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Abstract
Original version in English
An autonomous construction system (ACS) is envisioned to be a solution to the con-
struction of structures in environments that are too hazardous for humans and where
remote operation is not possible. Drawing inspiration from the construction behavior
of social insects, we advance the state of the art by proposing a completely decentral-
ized control strategy for a multi-robot ACS. This control strategy is based on previous
work by Theraulaz and Bonabeau, who demonstrated multi-agent construction using a
three-dimensional lattice-based simulation.

In order to study the proposed decentralized control strategy, we set about designing
a multi-robot ACS that consists of two components, a building material and autonomous
robots. In our multi-robot ACS, an autonomous robot is capable of locating the build-
ing material in its environment, picking it up, transporting it, and attaching it to a
structure. The multi-robot ACS is designed to be completely autonomous and capable
of constructing three-dimensional structures. To test and evaluate our multi-robot ACS
and its decentralized control strategy, we provide two implementations of our system.
The primary implementation is realized using hardware and the secondary implementa-
tion is realized using simulation.

Through the use of both implementations, we demonstrate how our decentralized con-
trol strategy can be used to coordinate the autonomous construction of three-dimensional
structures. After discussing these demonstrations, we conclude this thesis by suggesting
future research directions.

Übersetzung ins Deutsche
Ein autonomes Bausystem ist eine Lösung für den Bau von Strukturen in Umgebun-
gen, die für Menschen zu gefährlich ist und wo auch das Fernbedienen nicht möglich
ist. Inspiriert durch das Bauverhalten von sozialen Insekten, treiben wir den Stand
der Technik voran und schlagen eine vollständig dezentralisierte Steuerungsstrategie für
ein Multi-Roboter-Bausystem vor. Diese Vorgehensweise basiert auf der bisherigen Ar-
beit von Theraulaz und Bonabeau, die eine dreidimensionale Gitter-basierte Simulation
verwendet haben um Bauverfahren mit einem Multiagentensystem zu demonstrieren.

Um die vorgeschlagene dezentralisierte Steuerungsstrategie zu untersuchen, wurde
ein Multi-Roboter-Bausystem entwickelt. Dieses Bausystem besteht aus zwei Kompo-
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nenten: dem Baustof und autonomen Robotern. Ein autonomer Roboter in unserem
Multi-Roboter-Bausystem ist in der lage den Baustof in seiner Umgebung zu lokalisieren,
aufzuheben, zu transportieren, und an einer Struktur anzubringen. Das Multi-Roboter-
Bausystem wurde mit dem Schwerpunkt auf ein völlig autonomes Bauen von dreidimen-
sionalen Strukturen entwickelt. Um unser Multi-Roboter-Bausystem und seine dezen-
tralisierte Steuerungsstrategie zu testen und zu bewerten, werden zwei Implementierun-
gen vorgestellt: Eine Hardware-basierte Realisierung und eine Implementierung mittels
Simulation.

Durch den Einsatz beider Implementierungen wird demonstriert, wie unsere dezen-
tralisierte Steuerungsstrategie autonome Konstruktion von dreidimensionalen Strukturen
koordinieren kann. Nach der Diskussion dieser Demonstrationen schließen wir diese Ar-
beit mit Ausblick auf zukünftige Forschungsmöglichkeiten ab.
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CHAPTER 1
Introduction

1.1 Construction by autonomous robots

1.1.1 Motivation
Robotic construction systems are envisioned to be one solution for building permanent
and temporary structures in environments that are too hazardous for humans and as
such, are an area of research of NASA’s Jet Propulsion Laboratory [31–33, 90–92]. Such
construction systems could be autonomous or could be remotely operated by a human.
While an autonomous construction system (ACS) is more complex to design and pro-
gram, it is able to function without a human operator. This autonomy is necessary in
environments where wireless signals can not penetrate (e.g. the ocean loor, or in un-
derground mines) or where the latency of the signal prevents real-time operation (e.g.
between Earth and a non-terrestrial body).

1.1.2 Classiication of ACS conigurations
We classify the coniguration of an ACS using the following criteria: the number of types
of robots used; the total number of robots performing construction; and the type of build-
ing material. We categorize building materials as either passive, semi-active, or active.
In this work, we deine passive building materials as neither containing electronics nor
being capable of locomotion. Furthermore, we deine semi-active building materials as
containing electronics but not being capable of locomotion, and active building materi-
als as containing electronics and being capable of locomotion. There are three common
ACS conigurations:

Single-robot ACS: consists of a single robot that arranges passive or semi-active build-
ing materials into structures.

Self-assembly ACS: consists of active building materials (or robots) that rearrange
themselves into structures1.

Multi-robot ACS: consists of multiple robots that cooperate to arrange building ma-
terials into structures. The building materials may be passive or semi-active.

1We restrict our deinition of a self-assembly ACS to only cover systems that use active building
materials, i.e. building materials that are capable of locomotion.
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Coniguration Advantages Disadvantages

Single-robot ACS • Less complex
to develop and program

• Low unit cost when scaling
to larger structures

• Low redundancy (robot is
an SPOF)

Self-assembly ACS • High redundancy • High unit cost when scaling
to larger structures

• Highly complex to develop
and program

Multi-robot ACS • Moderate redundancy

• Moderate unit cost when
scaling to larger structures

• Moderately complex to
develop and program

Table 1.1: Advantages and disadvantages of various ACS conigurations.

Each of these conigurations has advantages and disadvantages as summarized in
Table 1.1. The use of passive building materials in a single-robot ACS makes this
coniguration a cost efective solution when scaling to large structures. These passive
building materials are often rigid, although there is also research into the use of compliant
or amorphous materials (Figure 1.1). For example, Khoshnevis discussed the application
of contour crafting, an additive fabrication technology, to automated construction [37].
Furthermore, Napp et al. investigated ramp construction using three types of amorphous
building material: toothpicks and glue, sand bags, and casting foam [68, 69].

The disadvantage of a single-robot ACS, however, is that the robot is a single point
of failure (SPOF), which may require human intervention in the case of a malfunction.
This intervention is not always possible and may lead to signiicant economic loss, as
was the case with the Mars rover, Spirit [55].

Self-assembly ACSs overcome SPOFs by distributing the required autonomy across
the building materials. This distribution of the autonomy makes self-assembly ACSs
a potentially robust solution as such ACSs may continue to self assemble even if some
of their components have malfunctioned. For a self-assembly ACS to be completely
autonomous, the building materials must be active and capable of locomotion. One
example of such a self-assembly ACS is in the work of O’Grady et al., who demonstrated
morphogenesis using S-bot robots [70]. In a sense, the robots in this work were building
materials, which moved around the arena, forming physical connections with each other
to assemble into a larger, composite robotic entity (Figure 1.2). In [79, 80], Romanishin
et al. demonstrated an alternative approach to locomotion using M-Blocks (Figure 1.3).
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a b

Figure 1.1: Construction using compliant or amorphous materials. (a) A hovering quad-
copter equipped with a casting foam extruder (reprinted from [30] with permis-
sion, © 2014, IEEE). (b) A wall built from compliant pockets illed with dried
rice (reprinted from [84] with permission from Marco Dorigo).

a b

Figure 1.2: A self-assembly ACS consisting of S-Bot robots assemble to form (a) an arrow
and (b) a line (reprinted from [14] with permission, © 2007, IEEE).

An M-Block stores angular momentum internally using its lywheel, which it uses to spin,
jump, and move around its environment.

Since the autonomy and locomotive capabilities of a self-assembly ACS are dis-
tributed across all the build materials, this approach is not suitable for scaling to larger,
more permanent structures due to the high unit cost associated with active building
materials. Furthermore, the complexity to develop and program a self-assembly ACS
may increase with the size of the structure due to the increase in the total number of
active components.

We deine a multi-robot ACS as an ACS with at least two distinct components: a
building material, which is either passive or semi-active, and autonomous robots, which
cooperate to assemble the building material into structures. A multi-robot ACS may
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a b

c d

Figure 1.3: The M-Blocks are an example of a building material with locomotion capabilities,
which is a requirement of a completely autonomous self-assembly ACS (reprinted
from [79] with permission, © 2015, IEEE).

be seen as a compromise between a single-robot ACS and a self-assembly ACS. The use
of multiple robots in a multi-robot ACS potentially increases robustness while the use
of either passive or semi-active building materials reduces the overall system cost when
scaling to larger structures.

1.1.3 Control strategies
Self-assembly and multi-robot ACSs require more complex control strategies than single-
robot ACSs. This increase in complexity arises from the requirement that the actions of
the individual robots in a self-assembly or multi-robot ACS must be coordinated. For a
multi-robot ACS, a class of control strategies exists, which relies on centralized infras-
tructure, consisting of a positioning system and a central server. This server monitors a
multi-robot ACS using the positioning system and regulates it by scheduling and assign-
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ing actions to individual robots over a wireless network. A disadvantage of this control
strategy class is that the centralized infrastructure introduces one or more SPOFs into
an ACS.

An alternative approach to the coordination of a multi-robot ACS is swarm robotics.
Similar to social insects in nature, the coordination in a swarm robotics system emerges
as a result of individual robots communicating directly with their neighbors and indi-
rectly through their environment.

1.2 Construction in nature
Swarm robotics is based on the principles of swarm intelligence. A swarm intelligence
system can be identiied by the following characteristics [21]:

• it is composed of many individuals,
• the individuals are relatively homogeneous (i.e., they are either all identical or they

belong to a few typologies),
• the interactions among the individuals are based on simple behavioral rules that

exploit only local information that the individuals exchange directly or via the
environment, and

• the overall behavior of the system results from the interactions of individuals with
each other and with their environment, that is, the group behavior self-organizes.

In nature, swarm intelligence describes collective animal behavior such as the locking
of birds, the schooling of ish, and the self-organization of social insects. Figure 1.4 pro-
vides two examples of social insects who cooperate to construct their nests. These nests
provide advanced architectural features such as defense against predators and homeosta-
sis through thermoregulation and gas exchange [12]. These nests are built by swarms
of insects, which primarily coordinate their activities through stigmergy. Stigmergy
is a communication mechanism, which was irst observed in nature by Grassé during a
study of the collective construction behavior of termites [25]. Grassé noted that termites
communicate indirectly through modiications of a shared environment.

There are two forms of stigmergy: quantitative and qualitative [99]. In quantitative
stigmergy, indirect communication is mediated by the intensity of a stigmergic signal.
This means the probability to respond to a stimulus is proportional to the intensity of
that stimulus. This form of stigmergy is often facilitated by pheromones and is used
to explain the formation of various structural elements in termite nests. For example,
Bruinsma observed that there were three types of pheromones used to regulate the
construction of a termite royal chamber: (i) a pheromone emitted by termites to form a
trail to a construction site, which recruits other termites, (ii) a pheromone emitted by
a queen termite, which creates a template for a royal chamber, and (iii) a pheromone
added by termites to soil pellets during construction, which signals recent construction
activity [11]. This last use of pheromones is depicted in Figure 1.5(a). These observations
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a b

Figure 1.4: Collective construction by social insects. (a) A termite cathedral in Northern
Territory, Australia (photo by Brian Voon Yee Yap, reprinted with permission,
CC-BY-SA 3.0) and (b) weaver ants Oecophylla smaragdina stitch leaves together
to build their nests in Thailand (photo by Sean Hoyland, reprinting permission
not required).

led to mathematical models for the emergence of pillars, walls and royal chambers in
termite nests [8], enabling further work in simulation, which demonstrated the role of
physical constraints on the construction of chambers and tunnels [42, 43].

In contrast to quantitative stigmergy, qualitative stigmergy is mediated by the spatial
characteristics of a stigmergic signal. In other words, the probability of performing a
given action is a function of a perceived coniguration in an environment. An example
of this type of stigmergy is depicted in Figure 1.5(b) where the construction behavior of
a social wasp is regulated by the shape of a partially-built comb [36].

1.3 Problem statement
Despite examples of decentralized construction in nature by social insects, there is lim-
ited research on how a decentralized control strategy, in particular, one based on the
principles of swarm intelligence, could be implemented on a multi-robot ACS. In this
thesis, we propose a decentralized control strategy for a multi-robot ACS, which is based
on the work of Theraulaz and Bonabeau [98].

Theraulaz and Bonabeau presented a decentralized control strategy for multi-agent
construction based on the behavior of social insects. They simulated agents that searched
a three-dimensional lattice for predeined patterns consisting of two types of bricks.
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(a) (b)

Figure 1.5: Coordination of construction through stigmergy. (a) The construction of a pillar
by termites is coordinated through quantitative stigmergy. The strength of the
stigmergic signal increases with the size of pillar, stimulating further construction.
(b) The construction of a comb by social wasps is coordinated through qualitative
stigmergy. The spatial characteristics of the stigmergic signal regulate further
construction (reprinted from [99] with permission, © 1999, MIT).

When an agent detected a predeined pattern, it placed another brick at its current
location. This behavior resulted in a feedback loop where brick placement modiied the
lattice, and modiications to the lattice resulted in the formation of diferent patterns.
By carefully selecting the patterns that triggered the placement of a brick, Theraulaz
and Bonabeau demonstrated a control strategy for coordinated construction, which led
to the structures in Figure 1.6.

As the simulated agents in the lattice inluenced each other’s behavior by placing
bricks, these agents were coordinating their actions by communicating indirectly through
a shared environment. As discussed in Section 1.2, this type of communication is called
stigmergy. Furthermore, since the communication was facilitated through the spatial
arrangement of the bricks in the lattice, this type of communication is an example of
qualitative stigmergy.
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Figure 1.6: Generated structures by Theraulaz and Bonabeau (reprinted from the Journal
of Theoretical Biology, 177.4, Guy Theraulaz and Eric Bonabeau, Modelling
the Collective Building of Complex Architectures in Social Insects with Lattice
Swarms, pages 381–400, © 1995, with permission from Elsevier).

Several adaptations are required to implement Theraulaz and Bonabeau’s control
strategy on a multi-robot ACS. These adaptations must, for example, compensate for
the diferences in perception and in maneuverability between simulated agents and phys-
ical robots. The decentralized control strategy that we propose in this thesis is the result
of these adaptations. Since it is our long-term objective to develop a swarm robotics con-
struction system, we additionally require that the implementation of our decentralized
control strategy is compatible with the following design constraints for swarm robotics
systems as described by Brambilla et al. [10]:

• the robots are autonomous,
• the robots are situated in the environment and can act to modify it,
• sensing and communication capabilities of the robots are local,
• the robots do not have access to centralized control and/or global knowledge,
• the robots cooperate to perform a given task.

While these design constraints may seem restrictive, the literature on multi-robot
clustering suggests that multi-robot systems, which are compatible with these con-
straints, have several advantages. For example, Beckers et al. have noted from their
work that the swarm robotics approach to clustering was robust, as failed robots be-
came obstacles; and scalable, as robots could be added and removed from the system
without reprogramming [4]. Furthermore, Deneubourg et al. have observed in their work
on multi-robot clustering that since communication was indirect and occurs through the
environment, the system was capable of performing clustering in various settings without
speciic programming [16].

To demonstrate that our decentralized control strategy can coordinate construction,
we propose the design of a multi-robot ACS, which has two implementations. The
irst implementation is based on hardware and consists of autonomous robots and a
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building material, which the robots can assemble into structures. This implementation
aims to demonstrate that our decentralized control strategy can be used to coordinate
construction in a physical system. The second implementation is built on top of a multi-
robot simulator, for which we develop several extensions to support our work. These
extensions enable us to accurately model the hardware from the irst implementation
in simulation. This implementation in simulation aims to provide an environment for
eiciently developing, debugging, and testing our decentralized control strategy.

Both of these implementations come with their respective challenges. The hardware
implementation, for instance, must be reliable and should be manufactured within tol-
erances that do not require the calibration of each robot. Alternatively, if calibration
is unavoidable, it should at least be partially automated to ease the running of large
experiments. These design constraints should be achieved while minimizing cost, as
the unit cost of the autonomous robots and the building material directly impacts the
extent to which we can scale up to larger experiments. The implementation in simula-
tion requires accurate modeling of the three-dimensional dynamics and behavior of the
hardware. This is a necessary requirement if the simulations are to provide meaningful
insights during the development, debugging, and testing of our decentralized control
strategy. To this end, the range and accuracy of the virtual sensors and actuators used
in the simulation must also be tuned to match the performance of their counterparts
in the hardware. Furthermore, since we intend to use simulation to gather data from
experiments with numerous autonomous robots and large amounts of building material,
we should also select a simulator that is capable of running such experiments in real-time
or faster than real-time if possible.

1.4 Contributions and publications
In the following sections, we outline the contributions that are presented in this thesis.
We also indicate, where applicable, the conference paper or journal article in which we
have published a given contribution.

1.4.1 A review of multi-robot ACSs
In this thesis, we provide a comprehensive review and comparison of multi-robot ACSs
that have been implemented using hardware. Over the course of this review, we present
the state of the art and discuss the advantages and disadvantages of the current solu-
tions. We have published a related review as part of the following conference paper:

Michael Allwright, Navneet Bhalla, Haitham El-faham, Anthony Antoun, Carlo
Pinciroli, and Marco Dorigo. “SRoCS: Leveraging Stigmergy on a Multi-robot
Construction Platform for Unknown Environments”. In: Proceedings of the
Ninth International Conference on Swarm Intelligence. Springer, 2014, pages
158–169.
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In this paper, we discussed the concept of autonomous construction in the context of
unknown environments. We deined unknown environments as potential construction
sites, which were unstructured (no pre-existing infrastructure) and uncharted (no sur-
vey or mapping data available). Based on observational research of social insects, we
proposed in this paper that using a decentralized control strategy based on stigmergy
would enable construction in these environments. To this end, we reviewed the existing
literature on multi-agent construction, highlighting where and discussing how stigmergy
had been used. We concluded that the systems that used a control strategy that was
viable in unknown environments were limited to the construction of loose walls and clus-
ters. Following the review, we proceeded to discuss the concept of a multi-robot ACS,
which we implement in this thesis.

1.4.2 A decentralized control strategy

The main contribution of this thesis is our decentralized control strategy for coordinated
construction, which we base on the work of Theraulaz and Bonabeau. We demonstrate
our decentralized control strategy using a multi-robot ACS, which we design and im-
plement using hardware and simulation. For the hardware implementation, we detail
the design of the two base components of our system: the stigmergic block and the
autonomous robot. Furthermore, we verify the functionality of these components using
two tasks. An abridged version of the hardware design and veriication work in this
thesis is available in our upcoming conference paper, which at the time of writing is
under review:

Michael Allwright, Navneet Bhalla, and Marco Dorigo. “Structure and Mark-
ings as Stimuli for Autonomous Construction”. In: The Eighteenth International
Conference on Advanced Robotics. (Under review)

The implementation in simulation uses ARGoS, which is a modular, multi-engine multi-
robot simulator designed for running experiments with large numbers of robots [77, 78].
We develop a number of extensions for this simulator, which allow us to accurately model
the stigmergic block and the autonomous robot. These extensions are detailed in the
following article, which at the time of writing is under review:

Michael Allwright, Navneet Bhalla, Carlo Pinciroli, and Marco Dorigo. “To-
wards Autonomous Construction using Stigmergic Blocks”. In: Autonomous
Robots. (Under review)

In this article, we also demonstrate how our decentralized control strategy scales to
multi-robot construction using the implementation in simulation.
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1.4.3 Design of a stigmergic block
In this thesis, we present the design of a stigmergic block, an advanced cubic building
material capable of computation, data storage, and communication. The stigmergic
blocks are the building material, which the autonomous robots assemble into structures.
Each stigmergic block contains four multi-color LEDs on each of its faces. The robots
can detect and conigure the color of these LEDs, which facilitates a medium for indirect
communication between the robots (stigmergy).

We have designed the stigmergic blocks to simplify the actuation and sensing require-
ments of the autonomous robots so that we can focus our work on developing decentral-
ized control strategies for a multi-robot ACS. This simpliication is partially achieved
by attaching localizable tags to a stigmergic block, which enables an autonomous robot
to accurately locate it in an environment. Furthermore, we have also added a freely-
rotating, spherical magnet into each corner of a block to enable self-alignment and to
reduce cumulative misalignment during construction. These spherical magnets also in-
crease the strength of a structure.

To enable other researchers to develop similar hardware, this thesis includes a com-
prehensive overview of the electronics, mechanical design, and software of the stigmergic
block.

1.4.4 Design of an autonomous robot
Our autonomous robot consists of a specialized manipulator and a mobile robotics plat-
form, which is a signiicantly upgraded version of the BeBot [24, 26]. The upgrade to the
BeBot was required due to its main microprocessor, whose performance was inadequate
with respect to our computer vision requirements.

The specialized manipulator is designed to pick up an unused stigmergic block and
to assemble it into a structure. The manipulator operates by controlling the position of
an end-efector consisting of four semi-permanent electromagnets. These electromagnets
couple with the spherical magnets in the corners of a stigmergic block.

In this thesis, we discuss the design, manufacturing, and assembly of the upgraded
mobile robotics platform and the specialized manipulator. We also detail the software
that we have developed for these two components to enable autonomous construction.
This software includes but is not limited to: a packet control interface, an image pro-
cessing pipeline, a inite state machine, and a control loop.

1.4.5 Extensions to ARGoS
We present a number of extensions to ARGoS, which enable us to model the autonomous
robot and the stigmergic block in simulation. By providing these models with controllers,
we are able to implement our multi-robot ACS in simulation, which provides an environ-
ment for the development, debugging, and testing of our decentralized control strategy.
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The extensions we have developed for ARGoS allow us to accurately model the three-
dimensional dynamics of our multi-robot ACS. This stands in contrast to the simulation
tools used in the literature for multi-robot construction, which are lattice-based. This
level of accuracy aims to enable the use of the same controller for the autonomous robot
on both the hardware and in simulation.

1.4.6 Demonstrations of our control strategy
Through the use of both hardware and simulation, we demonstrate our decentralized
control strategy by showing how an autonomous robot is able to perform construction
in response to visual cues in an environment.

Using both hardware and simulation, we demonstrate the construction of a staircase,
containing six stigmergic blocks, by an autonomous robot. In addition to proving that
our decentralized control strategy can be used for autonomous construction, this demon-
stration also shows that the same controller for an autonomous robot can be used on
both the hardware and in simulation.

We also demonstrate how our decentralized control strategy scales to multi-robot
construction by using two robots to build a column using the hardware and by using
four robots to build a stepped pyramid in simulation. Based on these results, we provide
insights into the strengths and the shortcomings of our decentralized control strategy
and our multi-robot ACS.

1.5 Thesis structure
This thesis is structured as follows. Chapter 2 provides a comprehensive review and
comparison of multi-robot ACSs. In this chapter, we present the state of the art and
discuss the advantages and disadvantages of the presented solutions. Following this
review, we discuss in Chapter 3 the diferent approaches to the design of a multi-robot
ACS and how we adapt Theraulaz and Bonabeau’s control strategy so that it can be
implemented on a multi-robot ACS.

Chapter 4 details the implementation of our multi-robot ACS using hardware. This
discussion is split into two sections for the two main components of our system: the
stigmergic block and the autonomous robot. Each of these sections details the electronics,
mechanical design, and software of the respective component. In Chapter 5, we discuss
the implementation in simulation. This discussion begins with an overview of ARGoS,
before discussing the extensions, which enable the implementation of our multi-robot
ACS in simulation.

In Chapter 6, we provide demonstrations of our decentralized control strategy the
hardware implementation and the implementation in simulation. Conclusions are pre-
sented in Chapter 7, where we summarize the contributions of this thesis and discuss
research directions for future work.



CHAPTER 2
Related Work in Multi-Robot

Construction
2.1 Overview

2.1.1 Scope
In this section, we provide an extensive survey of the literature on multi-robot ACSs.
This survey is, however, limited to systems which have been implemented using hardware.
To this end, the use of simulation for studying multi-robot ACSs is only reported if
it is used to support the development of hardware and/or a control strategy or if it
demonstrates how a multi-robot ACS scales to larger experiments, involving numerous
robots and large amounts of building material.

We have included this survey to provide context for our multi-robot ACS and its
decentralized control strategy, which we present in the later sections of this thesis.

2.1.2 Structure
We have split the surveyed literature into two parts. Section 2.2 discusses multi-robot
ACSs that leverage some form of centralized infrastructure for coordination. As discussed
in Section 1.1.3, this centralized infrastructure typically consists of a positioning system
and a central server, which schedules and delegates construction tasks to robots.

Section 2.3 discusses multi-robot ACSs that do not rely on any form of central-
ized infrastructure. These systems coordinate construction using a decentralized control
strategy based on local information. This information may include perception of the
surrounding environment using a robot’s onboard sensors, direct communication with
nearby robots, and indirect communication with other robots through the environment.

We make this distinction in part due to complexities of coordinating construction
without centralized infrastructure. In this case, any information about the state of an
environment is distributed among the robots and can not be directly accessed by any
individual robot. This information includes the number, the location, and the state of
the robots and the structures in an environment.

Furthermore, multi-robot ACSs that use centralized infrastructure aim to answer
diferent research questions to multi-robot ACSs that do not use centralized infrastruc-
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ture. In the case of multi-robot ACSs that use centralized infrastructure, the research
questions can often be categorized as one of the following:

• perceiving the task and localizing parts,

• partitioning, scheduling, and allocating tasks to robots,

• detecting faults in the assembly process, and

• collectively transporting and manipulating parts.

In contrast, the research into multi-robot ACSs that do not use centralized infras-
tructure aim to answer research questions that can usually be categorized as one of the
following:

• studying self-organization mechanisms found in nature and applying them as a
decentralized control strategy for a multi-robot ACS

• measuring and tuning the performance of decentralized control strategies for clus-
tering, sorting, and the formation of structures,

• coordinating the construction process based on local information,

• implementing construction which is adaptive to templates in the environment, and

• collectively transporting and manipulating parts.

2.1.3 Focus
In the following sections, we provide a high-level description and detail the components
of each of the relevant multi-robot ACSs in the literature. In addition, we detail the
contributions of the published work associated with these multi-robot ACSs.

For the high-level description, we detail the layout of the construction environment
such as the locations of the parts for construction and whether a positioning system
or wireless network was set up to facilitate coordination. We also note the types of
structures that can be built by a given multi-robot ACS, and how those structures are
represented by the system prior to construction.

For the robots, we report the number of robots used in the experiment and whether
the robots were homogeneous or heterogeneous. For each type of robot, we describe the
types of sensors and actuators used. We specify the roles of each robot in the system,
drawing attention to whether these roles were assigned statically or dynamically. In the
case of the building materials, we report whether the building material was homogeneous
or heterogeneous and whether it was passive, semi-active, or active.
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(a) (b)

Figure 2.1: Smart parts used by the DRL for coordinated construction. (a) A connector and
(b) a truss (modiied and reprinted from [81] with permission from Daniela Rus).

2.2 Construction using centralized
infrastructure

2.2.1 Coordinated construction by the Distributed
Robotics Laboratory (DRL) at CSAIL MIT

The iRobot Create [15] is a mobile robotics platform based on the Roomba autonomous
vacuum cleaner. Bolger et al. equipped four iRobot Creates with CrustCrawler robotic
arms and Dell Inspiron Mini 10s netbooks for their work in coordinated construction [6].
The main contribution of this work was an algorithm for the equal-mass partitioning
of a construction task such that the tasks were distributed evenly among the robots.
The robots were assigned the role of either part delivery or part assembly. There were
two types of building materials: trusses and connectors (Figure 2.1), which were made
available from a part cache. The building materials contained a small infrared (IR)
transmitter, which helped the gripper align with a part. In addition, a VICON motion
capture system1 tracked the locations of all robots and broadcasted this information
over a mesh network. A wireless router facilitated robot-to-robot communication.

In [130], Yun et al. demonstrated their algorithm for equal-mass partitioning in
simulation, constructing a two-dimensional A-shaped bridge and a three-dimensional
airplane. Several extensions to the equal-mass partitioning algorithm were presented
in related work. For example, Yun and Rus extended the algorithm to allow for robot
failures and dynamic constraints [129] and Stein et al. extended the algorithm to respect
constraints that avoided construction deadlocks during assembly [86]. Yun and Rus also
provided an adaptive variant of the algorithm and demonstrated the construction of a
loose square using the hardware [126].

1VICON motion capture systems: https://www.vicon.com/

https://www.vicon.com/
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a b

Figure 2.2: Distributed assembly of a Lincoln-log style structure at the SAS lab. (a) A robot
attaches a block to the structure (reprinted from [28] with permission from M. Ani
Hsieh). (b) A robot monitors the construction using an RGB-D sensor (reprinted
from Experimental Robotics, 3-Dimensional Tiling for Distributed Assembly by
Robot Teams, Volume 88 of the series Springer Tracts in Advanced Robotics,
2013, pages 143–154, James Worcester, Rolf Lakaemper, and Mong-ying Ani
Hsieh, with permission of Springer).

2.2.2 Distributed assembly by Worcester et al.

Similar to the work presented in [130], Hsieh and Rogof presented a metric for the
partitioning of an assembly task among multiple robots. Based on the geometry of a
target structure, this metric enabled a partitioner to maximize parallelism by considering
the distances between the robots and the construction sites [29].

Worcester et al. demonstrated this work using two iRobot Create mobile robots,
which they equipped with Lynxmotion ive degree-of-freedom arms and Hokuyo scanning
laser rangeinders [122]. An overhead camera system was used for localization. In [119],
Worcester and Hsieh applied ant colony optimization (ACO) as an alternative approach
to inding the optimal partitioning for a construction task.

Worcester et al. also ran experiments with a heterogeneous group of robots (Fig-
ure 2.2). This group consisted of two assembly robots and a scanner robot, which was
tasked with error detection. Worcester et al. equipped the scanner robot with an RGB-D
sensor (an Xbox Kinect [131]), which the scanner robot used to compare the state of a
structure with its internal model [121]. The scanner robot reported any errors to the
assembly robots over a wireless network. The structure, which was held together by
magnets, consisted of three-dimensional tiles of diferent shapes and sizes. Worcester
et al. extended their work to include online load balancing by allowing the robots to
exchange tasks over a wireless network [120].
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a b

Figure 2.3: KUKA youBots assembling (a) an IKEA table (reprinted from [41] with permis-
sion, © 2013 IEEE) and (b) a model airplane wing (reprinted from Experimental
Robotics, Towards Coordinated Precision Assembly with Robot Teams, Volume
109 of the series Springer Tracts in Advanced Robotics, 2016, pages 655–669,
Mehmet Dogar, Ross A Knepper, Andrew Spielberg, Changhyun Choi, Henrik I.
Christensen, and Daniela Rus, with permission of Springer).

2.2.3 Autonomous assembly by the Distributed
Robotics Laboratory (DRL) at CSAIL MIT

The DRL extended their previous work, which we discussed in Section 2.2.1, to three-
dimensional autonomous assembly. Experiments in this work used two to four KUKA
youBot robots [5]. By default, these robots consisted of a base with an omnidirectional
drive system and a ive degree-of-freedom robotic arm. The robotic arm was equipped
with a parallel plate gripper. The setup of the environment included a VICON motion
capture system and a wireless network, which facilitated localization and communication
respectively.

This work made several contributions to the research on multi-robot construction.
For example, the localization of parts [106], automatic deduction of assembly steps [41],
hierarchical perception of an assembly task [18, 19], multi-robot grasping and manipu-
lation [20], and visual veriication of an assembly task [13].

In [41], Knepper et al. tasked the robots with assembling an IKEA table (Figure 2.3).
They itted a specialized end-efector to one of the KUKA youBots, which provided
continuous rotational motion to screw the table legs in place. The system automatically
deduced the assembly steps from a provided CAD model. Following the assembly, the
robots cooperatively grasped the table and turned it upright.

While the VICON motion capture system could accurately locate the robots and
assembly parts in an environment, it sufered from occlusions and was not accurate
enough for peg-in-hole assembly tasks. To this end, Dogar et al. attached an RGB-D
camera (an Xbox Kinect) to one of the robots to allow for object-based tracking and
a Hokuyo laser scanner to another robot for functional-feature-based tracking. These
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Figure 2.4: Four robotic tiles from the Factory Floor construction system assemble a cubic
lattice-based structure (reprinted with permission from Kevin Galloway and Mark
Yim).

inputs were arranged into a hierarchical perception system. The system used the highest
resolution input available, falling back to the lower-resolution and broader-range inputs
when tracking was lost. The robot with the laser scanner was tasked with placing the
pegs into the assembly. In this work, Dogar et al. demonstrated the assembly of a model
airplane wing (Figure 2.3) using four robots [18, 19].

In related work, Dogar et al. used three robots to assemble a chair [20]. The contribu-
tion of this paper was an algorithm for multi-robot grasping. The chair was held together
using strong magnets. Using the same hardware, Choi and Rus demonstrated a tech-
nique using an RGB-D camera for visual veriication of an assembly task by exploiting
prior knowledge of the parts [13].

2.2.4 Factory Floor by Galloway et al.
Factory Floor difered from many multi-robot construction systems as it consisted of sta-
tionary robotic tiles (Figure 2.4). The robotic tiles were arranged to cover the footprint of
the target structure and built the structure layer by layer, pushing the completed layers
upwards. The system assembled truss-based cubic structures from nodes and members,
which hypothetical collector robots delivered to the perimeter of a structure [23].
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a b

c d

Figure 2.5: Assembly of cubic lattice-based structures by quadcopters. A quadcopter (a)
hovers over the part storage area, (b) picks up a part, (c) transports it to the
construction site, and (d) attaches it to a structure (reprinted from [47] with
permission from Vijay Kumar).

Napp and Klavins described an approach to programming a multi-robot ACS, such as
Factory Floor, using guarded command programs with rates [65–67]. Napp and Klavins
showed that these programs could be composed and interpreted as Markov processes.
Napp and Klavins noted that the stationary robotic tiles were an SPOF in the system as
no other robotic tile could perform construction directly above the footprint of a failed
tile [65].

2.2.5 Quadcopter construction by Lindsey et al.
Lindsey et al. investigated the application of quadcopters to multi-robot construction.
They itted Hummingbird quadcopters with a gripper, which picked up and placed con-
struction materials (Figure 2.5). Inspired by the Factory Floor system, Lindsey et al.
used truss members, which attached to each other using cubic nodes, as the construction
material [45]. The members attached to one of the six faces of a node and were held
in place using magnets. The nodes were pre-attached to some of the members, consti-
tuting a coniguration referred to as a module. Prior to construction, the members and
modules were placed in a designated area in the environment.

A VICON motion capture system tracked the quadcopters, providing positional data
to a central computer running ROS and MATLAB. The central computer controlled the
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behavior of the quadcopters, which in turn regulated their altitude through onboard
control loops. In this system, the quadcopters veriied the placement of a member by
applying a small moment and measuring the response. However, neither the quadcopters
nor the VICON motion capture system monitored the state of the structure. Instead,
the central computer inferred the state of the structure based on previous actions.

Lindsey et al. implemented an algorithm that decomposed cubic structures into as-
sembly steps that were executed sequentially by the quadcopters [45]. In [46], Lindsey et
al. removed the constraint that an internal cubic subassembly of a structure must be com-
pleted prior to starting another cubic subassembly using an alternative decomposition
algorithm. Lindsey and Kumar also proposed an extension to the original algorithm
that facilitated concurrent placement of members and modules into a structure [44].
They also generalized their algorithm to use diferent types of lattices and veriied these
extensions in theory and through numerical simulations.

2.2.6 Aerial construction by the Flying Machine Arena
(FMA) at ETH Zurich

Augugliaro et al. demonstrated the construction of a six-meter-tall tower (Figure 2.6)
using four quadcopters in 18 hours during a four-day-long live exhibition at the Fonds
Régional d’Art Contemporain du Centre in Orléans, France [3, 116].

Similar to Lindsey et al. [45], Augugliaro et al. also used the Hummingbird quadcopter
for construction, but instead of trusses, assembled the tower from 1500 polyurethane
foam bricks. Two quadcopters performed the construction in parallel, allowing the other
two quadcopters to recharge their batteries at the provided charging pads. A central
computer with a blueprint tracked the positions of the quadcopters using a VICON
motion capture system, dispatching commands to the quadcopters using pulse position
modulation (PPM) and XBee radio links.

Figure 2.7 shows related work by Augugliaro et al., involving a similar setup that
used ropes as a building material [1]. Mirjan et al. contended the value of this research
on the basis that quadcopters could perform construction at heights that exceed the
reach of cranes and could cooperate to combine tensile materials such as ropes, cables,
and wire into three-dimensional structures [63]. In [2], Augugliaro et al. presented a
framework for aerial knot tying, using the munter hitch as an example knot. This work
used iterative learning to improve the accuracy and the eiciency of knot tying. Mirjan
et al. combined this work into a demonstration that used three quadcopters to build a
bridge [62].
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a b

Figure 2.6: Quadcopters use (a) polyurethane foam bricks to construct (b) a tower at the
Fonds Régional d’Art Contemporain du Centre in Orléans, France (reprinted
from [3] with permission, © 2014, IEEE).

Figure 2.7: A quadcopter assembling a rope-based structure (reprinted from [1] with permis-
sion, © 2013, IEEE).
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a b

Figure 2.8: Autonomous clustering by Beckers et al. (a) The initial setup and (b) the
completed task (reprinted from Prerational Intelligence, From Local Actions to
Global Tasks: Stigmergy and Collective Robotics, Volume 26 of the series Studies
in Cognitive Systems, 2000, pages 1008–1022, Ralph Beckers, Owen E. Holland,
and Jean-Louis Deneubourg, © 1994, MIT, with permission of Springer).

2.3 Construction without centralized
infrastructure

2.3.1 Clustering by Beckers et al.
Based on the patch sorting work by Deneubourg et al. in simulation [16], Beckers et al.
implemented a clustering system using small autonomous robots, which they equipped
with a C-shaped shovel to move pucks around an arena [4]. The autonomous robots
consisted of two infrared (IR) proximity sensors and a small switch that triggered when
three or more pucks accumulated in the shovel of a robot. In the experiments, the robots
drove forwards, accumulating pucks until the small switch triggered, causing the robot
to reverse and turn a random angle. After running experiments for an hour, Beckers et
al. noted that a large cluster began to form. The experiments were terminated once the
robots arranged the pucks into a single large cluster.

Beckers et al. ran experiments using one to ive robots in a 250 cm × 250 cm square
arena. They initially distributed the pucks for clustering evenly in the environment
(Figure 2.8). In this setup, the most eicient number of robots in terms of the time
taken to form a single large cluster was three.

The main contribution of this work is the irst application of stigmergy to a multi-
robot ACS. The robots communicated their previous work indirectly through the en-
vironment via the clusters. Although the robots could not directly sense the size of a
cluster, the clustering converged as the robots tended to relocate pucks from small clus-
ters to larger clusters. This relocation was due to the ratio between the probability of a
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a b c

Figure 2.9: Examples of robots used for autonomous clustering and sorting. (a) The Did-
abot (reprinted from [49] with permission, © 1996, IEEE), (b) the Khepera
robot (reprinted from Robotics and Autonomous Systems, 29.1, Alcherio Mar-
tinoli, Auke Jan Ijspeert, and Francesco Mondada, Understanding Collective
Aggregation Mechanisms: From Probabilistic Modelling to Experiments with
Real Robots, pages 51–63, © 1999, with permission from Elsevier), (c) the U-bot
(reprinted from [27] with permission, © 1999, MIT).

tangential collision with a cluster, which removed pucks, and a non-tangential collision,
which activated an obstacle avoidance behavior. This ratio was lower for larger clusters.

2.3.2 Clustering by Maris and te Boekhorst
Maris and te Boekhorst demonstrated clustering with autonomous Braitenberg-like ro-
bots [49]. The robots utilized ive of the six proximity sensors positioned around their
perimeter. The front proximity sensor was given a weighting of zero, causing the robots
to push white polystyrene cubes around a 230 cm × 260 cm arena.

In contrast to the work by Beckers et al. [4], Maris and te Boekhorst randomized the
positions of the cubes before starting experiments. Furthermore, they considered any
cube that the robots pushed against the wall of the arena as lost. The main contribution
of this work was the observation that multiple vehicles were required to form a single
cluster. In a further experiment, Maris and te Boekhorst biased the vehicles to turn
slightly to the right when no obstacle was detected. This modiication resulted in the
vehicles circling the arena and improved clustering performance.

2.3.3 Clustering by Martinoli et al.
Martinoli and Mondada performed clustering experiments using the Khepera robot [64],
which they equipped with a gripper to pick up and place small cylinders [53]. The robots
searched for cylinders that were placed in the 80 cm × 80 cm arena. If a robot found
a cylinder while laden, it placed its cylinder near the found cylinder. If the robot was
unladen, it picked up the found cylinder and continued its search.
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Martinoli and Mondada implemented a discriminating behavior on the robots to
improve the robot’s ability to identify the cylinders [54]. They ran experiments in
two square arenas (80 cm × 80 cm and 113 cm × 113 cm) with 1–10 robots and 10–40
cylinders. They compared their results to a probabilistic model that simulated the
clustering process using a Markov chain. Martinoli and Mondada found a discrepancy
between the hardware experiments and the probabilistic model. They hypothesized that
this discrepancy occurred as a result of not modeling several aspects of the hardware.
The main contribution of this work was the observation that the number of robots, the
number of cylinders, the arena size, and the interaction geometry between a robot and
a cylinder all impacted the performance of the clustering.

Martinoli et al. presented an improved probabilistic model that agreed with the re-
sults from the original hardware experiments [51]. They also performed the experiments
in simulation using the Webots simulator [61] and demonstrated the generality of their
probabilistic model by replicating the results from the clustering work by Beckers et
al. [4]. Martinoli et al. summarized their indings in [52].

2.3.4 Clustering of square boxes by Kim et al.
Kim et al. demonstrated the clustering of 35 cm × 35 cm square boxes using iRobot Cre-
ate mobile robots [40]. They performed their clustering experiments in a 450 cm×450 cm

square arena with chamfered corners to prevent the square boxes from becoming stuck.
Kim et al. developed a boundary-aware controller for clustering that combined two
operations: twisting and digging. They showed that this boundary-aware controller out-
performed a reference controller by preventing the formation of clusters at the boundary
of the arena. This work represented the irst application of a behaviorally heterogeneous
group of robots to a clustering task.

Song et al. showed how the division of labor, through the assignment of the twisting
and digging operations, afected clustering performance [85]. Kim and Shell then im-
proved the performance of this system by dynamically assigning the two operations [38].
They also investigated how diferent sequences of assignments of the two operations
afected clustering performance by modeling the growth of the central cluster using a
Markov chain. This Markov chain was calibrated with data from previous experiments.

Kim and Shell developed a model that explained how sets of clusters merged into
a single central cluster without the formation of boundary clusters [39]. They revealed
how the local densities of the robots and the physical packing of the clusters impacted
cluster formation.

2.3.5 Blind bulldozing by Parker et al.
Franks et al. used the term blind bulldozing to describe the behavior of the ants Leptotho-
rax albipennis as they cleared an area prior to nest construction [22]. Parker and Zhang
implemented this behavior using toy bulldozers, which they converted into robots [72].
They showed that using two robot bulldozers was twice as fast as one robot and cleared
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an area with a signiicantly higher success rate. Parker and Zhang suggested that the
interactions between the two robots allowed for an unobstructed workspace to be quickly
obtained, enabling the robots to maneuver the environment with greater ease. Parker et
al. developed a mathematical model of the blind bulldozing using a Markov chain [74].
The model showed agreement with the experiments conducted on the hardware. In [73],
Parker and Zhang summarized their work and discussed the impact of adjusting the
plowing force of the robots on the clearing of a circular area.

2.3.6 Collective sorting by the Intelligent Autonomous
Systems (ISA) Lab at UWE Bristol

Melhuish et al. designed an autonomous system to sort red and yellow frisbees [56]. The
robots in the system had no memory or means of localization and could only sense the
color of a frisbee when it was in the gripper of the robot. The sorting was implemented
using a pull-back behavior that was activated when a yellow frisbee was detected. This
work was the irst application of qualitative stigmergy to a multi-robot ACS. Holland et
al. built upon these experiments, investigating the impact of arena size and the formation
of boundary clusters. They also conducted further experiments, modifying the pull-back
behavior, noting that the cluster of frisbees to which they applied the pull-back behavior
was relatively sparse [27].

Melhuish et al. extended their hardware with an additional color sensor to enable
patch sorting [59]. They veriied this extension using a simulator, which they developed
to evaluate potential sorting behaviors for the hardware. They used the simulator to
evaluate patch sorting with 1–20 diferent types of objects. Melhuish et al. implemented
the patch sorting on their hardware to sort three types of frisbees [60]. In later work,
Melhuish et al. utilized computer vision to enhance patch sorting by enabling robots to
sample the local density of frisbees [57].

Wilson et al. devised an approach to annular sorting, a sorting technique where
diferent types of objects are clustered into concentric rings [117]. They implemented
the sorting by setting the pull-back distance for each type of frisbee with respect to the
contents of leaky integrators that tracked the average density of each type of frisbee.
Wilson et al. compared this approach with two other sorting techniques: one based on
an object’s size and the other with a constant pull-back distance [118]. They found that
the approach based on leaky integrators outperformed the other two approaches and
improved it by tuning its parameters using a genetic algorithm. Scholes et al. compared
these results to previous observational research on brood sorting by the ant Leptothorax
albipennis [82]. They concluded that although the algorithms used by the robots and
the ants produced the similar structures, they were fundamentally diferent.

In an earlier experiment, Melhuish et al. demonstrated the collective construction
of a loose wall, using a bank of halogen lights and white tape to form a template in
an environment [58]. The main contribution of this experiment was the use of a static
template to regulate the construction behavior of a multi-robot ACS.
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Figure 2.10: Patch sorting by Vardy et al. (a) The beginning of a patch sorting task, (b)
patch sorting with the color-seek behavior, and (c) patch sorting using local
consenus (reprinted from Swarm Intelligence, Cache Consensus: Rapid Object
Sorting by a Robotic Swarm, 8.1, 2014, pages 61–87, Andrew Vardy, Gregory
Vorobyev, and Wolfgang Banzhaf, with permission of Springer).

2.3.7 Patch sorting by the Bio-inspired Robotics (BOTS)
Lab at Memorial University

Vardy implemented patch sorting in a simulation, which used computer vision to ap-
proximate the size and the contents of a cluster [101]. He based the simulation on the
hardware of the SRV-1 mobile robot. Vardy compared two algorithms, called proximal
and seeker. In contrast to the proximal algorithm, the seeker algorithm contained an
additional behavior referred to as color-seek. In the case of a laden robot, the color-seek
behavior searched for clusters of the same color as the carried puck. When the robot
was unladen, the color-seek behavior searched for the most isolated puck. Vorobyev et
al. extended the patch sorting algorithm from the work of Deneubourg et al. [16] by
allowing the agents to localize themselves [104]. Their algorithm featured a collective
decision-making component, which enabled the agents to reach a consensus about the
type of object they were clustering and the location of its cluster. In [102], Vardy et
al. ran experiments in simulation and with hardware to compare the clustering algo-
rithm by Beckers et al. [4] with the two patch sorting algorithms from their previous
work [101, 104]. The results from simulation showed that the patch sorting algorithms
outperformed the clustering algorithm by Beckers et al. and the hardware experiments
showed that the formation of a consensus improved patch sorting performance. This
work represented the irst application of collective decision making to a multi-robot
patch sorting task.

In related work, Vorobyev et al. demonstrated the use of a neural network as a
controller for multi-robot clustering [105]. Using computer vision to detect the number
of pucks in front of a robot, they trained the neural network to select one of the predeined
behaviors. Vorobyev et al. validated this control strategy in simulation.
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Figure 2.11: Construction of a wall by Wawerla et al. The robot (a) attaches Velcro blocks
to (b) construct a wall (reprinted from [107] with permission, © 2002, IEEE).

2.3.8 Patch sorting by Verret et al.
Verret et al. designed a multi-robot patch sorting system, which they used to investigate
the relationship between patch sorting, perceptual range, and local communication [103].
They emulated the ield of view of a robot using an overhead camera system. They
enabled local communication by allowing a robot R1 to access the ield of view of a robot
R2, given that robot R2 was in the ield of view of robot R1. The main contribution of
this work was the result that the introduction of local communication to a patch sorting
task may improve performance, particularly when the robots have a limited perceptual
range.

2.3.9 Wall construction by Wawerla et al.
Wawerla et al. demonstrated the construction of a wall using a laser template [107].
The robot searched an environment for two types of Velcro blocks, attaching them in
alternating order to a partially-built wall (Figure 2.11). Wawerla et al. veriied their
controller for the construction using an ActivMedia Pioneer DX2 robot. They also
performed multi-robot experiments using the same controller in simulation. This work
demonstrated the irst application of qualitative stigmergy to the construction of a wall.
Wawerla et al. showed that the construction performance improved when they allowed
the robots to communicate the last type of block attached to the wall. Furthermore,
Wawerla et al. showed that the performance of the system improved with the number of
robots until the attachment site became congested.

2.3.10 Wall construction by Stewart and Russell
Stewart and Russell used a dynamic template to construct a loose wall [87]. The template
was created using a light source that was attached to an organizer robot. This robot
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Figure 2.12: Multi-robot construction by the JPL. (a) The Robot Construction Crew (RCC)
(b) locates parts from a storage area and (c) transports them to a construc-
tion site to assemble a photovoltaic tent (reprinted from [91] with permission,
© 2005, IEEE).

was assigned the task of moving the light source in a straight line at regular intervals.
Worker robots searched the environment for and picked up unused blocks, placing them
underneath the moving light source. This behavior resulted in the construction of a
loose wall.

In [88], Stewart and Russell enhanced their multi-robot wall construction system us-
ing a distributed feedback mechanism, which functioned as follows. The worker robots
placed blocks underneath the light source created by the organizer robot. As construc-
tion progressed, this construction site became congested, preventing the worker robots
from placing more blocks. Upon being unable to place a block, a worker robot incre-
mented its internal frustration counter. When this counter reached a given value, the
worker robot emitted a bright lash. The organizer robot counted these lashes and
moved the light source after a given number of lashes were detected. Stewart and Rus-
sell demonstrated the robustness of the system by removing robots and introducing an
obstacle into the environment. Stewart et al. also implemented the system in simulation
and modeled the deposition process with a Markov chain [89]. This work demonstrated
the irst application of dynamic templates to a multi-robot construction scenario.

2.3.11 Multi-robot construction by the Jet Propulsion
Laboratory (JPL) at NASA

CAMPOUT was a hierarchical control architecture used by the JPL to enable a group
of robots to break a high-level task down into individual behaviors, which could be
performed by a single robot. Huntsberger et al. described the CAMPOUT architecture
and demonstrated its capabilities using a collective transportation task [31, 32]. Stroupe
et al. extended this work by implementing a collective pick and place task [90, 91]. The
pick and place task proceeded as follows. On initialization, the robots located a beam in a
storage compartment using a computer-vision algorithm. After the two robots arrived at
a storage compartment, they collectively transported a beam to a construction site prior
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a b

Figure 2.13: The Shady3D truss-climbing robots. (a) The hardware. (b) A modular ma-
nipulator consisting of two Shady3D modules connected through a passive bar
(reprinted from [17] with permission, © 2007, IEEE).

to attaching the beam to an existing frame (Figure 2.12). Stroupe et al. later discussed
an extension of this work to include placement of a lexible panel [92]. Huntsberger et
al. discussed the results of this project in the context of autonomous construction in
space, describing the subsystems required for a practical implementation [33]. The main
contribution of this work was the hierarchical control architecture and the algorithms
for collective manipulation and transportation.

2.3.12 Construction with truss-climbing robots by the
Distributed Robotics Laboratory (DRL) at CSAIL
MIT

Yoon et al. described their hardware implementation of Shady3D, a truss-climbing
robot [123]. The robot moved through truss-based structures and was equipped with
sensors that enabled error detection and correction during its maneuvers. Yoon et al.
demonstrated an algorithm for inding the shortest path between two points in a struc-
ture.

In related work, Yun et al. demonstrated an online algorithm that allowed robots to
navigate a truss-based structure while avoiding collisions with each other [128]. They
emulated local sensing by allowing the robots to communicate their position in the
structure once within a speciied range. In [17], Detweiler et al. showed how the Shady3D
robots could self-assemble into modules consisting of active and passive components to
form a six degree-of-freedom modular manipulator.

In an extension to [17, 128], Yun and Rus designed algorithms that allowed the
robots to self-assemble into dynamic structures, which they veriied in a simulation based
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Figure 2.14: Construction of a planar structure by Jones and Matarić (reprinted from Ex-
perimental Robotics IX, Synthesis and Analysis of Non-Reactive Controllers
for Multi-Robot Sequential Task Domains, Volume 21 of the series Springer
Tracts in Advanced Robotics, 2006, pages 417–426, Jones and Matarić, with
permission of Springer).

on the real hardware [124]. Yun and Rus proposed a redesign of their truss-climbing
robot and a new building material, which consisted of struts and nodes [127]. In the
proposal, the robots would reconigure a structure by adding and removing the struts.
Yun and Rus demonstrated using simulation how the proposed system would enable the
implementation of reconigurable structures. Yun and Rus provided a comprehensive
review of their work in [125], summarizing previous experiments and demonstrating the
locomotion of a six degree-of-freedom modular manipulator consisting of two Shady3D
modules and a passive bar (Figure 2.13).

2.3.13 Multi-robot construction by Jones and Matarić
Jones and Matarić developed a tool for the automatic synthesis of communication-based
controllers for multi-robot systems [34]. They demonstrated this tool by creating con-
trollers for multi-robot construction. They performed experiments in simulation and on
hardware using colored bricks and ActivMedia Pioneer 2DX robots. Since the robots had
no manipulation capabilities, the controller requested the simulation engine or human
operator to place a colored brick into the structure as required.

A color camera and laser range-inder allowed the robots to perform two types of
observations of a structure. These observations always involved two colored blocks in
either a lush or a corner coniguration. In the context of this thesis, the main contri-
bution of this work was a demonstration of how qualitative stigmergy, based on visual
cues in an environment, may be used to coordinate construction.

In [35], Jones and Matarić presented a model for calculating the probability that a
multi-robot system, consisting of robots with internal state without the ability to com-
municate, correctly executed a sequential Markovian task such as collective construction.
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a b

Figure 2.15: Robots for collective construction by Werfel et al. (a) A laptop-based robot
navigates a two-dimensional structure labeling the semi-active tiles using RFID
(reprinted from [111] with permission, © 2006, IEEE). (b) A robot from the
TERMES system carrying a tile for three-dimensional construction (from Sci-
ence, Designing Collective Behavior in a Termite-Inspired Robot Construction
Team, 343.6172, 2014, pages 754–758, Justin Werfel, Kirstin Petersen, and Rad-
hika Nagpal. Reprinted with permission from AAAS).

2.3.14 Collective construction by Werfel et al.
Werfel used a beacon to provide localization for a multi-robot construction system, which
he simulated in a two-dimensional lattice [108]. This system was extended by Werfel et
al. by using semi-active building materials, which enabled the robots to query the blocks
in a structure. Each block maintained a complete map of the partially-built structure
and informed an adjacent robot as to whether the placement of an adjacent block would
result in a violation of either a geometrical or functional constraint [110].

Werfel and Nagpal introduced their concept of extended stigmergy [113]. The applica-
tion of extended stigmergy gave the robots access to a complete map of a target structure
and a shared coordinate system. Werfel et al. implemented a hardware prototype of a
system that used extended stigmergy to coordinate two-dimensional lattice-based con-
struction tasks [111]. The prototype reliably tracked its position around the perimeter of
a structure and could successfully read and write the RFID tags in the semi-active tiles
(Figure 2.15). Werfel et al. extended these algorithms to enable a group of simulated
robots to build structures in a two-dimensional lattice, where the shape of a structure
was adapted to obstacles in the simulated environment [109].

Werfel also discussed the challenges of extending collective construction to three-
dimensional structures [112]. He concluded that the existence of a Hamiltonian cycle
for a robot traversing all exposed faces of a given structure, at all stages of construction,
was not guaranteed to exist. Werfel and Nagpal extended their simulation-based work
to three-dimensional structures in [114]. Similar to their previous work in [110], the
building material was semi-active and maintained a map of the partially-built structure.
The building material communicated with the robots and signaled where to place further
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Figure 2.16: Three robots from the TERMES system building a castle from passive tiles
(from Science, Designing Collective Behavior in a Termite-Inspired Robot Con-
struction Team, 343.6172, 2014, pages 754–758, Justin Werfel, Kirstin Petersen,
and Radhika Nagpal. Reprinted with permission from AAAS).

material. In this work, they introduced and compared three algorithms that enabled the
robots to ind construction sites.

Petersen et al. presented the hardware of TERMES, an autonomous construction
system consisting of passive blocks and robots, which traversed a partially-built structure
by climbing on top it [75]. This paper discussed the design decisions behind the TERMES
system and demonstrated its capabilities through the construction of a staircase. Werfel
et al. demonstrated three-dimensional construction using the TERMES system in [115].
They utilized an oline compiler that reduced a three-dimensional structure to a directed
graph. The nodes in this graph constituted a height map of the structure and the directed
edges between the nodes represented paths that a robot was allowed to traverse. A robot
always entered the structure from a ixed location. This restriction allowed the robots
to localize themselves on the directed graph and to share a common coordinate system.
A robot used the directed graph and local sensing to determine if the placement of a
tile at its current location was possible without causing a deadlock in the construction
process. In this paper, they demonstrated the construction of a castle using hardware
(Figure 2.16) and provided additional examples in simulation.

Werfel et al. demonstrated several techniques for how construction activity in multi-
robot ACSs could be coordinated. The techniques involved applying extended stigmergy
to the construction of two-dimensional and three-dimensional structures.

2.3.15 Collective construction by Sugawara and Doi
Based on the clustering work by Deneubourg et al. [16], Sugawara and Doi proposed an
approach to collective construction. The approach used semi-active blocks equipped with
a counter, a construction rule, and limited communication capabilities. The robots per-
formed construction by moving randomly around an arena, picking up detected blocks,
and placing them near blocks that signaled for construction.
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In this work, the robots were unable to diferentiate between unused blocks and blocks
in a partially-built structure, resulting in the robots picking up both. Sugawara and Doi,
however, referred to this characteristic as a dynamic equilibrium and maintained that it
allowed the structure to be adaptive to an environment.

Sugawara and Doi implemented their system using a robot made from Lego Mind-
storms NXT components and a semi-active block that communicated using IR LEDs [93].
Experiments using this hardware demonstrated the construction of a wall. Sugawara and
Doi presented a reined implementation of their hardware, demonstrating the construc-
tion of a loose triangle and a loose wall [94].

2.4 Summary

2.4.1 Construction using centralized infrastructure
As summarized in Table 2.1, most multi-robot construction systems that use centralized
infrastructure utilize a positioning system for localization. In these construction systems,
a complete representation of the target structure is either provided to the individual
robots or maintained on a central server, which can schedule and delegate construction
actions to the individual robots.

Leveraging centralized infrastructure to coordinate a multi-robot ACS reduces the
complexity of the control strategy. This reduction in complexity occurs as the centralized
infrastructure is capable of monitoring the positions of the robots and the construction
task. The trade of for this reduction in complexity is a reduction in the fault tolerance
of the system, as any issues with the centralized infrastructure may cause a system-wide
failure. The use of centralized infrastructure to support a multi-robot ACS is nonetheless
a practical solution in structured environments such as factories, plants, and workshops.
Prior to performing construction, however, this type of multi-robot ACS requires human
technicians to it an environment with a server, a wireless router, and a positioning
system. Furthermore, these components should be connected to an uninterruptible power
supply to ensure continuous and reliable operation. In unstructured environments that
are either too remote or too dangerous for human technicians, however, this use of
centralized infrastructure presents a problem. While it is possible in such an environment
to set up the required infrastructure over time, the use of centralized infrastructure is
unsuitable for rapid deployment.

2.4.2 Construction without centralized infrastructure
Avoiding centralized infrastructure in a multi-robot ACS increases the complexity of a
control strategy. This increase in complexity occurs as the robots must now coordinate
construction using only local information. This information may include perception of
the surrounding environment using onboard sensors, direct communication with nearby
robots, and indirect communication with other robots through the shared environment.
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System Building
material Robots Locomotion Infastructure Structure

Representation Citations

Coordinated
construction by

the DRL

Semi-active
Heterogeneous

4
Homogeneous

Diferential
drive

Positioning
system &
WLAN

Shared blueprint [6, 86, 126,
129, 130]

Distributed
assembly by

Worcester et al.

Passive
Heterogeneous

2-3
Heterogeneous

Diferential
drive

Positioning
system &
WLAN

Shared blueprint [29, 119–122]

Autonomous
assembly by the

DRL

Passive
Heterogeneous

2-4
Heterogeneous

Omnidirectional
drive

Positioning
system &
WLAN

Shared blueprint [13, 18–20, 41,
106]

Factory Floor
by Galloway et

al.

Passive
Heterogeneous

4
Homogeneous None Not speciied Not speciied [23, 65–67]

Quadcopter
construction by
Lindsey et al.

Passive
Heterogeneous

3
Homogeneous Quadrotor

Positioning
system &
WLAN

Blueprint on a
central server [44–46]

Aerial
construction by

the FMA

Passive
Homogeneous

4
Homogeneous Quadrotor

Positioning
system &
WLAN

Blueprint on a
central server

[1–3, 62, 63,
116]

Table 2.1: Comparison of multi-robot ACSs that use centralized infrastructure.
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As discussed in Section 1.2, this indirect communication through the shared environ-
ment is referred to as stigmergy. Referring to Table 2.2 on Pages 36 to 38, we conclude
from the surveyed literature that all of the multi-robot ACSs that avoid using centralized
infrastructure and that are capable of construction, use some form of stigmergy.

The use of stigmergy in these systems was realized using a variety of sensors such as
pressure sensitive switches, range inders, color sensors, light sensors, and image sensors.
At this point, we introduce the concept of the bandwidth of a stigmergic signal and
discuss how it inluences the extent to which a multi-robot ACS can be coordinated.

An example of a low bandwidth stigmergic signal was in the clustering work of
Beckers et al. [4]. In this work, a pressure sensitive switch provided a quantitative
stigmergic signal that was binary, i.e. either there were enough pucks in front of a robot
to trigger its switch or there were not. For a clustering task, a binary quantitative
stigmergic signal is generally not suicient as the robots are unable to discern the size
of a cluster. As noted by Beckers et al., the convergence towards a single large cluster in
their work was a function of the stigmergic signal and the interaction geometry between
the environment, the robots, the pucks, and the clusters.

The use of a higher bandwidth stigmergic signal enables the coordination of more
complex construction tasks. For example, Melhuish et al. implemented patch sorting
using a color sensor [60] and in later work using an image sensor [57]. Furthermore,
Jones and Matarić used computer vision to detect patterns of colored blocks, which
enabled the construction of planar structures [34].

An alternative to using a higher bandwidth stigmergic signal is to supplement an
existing stigmergic signal with additional information. For example, Verret et al. used
local communication to extend the perceptual range of an individual robot during patch
sorting [103]. Werfel and Nagpal introduced the concept of extended stigmergy, where
a robot can localize itself on a map of a partially-built structure [113]. In contrast to
increasing the bandwidth of a stigmergic signal, these two uses of additional information
decrease the robustness of a multi-robot ACS. For example and in the case of local
communication, individual robots must rely on each other to abstract their perception
of a shared environment and to communicate it reliably to other robots. Furthermore,
the use of extended stigmergy as proposed by Werfel and Nagpal relies on accurate
odometry.
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types Citations

Clustering by Beckers
et al.

Passive
Homogeneous

1–5
Homogeneous Quantitative stigmergy Clusters [4]

Clustering by Maris
and te Boekhorst

Passive
Homogeneous

1–5
Homogeneous None Clusters [49]

Clustering by Martinoli
et al.

Passive
Homogeneous

1–10
Homogeneous Quantitative stigmergy Clusters [50–54]

Clustering of square
boxes by Kim et al.

Passive
Homogeneous

5
Heterogeneous Quantitative stigmergy Clusters [38–40, 85]

Blind bulldozing by
Parker et al.

Passive
Homogeneous

1, 2, 4
Homogeneous Quantitative stigmergy Cleared

patches [72–74]

Table 2.2: Comparison of multi-robot ACSs that do not use centralized infrastructure.
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System Building
material Robots Coordination Structure

types Citations

Collective sorting by
the ISA Lab

Passive
Heterogeneous

1–13
Homogeneous

Quantitative and
qualitative stigmergy

Sorted patches,
annular

structures

[27, 56–60, 82,
117, 118]

Patch sorting by the
BOTS Lab

Passive
Heterogeneous

4
Homogeneous

Local communication,
quantitative and

qualitative stigmergy
Sorted patches [101, 102, 104,

105]

Patch sorting by Verret
et al.

Passive
Heterogeneous

1, 2, 4
Homogeneous

Local communication,
qualitative stigmergy Sorted patches [103]

Wall construction by
Wawerla et al.

Passive
Heterogeneous

1, 2, 4, 6, 8
Homogeneous

Static templates, local
communication,

qualitative stigmergy
Walls [107]

Wall construction by
Stewart and Russell

Passive
Homogeneous

5
Heterogeneous

Dynamic templates,
local communication,

quantitative stigmergy
Loose walls [87–89]

Table 2.2: Comparison of multi-robot ACSs that do not use centralized infrastructure (continued from Page 36).
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types Citations

Multi-robot
construction by the

JPL

Passive
Heterogeneous

2
Heterogeneous

Parts located via
computer vision

Single
pick-and-place
operations only

[31–33, 90–92]

Construction with
truss-climbing robots

by the DRL

Passive and
active

Heterogeneous

2
Homogeneous

Blueprint of truss
structure

Single
pick-and-place
operations only

[17, 123–125,
127, 128]

Multi-robot
construction by Jones

and Matarić

Passive
Heterogeneous

1–3
Homogeneous

Local communication,
qualitative stigmergy

Planar
structures [34, 35]

Collective construction
by Werfel et al.

Semi-active,
passive

Homogeneous

1–3
Homogeneous

Blueprint, extended
stigmergy

2D and 3D
tiled structures [75, 108–115]

Collective construction
by Sugawara and Doi

Semi-active
Homogeneous

1
Homogeneous Qualitative stigmergy Loose planar

shapes [93–95]

Table 2.2: Comparison of multi-robot ACSs that do not use centralized infrastructure (continued from Page 36).
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2.4.3 State of the art
To enable sophisticated construction without centralized infrastructure requires either a
high bandwidth stigmergic signal or supplementing a stigmergic signal with additional
information. At the time of writing and to the best of our knowledge, there are three
multi-robot ACSs that are capable of building structures beyond loose walls, sorted
patches, and clusters:

• the work from the case study by Jones and Matarić, which demonstrated the
construction of planar structures using colored blocks and robots with computer
vision [34],

• the TERMES system by Werfel et al., which demonstrated the construction of
three-dimensional structures using passive tiles [115], and

• the work by Sugawara and Doi, which extends clustering work of Deneubourg et
al. to enable the construction of loose planar structures [95].

In this thesis, we present a multi-robot ACS that uses a decentralized control strategy
to coordinate construction. This decentralized control strategy is based on the work of
Theraulaz and Bonabeau [98].

In terms of the existing literature on multi-robot ACSs, the most similar control strat-
egy to Theraulaz and Bonabeau’s was used in a case study by Jones and Matarić [34].
In these control strategies, the perception of the environment was used to recognize
conigurations of blocks in the partially-built structure, which were used to trigger con-
struction actions. Furthermore, coordinated construction occurred in both systems as a
result of a feedback loop where construction actions modiied a partially-built structure,
and the modiications to a partially-built structure triggered construction actions.

The work by Jones and Matarić demonstrated in part that it is possible to implement
a variant of Theraulaz and Bonabeau’s control strategy on a multi-robot ACS. There
are, however, several issues that were not addressed by Jones and Matarić. For example,
the robots in this work relied on a human operator to perform manipulation on their
behalf. While this simpliication of a given construction task was suicient for the
contributions of Jones and Matarić’s paper, it sidesteps several aspects of multi-robot
construction such as locating building materials, transporting them to a construction
site, and avoiding collisions with other robots while attaching them to a partially-built
structure. Furthermore, the construction tasks in this work were limited to planar
structures and the challenges of performing three-dimensional construction were not
addressed.

We aim to address these issues by adapting Theraulaz and Bonabeau’s control strat-
egy and implementing it on the multi-robot ACS that we present in this thesis. This
multi-robot ACS is capable of locating unused building materials, transporting them to
a construction site, and attaching them with respect to the current coniguration of a
partially-built structure. Our multi-robot ACS is also fully autonomous and capable of
three-dimensional construction.





CHAPTER 3
System Architecture

3.1 Design of a multi-robot ACS
A multi-robot ACS requires a minimum of two components: an autonomous robot and
a building material. The selection of these two components is not independent as a
robot must be able to locate and manipulate the building material. This requirement
inluences the design of both components.

The proposed multi-robot ACS is a research tool for investigating autonomous con-
struction and is designed to be operated on a smooth surface (e.g. on top of a workbench)
in a laboratory. As the focus of this thesis is the implementation of a decentralized con-
trol strategy on a multi-robot ACS, we design the hardware of our multi-robot ACS so
that only simple sensing and actuation is required. This approach reduces the required
signal processing onboard the robots and increases the reliability of the system.

3.1.1 Building materials
The building materials for a multi-robot ACS can be rigid or non-rigid. As an example,
rigid materials may include blocks, trusses, nodes, and connectors. In contrast, examples
of non-rigid materials may include deformable pockets with a granular material or lexible
ropes. The selection of a building material depends on the environment, the target
structures, and the associated cost and availability of the building material. For example,
sand bags are a non-rigid building material and are often used to build temporary
structures that contain looding rivers since their non-rigid geometry adapts to the shape
of the surrounding environment [83]. As a further example, ropes can be arranged using
loops and knots to form sophisticated structures such as bridges [62].

In contrast with rigid materials, however, the autonomous manipulation of non-rigid
materials is still a new area of research [68, 69]. Furthermore, the cost and availability of
manufacturing technologies for rigid materials (e.g. rapid prototyping) are less expensive
and more ubiquitous than for non-rigid materials.

It is also possible to use semi-active building materials that are capable of either com-
putation or communication. While these capabilities may increase the cost of a building
material, they also potentially allow for research into the autonomous construction and
maintenance of smart structures.
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3.1.2 Robots
Research into multi-robot ACSs has demonstrated the use of aerial-based, ground-based,
and truss-based robots for construction. Aerial-based robots, for instance, are capable of
moving around an environment in three-dimensions. This capability enables aerial-based
robots to inspect a partially-built structure from a perspective that is not obtainable
with ground-based or truss-based robots. Furthermore, due to their versatile mobility,
aerial robots are potentially more capable of building three-dimensional structures, such
as tall buildings.

Ground-based robots, however, have some advantages over aerial robots. For exam-
ple, the control loops for ground-based robots require lower sample rates than aerial-
based robots. These lower sample rates result in less computation and lower power
consumption. Furthermore, a stationary ground-based robot requires less power than a
hovering aerial-based robot and can lift heavier loads.

Similar to aerial-based robots, truss-based robots beneit from being able to move
through a structure in three-dimensions. In contrast to aerial-based robots, however,
truss-based robots use less power as they are always attached to a structure. In com-
parison to aerial-based and ground-based robots, however, truss-based robots require a
ixture prior to starting a new structure and external infrastructure to supply them with
building material.

3.2 Adaptation of Theraulaz and Bonabeau’s
decentralized control strategy

In the work by Theraulaz and Bonabeau, simulated agents searched a three-dimensional
lattice for predeined patterns consisting of two types of bricks [98]. When an agent
detected one of these patterns in the lattice, it placed a brick at its current location.
This behavior resulted in a feedback loop where the placement of a brick modiied
the lattice, and modiications to the lattice caused diferent patterns to be detected,
triggering further brick placement.

By carefully selecting the predeined patterns that triggered block placement, Ther-
aulaz and Bonabeau implemented a control strategy that used this feedback loop to
coordinate construction. This control strategy is fully decentralized and compatible
with the design constraints for swarm robotic systems as described by Brambilla et
al. [10]. These design constraints are important as it is our long-term goal to implement
a swarm robotics construction system.

However, before Theraulaz and Bonabeau’s control strategy can be implemented on a
multi-robot ACS several adaptations are required. In this thesis, we aim to make these
adaptations while remaining compliant with the design constraints for swarm robotic
systems.
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3.2.1 Diferent types of blocks

In related work to [98], Bonabeau et al. deined a itness function that measured the
structure produced by a given construction algorithm [7]. In this work, Bonabeau et
al. noted that no interesting patterns could be generated using a single type of brick.
In a lattice-based simulation, the use of multiple types of bricks can be implemented
programmatically. However, in a physical system such as a multi-robot ACS, the use of
multiple types of building material requires modiications to the control strategy.

In Section 2.3.13, we discussed the work of Jones and Matarić, which used a similar
control strategy to enable coordinated construction [34]. In this work, however, the chal-
lenges of performing construction with multiple types of building materials were mostly
circumvented since a human operator attached the building material to a partially-built
structure on behalf of the robots.

If our multi-robot ACS is to be fully autonomous and capable of performing co-
ordinated construction using a variant of Theraulaz and Bonabeau’s control strategy,
we must ind a way for the robots to attach diferent types of building material to a
structure. To this end, we consider three solutions.

The irst solution involves each robot carrying multiple types of building material
simultaneously. This solution is, however, somewhat ineicient as the robot must carry
the weight of each type of material and the weight of the complex mechanical hardware
that must pick the diferent types of building material up, store them during transport,
and attach them to a structure.

The second solution involves a robot making an observation of a partially-built struc-
ture prior to locating the required building material. This solution is, however, algorith-
mically more complex and may sufer from congestion issues at a construction site. For
example, following an observation, a robot may retrieve the required building material
to perform a given construction task only to ind that another robot has already com-
pleted the construction task. The laden robot then has three options: (i) wait at the
construction site until the acquired building material is required again, (ii) ind another
construction site that requires the acquired building material, or (iii) abandon the ac-
quired building material. This issue, however, may be partially mitigated by allowing
local communication between the robots as demonstrated by Wawerla et al. [107].

The third solution is inspired by the construction behavior of termites. Bruinsma
showed that termites coordinate the construction of a royal chamber in part by marking
soil pellets with diferent types of pheremones [11]. It is possible to implement this
mechanism of marking a homogeneous building material in a multi-robot ACS. For
example, a robot may use a specialized manipulator to attach QR codes to the building
materials. Alternatively, a robot may write to RFID tags embedded in the building
material as demonstrated by Werfel et al. [111]. The proposed use of RFID, however, may
be a complex solution to implement since an observation of a partially-built structure
requires a robot to read and localize multiple RFID tags accurately.
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3.2.2 Discretization of an environment
A signiicant adaptation to Theraulaz and Bonabeau’s control strategy is required as
a result of the inherent discretization in a lattice-based simulation. As noted in the
work by Holland and Melhuish, this discretization inluences an agent’s ability to sense,
to act, and to manipulate objects in an environment [27]. In the following paragraphs,
we discuss our options for adapting each of these abilities with respect to what can be
physically implemented in a multi-robot ACS.

Sensing In order for a robot to inspect a partially-built structure, a form of computer
vision is required. This computer vision may be based on a two-dimensional image using
an image sensor or a three-dimensional point cloud using a light detection and ranging
(LIDAR) sensor or a red-green-blue and depth (RGB-D) sensor.

While LIDAR and RGB-D sensors provide valuable spatial information, they are
often implemented as active sensors that emit a reference signal into an environment
and measure its response. This emission of a reference signal may be problematic in
a multi-robot system due to the interference of reference signals between two or more
robots. There is also a passive solution to three-dimensional computer vision, which
is realized using two image sensors in a stereo vision coniguration. Combining these
two images into a three-dimensional point cloud, however, is a computationally intense
operation.

Irrespective of what type of computer vision is used to implement sensing in our
decentralized control strategy, there is also a secondary issue of perspective. The sim-
ulated agents in the work of Theraulaz and Bonabeau could sense the state of all the
cells within a unit Chebyshev distance of their position. While this can be partially
accomplished on a robot using curved mirrors to implement an omnidirectional camera
system [9], this solution may require additional processing to remove distortions from
the captured scene prior to feature extraction. Furthermore and in contrast with the
simulated agents, it is likely that the selected computer vision system will nonetheless
have blind spots that impact both the perception of a partially-built structure and the
avoidance of obstacles in an environment.

Actuation The agents in Theraulaz and Bonabeau’s control strategy are capable of
moving a unit Chebyshev distance in any direction on each step of the simulation. Al-
though three-dimensional motion is possible with aerial-based robots, neither aerial-
based robots or ground-based robots can instantly move to a target location. Rather,
these robots must accelerate, maintain a given velocity, and decelerate as they arrive
at a target location. Furthermore, during this motion sequence, a robot must monitor
its surroundings for both static obstacles (e.g. walls or partially-built structures) and
dynamic obstacles (e.g. other robots).

Manipulation When a simulated agent in Theraulaz and Bonabeau’s control strategy
detects a predeined pattern in the simulated lattice, it places a brick at its current
location. The simulated agents in this work have the capability to store an ininite
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amount of bricks. This is obviously not possible for a physical robot. To this end, a
robot must irst locate unused building material that is either scattered throughout an
environment or provided by an unused building material cache. Once a robot has located
and picked up a piece of building material, it must locate a partially-built structure
and attach the building material to it. Locating both the unused building material
and a partially-built structure can be implemented using a similar approach to that in
Theraulaz and Bonabeau’s control strategy, where a simulated agent performs a random
walk in an environment.

A signiicant adaptation to this control strategy is required as the observation and
attachment operations are generally not performed in the same location. That is, a robot
must irst make an observation of a partially-built structure from a distance, determine
based on its observation how the building material may be attached to the structure,
approach the structure, and inally use its manipulator to attach the building material.

3.3 Architecture of our multi-robot ACS
In this section, we discuss the adaptations that we have made to Theraulaz and Bonabeau’s
decentralized control strategy and the architecture of our multi-robot ACS, which we
implement using two components: a building material and an autonomous robot.

With respect to the requirement of using diferent types of building material, we im-
plement a markable semi-active active building material, which we refer to as stigmergic
blocks. The stigmergic blocks can be marked by the robots using a near ield communica-
tion (NFC) interface. These markings are displayed using light-emitting diodes (LEDs)
on each face of a block and are visible to nearby robots that are equipped with a color
camera. We attach a localizable tag to each face of a stigmergic block to enable the
implementation of the required perception of a partially-built structure without three-
dimensional computer vision. This decision reduces the required processing power and
extends the battery life of a robot.

To assemble the blocks into structures, we develop and manufacture autonomous
robots. These autonomous robots are capable of performing all necessary signal pro-
cessing on board, including computer vision. This capability of the autonomous robots
enables our multi-robot ACS to operate without centralized infrastructure.

3.3.1 Stigmergic blocks
The stigmergic blocks are a rigid, cubic building material, which is printed using selec-
tive laser sintering (SLS). The choice of a cubic geometry enables an autonomous robot
to attach a stigmergic block to a partially-built structure irrespective of the block’s ori-
entation. Meanwhile, the rigidity of a stigmergic block simpliies its manipulation. The
selection of SLS as a manufacturing technology reduces the number of of-the-shelf com-
ponents as mechanical functionality can be directly printed into the parts. Furthermore,
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a b

Figure 3.1: Structures made from an early prototype of the stigmergic blocks. The blocks
are printed using selective laser sintering (SLS) and the structure is held together
using freely-rotating spherical magnets that are located in the corners of a block.

since we use SLS for both prototyping and production, there should be no variations
between the prototyped and production parts.

To simplify actuation, we place freely-rotating spherical magnets in the corners of
a stigmergic block to allow it to align with the end-efector of an autonomous robot as
it is picked up. These spherical magnets also strengthen the structures made from the
blocks. Figure 3.1 shows an early prototype of the stigmergic blocks, which are arranged
into two diferent structures.

The stigmergic blocks are designed to be semi-active and markable by a robot using
an NFC interface. The markings are displayed using LEDs that are visible to nearby
robots. To increase the bandwidth of the stigmergic signal from a block, we use four
diferent colors for the LED markings. The structural arrangement of the stigmergic
blocks and their LED markings form patterns in an environment that are detected by
nearby robots. These patterns may be used to trigger construction actions.

3.3.2 Autonomous robots
For this work, we decide to use a homogeneous group of ground-based robots. Ground-
based robots are easier to control than both aerial-based and truss-based robots and are
therefore a more suitable coniguration for our initial implementation of a decentralized
control strategy on a multi-robot ACS. It would be, however, possible to include either
aerial-based or truss-based robots in an extension to this work, potentially enabling
construction using a heterogeneous group of robots.

Instead of creating a ground-based autonomous robot from scratch, we implement our
autonomous robot as an extension to a mobile robotics platform called the BeBot [26]. At
the time of writing, the current version of the BeBot does not have suicient processing
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a b

Figure 3.2: An early prototype of an autonomous robot constructed from printed and of-
the-shelf components. Four semi-permanent electromagnets in the end-efector
of an autonomous robot facillitate a magnetic coupling between its end-efector
and a stigmergic block.

power with respect to the computer vision requirements of our system. To this end, we
upgrade the mobile robotics platform by completely redesigning its two circuit boards.

To pick up and to attach the stigmergic blocks to a partially-built structure, we
design a manipulator that attaches to the top of the mobile robotics platform. The
manipulator controls the vertical position of an end-efector. This end-efector picks up
a stigmergic block by attaching to its top face. This attachment is facilitated through
the coupling of the four spherical magnets at the top of a stigmergic block with four
semi-permanent electromagnets in the end-efector. Figure 3.2 shows an early prototype
of an autonomous robot demonstrating this mechanism.

The manipulator and its end-efector are assembled from of-the-shelf parts and com-
ponents printed using stereolithography (SLA). As we had a Form 1+ printer on site,
using SLA allowed us to modify, print and evaluate the mechanical components of the
autonomous robot within a 24 hour period. Furthermore, since we use SLA for both
prototyping and production, there should be no variations between the prototyped and
production parts.
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A forwards facing camera is attached to the end-efector of the manipulator to capture
the scene in front of an autonomous robot. In contrast to an omnidirectional camera,
a forwards facing camera provides a relatively undistorted view of the environment in
front of a robot. We consider the view in front of our robot to be more important than
the view in other directions since the picking up and placement of a stigmergic block
always takes place in front of our robot. Sensory input from other directions is provided
by twelve rangeinders, which are positioned around the perimeter of the mobile robotics
platform.

3.3.3 The decentralized control strategy
To compensate for the discretization in Theraulaz and Bonabeau’s control strategy, we
implement an observation and brick placement routine as follows. Since our robots do
not have the capacity to carry multiple blocks, an unladen robot starts by searching
an environment for an unused stigmergic block. Upon detecting an unused stigmergic
block, the robot approaches it and picks it up. The laden robot now searches its en-
vironments for a partially-built structure. Upon inding a partially-built structure, a
robot inspects it to determine if it contains a predeined pattern. A predeined pattern
consists of a structural arrangement of stigmergic blocks with speciic LED markings
and has an associated construction action. An associated construction action consists of
an attachment site and an LED marking for an unused stigmergic block. If a robot inds
a predeined pattern, it approaches the partially-built structure by tracking a block near
the attachment site.

During its approach, the robot monitors its environment using a combination of
computer vision and input from rangeinders in order to detect nearby robots. If an-
other robot is detected, the attachment operation is aborted and the robot moves away
from the partially-built structure before restarting its search for another structure. This
behavior is designed to avoid collisions between robots and to avoid conlicts at a con-
struction site. If the robot arrives at the attachment site without detecting another robot,
it conigures the LED markings on the unused stigmergic block using the NFC interface.
The robot then attaches the marked stigmergic block to the partially-built structure
before reversing away from the partially-built structure and searching the environment
for another unused stigmergic block.

This use of computer vision to search an environment for predeined patterns con-
sisting of a structural arrangement of stigmergic blocks with speciic LED markings,
enables an autonomous robot to participate in coordinated construction. This coordi-
nated construction occurs between one or more robots due to a feedback loop where
the attachment of an unused stigmergic block modiies a partially-built structure, and
where modiications to a partially-built structure may trigger the attachment of other
blocks by the robots.
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3.3.4 Simulation
To assist with the development and debugging of the decentralized control strategy,
we develop a number of extensions to the ARGoS multi-robot simulator [78]. In con-
trast to the lattice-based simulation work by Theraulaz and Bonabeau, these extensions
enable a comprehensive and realistic simulation of our multi-robot ACS. For example,
these extensions enable realistic computer vision and modeling of the three-dimensional
dynamics and magnetism in our system.

In addition to supporting the development and debugging of the decentralized control
strategy, we intend to use the simulator to investigate how the decentralized control
strategy scales to construction tasks involving many stigmergic blocks and autonomous
robots.

While simulation is an invaluable tool for supporting the development and debugging
of our decentralized control strategy, it is not a substitute for the hardware. Rather, the
hardware of our multi-robot ACS and its simulation complement each other as follows.
The hardware validates the results from simulation, while the simulation enables us to
predict whether a construction task or coniguration of the multi-robot ACS will function
as expected on the hardware.

3.4 Summary
In this section, we have discussed diferent approaches to the implementation of a multi-
robot ACS and the required adaptations to Theraulaz and Bonabeau’s control strategy.
Based on this discussion, we proposed the design of a multi-robot ACS, which consists of
stigmergic blocks and autonomous robots. In the next chapter, we detail the electronics,
mechanical design, and software of these components.





CHAPTER 4
Implementation of the

Hardware
4.1 Stigmergic blocks
We have designed the stigmergic blocks to simplify the actuation and sensing require-
ments of the autonomous robots so that we can focus our work on developing decentral-
ized control strategies for multi-robot construction.

In brief, a stigmergic block is an advanced cubic building material capable of compu-
tation, data storage, and communication. There are currently two types of communica-
tion used in our multi-robot ACS. The irst type uses a near ield communication (NFC)
interface to enable robot-to-block communication. The second type utilizes the LEDs
on the faces of a block to enable block-to-robot communication, which is facilitated by
computer vision. The electronics of a block is implemented using a central circuit board
and six face circuit boards. The exterior of a block has a side length of 55 millimeters
and is printed using selective laser sintering.

The simpliication of the actuation and sensing requirements is partially achieved by
attaching localizable tags to the stigmergic blocks [71], which enables an autonomous
robot to accurately locate a block in an environment. Furthermore, we have added a
freely-rotating, spherical magnet into each corner of a block to enable self-alignment and
to reduce cumulative misalignment during construction. These spherical magnets also
increase the structural integrity of a structure.

4.1.1 Electronics
Figure 4.1 shows the microcontroller, which runs a block’s software. We have mounted
the microcontroller on the central circuit board to manage the power and the routing of
data between various interfaces. The microcontroller is programmed using the Optiboot1

bootloader, which enables reprogramming via the microcontroller’s serial port. We have
connected the serial port of the microcontroller to a USB-to-serial converter IC with USB
battery charger detection. This coniguration allows for recharging, reprogramming, and
debugging a stigmergic block over a single USB connection. The USB-to-serial converter
is conigured over USB to provide control signals for a power management IC.

1Optiboot: https://github.com/optiboot/optiboot

https://github.com/optiboot/optiboot
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Figure 4.1: Internal view of a stigmergic block.

These signals inform the power management IC how much current may safely be
drawn from the USB connection. The power management IC allocates this power to
the system and to the attached lithium-ion battery for recharging. The system power
is connected to two switching regulators, which can be switched on and of using the
push button located near the USB port. The irst regulator provides 3.3V for the digital
electronics, while the second regulator provides 5V for the LEDs on the face circuit
boards.

We provide a standard socket for a wireless module2 on the central circuit board.
The purpose of this wireless module is to enable remote debugging and monitoring
of a stigmergic block. This wireless module communicates with the microcontroller
via a serial port. As the microcontroller only has one serial port, which is used for
reprogramming via USB, a second serial port is emulated by using a 16-bit timer with
the AltSoftwareSerial3 library.

The central circuit board provides six connectors for each of the face circuit boards.
These connectors provide each face circuit board with power, an interrupt line, and an
I2C bus. As the face circuit boards are identical, the I2C bus is segmented so that there
are no address conlicts. Each face circuit board contains an NFC transceiver and an
LED driver. The LED driver is used to set the brightness of the red, blue, and green
channels of four multi-color LEDs on a face circuit board. An autonomous robot can
sense the color of these LEDs from a distance while inspecting a structure. The NFC
transceiver allows messages to be sent and received wirelessly to nearby robots or blocks.

2Xbee Wireless Modules: https://www.digi.com/lp/xbee
3AltSoftwareSerial: https://github.com/paulstoffregen/altsoftserial

https://www.digi.com/lp/xbee
https://github.com/paulstoffregen/altsoftserial
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Figure 4.2: Plot of the attraction force between two spherical magnets.

4.1.2 Mechanical design
A stigmergic block is assembled from circuit boards, spherical magnets, and covers that
we have printed using selective laser sintering. In this design, we use three types of
covers: a side cover, a top cover, and a bottom cover. A stigmergic block is cubic in
shape and has a side length of 55 millimeters.

Eight spherical neodymium magnets are located in the corners of a block and enable
a self-alignment characteristic, which also increases the structural integrity of a structure.
These magnets are six millimeters in diameter and weigh 0.9 grams each. Figure 4.2
shows the attraction force between two of these magnets with respect to the separation
distance.

Figure 4.3 shows the mechanical design of the diferent covers. We have designed
the side covers to be used in an alternating up and down coniguration. The top and
bottom covers have their side cover slots and receptacles at diferent orientations to
accommodate and align with the up and down coniguration of the side covers. The
side covers contain printed springs, which have been orientated so that the adjacent side
covers are held in place using tension. This coniguration provides the stigmergic block
with structural integrity while allowing the top and bottom covers to be easily removed.

The top and bottom covers both contain four small insets for the spherical magnets.
These magnets are held in place using small tabs on the sides of each inset, which allow
a magnet to be inserted into position while remaining free to rotate. In addition, the
top cover contains a small hole located above the power and reset switch on the central
circuit board. This hole provides access to the switch using a small screwdriver.

A block consists of four side covers, a top cover, and a bottom cover. To assemble
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Figure 4.3: Mechanical design of the (a) top, (b) bottom, and (c) side covers.



4.1 Stigmergic blocks 55

a block, a face circuit board is attached to each of these covers using the two small
clips. Each side cover and face circuit board assembly is then attached to a central
circuit board by connecting the headers on the face circuit board to the receptacles
on the central circuit board. A small lithium-ion battery is connected to and placed
underneath the central circuit board.

The top and bottom covers both require four spherical magnets to be inserted into
the magnet insets. The face circuit boards in the top and bottom covers connect to the
central circuit board using a cable. After the spherical magnets have been inserted and
the face circuit boards have been connected, the top and bottom covers slide over the
side covers to complete the assembly of a stigmergic block as visually summarized in
Figure 4.4. Once a stigmergic block is fully assembled, it has a weight of 110 grams. A
localizable tag is placed on each cover of a block so that it can be seen by an autonomous
robot.

4.1.3 Software
The microcontroller on the central circuit board contains 32KB of lash memory, 2KB of
SRAM, and 1KB of EEPROM. The lash memory is partitioned to include the Optiboot
bootloader, which enables reprogramming the microcontroller over USB. The bootloader
has been conigured with a baud rate of 57600 and runs following a reset of the micro-
controller. The microcontroller is programmed using AVRDUDE4, which automatically
resets the microcontroller by pulsing the DTR signal, assuming the Arduino proile is
selected.

The irmware for the stigmergic block is written in C++. After the C++ runtime com-
pletes its initialization, the microcontroller enters the main function, where a singleton
instance of a irmware class is created. The constructor for this class initializes several
peripherals such as a timer, controllers for the serial ports, and a controller for the I2C
bus. Following initialization of the peripherals, the microcontroller probes each of its
ports to determine whether a face circuit board is connected.

For each connected face circuit board, the irmware initializes the NFC transceiver
and the LED driver. Once the irmware has initialized each face circuit board, it enters
and remains in a loop, until an interrupt is received from one of the faces circuit boards.
This interrupt indicates that a robot is trying to communicate with a block using its
NFC interface on one of the block’s face circuit boards. Upon receiving a message from
the robot, the block uses the irst byte of this message to conigure the color of its LEDs.

This software is relatively simple with respect to the potential functionality of a
stigmergic block. For instance, we are currently investigating an implementation of a
light-weight pre-emptive operating system for the block. This would enable messages
to be sent and received from diferent faces of a block concurrently, allowing for block-
to-block communication inside a structure. Further work based on this block-to-block
communication may include adding routing protocols, eventually leading to research into
the autonomous construction and maintenance of smart structures.

4AVRDUDE: http://www.nongnu.org/avrdude/

http://www.nongnu.org/avrdude/
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(a) (b)

(c) (d)

Figure 4.4: The assembly of a stigmergic block. (a) Four side covers attach to four face circuit
boards following an alternating up-down coniguration, (b) each side cover and
face circuit board assembly connects to the central circuit board, (c) the top and
bottom covers attach to two face circuit boards, (d) the top cover and bottom
cover, including the attached face circuit boards, slide over the side covers of a
block to complete its assembly.
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(a) (b)

Figure 4.5: (a) The BeBot mobile robotics platform (reprinted from [24] with permission,
© 2011, IEEE), (b) the upgraded mobile robotics platform with the manipulator.

4.2 Autonomous robots
The autonomous robots consist of a mobile robotics platform (an upgraded version of
the BeBot [26]) and a manipulator for working with the stigmergic blocks (Figure 4.5).
The mobile robotics platform consists of twelve equally-spaced range inders mounted to
a molded interconnect device (MID) chassis. The range inders connect to a microcon-
troller on the chassis, which samples the sensors and provides access to their readings
over a serial interface. Two motors mounted to the chassis form a diferential drive, al-
lowing the mobile robotics platform to move around its environment. Two circuit boards,
which slot into the chassis, are responsible for routing the power, expansion port signals,
and the sensor and actuator signals to a central microprocessor.
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Figure 4.6: Connectivity diagram for the autonomous robot.

Since the microprocessor used in the original mobile robotics platform was inadequate
with respect to our computer vision requirements, we have redesigned the two circuit
boards around a later generation microprocessor. To reduce development time and
manufacturing costs, we use a Duovero Computer-on-Module (COM) from Gumstix,
which contains a suitable microprocessor.

To enable an autonomous robot to assemble stigmergic blocks into a structure, we
have designed a manipulator, which attaches to the top of the mobile robotics platform.
The manipulator controls the vertical position of an end-efector, consisting of four
semi-permanent electromagnets. These electromagnets couple with the freely-rotating,
spherical magnets inside a stigmergic block, holding it in place during transport.

To locate the stigmergic blocks in an environment, the end-efector is equipped with
four range inders and a camera. We have mounted the camera at an angle of 45 degrees
from the horizontal. This angle provides a compromise between allowing an autonomous
robot to detect a stigmergic block when it is at a distance and when it is nearby. When
the end-efector is positioned at its maximum height from the ground (3.5 blocks, or
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19.25 centimeters), the camera can see blocks on the ground up to approximately 35
centimeters away from the center of the robot. When the end-efector is positioned at
its minimum height from the ground (1 block, or 5.5 centimeters), the blocks can be
tracked until they disappear underneath the end-efector.

4.2.1 Electronics
As shown in Figure 4.6, an autonomous robot consists of six interconnected circuit
boards. Two of these boards belong to the manipulator, while the other four are part of
the mobile robotics platform. Although the camera circuit board is physically connected
to the manipulator, we consider it as part of the mobile robotics platform as this is where
its power, data, and control signals are routed to and from.

There are two microcontrollers on the power circuit board and one on the manipu-
lator circuit board, all of which communicate with a main microprocessor using a serial
interface. This microprocessor runs Linux and is located on the microprocessor circuit
board. The microprocessor is capable of reprogramming the microcontrollers on the
other circuit boards. We have designed this capability to enable the reprogramming of
the attached microcontrollers wirelessly via the microprocessor. This circumvents the
need for physical access to the hardware during an upgrade of the software on a large
group of robots. The camera and interface circuit boards and the MID chassis provide
access to their sensors and actuators over an I2C interface. These circuit boards have
not been designed to be reprogrammed.

Camera circuit board Computer vision on the autonomous robot is provided using
a dedicated circuit board to support an image sensor module from Leopard Imaging
(Figure 4.7). This image sensor module is based on the OV5640 image sensor from
OmniVision.

The OV5640 image sensor requires a clock signal as well as a digital and an analog
power supply. We satisfy these requirements using a 24 MHz oscillator, and two low-
dropout (LDO) regulators. We have selected LDO regulators to ensure a noise-free
power supply for the image sensor. We have placed four white LEDs around the image
sensor to optionally enhance the illumination of the captured scene.

The pixel data from the image sensor is routed from the camera circuit board to
the microprocessor circuit board using a cable. This cable also provides the camera
circuit board with power and the required control signals over an I2C bus. The I2C bus
connects to the image sensor to control image acquisition, to an LED driver to control
the brightness of the four white LEDs, and to a general purpose input/output (GPIO)
expander to provide the enable and reset signals for the image sensor and its oscillator
and regulators. This level of control is required to correctly power up the image sensor.
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(a) (b)

Figure 4.7: Computer vision hardware for the autonomous robot. (a) A module from Leopard
Imaging containing the OmniVision OV5640 image sensor. (b) A camera circuit
board with an installed module.
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Figure 4.8: The microprocessor circuit board for the mobile robotics platform.

Microprocessor circuit board Figure 4.8 shows the DuoVero COM attached to the
microprocessor circuit board. The DuoVero COM provides the main microprocessor
for an autonomous robot. This microprocessor runs Linux and has two cores, which
are clocked at 1 GHz and share 1 GB of memory. The DuoVero COM also provides
Bluetooth and facilitates access to a standard wireless network.

The microprocessor on the DuoVero COM provides two camera serial interface (CSI)
ports, which can simultaneously capture video. We have routed both of these ports
to two custom connectors, which can connect to two camera circuit boards. These
connectors are located on the bottom of the microprocessor circuit board near the cut
out on the left-hand side (see Figure 4.8). For a use case involving the capture of video
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Figure 4.9: Image acquisition connectivity diagram.

from two identical camera circuit boards, an issue arises due to address conlicts on the
I2C bus. Figure 4.9 shows how we have solved this issue by adding a multiplexer to the
microprocessor circuit board, segmenting the I2C bus. Capturing video over CSI enables
the use of the microprocessor’s dedicated image processing hardware. This hardware can
capture, scale, and compress the video stream from a connected camera. In contrast, a
USB camera requires that most of these operations be performed on the CPU, which
consumes resources that an autonomous robot could otherwise use for computer vision.

To store the captured images from an autonomous robot, we have added an SD card
reader to the microprocessor circuit board. In addition, a standard USB host port is
provided, to which any standard USB device can be connected.

To ease development, an autonomous robot can be connected to a PC via its micro-
USB port. This port is routed to an integrated USB hub, which provides a developer with
low-level access to a robot’s bootloader (via an onboard USB-to-serial converter) and
high-level access to the robot’s operating system by emulating an Ethernet connection
over USB On-The-Go (OTG). The integrated USB hub is compliant with the USB
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Figure 4.10: The power circuit board for the mobile robotics platform.

battery charging speciication, enabling the robot to safely draw current from the USB
connection in order to run its system, charge its batteries, or both.

The DuoVero COM on the microprocessor circuit board provides two serial ports.
The irst serial port is used to access the robot’s bootloader and the second serial port
is connected to a socket for a low-power wireless module5. In our design, we require
four further serial connections to communicate with the two microcontrollers on the
power circuit board, the microcontroller on the manipulator circuit board, and one
additional serial connection for an infrared interface, which is used to maintain backward
compatibility with the modules described in [24]. To satisfy this requirement, we include
two I2C to serial bridges in our design, which provide the four serial connections.

For debugging and inter-robot communication, twelve multi-color LEDs are evenly
spaced around the perimeter of the microprocessor circuit board.

Power circuit board The power circuit board (Figure 4.10) hosts two systems: the
sensor-actuator system and the power management system. The sensor-actuator system
provides a diferential drive for the mobile robotics platform. This system contains a
microcontroller, which implements a closed-loop controller for the left and right wheels.
Embedded shaft encoders in the motors enable the microcontroller to measure changes
in the position of the wheels. The target velocity for the closed-loop controller is set by
the microprocessor using a serial interface.

The closed-loop controller for the wheels has an update period of 16.3 milliseconds.
During this period, the rotation of the two wheels is measured using an interrupt routine,
which is triggered on the rising and falling edges of the shaft encoder signals. A timer

5Xbee Wireless Modules: https://www.digi.com/lp/xbee

https://www.digi.com/lp/xbee
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overlow interrupt ires at the end of this period, triggering an update of the closed-
loop controller. The closed-loop controller then calculates two output duty cycles to be
applied to the motors over the next period. These duty cycles are used to conigure
the irst timer on the microcontroller to generate two pulse width modulation (PWM)
waveforms. These waveforms are routed to a motor driver, which is connected to the
left and right motors.

The closed-loop controller consists of two PID controllers for the left and right wheels.
The tuning of these controllers is predominantly integral, due to issues with the mechan-
ical design of the original hardware. As the wheels are directly attached to motor shafts,
the entire weight of the autonomous robot creates a bending moment along the shafts of
the motors, probably interfering with the operation of the internal planetary gearboxes
in the motors. This interference results in unpredictable friction and occasional jamming.
We were only able to partially mitigate these issues by tuning the PID controllers.

In addition to the diferential drive for the mobile robotics platform, the sensor-
actuator system includes a digital gyroscope-accelerometer sensor. The readings of this
sensor are made available to the microprocessor over a serial interface.

The power management system is responsible for routing power and for recharging
the batteries in the mobile robotics platform. The power management is broken down
into two domains: the system power domain and the actuator power domain. Both
of these power domains have their own battery and power management IC (PMIC).
External power can be applied to the mobile robotics platform using either the standard
5.5/2.1 millimeter power jack on the power circuit board or the micro-USB connector
on the microprocessor circuit board. As shown in Figure 4.11, the external power inputs
are connected to the system power management IC, which routes power to the actuator
power management IC.

The software controlling the power management system is implemented on a mi-
crocontroller. This software conigures the integrated USB hub on the microprocessor
circuit board and reads the result from the USB hub’s battery charger detection cir-
cuitry. The software on the microcontroller allocates the power to the mobile robotics
platform according to the following prioritized list:

1. system power (if switched on)

2. actuator power (if switched on)

3. system battery (if battery is low)

4. actuator battery (if battery is low)

For each above use of power, the microcontroller subtracts the required amount of
power for that use from the remaining available power, which is initially calculated from
the input power to the system. As the batteries can be recharged at diferent rates, the
software sets the recharge rate with respect to the remaining available power.
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Figure 4.11: Power management system for the mobile robotics platform.
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Figure 4.12: Manipulator circuit board.

Manipulator The manipulator adjusts the height of the stigmergic blocks by raising
and lowering its end-efector. The height of the end-efector is controlled using a stepper
motor and is constrained by two limit switches at the top and bottom of the manipula-
tor. These limit switches trigger as the end-efector starts to move out of range. Four
semi-permanent electromagnets are located in the end-efector, which couple with the
spherical magnets in a stigmergic block. Depending on the direction of a current applied
to the semi-permanent electromagnets, the magnet ield can be either strengthened or
weakened. This current is generated by precharging four 6.8 millifarad capacitors to
25 volts. The direction of the current is controlled using an H-bridge. An autonomous
robot strengthens the magnetic ield during block attachment. This strengthening of
the ield improves the alignment of the stigmergic block with the end-efector prior to
the attachment. An autonomous robot weakens the magnetic ield in order to detach a
block and assemble it into a structure.

The electronics for the manipulator also consists of two circuit boards: a main circuit
board and an interface circuit board. The main circuit board (Figure 4.12) contains a
microcontroller, which executes the manipulator’s software and communicates with the
microprocessor on the mobile robotics platform using a serial connection. This serial
connection is multiplexed with a USB-to-serial converter. When a USB cable is attached,
the serial connection is rerouted over the USB connection to a development PC, which
can be used for debugging and upgrading the manipulator’s software. The USB-to-
serial converter also implements battery charger detection, which conigures a power
management IC. The manipulator contains its own battery and is charged over the USB
connection.
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Figure 4.13: Interface circuit board of the manipulator attached to the end-efector.

The interface circuit board (Figure 4.13) contains an NFC transceiver for communi-
cating with a stigmergic block. Two rangeinders are mounted directly to the interface
circuit board, which an autonomous robot uses during alignment with a block or with
a structure. The interface circuit board also provides two connectors for two additional
range inders which are connected to the end-efector.

The software on the microcontroller samples the rangeinders, implements a con-
troller for the NFC transceiver, and controls the precharging of the capacitors and the
coniguration of the semi-permanent electromagnet H-bridge. The software on the mi-
crocontroller also implements an open-loop controller for the height of the end-efector.
This controller performs self-calibration of the end-efector, regulates the position of the
end-efector, and monitors the state of the limit switches.

4.2.2 Mechanical design
The autonomous robot consists of the mobile robotics platform and a manipulator, which
is mounted on top of the platform. Two motors in the mobile robotics platform constitute
a diferential drive, allowing the robot to move around its environment. The footprint of
the mobile robotics platform is a square with a side length of 9 centimeters. The height
of the platform is 7 centimeters.
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Figure 4.14: Component diagram for the manipulator base.

The manipulator is 30 centimeters tall, and once mounted on top of the mobile
robotics platform, gives the autonomous robot an overall height of 37 centimeters. Fig-
ure 4.14 shows the base of the manipulator, which is printed from a clear photopolymer
resin using stereolithography. A stepper motor is attached to the base using four screws.
The motor’s shaft is supported by a bearing and drives a worm gear. This worm gear
interfaces a pinion, which rotates the lower shaft, driving two sprockets. These sprock-
ets are connected to chains which provide the upwards and downwards motion required
by the end-efector. The shafts, bearings, worm gear, pinion, and sprockets are all
of-the-shelf components, which have been sourced from Vex Robotics6.

Figure 4.15 shows two chains running from the bottom sprockets to two upper sprock-
ets, which are suspended by two upper shafts and four bearings. These chains attach
directly to the end-efector to change the end-efector’s height. To balance the load on
the chain, two lead counterweights attach to the chain, opposite the end-efector. To-
gether with the weight from the stepper motor, the weight of the counterweights balances
the weight of the electromagnets at the front of the autonomous robot.

The electromagnets and counterweights are of-the-shelf components. The remaining
structural components have been printed using either a gray or a clear photopolymer
resin using stereolithography. Figure 4.16 shows a part, which we have printed using
this technique. This part is the top of the manipulator structure, which aligns the
manipulator’s columns and supports the bearings for the upper shafts. To prepare this
part for use, the support material must be removed. To improve functionality and
aesthetics, it is necessary to inish the parts with sandpaper and a polish for plastic
surfaces.

6Vex Robotics: http://www.vexrobotics.com/

http://www.vexrobotics.com/
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Figure 4.15: Component diagram for the manipulator.
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Figure 4.16: An example of a component for the manipulator printed using stereolithography.

4.2.3 Software
Operating system The microprocessor in the mobile robotics platform runs a cus-
tom variant of the Linux operating system. This custom variant of Linux is downloaded,
conigured, and compiled by the Yocto build system7. The build system uses recipes,
which describe the numerous tasks required to prepare a bootable image for an embed-
ded system. These tasks may include fetching software from a version control system,
applying local patches, and compiling and installing software into the target root ile
system.

The image for the mobile robotics platform is based on the Gumstix console image8,
which provides a basic coniguration of the Linux operating system for the microproces-
sor. This coniguration includes a shell, utilities, and tools for networking and system
coniguration. We have enhanced this image to support the hardware on the mobile
robotics platform by coniguring the Linux kernel and adding additional software pack-
ages.

We have selected the hardware for the mobile robotics platform with respect to
the availability of drivers in the Linux kernel mainline. These drivers are considered
to be stable and are well maintained by the Linux community. Furthermore, we have
selected hardware for which device tree bindings already exist9. This choice of hardware
signiicantly simpliies the process of coniguring Linux for the mobile robotics platform.

We have, however, encountered a bug in the Linux kernel, which prevents the clocks
of peripheral devices from being detected in the device tree. This bug is ixed in a

7Yocto Project: https://www.yoctoproject.org/
8Gumstix Developer Center: http://gumstix.org/
9The Devicetree Speciication: https://www.devicetree.org/

https://www.yoctoproject.org/
http://gumstix.org/
https://www.devicetree.org/
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later version of the Linux kernel (4.1), which, however, had an issue with the power
management of the microprocessor’s imaging subsystem. During the coniguration of
the Linux kernel for the mobile robotics platform, we also found an issue with enable
signals for peripheral clocks connected to I2C GPIO expanders. This coniguration
generates kernel warnings due to the latencies involved with enabling a clock over an
I2C bus. To resolve these issues in a timely manner, we have used an older version of
the Linux kernel (3.17) that supports the imaging subsystem. To work around the clock
issues, we have patched the drivers to enable their clocks using the Linux GPIO interface
and hard coded the respective clock frequencies into the drivers.

Although the driver used for the microprocessor’s imaging subsystem is in the Linux
kernel mainline, it is part of the staging directory and its quality is not guaranteed.
Furthermore, the driver for the robot’s camera is out-of-tree and is unmaintained by
the Linux community. These drivers required patching before they would work on the
mobile robotics platform.

We enhanced the Gumstix console image with additional software packages to sup-
port our application. For example, we have included tools for capturing and working
with images from the robot camera such as media-ctl10, yavta11, and OpenCV12. We
have added a recipe to compile and install the detector from the AprilTags visual idu-
cial system as a shared library [71]. We have also created a test application called
blocktracker, an executable which conigures the autonomous robot and runs test rou-
tines. We have extended the blocktracker test application to implement the hardware
experiments presented in this thesis.

Blocktracker The behavior of the autonomous robot is implemented by the block-
tracker executable, which is written in C++ and built using CMake13. The executable
has four main components: a packet control interface, an image processing pipeline, a
inite state machine, and a control loop.

The microcontrollers on the manipulator and power circuit boards communicate
with the microprocessor using a packet control interface. We have designed this inter-
face to support multi-byte commands. The packet control interface also checksums the
commands and validates their length. Figure 4.17 shows an example command, which
queries the battery voltage on a remote microcontroller. A valid command always starts
with a two-byte preamble and ends with a two-byte postamble. We have selected the
values of these bytes due to their visibility on an oscilloscope. As the example command
has no arguments, its length ield is zero. For commands which do have arguments,
the length ield is nonzero and the bytes for the arguments are inserted between the
length and checksum ields. In this case, the checksum ield represents the summation
of the bytes of the arguments. Incoming bytes are stored in a bufer and searched for
valid commands using a specialized state machine. If the bufer overlows or an invalid

10Media-ctl: https://git.linuxtv.org/v4l-utils.git/tree/utils/media-ctl
11Yavta: http://git.ideasonboard.org/yavta.git/tree
12OpenCV: http://opencv.org/
13CMake: https://cmake.org/

https://git.linuxtv.org/v4l-utils.git/tree/utils/media-ctl
http://git.ideasonboard.org/yavta.git/tree
http://opencv.org/
https://cmake.org/
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Figure 4.17: An example command for the packet control interface.

command is detected, the state machine searches for the next preamble, lushing out
any data found before it.

The image processing pipeline is broken down into an asynchronous component and
a synchronous component. The implementation of the asynchronous component was
motivated due to an earlier implementation, where the microprocessor wasted signiicant
processing time, waiting for the microcontrollers on the manipulator and power circuit
boards to respond to commands. The asynchronous component of the pipeline enables
the microprocessor to capture and process images from the camera while waiting for the
microcontrollers to respond. The asynchronous component of the pipeline is built on
top of the concurrency extensions to the C++ standard library14. The implementation
of the asynchronous component deines an operation class, which contains an operation
method, a management thread, a queue of image bufers to be processed, and a pointer to
the next operation. When an operation is enabled, its management thread inspects the
queue of image bufers every ive milliseconds. If an image bufer is found in the queue,
the queue is temporarily locked and the image bufer is extracted for processing. Once
processing is complete, the operation attempts to lock the queue of the next operation as
deined by its next pointer. Once this queue is locked, the operation moves the processed
bufer into the next operations queue.

The operation class is specialized to perform the following functions: (i) to capture
a frame from the camera, (ii) to stream a frame over a wireless network, (iii) to save
a frame to local memory, (iv) to detect the stigmergic blocks in a frame, and (v) to
annotate a frame with the output from the detection operation. Upon initialization of
the pipeline, we create four image bufers and enqueue them inside the capture operation.
The operations are connected in a loop so that the image bufers are recycled and
dynamic memory allocation is not required while the pipeline is running.

The stigmergic block detection operation uses the detector from the AprilTags visual
iducial system to ind the tags on the stigmergic blocks. This operation also samples
the colors of the LEDs on a stigmergic block, which are used for block-to-robot commu-
nication. As the images from the microprocessor’s imaging subsystem are in the YUV
format, we have selected four LED colors with respect to the four quadrants of the UV
color space (Figure 4.18). This selection of colors from the UV color space avoids the
requirement of performing a color space conversion.

The stigmergic block detection operation maintains a queue of its detections from the
processed frames. This queue is lockable and accessible from the synchronous component

14Concurrency extensions in C++: https://isocpp.org/wiki/faq/cpp11-library-concurrency

https://isocpp.org/wiki/faq/cpp11-library-concurrency
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Figure 4.18: The YUV color space with Y = 0.5, showing the four colors used to represent
diferent types of blocks.

of the image processing pipeline, which is executed in the control loop. The synchronous
component of the image processing pipeline tracks stigmergic blocks using the Hungarian
algorithm with a modiied cost matrix, which accommodates new and lost blocks [48].
The tracked blocks are clustered into structures by comparing the distance between
any two blocks with a threshold. The results of the image processing pipeline are then
available to the inite state machine.

We have developed a state machine library for implementing the behavior of an au-
tonomous robot. The motivation for developing this library was to take advantage of the
features in C++11 to create a state machine library that supported reusable sub-states
while being compact and easy to read. An example instantiation of a state machine
using this library is shown in Listing 4.1. This example demonstrates how classes in-
herited from the CState class can be composed and customized to implement arbitrary
behavior. For instance, the class CStatePrint inherits from CState to deine a state
that writes the contents of a std::string to a std::ostream. Line 25 of the example
shows how the class CStatePrint is conigured using its constructor via the templated
AddState method. The AddState method uses the perfect forwarding and the variadic
template mechanisms of C++11 to automatically insert the parent pointer as the sec-
ond argument to the CStatePrint constructor. The class CStateFooBar demonstrates
how the CStatePrint class is composed using the initialization list and how the tran-
sitions are deined in the constructor body to create the inite state machine shown in
Figure 4.19, which writes the string “foobar” to std::cout and exits.

The blocktracker executable starts with an initialization routine, which connects to
the remote microcontrollers on the power and manipulator circuit boards and checks if
they are responding to commands using the packet control interface. The initialization
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1 #include <iostream>
2
3 #include "state.h"
4
5 class CStatePrint : public CState {
6 public:
7 CStatePrint(const std::string& str_id,
8 CState* pc_parent ,
9 std::ostream& c_device ,

10 const std::string& str_data) :
11 /* init the base class id and function with a lambda */
12 CState(str_id, pc_parent , [this, &c_device] {
13 c_device << m_strData;
14 }),
15 m_strData(str_data) {
16 }
17 std::string m_strData;
18 };
19
20 class CStateFooBar : public CState {
21 public:
22 CStateFooBar(const std::string& str_id, CState* pc_parent = nullptr) :
23 CState(str_id, pc_parent , nullptr, CState::TVector {
24 /* add states */
25 AddState<CStatePrint >("print_foo", std::cout, "foo"),
26 AddState<CState >("print_bar", nullptr, CState::TVector {
27 /* add sub-states */
28 AddState<CStatePrint >("print_b", std::cout, "b"),
29 AddState<CStatePrint >("print_a", std::cout, "a"),
30 AddState<CStatePrint >("print_r", std::cout, "r"),
31 }),
32 }) {
33 /* declare state transitions */
34 AddTransition("print_foo","print_bar");
35 AddExitTransition("print_bar");
36 /* declare sub-state transitions */
37 GetState("print_bar").AddTransition("print_b","print_a");
38 GetState("print_bar").AddTransition("print_a","print_r");
39 GetState("print_bar").AddExitTransition("print_r");
40 }
41 };
42
43 int main(int argc, char* args[]) {
44 /* instansiate state machine */
45 CStateFooBar cStateFooBar("fsm");
46 /* run until exit transition */
47 for(;;) {
48 if(cStateFooBar.Step() != false) {
49 break;
50 }
51 }
52 return 0;
53 }

Listing 4.1: Example instantiation of a inite state machine that writes the string “foobar”
to std::cout and exits.
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Figure 4.19: The inite state machine CStateFooBar as produced by the code in Listing 4.1.

routine then conigures the microprocessors imaging subsystem and the camera, before
initializing the image processing pipeline. The executable then enters a method called
exec. This method starts by enabling the actuator power domain and the diferential
drive system. The method then requests the manipulator to perform its self-calibration
routine. After the calibration is complete, the exec method enters the control loop,
which samples an autonomous robot’s sensors, steps its behavioral state machine, and
updates its actuators. The control loop continues until the behavioral state machine
exits. The image processing pipeline is the largest bottleneck in the control loop and
limits the update period to approximately 160 milliseconds in good lighting conditions.
To keep the update period for the high-level closed-loop controllers constant, we lengthen
the update period so that it always lasts 200 milliseconds.

Figure 4.20 shows the base behavioral state machine for an autonomous robot. The
state machine starts with an autonomous robot searching its environment for unused
blocks. Once an unused block is found, the robot picks it up and begins to search
the environment for a partially-built structure. When a structure is found, the robot
inspects it to determine if a pattern of blocks with an associated construction action
can be found. If such a pattern is found, the robot performs the construction action.
Otherwise, the robot continues searching for another partially-built structure.
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Figure 4.20: The base behavioral state machine for an autonomous robot.

4.3 Veriication of the hardware
We have designed two tasks to verify the functionality of the hardware. These tasks
test an autonomous robot’s ability to place stigmergic blocks at diferent locations in
the structure and its ability to respond to patterns in an environment. These patterns
are expressed in terms of the structural arrangement of the stigmergic blocks in the
environment and their LED markings.

For an autonomous robot to complete either of these tasks successfully, there must
not be any issues in the electronics, mechanical design, or software for a stigmergic block
or an autonomous robot. For the following tasks, a failed trial occurs if an autonomous
robot does not pick up an unused stigmergic block or fails to attach an unused stigmergic
block to the location speciied by the task.

4.3.1 Markings-based task
The markings-based task is designed to verify that an autonomous robot can respond to
a markings-based stimulus. In this task, an autonomous robot must locate an unused
stigmergic block and place it on top of an illuminated block that forms part of a structure.
A structure is deined as at least two contiguous stigmergic blocks. The experiment is set
up such that an autonomous robot can ind both an unused block and the illuminated
block by turning on the spot. The illuminated block is placed into a partially-built
structure, which once complete is a 2 × 2 × 2 cube. Figure 4.21 shows the setup of the
markings-based task and the task after it has been completed successfully.



76 4 Implementation of the Hardware

Marked block

Initial setup Task complete

Figure 4.21: Markings-based veriication task.

A run of the markings-based task proceeds as follows: (i) a robot turns on the
spot, searching its environment for an unused block, (ii) upon locating an unused block,
the robot approaches it and picks it up, (iii) the robot continues to turn on the spot,
searching for an illuminated block that forms part of a structure, (iv) upon locating an
illuminated block that forms part of a structure, the robot approaches the illuminated
block and places the unused block on top of it.

4.3.2 Structure-based task
The structure-based task is designed to verify that an autonomous robot can respond to
a structure-based stimulus. In this task, an autonomous robot must locate an unused
stigmergic block and place it against the larger of two detected structures. Upon locating
the larger structure, the autonomous robot adds the unused block to the structure by
attaching it to the front of the leftmost block.

The size of a structure is estimated using a heuristic: If a block in a structure has
more adjacent blocks than the currently selected block, the autonomous robot selects the
block with the highest number of adjacent blocks; otherwise, the robot uses the number
of adjacent blocks of the currently selected block as an estimate of the structure size.

The experiment is set up so that the autonomous robot can ind an unused block and
two structures of diferent sizes by turning on the spot. Figure 4.22 shows the setup of
this task and the task after it has been completed successfully by an autonomous robot.
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Figure 4.22: Structure-based veriication task.

A run of the structure-based task proceeds as follows: (i) the robot turns on the
spot, searching its environment for an unused block, (ii) upon locating an unused block,
the robot approaches it and picks it up, (iii) the robot continues to turn on the spot,
searching for a structure, (iv) upon locating a structure, the robot estimates its size and
continues searching its environment for a second structure, (v) upon locating the second
structure, the robot estimates its size, (vi) if the irst structure was larger, the robot
turns on the spot in the opposite direction until it locates the larger structure again,
(vii) the robot places the unused block against the leftmost block in the larger structure.

4.3.3 Results
We ran 15 trials for each task and obtained a success rate of 73.3% for the markings-
based task and 80% for the structure-based task. The raw data for these tasks is shown
in Table 4.1. Figure 4.23 contains a box plot of the task run time for the successful trials.
The larger variance in run time for the structure-based task is due to the experimental
setup. In half of the cases, an autonomous robot encountered the larger structure before
the smaller structure and required additional time to ind the larger structure again
before attaching the unused block.

In all trials, the unused block was successfully located, picked up, and conigured by
an autonomous robot. The failed trials occurred during block placement due to misalign-
ment between the autonomous robot and a partially-built structure. This misalignment
was caused by issues with the diferential drive system. As discussed in Section 4.2.1,
these issues result in uneven friction and occasional jamming. These issues aside, the
two tasks have veriied that the rest of the hardware is functioning correctly.
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Trial Run time Result
1 96 Pass
2 91 Pass
3 95 Pass
4 95 Pass
5 96 Pass
6 - Fail
7 101 Pass
8 - Fail
9 105 Pass
10 - Fail
11 110 Pass
12 100 Pass
13 100 Pass
14 - Fail
15 100 Pass

Markings-based task

Trial Run time Result
1 98 Pass
2 119 Pass
3 - Fail
4 115 Pass
5 103 Pass
6 123 Pass
7 - Fail
8 111 Pass
9 - Fail
10 101 Pass
11 117 Pass
12 109 Pass
13 108 Pass
14 112 Pass
15 127 Pass

Structure-based task

Table 4.1: Raw data from the two veriication tasks. Run time is in seconds.

90 95 100 105 110 115 120 125 130

Structure-based task

Markings-based task

Run time (seconds)

Figure 4.23: Box plot of the run time for the two veriication tasks.
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Implementation of the

Simulation
To support the development and debugging of decentralized control strategies for our
multi-robot ACS, we also provide an implementation of our system in simulation. This
simulation must be realistic in order to replicate the results from the hardware. This
requirement, in turn, requires the autonomous robots, the stigmergic blocks, and their
interactional dynamics to be modeled accurately.

In addition to the development and debugging of decentralized control strategies, we
intend to use simulations to gather data from experiments involving large numbers of
robots and blocks. To run such experiments, the simulation of the multi-robot ACS
must be eicient. Furthermore, as we intend to extend an existing robot simulator, we
require a simulator that is modular. This modularity eases the implementation of any
missing aspects of the simulation.

5.1 The ARGoS simulator
ARGoS is a modular, multi-robot simulator designed for running experiments with large
numbers of robots [78]. Benchmarks for ARGoS using the ODE physics engine1 have
demonstrated the simulation of 10,000 robots running faster than real-time. We have
selected ARGoS as it is both modular and eicient. In the rest of this section, we provide
an overview of the components of the simulator from the perspective of their conigu-
ration. Further information, such as how to download, install, and run experiments in
ARGoS, can be found on the simulator’s website2.

A simulation in ARGoS is conigured using an XML coniguration ile, which is
provided by a user. This coniguration ile is split into seven subtrees, which are elements
of the <argos-configuration> root element. These subtrees are listed below and are
used to conigure the following aspects of a simulation.

<framework> conigures the number of threads used by the simulator, the length of a
simulation, and the length of an individual time step.

1Open Dynamics Engine: http://www.ode.org/
2ARGoS: http://www.argos-sim.info/

http://www.ode.org/
http://www.argos-sim.info/


80 5 Implementation of the Simulation

<arena> speciies the layout of a simulated environment. For example, the number of
instances of a given type of object and their distribution.

<loop_functions> enables the loading of a library called a loop function. This library
can be used to monitor and modify a simulation by providing functions for the
pre-tick and post-tick event hooks.

<controllers> enables the loading of libraries called controllers, which are written in
C++ or in Lua. These libraries implement the behavior of objects in a simulation.
This subtree also describes the coniguration of the sensors and actuators attached
to an object.

<media> deines one or more mediums. A medium is a spatially-hashed index, which
contains objects that can be detected by a sensor.

<physics_engines> conigures the physics engine plugins, which provide either kine-
matics or dynamics for objects in the simulation.

<visualization> selects a visualization for a simulation, which may be interactive or
non-interactive, graphical or text-based.

ARGoS uses the <arena> subtree to initialize the space, a data structure representing
the current state of a simulation. This data structure contains groupings of properties
and states called entities, which are arranged through inheritance and composition to
represent objects in a simulation. In addition to the representation of an object in the
space, a user must provide a physics model. A physics model is used by a physics engine
plugin to simulate the kinematics or dynamics of an object. The default visualization
plugin used in ARGoS is based on Qt3 and OpenGL4. It provides an interactive envi-
ronment where objects rendered in OpenGL can be selected and moved around. This
visualization provides an additional plugin layer, which supports customization of the
user interface and the appearance of the simulated environment. Plugins for this layer
are called user functions.

5.2 Extensions to the ARGoS simulator
To run experiments in simulation, we have created several plugins for the ARGoS sim-
ulator. These plugins enable us to model the autonomous robot and the stigmergic
block inside ARGoS. The plugins provide three-dimensional dynamics and magnetism,
a prototyping entity for rapid development and testing, a multi-camera framework for
computer vision, and radios for wireless communication. In the following sections, we
describe each of these plugins in detail.

3Qt: https://www.qt.io/
4OpenGL: https://www.opengl.org/

https://www.qt.io/
https://www.opengl.org/
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1 <physics_engines >
2 <dynamics3d id="dyn3d" iterations="20">
3 <floor/>
4 <plugins >
5 <gravity g="9.8"/>
6 </plugins>
7 </dynamics3d>
8 </physics_engines>

Listing 5.1: Example coniguration of the three-dimensional dynamics plugin.

5.2.1 The three-dimensional dynamics plugin
To simulate the physical interactions between the autonomous robots and stigmergic
blocks, we require the simulation of three-dimensional dynamics. To this end, we have
developed a physics engine plugin, which is a wrapper around the Bullet physics engine5.
We have selected the Bullet physics engine as it is open source and actively developed.
In this plugin, the physics model of a robot is represented by a class, which maintains a
collection of bodies and joints.

The three-dimensional dynamics plugin by default only supports collision-based in-
teractions between bodies. To enable the simulation of gravity and magnetism, we have
made the three-dimensional dynamics plugin extendable by implementing an additional
plugin layer. This layer enables plugins to apply forces and torques to bodies in the
simulation.

Listing 5.1 shows a coniguration of the three-dimensional dynamics plugin in the
<physics_engines> subtree. This coniguration instructs the three-dimensional dynam-
ics plugin to advance the physics simulation by 20 steps for every time step of the
simulation. In addition, the physics simulation is conigured to include a planar loor.
Gravity is provided using the plugin layer and is conigured with a downwards accelera-
tion of 9.8 m/s

2.

5.2.2 The prototyping plugin
The prototyping plugin was originally developed to test the three-dimensional dynamics
plugin but has since developed into a solution to rapidly describe a new object to the
simulator, without the need to manually code and compile new classes.

The prototyping plugin deines a prototype entity, which is a collection of body
and joint entities. The prototype entity is instantiated and conigured by adding a
<prototype> element to the <arena> subtree. The <prototype> element is populated
with further elements, which in turn conigure the controller, the bodies, the joints, and
the devices of a prototype entity.

The geometry of a body in a prototype entity can be either a box, a cylinder, or a
sphere. The dimensions, positions, and orientations of a body are fully speciied in the
XML. The prototyping plugin allows for joints between any two bodies and supports

5Bullet Physics: http://bulletphysics.org/

http://bulletphysics.org/
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1 <prototype id="magnetic_box">
2 <body position="-0.05,-0.1,0.0" orientation="60,0,0"/>
3 <bodies reference_body="base">
4 <body id="base" geometry="box" size="0.1,0.1,0.1" mass="0.01">
5 <coordinates/>
6 <offset/>
7 </body>
8 </bodies>
9 <devices >

10 <electromagnets >
11 <electromagnet body="base" passive_field="5000,0,0"/>
12 </electromagnets>
13 </devices>
14 </prototype>

Listing 5.2: Instantiation of a magnetic box in the <arena> subtree for the testing of the
magnetism plugin.

any combination of linear and angular degrees of freedom about any axis. To enable
actuation and sensing in the prototyping plugin, we have implemented generic joint
sensors and actuators. A joint sensor enables a controller to measure the translation or
rotation of a joint from its initial position and an actuator enables a controller to apply
a translational force or a torque to a joint.

The prototyping plugin provides a generic physics model for the three-dimensional
dynamics plugin and a generic visualization model for the Qt-OpenGL visualization
plugin. The generic visualization model is useful for debugging as it accurately shows the
size, geometry, position, and orientation of the bodies in the three-dimensional physics
engine.

5.2.3 The magnetism plugin
An autonomous robot uses four semi-permanent electromagnets to pick up a stigmergic
block by coupling with the four freely-rotating spherical magnets in the top face of a
block. The spherical magnets inside a block also enable self-alignment and reduce the
cumulative misalignment between blocks during construction.

To implement magnetism in ARGoS, we start by deining an entity that represents an
electromagnetic object. This entity consists of an electrical current, a passive magnetic
ield vector and an active magnetic ield vector, which is multiplied by the electrical cur-
rent. This coniguration enables the simulation of permanent magnets, electromagnets,
and semi-permanent electromagnets. Listing 5.2 shows how a passive magnetic box is
modeled using the prototyping plugin.

Listing 5.3 shows the magnetism plugin being loaded via the <plugins> subtree of
the three-dimensional dynamics plugin. The current implementation of this plugin does
not export any coniguration options at the time of writing. Figure 5.1 shows two of
the magnetic blocks (described in Listing 5.2) being pulled together as a result of the
simulated magnetism.
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(a) t = 0 s (b) t = 1.25 s

(c) t = 2.50 s (d) t = 3.75 s

Figure 5.1: Demonstration of two of the magnetic blocks (described in Listing 5.2) being
pulled together as a result of the simulated magnetism. The red lines represent
the north of a dipole and the blue lines represent the south of a dipole.

1 <physics_engines >
2 <dynamics3d id="dyn3d" iterations="25">
3 <plugins >
4 <magnetism/>
5 </plugins>
6 </dynamics3d>
7 </physics_engines>

Listing 5.3: Coniguration of the <physics_engines> subtree for the testing of the
magnetism plugin.
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To calculate and apply the magnetic forces, we have implemented the algorithm pre-
sented in [100] as a plugin for the three-dimensional dynamics plugin. This algorithm
uses inite element analysis (FEA) to calculate the forces and torques on all magnetic
elements in the simulation. The total force and torque on a magnetic body are the
vector summations of the forces and torques on each of its elements. The current imple-
mentation uses a single dipole approximation where each magnetic body is represented
by a single FEA element. This approximation, however, is suicient for the magnetism
used in our multi-robot ACS, as the spherical magnets in the stigmergic blocks are sim-
ilar to the FEA elements used in the algorithm. As a further optimization, we limit
the efective distance of the magnetic ield to be just short of the distance between two
spherical magnets in the corners of a stigmergic block. This optimization is efective as
the magnetic forces between the magnetic spheres within the same block are negligible.

5.2.4 The multi-camera framework
In contrast to the existing camera sensors available in ARGoS, the multi-camera frame-
work supports attaching multiple cameras to an object in a simulation. We have de-
signed the multi-camera framework to be compatible with OpenCV6, the most widely
used computer vision library.

To simulate the imperfections of real camera systems, the framework allows a user
to specify the intrinsic parameters of a camera (i.e. the principal point and the focal
lengths) and its distortion parameters. These parameters are identical to those used in
the camera calibration module of OpenCV.

For each simulated camera, it is possible to load a number of simulated computer
vision algorithms. These algorithms imitate the output of a computer vision algorithm
by simulating feature extraction. Feature extraction is simulated by directly calculating
if an object is visible by a camera. This approach is more eicient and uses fewer
resources than simulating a real computer vision algorithm, which requires a scene from
the perspective of a camera to be rendered to a virtual frame bufer with both accurate
lighting and models.

Cameras can be attached to objects in a simulation using the prototyping plugin.
The multi-camera framework adds a camera for each <camera> element found in the
<cameras> subtree. Listing 5.4 shows the possible coniguration options for each camera.
Simulated algorithms are loaded with respect to the coniguration in the <controllers>
subtree (Listing 5.5).

An update of a camera sensor starts by calculating the bounding planes of a frustum,
which represents a camera’s ield of view. This frustum is then used to calculate its
enclosing axis-aligned bounding box (AABB). After the camera sensor has precomputed
the frustum and the frustum’s enclosing AABB, it passes control to each of the simulated
computer vision algorithms to update their readings. Figure 5.2 shows an object, which
is equipped with a camera. The igure also shows a test pattern, consisting of a tag and
eight LEDs.

6OpenCV: http://opencv.org/

http://opencv.org/
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(a) (b)

(c) (d)

Figure 5.2: Testing the multi-camera framework. (a) The setup of an object with a camera
and a test pattern, consisting of a tag and eight LEDs. (b) Rendering the frustum
of the camera sensor. (c) Detecting the two LEDs that are inside the frustum.
(d) Detecting the four corners of the tag.
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1 <devices >
2 <cameras >
3 <camera id="front_camera" resolution="640,360" enabled="true" body="link_0"
4 range="0.05:0.5" position="-0.05,0,0.275" orientation="90,-90,0"
5 principle_point="319.5,179.5" focal_length="883.961,883.961"
6 distortion_parameters="0,0,0"/>
7 </cameras>
8 </devices>

Listing 5.4: Coniguration of the prototype entity’s <devices> subtree for the testing of the
multi-camera framework setup in Figure 5.2.

1 <lua_controller id="robot_prototype_lua">
2 <actuators/>
3 <sensors >
4 <cameras implementation="default" show_frustums="true">
5 <algorithms >
6 <led_detector camera="front_camera" medium="leds" show_rays="true"/>
7 <tag_detector camera="front_camera" medium="tags" show_rays="false"/>
8 </algorithms>
9 </cameras>

10 </sensors>
11 <params script="src/testing/camera_calibration.lua"/>
12 </lua_controller>

Listing 5.5: Coniguration in the prototype entity’s <controllers> subtree for the testing
of the multi-camera framework setup in Figure 5.2.

1 <media >
2 <led id="leds" index="grid" grid_size="2,2,2" />
3 <tag id="tags" index="grid" grid_size="2,2,2" />
4 </media>

Listing 5.6: Coniguration of the prototype entity’s <media> subtree for the testing of the
multi-camera framework setup in Figure 5.2.

A typical algorithm detects a feature by passing the precomputed AABB and a check
operation to a medium. A medium is an index of spatially-hashed entities and is declared
to the simulator using the <media> subtree. Listing 5.6 shows the required coniguration
for the example in Figure 5.2. A medium runs the check operation against every entity
selected by the AABB volume. The check operation determines whether an entity is
visible to the camera and can include (i) checking if the entity is completely inside the
frustum, (ii) checking if the angle of observation between the camera and the entity is
within a given range, and (iii) checking if the object is occluded by other objects in the
simulation.

Once an algorithm determines that a feature is visible to a camera, it stores a reading,
which can be accessed by the controller of an object. The contents of this reading depend
on the algorithm and may include the pixel coordinates of an entity in the virtual image,
its colors, and other types of data. For example, the tag detection algorithm contains the
pixel coordinates of the corners of a tag in the virtual image and a string representing a
tag’s data payload.
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1 <devices >
2 <leds medium="leds">
3 <led id="led" body="base" position="0,0,0.0205" orientation="0,0,0"
4 observable_angle="75" color="black"/>
5 </leds>
6 <radios >
7 <radio id="radio+x" medium="nfc" duplex_mode="half" body="base"
8 position="0.05,0,0.0205" orientation="0,0,0" range="0.075"/>
9 <radio id="radio-x" medium="nfc" duplex_mode="half" body="base"

10 position="-0.05,0,0.0205" orientation="0,0,0" range="0.075"/>
11 </radios>
12 </devices>

Listing 5.7: Coniguration in the prototype entity’s <devices> subtree for the testing of the
radio plugin.

1 <lua_controller id="radiopad -ctrl">
2 <actuators >
3 <leds implementation="default" medium="leds"/>
4 <radios implementation="default" medium="nfc"/>
5 </actuators>
6 <sensors >
7 <radios implementation="default" medium="nfc"/>
8 </sensors>
9 <params script="src/testing/radiopad-ctrl.lua"/>

10 </lua_controller>

Listing 5.8: Coniguration for the controller of a radio pad in the <controllers> subtree.
The radio pad uses a Lua controller and contains an LED actuator, a radio
actuator, and a radio sensor.

5.2.5 The radio plugin
To realize the NFC communication between a stigmergic block and an autonomous
robot, we have implemented a generic radio plugin. This plugin supports attaching
multiple radios to an object in the simulation. For example, Listing 5.7 describes the
coniguration of two radios, which have been attached to an example radio pad object
using the prototyping plugin. In this example, the radios are set up in half-duplex mode,
meaning that they can not receive messages while transmitting.

Listing 5.8 shows the coniguration of a Lua-based controller for a radio pad. A radio
actuator is used to transmit messages to nearby radios, while a radio sensor is used to
receive messages. Listing 5.9 shows the source code of a Lua controller for a radio pad.
This controller waits for a message to be received on either of its two radios. Upon
receiving a message, it sets its LED to red for the current time step of the simulation
and sends a message out of its radio-x radio.

Figure 5.3 shows several radio pads, which are arranged to form a line. By inserting
a fake message at the beginning of the simulation, the line of radio pads illuminates as
the message is passed along from radio pad to radio pad.

A transmission between two objects occurs as follows. The controller on the transmit-
ting object writes one or more messages using its radio actuator, each message containing
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(a) t = 0.2 s (b) t = 0.4 s

(c) t = 0.6 s (d) t = 0.8 s

Figure 5.3: Test setup for the radio plugin. Four radio pads, each with two radios, are
arranged into a line. A message is passed down the line of radio pads as indicated
by the red LED.

an arbitrary number of bytes. During an update of the simulation, the radio medium
transfers the messages from all transmitting radios to all receiving radios within a con-
igurable transmission range. This medium must be declared to the simulator using the
<media> subtree. Listing 5.10 shows the required coniguration of this subtree for the
example in Figure 5.3. A receiving radio is deined as a radio that is not transmitting
or that is in full-duplex mode. Following a transmission, the transmitted messages are
available to the controller on a receiving object via its radio sensor.

5.2.6 User and loop functions
To ease running experiments in the simulator, we have implemented a loop function for
the simulation and a user function for the Qt-OpenGL visualization plugin.
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1 function init()
2 end
3
4 function step()
5 local rx = false;
6 for radio,data in pairs(robot.radio_rx) do
7 if (#data >= 1) then
8 rx = true;
9 robot.leds.set_all_colors("red");

10 robot.radio_tx.send("radio-x", {1});
11 end
12 end
13 if(rx == false) then
14 robot.leds.set_all_colors("black");
15 end
16 end
17
18 function reset()
19 end
20
21 function destroy()
22 end

Listing 5.9: The Lua controller for a radio pad. This controller sends a message using the
radio-x radio and sets its LED to red if a message is received. Otherwise, the
LED is switched of.

1 <media >
2 <radio id="nfc" index="grid" grid_size="2,2,2" />
3 </media>

Listing 5.10: Coniguration in the <media> subtree for the testing of the radio plugin. A
single radio medium with an identiier nfc is declared.

Instead of using the <arena> subtree to set up the experiment, the deinitions for the
stigmergic block and autonomous robot are placed in the <loop_functions> subtree.
These deinitions are then parsed by the implemented loop function and stored in a map.
This approach allows blocks and robots to be added and removed from the simulation
programmatically. For example, the loop function deines a set of block cache locations
from where the robots can retrieve blocks during an experiment. These locations are
automatically monitored and populated with a block when no other blocks are in the
vicinity of the location.

The user function modiies the Qt-OpenGL visualization plugin by adding a QTab-
Widget to the user interface, consisting of a tabbed pane for each of the robots in the
simulation (Figure 5.4). These panes include a preview window, which displays the
extracted features from the simulated computer vision algorithms. In addition, the logs
from a robot’s controller can be displayed to assist with debugging and development.
When a robot is selected in the simulation, a Qt signal is emitted that is captured by
a slot in the QTabWidget. The function associated with this slot automatically selects
and displays the pane associated with the selected robot.
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Figure 5.4: The Qt-OpenGL visualization plugin customized with a user function.

5.3 Modeling hardware in simulation

5.3.1 The stigmergic block
A stigmergic block is modeled using the prototyping plugin (Section 5.2.2). It consists
of nine bodies: the main body of the block and its eight spherical magnets. We have
added a joint between the main body of the block and each of its spherical magnets
to enable unconstrained rotation around the X, Y, and Z axes. Figure 5.5 shows the
completed model of a block, which is equipped with four rectangular LEDs, a tag, and an
NFC transceiver (provided by the radio plugin) on each of its faces. The complete XML
description of the stigmergic block for the prototyping plugin is provided in Appendix A.
The software on a stigmergic block is simulated using the Lua script in Listing 5.11,
which conigures the colors of the LEDs on a block in response to receiving an NFC
message from an autonomous robot.

The dimensions and weight of the simulated model for a stigmergic block are equal
to those of the hardware. As we use a single dipole approximation for magnetism, we
have tuned the strength of the simulated spherical magnets empirically. We observed
from the real hardware that placing two blocks approximately one centimeter apart on
a low-friction surface was suicient for the spherical magnets inside the two blocks to
turn, align, and pull the blocks together. We set up a similar coniguration in simulation
and adjusted the magnetic ield strength of the magnetic spheres until we observed a
similar response.
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Figure 5.5: The visualization of a stigmergic block. A checkerboard pattern represents a tag
and a green square represents an LED. This visualization is provided automati-
cally by the Qt-OpenGL model for the prototyping plugin (Section 5.2.2).

1 local lookup_table = {
2 ["0"] = {r = 0, g = 0, b = 0},
3 ["1"] = {r = 255, g = 120, b = 255},
4 ["2"] = {r = 255, g = 208, b = 27},
5 ["3"] = {r = 74, g = 255, b = 27},
6 ["4"] = {r = 74, g = 255, b = 255},
7 }
8
9 function init()

10 reset();
11 end
12
13 function reset()
14 local setting = lookup_table["0"];
15 robot.leds.set_all_colors(setting.r ,setting.g ,setting.b);
16 end
17
18 function step()
19 -- for each radio on the block
20 for radio,data in pairs(robot.radio_rx) do
21 -- if data was received
22 if (#data >= 1) then
23 -- configure the LEDs
24 local setting = lookup_table[string.char(data[1][1])];
25 robot.leds.set_all_colors(setting.r ,setting.g ,setting.b);
26 end
27 end
28 end

Listing 5.11: The Lua controller for a simulated stigmergic block. The color values in the
lookup_table correspond to the OFF, Q1, Q2, Q3 and Q4 colors used on the
hardware.
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One diference between the hardware of the stigmergic block and its simulated model
is that the hardware has curved edges, while the simulated model is completely cubic.
While it is possible to simulate the geometry of a stigmergic block more accurately using
meshes, the collision detection for meshes requires more CPU time. Furthermore, we
have found from empirical testing that the diferences in edge geometry do not play a
signiicant role in the dynamics of the system. In addition, the simulated model of a
stigmergic block assumes that the center of mass is at the center of a block. To be
precise, the location of the battery and the central circuit board ofset the center of
mass slightly away from the center of a block. Due to the nature of our experiments,
however, we assume that this diference between the hardware and its simulated model
is negligible.

5.3.2 The autonomous robot
Similar to the stigmergic block, we model the autonomous robot using the prototyping
plugin (Figure 5.6). The model of the robot contains 15 bodies and 15 joints. Four
of these joints have a single rotational degree of freedom and allow the robot’s wheels
to turn. An additional joint has a single translational degree of freedom, allowing the
end-efector of the robot to move up and down. The remaining joints have no degrees of
freedom and are used to ix the bodies of an autonomous robot in place. Geometrically,
the model is very similar to the hardware. We have, however, merged some of the
simulated bodies to improve collision detection performance in the three-dimensional
dynamics plugin.

To simulate the computer vision on the autonomous robot, we attach a camera sensor
to the body of the end-efector in the model. This camera sensor is provided by the multi-
camera framework (Section 5.2.4). To conigure the camera sensor, we use the intrinsic
and distortion parameters from the camera used on the real robot, which we obtained
from the camera calibration module of OpenCV. This calibration process involves using
the real camera on an autonomous robot to take a number of photos of an asymmetrical
circle pattern (Figure 5.7).

We have added twelve proximity sensors around the body of the mobile robotics
platform and four proximity sensors to the body of the manipulator. The simulated
proximity sensors are calibrated based on the datasheets for the hardware sensors with
some minor adjustments based on empirical measurements. As with the stigmergic
block, the radio plugin (Section 5.2.5) is used to simulate the NFC transceiver on an
autonomous robot. The plugin is conigured to operate in half-duplex mode with a
range of two centimeters, which matches the performance of the NFC transceiver on the
hardware. The complete XML description of an autonomous robot for the prototyping
plugin is provided in Appendix B.

An autonomous robot in simulation is controlled using a slightly modiied version
of the state machine used by the hardware. These modiications are required due to
the use of global data in the state machine used by the hardware, for example, the
std::cout and std::cerr output streams. Since the ARGoS executable and its libraries
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Figure 5.6: The visualization of an autonomous robot. This visualization is provided auto-
matically by the Qt-OpenGL model for the prototyping plugin (Section 5.2.2).

Figure 5.7: A photo of the OpenCV asymmetrical circle pattern taken by the robot. The
image has been annotated by the calibration process, which combines several
perspectives of this pattern to solve for the camera’s intrinsic and distortion
parameters.
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create an instance of the state machine for each autonomous robot, this global data is
shared among each of those instances. In the case of the std::cout and std::cerr
output streams, we resolve this issue by creating separate output streams based on
std::stringstream for each autonomous robot.

The timeout transitions in the state machine used by the hardware also require mod-
iication. This modiication is required due to the use the C++11 Chrono library, which
provides facilities for working with wall time. The use of wall time in simulation is prob-
lematic as a simulation may be paused or may run at diferent speeds depending on the
complexity of the simulation. To this end, adjustments were made to the state machine
to use a time point instead of the now function from one of the C++11 Chrono library’s
clock classes. This time point is initialized to the default epoch and is incremented at
each time step of the simulation.

5.4 Veriication of the simulation
To verify the plugins and the models of the stigmergic block and the autonomous robot,
we have set up two experiments. These experiments are identical to those presented in
Section 4.3, which demonstrated how an autonomous robot was able to place stigmergic
blocks into a structure at diferent locations with respect to patterns in the immediate
environment. These patterns were expressed in terms of the structural arrangement of
stigmergic blocks and their LED markings.

As discussed in Section 4.3.1, the irst task is designed to demonstrate that an au-
tonomous robot can perform an action in response to a markings-based stimulus. In
this task, an autonomous robot must pick up an unused block and place it on top of the
block that is located inside a structure and has its LEDs illuminated. Figure 5.8 shows
two snapshots of this experiment in simulation. The irst snapshot shows the setup of
the task and the second snapshot shows the task after it has been completed.

As described in Section 4.3.2, the second task requires the robot to estimate the size
of two structures using a heuristic. Upon identifying the larger of the two structures,
the robot extends the larger structure by attaching an unused block to the front of the
leftmost block in the structure. The snapshots in Figure 5.9 shows the task setup and
the task after it has been completed.

Due to the straightforward nature of the tasks, the outcome of these two experi-
ments in simulation is practically deterministic. To this end, we have not run trials or
undertaken any statistical analysis of the performance of these tasks in simulation.
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(a) Initial setup

(b) Task complete

Figure 5.8: Markings-based veriication task.
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(a) Initial setup

(b) Task complete (rotated view)

Figure 5.9: Structure-based veriication task.



CHAPTER 6
Results and Demonstrations

In this chapter, we demonstrate that our decentralized control strategy can be used to
coordinate construction. Using the hardware implementation of our multi-robot ACS,
we show how a single autonomous robot can assemble a staircase from stigmergic blocks
and how two autonomous robots can cooperate to build a column.

We then repeat the staircase demonstration in simulation to show that this imple-
mentation of our multi-robot ACS is capable of replicating the results from the hardware
implementation. In addition, we present a multi-robot construction scenario involving
four autonomous robots that cooperate to build a stepped pyramid in simulation.

In each of these construction scenarios, the autonomous robots do not maintain an
internal representation of the environment nor do they have a notion of the structure
being built. Instead, the robots perform construction in response to the structural
arrangement of the stigmergic blocks in the environment and to their LED markings.

6.1 Demonstrations using hardware

6.1.1 Setup and coniguration
Demonstrations of the hardware implementation of our multi-robot ACS and its de-
centralized control strategy were performed at the Heinz Nixdorf Institute using the
Teleworkbench (Figure 6.1). The Teleworkbench is a testing and validation tool for
single-robot and multi-robot systems, which can run experiments remotely over the In-
ternet [96]. The work presented in this section, however, does not utilize most of the
features of the Teleworkbench other than the raised surface and the illuminated work
area. This illumination provides consistent lighting, which improves the performance of
the computer vision algorithms running on the autonomous robots.

To communicate with the autonomous robots during an experiment, we conigure
the robots to connect automatically to a TP-Link WR1043ND wireless router after
booting. We have replaced the default operating system on this router with OpenWRT1,
a distribution of Linux for embedded devices. Running Linux on the wireless router
allows us to enhance the network of the autonomous robots through the use of scripts
and standard POSIX tools.

1OpenWRT: https://openwrt.org/

https://openwrt.org/
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Figure 6.1: The teleworkbench repositioning a BeBot (reprinted from [97] with permission
from Christoph Scheytt, © 2017, Heinz Nixdorf Institute).

To start an experiment using one or more autonomous robots in this setup, we launch
a Bourne-again shell (Bash) script to search the wireless network for and to connect to
the autonomous robots. This script functions as follows.

1. A workstation on the same network as the autonomous robots launches the script
from a Bash shell.

2. The script uses SSH to connect to the wireless router running OpenWRT and to
read the ile /tmp/dhcp.leases. This ile contains, among other data, the map-
pings of media access control (MAC) addresses to internet protocol (IP) addresses.

3. Since the WiFi chips on the autonomous robot are manufactured by the same
vendor (Wi2Wi), we can determine which devices on the network are robots by
checking the irst three bytes of each device’s MAC address. For each MAC address
matching the vendor’s identiier, we store the associated IP address.

4. For each of these IP addresses, we then determine if the robot associated with
the given address is online by sending internet control message protocol (ICMP)
packets using the ping utility.

5. The script then starts tmux, a terminal multiplexer that creates virtual terminals
that can be arranged, displayed, and managed inside the existing terminal.

6. For each online robot, the script requests tmux to create a new virtual terminal
and to start an SSH connection to the robot inside of it.
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a b

c d

Figure 6.2: Three robots performing an unused block search and pick-up test. (a) Initial-
ization, (b) searching for an unused block, (c) approaching an unused block,
(d) picking up an unused block.

7. The script conigures several key bindings for tmux to automate tasks such as up-
dating the blocktracker executable or checking the status of the power management
circuitry.

8. The script enters the interactive interface of tmux where all the terminals for the
connected robots are displayed as panes.

For our setup, the most important key binding enables pane synchronization. In
pane synchronization mode, all keystrokes are sent to all panes, which in our case are
the SSH sessions for the connected robots. With pane synchronization mode enabled,
we can quickly send an interrupt signal to all connected robots. If the blocktracker
executable is running on a robot, this interrupt signal is caught by a signal handler that
powers down the controllers for the diferential drive system, the stepper motor, and the
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electromagnet precharge circuitry of an autonomous robot. This mechanism enables an
emergency stop, which can prevent or at least mitigate damage to the hardware. Other
key bindings include single-line commands, which can download the latest version of the
blocktracker executable from an HTTP server or can start a program such as the test
routine running in Figure 6.2.

An experiment is started by loading the blocktracker executable. As discussed in
Section 4.2.3, the blocktracker executable starts by initializing the robot’s hardware.
Following initialization, the robot searches for an unused block by turning on the spot.
After locating an unused block, the robot approaches the unused block and picks it up
using the semi-permanent electromagnets in its end-efector. The robot then continues
to turn on the spot, searching for a partially-built structure. Once a structure is found,
the robot approaches it before coniguring the unused block’s LEDs and attaching the
unused block to the structure. The coniguration of the unused block’s LEDs and its
attachment are performed with respect to the structural arrangement and LED markings
of the partially-built structure.

During this sequence of operations, a robot indicates its internal state using its LEDs.
For example, when a robot is searching for a target (an unused block or a structure), the
LEDs are blue. Furthermore, when the robot is approaching a target using its computer
vision, the LEDs are green, and when it is approaching or aligning with a target without
computer vision, the LEDs are red. The LEDs on an autonomous robot are switched
of during initialization or when it is shutdown.

6.1.2 Construction of a staircase
Objective In this demonstration, we aim to show how our decentralized control strat-
egy can be used to construct a staircase using a single autonomous robot. The staircase
consists of three columns descending in height, with each column using a diferent type
of block. The highest column contains three Q3 (green) blocks, the middle column
contains two Q2 (red) blocks, and the last column contains a single Q1 (violet) block.

The high-level state chart in Figure 6.3 shows the target behavior for the robot as it
cycles between retrieving an unused block and attaching it to the partially-built staircase.
This state chart also shows the error handling transitions for timeouts and for when the
tracking of a target block or structure is lost.

The logic in Algorithm 6.1 demonstrates how an autonomous robot performs con-
struction without maintaining an internal representation of the environment or the state
of the partially-built staircase. Instead, the robot’s construction behavior is coordinated
using a feedback loop. In this feedback loop, previous construction by the robot modiies
the partially-built staircase, and a modiication to the partially-built staircase causes the
robot to perform further construction.

Setup and procedure The demonstration is set up with a seed block (the bottom
block in the highest column), an autonomous robot, and an unused block. On the irst
run, the robot autonomously searches, retrieves, and attaches the unused block to the
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Figure 6.3: High-level state chart for the staircase demonstration.

seed block. After this irst run, however, we intervene and manually attach the next
unused block directly to the robot. This intervention is required to mitigate the issues
with the drive system and allows us to complete this demonstration.

Results Figure 6.4 shows six snapshots of the robot building a staircase. Due to the
aforementioned issues with the drive system, this demonstration was assembled from
multiple runs. In each of these runs, however, the autonomous robot was able to correctly
identify the structural arrangement of the stigmergic blocks in the environment and their
LED markings. Furthermore, the autonomous robot was able to correctly attach the
unused blocks to the partially-built staircase.

6.1.3 Multi-robot construction of a column
Objective In this demonstration, a collision avoidance mechanism is utilized to pre-
vent two robots simultaneously adding blocks to the same construction site. This colli-
sion avoidance mechanism works by reserving the Q4 (cyan) color to indicate that an
unused block is being transported. That is, as a robot picks up an unused block, it
should conigure the color of the block’s LEDs to Q4. After locating and approaching
a structure, the robot should conigure the block’s LEDs with respect to the structural
arrangement and LED markings of the structure, before attaching its block.

If a robot detects a block with Q4 LEDs while approaching a structure, it should
abort its approach and track the Q4 block until it has disappeared (i.e. the other robot
has reconigured its block’s LEDs). During tracking the Q4 block, the robot should
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Figure 6.4: Construction of a staircase using a single autonomous robot.
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set target_block to highest block in frontmost_column;
switch target_block.type do

case Q3 do
if target_block.height < 3 then

set unused_block.type to Q3;
stack unused_block on target_block;

else
set unused_block.type to Q2;
extend frontmost_column with unused_block;

end
end
case Q2 do

if target_block.height < 2 then
set unused_block.type to Q2;
stack unused_block on target_block;

else
set unused_block.type to Q1;
extend frontmost_column with unused_block;

end
end
case Q1 do

shut down;
end

end

Algorithm 6.1: Algorithmic description of the attach block state from the high-level state
chart in Figure 6.3.

disable its block’s LEDs to avoid a deadlock scenario where two robots are waiting for
each other indeinitely. Once the tracked Q4 block has disappeared, the robot should
restart its approach and attach its own block to the structure.

Setup and procedure This demonstration is set up with two robots, a seed block,
and two unused blocks. The target structure is a column, consisting of three Q3 (green)
blocks. The robots locate and retrieve the two unused blocks from the environment
before approaching the seed block. The robot that arrives at the structure second
should give way to the irst robot while it is placing its block.

Results Figure 6.5 shows the robots completing this task. While both robots managed
to retrieve the unused blocks from the environment and attach them to the structure,
successfully avoiding a collision, the second robot (on the right) misinterpreted the
structural arrangement of the stigmergic blocks, causing it to extend the partially-built
column with a Q2 block, forming a small step instead of a column.
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a

b

c

Figure 6.5: Multi-robot construction of a column. (a) Two robots are separated by a seed
block. (b) The robots ind and retrieve the unused blocks on the left and the
right. (c) Both robots approach the seed block attempting to attach their block.
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Figure 6.5: (d) The robot on the left reaches the construction site irst and the robot on the
right gives way, switching its block’s LEDs of. (e) The robot on the left inishes
attaching its block and the robot on the right restarts its approach, switching its
block’s LEDs on. (f) The robot on the right attaches its block to the structure.
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6.2 Demonstrations in simulation

6.2.1 Setup and coniguration
As discussed in Chapter 5, the simulations of our multi-robot ACS are performed us-
ing the ARGoS simulator. To run the simulator, we use a Fujitsu Laptop with Intel
Core i7-2640M CPU running Ubuntu Linux 16.04 LTS. In addition to the standard
ARGoS dependencies [76], the OpenCV computer vision library is installed to provide
the solvePnP function, which calculates the pose of an object using three-dimensional
to two-dimensional point correspondences. An autonomous robot uses this function to
calculate the three-dimensional pose of a tag on a stigmergic block.

The ARGoS simulator is conigured to use the Qt-OpenGL user function and the
loop function described in Section 5.2.6. The controller of a robot is conigured to send
messages to two logs. The irst log displays the current state of the autonomous robot’s
inite state machine and the second log displays the output of the stigmergic block
tracking algorithm. Instead of using the <arena> subtree to set up an experiment, the
deinitions for the stigmergic block and autonomous robot are parsed and stored inside
the provided loop function. This coniguration enables the adding of a block or a robot
to the simulation programmatically. This functionality is used to create block cache
locations, which are automatically populated with a stigmergic block after a previous
block has been removed from the vicinity of a cache location.

6.2.2 Construction of a staircase
Objective In this demonstration, we aim to show that the simulation of our multi-
robot ACS is accurate by replicating the staircase construction demonstration that was
performed using the hardware implementation (Section 6.1.2).

Setup and procedure The coniguration ile for ARGoS provides the deinitions of
the autonomous robot and the stigmergic block to our loop function, which adds these
objects to the arena. We conigure the loop function to set this demonstration up
identically to the hardware experiment with a seed block, an autonomous robot, and
an unused block. We deine a single cache location, which adds an unused block to the
simulation after the previous unused block has been removed by the robot. There is
one signiicant diference in the setup and procedure of this demonstration. Due to the
issues with the drive system not applying to the simulated model of the autonomous
robot, invention during experiments is not necessary. To this end, the robot is able to
complete the experiment by continuously retrieving blocks from the cache location and
transferring them to the partially-built structure.

Results Figure 6.6 shows six snapshots of the autonomous robot successfully con-
structing the staircase in a simulation without intervention. Since this demonstration is
deterministic, we do not provide any statistical analysis.
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Figure 6.6: Construction of a staircase using a single autonomous robot in simulation.
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Figure 6.7: High-level state chart for the stepped pyramid demonstration.

6.2.3 Construction of a stepped pyramid
Objective In this demonstration, we aim to show how our decentralized control strat-
egy can scale to a multi-robot construction scenario by using four robots to build a
stepped pyramid.

Setup and procedure The four robots in this demonstration are efectively building
four of the staircases from the demonstration presented in Section 6.2.2 with a common
central column. As the robots do not have an internal representation of the simulated
environment or a notion of the structure being built, we only need to make minor mod-
iications to our state machine to include a collision avoidance mechanism. Figure 6.7
shows how we achieve the required collision avoidance by adding an additional transition
to the state machine that causes a robot to abort and retry its block placement routine
if the construction site is busy. A robot senses whether the construction site is busy
through the use of its rangeinders and computer vision. We also add a random delay
state, which lowers the probability that all four robots approach the structure at the
same time.

Results The plot in Figure 6.8 shows the average construction progress from ive runs.
Initially, all robots attempt to construct the central column, saturating this construction
site. After the robots have built the central column, however, the rate of construction
increases as the robots start to build the wings of the stepped pyramid in parallel.
The rate of construction decreases towards the end of the demonstration as we have
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Figure 6.8: Construction progress for the stepped pyramid as depicted in Figure 6.9. The
black line shows the average progress, while the grey lines show the progress from
each of the ive individual runs.

programmed the robots to shut down after they have attached their last block to the
structure. Figure 6.9 shows twelve snapshots of the robots building the stepped pyramid.

6.3 Discussion
In this section, we discuss the results from the demonstrations of the two implementa-
tions of our multi-robot ACS.

6.3.1 The decentralized control stategy
The staircase demonstration showed how our decentralized control strategy is used to
coordinate construction. In this demonstration, an autonomous robot performed con-
struction in response to the structural arrangement and LED markings of the stigmergic
blocks in the partially-built staircase. The coordination that led to the construction of
the staircase was the result of a feedback loop, where construction actions by the au-
tonomous robot modiied the partially-built staircase, and modiications to the partially-
built staircase caused the autonomous robot to perform further construction.

As noted in Section 6.2.3, we only needed to make minor adaptations to the staircase
demonstration in order to build the stepped pyramid. This ease of adaptation reveals
an interesting characteristic of our decentralized control strategy, which arises from two
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Figure 6.9: Construction of a stepped pyramid using four autonomous robots in simulation.
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Figure 6.9: Construction of a stepped pyramid using four autonomous robots in simulation.
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factors. Firstly, the robots do not maintain nor rely on an internal representation of
the environment or of the structures being built. Instead, the robots coordinate their
actions using only locally available information such as their observations of a partially-
built structure. Secondly, the stepped pyramid is related to the staircase through radial
symmetry. This relationship enables the same combinations of structural arrangements
and LED markings that regulated the construction of the staircase to also regulate
the construction of the stepped pyramid. It is possible that this characteristic of our
decentralized control strategy can be exploited to eiciently coordinate the construction
of structures with a high degree of symmetry.

As shown in Figure 6.8, the rate of construction for the stepped pyramid started
out slowly due to congestion at the central column. This congestion was the result of
using a constrained approach to the allocation of the construction tasks. This approach
involved statically assigning each robot to work on a single wing of the pyramid. We
believe, however, that it may be possible to mitigate this congestion by using a more
lexible approach to the allocation of construction tasks, potentially involving multiple
robots constructing several structures in parallel.

6.3.2 Portability between hardware and simulation
The construction of the staircase was performed using the hardware implementation and
the implementation in simulation. Our decentralized control strategy for this demon-
stration was implemented as a inite state machine, which controlled the autonomous
robot’s behavior. This behavior resulted in the autonomous robot cycling back and forth
between locating an unused block and attaching that unused block to the partially-built
staircase.

With some minor modiications (as discussed in Section 5.3.2), this state machine
successfully coordinated the construction of the staircase using the hardware implemen-
tation and the implementation in simulation. This portability between the hardware
and the simulation is a result of the extensions to the ARGoS simulator, which enable
a realistic simulation of our multi-robot ACS.

6.3.3 Collision avoidance
In Section 6.1.3, we demonstrated a construction scenario where two robots were tasked
with constructing a column. In this task, we assigned one of the stigmergic block colors to
represent a block being transported. When an autonomous robot detects a block being
transported, it activates a collision avoidance mechanism and tracks the transported
block until it disappears.

This solution to collision avoidance is built on top of the existing computer vision
algorithms and incurs a negligible computational overhead. Due to the limited ield of
view, however, this solution is not comprehensive. Nonetheless, we are able to improve
the efectiveness of this solution by combining the output from the computer vision algo-
rithm with other sensory input such as from the rangeinders. We use this combination
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of computer vision and input from an autonomous robot’s rangeinders in the stepped
pyramid demonstration to detect whether a construction site is busy. A disadvantage of
this approach, however, is that one of the four possible LED colors is no longer available
for regulating construction.

6.4 Summary
Instead of maintaining an internal representation of the environment and performing
construction with respect to a blueprint, the autonomous robots in our multi-robot ACS
perform construction in response to the structural arrangement of the stigmergic blocks
in the environment and their LED markings.

Jones and Matarić used a similar approach to coordinate construction in a case
study on the automatic synthesis of multi-robot controllers [34]. The robots in this work
were limited, however, to building planar structures and relied on a human operator to
perform manipulation. This use of a human operator to perform manipulation sidesteps
signiicant challenges in the design and operation of a multi-robot ACS.

In contrast to the work by Jones and Matarić, we have designed a multi-robot
ACS that is capable of building three-dimensional structures and that is completely
autonomous. We have implemented this multi-robot ACS using hardware and in simula-
tion, verifying that our decentralized control strategy can indeed be used to coordinate
multi-robot construction. These results constitute a contribution to the research on
multi-robot ACSs by demonstrating that it is possible to use a decentralized control
strategy based on structure and markings to coordinate autonomous three-dimensional
construction in a physical system.





CHAPTER 7
Conclusion

7.1 Overview
At the start of this thesis, we noted that despite numerous examples of decentralized
construction in nature by social insects, there was limited research on how a decentralized
control strategy, in particular, one based on the principles of swarm intelligence, could
be implemented on a multi-robot ACS. To this end, we proposed a decentralized control
strategy based on the work by Theraulaz and Bonabeau, who simulated multi-agent
construction in a three-dimensional lattice [98].

In this thesis, we provided a literature review where we analyzed and compared the
existing approaches to coordinating construction in a multi-robot ACS. We found that
there was only one multi-robot ACS that coordinated construction using a control strat-
egy similar to Theraulaz and Bonabeau’s. This multi-robot ACS was presented as a case
study for the automatic synthesis of controllers for multi-robot systems [34]. However,
this multi-robot ACS was limited to planar structures and required a human operator
to perform manipulation on behalf of the robots, side stepping signiicant challenges in
the design and operation of a multi-robot ACS.

We devised a decentralized control strategy by making several modiications to the
control strategy from the work of Theraulaz and Bonabeau. These modiications in-
cluded a practical solution to working with diferent types of building material and
compensating for the inherent discretization in Theraulaz and Bonabeau’s simulation.
We demonstrated that these modiications enabled us to realize our decentralized con-
trol strategy in a physical system by designing a new multi-robot ACS consisting of
stigmergic blocks and autonomous robots, which assembled the stigmergic blocks into
structures. We implemented these components using hardware and veriied the function-
ality of that hardware using two tasks. These tasks required an autonomous robot to
locate an unused block in its environment and to attach this block to a partially-built
structure with respect to the structural arrangement of the stigmergic blocks already in
the structure and their LED markings.

We also provided a secondary implementation of our multi-robot ACS using simu-
lation. This implementation was built on top of the ARGoS simulator, for which we
developed several extensions to support our work. These extensions enabled us to accu-
rately simulate the computer vision and to model the three-dimensional dynamics of a
stigmergic block and an autonomous robot. We demonstrated that this implementation
in simulation was accurate by running the same two tasks that we used to verify the
functionality of the hardware.



116 7 Conclusion

To show how our decentralized control strategy could be used to coordinate construc-
tion, we provided several demonstrations using the hardware and in simulation. These
demonstrations included the construction of a column by two robots using the hardware,
the construction of a staircase by a robot using the hardware and in simulation, and the
construction of a stepped pyramid by four robots in simulation.

7.2 Future work
In this thesis, we have used both the hardware implementation and the implementation
in simulation of our multi-robot ACS to demonstrate the potential of our decentralized
control strategy. To enable further research, however, both implementations will require
further development.

7.2.1 Enhancements to the hardware implementation
As noted in Section 4.3 and Section 6.1, the drive system in the autonomous robots is
currently unreliable and needs to be upgraded. In the short term, this upgrade involves
replacing the motor modules, with modules that have a higher gear ratio that reduces
speed and increases torque. Furthermore, the new modules would be more efective if
a lower resolution encoder was selected, as the current resolution is too sensitive and
appears to occasionally overload the microcontroller with interrupts, which causes it to
stall. Finally, the mounting of these motors needs to be improved such that the weight
of the entire robot does not rest on the shafts of the motors.

In the long term, however, moving to an omnidirectional drive system would be far
better suited to our application. This suitability arises from the fact that an omnidirec-
tional drive system can simultaneously adjust its position and orientation, allowing for
faster alignment with an unused block or partially-built structure. This solution stands
in contrast to the current design of our autonomous robots that use a diferential drive
system and at times requires multiple approaches before a suitable alignment with a
partially-built structure can be achieved.

Although not as consequential as the drive system, the camera module can be up-
graded to improve system functionality. In the current design, the camera module is
ixed at an angle of 45 degrees. This angle provides a compromise between allowing a
robot to observe blocks at a distance and to track a block during its approach. An alter-
native to this compromise is to add a servo motor to the camera module that facilitates
an adjustable angle, enabling the camera to capture the scene from both perspectives.

7.2.2 Enhancements to the simulation implementation
We intend to leverage the implementation of our multi-robot ACS in simulation to
investigate how our decentralized control strategy for multi-robot construction scales by
running experiments with large numbers of stigmergic blocks and autonomous robots.
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We have noted during running experiments that the speed of a simulation decreases as
more blocks are added to a structure. This decrease in speed may be related to an
optimization in the Bullet physics engines that allows a body to sleep when its velocity
is near zero. We hypothesize that our magnetism plugin, which applies forces to bodies,
may be preventing the spherical magnets inside a block from sleeping. If further analysis
provides evidence to support this hypothesis, a signiicant optimization may be possible
by disabling the magnetic forces between sleeping bodies.

7.2.3 Enhancements to the behavior of an
autonomous robot

Substructure detection In the demonstrations presented in this thesis, we have set
up our controllers to identify speciic structural arrangements of the stigmergic blocks.
In order to enable construction of other structures and to reduce the required devel-
opment overhead, we aim to generalize this approach by using substructure detection.
This detection would allow an autonomous robot to detect, for example, an L-shaped
arrangement of stigmergic blocks with speciic LED markings and to use this detection
to trigger a construction action. This may lead to a more generic controller, where a
set of rules that map substructure detections to construction actions could be described
externally using XML.

Random walk and obstacle avoidance The demonstrations presented in this thesis
were set up so that an autonomous robot could locate an unused stigmergic block or a
partially-built structure by turning on the spot. This approach was chosen to mitigate
the issues with the drive system. Once these issues are resolved, however, we aim to
allow an autonomous robot to search its environment for unused blocks and partially-
built structures by means of a random walk behavior. This random walk behavior would
include an obstacle avoidance mechanism to prevent an autonomous robot from colliding
with unused blocks, other robots, partially-built structures, and the walls of an arena.

Using ARGoS with the hardware At the time of writing, both the hardware imple-
mentation and the implementation in simulation of our multi-robot ACS use a similar
state machine to control the behavior of an autonomous robot. The two implementations,
however, use diferent wrapper code to interface the physical and simulated hardware.
Maintaining these two wrappers is time-consuming and error-prone, which at times may
impact the accuracy of a simulation. To this end, it is desirable to use ARGoS on an
autonomous robot instead of the blocktracker executable. Furthermore, by porting the
code that controls the behavior of an autonomous robot from C++ to Lua, we would
enable both implementations to share an identical Lua script, which is compatible with
and faster to deploy on both implementations. Furthermore, it is advantageous to use
ARGoS’s coniguration ile to tune parameters for and to provide a set of construction
rules to a controller.
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7.2.4 Future research directions
In this section, we discuss future research directions by proposing several diferent con-
struction scenarios involving autonomous robots and stigmergic blocks.

Multi-robot construction Figure 7.1 shows a stepped pyramid, which has been
built by two robots. Due to the issues with the drive system on the autonomous robot,
however, we have only achieved this in simulation. To this end, realizing the multi-
robot construction of the stepped pyramid using the hardware implementation is the
next milestone in our research.

The use of multiple robots to perform construction increases construction throughput.
There are two ways in which this increase in throughput occurs: (i) while a robot is
attaching a block to a partially-built structure, another robot searches an environment
for unused blocks, and (ii) through the use of multiple construction sites on a single
structure, two robots may attach blocks to a partially-built structure in parallel.

The use of multiple construction sites on a single structure in a multi-robot ACS
mitigates congestion at a given construction site due to multiple robots attempting to
perform the same construction action. This issue of congestion was present in the work
of Wawerla et al. who used multiple robots to construct a wall from Velcro blocks [107].

Recursive construction As per our discussion in Section 6.3.1, the staircase and the
stepped pyramid are related to one another through radial symmetry. Speciically, the
stepped pyramid is four of the staircases with a common central column.

Looking forward, we believe that our decentralized control strategy is well suited to
construction scenarios in which structures exhibit high degrees of symmetry and can be
expressed in terms of recursive patterns. Figure 7.2 shows an example of how a recursive
pattern may be leveraged to enable construction. In this example, an observation of the
L-shaped substructure on either side of the wall initiates the construction of a new L-
shaped substructure. If uninterrupted, this process will continue indeinitely until the
robots have used up the unused stigmergic blocks.

Adaptive construction Figure 7.3 shows a further construction scenario with two
robots attempting to contain two green “radioactive” blocks. In this construction sce-
nario, the robots are placed in an environment with unused stigmergic blocks and a
couple of radioactive blocks. The robots must contain the radioactive blocks by build-
ing walls around them from unused stigmergic blocks. In efect, these radioactive blocks
create a template in the environment to which the autonomous robots perform adap-
tive construction. A variant of this construction scenario is also possible where the
autonomous robots irst cluster the radioactive blocks prior to containing them.

Self-organization in a multi-robot ACS In a more advanced construction scenario,
we may also apply recent results from research in the self-organization of robot swarms.
For example, we may implement a variant of dynamic task allocation where a subset
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Figure 7.1: Two robots approach and inspect a stepped pyramid.

Figure 7.2: Robots constructing a wall using a recursive pattern.
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Figure 7.3: Two robots constructing walls from stigmeric blocks (red) to contain the two
“radioactive” blocks (green).

of the robots assign themselves in a decentralized fashion to gather and arrange un-
used blocks into a cache nearby a construction site while the remaining robots perform
construction. Furthermore, we may implement a variant of collective exploration and
decision making, where a group of robots explores its environment before reaching a
consensus on the optimal location for a given structure collectively.

Construction and maintenance of smart structures Since a stigmergic block
has an NFC interface embedded in each of its faces, it is possible for two contiguous
stigmergic blocks to communicate with each other and to route information to diferent
parts of a structure. Combined with the LEDs on the faces of each block, these capa-
bilities would then allow a structure to communicate with the autonomous robots in an
environment to partially control its own construction or maintenance.

7.3 Summary
In this thesis, we have presented a decentralized control strategy that coordinates con-
struction in a multi-robot ACS. This control strategy utilizes the structural arrangement
and markings of the blocks already in a partially-built structure to coordinate further
construction.
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By demonstrating the functionality and basic characteristics of this control strategy,
we believe that we have laid the foundations for a signiicant and new area of research.
To this end, we have noted several research directions that have not yet been explored.

Signiicant work is still required to improve the functionality and reliability of our
multi-robot ACS, however, through continued collaboration and by keeping our research
open (i.e. publishing our work, keeping our designs and code on public repositories,
and where possible, using open source tools), we believe that this area of research has
the potential to signiicantly impact the way in which we think about and approach
construction in terrestrial, and potentially, lunar and martian environments.





APPENDIX A
Description of a Stigmergic

Block in ARGoS
1 <prototype >
2 <controller config="stigmergic_block_controller"/>
3 <!-- physical bodies of a stigmergic block -->
4 <bodies reference_body="block">
5 <body id="block" geometry="box" size="0.055,0.055,0.055" mass="0.102">
6 <offset/>
7 <coordinates/>
8 </body>
9 <body id="magnet_tq1" geometry="sphere" radius="0.003" mass="0.001">

10 <offset position=" 0.0225, 0.0225, 0.047" orientation="0,0,0"/>
11 <coordinates/>
12 </body>
13 <body id="magnet_tq2" geometry="sphere" radius="0.003" mass="0.001">
14 <offset position="-0.0225, 0.0225, 0.047" orientation="0,0,0"/>
15 <coordinates/>
16 </body>
17 <body id="magnet_tq3" geometry="sphere" radius="0.003" mass="0.001">
18 <offset position="-0.0225,-0.0225, 0.047" orientation="0,0,0"/>
19 <coordinates/>
20 </body>
21 <body id="magnet_tq4" geometry="sphere" radius="0.003" mass="0.001">
22 <offset position=" 0.0225,-0.0225, 0.047" orientation="0,0,0"/>
23 <coordinates/>
24 </body>
25 <body id="magnet_bq1" geometry="sphere" radius="0.003" mass="0.001">
26 <offset position=" 0.0225, 0.0225, 0.002" orientation="0,0,0"/>
27 <coordinates/>
28 </body>
29 <body id="magnet_bq2" geometry="sphere" radius="0.003" mass="0.001">
30 <offset position="-0.0225, 0.0225, 0.002" orientation="0,0,0"/>
31 <coordinates/>
32 </body>
33 <body id="magnet_bq3" geometry="sphere" radius="0.003" mass="0.001">
34 <offset position="-0.0225,-0.0225, 0.002" orientation="0,0,0"/>
35 <coordinates/>
36 </body>
37 <body id="magnet_bq4" geometry="sphere" radius="0.003" mass="0.001">
38 <offset position=" 0.0225,-0.0225, 0.002" orientation="0,0,0"/>
39 <coordinates/>
40 </body>
41 </bodies>
42 <!-- joints between the physical bodies of a stigmergic block -->
43 <joints >
44 <joint id="block:magnet_tq1" disable_collisions="true">
45 <frames >
46 <frame body="block" position="0.0225,0.0225,0.050"
47 orientation="0,0,0"/>
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48 <frame body="magnet_tq1" position="0,0,0.003" orientation="0,0,0"/>
49 </frames>
50 <axes>
51 <axis direction="x" mode="angular" range="unconstrained"/>
52 <axis direction="y" mode="angular" range="unconstrained"/>
53 <axis direction="z" mode="angular" range="unconstrained"/>
54 </axes>
55 </joint>
56 <joint id="block:magnet_tq2" disable_collisions="true">
57 <frames >
58 <frame body="block" position=" -0.0225,0.0225,0.050"
59 orientation="0,0,0"/>
60 <frame body="magnet_tq2" position="0,0,0.003" orientation="0,0,0"/>
61 </frames>
62 <axes>
63 <axis direction="x" mode="angular" range="unconstrained"/>
64 <axis direction="y" mode="angular" range="unconstrained"/>
65 <axis direction="z" mode="angular" range="unconstrained"/>
66 </axes>
67 </joint>
68 <joint id="block:magnet_tq3" disable_collisions="true">
69 <frames >
70 <frame body="block" position=" -0.0225,-0.0225,0.050"
71 orientation="0,0,0"/>
72 <frame body="magnet_tq3" position="0,0,0.003" orientation="0,0,0"/>
73 </frames>
74 <axes>
75 <axis direction="x" mode="angular" range="unconstrained"/>
76 <axis direction="y" mode="angular" range="unconstrained"/>
77 <axis direction="z" mode="angular" range="unconstrained"/>
78 </axes>
79 </joint>
80 <joint id="block:magnet_tq4" disable_collisions="true">
81 <frames >
82 <frame body="block" position="0.0225,-0.0225,0.050"
83 orientation="0,0,0"/>
84 <frame body="magnet_tq4" position="0,0,0.003" orientation="0,0,0"/>
85 </frames>
86 <axes>
87 <axis direction="x" mode="angular" range="unconstrained"/>
88 <axis direction="y" mode="angular" range="unconstrained"/>
89 <axis direction="z" mode="angular" range="unconstrained"/>
90 </axes>
91 </joint>
92 <joint id="block:magnet_bq1" disable_collisions="true">
93 <frames >
94 <frame body="block" position="0.0225,0.0225,0.005"
95 orientation="0,0,0"/>
96 <frame body="magnet_bq1" position="0,0,0.003" orientation="0,0,0"/>
97 </frames>
98 <axes>
99 <axis direction="x" mode="angular" range="unconstrained"/>

100 <axis direction="y" mode="angular" range="unconstrained"/>
101 <axis direction="z" mode="angular" range="unconstrained"/>
102 </axes>
103 </joint>
104 <joint id="block:magnet_bq2" disable_collisions="true">
105 <frames >
106 <frame body="block" position=" -0.0225,0.0225,0.005"
107 orientation="0,0,0"/>
108 <frame body="magnet_bq2" position="0,0,0.003" orientation="0,0,0"/>
109 </frames>
110 <axes>
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111 <axis direction="x" mode="angular" range="unconstrained"/>
112 <axis direction="y" mode="angular" range="unconstrained"/>
113 <axis direction="z" mode="angular" range="unconstrained"/>
114 </axes>
115 </joint>
116 <joint id="block:magnet_bq3" disable_collisions="true">
117 <frames >
118 <frame body="block" position=" -0.0225,-0.0225,0.005"
119 orientation="0,0,0"/>
120 <frame body="magnet_bq3" position="0,0,0.003" orientation="0,0,0"/>
121 </frames>
122 <axes>
123 <axis direction="x" mode="angular" range="unconstrained"/>
124 <axis direction="y" mode="angular" range="unconstrained"/>
125 <axis direction="z" mode="angular" range="unconstrained"/>
126 </axes>
127 </joint>
128 <joint id="block:magnet_bq4" disable_collisions="true">
129 <frames >
130 <frame body="block" position="0.0225,-0.0225,0.005"
131 orientation="0,0,0"/>
132 <frame body="magnet_bq4" position="0,0,0.003" orientation="0,0,0"/>
133 </frames>
134 <axes>
135 <axis direction="x" mode="angular" range="unconstrained"/>
136 <axis direction="y" mode="angular" range="unconstrained"/>
137 <axis direction="z" mode="angular" range="unconstrained"/>
138 </axes>
139 </joint>
140 </joints>
141 <!-- devices of a stigmergic block -->
142 <devices >
143 <electromagnets >
144 <electromagnet body="magnet_tq1" passive_field="0,0,75"/>
145 <electromagnet body="magnet_tq2" passive_field="0,0,75"/>
146 <electromagnet body="magnet_tq3" passive_field="0,0,75"/>
147 <electromagnet body="magnet_tq4" passive_field="0,0,75"/>
148 <electromagnet body="magnet_bq1" passive_field="0,0,75"/>
149 <electromagnet body="magnet_bq2" passive_field="0,0,75"/>
150 <electromagnet body="magnet_bq3" passive_field="0,0,75"/>
151 <electromagnet body="magnet_bq4" passive_field="0,0,75"/>
152 </electromagnets>
153 <tags medium="apriltags">
154 <tag id="top" body="block" position="0.000,0.000,0.056"
155 orientation="0,0,0" observable_angle="75" side_length="0.024"/>
156 <tag id="north" body="block" position="0.0285,0.000,0.0275"
157 orientation="0,90,0" observable_angle="75" side_length="0.024"/>
158 <tag id="east" body="block" position="0.000,-0.0285,0.0275"
159 orientation="0,0,90" observable_angle="75" side_length="0.024"/>
160 <tag id="south" body="block" position=" -0.0285,0.000,0.0275"
161 orientation="0,-90,0" observable_angle="75" side_length="0.024"/>
162 <tag id="west" body="block" position="0.000,0.0285,0.0275"
163 orientation="0,0,-90" observable_angle="75" side_length="0.024"/>
164 <tag id="bottom" body="block" position="0.000,0.000,-0.001"
165 orientation="0,0,180" observable_angle="75" side_length="0.024"/>
166 </tags>
167 <leds medium="leds">
168 <led id="top_a" color="black" observable_angle="75" body="block"
169 position="0.000,0.020,0.056" orientation="0,0,0"/>
170 <led id="top_b" color="black" observable_angle="75" body="block"
171 position="0.020,0.000,0.056" orientation="0,0,0"/>
172 <led id="top_c" color="black" observable_angle="75" body="block"
173 position="0.000,-0.020,0.056" orientation="0,0,0"/>
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174 <led id="top_d" color="black" observable_angle="75" body="block"
175 position=" -0.020,0.000,0.056" orientation="0,0,0"/>
176 <led id="north_a" color="black" observable_angle="75" body="block"
177 position="0.0285,0.000,0.0475" orientation="0,90,0"/>
178 <led id="north_b" color="black" observable_angle="75" body="block"
179 position="0.0285,0.020,0.0275" orientation="0,90,0"/>
180 <led id="north_c" color="black" observable_angle="75" body="block"
181 position="0.0285,0.000,0.0075" orientation="0,90,0"/>
182 <led id="north_d" color="black" observable_angle="75" body="block"
183 position="0.0285,-0.020,0.0275" orientation="0,90,0"/>
184 <led id="east_a" color="black" observable_angle="75" body="block"
185 position="0.000,-0.0285,0.0475" orientation="0,0,90"/>
186 <led id="east_b" color="black" observable_angle="75" body="block"
187 position="0.020,-0.0285,0.0275" orientation="0,0,90"/>
188 <led id="east_c" color="black" observable_angle="75" body="block"
189 position="0.000,-0.0285,0.0075" orientation="0,0,90"/>
190 <led id="east_d" color="black" observable_angle="75" body="block"
191 position=" -0.020,-0.0285,0.0275" orientation="0,0,90"/>
192 <led id="south_a" color="black" observable_angle="75" body="block"
193 position=" -0.0285,0.000,0.0475" orientation="0,-90,0"/>
194 <led id="south_b" color="black" observable_angle="75" body="block"
195 position=" -0.0285,-0.020,0.0275" orientation="0,-90,0"/>
196 <led id="south_c" color="black" observable_angle="75" body="block"
197 position=" -0.0285,0.000,0.0075" orientation="0,-90,0"/>
198 <led id="south_d" color="black" observable_angle="75" body="block"
199 position=" -0.0285,0.020,0.0275" orientation="0,-90,0"/>
200 <led id="west_a" color="black" observable_angle="75" body="block"
201 position="0.000,0.0285,0.0475" orientation="0,0,-90"/>
202 <led id="west_b" color="black" observable_angle="75" body="block"
203 position=" -0.020,0.0285,0.0275" orientation="0,0,-90"/>
204 <led id="west_c" color="black" observable_angle="75" body="block"
205 position="0.000,0.0285,0.0075" orientation="0,0,-90"/>
206 <led id="west_d" color="black" observable_angle="75" body="block"
207 position="0.020,0.0285,0.0275" orientation="0,0,-90"/>
208 <led id="bottom_a" color="black" observable_angle="75" body="block"
209 position="0.000,0.020,-0.001" orientation="0,0,180"/>
210 <led id="bottom_b" color="black" observable_angle="75" body="block"
211 position="0.020,0.000,-0.001" orientation="0,0,180"/>
212 <led id="bottom_c" color="black" observable_angle="75" body="block"
213 position="0.000,-0.020,-0.001" orientation="0,0,180"/>
214 <led id="bottom_d" color="black" observable_angle="75" body="block"
215 position="-0.020,0.000,-0.001" orientation="0,0,180"/>
216 </leds>
217 <radios >
218 <radio id="top" medium="nfc" duplex_mode="half" range="0.020"
219 body="block" position="0.000,0.000,0.050" orientation="0,0,0"/>
220 <radio id="north" medium="nfc" duplex_mode="half" range="0.020"
221 body="block" position="0.0225,0.000,0.0275" orientation="0,90,0"/>
222 <radio id="east" medium="nfc" duplex_mode="half" range="0.020"
223 body="block" position="0.000,-0.0225,0.0275"
224 orientation="0,0,90"/>
225 <radio id="south" medium="nfc" duplex_mode="half" range="0.020"
226 body="block" position=" -0.0225,0.000,0.0275"
227 orientation="0,-90,0"/>
228 <radio id="west" medium="nfc" duplex_mode="half" range="0.020"
229 body="block" position="0.000,0.0225,0.0275"
230 orientation="0,0,-90"/>
231 <radio id="bottom" medium="nfc" duplex_mode="half" range="0.020"
232 body="block" position="0.000,0.000,0.005" orientation="0,0,180"/>
233 </radios>
234 </devices>
235 </prototype>
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Description of an

Autonomous Robot in
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1 <prototype >
2 <controller config="robot_ctrl"/>
3 <bodies reference_body="lower-chassis">
4 <body id="lower-chassis" geometry="box" size="0.089510,0.057000,0.030000"
5 mass="0.250">
6 <coordinates/>
7 <offset position="0,0,0.005750"/>
8 </body>
9 <body id="wheel-front-left" geometry="cylinder" radius="0.01575"

10 height="0.01400" mass="0.100">
11 <coordinates/>
12 <offset position="0.031750, 0.02850,0.01575" orientation="0,0,-90"/>
13 </body>
14 <body id="wheel-front-right" geometry="cylinder" radius="0.01575"
15 height="0.01400" mass="0.100">
16 <coordinates/>
17 <offset position="0.031750,-0.02850,0.01575" orientation="0,0,90"/>
18 </body>
19 <body id="wheel-rear-left" geometry="cylinder" radius="0.01575"
20 height="0.01400" mass="0.100">
21 <coordinates/>
22 <offset position="-0.031750, 0.02850, 0.01575" orientation="0,0,-90"/>
23 </body>
24 <body id="wheel-rear-right" geometry="cylinder" radius="0.01575"
25 height="0.01400" mass="0.100">
26 <coordinates/>
27 <offset position="-0.031750, -0.02850, 0.01575" orientation="0,0,90"/>
28 </body>
29 <body id="upper-chassis" geometry="box" size="0.089510,0.087500,0.034500"
30 mass="0.200">
31 <coordinates/>
32 <offset position="0,0,0.035750"/>
33 </body>
34 <body id="top-fixture" geometry="box" size="0.118600,0.087500,0.010000"
35 mass="0.500">
36 <coordinates/>
37 <offset position=" -0.014545,0,0.07025"/>
38 </body>
39 <body id="lift-fixture" geometry="box" size="0.0585,0.08750,0.28775"
40 mass="0.500">
41 <coordinates/>
42 <offset position="0,0,0.080250"/>
43 </body>
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44 <body id="vertical-link" geometry="box" size="0.004000,0.060000,0.1185"
45 mass="0.250">
46 <coordinates/>
47 <offset position="0.055755,0,0.01975"/>
48 </body>
49 <body id="horizontal -link" geometry="box" size="0.072000,0.060000,0.010000"
50 mass="0.150">
51 <coordinates/>
52 <offset position="0.093755,0,0.055750"/>
53 </body>
54 <!-- for visualization purposes -->
55 <body id="visual-link" geometry="box" size="0.028505,0.060000,0.025000"
56 mass="0.005">
57 <coordinates/>
58 <offset position="0.0435025,0,0.13825"/>
59 </body>
60 <!-- for visualization purposes -->
61 <body id="electromagnet -q1" geometry="cylinder" radius="0.010"
62 height="0.023500" mass="0.010">
63 <coordinates/>
64 <offset position="0.070755,0.023000,0.055750"/>
65 </body>
66 <body id="electromagnet -q2" geometry="cylinder" radius="0.010"
67 height="0.023500" mass="0.010">
68 <coordinates/>
69 <offset position="0.116755,0.023000,0.055750"/>
70 </body>
71 <body id="electromagnet -q3" geometry="cylinder" radius="0.010"
72 height="0.023500" mass="0.010">
73 <coordinates/>
74 <offset position="0.116755,-0.023000,0.055750"/>
75 </body>
76 <body id="electromagnet -q4" geometry="cylinder" radius="0.010"
77 height="0.023500" mass="0.010">
78 <coordinates/>
79 <offset position="0.070755,-0.023000,0.055750"/>
80 </body>
81 </bodies>
82 <joints >
83 <joint id="wheel-front-left:lower -chassis" disable_collisions="true">
84 <frames >
85 <frame body="wheel-front-left" position="0,0,0" orientation="0,0,90"/>
86 <frame body="lower-chassis" position="0.031750, 0.02850, 0.01000"
87 orientation="0,0,0"/>
88 </frames>
89 <axes>
90 <axis direction="y" mode="angular" range="unconstrained">
91 <actuator enabled="true" force="15" target_velocity="0"/>
92 </axis>
93 </axes>
94 </joint>
95 <joint id="wheel-front-right:lower -chassis" disable_collisions="true">
96 <frames >
97 <frame body="wheel-front-right" position="0,0,0"
98 orientation="0,0,-90"/>
99 <frame body="lower-chassis" position="0.031750, -0.02850, 0.01000"

100 orientation="0,0,0"/>
101 </frames>
102 <axes>
103 <axis direction="y" mode="angular" range="unconstrained">
104 <actuator enabled="true" force="15" target_velocity="0"/>
105 </axis>
106 </axes>
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107 </joint>
108 <joint id="wheel-rear-left:lower -chassis" disable_collisions="true">
109 <frames >
110 <frame body="wheel-rear-left" position="0,0,0" orientation="0,0,90"/>
111 <frame body="lower-chassis" position="-0.031750, 0.02850, 0.01000"
112 orientation="0,0,0"/>
113 </frames>
114 <axes>
115 <axis direction="y" mode="angular" range="unconstrained">
116 <actuator enabled="true" force="15" target_velocity="0"/>
117 </axis>
118 </axes>
119 </joint>
120 <joint id="wheel-rear-right:lower -chassis" disable_collisions="true">
121 <frames >
122 <frame body="wheel-rear-right" position="0,0,0" orientation="0,0,-90"/>
123 <frame body="lower-chassis" position="-0.031750, -0.02850, 0.01000"
124 orientation="0,0,0"/>
125 </frames>
126 <axes>
127 <axis direction="y" mode="angular" range="unconstrained">
128 <actuator enabled="true" force="15" target_velocity="0"/>
129 </axis>
130 </axes>
131 </joint>
132 <joint id="upper-chassis:lower -chassis" disable_collisions="true">
133 <frames >
134 <frame body="upper-chassis" position="0,0,0" orientation="0,0,0"/>
135 <frame body="lower-chassis" position="0,0,0.030000"
136 orientation="0,0,0"/>
137 </frames>
138 </joint>
139 <joint id="top-fixture:upper -chassis" disable_collisions="true">
140 <frames >
141 <frame body="top-fixture" position="0.014545,0,0" orientation="0,0,0"/>
142 <frame body="upper-chassis" position="0,0,0.034500"
143 orientation="0,0,0"/>
144 </frames>
145 </joint>
146 <joint id="lift-fixture:top -fixture" disable_collisions="true">
147 <frames >
148 <frame body="lift-fixture" position="0,0,0" orientation="0,0,0"/>
149 <frame body="top-fixture" position="0.014545,0,0.010000"
150 orientation="0,0,0"/>
151 </frames>
152 </joint>
153 <joint id="lift-fixture:vertical -link" disable_collisions="true">
154 <frames >
155 <frame body="lift-fixture" position="0.055755,0,-0.0605"
156 orientation="0,0,0"/>
157 <frame body="vertical -link" position="0,0,0"
158 orientation="0,0,0"/>
159 </frames>
160 <axes>
161 <axis direction="z" mode="linear" range="-0.0005:0.1375">
162 <actuator enabled="true" force="20" target_velocity="0"/>
163 </axis>
164 </axes>
165 </joint>
166 <!-- for visualization purposes -->
167 <joint id="vertical -link:visual -link" disable_collisions="true">
168 <frames >
169 <frame body="vertical -link" position=" -0.0122525,0,0.1185"



130 B Description of an Autonomous Robot in ARGoS

170 orientation="0,0,0"/>
171 <frame body="visual-link" position="0,0,0" orientation="0,0,0"/>
172 </frames>
173 </joint>
174 <!-- for visualization purposes -->
175 <joint id="vertical -link:horizontal -link" disable_collisions="true">
176 <frames >
177 <frame body="vertical -link" position="0.038000,0,0.036"
178 orientation="0,0,0"/>
179 <frame body="horizontal -link" position="0,0,0" orientation="0,0,0"/>
180 </frames>
181 </joint>
182 <joint id="horizontal -link:electromagnet -q1" disable_collisions="true">
183 <frames >
184 <frame body="horizontal -link" position=" -0.023000,0.023000,0"
185 orientation="0,0,0"/>
186 <frame body="electromagnet -q1" position="0,0,0" orientation="0,0,0"/>
187 </frames>
188 </joint>
189 <joint id="horizontal -link:electromagnet -q2" disable_collisions="true">
190 <frames >
191 <frame body="horizontal -link" position="0.023000,0.023000,0"
192 orientation="0,0,0"/>
193 <frame body="electromagnet -q2" position="0,0,0" orientation="0,0,0"/>
194 </frames>
195 </joint>
196 <joint id="horizontal -link:electromagnet -q3" disable_collisions="true">
197 <frames >
198 <frame body="horizontal -link" position="0.023000,-0.023000,0"
199 orientation="0,0,0"/>
200 <frame body="electromagnet -q3" position="0,0,0" orientation="0,0,0"/>
201 </frames>
202 </joint>
203 <joint id="horizontal -link:electromagnet -q4" disable_collisions="true">
204 <frames >
205 <frame body="horizontal -link" position=" -0.023000,-0.023000,0"
206 orientation="0,0,0"/>
207 <frame body="electromagnet -q4" position="0,0,0" orientation="0,0,0"/>
208 </frames>
209 </joint>
210 </joints>
211 <devices >
212 <cameras >
213 <camera id="duovero_camera" enabled="true" body="vertical-link"
214 position="0.056500,0,0.09528" orientation="-90,135,0"
215 principle_point="319.5,179.5" range="0.05:0.50"
216 focal_length="883.961,883.961" resolution="640,360"
217 distortion_parameters="0,0,0"/>
218 </cameras>
219 <proximity_sensors >
220 <sensor body="upper-chassis" range="0.2" direction="-1,0,0"
221 offset=" -0.044755,0.015,0.01"/>
222 <sensor body="upper-chassis" range="0.2" direction="-0.707,0.707,0"
223 offset=" -0.044755,0.04375,0.01"/>
224 <sensor body="upper-chassis" range="0.2" direction="0,1,0"
225 offset=" -0.015,0.04375,0.01"/>
226 <sensor body="upper-chassis" range="0.2" direction="0,1,0"
227 offset="0.015,0.04375,0.01"/>
228 <sensor body="upper-chassis" range="0.2" direction="0.707,0.707,0"
229 offset="0.044755,0.04375,0.01"/>
230 <sensor body="upper-chassis" range="0.2" direction="1,0,0"
231 offset="0.044755,0.015,0.01"/>
232 <sensor body="upper-chassis" range="0.2" direction="1,0,0"
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233 offset="0.044755,-0.015,0.01"/>
234 <sensor body="upper-chassis" range="0.2" direction="0.707,-0.707,0"
235 offset="0.044755,-0.04375,0.01"/>
236 <sensor body="upper-chassis" range="0.2" direction="0,-1,0"
237 offset="0.0150,-0.04375,0.01"/>
238 <sensor body="upper-chassis" range="0.2" direction="0,-1,0"
239 offset=" -0.0150,-0.04375,0.01"/>
240 <sensor body="upper-chassis" range="0.2" direction="-0.707,-0.707,0"
241 offset=" -0.044755,-0.04375,0.01"/>
242 <sensor body="upper-chassis" range="0.2" direction="-1,0,0"
243 offset=" -0.044755,-0.015,0.01"/>
244 <sensor body="horizontal -link" range="0.2" direction="1,0,0"
245 offset="0.036000,0,0.007300"/>
246 <sensor body="horizontal -link" range="0.2" direction="0,0,-1"
247 offset="0.001000,0,0.001000"/>
248 <sensor body="vertical -link" range="0.2" direction="1,0,0"
249 offset="0.002000,0.016000,0.0071"/>
250 <sensor body="vertical -link" range="0.2" direction="1,0,0"
251 offset="0.002000,-0.016000,0.0071"/>
252 </proximity_sensors>
253 <electromagnets >
254 <electromagnet body="electromagnet -q1" passive_field="0,0,165"
255 active_field="0,0,1"/>
256 <electromagnet body="electromagnet -q2" passive_field="0,0,165"
257 active_field="0,0,1"/>
258 <electromagnet body="electromagnet -q3" passive_field="0,0,165"
259 active_field="0,0,1"/>
260 <electromagnet body="electromagnet -q4" passive_field="0,0,165"
261 active_field="0,0,1"/>
262 </electromagnets>
263 <radios >
264 <radio id="radio" body="vertical -link" duplex_mode="half" medium="nfc"
265 position="0.002000,0,0.0071" orientation="0,0,0" range="0.02"/>
266 </radios>
267 </devices>
268 </prototype>
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