.4: An example for a DTA problem with three paint booth painting
trucks. Each paint booth has a queue of trucks. The trucks are represented
by quadrangles with C; signifying the color j they require. 7}, and T are the
processing and the setup times. Once a truck is allocated to a booth, the
order is fixed. For instance, booth 1 will require a reconfiguration for both
trucks in its queue.

set, i.e. a task 7,0 < 7 < n, within 7 is not necessarily unique. How
many times a task of the same type is released to the environment
depends on the problem instance. It might be more precise to use the
term “task of type j” rather than “task 7}”.

e An assignment of a task of type j to machine M; implies a cost, con-
sisting of the process time 7;; 4 and the setup time w;; ;.

e [7;;] is an m x n matrix of average process times. The entry 7;; is the
average time required by machine M;,1 < i < m to process a task of
type j,1 < j < n, in case machine M, is able to process tasks of type j.
Otherwise the entry 7;; is 0. The definite process time 7;; 407 is equally
distributed in [7;; — A7, 7;; + A7]. The definite process time 7;; 4. does
not necessarily equal the total execution time as a reconfiguration of a
machine might require additional time.

o [wij | is an mxn x 2 matrix of setup times. For the entry w;; s, the index
s refers to the state of machine M; at the time ¢,y ren: it is allocated a
task of type j. Two states — depending on the type preceding_type of
the last task in M;’s queue at time %,y .rens — are be distinguished:

1. type j = preceding_type = no setup is required. The machine’s
state is s = 0 and the setup time is w;; s = 0, (= wjjo = 0,;V;i,1 <
i <m,Vj,<j < n).
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2. type j # preceding_type = a setup is required. The machine’s
state is s = 1 and the setup time is w;;, > 0.

2.2.2 Discussion of the DTA

The definition of the DTA covers a multiplicity of problem instances that ex-
ceed the range of problems approached by the insect-based system. We keep
the problem definition as general as possible in order to hold a connection to
other general scheduling models.

For instance we don’t determine whether the DTA is a deterministic prob-
lem or not, i.e., whether all information governing the scheduling decision is
known in advance. But for the experimentally considered problem instances
(see Chapter 7) we assume that task arrival times are not known a priori.
Thus, the examined instances of the DTA are non-deterministic problems.

Additionally, a task generation process is not specified. It may be that the
distance between two task arrivals is exponentially distributed, or that each
task has a certain probability to appear at each discrete time step® or even
the extreme case of all tasks being created at time step 0. This last example
would make the DTA instance a very simple scheduling problem requiring
only a short algorithm to optimize a schedule. On the other hand, if task
arrival times are exponentially distributed, a much more complex algorithm
would be required, even if task arrival times were known in advance.

Something else we want to mention is our definition of the set of tasks
T for the DTA, which we refer to as a “prototype” set. Often scheduling
problems assume a set of tasks with each task being unique. But in real-
time computing systems for instance, where scheduling plays a major role in
predicting the system’s ability to satisfy deadlines, a system’s simulation is
mostly assuming periodically appearing tasks [21]. In the definition of the
DTA we do not assess whether a certain type of task appears one or more
times during the time window [0, 7;»z]. Though, for the DTA instances we
examined, a type of task usually appears frequently.

A last thing to notify is the goal that we want to achieve, the performance
measure which we want to use to describe the quality of a schedule. The main
performance measure we make use of is the required makespan to finish
execution of all tasks. But we also analyze a schedule’s quality or more
general, the behavior of our approach, with respect to a variety of other
measures, as for example the amount of tasks finished during a given window
of time (the total throughput), the number of required setups or the total

3We use the term time step to describe the discretized temporal environment. The
generation of tasks begins at time step 0 and finishes at time step 74o;-
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time that machines stay idle during the schedule’s length. All these measures
will be explained in more detail in and in Chapter 8.



Chapter 3

Multi Agent Systems (MAS)

Our approach to the DTA may be viewed as a multi agent systems (MAS)
inspired by the methodology of division of labor in social insects. There-
fore, in this chapter we introduce MAS. The use of MAS in a variety of
fields of computer science, engineering and artificial intelligence is increasing
rapidly in the last five to ten years. The study of multi-agent systems focuses
on systems in which many intelligent agents interact with each other. The
agents are considered to be autonomous entities, such as software programs
or robots. One reason for the success of MAS in recent years is the growing
need for distributed intelligence. Distributed intelligence can be helpful for
problems:

e ...that are physically distributed: for instance transportation networks
or vehicle traffic management.

e .. .that are functionally distributed: problems may be split into several
subproblems. For instance, building a car requires several specialist
groups for the design, the engine, the tyres and other specific tasks
that are not functionally connected.

e ...that are too complex too keep a global point of view: If problems
are too large to be analyzed as a whole, solutions based on a local
viewpoint may allow the problem to be solved more quickly and more
easily.

In the ongoing of this chapter, we first give a general definition of agents
and MASs. Afterwards, different types of agents and areas of application are
presented. At the end of the chapter, market-based MAS are introduced in
more detail. We focus on market-based approaches to distributed scheduling
problems, where tasks are represented by autonomous agents.

15
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3.1 Agents

As agents are applied in a wide area, many different uses of the term agent
can be found. Thus, it is difficult to give a commonly accepted notion of
what it is that defines an agent or a MAS. Wooldridge and Jennings [49]
describe agents by giving them the following characteristics:

e autonomy or the ability to function without intervention,
e social ability by which agents interact with other agents,

e reactivity allowing agents to perceive and respond to a changing envi-
ronment and

e pro-activeness through which agents behave in a goal-directed way.

There are two major ways to differ between agents: The abilities of an indi-
vidual agent, and an agent’s behavior towards its environment [22].

In the first classification, we differentiate whether an agent is intelligent
(or cognitive), i.e., capable of solving certain problems by itself, or whether
an agent is very simple. A cognitive agent has enough knowledge to carry out
its task(s) and handle interactions with other agents and with its environ-
ment. Cognitive agents have a representation of their world. Based on this
representation they are generally capable of memorizing situations, analyzing
them, foreseeing possible consequences of their actions, and thereby planning
their behavior. In the other case, where individual agents are more simple,
they are called reactive. Reactive agents do not possess a representation of
their environment. Thus, they are incapable of foreseeing future events and
planning their behavior. The basic idea behind the use of a reactive agents
is that a MAS can demonstrate intelligent behavior even if agents are not
individually intelligent [17]. A very good example for this is a social insect
colony (see Section 4.1). Individual insects may be very simple and unable
to fulfill complex tasks. Nonetheless, within their colony, insects are able to
organize themselves and collectively find solutions for difficult problems like
for instance finding the closest food source.

The second classification distinguishes the source of motivation that leads
an agent. This may either be explicitly expressed within the agent — in this
case the agent follows teleonomic behavior — or the agent only responds to
stimuli from the environment and thus follows reflex behavior.

These two classifications can be combined to distinguish four types of
agents as it is summarized in Table 3.1. Usually cognitive agents are inten-
tional, i.e., they have explicit goals which motivate their actions, but the
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Cognitive agents | Reactive agents
Teleonomic behavior | Intentional agents | Drive-based agents
Reflex behavior Module-based agents | Tropistic agents

Table 3.1: The table shows the different types of agents. A distinction is
made on the individual abilities (horizontal) of an agent and its behavior
towards its environment (vertical)

combination of a cognitive agent with reflex behavior is possible. For in-
stance, this is applied for auxiliary agents who accomplish tasks which they
are commanded to perform by other agents, without having explicit goals
within themselves.

3.2 MAS

A MAS can simply be described as a loosely coupled network of agents,
interacting to collectively solve problems which are beyond the individual
capabilities of each agent [20]. Interactions among agents can be either co-
operative or selfish. Cooperative agents share a common goal, as for instance
in an ant colony, whereas selfish agents pursue their own interests, as for in-
stance in the free market economy. Sycara [39] additionally points out, that
individual agents within a MAS possess incomplete, local information only,
and that there is no global control in a MAS.

MASs can be differed by their organization, that is, a framework for
agent interactions that defines roles, behavior and authority relations among
the agents. The roles describe the agents’ functions, i.e., the position of
the agents within an organization, and the set of activities that they are
supposed to carry out to achieve the organization’s objectives. For instance,
an agent that manages execution requests and distributes them to competent
agents is called mediator. A planner is an agent that determines the actions
to be undertaken. A supplier performs a service for another agent who is
called customer. And an agent whose main function is to execute, is called
executive. Agents are not restricted to keep one fixed role in the system.
Roles can evolve with the dynamics of the organization.

Examples of organizations for MASs that have been explored are:

e Hierarchy: The MAS is split into several levels. Within each level,
one agent or a small group of agents is given the authority for decision
making and control. Interaction takes place through vertical commu-
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nication in both directions. Superior agents are given the control over
resources and decision making

e Community of experts: This organization is flat. Each agent is
a specialist in a particular area. Agents interact by rules of order
and behavior [28]. Agents coordinate their solutions through mutual
adjustment in order to achieve overall coherence.

e Market: Control is distributed to the agents that compete for tasks
or resources through a bidding mechanism. Agents interact through
one variable, the price, which is used to value services [37]. Agents
coordinate through mutual adjustment of prices. A detailed description
of market-based MASs is given in Section 3.4.

3.3 Areas of Application

There are many areas of application for MASs. In this section we present
two main categories: problem solving in the broadest sense, and modeling
and simulations.

3.3.1 Problem Solving

Problem solving concerns all situations, where software agents accomplish
tasks which are of some use. This category can be contrasted with the appli-
cations of robotics, as agents are purely computing agents without any real
physical structure. We distinguish distributed solving of problems, where a
complex task is carried out by an assembly of specialists possessing comple-
mentary skills, and solving of distributed problems, where the area in question
is itself distributed.

Distributed Solving of Problems

In this case the solving method is distributed, while the area of operations
is not. When a problem is so complex that one person cannot possess the
expertise to solve it alone, it is necessary to split the task into less difficult
subtasks.

For instance, when several specialists are required to build a racing car,
one will have a particularly good knowledge about engines, another will han-
dle the tyres, a third will concentrate on the interface for the driver and so
on. These specialists cooperate with each other to solve the general problem.
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One particular way of distributed solving of problems has been proposed
by C. Iffenecker [27]. His Condor system is an aid to the designing of electro-
mechanical products. Specialists in specifications, design, assembly, materi-
als, planning, marketing and many other areas, are represented in the form
of an assembly of cognitive agents in the Condor system. All these agents
have their own expertise and intervene at different stages in the creation of
the product.

In the area of paint shop systems, Morley [32] implemented a market-
based MAS at the General Motors’ Fort Wayne truck assembly plant. The
problem was described in Section 2.2 when we introduced the DTA. In the
system implemented by Morley, agents are in charge of humidifiers, burners,
and the steam generators for the air supply system. In Section 3.4.4 we
will give a simple model where an agent represents a paint booth, and in
Chapter 8 we compare this approach to the insect-based approach.

Solving of Distributed Problems

The solving of distributed problems refers essentially to applications such as
analysis, identification, fault finding and the control of physically distributed
systems for which it is difficult to obtain a totally centralized overall view.
For instance, if the task is to control a communications network, the domain
which is represented by the network itself, constitutes a distributed system.
This system needs to be monitored, and the monitoring tasks should be de-
centralized within the nodes of the network as much as possible. Distributed
conception constitutes a good example of the solving of distributed problems.

The Ideal system [22], designed by Onera and Alcatel-Alsthom, is a char-
acteristic example of a MAS monitoring and fault finding in a telecommu-
nications network. It contains three sorts of agents: supervisors, with the
task of locating failures and finding faults, follow-up agents, which have to
maintain coherence between the real state of the network and the agents’
view of it, and maintenance operators with the task of carrying out tests and
repairing elements of the network.

3.3.2 Modeling and Simulation

Simulation consists of analyzing the properties of theoretical models of the
surrounding world. Natural sciences as well as social sciences make par-
ticularly frequent use of simulations to try to explain or forecast natural
phenomena. Therefore, researchers construct models of reality and then test
their validity by running them on computers.

One of the most famous examples used in ecology, is the mathematical
model of the dynamics of populations by Volterra et al. [42], which describes
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the growth rates for populations of prey animals and predator occupying the
same territory:

@ = TlNl — PNlNQ, @ = aPNlNg — d2N2, (31)
dt dt

where P is the coefficient of predation, N; and N, are the numbers of prey

animals and predators, a is the efficiency with which the predators convert

food into offspring, r; determines the fertility of the prey animals and ds is

the mortality rate of the predators.

Although, in the meanwhile numerous advances have been introduced to
these models, they exhibit certain problems. For instance, it is not possible to
link the size of a population to the decisions taken by individuals. Behaviors
executed at the 'micro’ level correspond with the global variables measured at
the 'macro’ level. In general, for such mathematical models, it is very difficult
to take the actions of individuals into account. Another problem concerns
the parameters. Considered in terms of usability and realism, the applied
equations often contain a large number of parameters which are difficult
to estimate. For example, in Equation 3.1 the coefficient a indicates the
efficiency of converting food into offspring. This appears to be oversimplified
as more complex behaviors like sexual strategies or use of territory are not
taken into consideration.

MASSs bring a new solution to the concept of modeling and simulating.
They offer the possibility of directly representing individuals, their behavior
and their interactions. For example, in a multi-agent population model, indi-
viduals will be directly represented by agents, and the number of individuals
in a given species will be the result of the confrontations (cooperation, strug-
gle, reproduction,...) of all the individuals represented in the system. The
main qualities of multi-agent modeling are its capacity for integration and
its flexibility. It is possible to integrate within the same model quantitative
variables, differential equations and individual behavior. In addition, it is
possible to add new types of agents with their own model of behavior.

The Simdelta simulator [7] is a good example for MAS modeling. It
has been used to summarize the knowledge of several specialists who have
spent many years studying the fisheries of the central Niger delta in Mali.
This simulator makes it possible to simulate both, the dynamics of the fish
population — taking into account numerous biological and topological factors
which may affect its evolution — and the decision making of the fishermen.
The technique employed utilizes three types of agents: the biotopes, which
represent portions of the environment, the fish, which exhibit behavior that
can be considered to be reactive, and the fishermen, who behave like cognitive
agents.
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Two series of experiments were carried out. The first is related to the
study of the population dynamics of the fish in dependency to the continuous
growth of fishing. The second series was intended to model the fishermen.
This model demonstrated the importance of the decision-making mechanism
in relation to the dynamics of the fish.

3.4 Market-Based MAS for Scheduling

In this section we give a more detailed introduction to market-based MASs,
as they are applied for scheduling problems. In the approach that we present,
autonomous agents are in charge of tasks and make bids for resources. In
order to allocate resources to tasks, and thereby solve a scheduling prob-
lem, bidding protocols are executed and prices for resources are determined.
Agents make decisions in form of evaluating the trade-offs of acquiring differ-
ent required resources. These trade-offs are represented in terms of market
prices. In general, within a market mechanism for scheduling, agents may
also be in charge of resources instead of tasks. However, we limit ourselves to
the approach in which agents represent tasks and not resources and present a
theoretical framework for market-based mechanisms to distributed schedul-
ing problems.

The idea of markets can provide several advantages to a MAS in general,
and decentralized scheduling in particular. The necessary communication,
which constitutes a typical bottleneck in decentralized scheduling, to deter-
mine a schedule applying a market-based MAS, can be limited to the ex-
change of bids and prices. Prior work applying market-inspired mechanisms
to scheduling has produced promising results [44, 43].

The market-based approach to distributed scheduling problems is com-
parable to our insect-based approach. In [9], Campos et al. focus on the
similarities of the two ideas for the dynamic task allocation problem. Both
approaches are based on a MAS with bidding agents. In the market sys-
tem, the agents are in charge of the tasks and make bids in order to receive
resources, whereas in the insect-based approach, the agents represent the
machines and bid for jobs.

3.4.1 General Model

Wellman et al. [45] propose a general resource allocation problem for markets
as follows:

e G={g1,--.,9,} is a set of n goods or resources.
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e A={ay,...,a,} is a set of m agents in charge of tasks. Additionally,
there is the seller or null agent ag. In general, a market may contain
agents who are bidding for resources as well as agents who are selling
resources. In this model there is only one agent who is selling goods,
the null agent who is not in charge of tasks. All other agents bid for
goods held by the null agent.

e A set of prices p = {p1,...,pn} for the respective goods.

Each good g; has a reserve price ¢;, representing the minimum price that
the seller of the good is willing to accept. An agent a; holds three variables
characterizing the task he is in charge of. First, the task’s length A;, which
is similar to the execution time 7; from the model of Section 2.1.1. If the
condition \; = 1,V is satisfied, the scheduling problem is called single unit,
otherwise it is called multiple unit. The second variable is the task’s deadline
d;, having a similar definition to the one delivered in Section 2.1.2. And
finally, the task’s value v;(X ()}, d;)), expressing how high the set of goods
X (Aj,d;) C G is evaluated by a;. X(\;,d;) is any set of goods that satisfy
the requirements given by the length )\; and the deadline d;. Additionally,
the value also denotes the maximum price that a; is able' to pay for the
required set of goods X (\;,d;). Reserve prices for goods as well as agents’
values are usually counted in units of money (e.g., in §).

An agent a; is given a utility u;:

ui (X (N, dj)) = vi(X (A, dy)) + M,

for holding the set of goods X, X C G, and M; units of money. For the seller
ag, the utility is the sum of the money he received for allocated goods and
the reserve prices for unallocated goods.

The mazimum surplus H;(p):

H,(p) = (x) - pl,
i(p) X(ggj§c(;[v]() zX:p]

denotes the maximum amount of money agent a; has left if a; was allocated
the set of goods X (A;,d;) for prices p. H;(p) also maximizes an agent’s
utility. It is worth noting, that for some prices the agent may maximize
its surplus with the empty set, as for all valid nonempty sets the value of
H;(p) would be negative. Such a negative value of H;(p) corresponds to the

"Whether the agent is willing to pay a given price for a good, as high as the corre-
sponding value, depends on his strategy, the auction and of course other agents’ bidding
on the same good.



3.4. MARKET-BASED MAS FOR SCHEDULING 23

situation that for the given prices agent a; cannot afford to buy any set of
goods X (\;,d;) that satisfies the requirements of his task.
A schedule or solution f is a mapping, that determines which agent is

allocated each good:
f :G— AU Qyp,

Fy = {ilf (i) = a5},
Fo ={ilf () = ao},
where F} represents the set of goods allocated to agent a; and F denotes
the set of unallocated jobs. f(i) = a; expresses that good ¢ is allocated to
agent a;.
The performance measure to evaluate the quality of a solution is given
by its global value v(f):

v(f) =D g+ > vi(E),

i€Fy J

where v;(Fj) is the value, agent a; denotes to the set of goods F; he was
allocated. If F; does not satisfy the requirements given by the tasks length
A; and its deadline d;, the a; has no advantage holding F;. Thus, the value
denoted to the set of goods Fj is v;(F;) = 0. Otherwise, if the task’s execution
can be guaranteed by the set of goods Fj, then v;(F;) = v;(X(\;,d;). The
prices paid for the goods don’t enter in the global value as it is the allocation
of goods that has to be evaluated and not their prices.

Figure 3.1 visualizes the introduced expressions for a simple problem con-
taining three agents in charge of one task each.

3.4.2 Price Equilibrium

A definition for a price equilibrium as given in [45] is: A solution f is in
equilibrium at prices p iff

1. For all agents a;, v;(Fj) — ZieFj pi = H;(p).
2. For all 7, p; > g;.
3. Forall 7 € F(),pz' = ;-

Basically a price equilibrium describes a state, where each agent maximizes
its utility and surplus, given the current prices and allocation of goods. That
means, for the given prices no agent would want to change his set of goods
with any other set of goods as this would not improve the agent’s situations
with respect of the utility- and surplus-value



24 CHAPTER 3. MULTI AGENT SYSTEMS (MAS)

maximum surplus

timeslot 0 reserve price g = 1 $/timeslot agent 1 V&= 143%
. 35% A=3 Hy(p)=14$-105$=35
) 35% d=3
35%
3 agent2 v~=7$
35%
, 7 A=S Hy(p)=7$-5$=2%
. 158% d=2

agent3 vF=3$%

global value v(f) = y + v, = 18% A1 Hy(p)=0$

Figure 3.1: A simple problem with three agents and five time slots as goods.
The reserve price ¢; is the same for every time slot. A connection between
an agent and a time slot denotes that the time slot is allocated to the agent.
The solution f optimizes its global value v(f).

Equilibria do not necessarily exist. On the other side, an equilibrium is in
general not unique. As for instance in the example of Figure 3.1, more than
one equilibrium may exist for the same problem. The illustrated solution
would also be in equilibrium with all prices being 25 Cents lower or higher.
A solution in equilibrium is always optimal in terms of maximizing the so-
lution’s global value?. But obviously an optimal solution is not necessarily
in equilibrium. Figure 3.2 illustrates a problem with no equilibrium at any
price. If for this example the prices were in equilibrium, then p; > 3$,Vi
would be necessary. Otherwise, if prices are lower than 3, agent ay would
demand one of the time slots in order to maximize his utility. Agent a;’s
value is not high enough to buy all time slots for more than 3$. Thus, the
optimal solution which allocates all three time slots to a; is not in equilib-
rium. Here the nonexistence of equilibrium emerges from complementarities
in agent preferences. This means, agent a; considers the two time slots com-
plementary in the sense that it values one only if it has the other. A single
complementarity is sufficient to prevent a price equilibrium. Such comple-
mentarities cannot appear in single-unit scheduling problems. For single-unit
scheduling problems there always exists a price equilibrium that is unique?.
Thus, a single-unit scheduling problem that is optimal, is supported by a
price equilibrium.

2For a proof see [46].
3For a proof see [38]
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timeslot 0 reserve price q = 1 $/timeslot agentl y=7 $
2%
1 N=3
, 2% d=3
2%
3 agent2 v7=3%
global valuev(f) = v,;= 7$ L
d=3

Figure 3.2: A problem with two agents and three time slots as example for a
problem that cannot be in equilibrium at any prices. The illustrated solution
maximizes the global value but does not deliver an equilibrium as agent as
would maximize its surplus by buying one of the three time slots. The reserve
price g; is the same for every time slot.

3.4.3 The Ascending Auction Protocol

Auctions provide efficient and distributed ways of allocating goods and tasks
among agents. The term auction protocol refers to a mechanism containing
a set of rules in order to determine a solution to the given problem, along
with agent bidding strategies. In [30] the following definition for auctions is
provided:

”An auction is a market institution with an explicit set of rules deter-
mining resource allocation and prices on the basis of bids from the market
participants.”

A general auction protocol can be split into three steps. First, agents
send bids to the central instance of the mechanism to indicate their interest
in exchanging goods. Then, the auction posts price quotes to inform the
agent about the current state of the prices. These first two steps may be
iterated until an allocation is determined by the auction. If an allocation was
determined, the auction notifies the agents about which agents are allocated
goods and the prices that have to be paid by these agents. These three
steps may be performed once or repeated any number of times until a given
condition — like for example a minimum global value for the solution — is
satisfied.

Parameters to differ among auctions are for instance the price determi-
nation algorithm (prices may be fixed or variable with or without certain
restrictions), the event timing (one or more auctions could be open at the
same time), bid restrictions (agents may be restricted to make no more than
one or a certain number of bids) or whether one or more goods are allocated



26 CHAPTER 3. MULTI AGENT SYSTEMS (MAS)

through a single auction. In this section the ascending auction with a simple
bidding strategy for the agents is described in order to give a general idea of
how an allocation can be determined. The ascending auction is decentralized
in the sense that agents calculate their own bidding strategy strictly based
on local information only.

In the ascending auction, separate auctions determine prices for each
good. Agents submit successively higher bids to the auctions, and the auc-
tions report price quotes to all agents. When the bidding stops, the auctions
respective goods are allocated to the highest bidder at the price the respective
agent bid. If no bids were made the good is passed back to the seller.

The bidding rules determine the prices that are denoted to the goods
within each auction. The current bid price 5; in the auction ¢ is the highest
bid in the auction so far if any bids were made. Otherwise 3; is undefined.
An auctions ask price «; is the minimum price that the auction 7 is ready to
accept. If §; is not defined, «; is the reserve value g; of the good. Otherwise
the ask price is denoted o; = 8;+¢ with € being a fixed price increment. With
these rules, prices do not decrease and the bidding processes termination is
guaranteed.

Agents follow a simple bidding strategy. When an agent a; enters a
market, it bids the ask prices for the set of goods so as to maximize its surplus
H; based on current ask prices. If more than one set of tasks reaches the
same surplus, one of these sets is chosen arbitrarily. In the ongoing of the
auction, a; may lose some of its bids as other agents continue to bid. If this
happens, a; again bids the ask price on the set of goods that maximize its
surplus H;, assuming that it can obtain the goods it currently winning at
their bid prices. If no set of goods can provide a; with a nonnegative surplus,
it ”drops out” of the auction.

This bidding strategy is quite simple, involving no anticipation of other
agents strategies. For the single-unit problem this strategy is sufficient as
the agents would not want to change their bids even if they observed the
other agents actions. However, if a prediction of the other agents behavior
is possible, the performance of another strategy using this information will
in general be better.

The ascending auction performs well for single-unit problems. But, as
shown by the example of Figure 3.3, to reach an equilibrium cannot be guar-
anteed, though there always exists one for single-unit problems. In the ex-
ample, agent ay first choses to bid for good 2 as this maximizes his surplus
as well as bidding for good 3. Agent a; can bid either for good 2 or for good
1. In the example it bids for good 1 what terminates the auction. An equi-
librium is not reached as, p, = 3% < p1, agent 1 would maximize its surplus
by demanding good 2 at the final prices.
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timesot 0 agentl v,=6%
1 reserve priceq, =4 $ A=
2 reserve price d,= 3 $ d1: 2
Not alocated -
3 reserve price g= agent2  v,=7$
A=1
global valuev(f) =17 $ 2

Figure 3.3: A single-unit problem example with three time slots and two
agents, where the solution of the ascending auction does not reach an equi-
librium.

An upper bound for the distance from the equilibrium price vector can
be formulated by ke, where £ = min(n, m) is the minimum of the number of
goods and the number of agents bidding*. For the multiple-unit problem an
upper bound like that cannot be formulated and the ascending auction can
determine solutions which are arbitrarily far from optimal. Because of these
limitations, combinatorial auction mechanisms were proposed for multiple-
unit problems [35]. Combinatorial auctions accept bids of combination of
goods. One of the problems of combinatorial auctions is the computational
complexity as, given n goods there are 2" different sets of goods.

3.4.4 Market-Based Approach to the DTA

The market-based based approach by Morley [32] is a good example for a very
simple multi-agent system to outperform a centralized scheduling system in
terms of increased throughput and lower costs for a real world problem. We
refer to the problem that consists of paint booths painting trucks and that was
already described in Section 2.2. Morley uses a simple bidding mechanism,
where agents are in charge of the paint booths, and bid for trucks. They
bid according to the booths’ queue length and the required color of the last
truck in the booths queue. This simple algorithm resulted in a 10% higher
efficiency than the previously used centralized scheduler, when it was put
into practice in a General Motors facility. The paint booths required half as
many reconfigurations and a higher global throughput was reached.

4For a proof see [46].
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Morley’s algorithm is a manufacturing application and because of this,
many of its details are kept secret. The described market-based approach
is not the original version of the algorithm. Only the basic ideas are known
and so we use a probably simplified version of the Morley-bidding-system as
it is proposed by Cicirello et al. [12] and by Campos et al. [9]. Our version,
which we refer to as MORLEY1, follows three simple rules:

1. If such a paint booth exists, allocate the truck to the paint booth with
the smallest queue with space, that will not require a setup to paint
the truck, i.e., the last truck in the paint booth’s queue requires the
same color as this truck.

2. If such a paint booth does not exist, allocate the truck to the paint
booth with the smallest queue with space.

3. If no paint booth has any space in its queue, do not allocate the truck.

This simple algorithm makes only feasible allocation if a restriction about
the maximum queue length is made. Otherwise, if queues may have arbitrar-
ily long queues, a re-adaptation of the paint booth is impossible, as trucks
are strictly allocated to paint booths that do not require a reconfiguration.
Another problem arises, if all paint booths have a full queue. If this situation
emerges, the first paint booth who finishes painting a truck, will be allocated
the truck that is waiting for the longest time. This allocation does not take
into consideration whether a reconfiguration is required or not. Therefore, we
propose a slightly modified version of MORLEY1. MORLEY1 executes
the three rules whenever a truck is released. Our modified version, which
we call MORLEY?2, only allocates trucks to paint booths if at least one
paint booth in the system has at most one truck in its queue. This means,
trucks eventually have to wait for their allocation. Therefore we assume the
possibility to “park” trucks if this is necessary.

The described algorithms, MORLEY1 and MORLEY2, serve as a
comparison to our approach for the experimentation described in Chapter 8.



Chapter 4

Division of Labor in Social
Insects

In this chapter, we introduce the methodology of division of labor in social
insects. This methodology has inspired Bonabeau et al. [5] to develop a
threshold model, which lays the foundation for the agent based approach to
the dynamic task allocation problem treated in this thesis. After presenting
an overview over observations of division of labor in social insects, we give
a formal description of the threshold model. First, we present the threshold
model with fixed thresholds and afterwards we present the threshold model
with dynamic thresholds. At the end of the chapter a further analysis of the
model is presented, focusing on a discussion of the response function, which
is an important element of the threshold model.

4.1 Division of Labor in Social Insects

In the complex system of social insect colonies, an important and widespread
characteristic is division of labor, i.e., different activities are often performed
simultaneously by specialized individuals. A lot of different tasks, such as
foraging, care of the young or nest construction need to be distributed among
the colony’s workers. This methodology of division of labor is believed to be
more efficient than sequential task performance by unspecialized workers,
as it avoids unnecessary task switching, which costs time and energy. For
example, if an ant worker continuously switches between foraging and taking
care of the larvae, the worker will again and again have to relocate the food
source as well as the larvae. A higher grade of effectivity can be achieved if
the individuals avoid needless task switching.

29
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4.1.1 Forms of Division of Labor

Division of labor can be exhibited in several forms. The most obvious one is
the caste system which is applied by most social insects. In most ant species,
for instance, three basic female castes are found: the worker, the soldier, and
the queen. In general, division of labor is very often exhibited by the three
following basic forms:

o Temporal polyethism: Individuals of the same age form an age class
and tend to perform a same set of tasks. It is argued that age classes
are rather determined by relative age within the colony than absolute
age. This means, age classes performing same sets of tasks within
different colonies may have different absolute ages, depending on the
age distribution within the respective colony.

o Worker polymorphism: Workers can have different morphologies.
Workers with different morphology are said to belong to different mor-
phological or physical castes and tend to perform different tasks. An
example for this is the soldier or major caste which is observed in sev-
eral species of ants.

o Individual variability: Workers of the same age class or physical caste
may still differ in the frequency and sequence of task performance.
Individuals within age classes or physical castes performing same sets
of tasks within a given period, are described by behavioral castes.

4.1.2 Stigmergy

Social insects exploit a particular form of indirect communication called stig-
mergy, in order to coordinate their activities. Stigmergy is usually based
on modifications of the environment. These modifications lead to a positive
or negative attraction, or stimulus, to other individuals. For instance ants
lay a pheromone trail while foraging. The pheromone trail stimulates other
ants to follow it. Another typical example can be observed in several termite
species [47] initiating a large structure in an environment with some build-
ing material consisting of pellets of soil and excrements without any order.
Different phases of building up a structure can be distinguished. At the be-
ginning the workers pass through a state in which their work seems rather
uncoordinated. A pellet placed at one position by a worker is often quickly
picked up by another worker. After some time, seemingly by chance, some
pellets get stuck on top of each other and thereby the behavior of the workers
changes very fast. The little cluster of pellets is much more attractive to the
termites than single pellets, so that they quickly begin to add more pellets
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to that cluster. In this way the environment is “cleaned” from single pellets
and large structures are built up without any direct communication among
the individuals, but only by modifications of the environment.

The term stigmergy was introduced by Grassé [25] (from the Greek
stigma: sting, and ergon: work). Grassé describes the indirect communica-
tion that he observed in two species of termites: Bellicositermes Natalensis
and Cubitermes. His original definition of stigmergy was: “Stimulation of
workers by the performance they have achieved”.

4.1.3 Plasticity

One of the most important characteristics within the methodology of divi-
sion of labor in social insects is its plasticity in colony level, i.e. its ability to
quickly adapt on changing conditions. A rigid specialization of the individual
workers would lead to a stiff behavior at the colony level. Colonies with thou-
sands of individuals need to adapt to changing conditions very quickly. The
division of labor in social insects does not lead to rigidity in the colony with
respect to tasks performed by individuals. The individual’s specialization
is flexible to several internal and external factors such as food availability,
climatic conditions or phase of colony development. Individuals are able to
adapt very well to changing demands as shown by Wilson [48]. This plasticity
is exhibited for example, by ant species from the Pheidole genus.

In most species of this genus workers are physically divided into two frac-
tions: The small minors, who fulfill most of the quotidian tasks, and the
larger majors, who are responsible for seed milling, abdominal food storage,
defense or a combination of these. Wilson [48] experimentally changed the
proportion of majors to minors. By diminishing the fraction of minors, ma-
jors get engaged in the tasks usually performed by minors and replace them
efficiently. Wilson [48] observed, that within one hour of the ratio change,
majors adapt themselves to the new situation and take over the minors’ work.

4.2 The Response Threshold Model

Inspired by the division of labor in social insects and in order to explain
the behavior observed by Wilson [48], Bonabeau et al. [5] have developed a
model of response thresholds. In [6] these thresholds remain fixed over time
whereas in [40] the thresholds are dynamically updated with respect to the
task being currently performed. The idea behind the model is very simple:
if a stimulus, related to a task, exceeds the response threshold of a certain
worker for the task, that worker will get engaged in performing the task.
By new workers getting engaged in the task, the intensity of the stimulus is
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reduced and therefore the probability that other workers get engaged in the
same task decreases as well.

4.2.1 Model with Fixed Thresholds

As already mentioned, Bonabeau et al. describe in [6] a model of response
thresholds where the thresholds remain fixed over time. The model is mainly
described by three variables:

e Intensity of the stimulus s;: the stimulus s; is referred to a particular
task 7. It can for instance be associated to a chemical concentration
of pheromone, the density of pellets or anything else that can serve as
an attraction for an individual worker. The higher the intensity of the
stimulus s;, the higher is the attraction towards workers to get engaged
in performing the task .

e Response threshold O, ;: the response threshold ©,; is expressed in
units of stimulus. The index @ stands for the individual who is given
the threshold value and the index ¢ refers to the specific kind of task.
The response threshold ©,; is an internal value of the worker a that
indicates the stimulus intensity above which the individual gets engaged
in performing task ¢ with high probability. Each worker a is given a
set of response thresholds ©, = {©,,...0,,} for all possible tasks
{0,...,n}. One can also think of the response threshold to represent
the level of specialization of the worker in a certain task. The higher the
value of the response threshold, the lower is the level of specialization
in the associated task.

¢ Response function P, ,(s;): the response function Pe, ,(s) specifies
the probability for the individual a to respond positively to the stimulus
s; emitted by task 2. Two major conditions that need to be fulfilled
by the response function are that the associated probability has to be
close to 0 for s; < O, and close to 1 for s; > O,;.

The requirements on Pg, ;(s;) can be satisfied by many different response
functions. In [34] for instance, the threshold response function is given by:

Po,;(si) =1 — e7%/%ai, (4.1)

Figure 4.1(a) displays Pe,,(s;) given by Equation 4.1 for different re-
sponse thresholds ©,;. Figure 4.1(b) shows the same as a semi-logarithmic
plot.
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is plotted with a linear scale for (a) and a semi-logarithmic scale for (b).
The probability of a positive response is plotted for several values of ©,;.
This response function is valid as the conditions: s; < ©4; = Pe, ,(si) ~ 0
5; > O, = Po,,(si) = 1, are satisfied.

Another family of response functions, utilized by Bonabeau et al. in [6],

is:
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57
P@a,i (SZ) = Sn + @n .’ (42)
i a,i

where n > 1 determines how fast Pg,,(s;) converges towards the value 1.
This is shown in Figure 4.2 with several plots of Equation 4.2 with the same
threshold ©,; and different values for n.
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Figure 4.2: Another family of response functions:Pe, ,(s;) = ﬁgn', for sev-

eral values of n and ©,; = 10.

For all n > 1, the response function is close to 0 for s; < ©,, and close
to 1 for s; > ©,;. Bonabeau et al. mainly make use of Equation 4.2 with
n = 2. As the work in this master thesis is widely based on the work on
response thresholds by Bonabeau et al., for the rest of this chapter we will as
well make use of Equation 4.2 with n = 2 and analyze it. The figures 4.3(a)
and 4.3(b) plot Equation 4.2 with n = 2 for different values of the response
threshold ©,;. The latter one uses a logarithmic scale for stimulus s;.

This simple threshold model explains the different behavior of workers
within a colony quite accurately. Consider the previously mentioned example
from Section 4.1.3 about the ant species from the Pheidole genus. Workers
are divided into minors who fulfill quotidian tasks and majors fulfilling tasks
like seed milling or defense. If we assign threshold values for the various tasks
to the two castes of workers, the minor workers would have smaller threshold
values than the major workers for the quotidian tasks, as they are more likely
to perform these tasks. In case the fraction of minors is diminished, as done
by Wilson [48], the work usually performed by the minors will be left undone
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Figure 4.3: The response function Pe,,(s;) = for several values of

O, (a) shows a linear plot of this function and (b) shows a semi-logarithmic

plot for this function.

and therefore the amount of the minors’ work will grow. The growing of
the amount of undone work determines a growing of the intensity of the
corresponding stimulus. And after some time — in the experiment of Wilson
[48] within one hour of the ratio change — the stimulus of the quotidian
tasks will be high enough to overcome the comparably high thresholds of
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the major workers and they start performing the minors’ work as well. A
quantitative analysis using Monte Carlo simulations for the threshold model
achieves comparable results to those observed by Wilson.

4.2.2 Model with Dynamic Thresholds

Even though the previously described threshold model is able to explain some
phenomena in division of labor in social insects, there are still some limita-
tions, as the assumption is made that the workers’ thresholds remain fixed
over time. Experiments on honey bees [36] have shown that task allocation
also depends on aging, learning or both. And the temporal polyethism which
says that individuals of the same age form an age class tending to perform
identical sets of tasks, can also not be satisfied by the assumption that thresh-
olds remain fixed over time. In order to overcome these problems, Théraulaz
et al. [40] extended the fixed-threshold model by introducing additional rules
that update the threshold values so that they adapt in time.

Théraulaz et al. [40] introduce two update rules depending on the task
currently performed by the worker. The underlying idea is again very easy
to understand. A worker busy with a certain task should be encouraged to
continue performing that task rather than switching to another task, as this
is more effective. More precisely, this means that if a worker a is performing a
task 7, the corresponding threshold O, ; should be updated so as to encourage
worker a to continue performing the same task. Thus, the threshold needs to
be decreased over time. In parallel, worker a has to be discouraged to take
tasks different from ¢, i.e., its threshold values ©, ;, j # ¢, should be increased
over time. Additionally, a threshold value should not exceed an upper and a
lower bound. By defining ©,,;, and ©,,,, as the lower and the upper limit
for the threshold values and d; and d, as the coefficients to determine the
threshold values’ decrease and increase respectively, the threshold update
rules can be formulated as:

@a,i(t -+ At) = Ga,i(t) — 51At, ®a,i (t + At) € [@mma @maw]: (43)

if worker a is performing task i during the period [¢,t + At], and

@a,i (t + At) = @a,i (t) + 52At, @a,i (t + At) € [@mma G)maw]a (44)

if worker a is not performing task ¢ during the period [t,¢ + At] and more
generally:

ea,i(t + At) = ea,i(t) — (:v<51 — (1 — l‘)dg)At (45)
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where 0 < z <1 is the fraction of the period [¢,t + At] during which worker
a is performing task 1.

4.2.3 Discussion of the Response Function

In order to analyze the response function Pe, ,(s;, t) we distinguish four differ-
ent cases of dynamics of the threshold value ©,;(¢) and the stimulus intensity

si(t):
1. ©,; = const.,s; = const.
2. O, = const.,s; = s;(t) # const.
3. O, = 04,(t) # const.,s; = const.
4. O, = O4;(t) # const.,s; = s;(t) # const.

In the first case the threshold value, the stimulus intensity and the re-
sponse function remain constant over time. For this case a further analysis
is not required.

If the stimulus intensity changes over time as in the second case, the
response function P, ,(s;, ) changes over time as well. The response function
follows the behavior of the stimulus intensity, i.e., the response function grows
if the stimulus intensity grows and vice versa, as shown by Figure 4.3. This
correlation is not linear. The derivative of Pe, (s, ) has its global maximum
at s; = O4;. Thus, changes of the stimulus intensity s; around ©,, cause
higher changes of the threshold function.

For the two latter cases, we assume that the threshold values can change
over time. In the dynamic threshold model of Section 4.2.2 two threshold
update rules are described by Equation 4.3 and Equation 4.4. If a worker
a is currently performing task 4, the respective threshold value O, ;(t) is
diminished, whereas all other threshold values ©, ;,7 # j, are increased. The
rate of this adaptation process depends on two parameters, §; and J,, of the
update rules.

The parameter §; determines how fast threshold values are increased and
the parameter d, determines how fast they are decreased. The values for
these two parameters are crucial to the behavior of the response function as
well as to the behavior of the threshold model in general. Consider a worker a
who accepts a task 7; for which he has a high threshold value O, ;(t). A high
value for §; leads to a rapid decrease of the respective threshold. Assuming
that a threshold value ©,,(t) represents the specialization of worker a in
task 7T;, we can say that high values of §; result in a fast adaptation, and low
values of §; result in a slow adaptation. The parameter d, has no influence on
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the adaptation rate. d, determines the level of specialization, i.e., high values
of &5 result in a low level of specialization, as a threshold value increases fast
if the worker does not perform the respective task. Low values of dy result
in a high level of specialization, as a threshold value increases slowly if the
worker does not perform the task.

Figure 4.4(a) shows the dynamics of the threshold value O, ;(t) for three
different sets of d1,02: 0 < 09,01 = 09 and &; > 6. The worker is ini-
tially specialized for tasks of type i. But in the period [1,500] he performs
a different type of task, so that the threshold value increases. Then, in the
period [501,1000] the worker again performs tasks of type i and the threshold
value decreases. Figure 4.4(b) shows the response function P, ,(s;,) for the
given progression of O, ;(¢) assuming that the stimulus intensity s; remains
constant.
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Figure 4.4: (a): The dynamics of the threshold value O, ;(t) for three different
sets of update parameters d;,d,. (b): The corresponding response function

P@a,i (SZ', t)

Two other parameters that have an influence on the response function
are the lower and the upper limit for the threshold values, ©,,;, and ©,,,,
as:

Po,p0x (8i:1) < Po,;(5i, 1) < Po,,, (si: 1),
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these two values also determine the lower and the upper limit for the response
function itself. Low values of ©,,;, permit a high grade of specialization. On
the other side, low values of ©,,,; lead to a high minimum-probability of
responding positively to a task.

In the last case of our differentiation of the response function dynamics we
assume both, the threshold value and the stimulus intensity, to change over
time. This case is a combination of the cases 2 and 3, which were examined
in detail. Therefore, we don’t make a further analysis for this case,






Chapter 5

The Insect-Based Approach to
the DTA

In this section the insect-inspired approach to the DTA is explained. This
approach is based on the dynamic threshold model and was previously intro-
duced by Campos et al. [9] and by Cicirello et al.[12]. Campos et al. refer to
the behavior of ants whereas Cicirello et al. speak of wasp-like agents.

One of the main objectives for an approach to the DTA is to minimize
the amount of reconfigurations, or setups, as it is related to a high cost.
The threshold model describes the specialization observed in social insects.
In the approach, insect-like agents are in charge of machines. Applying the
rules of the threshold model results in an adaptive system, where the agents
specialize in types of tasks and hence prevent unnecessary reconfigurations.

Before we start describing the approach in detail, we want to clarify one
attribute of the DTA. The DTA is a discrete problem in the sense that tasks
are released to the environment in discrete times only. We refer to time steps
and don’t specify what exactly they represent in particular. So they may be
considered as minutes, hours or just as time steps.

5.1 Agents, Thresholds and Stimuli

The approach to the DTA is an insect-based multi agent system. We define
the set of agents:

A:{Al,...,Am},

who are in charge of the set of machines M, |M| = m. Each agent is respon-
sible for one machine and autonomously determines its tendency to bid for
a certain type of task. To do so, an agent A; is provided a set of threshold

41
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values ©; for the set of tasks T, |T| = n:

0= {Os0,...0:n} (5.1)
Gmin < ®i,j < @mam Vk € {0, .. .n}, (52)

as described in Section 4.2. ©; ; is the response threshold of agent A; for tasks
of type j. Oin and O,,,, are the values for the lower and the upper limit of
the threshold. The threshold value ©; ; represents the level of specialization
of agent A;’s machine in task 7T;. Without loss of generality, we assume that
each machine is able to process any kind of task. Of course, the model also
works without this restriction but this was applied for all experiments and
hence we apply it for the description of our model as well.

When a task Tj is created, it is assigned a stimulus Sy. The intensity of
this stimulus grows until the task is allocated to a machine. Thereby, the
longer a task stays unallocated, the higher is the respective stimulus intensity.
The increase of the stimulus intensity is linear with respect to time and is
calculated each time step by:

Sj = S() + O'At, (53)

where S; is the current intensity of the stimulus related to task T}, Sy is the
initial intensity, o is the rate of increase of the intensity, and At is the time
the task stayed unallocated.

Given a task’s stimulus intensity S; and agent A;’s corresponding thresh-
old value ©; ;, agent A; will bid for task 7} with probability:

92
J %]

From this equation, we gather that in case the stimulus S; and the thresh-
old ©;; are equal, the probability for agent A’s machine to bid for a task is
50%. Squaring of the stimulus S; and the threshold ©; ; lead to a nonlinear
behavior of P(©;;,S;) so that small changes of S; around ©;; cause high
changes in P(©, ;, S;).

5.2 Threshold Update Rules

In the approach, an agent A;’s set of threshold values ©; is updated in a way
comparable to the one in the dynamic threshold model of Section 4.2.2. We
apply both update rules given by equations 4.3 and 4.4, and add a third up-
date rule for the case that a machine is currently idle, i.e., it is not performing
any task. The update rules are employed each time step.



5.3. DOMINANCE CONTEST 43

The threshold value ©; ; is updated by:
Oij = Oij — o1, (5.5)

if agent A;’s machine is currently processing or setting up for a task of type
j. This update rule results in the tendency to accept a task of type j again.
All the other threshold values ©; 4, k # j, are updated by:

Oir = Ojk + 09, (5.6)

in order to diminish the probability to bid for tasks of a type different from
the one currently processed or set up. The combination of these two update
rules leads to a specialization into the type of task that is currently being
processed.

The third update rule is applied for the case that agent A;’s machine is
currently not processing or setting up any task:

where t refers to the amount of time, measured in time steps, agent A;’s
machine is already idle. This update rule encourages the machine to take
tasks of any kind with a probability increasing in time. By exponentiating the
constant parameter d3 with ¢, the threshold value is decreased by higher steps
the longer the machine stays idle. The thresholds should not immediately
be set to a low value or be decreased too fast, as this would cause additional
setups by pushing the machine to take a task of any type. It is advantageous
that a machine stays idle for a short amount of time instead of taking any
task, as a setup is related to a very high cost.

This last update rule for idle machines does not appear within the descrip-
tion of the dynamic threshold model of Théraulaz et al. [41] or in Campos
et al. [9]. Cicirello et al. first proposed it in [13] without exponentiating d3
with ¢. The exponentiation appeared the first time in [11].

5.3 Dominance Contest

A task may only be processed by one machine at once. So far it is not stated
yet what happens if two or more agents bid for the same task. A bid itself
does not give the possibility to differ in such a situation, as a machine can
only decide between either bidding or not. A value is not related to the
bid. A simple possibility would be to decide arbitrarily between the bidding
parties and allocate the task to one of them. This strategy does not take
any information about the bidding machines into consideration and thus is
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not optimal. Consider the situation of two machines, one being idle and the
other one having a long queue of tasks still to be executed. The situation
could emerge that both bid for the same task and they both require a setup
for it. It would be common sense to allocate the task to the idle machine,
but the random strategy gives both the same probability to get the task.
To overcome this problem Cicirello et al. proposed in [10] a method that
they refer to as the dominance contest. The dominance contest compares
the competing agents by a value that depends on their queues. This value is
called the force value F. And for agent A; we can calculate F; as follows:

E =1 + Tp,i + Ts,i; (58)

where T, ; and T , are the sum of the processing times and the setup times
respectively of the tasks in agent A;’s queue. A lower force value F' cor-
responds to a shorter queue and leads to a higher probability to win in a
dominance contest and vice versa'.

If two agents A; and A, bid for a same task, the mechanism of the domi-
nance contest announces probabilities to the competing agents, which express
the chance of being allocated the task. Given their force values F; and Fj,
the probability that A; is allocated the desired task can be calculated by:

F2
Pi(F, Fy) = FIQTZF.;; (5.9)
The probability for agent A, to be given the task is Py(Fy, Fy) = 1 —
P (Fy, F).

In general, if the dominance contest consists of a set of competing agents

C={A,...,A4}L2<|C| <nC C A, agent A; will receive the task with

probability:
>_F

C\A;
(n-1)> F
C

This equation was not given in [10], but we deduced it from Equation 5.9.
The presented mechanism is not deterministic. This means, machines are
assigned probabilities for receiving the desired task. The dominance contest
recommends agents with short queues by assigning them a high probability.
We can briefly summarize the insect-based approach to the DTA as fol-
lows. Each time step tasks that have not been allocated yet, are offered to

P(F,...,F); = (5.10)

'For this reason the term “force” might not be ideal as denotation for F. Commonly,
force is a strength. But in this case a high force value is related to a high probability in
losing the dominance contest.
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the machines. Each agent, who is in charge of one machine, decides for every
offered task whether he bids for the task or not. This decision is probabilistic
and based on the stimulus intensity of the task and the respective thresh-
old value of the worker. If more than one agent bids for the same task, a
dominance contest is held to assign probabilities to the competing agents.
These probabilities express the respective agent’s chance of being allocated
the task. If no agent bids for a certain task, it is offered again the next time
step. Otherwise, if one or more agents bid for a certain task, this task is
allocated to one of the agents and added to the respective machine’s queue.
At the end of each time step, the threshold values of the agents are updated
and the stimulus of the tasks that remain unallocated are increased.






Chapter 6

Improvement Proposals

The insect-based model of Chapter 5 was analyzed in detail for a wide set
of DTA instances. In general, it is able to adapt well and reaches satisfying
performance. Still, for certain situations we observed problems, where the
original system adapted very slow, or it even did not succeed to adapt at all.
Therefore, we propose two new rules (Section 6.2) in order to speed up the
adaptation of the threshold values. Additionally, we propose three modifi-
cations of existing rules (Section 6.1). All these proposals were previously
introduced in [33].

6.1 Modifications of Existing Rules

The proposed modifications concern the update rules, the calculation of the
force value, and the dominance contest. These three methods in general have
a positive effect on the overall performance. We do not intend to change the
general idea of their application. We rather want to modify them in order to
overcome specific problems that were observed in the analysis of the system.

6.1.1 Update Rules (UR)

The update rules adapt the threshold values according to the task being
currently processed. We recognized one problem about this. Machines may
in general have a queue of tasks to be processed in the future. If an agent
is allocated a task, a setup is required with respect to the last task in the
respective machine’s queue. Whether a setup is required or not does not de-
pend on the task currently processed. It is the last task in a machine’s queue
only that determines whether a setup will be required or not. Figure 6.1
shows a machine with a queue of five tasks. The first four tasks among those
five are tasks of type 1 and the last task in the queue is of a different type

47
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2. Applying the update rules encourages the agent in charge of the machine
to bid for tasks of type 1 and discourage it to bid for tasks of type 2. This
behavior is not desirable. Adding any task from a different type than 2 to
the queue would cause an additional setup. It would be advantageous in our
eyes, to encourage the agent to bid for tasks of type 2 and discourage it to bid
for tasks of a different type. We have chosen to modify the update rules, so
that the last task in the machine’s queue determines which threshold values
are updated in order to reduce the number of necessary setups.

Machine Machine’s Queue
typel typel || typel| | typel| | typel| | type2
LA
Update Rules depend on Proposal: update rules
currently performed task depend on last task

Figure 6.1: An example for a situation, where the original update might lead
to additional setups. Our proposal UR modifies the update rule, so that
they depend on the last task in a machine’s queue, and not on the one that
is currently processed.

6.1.2 Calculation of the Force Value (CFV)

We can construct a simple example to illustrate a shortcoming in the calcu-
lation of the force value. Figure 6.2 shows two agents A; and As, both with
empty queues. Agent A;’s machine is set up for tasks of type 1 and agent
Aj’s machine is set up for tasks of type 2. Both bid for the same task, which
is of type 2. Therefore they enter the dominance contest. As both queues are
empty, the force values are equal as well. So, they are announced the same
probability to receive the task. But, There is no reason to assign the task to
agent A, as its machine would require a setup, what is not the case for A;’s
machine. A distinction whether a setup would be required or not, does not
enter in the calculation of the force value.

We try to solve the described problem by adding to the force value F;
of agent A; the value w;;s, if A; is bidding for a task of type j. wjs is
described in Section 2.2.1 and takes into consideration whether a setup will
be required or not, by taking the machines queue state s into account. w;;s
is the setup time for the corresponding task, in case a setup will be required,
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and 0 otherwise:

Fy = 14T+ T + wijs (6.1)
e — Tsetup if task requires a setup (6.2)
R 0 if task does not require a setup, ‘

where T),; + Ty ;, like in Equation 5.8, is the sum of the process times and
the setup times within agent A;’s queue.

Machinel Machine2
F, =10 F,=10
typel type2
Machin$ type2 //l\/m:hineZWOWd not
require a setup

require a setup

Figure 6.2: Two machines with empty queues bid for the same task. Whether
a setup is required or not, is not considered in the original calculation of the
force value. Therefore, we propose the modification CFV, which increases
the force value in case a setup is required.

6.1.3 Dominance Contest (DC)

Another problem of the dominance contest is, that the more machines com-
pete with each other in a dominance contest, the smaller are the differences
between the probabilities to win. For example, if two machines compete and
one has a force value of Fy = 1 — what refers to an empty queue — and the
other has a force value of F, = 10 the corresponding probabilities to win
following Equation 5.9 are P; = 0.99 for the one machine and P, = 0.01 for
the other. This big difference of the probabilities achieves the desired effect.
For larger numbers of competing machines, the probabilities do not differ
so much any more. Figure 6.3 shows a situation, where ten machines are
competing for the same task. The first machine has a force values of F; = 1.
All machines have a force value of F; = 10. According to Equation 5.10, this
results in the probabilities P, = 0.111, for the first machine, and P; = 0.099
for all others. In general the probability for one competitor to win in a dom-
inance contest of n competitors is never higher than ﬁ To overcome this
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problem we use the following rule instead of Equation 5.10:

1

F2

il’
27

l

P(Fl,Fn)z ==

(6.3)

where P(Fi,...F,); is the probability for agent i to be allocated the
task, if the dominance contest consists of a set of competing agents C =
{A1,.. ., Ax},2 < |C| < n,C C A, In the example with ten machines and
the forces Fi = 1 and F; = 10,2 < ¢ < 10, the respective probabilities
become P, = 0.917 and P; = 0.0083.

Additionally, as notational refinement, we define the dominance value D;
for an agent A; being the inverse of the according force value F;:

(6.4)

as the use of the term force seems rather contradictory. A higher force leads
to a lower probability to win a dominance contest. With this refinement we
can replace Equation 6.3 with:

D?
7
D2
!
C
Machinel Machine2 MachinelO
F =1 F, =10 F,= 10
P,=0.111 P,=0.099 Cassnsnn P,o= 0.099

/

Figure 6.3: Ten machines enter the dominance contest. For such a high
number of competing machines, the probabilities they are announced by the
dominance contest do not differ very much. Our proposal DC modifies the
calculation of the probabilities, so that even for a large number of competing
machines, announced probabilities differ according to the difference of the
force values.

MachiN

an empty queue type2
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6.2 Additional Rules to Optimize Threshold
Values

The modifications on the existing rules can improve the performance for
specific cases. But they don’t have a direct effect on the adaptation speed.
We observed difficulties of the system to adapt to dynamically changing
situations. For instance, this occurs if probabilities for the creation of the
tasks change during a simulation. The machines require a long time to adapt
to the new situation or often do not adapt at all. Two additional rules
have been defined in order to overcome this problem. The first one, BCT,
concerns tasks that remain unallocated. And the second additional rule,
IMB, concerns idle machines that refuse to bid.

6.2.1 No Bid for a Created Task (BCT)

Tasks are allocated to machines through a bidding mechanism. An agent,
representing a machine, probabilistically decides whether it bids for a task or
not. The situation may occur, where a task remains unallocated, as no agent
bids for it. The stimulus, related to a task, increases over time. This process
is very slow. This can cause tasks to have a very long waiting time and mainly
affects tasks that are released rather seldom, so that no machine specializes
for the respective type. This is especially a problem, in case probabilities of
task appearances dynamically change during the simulation. Types of tasks,
that previously appeared seldom may appear more frequently and vice versa.
This is not immediately recognized by the machines, so that they probably
remain idle, as they wait for the tasks that used to appear more frequently.
The current threshold update rules provide the ability to adapt. But this
adaptation is rather slowly. Therefore, we introduce an additional method
in order to reduce the time that tasks stay unallocated:

0,; =0, —mn V agents a. (6.6)

For each agent A;, the threshold value ©; ;, referring to the task of type j, is
decreased by the constant value 7y, if the respective task was not assigned.

6.2.2 Idle Machine Does Not Bid (IMB)

Equation 5.7 offers an update rule for idle machines in order to encourage
them to bid for tasks of any type. This update rule decreases all threshold
values by a value that exponentially increases in time. The idea is, that a
machine may stay idle for some time rather than being forced to take any task
immediately. We observed, that this can cause machines to stay idle for very
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long and therefore has a negative effect on several performance measures. We
propose an additional update rule, which is employed in case an idle machine
does refuses to bid for a task it is offered:

0;; =06;; — 7. (6.7)

In that case, the corresponding threshold value ©;; of the refused task of
type j is decreased by the fixed value y,. This rule is not a simple extension
of the original update rule for idle machines, as it is only executed when an
idle machine is offered a task and refuses to bid for it.



Chapter 7

Experimental Setup

The improvement proposals of the preceding chapter were compared to the
original approach on a wide set of DTA instances. In this chapter, we describe
these instances. Additionally, we explain how the various parameters of the
approach were determined and optimized by a genetic algorithm.

7.1 Problem Instances

Mainly four parameters determine the problem instances: the number of
machines, the number of different types of tasks, the task creation process
and the maximum number of tasks a machine may store in its queue.

The experimental analysis is split up into the analysis of small problems,
with either 2 or 4 machines, and large problems, with either 10 or 25 ma-
chines. For the small problems, we examined the behavior for either 2 or 4
different types of tasks. Otherwise, for large problem instances 10 different
types of tasks are given. The small problems allow a clearer analysis, giving
the possibility to analyze the behavior of individual machines towards cer-
tain types of tasks. This is rather complex for the large problems, which are
meant to be closer to real-world problems and where we focus on the analysis
of the whole system.

All problem instances have in common, that task arrival times are expo-
nentially distributed. The distance between two task arrivals, ¢, — t,, is
calculated by:

logr
tn-l—l —tp = _%a

where 7,11 is a random value in (0, 1], and A is the expected number of tasks
to arrive each time step. As indicated by Figure 7.1, the values of the times
{...,tn,...} are rounded up in order to discretize them.
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T

n+l

logr,

arrives at time step 2

T

nig arives at time step 4

T,arivesattimestep 1

time

T, oarivesat time step 4

Figure 7.1: Graphical representation of the exponential distribution of task
arrival times. A task that arrives between the time steps 7 and 7 + 1 is
released to the environment at time step 7 + 1.

Whenever a task is released, a roulette wheel selection determines the
type of the respective task. For each task, the roulette wheel selection takes
into account a given probability to be selected. We analyze four different

probability mixes:

1. Equal distribution (equ): When a task is released, the probability that
the task is of type j is the same for all types of tasks.

. Different distribution (dif): One half of the n types of tasks is released
with a three times higher probability than the other half.

p(j) =3pk),1<j<-<k<n

NS

. Abruptly changing distribution (chg): For the first half of the simu-
lation, the probability mix is the same as in the different distribution.
Then the probability mix changes abruptly, so that the previously less
frequently appearing tasks are released more often, and the previously
more frequently appearing tasks are released less often.

p(j) = 3p(k), 0< <t
( ) = 3p(])a TLQOt S t < Ttota
1< 7 < 5 < k<n.
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Figure 7.2: The four probability mixes over simulated time. Whenever a
task is released, these probabilities are used for a roulette wheel selection to
determine the type of the task. For the equal distribution all types appear
with same probability. In the other cases, p(j) and p(k) each represent the
probabilities of one half of the types of tasks. The value p equals ﬁ, where
n is the number of tasks.

4. Slowly changing distribution (sin): The initial probability mix is the
same as in the different distribution. During the ongoing of the simu-
lation the probabilities are continuously changing as follows:

p(j.t) = p(k,t = 0) + p—f’iﬁi’)g”‘(’;’i‘;(l +cos(77)
p(k,t) = p(k,t = 0) + PE=RPEERN (1 — cos ()

1<j<t<k<n,

Figure 7.2 visualizes the four probability mixes. The changing probabil-
ity mixes were chosen in order to investigate the ability of an approach to
adapt on a changing environment. In real factory environments, the arrival
rates of different types of tasks might not change abruptly. Thus, the slowly
changing distribution is probably more realistic than the abruptly changing
distribution. Nevertheless, an abrupt change of task arrival rates represents
the most difficult case, and therefore, it worths analyzing it.

The maximum number of tasks a machine may store in its queue is the
last parameter to determine a problem instance. We consider the case, where
a machine’s queue may store at most 10 tasks. Additionally, we examine the
case, in which there is no restriction related to the maximum queue length,
i.e., a machine’s queue may store arbitrarily many tasks.

Table 7.1 summarizes all problem instances that will be analyzed in the
next chapter.
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IM|T| MODES |Max. Queue |

2 2 | equ,dif,chg,sin 0
4 | equ,dif,chg,sin 0
4 2 | equ,dif,chg,sin 0
10 | 10 | equ,dif,chg,sin 0,10
25 | 10 | equ,dif,chg,sin 0,10

Table 7.1: A summary of all examined DTA instances. In the headline, M
and T indicate the number of machines and types of tasks. MODES signifies
the different probability mixes, where equ, dif, sin and chg represent the
equal, the different, the slowly and the abruptly changing distribution, in
this order. Max. Queue signifies the maximum number of tasks that
may be held in a machine’s queue. The value 0 indicates, that there is no
restriction related to the queue. For instance, problems with two machines
and two different types of tasks are analyzed for all modes except the abruptly
changing distribution and only without restrictions of the queue length.

Machines may cause failures. For instance, in the real-world example of a
painting facility, this can occur if during a reconfiguration, colors get mixed.
In order to simulate this, we implemented a 0.1% probability of each machine
to cause a failure at each time step. This probability is increased to 1%, if the
machine is currently performing a setup. If a failure is caused, the machine
is inoperable for an amount of time, uniformly distributed between 0 and 50
time steps.

7.2 Parameters

In order to determine a good combination of values for various parameters,
a genetic algorithm (GA) was used. The GA procedure we apply is very
simple and probably far away from being optimal. GAs are inspired by na-
ture’s capability to evolve life well adapted to their environment. In GAs,
a population of individuals form a generation. Each individual, also called
genotype, represents a solution. A so called fitness function is used to com-
pute the quality for each individual’s solution. Additionally, mainly three
operators, tournament, crossover and mutation, are used. The tournament
operator selects the individuals with the highest fitness value as parents for
the crossover. The crossover operator creates one or more children out of
two or more parents, by combining their genotypes. The sum of all children
forms the new generation. The mutation operator is used in order to enable
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| Parameter | Range |
Update Rule Decrease Rate (Equation 5.5) 0<6, <255
Update Rule Increase Rate (Equation 5.6) 0<dy <255
Update Rule Idle Machines (Equation 5.7) 1 <65 <13.75
Maximum Threshold 0 < O,10z < 4080

Table 7.2: The limiting ranges of the four parameters that were determined
by the GA.

the population to improve. Therefore, each individual’s genotype is changed
in a random way. There are many different methods, how exactly the tour-
nament, crossover and the mutation operators are executed. For a detailed
description of various methods, we refer to Goldberg [24], Holland [26] and
Mitchell [31].

Our GA determines four parameters of the original insect-based approach
(01, 02,03, Omaz). Ranges for each parameter were initially defined, in order
to limit the space in which the GA searches. These ranges are given in
Table 7.2.

Each parameter is represented as a binary string of eight bits. A geno-
type is a 32-bit string, describing the values of the four parameters. Fitness
is defined as the reciprocal value of the makespan achieved by the respective
individual. Our GA starts by creating a random population of 50 individ-
uals. This population represents the first generation. The parameters, that
are represented by the genotypes, are random values in the respectively given
range. For each individual of this first generation, we run 30 simulation of a
certain problem instance with the individual’s parameter set and afterwards
assign the resulting fitness as an average of the 30 runs to the individual.
After all of the individuals are assigned their fitnesses, a tournament is exe-
cuted to decide which individuals are copied into the next generation. Two
individuals are chosen from the population randomly and their fitnesses are
compared. The individual with the higher fitness value is copied with a 75%
chance, otherwise the individual with the lower fitness value is copied. There
are 50 tournaments, so that the population size remains constant. After the
tournaments are finished, two individuals are picked up at random. There is a
75% probability that crossover occurs between them. If there is a crossover, a
uniformly distributed random number in the range [0;32] is taken as the point
of crossover. This means, the individuals’ genotypes are exchanged from the
beginning of their genotypes to that point. Individuals of a generation are
given the possibility of crossover 50 times. Afterwards, the mutation opera-
tor is executed for every bit of every genotype. With a probability of 0.3%
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| Parameter | Result |

Update Rule Decrease Rate (Equation 5.5) 0, = 14.8
Update Rule Increase Rate (Equation 5.6) 0y = 12.7
Update Rule Idle Machines (Equation 5.7) 03 = 1.01
Maximum Threshold Omaz = 2016

Table 7.3: The results of the four parameters after the GA was run.

a bit is changed from 1 to 0 and vice versa. This procedure of tournament,
crossover and mutation is repeated for every generation.

We have chosen the problem with four machines and two types of tasks
as the problem to be run by the GA. Altogether, there are 100 generations.
For the first 25 generations, we run the GA for the mentioned problem with
equal distribution of task arrival rates. Then, for the for 25 generations each
one, the GA is run with the different, the abruptly changing and for the last
25 generations with the slowly changing distribution. In the last generation,
the individual with the highest fitness value is selected and its genotype
determines the values of the parameters. The results are summarized in
Table 7.3.

The other parameters of the system were not determined by the GA and
are as follows:

e Oy =500 Initial threshold value for all machines and all tasks

e 5o=1 Initial stimulus intensity when a task is created
eo=1 Rate of stimulus intensity increase
e 71 =50.0 Additional rule BCT: No Bid for a Created Job

Additional rule IMB: Idle Machine Does Not Bid

°
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Chapter 8

Experimental Results

This chapter describes the experiments on which the proposed improvements
for the DTA problem were tested. The results obtained with the experiments
are analyzed. First, we analyze small problem instances, that is, problems
including two or four machines, giving a description of the temporal behavior
of single machines. A comparison is made between the original system and
the application of single applied improvements. Afterwards, problems with
10, 25 and 50 machines are examined.

The mainly applied performance measures are the makespan and the
number of required setups per machine. Additionally, we use measures like
the average queue size per machine, the idle time per machine, the time spent
in the system by the tasks (cycle time), the time until tasks are allocated and
other measures that will be described in detail during the analysis. The more
general results on the makespan and the number of setups are provided for
every problem instance and each task generation process. One task genera-
tion process per problem instance will be highlighted, giving a more detailed
analysis with specific measures.

For an easier readability of the results, Table 8.1 gives a summary of most
abbreviations used in this chapter. Nevertheless, abbreviations are generally
explained in captions as well.

8.1 Small Problem Instances
In general, we can differ three cases of the problem’s difficulty:
1. [M| > |T|: The number of machines is higher than the number of dif-
ferent types of tasks. An analysis was made for systems with four

machines and two different types of tasks (4M2T). We consider this

29
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Abbreviation

Explanation

4M2T

Describes the size of a problem instance.
The first digit signifies the number of
machines and the second digit signifies
the number of different types of tasks.

equ

Equal distribution of task arrival times.
Section 7.1 gives a detailed description
of the four different distributions.

dif

Different distribution of
task arrival times.

Abruptly changing distribution of
task arrival times.

sin

Slowly changing distribution of
task arrival times.

4M2Tequ

Problem with four machines and two
different types of tasks, applying the
equal distribution of task arrival times.

ORIG

The original system, described in Chapter 5,
is applied.

UR

The improvement proposal concerning the
update rules is applied on its own.
Explanations of the other improvement
proposals can be found in Chapter 6.

UR+4CFV+DC

The combination of the three improvement
proposals UR, CFV and DC is applied.

ALL

The combination of all improvement
proposals is applied.

MORLEY1, MORLEY2

The respective version of the market-based

algorithms (Section 3.4.4) is applied.

Table 8.1: Explanation of the abbreviations used in this chapter.
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case to be the easiest to reach a stable behavior. The expected number
of tasks per time step is A = 0.16.

2. |[M| = |T|: The number of machines equals the number of tasks. In
our experiments, the number of machines and types of tasks is two
(2M2T). For the equal distribution, where all types of tasks appear
with same probability, each machine should specialize on one type of
task. Otherwise, if the different types of tasks appear with different
probability, re-adaptation of the machines is required throughout the
simulation. The expected number of tasks per time step is A = 0.12.

3. IM| < |T|: The number of machines is smaller than the number of dif-
ferent types of tasks. In the studied cases, two machines are available
to process four types of tasks (2M4T). This is the most difficult sit-
uation for the system. With respect to specialization, we expect that
machines will generally not be able to reach a stable behavior, as re-
configurations will be required frequently in order to process all tasks.
The expected number of tasks per time step is A = 0.08.

In the following sections, these three cases will be analyzed in combination
with the four task generation processes, equ, dif, chg and sin (Section 7.1).

8.1.1 Four Machines — Two Types of Tasks (4M2T)

Table 8.2(a) shows the experimental results of the makespan. The com-
bination of all improvements (ALL) generally either requires the shortest
makespan, or is very close to do so. This is mainly due to the proposed ad-
ditional rules BCT and IMB. ALL, BCT and IMB always reach a better
performance than the original system with respect to the makespan. The
improvement proposals on existing rules, UR, CFV and DC, do not lead
to a significant change in performance. DC is a modification on the domi-
nance contest and can only have an effect, if many machines compete for the
same task. For this problem instance, a dominance contest can never be held
among more than four machines, DC does not lead to a real modification of
the results. We expect to observe a stronger influence of DC in the larger
problem instances in Section 8.2.

When considering the task generation processes where task appearance
probabilities are not static over time, and in particular the abruptly changing
distribution chg, we can observe a bigger difference in performance between
ALL, IMB and BCT on one side, and the other approaches on the other
side. IMB and BCT were proposed in order to speed up the adaptation
process. This is especially helpful for the changing distributions. In the
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abruptly changing distribution, task appearance probabilities change at time
step 1500 and machines need to adapt their thresholds to this new situation.

|MS | 4M2Tequ | 4M2Tdif | 4M2Tchg | 4M2Tsin |

ORIG || 3382.8 £ 487.4 | 3245.7 £ 420.9 | 3698.7 £ 641.8 | 3479.6 £+ 483.5
UR 3512.8 £ 496.8 | 3352.7 £ 773.5 | 3653.7 £ 629.3 | 3411.5 £ 457.6
CFV 3373.9 £ 480.2 | 3177.9 £ 208.3 | 3690.6 £ 641.7 | 3402.5 £ 441.8
DC 3400.1 £ 458.0 | 3380.0 & 668.9 | 3732.9 £+ 621.4 | 3445.6 £ 467.5
BCT 3171.2 £ 302.4 | 3114.0 &+ 143.6 | 3096.8 £ 111.5 | 3200.9 + 332.7
IMB 3084.9 £ 186.7 | 3034.4 £ 21.6 | 3030.9 £ 32.7 | 3064.1 + 121.2
ALL 3027.3 £ 16.3 | 3037.6 = 25.0 | 3027.9 + 19.1 | 3028.7 + 18.3

(a)

IE | 4M2Tequ | 4M2Tdif | 4M2Tchg | 4M2Tsin |
ORIG 1.37 + 0.48 1.37 £+ 0.59 1.35 + 0.42 1.34 + 0.53
UR 1.24 + 0.31 1.17 + 0.24 1.24 + 0.28 1.18 + 0.28
CFV 1.31 + 0.45 1.27 + 0.42 1.28 + 0.33 1.27 + 0.35
DC 1.28 + 0.49 1.39 £+ 0.55 1.32 + 0.35 1.35 + 0.62
BCT 1.41 + 0.76 1.46 + 0.62 1.78 £ 0.77 1.54 + 0.78
IMB 1.28 + 0.38 1.37 £+ 0.56 2.06 + 0.77 1.37 + 0.34
ALL 1.36 + 0.43 1.45 + 0.46 2.06 + 0.50 1.44 + 0.36

(b)

Table 8.2: (a): The table shows the average makespan (MS) and its standard
deviation for the 4M2T problems. Smaller values are better. A comparison
is made between the original system (ORIG), single applied modifications
with the improvement proposals (UR, CFV, DC, BCT, IMB, for detailed
description see Section 6), and the combination of all improvement proposals
(ALL). The abbreviations equ, dif, chg and sin represent in this order the
equal, the different, the abruptly changing, and the slowly changing distribu-
tion. In each column the approach with the best performance, i.e., shortest
makespan, is highlighted. The values are averaged over 100 simulations.
Tasks are generated during a window of time of 3000 time steps. Thus, the
minimum reachable makespan is 3000.

The average number of setups per machine is shown in Table 8.2(b). As
there are twice as many machines as types of tasks, very few setups are re-
quired in general. Thus, there is not a big difference between the approaches.
The modification proposal concerning the update rules, UR, requires the
fewest setups. But this may not only be considered as an advantage. On one
side, unnecessary setups should be avoided, but on the other side, a system
should not avoid a setup at any cost. In certain cases, especially for the



8.1. SMALL PROBLEM INSTANCES 63
| 4M2Tchg || Idle Time | Queue | Cycle Time | Alloc Time |
ORIG 1604.09 £ 593.26 | 6.94 £ 3.80 | 187.15 &+ 126.60 | 1.40 £+ 0.39
UR 1567.84 £ 577.11 | 6.05 £ 2.38 | 184.87 + 124.33 | 1.36 + 0.37
CFV 1606.06 + 599.63 | 5.49 + 3.94 | 185.07 + 114.50 | 1.39 £ 0.33
DC 1649.23 £+ 581.23 | 4.41 £ 3.17 | 196.49 + 119.05 | 1.41 + 0.42
BCT 1028.62 + 122.76 | 3.05 £ 0.89 70.37 £ 27.82 0.42 + 0.56
IMB 983.17 £ 101.13 | 1.77 £ 0.81 41.48 £+ 14.39 0.58 £ 0.35
ALL 964.61 + 89.76 | 1.31 + 0.51 | 32.89 +4.73 | 0.39 + 0.04

Table 8.3: The averages and standard deviation of the idle time, the queue
size, the cycle time and the allocation time are shown for the 4M2T prob-
lems with abruptly changing distribution. The values are averaged over 100
simulations.

changing distributions, feasible adaptation requires setups. And adaptation
can not be reached without a setup for another type of task. The used met-
rics confirm that a higher number of performed setups does not directly lead
to a loss in performance. The reasons for this will be analyzed more in detail
later on.

Table 8.3 shows averages of the idle time and queue size of the machines
and the cycle and allocation time of tasks. The cycle time expresses average
time a task spent in the system and the allocation time describes the time
until a task is allocated to a machine. In all these measures the combina-
tion of all improvement proposals performs best, what is mainly due to the
improvement proposal IMB, which performs only slightly worse. As shown
by the measure of the cycle time, in the original system, tasks in average
remain in the system about five times longer compared to the system where
all improvement proposals are applied. This is a very important quality for
real world applications, as for example a truck painting facility. In a phys-
ical world, tasks are related to the requirement of physical space. A longer
cycle time is related to higher requirement of space. The same holds for the
average queue size per machine, which is also significantly shorter for the
combination of all improvement proposals. ALL, IMB and BCT have the
shortest makespan what can be explained with the idle time. We suppose
that the reduction of the idle time results from a faster adaptation. Given
that the average number of setups is similar for all approaches, a difference
in makespan results from a difference in idle time. Thus, IMB and BCT
are effective improvements for the reduction of the cycle time and the idle
time, directly influencing the makespan.

The level of adaptation of the system can be analyzed, observing the
distribution of setups over time, shown in Figure 8.1(a), while figure Fig-
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Figure 8.1: The average number of setups per machine per 50 time steps is
displayed for the 4M2Tchg problem. Values are summed up over 50 time
steps and the result is taken as one point in the plot. The values are aver-
aged over 100 simulations. (a) shows this over 3000 time steps, whereas (b)
highlights the period of time, after probabilities of task appearances change
abruptly at time step 1500.

ure 8.1(b) shows the same distribution focusing on the switch of task ap-
pearance probabilities at time step 1500. The improvement proposal IMB
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Figure 8.2: Example for the threshold values of the four machines for the
4M2Tchg problem, when the original system is applied. A low threshold
value refers to a high grade of specialization and vice versa. The lower and the
upper threshold bound for the threshold values are ©,,;, = 1, ©,,.. = 2000.
Probabilities of task appearances change abruptly at time step 1500.

and the combination of improvements, ALL, react comparably fast to the
new situation. Setups are mainly performed in the period [1550,1900]. BCT
reacts more slowly, mainly performing tasks in the period [1750,2150]. The
other approaches do not seem to re-adapt at all or to adapt only very slowly.
In fact, IMB and BCT both reduce the threshold values of machines, mak-
ing it easier to switch from one task to the other and thereby speeding up
the re-adaptation process.

The behavior of the threshold values over time for each machine, is shown
in Figure 8.2 for the original system, in Figure 8.3 for IMB and in Figure 8.4
for ALL. These figures represent one typical iteration of a simulation, and
not the average over several iteration. The temporal behavior of threshold
values cannot be sensefully averaged over several iterations, as the result
would not be a correct representation of the system. We analyzed several
iterations and chose one for each approach considered to be representative.
The temporal behavior of the threshold value offers a multiplicity of possibil-
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Figure 8.3: Example for the threshold values of the four machines for the
4M2Tchg problem, when the improvement proposal IMB is applied. A
low threshold value refers to a high grade of specialization and vice versa.
The lower and the upper threshold bound for the threshold values are ©,,;, =
1, O = 2000. Probabilities of task appearances change abruptly at time

step 1500.

ities to analyze the system’s behavior in detail. For instance, one can deduce
the type of task a machine is specialized for simply by differing between the
respective threshold values. A low threshold value refers to a high grade of
specialization and vice versa. Additionally, the current state of a machine
can be recognized, according to the three update rules (see Equation 5.7 in
Section 5.2 for more details), observing whether threshold values diminish,
increase or remain constant!. Otherwise, if at least one threshold value in-
creases or remains constant at the upper bound 0,,,,, the respective machine
cannot be idle.
For the 4M2Tchg problem, in the period [0, 1500], tasks of type 1 are
generated with a three times higher probability than tasks of type 2. Then,
for the next 1500 time steps, in the period [1500, 3000], task arrival probabil-

'Tf the update rule BCT is applied, the temporal behavior of all other machines needs

to be considered as well.
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Figure 8.4: Example for the threshold values of the four machines for the
4M2Tchg problem, when all improvements are applied. A low threshold
value refers to a high grade of specialization and vice versa. The lower and the
upper threshold bound for the threshold values are ©,,;, = 1, ©,,.. = 2000.
Probabilities of task appearances change abruptly at time step 1500.

ities switch among the two types, so that tasks of type 2 are generated three
times more often than tasks of type 1. Thus, as four machines are available,
during the period [0, 1500], three machines should specialize for tasks of type
1, and only one machine should process tasks of type 2. Afterwards, in the
period [1500, 3000], machines should re-adapt, so that only one machine stays
specialized for tasks of type 1, and all other machines process tasks of type 2.
Considering this, the original system performs rather poorly. It succeeds in
initially adapting to task arrivals as it should. From Figure 8.2, we can de-
duce that three machines start performing tasks of type 1, and only machine
2 specializes in tasks of type 2. But, after time step 1500, only machine 3
re-adapts to the new situation, so that each type of task is performed by two
machines. Additionally, we can point out that machine 3 takes very long to
adapt itself. Shortly before time step 2000 machine 3 gets idle as there are
no tasks of type 1 in the system any more. Then, its respective threshold
value for tasks of type 2 diminishes slowly, following the update rule for idle
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machines. Only after about 300 time steps, the respective threshold value is
low enough to let machine 3 bid for tasks of type 2.2 This example of the
original system has been chosen, as it represents the typical performance.
Sometimes, the performance is even worse, as the initial adaptation of three
machines processing tasks of type 1 is kept, even after time step 1500. Thus
the system is not able to readapt at all. Very seldom, the system correctly
re-adapts to the changed probability mix of task arrival rates, but even in
these cases, adaptation is rather slow and not satisfying.

As discussed above, IMB leads to the biggest improvement, compared
to the original system. Figure 8.3 shows the threshold values of the four
machines over time. The machines initially adapt correctly to the probability
mix of task arrival rates. While machine 2 specializes on the rarely appearing
type of task 2, the three other machines perform tasks of type 1. Later,
when task arrival rates change, the four machines succeed to re-adapt. First,
machine 3 starts performing tasks of type 2 from approximately time step
1800 on. Later, from approximately time step 2100 on, machine 1 as well
starts to perform tasks of type 2. Machine 3 re-adapts faster, as it remains
idle and does not perform tasks of type 1 any more from approximately time
step 1580 on. It remains idle and is offered tasks of type 2, which it doesn’t
bid for due to a high threshold value. The improvement proposal IMB leads
to a fast re-adaptation. Machine 1 takes a little longer, as it still accepts
eight tasks of type 1, before the threshold value for tasks of type 2 is low
enough to bid for respective tasks. But in any case, even if here it takes
comparably long, the machines succeed to adapt to the new probability mix
of task arrival rates. The threshold value for tasks of type 2 of machine
4 are diminished in parallel to machine 1. In many other iterations with
improvement proposal IMB, the adaptation process was much faster. In fact,
the shown example performs even worse than average. Nevertheless, we have
chosen this example, in order to show, that even in rather difficult situations,
the system succeeds to adapt to the abruptly changing distribution.

The performance of the combination of all improvement proposals, ALL,
is for all AM2T problem instances is very similar to the one reached by IMB,
but the adaptation process is even faster. Figure 8.4 shows the threshold
values of the each machines over time. The shown example is very typical
for the behavior of ALL. Due to the two proposed additional rules, IMB
and BCT, the threshold values change very quickly and correctly adapt to
changing demands.

2Given the value of the parameter 83, and assuming that a threshold value is only
diminished by the update rule for idle machines, a threshold value is diminished from
2000 to 1 in 306 time steps.
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8.1.2 Two Machines — Two Types of Tasks (2M2T)

The 2M2T problems may be considered to be more difficult than the 4M2T.
For the 2M2Tequ problem, where task arrival rates are equally distributed,
each machine should specialize for one type of task. For all other 2M2T
problems, such a simple solution is not possible. For instance, the 2M2Tdif
problem generates two types of tasks with different task arrival rates. Thus,
one machine should specialize on the more frequently arriving type of task,
whereas the other machine should switch from one task to the other period-
ically.

Table 8.4 shows the experimental results of the average makespan and the
average number of required setups per machine. As in the 4M2T problems,
with respect to the makespan, the combination of all improvement proposals
either performs best, or second best behind the UR approach. In general,
the difference in performance among the different approaches is small. Only
for the 2M2Tdif approach, ALL reaches a notably better performance than
all other approaches. In all 2M2T problems, except for the problem with
different distribution of task arrival rates, BCT performs worst, with par-
ticularly bad performance for the assumed easy 2M2Tequ problem, where
both tasks are released to the environment with equal probability.

One indicator for the bad performance of BCT can be found in Ta-
ble 8.4(b), where the required number of setups per machine are shown. For
all 2M2T problems, the BCT approach requires much more setups than
most other approaches and has a particularly high standard deviation. For
the dif and the chg distribution this also holds for the IMB approach. This
instability is due to the fact, that machines often do have very low threshold
values for both types of tasks, as will be shown later. The improvement pro-
posal concerning the update rules (UR) performs very well for the 2M2T
problems. It requires very few setups in general, specifically for the dif and
the chg distribution.

For the equal distribution of task arrival rates, Table 8.5 shows the idle
time and the average queue size per machine, the average cycle and allo-
cation time per machine. As BCT requires far more setups than all other
approaches, BCT also spends much more time setting up for tasks. This
results in the longer makespan.

Figure 8.5 shows the temporal distribution of setups per machine for the
2M2Tequ problem. Except for BCT, all approaches succeed to adapt to
the environment after approximately 1000 time steps. BCT on the other
side, in average requires setups throughout the simulation.

BCT exhibits two different classes of behavior,as can be seen in Figure 8.6
where the threshold values are plotted over time. In Figures 8.6(a) and 8.6(b),
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[MS [ 2M2Tequ | 2M2Tdif | 2M2Tchg | 2M2Tsin |
ORIG || 3245.7 + 159.6 | 4494.5 + 280.4 | 3758.3 + 315.0 | 3273.0 & 246.5
UR 3198.7 + 125.1 | 4347.4 + 240.6 | 3675.9 + 186.2 | 3231.2 + 140.1
CFV 3260.6 + 165.0 | 4414.5 + 292.0 | 3729.5 + 264.6 | 3275.0 + 249.0
DC 3271.0 + 218.4 | 4485.9 + 275.9 | 3743.5 £ 253.6 | 3267.6 + 223.3
BCT 3719.8 + 671.2 | 4258.8 + 292.1 | 3911.1 + 407.3 | 3580.1 + 632.5
IMB 3205.8 + 120.9 | 4305.9 + 319.1 | 3795.1 + 289.7 | 3221.8 + 181.5
ALL 3203.9 + 127.6 | 4095.2 + 239.1 | 3714.8 + 213.9 | 3201.4 + 114.9
(a)
| S || 2M2Tequ | 2M2Tdif | 2M2Tchg | 2M2Tsin |
ORIG 2.40 + 2.09 5.16 + 8.29 6.25 + 10.89 3.67 £ 6.56
UR 2.07 + 1.67 1.77 + 1.28 1.88 + 1.52 2.19 £ 1.78
CFV 2.81 + 3.08 3.23 £ 4.60 5.46 + 9.64 3.70 £ 5.30
DC 3.02 + 4.10 4.82 +7.74 4.99 + 8.42 4.15 + 5.57
BCT 19.25 &+ 21.93 12.20 + 12.70 11.03 + 13.79 13.91 &+ 18.61
IMB 2.20 + 1.90 13.06 + 12.89 8.56 + 10.23 2.98 + 4.72
ALL 1.52 £+ 0.65 5.75 £ 1.65 4.04 £ 1.48 1.74 + 0.69

(b)

Table 8.4: The average makespan (MS) and its standard deviation for the
2M2T problems is shown in (a). Smaller values are better. (b) shows the
average number of performed setups per machine. A comparison is made
between the original system (ORIG), single applied modifications with the
improvement proposals, and the combination of all improvement propos-
als (ALL). equ, dif, chg and sin represent the four task generation pro-
cesses. In each column the approach with the best performance, i.e., short-
est makespan, is highlighted. The values are averaged over 100 simulations.
Tasks are generated during a window of time of 3000 time steps. Thus, the
minimum reachable makespan is 3000. As machines are not initially set up
for any type of task, at least one setup is required per machine.

both machines succeed to adapt specializing for one type of task. In the
second case, as shown by Figures 8.6(c) and 8.6(d), the machines are not
able to adapt and continuously switch among the types. The improvement
proposal BCT diminishes the threshold values of both machines, in case
both machines do not bid for a task. The motivation for this proposal is an
increase of adaptation speed, particularly for changing environments, where
task arrival rates change over time. For the 2M2T problems, BCT does
not lead to increased adaptation speed. Machines are seldom able to make a
stable decision for one type of task and thereby specialize.

However, even though it contains the improvement proposal BCT, the
combination of all improvements behaves stable and succeeds to adapt. In
combination with the other improvement proposals, the instability of BCT
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| 2M2Tequ || Idle Time | Queue | Cycle Time | Alloc Time |
ORIG 240.09 £ 99.17 13.01 £ 3.36 | 161.59 &+ 73.52 4.31 £ 4.02
UR 245.14 + 98.11 7.31 £ 1.86 141.73 + 68.88 3.77 + 3.69
CFV 242.34 + 91.70 10.10 £ 2.65 | 171.59 £ 91.99 4.47 £ 4.72
DC 241.73 £+ 114.40 9.75 £ 2.53 | 182.93 £ 122.95 5.23 £6.81
BCT 184.71 +£131.31 | 17.19 + 6.98 | 420.79 + 354.89 | 1.56 + 0.62
IMB 240.76 £ 111.07 9.21 £ 2.19 126.75 + 52.00 2.18 £ 2.17
ALL 237.73 +£103.64 | 6.33 + 1.40 | 116.76 + 48.09 | 0.96 + 0.09

Table 8.5: The averages and standard deviation of the idle time, the queue
size, the cycle and the allocation time are shown for the 2M2T problems
with equal distribution.
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Figure 8.5: The average number of setups per machine per 50 time steps is
displayed for the 2M2Tequ problem. Values are summed up over 50 time
steps and the result is taken as one point in the plot. The values are averaged
over 100 simulations.

disappears. This can be seen in Figure 8.7, where the temporal behavior
of the threshold values is displayed for the original system (Figures 8.7(a)
and 8.7(b)) and ALL (Figures 8.7(c) and 8.7(d)). Each machine specializes
for one type of task and does not change its specialization throughout the
simulation. The fluctuation of the higher threshold values for ALL mainly
emerges due to the additional rules BCT and IMB.
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Figure 8.6: The two different cases of the temporal behavior of the threshold
values for the 2M2Tequ problem are displayed. (a) and (b) show good
adaptive behavior, where each machine specializes for one type of task. This
is not the case for (c¢) and (d), where the machines do frequently change the
type of task they perform.

8.1.3 Two Machines — Four Types of Tasks (2M4T)

The 2MA4T problems contain two times as many types of tasks as machines.
This makes the problem very difficult. In general, a machine should not
specialize for too long on one task, as this would lead to a negligence of
other tasks in the system. Thus, machines have to permanently re-adapt
themselves to fulfill the current requirements of the environment.

Table 8.6 shows the experimental results of the average makespan (MS)
and the average number of required setups per machine (S). In all cases,
the combination of all improvements performs best, and the original system
performs worst. The modification of the update rules, UR, and the addi-
tional rule BCT, decrease the number of required setups by approximately
25%, and therefore lead to a better performance. CFV and DC, The mod-
ifications on the calculation of the force value and the dominance contest,
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Figure 8.7: Example of the temporal behavior of the threshold values for the
original system (ORIG, (a) and (b)) and the combination of all improvement
proposals (ALL, (¢) and (d). Both approaches succeed to adapt correctly.
Each machine specializes for one type of task.

again do not result in a significant change of performance for the same rea-
sons given in Section 8.1.1. The other additional rule (IMB) reduces the
makespan, but does not diminish the number of required setups. Table 8.7,
where the idle time, the queue size, the cycle time and the allocation time
for the 2M4Tequ problem are given, shows a significantly shorter average
queue size for the additional rules, the modification of the update rules and
the combination of all improvement proposals. BCT and IMB reduce the
time that machines are idle. Additionally, for BCT and ALL, tasks are
allocated much faster to machines. This was predictable, as BCT reduces
the thresholds of all machines, in case a task remains unallocated.

Figure 8.8 shows the average number of setups per machine per 100 time
steps over time for the 2M4Tequ problem. As re-adaptation is required
throughout the whole simulation, the machines do not reach a state where
setups are not required. Instead, each approach converges towards a cer-
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[MS [ 2M4Tequ | 2M4Tdif | 2M4Tchg | 2M4Tsin |
ORIG || 5032.0 + 377.6 | 4283.5 + 495.6 | 4510.5 + 474.5 | 4971.8 &+ 326.2
UR 4081.4 + 3196 | 3765.9 + 275.5 | 3771.8 £ 291.4 | 4093.4 + 331.3
CFV 49422 + 3732 | 4270.0 + 408.2 | 4477.4 + 401.0 | 4980.2 + 427.0
DC 4918.9 + 378.0 | 4270.0 &+ 458.5 | 4420.0 + 393.9 | 4997.6 + 395.3
BCT 4062.8 + 375.5 | 3917.6 = 562.1 | 3937.0 £ 451.2 | 4094.1 &+ 329.1
IMB 4561.8 + 486.1 | 3917.9 &+ 480.3 | 3999.7 + 534.3 | 4386.3 + 504.9
ALL 3893.6 + 359.8 | 3546.3 + 280.7 | 3570.2 + 330.1 | 3842.3 + 341.6
(a)
| S || 2M4Tequ | 2M4Tdif | 2M4Tchg | 2M4T'sin |
ORIG 83.61 + 7.70 60.39 + 11.89 68.08 + 9.93 82.55 + 6.47
UR 55.98 + 7.31 44.59 + 5.94 44.70 £ 6.58 56.09 + 7.43
BCT 57.63 + 5.62 48.15 + 8.73 49.74 + 8.05 57.95 + 6.03
IMB 72.11 + 11.78 51.81 &+ 12.24 54.48 + 14.58 67.94 + 13.09
CFV 82.28 + 7.82 60.16 + 10.45 66.34 + 9.42 82.05 + 7.78
DC 81.98 + 7.29 60.76 + 10.45 65.38 + 9.30 82.36 + 6.81
ALL 49.58 + 4.33 39.30 + 4.30 40.10 + 4.42 48.74 + 3.84
(b)

Table 8.6: The makespan (MS, (a)) and the number of required setups
per machine (S, (b)) for the 2M4T problems are shown for the four task
generation processes equ, dif, chg and sin.

Original —+—

0.4 ! ! ! ! !
1000 1500

time

3000

Figure 8.8: The average number of setups per machine per 100 time steps is
displayed for the 2M4Tequ problem. Values are summed up over 50 time
steps and the result is taken as one point in the plot. The values are averaged
over 100 simulations.
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| 2M4Tequ | Idle Time | Queue | Cycle Time | Alloc Time |

ORIG 363.9 + 176.9 16.57 + 10.74 | 926.3 £+ 178.6 136.6 £ 6.8
UR 324.6 +£ 124.7 | 12.18 £ 7.37 | 538.9 &+ 142.9 1145 £ 7.4
CFV 345.5 + 181.1 18.67 &+ 11.59 894.7 + 167.9 137.1 £5.9
DC 351.4 + 159.7 18.15 £ 11.29 888.1 + 167.8 137.5 £ 6.6
BCT 290.9 4+ 186.9 16.27 £+ 8.39 485.8 + 142.7 6.4 + 0.3

IMB 272.8 + 132.7 | 12.34 £+ 8.05 611.9 &+ 226.6 107.2 £+ 19.2
ALL 339.3 + 198.7 12.42 + 5.69 | 387.9 + 115.6 7.2 +£0.3

Table 8.7: The averages and standard deviation of the idle time, the queue
size and the cycle time are shown for the 2M4T problem with equal distri-
bution. The last column, Alloc Time, gives the average time until a task is
allocated to a machine. The values are averaged over 100 simulations.

tain value, that is lower for ALL, UR and BCT, and higher for the other
approaches.

For the 2M4T problems, we do not show plots of the temporal behavior of
the threshold values. The need to continuously re-adapt, makes the threshold
values change very dynamically in time, making an anlaysis on the threshold
values’ dynamics very difficult and complex.

8.2 Large Problem Instances

The small problem instances provide good study casesto analyze the general
behavior of the insect-based approach to the DTA, as it simplifies a detailed
survey of single machine behavior. Additionally, small problem instances al-
low an elementary study of the temporal behavior of threshold values, which
is very difficult for larger problem instances with a higher number of machines
and types of tasks. However, small problems lack of representing real-world
problems. In an industrial environment, like a painting facility, there are
in general more machines and tasks than in the examined small problem
instances. Therefore, in this section we analyze the insect-based approach
for larger problems, which contain either 10 or 25 machines and 10 differ-
ent types of tasks. A comparison is made between the original system, the
system containing our improvement proposals, and the real world proven,
market-based multi-agent system of Morley, which was explained in detail
in Section 3.4.4. In addition to the Morley system, we examine a slightly
modified version of that approach, that is also explained in Section 3.4.4.
The modifications of existing rules, UR, CFV and DC, are only considered
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in combination, as their influence on the performance is much smaller than
the influence of our additional rules, BCT and IMB.

First, we analyze the behavior of the original insect-based system without
restrictions concerning the maximum queue length. In this case, we do not
consider the two market-based approaches, as, in their current form, they do
not produce feasible schedules without a queue size restriction. Therefore,
we additionally examine systems with a maximum queue length of 10 tasks
per machine and compare the performance of the insect-based approaches to
the market-based approaches. For the 10 machine problems, the expected
number of tasks per time step is A = 0.4. For the 25 machine problems we
used the parameter \ = 1.0.

8.2.1 No Queue Length Restriction
10 Machines — 10 Types of Tasks (10M10T)

10M10T problems are in general comparable to 2M2T problems, as the
number of machines equals the number of tasks. Nevertheless, 10M10T
problems should be considered as more difficult than 2M2T problems. Each
machine is offered 10 different types of tasks. Thus, a machine has more
choices. Consider the example of equal distribution of task arrivals. In the
ideal case, each machine specializes for a different type of task. For the
2M2Tequ problem, a machine can either make the “right” or the “wrong”
choice, depending on the other machine. This means, if one machine special-
izes for tasks of type 1, then the right choice for the other machine should
be to only accept tasks of type 2. It is not that easy for the 10M10Tequ
problem. For instance, if nine machines did already specialize for different
types of tasks, then the last machine has nine possibilities to make a “wrong”
choice and only one possibility to make the “right” choice.

Table 8.8 shows the experimental results of the average makespan (MS,
(a)) and the average number of required setups per machine (S, (b)). Addi-
tionally, for the 10M10Tequ problem, the idle time, the average queue size,
the cycle time and the allocation time are given by Table 8.8(c). The perfor-
mance of the different approaches can be separated in two groups. The orig-
inal system and the modifications on the existing rules perform very poorly.
They require a very long makespan and far more setups than the other ap-
proaches. A worst case for the number of performed setups can be defined
as the schedule that requires a setup for each arriving task. And in fact,
for the equal and the slowly changing distributions, the original system per-
forms not so far away from this worst case. Per machine, there are in average
120 tasks released throughout the simulation. For the equal and the slowly
changing distributions, the original system requires more than 80 setups per
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| MS || 10M10Tequ | 10M10Tdif | 10M10Tchg | 10M10Tsin |
ORIG 5731.0 = 908.0 | 5003.6 &+ 883.3 | 4973.1 £+ 1069.3 | 5648.5 £+ 928.4
UR+CFV+DC 4917.2 + 293.8 | 4494.0 + 372.8 4536.9 + 306.9 4887.5 + 270.5
BCT 3214.0 & 293.1 3237.1 £ 98.1 3224.3 &+ 141.2 3225.8 + 300.1
IMB 3091.6 &+ 214.1 | 3212.7 £+ 104.7 3170.9 + 76.4 3074.2 £+ 62.7
ALL 3069.7 +£ 41.1 | 3140.8 + 67.6 | 3152.3 + 70.3 3075.4 + 38.9

(a)

[ S [ 10M10Tequ | 10M10Tdif | 10M10Tchg [ 10M10Tsin |
ORIG 82.49 £+ 25.47 42.05 £+ 20.55 54.06 + 25.68 81.43 4+ 24.72
UR+CFV+DC 70.36 £ 6.71 54.01 £+ 11.95 56.05 £ 5.91 70.64 £ 6.25
BCT 11.66 + 6.31 10.98 + 3.38 12.26 £+ 5.36 12.39 + 6.61
IMB 7.83 £ 7.31 8.71 + 1.59 8.89 + 1.76 7.81 + 5.82
ALL 5.01 + 1.13 9.83 £ 0.96 9.80 £+ 1.08 4.88 + 1.07

(b)

| 10M10Tequ || Idle Time | Queue | Cycle Time | Alloc Time |
ORIG 1077.0 £ 315.6 19.22 + 12.37 873.3 £+ 309.3 70.8 £ 21.1
UR+CFV+4+DC || 685.1 + 173.8 16.03 £ 11.01 679.3 £ 121.5 69.2 £ 4.6
BCT 851.7 + 178.7 4.74 £ 0.86 99.2 £ 56.9 1.6 £ 0.3
IMB 851.6 + 148.7 1.69 £+ 0.37 48.6 + 39.8 3.3+4.8
ALL 919.6 £ 62.5 1.19 £ 0.21 41.1 + 4.2 1.0 = 0.08

()

Table 8.8: The makespan (MS, (a)) and the number of required setups per
machine (S, (b)) for the 10M10T problems without queue length restrictions
are shown for the four task generation processes (equ, dif, chg and sin). (c)
additionally gives the results on the idle time, the average queue size, the
cycle time and the allocation time for the 10M10Tequ problem.

machine in average. This means, for more than 75% of the tasks, a recon-
figuration is required. For the mentioned two distributions, the combination
of all improvement proposals on the other, requires only about 5 setups per
machine, what refers to less than 4.2% of the tasks causing a reconfiguration.
This difference of performance results from the additionally proposed rules
BCT and IMB, which perform approximately as well as the combination
of all improvement proposals. Obviously, in the case of the 10M10Tequ
problem, the time a machine stays idle is not a good performance measure.
The combination of the improvement proposals that concern existing rules,
UR+CFV+DC, has the shortest idle time, but performs very poorly any-
way. Anyway, this approach results in a general improvement compared to
the original system. Still, there is a big gap between the performance of
UR+CFV+DC in comparison with BCT, IMB and ALL.

The big difference in performance is also observable in Figure 8.9, where
the temporal distribution of setups per machine for the 10M10Tequ problem
is shown. While BCT, IMB and ALL converge more or less fast to a
low value, the other three approaches do not succeed in reaching a stable
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Figure 8.9: The average number of setups per machine per 100 time steps
is displayed for the 10M10Tequ problem. Values are summed up over 100
time steps and the result is taken as one point in the plot. The values are
averaged over 100 simulations.

behavior and even need an increasing amount of reconfigurations throughout
the simulations.

Figure 8.10 shows four cases for the dynamics of the threshold values for
the 10M10Tequ problem. ORIG and ALL are compared, and for each
approach the threshold values of two machines are illustrated. Displaying
only two of the ten machines surely can not represent the complete system.
Nevertheless, it can give a reasonable idea of the system behavior. For the
original system, the threshold values are very instable. This is indicated by
the Figures 8.10(a) and 8.10(b). For approximately the first 300 time steps,
machines are able to specialize on one type of task. Afterwards, they start
performing other types of tasks. For instance, this can happen due to tasks
that are waiting to be allocated already for a long time and therefore have
a big stimulus intensity. Even if the respective threshold value is very high,
the stimulus intensity of these tasks can overcome the threshold, so that a
machine bids for them. It could also be possible that there is currently no
task of the specialized type in the system, so that the respective machine
stays idle. The result is that throughout the whole simulation, the machines
do not specialize for any particular type of task, confirmed by the fact that
for no type of task a low threshold value is reached. The machines frequently
start setting up for and processing different types of tasks, so that no type
is really preferred. However, if all improvement proposals are applied, these
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Figure 8.10: The figures show the dynamics of the threshold values through-
out the simulation. A comparison is made between the original system ((a)
and (b)) and the combination of all improvement proposals ((c) and (d)) for
the 10M10Tequ problem without restrictions on the queue length. For each
approach, two representative machines have been chosen.

problems are overcome. The machines, that apply all improvement proposals
and serve as example for the Figures 8.10(c) and 8.10(d), succeed to specialize
on one task only. And even though other thresholds reach very low values,
the machines continue performing the one task they are specialized for.

25 Machines — 10 Types of Tasks (25M10T)

In the same way we compared the 10M10T problems to the 2M2T prob-
lems, we may compare the 25M 10T problems to the 4M2T problems. The
25M10T problems contain more machines than different types of tasks.
Thus, it can be considered as less difficult than 10M10T problems. Ta-
ble 8.9 summarizes the experimental results for the 256M10T problems. In
general, the performance of the approaches may be split in two groups again,
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as done for the 10M10T problems. While the original system and the mod-
ifications on the existing rules perform rather poorly again, the additional
rules, BCT and IMB, and the combination of all improvement proposals,
result in a significantly better performance. As the number of machines is
bigger than the number of types of tasks, only very few setups are required
for all approaches. Thus, the difference in performance emerges in the differ-
ence of the time that machines stay idle. This is shown by the Table 8.9(c),
which displays the idle time, the queue size, the cycle time and the alloca-
tion time for the 256M10Tdif problem. For this problem, the combination of
the modification on existing rules, UR+CFV+DC, performs particularly
poor, having a makespan that is approximately 17% worse than the original
system. The reason for this is the extremely long time that machines stay
idle. We assume, that this emerges from the fact that machines seem to
prefer staying idle rather than performing setups. Due to the modifications,
setups are prevented whenever it is possible. Obviously, in the case of the
25M10Tdif problem this results in a stiff behavior that lacks the ability to
adapt. This loss of performance for the modification proposals occurs mainly
for easier problems, where the number of machines exceeds the number of
different types of tasks. For more difficult problems the modifications all
resulted in an improved performance.

For the 25M 10T problems a study of the dynamics of the threshold val-
ues is not required. For all approaches, machines specialize very quickly.
This specialization is probably too rigid for the original system and the com-
bination of the modification on existing rules. However, an analysis of the
threshold values’ dynamics does not provide a deeper insight in this problem.

8.2.2 Maximum Queue Length of 10 Tasks

So far, the experiments only concerned problems without any restrictions
on the maximum number of tasks that machines are allowed to put in their
queue. In this section we add this restriction by limiting the queue length to
a maximum of 10 tasks, and we additionally compare the examined insect-
based approaches to two market-based approaches, explained in detail in
Section 3.4.4.

10 Machines — 10 Types of Tasks (10M10T)

Table 8.10 shows the experimental results for the 10M10T problems. In
comparison to the same problem without a restriction on the queue size, the
original system and the modifications on existing rules perform much better
with respect to the makespan. This indicates that if there is no restriction
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MS [ 25M10Tequ | 25M10Tdif | 25M10Tchg | 25M10Tsin |
ORIG 4697.2 & 679.5 | 4372.0 + 1399.6 | 4953.4 + 483.7 [ 4822.1 & 517.4
UR+CFV+DC 4801.6 & 505.0 | 5116.6 + 1783.1 | 4992.2 + 498.4 | 4808.4 & 551.6
BCT 3257.6 £ 415.7 3403.0 & 322.4 | 3425.3 £ 130.7 | 3445.9 & 588.2
IMB 3091.5 £ 104.7 3085.2 & 44.0 3115.8 = 95.6 | 3087.1 £ 82.0
ALL 3063.3 £ 23.8 3070.6 £ 31.1 | 3071.0 + 34.0 | 3061.5 & 23.5

(a)

[ s [ 25M10Tequ | 25M10Tdif | 25M10Tchg | 25M10Tsin |
ORIG 2.01 + 0.47 2.07 + 0.63 2.19 £+ 0.48 2.11 + 0.59
UR+CFV+DC 1.79 £ 0.82 1.73 + 0.43 1.81 £ 0.43 1.98 + 3.20
BCT 1.67 £ 0.36 1.81 £ 0.36 2.15 £+ 0.36 1.92 £ 0.40
IMB 1.60 + 0.22 1.88 £ 0.32 2.66 + 0.28 1.72 + 0.22
ALL 1.86 £ 0.21 2.24 + 0.26 2.85 + 0.29 1.97 £ 0.22

(b)
25M10Tdif Idle Time Queue Cycle Time Alloc Time
ORIG 2225.42 + 1302.94 4.06 + 1.00 122.12 + 76.00 1.19 £ 0.52
UR+CFV+DC || 2931.84 + 1664.24 6.98 + 3.05 172.14 £112.24 1.13 + 0.42
BCT 1320.64 & 293.74 2.91 + 0.69 56.04 £ 20.35 0.43 £ 0.06
IMB 1027.62 + 53.68 1.56 + 0.28 37.44 £ 3.78 0.57 &+ 0.06
ALL 1003.74 + 46.06 1.19 + 0.21 33.00 + 2.48 0.45 + 0.03

(c)

Table 8.9: The makespan (MS, (a)) and the number of required setups per
machine (S, (b)) for the 10M10T problems without queue length restrictions
are shown for the four task generation processes (equ, dif, chg and sin). (c)
shows the idle time, the average queue size, the cycle time and the allocation
time for the 256M10Tdif problem.

on the queue size, for these approaches some machines accept more than 10
tasks in their queue. With the restriction, this is not possible any more.
At first sight, it seems that the restriction stabilizes the original system as
well as the modifications on existing rules. But, q more detailed view on
Table 8.10(c) — where the idle time, the queue size, the cycle time and the
allocation time are given for the 10M10Tequ problem — gives a different
impression. The allocation time of tasks is dramatically increased. Without
the restriction, tasks are allocated to machines after about 70 time steps for
those two approaches. On the other side, with the restriction, tasks have
to wait for an allocation for approximately 470 time steps for the ORIG,
and 370 time steps for UR4+CFV+DC. In comparison to the same prob-
lem without restriction, the performance of BCT degrades for all 10M10T
problems. The makespan remains constant only for the 10M10Tdif and
10M10Tchg problems. But for all problems, the number of required setups
increases very much. In general, ALL and IMB perform much better than
all other approaches and the two market-based approaches are always among
the worst performing approaches, where MORLEY1 shows the worst per-
formance with respect to both, the makespan and the number of required
setups, for all problems.
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| MS || 10M10Tequ | 10M10Tdif | 10M10Tchg | 10M10Tsin |
ORIG 4796.8 + 633.4 4499.6 £ 474.5 4730.0 + 245.0 4992.4 + 385.1
UR+CFV+DC 4553.9 + 375.8 4138.1 + 311.6 4200.0 + 301.3 4579.1 + 326.8
BCT 3918.4 £ 834.7 3308.3 &+ 497.3 3292.3 + 350.7 3791.0 + 791.9
IMB 3120.3 &+ 268.1 3109.6 + 41.0 3113.3 £ 29.9 3058.2 £ 36.5
ALL 3068.2 + 34.3 | 3103.4 + 42.3 3109.2 + 43.0 3072.6 + 33.4
MORLEY1 5547.5 + 152.1 5451.1 + 153.7 5453.6 + 167.7 5576.7 + 150.8
MORLEY?2 4587.2 + 132.7 4375.0 £+ 134.5 4390.8 + 128.8 4589.9 + 152.6

(a)

[ S [ 10M10Tequ [ 10M10Tdif | 10M10Tchg | 10M10Tsin |
ORIG 81.74 £+ 25.88 72.03 £ 17.24 79.94 + 8.27 89.22 £+ 13.70
UR+CFV+DC 75.20 + 15.09 60.44 £+ 10.35 62.62 + 9.95 75.96 + 11.36
BCT 46.73 + 35.74 20.07 £+ 21.40 20.80 + 16.76 42.61 + 33.85
IMB 11.04 &+ 13.47 10.71 + 2.40 10.37 + 2.14 6.86 + 3.91
ALL 5.03 + 1.30 10.41 + 1.33 10.47 £+ 1.45 5.26 + 1.33
MORLEY1 97.03 & 4.85 85.04 £+ 12.70 85.08 + 12.53 97.19 + 4.85
MORLEY?2 67.08 + 4.03 58.11 + 8.14 58.07 + 6.29 66.07 + 3.46

(b)

| 10M10Tequ || Idle Time | textbfQueue | Cycle Time | Alloc Time |
ORIG 240.78 + 206.84 741 £ 2.28 789.26 + 303.54 | 471.54 £ 217.40
UR+CFV+DC 208.75 + 141.10 7.98 £ 2.82 673.98 £ 177.50 | 371.91 £ 131.51
BCT 455.42 + 344.14 5.32 + 1.21 358.60 £ 328.07 | 166.50 £+ 205.40
IMB 780.26 + 201.17 2.57 + 0.37 65.80 + 96.44 12.51 + 52.74
ALL 908.19 + 68.06 1.61 + 0.34 40.68 + 4.42 1.09 + 0.08
MORLEY1 190.35 + 34.16 8.76 + 2.39 1047.64 + 107.63 662.63 + 94.64
MORLEY?2 305.36 + 59.03 6.31 + 1.40 661.10 + 89.90 440.16 + 83.22

()

Table 8.10: The makespan (MS, (a)) and the number of required setups per
machine (S, (b)) for the 10M10T problems with the queue length restric-
tion of at most 10 tasks for a machine’s queue are shown for the four task
generation processes (equ, dif, chg and sin). (c¢) shows the idle time, the av-
erage queue size, the cycle time and the allocation time for the 10M10Tequ
problem.

Figure 8.11 shows the average queue size of all machines for the different
approaches. MORLEY1 already reaches the limit of 10 tasks in the queue
of each machine after approximately 1000 time steps. In general, we can say
that once the limit is reached for all machines, it is very difficult to obtain a
good performance any more. The explanation for this is very easy. In case,
all machines have a full queue, tasks cannot be allocated at all any more,
until at least one machine finishes one task. In that moment, a lot of tasks
are waiting to be allocated. For the insect-based approaches, this means that
tasks will probably have a high stimulus intensity, and thus, an allocation is
practically forced. For MORLEY1 on the other side, this means that a task
that is the longest time in the system, will be allocated to the first available
machine. A distinction between whether the allocation requires a setup or
not is not made at all. Unfortunately, this appears to be a vicious circle in
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Figure 8.11: The average queue size per machine is displayed for the
10M10Tequ problem. The five insect-based and the two market-based ap-
proaches are compared.

the sense that the longer this situation persists, the more tasks will wait for
allocation. For MORLEY2 this situation cannot arrive in any case, as by
definition of the algorithm, tasks may only be allocated to machines, if at
least one machine has a nearly empty queue.

Except MORLEY1, only UR4+CFV+DC reaches the state where all
machines have a full queue. ORIG converges towards about eight tasks
per queue. The shortest queues are required by ALL and IMB, who both
converge at approximately two tasks per queue.

25 Machines — 10 Types of Tasks (25M10T)

25M10T with a maximum queue length of 10 tasks is the last class of prob-
lems we analyze and we will briefly summarize the results. Table 8.11 shows
the results for the makespan and the number of required setups. Addition-
ally, for the equal distribution of task arrival rates, the idle time, the queue
size, the cycle time and the allocation time is displayed.

All insect-based approaches perform very well. Even ORIG and
UR+CFV+DC, who performed very poorly for the same problem with-
out restriction, reach a good performance. For these two approaches, the
problem that some machines have very big queues is prevented. Though
they require more setups, the makespan is significantly reduced. One of the
main effects of the restriction is the reduction of the idle time. Single ma-
chines do not differ so much any more with respect to their queue sizes. Thus,
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| MS || 25M10Tequ | 25M10Tdif | 25M10Tchg | 25M10Tsin |
ORIG 3097.8 + 153.9 3077.3 + 42.6 3369.1 + 211.6 | 3118.8 & 171.0
UR+CFV+DC 3203.6 + 100.3 3169.2 + 100.6 3286.0 + 96.4 3199.1 + 109.1
BCT 3069.4 + 26.1 3071.5 + 25.5 3086.8 + 38.3 3071.3 + 25.3
IMB 3064.8 + 24.2 3076.0 + 32.1 3078.8 + 32.5 3069.3 + 27.8
ALL 3065.3 + 23.0 3066.7 +£ 26.4 | 3067.0 £ 27.6 | 3061.2 + 20.0
MORLEY1 5541.1 + 95.0 5443.9 + 104.6 5463.4 + 98.3 5566.0 + 100.3
MORLEY?2 3829.6 + 89.9 3764.1 £ 88.7 3791.8 £+ 83.7 3847.5 + 94.7

(a)

[ S [ 25M10Tequ | 25M10Tdif | 25M10Tchg | 25M10Tsin |
ORIG 4.70 £ 7.83 3.53 + 2.83 16.49 £ 9.80 7.45 £+ 10.26
UR+CFV+DC 10.77 £ 7.70 8.24 £+ 7.45 15.01 £ 6.16 11.64 £ 7.48
BCT 1.78 £ 0.42 1.96 + 0.41 2.78 £+ 0.50 2.01 £+ 0.43
IMB 1.64 £+ 0.22 1.90 £+ 0.29 2.75 + 0.35 1.77 £ 0.27
ALL 1.92 £+ 0.29 2.26 + 0.26 2.93 + 0.29 2.04 £+ 0.21
MORLEY1 9.91 + 15.23 8.38 £ 10.65 32.97 £ 14.42 20.42 + 24.86
MORLEY?2 8.33 + 7.75 6.39 + 4.87 21.57 + 9.16 17.52 £+ 13.80

(b)

| 25M10Tequ || Idle Time | Queue | Cycle Time | Alloc Time |
ORIG 946.17 + 111.27 1.28 + 0.79 58.43 £+ 54.05 5.91 £ 24.52
BCT 1014.94 £+ 40.91 2.02 £+ 1.81 33.06 + 2.33 0.30 £+ 0.02
IMB 1017.45 £ 43.12 0.83 £+ 0.78 31.87 + 1.70 0.30 £+ 0.02
UR+CFV+DC || 871.01 + 178.10 0.78 + 0.74 95.86 + 43.64 14.04 £+ 10.84
ALL 1004.25 £+ 36.68 0.74 £+ 0.77 30.91 £+ 1.70 0.26 £+ 0.01
MORLEY1 886.55 + 178.72 1.38 £+ 1.30 85.74 £+ 124.73 14.80 + 69.02
MORLEY?2 878.22 + 149.46 1.53 + 1.28 69.60 + 49.20 3.65 + 17.19

()

Table 8.11: The makespan (MS, (a)) and the number of required setups per
machine (S, (b)) for the 256M10T problems with the queue length restric-
tion of at most 10 tasks for a machine’s queue are shown for the four task
generation processes (equ, dif, chg and sin). (c¢) shows the idle time, the av-
erage queue size, the cycle time and the allocation time for the 25M10Tequ
problem.

for the situation where all tasks are allocated, there are no machines with
very large queue sizes, causing other machines to remain idle for a long time.
The market-based approaches again perform poorly, both, in terms of the
makespan and the number of setups. MORLEY1 requires a makespan that
is nearly twice as long as for the insect-based approaches.
As indicated by Table 8.11(c), in average only few tasks are put in a
machine’s queue.



Chapter 9

Conclusions

In this master thesis, we have presented a insect-based multi-agent system
for a dynamic scheduling problem (DTA). Our approach is based on the work
presented in [12, 9] and makes use of a threshold model that is inspired by
the methodology of division of labor in social insects. The DTA simulates
factory-like conditions, where reconfigurations of machines are crucial, as
they are related to a high cost in time. Applying the threshold model to
the DTA, results in a robust multi-agent system with the ability to adapt
to changing demands. We have proposed five improvements on the original
system. Three improvement proposals concern existing rules, modifying the
update rules for threshold values (UR), the calculation of the force value
(CVF) and the dominance contest (DC). The other two proposals are ad-
ditional rules to speed up the adaptation process. One aims at a reduced
idle time for machines (IMB) and the other aims at a reduced cycle time
for tasks (BCT). We have tested our proposals on an extensive set of ex-
periments and highlighted their effect in comparison to the original system.
Figure 9.1 summarizes the results for the makespan for all problems without
restriction on the queue size, comparing the combination of all improvement
proposals and the original system. Small problem instances were analyzed in
order to give a detailed insight into single machine performance and the tem-
poral behavior of the threshold values. Large problem instances are meant to
simulate factory environments more realistically. For large problem instances,
we additionally compared the insect-based approach to a simple version of
a real-world proven market-based approach by Morley [32], and a slightly
modified version of this approach. These two market-based approaches, es-
pecially the one that was not modified, generally perform poorly. For the
10M10T problems with ten machines and ten types of tasks, the modified
market-based approach performs better than the original insect-based ap-
proach, but still worse than any of the improvements. For the 25M10T
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problems with 25 machines and ten types of tasks, the two market-based
approaches have the worst performance. In most of the problem instances,
each of the five proposals results in a better overall performance, compared
to the original system. The improvement with the biggest influence is IMB.
Applying IMB always results in a significantly shorter makespan and a much
faster adaptation. BCT also increases adaptation speed. But for the 2M2T
problem with two machines and two types of tasks, BCT exhibits instable
behavior. It causes the machines to frequently change the type of task they
perform, and thus, disables them to specialize for one type. However, for
most problem instances, the performance achieved by BCT is comparable
to the one of IMB. The modifications of existing rules, and among them
especially the modification of the update rules (UR), also result in an im-
proved overall performance for most cases. Though, the difference to the
original system is not as big as for the new rules. In all examined problems,
the combination of all proposals performs better than the original system,
mostly with remarkable difference.

One major problem for the experimentation was the lack of comparison
to other approaches to the same problem, which are different from the insect-
based approach. We made a comparison with two market-based approaches,
but their performance was not comparable to the one achieved by the insect-
based approach, that applies all improvements. It is difficult to determine the
quality of the insect-based approach after comparison to only one different
approach. However, a study on scheduling problems has shown, that the DTA
is a very specific problem, that was not studied very much so far. The main
difference between the DTA and other, more thoroughly studied scheduling
problems, is the consideration of reconfigurations and setup times. Due to
this difference, we could not find other approaches.

Additionally, we would like to study the behavior of the system, if the
various parameters in the system are dynamically changing in time. This
refers to the parameters of the update rules and the improvement proposals
BCT and IMB. So far, the studies we have made about this, resulted in
a very instable system and were therefore not taken into consideration in
experiments.
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Figure 9.1: (a): Summary of the results for the makespan. The original
system is compared to the combination of all improvements for all equ and
dif problems without queue size restriction. (b): The same as (a) for the
chg and sin distributions.
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