
Faculté des Sciences
Département d’informatique

Gesture Control for Swarms of
Robots

Gaëtan Podevijn

Mémoire présenté sous la direction du Prof. Marco Dorigo
sous la co-direction de Dr. Rehan O’Grady
en vue de l’obtention du grade de Master en Sciences Informatiques
Année Académique 2011-2012

Abstract

Interacting with a swarm of robots is an essential need for a human who
wants to benefit from swarm robotics. This interaction is more complex than
guiding a simple agent because in a swarm, robots all have a different frame of
reference. To date, there are only a few studies that focused on human-swarm
interaction. In this work, a complete framework for interacting with several
swarms is developed. It offers the essential robot behaviour needed for the user
to control the swarms. This control must be precise in order to guide the groups
accurately in the environment. The robots also have to work collectively so that
the user can focus on groups instead of on individuals. The interaction system
used in this thesis is based on gesture recognition but can be easily adapted to
any other kind of control devices. We proved the feasibility of the frramework
by both simulation and real world experiments. We also developed a set of
statistical tools to measure the usability of human-swarm interaction systems.

Résumé

L’interaction avec un essaim de robots est une nécessité pour qu’un humain
puisse bénéficier des avantages de la robotique collective. Diriger un tel nom-
bre d’individus est une tâche plus compliquée que celle consistant à guider
un seul agent. Ceci est principalement dû au fait que les robots ont chacun un
référentiel différent et que l’utilisateur ne peut pas s’adapter à chacun d’eux. A
notre connaissance, très peu d’études ont été effectuées sur l’interaction entre
un homme et un groupe de robots. Dans ce travail, un système d’interaction
permettant de diriger plusieurs essaims a été développé. Il fournit un ensem-
ble d’actions que les robots doivent être en mesure d’exécuter afin de donner
à l’utilisateur la précision nécessaire ainsi que les avantages de la robotique
collective. Des résultats positifs ont été obtenus en effectuant des expériences à
l’aide d’un simulateur, mais aussi en conditions réelles. Des outils statistiques
adaptés à l’étude de l’utilisabilité de systèmes d’interactions ont également été
développés, dans le but de fournir aux chercheurs la possibilité de mesurer et
d’analyser l’utilisabilité d’un tel système.

Je dédie ce travail à la mémoire
de mon grand-père, François Podevijn.

Remerciements

Je remercie le Prof. M. Dorigo d’avoir accepté d’être le directeur de ce mémoire
et d’avoir mis à ma disposition tout le matériel nécessaire afin de travailler dans les
meilleures conditions.

Je voudrais remercier tout particulièrement le Dr. Rehan O’Grady de m’avoir
supervisé durant toute cette année. Sa motivation communicative et ses conseils
avisés m’ont permis d’avancer durant les périodes les plus creuses.

J’exprime toute ma gratitude aux autres membres de mon Jury, le Prof. M. Birat-
tari et le Prof. H. Bersini pour le temps qu’ils passeront à lire ce document.

Je n’oublierai pas Youssef S. G. Nashed, doctorant à l’Université de Parme, avec
qui j’ai eu l’opportunité de collaborer durant trois mois.

Que soient remerciés tous les membres d’IRIDIA que j’ai eu l’occasion de ren-
contrer durant cette année. Leur aide et leur bonne humeur ont joué un grand rôle
dans la réalisation de ce travail.

Un très grand merci à mes parents et ma soeur pour leur soutient, durant cette
année bien sûr, mais également durant toute la durée de mes études. Je tiens aussi
à remercier mon oncle pour ses relectures et l’aide qu’il m’a apporté concernant la
rédaction de ce document.

Enfin, le plus grand des mercis à Caroline pour la patience dont elle fait preuve,
et pour le bonheur qu’elle me procure quotidiennement.

Contents

1 Introduction 1

2 Background 4
2.1 Swarm Intelligence . 4
2.2 Robot Hardware . 6
2.3 Simulator . 7
2.4 Human Computer Interaction . 9

2.4.1 History . 9
2.4.2 Towards a New Paradigm . 10

3 Human-Swarm Interaction 13
3.1 Motivation . 13
3.2 Related Work . 14
3.3 High-Level Control . 15
3.4 Communication Architecture . 17

3.4.1 Architecture . 17
3.4.2 Protocol . 18

3.5 Low-level Controller . 19
3.6 Command Implementation . 20

3.6.1 Select . 20
3.6.2 Move . 22
3.6.3 Split . 24
3.6.4 Merge . 26
3.6.5 Stop . 27

3.7 Real Robot Experiments . 28
3.8 Discussion and Conclusions . 28

4 Gesture Recognition 31
4.1 Hardware . 31
4.2 Software . 32

4.2.1 Microsoft Kinect SDK . 32
4.2.2 OpenKinect . 33
4.2.3 OpenNI/NITE . 33

4.3 Gesture Processing . 34
4.3.1 The Skeleton Data Structure . 35
4.3.2 Gesture Creation . 37

i

4.3.3 Gesture Recognition . 38
4.4 The Set of Gestures . 40
4.5 Discussion and Conclusions . 40

5 Usability Experiments 42
5.1 Motivation . 42
5.2 Experiments . 43

5.2.1 Methodology . 43
5.3 System Feasibility Confirmation . 49
5.4 Discussion and Conclusions . 51

6 Statistical Comparison Tools 53
6.1 Statistical Tests . 53

6.1.1 Parametric or Non-parametric Test? 54
6.1.2 Comparing the Devices . 55

6.2 Discussion and Conclusions . 57

7 Conclusion and Future Work 58

A System Usability Scale 62

Chapter 1

Introduction

In our daily life, we regularly face problems we cannot solve by ourselves. We
ask for help and work together, think together and hopefully, solve problems together.
This group work can also be observed in nature. Bees, ants and termites are examples
of insects that work collectively. Compared to the magnitude of their work, these
agents are physically limited. For example, termitaria may reach up to 9 meters
high and up to 30 meters in diameter, while a single termite’s size is from 2 mm to
8 mm. Moreover, most of the termites, especially workers termites, are blind. Their
collective behaviour allows them to achieve very complex results that transcend
their individual limitations.

Based on these observations, scientists, and more specifically roboticists, were
inspired by the collective behaviour of physically simple agents. They tried to adapt
it to artificial individuals. They imagined that by following some simple rules, a
group of physically limited robots could resolve some relatively complicated tasks,
that is, tasks that each individual could not resolve by itself. This idea is in stark
contrast with more classical robotics approaches, where each agent is a very complex
unit.

Since the early 2000s, two successful European projects have been conducted
on swarm robotics. The Swarm-Bots project 1 and the Swarmanoid project 2 were
funded to the tune of multi-millions of euros by the Future and Emerging Technolo-
gies programme (FET).

These projects successfully demonstrated the ability for physically simple artifi-
cial agents to work collectively and reach complex results in a human environment.
However, even after a decade of research, few studies have focused on the interaction
between a human and the swarms. So far, swarms are able to work autonomously

1. http://www.swarm-bots.org
2. http://www.swarmanoid.org

1

http://www.swarm-bots.org
http://www.swarmanoid.org

1.1. GOAL OF THIS WORK 2

on a specific task in a specific environment. The autonomy is limited to the task
the robots are executing, they do not take higher level decisions. If we want swarm
robotics to be useful for humans one day, they must be able to give high-level orders
to the robots. We can make an analogy with a sergeant who gives orders to his sol-
diers. Once the soldiers receive the order, they execute it without requiring anything
else from their sergeant. In a swarm robotics system, a human, like the sergeant,
must be able to send its requests to the robots. Once the robots received an order,
they can start working autonomously on the given task.

Controlling a single agent with powerful perception and motion sensors is rel-
atively simple. It can be done by adapting the human perception with respect to
the robot perception. For swarms however, this method is not feasible because all
the robots belonging to a swarm have different perceptions of the environment and
different frames of reference. Therefore, the human cannot adapt his own perception
to the ones of the thousand of robots. So, how may a human control all of these
robots in a complex environment? Clearly, controlling each single robot is inefficient
because of the large number of them. Choosing a leader is not scalable because if
this leader encounters some issues (low-level battery, physical crash, . . .) the rest of
the group would cease to function. Consequently, we need to provide the human
operator with a way to send its instructions to a very large set of robots in such a
way that every robot knows what to do, without the need for the operator to interact
with each single agent.

In this thesis, we have focused on the entry level task of moving swarms of robots
to task locations. Robotic movement is important because before being able to carry
out a task, the robots must be able to get to the site of the task. The movement
of robotic swarms gives us a self-contained activity that we can use to take some
important first steps into the field of human swarm interaction. Over the course of
this thesis we developed a framework that allowed a human operator to divide a
robotic swarm into sub-swarms and send these sub-swarms to various task location
sites.

1.1 Goal of This Work

The goal of this work was to address the scientific and technical challenges
associated to the development of a tool that allows a human to interact with swarms
formed by a large number of autonomous robots.

The main contribution of this work is the conceptualisation, design and devel-
opment of several commands that are necessary for the operator to control swarms
in a complex environment. We conceived these commands in such a way that the

1.2. OUTLINE OF THIS THESIS 3

user can manipulate the swarm as a single entity. This allows the user to have an
abstraction of all the robots in the swarm. Consequently, the operator does not have
to consider each single individual. To enable these commands, we also needed to
create a low-level architecture that allows a human to interact with many robots at a
time. Finally, we had to develop the interface between the operator and the robots,
that is, the means by which the human actually send its queries. In this work, we
chose gestures as an intuitive means for controlling the robots. We confirmed the
feasibility of our system by conducting experiments in which we asked volunteers
to control swarms of simulated robots.

A second contribution of this work is the development of a framework used
to conduct usability measures for comparing different interaction modalities. We
defined a detailed and rigorous procedure to study the efficiency of these systems.
Based on the results of our experiments, we proposed statistical tests that can be
used for comparing and studying human swarm interaction techniques.

1.2 Outline of This Thesis

In Chapter 2 we present the background necessary for this work. Then, in Chapter
3 we develop the swarm robotics part of the system. In the following Chapter 4
we present the tools created to achieve the gesture recognition part. Chapter 5 is
devoted to the usability experiments in which we propose a complete methodology
to study the ease of manipulation of the system. Next Chapter 6 presents statistical
tools that can be useful to analyse the usability difference between several interaction
devices. Finally, we summarize in Chapter 7 the work achieve so far and discuss
future potential studies.

Chapter 2

Background

In this chapter, we present the underlying fundamentals of this work. First, we
present Swarm Intelligence and Swarm Robotics. Afterwards, we review the notion
of human computer interaction and we see the novel approaches of this field.

2.1 Swarm Intelligence

Swarm Intelligence, commonly abbreviated as SI, can be loosely defined as being
a sub-field of artificial intelligence. A swarm intelligence system is made up of
relatively simple individuals interacting locally with each other and following simple
behavioural rules. From these interactions, a global behaviour can emerge. In a
swarm intelligent system, these individuals, also called agents, have a restricted
capacity of reasoning and representation. Their capacity of resolving a complex task
lies in the collective interaction of the individuals. Each agent takes its own decisions
based on the local information.

The term swarm intelligence has been proposed by Beni and Wang in 1989 [4].
SI systems are inspired by the collective behaviour of groups of animals or of social
insects. Ants colonies [17], fish schooling [25] bird flocking [54] are all examples
of natural collaborative systems (see figure 2.1). The four main characteristics of a
social insect colony are:

Flexible: their work is not perturbed by internal or external changes.

Robust: even if some agents fail during a task, the others can still reach their goal.

Decentralized: there is no leader agent in the colony.

Self-organized: the resulting solution emerges from local interactions and simple
behaviour, instead of being predefined.

4

2.1. SWARM INTELLIGENCE 5

(a) (b) (c)

Figure 2.1 : (a) a path on water formed by fire ants (source: http://6legs2many.wordpress.
com). (b) school of fish (source: http://scottpenny.smugmug.com). (c) birds
flock (source: http://armedwithvisions.com).

So far, we defined swarm intelligence quite broadly. A more commonly and rig-
orous definition is given by Bonabeau et al. [6]: ”Any attempt to design algorithms dis-
tributed problem-solving devices inspired by the collective behaviour of social insect colonies
and other animal societies”.

Applications of swarm intelligence are vast: optimization algorithms [19], data
mining [24], network routing [11] and, the one that interests us the most, swarm
robotics [18].

2.1.1 Swarm Robotics

The term swarm robotics emerged from the use of robots to study swarm intelligent
systems [14]. This sub-field of swarm intelligence focuses on the study of the tech-
niques used to emerge artificially a global and collective behaviour from a large
number of physically and simple embodied agents. These agents interact with each
other and their environment [31]. The following five criteria have been proposed as
a working definition of a swarm robotics system [31]:

Autonomy: it is required that the robots are autonomous and do not depend on any
other kind of agent. They must be able to interact with their environment.

Large number: even if we do not explicitly define the minimum number of robots
belonging to a swarm, a large number of units is required in order for cooper-
ative behaviour to occur.

Limited capabilities: the robots of the swarm should be relatively inefficient on
their own. The tasks that swarm robotics systems intend to solve are too
difficult for a unique entity.

Scalability and robustness: the deployment of new agents in the system should
improve the efficiency of the handling of the task. On the other hand, removing

http://6legs2many.wordpress.com
http://6legs2many.wordpress.com
http://scottpenny.smugmug.com
http://armedwithvisions.com

2.2. ROBOT HARDWARE 6

some entities should not cause dramatic failure.

Distributed coordination: the robots should only communicate with local interac-
tion and should sense a limited part of the environment.

Thanks to the relatively low cost of robots, swarms of robots will be able to be used
in industry. Şahin identifies in [14] some applications. The distributed characteristic
of such systems makes their use well-suited for tasks that handle localization in
large spaces, like finding the place of a specific problem (see figure 2.2(a)). Other
good opportunities to use the collaborative behaviour of swarm are tasks that are
too dangerous for human beings. An example of such a task is the cleaning of a mine
field (see figure 2.2(b)). Eventually, we saw that robustness is required in a swarm
of physical agents. If robots are communicating with each other as in a very large
network, a node loss in the network should not prevent the system from continuing
to operate (see figure 2.2(c)).

(a) (b) (c)

Figure 2.2 : (a) Robots could explore unknown areas (source: http://www.fastcompany.
com). (b) Instead of human beings, one could imagine a swam of robots exploring
a mine field (source: http://www.cyberpresse.ca). (c) A network of robots.

2.2 Robot Hardware

Robots used in this work were built during the Swarmanoid project [44]. The
Swarmanoid project had as objectives to propose a new distributed robotic system
compound of heterogeneous robots. The robots used are called foot-bots (see figure
2.3). They can move on the ground and can self-assemble in order to form larger
and powerful entities.

They are built on a multi-processor architecture running under a Linux operating-
system. A main processor manages the heavy computation, such as vision processing
and other higher-level control while other micro-controllers focus on the sensors
embedded on the robots. The main processor is a 533 MHz i.MX31 ARM 11, with

http://www.fastcompany.com
http://www.fastcompany.com
http://www.cyberpresse.ca

2.3. SIMULATOR 7

Figure 2.3 : A foot-bot.

128MB of main memory and 64MB of FLASH to store data. There is a USB 2.0
controller to access the system and they fit a 802.11g wireless network controller to
either access the system or to let the robots communicate with each other.

A second mean of communicating for the robots is the range and bearing sensor
which allows them to “feel” other robots in a 3D environment. This sensor has a
precision of 10 cm up to 5 m and uses IR rays and radio to communicate.

The size of the foot-bots is 28 cm high and 13 cm of diameter. They have a differ-
ential drive system which allows them to go up to 30 cm/s. To allow self-assembling,
they use a gripper located above the base module. There is a 12 LEDs ring and a
light beacon which allows foot-bots to communicate using colour detection. There
are two distance sensors for short and long ranges. Two cameras are used for top
detection and an omnidirectional one for environment detection. A torque sensor
allows the robots to measure the force applied on themselves. Finally, an RFID
reader and writer is located on the bottom of the foot-bots.

2.3 Simulator

In almost all scientific fields, simulations are a crucial step during the elaboration
of new concepts. Simulations are intended to mimic real systems and are used to
retrieve useful data, as if we would have access to the real environment. The same
simulations can be performed multiple times having either tuned some parameters
or having changed all the implementation of the solution in itself, allowing us to
compare the results between the different solutions.

Robotic and swarm robotics also extensively use simulations. There is a number
of advantages of using simulations to create innovative robotic algorithms. First,

2.3. SIMULATOR 8

it allows the developers to rapidly test novel concepts without the need to use real
robots. Simulators are also used to speed up the processing time, gaining a large
amount of time. Moreover, building real robots is still expensive, especially if a lot of
robots are required for the experiment. Using a simulator allows the use of as many
robots as needed, from ten to thousands of them. In addition, unexpected situations
such as robots crashing have no cost effect during simulations.

A perfect simulator would allow us to assure that if the simulations are correctly
working, then real world executions of the algorithms would give exactly the same
results. Unfortunately, this is not true. Indeed, what gives their advantages, such as
the elimination of a few real parameters that are difficult to model also gives them
their disadvantages. The same parameters that were removed, or even parameters
that the designers did not think of make the real executions different from what was
expected.

For this work, ARGoS (for Autonomous Robots Go Swarming) [51], a robotic
simulator has been extensively used during all parts of the project. ARGoS has been
developed during the Swarmanoid project to tackle the disadvantages of the other
existing simulators [44]. The previous simulators focused either on scalability, that
is, supporting a large amount of robots, or on flexibility, that is, supporting a high
number of different robots. The result of Swarmanoid’s simulator is a highly flexible
and scalable multi-robot simulator.

Figure 2.4 depicts the architecture developed for ARGoS. The core idea of the
architecture is the use of modules that are loaded at run-time and that are organized
around the simulated space. This space contains the information about the enti-
ties that are present in the space such as their position and their orientation. The
controllers interact with the simulated space through sensors and actuators.

Controller

Sensors Actuators

Entities

Simulated 3D Space

Physics Engines Visualizations

Control Interface

Figure 2.4 : ARGoS architecture. Source: [51]

The controller is the module that allows the user to create the robot’s behaviour by

2.4. HUMAN COMPUTER INTERACTION 9

accessing both the sensors modules and the actuators through the control interface.
This interface is the same on real robots, which allows the user to write the code only
once. The two last modules are used to communicate with the simulated space: the
sensors receive data about the environment, such as range and bearing data. The
actuators allow the robot to interact with the space, for example, writing data in the
range and bearing’s payload.

The physics engines are responsible for updating the state of the entities present
in the space (such as robots, walls and mobile or non-mobile objects). Multiple
physics engines can be used in the same simulation, which is one of the most
powerful features of ARGoS. The visualization modules render the simulated space.
In ARGoS, three visualization modules exist. The first is an OpenGL-based graphical
interface. The second uses POV-Ray to render a higher quality of what is happening
in the environment. Finally, a text-based feedback can be used for post-simulation
statistics.

All these modules can be created, modified and configured through an XML
configuration file. This eliminates the necessity to compile the controller after each
modification.

2.4 Human Computer Interaction

One of the many challenges in computer systems is the mean of interaction
between them and the users in such a way that they can use the system with a
minimum of instructions. This section retraces the history of the development of
user interfaces and introduces a new paradigm, namely the Natural User Interface
(NUI).

2.4.1 History

During the 1950s, computers were not able to perform multiple tasks at the same
time and resources were very expensives. There was no “real” interaction as we
know today, that is, the user and the system could not interact in real-time. Users
had to deal with Batch interfaces (see figure 2.5(a)) which are non-interactive: users
gave the input of the task which had to be done and the batch system outputted the
results after several hours or even after days.

The 1960s introduced the Command Line Interface (CLI). People interact with a
computer system through a keyboard to send their commands. CLI was a big step in
human computer interaction because coupled with the improvements of computing
power, users could interact with their system in near real-time. The disadvantage

2.4. HUMAN COMPUTER INTERACTION 10

of this system is that the syntax of the command is very strict. Users must enter the
syntactically correct commands and memorise them. It takes a large amount of time
to master the system and to become familiar with it.

During the same decade, two big inventions were created. The first was produced
by Ivan E. Sutherland during his PhD thesis. It is the pioneering system of the user
interaction systems: Sketchpad Sutherland [55] (see figure 2.5(b)). This system used
a light pen which allowed the user to draw on the screen. It was possible to select
objects and to move them on the screen area. Ivan Sutherland received the Turing
award in 1988 for his contribution, which is considered as being the first graphical
user interface [10]. The second, more known and still used today is the mouse. It was
developed at the Standford Research Laboratory by Doug Engelbart as part of his
NLS project (oN-line System, see figure 2.5(c)) which was the first to use hyper-text
links and a mouse as a pointing device [20].

The first machine that looks like everything we know today was the Xerox Star
system (see figure 2.5(d)) developed by Xerox Corporation in 1981. It was the first
personal computer using graphical user interface that we are now used to seeing [32].

2.4.2 Towards a New Paradigm

Graphical User Interface follows a paradigm called WIMP for Window Icon Menu
Pointing device [59]. It has been developed in order to give the user a representation
model of the system. With GUI, the users manipulate windows and buttons while
icons are a good way to give a meaning for a specific command and menus order
the available actions. A. Van Dam argues in [59] that the WIMP paradigm is be-
coming more and more inappropriate. The first reason is that the more complex an
application becomes, the harder the learning phase to use the application becomes.
The second issue raised by the author is that users spend too much time using the
interface instead of the application. They have to navigate a lot in the interface
before doing something useful.

Ron George and Joshua Blake go deeper in the analysis of WIMP. According
to them, WIMP requires a too high cognitive load while interacting with the GUI.
This can prevent some people with limited cognitive faculties from using these
systems [22]. To address the previous issues, George and Blake came up with a
new paradigm, namely OCGM. Instead of manipulating windows, buttons and
menus, in the OCGM model, the users manipulate Objects, Containers (sets of
objects), Gestures and Manipulations. The two lasts differ in the sense that with a
manipulation, the object reacts immediately (for example: moving an object in the
space) while with a gesture, the system waits until the end of the gesture to achieve
a particular command. According to the authors, this new model allows the user to

2.4. HUMAN COMPUTER INTERACTION 11

(a) (b)

(c) (d)

Figure 2.5 : (a) is the IBM 26 working as a batch system (source: http://www.

tietokonemuseo.saunalahti.fi on webarchive.org) (b) is the Sketchpad
Sutherland in action (source: http://www.mprove.de). (c) is the oN-Line System
created by Engelbart (source: http://sloan.stanford.edu). (d) shows a Xerox
Star person computer. (source: http://www.digibarn.com)

interact with a system thanks to his cognitive skills developed during his early age.
This tends to make the system more intuitive and natural to use.

This new paradigm allowed the emergency of Natural User Interfaces (NUI)
which are based on natural human communication behaviours. With NUI, users
can interact with the representation of an object in the system like they would
interact with the same object in the real world. For several years now, we have
seen several kinds of NUI systems emerge from video games companies. In 2006,
Nintendo proposed a new video game console, the Wii, using a remote controller
(Wiimote) that uses an accelerometer to detect positions in a 3D space. In 2010,
Microsoft launched the Kinect device which allows a user to play video games using
its body as a controller.

In the context of robot interaction, NUI clearly has advantages over more classical
interaction devices. Classical devices require the user to learn their functioning. It
can break down and the user needs to carry around it. On the other hand, if the

http://www.tietokonemuseo.saunalahti.fi
http://www.tietokonemuseo.saunalahti.fi
webarchive.org
http://www.mprove.de
http://sloan.stanford.edu
http://www.digibarn.com

2.4. HUMAN COMPUTER INTERACTION 12

robots are able to understand the meaning of the usual human communication (i.e.
language or gestures), then the user could interact with the robots like he would
interact with other humans, in a natural way.

Chapter 3

Human-Swarm Interaction

3.1 Motivation

Swarm robotics, as we defined in section 2.1 focuses on the development of
distributed algorithms for autonomous robots. These agents are capable of achieving
specific tasks in a known or unknown context, communicating with each other and
with their environment. A global behaviour emerges from a large number of simple
entities.

These entities however, are not fully autonomous. For a swarm to be useful to a
human, the human has to be able to tell the swarm what task to execute and where
to execute it. Other situations in which controlling the robots is useful are when
the interactions between the robots results in unpredictable situations. For example,
due to situational changes, or changes in the environment.

Controlling dozens or thousands of robots is fundamentally different to control-
ling a unique entity, like a sheep-dog for example. Indeed, it is possible to teach
the sheep-dog the meaning of go straight, turn left or turn right. The sheep-dog only
needs to remember that the action go straight means that it does not have to change
its direction, while turn left and turn right correspond to two different directions.
What about now if we wanted to control a group of sheep-dogs? It is unlikely that,
at each moment, they always face the same direction. Consequently, the commands
go straight, turn left and turn right would no longer be meaningful, as they would
mean different things to different sheep-dogs.

The same problem arise with swarms of autonomous robots. The same com-
mands as above would not have the same meaning for each of them. Clearly, the
operator cannot control separately each individual. This would not be scalable. He
should not have to concern himself with each single robot. Instead, he should give

13

3.2. RELATED WORK 14

his orders to a group, expecting the group, as a single entity, reacts to these orders.

One of the important things we have to consider as designers of a control structure
is the equilibrium between the level of control of the instructor, and the level of
decision making of the robots. If the robots had a very high level of decision
making, the human would not be able to control the swarm as precisely as he would
like. On the other hand, if these robots would not take any decision by themselves,
the instructor should control each individual, losing the benefit of swarm robotics
efficiency.

3.2 Related Work

Interactions between users and swarms of robots have, to date, received little
research attention. However, we can find in literature a few studies related to HSI.
Most studies about swarm interaction are inspired from human robot interaction [2].
In this section, we review the related work in the field of HSI.

McLurkin et al. [47] propose some ideas to interact with an entire swarm. They
developed a graphical interface which allows a single user to control a swarm of
robots. They based their work on the idea of real-time strategy video games in
which the players can manipulate an army of more than 100 units. The authors also
discuss the problem of communicating information from robots to human. While the
authors developed their solution with a graphical user interface, we think that a more
natural way of communication is more suited. First, their solution requires the user
more cognitive resources. He has to concentrate both on the graphical interface,
and on the swarm he manipulates. In this work, using natural communications
such as gestures tends to decrease the cognitive load of the user. Moreover, it
removes devices dependency such as the mouse, the keyboard and even the screen.
McLurkin’s system needs real-time modelling of the robots and the environment.
Our system allows the robot and the environment to be their own model [8].

Bruemmer et al. in [9, 15] propose that, instead of globally manipulating the
swarm, the user could have some means of influencing the emergence of the swarm’s
behaviour. They point out that the interaction between humans and robots should
not be inspired from the insect world, in which, according to the authors, the insects
do not operate with human operators. The authors chose to make the human
operator a member of the group in order to modify the behaviour. Our approach is
fundamentally different, in that by allowing external manipulation of the swarm, we
do not require a human operator to have to think like a member of a robot swarm.

Kira and Potter [34] use a different approach to let a human influence a swarm.
It is based on physicomimetics in which forces that exist in the real world determine

3.3. HIGH-LEVEL CONTROL 15

the robots’ movement. The authors study two interaction mechanisms. The first
modifies the physicomimetics parameters in order to change the robots’ behaviour.
On the other hand, the second does not change these parameters but adds virtual
agents in the system which interact with the real ones. In this work, we do not add
any real forces in order to try to adapt robots behaviour.

In [36], Kolling et al. study the manipulation of large swarms of robots with
simple commands to achieve basic tasks like rendezvous or deployment. They
planned to study, in the near future, the efficiency difference in achieving specific
tasks between a 100% autonomous swarm of robots and a swarm that can be helped
by a human operator. In our work, we provide to the user more powerful tools
than those given by Kolling. Moreover, like McLurkin, they developed a graphical
interface which we believe, is not well adapted for real world communication control.

Recently, A. Giusti et al. in [23], developed a hand gesture system for communi-
cating with a swarm. The real-time recognition of the hand gesture is processed by
the robots themselves. They exploit robot mobility, swarm spatial distribution and
multi-hop wireless communication in order to let the robots implement a distributed
and cooperative sensing of hand gesture and reach consensus about a gesture.

3.3 High-Level Control

In this section, we present an abstraction of the main tasks that the robots must
be able to perform in order to be useful for human beings. We will not focus on
specific tasks such as mine detection or object retrieval. We suppose that the robots
are already capable of doing several tasks like that. The problem that concerns us is
how can a human operator order the robots to carry out a specific task in a specific
location. We will see that this control must be equilibrated. The user must be able
to control the swarm precisely while the robots must behave autonomously.

In figure 3.1 the black rectangles A and B represent two locations where a task
must be executed. The gray rectangles model obstacles, like walls, that the robots
cannot pass through. Finally, the set of blue circles depicts a single swarm of robots.

This picture models a place where the robots may have to work in different sites.
Indeed, it is likely to happen that a human operator wants to request his robots
to work on different tasks in different locations. These tasks can be of different
natures thus many groups must work independently. From the picture 3.1, several
difficulties related to the environment arise:

– The tasks to perform can be situated in many different locations in the envi-
ronment.

– The environment is complex. There are several walls which create corridors

3.3. HIGH-LEVEL CONTROL 16

in which the robots must turn.
– It may happen that the passages are relatively small.

A

B

Figure 3.1 : Arena in which the human operator controls a swarm of robots. The black rect-
angles are two locations where the robots must go to work. The gray rectangles
models the walls the robots can’t pass through.

Moreover, the environment can change overtime. The robots must thus be able
to move around an unknown environment.

Because the human operator knows the environment and locations of the tasks
to perform, we decided to offer him the capability to guide the robots in this envi-
ronment.

We saw that the environment in which the swarms had to move around was
complex. The main task for the human operator is to move a swarm in the environ-
ment. To do so, a first solution would be that the robots know the exact position of
where they must go and the path to reach this location. This is not a good solution
because the system would not work in unknown environments. Hence, the robots
should construct a map of the environment before being functional. However, any
changes in the environment would lead to a desynchronisation between their virtual
map and the reality.

Allowing the user the ability to steer a swarm in the environment provides the
equilibrium between his level of control and the autonomy of each robot. The user
only focuses on the direction of the swarm, not on the direction of each individual.
It is up to each robot to autonomously take the right direction with respect to its
own frame of reference. Moreover, it is the robots responsibility to stay close to each
other in order to form a group at any time. The user does not have to worry about
the structure of the group.

We also saw that the user must be able to send multiple groups to different places
in order to work on tasks of various kinds. Therefore, we provide the operator with

3.4. COMMUNICATION ARCHITECTURE 17

a command to separate a swarm into two sub-groups. Once more, it is not the
operator responsibility to choose the exact partition of the robots. Because the
human only needs to manipulate groups, the user will not focus on anything but
sending the split command to a group. The robots belonging to the swarm will
autonomously separate in order to form distinguishable groups of approximatively
the same size. Once the robots are separated, the user will be able to control the two
groups independently.

On the other hand, an operator may want to add more robots in a group in order
to improve the efficiency of a task. We let the user reassemble two groups in order to
form a bigger one. Like in the previous commands, the human does not have to be
concerned about the way the robots merge. After sending the merge command, the
robots automatically decide where they will meet in order to form a unique group.

An interruption mechanism must also be provided to the human operator in
order to stop a swarm either moving in the space or achieving a task.

Finally, all the previous commands could not be invoked without a mechanism
for choosing the swarm which is intended to control. This is the selection mechanism
which offers the user the abstraction of different and independent groups. This
group abstraction is the key element for controlling multiple swarms, improving the
effectiveness of the user.

3.4 Communication Architecture

In this section, we explain the architecture created to communicate the commands
from the human control device to the robots.

3.4.1 Architecture

It was necessary to develop an architecture which allows the sending of action
requests from a control device to the robots. We implemented a client - server
architecture wherein robots act as clients and connect to a server from which they
can receive the user’s commands. This architecture is based on the Transmission
Control Protocol (TCP) which provides a reliable connection between hosts [37]. The
footbots used in this project are fitted with a 802.11g wireless controller by which
they can be accessed.

As can be seen in figure 3.2, the control device software is coupled to a server
which broadcast every known command. All the robots, which are connected to the
server, receive a message that represents the command to be performed.

3.4. COMMUNICATION ARCHITECTURE 18

Figure 3.2 : The client - server architecture. The server broadcasts the messages to all the
robots.

3.4.2 Protocol

To let the control device send commands to the robots, we had to design the
communication protocol used to share the messages. In this section, we present the
technology used to create the client - server architecture and the protocol that the
server and the robots use to communicate.

We saw that ARGoS is coded with the Qt library. Consequently, it was tempting
to use Qt and its QtNetwork module to easily and rapidly put in place a robust
client - server mechanism. For our tests, this technology has been used with success.
However, it introduces an issue. Indeed, real robots are ARM UNIX platform and Qt
has never been successfully compiled on it, therefore, a pure UNIX TCP client-server
had to be programmed. This has the advantages of being portable on every UNIX
platform, i.e. the machine that runs the simulator and the real robots themselves.

We send a unique chararacter which contains a symbol that will be mapped to a
command. This mapping is described in table 3.3

As seen in the table above there is a particular value, namely d, which represents
the turn angle made by user’s virtual steering wheel while he is turning the robots.
This angle is sent in degree. When the robots’ controllers receive a value that
represents a number greater than 8, they either interpret it as an angle or discard it,
depending on if the robots are moving or not.

3.5. LOW-LEVEL CONTROLLER 19

Char Command
1 Split
2 Merge
3 Move
4 Stop
5 Select First Group
6 Select Second Group
7 Rotate Left
8 Rotate Right
d Turn angle in degree

Figure 3.3 : Mapping table from command symbol values sent by the server.

3.5 Low-level Controller

In this section, we present the controller’s algorithm. This is the main func-
tion which receives every command and calls the corresponding behaviour. For
more detailed explanations on the commands’ algorithms, the reader may refer to
section 3.6.

Although the robots run the same controller code, the action performed will be
different for each of them depending on their inner state. Algorithm 1 shows an
abstract view of the controller.

Algorithm 1: Controller – High Level View

1 begin
2 currentState = ε;
3 if New Command Arrived then
4 if I Am the Robot Who the Command Is For then
5 currentState = CommandState;

6 if My State matches currentState then
7 DoProperAction();

A state is associated to each robot and represents the action the robot is currently
doing. There is a state for each command that lasts more than one control step. At
each control step, the controller verifies if a new command has arrived and if it is
concerned by that command it updates its inner state. Finally, the robots performs
the action related to its state. It is clear that no new command arrived at each control
step, but an action usually lasts more than one control step. Thus the robot always
verifies if it is in a state that requires it to do something, and performs the action
if necessary. Note that the empty state, represented by ε actually is an idle state in

3.6. COMMAND IMPLEMENTATION 20

which the robot does nothing but wait for a new command.

As seen in figure 3.2 the command sent by the server is broadcasted and each
robot receives it. The robot must determine if the request is addressed to it. The
system has been designed in such a way the user must select a group of robots
before requesting it to do something. Two different selection commands are offered
to the user: select first group and select second group. The first is used to manipulate
one group. The user should always use this command before requiring them to do
something. The select second group command is only needed to merge two groups.
Consequently, when a user wants to send a command to a swarm, he first selects the
group and then sends the desired action. Consequently, when the robots receive an
action, they check if they were previously selected. If that is the case, then they start
working.

3.6 Command Implementation

In section 3.3 we presented the tools available to the user in order to control
swarms in complex environment. In this section, we describe the low-level imple-
mentation of the commands the user has at his disposal. We will start with the
selection algorithm which is required before sending the other commands. Then, we
will see the move which allows his to navigate a group of robots cohesively. We will
see the split, which separates a group of robots in two subgroups. Afterwards, we
will explain how the merge reassembles two sub-swarms in a single one. Finally, we
will see why the stop is only needed for two commands.

3.6.1 Select

Selecting a group of robots is crucial in this system. The user must select a
swarm before requiring it to do anything. The system has been designed in such
a way the user cannot choose the group he wants to select. Due to this restriction,
the mechanism must contain a way to automatically select a group, or change the
current selection. To select another swarm, the same command is used: the user
only repeats the command and the group selection changes. Moreover, we add the
possibility to unselect the groups. The unselect command is actually performed
when all the groups in the arena have been selected exactly once. For instance, if n
swarms are in the arena, the n + 1th selection command will unselect the currently
selected group and will not select any other group.

The merge command is the only command which requires the user to select two
groups at a time. A second selection command has thus been created, which works

3.6. COMMAND IMPLEMENTATION 21

as previously explained.

The following algorithm shows how the controller manages the selection.

Algorithm 2: Selection algorithm

1 FirstSelectedGroupID← FirstSelectedGroupID + 1
2 if FirstSelectedGroupID == SecondSelectedGroupID then
3 FirstSelectedGroupID← FirstSelectedGroupID + 1

4 while FirstSelectedGroupID < N and FreeGroupIDs[FirstSelectedGroupID] do
5 if FirstSelectedGroupID == SecondSelectedGroupID then
6 FirstSelectedGroupID← FirstSelectedGroupID + 2

7 else
8 FirstSelectedGroupID← FirstSelectedGroupID + 1

9 if FirstSelectedGroupID == N then
10 FirstSelectedGroupID← -1

The intent of this algorithm is to update the variable that stores the current
selected group. This variable is called FirstSelectedGroupID. At any time, its
value must be the same in every controller. Indeed, each group must retain which
group is selected, in order to determine if it is the next selected group.

The algorithm starts by increasing the first selected group variable, which should
take the next existing group in the arena. However, this group may either not exist
or cannot be selected for one of the following reasons:

1. There is only one group in the arena

2. There is a gap in the sequence of the group ids

3. The next group is already selected by the second selected command

The second reason may be due to a merge, which removes one of the two group
numbers (see figure 3.4). In order to skip the gap, a vector of boolean variables is
used to know if a group id corresponds to an actual group in the arena. This vector
is called FreeGroupIDs[] and returns truewhen an id number does not match any
existing group. Iterating over this vector allows the algorithm to reach the next
existing group.

Remark that we limit the number of groups in the arena by a maximum of N
groups. The reason is practical: a different colour is assigned to each group and this
colour is chosen based on the group id. The controller has a fixed-length vector of
predefined RGB colours and assigning it to a group is simply done by accessing the
colours vector with the group id number.

The third reason why a group number could not be selected is that it is already
selected with the second selection command.

3.6. COMMAND IMPLEMENTATION 22

false true true true true true

0 1 2 3 4 5
(a)

false false true true true true

0 1 2 3 4 5
(b)

false false false true true true

0 1 2 3 4 5
(c)

false true false true true true

0 1 2 3 4 5
(d)

Figure 3.4 : Evolution of FreeGroupID[] after a sequence of splits an merges. (a) is the
beginning configuration with only one group. (b) a split has been done. (c) a
second split occurred: three groups are in the arena. (d) group 0 and 1 have
been merged and the system assigned the id 0 to the new group. A gap appears
between group 0 and group 2.

The second selection algorithm is very similar to algorithm 2 but it first verifies
if one group is already selected or not.

3.6.2 Move

The user which controls the swarm must be able to move it in the arena. He has
to move the swarm as a unique entity, that is, he must have the feeling to move the
entire swarm whatever its size, as he would lead a single robot. To understand how
we move a swarm cohesively, we need to introduce flocking control theory.

Flocking Control

Nature abounds of groups of individuals that move in a cohesive fashion, that
give the feeling that they are a unique organism moving and avoiding obstacles. This
behaviour is called flocking and can be highly observed in birds or fishes. The first
studies in artificial intelligence trying to create artificial flocking have been achieved
by Reynolds [54] which realised the first simulation of motion of flocks. This work
was based on three simple rules:

Separation: avoid crowding.

Alignment: move in the average direction of the flock.

Cohesion: adapt position to be placed at the same distance of neighbours.

We based our work on Turgut et al. [58] flocking control theory. The flocking
control vector f may be expressed as:

3.6. COMMAND IMPLEMENTATION 23

f = αp + βh, (3.1)

where p represents the force interaction between the robots, namely the proximal
control vector and h is the alignment control vector.

Robots must be kept at a certain distance from each other. The proximal control
vector models the attraction and the repulsion between the robots, so they can adapt
their distance: when the distance with other robots is too high, they feel attracted to
each other and move closer, while when the distance is too low, they feel repulsed
and move away. This vector is calculated as:

p =

k∑
i=1

pi(di)e jφi (3.2)

where di is the range, φi is the bearing of the ith robot in the group and pi(di) is
the magnitude of the vector. This vector length is computed by (x = di):

pi(x) = |V(x)| = −
dV
dx

=
2εα

x

[(
δ
x

)2α
−

(
δ
x

)α]
(3.3)

and where

V(x) = ε

[(
δ
x

)2α
− 2

(
δ
x

)α]
, (3.4)

That is, pi(di) is obtained by calculating the derivative of a virtual potential force.
It is said virtual because robots actually do not sense this potential force, but they
have to compute it. In this work, we use a potential function which corresponds
to the Lennard-Jones potential when α = 6 [33]. δ is the desired distance between
robots, and ε corresponds to the strength of the attraction and repulsion. The value
of α used in our experiments is 0.25.

The alignment control vector, h, is formally defined as:

h =

∑k
i=0 e jθi

||
∑k

i=0 e jθi ||

(3.5)

where || · || denotes the vector’s length. Each robot has its own frame of reference,
namely the body-fixed frame of reference. This reference frame is defined by the front
of the robot (x− axis) and the y− axis is coincident to the rotation axis of the wheels,
it is right handed and fixed to the centre of the robot (see figure 3.5). Robots align by
calculating the average orientation of their neighbours. In order for them to calculate

3.6. COMMAND IMPLEMENTATION 24

this, we need to add a common frame of reference. All the robots are outfitted with
a light sensor and use a light source to compute their relative positions with respect
to this light. A robot r computes its orientation θr, and receives the orientation θi

of robot i with respect to the light source. After it has received the orientation of its
neighbours, it calculates vector h by averaging their orientation.

y

x

Figure 3.5 : Robot’s fixed-body reference frame.

Robot Steering

The user has the means to steer the swarm of robots in the arena. To do so, he
just puts his hands in front of him, like he would use a virtual steering wheel. By
turning this virtual steering wheel from left to right, he chooses the direction taken
by the swarm he is controlling. The system reacts such that, the more he turns, the
more the robots turn.

The steering mechanism has an implication in the flocking control of the group.
When robots are moving, they try to stay close by the means of the flocking vector
(see equation 3.1). Consequently, even if the swarm tends to move in the same
direction, at each control step c, all the robots do not move exactly in the very same
direction because they try to adapt their position with respect to the other. This means
that, if we want an accurate steering mechanism, that is, robots turn in accordance
to the angle made by user’s steering wheel, we need to set the flocking vector f
to zero as they begin to turn. This has the effect that the robots move forwards
by turning independantly, that is, without flocking. As soon as the isuser puts
his hands horizontally to make the robots advancing straight ahead, the proximal
control vector f is set as previously explained.

3.6.3 Split

We now present the command which separates a swarm of robots into two
subswarms. After selecting a group, the user may want to divide it so that he
can move one group in one direction to do a task, and the other group in another
direction, to perform a completely different task.

3.6. COMMAND IMPLEMENTATION 25

The idea of the algorithm is to randomly change the group id of approximately
half of the robots and to assemble the robots of the same group in a specific place.
Once the robots have chosen to either change their group id or not, robots of the
same subgroup are spread among the other. Then, the two groups move in different
directions. This is achieved by making the robots move cohesively: robots of the
same group stay close to each other and are repulsed by the other group. Being
repulsed and going in different direction clearly holds off the two subgroups (see
Figure 3.6).

(a) (b) (c)

(d) (e) (f)

Figure 3.6 : Video sample from a split simulation.

We saw in section 3.6.2 that the Lennard-Jones potential is used to keep the robots
at a stable distance from each other. There is an attraction force when the robots are
too far and a repulsive force when the robots are too close. We use the same idea
in this algorithm. The slight difference is that the repulsive force is bigger when the
algorithm calculates it for two robots of different groups. This is achieved by setting
the parameter δ at a higher value for robots of different groups than for robots of the
same group.

Experiments shows that this method may already divide the initial group into
some clusters which eventually join each others. However, we discovered empir-
ically that we could accelerate the process by adding a direction vector, which is
directed to the global centre of mass of the group in which robots belong to. This
can be seen as an extra repulsion parameter, because the center of mass of the two

3.6. COMMAND IMPLEMENTATION 26

groups are not the same.

Algorithm 3 summarizes the split behaviour.

Algorithm 3: Divide a group into two subgroups.

1 SplittingGroups← FirstSelectedGroup ∪ SecondSelectedGroup
2 if MyGroupID ∩ SplittingGroups , ∅ then
3 ~c = CenterO f Mass(MyGroupID)
4 ~v = FlockingVector()

5 ~d = ~v + α~c

6 SetWheelsFromVector(~d)

The parameter α allows us to raise the weight of the center of mass vector. In our
experiments, this value is set to 4.

3.6.4 Merge

If the user thinks that a task may require more robots, he can merge two groups
to form a bigger one. This section shows how we implemented the algorithm that
reassembles two selected swarms (see Figure 3.7).

(a) (b) (c) (d)

Figure 3.7 : Video sample from a merge simulation.

The idea of the algorithm is to bring the two groups at half the distance that
separates them. Arrived at this meeting point, one of the two groups changes its
group number into the group number of the other group.

In order to know when the robots reached this distance, they calculate the time
it takes to get there. By time, we mean the number of control steps that is needed
to join the group halfway. This can be done because the robots move at a constant
speed.

Each selected group moves in the direction of the other. This direction is actually
given by the centre of mass of the future bigger group. Like in the previous algo-

3.6. COMMAND IMPLEMENTATION 27

rithms, robots move cohesively by calculating their flocking control vector. Once
the robots started moving, the algorithm compares the number of remaining con-
trol steps until to reach the meeting point. Algorithm 4 resumes the operations
performed by the controller.

Algorithm 4: Merge

1
−−−→
f lock = α

−−−−−−−→
Proximal + β

−−−−−−−−−−→GroupsCoM
2 SetWheelsSpeed(

−−−→
f lock)

3 SetMergeData()
4 if MergeCpt ≥ ControlStepsNeeded then
5 StopMoving()
6 MyGroupNumber← FirstGroupMergingNumber
7 FreeGroup(SecondGroupMergingNumber)
8 MergeCpt← 0
9 SetIdleState()

10 else
11 MergeCpt←MergeCpt + 1

The merge algorithm 4 is called at each control step by the two groups that are
merging. It moves the robots in the direction of the other group. After the merge
counter (number of control steps elapsed since they start moving) reached the total
number of control steps needed to move to the meeting point, it stops the group,
updates its group number and releases the group number of the second group.

Note that the groups that are not merging also need to know that two merging
groups have joined so they can update their own list of free group id. This is done
by catching the merge command, even if it is not addressed to them.

3.6.5 Stop

The only commands which the user needs to explicitly stop are the move and
the split. Because the split algorithm does not have any means of knowing that the
two groups are actually clearly separated, the user needs to tell it to stop. In both
cases, stopping a group from doing something only stops their wheels and changes
the controller’s state to idle mode.

3.7. REAL ROBOT EXPERIMENTS 28

3.7 Real Robot Experiments

Each algorithm presented in section 3.6 were executed on the real robots. We
have been able to reproduce in real conditions the set of actions we were able to do
with the simulator. These actions were requested by the means of the same gesture
recognition system developed as part of this thesis (see Chapter 4).

Even if the result of each behaviour were reached, we encountered some issues
with the split behaviour and the move. During a split, some robots did not respect
the attraction and repulsion force. Indeed, it has happened that two robots moved
in such a way that they both went in the direction of the other to eventually bump.
By decreasing the velocity of the wheels and by increasing the minimum distance
between the robots, this problem was solved.

A second difference with the simulation is that the steering mechanism is less
easy to use. We saw that the robots had to stop flocking when they start turning.
After having turned, the robots communicate in order to flock. This introduce at this
moment, a small bias in their direction. Due to the flocking mechanism, the robots
do not continue in the very same direction and deviate.

Despite these small issues, we were able to send every command to the robots.
They performed the behaviours as we expected, in spite of some small differences
with the simulation.

Figure 3.8 illustrates the split behaviour. First, the user selects the group he
wants to split. Then, he executes the gesture associated to this command. The robots
change their group number with probability 0.5. They feels attracted to the robots
from the same group and repulsed from the robots of the other group. Figure 3.10
shows two groups merging. First, the user selects the groups. Then, he orders them
to reassemble in a bigger one. The two groups move in the direction of the other.
Arrived mid-way, the two groups are reassembled. Figure 3.9 depicts a user guiding
a swarm. He steers the robots with its arms like if he has a steering wheel.

3.8 Discussion and Conclusions

The work presented in this chapter contributed to the swarm robotics part of the
interaction between human and robots. First we designed a network architecture in
order to send data from the control device to the swarms of robots. The resulting
architecture broadcast the gesture command label. Based on this command and on
their inner state, the robots decide if they must perform the action or discard the
command.

3.8. DISCUSSION AND CONCLUSIONS 29

(a) (b) (c)

(d) (e)

Figure 3.8 : Split: (a) initial group (b) group is selected (c) the user orders the robots to split
(d) robots of the same group are attracted. (e) the two groups are separated.

(a) (b) (c)

Figure 3.9 : Move: (a) the user steers the robots with its arms. When its arms are are the
same high, robots move straight. (b) the user turns its arm on its right to turn
the robots. (c) finally the robots continue straight, according the user order.

We also proposed the minimum useful swarm behaviours:

Move is the action consisting in steering the robots in the arena. The Kinect system
offers the user a virtual steering wheel with which the user chooses the direction
of the swam while it is moving.

Split separates a swarm of robots in two sub-groups. The user does not do anything
but send the split command and the robots separate by themselves according
to attraction and repulsion rules. A weak point of the current algorithm is that
the robots receive very precise range and bearing information of all the robots
involved in the split. This is not the case with the real robots because of noise
and range and bearing limitations. Robots should communicate only with a
restricted neighbourhood. Each robot could propagate data from other robots
by hopping from robot to robot.

Merge is the opposite command of the splits. It reassembles two swarms in a single

3.8. DISCUSSION AND CONCLUSIONS 30

(a) (b)

(c) (d)

Figure 3.10 : Merge: (a) two groups are selected (b) the user orders the groups to merge (c)
each group go in the direction of the other one (d) at mid-way they finished
each robot belong to the same group.

one. The swarms can be anywhere in the arena but must be face to face. An
interesting improvement would be to allow a user to merge two groups of
robots even if they are separated by a wall. The groups should find a path in
which they eventually meet.

Select is available in two commands. One is used to take the control of one group
at a time. A second command exists to achieve a merge.

Stop the robots from moving.

All these behaviours were created in order to have an equilibrium between the
user precision control and the auntonomy of the robots.

Chapter 4

Gesture Recognition

This part of the work was carried out jointly with Youssef S. G. Nashed, PhD
student at University of Parma, Italy. For his internship, Y. S.G. Nashed had to
develop a gesture recognition software. We decided to work together in order to
achieve our respective goal.

Y. Nashed planned to develop new gesture recognition techniques during his
PhD. The first version of the system developed at ULB for his internship, is used in
this work.

This chapter is organized as follows. First, we introduce the hardware device,
the imaging device that retrieves the user’s body data. Then, we will motivate our
choice regarding the framework used to build the system. Subsequently, we will
present the methods and algorithms developed to have a usable gesture recognition
system.

4.1 Hardware

This section presents the Microsoft Kinect Device, a real-time 3D device initially
created for the Xbox video game console.

Kinect is embedded with an RGB coloured camera, a depth sensor and a multiar-
ray microphone. The depth sensor is divided in a IR light source and a monochrome
CMOS sensor in order to calculate the distance between the sensor and the objects.
Thanks to the infrared, the device can be used in any ambient conditions.

31

4.2. SOFTWARE 32

4.2 Software

This section presents the different frameworks that allow us to communicate
with the Kinect device. Since the Kinect is quite a young device, we only focus on
the framework that was available at the beginning of this work.

4.2.1 Microsoft Kinect SDK

Microsoft waited eight months before releasing their software development
toolkit. Microsoft announced the availability of their SDK for non-commercial use 1

in June 2011 [1].

The API provides a data structure which allows the programmers to manipulate
the user’s skeleton. As shown in figure 4.1, the structure offers the developers
information about 20 joints of the user’s body.

Figure 4.1 : The 20 joints that Microsoft Kinect SDK recognizes. (Source: http://msdn.
microsoft.com)

Unfortunately, the only information about the joints are their position in the
space. We will see later in section 4.3 that joints positions are inconvenient data to
achieve gesture recognition.

A second disadvantage of this framework is that it only runs under the Windows
7 operating system. One of our requirements was to use a cross-platform API in
order to develop a system that can run under, at least, both Windows and Linux.

1. As of February 2012, Microsoft released a new version of its SDK which is now commercial ready.

http://msdn.microsoft.com
http://msdn.microsoft.com

4.2. SOFTWARE 33

4.2.2 OpenKinect

While the device was released by Microsoft on November the 4th 2010, the first
open-source 2 driver was commited on GitHub, a web developers platform 3 on
November 10th, 2010.

OpenKinect provides a driver and an low-level API to communicate with the
device under Linux, Windows and Mac. This means that it only provides a mecha-
nism to access raw data such as RGB and depth images, controlling the motors, the
accelerometers and the LEDs.

Compared to the Microsoft SDK, the disadvantage is that no higher-level func-
tionalities are available for the programmer to manipulate user’s skeleton data. In
order to develop a gesture recognizer, more complex work on raw data should
be performed to achieve the same result than a framework providing higher data
structures.

4.2.3 OpenNI/NITE

PrimeSense 4 is the company that developed the motion sensing technology of
the Kinect device. PrimeSense created OpenNI, a non-profit organization which
aims to provide a set of API for writing NUI applications for several devices such as
the Kinect.

The OpenNI organization developed a framework, confusedly called OpenNI,
which provides an interface for physical devices like the Kinect. This framework is
free and open-source 5. OpenNI can be coupled with NITE, a middleware providing
motion tracking which is also distributed free. On the other hand, the source code is
not open. NITE provides the implementation for manipulating the user’s skeleton
data such as the joints position and orientation (see figure 4.2).

Figure 4.3 depicts the architecture of OpenNI. NITE corresponds to one of the
middleware components and implements the skeleton data structure. The applica-
tion uses this structure through the OpenNI interface.

For this work, this framework was chosen because it corresponds to the require-
ments of the system that is developed. It is mutli-platform and it provides sufficient
high-level functionalities to implement a simple gesture recognizer.

2. The licences used by OpenKinect are Apache2.0 and GPL2.0.
3. https://github.com/OpenKinect/libfreenect
4. http://www.primesense.com
5. GPLv3.0 and LGPLv3.0

https://github.com/OpenKinect/libfreenect
http://www.primesense.com

4.3. GESTURE PROCESSING 34

Figure 4.2 : On the left, the depth image with the skeleton tracking. On the right, the RGB
version and the skeleton tracking.

Figure 4.3 : OpenNI/NITE Architecture

4.3 Gesture Processing

The human body is structured by its skeleton composed of 206 bones [53]. These
bones are connected by articulated joints permitting movements. All joints do not
have the same number of movement direction: they have various degrees of freedom
(DOF). For instance, the knee is a 2-DOF joint: flexion, extension and lateral rotation,
while the shoulder is a 3-DOF joint. We will see in the following how we use joints
to define and recognize gestures.

In the previous section, we have reviewed the three main frameworks which can
control the Kinect device. The framework chosen to develop the gesture processing
is OpenNI jointly with the NITE middleware. In this section, we will see the algo-

4.3. GESTURE PROCESSING 35

rithmic aspects of the system. First, we will give a high-level introduction of the
skeleton structure provided by OpenNI. Then, we will discuss how we created the
gestures. Subsequently, we will show how these gestures are recognized.

4.3.1 The Skeleton Data Structure

The API provides positions and orientations of the skeleton’s joints of a user with
respect to the real world coordinate system, where the origin is at the Kinect sensor
(see figure 4.4).

Figure 4.4 : The real world coordinate system takes its origin at the device sensor with the
z − axis pointing out of the screen.

In the following, we present the differences between the use of joints positions or
the use of the orientations in the perspective of implementing a gesture recognition
software.

Position

The API returns the position of a specific joint as a 3-dimensional vector con-
taining the X,Y and Z values with respect to the real world reference frame. These
coordinates are given in millimetres

It is clear that, given two different locations of the user in the space, the API
will return different values for his joints’ positions. Moreover, each pair of joints
are separated by a distance which is different for nearly everybody. Thus, for two
different people in the very same position, at the very same place in the space, the
values returned by the API have a very high chance to be different

We can see that using the joints’ position to develop a gesture recognizer is not
a good idea. It would be too user-dependant and the user would always need to

4.3. GESTURE PROCESSING 36

be placed at the same place in the environment, which is not always possible if this
environment changes.

Orientation

In addition to the joints’ position, the framework also returns the orientations of
the joints as a 3x3 orthonormal rotation matrix. It represents the rotation between
the joint’s local axes and the real world coordinates. The API defines the T-pose,
which is the neutral pose in which each joint’s orientation is aligned with the real
world coordinate system (see figure 4.5).

Head

Neck

Right
Shoulder

Left
Elbow

Right
Hand

Torso
Center

Left
Hip

Right
Knee

Left
Foot

Figure 4.5 : Skeleton representation. Source: based on Joint definitions from [52].

The following figure depicts the evolution of the user’s right elbow rotation with
respect to the world coordinates.

(a) (b) (c)

Figure 4.6 : Joints orientation: the big axes are the world coordinates system. The small ones
are those attached to the users’ right elbow.

4.3. GESTURE PROCESSING 37

If the rotation matrix is used to manipulate the skeleton’s joints, the disadvan-
tages of using joints’ position mentioned above disappear. There is no more depen-
dency on a specific user’s skeleton: if two different users are in the same position,
the joints’ rotation must be the same for each of them.

4.3.2 Gesture Creation

Creating a gesture informally consists of taking “snapshots” of several poses of
the user’s skeleton. From these snapshots, information about the skeleton must be
saved. We saw in the previous section that the OpenNI framework can access joints
information such as position and orientation. Unfortunately, the position of the
joints in the space is too user-dependant. On the other hand, the joints’ orientation
can be used to determine a pose without requiring any information about the place
in the space where the user is.

This is the approach that has been implemented in the system developed as part
of this thesis. Each gesture is defined by a finite ordered sequence of poses. These
poses are characterized by the joints’ orientation. These orientations, expressed as a
rotation matrix are saved for each joint involved in the gesture. Technically, for each
pose, one XML file is created in which joints’ rotation matrix is formatted in XML
tags.

Figure 4.7 : The graphical interface for recording a new gesture.

Figure 4.7 depicts the graphical interface developed to record users gestures. On
the left of the interface, the user’s body is shown with its skeleton. Before recording

4.3. GESTURE PROCESSING 38

the gesture, it is required to select all the joints that are involved in the gesture.
Then, the total time of the gesture should be entered (generally one second) and the
number of poses per second that the user will record. Afterwards, each pose is saved
by the system by taking the relevant data from the skeleton.

4.3.3 Gesture Recognition

Gestures are a natural way to the communicate. Whether it is by finger, hand,
arm, face, head, a lot of meaningful information may be expressed by simple move-
ments of the body. If humans are used to recognize the meaning of several gestures
even without any previous explanation about them, computers must know the dif-
ference between a meaningful gesture and a body movement that is of no interest.

Mitra and Acharya [48] broadly define gesture recognition as being the process
by which the gestures made by the user are recognized by the receiver. A gesture can
be either static or dynamic. A static gesture denominates the set of poses performed
by a user, while dynamic gesture is used to categorize the gestures made by a set of
motions in a single continuous flow.

There exists several approaches in the literature to achieve gesture recognition.
For static gestures, a template-matcher may suffice, while for dynamic gestures,
structure with temporal dimensions should be used. Lee and Kim propose in [39] an
approach using Hidden Markov Models. Israd and Blake introduced a condensation
technique, which is an improvement of particle filtering for tracking process [27].
Davis and Shah developed in [16] a method to recognize human gestures using a
Finite State Machine (FSM). The method used in this work to recognize user’s gesture
is based on a FSM.

Gesture Abstraction

In order to create a gesture recognizer, the body motions must be abstracted and
modelled. There are two main categories: appearance methods and 3D model meth-
ods. The first one uses methods such as body marker, or geometric parameters of the
body (perimeter, convexity, . . .). The second method works with skin information,
skeleton and joints data.

The OpenNI/NITE framework is based on a 3D model. It provides different data
about the 3D spatial information of the user’s joints.

4.3. GESTURE PROCESSING 39

Algorithm

The idea of the algorithm is to assign a deterministic finite state machine (DFSM)
to each gesture that must be recognized. Matching a gesture is achieved by reaching
the (unique) final state of its DFSM.

Each state of the DFSM corresponds to a pose of the gesture it models (see figure
4.8). The final state is the last gesture’s pose. The transitions are done by evaluating
the next pose in the ordered sequence of the gesture. Moreover, a timer is assigned
to each state and is launched when the DFSM is in that state. The value of this timer
is set to the total time of the gesture divided by the number of poses. If a timeout
occurs, the DFSM goes back in the start state.

S p1 p2match(p1) match(p2) match(p3)

¬match(p2) ∨ timout()

¬match(p3) ∨ timout()

¬match(p1) ∨ timout()

p3
match

(p1)

match
(p2)

match
(p3)

Figure 4.8 : Deterministic Finite State Machine assigned to a gesture: it goes to the next state
if the kinect current pose match as the next pose in the ordered sequence of the
gesture.

Several gestures must be recognized, consequently, there are as many DFSM as
gestures. At each frame of the camera, the skeleton information is returned by the
framework and a pose object is created. This “frame pose” is sent to each DFSM as
input and they analyse it with respect to their state.

Matching a pose is done by comparing, for each Kinect frame, the orientation of
the skeleton joints to the orientation of the joints recorded. This is achieved by doing
a dot product between the X,Y,Z rotations matrix’s vector. If the orientations were
exactly the same, the dot product of the rotation matrix vector should be equal to
1. Because it is very unlikely for the user to be in the very same pose (that is, with
the same joints’ orientation) the dot product is compared to an accuracy coefficient.
Therefore, the pose is a match if the dot product is higher than this coefficient. During
our experiments, its value was set to 0.8. This means that the users’ joints orientation
can diverge from a maximum of 20% (in the X,Y,Z directions) of the position they

4.4. THE SET OF GESTURES 40

recorded (see Algortihm 5).

Algorithm 5: Pose Match

1 CurrentFramePose← GetSkeletonPose()
2 foreach Active CurrentFramePose’s joints (numbered j) do
3 X1 ← X-axis of the jth joint of the current frame skeleton
4 X2 ← X-axis of the jth joint of the DFSM state pose
5 Y1 ← Y-axis of the jth joint of the current frame skeleton
6 Y2 ← Y-axis of the jth joint of the DFSM state pose
7 Z1 ← Z-axis of the jth joint of the current frame skeleton
8 Z2 ← Z-axis of the jth joint of the DFSM state pose
9 if (X1 × X2) < ACCURACY COEFFICIENT then return False

10 else if (Y1 × Y2) < ACCURACY COEFFICIENT then return False
11 else if (Z1 × Z2) < ACCURACY COEFFICIENT then return False
12 else return True

4.4 The Set of Gestures

We defined the set of gestures the user is able to do in order to control the swarms.
The reason why we fixed the set of gestures is that the gesture recognition algorithm
is less accurate with some joints orientation 6. Thus, we empirically found a set of
relatively intuitive gestures that are correctly recognized by the system. Figure 4.9
depicts the motions of each gesture.

4.5 Discussion and Conclusions

The work done in this chapter was performed with the collaboration of a PhD
student from the University of Parma, Italy. A minimalist gesture recognizer has
been created with the help of the multiplatform framework OpenNI.

As we have seen, the algorithm uses a deterministic finite state machine for each
gesture which has to be recognized. The DFSM goes from state to state each time
the algorithm matches a pose belonging to a gesture. The matching pose is done by
comparing the orientation of the body joints. Even if the joints’ orientation should
be body-independant, we noticed during our tests that depending on the skeleton,
some gestures are more difficult to recognize. Consequently, we decided to fix the
set of gestures the user can perform and to record the gestures of each user before

6. This is essentially due to the framework which does not provide their orientation with a high
level of confidence

4.5. DISCUSSION AND CONCLUSIONS 41

(a) (b)

(c) (d)

(e)

Figure 4.9 : (a) Stop. Slide up the right arm to form an angle of 90 degrees with the body.
(b) Select. Slide down the arm horizontally. (c) Split. Down the arm in front of
oneself, like if one cut something in the middle. (d) Move. Move up both arms
in front of oneself. (e) Merge. Bring the arms towards each other.

starting to use the system. For a more accurate system, it could be interesting in the
future to implement other kind of techniques, as seen in section 4.3.3.

Chapter 5

Usability Experiments

We have developed a way to communicate with swarms of robots. This system,
based on the Kinect device, uses human gestures in order to interact with the robots.
Is this new interaction system usable? Can we, effectively manipulate swarms of
robots and can we really do it with a natural interaction device?

The experiments in this chapter show that a user is effectively able to take the
control of a large number of robots. To do so, we put in place usability experiments.
These experiments are useful to study the ease of the manipulation of a system or to
highlight potential drawbacks in its design.

This chapter is organized as follows. First, we will see the importance of mea-
suring usability. Then, we will present the proposed methodology to study the
system’s usability and we will see some results of this methodology applied to the
robots control system.

5.1 Motivation

What exactly is usability? Can usability be rigorously measured? These are probably
the two most frequently asked questions when we talk about usability of a system.
No one would use a system daily that is too complex to understand, that is confusing
or that would take too much time to perform a simple task. Worse than not using
a system, Nielsen [29] cites a study in which 22 usability problems in a medical
institution cause the patients to receive the wrong treatment. Usability is thus a high
concern in developing interaction systems.

Creating a correct and functional design without any users feedback is almost
impossible. Different aspects of humans play an important role in the development
of a new interaction system. Educational, cultural or sociological dimensions are

42

5.2. EXPERIMENTS 43

factors that modify the perception and the usability of a system [21].

Non-formally speaking, Hartson [26] defines usability as the way to say that a
design is “good” in terms of human interaction. To make things clearer, we can
focus on the International Standards Organization usability definition (ISO 9241-11):
“Extent to which a product can be used by specified users to achieve specified goals with
effectiveness, efficiency and satisfaction in a specified context of use”. Three keywords
may be highlighted:

Effectiveness is the accuracy with which the user achieves a specific goal.

Efficiency is the resources used to achieve the goal. For example, the time taken to
perform a specific task.

Satisfaction is a subjective evaluation regarding the comfort of the user. Usually, a
satisfaction questionnaire is filled during or after the experiment.

As we can see, usability is not a one-dimensional property of the system’s use.
An aggregation of these three concepts may give a strong idea of the usability of the
system.

5.2 Experiments

Our system uses gesture as the means for controlling the robots. A user does
gestures that are linked to commands that the robots perform. We thought that this
interaction would be very easy to use and very intuitive for any kind of people. In
order to verify that our thoughts were true, we had to give a measure to the users’
experience of this system.

In order to be able to take this measure, we developed a very specific scenario.
This scenario consists in a set of tasks the users must perform with the robots. This
allows us to take different kinds of measures. Because the same scenario were
executed by every user, these measures could be compared between the subjects.

This section is divided in two subsections. First, we present our methodology,
that is, the scenario performed by our subjects, the number of participants, the
categories of users and the measures that are studied. Then, we will show that the
Kinect system is capable of providing the means to take the control of a potential
huge number of robots at a time.

5.2.1 Methodology

Humans play the central role in the experimental process and each experiment
must be executed the same way if we want to be able to compare the data.

5.2. EXPERIMENTS 44

In order to plan a good experimental process, we need to determine which
metrics we are going to collect. However, it may be hard to know what are the
metrics in a usability test. We manipulate different kind of metrics daily. We can
easily measure the size of a person, the temperature of water, the speed of a vehicle
and so on. Usability metrics may not be as obvious, but they exist. Indeed, we can
measure, among others, the amount of task success, the time taken to perform a task,
the amount of errors and the user’s overall satisfaction.

Usability metrics must give useful information about the user’s experience and
the interaction between the user and the system. This information must be observ-
able and quantifiable. All the data we have collected were numbers, even the global
user’s satisfaction based on a questionnaire will be transformed into numbers.

In order to know which metrics we will need, we must determine what is the
final goal of our experiments. There are two kinds of usability measures [5]:

Formative is used to identify usability issues in the system. The goal is thus to
improve the system during its development phase. Usually, an iteration pro-
cess for testing is established. After each usability test, the developers fix the
problems revealed by the experiments.

Summative corresponds to a global evaluation of the system. It may be used to
make comparison between products and to determine whether the product
achieves its usability goals. It is usually evaluated by evaluation score, task-
time or completion rates.

In our case, what we want to measure is the ease of the manipulation of the
system. That is, to what extent is gesture control relevant to manipulate swarms of
robots. We have decided as part of this work to evaluate the final product developed
during the academic year. Summative measures are consequently more relevent for
us. It will give us an overall evaluation of our system.

In order to create our summative evaluation process, we developed another
means for controlling swarms of robots. The idea is to compare our new interaction
system to one that users are more accustomed to. The result is a very simple graphical
user interface (see figure 5.1) that contains a button for each available command. This
graphical interface is used through a mouse device or a keyboard device. This will
help us with comparing the ease of the manipulation between a new interact device
and a very common one.

Subsequently, we will present what users had to do during the experiments.
Then, we will see what kind of users we decided to test and how many participants
we used in this usability experiment. Afterwards, we will talk about the actual data
we have collected from the experiments, that is, the time on task data and the user’s
satisfaction.

5.2. EXPERIMENTS 45

Figure 5.1 : Graphical user interface containing a button for each command. Clicking a
button sends the command to the robots.

Scenario

The scenario performed by the users determines the data we can collect. Indeed,
the more different actions the user does, the more data is available. Consequently,
the scenario must contain enough elements to get useful information about how the
user manipulates the system.

The scenario that we developed requires the subjects to do a fixed set of actions
that use at least each command once (see figure 5.2). Initially, the system starts with
a unique swarm of robots. The goal of the users is to create three sub-groups and
to move them in a specific zone of the arena, namely the task zones. A task zone
is a delimited area in which the robots simulate working. The arena contains three
task zones, one for each group of robots. Once each swarm has been in a task zone,
the subjects must reassemble the three groups in a unique swarm anywhere in the
arena.

(a) (b)

Figure 5.2 : (a) The arena that contains the initial group of thirty robots. (b) Each group of
robots is moved in a different task zone, modeled by the green rectangles.

5.2. EXPERIMENTS 46

Sample Size

Literature about usability test sample size abounds of debate regarding the better
number of subjects for an experiment [45]. Formative evaluation focuses on prob-
lems’ discovery. A popular but criticized [60] article from Nielsen [28] argues that
five participants will discover 80% of the problems in a system. In any case, a small
amount of users, that is, generally less than 10 subjects is sufficient in a formative
usability evaluation [50].

However, in a summative usability test, there is no consensus about the sample
size. From a statistical point of view, the more data is available, the more precise the
results. As part of this work, we were able to conduct 18 experiments.

Time on Task

When we want to compare the efficiency between two systems, a natural measure
is the time it takes to perform a certain amount of tasks. In most systems, the quicker
is the better. The user generally does not want that a task requires him too much
time.

For our experiments, four main tasks can be extracted from the scenario. Recall
that the scenario requires the user to divide one group in three subgroups, to move
them in a different task zone, and finally to reassemble the three groups in one group.
Based on these actions, we will measure the time taken by the user to move each
subgroup in a task zone. That is, each time a group enters a task zone, we save the
time taken to reach this zone. Because there are three groups for three task zones,
three time measures are collected. Finally, we measure the overall time taken by
the user to achieve the goal entirely. Because parallel control is possible, this last
measure clearly can not be calculated by the sum of the three previous tasks plus the
time it takes to merge the three groups.

We must define the beginning and the end of a task. We decided to launch the
counter when the first group is selected. When a group enters a task zone, they
automatically start blinking to communicate the fact that they are working. Once
they start blinking the watch is stopped and the value is saved. For the overall
time of the experiment, the start time also is the moment when the initial group is
selected, and the final time is taken when the two last groups finish merging.

What we actually measure is the number of control steps. This number is linked
to the time. In the configuration file of the simulation, one can define the number of
ticks per second, that is, the number of control steps per second. In our experiments,
we set this value to 10.

5.2. EXPERIMENTS 47

Usability Questionnaire

We saw that time-on-task measures can be useful for collecting data about ef-
ficiency of the system. However, this kind of data does not give any information
about the overall satisfaction of a user. A system which is funnier to use may be
more appreciated than a system which is repetitive or without any attractiveness
but which takes less time. Consequently, it may be useful to study the overall user’s
satisfaction.

A good way to gather such results is for the subjects to complete a questionnaire.
There are two moments to collect these data: after each task and at the end of the
experiment’s session. The first uses a so-called post-task rating questionnaire while
the second uses a post-study rating questionnaire [56]. Post-task questionnaires
are very short, varying from one question (SMEQ, UME) [46, 61] to three questions
(ASQ) [40]. Post-session questionnaires themselves contain more questions and do
not focus on any particular task.

A post-task questionnaire may be very useful to get data about specific tasks in
the system. For example, if the aim of the experiment is to test an e-mail client,
one can ask the user to give his feeling about the specific task “sending an e-mail
to contacts registered in the addressbook” or “downloading the attachment of an
email”. However, the aim of our system is to interact with swarms of robots and
what we want to measure is the ease with which the user controls the robots. A post-
task questionnaire is consequently not appropriate and we preferred the post-session
questionnaire which gives a general judgement of the system.

A satisfaction questionnaire is composed by a certain amount of items, which
can be open-ended questions or can look like Likert-scale affirmations. In a Likert-
scale evaluation, the statements are accompanied by either a 5-scale or 7-scale from
“strongly disagree” to “strongly agree”.

So far, we saw that using a post-session satisfaction questionnaire may be use-
ful to study the users’ global feeling of the system. Even if one may think about
some relevant questions, standardized questionnaires are preferentially used. The
advantages of standardized questionnaires are their psychometric validity and reli-
ability [49]. The validity of a questionnaire consists in verifying that the questions
are directly related with what the questionnaire is supposed to measure. Reliability
is the consistency of measurement, that is, the fidelity of the score with respect to
the questionnaire. It is evaluated with a coefficient alpha, namely the Cronbach’s
coefficient and varies from 0 (non reliable) to 1 (totally reliable) [13].

In [30], the authors report the four most used standardized post-session ques-
tionnaires:

– Questionnaire for User Interaction Satisfaction (QUIS) [12]

5.2. EXPERIMENTS 48

– Software Usability Measurement Inventory (SUMI) [35]
– Post-Study System Usability Questionnaire (PSSUQ) [43]
– System Usability Scale (SUS) [7]
Each questionnaire has its advantages and disadvantages. However, the two first

one require a non-free license [30] so we decided to focus on the PSSUQ and SUS.
The first one is a multidimensional questionnaire containing 19 items measuring
the overall satisfaction, the system quality, the information quality, and the interface
quality. On the other hand, SUS is a unidimensional, 10 items questionnaire.

Tullis and Stetson [57] studied five different questionnaires, SUS, QUIS, CSUQ (a
variant of PSSUQ) [41], the Microsoft’s Product Reaction Cards [3], and a question-
naire created by themselves. The authors asked 123 people to compare two different
websites. They had to complete the same questionnaire, which was randomly as-
signed, for both websites. In their results, they found out that each questionnaire
gave the better result for the first website. To determine which questionnaire would
have the best accuracy, they analysed sub-samples of data at group size 6, 8, 12 and
14 and performed a t-test to determine if the first website was better than the second,
that is, are the results of the sub-samples of data in accordance with the results of
the overall study? It turns out that SUS’s accuracy increases quicker than the other
questionnaires. This means that if we increase the group’s size, SUS is the fastest to
converge on the final correct conclusion.

The reliability of SUS has been studied with respect to the coefficient alpha. In the
last study, Lewis and Sauro [42] calculated a reliability of 0.92. Moreover, according
to Landauer [38], a reliability which stands between 0.7 and 0.8 is acceptable for
research. For all these reasons, and because it contains only 10 assessments compared
to the 19 of PSSUQ, we think that SUS is an ideal candidate for our satisfaction
questionnaire.

Figure 5.3 : Reliability comparison between five satisfaction questionnaires. Source –
Sauro [30].

5.3. SYSTEM FEASIBILITY CONFIRMATION 49

Experimental Procedure

The experimental procedure has to follow the same structure for each experi-
ment. Doing so does not advantage or disadvantage certain subjects. The same
explanations are given to all the subjects. At the beginning of the experiment, a
short presentation of the procedure is given:

Goal We explain what the subject has to do: the scenario of the experiment.

Technical We review the six commands that are at his disposal.

Selection We show how the subject can know that a group is selected and how the
group selection changed.

Split and Merge Two short videos are shown to describe how the split and the
merge work. We insisted on the fact that the subject had to stop the split and
that no obstacle could be between the groups while doing a merge.

Task Zone We explain what is a task zone and how the subject could know when
the robots started working in the task zone.

Kinect Move Using a video, the user could understand how to steer the robots in
the arena.

Recall of the Goal We finish the presentation by recalling to the user what he is
going to achieve

The subjects then started the experiment either with the gesture-based control
system or with the common graphical interface that uses the mouse. We have to pay
attention to the order with which the system are tested by the users. Indeed, due
to the carryover effect [30] if the same product is firstly tested, it may run the risk
of unfairly biasing users either for or against this system and thus induce bias in
the results. To address this potential problem, we alternate the first and the second
system during the experiments: half the subjects started with the gesture control
system and the other half started with the graphical user interface. Doing so will
clearly not remove the potential preference of one of the systems. However, it will
tend to cancel this effect when we aggregate the data across all the subjects.

5.3 System Feasibility Confirmation

The methodology proposed in section 5.2.1 aims to determine if the gesture-based
control system is effectively usable for controlling several swarms of robots. This
section shows preliminary high-level results from a small number of experiments.

We asked 18 people to perform the experiments described above. Figure 5.4
depicts the histogram of the user satisfaction questionnaire and the histogram for
the total duration time for both of the interaction systems.

5.3. SYSTEM FEASIBILITY CONFIRMATION 50

GUI Histogram −− Total Time

Duration seconds

F
re

qu
en

cy

500 600 700 800 900 1000 1100 1200

0
1

2
3

4

(a)

Kinect Histogram −− Total Time

Duration seconds

F
re

qu
en

cy

600 800 1000 1200

0
1

2
3

4

(b)

GUI Histogram −− Satisfaction

Satisfaction Score

F
re

qu
en

cy

40 50 60 70 80 90 100

0
1

2
3

4
5

6
7

(c)

Kinect Histogram −− Satisfaction

Satisfaction Score

F
re

qu
en

cy

40 50 60 70 80 90 100

0
1

2
3

4
5

6
7

(d)

Figure 5.4 : Histograms: (a) frequency of the duration time for the graphical interface. (b)
frequency of the duration time for the Kinect. (c) frequency of the user satis-
faction for the graphical interface. (d) frequency of the user satisfaction for the
Kinect.

5.4. DISCUSSION AND CONCLUSIONS 51

First and foremost, we can affirm 1 that people did succeed in the experiments
with the Kinect-based interaction system developed as part of this work. From
a unique group of robots, they were capable to divide it in three sub-groups and
to move them in three different zones of the arena using the steering direction
mechanism.

Histogram 5.4(d) shows that a large amount of these 18 people are quite satisfied
to use the Kinect for manipulating the swarms. Histograms 5.4(a) and 5.4(b) show
that even if they could achieve their goal, they seem to be quicker using the graphical
user interface 2. However, a disadvantage of using the GUI is that it requires a lot
of materials compared to the Kinect. Indeed, when using a graphical interface, the
user must be facing a screen and using the mouse and keyboard. On the other hand,
the Kinect system avoids these requirements and lets the user doing his gestures for
controlling the robots.

Gesture recognition with the Kinect is still a young research field. For sure,
improvements must be performed to reach, at most, the same performances as those
with usual input devices. People are used to use mouse and keyboard to perform
incredible actions. However, as these preliminary results show, Kinect can replace
the common pair of mouse and keyboard with a clear advantage regarding the
materials requirement.

5.4 Discussion and Conclusions

The aim of this chapter was to provide a detailed framework to perform usability
tests for human to swarm interaction devices. We have designed a simple scenario
which allows to extract different kind of data, such as time-on-tasks and satisfaction
information.

We have tested our methodology on 18 people and it appears that using a gesture-
based control system allows the subjects to manipulate swarms of robots. Even if
these 18 people were not as quick as using the graphical interface, the Kinect device
has been used without major difficulties.

We argue that using a Kinect device avoids the requirement of using a relatively
big infrastructure to communicate with the robots. Indeed, a simple camera like
the one developed by Microsoft is enough. However, this camera should still be
connected to a computer. One can imagine in the near future that these kind of
devices will be able to send their data through a wireless network. This will provide

1. See Chapter 6 for a statistical analysis of these results
2. We insist on the fact that these results does not mean that in average, people are generally quicker

with the graphical interface. We suggest the reader to read Chapter 6 for more details.

5.4. DISCUSSION AND CONCLUSIONS 52

greater flexibility in the use of the system.

Some usability criticisms have been gathered from the 18 experimenters though.
No matter the system used, most of the subjects complained about the visual feed-
back of the robots. The bigger difficulty they faced was to figure out what was the
robots’ direction. People usually did not know where the robots where looking.
Consequently, they had some pain to move the robots in the arena.

Based on this remark, an improved version of the simulation has been created.
An arrow is drawn on the top of each robot. The arrow points in the direction of
the robot’s direction. To avoid differences in the difficulty of the experiments, the
improved version of the simulation has not been tested by the subjects. Figure 5.5
shows the versions with and without the direction arrow.

(a) (b)

Figure 5.5 : (a) the robots have no direction arrow. (b) the direction arrow is drawn on the
top of each robot.

Chapter 6

Statistical Comparison Tools

In this chapter, we present statistical tools for analysing the data collected during
the experiments. We show several statistical tests that can be useful to study the
difference of use between two interaction devices.

6.1 Statistical Tests

The goal of the experiment described in the previous chapter was to answer the
question: Is the Kinect better to use than the graphical user interface? We decided to work
with two different axis to measure this usability: the satisfaction of the users, and the
time they take to complete the experiment. The System Usability Scale questionnaire
gave a number between 0 and 100 and the time was measured in second. From these
data, we now have to analyse the results in order to answer the question.

In usability tests, like in a large number of experiments, we do not have access
to the entire population. A sample population is thus used to achieve estimations.
In this case, the results obtained for a certain sample may not be the same for the
entire population. It can even be different for another sample coming from the same
population. Because it is clearly not possible to test all the population, we need
statistical tests to answer the question with a known degree of error.

Generally, a statistic test uses a reductio ad adsurdum. In order to determine if
a difference exists between two systems, we will suppose that there is no difference
at all between the systems. This hypothesis is called the null hypothesis (H0). The
alternative hypothesis is called H1. The test then calculates the probability to observe
the results under the null hypothesis. This probability is called the p-value. If this
probability is less than α, a determined significance level, the null hypothesis is
rejected. In other words, α is the risk to reject H0 while it is true. This kind of

53

6.1. STATISTICAL TESTS 54

mistake is known as the Type I Error. The usual values of α are 0.05 or 0.01. There
also exists a Type II Error, which is the error made by accepting H0 if it is false and
is denoted by β.

There exist several statistical tests, and the choice of one of them depends on the
nature of the data and the power of the test. The power of a test is given by the
probability of not committing a Type II Error.

Two different kinds of statistical tests exist: two-tailed test and one-tailed test.
The first is used when the alternative hypothesis does not require us to specify
the direction of the difference. The second one is used when the direction of the
alternative hypothesis matters. More formally:

Two-tailed test
{

H0 : θ1 = θ2

H1 : θ1 , θ2

One-tailed test


H0 : θ1 = θ2

H1 : θ1 < θ2 (one-tailed down)
H1 : θ1 > θ2 (one-tailed up)

where θ defines the observation parameter of the test. As part of this work, we
are not interested in knowing if there exists a difference between the use of the Kinect
and the use the GUI. What we are interested in is to know if the Kinect is better to
use than the GUI. It appears from these definitions that one-tailed test is the most
appropriate test.

6.1.1 Parametric or Non-parametric Test?

A parametric test requires strong constraints, so that the sample data has a normal
distribution and the variance of different groups are the same. These constraints are
not always satisfied and the smaller the data set is, the more difficult it is to verify
these assumptions. On the other hand, a non-parametric test does not impose any
distribution constraints. It is valid for relatively small samples and can compare
distributions with different variances.

From the previous explanations, it is tempting to use only non-parametric tests.
However, if the parametric tests’ conditions are satisfied, they are more powerful
than any non-parametric tests. That is, the probability P(reject H0 | H0 is false) is
higher.

In usability studies, especially for those which focus on different kind of human-
interaction devices, the experiments take a long time to proceed. Consequently, it is
not always possible to gather a high amount of data. For example, the experiment
described in the previous chapter takes on average one hour per subject without

6.1. STATISTICAL TESTS 55

taking into account the time spent to analyse the data. For this reason, and because
we were not able to do more tests for the systems developed in this work, we decided
for the remainder of this document, to focus only on non-parametric tests.

6.1.2 Comparing the Devices

Remember that we are interested in comparing the ease of manipulation of the
Kinect device over the graphical interface. The following tests will then focus on
this difference.

As part of this work, we have conducted 18 experiments. From these 18 subjects,
9 have started with the Kinect and the other 9 with the graphical user interface.
Figure 6.1 depicts the boxplots of the satisfaction questionnaire and the total time
spent by the subjects to achieve the entire experiments with each device. We can
observe in these two boxplots that the notches of the boxplots overlap. Consequently,
no statistically significant results can be concluded from the boxplots.

●

●

Kinect GUI

40
50

60
70

80
90

Device Comparison −− Satisfaction Questionnaire

S
at

is
fa

ct
io

n
S

co
re

(a) User satisfaction boxplot.

Kinect GUI

60
0

70
0

80
0

90
0

10
00

11
00

12
00

Device Comparison −− Total Time

T
im

e
(in

 s
ec

)

(b) Boxplots of the total time.

Figure 6.1 : Notched Boxplots: (a) User satisfaction comparison. The medians of the two
devices are the same but there is an overlap with the two notches. (b) Total time
taken by the user to achieve the experiment with the two devices. We can see
that the median of the Kinect is higher than the one of the GUI. However, the
two notches also overlap.

6.1. STATISTICAL TESTS 56

Wilcoxon Signed-Rank Test

This test is the non-parametric alternative of the known t-test for correlated
samples. Correlated samples, or paired samples are groups in which the subjects can
be matched as pairs. This is indeed the case studied in this section. A set of 18 people
have experimented with both the Kinect device and the graphical interface. The data
resulting from the Kinect’s experiments will be compared to the data resulting from
the graphical user interface.

The program used to run the test is R which provides an implementation of the
paired, one-tailed version of the Wilcoxon test. Table 6.1 presents the data on which
the Wilcoxon test has been performed. Unfortunately, as we expected from the
analysis of the boxplots, and due to the very small sample size, the p-value returned
by the test was very high. Consequently, the null hypothesis could not be rejected
in favour of the alternative.

Subjects
Total Time (sec) Satisfaction Questionnaire
Kinect GUI Kinect GUI

1 1215.5 1104.4 52.5 55
2 1134.9 1062.3 77.5 90
3 1172.4 966.9 62.5 75
4 998.1 1124.2 95 97.5
5 629.1 656.9 80 75
6 599.4 615.2 72.5 80
7 1135.3 582.4 40 75
8 844.2 982.2 65 77.5
9 758.3 694.2 82.5 87.5
10 655.2 832.4 75 92.5
11 1088.2 718.6 85 65
12 1025.6 587.4 85 70
13 1223.5 1140.3 87.5 87.5
14 1043.2 727.2 92.5 95
15 1009.8 727.2 75 55
16 897.6 626 80 85
17 779.7 979 82.5 70
18 834.2 880.8 75 80

Table 6.1 : For each subject: the total time in seconds for both systems and the SUS ques-
tionnaire score.

6.2. DISCUSSION AND CONCLUSIONS 57

Mann-Whitney Test

We saw that due to the small sample, no significant statistical conclusions can be
extracted from the Wilcoxon test. With a bigger sample however, it is likely that the
test would be more significant.

The sample of 18 people was created by regrouping three sub-categories: (i)
roboticists, (ii) computer scientists, and (iii) others (people that are neither roboticists
nor computer scientists). We plan in the future to conduct more experiments with
more people of each category. This will give the possibility to compare the usability
of the three groups: are the roboticists quicker than computer scientists with the
Kinect? Are the other users more satisfied to use the graphical interface than the
roboticists? Time-on-tasks data have also been collected during the experiments. It
is therefore possible to compare groups with respect to these values.

Comparing groups with each other can not be achieved by using the Wilcoxon
Signed-Rank test because the sample are not paired anymore. The non-parametric
version of the t-test for independent samples is the Mann-Whitney test, also called
Wilcoxon Rank-Sum Test.

Applying the test to the very small data sets will not give any significant results.
In the future, with more data the Mann-Withney test can be used.

6.2 Discussion and Conclusions

The aim of this chapter was to provide statistical tools and background to per-
form significant data analysis. The data collected during the experiments must be
analysed through powerful statistical tests in order to have an objective opinion
about human-swarm interaction devices.

We have tested our methodology on 18 people divided into three sub-categories.
Due to this small sample, we have not been able to extract significant data regarding
the systems developed in this work. However, we have provided all the tools needed
to conduct strong analysis with more data.

Chapter 7

Conclusion and Future Work

The main goal of this thesis has been to develop a new system that allows a
human to control and interact with swarms of robots. Few studies to date have
focused on human-swarm interaction despite the importance of this field for future
real applications of swarm robotics. This thesis provides the first steps in order to
achieve interaction between human beings and swarms.

The first phase was the high-level analysis of the system. It consisted of deter-
mining the users requirement in terms of interaction with the swarms. For swarm
robotics to be useful to a human, he has to be able to guide a swarm in a complex
environment. When the robots are in the right place, the user can send his orders to
the robots. To be able to guide swarms in a complex environment, we determined the
necessary commands the user will have at his disposal, such as moving the swarms
in the environment, split a swarm into two sub-swarms or merge two groups to
form a bigger one. Finally, we determined the level of control of the operator for
each command, that is, the frontier between robots self-decision and the precision
of control of the operator. The second phase of the work was the implementation of
the analysis phase and the development of the gesture recognition system.

We verified the feasibility of the system with several volunteers that performed
simulations. A scenario in which the users had to control and guide multiple swarms
of robots was created. The users who tested the system with this scenario were
capable of controlling and guiding the swarms in order to achieve the tasks they
were assigned.

A second contribution of this thesis is the development of a statistical framework
allowing researchers to compare different kind of interaction devices. We chose
gestures for communicating with the robots because we believe it has the advantages
of being a natural communication tool (i.e. the steering mechanism using a virtual
wheel for guiding the swarm). However, many different interaction systems may

58

59

be used, such as the very common couple mouse and keyboard, but also a joystick
or even a smartphone. The statistical framework can be used to compare all these
systems in order to study their advantages and disadvantages. This framework
takes into account objective usability measures and subjective user preference.

Future Work

The system developed in this thesis provides a fully functional solution for in-
teracting and controlling swarms in a complex environment. Nevertheless, human-
swarm interaction is a relatively young field of research and many improvements
can be made at different levels.

An important aspect of such an interaction system is the feedback the robots
provide regarding their current state. In this thesis, we conducted experiments
using a simulator. The simulator allowed us to give feedback to the user that would
be unrealistic in a real world setting. When the robots received a new command,
the name of this command was written on the simulator screen. This feedback
assured the user that his command was correctly interpreted by the robots. In a
real scenario, how could the operator be sure that the robots correctly received the
command? The robots could use a colour-based feedback system. This could lead to
some confusion. Indeed, we already use colours in two cases. First, each group has
a different colour, which allows the user to visually separate the groups. We also use
colour rules for selected groups. When the user selects a group in order to control
it, it becomes yellow. If the users wants to merge two groups, the second selected
one becomes red. A second use of the simulator capabilities is the possibility to
dynamically draw geometric shapes in the arena. A remark which was often made
was the confusion about the direction of the swarm while the user guided it. To
address this issue, we modified the system in such a way that the simulator draws
an arrow on the top of each robot. This arrow points in the robot’s direction. In real
circumstances however, another method should be used. We could add a direction
information on the top of each robot. For instance, we could attach perpendicularly
to the turret an extra arrow pointing in the direction of the robot. Unfortunately, this
solution is too restrictive because each new robot should be modified. Moreover,
the solution should be independent of the robot’s structure. Further research can be
done in the formation of a shape, giving the direction information and created by
each robot belonging to the moving group. For example, each robot could position
itself relatively to the other in order to form a big arrow, pointing to the group
direction (see Figure 7.1).

A second field of improvement concerns the interaction device. We demonstrated
that using gesture recognition allows the user to control the robots. However, even if
gestures have some advantages like the steering wheel mechanism, some commands
may not be easily associated to a gesture. For example, the selection gesture that

60

Figure 7.1 : Each robot is positioned in such a way that the swarm create an arrow shape
that points to swarm direction.

we used in this work is not very intuitive. Because the system is designed so that
the user cannot point at the group he wants to select, it is more difficult to find a
relevant gesture. In the future, mixing different interaction system may turn out to
be more efficient. Natural language can be one of the candidates in the perspective
of not using any physical device (i.e. a mouse, a Wiimote, a smartphone, . . .).
Indeed, pronouncing the word select (even in many different languages) is clearly
more intuitive than any kind of gestures. On the other hand, guiding a swarm in an
environment is more difficult with natural language than with a steering wheel.

(a) (b) (c)

Figure 7.2 : The SixthSense device: (a) a camera and a projector is tied around the neck. (b)
the device may project an image on any kind of surface and it is able to recognize
the interaction with that image. (c) P. Mistry delimiting the zone with its hands
to take a picture.

Regarding the gesture recognition as it is implemented in this work, the system
still needs a camera connected to a computer and the human operator must face it.
This system is not efficient if the user wants to control his robots in many different
places. A new device was created by Pranav Mistry, working at the MIT Media Lab.
The system removes the dependency to the screen, the mouse, the keyboard and
even to any fixed physical workstation. This project, called SixthSense 1 is a small
mobile device, comparable to a mobile phone and capable of recognizing user’s

1. http://www.pranavmistry.com/projects/sixthsense

http://www.pranavmistry.com/projects/sixthsense

61

gestures (see fedigure 7.2). It can also be used for augmented reality adding virtual
information on existing physical objects.

This system may be the solution for the main problems we noticed. Thanks
to the augmented reality, information related to the robots state (swarm direction,
commands acknowledgements, working status, . . .) may be virtually added in the
environment. Moreover, the system removes the dependency of any Kinect-like
camera connected to a computer.

62

Appendix A

System Usability Scale
Age :

Name :

Category : lambda hight-tech roboticist

Please, answer this questionnaire with the control system in mind. Try to answer your immediate response to each item. All

item should be marked, if you feel that you cannot respond to a particular item, mark the center point of the scale.
I think that I would like to use this system
frequently.

Strongly Strongly
disagree agree

 1 2 3 4 5
I found the system unnecessarily complex. Strongly Strongly

disagree agree

 1 2 3 4 5
I thought the system was easy to use. Strongly Strongly

disagree agree

 1 2 3 4 5
I think that I would need the support of a technical
person to be able to use this system.

Strongly Strongly
disagree agree

 1 2 3 4 5
I found the various functions in this system were
well integrated.

Strongly Strongly
disagree agree

 1 2 3 4 5
I thought there was too much inconsistency in this
system.

Strongly Strongly
disagree agree

 1 2 3 4 5
I would imagine that most people would learn to
use this system very quickly.

Strongly Strongly
disagree agree

 1 2 3 4 5
I found the system very cumbersome to use. Strongly Strongly

disagree agree

 1 2 3 4 5
I felt very confident using the system. Strongly Strongly

disagree agree

 1 2 3 4 5
I needed to learn a lot of things before I could get
going with this system.

Strongly Strongly
disagree agree

 1 2 3 4 5

To calculate the SUS score, first sum the score contributions of the items 1, 3, 5,
7 and 9. The score contribution of these items are their scale position minus one.
Then, sum the score contributions of the other items: five minus their scale position.
Finally, multiply the sum of the scores by 2.5 to obtain the overall score that has a
range of 0 to 100.

Bibliography

[1] Microsoft releases kinect for windows sdk beta for academics and
enthusiasts. http://www.microsoft.com/en-us/news/press/2011/jun11/

06-16MSKinectSDKPR.aspx, [Last accessed: April 19, 2012].

[2] Shishir Bashyal. Human swarm interaction for radiation source search and
localization. Swarm Intelligence Symposium, 2008. SIS 2008. IEEE, 19(5):1 – 8,
2008.

[3] Joey Benedek and Trish Miner. Measuring desirability: New methods for eval-
uating desirability in a usability lab setting. Proceedings of Usability Professionals
Association, 2003(03/04/2003):8–12, 2002.

[4] Gerardo Beni. From swarm intelligence to swarm robotics. Swarm Robotics,
3342:1–9, 2005.

[5] Nigel Bevan. Classifying and selecting ux and usability measures. In Proc. of
the 5th COST294-MAUSE Workshop on Meaningful Measures, pages 13–18, 2008.

[6] Eric Bonabeau, Marco Dorigo, and Guy Theraulaz. Swarm intelligence: from
natural to artificial systems. Oxford University Press, Inc., New York, NY, USA,
1999.

[7] J Brooke. SUS: A quick and dirty usability scale, pages 189–194. Taylor and Francis,
1996.

[8] Rodney A. Brooks. Elephants don’t play chess. Robotics and Autonomous Systems,
6:3–15, 1990.

[9] DJ Bruemmer and DD Dudenhoeffer. Mixed-initiative remote characterization
using a distributed team of small robots. 2001 AAAI Mobile Robot, 2001.

[10] Robert Burton. Ivan sutherland. http://amturing.acm.org/award_winners/
sutherland_3467412.cfm, [Last accessed: April 12, 2012].

[11] Gianni Di Caro and Marco Dorigo. Antnet: Distributed stigmergetic control for
communications networks. Journal of Artificial Intelligence Research, 1998.

[12] John P Chin, Virginia A Diehl, and Kent L Norman. Development of an instrument
measuring user satisfaction of the human-computer interface, volume 218, pages 213–
218. ACM, 1988.

[13] Lee Cronbach. Coefficient alpha and the internal structure of tests. Psychome-
trika, 16(3):297–334, 1951.

66

http://www.microsoft.com/en-us/news/press/2011/jun11/06-16MSKinectSDKPR.aspx
http://www.microsoft.com/en-us/news/press/2011/jun11/06-16MSKinectSDKPR.aspx
http://amturing.acm.org/award_winners/sutherland_3467412.cfm
http://amturing.acm.org/award_winners/sutherland_3467412.cfm

[14] Erol Şahin. Swarm robotics: From sources of inspiration to domains of appli-
cation. In Erol Şahin and William M. Spears, editors, Swarm Robotics, volume
3342 of Lecture Notes in Computer Science, pages 10–20. Springer, 2005.

[15] M. O. Anderson M.D. McKay. D. J. Bruemmer, D. D. Dudenhoeffer. A Robotic
Swarm for Spill Finding and Perimeter Formation. Spectrum, 2002.

[16] J. W. Davis and M. Shah. Visual gesture recognition. IEE Proc. Vision, Image and
Signal Processing, 141(2):101–106, 1994.

[17] Claire Detrain and Jean-Louis Deneubourg. Self-organized structures in a su-
perorganism: Do ants ”behave” like molecules? Physics of Life Reviews, 3(3):162–
187, September 2006.

[18] Marco Dorigo and Erol Sahin. Guest editorial. Special issue: Swarm robotics.
Autonomous Robots, 17(2–3):111–113, 2004.

[19] Marco Dorigo and Thomas Stützle. Ant Colony Optimization. Bradford Com-
pany, Scituate, MA, USA, 2004.

[20] ENGELBART D.C. ENGLISH, W.K. and M.L BERMAN. Display-selection tech-
niques for text manipulation. IEEE Trans. Hum. Factors Electron, pages 5–15,
1968.

[21] Xavier Ferré. Integration of usability techniques into the software development
process. In ICSE Workshop on SE-HCI, pages 28–35, 2003.

[22] Ron George and Joshua Blake. Manipulations : Universal foundational
metaphors of natural user interfaces. Framework, pages 1–5, 2010.

[23] A. Giusti, J. Nagi, L. Gambardella, S. Bonardi, and G. A. Di Caro. Human-swarm
interaction through distributed cooperative gesture recognition. In Proceedings
of the 7th ACM/IEEE International Conference on Human-Robot Interaction (HRI)
(Video Session), Boston, MA, USA, March 5-8, 2012.

[24] Crina Grosan, Ajith Abraham, and Monica Chis. Swarm intelligence in data
mining. Intelligence, 34(2006):1–20, 2006.

[25] Daniel Grünbaum, Steven Viscido, and Julia Parrish. Extracting Interactive
Control Algorithms from Group Dynamics of Schooling Fish. In Vijay Kumar,
Naomi Leonard, and A. Morse, editors, Cooperative Control, volume 309 of
Lecture Notes in Control and Information Sciences, pages 447–450. Springer Berlin
/ Heidelberg, 2005.

[26] H. Rex Hartson. Human-computer interaction: interdisciplinary roots and
trends. J. Syst. Softw., 43(2):103–118, November 1998.

[27] Michael Isard and Andrew Blake. A mixed-state condensation tracker with
automatic model-switching. pages 107–112, 1998.

[28] Nielsen J. Why you only need to test with 5 users, 2000. http://www.useit.
com/alertbox/20000319.html [Last accessed : April 5, 2012].

[29] Nielsen J. Medical usability: How to kill patients through bad design, 2005.
http://www.useit.com/alertbox/20050411.html [Last accessed : April 2,
2012].

http://www.useit.com/alertbox/20000319.html
http://www.useit.com/alertbox/20000319.html
http://www.useit.com/alertbox/20050411.html

[30] J. R. Lewis J. Sauro. Quantifying the User Experience: Practical Statistics for User
Research. Morgan Kaufmann, 2012.

[31] Aleksandar Jevtić and Diego Andina. Swarm intelligence and its applications in
swarm robotics. In Proceedings of the 6th WSEAS international conference on Com-
putational intelligence, man-machine systems and cybernetics, CIMMACS’07, pages
41–46, Stevens Point, Wisconsin, USA, 2007. World Scientific and Engineering
Academy and Society (WSEAS).

[32] Jeff Johnson, Teresa L. Roberts, William Verplank, David C. Smith, Charles H.
Irby, Marian Beard, and Kevin Mackey. The Xerox Star: A Retrospective.
Computer, 22(9), 1989.

[33] J. E. Jones. On the determination of molecular fields. ii. from the equation of
state of a gas. Proceedings of the Royal Society of London. Series A, Containing Papers
of a Mathematical and Physical Character, 106(738):pp. 463–477, 1924.

[34] Zsolt Kira and Mitchell A Potter. Exerting human control over decentralized
robot swarms. Autonomous Robots, pages 566–571, 2009.

[35] Jurek Kirakowski and Mary Corbett. SUMI: the Software Usability Measure-
ment Inventory. British Journal of Educational Technology, 24(3):210–212, 1993.

[36] Andreas Kolling, Steven Nunnally, and Michael Lewis. Towards human control
of robot swarms. In Proceedings of the seventh annual ACM/IEEE international
conference on Human-Robot Interaction, HRI ’12, pages 89–96, New York, NY,
USA, 2012. ACM.

[37] James F. Kurose and Keith W. Ross. Computer Networking: A Top-Down Approach.
Addison-Wesley Publishing Company, USA, 5th edition, 2009.

[38] Thomas K. Landauer. Behavioral Research Methods in Human-Computer Interac-
tion, volume 28, chapter 9, pages 203–227. Elsevier, Amsterdam, 1997.

[39] Hyeon-Kyu Lee and Jin H. Kim. An hmm-based threshold model approach for
gesture recognition. IEEE Transactions on Pattern Analysis and Machine Intelli-
gence, 21:961–973, 1999.

[40] James Lewis. Ibm computer usability satisfaction questionnaires: Psychometric
evaluation and instructions for use. International Journal of Human-Computer
Interaction, 7(1):57–78, 1995.

[41] James R. Lewis. IBM computer usability satisfaction questionnaires: psychome-
tric evaluation and instructions for use. International Journal of Human-Computer
Interaction, 7(1):57–78, 1995.

[42] James R. Lewis and Jeff Sauro. The factor structure of the system usability scale.
In Proceedings of the 1st International Conference on Human Centered Design: Held
as Part of HCI International 2009, HCD 09, pages 94–103, Berlin, Heidelberg,
2009. Springer-Verlag.

[43] James R J R Lewis. Psychometric evaluation of the post-study system usability
questionnaire: The PSSUQ, volume 36, page 1259–1263. Human Factors and
Ergonomics Society, 1992.

[44] L.M. Gambardella F. Mondada S. Nolfi T. Baaboura M. Birattari M. Bonani
M. Brambilla A. Brutschy D. Burnier A. Campo A.L. Christensen A. Decugnière
G. Di Caro F. Ducatelle E. Ferrante A. Förster J. Guzzi V. Longchamp S. Magnenat
J. Martinez Gonzalez N. Mathews M.A. Montes de Oca R. O’Grady C. Pinciroli
G. Pini P. Rétornaz J. Roberts V. Sperati T. Stirling A. Stranieri T. Stuetzle V. Tri-
anni E. Tuci A.E. Turgut F. Vaussard M. Dorigo, D. Floreano. Swarmanoid: a
novel concept for the study of heterogeneous robotic swarms. IEEE Robotics and
Automation Magazine, page in press, 2012.

[45] Ritch Macefield, Cornovian Close, and Wolverhampton Wv Nu. How to specify
the participant group size for usability studies: A practitioner’s guide. Journal
of Usability Studies, pages 34–45, 2009.

[46] Mick McGee. Master usability scaling: magnitude estimation and master scal-
ing applied to usability measurement. In Proceedings of the SIGCHI conference
on Human factors in computing systems, CHI ’04, pages 335–342, New York, NY,
USA, 2004. ACM.

[47] James McLurkin, Jennifer Smith, James Frankel, David Sotkowitz, David Blau,
and Brian Schmidt. Speaking Swarmish: {Human-Robot} Interface Design for
Large Swarms of Autonomous Mobile Robots. 2006.

[48] Sushmita Mitra and Tinku Acharya. Gesture recognition: A survey. IEEE
Transactions on Systems, Man and Cybernetics - Part C, 37(3):311–324, 2007.

[49] J C Nunnally. Psychometric Theory, volume 3. McGraw-Hill, 1978.

[50] Helen Petrie and Nigel Bevan. The evaluation of accessibility , usability and
user experience. Office, pages 299–315, 2009.

[51] Carlo Pinciroli, Vito Trianni, Rehan O’Grady, Giovanni Pini, Arne Brutschy,
Manuele Brambilla, Nithin Mathews, Eliseo Ferrante, Gianni Di Caro, Fred-
erick Ducatelle, Timothy Stirling, Álvaro Gutiérrez, Luca Maria Gambardella,
and Marco Dorigo. ARGoS: a modular, multi-engine simulator for heteroge-
neous swarm robotics. In Proceedings of the IEEE/RSJ International Conference
on Intelligent Robots and Systems (IROS 2011), pages 5027–5034. IEEE Computer
Society Press, Los Alamitos, CA, September 2011.

[52] PrimeSense Inc. Prime SensorTM NITE 1.3 Algorithms notes, 2010. Last viewed
10-25-2011.

[53] Alain Rame and Sylvie Therond. Anatomie et physiologie. Elsevier Masson, 2006.

[54] Craig W. Reynolds. Flocks, herds, and schools: A distributed behavioral model.
In Computer Graphics, pages 25–34, 1987.

[55] Ivan E. Sutherland. Sketch pad a man-machine graphical communication sys-
tem. In Proceedings of the SHARE design automation workshop, DAC ’64, pages
6.329–6.346, New York, NY, USA, 1964. ACM.

[56] W. Albert Th. Tullis. Measuring the User Experience: Collecting, Analyzing, and
Presenting Usability Metrics. 2008.

[57] Stetson Tullis. A comparison of questionnaires for assessing website usability. In
Proceedings of the Usability Professionals Association (UPA) 2004 Conference, pages
7–11, June 2004.

[58] Ali E. Turgut, Hande Çelikkanat, Fatih Gökçe, and Erol Şahin. Self-organized
flocking with a mobile robot swarm. In Proceedings of the 7th international joint
conference on Autonomous agents and multiagent systems - Volume 1, AAMAS ’08,
pages 39–46, Richland, SC, 2008. International Foundation for Autonomous
Agents and Multiagent Systems.

[59] Andries van Dam. Post-wimp user interfaces, 1997.

[60] Alan Woolrych and Informatics Centre. Why and when five test users aren’t
enough. In Proceedings of IHM-HCI 2001 Conference, pages 105–108, 2001.

[61] F. Zijlstra. Efficiency in work behavior. A design approach for modern tools. PhD
thesis, Delft University of Technology. Delft, The Netherlands: Delft University
Press., 1993.

List of Figures

2.1 (a) a path on water formed by fire ants (source: http://6legs2many.
wordpress.com). (b) school of fish (source: http://scottpenny.
smugmug.com). (c) birds flock (source: http://armedwithvisions.com). 5

2.2 (a) Robots could explore unknown areas (source: http://www.fastcompany.
com). (b) Instead of human beings, one could imagine a swam of robots
exploring a mine field (source: http://www.cyberpresse.ca). (c) A
network of robots. 6

2.3 A foot-bot. 7

2.4 ARGoS architecture. Source: [51] . 8

2.5 (a) is the IBM 26 working as a batch system (source: http://www.
tietokonemuseo.saunalahti.fionwebarchive.org) (b) is the Sketch-
pad Sutherland in action (source: http://www.mprove.de). (c) is
the oN-Line System created by Engelbart (source: http://sloan.
stanford.edu). (d) shows a Xerox Star person computer. (source:
http://www.digibarn.com) . 11

3.1 Arena in which the human operator controls a swarm of robots. The
black rectangles are two locations where the robots must go to work.
The gray rectangles models the walls the robots can’t pass through. . 16

3.2 The client - server architecture. The server broadcasts the messages
to all the robots. 18

3.3 Mapping table from command symbol values sent by the server. . . . 19

3.4 Evolution of FreeGroupID[] after a sequence of splits an merges. (a)
is the beginning configuration with only one group. (b) a split has
been done. (c) a second split occurred: three groups are in the arena.
(d) group 0 and 1 have been merged and the system assigned the id 0
to the new group. A gap appears between group 0 and group 2. . . . 22

3.5 Robot’s fixed-body reference frame. 24

3.6 Video sample from a split simulation. 25

71

http://6legs2many.wordpress.com
http://6legs2many.wordpress.com
http://scottpenny.smugmug.com
http://scottpenny.smugmug.com
http://armedwithvisions.com
http://www.fastcompany.com
http://www.fastcompany.com
http://www.cyberpresse.ca
http://www.tietokonemuseo.saunalahti.fi
http://www.tietokonemuseo.saunalahti.fi
webarchive.org
http://www.mprove.de
http://sloan.stanford.edu
http://sloan.stanford.edu
http://www.digibarn.com

3.7 Video sample from a merge simulation. 26

3.8 Split: (a) initial group (b) group is selected (c) the user orders the
robots to split (d) robots of the same group are attracted. (e) the two
groups are separated. 29

3.9 Move: (a) the user steers the robots with its arms. When its arms are
are the same high, robots move straight. (b) the user turns its arm
on its right to turn the robots. (c) finally the robots continue straight,
according the user order. 29

3.10 Merge: (a) two groups are selected (b) the user orders the groups
to merge (c) each group go in the direction of the other one (d) at
mid-way they finished each robot belong to the same group. 30

4.1 The 20 joints that Microsoft Kinect SDK recognizes. (Source: http:
//msdn.microsoft.com) . 32

4.2 On the left, the depth image with the skeleton tracking. On the right,
the RGB version and the skeleton tracking. 34

4.3 OpenNI/NITE Architecture . 34

4.4 The real world coordinate system takes its origin at the device sensor
with the z − axis pointing out of the screen. 35

4.5 Skeleton representation. Source: based on Joint definitions from [52]. . 36

4.6 Joints orientation: the big axes are the world coordinates system. The
small ones are those attached to the users’ right elbow. 36

4.7 The graphical interface for recording a new gesture. 37

4.8 Deterministic Finite State Machine assigned to a gesture: it goes to
the next state if the kinect current pose match as the next pose in the
ordered sequence of the gesture. 39

4.9 (a) Stop. Slide up the right arm to form an angle of 90 degrees with
the body. (b) Select. Slide down the arm horizontally. (c) Split. Down
the arm in front of oneself, like if one cut something in the middle. (d)
Move. Move up both arms in front of oneself. (e) Merge. Bring the
arms towards each other. 41

5.1 Graphical user interface containing a button for each command. Click-
ing a button sends the command to the robots. 45

5.2 (a) The arena that contains the initial group of thirty robots. (b) Each
group of robots is moved in a different task zone, modeled by the
green rectangles. 45

http://msdn.microsoft.com
http://msdn.microsoft.com

5.3 Reliability comparison between five satisfaction questionnaires. Source
– Sauro [30]. 48

5.4 Histograms: (a) frequency of the duration time for the graphical inter-
face. (b) frequency of the duration time for the Kinect. (c) frequency
of the user satisfaction for the graphical interface. (d) frequency of the
user satisfaction for the Kinect. 50

5.5 (a) the robots have no direction arrow. (b) the direction arrow is drawn
on the top of each robot. 52

6.1 Notched Boxplots: (a) User satisfaction comparison. The medians of
the two devices are the same but there is an overlap with the two
notches. (b) Total time taken by the user to achieve the experiment
with the two devices. We can see that the median of the Kinect is
higher than the one of the GUI. However, the two notches also overlap. 55

7.1 Each robot is positioned in such a way that the swarm create an arrow
shape that points to swarm direction. 60

7.2 The SixthSense device: (a) a camera and a projector is tied around the
neck. (b) the device may project an image on any kind of surface and
it is able to recognize the interaction with that image. (c) P. Mistry
delimiting the zone with its hands to take a picture. 60

List of Algorithms

1 Controller – High Level View . 19

2 Selection algorithm . 21

3 Divide a group into two subgroups. 26

4 Merge . 27

5 Pose Match . 40

74

	Introduction
	Background
	Swarm Intelligence
	Robot Hardware
	Simulator
	Human Computer Interaction
	History
	Towards a New Paradigm

	Human-Swarm Interaction
	Motivation
	Related Work
	High-Level Control
	Communication Architecture
	Architecture
	Protocol

	Low-level Controller
	Command Implementation
	Select
	Move
	Split
	Merge
	Stop

	Real Robot Experiments
	Discussion and Conclusions

	Gesture Recognition
	Hardware
	Software
	Microsoft Kinect SDK
	OpenKinect
	OpenNI/NITE

	Gesture Processing
	The Skeleton Data Structure
	Gesture Creation
	Gesture Recognition

	The Set of Gestures
	Discussion and Conclusions

	Usability Experiments
	Motivation
	Experiments
	Methodology

	System Feasibility Confirmation
	Discussion and Conclusions

	Statistical Comparison Tools
	Statistical Tests
	Parametric or Non-parametric Test?
	Comparing the Devices

	Discussion and Conclusions

	Conclusion and Future Work
	System Usability Scale

