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Abstract 

Ant Colony Optimization (ACO) is a metaheuristic for solving combinatorial 

optimization problems which belongs to swarm intelligence approaches. It is the most 

successful and the most studied technique among these methods which are inspired by 

social behaviour of insects and other animals.  

In this master thesis, we proposed two ACO algorithms using respectively one and 

two pheromone matrices to tackle a biobjective permutation flowshop scheduling problem 

where the makespan and the total tardiness are the objectives to minimize. The two 

algorithms are aggregation methods and their underlying idea is to force each colony to 

search for solutions in different directions of the space by changing the importance of each 

objective all along the procedure.     

These two algorithms and their different variants have been studied and tested on 

four instances. They have been compared through the analysis of more than one hundred 

pairwise comparisons of the different configurations. The results obtained have helped us 

to have a better understanding of the problem and provide indications and suggestions for 

further research.   
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Résumé 

Ant Colony Optimization (ACO) ou l’Optimisation par Colonies de Fourmis (OCF) 

est une métaheuristique destinée à la résolution de problème d’optimisation combinatoire. 

Cette technique est la plus efficace et la plus étudiée parmi les méthodes dérivées de 

l’intelligence en essaim qui s’inspirent du comportement social de certains insectes et de 

certains animaux. 

Dans ce Mémoire de fin d’études, nous proposons deux algorithmes basés sur 

l’OCF utilisant respectivement une et deux matrices de phéromone, pour la résolution d’un 

problème biobjectif d’ordonnancement flowshop où le makespan et le total tardiness sont 

les deux critères à optimiser. 

Ces deux algorithmes sont des approches agrégatives dont l’idée est de forcer 

chaque colonie à chercher les solutions dans différentes directions de l’espace en faisant 

varier l’importance de chaque objectif tout au long de la procédure.  

Ces deux algorithmes et leurs différentes variantes ont été étudiés et testés sur 

quatre instances et comparées par l’analyse de plus de 100 comparaisons par paires de ces 

différentes configurations. Les résultats obtenus nous ont aidés à avoir une meilleure 

compréhension du problème et fournissent des indications et des suggestions pour de 

futures recherches plus approfondies. 
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1 
 Introduction 

Ant Colony Optimization (ACO) is a metaheuristic for solving combinatorial 

optimization problems. This population based approach was inspired by the behaviour of 

ants in finding the shortest path from their colony to the food.  

The particularity of an ant colony is that without any explicit centralized control or 

any direct communication, simple agents are capable to create local interactions which lead 

to the emergence of a global behaviour which serves the interests of the whole population. 

This is the concept of swarm intelligence that can be observed in ants’ colony but also in 

birds flocking or in bacterial growth. 

The ants’ system of communication is based on the modification of their 

environment. While searching for food, varied quantities of pheromone are laid down on 

the path taken by each ant and these quantities indicate the distance and the quality of the 

source food. Thus paths with more pheromone will be more attractive for the ants and will 

be preferred. This idea was at the origin of the first ACO algorithm proposed y Dorigo in 

1992 [48].  

Since this first work, many variants of the basic principle have been developed and 

applied to a variety of classical hard combinatorial optimization problems such as the 

travelling salesman problem [48,52,55,146], the quadratic assignment problem 

[67,101,147], the sequential ordering problem [66], and many other applications. Very 

good results, sometimes state of the art were obtained for some applications, what explains 

that ACO is nowadays applied by many researchers to solve classical hard combinatorial 

optimization, dynamic or multiobjective problems. This work deals with this last field. 

In this master thesis, we will propose two ant colony optimisation algorithms for a 

biobjective permutation flowshop scheduling problem.  
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Flowshop scheduling problem is frequently studied. Since the introduction of the 

first flowshop problem by Johnson in 1954 [87], many variants of this problem with 

different objectives have been tackled by many different algorithms. Although a single 

objective is deemed as insufficient for most real applications, most of works on flowshop 

problems are using a single objective approach.  

In this work we will present two multiobjective approaches for the problem. We 

will study and compare these two approaches and their different variants in order to choose 

most adapted approach following the problem and the preferences on the objectives.  

The remainder of this Master thesis is structured as follows:  

In section 2, after having reviewed scheduling problems and common objectives to 

optimize in scheduling problems, we present more precisely the permutation flowshop 

scheduling problem and the two objectives which constitute the biobjective problem 

tackled in this work.  

In section 3, we review metaheuristics which have been applied to flowshop 

problems and we present in details ACO and some of its applications. 

In section 4 we present multiobjective optimization, the different existing 

approaches and the two ACO approaches we proposed to tackle the biobjective problem. 

Section 5 deals with the experimental part of this work where results are presented 

and discussed. 

Finally in Section 6, some conclusions and indications for further research are 

given. 
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2  
Definition of the problem 

In many manufacturing and production systems, different jobs have to be processed 

by several machines in a given order. This multi-operation situation is often reflected in a 

shop scheduling model, where a number of jobs are to be processed in a shop consisting of 

several machines.  In real world thousands of possible configurations exist for the 

production. In this section, we will first present a classification of existing shops problems. 

Then the different shops problems and the different objectives which can be tackled will be 

described.   

2.1 Classification 

In a scheduling problem, many of parameters have to be taken into account, the 

kind of scheduling problem, the objective function, the constraints, … To make it clearer, 

Graham et al. have introduced in the end of the seventies a three-field notationα β γ  

which helps to classify the different scheduling problems, and allows to have a quick view 

of the kind of problem to deal with [74]. This notation may be sketched as follows: 

 The first field, α , indicates the machine environment. For instance, α = F or α  = J 

denotes the flow shop or job shop model respectively. The number of machines m is either 

part of the problem instance or equal to a fixed constant. In the latter case, the letter m or a 

positive integer is added after the machine environment, i.e. a two machine job shop model 

is specified by 2J . 

 The second field, β , consists of the job characteristics, i.e. the processing 

restrictions and constraints. By contrast to the first field, this field can be empty, which 

implies the default of non-preemptive and independent jobs. Examples of possible entries 

in this field are pmtn=β , meaning that preemption is allowed (i.e. the processing of any 

operation may be interrupted and resumed at a later time), and precβ = , meaning that 
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there are precedence constraints between the jobs (i.e. the processing of a job cannot start 

before the completion of another job).  

The third field γ  specifies the objective to deal with. An optimality objective 

assesses the relative merits or performances of competing feasible schedules. Examples of 

commonly used criteria are minimizing the makespan maxC  (the completion time of all the 

jobs on all the machines) or minimizing the total weighted mean flow time, (the average 

time the jobs remain in the machines). With this three-field notation it becomes possible to 

classify and to have a quick reference for all the variations of scheduling problems. For 

instance, the problem of minimizing makespan in a m -machine permutation flowshop is 

identified by the three-tuple max| |Fm prmu C , while the problem in a general flowshop 

problem (without permutation) m machine flow shop is denoted by max| |F m C . 

In theory, it is possible for flowshop problems to enumerate all the !n  possible 

solutions and try them to find the best one according to an objective. This approach works 

for small problems but with an increasing number of jobs and machines, this method 

becomes too heavy for today high speed computers.  A NP-complete problem is a problem 

which cannot be solved in a polynomial number of steps of the input size. If it can, the 

problem is said  P-complete. Garey has shown in 1979 that flowshop scheduling problem is 

NP-complete [71] like other famous problems, the Travel Salesman Problem (TSP) or the 

Quadratic assignment Problem (QAP) for which no polynomial time algorithm is known. 

Thus we know that no algorithm can solve a large sized problem in a polynomial number 

of steps. Hence much of the efforts of researchers were intended to develop heuristics that 

are likely to give not necessarily optimal solutions, but good solutions. This will be 

developed in the section 3. 

The order in which a job passes through the machines is the sequence, also called 

the processing route and it is fixed for each job. This processing route is one of the 

elements that distinguish the three typical models that can be found in the reality and in the 

literature:  

− Open shop: there are no constraints on the machine sequence. The jobs can visit the 

machine in any order. 

− Job shop: the machine sequences can be different for each job. 
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Figure 1: Illustration of a flowshop production line with buffer 

− Flow shop: the most constrained shop production, all the jobs have to visit the 

different machines in the same order. 

The job shop production will be simply presented whereas the flow shop scheduling 

problem will be analyzed more in details. But first we will provide in the next section a 

brief outline of the classical scheduling models. We make effort to adhere to traditional 

notation and standard terminology. 

2.2 Nomenclature of parameters 

 Here are presented the notations used in the rest of the work: 

Task t: Non-divisible activity which has to be performed in a station. 

Job i : part of a subassembly or assembly, processed by a station. In a mixed model 

production line the jobs belongs to different models which include different processing 

times depending on the model at the stations. 

Station j : One or more tasks may be assigned to station j . In the classical flowshop 

problem m  stations are aligned in series and all jobs have to visit the stations in the same 

order. The length of station j is 
j

L .  

Operation: The processing of a job in a machine. The operation of a job i  in a machine j  

is characterized by its processing time ijp . If a job i  has to be processed on machine j  the 

job i  can start on machine j  only if it is completed on machine 1−j  and if machine j  is 

free. 

Buffer: Buffers were originally introduced between two consecutive stations to decouple 

them in order to avoid blocking and starving. Buffers are often located before. Figure 1 

gives an illustration of a flowshop production line with buffer.  

Station/machine 

Buffer 

J5 J1 J8 J4 J3 J2 J7 J6 jobs 

M1 MM2 
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Figure 2: Illustration of some element of the nomenclature 

and after bottleneck stations. The reason is that this already critical part of the production 

usually is the limiting section. In automobile productions buffers of enormous dimensions 

can be found, which in principle decouple the main successive production sections. This 

buffer is, furthermore, used to reorder the jobs, available in the buffer, on a large scale. In 

Figure 2 we present an example of a scheduling of three jobs which have to visit three 

machines. 

Processing time ijp : Also called assembly-time, is the time that a job i  is maintained at 

station j while being processed. Due to the nature of a flowshop, a job that is not processed 

at a station has to pass this station with a processing time equal to zero. 

Preemptive/Non preemptive: Preemptive operation means that the process may be 

interrupted and resumed later, even on another station. Furthermore an operation may be 

interrupted several times. If preemption is not allowed, the operation is called non 

preemptive. 

Setup time
fgist : Setup time is concerned if an additional time appears to change the setup 

of station j , in order to be able to process job 1+i  which is of model g  after a job i  

which is of model f . If the setup time is independent of the model, it can be simply added 

to the processing time. 

Start-time iS : The time job i  enters the system is called start-time. 

Completion-time iC : The time job i  exits the system is called completion time and is the 

completion time of the last job i  on the last machine. 
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Launch-interval λ : The time between two consecutive jobs entering the production line is 

called launch-interval. Usually it is a constant value, also called cycle time. A constant 

launch-interval results in a fixed production rate (production quantity per unit of time). 

Setup cost fgisc : In a similar way, setup cost is concerned if an additional cost appears to 

change the setup of station j , in order to be able to process job 1+i  which is of model g 

after job i  which is of model f. If the setup cost is independent of the model, it can be 

simply added to the processing cost. 

Demand D: The demand describes the total volume of jobs to be processed .Usually in 

addition to the volume; the start-date and due-date id  are also given. These values describe 

the earliest possible point of time to start working on a particular job and the date the 

finished product has to be delivered to the customer. Very often, penalty for delivering too 

early or too late are applied. 

Model M: In the mixed model flowshop different models are based on the same basic 

product. The difference from one model to another may be due to an option that is not 

applied to all models or a variation of an option. 

Job sequence jπ : The job sequence defines the order of jobs at station j . 

A job sequence that is the same for all stations is called a permutation sequence. In 

flowshop, the stations sequence, the order in which the individual jobs visit the stations, is 

the same for all jobs. 

Precedence: The precedence gives a dependency of jobs in respect to the processing. A 

job i  is said to be predecessor of job k  if job i  has to be processed before job k . An 

immediate predecessor then is a job that has to be processed immediately before another 

job. In assembly, this is something very common. 
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Figure 3: Scheme of an open shop production line 

2.3 Open shop 

. In the open shop model there is no restriction and no constraints on the movement of the 

jobs in the production installations. Each job can have its own machine sequence and there 

is no linear path between the machines. At the output of a machine, a job can go to any 

other machine of the production line. The Figure 3 represents the sequence of three jobs 

which have to be processed on five machines. In open shop, no constraint exists, each job 

can follow its own path between the machines.   
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Figure 4: Scheme of a job shop production line 

 

Figure 5:  Scheme of a flow shop production line 

2.4 Job shop 

The job shop model is one of the most general models in scheduling theory. In a job 

shop scheduling problem, each job consists of a number of operations to be processed on 

all or some of the machines, and each job has its own processing routes to follow. Hence to 

construct a feasible schedule for a job shop, we have to determine, for each machine, the 

order in which the jobs have to be processed. An example of a five machine job shop 

installation is given in the Figure 4. 

2. 5 Flow shop 

The flow shop is a particular type of job shop. In flow shop, each job requires 

processing on every machine only once and the processing route is identical for all jobs, 

they all have to go through the machines in the same order. An example of a four machine 

flowshop production where three jobs are processed is illustrated Figure 5. 
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 Job shop Flow shop 

characteristics 

− Equipment and staff grouped 
based on function 

− High variety - low volume 
− Each output processed 

differently 

− Heavily automated special 
purpose equipment 

− High volume - low variety 
− Both services and products can 

use flow shop form of 
processing 

advantages − Flexibility to respond to 
individual demands 

− Less expensive general 
equipment 

− Easier maintenance and 
installation of general 
equipment 

− General equipment easier to 
modify 

− Dangerous activities can be 
segregated from other 
operations 

− Higher skilled work leading to 
pride of workmanship 

− Concentration of experience 
and expertise 

− Pace of work not dictated by 
moving line 

− Less vulnerable to equipment 
breakdowns 

− Low unit cost 
− low material handling costs 
− low direct labour cost 
−  
− specialized high volume 

equipment 
− bulk purchasing 
− lower labour rates 
− low in-process inventories 
− simplified managerial control 

 

Table 1 : Comparison job shop/flow shop production 

Some characteristics, advantages and disadvantages are presented in Table 1 to 

present the main differences between job shop and flow shop production. Advantages of 

each kind of production are also presented.  

In the industry, due to economical reasons a production line structured as a 

flowshop is something very common. In such installations, all the jobs have to go through 

one production line where they are processed under many machines. Initially, for flowshop 

production all products and jobs were the same and the processing time of jobs on each 

machine was the same and there was no problem of scheduling as the order in which jobs 

must enter the machines had no importance. 

Nowadays, mixed-model flowshop production is often used and such type of 

production line is found in an increasing number of production environments. This is the 

logical result of the increased necessity of customer orientated product spectrums. In 

mixed-model flowshop, even if the jobs are very similar and based on the same model, they 

all have something specific. Hence the time each job is maintained in a machine while 
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processing is different and then finding an optimal sequence considering one objective 

function has become a crucial problem for managers. Scheduling flowshop problems 

appear only when variation of the same product are produced on one production line. 

The flowshop scheduling problem consists of finding an optimal sequence of n jobs 

),...,,( 21 nJJJ  which have to visit m machines. Each job has a set of m operations, one 

operation per machine. jπ  describes the order in which the job i has to visit the machine j . 

In the particular case of the permutation flowshop problem, all the jobs have to go through 

the machine in the same order, hence ni ππππ ===== ......21 . Furthermore, the 

processing time ijp of job i on the machine j is known and stays constant. In theory, 

parameters such as setup time and setup cost have to be taken into account but because of 

the additional complexity, most algorithms do not consider them. 

2.6 Objective functions 

Different objectives depending on what is important for the production can be 

associated to a flowshop problem. In the following section a non exhaustive list of 

objectives that can be associated to flowshop problems will be given. 

Objective functions can be divided in two categories: time orientated and cost orientated.  

2.6.1 Time orientated functions 

Makespan, maxC , is the most common objective used in scheduling problem. The objective 

is to minimize the maximum completion time necessary to process all the n  jobs on 

m machines. It is also called the total production time. Minimizing the makespan normally 

ensures a high utilization of the production resources and early satisfaction of the client 

demand. 

Makespan is defined as: 

{ }max | 1...,iC i n=  

Maximum flow time, maxF  is to minimize the flow time. The flow time is the period of 

time between the beginning and the end of a job; it is also the time the job stays in the 

production line. It would be noticed that if all the released dates of the jobs are equal to 

zero, the Maximum flow time is equal to the makespan. 
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Maximum flow time is defined as: 

{ }max ( ) | 1...,i iC S i n− =  where iS  is the release date of the job i . 

A weight iω  can also be associated to each job. In this case the purpose is to minimize the 

weighted flow time.  

Weighted flow time is defined as: 

∑
=

−
n

i

iii SC
1

)(ω  

Minimization of this variable leads to stable utilization of the resources, rapid turn-around 

of jobs and the minimization of the in-process inventory. Minimizing maxF leads also to the 

minimization of the works in process (WIP) which are a very important factor of cost in 

production. 

Mean flow time F  represents the average time the jobs remain in the machines. 

Minimizing this variable also leads to the minimization of the WIP. 

Mean flow time is defined as: 

nSC
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Weighted mean flow time is defined as: 
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Setup time may occur in a mixed model production, setup time fgisc when at station  j  a 

job 1+i  of model type g  follows job i  of model type f . Minimizing total setup time, 

furthermore,  ends to decrease the total flow time. 

Setup time is defined as: 

∑
=

n

i

fgist
1

 

Idle time ijI  is the amount of time that a job is waiting to be processed at a machine 

(because the machine is unavailable), after it has been processed by the previous machine. 



 - 24 - 

Idle time ijI  at station j  occurs when an operator is kept waiting for job i . This may be 

caused by a job that has not yet arrived, or because an auxiliary operator is still occupied 

with the job. When it occurs that setup time is separable from the processing time, the 

operator can benefit from this idle time in order to perform the necessary changes for the 

next job to be processed. Minimizing the total idle time leads to the minimization of the 

time that a work station is not producing. 

The Idle time is defined as: 

∑∑
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n
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ij

m

j

I
11

 

The mean Idle time is defined as: 
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Utility time ijU  is the time an auxiliary operator is required to help an operator who has to 

work on a job 1+i  before having finished with job i . 

The Utility time is defined as: 

∑∑
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Mean utility time is defined as: 
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Total tardiness, iT  is the difference between the completion time and the due date id  of 

the job i , considering that the job is completed after its due date. A weight iω  is associated 

to each job and the objective is to minimize the total weighted tardiness. 

Tardiness iT  is defined as: 

{ }nidC ii ,...,1)(max =−  
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Figure 6: Illustration of some objectives  

Total tardiness is defined as: 

1

n

i

i

T
=

∑  

Total earliness: is the same problem as the total tardiness except that in this case, penalty 

occurs if the jobs are completed before the due dates. Minimizing the total weighted 

earliness also means minimizing the costs due to the obligation of stocking the finished 

jobs.   

Earliness iE  is defined as:  

{ }niCd ii ,...,1)(max =−  

The earliness and the tardiness criteria can be combined and the objective becomes the 

minimization of the sum of the earliness and the tardiness. 

In the Figure 6 you will find a graphical representation of these different values with job 1 

of model a and job 2 of model b. 

Job 1 

Job 2 

Job 3 

Setup time 

 

 

 

  

 

 

 

M

M

M

S1=S 

C3=Cmax=F3 

C2 
C1=F1 

time 

Sab 
I32 

d2 
T2 

E1 

d1 



 - 26 - 

2.6.2 Cost orientated functions 

Setup cost: The occurrence of setup cost in a production may lead to the objective of 

minimizing the total setup cost to keep the production costs reasonable. 

Setup cost is defined as: 

∑
=

n

i

fgisc
1

 

2.7 Diversity of flowshop problems 

Next to the classical flowshop problem, several other variations of this problem 

exist. In practice, lots of different industries used flowshop productions; each industry often 

has its own needs and its own specificities. For example in chemistry it is common practice 

that once a job is started, it cannot be interrupted, which leads to a non wait flowshop 

problem. We will now present different types of flowshop problems which are studied in 

literature. 

Non permutation flowshop: The first to mention the flowshop problem was Johnson in 

1954[87]. In this problem, n  jobs have to be processed on m  machines arranged in series 

according to the sequence of the operations. Here are the rules of this problem:  

− each job has the same machine sequence; they all have to visit the m  machines in 

the same order. 

−  each job can be processed only on one machine at one time and each job is 

processed only once on each machine. 

− each machine can process only one job at the same time.  

− jobs may bypass another job between two machines.  

The problem consists in finding the best job sequence for each work station j  according to 

one objective function.  

Permutation flowshop: here the solutions are limited. One job cannot bypass another 

between two machines hence the job sequence on the first machine is maintained for all the 

other machines in the production line and solutions are limited to job sequences, iπ   with 

1 2 ... ...i mπ π π π= = = = = . It is typically the case in no-wait flowshop problem or for some 

assembly. 
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Figure 7:  Illustration of identical parallel stations flowshop 

Zero-buffer and no-wait flowshop: in these two variations, jobs are not authorized to form 

queues between two machines. With a buffer capacity equal to zero when a job i  is 

finished on a machine j , it can move to the next machine 1+j  only if the machine 1+j  is 

free, only if there is no job processing on this machine. In the no-wait flowshop problem it 

is more restrictive. When a job i  has begun its processing on the first machine, it must 

continue without any delay to be processed on each of the m machines.  

Hence the only sequences authorized are the ones which do not lead to the blocking of any 

machines. Practical applications of this problem can be found in the chemical and 

pharmaceutical industry, in the service industry, and in the metal industry.  

No-idle flowshop: In this problem, when a machine has started processing, it must do all 

the operations assigned without any interruption.  As shown by Cepek and al. in 2002 [23], 

this case can appear in real life when a company needs to rent expensive equipment for the 

duration of the operation. Hence solving a no-idle flowshop problem permits to minimize 

the renting time of the expensive equipment. 

Flexible-Hybrid-Compound flowshop: in this case, parallel stations exist. Parallel stations 

reduce cycle time needed for an operation on a station. In the mixed-model case the 

processing time of a job on a machine depends on its model, thus the parallel station gives 

the opportunity to one job to overtake its predecessor. In this type of problem two kinds of 

setup exist: identical parallel stations and non-identical parallel stations (see Figure 7 and 

8). Identical parallel stations accelerate the process while non identical parallel stations 

allow a job to overtake another one. 
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Figure 8:  Illustration of non-identical parallel stations flowshop 

2.8 Biobjective permutation flowshop problem 

In this work, we will focus on a biobjective permutation flowshop problem. 

There are several assumptions that are commonly made regarding this problem: 

−  Each job i  can be processed at most on one machine j at the same time.  

−  Each machine j  can process only one job i  at a time.  

− No preemption is allowed, i.e. the processing of a job i  on a machine j cannot be 

interrupted. 

−  All jobs are independent and are available for processing at time 0 . 

−  The setup times of the jobs on machines are negligible and therefore can be 

ignored. 

−  The machines are continuously available.  

−  In-process inventory is allowed. If the next machine on the sequence needed by a 

job is not available, the job can wait and joins the queue at that machine. 

 Thus the problem is to find a permutation iπ  of the n  jobs which will be 

considered as a compromise solution between the two chosen objectives:  

− the makespan 

− the total tardiness 
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Figure 9: Illustration of the makespan 

2.8.1 Makespan 

Makespan objective, as said before, is the most studied objective in flowshop 

scheduling problem. The objective is to minimize the maximum completion time necessary 

to process all the n  jobs on m machines. Makespan is illustrated in Figure 9. 

Set ijC  : the completion time of job i on machine j , the makespan can be computed as 

follow:   

1111 pC =  

11)1(1 iii pCC += −                                                                                     ni ,...,2=  

jjj pCC 1)1(11 += −                                                                                  mj ,...,2=  

{ }
ijjijiij pCCC += −− )1()1( ,max                                                               mjni ,...,2;,...,2 ==  

The makespan maxC = nmC , it is the completion time of the last job on the last machine. 

The purpose is to finish the production as fast as possible. So in the permutation 

flowshop problem with the makespan criterion, the problem is to find a permutation ∗π  

which belongs to the set Π  of all the possible permutation such that 

Π∈∀≤∗

iinmCC πππ )((max . 
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Figure 10: Illustration of the total tardiness 

2.8.2 Total tardiness 

In reality, tardy penalties are often associated to a job. If the products are not 

delivered on time, the company has to pay extra costs to compensate this delay. The 

objective here is to minimize the total tardiness which can also mean minimizing the tardy 

penalties in some cases. If { })(max iii dCT −= , the tardiness of this job, then 

the total tardiness is: 

∑
=

n

i

iT
1

 

The notion of tardiness is illustrated in Figure 10. 

If we use the Graham classification, we will be face a  maxCPermuFm   associated with a 

TPermuFm . 

Makespan and total tardiness are two common criteria. Furthermore, a low 

makespan increases machine utilization and throughput. However, the best possible 

makespan might sacrifice due dates and therefore both objectives are not completely 

correlated. In the experiments section, we will calculate the correlation of the two 

objectives for each instance used in the tests.  
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3  
Optimization algorithms for 

Permutation Flowshop Scheduling 

Problem 

Since the flowshop was introduced in 1954 by Johnson, lots of methods have been 

developed to attack this problem and all issues related such as the permutation flowshop 

problem. In this section, The main algorithms will be introduced in this chapter – but first 

both following concepts that will be used throughout need to be clarified. 

− Heuristics:  the purpose of heuristic algorithms is to solve a problem, not to find an 

optimal solution, but an approximate good solution when the time of resources are 

limited. 

− Metaheuristics: it is a heuristic method for solving a very general class of 

computational problems by combining user given black-box procedures, usually 

heuristics themselves, in a hopefully efficient way. Metaheuristics are generally 

applied to problems for which there is no satisfactory problem-specific algorithm or 

heuristic; or when it is not practical to implement such a method. 

In the literature, it is possible to find some overview on the methods applied to the 

PFSP, but a global comparison between all methods cannot be found. It is very difficult to 

compare all the results found in the literature because of the mismatches both in the data 

sets and in the computer mainframe. Hence since the evaluations are partial and that there 

is no standard in the benchmark used, results cannot be reproduced. The different methods 

used for the solution of a m-machines PFSP with makespan or total tardiness for objectives 

are now presented. In a first time, we will present heuristics and metaheuristics used to 

solve flowshop scheduling problems with the makespan or the total tardiness for objective. 
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Finally, a third section will be used to give a detailed description of the Ant Colony 

Optimization (ACO) and its different applications. 

3.1 Heuristics 

For all the different methods, we first present existing methods for the makespan and then 

for the total tardiness. 

3.1.1 Constructive heuristics  

They are heuristics that build a feasible schedule starting from scratch.  

Makespan 

In 1954, Johnson developed the first known heuristic to build an optimal solution to 

a two machine flowshop scheduling problem. It can be used as a heuristic for a m  

machines problem by clustering the m  machines into two “virtual” machines. Several 

authors like Campbell (1970) with an algorithm called CDS where it builds 1−m  

scheduling by clustering the m  machines into two virtual machines and to use the Johnson 

algorithm to solve each 2  machines problem. Several authors like Dudek and Teuton [56] 

or Koulamas [95] have also developed algorithms using Johnson‘s one to solve m  

machines problems. It has been shown that for problems with more than three machines, 

the schedules are not necessarily optimal [126].  

Palmer (1965) exploited another approach, namely to assign a weight or index to 

every job. Then the sequence is arranged by sorting the jobs according to their index [121]. 

He developed a heuristic consisting in calculating a “lope index” for every job, and then 

scheduling jobs randomly. Using this index idea, Gupta, by exploiting similarities between 

scheduling and sorting, proposed some modifications to Palmer’s heuristic [77]. Others like 

Bonney and Gundry [13] or Hundal and Rajgopal [82] have used the same approach to 

develop their own method. 

  Dannenbring has introduced Rapid Access (RA) in 1977. This heuristic exploits 

both Johnson’s algorithm and Palmer’s slope index. The two virtual machine problem is 

defined as it is in the CDS algorithm. But the difference is that Johnson’s algorithm is 

applied to the two weighted schemes calculated for the two machines instead of being 

applied to the processing time [34]. The weighting schemes give the processing times for 
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the jobs in the two virtual machines. This algorithm provides a good solution in a short 

time. 

All the jobs in the problem form a permutation, hence lots of methods have been 

proposed with the idea of exchanging the position of the jobs or inserting the jobs at 

different positions. In 1961, Page also used the similarities between scheduling and sorting 

to propose three heuristics based on sorting methods [119]. The purpose is to first obtain a 

good sequence and then improve it by means of jobs exchange. 

The NEH heuristic is considered as the best heuristic for PFSP and has been 

introduced by Nawaz et al. in 1983 [114]. It is based on the idea that jobs with high 

processing times on all the machines should be scheduled in the sequence as early as 

possible. The procedure is straightforward:  

1. calculate the total processing time of each job i : ∑
=

=
m

j

iji pP
1

 

2. sort the jobs in non increasing order of iP  and take the two first one and compare 

the two schedules obtained by beginning by the first job and then by the second one. 

Choose the best solution. 

3.  for job ni ,...,3=  place the job i   at each of the possible position  in the sequence 

obtained  so far and chooses the best partial schedule. 

 It can be noticed that Taillard has developed a speed up technique which permits to test all 

the partial schedules obtained by placing the job in the different positions in one single step 

[151]. 

Based on the idea of minimizing the idle time on the last machine, Sarin and Lefoka 

have proposed their heuristic [136]. Actually, increasing the idle time on the last machine 

has for consequence an increase in the makespan or in the total completion time. In this 

method, the sequence is completed by adding one job at a time. The job added is the one 

which minimizes the idle time on the last machine. If it is compared to NEH, this heuristic 

gives good results only when the number of machines exceeds the number of jobs.  

To summarize, three main heuristic approaches exist for the PFSP:  

− heuristics based on Johnson’s algorithm 

− heuristics based on Palmer’s slope index 

− heuristics based on insertion methods 
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Lots of approaches are based on one or more of these approaches but it also exists 

methods which are not based on these approaches. Different heuristics based on 

dispatching rules have been developed. 

Total tardiness 

For the total tardiness objective, simplest heuristics are based on dispatching rules. 

These rules which defined which job will be added to the sequence obtained so far. We will 

now present main rules used for the total tardiness problem. 

Let  s  be the sequence of jobs that are scheduled so far, t  the time at which jobs are 

considered for selection, ( )iC s the completion time of job i s∉  if it is scheduled at the end 

of the sequence. The different dispatching rules are:  

− Earliest due date (EDD) : at time t, the job with minimum jd  is selected 

− Earliest Weighted due date(WDD): time t, the job with minimum j jdω  is selected  

− Earliest due date with Processing Times(EDDP): at time t, the job with minimum 

value 
1

i
m

ijj

d

p
=∑

 is selected 

− Modified due date (Mdd): at time t, the job with minimum value of { }max , ( )i id C s  

is selected  

− Slack(SLACK): at time t, the job with minimum value of ( )
i i

d C s−  is selected 

− Slack per Remaining Work (SRMWK): at time t, we select the job i the minimum 

value of 
1

( ( ))
i i

m

ijj

d C s

p
=

−

∑
  is selected  

− Shortest Processing Time(SPT): at time t, the job with minimum value of 
1

m

ijj
p

=∑  

is selected 

− Longest Processing Time (LPT): at time t, the job with maximum value of 
1

m

ijj
p

=∑  

is selected 

Four simple heuristics were proposed in [72]. They are based on dispatching rules 

and give priority to the job which is most expensive to hold. 
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In [120], Ow proposed a heuristic called Idle Time Rule (IDLE). The algorithm is 

based on the notion of bottleneck machine. A bottleneck machine is the machine that forces 

succeeding machines to be idle because it is unable to complete jobs on time. 

The study deals with a proportionate flowshop where a constant of proportionality 

i
k  is associated to each machine and thus a job has processing time 1 2, ,...,

m
k p k p k p  on the 

respective machine. Bottleneck machine is typically a machine which has longer operation 

times.  The characteristic of the bottleneck machine is that as soon as it is free, the job with 

the highest priority must be scheduled. Thus the algorithm consists in determining the 

bottleneck machine and scheduling the jobs with highest priorities first. 

A NEH version for total tardiness also exists. In [90], jobs are sorted following the 

Earliest due date rule, in non decreasing order of due date  or following the Latest due date 

rule, in decreasing order of due date. The two algorithms were called 
Edd

NEH  and 

Ldd
NEH . 

In the same work, they proposed another algorithm called ENS which starts from a 

solution constructed by EDD and improves the solution by interchanging pair of jobs. 

Other methods based on algorithms for one and two machines problems have been 

developed. One algorithm called Modified Focused Scheduling (MFS) [120] consider m 

machines such that each machine is considered to be bottleneck. For each machine, one 

schedule is constructed, thus at the end of the process, the best sequence among the m 

sequences constructed is chosen. Based on the algorithm Botflow proposed for a one 

machine problem and described in [112], Flowshop Decomposition (FSD) uses Botflow 

rule to generate m sequences. Among these m sequences, the best one will be chosen for 

solution [2]. 
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3.1.2 Improvement heuristics  

Makespan 

By contrast, improvement heuristics start with a schedule already built and try to 

improve this solution. In 1977, Dannenbring proposed two improvement heuristics: Rapid 

Access with Close Order Search (RACS) and Rapid Access with Extensive Search 

(RrAES) [37]. In RACS, the method consists in swapping two adjacent jobs in a sequence 

obtained by RA. The best schedule between the 1−n  schedules is given as a result. This is 

repeatedly applied while the heuristic finds improvement. 

  Ho and Chang developed a method that works with the idea of minimizing the Idle 

time [80]. The authors refer to this time as ‘‘gap’’. After having calculated all the gaps for 

every pair of jobs and machines, they swap the jobs depending on the value of the gap 

associated to each job. This improvement heuristic has been applied after CDS heuristic of 

Campbell. 

Suliman recently developed an improvement heuristic based on job pair exchange 

mechanism with a directionality constraint which reduces the size of the search space 

[128]. For example, if by moving a job forward, a better schedule is obtained, it is assumed 

that better schedules can be achieved by maintaining the forward movement and not 

allowing a backward movement.  

Total tardiness 

Kim et al. proposed in [91] two local search algorithms, ENS 1 and ENS2 which 

starts from a solution given by 
Edd

NEH . They use improvement procedure based on 

interchange and insertion of jobs.  

3.2 Metaheuristics 

In PFSP, metaheuristics very often starts from a solution found by a heuristic. 

Among all the works that can be found in the literature some more interesting will be 

presented in this section. These algorithms mainly deal with local search (LS), simulated 

annealing (SA), tabu search (TS) and genetic algorithm (GA) or hybrid methods which 

associate two of the different metaheuristic classes. These classes of metaheuristics will be 

now briefly presented. Iterated local search (ILS) [142] will also be described as it is said to 
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be the best metaheuristic to solve PFSP with the makespan for objective according to the 

experiments done by Ruiz and Maroto [135] on Taillard benchmark [152]. 

For the different metaheuristics, we will present existing methods that have been 

developed to tackle the makespan problem and then the total tardiness problem. 

3.2.1 Hybrid metaheuristics 

After having studied the different algorithms separately, researchers have realized 

that it is not sufficient. A skilled combination of concepts of different metaheuristics can 

lead to better results.  

The interaction of the different methods can take place in low level, combination of 

functions from different metaheuristics or high level, using a portfolio of metaheuristics to 

automated hybridization. The complexity and the size of the problem have an enormous 

influence on how the different functions should be associated. A traditional scheme that 

recurs in the literature is to associate an exploration method such as evolutionary algorithm 

with an intensification method such as local search. 

3.2.2 Local search 

Local search can be applied to problems where the objective is to find a solution 

which minimizes (or maximizes) a criterion among a number of candidate solutions. After 

having defined a neighbourhood relation on the search space, the local search starts from a 

point and iteratively moves to a neighbour solution. Typically the name of the local search 

indicates how the neighbour solution is chosen. If the choice of the neighbour solution is 

done by taking the one locally minimizing (or maximizing) the criterion, the metaheuristic 

takes the name of hill climbing. 

The termination condition of a local search can be of different types. It can be based on a 

time bound, on a certain degree of optimality reached or on a number of iterations without 

any improvement. 

Local search algorithms are typically incomplete algorithms; it means that they may 

stop even if the solution found is not optimal. For example, it can happen that the algorithm 

is unable to improve its current solution as the optimal solution can lie very far away from 

the neighbourhood of the last best solution found. 
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Local search algorithms are applied in lots of different problems like the TSP, the 

vertex cover problem and also the PFSP. Three different local search algorithms often used 

in  

  

In the literature, three local search algorithms are usually considered for the PFSP 

and other shop problems:  

− transpose neighbourhood: swap two consecutive jobs at position i  and position 

1+i ; 

− exchange neighbourhood: exchange jobs at position i  and j  

− insertion neighbourhood: remove the job at position  i  to insert it at position j . 

Swap move is very fast but its solution is of low quality. Exchange move and insertion 

move give solutions of comparable quality, but by using the speed up technique developed 

by Taillard for the NEH algorithm [151] insert move works faster than exchange move. 

This is why insertion move is regarded as the best choice for PFSP when the makespan is 

the objective under consideration. Transpose neighbourhood is illustrated in Figure 11. 

 

Figure 11 : Transpose neighbourhood 
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Figure 12: Exchange neighbourhood 

 

Figure 13: Insert neighbourhood 

Transpose  neighbourhood (see Figure 11) 

In transpose neighbourhood, the size of the neighbourhood is 1−n . In this method, 

a permutation 'π  is obtained from a starting permutation π  by swapping the position of 

two adjacent jobs. Algorithms based on this local search give a solution quickly but do not 

allow to reach solutions of good quality. 

Exchange neighbourhood (see Figure 12) 

In this method, the size of the neighbourhood is 2/)1( −⋅ nn .  The permutation 'π  

is obtained from the permutation π  by exchanging a job at the position i  with a job at 

position j .This local search gives good quality solutions but as the neighbourhood size is 

bigger, thus the exploration of the neighbourhood takes more time. Figures 12 and 13gives 

an illustration, of exchange neighbourhood and insert neighbourhood. 

Insert neighbourhood (see Figure 13) 

The size of the neighbourhood is )²1( −n . The sequence 'π  is obtained from a 

sequence π  by removing the job at position 1p  and by inserting it at position 2 1p p≠ . The 

quality of the solution found is comparable to the solution given by exchange 

neighbourhood  

π 

π’ 

f c d b a e g k j i h 
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f c d b a e g k j i h π 

f g e b a d c k j i h 
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Figure 14: Cycle of reproduction in a genetic algorithm 

but when the objective to deal with is the makespan, the speed up technique proposed by 

Taillard increases its performance and the algorithm is faster.  

Nowicki and Smutnicki, in 1996 have proposed the use of specific pruning 

techniques that can reduce the size of the neighbourhood at each step of the search 

procedure and thus reduce the time needed to find a solution [115].  In the section 4 and 5, 

we will refer to these local search algorithms with the notations “trans” for transpose 

neighbourhood local search, “exchange” for exchange neighbourhood and” insert” for 

insert neighbourhood. 

3.2.3 Genetic algorithms   

This class of probabilistic optimization algorithms is inspired by biological 

evolution. It uses concepts of “natural selection and genetic inheritance” [35] and was 

originally developed by Jon Holland in 1975 [81]. In this method, a population of candidate 

solutions evolves toward better solutions for a given problem. 

The evolution starts from a population and in each generation, the fitness of every 

individual is evaluated. In function of their fitness, some individuals are stochastically 

selected from the population. These individuals are recombined, sometimes with mutations 

to form a new population. This new generation will be used as a base for the next iteration. 

The algorithm ends when the termination condition is reached. Figure 14 shows the cycle 

of reproduction of a GA. 

More precisely, to begin a GA procedure, genetic representations of the solution 

domain and a fitness function to evaluate the solution domain have to be defined. The 
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fitness function is defined over the genetic representation and measures the quality of the 

represented solution. Once these elements are defined, it is possible to begin the procedure.  

The first step is the initialization of the population. Traditionally several hundred or 

thousand possible solutions are generated randomly to constitute the first population. An 

important point is that this population must cover the entire range of possible solutions, all 

the search space 

The second step is the selection. During this phase, a proportion of the existing 

population is selected to breed a new generation. The criterion of selection is the value of 

the solution according to the fitness function. The fitter solutions are more likely to be 

selected. Following the choice of the algorithm designer, the selection can rate all the 

solutions and then select the best solutions or only test a sample of the population before 

choosing. This function is stochastic, hence there is still a small probability that less fit 

solutions are chosen, what helps to keep the diversity of the operation large and helps to 

avoid a too fast convergence on poor solutions. Popular and well-studied selection methods 

include roulette wheel selection and tournament selection. 

The reproduction phase is the third phase. Among individuals selected, the two 

parents are chosen and are combined by crossover and/or mutation to generate one child. 

This child typically shares many of the characteristics with the two parents. This operation 

is repeated until a new population of an appropriate size is generated. This new population, 

different from the first one generally have a fitness which has increased in average. GA can 

use two different operators to change the genes of the children:  

− crossover: a genetic operator that combines the  two chromosomes of the parents to 

produce a new chromosome which takes the best from the characteristics of each  

parent. 

− mutation: a genetic operator that alters one or more gene values in a chromosome 

from its initial state.  

By this procedure it is possible to construct better populations by iteration, This 

process is repeated until a termination condition has been reached. Common terminating 

conditions are:  

− a solution is found that satisfies minimum criteria  

− a fixed number of generations is reached  
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− allocated budget (computation time/money) is reached  

− the highest ranking solution's fitness is reached or a plateau is found such that 

successive iterations no longer produce better results  

− combinations of the above. 

Makespan 

In 1995, Chen et al. starting from the result given by CDS heuristic (Campbell) and RA 

heuristic (Dannenbring) to constitute the initial population, they have proposed a simple 

GA where only crossover operator is applied [26]. The same year, Reeves also proposed a 

GA algorithm starting with NEH (Nawaz) [131]. In this procedure, he uses crossover and 

mutation operators, but the new individuals obtained don’t replace the parents, but 

individuals from the generation that have a fitness value below average. The way he selects 

the parents is also different. Murata proposed a GA with the use of crossover and mutation 

operators associated with an elitist strategy [113]. But the solution obtained was first than 

the ones obtained by SA, TS and LS at this time, Thus he decided to implement hybrid 

methods associating GA and SA or GA and LS. 

Total tardiness 

Onwubolu and Mutingi have developed a genetic algorithm [117]. In this algorithm, 

they use an initial population randomly generated and combine the characteristics of the 

parents with crossover and mutation operators. The algorithm uses a diversity measure 

which guarantees a better exploration of the solution space. 

3.2.4 Tabu search   

Tabu search is a metaheuristic which is superimposed on another heuristic The 

purpose is to avoid entrainment in cycles by forbidding or penalizing moves which take the 

solution, in the next iteration, to points in the solution space previously visited, making 

these moves tabu. Memory is used to store this information and the role of the memory is 

very important.  

In a local or neighbourhood search, the algorithm starts from an initial solution and 

moves from neighbour to neighbour as long as possible while decreasing the value of the 

objective function. TS, by modifying the neighbourhood of the solution found, facilitates 
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the exploration of the regions of the search space that would be left unexplored by the local 

search.  

Different kinds of elements can be saved in memory. There are different kinds of 

tabu lists, a tabu list can contain the solutions recently visited, solutions that are excluded 

because they contain a specific attribute, or forbidden moves. In case some solutions are 

excluded because of their attributes, during the exploration of the search space, there is a 

risk of missing solutions of good quality which are accessible only by passing on the 

solutions excluded. To overcome this problem, aspiration criteria are introduced which 

allows overriding the tabu state of a solution to include it in the allowed set. 

The other characteristic of TS is that the new courses are not chosen randomly, 

Tabu search proceeds according to the supposition that there is no point in accepting a new 

(poor) solution unless it is to avoid a path already investigated. This insures new regions of 

a problems solution space will be investigated in with the goal of avoiding local minima 

and ultimately finding the desired solution.  

Makespan 

For the PFSP, Widmer and Hertz introduced an algorithm constituted of two phases 

called SPIRIT [154]. In the first phase, a problem is generated with an analogy with the 

Open Travelling Salesman Problem (OTSP) and is solved with an insertion method. In the 

second phase, starting with the solution obtained in the first phase, a TS algorithm 

combined with an exchange neighbourhood is used to improve the solution. Taillard also 

proposed in 1990 a similar method with an initial solution constructed by NEH combined 

with an exchange neighbourhood local search [151]. Reeves in 1993 improved the SPIRIT 

algorithm by using NEH combined with insert neighbourhood to construct the initial 

solution [130].  

Nowicki and Smutnicki proposed a Tabu Search metaheuristic where the size of the 

neighbourhood is reduced what really helps to improve the results. In this method, instead 

of moving single job, movements are made block by block [115]. This algorithm is known 

as one of the best for PFSP with Iterated local search.  

Moccellin and dos Santos [110] presented a hybrid Tabu Search-Simulated 

Annealing heuristic and showed after a comparison with simple TS and simple SA that 

their hybrid approach was better. 

Total tardiness 
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Adenso-Díaz [1] has modified the TS proposed by Widmer (SPIRIT) and uses as 

initial solution a solution obtained by MFS (Ow), Kim in [90] also proposed its version 

based on SPIRIT.  

Other works combining TS and SA have been proposed in the literature [1] where 

the TS is used to reduce the size of the neighbourhood. 

In [91], Kim et al. proposed four TS based on job insertion. The tabu list  can 

contain the objectives values obtained in the previous iterations, relative position of two 

adjacent jobs) 

3.2.5 Simulated annealing   

Simulated annealing (SA) is a probabilistic algorithm for optimization problem, 

invented by Kirkpatrick et al. in 1983 [92] and by Cerný in 1985 [35]. SA is a 

generalisation of a Monte Carlo method for examining the equations of state and frozen 

states of n-body systems. The name and inspiration come from the annealing process used 

in metallurgy.  Annealing is a heat treatment that alters the micro structure of a material. 

After having been heated, the material is slowly cooled into a uniform structure with 

changes in strength and hardness properties.  

With the heat, the atoms move from their initial position (a local minimum of the 

internal energy) and move randomly through states of higher energy. The slow cooling 

increases the chances of finding a configuration with lower internal energy, than the initial 

one. In SA algorithm, the initial solution is replaced by a nearby solution chosen following 

a probability rule. The energy equation for the thermodynamic system is analogous to the 

objective function of the combinatorial problem, and ground state is analogous to the 

global minimum. 

In annealing if the move from the initial position to the next position causes a 

negative change in the internal energy, the move is accepted otherwise it is accepted with a 

probability depending on the difference between the corresponding function values and a 

parameter T called Temperature. This process is repeated sufficient times to give good 

sampling statistics for the current temperature. The process is then repeated for a decreased 

temperature until T=0. Allowing moves to states with higher energy saves the method from 

becoming stuck at local minima. 
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The major difficulty in implementation of the algorithm is that there is no obvious 

analogy for the temperature T with respect to a free parameter in the combinatorial 

problem. Furthermore, avoidance of entrainment in local minima (quenching) is dependent 

on the annealing schedule, the choice of initial temperature, how many iterations are 

performed at each temperature, and how much the temperature is decremented at each step 

as cooling proceeds.  

Makespan 

One of the first SA developed for the PFSP was done y Osman and Potts in 1989 

[118]. It was a simple SA algorithm using a shift and a random neighbourhood search. One 

year later Ogbu and Smith proposed their SA algorithm where the initialisation is done by 

using the Palmer and Dannenbring heuristic [116]. In 1995, Ishibuchi introduced its SA 

algorithm with other characteristics that shows comparable results to SA from Osman and 

Potts [118]. 

Total tardiness 

Kim in [91] also proposed four SA where moves are based on insert neighbourhood 

or exchange neighbourhood. 

In [124] and [125], two similar SA have been designed to solve a total mean 

weighted tardiness. They use as initial solution a solution given by EWDD rule. 
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Figure15: Pictorial summary of ILS [142] 

3.2.6 Iterated local search 

Another metaheuristic is given by Stützle called Iterated Local Search (ILS) has been 

applied to the PFSP [142]. A pictorial summary is presented in Figure 15. 

In ILS there are five different steps:  

− generate an initial solution randomly or with a constructive heuristic 

− apply a local search ( *
s ) 

− do a perturbation: random move in higher order neighbourhood(s’) 

− apply a local search( *
s ’) 

− test with a acceptance criterion: force to lower the value of the objective function. 

For the PFSP with the minimization of the makespan for objective, it NEH heuristic 

can be used to generate an initial solution, apply insert neighbourhood as local search, then 

use transpose neighbourhood as the permutation. The move would be accepted only if the 

makespan of the new solution is lower than the makespan of the first solution. The role of 

the perturbation is crucial, if it is too strong, it can be close to a random start where as if it 

is too weak, it can be undo by the local search. The perturbation depends strongly on the 

local search used and the acceptance criterion depends on both local search and 

perturbation used in the ILS. 
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Figure 16:  Illustration of the symmetrical binary bridge [40] 

 Ruiz and Maroto have compared different heuristics and different metaheuristics 

using the Taillard benchmark as instances. According to their experiments, it appears that 

NEH heuristic implemented with the Taillard speed up technique is the best heuristic for 

the Taillard benchmark. For metaheuristics, the ILS of Stützle and the GA of Reeves give 

better results than the other algorithms. 

3.3 Ant Colony Optimization 

3.3.1 The origin  

The ACO algorithm has been inspired by the behaviour of real ants while they are 

looking for food. In real life ants initially explore the area surrounding the nest in a random 

manner until one ant find a source of food. It evaluates the quantity and the quality of food 

and carries some of it back to the nest. During its return trip, the ant deposits a pheromone 

on the trail on the ground. The quantity of pheromone on a route will increase the 

probability of an ant to choose this route, if it still finds food; it will go back to the nest 

following the same route reinforcing the pheromone trail. Over time, pheromone trail 

evaporates, thus reducing its attractive strength. Routes which are less taken will have their 

pheromone trail weaker as pheromone trail has more time to  

evaporate. Hence the probability of taking a long route is more and more lower with time. 

Actually after a while, we can remark that ants are able to find the shortest path 

between their nest and the food.  Deneubourg et al. have made a famous experiment in 

1990 which provide a clear demonstration of how ants self organize thanks to the 

pheromone trails. This experiment is called the Binary Bridge [40]. 

A colony of ants is separated from a food source by a bridge which divides into two 

branches, A and B, both of which are the same length (Figure 16). The only way out of the 

colony is via the bridge, so when the ants begin to explore, they are faced with the decision.  
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Left or right rail? Initially, there is nothing to influence the ant’s decision one way or the 

other; it therefore has a 50% chance of choosing either branch.  

Each ant lays pheromone at a constant rate as it traverses its chosen routes to and 

from the food source, and in the early stages of the experiment, more or less equal numbers 

of ants can be seen using each branch, but after some time, due to random fluctuations 

more pheromone are deposited on one of the branches and this in turn causes the ants to 

respond to the greater pheromone density, forming a preference for that branch. Finally the 

whole colony converges towards the use of the same branch. This positive feedback means 

that eventually, all ants are using the same route and there is a very low probability of any 

ant defecting, given the relative density of pheromone on each branch. .  

Deneubourg et al. [40] propose a model of the phenomenon which matches 

experimental observations well. The probability Ap  of an ant 1+i  choosing either branch 

is calculated from the total number of ants iA
 and iB   which have used each branch 

previously. The probability PA that the )1( +i th ant chooses branch A is:  

( )
1

( ) ( )

m
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A Bn n

i i
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+
= = −
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The parameter k  influences the attractiveness of an unmarked trail and must be greater 

than zero. A low value of k  will mean that small amounts of pheromone will be able to 

influence  

ants one way or the other; a high value will ensure that a relatively large amount of 

pheromone has to be laid before it begins to have a noticeable influence on the ants’ 

behaviour. The other parameter, n  affects the linearity of the decision function. If n  is 

increased, the disparity between iA
 and iB  has a greater influence, causing the ant’s 

collective decision to swing with the majority sooner, and be more difficult to reverse. 

Monte Carlo simulations1( have shown that the best fit of the model is obtained for 2≈n  

and 20≈k  

                                                 
1 A Monte Carlo simulation, named after the famous gambling city, is a method of evaluating a probabilistic 

model using a series of random inputs. 
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Figure 17: Illustration of the asymmetrical binary bridge [40] 

The same model can be extended to situations where the branches are different in 

length. In this version of the experiment, trail B was longer than trail A (Figure 17), 

according to a ratio r. Ants using bridge B take r  times as long as those using bridge A, 

causing r  units of pheromone to be deposited on A for every one unit deposited on B. This 

in turn increases the likelihood of an individual ant choosing the shorter trail in future. This 

is called the “differential length effect”. [50] An ant choosing by chance the shorter branch 

will be back at its nest more quickly; therefore pheromones will be deposited on this branch 

more quickly than on the longer branch. 

It is interesting to notice that although each ant can find a solution to bring back 

some food to the nest, the shortest path finding behaviour is obtained only with the whole 

ant colony, that thanks to the use of an indirect communication, the pheromones. We will 

talk about stigmergy. It is possible to talk of stigmergetic communication whenever there is 

an “indirect communication mediated by physical modifications of environmental states 

which are only locally accessible by the communicating agents [51].This is obviously the 

case with ants and the pheromone trail. 

The idea of an ant colony algorithm is to use artificial ants to build a solution in 

analogy with what real ants do in their natural environment. In the ant colony optimization 

(ACO) metaheuristic a colony of artificial ants cooperate in constructing good solutions to 

difficult discrete optimization problems. The key design of this kind of algorithm is 

cooperation: The choice is to allocate the computational resources to a set of simple agents 

(artificial ants) that communicate indirectly by stigmergy thanks to the use of a parameter 

which acts like the natural pheromone. Good solutions are an emergent property of the 

agents’ cooperative interaction. Artificial ants are on one hand similar to real ants of which 

they are an abstraction, and on the other hand, some capabilities which are not found in real 

ants but which can make them more effective and efficient are added to the artificial ones. 
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In the following section, similarities characteristics and differences between both real and 

artificial ants are discussed. 

3.3.2 Characteristics of artificial ants 

Most of the ideas of ACO stem from real ants. In particularly on four points:  

− the use of a colony of cooperating individuals, 

− an (artificial) pheromone trail for local stigmergetic  communication 

− a sequence of local moves to find shortest paths 

− a stochastic  decision policy using local information and no lookahead.  

We present first the similarities between artificial and real ants. 

Colony of cooperating individuals.  

As real ant colonies, an ACO algorithm is composed of a population, or colony, of 

concurrent and asynchronous entities, the ants, which cooperate to find a good “solution” to 

the task under consideration. Each artificial ant can build a feasible solution (as a real ant 

can find somehow a path between the nest and the food) but best solutions are the result of 

the cooperation among the individuals of the whole colony. Ants cooperate by means of the 

information they concurrently read/write on the problem’s states they visit.  

Pheromone trail and stigmergy.  

Artificial ants modify some aspects of their environment as the real ants do. While 

real ants deposit on the path they visit a chemical substance, the pheromone, artificial ants 

change some numeric information locally stored in the problem’s state they visit. Ant’s 

current history and performance are taken into account by this numeric information and this 

information can be read and modified by any ant accessing the state. As the entities are 

called artificial ants, this numeric information is called artificial pheromone trail. Local 

pheromone trails are used as the only communication channel among the ants in ACO 

algorithms. This kind of stigmergetic information is very important in the utilization of 

collective knowledge. In fact its effect is to change the way the environment is locally 

perceived by the ants as a function of all the past history of the ant colony. In ACO 

algorithm as in the reality, pheromone trails are subject to evaporation. This mechanism 

modifies pheromone over time. With time, if no new pheromone are deposited, the strength 

of depositing pheromone decreases, which allows the ant colony to forget about its past. 
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Hence an ant can direct its search towards new direction without being too much 

constrained by the past history of the colony. 

Shortest path searching and local moves.  

Both artificial and real ants have the same objective, finding the shortest path (the 

minimum cost) joining an origin (the nest) to a destination (the food). In reality ants don’t 

jump, they walk through adjacent terrain to find a path until the food. Artificial ants are 

doing as well, they are moving step-by-step through adjacent state of the problem. These 

terms of state and adjacency depend on the problem under consideration. 

Stochastic and myopic state transition policy.  

For both ants, artificial and real, a probabilistic decision policy is applied to go from 

a step to the next one while building one solution. Another point in the applied policy is 

that for both ants, the policy is completely local, in time and in space, there is no use of 

lookahead to predict future states. In fact this policy is function of the problem 

specification and of the local modification of the environment induced by the past of ants if 

we considered artificial ants and this policy is function of the terrain’s structure and the 

modification of the environment induces by the past of the ants if we consider real ants. 

But as said before artificial ants have also their specific characteristics:  

− artificial ants live in a computer world, a discrete world therefore their moves 

consist of transitions from discrete states to discrete states. 

− artificial ants have an internal state.  Which allow them to keep in memory their 

past actions 

− artificial ants can deposit an amount of pheromone which is a function of the 

quality of the solution  

− artificial ants timing in pheromone laying is problem dependent and often does not 

reflect real ant’s behaviour. Very often the update of the pheromone trails is done 

after having constructed a solution. 

To improve overall system efficiency, ACO algorithms can be enriched with extra 

capabilities like lookahead [107], local optimization [53,47], backtracking[41,43].  

The characteristics of the artificial agents now defined, the description of an ACO 

algorithm will be given 
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3.3.3 Description of the ACO metaheuristic 

In ACO algorithms a finite size colony of artificial ants with the characteristics 

described above collectively searches for good quality solutions to the optimization 

problem under consideration. Each ant builds a solution, or a component of it, starting from 

an initial state according to some problem dependent criteria. During the building of its 

solution, each agent collects information on the environment, on the characteristics of the 

problem and also on its own performance according to the objective to optimize. The ant 

uses this information to modify the environment problem seen by the other ants. Ants show 

a cooperative behaviour, they can act concurrently and independently. As said before ants 

use stigmergetic communication, they use an incremental constructive approach to search 

and to build a feasible solution. 

Each constructed solution can be expressed as a shortest path or a minimal cost in 

accordance with the problem constraint through the state of the problem. Ants are made 

such that they can always find a feasible solution which is probably poor but good quality 

solutions emerge as a result of the cooperation of all the ants of the colony that have all 

built their own solution concurrently.   

According to the assigned notion of neighbourhood which is problem-dependent, to 

build its solution, each ant moves through a finite sequence of neighbour states. These 

moves depend on a stochastic local search policy directed by two different kinds of 

information: 

− the past history  of the ant stored  in its memory 

− Pheromone trail and a priori problem specific information, the heuristic 

information 

The information stored in the ant’s memory can be the value or goodness of the 

generated solution, the contribution of each executed moves. Moreover this memory plays 

a fundamental role to manage the feasibility of the solution. In fact in combinatorial 

optimization some moves available to an ant can take them to an infeasible state. Thanks to 

the exploitation of ant’s memory which stored the effect of an action that can be performed 

in a local state) this kind of problem can be avoided. 
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The local, public information available for each ant comprises both some problem-

specific heuristic information, and the knowledge, given by the pheromone trails, 

accumulated by all the ants from the beginning of the search process.  

This time-global pheromone knowledge built-up by the ants represents a shared 

local long-term memory that influences the ants’ decisions at each step of the solution 

building. The Characteristics of the releasing of the pheromones (when and how much 

pheromone should be released) depends on the problem under consideration and the design 

of the implementation. three possibilities exist for the time of releasing. Ants can release 

the pheromone while building the solution (online step-y-step, a local update) or only after 

an entire solution has been built (online delayed, a global update) or both. 

 In ACO algorithms functioning, auto catalysis plays a very important role. As said 

before, the more a move is chosen by the ants, the more it will receive pheromone and the 

more it will become interesting and desirable for the next ants. Generally the goodness of 

the solution built (or is building) influences on the quantity of pheromone deposited such as 

moves which contribute to a high quality solution are more rewarded, receive more 

pheromone. All these data, the locally available pheromone and the heuristic values defines 

ant-decision table. This probabilistic table is used by the ant’s decision policy to direct their 

search in the most interesting regions of the search space. 

A rapid drift of all the ants towards the same part of the search space is avoided by 

the presence of a stochastic component of the move choice decision policy and by the use 

of the pheromone mechanism discussed above. By playing with these two parameters, it is 

possible to determine the balance between the exploration of new unexplored regions of the 

search space and the exploitation of the accumulated knowledge. It can be good to notice 

that if necessary and feasible, the ants’ decision policy can be enriched with problem-

specific components like backtracking procedures or lookahead. 

In the real world, ants after having built their solution do not die. In ACO algorithm 

once an ant has built its solution and has deposited its pheromone, this ant dies and is 

deleted from the system. Ants generation and activity, pheromone evaporation are two 

components active from a local perspective. Sometimes it can comprise other elements 

which have a global perspective, the daemon actions. As an example of daemon, we can 

take the case where a daemon is allowed to observe ant’s behaviour and to collect useful 
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information which it can use to deposit more additional pheromone, biasing in this way the 

ant search process from a non local perspective.  

The concurrent and adaptive nature of the ACO algorithms make them very 

interesting for distributed stochastic problem where the problem representation is not stable 

(in terms of cost of environment problem) due to the presence of exogenous sources. 

Communication and transportation problems are intrinsically non stationery problems an 

exact model of the problem cannot be proposed very often. But because of the stigmergetic 

communication, ACO algorithms are not indented to problems where each state has a big 

sized neighbourhood. 

Confronted with big sized neighbourhood, an ant has the choice between a huge 

numbers of possible moves among which to choose. Hence the probability of taking a good 

quality one is very small   and thus there is very little difference between using or not 

pheromone trails. Below in Figure18 is shown the general procedure of an ACO algorithm. 

First let’s define some notations:  

− A: set of routing tables 

− P: set of probabilities 

− M: memory of the ants 

− Ω: set of constraints  
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Figure 18: Global procedure of an Ant colony metaheuristic [63] 

1 procedure ACO meta-heuristic() 

2 while (termination criterion not satisfied) 

3 schedule  activities 

4 ants-generation and activity(); 

5 pheromone evaporation(); 

6 daemon actions(); {optional} 

7 end schedule activities 

8 end while 

9 end procedure 

1 procedure ants generation and activity() 

2 while (available resources) 

3 schedule the creation of a new ant(); 

4 new active ant(); 

5 end while 

6 end procedure 

I procedure new active ant() {ant lifecycle} 

2 initialize ant(); 

3 M = ,update ant memory(); 

4 while (current state ≠ target state) 

5 .A = read local ant routing table(); 

6 P = compute transition probabilities(A,M, Ω ); 

7 next state = apply ant decision policy(P,Ω ); 

8 move to next state(next state); 

if (online step-by-step pheromone update) 

9 deposit pheromone on the visited arc(); 

10 update ant routing table(); 

11 M = update internal state(); 

12 end while 

if (online delayed pheromone update) 

13 for each visited arc ψ∈  do 

14 deposit pheromone-on the visited arc(); 

15 update ant routing table(); 

16 end foreach 

17 die(); 

18 end procedure 
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3.3.4 Important Choices in the application of an ACO algorithm 

To apply an ACO algorithm to a new application, lots of choices have to be made 

and this carefully to obtain good results. The first choice to do is to define the meaning of 

the pheromone trail, and then the balance between exploration of the search space and 

exploitation of a solution has to be done. Other choices like the use of a local search, the 

presence of heuristic information or of a candidate list, the number of ants used in the 

algorithm have also to be made. All these choices are very important and have a large  

impact on the final results and on the efficiency of the algorithm. These different choices 

will be now briefly discussed.  

Pheromone trails definition 

When ACO is applied for a new application, the really important point is to define 

the meaning of the pheromone trail. In TSP, ijτ   can refer to the desirability of visiting a 

city j  directly after a city i  or it can also refer as the desirability of visiting city i  as the 

j th city in a tour. 

In a scheduling problem, ijτ  can refer to the desirability of putting a job i  in the 

j th position if the objective is to minimize the makespan or the weighted total tardiness, 

but if the objective is to minimize the setup costs, it is better to define ijτ  as the desirability 

of putting a job j  after a job i . The definition of the pheromone is crucial and a poor 

choice will probably lead to poor performance.  

 Balancing exploration and exploitation 

In any metaheuristic, the balance between the two is something very important. A 

good exploration permits to explore unvisited regions of the search space and then increase 

the chance of finding a very good solution. In ACO the balance between the two can be 

done by several ways. First, through the pheromone trail, the pheromone trails induce a 

probability distribution over the search space and thus influence the regions of the search 

space were the solution is constructed. Depending on the distribution of the pheromone 

trails, the sampling distributions can be very different; it can vary from a uniform 

distribution to a distribution where a probability of one is assign to one solution, zero to the 

others, which means stagnation, . Stagnation is the situation where all ants are doing the 

same tour  
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The process of updating the pheromone is the simplest way to exploit the ants’ 

experience. Depending on the strategy chosen, the update can be done according to the 

quality of the solution constructed or the best solution found during the search contributes 

strongly to the update (elitist strategy). In the case of the elitist strategy, the exploitation is 

more important than the exploration. Another possibility of tuning the 

exploitation/exploration is to introduce a pseudo random proportional rule during the 

construction of the solution. That will be shown later with the description of the Ant 

Colony System (ACS) algorithm [53].  

If we consider a problem without the heuristic information, after some time, with 

the proceeding of the algorithm, the quantity of pheromone on the different “paths” will be 

different. This causes a shift from the initial uniform sampling of the search space to a 

sampling more focused on some specific regions of the search space. Thus with time, the 

exploration decreases. One of the problems than can appear as said before is stagnation. If 

this phenomenon appears too quickly in the procedure, some regions where good solutions 

could be found will never be visited. Different ways have been developed to avoid this 

situation. In ACS, there is a local update of the pheromone during the solution construction 

which makes the path taken by the ants less desirable to favourite the exploration of the 

search space. In MMAS [145] Stützle and Hoos introduce a lower limit on the pheromone 

trail to guarantee a minimum level of exploration and a upper limit to avoid the stagnation. 

A reinitialisation of the pheromone trails associated with an appropriate choice in the 

pheromone update can also be a good solution to explore new regions of the search space 

[147] is also a way of reinforcing the exploration. The last way to balance exploration and 

exploitation is to play on the relative importance of heuristic information and pheromone 

information in the construction of the solution. The more important pheromone information 

is, the stronger the exploitation of the search experience is.  

ACO and local search 

In many applications like the TSP, the QAP or the VRP, ACO algorithms give 

better solutions when they are combined with a local search. After having constructed a 

solution, a local search can be applied and this locally optimized solution can be used for 

the update of the pheromone trails. The two approaches are complementary, the ACO 

algorithms performing a coarse-grained search while the local search locally optimizes the 

solution produced. In [11,53,146] it has been experimentally shown that such a 

combination of ACO algorithm and local search gives excellent results. It can be noticed 
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that even  if the use of local search is crucial to achieve best performances in many 

applications, ACO algorithms can also show good performance for problems where local 

search algorithms cannot be applied like network routing problem or the shortest common 

supersequence problem[108]. 

 Importance of heuristic information 

Heuristic information of a problem is specific knowledge of this problem available 

a priori (in static problems) or at run time (I dynamic problems). This information 

combined with the pheromone information is used in the construction of the solution. 

Using such information can result to an important saving of computational time. When a 

local search is used to improve the solution in the procedure of the ACO algorithm, the 

importance of heuristic information is less strong than in the case of generic ACO 

algorithm, but it does not prevent ACO algorithm with local search of achieving good 

performance, also for problems where no heuristic information is available. 

 Number of ants 

Even if one single ant is capable of generating a solution, it is often better to use a 

colony of m  ants, 1>m   for an application of an ACO algorithm. For the class of 

geographically distributed problem, the differential length effect can appear only in 

presence of a colony of ants. For the combinatorial optimization problems, the use of m  

ants which construct r  solutions could be equivalent to the situation where one ant builds 

rm ⋅  solutions, but it has been shown that it is better to use m  ants, 1>m  in an ACO 

algorithm..  

 Candidate lists  

A candidate list is a list of promising neighbourhood of the current state. Like 

heuristic information they are used to help the ants to explore promising regions according 

to an a priori information available or to information dynamically generated. Candidate 

lists are particularly useful in problems with large sized neighbourhood in the construction 

of the solution. Actually in this case, an ant has the choice between a huge number of 

moves when building its solution. Thus the construction can be significantly slowed down 

as the probability of many ants visiting the same state is very small.  

Candidate lists help to strongly reduce the dimension of the search space and thus saving 

computational time. 
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Parallel implementations  

Two different strategy of parallelization exist, fine-grained, where very few 

individuals assigned each to one processor, frequently exchange information, among the 

processors. By contrast, in coarse grained strategy, a larger population is assigned to single 

processors and information exchange is rare. In ACO, with a fine grained strategy, it has 

been experimentally shown that communication between the ants could be a problem. 

Actually, they can spend most of their time communicating to each other and updating their 

pheromone trails which leads to bad performance [12,18]. 

In the contrary, coarse grained parallelization strategy has shown much more 

promising results for ACO. [12,18,96,109,143]. In ACO, p  subcolonies are working in 

parallel and exchange information at certain intervals (for example each number of 

iterations). The information exchange can be the pheromone matrix, a group of solutions or 

the best solution found in each colony. Merkle and Middendorf [96] have shown that it is 

better to exchange the best solutions found so far and to use it to update the pheromone 

trails of the subcolony than exchanging complete pheromone matrices. Middendorf wit 

Reischle and Schmeck have also shown in [109] that the best results are obtained by 

limiting the information exchange to a local neighbourhood of the colonies and not to 

exchange the global best solutions among all the colonies. Stützle in [143] has shown that 

in the extreme situation where the colonies are working independently in parallel without 

any communication, it can still give good performances. 

Algorithm Authors Year References 
Ant System(AS) Dorigo et al. 1991 [48]-[55] 
Elitist AS Dorigo et al. 1992 [54]-[55] 
Ant-Q Gambardella & Dorigo 1995 [63] 
Ant colony system Dorigo & Gambardella 1996 [53]-[66] 
Max-Min AS Stützle &  Hoos 1996 [146]-[147] 
Rank-based AS Bullnheimer et al. 1997 [17]-[18]-[19] 
ANTS Maniezzo 1999 [100] 
BWAS Cordón et al. 2000 [29] 
Hyper-cube AS Blum et al. 2001 [8]-[9] 

Table 2: Non exhaustive list of successful ACO algorithms [49] 

3.3.5 Development of different ACO algorithms 

Strongly inspired by Ant System (AS), the first work on ant colony optimization 

[48,49], different researchers has developed several algorithm which improved the 

performance of the Ant System Algorithm. These algorithms can differ from AS in the 
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construction rules of the solution or in the management of the pheromones. In Table 2, 

main improving algorithms are given. 

We will first present Ant system [48,54] algorithm which is the base of the other algorithm 

before presenting some other ones. The travel salesman problem will be use as example. 

An ACO for the Travelling Salesman Problem 

The travelling salesman problem (TSP) was the first problem to which the 

algorithm has been applied to. 

In this famous problem, a salesman has to visit a set of cities. The distances between 

the different cities are known and the goal is to find the shortest tour that allows each city 

to be visited once and only once by the salesman. This problem can be represented by a 

graph; the vertices correspond to the cities and the edges correspond to the connexion 

between the cities.  

  In Ant Colony Optimization, a number of artificial ants move in the graph. 

Pheromones are associated to each edge and they influence the way ants are visiting the 

cities. At each iteration, an ant builds a solution by walking from one vertex to another with 

the constraint   of visiting each vertex only once. When an ant is at a vertex i  it chooses the 

following vertex j  according to a stochastic mechanism which is influenced by the 

pheromone. The probability ijp  of choosing this vertex j  is proportional to the quantity of 

pheromone on the edge between i  and j . At the end of the iteration, the values of the 

pheromones are modified in accordance with the quality of the solutions constructed by the 

ants. 

Ant system (AS) 

In this algorithm artificial ants build a solution by moving on the problem graph 

from one city to another. The algorithm executes a certain fixed number of iterations and at 

each iterations, m  ants are building a solution by executing n  steps in which a 

probabilistic rule is applied. At each step, an ant in the node i  chooses to go to a node j  

through the edge ),( ji  and this arc is added to the solution. The repetition of this step stops 

when the ant has completed its tour. In the first steps, three AS algorithms [48,54,55] were 

developed. They differed by the way the update of the pheromone trails is managed. 

Between them, two algorithms updated the pheromones while building the solution while 

the third one updates the pheromone trail only when the solution has been constructed. 
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Experiments [48,54,105] show that the third one named ant-cycle’s was much better than 

the two others. Thus the two first algorithm were abandoned while research on AS focused 

on a better understanding of the characteristics of the ant-cycle’s. After all ants have 

completed their tour, the evaporation mechanism happens just before the ants deposit their 

pheromone.  

The amount of pheromone ijτ  of the arc ),( ji represented the learnt desirability of 

going from a node i  to a node j . This amount of pheromone on the arc changes during the 

iterations to reflect the experience acquired by ants during the problem solving. It must be 

noticed that ants deposit an amount of pheromone proportional to the quality of their 

choice, the shorter the path, the higher the quantity of pheromone deposited This helps to 

direct search towards good solutions. 

The main role of evaporation is to avoid stagnation. The memory of each ant is used 

to avoid doing a step which is not feasible. In the memory of each ant are stored the cities 

already visited, it is also called “tabu list”. This memory also allows ants to cover the same 

path to deposit online delayed pheromone on the visited arcs. 

 The ant decision table ( )
i
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where  

− )(tijτ I s the amount of pheromone  trail on the arc ),( ji  at time t   

− 
ij

ij d
1=η is the heuristic value of moving from node i  

− iN is the set of neighbours of node i   

− α  and β  are parameters that control the relative weight of pheromone trail and 

heuristic value 

The probability with which an ant k  chooses to go from a node i  to a node k

ij ℵ∈  

while building its tour at the tth algorithm iteration is:  
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i ℵ⊆ℵ  is the set of nodes in the neighbourhood of node i  that ant k  had not 

visited yet. 

  The parameters α  and β  have to be balanced correctly. If 0=α , it is the closest 

cities which are more likely to be selected whereas if 0=β , only the pheromone 

amplification influences the choice what leads to a rapid situation of stagnation which 

usually gives  a solution far from the best ones. Hence a trade-off between the influence of 

the two information, pheromone and heuristic must be done properly. 

  As said before, evaporation plays an important role in ACO algorithm. Before ants 

deposit their pheromone at the end of their tour, evaporation happens with an evaporation 

rate ρ . The amount of pheromone deposited on an arc ),( ji  by an ant k  at the end of the 

iteration by each ant is. 

1
  ( , ) ( )

( )( )

0 

k

kk

ij

if i j T t
L tt

otherwise

τ


∈

∆ = 



 

Where )(tT k  is the tour done by an ant k  at the time t  and )(tL
k  its length. 

In practice the update of the pheromone trail for each arc is done accordingly o this t: 
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)()( ττ , m is the number of ants at each 

iteration.  

Ant Colony System (ACS) 

Dorigo and Gambardella proposed in 1996 an algorithm based on AS called Ant 

Colony System(ACS) [53, 66,63] as AS was able to find good  solutions at the TSP only 

for small problems, they developed ACS in order to improve the performance of AS. 

This algorithm differs on some points from the AS. The first difference concerns the 

update of the pheromone trail. The update done at the end of an iteration of the algorithm is 

called offline. Once all the ants have built a solution, pheromone trail is added to the arcs 

used by the ant that has found the best tour from the beginning of the trial. Thus instead of 

allowing all the m  ants to update the pheromones, here only the ant that has found the best 

solution deposits pheromone on the arcs of the best tour. 
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The offline pheromone trail update rule is: 

)(.)().1()( ttt ijijij τρτρτ ∆+−=  

Where +=∆
L

tij
1)(τ  and +L  is the length of the best tour constructed since the 

beginning +T  and  [ ]1,0∈ρ  is a parameter governing pheromone decay. The update of the 

pheromone is applied only to the arcs ),( ji  belonging to the best tour +
T . 

The second difference concerns the decision rule in the construction of the solution. In 

ACS, ants use a so-called pseudo-random-proportional rule, in which an ant k on city 

i chooses the city k
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If we use q  a random variable uniformly distributed over [ ]1,0  and if [ ]1,00 ∈q  is a 

tunable parameter we can describe the random proportional rule used by an ant k  located 

in node i  to choose the next node k
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 When 0qq ≤  (probabilistic choice) the algorithm concentrates its activity on the 

best solution and when 0qq > (deterministic choice) it concentrates its activity on the 

exploration of the search space. Thus it is possible to tune 0q  to moderate the degree of 

exploration and the degree of concentration on the best solution.   

The third difference is that in ACS ants perform also a local update, called online 

step-by-step pheromone updates. They are performed to favour the emergence of other 

solutions than the best so far. An ant moving from the city i  to the city k

ij ℵ∈  updates the 
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pheromone trail on the arc ),( ji  according to the following rule: 0.).1( τϕτϕτ +−= ijij  

where   [ ]1,0∈ϕ .  

  When an ant moves from city i  to city j , the application of the local update rule 

makes the corresponding pheromone trail ijτ  diminish. Thus arcs which are visited become 

less and less attractive. This facilitates the exploration of arcs not yet visited. Actually the 

more ants explore different paths, the more the chances are to find an improving solution if 

it is compared to the case where all the ants converge to the same tour.  

The last difference concerns the utilization of a candidate list which provides 

additional local heuristic information. A candidate list contains a list of preferred cities to 

be visited from a given city. In ACS when an ant is in city i , instead of examining all the 

unvisited neighbours of i , it chooses the city to move to among those in the candidate list; 

only if no candidate list city has unvisited status then other cities are examined. The 

candidate list of a city contains cl  cities ordered by increasing distance ( cl  is a 

parameter), and the list is scanned sequentially and according to the ant tabu list to avoid 

already visited cities. 

Max Min Ant System (MMAS)  

This algorithm is an improvement of the AS.  It has been introduced in 1997 by 

Stützle and Hoos[146,147]. As in ACS, only the ant that has found the best solution is 

authorized to deposit pheromones on the arcs which constitute the best solution. It can be 

the best ant within iteration or the best ant since the beginning of the trial which contributes 

to the deposit. It is subject to the algorithm designer decision. 

Another characteristic is that the pheromones trail values are restricted to an interval 

[ ]maxmin ,ττ  and that they are initialized to their maximum value maxτ . By putting explicit 

limits on the trail strength, it restricts the range of possible values for the probability of 

choosing a specific arc according to equation (1). One of the reasons why 
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Problem name authors year References 

Routing 

Travelling salesman 
 
 
 

Vehicle routing 
 

Sequential ordering 

Dorigo et al. 
Dorigo & Gambardella 

Bullnheimer, et al. 
Stützle & Hoos 

Gambardella et al. 
Reimann et al. 

Gambardella &Dorigo 

1991, 1996 
1997 
1997 

1997 , 2000 
1999 
2004 
2000 

[54]-[ 55] 
[52] 
[18] 

[146][147] 
[68] 

[132] 
[65] 

assignment 

Quadratic assignment 
 

 
Course timetabling 

Graph colouring 

Maniezzo et al. 
Gambardella et al. 
Stützle &  Dorigo 

Socha et al. 
Costa  &  Hertz 

1994 
1997 
1999 
2003 
1997 

[101] 
[67] 

[144] 
 [141] 
[30] 

Scheduling 

Project scheduling 
Total weighted tardiness 
Total weighted tardiness 

Open shop 

Merkle et al. 
Den Besten et al. 

.Merkle & Middendorf 
Blum 

2002 
2000 
2000 
2005 

[106] 
[36] 

[104] 
[10] 

Table 3:  Non-exhaustive list of applications of ACO algorithm [49] 

AS performed poorly when an elitist strategy, like allowing only the best ant to update 

pheromone trails, was used, is stagnation. Limited the values of the pheromone trail helps 

to avoid this phenomenon. But stagnation can also appear in MMAS in case some 

pheromone trails are close to maxτ while most others are close to minτ . Hence Stützle and 

Hoos have added what they call a “trail smoothing mechanism”, pheromone trails are 

updated using a proportional mechanism: ))(( max tijij τττ −∝∆ , the difference between the 

current quantity of pheromone and the quantity maximum. In this way the relative 

difference between the trail strengths gets smaller, which obviously favours the exploration 

of new solutions. 

3.3.6 Applications of ACO algorithms 

The TSP which is very often used to present a new ACO algorithm has already been 

described in the precedent section. But ACO algorithms are applied to many other 

combinatorial optimization problems with successful results. ACO algorithms have been 

applied to other NP-hard problems like Sequential Ordering Problem (SOP), Vehicle 

Routing Problem(VRP) and Quadratic Assignment Problem (QAP). In these cases, the 

ACO algorithm is very often coupled with a local search algorithm which takes the ants’ 

solution to a local optimum before updating the pheromone trail. In Table 3 the main 

applications are listed with their references. And a more detailed description of some of 

then will be given afterwards. 
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Sequential Ordering Problem (SOP) 

The SOP is a more general version of the asymmetric TSP, a TSP where the cost of 

going from a city i  to a city j  is different from the cost of going from a city j  to a city i . 

The problem consists in finding a minimum weight Hamiltonian path2 on a directed graph 

with weights on the arcs and on the nodes. The solution is subject to precedence constraints 

among nodes. SOP, which is NP-hard, models real world problems like single-vehicle 

routing problems with pick-up and delivery constraints, production planning, and 

transportation problems in flexible manufacturing systems . Thus the SOP is very important 

from an application point of view. In 2000 Gambardella and Dorigo proposed an extension 

of ACS, ACS-SOP which is associated with a local search. This method is called HAS-

SOP (Hybrid Ant System for the Sequential Ordering Problem) [65], The only difference 

with ACS is that the solution given respects the precedence constraints HAS-SOP has been 

tested on different instances in all cases HAS-SOP was the best performing method in 

terms of solution quality and of computing time.  

Vehicle Routing Problem (VRP) 

In this problem, a set of vehicles parked in a depot has to serve a set of customers 

before returning to the depot. The aim is to minimize the number of vehicles and the total 

distance travelled by all the vehicles. A capacity constraint is imposed on the vehicle trips 

but other constraints such as time window, rear loading, maximum tour length or others 

deriving from the real world can be added. The basic VRP is the Capacitated VRP (CVRP). 

ASrank, the rank-based version of AS, was applied to this problem by Bullnheimer, 

Hartl and Strauss applied an AS rank algorithm, a rank based version of AS to this problem 

and obtain very good results. [41,42]. 

  According to the good results obtained by ACO algorithm for SOP and CVRP, ACS 

was applied to a VRP with time window. In this problem, called VRPTW, a time window 

[ ]ii eb ,  is linked to each customer i . The customer must be served in this interval of time. 

The objective is first to minimize the number of tours (or vehicles) and then minimize the 

total travel time. A solution which lowers the number of tours or vehicles is always 

preferred to a solution with higher number of tours or vehicles even if the total travel time 

is higher. This problem is very often studied in the literature and both objectives can be 

                                                 
2 a Hamiltonian path is a path in an undirected graph which visits each vertex exactly once 
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antagonistic in case constraints are very tight (for example when the total capacity of the 

minimum number of vehicles is very close to the total volume to deliver to the customers 

or when time windows are narrow, minimizing the total travel time can include a higher 

number of vehicles [94].   

Gambardella et al. in 1999 [71] have designed an ACO algorithm based on ACS for 

Multi objective VRPTW. This Multiple Ant Colony System (MACS) is organized with 

hierarchical colonies. One colony (ACS-VEI) is designed to minimize the number of 

vehicles while the other one (ACS-TIME) has for objective the minimization of the total 

travel time. Both colonies use independent pheromone trails and they collaborates by 

exchanging information during the update of the pheromone. Both colonies use 

independent pheromone trails but they collaborate by exchanging information through 

mutual pheromone updating. In the MACS-VRPTW algorithm both objective functions are 

optimized simultaneously: ACS-VEI tries to diminish the number of vehicles searching for 

a feasible solution with always one vehicle less than the previous feasible solution. ACS-

VEI is a little bit different from the traditional ACS, when ACS has for best solution the 

shortest tour, ACS-VEI has the tour (usually unfeasible) which has the highest number of 

visited customers. In the contrary, ACS-TIME is a traditional one, it is used to minimize 

the travel time of the solution found by ACS-VEI. For the update of the pheromone of the 

ACS-VEI, they use a combination of the best solution found by the two algorithms for 

better results. This algorithm has been experienced as the most effective. 

The algorithm developed by Gambardella has been used for industrial application 

by the intermediary of Antoptima. Antoptima is a spin-off of Istituto Dalle Molle di Studi 

sull'Intelligenza Artificiale (IDSIA), a leading Research Institute in Artificial Intelligence. 

It displays tools for the solution of VRP with algorithms based on ACO. The first tool 

proposed, is called DYVOIL, is a software application for the management and 

optimization of heating oil distribution. The second tool AntRoute, is a software for large 

scale dynamic optimization of vehicle routes and fleets. This software is used by Migros, 

the main Swiss supermarket chain and Barilla, the Italian pasta maker. 

Quadratic assignment problem (QAP) 

The quadratic assignment problem (QAP) is the problem consists in assigning n  

facilities to n  locations with the objective of minimizing the cost of the assignment, where 

the cost is defined by a quadratic function. This problem can be solved with optimality only 
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for small instances and it is considered as one of the hardest combinatorial problem. 

Several ACO algorithms have been proposed to attack the QAP, from the basic AS to more 

advanced version. [100,101]. 

Two efficient algorithms which have been applied to this problem are MMAS -QAP 

[144] and [HAS-QAP [67]. Both algorithms have been tested and it has appeared that the 

performance strongly depends on the type of instances. Taillard has categorized the 

instances:  

1. Unstructured uniform random 

2. Unstructured grid distance 

3. Real world  

4. Real world like 

AS-QAP performs well for real world irregular and structured problems but it is less 

competitive for unstructured, random and regular problems. ANTS another ACO algorithm 

does not suffer from this dependency to the type of problem.  

This problem-dependency was not shown by ANTS, which was also applied to 

QAP. In order to apply ANTS to QAP, it is necessary to specify the lower bound to use and 

what is a move in the problem context. The application described in [100] such definitions 

are done. As for the lower bound, since there is currently no lower bound for QAP, which 

is both tight and efficient to compute, the LBD bound was used. As for the moves, it was 

declared that a move corresponds to the assignment of a facility to a location, thus adding a 

new component to the partial solution corresponding to the state from which the move is 

originated. Some considerations on the move structure were used to improve the 

computational effectiveness of the resulting algorithm. ANTS was tested on instances up to 

40=n  and showed to be effective on all instance types; moreover its direct transposition 

into an exact branch and bound was also effective when compared to other exact 

algorithms. 

Scheduling problem  

The general approach to solve scheduling problems such as the Single Machine 

Total Weighted Tardiness Problem (SMTWTP) or the Permutation Flowshop Scheduling 

Problem (PFSP) is well defined. Starting with the first place of the schedule, at each 

iteration, every ant decides which job has to be put at the next place in the sequence. As 

said before the pheromone trail ijτ refers to the desirability of putting the job i  in the 
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position j  if the objective is to minimize the makespan or the total tardiness and its 

weighted variants. This approach is natural since for many PFSP it exists a good list of 

scheduling heuristics information which can be used by the ants in addition to the 

pheromone information. 

One of the first works using ACO was carried out by Dorigo et al. in 1994 [28]. In 

this study they deal with a job shop scheduling problem. In 1999 van der Zwann and 

Marquez also produced an ACO algorithm for a jobshop problem [153]. Another 

scheduling problem regularly studied in the literature is the single machine total tardiness 

problem (SMTTP) and its weighted variants (variant [3,36,37,104].  A comparison between 

ACO and other methods has been undertaken and has shown that ACO algorithms give 

better results than best known methods for SMTWTP. Gagne et al. have also used  an 

ACO approach to deal with scheduling problems taken from the industry [61]. 

If we consider PFSP, Stützle has applied its MMAS algorithm in combination with 

a local search to a PFSP with the objective of minimizing the makespan. [142]. This 

procedure was tested on the 90  Taillard benchmark permutation flowshop p gives high 

quality solutions in short time and a comparison to state-of-the-art algorithm shows that it 

performs better or at least gives comparable results. This first approach to FSP using ACO 

algorithm gave very promising results. 

 In 2001, Rajendran and Ziegler [129] have also proposed their ACO algorithm First 

they proposed an improvement of MMAS by integrating the summation rules suggested by 

Middendorf [105] and using their own local search. This algorithm is called M_MMAS. 

The summation rule suggests a modification with respect to the selection of the job to be 

appended to the partial ant-sequence. When choosing a job i  to put at a position j , instead 

of considering only the quantity of the pheromone with respect to the position j , the 

choice is based on the pheromone value up to the position j . This summation value of 

pheromones is an indicator of the need and the desire of placing a job i  not later than the 

position j . Another difference is that the choice of the job is made among the first five and 

not all unscheduled jobs. 

They also proposed another ACO algorithm called PACO. This algorithm is applied 

after having used the NEH algorithm in combination with a local search to construct a 

solution which is indeed of good quality. This solution is used for the initialization. The 
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differences with classical ACO concern first the initialisation of the pheromone trails, 

secondly the construction of the solution and thirdly the way pheromone trails are updated.   

In PACO, the initialisation of the pheromone matrix is done accordingly to the 

position of the job in the sequence given by NEH heuristic. This is done so that the 

influence of a good seed sequence is more reflected in the pheromone matrix, the value of 

the pheromone is not the same for all the elements of the matrix. ijτ , the desirability of 

setting a job i  at the position j  is higher if the position of job i  in the sequence given by 

NEH is closed to the position j . 

While ACS offers 2 possibilities as to which job to place in which position, PACO 

ads a third pick to the choice. In the construction phase, instead of having two different 

types of choice as in ACS, a third possibility exists, choosing the first unscheduled job in 

the best sequence obtained so far. 

Finally, the update of the pheromone trails. The update is based on the relative 

distance between a given position and the position o the job in the resultant sequence. The 

idea is to deposit more pheromone for the jobs occupying a position which is closer to its 

position in the best sequence obtained so far. The authors say that performance is better 

than the ant approach described by Stützle in 1998.   

As for the VRP, Industrial applications have already been developed in the 

scheduling domain. Eurobios (www.eurobios.com) uses an ACO algorithm for a 

continuous two stage flowshop problem with finite reservoirs for example. Real world 

constraints such as setup times, capacity restrictions, etc. are taken into account in the 

application of the algorithm. 

Dynamic problem 

In their natural environment, ants are able to react quickly at any change in their 

environment. If an obstacle appears on their current shortest path to the food, they quickly 

find a new path which will become after a while the new shortest one. Hence dynamic 

combinatorial problem is a logical application for ACO algorithms. In dynamic problems, 

the search space changes with time. The conditions of the search, the definition of the 

problem is not stable. Thus the quality of a solution found varies with time. Thus to solve 

this kind of problem, the algorithm must be able to adjust the search direction to each new 

environment. 
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In the literature lots of work uses ACO algorithm to tackle communication routing problem 

[48,52]. In networks problem, the cost of components or of connections can change over 

time. 

 The generic routing problem in communications networks consists in building and 

using routing tables to direct data traffic so that an objective (bandwidth, delay), measure 

of performance is optimized. For this kind of problem, ants are launched from each node of 

the network and travel through the network by applying a probabilistic transition rule based 

on pheromone and sometimes heuristic or local information. 

ACO algorithms are divided in 2 classes:  

− the connection-less networks: data packets of a same session can follow 

different paths 

− the connection-oriented networks: all the data packets of a same session 

follow the same path selected in a preliminary setup phase 

Schoonderwoerd, Holland, Bruten and Rothkrantz have made in 1996 the first 

attempt to apply ACO algorithm to routing problems, this algorithm is called ABC 

[138,139]. Two years later, Di Caro and Dorigo have proposed an ACO algorithm called 

AntNet [42,43] which outperformed a number of state-of-the-art routing algorithms for 

packet-switching networks on a set of benchmark problems. 

Other problems like dynamic version of the TSP. In the dynamic version, the 

distance between two cities changes or some cities are added and removed. [57] Real 

dynamic VRP has also been tackled by an ACS algorithm with good results [68]. 

3.3.7 Conclusion 

ACO is a metaheuristic like genetic algorithm, simulated annealing or tabu search 

which is inspired by particular natural phenomenon. Based on simple principles, real ants’ 

behaviour can be enriched with new artificial capacities and specific problem information 

so that they show very good performance and sometimes world class performance for many 

applications such as QAP with AS-QAP, HASQAP or MMAS-QAP or network routing 

with AntNet.  

An ACO algorithm is one of the most successful applications of swarm intelligence, 

a field characterized by stigmergetic model of communication, an indirect communication 

which has all its importance in the success of ACO. This success for lots of academic 
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problems and real industrial applications explains why hundred of researchers worldwide 

work on applying ACO to classic NP-hard optimization problems. Other works concerns 

the application of ACO to dynamic and multiple objectives problem. This work deals with 

this last field, multiobjective optimization. 
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4  

Multiobjective optimization 

In many sectors of the industry (mechanical, chemistry, telecommunication, 

environment, transport, etc.), optimization problems that arise are complex and of great 

dimension. They have to be optimized, but they are never or rarely single. Usually several 

objectives often conflicting have to be taken into account. For example, maximizing the 

quality and minimizing cost of a product; maximizing the speed and minimizing fuel 

consumption of a vehicle; minimizing weight and maximizing the strength of a particular 

component, etc. 

All the objectives have to be satisfied simultaneously and a good trade-off solution 

has to be found. An optimized solution according to one objective often implies poor 

results for one or more of the other objectives. Thus the problem is to find a compromise, a 

solution which has acceptable performance for all the different objectives. Acceptable 

performance is most of time sub-optimal in the single objective sense. Thus instead of 

finding one optimal solution, multiobjective optimization is characterized by a family of 

solutions which are considered as equivalent on the absence of any information concerning 

the relevance or the importance of one objective relative to the others. 

Multiobjective optimization is a discipline which deals with this kind of problem. 

The origin of this discipline comes from a work in the economy by Edgeworth and Pareto 

[123]. Different techniques exist to solve this kind of problem. On one hand exact methods, 

only feasible for problems of small size; on the other hand approximate methods for more 

complex problems. Before presenting a brief review of the different methods used to solve 

Multiobjective problems (MOP), we will first give a more formal definition of the MOP 

and of some associated concepts.   
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4.1 Definition 

In a formal way, a Multiobjective optimization problem (MOP) can be defined as 

follow:  


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where:  

2n ≥  is the number of objectives, 

),...,( 1 kxxx =  is the vector representing the decision variable. In the case of 

Multiobjective combinatorial problem (MCOP), the vector ),...,( 1 kxx  has a finite 

number of possible values. 

C  represents the set of solutions realizable according to all the existing constraints 

))(),...,(),(())( 21 xfxfxfxF n=  is the criteria vector to be optimized. 

In the ideal case, it exists a vector ),...,,( **
2

*
1

*
nyyyy = which optimizes each 

objective function if , Cxxfy ii ∈= )),(min(* .  But, unfortunately, objectives are often 

conflicting in real problems and such vector *y  cannot be found.  

Thus another concept has been introduced for solving multiobjective problems. This 

is the concept of Pareto dominance. 

 For a minimization problem, a solution ),...,,( 21 nyyyy =  dominates a solution 

),...,,( 21 nzzzz =  if and only if [ ]1... | i ii n y z∀ ∈ ≤  and ∃ [ ]1... | i ii n y z∈ < . It is clear that 

if a solution A dominates a solution B, A is better than B. 

 The second concept introduced is that of the Pareto optimality, a solution Cx ∈*  is 

Pareto optimal if and only if there does not exist a solution Cx ∈ such as )(xF  dominates 

)( *xF . Pareto optimal solutions are also called non dominated or efficient solutions.  

The solution of a MCOP is the set of Pareto optimal solutions. These solutions form 

what can be called the Pareto front. Any solution of this set is optimal in the sense that no 

improvement of one component of the objective vector can be made without  
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Figure 19: Illustration of Pareto dominance [69] 

degradation of at least one of the other components of the vector function. In Figure 19, the 

points A, B, C constitute an approximation of the Pareto front, they are not dominated by 

any other points.  

Actually for real problems, determining the Pareto front or an approximation of the 

Pareto front constitutes the first step of the solving process of a multiobjective problem. In 

practical MCOP, the determination of the Pareto optimal set is only the first phase. In a 

second phase, the decision-maker has to choose in this set of solutions the solution that 

satisfies him according to its preferences, the problem environment and the knowledge he 

has of the problem. Hence multiobjective optimization has for purpose to facilitate the task 

of the decision maker by limiting the number of possible solutions to the “best” ones. 

The role of the decision maker in the formulation of a multiobjective optimization 

problem is crucial. He can have preferences for one or several objectives and he has often a 

good knowledge of the problem. Depending on his knowledge, different approaches to 

solve the problem can be taken. 

The problem can be treated as a single objective problem if the decision maker has a 

very good knowledge of the problem whereas a Pareto approach will be chosen if he 

prefers to make its choice among a set of different solutions that are opposed to him. 
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4.2 Techniques of optimization for Multiobjective 

combinatorial problem 

Large numbers of research efforts have been dedicated to multiobjective 

optimization. There are three main categories in which can be classified the different 

techniques of resolution of MCOP:  

− scalar approaches: the MCOP is transformed into a single objective problem, they 

are   algorithms based on aggregation which combines the different objective 

functions if  into one function F . To apply this kind of approach, the decision 

maker must have a very good knowledge of the problem. 

− Pareto approaches: the solutions are generated according to the concept of non 

dominance. 

− non-Pareto and non-scalar approaches: there is no transformation into a single 

objective function, they use operators to attack the different objective functions 

separately. 

The three approaches will be now briefly described. 

 4.2.1 Scalar approaches 

Different methods can be used to transform the MCOP into a single objective 

problem. This kind of approach is very popular for its low computation cost and its 

simplicity but it gives only one Pareto optimal solution.  In order to find more Pareto 

optimal solutions, the algorithm must be run many times with different values of the 

parameters, what can lead to a dramatical increase of the computation time. 

Aggregation method:  

This is the first method and the simplest method used to tackle MCOP by 

aggregating all the functions if  into one function generally in a linear way by using a 

weight vector ),...,,( 21 nλλλλ = , where iλ  is the weight associated to the objective 

function if , 
1

.
n

i i

i

F fλ
=

=∑  [83]. This simple approach has been used in different 

metaheuristics such as genetic algorithm [149] or simulated annealing [140] and tabu 

search. [33]. 
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In order to obtain a set of non dominated points, an aggregating method can be 

applied multiple times with different values of the weights .Then, the search directions are 

dynamically modified during the search process. It is suggested in [86] that these methods 

perform very well 

є–constraint method: 

Here an objective function if  is optimized but with constraints linked to the other 

objectives functions. This approach has been made with genetic algorithms [127], tabu 

search [79] or hybrid metaheuristics [128]. It is possible to generate different Pareto 

optimal solutions by changing the values of the constraint є. 

Goal programming:  

The decision maker defines the goals to reach for each objective. These values are 

introduced into the formulation of the problem to transform it into a single objective 

problem. For example the objective could be, with the integration of a weighted norm in 

the cost function, the minimization of the deviation from the goals. Different works using 

genetic algorithm [25,89], simulated annealing [140] or tabu search [70] exist. 

4.2.2 Non-Pareto/non-scalar approaches 

 This approach is based on a population solutions and the search is carried out by 

treating the different objectives separately. 

Parallel selection:  

Schaffer [137] has developed a genetic algorithm called VEGA (Vector Evaluated 

Genetic Algorithm). This technique uses what can be called a parallel selection during the 

selection phase. Individuals are selected from the population according to each objective 

independently from the others. Thus he works with a number of subpopulations equal to the 

number of objectives. During the reproduction phase, the algorithm composes the entire 

population by using the traditional operators (crossover and mutation).  

Lexicographic selection:  

In this approach the different objectives are classified in an order of importance by 

the decision maker. Then, the search is carried out according to this order which defines the 

significance level of the objective functions. Gravel et al. have developed a method to solve 

multiobjective problems based on this approach [62].  



 - 78 - 

4.2.3 Pareto approaches 

 By contrast with the two first approaches where the objectives are treated 

separately or where a utility function is used, this approach uses the concept of Pareto 

dominance as an acceptance criterion. Goldberg [73] was one of the first to use this concept 

with a genetic algorithm.  

 The advantage of this pure Pareto approach is that it can generate Pareto optimal 

solutions in the concave portions of the front. Scalar approaches generate only supported 

solutions if the scalarization is optimally solved. 

  Zitzler and Künzli [156] have introduced IBEA (Indicator Based Evolutionary 

Algorithm), a method presenting a new idea of Pareto for Evolutionary algorithms. The 

idea is to use a binary performance measure which can be based on the decision maker 

preferences, to compare a pair of solutions. Then the selection can be made according to 

this performance measure. In these methods, a rank is usually assigned to the different non 

dominated points [59,153] 

4.3 Metaheuristics for multiobjective optimization 

Many algorithms and methods which have been successfully applied to single 

objective problems have been extended to multiobjective optimization problems. In this 

section, some of these methods like local search, tabu search, genetic algorithms or ant 

colony optimisation will be briefly presented. 

4.3.1 Tabu search   

MOTS (Multiple objectives Tabu search) was proposed in 1997 by Hansen to 

generate non dominated solutions to MCOP [78]. In the procedure, the set of current 

solutions are optimized through manipulations of weights towards the Pareto front while at 

the same time the algorithm tries to disperse them over the Pareto frontier. 

Another procedure uses a set of non dominated solutions of good quality and 

diversity found by an evolutionary algorithm and then applies to each solution a local 

search for which an objective function needs to be defined. The objective functions defined 

are such that two search made simultaneously do not explore the same area of the search 

space. Hence the search is intensified around the solutions found and this without lost of 

diversity. This algorithm called Target Aiming Pareto Search (TaPaS) is described in [88].  
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Other tabu search algorithms have been proposed in the literature. Most of time, 

they do not use a total Pareto approach to generate the initial solution. Hertz [79] proposed 

three different non Pareto approaches (weighted, є-constraints and lexicographic). 

Beausoleil proposed in [7] a weighted objective Tabu search to generate the initial solution.  

4.3.2 Genetic programming   

An extended genetic algorithm called Multiple Objective Genetic Programming 

(MOGP) was proposed in 1997 by Rodriguez-Vasquez. Genetic programming has a 

representation of the chromosomes in a hierarchical tree, what can be more powerful in 

some situations. Bleuer et al. have applied a genetic programming algorithm to a problem 

where the goal is to evolve compact programs and to reduce the effects caused by bloating. 

Two independent objectives are considered, the program size and the program 

functionality. By associating genetic programming and SPEA2, a genetic algorithm [157], 

they obtain an algorithm with good performance. In their studies, one objective is solved as 

a single objective problem by a genetic programming method while the second is solved 

with a multiobjective evolutionary algorithm. 

4.3.3 Simulated annealing   

Lots of works using SA for MOP can be found in the literature Most of these 

algorithm store non dominated solutions found during the search process in an archive [25]. 

They rarely use the concept of Pareto ranking, more often the acceptance function is an 

aggregation of the different objectives functions made with a weight vector. 

4.3.4 Ant colony optimisation  

Several Multiobjective ACO approaches (MOACO) can be found in the literature. 

They can be Pareto or non Pareto approach according to the solution they give at the end of 

the process. In the following, some non Pareto approaches will be presented and then other, 

Pareto approaches like MOAQ, Bicriterion ant, P-ACO and COMPETants, will be briefly 

presented. Most of them work with multiple colonies and/or multiple pheromone matrices 

and usually for the Pareto approach, non-dominated solutions found during the process are 

saved in an archive. For non Pareto approaches, the decision maker has usually given an 

order of preference for the different objectives, what influences the search procedure of the 

algorithm. 
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Here are some non Pareto approach algorithms that have already been developed.  

Multiple Ant Colony System for Vehicle Routing Problem with Time Windows 

A biobjective vehicle routing problem has already been described in the section 

3.3.6.   

Multiple Objective Ant Colony Optimizations Metaheuristic 

Gagné et al. in [61] have tested a bicriteria approach of a single machine total 

tardiness problem with changeover costs and two other criteria. In this problem, the 

objective changeover cost is more important. In fact ants take into account all the 

objectives during their decision process, but the quantity of pheromone deposit depends on 

the value of the changeover cost of the solution.   

Gravel et al. have also proposed a method to solve multiobjective real-world 

scheduling problems related to aluminium production industry [62]. In this method, the 

objectives are lexicographically ordered by the decision maker. The algorithm, named 

MOACOM, has not the aim to provide a set of good non dominated solutions. Only the 

best solution according to the lexicographic order is taken into account. 

 SACO 

This non Pareto approach has been specifically designed by T’kindt et al [150] to 

solve a 2-machine bicriteria flowshop scheduling problem. The characteristic of this 

algorithm is a stronger diversification at the beginning of the search and intensification in 

the following. This method deals with one single solution, the solution having the best cost 

for one of the objectives. As in ACS, the ant chooses between intensification and 

diversification according to a tunable parameter. 

We will now present some ACO algorithms using a Pareto approach. 

Multiple Ant Colony System 

Barán and Schaerer introduced Multiple Ant Colony System (MACS) [6]. This 

variation of the algorithm proposed by Gambardella for the VRPTW uses a single 

pheromone matrix .When a solution has been generated, it is compared to the solutions of 

the set of non dominated solutions found so far and then the Pheromone trails are updated 

accordingly to a function of the value of the non dominated solutions for each objective. 

Multiple Objective Ant-Q Algorithm 
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In 1999, Mariano and Morales have proposed an ACO algorithm based on the 

algorithm ANT-Q [64] named Multiobjective ANT-Q (MOAQ) [102], where they use 

different ant colonies. Each colony is associated to an objective. This technique has been 

applied to the design of a water distribution irrigation network problem with multiple 

objectives. In this algorithm each colony is under the influence of one part of the solution 

found by the previous colonies accordingly to the other objectives. One ant from colony i  

receives a part of the solution of the colony 1−i  and tries to improve it according to 

criterion i . In this algorithm, a value r  called reward, which models how good an action 

helps to find trade-off solutions, is used to reinforce path what lead to better solutions. 

Each solution that has visited all the colonies is compared the ones which belong to 

the set of non dominated solutions found in the previous iterations. All the non dominated 

solutions found along the process are stored in an archive. 

 Ant Algorithm for Bi-criterion Optimization Problems 

In [84], Iredi et al. have developed an algorithm called BicriterionAnt to solve a 

biobjective scheduling problem. They associate one type of pheromone to each objective. 

When all ants have generated their solution, all non dominated solutions are allowed to 

update the pheromone trails proportionally to the number of ants which are non dominated 

and to the quality of their solution. 

In the same work, they proposed another algorithm called BicriterionMC which 

differs from BicriterionAnt in the update one of the  pheromone matrix .They consider two 

methods of pheromone update:  

− Update by origin: here each ant updates the pheromone matrix of its own 

colony, what enforces both colonies to search in different regions of the 

Pareto front 

− Update by regions: the Pareto front is split into 2 parts of equal size, the ant 

which has found a solution in the ith part updates the colony i. This helps to 

guide the colonies to search in different regions of the Pareto front, each of 

them in one region. 

As in MOAQ, non dominated solutions are saved in an archive. 
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 Pareto Ant Colony Optimization 

In order to solve a multiobjective portfolio selection problem, Doerner et al. have 

proposed an algorithm called Pareto-ACO (P-ACO) [44,45]. It uses ACS but with a 

difference in the pheromone update. Only the best and the second best solutions generated 

in the iteration for each objective k  is used for the update. They use one pheromone matrix 

for each objective and each ant, at each iteration generates a weight vector which is used to 

aggregate the different objective;. Once again on dominated solutions are saved in an 

archive. 

COMPETants  

Doerner et al. in [46,47] propose to solve a biobjective transportation problem. In 

[46], they used an algorithm based on the ACO algorithm AS rank-based [18].  It is called 

COMPETants and it uses two colonies, one for each objective. They are used to solve the 

problem. Each colony uses its own pheromone matrix. When every ant has built its 

solution, solutions are compared and the best colony receives more individuals for the next 

iterations. Another characteristic is that both colonies collaborate thanks to the use of 

special ants called “spy” which combine the pheromone information of the two colonies. 

For the same kind of problem but with objectives of different importance, they have 

used another approach. In [47], one colony, the “master” colony is associated to the most 

important objective and the “slave” colony to the other. All the k  iterations, the “master” 

colony updates its pheromone matrix accordingly to the solutions found by the “slave” 

colony. This approach is a lexicographic approach similar to what is done in MACS where 

one objective is more important than the other. 

PACO 

Guntsch and Middendorf have proposed an algorithm called PACO (Population 

based ACO) in [75,76]. This algorithm differs from the standard ACO algorithm in the way 

pheromone trails are updated. Usually pheromone trails have first a negative update, the 

evaporation and then a positive update with the best solutions found by the ants. In PACO 

for single objective approach, a set of k  best solutions is used for the update. If a solution 

enters this set, there is a positive update of the pheromone trail whereas if a solution is 

removed, there is a negative update.   In the multiobjective approach, they introduce “the 

Average-Weight-Rank”, a method for constructing the selection probability distribution for 

the ants and the new derivation of the active population to determine the pheromone 
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matrices. They have applied this algorithm to a single machine total tardiness with 

changeover costs problem. 

4.3.5 Hybrid metaheuristics 

In the literature, articles often combine genetic algorithms with local search [86] 

this kind of algorithm is also called memetic. The principle consists in incorporating local 

search during the GA search. There are several ways to incorporate it in the genetic 

algorithm search. Local search can replace the mutation operator,  or it can be applied after 

having created each new generation.  All have in common that a local search is used to 

improve individual solutions 

Ishibuchi [85] has developed a memetic algorithm which was used to attack a 

biobjective flowshop problem. Another memetic algorithm called Adaptive 

Genetic/Memetic Algorithm (AGMA) is described in [15]. In this method, memetic and 

genetic algorithms are hybridized. Another hybrid approach combining memetic algorithm, 

local search and path relinking has been developed to solve a biobjective flowshop problem 

[14]. In [89], we have a hybrid algorithm combining a genetic algorithm and a tabu search 

using the Target Aiming Pareto Search Principle (TAPaS). The search goals are defined 

according to the shape of the current set of Pareto solutions 

 A hybrid algorithm based on simulated annealing which has been applied to a 

biobjective space allocation problem has been described in [20]. Another new approach is 

to associate multiobjective metaheuristics with exact methods. In [150], a biobjective 

flowshop problem is solved. In this problem objectives are ordered lexicographically. One 

objective is not NP-hard and thus can be solved exactly while the other is solved by an ant 

colony algorithm. 

In [88], a biobjective routing problem is solved. The algorithm used a genetic 

algorithm in cooperation with a branch & cut algorithm, this last algorithm is used to solve 

exactly one of the two objectives considered.   

4.3.6 Parallel algorithms   

 Implementation in parallel of algorithms has also been used to tackle multiobjective 

problems. These approaches are rarely considering the concept of Pareto optimality in their 

design. One example is the island model where one objective is treated per island [98,133] 

or where each island has different aggregation weights. Parallel implementations have been 
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classified in [31,32]. Two main different strategies exist. On one hand, there is the single 

walk parallelization where the objective is to speed up the sequential algorithm, on the 

other hand, there is the “multiple walk parallelization where the objectives are both a speed 

up and an improvement of the solution quality. 

Single walk parallelization 

 The goal here is only to speed up the computations and to leave the basic behaviour 

of the algorithm unchanged. It is the simplest and the most used parallelization method for 

MCOP. MCOP. Real applications are usually problems of large size and large amount of 

computation time, thus, a parallelization of the search operators or of the evaluations of the 

objectives functions can help to speed up the algorithm. 

Multiple walk parallelization 

 This type of parallelization has for first goal an improvement of the solution quality 

and then to speed up the algorithm. In [97], it is possible to find one of the first attempts to 

apply this kind of algorithm to multiobjective optimization. In this approach, it exists two 

different ways to build the Pareto front:  

− centralized Pareto front (CPF): at the end of the process, the set of Pareto optimal 

solutions is constituted of global Pareto optima. Actually the Pareto front is built by 

the search threads during all the computation [15,27]. 

− distributed pareto front (DPF): the set of solutions is constituted of locally optimal 

solutions. Thus after having worked with locally optimal solutions, it must combine 

these solutions at the end of the process [134,5,111]. 

Actually it is important to notice that CPF implementations are constituted by 

different DPF which provides local optima front. Then these solutions are combined to 

form a single optima Pareto front.  

Most of works deal with genetic algorithm, but some of them deal with tabu search 

[4] or ant colony optimization [38]. 
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4.4 Two different ACO approaches for a biobjective 

flowshop problem  

In this work we propose two ACO algorithms (1phero and 2phero) to tackle the 

biobjective permutation flowshop problem. Different variants and configurations of these 

algorithms will be tested and compared. We have already reviewed that multiobjective 

approach with ACO uses one or multiple colonies and with one or multiple pheromone 

matrices. 

The two proposed approaches use multiple colonies and the idea is to force each ant 

colony to search in different regions of the non dominated front. One method consists in 

aggregating the objective functions into one single objective and then dynamically modify 

the search direction during the search process. The second approach aggregates two 

pheromone matrices, each of them associated to one objective and the solution will be 

constructed with this aggregated matrix.  The motivation for these approaches is to exploit 

the effectiveness ACO algorithms for single objective problems. 

The underlying idea of the first approach is to solve a biobjective problem by 

aggregations of the two objectives into a single-objective one. It is less clear why it is 

recommended to aggregate pheromone matrices to tackle the biobjective problem. We 

know that performance of ACO algorithms for single objective problems tackling each 

objective separately, are very good. But we do not know what will be the behavior of the 

algorithm with such transformations. Anyway, as this method has shown good results in 

other works, it can be useful to compare the two approaches for a biobjective flowshop 

problem. 

The aggregation into a single objective is based on a normalized weight vector, we 

have 1 2 1λ λ+ =  and  1 1 2 2. .F f fλ λ= + =  where F is the function used to rate the solution,  

1f  and 2f  are the two objective functions to optimize. The same kind of aggregation is 

used for the pheromone matrices, 1 2. (1 ).ij ij ijτ λ τ λ τ= + −  where ijτ  is the matrix used in the 

construction of the solution and 1
ijτ  and 2

ijτ  the pheromone matrices associated to 1f  and 

2f . In the extreme cases, with 1 1λ =  and 1 0λ = , the process consider only the first 

objective and with  1 0λ =  and 2 1λ = , only the second objective is considered. 
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Figure 20: Procedure of 1phero algorithm 

 

Figure 21: Procedure of 2phero algorithm 

 

-¨ { }1 2,F f f= : objective functions 

-T: pheromone matrices 

{ }1 2, ,..., nW λ λ λ= : weight vector 

*
0s : initial sequence 

A : archive of non dominated solutions 
Procedure 1phero 

for( 1,...,i n= ) 

iF =Modify F( iλ , F ) 

*
N =GenerateSolutions ( iF ,T, *

1is − ) 

 Construction(T) 

 Local search( iF ) 

Update (T, F ,A) 

end GenerateSolutions 

A =UpdateArchive( *
N ) 

(optional( *
is =SelectInitialSolution( A  or 

*
N )) 

end for 
end 1phero 

-¨ { }1 2,F f f= : objective functions 

- { }1 2,
ij ij

T τ τ= : pheromone matrices 

{ }1 2, ,..., nW λ λ λ= : weight vector 

*
0s : initial sequence 

A : archive of non dominated solutions 
Procedure 2phero 

for( 1,...,i n= ) 

i
F =Modify F(

i
λ , F ) 

i
Τ =ModifyTau(

i
λ , Τ ) 

*
N =GenerateSolutions (

i
F ,

i
Τ , *

1i
s − ) 

 Construction(
i

Τ ) 

 Local search(
i

F ) 

Update (
i

Τ , F ,A) 

end GenerateSolutions 

A =UpdateArchive( *
N ) 

(optional( *
i

s =SelectInitialSolution( A  or 
*

N )) 

end for 

end 2phero 
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Thus we use heterogeneous colonies where each ant of a colony weights the two 

objectives differently with different values of λ . During all the process, for all the different 

values of λ  , all the non dominated solutions found will be saved in an archive and this 

archive will constitute the approximation set at the end of the procedure. The procedures of 

two algorithms are summarized in Figures 20 and 21. The details of the different functions 

will be given in the following. 

In the following, we will present a local search introduced for the 

multiobjective optimization problem. The details of the different algorithms, the 

different variants and configurations tested will also be given.  

4.4.1 Non dominated local search 

We also use a local search based on the notion of dominance and on insert for the 

definition of the neighbourhood,. The non dominated local search looks for non-dominated 

solutions in the insert neighbourhood of the current point by moving each job of the 

sequence to each possible position and saves it in an archive if it finds one. 

This function is applied once after having constructed a solution and having 

improved its quality with insert. It allows to generate more non dominated points and may 

be points which belong to the concave part of the Pareto front. We will refer to this 

function by the notation ND_LS. 

4.4.2 ACO algorithm for biobjective problems   

We have already presented the general procedure of our two biobjective ACO approaches 

(see Figure 20 and 21). We will now present each function separately. We will first present 

different strategies for the aggregation of the objectives and the matrices, and then the two 

different ACO approaches and their variants. 

{ }1 2 n1 2 n1 2 n1 2 nW=W=W=W= λ ,λ ,...,λλ ,λ ,...,λλ ,λ ,...,λλ ,λ ,...,λ :  Aggregation of F  

The modification of the aggregated objective function ModifyF is carried out by 

changing the weights assigned to each objective.  Different strategies are possible; the 

change can be gradual or random, depending on how good solutions are placed in the 

search space. If solutions are clustered in the search space, a gradual change 
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1

1

( 1)i i
n

λ λ −= ±
−

 should be preferable but if good solutions are spread all over the search 

space, a random change may be more useful. 

 The number of aggregations also plays a role in the performance of the algorithm. 

High number of weight combinations should return a better approximation of the Pareto 

front. But a high number of aggregations also leads to a large increase of the computation 

time. Thus a trade-off must be found between the number of aggregations and computation 

time. 

We have tested different direction changes and different number of aggregations for 

different approaches, the results will be presented in a following section. 

4.4.3 ACO algorithm using one pheromone matrix (1phero)   

 In this section, we present in details the different functions which constitute the 

1phero procedure and the two different variants on the initialisation of the solution.  

The first possibility for the initialisation of the solution is to start from scratch for 

each value 
i

λ  or to use a 2phase approach. 

1phero scratch   

With this approach all the different colonies work without collaboration. Then new 

searches for the different weights will not be influenced by the solutions found for the 

previous weights, what allows a larger exploration of the search space.  

1phero 2phase 

Here, the solution found for the previous weight,  1i
λ −  is used for the initialisation 

of the current value of aggregation 
i

λ . Thus at each aggregation weight, the procedure 

starts with a solution which may be close to a good solution for the aggregation value. This 

is possible because the change in the weight vector is only minor. What is essential in 

2phase approach is that aggregation and generateSolutions are treated like a chain. 

Depending on the variant chosen, the last function of the procedure, SelectInitialSolution is 

applied or not. If it is not applied, we use the initial sequence  *
0s  for the initialisation for 

each different weight.   
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iF =Modify F( iiiiλλλλ , F ) 

The two objective functions are simply aggregated with the factor 
i

λ .  

1 2. (1 ).
i

F f fλ λ= + −  where 1f  and 2f  are the two objective functions to optimize 

GenerateSolutions ( iF , iiiiΤΤΤΤ , ****i -1i -1i -1i -1ssss ) 

This function is divided in three operations:  

− construction of a sequence with an ACO algorithm 

− local search : 

o insert  

o ND_LS 

− update of the pheromone trail 

UpdateArchive( ****NNNN ) 

 The purpose of this function is to add to the archive A  all the solutions 

*
s N∈ which are not dominated by any points a A∈ . The second phase of this function is 

to filter A , this function  deletes all dominated solutions in A  and returns the filtered set. 

*
i

s =SelectInitialSolution( ****NNNN ) 

  This function is applied when the variant 1phero 2 phase is chosen. The same 

solution *
i

s  which is allowed to update the pheromone is chosen for the initialisation of the 

next aggregation GenerateSolutions function. In 1phero scratch, this function is not used.  

5.4.4 ACO algorithm using two pheromone matrices (2phero)   

As in 1phero, two variants are possible, scratch and 2phase approach. One of the 

difference in 2phero is that two strategies are possible for the update of the pheromone 

matrices and for the selection of the initialisation solution. Here will make the difference 

between a global strategy (2pheroG) and a local strategy (2pheroL).  

In this section, we present the different variants using two pheromone matrices. 

iF =Modify F( iiiiλλλλ , F ) 

The two objective functions are simply aggregated with the factor 
i

λ   

1 2. (1 ).
i

F f fλ λ= + −  where 1f  and 2f  are the two objective functions to optimize. This 
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function F will be used when  insert is applied in GenerateSolutions function. 

iF =Modify Tau( iiiiλλλλ , F ) 

1 2. (1 ).ij ij ijτ λ τ λ τ= + −  where 1
ijτ  and 2

ijτ  the pheromone matrices associated to 1f  and 2f , 

this pheromone matrix 
ij

τ  will be used in the ACO algorithm for the construction of the 

sequence. 

GenerateSolutions ( iF , iiiiΤΤΤΤ , ****i-1i-1i-1i-1ssss ) 

This function is divided in three operations:  

− construction of a sequence with an ACO algorithm 

− local search: 

o insert  

o ND_LS 

− update of the pheromone 

For the update, two strategies are possible:  

2pheroG  

Here, we use a global strategy. Only the best solution 1*
i

s A∈  according to 1f  is 

allowed to update the pheromone matrix 1
ijτ  and only the best solution 2*

i
s A∈  according to 

2f  is allowed to update the pheromone matrix 2
ijτ . This means that the non dominated 

solution found since the beginning for all the λ  vectors already examined, which has the 

best value for the makespan is allowed to update the pheromone matrix 1
ijτ . The same for 

the total tardiness and the pheromone matrix 2
ijτ . 

2pheroL 

The best solution 1* *
i

s N∈  according to 1f  is allowed to update the pheromone 

matrix 1
ijτ  and solution 2* *

i
s N∈  according to 2f  is allowed to update the pheromone 

matrix 2
ijτ . This means that solutions which are allowed to update the pheromone matrices, 

are the non dominated solutions found  for the current aggregation weight which are the 

best respectively for the makespan and the total tardiness . 
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UpdateArchive( ****NNNN ) 

 The purpose of this function is to add to the archive A  all the solutions 

*
s N∈ which aren’t dominated by any points a A∈ . The second phase of this function is to 

filter A , this function deletes all dominated solutions in A  and returns the filtered set. 

*
i

s =SelectInitialSolution( ****NNNN ) 

   This function is applied when the variant 2phero 2phase is chosen. As for 

the update of the pheromone, two strategies are possible:  

− global: the best solution *
i

s A∈  according to 1 2. (1 ).
i

F f fλ λ= + −  is chosen for the 

initialisation of the next aggregation GenerateSolutions function.  

  

Figure 22: Procedure of 2pheroG algorithm 

With the same notations than in Figure 21 
Procedure 2pheroG 

for( 1,...,i n= ) 

i
F =Modify F(

i
λ , F ) 

i
Τ =ModifyTau(

i
λ , Τ ) 

*
N =GenerateSolutions (

i
F ,

i
Τ , *

1i
s − ,A) 

 Construction(
i

Τ ) 

 Local search(
i

F ) 

Update (
i

Τ , F ,A) 

end GenerateSolutions 

A =UpdateArchive( *
N ) 

 (optional( *
i

s =SelectInitialSolution( A )) optional 

end for 

end 2pheroG 
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Figure 23: Procedure of 2pjeroL algorithm 

− local: it is the best solution * *
i

s N∈  which is chosen for the initialisation of the next 

step. 

In Figures 22 and 23, we present the procedure of these two variants. 

The choice of one strategy or the other probably depends on the region of the Pareto 

front which interests the decision maker. Intuitively, we assume that a global strategy 

for updating and initialisation should give better results at the extremes of the Pareto 

front whereas local strategy should be better in the middle. 

In the experimental section, we will test and compare the different configurations on four 

different instances. 

4.5 Performance measures 

The determination of the Pareto front of a multiobjective optimization problem is a 

field studied by a large number of researchers. Thousand methods have been developed. To 

identify most promising optimizers and they must be compared. But then the question is 

how to compare their performance. The notion of performance includes two aspects, the 

quality of the outcome and computational resources needed to generate the outcome. 

Concerning the second aspect, there is no difference between single and multiobjective 

optimization whereas there is with the quality aspect. In practice, the overall running time  

 

With the same notations than in Figure 21 
Procedure 2pheroL 

for( 1,...,i n= ) 

i
F =Modify F(

i
λ , F ) 

i
Τ =ModifyTau(

i
λ , Τ ) 

*
N =GenerateSolutions (

i
F ,

i
Τ , *

1i
s − ) 

 Construction(
i

Τ ) 

 Local search(
i

F ) 

Update (
i

Τ , F , *
N ) 

End GenerateSolutions 

A =UpdateArchive( *
N ) 

 (optional( *
i

s =SelectInitialSolution(
*

N )) optional 

end for 

end 2pheroL 
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Figure 24: Limitations of a comparison based only on the dominance [93] 

of each algorithm must be the same for all the runs and all the different optimizer tested 

and the difference of performance will be measured by the quality of the outcomes. 

relation notation Interpretation in the objective space 

Dominance or outperformance A B≤  Every Bz ∈2  is dominated by at  least one Az ∈1  

Incomparable ||A B  Neither B A≤   nor A B≤  

equivalence ~A B  A B≤  and B A≤  

Table 4 : Relation between two Pareto approximation sets 

The quality of a solution for a MOP is something more difficult to define. In single 

objective problem, the quality can be defined by means of the objective function, the 

smaller  (or the larger) the value, the better the solution. For multiobjective, the notion of 

quality is not clear anymore as different criteria can be used to define the quality of a 

solution. Another difference with the single objective problems is that in multiple objective 

problems, the outcome is not one point but a set of non-dominated points, what increases 

the difficulty of a comparison between two different algorithms. 

We will call approximation set the set of non dominated points which results from 

one run of a multiobjective optimizer. If we consider two Pareto set approximations A  and 

B , different relations exist between the two  approximations sets (see Table 4)[159]  

These three relations can be used to compare two optimizers, but a comparison 

based only on the notion of outperformance is very limited in practice. Actually even when 

two optimizers are incomparable, it is often possible to have a preference for one of them. 

In Figure 24, the two approximation sets are incomparable but a decision maker will in 

most situations prefer A .   
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The dominance relation also called outperformance is the simplest way to find that 

one algorithm is better than another but as this relation is imitated, another approach must 

be used. 

In the literature, two different approaches are recommended [93]:  

− unary quality measurement: a quality indicator (unary or binary) assigns each 

approximation set a measure which reflects a certain quality aspect or a 

combination of different quality aspects.   

− attainment unction approach: an estimation of the probability of attaining arbitrary 

goals in the objective space.  

In the following we will preset these two approaches and the unary indicator 
H

I , the 

hypervolume will be presented more in details. 

4.5.1 Quality indicator 

 The idea of a quality indicator is to quantify differences between approximation sets 

by a real number. More formally,   

An m-ary quality indicator I is a function : m
I Ω → ℜ , which assigns each vector  

1 2( , ,..., )
m

A A A of m approximation sets a real value 1 2( , ,..., )
m

I A A A   

 

In the literature, lots of unary and binary indicators can be found. All of them have 

their advantages and also their disadvantages like a loss of information occurred when the 

information are reduced to one number. 

We will now present most interesting indicators 

Unary indicator 

 A unary indicator associate a real value to an approximation set. Thus if A  and B  

are two approximation sets, ( )I A  and ( )I B , their indicator value reveals a difference in the 

quality of the two sets. This indicator is commonly used, its capability of assigning quality 

values to approximation sets without considering other approximation sets makes it very 

attractive. Unfortunately this measure does not take into account the notion of dominance 

and Zitzler et al. have shown in [159] that generally unary indicators are not capable of 

indicating whether an approximation set is better than another. Nevertheless it exists unary  



 - 95 - 

 

Figure 25: Illustration of an unary indicator: hypervolume [93] 

indicators which allow at best to infer that an approximation set is not worse than another. 

One of this unary indicator with this property is the hypervolume indicator 
H

I  presented by 

Zitzler and Thiele in 1999[158]. The hypervolume is illustrated in Figure 25. 

Let 1 2( , ,..., )
l

X x x x= be a set of decision vectors, ( )
H

I X  gives the volume enclosed by the 

union of the polytopes 1 2, ,...,
l

p p p , where each 
i

p  is formed By the intersections of the 

following hyperplanes arising out of 
i

x  along with the axis: for each axis in the objective 

space, there exists a hyperplane perpendicular to the axis and passing through the point 

( )1 2( ), ( ),..., ( )i i k if x f x f x . In two dimensions and for minimization problems, each 
i

p  

represents the rectangle defined by the points ( )1 2( ), ( ),..., ( )i i k if x f x f x  and 

( )1 2, ,...,ref ref ref

k
f f f  , where ( )1 2, ,...,ref ref ref

k
f f f  are the coordinates of a reference point 

which is dominated by all the decision vectors. 

In Figure 24, we can observe that the hypervolume delimited by B  is larger than the one 

by A . 
H

I  has a desirable property that if ( ) ( )
H H

I A I B<   and if all the points of A  and B  

strictly dominate the bounding point, then A  cannot be better than B . This desirable 

property makes the hypervolume a very interesting unary indicator [60]. 

 Lots of other unary indicators such as the epsilon indicator 1Iε   exist but we will not 

present them here. Anyway it must be noticed that each indicator exploits specific  

information and that they can give different results for the same comparison of two 

approximation sets. Hence, one approximation set A  can be said to be better than an 

approximation set B  only according to a specific indicator.  

It is also important to notice that some indicators found in the literature are not 

Pareto compliant, what means that they give for result ( ) ( )I A I B> whereas B A>  if we 

consider Pareto dominance.  
H

I  and 1Iε do not have this problem and it is one of the  
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Figure 26: Illustration of a binary indicator: coverage [93] 

reasons why they are recommended for the comparison of two or more multiobjective 

optimizers [93]  

Binary indicator 

By contrast with unary indicators, it is only possible to compare two optimizers. Of 

course if we want to compare l  optimizer, we will have to compute ( 1)l l⋅ −  tests instead 

of l  tests for the unary indicator which is time consuming if a large number of algorithms 

must be compared. The advantage of binary indicator is that with some of them, it is 

sometimes possible to determine if one optimizer is better than another, if two optimizers 

are comparable or if they are equivalent. We will now present two binary indicators which 

have this property. 

Illustrated in Figure 26, the coverage measure of two sets of decision vectors A  and B  is a 

function 
C

I  which maps the ordered pair ( , )A B  to the interval[ ]0,1 : 

 

 A ≥B  A =B  A || B  

C
I  coverage 

( , ) 1
C

I A B =  

If ( , ) 1
C

I B A < , then A B>  

( , ) 1
C

I A B =  

( , ) 1
C

I B A =  

( , ) 1
C

I A B <  

( , ) 1
C

I B A <  

2H
I  binary hypervolume 

2 ( , ) 0
H

I A B ≥  

2 ( , ) 0
H

I B A =  

2 ( , ) 0
H

I A B =  

2 ( , ) 0
H

I B A =  

2 ( , ) 0
H

I A B >  

2 ( , ) 0
H

I B A >  

Table 5: Comparison based on binary indicator 

{ }|  :
( , ) :C

b B a A a b
I A B

B

∈ ∃ ∈ ≥
= , thus ( , ) 1

C
I A B =  means that all decision vectors 

which belong to B are dominated by at least one decision vector from A .  

a binary version 2H
I  of the hypervolume

H
I ,  also exists 2 ( , )

H
I A B  is defined as the 

hypervolume of the subspace that is weakly dominated by A  but not by B .  

( , ) 0, 25CI A B =  

( , ) 0,75CI B A =  
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Figure 27: Plot of the attainment surface[60] 

If 2 ( , ) 0
H

I A B = , then B A≥ . In Table 5, a summary of a comparison based on two binary 

indicators is presented. 

The four quality indicators described will be used for the comparison of different 

approximation sets in the experimental part of the work. 

 

4.5.2 Attainment functions 

The second approach to compare multiobjective optimizers is the attainment 

function. The output of a single run of a multiobjective optimizer is an approximation set. 

This set is constituted by a certain number of non dominated solution vectors which can be 

plot on a graph.  It would be possible to interpolate the points by a smooth curve, this curve 

represents an approximation of the Pareto front for this particular run of the optimizer. 

Actually this method is not safe and does not allow correct interpretation. Instead of being 

interpolated, these points can be replaced by a boundary. This boundary separates the 

points that are dominated by or equal to at least  

one of the data points, from those that no data point dominates or equals. This boundary is 

called an attainment surface (see Figure 27).  

This boundary is “the family of tightest goals known to be attainable as a result of the 

optimization run” [59].  

Actually the attainment function provides a description of the distribution of an 

outcome set 1 2( , ,..., )
l

X x x x=  in a simple and elegant way, using the notion of goal- 
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Figure 28: Superposition of 5 sets of non dominated points [93] 

 

Figure 29: Superposition of the 5 corresponding attainment function [93] 

attainment. It is defined by the function [ ]: 0,1k

Xα ℜ →  with  

1 2( ) ( ... ) ( )
X l

z P x z x z x z P X zα = ≤ ∨ ≤ ∨ ∨ ≤ = ≤ . 

It corresponds to the probability of at least one element of X  being smaller than or equal to 

k
z ∈ℜ .  

When we are faced to the execution of multiple runs of an optimizer, the display of 

the outcomes become rapidly confusing and misleading as shown in Figure 28. An 

interpretation of the results is very difficult and sometimes can lead to false conclusions.  

 plotting the corresponding attainment surfaces ‘see Figure 29) provides two clear 

information, the plot of multiple attainment surfaces also split the objective space in three , 

the region up and right is the region dominated by all the points obtained in the  
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Figure 30: Plot of the difference of two empirical attainment functions [159] 

approximation sets. Thus it is possible to visualize the worst case performance. By contrast 

the region left and down is the part of the objective space which is never attained by any 

points of the approximation sets. The best case can also be visualized. In between these two 

boundaries is a region that represents what has been attained in some runs but not in others.  

In practice, the attainment function can be estimated via its empirical counterpart:  

Let 1 2, ,...,
n

X X X be the random set which corresponds to n  independent runs of the 

optimizer, the empirical attainment function is defined by { }
1

1
( )

n

n i

i

z I X z
n

α
=

= ≤∑  where 

()I  is the indicator function which evaluates to one if its argument is true and 0 otherwise. 

Thus the empirical attainment function gives for each objective vector in the objective 

space the relative frequency that it was attained, weakly dominated by an approximation 

set, with respect to the n  runs. This function will be very useful for the visualization of 

different runs of different optimizers (see Figure 30) and can be seen as a distribution of the 

solution quality. 

Before investigating the differences in the attainment of two optimizer, it is recommended 

in [93] to run a Kolmogorov-Smirnov test 3  (K-S test) to probe the difference in the 

empirical attainment functions of two optimizer A  and B . The null hypothesis is that the 

attainment surfaces A  and B are identical and the alternative hypothesis is that the 

                                                 
3 In statistics, the Kolmogorov–Smirnov test (often called the K-S test) is used to determine whether two 

underlying one-dimensional probability distributions differ, or whether an underlying probability distribution 

differs from a hypothesized distribution, in either case based on finite samples[143] 
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distributions differ somewhere. If the null hypothesis is rejected, investigate the differences 

in the two attainment functions becomes possible. 

 Manuel Lopez Ibanez has proposed in [99] an elegant method to visualize the 

difference between two approximation sets which have been run several times  

The method as presented in [93] is the following:  

− Concatenate all runs from A  and B  and compute the grand best and grand worst 

attainment surfaces. Grand worst and grand best surfaces are respectively the line 

which connects the set of points attained by any run of the two configurations and 

the line which connects the best set of point attained all over the run 

− Compute all goals where there is a statistically significant difference in probability 

of attaining that region between algorithm A  and B . 

− Either: plot the difference in empirical frequency of attaining those goals where A  

is better in the left plot (and where B  is better in the right plot). 

This method provides a clear visualization of locations where an algorithm performs 

better than another and how much. If we look at Figure 29, we can see that A  is better than 

B  in the middle and that  B  is better at the extreme. The different shades of greys give the 

differences between attainment functions, the darker the points, the larger the difference. 
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5 
 Experiments 

Considering the experimental section of the work, it will be divided in two main 

parts. We have in a first time considered a single objective approach where the purpose is 

to compare the performance of the different configurations of algorithms for each objective 

separately. These experiments will provide information which will be taken into account 

for the design of the two proposed biobjective algorithms. 

. In the second part, we will present the details of the different ACO approaches we 

proposed to tackle the flowshop problem and we will describe our experiments.  

Finally we will present and discuss the results provided by our different tests and 

comparisons 

Above all we begin with the description of the ACO algorithms used for the 

different tests. The global procedure of the algorithm is the following:  

 

Figure 31: Procedure of the single objective ACO algorithm 

 We have implemented two different versions of ACO algorithms for the 

construction of the solutions:   

− Max Min Ant System (MMAS see section 3.3.5). 

procedure Ant Colony Optimization 

Initialize the parameters 

while (end condition not met) do 

construct a solution 

apply a local search 

update the pheromone trails 

end  

end Ant Colony Optimization 
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− A variant of MMAS incorporating the summation rule introduced by Merkle 

and Middendorf in 2000 [105]; we call it MMAS_sum. 

These algorithms have been associated with different combinations of the three local search 

neighbourhood algorithms presented in section 3.2.2:  

− trans 

− exchange 

− insert  

Then we have implemented a multiobjective approach which takes into account the 

results found during the single objective study. In that second section we have also studied 

different configurations and variants of our algorithms. Before presenting and commenting 

the results of these experiments, we will first present in detail the two ACO algorithms and 

the different parameters which are part of the procedure such as the aggregation strategy. 

5.1 Description of the ACO algorithms 

As said before, in a PFSP with n  jobs, the problem is to find a permutation of n  

{ }n,...,1  which minimizes the objective function. In this context, the quantity of pheromone 

ijτ  represents the desirability of setting a job i  at the j
th position in the sequence. in 

scheduling problems, very often an ant constructs a sequence by first choosing a job for the 

first position, then a job for the second position and so on until all the jobs are scheduled. 

The way an ant chooses a job i  to set at position j  depends on a probability 0p . It makes 

with a probability 0p  the “best decision” and chooses with a probability 01 p− , a job  

according to a pseudo random proportional rule.  

5.1.1 Max Min Ant System   

In MMAS, the “best decision” means choosing the job i  with the maximal value of 

ijτ that is, the job i  with the maximal desirability for position j . Whereas with a 

probability 01 p− , the ant chooses the job according to the following distribution of 

probability: 
 not scheduled

 f job  is not yet scheduled
  

0 otherwise

ij

ij
ij

i

i i
p

τ

τ




= 



∑  
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In MMAS as in ACS, only one ant, the ant having found the best solution, is 

allowed to update the pheromone matrix according to the following formula: 

(1 ).new old

ij ij ijτ ρ τ τ= − + ∆  were ρ , with 0 1ρ< < , is the evaporation rate. 

Another characteristic of MMAS is that the pheromone ijτ  belongs to the 

interval[ ]min max,τ τ . 

5.1.2 Max Min Ant System incorporating the summation rule 

This algorithm differs a little bit from MMAS in the construction phase of the 

solution. Instead of exploiting the pheromone ijτ , it uses a new parameter 
1

j

ij iq

q

T τ
=

=∑  in the 

decision process of choosing a job i  to be set at position j . Then, among the first five 

unscheduled jobs, with a probability 0p ,  the job i  with the maximal value ijT  is chosen for 

position j  in the best sequence obtained so far. The pseudo random proportional choice is 

applied with a probability 01 p−  and the job i  among the five first unscheduled jobs is 

selected according to the following probability distribution:  

 if job  is not yet scheduled
  

0 otherwise

ij

ij

lj
ij

l

T
p i

Tp


=

= 



∑  where l  belongs to the set of five 

unscheduled jobs. If there are less than five jobs unscheduled, all the jobs are considered.  

5.2 Local search 

We have combined these three local search algorithms (trans, exchange and insert) 

in order to improve their performance.  For example, we know that transpose 

neighbourhood requires few computational time and quickly gives an improved solution. 

Thus we have tried to use it before applying a local search algorithm searching the insert 

neighbourhood which typically requires more time to find an improved solution in the 

beginning of the process. We have decided to try seven different combinations of local 

search:  

− Insert (I) 

− trans followed by insert (T-I) 
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− trans followed by exchange (T-E) 

− exchange followed by insert (E-I) 

− insert followed by exchan(I-E) 

− Trans followed by insert and then by exchange (T-I-E) 

− Trans followed by exchange then by insert (T-E-I) 

5.3 Single objective approach 

5.3.1 Instances and parameters 

We have first attacked the permutation flowshop problem with the makespan objective 

under consideration. We have tested the different algorithms on five instances taken from 

the well known Taillard benchmark. The instances of Taillard form a set of 120 problems 

of various sizes, having 20, 50, 100, 200 and 500 jobs and 5, 10 or 20 machines. These 

problems are extremely difficult to solve and are a good benchmark to test the different 

methods of optimization. These five chosen instances are presented in Table 6. 

instances number of jobs n number of machines  m 
tai51 50 20 
tai61 100 5 
tai71 100 10 
tai81 100 20 
tai91 200 10 

Table 6: Taillard instances used for the single objective test 

Then we have used some of the instances proposed by Ruiz on his website4 to test 

the performance of our algorithms for the problem with the total tardiness objective. The 

two instances chosen are presented in Table 7.  

instances number of jobs n number of machines m 
I_0,2_0,2_50_10_1 50 10 
I_0,2_0,2_50_50_1 50 50 

Table 7: Eva instances used for the single objective test 

We have tested different configurations by combining the two different ACO 

algorithms with the seven different combinations of local search and seven values of 0p , 

{ }0 ¨0,0.5,0.75,0.9,0.925,0.95,0.975p = . 

                                                 
4 http://www.upv.es/gio/rruiz/ 
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We have also decided to fix the update parameters to common values: 0.2ρ = , min 1τ = , 

min
max

τ
τ

ρ
= , max(0)ijτ τ= . 

5.3.2 Results 

In order to make fair comparisons, the different algorithms have been run 

independently ten times for each instance, using as stopping criterion the same maximum 

computation time. 

For all these instances frequently used to test the performance of algorithms, a best 

solution found so far is given. Hence we have used it to calculate the relative error of each 

algorithm for each instance and we have compared these values to determine which 

configuration performs the best. The performance measure is  
lg sol sol

rel

sol

a o best
error

best

−
= ,  

the percentage increase over the optimum, where lg sola o  is the average of the ten solutions 

given by the tested algorithm and  solbest  the lowest known upper bound. 

We first present the results of the comparison with the makespan for objective and 

then for the total tardiness. In Table 8, we present the averages of the relative error for the 

five instances for the different combinations of local search algorithms, for different values 

of 0p  for the two ACO algorithms. We can observe that the best results (in bold) are 

obtained for a high value of 0p  for both ACO algorithms and that the best configurations 

for the local search are I and T-I. The details of this comparison are presented in appendix 

1. They show that for each instance, best results are obtained with high value of 0p  and 

with insert or Trans-Insert for local search. This result is due to the speedup technique of 

Taillard which can be used for Insert when the makespan is the objective to optimize but 

not for the total tardiness. We can also observe that MMAS_SUM performs better than 

MMAS. 
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MMAS MMAS_SUM 

p0 I T-I T-E I-E E-I T-I-E T-E-I I T-I T-E I-E E-I T-I-E T-E-I 

0 2.4% 2.4% 3.8% 2.5% 2.6% 2.5% 2.6% 2.0% 2.0% 3.4% 2.3% 2.4% 2.3% 2.7% 

0.5 2.3% 2.6% 3.8% 2.5% 2.6% 2.5% 2.6% 1.9% 1.9% 3.3% 2.2% 2.4% 2.2% 2.3% 

0.75 2.1% 2.2% 3.6% 2.7% 2.5% 2.7% 2.5% 1.8% 1.8% 3.4% 2.4% 2.3% 2.4% 2.3% 

0.9 1.9% 1.9% 3.4% 2.3% 2.4% 2.2% 2.4% 1.7% 1.7% 3.1% 2.1% 2.2% 2.1% 2.3% 

0.925 1.8% 1.9% 3.4% 2.2% 2.4% 2.1% 2.4% 1.6% 1.6% 3.4% 2.0% 2.3% 2.1% 2.2% 

0.95 1.7% 1.8% 3.5% 2.1% 2.3% 2.1% 2.2% 1.7% 1.7% 3.5% 2.0% 2.2% 2.1% 2.2% 

0.975 1.8% 1.7% 3.4% 2.1% 2.2% 10.7% 11.3% 1.7% 1.7% 3.6% 2.1% 2.3% 2.1% 2.3% 

Table 8: Summary of the relative errors for the makespan 

In Table 9, we present the averages of the relative error for the two instances for the 

different combinations of local search algorithms for different values of 0p  for the two 

ACO algorithms. We can observe that best the best results (in bold) are obtained for a high 

value of 0p  for both ACO algorithms and that. For the local search, none of them seems to 

perform better than the others. The only conclusion we can make is that it should include 

insert. The details of this comparison are presented in appendix 3. 

MMAS MMAS_SUM 

P0 I T-I T-E I-E E-I T-E-I T-I-E I T-I T-E I-E E-I T-E-I T-I-E 

0 13.4% 12.7% 18.3% 14.2% 12.7% 12.9% 12.9% 8.5% 7.8% 12.9% 9.0% 7.3% 7.2% 7.7% 

0.5 11.9% 11.3% 17.1% 12.5% 12.3% 10.6% 10.8% 6.6% 6.8% 11.0% 7.6% 6.5% 6.3% 6.6% 

0.75 11.9% 11.3% 17.1% 12.5% 12.3% 10.6% 10.8% 6.5% 4.6% 9.5% 6.4% 5.3% 5.3% 5.3% 

0.9 9.6% 7.1% 11.2% 9.4% 8.6% 6.5% 6.2% 6.2% 5.2% 7.7% 6.8% 6.2% 6.0% 5.5% 

0.925 10.3% 6.1% 13.2% 10.3% 7.0% 7.4% 5.7% 6.0% 4.5% 8.3% 6.4% 4.3% 5.8% 5.2% 

0.95 10.5% 5.8% 14.1% 10.8% 7.4% 7.7% 7.1% 5.2% 4.6% 9.4% 7.5% 5.8% 5.9% 6.9% 

0.975 9.9% 7.9% 14.0% 11.6% 8.7% 8.8% 9.5% 8.8% 9.1% 9.9% 9.8% 8.1% 8.4% 8.8% 

Table 9 : Summary of the relative errors for the total tardiness 

5.4 Biobjective approach 

 We have already presented the two biobjective ACO algorithms in section 4.4, in 

this section we will just detail the function Generate Solution explicitly for the two 

approaches. The single objective tests have provided three  interesting information:  

− The use of MMAS_sum for the ACO algorithm gives better results 

− Insert neighbourhood must be include in the local search.  

− A high value of 0p  must be chosen. 

For the choice of the local search, we have made several comparisons based on 

quality indicators (see appendix 3). The outcome of this comparison is that no relation of 

outperformance, neither significant difference in the unary and binary hypervolume HI  and 
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2HI  can be observed. Thus for the following experiments, we have decided to use insert 

combined with the non dominated local search (ND_LS )introduced in section 4.4.1. 

5.4.1 ACO algorithm using one pheromone matrix (1phero)   

GenerateSolutions ( iF . iiiiΤΤΤΤ . ****i-1i-1i-1i-1ssss ) 

This function is divided in three phases:  

− construction of a sequence 

− local search 

o insert 

o ND_LS 

− update of the pheromone 

 For this function, we have used a combination of  MMAS_sum for the construction 

of the sequence  with two local search, Insert  with 1 2. (1 ).iF f fλ λ= + −  for objective and 

ND_LS. The final result of the resulting algorithm is denoted by *
N .  

Insert is necessary if we want to reach good quality solutions as it is known for 

flowshop scheduling problem, that an ACO algorithm used without local search is not well 

performing. 

For the pheromone update, only the best solution * *
is N∈  according to 

1 2. (1 ).iF f fλ λ= + −  is allowed to update the pheromone matrix with this following rule:  

(1 ).new old

ij ij ijτ ρ τ τ= − + ∆  with min maxijτ τ τ≤ ≤  and 
1 if  is set at the position 

0 otherwiseij

i j
τ


∆ = 


. In 

our algorithms, we have chosen to have a constant quantity of pheromone deposited at each 

update. 

5.4.2 ACO algorithm using two pheromone matrices (2phero)   

We have already presented this algorithm and its variants in section 4.4. We just 

precise that MMAS_sum is the ACO algorithm used for the construction of the solution 

For the local search, we use insert following by ND_LS. The pheromone matrices 

are updated according to the same rule than 1phero, the difference appears only in the 

solutions which are allowed to update the pheromone  
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In the following, we will test the performance of four configurations of algorithms with two 

pheromone matrices: 

− 2pheroG scratch  

− 2pheroG 2phase 

− 2pheroL scratch 

− 2pheroL 2phase 

5.4.3 Instances and parameters 

Performance of the different algorithms has been tested on four different instances 

provided by Ruiz on his website. The chosen instances differ in the number of machines 

and the value of the linear correlation between the two objectives. We assume that these 

two parameters have an impact on the performance of the different configurations and we 

will try to have an idea on their influence. 

For each instance, we have calculated the linear correlation coefficient by 

generating randomly ten thousand sequences of n  jobs and calculating their makespan and 

total tardiness values, respectively. 

instance name number of jobs n number of machines m 
correlation 
coefficient 

50x10-1 I_0.2_0.2_50_10_1 50 10 0.57 
50x10-2 I_0.6_0.2_50_10_1 50 10 0.40 
50x30-1 I_0.2_0.2_50_30_1 50 30 0.34 

50x30-2 I_0.2_I_50_30_1 50 30 0.25 

Table 10: Eva instances used for the biobjective tests 

For the parameters, we have chosen common values used in MMAS algorithms:  

0 0.95p = , 0.2ρ = , min 1τ = , min
max

τ
τ

ρ
= . 

5.4.4 Comparison procedure 

The comparison procedure of the different optimizers A  and B  is the following:  

1. Run each configuration ten times on each instance. for the same computation time  

2. check the outperformance relation between the two optimizers by calculating the 

coverage ( , )CI a b  and ( , )CI b a  for each possible pairs ( , )a b  where a  is one 
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approximation set obtained by one run of A  and b one approximation set obtained 

by one run of B . Thus we have 100 different values of  ( , )CI a b  and ( , )CI b a . 

−  ( , ) 1 and ( , ) 1 ,C CI b a I a b a A b B= < ∀ ∈ ∀ ∈ , B  outperforms A  and vice 

versa.  

−  ( , ) 1 and ( , ) 1 ,C CI a b I b a a A b B≈ ≈ ∀ ∈ ∀ ∈ , A B=   

−  the average of ( , )CI a b  is clearly superior to ( , )CI b a , we have an indication 

that A  is better than B  and vice versa 

− ( , ) 1 and ( , ) ( , ) ,C C CI a b I b a I a b a A b B≈ ≠ ∀ ∈ ∀ ∈ but no clear superiority are 

observed, A  and  B  are probably incomparable.  

3. Calculate the respective empirical attainment function (EAF). 

4. Perform the Kolmogorov-Smirnov test with the null hypothesis that the two 

empirical attainment surfaces are identical. The alternative hypothesis is that they 

differ somewhere. 

5. If the null hypothesis is rejected, investigate the differences in the two EAFs with 

the visualization proposed by Manuel López-Ibáñez in [99]. 

6. if necessary, calculate the unary hypervolume HI  average over the ten runs for each 

configuration and the binary hypervolume 2 ( , )HI a b   for each possible pairs ( , )a b , 

where a  is one approximation set obtained by one run of A  and b one 

approximation set obtained by one run of B . These indicators will be used to 

provide more information on the quality of the approximation sets.  

This procedure will be used for most of the following comparisons. 

We will now present an example were we compare 2pheorG scratch and 2pheroL scratch 

on 50x30-1. 

Table 11 shows the values of the coverage measure and the result of the 

Kolmogorov Smirnov test for a comparison between the configurations 2heroG scratch and 

2pherLG scratch for a direction changes 1 0λ = � , which means that the weight begins 

with 1λ =  and that the makespan is the most important objective at the beginning.. 

The tests are run on instance 50x30-1 with 50 jobs and 30 machines. 
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�λ =1 0λ =1 0λ =1 0λ =1 0 - 50x30-1 CI  Kolmogorov-Smirnov test 

(2pheroG scratch/2pheroL scratch) 39% 
(2pheroL scratch/2pheroG scratch) 52% 

The two attainment surfaces differ somewhere 

Table 11: Results of a comparison global/local strategy (50x30-1) 

 

Figure 32: Differences of EAFs, global scratch/local scratch / 2pheroG 2phase (50x30-1) 

 

Figure 33: Grey scale encoding of the difference EAFs 

The coverage measure does not provide outperformance relation, neither clear preference. 

The result of the second line of Table 11 means that 39% of the solutions obtained by 

2pheroL scratch are dominated by at least one solution obtained by 2pheroG scratch. The 

second line indicates that 52% of the solutions obtained by 2pheroL scratch are dominated 

by at least one solution obtained by 2pheroG scratch. It can be noticed that relations of 

outperformance are rare and that most of time, comparisons will be based on the plot of the 

differences of two EAFs if the Kolmogorov-Smirnov, test of equality of two EAFs is 

rejected, we can visualize the differences of two EAFs which can provide information on 

where and how large are the differences. The size of the difference between the two EAFs 

is represented by different shades of grey. Darker points represent larger difference. The 

difference scale is given in Figure 33. 
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In Figure 32 and for all the next plot of the differences of two EAFs, only 

differences above 0.2 are plot. The sign of the difference gives information about which 

configuration performs better than the other at one point; the name at the bottom of each 

plot indicates for which of the two algorithms the differences shown are positive. Points in 

the left plot show the region where 2pheroG scratch (A and B) is better whereas points in 

the right plot show the region where 2pheroL scratch performs better (C). We can observe 

that 2pheroG scratch performs better than 2pheroL scratch in the extreme whereas 

2pheroL scratch is more performing in the middle.  

Three other information are provided by the plot. On both plots, the upper line connects the 

set of points attained by any run of the two configurations and the lower line connects the 

best set of point attained all over the runs. The line between the two represents the median 

for each algorithm. For this plot and the remaining plots, the x-coordinate is the makespan 

and the y-coordinate the total tardiness. 

5.4.5 Aggregation strategy 

 The aggregation strategy is a very important factor which influences the 

performance of the algorithms and their different variants. In order to have a better idea of 

its influence, we have compared three different numbers of aggregations. We have also 

compared the results obtained by three configurations for different direction changes. 

Influence of the number of weights 

For the number of weights, a trade-off must be found between the number of 

aggregation weights and the time spent to search for solutions for each different weight. If 

we fix the computation time of the whole procedure, a larger number of weights implies 

that for each weight iλ , the time spent to find non dominated solutions will be shorter. 

Nevertheless a large number of weights increases the possibility of being closer to the 

theoretical Pareto front. In fact if the difference between two consecutives weights is too 

large, the probability of missing non dominated solution in this region of the objective 

space increases. Furthermore, with a large number of weights, more non dominated 

solutions will be found. 

We have tested three different numbers of weights on 50x10-2and 50x30-2 for three 

different configurations (1phero 2phase, 2pheroG 2phase and 2pheroL 2phase).  



 - 112 - 

 

Figure 34 : Differences of EAFs, 1phero 2phase |W|=11-|W|=41 (50x10-2) 

 As for all the different tests, we have run ten times each algorithm using for 

stopping criterion the same amount of computational time. We have used three different 

numbers of aggregation weights, { }11,41,81W ∈ ,  the details of these comparisons are 

presented in appendix 4.  

The main observations provided by these tests on the instance with 50 jobs and 10 

machines are:  

o 1phero 2phase with 41W =  or 81W =   is better than 1phero 2phase with 

11W = . This is illustrated in Figure 34.  

o There are no significant difference between using  41W =  or 81W = .(see 

Table 12)  

 Table 12 presents the results obtained for the configuration 1phero 2phase tested on 

t50x10-2 for a direction changes 1 0λ = �   and Figure 34 presents the differences of EAFs 

between using 11W =  and 41W =  for the configuration 1phero 2phase. 
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1phero 2phase - 1 0λ = �  - (50x10-2) CI  Kolmogorov-Smirnov test 

(1  2 11), (1  2 41)phero phase W phero phase W− = − =  25% 

(1  2 41), (1  2 11)phero phase W phero phase W− = − =  65% 

The two attainment surfaces 
differ somewhere 

(1  2 11), (1  2 81)phero phase W phero phase W− = − =  28% 

(1  2 81), (1  2 11)phero phase W phero phase W− = − =  62% 

The two attainment surfaces 
differ somewhere 

(1  2 41), (1  2 81)phero phase W phero phase W− = − =  49% 

(1  2 81), (1  2 41)phero phase W phero phase W− = − =  42% 
0h  not rejected 

Table 12 : Results for different numbers of weights for 1phero 2phase (50x10-2) 

 

Figure 35 : Differences of EAFs, 1phero 2phase |W|=11-|W|=81 (50x30-2) 

o For 2pheroG 2phase and 2pheroL 2phase, the number of aggregation 

weights has not a clear influence on the performance (see Tables 22 and 23 

in appendix 4). In this section, For the instance with 30 machines, the 

observations are slightly different:  

o Using 11W =  seems to be better to find good solutions in the left upper 

region of the objective space where the makespan is more important. The 

use of 41W =  or 81W =  provides better results in the middle. Figures 35, 

45 to 48 and 50 in appendix 4 clearly show the differences in the behaviour 

of the same algorithm for two different numbers of weights. 
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Figure 35 suggests that a certain number of weights is necessary to find solutions 

located in the middle of the objective space. The fact that better solutions are found in the 

extreme when using  11W =  is just the sign that better solutions can be found if more time 

is allocated to the whole procedure for 41W =  or 81W = .  

 

 

Influence of the direction changes 

For a scratch approach, the way the aggregation weights vary is not important, as 

the algorithm starts from scratch for each weight, only the value of the weight is important 

and used in the algorithm. How this value has been calculated does not influence the 

procedure.  

But for the 2phase approach, several differences could appear following the 

direction changes.  As the two objectives are different the results could also be different if 

the Pareto front is covered in one sense or another. Beginning a new phase with a solution 

of very good quality for one objective can induce problems to find good solutions for the 

second objective and thus problems in finding good non dominated solutions in the region 

of the objective space with low values for the second objective. Thus depending of the 

objectives, the instance and the algorithm used, a clever choice for the direction changes 

can be useful to reach better performances. 

In section 4.4 we have defined the aggregated function 1 2. (1 ).iF f fλ λ= + − . In our 

algorithms, 1f  and 2f  are respectively the makespan and the total tardiness. For our tests, 

we have tried different direction changes during the search procedure for the configurations 

using a 2phase approach:   

− 1 0λ = �  with a gradual decrease, 1

1

| | 1i i
W

λ λ −= −
−

 , this means that at the 

beginning of the procedure the most important objective is the makespan. During all 

Conclusion on the influence of the number of weights 

• A minimum number of weights is necessary to find a good approximation of the 

Pareto front in the middle 

• After a certain number of weights (probably problem dependent) increasing the 

number of weights does not induce improvement of the solution quality anymore 
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the process, makespan looses in importance and at the end, only the total tardiness 

is considered by the algorithm.  

− 0 1λ = �  with a gradual increase 1

1

| | 1i i
W

λ λ −= +
−

, it is the opposite situation 

than the previous direction changes.  

− 0 1 0λ = � �   with 1

1

| | 1i i
W

λ λ −= ±
−

, the procedure focuses first on solutions 

with best tardiness before covering the front in the other sense.   

− 1 0 1λ = � �  with 1

1

| | 1i i
W

λ λ −=
−

m , the opposite of the previous situation. 

The two last direction changes are  double 2phase approaches where the Pareto front is 

covered in one sense and then in the other. This approach has previously been tested in 

[133]. 

Double 2pase approach allows to avoid the problem described before. 

We have tested different direction changes on 50x10-2 and 50x30-2 for three 

configurations: 1phero 2phase, 2pheroG 2phase and 2pheroL 2phase. The details of these 

experiments are presented in appendix 5.  

We present now the main observations of the tests on 50x10-2:  

o For 1phero 2phase, if it seems that using a direction changes beginning with 1λ =  helps 

to find solution with small makespan (see Figures 54 and  55 in appendix 5) 

o For 2pheroG 2phase, the double 2phase approach 1 0 1λ = � �  seems to be less 

performing than the two direction changes beginning with 0λ =  (see Figure 56, 57 in 

appendix 5)  

o For 2pheroL 2phase, choosing 1 0λ = �  is worse than the three other possibilities 

tested. If we compare the two double 2phase approaches 0 1 0λ = � �  and 

1 0 1λ = � � , we have an indication that the second evolution could give better results 

for low values of makespan while the other would give slightly better solutions for the 

middle and the right region of the objective space (see Figure 56 in appendix 5 ). 

o They also suggest for 1phero 2phase and 2pheroL 2phase that using the double 2phase 

approach beginning with 1λ =  helps to find good solutions for non dominated 

solutions with a low value of makespan whereas using the other double phase approach 
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0 1 0λ = � �  would slightly help to find good solutions in the middle and in the right 

region of the objective space. 

More generally, the results of the comparisons suggest that a double 2phase approach 

would generally give slightly better results for 50x10-2. It is illustrated in Figure 36. 

 

Figure 36 : Differences of EAFs, 2pheroL 2phase for direction changes (50x10-2) 

For 50x30-2, observations are different:  

o For 1phero phase, the direction changes 0 1λ = �  seems to be more appropriated for 

this instance and for most of regions of the objective space (see Table 30 and Figures 

59, 60 in appendix 5).  

o For 2pheroG 2phase, an evolutions beginning with  0λ =  are clearly better for the 

instance and for almost all regions of the objective space. Among the two, the direction 

changes 0 1λ = �  seems to be slightly better (see Table 32 and Figure 62 in appendix 

5). 

o For 2pheroL 2phase, best performances seems to be obtained when the direction 

changes is 1 0 1λ = � � . 
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Figure 37: Differences of EAFs, 1phero 2phase with/without ND_LS (50x10-2) 

5.4. 6 Influence of the non dominated local search 

In this section, we present the observations concerning the usefulness of ND_LS. We have 

compared three configurations using the non dominated local search and the three same 

configurations without D_LS. The three configurations 1phero 2phase, 2pheroG 2phase 

and 2pheroL 2phase have been tested on t50x10-2 and 50x30-2 with 41W =  and 

1 0λ = � .  

The results show that the configuration with  ND_LS is never worst than the configuration 

without, moreover it appears that it can  sometimes  perform better as illustrated in Figure 

Conclusion on the influence of the direction changes 

• Performance of a configuration and type of direction changes are correlated even 

if it is difficult to say how.   

• Following the direction changes chosen, the result of a comparison between two 

configurations can be opposite. 

• For the 50x10 problem,  direction changes beginning with 1λ =  could give 

better results for the region where the makespan is more important  
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37. The configuration with ND_LS is better for the left region of the objective space and is 

not worse than the configuration without ND_LS for the other regions. More results are 

presented in appendix 6. 

 

5.4. 7 Comparisons between the different configurations 

 In this section, we present the results of a series of computational experiments 

conducted to test and compare the effectiveness of the two ACO algorithms proposed and 

their different variants.  

We have essentially focused on three points for the comparison of the different 

configurations. We want to know if possible:  

1. whether it is more relevant to use one or two pheromone matrices in our ACO 

algorithm, in which region of the objective space and for which instance 

2. whether scratch or 2phase approach provides better results,  

3. whether local or global strategy for 2phero performs better than the other 

In the following, we will present for each question the corresponding results obtained for 

the four different instances.  

For the experiments, we have fixed the number of weights 41W =  and the direction 

changes  1 0λ = � . Table 14 presents a summary of the observations obtained for the four 

instances. In this table we will use the following notations to describe the observations: 

− 1_scr: 1phero scratch 

− 1_2ph: 1phero 2phase 

− 2G_scr: 2pheroG scratch 

− 2G_2ph: 2pheroG 2phase 

− 2L_scr: 2pheroL scratch 

− 2L_2ph : 2pheroL 2phase 

After Table 14, we will present the results of our experiments question by question and will 

illustrate these observations with plots of differences of EAFs and relation of preference. 

Conclusion on the influence of ND_LS 

• The use of non dominated local search (ND_LS) never makes things worse 

and can sometimes improve the performance 
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comparison (50x10-1) (50x10-2) (50x30-1) (50x30-2) 

1. Comparison 1phero-2phero approach 

1_scr/2G_scr 2G_scr better none 
1_ scr better in the 

middle, 2G_scr 
better in the right 

2G_scr better in the 
right 

1_scr/2L_scr 2L_scr better none 
1_scr better in the 
left, 2L_scr better 

in the right 
none 

1_2ph/2G_2ph 
2G_2ph better 

in the left 
none 

1_2ph better in the 
middle, 2G_2ph 
better in the left 

upper corner 

1_2ph better in the 
middle, 2G_2ph 
better in the right 

bottom corner 

1_2ph/2L_2ph 
2L_2ph better in 

the left 

1_2ph slightly 
better in the 

middle, 2L_2ph 
better in the 

right 

2L_2ph better 

 
1_2ph better in the 
left upper corner, 

2L_2ph in the right 

2. Comparison scratch- 2phase approach 

1_scr/1_2ph 1_2ph better none 

1_scr slightly better 
in the right upper 

corner, 1_2ph 
better in the rest 

none 

2G_scr/2G_2ph none none 2G_2ph better none 

2L_scr/2L_2ph 

2L_scr better in 
the middle 

bottom, 2L_2ph 
better in the 

right 

2L_2ph better 2L_2ph better 

2L_2ph better 
essentially in the 
middle and in the 

right 

3. Comparison global-local strategy 

2G_scr/2L_scr 
2G better in the 

right 
2G_scr better 

2G_scr better in the 
extreme, 2L_scr 

better in the middle 

2G_scr better in the 
right, 2L _scr 

slightly better in the 
middle 

2G_2ph/2L_2ph none none 

2G_2ph slightly 
better in the left, 
2L_2ph better in 

the middle  and in 
the right 

2L_2ph better in 
the middle 

Table 13 : Summary of the observations for the 4 instances 
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Figure 38 : Differences of EAFs, 1phero 2phase/2pheroL 2phase (50x10-1) 

1. Summary of the observations on 1phero or 2phero approach 

− For this question, we have compared:  

− 1phero scratch with 2pheroG scratch  

− 1phero scratch with 2pheroL scratch  

− 1phero 2phase with 2pheroG 2phase  

− 1phero 2phase with 2pheroL 2phase. 

For the two instances 50 jobs, 10 machines, we can observe that:  

o 2phero ( both L and G) scratch configuration is never worse than 1phero scratch 

and often performs better. More results are presented in appendix 7 (Figures 67, 

68). 

o 2pheroL 2phase and 2pheroG 2phase configurations are preferable to 1phero 

2phase when the decision maker looks for solution with best makespan (See Figure 

38 illustrates this preference).  

For the two instances 50 jobs, 30 machines, the results differ and we can observe that:  

o 1phero (scratch seems to perform better than 2pheroG scratch in the middle region 

whereas 2pheroG seems be better for solutions located in the right bottom corner as  
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Figure 39: Differences of EAFs, 1phero scratch/2pheroG scratch (50x30-1) 

we can see in the figure 39. This figure also gives indications on the poor capability 

of 2pheroG scratch to find good solutions in the middle region of the objective 

space.  

o When 1phero 2phase is compared with 2pheroL 2phase, we observe that 2pheroL 

2phase seems to perform better than 1phero 2phase in the middle for a direction 

changes 1 0λ = � . When the direction changes chosen is 0 1λ = � , the 

observation is different, 1pero 2phase seems to be better for most of the regions of 

the objective space for 50x30-2 (see Figures 75 and 81 in appendix 8). Thus we 

have an indication that performances of one configuration are function of the 

direction changes adopted and of the instance tackled. 

 

 

Conclusion on  a comparison 1phero 2phero approach 

• Observations depends on the instances and on the direction changes chosen 

• For 50x10 problems, 2pheroG is never worst than 1phero and is sometimes 

better 

• For 50x30 problems, 1phero better than 2pheroG in the middle but 2pheroG 

better in the right 

• For 50x30 problems, 2pheroL better at least in the right 
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CI  (50x10-1) (50x10-2) 50x30-1 50x30-2 

1phero scratch/1phero 2phase 16% 39% 30% 42% 
1phero 2phase/1phero scratch 76% 49% 60% 48% 

2pheroG scratch/2pheroG 2phase 49% 42% 49% 51% 
2pheroG 2phase/2pheroG scratch 44% 48% 58% 43% 
2pheroL scratch/2pheroL 2phase 36% 12% 17% 29% 
2pheroL 2phase/2pheroL scratch 53% 85% 79% 62% 

Table 14 : Coverage measures for a comparison scratch/2phase 

 

Figure 40: Differences of EAFs, 2pheroG scratch /2pheroG 2phase (50x30-2) 

2. Summary of the observations on the scratch and the 2phase approach 

For this question, we have compared:  

− 1phero scratch with 1phero 2phase 

− 2pheroG scratch with 2pheroG 2phase 

− 2pheroL scratch with 2pheroL 2phase 

o For the three configurations and for the four instances tested, it appears that the 

2phase approach is never worse than scratch approach and sometimes performs 

better, particularly in the middle and in the right region of the objective space for 

the configuration 1phero and the configuration 2pheroL. Table 13 summarizes the 

coverage measures for a comparison scratch-2phase approach for the four instances 
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tested. The first line of the table represents the percentage of points obtained by the 

second configuration (1phero scratch) which are dominated by at least one point of 

the second configuration (1phero 2phase). The same for the other lines of the table. 

Percentages in bold show situations where a 2phase approach is clearly preferable. 

2phase approach is never dominated by a configuration using scratch approach and 

for 2pheroG, only relation of incomparability appears. 

o When it was possible, a visualization of the differences of like Figure 40 and others 

EAFs presented in appendix 8, have confirmed the impression that a 2phase 

approach is preferable even if it does not dominate scratch approach. In Figure 40, 

we observe that 2pheroL 2phase performs better than 2pheroL scratch in the right 

region of the objective space and is not worse in the other regions. 

o For 2pheroL configuration, the 2phase approach seems particularly important to 

find good quality solutions. This configuration if compared with 2pheroG is more 

oriented towards the exploration of the solution space than on the exploitation of the 

information to improve the quality of the solution. Thus beginning each phase with 

a solution of good quality can be very useful. 

o For the 2pheroG approach, choosing between scratch or 2phase approach does not 

clearly affect the performance. The structure of this algorithm could be one of the 

reasons why the few differences appear between all the configurations.  

o 2pheroG focus more on the improvements of the quality of the solutions than the 

two other configurations. Thus starting the process with a good solution seems to be 

less important.   

 

Conclusion on a comparison scratch-2phase approach 

• 2phase approach is never worse than scratch approach and sometimes 

performs better, particularly in the middle and in the right region of the 

objective space for the configuration 1phero and the configuration 2pheroL 
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Figure 41: Differences of EAFs, 2pheroG scratch/2pheroL scratch (50x10-1) 

Summary of the observations on the global and local strategy 

For the two instances 50 jobs, 10 machines, we can observe that:  

o 2pheroG scratch seems to be generally more performing than 2pheroL scratch at 

least if the decision maker prefers solutions with a small makespan. In the Figure 41 

it is possible to observe two groups of points in the left side of the left plot. It is 

difficult to know if this difference is due to the algorithm, to the type of direction 

changes used for the tests or both factors. 

o There is no indications that applying 2pheroG 2phase or 2pheroL 2phase to the 

problem gives better solutions for one region or another in the objective space. 

For the two instances 50 jobs. 30 machines, the observations are different, we can observe 

that:  

o 2pheroLscratch seems to be more capable of finding good solutions in the middle 

region of the objective space while 2pheroGscratch seems to be better at the 

extreme of the Pareto front. This expected result can be observed in Figure 42. 
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Figure 42: Differences of EAFs, 2pheroG scratch/2pheroL scratch (50x30-1) 

o  With 2phase approach, 2pheroL seems to be better for most regions, except for a 

small region in the left upper corner, where the makespan is the smallest and when 

the type of direction changes chosen begins with 1λ = . But when the direction 

changes chosen begins with 0λ = the result of the comparison can be opposite. This 

is with Tables 56 and 58 in appendix 9. 

 

Conclusion on a comparison global-local strategy 

• Observations depends on the instances and on the direction changes chosen 

• For 50x10 problems, 2pheroG is never worst than 2pheroL and is sometimes 

better when a scratch approach has been chosen 

For 50x30 problems, 2pheroL is better in the middle 
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6 
Conclusion 

 ACO metaheuristic, a method of optimization inspired by foraging behavior 

of real ants, has already shown very good performance for many combinatorial 

optimization problems and for some real applications. In this master thesis, contrarily to 

most of works on flowshop problems which are single objective approach, we have studied 

a biobjective permutation flowshop scheduling problem where the makespan and the total 

tardiness are the objectives to optimize.  

In this work we have first briefly reviewed the different methods of optimization 

which have been applied to the single objective flowshop problem with makespan and total 

tardiness objective tackled separately. We have also reviewed different techniques applied 

to multiobjective optimization problems like genetic algorithms, tabu search, ACO or 

simulated annealing. We have focused essentially on ACO algorithms. ACO algorithms 

dedicated to multiobjective problems can be classified in three categories, one single 

colony and multiple pheromone matrices, multiple colonies and one pheromone matrix and 

multiple colonies and multiple pheromone matrices. These ACO algorithms have been 

applied to multiple problems such as the water distribution design, a vehicle routing 

problem with time window, bicriteria travel salesman problem, single machine total 

tardiness problem with changeover costs, etc. 

We propose two different ACO algorithms based on MMAS with the integration of 

the summation rule proposed by Middendorf. These two algorithms use multiple colonies 

and works respectively with one and two pheromone matrices to solve the biobjective 

flowshop problem. The idea of these algorithms is to exploit the good performances of 

ACO algorithms for single objective problems. In these algorithms, each colony is forced 

to search for solutions in different directions of the search space by changing the 

importance of each objective all along the procedure.     
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These two algorithms and their different variants have been tested on four instances 

and compared through the analysis of more than one hundred pairwise comparisons.  

Before presenting the results obtained, it is important to notice that the results of our 

tests can only provide indications and suggestions. More experiments on more instances, 

during a longer computation time can be necessary for more consistent conclusions. Our 

analysis provides indications on an eventual strategy to adopt to tackle this biobjective 

flowshop problem following the preferences of the decision maker and the kind of instance. 

The results also provide indications and suggestions for further future researches. 

Actually our comparisons on the performance of the two proposed ACO algorithms 

and their variants have faced two main problems. The performance of the different 

configurations depends strongly on the kind of instance and on the direction changes 

chosen. Results obtained for the instances with 50 jobs and 10 machines clearly differ from 

those obtained for the instances with 50 jobs and 30 machines, and  observations resulted 

from a comparison between two configurations may sometimes be different or opposite 

following the direction changes used during the procedure. Thus general and global 

conclusions on the performance of the different configurations are very difficult. 

Nevertheless some suggestions are possible and we will now expose them:  

o First, we have observed that a certain number of aggregation weights is necessary to 

obtain a good approximation of the Pareto front but it appears that enough computation 

time must also be allocated to the search of solutions. Too few numbers of weights and 

points in the middle will not be found, too large number of weights and the quality of 

the solution will be poor because the algorithm will not have enough time to construct 

good solutions.  

o Secondly, the results of our experiments suggest that the 2phase approach has a 

positive effect for a majority of the configurations and the instances tested. It seems that 

the solution obtained for one aggregation weight is already an acceptable solution for 

the next aggregation weight if the change is minor, thus a 2phase approach helps to find 

a set of non dominated solutions of higher quality.  

o Thirdly the results of the comparisons suggest that some configurations are more 

capable to find non dominated solutions in certain regions of the objective space. Thus 

following eventual preferences of the decision maker on the objective, one 

configuration may be preferred.  
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For future works, many experiments can improve the understanding of the problem 

and of the behaviour of the different algorithms and their variants:  

o More experiments to determine more precisely the influence of the different types of 

directions changes on the performance of each algorithm would be very interesting. 

This kind of study would help to choose the best couple (algorithm, direction changes) 

for solving a multiobjective problem 

o A comparison of the performance of the algorithm we proposed with other multiple 

objective optimizers using genetic algorithm, tabu search or simulated annealing which 

have already showed good performance for other multiobjective problem, will also 

provides good information on the relevance of using ACO algorithms to solve a 

biobjective permutation flowshop scheduling problem. 

o Experiments on instances with different coefficient of correlation between the two 

objectives in addition of tests on instances with different number of machines and jobs 

will provide information on the influence of the kind of instance on the performance of 

the different algorithms. 

o Finally it can be noticed that 2phase approach is not specific to ACO algorithms. A 

study on the advantages of this 2phase approach used with other kind of metaheuristics 

and algorithms to tackle multiobjective optimization problems could be very interesting 

for an eventual generalisation. 
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Appendices 

1 Single objective approach: makespan 

For an algorithm using MMAS for the construction of the sequence, we have obtained the 

results presented in Table 15. 

instances 50x20 100x5 100x10 100x20 200x10 average 

p0=0       
I 0.0499 0.0000 0.0055 0.0549 0.0075 0.0235 

T-I 0.0504 0.0000 0.0057 0.0545 0.0078 0.0237 
T-E 0.0700 0.0013 0.0246 0.0775 0.0155 0.0378 
I-E 0.0506 0.0000 0.0068 0.0586 0.0088 0.0250 
E-I 0.0533 0.0000 0.0080 0.0616 0.0100 0.0260 

T-I-E 0.0533 0.0000 0.0071 0.0578 0.0088 0.0254 
T-E-I 0.0528 0.0000 0.0073 0.0599 0.0102 0.0260 

p0=0.5       
I 0.0483 0.0000 0.0052 0.0542 0.0064 0.0228 

T-I 0.0467 0.0000 0.0227 0.0532 0.0067 0.0259 
T-E 0.0708 0.0005 0.0206 0.0781 0.0173 0.0375 
I-E 0.0514 0.0000 0.0062 0.0578 0.0091 0.0249 
E-I 0.0512 0.0000 0.0083 0.0585 0.0106 0.0257 

T-I-E 0.0506 0.0000 0.0073 0.0562 0.0087 0.0246 
T-E-I 0.0512 0.0000 0.0078 0.0604 0.0086 0.0256 

p0=0.75       

I 0.0448 0.0000 0.0049 0.0509 0.0057 0.0213 
T-I 0.0464 0.0000 0.0050 0.0521 0.0065 0.0220 
T-E 0.0660 0.0004 0.0227 0.0753 0.0162 0.0361 
I-E 0.3134 0.0000 0.0066 0.0545 0.0082 0.0271 
E-I 0.0491 0.0000 0.0081 0.0567 0.0086 0.0245 

T-I-E 0.0496 0.0000 0.0059 0.0558 0.0081 0.0272 
T-E-I 0.0472 0.0000 0.0076 0.0578 0.0097 0.0245 

p0=0.9       
I 0.0408 0.0000 0.0040 0.0468 0.0041 0.0192 

T-I 0.0416 0.0000 0.0029 0.0477 0.0043 0.0193 
T-E 0.0605 0.0004 0.0215 0.0711 0.0167 0.0340 
I-E 0.0464 0.0000 0.0055 0.0539 0.0074 0.0226 
E-I 0.0464 0.0000 0.0071 0.0563 0.0094 0.0238 

T-I-E 0.0422 0.0000 0.0050 0.0526 0.0084 0.0216 
T-E-I 0.0477 0.0000 0.0066 0.0576 0.0094 0.0243 

p0=0.925       
I 0.0390 0.0000 0.0024 0.0455 0.0028 0.0179 
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T-I 0.0406 0.0000 0.0031 0.0462 0.0033 0.0186 
T-E 0.0599 0.0002 0.0205 0.0716 0.0168 0.0338 
I-E 0.0456 0.0000 0.0049 0.0509 0.0061 0.0215 
E-I 0.0456 0.0000 0.0078 0.0554 0.0087 0.0235 

T-I-E 0.0427 0.0000 0.0057 0.0511 0.0068 0.0213 
T-E-I 0.0472 0.0000 0.0071 0.0550 0.0092 0.0237 

p0=0.95       

I 0.0371 0.0000 0.0026 0.0436 0.0027 0.0172 
T-I 0.0408 0.0000 0.0033 0.0437 0.0025 0.0180 
T-E 0.0597 0.0002 0.0217 0.0732 0.0186 0.0347 
I-E 0.0443 0.0000 0.0050 0.0508 0.0071 0.0214 
E-I 0.0453 0.0000 0.0061 0.0539 0.0080 0.0227 

p0=0.95 50x20 100x5 100x10 100x20 200x10 average 

T-I-E 0.0435 0.0000 0.0043 0.0501 0.0069 0.0210 
T-E-I 0.0448 0.0000 0.0064 0.0513 0.0086 0.0222 

p0=0.975       

I 0.0411 0.0000 0.0024 0.0424 0.0024 0.0177 
T-I 0.0400 0.0000 0.0019 0.0409 0.0024 0.0171 
T-E 0.0607 0.0002 0.0205 0.0708 0.0163 0.0337 
I-E 0.0435 0.0000 0.0054 0.0483 0.0061 0.0207 
E-I 0.0451 0.0000 0.0068 0.0519 0.0085 0.0224 

T-I-E 0.0451 0.0000 0.0045 0.0491 0.0084 0.1071 
T-E-I 0.0464 0.0000 0.0054 0.0524 0.0083 0.1125 

Table 15: Results achieved for the makespan using MMAS 

We have put in bold the best values obtained for each instance. It appears clearly that I and 

T-I neighbourhood local search give the best results, independently of the number of jobs 

and the number of machines in the problem. This is due to the to the speedup technique of 

Taillard this technique can be used only when the objective to optimize is the makespan 

.Best performances are also obtained for a high value of 0p ,  0 0.95 or 0.975p =  what 

means that it is more relevant to focus on the exploitation of the results than on the 

exploration of the solution space if we want to find best solutions. The following Table 16 

presents the results obtained with MMAS_sum for the makespan objective. 

instances 50x20 100x5 100x10 100x20 200x10 average 
p0=0       

I 0.04508 0 0.00364 0.046839 0.0035 0.0198 
T-I 0.04429 0 0.003466 0.048641 0.00414 0.0201 
T-E 0.06179 0.00018 0.018891 0.07075 0.01722 0.0338 
I-E 0.048 0 0.005373 0.054209 0.007 0.0229 
E-I 0.04853 0 0.006586 0.056502 0.00994 0.0235 

T-I-E 0.04773 0 0.006412 0.052735 0.00644 0.0227 
T-E-I 0.04959 0 0.023224 0.053881 0.0081 0.0270 

p0=0.5       
I 0.04375 0 0.002946 0.046675 0.00221 0.0191 

T-I 0.04375 0 0.002773 0.047494 0.00304 0.0194 
T-E 0.05993 0.00018 0.016638 0.070423 0.01869 0.0332 
I-E 0.04641 0 0.004853 0.051916 0.00562 0.0218 
E-I 0.04694 0 0.006759 0.055355 0.00856 0.0235 
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T-I-E 0.048 0 0.005199 0.052407 0.00654 0.0224 
T-E-I 0.04906 0 0.005893 0.052735 0.00792 0.0231 

p0=0.75       
I 0.04216 0 0.002773 0.044219 0.00175 0.0182 

T-I 0.04057 0 0.002253 0.045201 0.00175 0.0180 
T-E 0.05914 0.00018 0.018198 0.071733 0.01897 0.0336 
I-E 0.04375 0 0.004679 0.050115 0.00644 0.0241 
E-I 0.0472 0 0.005893 0.052899 0.00829 0.0229 

T-I-E 0.04508 0 0.005026 0.050115 0.00709 0.0243 
T-E-I 0.0472 0 0.006932 0.054209 0.00847 0.0234 

p0=0.9 50x20 100x5 100x10 100x20 200x10 average 
I 0.0366 0 0.001906 0.042909 0.00212 0.0167 

T-I 0.03872 0 0.00312 0.041598 0.00193 0.0171 
T-E 0.04375 0.00036 0.019757 0.070259 0.01915 0.0307 
I-E 0.04296 0 0.005199 0.048804 0.0058 0.0206 
E-I 0.04322 0 0.007972 0.051752 0.00856 0.0223 

T-I-E 0.04349 0 0.005373 0.048968 0.00626 0.0208 
T-E-I 0.04455 0 0.006066 0.054045 0.00948 0.0228 

p0=0.925       
I 0.03739 0 0.00208 0.039469 0.00166 0.0161 

T-I 0.03898 0 0.001906 0.039142 0.00193 0.0164 
T-E 0.06152 0.00073 0.019237 0.071405 0.01749 0.0341 
I-E 0.04375 0 0.00364 0.047003 0.00552 0.0200 
E-I 0.04535 0 0.006412 0.05339 0.00911 0.0229 

T-I-E 0.04482 0 0.004506 0.050115 0.00672 0.0212 
T-E-I 0.04322 0 0.006239 0.051752 0.00994 0.0222 

p0=0.95       

I 0.03898 0 0.002946 0.042417 0.00193 0.0173 
T-I 0.03872 0 0.002946 0.039961 0.00166 0.0167 
T-E 0.0602 0.00073 0.021144 0.075336 0.01786 0.0351 
I-E 0.04322 0 0.004506 0.046839 0.00635 0.0202 
E-I 0.04588 0 0.006586 0.050442 0.00635 0.0219 

T-I-E 0.04588 0 0.004853 0.049296 0.00626 0.0213 
T-E-I 0.04667 0 0.006239 0.052244 0.0069 0.0224 

p0=0.975       
I 0.03951 0 0.002773 0.040616 0.00285 0.0172 

T-I 0.03872 0 0.00312 0.039142 0.00184 0.0166 
T-E 0.06391 0.00164 0.022357 0.071896 0.01924 0.0358 
I-E 0.04535 0 0.005026 0.04471 0.00792 0.0206 
E-I 0.04747 0 0.005893 0.05208 0.0081 0.0227 

T-I-E 0.04535 0 0.005373 0.047658 0.00635 0.0209 
T-E-I 0.04667 0 0.008839 0.051752 0.00746 0.0229 

Table 16: Results achieved for the makespan using MMAS +sum 

As for the previous table, best results for each instance are put in bold. The results obtained 

with MMAS_sum for the construction of the solution give the same observations; better 

results are obtained when using I or T-I and this for high value of 0p , between 0.9 and 

0.975. 

Another interesting result is that the using MMAS_sum gives better results than using 

MMAS, and that for all the instances tested. 
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2 Single objective approach: Total tardiness 

For the total tardiness the results obtained with MMAS and with MMAS_sum are 

presented respectively in the Tables 17 and 18. 

instance 50x10 50x50 average 
p0=0    

I 0.16692587 0.10080483 0.13386535 
E 0.22083981 0.15320494 0.18702238 

T-E 0.22083981 0.14561656 0.18322818 
T-I 0.15914982 0.09563093 0.12739037 
I-E 0.17366511 0.11066398 0.14216455 
E-I 0.15811301 0.09617706 0.12714504 

T-E-I 0.15863142 0.10008623 0.12935882 
T-I-E 0.15966822 0.09752803 0.12859812 

p0=0.5    
I 0.14307932 0.09453866 0.11880899 
E 0.24157595 0.13972406 0.19065 

T-E 0.20165889 0.14133372 0.1714963 
T-I 0.12649041 0.09959759 0.113044 
I-E 0.16174184 0.08870365 0.12522274 
E-I 0.15863142 0.08709399 0.1228627 

T-E-I 0.12078797 0.0915493 0.10616863 
T-I-E 0.12649041 0.08904858 0.10776949 

p0=0.75    
I 0.12804562 0.09537223 0.11170893 
E 0.18403318 0.12880138 0.15641728 

T-E 0.18040435 0.13342915 0.15691675 
T-I 0.08553655 0.07663122 0.08108388 
I-E 0.13219285 0.0837597 0.10797627 
E-I 0.12078797 0.07803967 0.09941382 

T-E-I 0.09590461 0.08169014 0.08879738 
T-I-E 0.08761016 0.07344064 0.0805254 

p0=0.9    
I 0.10782789 0.08450704 0.09616747 
E 0.17314671 0.1221328 0.14763975 

T-E 0.11145671 0.11345214 0.11245443 
T-I 0.07672369 0.06622593 0.07147481 
I-E 0.09901503 0.08950848 0.09426176 
E-I 0.09590461 0.07700489 0.08645475 

T-E-I 0.0627268 0.06754815 0.06513747 
T-I-E 0.05132193 0.07355562 0.06243877 

p0=0.925    
I 0.1088647 0.09678068 0.10282269 
E 0.15448419 0.14173613 0.14811016 

T-E 0.12856402 0.1350388 0.13180141 
T-I 0.05495075 0.06642713 0.06068894 
I-E 0.10419907 0.10250072 0.10334989 
E-I 0.0627268 0.07677494 0.06975087 

T-E-I 0.07568688 0.07174475 0.07371582 
T-I-E 0.03939865 0.07436045 0.05687955 

p0=0.95    
I 0.1093831 0.10068985 0.10503648 



 - 148 - 

E 0.19388284 0.14443806 0.16916045 
T-E 0.12182478 0.16047715 0.14115096 
T-I 0.04510109 0.07079621 0.05794865 
I-E 0.11664075 0.09867778 0.10765926 
E-I 0.07568688 0.0731532 0.07442004 

0.95    
T-E-I 0.05702436 0.09617706 0.07660071 
T-I-E 0.06117159 0.08180512 0.07148835 

p0=0.975    
I 0.093831 0.10385168 0.09884134 
E 0.24779679 0.16223053 0.20501366 

T-E 0.12234318 0.15791894 0.14013106 
T-I 0.0632452 0.09430871 0.07877696 
I-E 0.12597201 0.10689853 0.11643527 
E-I 0.07257646 0.10192584 0.08725115 

T-E-I 0.07309487 0.10296062 0.08802774 
T-I-E 0.08864697 0.10103478 0.09484087 

Table 17: Results achieved for the total tardiness when using MMAS 

We have put in bold the best values obtained for each instance. By contrast with the results 

for the makespan, it is not clear whether one configuration of local search is better than 

another but we can still observe that best results are still obtained for high value of 0p  

instances 50x10 50x50 average 
p0=0    

I 0.09642302 0.07390055 0.08516178 
E 0.16796267 0.12569704 0.14682986 

T-E 0.13893209 0.11925841 0.12909525 
T-I 0.08294453 0.07378557 0.07836505 
I-E 0.10212545 0.0769474 0.08953643 
E-I 0.08346293 0.06223053 0.07284673 

T-E-I 0.07309487 0.07045128 0.07177307 
T-I-E 0.08138932 0.07346939 0.07742935 

p0=0.5    
I 0.06635562 0.06501868 0.06568715 
E 0.12337999 0.12219028 0.12278514 

T-E 0.10368066 0.11713136 0.11040601 
T-I 0.07205806 0.06438632 0.06822219 
I-E 0.06998445 0.08192009 0.07595227 
E-I 0.06894764 0.06021845 0.06458305 

T-E-I 0.06998445 0.05651049 0.06324747 
T-I-E 0.07361327 0.05757402 0.06559364 

p0=0.75    
I 0.0627268 0.06674332 0.06473506 
E 0.08761016 0.11279103 0.1002006 

T-E 0.07983411 0.11029031 0.09506221 
T-I 0.04458269 0.04751365 0.04604817 
I-E 0.0632452 0.06521989 0.06423255 

 50x10 50x50 average 
E-I 0.05132193 0.05412475 0.05272334 

T-E-I 0.05495075 0.05145157 0.05320116 
T-I-E 0.05184033 0.05403852 0.05293942 
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p0=0.9    
I 0.05754277 0.065881 0.06171188 
E 0.08501814 0.10143719 0.09322767 

T-E 0.0627268 0.09137683 0.07705182 
T-I 0.05391395 0.04943949 0.05167672 

p0=0.9 50x10 50x50 average 
I-E 0.07102125 0.06504743 0.06803434 
E-I 0.06117159 0.06263294 0.06190227 

p0=9.0 50x10 50x50 average 
T-E-I 0.06168999 0.05817764 0.05993382 
T-I-E 0.05287714 0.05768899 0.05528306 

p0=0.925    
I 0.05806117 0.06113826 0.05959971 
E 0.07724209 0.11943087 0.09833648 

T-E 0.06791083 0.09902271 0.08346677 
T-I 0.03680664 0.0531762 0.04499142 
I-E 0.06168999 0.06611095 0.06390047 
E-I 0.03265941 0.05251509 0.04258725 

T-E-I 0.05339554 0.06286289 0.05812922 
T-I-E 0.04354588 0.0597873 0.05166659 

p0=0.95    
I 0.04354588 0.06036217 0.05195403 
E 0.08242613 0.10750216 0.09496414 

T-E 0.07257646 0.11509054 0.0938335 
T-I 0.03888025 0.0522564 0.04556832 
I-E 0.07568688 0.07355562 0.07462125 
E-I 0.05650596 0.05941362 0.05795979 

T-E-I 0.05754277 0.06131072 0.05942674 
T-I-E 0.06480041 0.07298074 0.06889058 

p0=0.975    
I 0.09953344 0.07565392 0.08759368 
E 0.17366511 0.11279103 0.14322807 

T-E 0.06117159 0.13705088 0.09911123 
T-I 0.07724209 0.1054326 0.09133734 
I-E 0.1254536 0.07085369 0.09815365 
E-I 0.0782789 0.08378844 0.08103367 

T-E-I 0.07413167 0.09315895 0.08364531 
T-I-E 0.09486781 0.08051164 0.08768972 

Table 18:  Results achieved for the total tardiness when using MMAS_sum 

Best results are still obtained for a high value of 0p  and when MMAS_sum is used. For the 

local search. none of them seems to perform better than the others. The only conclusion we 

can make on the local search for the total tardiness is that it includes insert neighbourhood. 



 - 150 - 

3 Outcomes of multiobjective optimizer for different local 

search 

For these comparisons, we have run 1phero scratch and 1phero 2phase with the 

different combinations of local search presented in the section 5.2. For each configuration, 

five independent runs have been achieved on 50x10-1 briefly described in section 5.4.3, 

and this for a number of aggregation weight 41W =  and a direction changes 1...0λ =   

In the tables 19 and 20, the values of the different values of quality indicators are 

presented for each configuration, first for 1phero scratch and then for 1phero 2phase. 

( , )CI I T I−  54% ( , )CI T I I−  43% 
( )HI I  3.0515E+08 ( )HI T I−  3.0480E+08 

2 ( , )HI I T I−  18106.7 2 ( , )HI T I I−  4225.21 

( , )CI I EI  47% ( , )CI E I I−  50% 
( )HI I  3.0515E+08 ( )HI E I−  3.0471E+08 

2 ( , )HI I E I−  22037.4 2 ( , )HI E I I−  4696.7 

( , )CI I I E−  58% ( , )CI I E I−  37% 

S(I) 3.0515E+08 ( )HI I E−  3.0521E+08 

2 ( , )HI I I E−  1188.8 2 ( , )HI I E I−  13981.1 

( , )CI I T I E− −  57% ( , )CI T I E I− −  38% 

( )HI I  3.0515E+08 S( ( )HI T I E− − ) 3.0478E+08 

2 ( , )HI I T I E− −  20604.3 2 ( , )HI T I E I− −  5971.92 

( , )CI I T E I− −  50% ( , )CI T E I I− −  43% 
( )HI I  3.0515E+08 ( )HI T E I− −  3.0489E+08 

2 ( , )HI I T E I− −  16320.1 2 ( , )HI T E I I− −  6024.07 

( , )CI T I E I− −  45% ( , )CI E I T I− −  49% 
( )HI T I−  3.0480E+08 ( )HI E I−  3.0471E+08 

2 ( , )HI T I E I− −  9330.32 2 ( , )HI E I T I− −  5871.16 
 

( , )CI T I I E− −  57% ( , )CI I E T I− −  27% 
( )HI T I−  3.0480E+08 ( )HI I E−  3.0521E+08 

2 ( , )HI T I I E− −  3002.57 2 ( , )HI I E T I− −  19432 

( , )CI T I T E I− − −  43% ( , )CI T E I T I− − −  46% 
( )HI T I−  3.0480E+08 ( )HI T E I− −  3.0489E+08 

2 ( , )HI T I T E I− − −  4273.54 2 ( , )HI T E I T I− − −  7854.86 

( , )CI T I T I E− − −  56% ( , )CI T I E T I− − −  38% 
( )HI T I−  3.0480E+08 ( )HI T I E− −  3.0478E+08 

2 ( , )HI T I T I E− − −  9037.08 2 ( , )HI T I E T I− − −  8286.23 

( , )CI E I I E− −  56% ( , )CI I E E I− −  36% 
( )HI E I−  3.0471E+08 ( )HI I E−  3.0521E+08 



 - 151 - 

2 ( , )HI E I I E− −  3316.4 2 ( , )HI I E E I− −  23205 

( , )CI E I T I E− − −  58% ( , )CI T I E E I− − −  36% 
( )HI E I−  3.0471E+08 ( )HI T I E− −  3.0478E+08 

2 ( , )HI E I T I E− − −  8436.01 2 ( , )HI T I E E I− − −  11144.3 

( , )CI E I T E I− − −  45% ( , )CI T E I E I− − −  48% 
( )HI E I−  3.0471E+08 ( )HI T E I− −  3.0489E+08 

2 ( , )HI E I T E I− − −  4703.95 2 ( , )HI T E I E I− − −  11745.4 

( , )CI I E T I E− − −  34% ( , )CI T I E I E− − −  50% 
( )HI I E−  3.0521E+08 ( )HI T I E− −  3.0478E+08 

D(IE.TIE) 21710.3 2 ( , )HI T I E I E− − −  4530.01 

( , )CI I E T E I− − −  33% ( , )CI T E I I E− − −  55% 
( )HI I E−  3.0521E+08 ( )HI T E I− −  3.0489E+08 

2 ( , )HI I E T E I− − −  16357.9 2 ( , )HI E I T I− −  3519.36 

( , )CI T E I T I E− − − −  58% ( , )CI T I E T E I− − − −  35% 
( )HI T E I− −  3.0489E+08 ( )HI T I E− −  3.0478E+08 

2 ( , )HI T E I T I E− − − −  11068.1 2 ( , )HI E I E T E I− − − −  6736.4 

Table 19:Results for 1phero scratch for different local search 

1phero 2phase    
( , )CI I T I−  55% ( , )CI T I I−  30% 

( )HI I  3.0563E+08 ( )HI T I−  3.0598E+08 

2 ( , )HI I T I−  9048 2 ( , )HI T I I−  23036.7 

( , )CI I EI  61% ( , )CI E I I−  29% 
( )HI I  3.0563E+08 ( )HI E I−  3.0487E+08 

2 ( , )HI I E I−  33426.5 2 ( , )HI E I I−  2836.43 

( , )CI I I E−  64% ( , )CI I E I−  23% 

S(I) 3.0563E+08 ( )HI I E−  3.0528E+08 

2 ( , )HI I I E−  18857.8 2 ( , )HI I E I−  4668.34 

( , )CI I T I E− −  58% ( , )CI T I E I− −  30% 

( )HI I  3.0563E+08 S( ( )HI T I E− − ) 3.0469E+08 

2 ( , )HI I T I E− −  37817.4 2 ( , )HI T I E I− −  200.606 

( , )CI I T E I− −  55% ( , )CI T E I I− −  38% 
( )HI I  3.0563E+08 ( )HI T E I− −  3.0527E+08 

2 ( , )HI I T E I− −  23576.8 2 ( , )HI T E I I− −  9003.31 

( , )CI T I E I− −  40% ( , )CI E I T I− −  42% 
( )HI T I−  3.0563E+08 ( )HI E I−  3.0487E+08 

2 ( , )HI T I E I− −  48338.1 2 ( , )HI E I T I− −  3759.22 

( , )CI T I I E− −  43% ( , )CI I E T I− −  46% 
( )HI T I−  3.0598E+08 ( )HI I E−  3.0528E+08 

2 ( , )HI T I I E− −  33326.2 2 ( , )HI I E T I− −  5148.04 

( , )CI T I T E I− − −  32% ( , )CI T E I T I− − −  0.524159 
( )HI T I−  3.0563E+08 ( )HI T E I− −  3.0527E+08 

2 ( , )HI T I T E I− − −  36582.5 2 ( , )HI T E I T I− − −  8019.8 

( , )CI T I T I E− − −  37% ( , )CI T I E T I− − −  47% 
( )HI T I−  3.0598E+08 ( )HI T I E− −  3.0469E+08 
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2 ( , )HI T I T I E− − −  53379 2 ( , )HI T I E T I− − −  1773.47 

( , )CI E I I E− −  42% ( , )CI I E E I− −  46% 
( )HI E I−  3.0487E+08 ( )HI I E−  3.0528E+08 

2 ( , )HI E I I E− −  7133.73 2 ( , )HI I E E I− −  23534.4 

( , )CI E I T I E− − −  44% ( , )CI T I E E I− − −  49% 
( )HI E I−  3.0487E+08 ( )HI T I E− −  3.0469E+08 

2 ( , )HI E I T I E− − −  15791.3 2 ( , )HI T I E E I− − −  8764.69 

( , )CI E I T E I− − −  42% ( , )CI T E I E I− − −  54% 
( )HI E I−  3.0487E+08 ( )HI T E I− −  3.0527E+08 

2 ( , )HI E I T E I− − −  9088.75 2 ( , )HI T E I E I− − −  25105.7 

( , )CI I E T I E− − −  42% ( , )CI T I E I E− − −  49% 
( )HI I E−  3.0528E+08 ( )HI T I E− −  3.0469E+08 

D(IE.TIE) 25582.7 2 ( , )HI T I E I E− − −  2155.37 

( , )CI I E T E I− − −  37% ( , )CI T E I I E− − −  55% 
( )HI I E−  3.0528E+08 ( )HI T E I− −  3.0527E+08 

2 ( , )HI I E T E I− − −  13882 2 ( , )HI E I T I− −  13497.5 

( , )CI T E I T I E− − − −  53% ( , )CI T I E T E I− − − −  48% 
( )HI T E I− −  3.0527E+08 ( )HI T I E− −  3.0469E+08 

2 ( , )HI T E I T I E− − − −  26267.2 2 ( , )HI E I E T E I− − − −  3224.39 

Table 20: Results for 1phero 2phase for different local search 

The result of these tests is that no combination of local search outperforms another. This 

result was expected as no combinations of local search had clearly shown better 

performance for the total tardiness objective in the single objective approach.  
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4 Influence of the number of aggregations weights 

We will present here the results of the comparisons concerning the influence of the 

number of aggregations weights on the performance of the optimizer. The different 

configurations have been tested on the second and 50x30-2 for a direction changes of type 

1...0λ = .  Table 21 shows the coverage measure and the result of the K-S test for the 

different comparisons made with 1phero 2phase for 50x10-2. 

1phero 2phase - λ =1...0λ =1...0λ =1...0λ =1...0  - (50x10-2) CI  Kolmogorov-Smirnov test 

(1  2 11), (1  2 41)phero phase W phero phase W− = − =  25% 

(1  2 41), (1  2 11)phero phase W phero phase W− = − =  65% 

The two attainment surfaces 
differ somewhere 

(1  2 11), (1  2 81)phero phase W phero phase W− = − =  28% 

(1  2 81), (1  2 11)phero phase W phero phase W− = − =  62% 

The two attainment surfaces 
differ somewhere 

(1  2 41), (1  2 81)phero phase W phero phase W− = − =  49% 

(1  2 81), (1  2 41)phero phase W phero phase W− = − =  42% 
0h  not rejected 

Table 21: Results for different numbers of weights for 1phero 2phase (50x10-2) 

We can observe that no significant differences exist between the EAFs of the 

configurations 1phero 2phase with 41W =  and 81W = . The two Figures 43 and 44 

indicate that a number of weights 41W =  is not sufficient to find solutions of good 

quality. 
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Figure 43: Differences of EAFs, 1phero 2phase |W|=11-|W|=41 (50x10-2) 

 

Figure 44: Differences of EAFs, 1phero 2phase |W|=11-|W|=81 (50x10-2) 

Table 22 and 23 shows the coverage measure and the result of the K-S test for the 

different comparisons made with respectively 2pheroG 2phase and 2pheroL 2phase. They 

show that the number of aggregation weights does not have much influence on the 

performance of the configurations 2pheroG 2phase and 2pheroL 2phase. Table 24 shows 
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that a comparison based on the plot of differences of EAFs is possible for the comparisons 

made with 1phero 2phase on 50x30-2 is possible, except for a comparison 41W = - 

81W =  

2pheroG 2phase- �λ =1 0 - (50x10-2) CI  Kolmogorov-Smirnov 
test 

(2  2phase 11), (2  2phase 41)pheroG W pheroG W− = − =  42% 

(2  2phase 41), (2  2phase 11)pheroG W pheroG W− = − =  48% 
0h  not rejected 

(2  2phase 11), (2  2phase 81)pheroG W pheroG W− = − =  41% 

(2  2phase 81), (2  2phase 11)pheroG W pheroG W− = − =  49% 
0h  not rejected 

(2  2phase 41), (2  2phase 81)pheroG W pheroG W− = − =  50% 

(2  scratch 81), (2  scratch 41)pheroG W pheroG W− = − =  43% 
0h  not rejected 

Table 22: Results for different number of weights for 2pheroG 2phase (50x10-2) 

2pheroL 2phase- 1 0λ = � - (50x10-2) CI  Kolmogorov-Smirnov test 

(2  2phase 11), (2  2phase 41)pheroL W pheroL W− = − =  48% 

(2  2phase 41), (2  2phase 11)pheroL W pheroL W− = − =  49% 
0h  not rejected 

(2  2phase 11), (2  2phase 81)pheroL W pheroL W− = − =  37% 

(2  2phase 81), (2  2phase 11)pheroL W pheroL W− = − =  56% 
0h  not rejected 

(2  2phase 41), (2  2phase 81)pheroL W pheroL W− = − =  42% 

(2  scratch 81), (2  scratch 41)pheroL W pheroL W− = − =  52% 
0h  not rejected 

Table 23: Results for different number of weights for 2pheroL (50x10-2) 

1phero 2phase - 1 0λ = � - 50x30-2 CI  Kolmogorov-Smirnov test 

(1  2 11), (1  2 41)phero phase W phero phase W− = − =  24% 

(1  2 41), (1  2 11)phero phase W phero phase W− = − =  67% 

The two attainment surfaces 
differ somewhere 

(1  2 11), (1  2 81)phero phase W phero phase W− = − =  26% 

(1  2 81), (1  2 11)phero phase W phero phase W− = − =  64% 

The two attainment surfaces 
differ somewhere 

(1  2 41), (1  2 81)phero phase W phero phase W− = − =  43% 

(1  2 81), (1  2 41)phero phase W phero phase W− = − =  47% 
0h  not rejected 

Table 24: Results for different number of weights for 1phero 2phase (50x30-2) 

The two Figures 45 and 46 provide the same kind of observations. Increasing the 

number of aggregation weights from 11W =  to 41W =  or 81W =  improves the 

performance of the configuration 1phero 2phase in finding solutions in the middle region 
of the objective space.  
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Figure 45: Differences of EAFs, 1phero 2phase |W|=11-|W|=41 (50x30-2) 

 

Figure 46: Differences of EAFs, 1phero 2phase |W|=11-|W|=81 (50x30-2) 

The Table 25 and 26 also show that no dominance relation appears, but plot of the 
differences of EAFs can be used for comparison for the tests made with respectively 

2pheroG 2phase and 2pheroL 2phase on 50x30-2. 
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2pheroG 2phase �λ =1 0 - 50x30-2 CI  Kolmogorov-Smirnov 
test 

(2  2phase 11), (2  2phase 41)pheroG W pheroG W− = − =  23% 

(2  2phase 41), (2  2phase 11)pheroG W pheroG W− = − =  69% 

The two attainment 
surfaces differ 

somewhere 

(2  2phase 11), (2  2phase 81)pheroG W pheroG W− = − =  25% 

(2  2phase 81), (2  2phase 11)pheroG W pheroG W− = − =  63% 

The two attainment 
surfaces differ 

somewhere 

(2  2phase 41), (2  2phase 81)pheroG W pheroG W− = − =  41% 

(2  scratch 81), (2  scratch 41)pheroG W pheroG W− = − =  49% 

The two attainment 
surfaces differ 

somewhere 

Table 25: Results for different number of weights for 2pheroG 2phase (50x30-2) 

Figures 47, 48, 50 and 51 provide the same kind of observations, increasing the 

number of aggregation weights from 11W =  to 41W =  or 81W = clearly improves the 

performance of the configuration 2pheroL 2phase in finding solutions in the middle region 

of the objective space.  Figures 49 and 52 indicate that after a certain number of weights, 

increasing the number does not lead anymore to an improvement of the performance in the 

middle region. This number depends probably on the instance and the kind of problem. 

 

Figure 47: Differences of EAFs, 2pheroG 2phase |W|=11-|W|=41 (50x30-2) 
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Figure 48: Differences of EAFs, 2pheroG 2phase |W|=11-|W|=81 (50x30-2) 

 

Figure 49: Differences of EAFs, 2pheroG 2phase |W|=41-|W=81| (50x30-2) 
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1phero 2phase - 1 0λ = � - 50x30-2 CI  Kolmogorov-Smirnov test 

(2  2phase 11), (2  2phase 41)pheroL W pheroL W− = − =  33% 

(2  2phase 41), (2  2phase 11)pheroL W pheroL W− = − =  65% 

The two attainment 
surfaces differ somewhere 

(2  2phase 11), (2  2phase 81)pheroL W pheroL W− = − =  34% 

(2  2phase 81), (2  2phase 11)pheroL W pheroL W− = − =  55% 

The two attainment 
surfaces differ somewhere 

(2  2phase 41), (2  2phase 81)pheroL W pheroL W− = − =  34% 

(2  scratch 81), (2  scratch 41)pheroL W pheroL W− = − =  54% 

The two attainment 
surfaces differ somewhere 

Table 26: Results for different number of weights for 2pheroL 2phase (50x30-2) 

 

Figure 50: Differences of EAFs, 2pheroL 2phase |W|=11-|W|=41 (50x30-2) 
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Figure 51: Differences of EAFs, 2pheroL 2phase |W|=11-|W|=81| (50x30-2) 

 

Figure 52: Differences of EAFs, 2pheroL 2phase |W|=41-|W|=81 (50x30-2) 

Summary of the observations of the influence of the number of aggregation weights  

o Increasing the number of weights from 11W =  to  41W =  or to 81W = does not 

lead to worse performance. Most of time the results are positive especially for the 

configuration 1phero 2 phase and the 50 jobs 30 machines instance tested. For this 
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instance, we have observed the necessity of using a high number of weights.. 

Otherwise, the algorithm is not capable to find solutions in the middle of the front. 

The fact that performance seems better at the extreme when using 11W =  shows 

that better solutions could be obtained if more time was allocated to the procedure.   

o Increasing the number of weights from 41W =  to 81W =  ever leads to a clear 

improvement for the instances tested, what suggests that after a certain number of 

weights, increasing the number of aggregation weights does not lead anymore to an 

improvement of the performance. 



 - 162 - 

5 Results of the optimizers for different direction changes 

For these comparisons, we have run 1phero 2phase, 21pheroG 2phase and 2pheroL 

2phase with the different types of direction changes presented in section 5.4.5.  For each 

configuration, ten independent runs have been achieved with a number of weights 41W = , 

on the second and 50x30-2 briefly described in section 5.4.3.  

In the Tables 27, 28 and 29, we present the result of the tests made on 50x10-2.  

Some situations of dominance appear in table 29 when the configuration 2pheroL 

2phase is used. The coverage measures indicate that a direction changes of type 1 0λ = �  

is worse performing than the others. 

For the two other configurations, 1phhero 2phase and 2pheroG 2phase, The 

coverage measures in the other comparisons do not provide any clear preference 

information between the different direction changes tested but in some situations, 

visualization of the differences of EAFs is possible 

1phero 2phase (50x10-2) CI  Kolmogorov-Smirnov test 

0 1λ = �  / 1 0λ = �  34% 

1 0λ = � / 0 1λ = �  57% 
The two attainment surfaces differ somewhere 

0 1λ = �  / 0 1 0λ = � �  31% 

0 1 0λ = � �  / 0 1λ = �  59% 
The two attainment surfaces differ somewhere 

0 1λ = �  / 1 0 1λ = � �  24% 

1 0 1λ = � �  / 0 1λ = �  60% 
The two attainment surfaces differ somewhere 

1 0λ = �  / 0 1 0λ = � �  41% 

0 1 0λ = � �  / 1 0λ = �  50% 
0h  not rejected 

1 0λ = �  / 1 0 1λ = � �  39% 

1 0 1λ = � �  / 1 0λ = �  49% 
0h  not rejected 

0 1 0λ = � �  / 1 0 1λ = � �  32% 

1 0 1λ = � � / 0 1 0λ = � �  55% 
The two attainment surfaces differ somewhere 

Table 27: Results for 1phero 2phase for direction changes (50x10-2) 

The Figures 53, 54 and 55 suggest that a direction changes  0 1λ = �   for 1phero 

2phase performs worse than the other types of direction changes tested. It is especially 

worse for points with a small makespan (in the left bottom corner) if we compare with the 

solutions obtained when the algorithm begins wit the makespan as most important 

objective ( direction changes beginning with 1λ = ). For the other regions, differences are 

very small. 
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Figure 53: Differences of EAFs, 1phero 2phase for direction changes,(50x10-2) 

 

Figure 54: Differences of EAFs, 1phero 2phase for direction changes ,(50x10-2) 
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Figure 55: Differences of EAFs, 1phero 2phase for direction changes ((50x10-2) 

A comparison of the two double 2phase suggests that the use of a direction changes of type 

1...0...1λ =  performs better in the left region tan the double 2phase 0 1 0λ = � � . This is 

illustrated in Figure 56.  

 

Figure 56: Differences of EAFs, 1phero 2phase for direction changes ((50x10-2) 

2pheroG 2phase (50x10-2) CI  Kolmogorov-Smirnov test 
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0 1λ = �  / 1 0λ = �  43% 

1 0λ = � / 0 1λ = �  54% 
0h  not rejected 

0 1λ = �  / 0 1 0λ = � �  39% 

0 1 0λ = � �  / 0 1λ = �  55% 
0h  not rejected 

0 1λ = �  / 1 0 1λ = � �  61% 

1 0 1λ = � �  / 0 1λ = �  33% 
The two attainment surfaces differ somewhere 

1 0λ = �  / 0 1 0λ = � �  35% 

0 1 0λ = � �  / 1 0λ = �  57% 
0h  not rejected 

1 0λ = �  / 1 0 1λ = � �  58% 

1 0 1λ = � �  / 1 0λ = �  39% 
0h  not rejected 

0 1 0λ = � �  / 1 0 1λ = � �  60% 

1 0 1λ = � � / 0 1 0λ = � �  33% 
The two attainment surfaces differ somewhere 

Table 28: Results for 2pheroG 2phase for different direction changes (50x10-2) 

Figures 57 and 58 show that the type beginning by 0λ = performs better than the type  

1 0 1λ = � � for the middle region of  the objective space. 

 

Figure 57: Differences of EAFs, 2pheroG 2phase for direction changes (50x10-2) 
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Figure 58: Differences of EAFs, 2pheroG 2phase for direction changes (50x10-2) 

2pheroL 2phase – (50x10-2) CI  Kolmogorov-Smirnov test 

0 1λ = �  / 1 0λ = �  77% 

1 0λ = � / 0 1λ = �  25% 
The two attainment surfaces differ somewhere 

0 1λ = �  / 0 1 0λ = � �  42% 

0 1 0λ = � �  / 0 1λ = �  53% 
0h  not rejected 

0 1λ = �  / 1 0 1λ = � �  44% 

1 0 1λ = � �  / 0 1λ = �  55% 
0h  not rejected 

1 0λ = �  / 0 1 0λ = � �  28% 

0 1 0λ = � �  / 1 0λ = �  70% 
The two attainment surfaces differ somewhere 

1 0λ = �  / 1 0 1λ = � �  26% 

1 0 1λ = � �  / 1 0λ = �  74% 
The two attainment surfaces differ somewhere 

0 1 0λ = � �  / 1 0 1λ = � �  48% 

1 0 1λ = � � / 0 1 0λ = � �  47% 
0h  not rejected 

Table 29: Results for 2pheroL 2phase for different direction changes (50x10-2) 

Table 28 and the Figure 61 suggest that the type 1 0λ = �  is generally less performing 

than the three other direction changes.  The same table and the Figures  59 and 60 suggest that a 

direction changes of type 0 1λ = �  gives best performances for the configuration 1phero 2 phase 

tested on 50x30-2. 
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1phero 2phase 50x30-2 CI  Kolmogorov-Smirnov test 

0 1λ = �  / 1 0λ = �  82% 

1 0λ = � / 0 1λ = �  11% 
The two attainment surfaces differ somewhere 

0 1λ = �  / 0 1 0λ = � �  61% 

0 1 0λ = � �  / 0 1λ = �  31% 
The two attainment surfaces differ somewhere 

0 1λ = �  / 1 0 1λ = � �  60% 

1 0 1λ = � �  / 0 1λ = �  24% 
The two attainment surfaces differ somewhere 

1 0λ = �  / 0 1 0λ = � �  19% 

0 1 0λ = � �  / 1 0λ = �  73% 
The two attainment surfaces differ somewhere 

1 0λ = �  / 1 0 1λ = � �  27% 

1 0 1λ = � �  / 1 0λ = �  65% 
The two attainment surfaces differ somewhere 

0 1 0λ = � �  / 1 0 1λ = � �  47% 

1 0 1λ = � � / 0 1 0λ = � �  46% 
0h  not rejected 

Table 30: Results for 1phero 2phase for different direction changes (50x30-2) 

 

Figure 59 : Differences of EAFs, 1phero 2phase for direction changes 1,50x30-2) 
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Figure 60: Differences of EAFs, 1phero 2phase for direction changes (2,50x30-2) 

 

Figure 61: Differences of EAFs, 1phero 2phase for direction changes (3,50x30-2) 

In the Table §1 the results of the same comparison for 2pheroG 2phase are 

presented. This table and the Figure 62indicate that direction changes beginning with 1λ =  

give generally worse results than direction changes beginning with 0λ = . 
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2pheroG 2phase - 50x30-2 CI  Kolmogorov-Smirnov test 

0 1λ = �  / 1 0λ = �  69% 

1 0λ = � / 0 1λ = �  26% 
The two attainment surfaces differ somewhere 

0 1λ = �  / 0 1 0λ = � �  43% 

0 1 0λ = � �  / 0 1λ = �  49% 
0h  not rejected 

0 1λ = �  / 1 0 1λ = � �  75% 

1 0 1λ = � �  / 0 1λ = �  19% 
The two attainment surfaces differ somewhere 

1 0λ = �  / 0 1 0λ = � �  18% 

0 1 0λ = � �  / 1 0λ = �  75% 
The two attainment surfaces differ somewhere 

1 0λ = �  / 1 0 1λ = � �  40% 

1 0 1λ = � �  / 1 0λ = �  51% 
0h  not rejected 

0 1 0λ = � �  / 1 0 1λ = � �  76% 

1 0 1λ = � � / 0 1 0λ = � �  17% 
The two attainment surfaces differ somewhere 

Table 31: Results for 2pheroG 2phase f for different direction changes (50x30-2) 

 

Figure 62: 2pheroG 2phase for direction changes (50x30-2) 

The Table 32 indicates that the direction changes 1 0λ = �  is worst than the two 

double 2phase approaches and the Figure 62 show that it is worse than the direction changes 

0...1λ =  except in the right region of the objective space. The Figure 63 show that the direction 

changes 0 1λ = �  is generally worst than the double 2phase 1 0 1λ = � � . 
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2pheroL 2phase- 50x30-2 CI  Kolmogorov-Smirnov test 

0 1λ = �  / 1 0λ = �  67% 

1 0λ = � / 0 1λ = �  30% 
The two attainment surfaces differ somewhere 

0 1λ = �  / 0 1 0λ = � �  41% 

0 1 0λ = � �  / 0 1λ = �  53% 
0h  not rejected 

0 1λ = �  / 1 0 1λ = � �  35% 

1 0 1λ = � �  / 0 1λ = �  60% 
The two attainment surfaces differ somewhere 

1 0λ = �  / 0 1 0λ = � �  23% 

0 1 0λ = � �  / 1 0λ = �  71% 
The two attainment surfaces differ somewhere 

1 0λ = �  / 1 0 1λ = � �  24% 

1 0 1λ = � �  / 1 0λ = �  72% 
The two attainment surfaces differ somewhere 

0 1 0λ = � �  / 1 0 1λ = � �  43% 

1 0 1λ = � � / 0 1 0λ = � �  43% 
0h  not rejected 

Table 32: Results for 2pheroL for different direction changes (50x30-2) 

 

Figure 63: 2pheroL 2phase for direction changes (1,50x30-2) 
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Figure 64: 2pheroL 2phase for direction changes (2, 50x30-2) 

Summary of the observations of the influence of different direction changes  

For 50x10-2 (50 jobs, 10 machines):  

o For 1phero 2phase, it seems preferable to use a direction changes beginning with 1λ =  

if the preferred objective is the makespan. The double 2phase approach  1 0 1λ = � �  

is slightly better than the direction changes 1 0λ = � , even if the differences are not 

large. If the decision maker looks for solutions in the middle and in the right region of 

the objective space, a direction changes of type  0 1 0λ = � � could be more 

appropriated 

o For 2pheroG 2phase, the direction changes 1 0 1λ = � �  seems to be less performing 

than direction changes beginning with 0λ = . Between these two types, the double 

2phase approach seems to be slightly better if we refer to the hypervolume indicator 

o For 2pheroL 2phase, the direction changes 1 0λ = �  is worse than the three other 

types tested and if we compare the two double 2phase approach 0...1...0λ =  and 

1 0 1λ = � � , we have an indication that the second type could give better results for 

small values of makespan whereas the other could give slightly better solutions for the 

middle and the right region of the objective space. 

for the 50 jobs 30 machines instance, we observe that:  
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o For 1phero phase, the direction changes 0 1λ = �  seems to be more appropriated for 

this instance and for most of regions of the objective space 

o For 2pheroG 2phase, a direction changes beginning with  0λ =  are clearly better for 

the instance and for almost each region of the objective space. Among the two, the 

evolution 0 1λ = �  seems to be slightly better 

o For 2pheroL 2phase, this time the type of direction changes 0 1λ = �  even if it is 

better than the type 1 0λ = � , it often performs worse than the type of direction 

changes  1 0 1λ = � � . 
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6 Influence of the non dominated local search 

Here we present the details of comparisons between three configurations using the non 

dominated local search and the three same configurations without non dominated local 

search. The three configurations 1phero 2phase, 2pheroG 2phase and 2pheroL 2phase have 

been tested on the second 50x10 instance and the second 50x30 machines instance for 

41W =  and 1 0λ = � . Tables  

1phero 2phase - �λ =1 0λ =1 0λ =1 0λ =1 0 - (50x10-2) CI  Kolmogorov-Smirnov 
test 

(1phero 2phase with ND_LS-1phero 2phase without ND_LS 59% 

(1phero 2phase without ND_LS-1phero 2phase with ND_LS 25% 

The two attainment 
surfaces differ 

somewhere 
(2pheroG 2phase with ND_LS-1phero2phase without ND_LS 53% 

(2pheroG 2phase without ND_LS-2pheroG 2phase with ND_LS 30% 

The two attainment 
surfaces differ 

somewhere 
(2pheroL 2phase with ND_LS-2pheroL 2phase without ND_LS 44% 
(2pheroL 2phase without ND_LS-2pheroL 2phase with ND_LS 50% 0h  not rejected 

Table 33: Results with/without ND_LS (50x10-2) 

 

Figure 65: Differences of EAFs,1phero 2phase with/without ND_LS (50x10-2) 
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Figure 66: Differences of EAFs,2pheroG 2phase with/without ND_LS (50x10-2) 

 

1phero 2phase - �λ =1 0λ =1 0λ =1 0λ =1 0 - (50x30-2) CI  Kolmogorov-Smirnov 
test 

(1phero 2phase with ND_LS-1phero 2phase without ND_LS 45% 
(1phero 2phase without ND_LS-1phero 2phase with ND_LS 20% 0h  not rejected 

(2pheroG 2phase with ND_LS-1phero2phase without ND_LS 40% 
(2pheroG 2phase without ND_LS-2pheroG 2phase with ND_LS 47% 0h  not rejected 

(2pheroL 2phase with ND_LS-2pheroL 2phase without ND_LS 72% 

(2pheroL 2phase without ND_LS-2pheroL 2phase with ND_LS 23% 

The two attainment 
surfaces differ 

somewhere 

Table 34 : Results with/without ND_LS (50x30-2) 
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7 Comparison 1phero – 2phero approach 

For this comparison, we have analyzed the differences when using 1phero and 

2phero approach on the four different instances. We have first use a direction changes of 

type 1...0λ =  and then we have tested the influence of other direction changes on the result 

of the comparison between 1phero and 2phero. The Table 35 presents the results for the 

tests on 50x10-1. We can observe that the coverage measures suggest that 1phero scratch is 

dominated by 2phero scratch. λ =1↘0 - (50x10-1) CI  Kolmogorov-Smirnov test 

(1pheroscratch/2pheroG scratch) 13% 
(2pheroG scratch/1phero scratch) 85% 

The two attainment surfaces differ somewhere 

(1phero 2phase/2pheroG 2phase) 39 
(2pheroG 2phase/1phero 2phase) 50 

The two attainment surfaces differ somewhere 

(1pheroscratch/2pheroL scratch) 13% 
(2pheroL scratch/1phero scratch) 83% 

The two attainment surfaces differ somewhere 

(1phero 2phase/2pheroL 2phase) 43% 
(2pheroL 2phase/1phero 2phase) 46% 

The two attainment surfaces differ somewhere 

Table 35: Results of a comparison 1phero/2phero (50x10-1)  

The Figures 67 and 68 suggest that 2phero 2phase help slightly to have better results for 

non dominated solutions with small makespan. 

 

Figure 67: Differences of EAFs, 1phero 2phase/2pheroG 2phase (50x10-1) 
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Figure 68:  Differences of EAFs, 1phero 2phase/2pheroL 2phase (50x10-1) 

The Table 36 presents results obtained for 50x10-2. This time, no clear preference is 

provided by the coverage measure and the EAFs are significantly different only for one 

comparison. The Figure 68 illustrates this difference and indicates that 2pheroL 2phase 

seems to be more performing in finding good solutions with small makespan, but is slightly 

worse for other regions of the objective space. 

�λ =1 0λ =1 0λ =1 0λ =1 0 - (50x10-2) CI  Kolmogorov-Smirnov test 

(1pheroscratch/2pheroG scratch) 39% 
(2pheroG scratch/1phero scratch) 48% 0h  not rejected 

(1phero 2phase/2pheroG 2phase) 42 
(2pheroG 2phase/1phero 2phase) 51 0h  not rejected 

(1pheroscratch/2pheroL scratch) 59% 
(2pheroL scratch/1phero scratch) 36% 0h  not rejected 

(1phero 2phase/2pheroL 2phase) 51% 
(2pheroL 2phase/1phero 2phase) 46% 

The two attainment surfaces differ somewhere 

Table 36: Results of a comparison 1phero/2phero (50x10-2) 
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Figure 69: Differences of EAFs, 1phero 2phase/2pheroL 2phase (50x10-2) 

Only one outperformance relation can be observed in the Table 33 for the tests on 

the 3rdinstance, 2pheroL 2phase is better than 1phero 2phase. But the analysis of the 

difference s of EAFs is possible. Figure69 and 70 show that 1phero 2 performs better in the 

middle while 2pheroG 2phase could be preferred if one of the extreme region of the 

objective space. 

The Figure 71 suggests the possibility of dividing the search in two operations, one 

operation using 1phero scratch for the left region and the use of 2pheroL scratch for the 

right region. 

�λ =1 0λ =1 0λ =1 0λ =1 0 - 50x30-1 CI  Kolmogorov-Smirnov test 

(1pheroscratch/2pheroG scratch) 54% 
(2pheroG scratch/1phero scratch) 38% 

The two attainment surfaces differ somewhere 

(1phero 2phase/2pheroG 2phase) 49% 
(2pheroG 2phase/1phero 2phase) 43% 

The two attainment surfaces differ somewhere 

(1pheroscratch/2pheroL scratch) 51% 
(2pheroL scratch/1phero scratch) 43% 

The two attainment surfaces differ somewhere 

(1phero 2phase/2pheroL 2phase) 23% 
(2pheroL 2phase/1phero 2phase) 71% 

The two attainment surfaces differ somewhere 

Table 37: Results of a comparison 1phero/2phero (50x30-1) 
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Figure 70: Differences of EAFs, 1phero scratch/2pheroG scratch (50x30-1) 

 

Figure 71: Differences of EAFs, 1phero 2phase/2pheroG 2phase (50x30-1) 
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Figure 72: Differences of EAFs, 1phero scratch/2pheroL scratch (50x30-1) 

The Table 38 presents the results for the comparison 1phero-2phero for 50x30-2 where no 

clear relation of preference can be observed. The Figures 71, 72 and 73 suggest that for 

50x30-2, 1phero is not capable of finding good solutions in the right region of the objective 

space 

�λ =1 0λ =1 0λ =1 0λ =1 0 - 50x30-2 CI  Kolmogorov-Smirnov test 

(1pheroscratch/2pheroG scratch) 46% 
(2pheroG scratch/1phero scratch) 49% 

The two attainment surfaces differ somewhere 

(1phero 2phase/2pheroG 2phase) 51% 
(2pheroG 2phase/1phero 2phase) 39% 

The two attainment surfaces differ somewhere 

(1pheroscratch/2pheroL scratch) 51% 
(2pheroL scratch/1phero scratch) 40% 0h  not rejected 

(1phero 2phase/2pheroL 2phase) 31% 
(2pheroL 2phase/1phero 2phase) 62% 

The two attainment surfaces differ somewhere 

Table 38: Results of a comparison 1phero/2phero (50x30-2) 
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Figure 73: Differences of EAFs, 1phero scratch/2pheroG scratch (50x30-2) 

 

Figure 74: Differences of EAFs, 1phero 2phase/2pheroG 2phase (50x30-2) 
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Figure 75: Differences of EAFs, 1phero 2phase/2pheroL 2phase (50x30-2) 

It must be noticed that the results obtained with other direction changes can be 

slightly different we will now present the results obtained when using the three different 

direction changes:  

− 0 1λ = �  

− 0 1 0λ = � �  

− 1 0 1λ = � �  

with the configurations (1phero 2phase, 2pheroG 2phase and 2pherooL 2phase) on the 

second and 50x30-2.  

The Tables 39, 40 and 41 give the results of the comparison for the three other 

direction changes. They do not provide any velar preference, but generally the use of the 

plot of differences of two EAFs is possible for the tests on (50x10-2).  

0 1λ = �  - (50x10-2) CI  Kolmogorov-Smirnov test 

(1phero 2phase/2pheroG 2phase) 30% 
(2pheroG 2phase/1phero 2phase) 62% 

The two attainment surfaces differ somewhere 

(1phero 2phase/2pheroL 2phase) 30% 
(2pheroL 2phase/1phero 2phase) 63% 

The two attainment surfaces differ somewhere 

 Table 39: Results of a comparison 1phero/2phero for λ=0-1 (50x10-2) 
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Figure73 suggests tat 2pheroG 2phase is preferable to 1phero 2phase while no clear 

differences appears when the direction changes was 1 0λ = � . 

 

Figure 76: Differences of EAFs, 1phero 2phase/2pheroG 2phase for  λ=0-1 (50x10-2) 

By contrast with the comparison for the direction changes 1 0λ = � , the 

configuration 2pheroL 2phase seems slightly better than 1phero 2phase for most regions of 

the objective space and not only for a region with a small makespan. 
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Figure 77: Differences of EAFs, 1phero 2phase/2pheroL 2phase for λ=0-1 (50x10-2) 

0 1 0λ = � �  - (50x10-2) CI  Kolmogorov-Smirnov test 

(1phero 2phase/2pheroG 2phase) 33% 
(2pheroG 2phase/1phero 2phase) 55% 

The two attainment surfaces differ somewhere 

(1phero 2phase/2pheroL 2phase) 30% 
(2pheroL 2phase/1phero 2phase) 61% 

The two attainment surfaces differ somewhere 

Table 40: Results of a comparison 1phero/2phero for λ=0-1-0 (50x10-2) 

The Figures 76 and 79 and 80 show that 2pheroG 2phase and 2pheroL 2phase have 

the same kind of behaviour when they are compared to 1phero 2phase. They show that 

2phero approach gives slightly better results with a double 2phase direction changes, 

especially for the left region of the objective space. With a direction changes of type 

1 0λ = � , the 2phero approaches were better for the right part of the front. 
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Figure 78: Differences of EAFs, 1phero 2phase/2pheroG 2phase for λ=0-1-0 (50x10-2) 

 

Figure 79: Differences of EAFs, 1phero 2phase/2pheroL 2phase for λ=0-1-0 (50x10-2) 

� �λ =1 0 1 - (50x10-2) CI  Kolmogorov-Smirnov test 

(1phero 2phase/2pheroG 2phase) 542% 
(2pheroG 2phase/1phero 2phase) 34% 0h  not rejected 

(1phero 2phase/2pheroL 2phase) 33% 
(2pheroL 2phase/1phero 2phase) 57% 

The two attainment surfaces differ somewhere 

Table 41: Results of a comparison 1phero/2phero for λ=1-0-1 (50x10-2) 
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Figure 80: Differences of EAFs, 1phero 2phase/2pheroL 2phase for λ=1-0-1 (50x10-2) 

 The results of the tests for 50x30-2 are presented in the Tables 42, 43 and 

44. the situations where the plot of the differences of EAFs  is possible are illustrated in the 

Figures 81 and 82. In Figure 80, the preference for 1phero 2phase appears and not only for 

the extreme left upper corner. Here 1phero 2phase seems to be better than 2pheroL 2phase 

for most regions of the objective space. In the Figure 82, we observe that with the double 

2phase approach, 1phero 2phase is better than 2pheroG 2phase and there are almost no 

positive differences for 2pheroG 2phase in the extreme regions of the Pareto front anymore 

if compared wit the results for a direction changes 1 0λ = � . 

�λ = 0 1λ = 0 1λ = 0 1λ = 0 1 - 50x30-2 CI  Kolmogorov-Smirnov test 

(1phero 2phase/2pheroG 2phase) 57% 
(2pheroG 2phase/1phero 2phase) 34% 0h  not rejected 

(1phero 2phase/2pheroL 2phase) 67% 
(2pheroL 2phase/1phero 2phase) 23% 

The two attainment surfaces differ somewhere 

 Table 42: Results of a comparison 1phero/2phero for λ=0-1 (50x30-2) 
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Figure 81: Differences of EAFs, 1phero 2phase /2pheroL 2phase for λ=0-1 (50x30-2) 

� �λ = 0 1 0λ = 0 1 0λ = 0 1 0λ = 0 1 0  - 50x30-2 CI  Kolmogorov-Smirnov test 

(1phero 2phase/2pheroG 2phase) 42% 
(2pheroG 2phase/1phero 2phase) 51% 0h  not rejected 

(1phero 2phase/2pheroL 2phase) 46% 
(2pheroL 2phase/1phero 2phase) 48% 0h  not rejected 

Table 43: Results of a comparison 1phero/2phero for λ=0-1-0 (50x30-2) 

 

Table 44: Results of a comparison 1phero/2phero for λ=1-01 (50x30-2) 

� �λ =1 0 1λ =1 0 1λ =1 0 1λ =1 0 1 - 50x30-2 CI  Kolmogorov-Smirnov test 

(1phero 2phase/2pheroG 2phase) 68% 
(2pheroG 2phase/1phero 2phase) 22% 

The two attainment surfaces differ somewhere 

(1phero 2phase/2pheroL 2phase) 47% 
(2pheroL 2phase/1phero 2phase) 47% 0h  not rejected 
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Figure 82: Differences of EAFs, 1phero 2phase /2pheroG 2phase for λ=1-0-1 (50x30-2) 

Summary of the observations on 1phero or 2phero approach 

For the two instances 50 jobs. 10 machines, we can observe that:  

o 2phero scratch configuration is never worst than 1phero scratch and that it often 

performs better 

o 2pheroL 2phase and 2pheroG 2phase configuration are preferable to 1phero 2phase 

when the decision maker looks for solution with best makespan 

o A direction changes beginning wit 0λ =  seems to be slightly more favourable for 

2phero approaches than for 1phero approaches. 

For the two instances 50 jobs and 30 machines, the results differ and we can 

observe that:  

o 1phero (scratch or 2phase) seems to be better than 2pheroG (scratch or 2phase) in 

the middle whereas 2pheroG seems be better for solutions located in the right 

bottom corner 

o  When 1phero 2phase is compared with 2pheroL 2phase, we observe that 2pheroL 

2phase seems to perform better than 1phero 2phase in the middle region of the 

objective space for a direction changes 1 0λ = � . When the direction changes 

chosen is 0...1λ = , the observation may be different, 1pero 2phase seems to be 

better for most of the regions of the objective space for 50x30-2.  
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8 Comparison scratch – 2phase approach 

Here we present the results for a comparison scratch-2phase for the three 

configurations, 1phero, 2pheroG and 2pheroL. The different comparisons will be presented 

instance by instance. The results of these tests are presented in the Tables 45, 46, 47, 48. 

The situations of clear preferences have already been presented in section 5.4.6, we will not 

repeat them. 

�λ =1 0λ =1 0λ =1 0λ =1 0 - (50x10-1) CI  Kolmogorov-Smirnov test 

(1phero scratch/1phero 2phase) 16% 
(1phero 2phase/1phero scratch) 76% 

The two attainment surfaces differ somewhere 

(2pheroG scratch/2pheroG 2phase) 41% 
(2pheroG 2phase/2pheroG scratch) 49% 0h  not rejected 

(2pheroL scratch/2pheroL 2phase) 36% 
(2pheroL 2phase/2pheroL scratch) 53% 

The two attainment surfaces differ somewhere 

Table 45: Results of a comparison scratch/2phase (50x10-1) 

In the Figure 80, we can observe that the two configurations seem to perform better than 

the other in two clear distinct regions. 2peroL 2phase being better for solutions with a 

small makespan, 2pheroL scratch for a region with a higher value of makespan. 

 

Figure 83: Differences of EAFs, 2pheroL scratch/2pheroL 2phase (50x10-1) 
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�λ =1 0λ =1 0λ =1 0λ =1 0 - (50x10-2) CI  Kolmogorov-Smirnov test 

(1pheroscratch/1phero 2phase) 39% 
(1phero 2phase/1phero scratch) 51% 0h  not rejected 

(2pheroG scratch/2pheroG 2phase) 42% 
(2pheroG 2phase/2pheroG scratch) 48% 0h  not rejected 

(2pheroL scratch/2pheroL 2phase) 12% 
(2pheroL 2phase/2pheroL scratch) 85% 

The two attainment surfaces differ somewhere 

Table 46: Results of a comparison scratch/2phase (50x10-2) 

�λ =1 0λ =1 0λ =1 0λ =1 0 - 50x30-1 CI  Kolmogorov-Smirnov test 

(1pheroscratch/1phero 2phase) 30% 
(1phero 2phase/1phero scratch) 60% 

The two attainment surfaces differ somewhere 

(2pheroG scratch/2pheroG 2phase) 35% 
(2pheroG 2phase/2pheroG scratch) 58% 

The two attainment surfaces differ somewhere 

(2pheroL scratch/2pheroL 2phase) 17% 
(2pheroL 2phase/2pheroL scratch) 79% 

The two attainment surfaces differ somewhere 

Table 47: Results of a comparison scratch/2phase (50x30-1) 

 Figures 83, 84and 85 provide the same observation; most of time, a decision maker 

will prefer to use 2phase approach which gives better results in the middle and in the right 

region of the objective space and which is only slightly worse to the scratch approach for 

the extreme left upper corner. 

 

Figure 84: Differences of EAFs, 1phero scratch/1phero 2phase (50x30-1) 



 - 190 - 

 

Figure 85: Differences of EAFs, 2pheroG scratch/2pheroG 2phase (50x30-1) 

�λ =1 0λ =1 0λ =1 0λ =1 0 - 50x30-2 CI  Kolmogorov-Smirnov test 

(1pheroscratch/1phero 2phase) 42% 
(1phero 2phase/1phero scratch) 48% 0h  not rejected 

(2pheroG scratch/2pheroG 2phase) 40% 
(2pheroG 2phase/2pheroG scratch) 51% 0h  not rejected 

(2pheroL scratch/2pheroL 2phase) 31% 
(2pheroL 2phase/2pheroL scratch) 62% 

The two attainment surfaces differ somewhere 

Table 48: Results of a comparison scratch/2phase (50x30-2) 
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Figure 86: Differences of EAFs, 2pheroG scratch /2pheroG 2phase (50x30-2) 

Summary of the observations on the scratch and the 2phase approach, 

For the two instances 50 jobs, 10 machines, we can observe that:  

o 1phero 2phase approach seems to be more performing than 1phero scratch 

o There is no significant differences in using 2pheroG scratch or 2pheroG 2phase. 

This is probably due to the fact that global update makes the process converge 

quickly on a solution in both cases. Thus starting from the solution found in the 

previous iteration does not provide supplementary useful information 

o 2pheroL 2phase seems to be at least better than 2pheroL scratch in this capability to 

find solutions with a small makespan, but is sometimes better in all the regions of 

the objective space. 

For instances with 50 jobs and 30 machines, the observations differ:  

o For 1phero approach, things are not clear even if the 2phase approach seems to be 

slightly better in finding solutions in the right region of the objective space 

The only case where a comparison is possible for 2pheroG provides the same observation 

than for 2pheroL. 2phase (G or L) approach are at least better for solutions in the middle 

and in right part of the front than 2phero (G or L) scratch. 
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9 Comparison global – local strategy 

We present here the results of a comparison we made for the four instances to 

determine when one strategy is preferable to the other; the different comparisons will be 

presented instance by instance. Before the summary of the results, we will also presents 

some results showing the influence of the type of direction changes on the results of the 

comparison. The Table 49, 50, 51 and 52 present the results for respectively the 50x10-1, 

50x10-2, 50x30-1 and 50x30-2. Among these tables, only one situation of dominance 

appears. In the Table 50, we observe that 2pheroG scratch dominates 2pheroL scratch. 

Nevertheless, in some situations, we can use the plot of the differences of two EAFs to 

compare two configurations. 

�λ =1 0λ =1 0λ =1 0λ =1 0 - (50x10-1) CI  Kolmogorov-Smirnov test 

(2pheroG scratch/2pheroL scratch) 65% 
(2pheroL scratch/2pheroG scratch) 33% 

The two attainment surfaces differ somewhere 

(2pheroG 2phase/2pheroL 2phase) 52% 
(2pheroL 2phase/2pheroG 2phase) 39% 0h  not rejected 

Table 49: Results of a comparison global/local strategy (50x10-1) 

In the Figure 86, we can observe that 2pheroG scratch seems to perform better that 

2pheroL scratch for solutions with high makespan quality. For the rest of the objective 

space, no preference really appears. 

 

Figure 87: Differences of EAFs, 2pheroG scratch/2pheroL scratch (50x10-1) 



 - 193 - 

�λ =1 0λ =1 0λ =1 0λ =1 0 - (50x10-2) CI  Kolmogorov-Smirnov test 

(2pheroG scratch/2pheroL scratch) 77% 
(2pheroL scratch/2pheroG scratch) 14% 

The two attainment surfaces differ somewhere 

(2pheroG 2phase/2pheroL 2phase) 52% 
(2pheroL 2phase/2pheroG 2phase) 42% 0h  not rejected 

Table 50: Results of a comparison global/local strategy (50x10-2) 

�λ =1 0λ =1 0λ =1 0λ =1 0 - 50x30-1 CI  Kolmogorov-Smirnov test 

(2pheroG scratch/2pheroL scratch) 39% 
(2pheroL scratch/2pheroG scratch) 52% 

The two attainment surfaces differ somewhere 

(2pheroG 2phase/2pheroL 2phase) 29% 
(2pheroL 2phase/2pheroG 2phase) 60% 

The two attainment surfaces differ somewhere 

Table 51: Results of a comparison global/local strategy (50x30-1) 

For the instances with 50 jobs ad 30 machines, figures 88, 89, 90, 91 show that 2pheroL 

performs most of time better than 2pheroG in the middle of the objective space. By 

contrast, 2pheroG performs sometimes better than 2pheroL for the extreme regions, 

especially the left upper corner. 

 

Figure 88: Differences of EAFs, 2pheroG scratch/2pheroL scratch (50x30-1) 
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Figure 89: Differences of EAFs, 2pheroG 2phase/2pheroL 2phase (50x30-1) 

�λ =1 0λ =1 0λ =1 0λ =1 0 - 50x30-2 CI  Kolmogorov-Smirnov test 

(2pheroG scratch/2pheroL scratch) 53% 
(2pheroL scratch/2pheroG scratch) 49% 

The two attainment surfaces differ somewhere 

(2pheroG 2phase/2pheroL 2phase) 31% 
(2pheroL 2phase/2pheroG 2phase) 62% 

The two attainment surfaces differ somewhere 

Table52: Results of a comparison global/local strategy (50x30-2) 

 

Figure 90: Differences of EAFs, 2pheroG scratch/2pheroL scratch (50x30-2) 
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Figure 91: Differences of EAFs, 2pheroG 2phase/2pheroL 2phase (50x30-2) 

The small tables 53, 54, 55 and 56, 57, 58 present the results for comparisons global-local 

strategy for different direction changes. In these tables, two situation of clear preference 

appears in the Tables 56 and 58.These two results are contradictory. In the first case 

2pheroG 2phase is better than 2pheroL 2phase for a type of direction changes 0...1λ =  and 

in the second case 2pheroL 2phase is better than 2pheroG 2phase for a type of direction 

changes 1...0...1λ = . The Figure 91 also indicates that the way the directions change has its 

importance in the performance of the algorithm. The result of this comparison on the 

(50x10-2) with 1...0...1λ =  is different than the result obtained with 1 0λ = � . λ = 0↗1 - (50x10-2) CI  Kolmogorov-Smirnov test 

(2pheroG 2phase/2pheroL 2phase) 40% 
(2pheroL 2phase/2pheroG 2phase) 53% 0h  not rejected 

Table 53: Results of a comparison global/local strategy for λ=0-1 (50x10-2) 

� �λ = 0 1 0λ = 0 1 0λ = 0 1 0λ = 0 1 0  - (50x10-2) CI  Kolmogorov-Smirnov test 

(2pheroG 2phase/2pheroL 2phase) 38% 
(2pheroL 2phase/2pheroG 2phase) 54% 0h  not rejected 

Table 54: Results of a comparison global/local strategy for λ=0-1-0 (50x10-2) 

� �λ =1 0 1λ =1 0 1λ =1 0 1λ =1 0 1 - 50x10-2 CI  Kolmogorov-Smirnov test 

(2pheroG 2phase/2pheroL 2phase) 25% 
(2pheroL 2phase/2pheroG 2phase) 69% 

The two attainment surfaces differ somewhere 

Table 55: Results of a comparison global/local strategy for λ=1-0-1(50x10-2) 
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Figure 92: Differences of EAFs, 2pheroG 2phase/2pheroL 2phase for λ=1-0-1 (50x10-2) 

0...1λ =  - 50x30-2 CI  Kolmogorov-Smirnov test 

(2pheroG 2phase/2pheroL 2phase) 70% 
(2pheroL 2phase/2pheroG 2phase) 27% 

The two attainment surfaces differ somewhere 

Table 56: Results of a comparison global/local strategy for λ=0-1 (50x30-2) 

� �λ = 0 1 0λ = 0 1 0λ = 0 1 0λ = 0 1 0  - 4th  instance CI  Kolmogorov-Smirnov test 

(2pheroG 2phase/2pheroL 2phase) 52% 
(2pheroL 2phase/2pheroG 2phase) 43% 0h  not rejected 

Table 57: Results of a comparison global/local strategy for λ=0-1-0 (50x30-2) 

� �λ =1 0 1λ =1 0 1λ =1 0 1λ =1 0 1 - 50x30-2 CI  Kolmogorov-Smirnov test 

(2pheroG 2phase/2pheroL 2phase) 15% 
(2pheroL 2phase/2pheroG 2phase) 78% 

The two attainment surfaces differ somewhere 

Table 58: Results of a comparison global/local strategy for λ=1-0-1 (50x30-2) 

Summary of the observations on the global and local strategy. 

For the two instances 50 jobs, 10 machines, we can observe that:  

o 2pheroG scratch seems to be more performing than 2pheroL scratch at least if the 

decision maker prefers solutions with a small makespan 

o There is no indications that applying 2pheroG 2phase or 2pheroL 2phase to the 

problem gives better solutions for one region or another in the objective space 

o Results may change following the direction changes used for the aggregation. 
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For the two instances 50 jobs, 30 machines, the observations are different, we can observe 

that:  

o 2pheroL seems to be more capable of finding good solutions in the middle region of 

the objective space 

o  2pheroG seems to be more performing in the extreme regions of the objective 

space, especially for the left upper corner  

o Results may change following the direction changes used for the aggregation. 

 

 


