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Université Libre de Bruxelles
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Abstract

In this thesis, we use evolutionary robotics techniques to automatically design and syn-
thesise behaviour for groups of simulated and real robots. Our contribution will be on
the design of non-trivial individual and collective behaviour; decisions about solitary or
social behaviour will be temporal and they will be interdependent with communicative
acts. In particular, we study time-based decision-making in a social context: how the
experiences of robots unfold in time and how these experiences influence their interaction
with the rest of the group. We propose three experiments based on non-trivial real-world
cooperative scenarios. First, we study social cooperative categorisation; signalling and
communication evolve in a task where the cooperation among robots is not a priori re-
quired. The communication and categorisation skills of the robots are co-evolved from
scratch, and the emerging time-dependent individual and social behaviour are successfully
tested on real robots. Second, we show on real hardware evidence of the success of evolved
neuro-controllers when controlling two autonomous robots that have to grip each other
(autonomously self-assemble). Our experiment constitutes the first fully evolved approach
on such a task that requires sophisticated and fine sensory-motor coordination, and it
highlights the minimal conditions to achieve assembly in autonomous robots by reducing
the assumptions a priori made by the experimenter to a functional minimum. Third, we
present the first work in the literature to deal with the design of homogeneous control
mechanisms for morphologically heterogeneous robots, that is, robots that do not share
the same hardware characteristics. We show how artificial evolution designs individual
behaviours and communication protocols that allow the cooperation between robots of
different types, by using dynamical neural networks that specialise on-line, depending on
the nature of the morphology of each robot. The experiments briefly described above
contribute to the advancement of the state of the art in evolving neuro-controllers for
collective robotics both from an application-oriented, engineering point of view, as well as
from a more theoretical point of view.
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Chapter 1

Introduction

The history of robotics is arguably traceable back to ancient mythology. According to
the legends and descriptions appearing in Homer’s Iliad, the Greek god Hephaestus (god
of fire and metal works) created mechanical servants in the form of tripods which could
move around on their golden wheels as if they were self-propelled. Hephaestus not only
constructed the equivalent of service rendering robots but even created intelligent and
sensible maids that could speak—mythical entertainment robots. Hephaestus also made
“Thalos”, a copper giant protecting the island of Crete from intruders. This idea does not
differ that much from the “golem”, an animated being created entirely from inanimate
matter according to Jewish tradition. This creature was supposed to serve its master, or
according to the very well known myth, defend the Prague Jewish ghetto.

From then on, science fiction took over: From the robot obeying the three laws of
robotics in Asimov’s I, Robot, to the anthropomorphic robot “Maria” in Fritz Lang’s
Metropolis that manages to convince the workers to engage themselves into a rebellion; all
the way to “The Terminator” at the end of the 20th century.

But how far are we really from artifacts able and ready to loudly and proudly proclaim
what Kraftwerk sung back in 1977: “We are the robots”? Most scientists would agree
that we are very far from that stage. Already getting from the stiff and rigid industrial
manipulators to robots trying to invent their own grammar (Steels, 1999), it took a long
time. And probably to arrive to self-conscious robots it will take even more time. But
after many decades of robotic research, things are starting to move; increasingly more
complex robotic behaviour is exhibited.

Surprisingly, this does not necessarily mean that robots get increasingly more complex.
Scientific research has drifted away from the paradigm of a monolithic omni-potent robot;
instead, the approach of considering groups of robots cooperating and complementing
each other’s skills has become prominent. In order to design such systems, scientists took
inspiration from examples of natural organisms, where simple entities do amazing things
by working together. The nest construction of honey bees and termites are formidable
examples.

In the near future we can expect the appearance of robots that interact amongst
themselves and with humans; that operate in real-world environments, like our world,
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escaping the four walls of the robotic arenas in research labs; that sense the world through
many and very advanced sensors; that can use a large number of sophisticated actuators;
that take complex decisions as individuals, but also as part of a collective.

Individual and collective decision-making in a real-world scenario could endow au-
tonomous agents with the ability to change their behaviour in response to the information
gained through repeated interactions among themselves and with their environment. De-
cisions about solitary or social behaviour may be temporal, and they will be entangled
with communicative acts. As the environment changes, robots should also adapt their
behaviour. For example, they might need to interact with their environment in order to
“realise” that cooperation is needed in order to achieve their goals. We believe that in
order to obtain adaptive decision-making, the latter should be autonomous and a result
of the agent-agent and agent-environment interaction; decisions should not be pre-defined
by the experimenter.

Designing controllers able to tackle such complexity in so many levels is a non-trivial
task. Failure to predict all things that might go wrong, or that could simply occur and
happen to the robots, will lead to robots unable to adapt to changing and unpredictable
environments. Machine learning techniques (Mitchell, 1997), and more specifically auto-
matic design techniques, could be a solution to the aforementioned problem. In the BBC
television documentary following his book (Dawkins, 1986), Richard Dawkins discusses
with John Holland—the “father” of genetic algorithms (Holland, 1975)—about evolving
machines using a process similar to, or more accurately, inspired by Darwinian evolution.
Back in 1986, a technique like that was at its infancy; today, it is embodied into the design
approach called evolutionary robotics (ER).

ER is a method for automatically synthesising robot controllers (Nolfi and Floreano,
2000). It is based on the use of artificial evolution to find sets of parameters for artificial
neural networks that guide the robots to the accomplishment of their task. It is inspired by
the Darwinian principle of selective reproduction of the fittest individual in a population,
and it can exploit the richness of solutions offered by the dynamic robot-robot and robot-
environment interactions, which may not be a priori evident to the experimenter (Dorigo
and Colombetti, 1998; Nolfi and Floreano, 2000; Dorigo et al., 2004; Harvey et al., 2005).

In this thesis, we use ER techniques to automatically synthesise and design behaviour
for groups of simulated and real robots. Our contribution will be on the design of non-
trivial individual and collective behaviour; decisions about solitary or social behaviour
will be temporal and they will be interdependent with communicative acts. In particular,
we study time-based decision-making in a social context: how the experiences of robots
unfold in time and how they influence their interaction with the rest of the group. The
tasks we propose are based on non-trivial real-world cooperative scenarios.

1.1 Original contributions and related publications

Notice that the experiments described do not necessarily follow from each other, but
they are rather independent. However they all share certain important methodological
aspects. First, in all of them we use evolutionary robotics to design collective behaviour



1.1. ORIGINAL CONTRIBUTIONS AND RELATED PUBLICATIONS 3

in a rather prejudice-free fashion. This means that the bias introduced by the choices of
the experimenter will be kept to a functional minimum. Second, in all experiments we
make use of similar dynamical neural networks that can grant the robots the possibility
to make time-dependent decisions, that is, Continuous Time Recurrent Neural Networks
(CTRNNs). Third, all experiments make use of the same robotic platform, that is the
s-bot, a small autonomous robot with self-assembling capabilities that will be presented
in detail in chapter 2, section 2.3.1. Controllers are evolved in a simulated environment
and, for two of our experiments, they are downloaded and tested on the real s-bot. The
simulated s-bot used varies according to the demands of each experiment.

From a more high level point of view, it must be stressed that the experiments are
all about time-dependent decision-making in a social context. Thus, the robots engage
in collective actions, mediated by different types of communication. These types will
range from simple coordination through minimal sensors without the use of explicit and
dedicated communication channels, to complex acoustic signalling interaction.

The contributions brought forth by this thesis can be summarised in the following four
points:

First, we evolved signalling and communication in a task where the cooperation among
robots was not a priori required. We used the evolutionary robotics approach in order to
co-evolve the robots’ communication and categorisation skills from scratch. This means
that artificial evolution had to design at the same time (i) individual time-based decision-
making mechanisms, and (ii) signalling mechanisms in robots that emit signals as well as
reacting mechanisms in robot that receive those signals. Using this design methodology, we
managed to unveil a structural relationship between categorisation and communication,
with the former being a pre-requisite for the latter. This research work is covered in
chapter 4 of this thesis and in the following publications in peer-reviewed international
journals and international conference proceedings:

• C. Ampatzis, E. Tuci, V. Trianni, and M. Dorigo. Evolution of Signalling in a
Group of Robots Controlled by Dynamic Neural Networks. In E. Sahin, W. M.
Spears, and A. F. T. Winfield, editors, Second International Workshop on Swarm
Robotics at SAB 2006, volume 4433 of Lecture Notes in Computer Science, pages
173-188. Springer-Verlag, Berlin, Germany, 2006.

• V. Trianni, C. Ampatzis, A. Christensen, E. Tuci, M. Dorigo, and S. Nolfi. From
Solitary to Collective Behaviours: Decision Making and Cooperation. In Advances
in Artificial Life, Proceedings of ECAL 2007, volume LNAI 4648 of Lecture Notes
in Artificial Intelligence, pages 575-584. Springer-Verlag, Berlin, Germany, 2007.

• C. Ampatzis, E. Tuci, V. Trianni, M. Dorigo. Evolution of Signaling in a Multi-
Robot System: Categorization and Communication. Adaptive Behavior, volume 16,
number 1, pages 5-26, 2008.

Second, we have shown the portability of evolved neuro-controllers, and in particular
evolved CTRNNs, on real robots for tasks where the integration over time of the per-
ceptions of the robots is required. In these tasks, the type of “memory” required is very
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different from tasks where a particular event has to be remembered for some time by
the robot. Instead, the robots are supposed to continuously interact with their environ-
ments (and teammates) in order to eventually make decisions. This contribution has been
covered in chapter 4 of this thesis and in the following publications:

• C. Ampatzis, E. Tuci, V. Trianni, and M. Dorigo. Evolving Communicating Agents
that Integrate Information over Time: A Real Robot Experiment. In E. G. Talbi, P.
Liardet, P. Collet, C. Fonlupt, and E. Lutton, editors, 7th International Conference
on Artificial Evolution, EA’05, pages 1-12, Lille, France, October 2005. University
of Lille.

• C. Ampatzis, E. Tuci, V. Trianni, and M. Dorigo. Evolution of Signalling in a
Group of Robots Controlled by Dynamic Neural Networks. In E. Sahin, W. M.
Spears, and A. F. T. Winfield, editors, Second International Workshop on Swarm
Robotics at SAB 2006, volume 4433 of Lecture Notes in Computer Science, pages
173-188. Springer-Verlag, Berlin, Germany, 2006.

• C. Ampatzis, E. Tuci, V. Trianni, M. Dorigo. Evolution of Signaling in a Multi-
Robot System: Categorization and Communication. Adaptive Behavior, volume 16,
number 1, pages 5-26, 2008.

Third, similarly to the above, we show on real hardware evidence of the success of
evolved neuro-controllers when controlling two autonomous robots that have to grip each
other (autonomously self-assemble). Our experiment constitutes the first fully evolved
approach on such a task that requires sophisticated and fine sensory-motor coordination.
All actuators, including the gripper that is part of the connection mechanism are directly
controlled by the activation of neurons of the CTRNN controller. Moreover, our approach
highlights the minimal conditions to achieve assembly in autonomous robots by reducing
the assumptions a priori made by the experimenter to a functional minimum. The research
line is covered in chapter 5 of this thesis and has led to the writing of the following articles:

• E. Tuci, C. Ampatzis, V. Trianni, A.L. Christensen, M. Dorigo: Self-Assembly in
Physical Autonomous Robots: the Evolutionary Robotics Approach. In S. Bullock,
J. Noble, R. Watson and M.A. Bedau, editors, 11th International Conference on the
Simulation and Synthesis of Living Systems (Artificial Life XI), pages 616-624, The
MIT Press, Cambridge, MA.

• C. Ampatzis, E. Tuci, V. Trianni, A. L. Christensen, M. Dorigo. Evolving Au-
tonomous Self-assembly in Homogeneous Robots. Revised version submitted to the
Artificial Life Journal.

Fourth, we present the first work in the literature to deal with the design of homoge-
neous control mechanisms for morphologically heterogeneous robots, that is robots that do
not share the same hardware characteristics. The research on autonomous self-assembly
mentioned above, showed that the same controller, when downloaded on robots with iden-
tical morphology, can exploit their history of interactions, noise in the sensors/actuators
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and potential differences among the robots hardware in order to cause their specialisation
or allocation of distinct roles. In this work, we explore the same approach, that is, the
same dynamical neural network is ported on a group of simulated robots; however, the goal
this time is to study specialisation in a group of heterogeneous robots. In our experiment,
this corresponds to robots having different sets of sensors at their disposal, but that are
controlled by the same dynamic neuro-controller. By using artificial evolution to design
individual behaviours and the communication protocols that allow the cooperation be-
tween robots of each type, we obtained dynamical neural networks that specialise on-line,
depending on the nature of the morphology of each robot. This research work has been
covered in chapter 6 of this thesis and published in the following peer-reviewed conference
proceedings and international journals:

• E. Tuci, C. Ampatzis, F. Vicentini, and M. Dorigo. Operational Aspects of
the Evolved Signalling Behaviour in a Group of Cooperating and Communicating
Robots. In P. Vogt, Y. Sugita, E. Tuci, and C. Nehaniv, editors, Symbol Ground-
ing and Beyond: Third International Workshop on the Emergence and Evolution of
Linguistic Communication, EELC 2006, volume 4211 of Lecture Notes in Artificial
Intelligence, pages 113-127. Springer-Verlag, Berlin, Germany, 2006.

• E. Tuci, C. Ampatzis, F. Vicentini, and M. Dorigo. Evolved Homogeneous Neuro-
controllers for Robots with Different Sensory Capabilities: Coordinated Motion and
Cooperation. In S. Nolfi, G. Baldassarre, R. Calabretta, J. Hallam, D. Marocco,
J.-A. Meyer, O. Miglino, and D. Parisi, editors, From Animals to Animats 9: 9th

International Conference on Simulation of Adaptive Behavior, SAB 2006, volume
4095 of Lecture Notes in Artificial Intelligence, pages 679-690. Springer-Verlag,
Berlin, Germany, 2006.

• E. Tuci, C. Ampatzis, F. Vicentini, M. Dorigo. Evolving Homogeneous Neuro-
controllers for a Group of Heterogeneous Robots: Coordinated Motion, Cooperation,
and Communication. Artificial Life, 14(2):157-178, 2008.

Furthermore, it should be noted that the research presented in this thesis was partly
supported by the SWARM-BOTS project, and thus the author of this thesis has con-
tributed to the following collective publications (peer-reviewed conference proceedings
and a book chapter):

• M. Dorigo, E. Tuci, R. Gross, V. Trianni, T.H. Labella, S. Nouyan, C. Ampatzis,
J-L Deneubourg, G. Baldassarre, S. Nolfi, F. Mondada, D. Floreano, L.M. Gam-
bardella. The SWARM-BOTS Project. In Proceedings of the First International
Workshop on Swarm Robotics–The 8th International Conference on the Simulation
of Adaptive Behavior (SAB’04), 13-17 July 2004, Los Angeles, CA, USA, Volume
3342, pages 31-44.

• M. Dorigo, E. Tuci, V. Trianni, R. Gross, S. Nouyan, C. Ampatzis, T. H. Labella,
R. O’Grady, M. Bonani, F. Mondada. SWARM-BOT: Design and Implementation
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of Colonies of Self-assembling Robots. Computational Intelligence: Principles and
Practice, Gary Y. Yen and David B. Fogel, editors, IEEE Computational Intelligence
Society, NY, 2006, pages 103–135.

Finally, even though not covered in this thesis since the research work presented falls
out of its scope, original research work concerning the evolution of neural mechanisms for
an iterated discrimination and categorisation task has been performed and presented in
the following peer-reviewed conference paper:

• E. Tuci, C. Ampatzis, and M. Dorigo. Evolving Neural Mechanisms for an Iterated
Discrimination Task: A Robot Based Model. In M. S. Capcarrere, A. A. Freitas,
P. J. Bentley, C. G. Johnson, and J. Timmis, editors, Advances in Artificial Life:
8th European Conference, ECAL 2005, volume 3630 of Lecture Notes in Artificial
Intelligence, pages 231-240. Springer-Verlag, Berlin, Germany, 2005.

1.2 Thesis layout

This thesis is organised into eight chapters. Chapter 2 is dedicated to the background of
the research work presented in the thesis. Here, we briefly present the collective and swarm
robotics research fields and we describe the three projects in which our experimental work
is situated and from which it draws its inspiration and motivations. We also detail, in
section 2.7, the properties of evolutionary robotics, the design methodology used in all
experiments presented. In chapter 3, we review the related work in the evolution of time-
dependent neural structures and the evolution of signalling capabilities and communication
in collective robotics. References to the particular literature that is only relevant for a
specific experiment will be given inside the chapter in which the experiment is discussed.

Chapter 4 details the results of a first series of experiments aimed to unveil the re-
lationship between categorisation and communication, and to study the co-evolution of
time-dependent decision-making and collective behaviour, also reporting on experiments
performed on real robots. In chapter 5, we go on to discuss the results of a second se-
ries of experiments in which we successfully apply evolved dynamical neuro-controllers on
a real-world task, that is, the physical connection between two real autonomous robots.
Chapter 6 deals with the design of homogeneous controllers for morphologically heteroge-
neous simulated robots.

In chapter 7, we present ideas on future work, backed up by two preliminary exper-
iments on the evolution of functional self-assembly and the evolution of more complex
forms of signalling in communicating and cooperating robots. Finally, in chapter 8, we
draw conclusions.



Chapter 2

Background

In this chapter we give the background of the research work presented in this thesis.
We place our experiments in the area of collective robotics, which we briefly present in
section 2.1, but our work is also relevant for a sub-domain of collective robotics, namely
swarm robotics, which we present in section 2.2. In sections 2.3 and 2.4, we present two
completed projects funded by the European Commission, SWARM-BOTS and ECAgents,
and the ANTS project (funded by the French community of Belgium), since our research
has been conducted in the context of these projects; more precisely, it has been conducted
at the intersection of the three projects. The chapter closes with the presentation of the
design methodology that is used throughout all experiments detailed in this thesis, that
is, evolutionary robotics (ER) (see section 2.7).

2.1 Collective robotics

The field of collective robotics focuses on the study of robotic systems that are composed
of a number of autonomous robots which act together in order to reach a common goal.

A multi-robot approach can have many advantages over a single-robot system. First, a
monolithic robot that could accomplish various tasks in varying environmental conditions
is difficult to design; it can in principle be cheaper to build several simpler robots that can
complement each other in order to achieve a common goal than to build one monolithic
robot that can do everything by itself. Moreover, the single-robot approach suffers from
the problem that even small failures of the robotic unit may prevent the accomplishment
of the whole task. On the contrary, in a group of robots there can be enough redundancy
to avoid having one single point of failure. This means that, should one robot fail (due
to, e.g., a mechanical fault), there can be other robots that can replace it or take over
its duties. Clearly, a single robot system would completely fail if its functional unit
experience technical difficulties. Finally, parallelism can lead to more efficient and faster
task execution (V.Jones and Matarić, 2006); we can even have heterogeneous teams of
robots working together by complementing each other (see Parker, 1998; Tang and Parker,
2005, for example).

However, as the size of the group increases, new challenges arise for the control program
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that guides the group to the accomplishment of its task. In particular, the controller has
to take into account the interactions among robots. For example, the group might have
to learn social rules to reduce possible negative interferences (e.g., due to overcrowding,
see Matarić, 1997a; Labella et al., 2006, for examples on collective foraging). Moreover,
should the control be centralised, then it is completely dependent on the communication
system between the central controller and the agents; should the central controller or the
communication system fail, the whole system would collapse. Finally, a system using
complex communication protocols might not be able to scale well with the number of
robots, due to, e.g., limited communication bandwidth.

To address such issues, robotics research began to take inspiration from biological sys-
tems. Nature abounds with examples of decentralised self-organising systems (Camazine
et al., 2001), where animals exhibit complex behaviour at the collective level, regulated
by simple and local communication. Probably the most typical example is the collective
behaviour exhibited by natural swarms of fish schools, bird flocks and social insects as
ants, termites, wasps and bees (see figure 2.1). Swarms in nature stand as fascinating
examples of how collectively intelligent systems can be generated from a large number of
simple individuals following simple and local rules. Such systems are not centralised and
there are no hierarchical structures as leaders. Still, these systems can display very coher-
ent and very complex behaviour. Inspiration from such systems gave rise to the domain
of swarm robotics which we present in the following section.

2.2 Swarm robotics

Swarm robotics is a novel approach to the design and implementation of robotic systems.
These systems are composed of swarms of robots which tightly interact and cooperate to
reach their goal. Swarm robotics draws direct inspiration from biology and its foundations
are firmly rooted in swarm intelligence, the discipline which aims at the design of multi-
agent systems inspired by the efficiency and robustness observed in social insects, such as
ants, bees, wasps and termites (Bonabeau et al., 1999). As an approach, swarm robotics
emphasises aspects like decentralisation of control, local and limited communication among

(a) (b) (c)

Figure 2.1: Natural swarms: (a) Ants forming a chain with their own bodies. (b) A fish
school. (c) A swarm of bees.
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robots and simplicity of the agents and the rules controlling the agents. The desired
properties of the approach that derive from the aforementioned aspects are: (i) flexibility,
that is, ability to adapt to new or changing environmental conditions, (ii) robustness, that
is, ability to continue functioning even in case of failure of some system components, and
(iii) scalability, that is, ability to gracefully handle growing amounts of agents. In a swarm
robotic system, individual robots may be fully autonomous. Some tasks, however, may
only be solvable by larger groups of robots that can overcome the physical constraints or
limited abilities of individual robots.

Swarm robotics could be considered an instance of the more general field of collective
robotics. Dorigo and Şahin (2004) define some criteria to which systems must comply
in order to be considered swarm robotic systems. These criteria are: (i) scalability and
control of large numbers of robots; (ii) homogeneous consistence of the groups; (iii) need
for cooperation when carrying out certain tasks; (iv) use of local and limited sensing and
communication abilities. As the authors highlight, these criteria cannot and should not be
used as a checklist for determining whether a certain study falls into the category of swarm
robotics research or not. Instead, they can give a flavour of the qualitatively distinctive
features of swarm robotics systems, when compared to other multi-robot systems.

The SWARM-BOTS project1 that we present in the next section contributed to the
advance of the state of the art in swarm robotics.

2.3 The SWARM-BOTS project

The SWARM-BOTS project aimed to study new approaches to the design and implemen-
tation of self-organising and self-assembling artifacts through the development of a swarm
robotic system called swarm-bot. The project was situated in the domain of collective and
swarm robotics with a clear focus on the integration of self-assembly into the collective
behaviour exhibited by the robots.

2.3.1 The swarm-bot and the s-bot

A swarm-bot is defined as an artifact composed of a swarm of s-bots, mobile robots with
the ability to physically connect to/disconnect from each other. Also, they can connect
to/disconnect from static objects. S-bots have simple sensors and motors and limited
computational capabilities. Their connection mechanism is used to assemble into a swarm-
bot able to solve problems that cannot be solved by a single s-bot. A swarm-bot is an
assembly of two or more s-bots.

The s-bots are wheeled cylindrical robots with a 5.8 cm radius, equipped with many
sensors useful for the perception of the surrounding environment and for proprioception,
a differential drive system, and a gripper by which they can grasp various objects or
another s-bot (see figure 2.2a). The traction system is composed of both tracks and wheels.
The combination of tracks and wheels provides the s-bot with a differential drive motion,

1A project funded by the Future and Emerging Technologies Programme (IST-FET) of the European
Commission, under grant IST-2000-31010. The project lasted 42 months and was completed successfully
in 2005. See also http://www.swarm-bots.org.
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which is labelled Differential Treels c© Drive. The treels are connected to the chassis, on
which a cylindrical turret is mounted by means of a motorised joint. The turret can
rotate with respect to the chassis, a property that allows the study of problems that were
previously hard to tackle due to hardware constraints, as, for example, the coordinated
motion of an assembled structure. The s-bot is equipped with a traction sensor that
can detect the direction and intensity of the pulling force that the turret exerts on the
chassis. The functionality of the rotating turret and the traction sensor were not used in
our experimentation.

Fifteen infra-red proximity sensors are distributed around the rotating turret, and can
be used to detect obstacles and/or other s-bots. Four proximity sensors (referred to as
floor or ground sensors) are placed under the chassis and can be used for the perception of
holes in the floor. These sensors can also detect the floor’s colour. Furthermore, an s-bot
is provided with eight light sensors distributed around the turret and an omni-directional
camera mounted on the turret. The camera can perceive coloured blobs up to a distance
of approximately 50 cm. On the body of the robot are also mounted four microphones and
one loudspeaker useful for acoustic communication. The loudspeaker can emit a sound
signal of variable frequency and intensity. The signal is perceived by the microphones
and processed by the on-board CPU in order to discriminate the perceived frequency and
intensity. Finally, temperature and humidity sensors, a 3-axis accelerometer and torque
sensors on most joints are also available.

Mounted on the perimeter of the s-bot ’s turret are eight groups of three LEDs that can
light up in different colours (red, green and blue), allowing the robot to display coloured
patterns useful for either communication with other robots or simply their perception by
other robot’s cameras (see figure 2.2a).

The rigid gripper is mounted on the turret and can be used for connecting to other s-
bots or to some objects. The shape of the gripper matches the T-shaped ring placed around
the s-bot ’s turret, so that a firm connection can be established. The gripper can open and
close its claws, but it also has a degree of freedom for lifting the grasped objects. Inside
the gripper claws there is an optical barrier, which is a hardware component composed of
two LEDs and a light sensor. The optical barrier can provide useful information about the

Colour LEDs
Camera

Gripper

(a) (b)

Figure 2.2: (a) A picture of an s-bot, showing the gripper, the colour LEDs and the omni-
directional camera mounted on the turret. (b) An assembled structure (i.e., a swarm-bot)
transporting an object too heavy to be moved by a single s-bot.
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Figure 2.3: Picture of the scenario.

condition of the gripper and/or the presence of objects within the gripper claws. S-bots
are also optionally provided with a flexible arm with three degrees of freedom, on which
a second gripper is mounted—this actuator has not been considered for the experiments
presented in this thesis.

The s-bot is a relatively small robot with a very rich sensory and actuator system
that allows it to interact with its environment and other s-bots in many ways. The most
innovative feature of the s-bot is the connection mechanism. The connection mechanism
allows us to build controllers that will let the s-bots autonomously self-assemble. It also
allows us to control the motion of assembled s-bots moving coordinately. A swarm-bot can
solve tasks beyond the capabilities of the single s-bots. It can, for example, navigate on
rough terrain, where a single robot would topple over, cross gaps too large for the size of the
single robot, or transport objects too heavy to be moved by an s-bot (see figure 2.2b for a
depiction). A swarm-bot can also reconfigure along the way when needed. For example, it
might have to adopt different shapes in order to go through a narrow passage or overcome
an obstacle. Finally, it should be mentioned that there might also be occasions in which
a swarm of independent s-bots is more efficient: for example, when searching for a goal
location or when tracking an optimal path to a goal.

2.3.2 Results and the final scenario

The project’s empirical work focused on the study of the following cooperative tasks:
division of labour (Labella et al., 2006), aggregation (Dorigo et al., 2004), coordinated
motion (Dorigo et al., 2004; Baldassarre et al., 2007), autonomous self-assembly (Groß
et al., 2006a), cooperative transport (Tuci et al., 2006), path formation (Nouyan et al.,
2008a) and cooperative hole avoidance (Trianni et al., 2006; Trianni and Dorigo, 2006).
The final goal of the project was accomplished with the successful realisation of a scenario
that is depicted in figure 2.3 and that can be summarised as follows:

A swarm of up to 35 s-bots must transport a heavy object (called the prey)
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from its initial location to a goal location (called the nest). There are several
possible paths from the initial to the goal location and these paths may have
different lengths and may require avoiding obstacles and holes. The weight of
the object is such that its transportation requires the coordinated work of at
least n s-bots, where n is a parameter.

The above scenario was solved by 12 real s-bots (see Nouyan et al., 2006, 2008b, for
details, and figure 2.4 for snapshots describing the solution) and it included the transport
of a prey object to a nest location. The robots form chains that find the prey in the
environment and subsequently they connected to it and transport it to the nest location.

(a) (b) (c)

Figure 2.4: The scenario solved by 12 s-bots (see Nouyan et al., 2006, 2008b, for details).
(a) The initial setup: the object to be transported (prey) is not connected to the nest; (b)
a chain that connects the prey and the nest is constructed; (c) the robots after connecting
to the prey, transport it and finally bring it to the nest. The images are snapshots taken
from a video complementing (Nouyan et al., 2006).

2.4 The ECAgents project

The ECAgents project2 aimed at: (i) developing a new generation of agents able to evolve
autonomously, self-organise, and operate reliably in dynamic environments; (ii) setting
up the conditions that allow a population of agents to develop a shared communication
language and to share knowledge; (iii) identifying new methods and algorithms that allow
to engineer systems able to self-organise and to display properties emerging from the
interactions between themselves and with the external environment.

In order to study the role of communication, the project considered (i) agents involved
in collective tasks; (ii) communication systems that are not pre-designed by the experi-
menter; instead they emerge from the interactions of the agents among themselves and
with the external environment; (iii) self-organising and evolving communication conven-
tions and underlying ontologies; (iv) experimentation on real agents (e.g., robots).

2A project funded by the Future and Emerging Technologies Programme (IST-FET) of the European
Commission, under grant IST-FET-1940. The project lasted 51 months and ended in March 2008. See
also http://www.ecagents.org.
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Unlike the SWARM-BOTS project, the ECAgents project was not confined in the
domain of collective (or swarm) robotics; it rather tackled more general scientific questions
related to communication among agents, where agents could be humans, animals, robots,
software agents or other technological artifacts.

On a more conceptual axis, it is important to notice that the experiments and the
studies performed during the course of the project contribute to better modelling the
evolution of communication and language in natural organisms. In particular, they help
to shed light on open questions concerning the relationships between, on the one hand,
the evolution and the development of perceptual, cognitive and motor capabilities and,
on the other hand, the emergence of a communicative system and possibly language in a
population of agents. Given that it is impossible to reconstruct the evolutionary route to
communication and language, these experiments on artificial agents can be valuable and
significant tools at our disposal to form plausible hypotheses about the origin of language.

Modelling simple pre-linguistic communication is useful because it puts
further constraints on theories of how language itself evolved—as things stand
there is no room for far too many plausible possibilities. Mathematical and
simulation modelling are necessary steps if we are to go beyond an impasse in
which the proponents of competing theories merely trade rhetoric.

(Noble, 2000a)

2.4.1 Major project outcomes

The project addressed many diverse but also inter-connected scientific questions. In the
following, we mention some of the major project outcomes:3

• The study of chemical communication which plays a central role in the transition
from solitary to social behaviour (see Millor et al., 2006, for example).

• The study of the role of communication network topologies in multi-agent systems
playing language games (see Dall’Asta et al., 2006, for example).

• The identification of selective scenarios for the origin of language (see Szamado and
Szathmary, 2006, for example).

• The study of language and opinion dynamics in multi-agent systems through statis-
tical physics and complex network theory (see Baronchelli et al., 2006, for example).

• The identification of prerequisites for observing the emergence of communication in
a group of initially non-communicating agents (see Mirolli and Parisi, 2008; Flore-
ano et al., 2007; Ampatzis et al., 2008, for examples), and for the evolution of a
communication system with the characteristics of human language (see Steels, 2007,
for example).

3Notice that this list is non-exhaustive; we encourage the interested reader to visit http://www.

ecagents.org for more information.
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• The co-evolution of behavioural and communicative skills from scratch (see Nolfi,
2005; Trianni and Dorigo, 2006; Ampatzis et al., 2008, for examples).

• The study of how a stable and reliable communication system can evolve from scratch
despite possible conflicts of interest between individuals (see Floreano et al., 2007;
Mirolli and Parisi, 2008, for examples).

2.5 The ANTS project

The ANTS project has as a goal to study and to establish the foundations of ant algorithms.
Ant algorithms are inspired by the collective behaviour of social insects and they belong
to the wider research field of swarm intelligence (Bonabeau et al., 1999; Garnier et al.,
2007). They are targeted on engineering applications and they are applied to real-world
optimisation problems (see Dorigo and Stützle, 2004, for details).

The objectives of the project are to:

• Study the theoretical properties of already established algorithms such as the ant
colony optimisation (Dorigo and Stützle, 2004).

• The extensive evaluation of ant algorithms that are not yet sufficiently applied and
tested on concrete problems.

• The identification and study of new ant algorithms.

Apart from the goals mentioned above, another goal of the project is to further the
understanding of self-organisation in social insects (Camazine et al., 2001) in order to
apply the principles extracted to engineering problems. Such problems include: NP-hard
optimisation problems, the decentralised control of a swarm of robots and dynamic task
allocation of resources.

A better understanding of the principles underlying collective behaviour in social in-
sects (and non-human animals in general) could inspire engineers trying to design intel-
ligent robotics systems. As stated in Arkin (1998), “The study of animal behaviour can
provide models that a roboticist can operationalise within a robotic system” (see Nouyan
et al., 2008a, for an example). Thus, the study of animal behaviour, and for this particular
project social insect group behaviour, can offer a lot to collective and swarm robotics.

2.6 At the intersection of the ANTS, the SWARM-BOTS,

and the ECAgents projects

Even if the aforementioned projects had different goals and activities, there is a clear
domain of overlap, which is related to the communication between robots in a collective
robotics scenario. Communication is an issue of central importance in collective robotics,
since it allows and regulates the switch from solitary to social behaviour. This domain
lies at the intersection of the three projects and one can imagine a lot of synergy between
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the research lines. This intersection is exactly where the research work presented in this
thesis is situated.

In collective robotics research, the coordination of the activities in a group of robots
requires the definition of signalling and communicative behaviour among the individuals.
Looking at social insects and at the complexity they achieve even without the use of global,
direct or explicit communication, we can imagine that the communication strategies in a
robotic group need not be particularly complex; simple forms of communication or no
explicit communication at all can be enough to obtain the coordination of the activities of
the group (Kube and Zhang, 1997). This is the case for swarm robotics, which focuses on
simple and local communication, that can scale up with the number of agents involved.
Scalability of the communication protocol is essential to achieve scalability of the system
as a whole (one of the desirable properties of swarm robotic systems).

The two IST-FET projects have shared the same methodology to pursue their objec-
tives, that is, artificial evolution. Evolutionary robotics has been used in the context of
the SWARM-BOTS project from an engineering perspective, that is, to design controllers
for groups or swarms of cooperating robots (see Tuci et al., 2006; Trianni et al., 2006;
Dorigo et al., 2004; Baldassarre et al., 2007; Ampatzis et al., 2005, for examples). In the
ECAgents project, ER has been employed as a methodology to investigate hypotheses on
the evolution of communication in a group of agents (see Marocco and Nolfi, 2006a; Flore-
ano et al., 2007; Mirolli and Parisi, 2008; Ampatzis et al., 2008, for examples). However,
in many cases, even if the stress is on evolving communication, the resulting emergent
signalling phenomena also have an engineering value as they can be used to regulate the
flow of information within a group of cooperating robots.

The two projects have also shared resources in order to accomplish their goals. The
s-bot, the mobile autonomous robot produced in the course of the SWARM-BOTS project,
has been extensively used in the experiments performed in the course of the ECAgents
project.

Furthermore, the two IST-FET projects share the same interest in designing self-
organising robotic systems with the ANTS project. Camazine et al. (2001) define self-
organisation as “a process in which pattern at the global level of a system emerges solely
from numerous interactions among the lower-level components of the system”. Self-
organisation is observed in many animal societies (as, for example, social insects like
ants, bees or termites). From an engineering perspective, there are many advantages in
designing a decentralised self-organising robotic system, as, for example, ability to adapt
to varying environmental conditions and robustness to individual failure (Dorigo et al.,
2004; Trianni and Dorigo, 2006).

In this thesis, as we have already said previously, ER will be the design methodology
employed. Also, we will make use of the real s-bot, or simulated versions of it, as the robotic
platform on which to test our design methodology and the obtained controllers. All the
experiments that will be detailed in the following chapters of this thesis will treat the design
of controllers for autonomous groups of robots, thus they will be experiments contributing
to the advance of research in collective robotics. The design of the experiments will draw
inspiration from the observation of social insect societies; in particular, we will employ
simple communication mechanisms to obtain collective decision-making and coordination
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in a group of robots. The niche of these experiments lies exactly at the intersection of the
two IST-FET projects (SWARM-BOTS and ECAgents) with the ANTS project.

2.7 Evolutionary robotics as a design methodology

In this section we present the design methodology that is used throughout all the ex-
periments detailed in this thesis, that is, evolutionary robotics (ER). In section 2.7.1 we
briefly describe the ER methodology, in section 2.7.2 we present its operating principles
and its properties, and in section 2.7.3 we justify why it was selected as the design method
utilised in our research work, by highlighting its differences to other approaches. Notice
that we will not provide the reader with a full literature review of ER research; instead, in
chapter 3 we will cover those research works which are relevant to the research presented
in this thesis.

2.7.1 What is evolutionary robotics?

The problem of defining a controller for a robotic system has been approached from many
different directions: motion planners (see Choset et al., 2005; LaValle, 2006, for overviews),
artificial potential control (see Spears et al., 2004, for an example), behaviour-based
robotics (see Brooks, 1986, 1991; Arkin, 1998; Balch and Arkin, 1998) and reinforcement
learning systems (Kaelbling et al., 1996; Matarić, 1997b; Dorigo and Colombetti, 1998;
Sutton and Barto, 1988) are only some examples of the possible ways of controlling a
robot. Among these, evolutionary robotics (ER) is a technique for the synthesis of robot
controllers; ER is a methodological tool to automate the design of robots’ controllers (Nolfi
and Floreano, 2000). It is based on the use of artificial evolution to find sets of parameters
for randomly generated sets of controllers. The controllers may consist of rule sets, or can
be decision trees, but the most commonly used are artificial neural networks (ANNs) due
to their versatility, generalisation capabilities and tolerance to noisy sensory input. So,
if the controller is represented as an ANN, an evolutionary algorithm can be applied in
order to optimise the weights, and possibly the morphology, of the networks that guide
the robots to the accomplishment of their task.

ER is inspired by the Darwinian principle of selective reproduction of the fittest indi-
vidual in a population. This means that the individual that adapts best to its environment
has more chances to reproduce and to pass its genetic material to subsequent generations.
The process of searching the design space by mimicking natural evolution is generally
referred to as evolutionary algorithm (Holland, 1975; Goldberg, 1989). In figure 2.5 we
schematically describe the way artificial evolution works. In particular, we describe how
a population of n genotypes, each encoding the control system (and sometimes the mor-
phology) of the robots is generated by the population of the previous generation. Each
genotype of the population at generation k (GEN k) is used to build an artificial neural
network (ANN), that will control each robot (this is the so called homogeneous approach,
where each robot shares the same controller). The robots are tested on a certain task,
their performance is evaluated, and a fitness score (F ) is attributed to the genotype. This
procedure is completed independently for all n genotypes, until we have a fitness score
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Figure 2.5: Depiction of how artificial evolution typically works. The picture shows how
a population of controllers is generated from the previous generation.

attributed to every individual controller. Subsequently, selective reproduction is applied
(fittest controllers reproduce with a higher frequency), and controllers generate copies of
their genetic material, which are modified by genetic operators, such as mutation and
crossover. In this way, we arrive to the next generation of genotypes (GEN k+1). Artifi-
cial evolution usually starts with a random population of individuals and terminates when
a satisfying controller is found that meets the requirements stated by the experimenter in
the performance evaluation.

2.7.2 Properties of evolutionary robotics

This section is dedicated to the presentation of three very important properties of ER:
autonomous decision-making (production of solutions little or not biased by the exper-
imenter) in section 2.7.2.1, co-evolution of communicative and non-communicative be-
haviour in section 2.7.2.2, and efficient solution of the design problem in section 2.7.2.3.
The above properties are in fact the reasons why we chose ER as the design methodology to
pursue our experiments on the design of time-based decision-making and communication.

2.7.2.1 Evolutionary robotics and autonomous decision-making

With respect to other design methods (e.g., back-propagation supervised learning), ER
provides the methodological tools to generate control structure for artificial agents such
as autonomous robots in a relatively prejudice-free fashion (Harvey et al., 2005). For
example, ER does not require the designer to make strong assumptions concerning what
behavioural and/or communication mechanisms are needed by the robots. The experi-
menter defines the characteristics of a solitary/social context in which robots are required
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to cooperate. The agents’ mechanisms for solitary and social behaviour are determined
by an evolutionary process that favours (through selection) those solutions which improve
an agent’s or group’s ability to accomplish its task (i.e., the fitness measure).

The use of artificial evolution minimises the incorporation of design preju-
dices and constraints, as the subtleties and tweaking of architectural detail are
left to the blind forces of evolution, guided only by the selection constraints
imposed by the experimenter on the behaviour, not on the mechanism.

(Harvey et al., 2005)

The above properties give rise to a new realm of possibilities: the automatic process
can find solutions to the problem at hand that were not a priori evident to the experi-
menter (Nolfi and Floreano, 2000; Dorigo et al., 2004). This is due to the fact that the
process can exploit the richness of interactions among robots of a group and between
robots and the environment (Trianni and Dorigo, 2006).

It should be noted that also other reinforcement learning techniques (RL), different
than evolutionary computation, such as those presented in (Sutton and Barto, 1988, e.g.,
Q-learning), only need an evaluation of how good or bad the robots are doing at a given
time; in case a neural network controller is used, the learning algorithm is based on a global
evaluation of the network response, not on a definition of the exact output (Nolfi and
Floreano, 2000). Thus these techniques also require limited supervision. However, ER has
the advantage that, in principle, there is no constraint on what could be learnt; for example,
robot shape, hardware specifications and neural network type, size and connectivity could
be subject to evolution as well.

Of course, in order for the evolutionary process to be prejudice-free, or unbiased by
the experimenter, certain conditions must hold. In ER, the experimenter must come up
with a fitness function which will guide the evolutionary process. The design of the fitness
function will severely influence the resulting control structures and so it can be considered
an unavoidable bias. For example, if the designer of the fitness function encodes in it
the communication protocols the robots should use, then it is evident that the designer
demands that these protocols appear in the resulting controllers. Thus, this could be con-
sidered equivalent or similar to “hard-coding” these communication rules into the robots’
control structures. On the contrary, we can imagine fitness functions that do not interfere
with the individual and social skills the robots can develop in order to solve the task at
hand. Such functions could guide the evolutionary process to areas of the fitness landscape
that correspond to solutions of the task, but without interfering with how the task should
be solved. In that case, more freedom is left to the automatic process.

Furthermore, as we will see in the forthcoming chapter, the choice of the artificial neural
network that will guide the robots in the accomplishment of their task has a significant
influence on the type of solution the automatic design process produces. For example,
using a perceptron as control structure, excludes the possibility that the robots can perform
time-dependent decision-making, because the outputs of a perceptron only depend on its
current inputs. Thus, the universe of possible solutions artificial evolution will search into
is significantly narrowed down. Of course, we should stress again that also the network’s
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morphology can be evolved, possibly increasing even more the autonomy of the automatic
process, but this approach has not been followed in the experiments presented in this
thesis.

Finally, we would like to stress that less designer involvement in a system’s function-
ing might result in agents (and systems) with increased autonomy (Boden, 2008).4 Of
course, as stated in (Di Paolo and Iizuka, 2008), “current work in autonomous robotics
based on ideas of automatic synthesis of design (e.g., evolutionary robotics) and dynamical
systems approaches to cognition, is still far from achieving or even modelling autonomy in
the strong sense”. This is particularly true when robots are confronted with goal-oriented
tasks, as is the case in practically all engineering robotics applications. However, the au-
thors go on suggesting that ER methods might be “the surest route to this goal” (achieving
autonomy).

2.7.2.2 Co-evolution of communicative and non-communicative behaviour

A very important property of the ER approach is that it permits the co-evolution of com-
municative and non-communicative behaviour; different strategies can co-adapt because
selection depends only on an overall evaluation of the group (Nolfi, 2005).

By using ER techniques, an experimenter interested in evolving both individual non-
communicative behaviour and social communicative behaviour, might ask a general ques-
tion as how a group of agents that have to solve a given task might develop forms of
communication that enhance their adaptive capability. In fact, social behaviour and com-
munication can be seen as adaptive skills, part of the behavioural repertoire of the agents,
in close relation and interdependent with the solitary, non-communicative behaviour. As
stated in (Nolfi, 2005):

Communication and language can be properly understood by taking into
account their relation with other important behavioural, social, and cogni-
tive processes... Only by co-adapting their behavioural non-communicative
and communicative abilities, individuals might develop a really useful commu-
nication system grounded in the physical and behavioural characteristics of
communicating individuals and able to exploit active perceptual capabilities.

This co-evolution of behavioural skills paves the way for understanding how we arrive
to communicative acts in cooperative groups of robots. This can be an important step to
better understand the value of communication in a particular setup but also the context
into which it takes place. Moreover, by co-evolving behavioural skills both at the solitary
and the social level, we can obtain agents displaying complex behaviour at both levels.
For example, certain individual cognitive mechanisms can serve as the backbone for the
development of communication mechanisms; the latter in turn can lead to the further
development of the individual mechanisms, and so on.

4The definition of autonomy in robotics is a very controversial issue and a difficult endeavour and it
falls out of the scope of this thesis.
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2.7.2.3 Solving the design problem

Finally, ER represents an effective solution to the design problem. This problem concerns
the decomposition of the group’s activities into interactions between individual agents and
interactions of individual agents with the environment. Both types of interaction are dy-
namic, and therefore difficult or even impossible to predict for an external observer. In such
a context, we believe that evolutionary robotics is the methodology to be exploited (Nolfi
and Floreano, 2000; Harvey et al., 2005). ER bypasses the problem of decomposition at
both the levels of finding the mechanisms that lead to the emergent global behaviour, and
of implementing those mechanisms in a controller for the robots. In fact, ER relies on
the evaluation of the system as a whole, that is, on the emergence of the desired global
behaviour starting from the definition of the individual ones. More specifically, ER opti-
mises the individual controller (for example the weights of an ANN) that will be cloned on
all the robots (in case of the homogeneous approach), on the basis of the global behaviour
which is the result of robot-robot and robot-environment interactions.

Thus, we can say that evolutionary robotics experiments can be designed adopting
a “holistic” approach resulting in artificial systems that resemble natural self-organising
systems. A property of the latter systems is that their functioning cannot be explained
as being due to interactions between independently definable sub-parts; each part is (to
some extent) dependent on other parts for its existence and for its identity and role in the
system (Boden, 2008).

2.7.3 Discussion: advantages, limitations and qualities of ER

Evolutionary robotics provides us with an opportunity to couple an agent’s dynamical
system with the environment’s dynamical system, through sensory-motor interactions.
By exhibiting both situatedness and embodiment (Brooks, 1991), it evaluates a solution
based on the agent’s interaction with its environment (Harvey et al., 2005). Situatedness
refers to robots that are perceiving the world through their sensors, rendering abstract
representations useless since all they need in order to be in the world and display behaviour
can be perceived. Embodiment on the other hand, refers to robots acting the world in
which they are situated; by modifying it they introduce a feedback which they subsequently
receive.

However, situatedness and embodiment are important concepts also for behaviour-
based robotics, another widely used bottom-up method to design robot controllers (Brooks,
1991). We believe that the major difference between this approach and ER lies in the
fact that ER can produce solutions which are less biased by the experimenter. This can
potentially lead to more adaptive systems and to solutions to the problem at hand that
were not a priori evident to the experimenter (see section 2.7.2.1).

In section 2.7.2.1 we also mention reinforcement learning techniques. These techniques
also rely on an evaluation of how well or badly a robot is doing at a particular time, and
therefore represent another approach to the bias-free creation of robotic control systems.
Dorigo and Colombetti (1998) presented an experiment where step-by-step reinforcement
learning helps a real robot perform phototaxis. The authors highlight that applying the
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same reinforcement learning algorithm to multiple robots performing phototaxis should
be straightforward, without having to take into account the specifications of each agent
and without having to directly write a control “program”. That would indeed be true
for a task where the robots are very little or not engaged in collective behaviour. How-
ever, once the degree of inter-dependence of behaviour starts increasing and the utility
of the action of each robot is dependent upon the current and past actions of the other
team members, applying reinforcement learning is not easy, because credit assignment is
hard to define (Parker, 2002). Apart from credit assignment, another important chal-
lenge that arises when applying RL to a multi-robot domain is the prohibitively large
state space (Matarić, 1997b; Fernández et al., 2005). To be able to deal with this issue, re-
searchers define the space at a higher level of description, coming up with basic behaviours
and conditions that trigger them (see Matarić, 1997a; Liu et al., 2005, for examples), or
they limit it to use only attributes that the designer considers necessary and by defining
a set of discretised actions (Fernández et al., 2005).

On the contrary, ER methods do not require behavioural decomposition: the experi-
menter does not have to come up with states or basic modules of behaviour and transition
conditions between the modules. Relying on the evaluation of the group’s behaviour only
at the end, managing this way to bypass the design problem (see section 2.7.2.3), we
believe that ER provides a framework for a less designer-biased automatic synthesis of
controllers for multi-robot systems.

Concerning the engineering value of ER, we believe that the method has large poten-
tialities that derive from its properties, discussed above. The experiments detailed in this
thesis contribute to the advancement of the state of the art in the engineering applications
of ER. However, in order for ER to be considered a viable alternative to manual design
when it comes to real-world engineering applications, several challenges which Matarić and
Cliff (1996) identified more than a decade ago, have still to be overcome. First, the ER
approach still suffers from a lack of a substantial body of works reporting on experiments
on real robots. Since performing evolution directly on the hardware (see Mondada and
Floreano, 1995, for example) can be extremely time-consuming and even dangerous for
the robot, researchers evolve their controllers in a simulated environment. Unfortunately,
the majority of ER research works do not proceed to test these controllers on real robots,
and they only report on experiments in simulation. The problem with this is that being
successful in simulation does not guarantee that the evolved controllers can transfer to re-
ality. This is because it is difficult to accurately simulate physical systems (Brooks, 1991)
and also because possible inaccuracies and abstractions made in simulation can be ex-
ploited by the genetic algorithm; this in turn may result in systems that do not transfer to
reality (Matarić and Cliff, 1996). Moreover, properly setting the noise levels in simulation
based on samples from real sensors has also been identified as a pre-requisite for successful
porting to reality (Miglino et al., 1995; Jakobi, 1997). However, this is not always an easy
endeavour, as it heavily depends on the specific robotic hardware used (Matarić and Cliff,
1996).

Second, it is rather true that the complexity of the tasks solved by groups of robots
controlled by evolved neuro-controllers is lower than the complexity achieved by other
methods using modular or hand-coded controllers. In other words, what Matarić and Cliff
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(1996) was claiming more than a decade ago, still holds:

One of the main goals of the work on evolutionary robotics is to provide
a methodology for automatically synthesising more complex behaviours than
those that can be designed by hand. However, a survey of the results in the
field to date does not show any demonstrations that have reached that goal.

Third, even if ER could in principle reduce the human effort required to design con-
trollers, this is usually not the case, as “the behaviours produced by current evolved con-
trollers are, on the whole, relatively simple, and could have been designed by hand with the
same or lesser amount of effort” (Matarić and Cliff, 1996). In other words, the complexity
achieved by ER approaches seems incommensurate with the effort expended in designing
or configuring the evolutionary system. We believe that the reason for this lies in the
nature of the involvement of the experimenter in the design process. While in other ap-
proaches, the experimenter would have to hard-code a functional solution to the problem,
in ER the involvement is on the one hand reduced, but on the other hand it has to be more
“intelligent”. The experimenter has to identify: (i) the relevant aspects that have to be
modelled, (ii) the sort of fitness function that can lead to efficient solutions, ideally without
interfering with the mechanisms underpinning behaviour, and (iii) initial conditions that
assure evolvability, i.e., the possibility to progressively synthesise better solutions starting
from scratch. This latter point is not trivial and requires a lot of experience on behalf
of the experimenter. Usually the processes described above include a lot of preliminary
evolutionary simulations that require long computation time.

Contrary to the uninformed perceptions at the time when ER was born,
one cannot treat artificial evolution as a magic box capable of solving any
problem one poses to it (and all one must do is just wait). Fortunately, failures
to evolve a desired behaviour, if followed by some analysis of the behaviours
that do evolve, often lead to a revelation of what are the problems one must
overcome as a designer of an evolutionary regime.

(Di Paolo and Iizuka, 2008)

The process of setting up the evolutionary experiment involves a deeper understanding
of the nature of the task the robots face on behalf of the experimenter, who is not simply
demanded to come up with a solution to this task. This might seem to hinder the ap-
plicability of the method on pure engineering tasks where finding one functional solution
to the problem might suffice, but it allows for the research on more abstract questions.
Some sample questions could be: What type of communication is necessary for the robots
to accomplish a given task? What are the minimal conditions for coordination among
robots with a given robotic hardware in a certain environment? What type of memory is
necessary for the robots to solve a certain task?

Such questions are not only relevant in an engineering context; they could be equally
relevant when roboticists are trying to answer questions related to biology, and in partic-
ular animal behaviour. This is because “robots can be used as models of specific animal
systems to test hypotheses regarding the control of behaviour” (Webb, 2000). There are
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several examples in the literature where roboticists are moving in this direction; we will
simply mention two works studying cooperative transport in ants and robots. Kube and
Bonabeau (2000) demonstrated the sufficiency of minimal assumptions to reproduce ant
capabilities such as repositioning dependent on prey size, with a robot model. The au-
thors note that no formal description of the biological phenomenon had been developed.
Similarly, Groß and Dorigo (2008a) arrived to the confirmation of the plausibility of a
hypothesis that has not been further investigated by biologists, that “group transport
in social insects has evolved from situations in which solitary transporters, without being
aware of each other, cooperatively transported a common prey.”

We believe that robotics research can contribute to the understanding of biological
phenomena, regardless of the method employed to define robots’ controllers. Still, we
believe that ER can be particularly suitable for testing hypotheses concerning the nature
of the underlying mechanisms that underpin the agents’ behaviour. Our view is that
ER models can be complementary to other analytical modelling tools at the disposal
of biologists (e.g., game theory models, see Maynard-Smith, 1982, for example). The
latter models allow biologists to predict the outcome of, for example, coordination/anti-
coordination problems (Lewis, 1969), given the set of behavioural strategies available to
the agent and the payoff corresponding to all the possible combinations of actions among
the actors.

ER models have been recently used to predict the evolutionary conditions related to
the emergence of communication in robots (Lipson, 2007; Floreano et al., 2007). This
demonstrates exactly the amount of possibilities for synergy that exist between biology
and robotics, especially when the evolutionary history of the research subject can hardly
be reconstructed (e.g., communication and language). However, we cannot go as far as
to claim that ER practitioners have in their hands a tool that is the artificial counterpart
of natural selection. Artificial evolution is extremely simplified with respect to natural
evolution and it would be näıve to claim that robots undergoing artificial evolution of
their control structures experience the same environmental conditions (and dangers) as
(simple) animals that live in the real world. This is especially true when in the majority
of ER experiments the fitness reward goes directly to the group; unlike animals subject to
natural selection (Dawkins, 1976), individual robots have no conflict of interest.

Thus, the author of this thesis tends to disagree with Harvey et al. (2005) when they
claim that “Natural living systems are...dynamical systems designed through natural Dar-
winian evolution, so it makes sense to consider the artificial equivalent to this design
process”. Should artificial evolution manage to capture all significant elements of Dar-
winian evolution and achieve complexity similar or equal to it, then this argument might
be valid. However, given the simplifications introduced in the way ER is practised, we
would choose it as a design methodology over other approaches for many reasons which
we have explained previously, but not because it is the artificial equivalent to natural
evolution.
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Chapter 3

Related work

In this chapter, we provide a literature review of the related work in the areas of the evo-
lution of time-based decision-making mechanisms and communication. Even if the focus
of this thesis is on collective behaviours, we also discuss research works considering single
agent systems, if the methodology developed there or the results are significant enough
and serve as a basis for research performed on multi-agent systems. Thus, section 3.1.3
treats works where one robot is required to make decisions based on its interaction with
the environment. Notice that the goal of this section is to provide a high level overview of
related work that is common for all experiments to be presented in this thesis; references
to the particular literature that is only relevant for a specific experiment will be given
inside the chapter in which the experiment is discussed.

3.1 Evolutionary robotics and time-dependent decision-

making

In this section we review literature on the issue of evolving time-dependent neural struc-
tures. We start with a distinction between non-reactive and reactive control in sec-
tion 3.1.1, by highlighting the potentialities of the first. Subsequently, in section 3.1.2
we present the neural network type chosen for the experiments detailed in this thesis.
Then we present related work in section 3.1.3. Finally, section 3.1.4 treats the issue of
downloading time-dependent structures on real robots.

3.1.1 Reactive vs non-reactive control

One way of classifying robotic tasks according to their requirements is to make a distinction
between reactive and non-reactive tasks. A reactive task does not require the robots to
display any sort of memory of their interactions with the environment or their teammates,
while in non-reactive task the opposite holds. Similarly, a non-reactive controller is a
controller able to keep memory of previous input patterns while a reactive one can only
produce actions based on the current sensory information. A typical example of the
latter case is the (multi or single-layer) perceptron, extensively used in ER to tackle tasks
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where the robots need to produce the same behaviour whenever the same input pattern
appears (see Baldassarre et al., 2003; Trianni and Dorigo, 2006, for examples). It is
important to stress the fact that a non-reactive controller is a memory-based controller
that is at the same time sensitive to the current sensory information.1

On the contrary, non-reactive control produces behaviour not only dependent on the
current sensory input, but also on past input patterns, either explicitly, or via their in-
fluence on internal states. By internal state we mean a state (e.g., the activation state
of an internal neuron of the control system of a robot) that can be affected by the pre-
vious sensory inputs experienced by the robot and that co-determine, together with the
current sensory input, the robot’s motor actions. By mediating between perception and
actions, internal states can allow agents to produce behaviours that are decoupled from
the immediate circumstances while still remaining sensitive to them. Such agents can
display complex decision-making that depends on time, and thus they can end up being
adaptive than other agents whose behaviour depends only on the current environmental
conditions (Beer, 1995).

In this thesis, we use the definition introduced in (Nolfi and Marocco, 2001). Ac-
cordingly, a reactive robot is a robot that does not have internal states and for which
the current motor action is only dependent on the current sensory state. On the con-
trary, a non-reactive robot relies both on its internal dynamics and on its current sensory
state; motor actions are determined both by sensory information coming from the external
environment and internal states.

There exists a variety of neural networks able to display non-reactive behaviour. Some
examples are the Elman network (Elman, 1990), the Hopfield network (Hopfield, 1982),
spiking neural networks (Maas and Bishop, 1999) and dynamical neural networks (Beer
and Gallagher, 1992). In this thesis we exclusively employ dynamical neural networks
as controllers for our robots, and in particular the Continuous Time Recurrent Neural
Networks (CTRNNs), which is described more in detail in the following section. This
is because we believe that dynamical systems theory provides the required mathematical
formalisms for the description and the analysis of systems whose behaviour unfolds over
time. Thus, time-dependent decision-making in a robot or a robot group can be seen
through the perspective of dynamical system theory, because the interactions among robots
and between robots and the environment are dynamical interactions.

3.1.2 The CTRNN as a control structure

Continuous Time Recurrent Neural Networks (CTRNNs) have been introduced in evo-
lutionary robotics in (Beer, 1995). They are the reflection of a theoretical approach to
cognition which aims to exploit the mathematical tools of dynamical systems theory to
investigate issues of interest in adaptive behaviour research. We can say that an agent ex-
hibits adaptive behaviour when it is able to modify its behaviour with respect to changing
environmental conditions and/or changes in the behaviour of other agents. According to
Beer, there are two fundamental principles which justify the use of the formalism of dynam-

1Notice that the terms reactive and non-reactive might be misleading in other fields, but in robotics
they mean memoryless and memory-based, respectively.
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ical systems theory within the context of adaptive behaviour. First, since the fundamental
nature of adaptive behaviour in natural systems is to generate the appropriate behaviour
at the appropriate time, dynamical systems theory provides the required mathematical
formalisms for the description and the analysis of systems whose behaviour unfolds over
time. For an embodied agent, time can make the difference between an adaptive behaviour
and an unsuccessful one. Second, it looks plausible to consider adaptive behaviour as gen-
erated by causal mechanisms which result from the dynamical interactions of elementary
units such as cells or molecules, rather than generated by the dynamics of the single ele-
mentary units. Thus, in an effort to explain adaptive behaviour, we need to resort to the
structure of the internal dynamics; dynamical systems theory is the right tool to give us
insight into such processes.

CTRNNs represent a convenient way of instantiating a dynamical system to control
the behaviour of autonomous robots. CTRNNs differ from the classical artificial neural
networks (e.g., the perceptron), as they can be expressed as a system of differential equa-
tions. Each node within a CTRNN has its own state—the activation level—whose rate
of change is specified by a time constant associated with each node. Furthermore, the
nodes within the network are self-connected, as well as interconnected in an arbitrary way
with each other. These two features allow the network to develop dynamical behaviour in
which the state of nodes alters the behavioural output of the system even if the sensory
input remains constant.

CTRNNs are arguably the simplest nonlinear, continuous dynamical neural network
model (Beer, 1995)2; however, despite their simplicity, they are universal dynamics ap-
proximators in the sense that, for any finite interval of time, CTRNNs can approximate
any smooth dynamical system arbitrarily well (see Funahashi and Nakamura, 1993, for
details). Finally, fixed weight CTRNNs have been demonstrated to be able to produce
learning behaviour in robots (see Tuci et al., 2002); this goes against the belief that learn-
ing in ANNs necessarily corresponds to weight changes (plastic weights).

3.1.3 The evolution of time-dependent structures

Several studies have described evolutionary simulation models in which time-dependent
structures are evolved to control the behaviour of robots required to make decisions based
on their experiences.

The evolution of time-dependent structures and decision-making mechanisms has been
extensively studied on the T-maze problem (see Ziemke and Thieme, 2002; Blynel and
Floreano, 2003). The robot is required to find its way to a goal location, placed at the
bottom of any of the two arms of the maze. When at the T-junction, the robot has
to decide whether to turn left or right. The correct decision can be made if the agent
is capable of either exploiting perceptual cues which were available to it while it was
navigating down the first corridor, or capable of retaining in its memory something about
previous trials in a similar T-maze. In (Ziemke and Thieme, 2002), weight changing

2Notice that this system is in fact a discrete time network (the network is integrated using the forward
Euler integration method); however, the term Continuous Time Recurrent Neural Network is commonly
used in the literature and will also be used in this thesis.
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mechanisms provide the agents the required plasticity to exploit the relationship between
the location of light signals placed roughly in the middle of the first corridor, and the turn
to make at the junction. Blynel and Floreano (2003) allow the agent to experience the
environment in a first trial, in which the success or failure play the role of a reinforcement
signal, in order to associate the position of the goal with respect to the T-junction. The
work illustrated in (Nolfi, 2002) investigates a discrimination task in which a robot, while
navigating through a maze, must recognise if it is located in one room or another. Here,
the agent exploits environmental cues, such as navigating through subsequent corners of
the maze, and fine-tuned time-dependent structures to take the correct decision.

In (Tuci et al., 2002), evolved CTRNNs provide the agents the required plasticity to
discover the spatial relationship between the position of a landmark and the position of
a goal. In this study, the spatial relationship between the goal and the landmark can
be learnt by “remembering” from previous trials the relative position of the landmark
with respect to the goal. Notice that in this work, which is revisiting the task introduced
in (Yamauchi and Beer, 1994), individual learning is produced by a network with fixed
weights and without weight changing mechanisms. Also, contrary to (Yamauchi and Beer,
1994), a single integrated (i.e., non-modularised) neural network managed to produce both
reactive and non-reactive behaviour.

In the studies reviewed above, the discrimination is based on the recognition of distinc-
tive environmental contingencies and the maintenance of these experiences through time,
as a form of short term memory. However, there are works in the literature in which the
cue which allows the agent to make the discrimination has to deal with the persistence
over time of a perceptual state common to all elements to be distinguished, rather than
with the nature of the cue itself employed to make the discrimination. That is, due to
the nature of the agent’s sensory apparatus, the different types of environment can be dis-
tinguished solely because a perceptual state might be perceived by the agent for a longer
time in one environment than in the others.

Nolfi and Marocco (2001) define agents that exploit internal representations as well
as information directly available from their sensors and that are able to extract their
internal representations autonomously by interacting with the environment, as agents
that are able to integrate sensory-motor information over time. These agents rely on a
mixed strategy in which basic sensory-motor mechanisms are complemented and enhanced
with additional internal mechanisms (see Nolfi and Marocco, 2001). The authors solved
a navigation and a visual discrimination task in changing environmental conditions with
non-reactive controllers—the architecture was feed-forward, but there were hidden neurons
with recurrent connections, and thus this network was able to take time into account—and
proved that these controllers outperform reactive controllers when faced with the same
task. Moreover, they showed that “more complex individuals that are able to integrate
information over time still rely on the same sensory-motor strategy adopted by reactive
individuals and do not discover a completely different strategy.”

Beer (2003b) applied the perspective and tools of dynamical systems theory on the
study of active categorical perception. In particular, he evolved a CTRNN controller for
a simulated agent that had to catch circular objects and to avoid diamond-shaped ones.
Successful agents determined the object width in order to perform the visual discrimination
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and the decision to catch or avoid was a process spanning over time rather than being a
discrete event. The implications of this study on cognitive science were very significant,
since the article adopted a significant anti-representational point of view.

After close examination of the circle-catching, diamond-avoiding agent, we
find no circle or diamond detectors and nothing that resembles a representation
of a circle or a diamond. Appeals to internal representations are not needed
to explain the agent’s behaviour, whereas the right set of dynamical equations
allows us to understand what is going on... It follows then that representations
cannot explain perception and action, because, under Beer’s view, these are
properties of the coupled agent/environment system and not properties of the
internal machinery of the agent.

(De Pinedo and Noble, 2003)

Tuci et al. (2004) designed decision-making mechanisms for an autonomous robot
equipped with simple sensors, which integrates over time its perceptual experience in order
to initiate a simple signalling response. Contrary to other previous similar studies, in this
work the decision-making was uniquely controlled by the time-dependent structures of the
agent’s controller (a fully connected CTRNN), which in turn, are tightly linked to the
mechanisms for sensory-motor coordination. The results of this work showed that a single
dynamical neural network, shaped by evolution, makes an autonomous agent capable of
“feeling” time through the flow of sensations determined by its actions. Further analysis
of the evolved solutions revealed the nature of the selective pressures which facilitate the
evolution of fully discriminating and signalling agents. This research work served as the
basis of our experimental setup described in chapter 4. In section 4.2 we will highlight
similarities and differences between the two experiments.

Finally, a recent research work detailed in (Gigliotta and Nolfi, 2008), describes the
results of an experiment where an e-puck3 robot solves the double T-maze problem and can
memorise the position of the goal. By integrating sensory information over time, evolved
robots generate different internal states associated with the part of the environment where
the robot is located. These states are similar when the robot visits or re-visits the same
environmental location.

3.1.4 Porting non-reactive controllers to real robots

Due to the number of trials needed to test individuals, the design of robot controllers by
means of artificial evolution is usually carried out by using simulation models. However,
the digital medium might fail to take into account phenomena that are important for
the functional properties of the evolved controllers. As a consequence, controllers evolved
in simulation might be less effective in managing real-world sensing and actuation (see
also Matarić and Cliff, 1996). One of the main contributions of our work is to show that
evolved CTRNNs successfully control real robots. This is a practice that has to be taken

3See http://www.e-puck.org/.
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into account to assure that the behaviours we want our robots to display are viable and
observable in the real world and not only in a simulated environment.

There exist several works in the literature that deal with porting an Artificial Neural
Network (ANN) able to display memory to reality. Paine and Tani (2005), Blynel and
Floreano (2003), and Jakobi (1997) all port evolved CTRNNs onto real Khepera robots,
but although the networks used are non-reactive, the tasks described—variations of the
T-maze—are in essence solved by switching through reactive strategies (see Ziemke and
Thieme, 2002). Urzelai and Floreano (2001) downloaded a PNN (Plastic Neural Network)
on a real Khepera, but the solution to the task is also reactive. Quinn et al. (2002) report
on work done on real hardware—on a collective task, but the network they use is based
on model spiking neurons. Recently, Gigliotta and Nolfi (2008) successfully downloaded
a network able to display internal dynamics (it included internal neurons implemented as
leaky integrator neurons) to a real e-puck robot. The task involved a double T-maze and
a robot that had to memorise the location of the target by employing integration over
time of sensory input.

To the best of our knowledge, there is no work in the literature treating the issue of
porting a CTRNN to a real robot for a task that requires the integration over time of the
robot’s perception. Moreover, apart from the work of Quinn et al. (2002), there is no work
involving the porting of non-reactive controllers on a group of real robots (for a collective
task).

3.2 Evolutionary robotics and collective robotics -
The evolution of signalling and communication

In this section we review research work focused on the issue of designing through artifi-
cial evolution neural mechanisms for communicative behaviour in groups of autonomous
robots. Consequently, we do not consider those interesting works on communication in
multi-robot systems in which the mechanisms for social interactions are designed by using
other methods than ER. For a survey of work in those fields, we point the reader to the
following articles: Balch and Arkin (1994); Cao et al. (1997); Fong et al. (2002); Støy
(2001). We also do not mention here works that treat the evolution of communication by
considering conflicts of interest; the focus of the section is to review related work studying
the evolution of cooperative behaviour in autonomous agents.

The first works in the evolution of communication in simple machines, animats or
robots date back to the beginning of the 90’s. MacLennan and Burghardt (1993) report
on a series of experiments whose aim was to evolve cooperative communication in a pop-
ulation of simple machines. The non-embodied agents (called simorgs), are limited to
their local environment, while they are able to modify a global environment that can be
sensed by all simorgs. Selection acts on cooperative simorgs and thus there is a priori
introduced selective pressure for cooperative communication. The control structure of the
simorgs is a finite-state machine (rule table). The results show that if communication is
allowed, the average fitness of the population increases much faster than if communication
is suppressed. Moreover, should the use of communication be enhanced by using a simple
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learning module, the average fitness increase is even faster. This work experimentally
proves the relation between learning and communication; however, the agents considered
are not embodied, and the local and global environments are separated. Also, learning is
not co-evolving with communication but simply considered on/off.

Another important work is the research work of Werner and Dyer (1992). This is
where the idea that there should be no direct pressure on communication was introduced.
More specifically, the authors argue that the fitness of individuals should not depend on the
communication protocol eventually used, but on how well they solve a “natural” task. This
way, evolution is not constrained by the fitness function and it is free to shape “creative”
solutions that rely on unbiased fitness function design (see also chapter 2, section 2.7.2.1
and the discussion on autonomous decision-making). Evolved neural networks are used
as control structures of male and female agents. The task was to co-evolve a population
of embodied simulated males and females who live in a grid world and can agree on the
interpretation of signals emitted only by the females. Females are supposed to guide
the behaviour of perceived males, while the latter are blind and can only perceive the
signals emitted by the females. Indeed, communication evolves and the authors also notice
the evolution of different, competing dialects. In contrast to the work of MacLennan
and Burghardt (1993), this research work is considering a rather realistic task, where
signals have a meaning in the context of the task considered and are not simply abstract
associations.

Di Paolo (2000) performed research on the evolution of acoustic communication be-
tween two agents that have to use sound signals in order to localise and stay close to each
other, in the absence of other sensory proximity information. Employing evolved dynam-
ical neural networks as control units, coordination is achieved through one sound channel
via coupled interactions that resemble turn-taking.

In the seminal work on the evolution of communication, Quinn (2001); Quinn et al.
(2003) managed to achieve the evolution of communication without dedicated channels.
The author(s) evolved neural networks controlling a team of mobile robots for the ability
to move by remaining close to one another. Evolved individuals are able to solve the
coordination problem by communicating through a sequence of sensory-motor interactions.
The evolved neuro-controllers were also tested on real robots (see Quinn et al., 2002).

Still in the domain of social interactions for collective navigation tasks, Baldassarre
et al. (2003) evolved reactive neuro-controllers for a group of homogeneous simulated
robots required to move together towards a target. Contrary to the work described
in (Quinn et al., 2003), Baldassarre et al. made use of a dedicated communication channel
in the form of a loudspeaker continuously emitting a tone and directional microphones.
Similar communication specifications that are again hardly portable on real robotic hard-
ware (at least on the s-bot which was used in these works) were used in (Dorigo et al.,
2004), where a reactive controller is evolved to control simulated robots whose goal is to
aggregate and move straight together.

In (Marocco et al., 2003), the authors describe a research work performed in a simulated
environment, where a robotic arm has to categorise the environment; in detail, the arm has
to discriminate between objects with different shapes by exploring them with its sensory
apparatus. Communication is not represented in the fitness function and its emergence
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is open to evolution. Indeed, it emerges if it concerns parents and offspring. That is,
communication emerges when it is the parents of the individuals that provide information
on the object that their offspring has to actively explore and categorise. It is also shown
that an incremental approach—first evolving the individual categorisation mechanisms
and then allowing for communication—facilitates the emergence of communication. An
important conclusion is that already evolved cognitive structures (as categorisation) can
serve as prerequisites of communication. However, notice that communicating agents are
not sharing the same environment—they are parents and offspring.

Marocco and Nolfi (2006a) report on the results of a collective navigation task, where
the cooperation among the agents is required in order to accomplish their objective. How-
ever, there is no explicit selective pressure on communication and no biases on potential
uses of acoustic signals that the agents can use to communicate. It is important to notice
that the authors assume (i) that the robots can distinguish between self and non-self sound
components, that is, sound emitted by themselves and sound emitted by other robots and
(ii) that the robots are able to distinguish four different directions of sound. These choices
make the implementation of evolved mechanisms on real hardware rather impractical.

Wischmann and Pasemann (2006) present an experiment where robots sharing the
same environment are looking for food patches. Even if communication is not explicitly
rewarded, it emerges since it enhances the group’s behaviour. The authors utilise an
incremental approach in which communication emerged only for a very simple environment
but its use is conserved as the environmental complexity increases. Controllers are evolved
in a realistic simulation but were not transferred on real hardware.

Trianni and Dorigo (2006) managed to evolve signalling behaviours in a collective
hole avoidance task. Once again, without explicit selective pressure on communication, if
robots controlled by simple perceptrons are provided with signalling capabilities, acoustic
communication can emerge since it enhances the performance of the group that otherwise
has to rely solely on physical interactions to solve the reactive task at hand. The evolved
communication protocol was tested on real hardware.

A very important result of this last work is that a fully evolved approach leads to
better results than an approach where the acoustic communication system is hard-coded
into the robots’ controllers. This shows that the automatic process can detect features of
the robot-environment interaction space that may be adaptive or beneficial for the robots;
these features may not always be a priori evident to the experimenter. As we stressed
in chapter 2, section 2.7.2.3, it is difficult or even impossible for an external observer to
predict the dynamic interactions among robots and between robots and environment.



Chapter 4

Experiment I: categorisation and
communication

In this chapter, we report on a series of experiments performed both in simulation and on
real hardware, concerning the relationship between autonomous decision-making and the
evolution of communication, in the context of a categorisation task. These experiments
bring the problem of decision-making together with the interest in self-organising commu-
nicating systems to a real-world scenario, in which the switch from individual to collective
behaviour via an emergent communication protocol can be empirically investigated. In
particular, this switch is governed by time-based decision-making structures that integrate
over time sensory information available to the robots. Moreover, we look at issues directly
implicated in the switch from solitary to collective behaviour, such as the emergence of a
communication system and its relation to the individual decision-making.

In our experimental setup, the shaping of individual mechanisms for categorisation
will be the result of the evolutionary process; we will not impose the way the robot should
perform the categorisation (as for example in providing a Hebbian learning rule). Further-
more, even if the robots will be provided with signalling capabilities, that is, a sensor to
perceive sound and an actuator to emit sound, the use of those signalling capabilities will
be entirely left to evolution. That is, potential signalling protocols are not pre-designed
by the experimenter. On top of those two levels of autonomous decision-making, there
is another level, which concerns the choice between solitary and social behaviour; our
experimental setup will not impose the use of communication to the system.

In section 4.1 we lay down the motivations and the biological background for our
study and in section 4.2 we relate our work to research work in the literature on time-
based decision-making and to research works treating the evolution of communication in
embodied agents. The experimental setup and the description of the task will follow in
section 4.3; results in simulation are presented in section 4.4, while results of experiments
performed on real hardware are presented in section 4.5; the chapter closes with discussion
and conclusions (sections 4.7 and 4.8).
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4.1 Biological background and motivations

Several research works in zoology, and in particular in social foraging, have reported that
the foraging behaviour of animals changes if the animals are situated in a social context.
For example, Elgar (1987) shows that social companionship in house sparrows leads to
higher feeding rates, as each individual eventually spends less time scanning for predators.
Similarly, Fernandez-Juricic et al. (2005) show that while foraging, starlings spend more
time scanning for predators once social information is reduced. A general problem common
to biology and robotics concerns the definition of the mechanisms necessary to decide (i)
when it is better to pursue a particular action in a certain location and when it is better
to leave for pursuing a similar or a different activity in a similar or different location; and
(ii) whether it is better to pursue solitary actions or to initiate cooperative strategies.
This problem is not limited to foraging alone, but it extends to many activities a natural
or artificial agent is required to carry out. Autonomous agents may be asked to change
their behaviour in response to the information gained through repeated interactions with
their environment. For example, in a group of robots, although many individual actions
might be simpler to carry out than a single coordinated activity, they might result less
efficient (see Trianni et al., 2004).

In our study, we focus on the evolution of communication in the form of a simple
signalling system. Nature abounds with examples from social species, where simple (com-
pared to human communication and language) signalling mechanisms are used. For ex-
ample, the alarm calls of vervet monkeys given with respect to the type of predator
approaching have been studied in depth (see Struhsaker, 1967; Seyfarth et al., 1980, for
examples). Alarm calls are also observed in bird species, squirrels, etc. (Hauser, 1997;
Sherman, 1977). Food calls are another example of cooperative signalling. Animals like
chimpanzees attract conspecifics once they discover food resources. The dance of the
honey bee is possibly the most elaborate and striking example (Von Frisch, 1967).

Since Darwin, scientists have been trying to explain the evolution of such altruistic
signals in animal societies. Ethologists justified the existence of such cooperative and
honest signalling by invoking group selection theory: animals behave in such ways so
to maximise the benefit of the group or the species (see Tinbergen, 1964, for example).
However, the alternative of kin selection was presented (Hamilton, 1964) and the näıve
application of group selection as an explanation was shown to be unwarranted (Williams,
1966; Dawkins, 1976). Kin selection suggests that animals can behave with apparent
altruism towards conspecifics since this can be to their own long-term genetic benefit.

Game theoretical models in the 1970s and 80s mathematically demonstrated that
cheating strategies will normally invade populations of honest signallers (Maynard-Smith,
1982). Thus the interest of researchers focused on how to identify conditions that can
lead to the emergence of stable cooperation, as, for example, Hamilton’s kin-selection the-
ory (Hamilton, 1964), reputation-based models (Nowak and Sigmund, 1998; Nowak, 2006),
or the effect of topology (Santos et al., 2006).1 The game theoretical models studying such
issues typically consider signalling capabilities that are built into the agent’s behavioural

1There is a very large amount of literature on these issues, but since it falls out of the scope of this
thesis, we will not refer to any more works.
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capacity. Thus, they do not allow the investigation of the origin of signalling behaviour;
their focus is on the study of the conditions for the stability of communication rather than
on its origin (Noble, 1999).

The experimental setup we use in this work differs in several aspects from these game
theoretical models. First, we are attempting to study the origin of signalling, since sig-
nalling capabilities are evolved (sensors and actuators are available for communication,
but there is no requirement that the robots use them). More specifically, we discuss the
existence of possible cues that served as precursors for the signals employed by our robots,
through the process of ritualisation. Second, in our work the possibility of cheating and
dishonest signalling is excluded, because the evaluation of the fitness of a group of indi-
viduals is done at the group level and the individuals composing the group are genetically
identical clones. Our aim is to understand how communication may emerge in a robotic
system, in the absence of explicit selective pressures. In other words, we aim to under-
stand the conditions under which a group of agents will switch to social behaviour, and
the implications of that switch for the performance of the group in a certain scenario.
Our focus is more on the evolution of signalling than the evolution of cooperation. Our
implementation has been influenced by an ethological perspective, even though this does
not mean that we are trying to do robot ethology.

4.2 Related work

The goal of this section is to highlight similarities and differences between our approach
and our experimental setup and related work in the areas of evolving time-based decision-
making, porting such structures on real robots and the evolution of signalling behaviours
in autonomous robots. This will be done in an effort to bring together works which treat
time-dependent decision-making and social behaviour.

Our approach shares some characteristics with some of the works presented in chap-
ter 3, section 3.2. More specifically, we agree with the ideas developed in (Werner and
Dyer, 1992), concerning the absence of the representation of communication in the fitness
function. Like that, the automatic process can shape the communication in an unbiased
way. Moreover, as in (Wischmann and Pasemann, 2006), communication is not strictly
required to solve the task at hand. The choice between social and solitary behaviour is
left to evolution. However, while in (Wischmann and Pasemann, 2006) social behaviour
is expected to lead to higher fitness values, in our work this is a priori not clear—should
there be any benefit for social behaviour, this should be “discovered” by the evolutionary
process. Also, we want communication and individual cognitive capabilities to co-evolve,
as in (Marocco and Nolfi, 2006a). This might help to shed light on the origins of signalling
behaviours using a rather prejudice-free approach, while in incremental approaches (see
Wischmann and Pasemann, 2006; Marocco et al., 2003, for example) the a priori intro-
duced sequential nature of communication and, for example, individual categorisation can
significantly bias the evolved communication protocol. Thus, our approach can be called
integrated and non-incremental.

Finally, our work will focus on solving a real-world task, that is, we will put particular
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emphasis on porting the evolved signalling strategies on real hardware. This is a focus
that might constrain the space of potential evolved protocols. For example, in (Marocco
and Nolfi, 2006a; Wischmann and Pasemann, 2006) complex signalling protocols emerge,
but their feasibility on real hardware is questionable. The same goes for the experiments
performed in simulation and presented in (Baldassarre et al., 2003; Dorigo et al., 2004);
the evolution of a simple signalling mechanism for robot aggregation and formation move-
ment is documented, but the use of directional microphones makes the communication
specifications hardly portable on real robotic hardware (at least on the s-bot which was
used in these works). On the contrary, the signalling mechanisms used in (Trianni and
Dorigo, 2006) are extremely simple (beeps) and portable on real robots. Our approach
will make use of the same signalling capabilities used in the latter research work, thus a
simple beep that is emitted by any robot and that is perceived by the rest of the team.
Mechanisms for distinguishing between self and non-self components will not be provided
to the robots and their evolution is not the goal of this research work.

Concerning the porting of the evolved neuro-controllers on real robotics hardware, we
find it important to repeat what was already said in chapter 3, section 3.1.4. To the
best of our knowledge, there is no work in the literature treating the issue of porting a
CTRNN to a real robot, for a task that requires the integration over time of the robot’s
perception. In this respect, it is worth noting that the decision-making mechanism relies
on the continuum of the sensory information (i.e., how the sensory inputs unfold in time)
in order to determine subsequent actions. Our experimental setup described in chapter 4.3
treats a task that requires the integration of sensory information over time for a task very
different than the T-maze, where the robots’ decisions will unfold in time. Moreover, the
task will be collective, that is, there is more than one robot involved, thus interactions
among robots of the group will take place. Apart from the work of Quinn et al. (2002),
there is no work involving the porting of non-reactive controllers on a group of real robots.

Overall, the main challenges in porting our controllers to reality are: (i) the possible dis-
ruptive effects on the evolved time-dependent mechanisms caused by the sensor/actuator
noise present in reality, and (ii) the potential inter-robot differences (e.g., subtle hardware
differences, different noise on sensors/actuators, etc.) that might cause robots to behave
differently and that might have negative effects on the individual performance or even on
the performance of the whole group.

4.3 Methods

This section is structured as follows: first we describe the task the robots should solve in
section 4.3.1, then we go on to discuss the simulation model used (see section 4.3.2) and
the controller and the evolutionary algorithm chosen (see section 4.3.3), and we finish by
describing the fitness function in section 4.3.4.

4.3.1 Description of the task

The task we consider is a categorisation task in which two robots are required to discrimi-
nate between two different environments using temporal cues, that is, by integrating their
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Figure 4.1: The task. (a) Env.A is characterised by the way in zone. The target area
is indicated by the dashed circle. (b) In Env.B the target area cannot be reached. The
continuous arrows are an example of a good navigation strategy for one robot.

perceptual inputs over time. At the start of each trial, two simulated robots are placed in
a circular arena with a radius of 120 cm (see figure 4.1), at the centre of which a light bulb
is always turned on. The robots are positioned randomly at a distance between 75 and 95
cm from the light, with a random orientation between −120◦ and +120◦ with respect to
the light. The robots perceive the light through their ambient light sensors. The colour of
the arena floor is white except for a circular band, centred around the lamp covering an
area between 40 and 60 cm from it. The band is divided in three sub-zones of equal width
but coloured differently: light gray, dark gray, and black. Each robot perceives the colour
of the floor through its floor sensors, positioned under its chassis. Robots are not allowed
to cross the black edge of the band close to the light. This black edge can be seen as a
circular trough that prevents the robots from reaching the light. The coloured zones can
be seen as an indication of how close the robots are to the “danger”. There are two types
of environment. In one type—referred to as Env.A—the band has a gap, called the way
in zone, where the floor is white (see figure 4.1a). In the other type, referred to as Env.B,
the band completely surrounds the light (see figure 4.1b). The way in zone represents the
path along which the robots can safely reach the target area in Env.A—an area of 25 cm
around the light. In contrast, the robots cannot reach the proximity of the light in Env.B,
and in this situation their goal is to leave the band and reach a certain distance from the
light source. Robots have to explore the arena, in order to get as close as possible to the
light. If they encounter the circular band they have to start looking for the way in zone
in order to continue approaching the light, and once they find it, they should get closer
to the light and remain in its proximity for 30 sec. After this time interval, the trial is
successfully terminated. If there is no way in zone (i.e., the current environment is an
Env.B), the robots should be capable of “recognising” the absence of the way in zone and
leave the band by performing antiphototaxis.

Each robot is required to use a temporal cue in order to discriminate between Env.A
and Env.B, as in (Tuci et al., 2004). This discrimination is based on the persistence of the
perception of a particular sensorial state (the floor, the light or both) for the amount of
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Figure 4.2: Sensors and motors of the simulated robot. The robot is equipped with four
ambient light sensors (L1 to L4), two floor sensors F1 and F2, 15 proximity sensors (P1

to P15) and a binary sound sensor, called SI (see text for details). The wheel motors are
indicated by M1 and M2. S is the sound signalling system (loudspeaker).

time that, given the trajectory and speed of the robot, corresponds to the time required to
make a loop around the light. The integration over time of the robots’ sensorial inputs is
used to trigger antiphototaxis in Env.B. Communication is not required to solve the task
considered. In particular, the fitness function we use does not explicitly reward the use
of signalling, in contrast with (Tuci et al., 2004).2 However, robots are provided with a
sound signalling system that can be used for communication. The emergence of a signalling
convention by which the robots can affect each other’s behaviour is entirely open to the
dynamics of the evolutionary process. This issue is further discussed in section 4.4.

4.3.2 The simulation model

The controllers are evolved in a simulation environment which models some of the hardware
characteristics of the s-bots (see section 2.3.1). In this work, we make use of four ambient
light sensors, placed at −112.5◦ (L1), −67.5◦ (L2), 67.5◦ (L3), and 112.5◦ (L4) with respect
to the s-bot ’s heading, fifteen infra-red proximity sensors placed around the turret (P1 to
P15), two floor sensors F1 and F2 positioned facing down on the underside of the robot
with a distance of 4.5 cm between them, and an omni-directional sound sensor SI (see
figure 4.2). The motion of the robot implemented by the two wheel actuators (M1 and
M2) is simulated by the differential drive kinematics equations, as presented in (Dudek
and Jenkin, 2000), and a loudspeaker S is available for possible signalling. Light and
proximity sensor values are simulated through a sampling technique (Miglino et al., 1995).
The robot floor sensors assume the following values: 0 if the sensor is positioned over white

2Notice that in the task described in (Tuci et al., 2004) there was only one robot in the environment;
the signal emitted by the robot was used as a means to denote to the experimenter that the robot has
decided it is situated in Env.B.
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floor; 1
3 if the sensor is positioned over light gray floor; 2

3 if the sensor is positioned over
dark gray floor; 1 if the sensor is positioned over black floor. The loudspeaker produces a
binary output (on/off); the sound sensor has no directionality or intensity features. During
evolution, 10% random noise was added to the light and proximity sensor readings, the
motor outputs and the position of the robot. We also added noise of 5% to the reading of
the two floor sensors, by randomly flipping between the four aforementioned values. No
noise was added to the sound sensor.3

4.3.3 The controller and the evolutionary algorithm

We use fully connected, thirteen neuron CTRNNs (Beer and Gallagher, 1992, see figure 4.3
for a depiction of the network and chapter 3, section 3.1.2 for more details). All neurons
are governed by the following state equation:

dyi

dt
=

1

τi



−yi +
13
∑

j=1

ωjiσ(yj + βj) + gIi



 , σ(x) =
1

1 + e−x
(4.1)

where, using terms derived from an analogy with real neurons, τi is the decay constant,
yi represents the cell potential, ωji the strength of the synaptic connection from neuron j
to neuron i, σ(yj + βj) the firing rate, βj the bias term, g the gain and Ii the intensity of
the sensory perturbation on sensory neuron i. The connections of all neurons to sensors
and actuators is shown in figure 4.3. Neurons N1 to N8 receive as input a real value in
the range [0,1]. Neuron N1 takes as input L1+L2

2 , N2 ←
L3+L4

2 , N3 ← F1, N4 ← F2,

N5 ←
P1+P2+P3+P4

4 , N6 ←
P5+P6+P7+P8

4 , N7 ←
P9+P10+P11+P12

4 and N8 ←
P13+P14+P15

3 .
Neuron N9 receives a binary input (i.e., 1 if a tone is emitted by either agent, 0 otherwise)
from the microphone SI, while neurons N10 to N13 do not receive input from any sensor.
The cell potentials (yi) of N11 and N12, mapped into [0,1] by a sigmoid function (σ) and
then linearly scaled into [-4.0 cm

s
, 4.0 cm

s
], set the robot motors output. It is important

to mention that the speed that these values translate to is not the maximum possible
speed of the robot, but only half of it. This is due to the fact that after some initial
experimentation, we found that if we use a faster robot, we have a higher chance of getting
a false reading from the floor sensors and in general a worse sensory-motor coordination.
The cell potential of N13, mapped into [0,1] by a sigmoid function (σ) is used by the
robot to control the sound signalling system (the robot emits a sound if y13 ≥ 0.5). The
parameters ωji, τi, βj and g are genetically encoded. Cell potentials are set to 0 when the
network is initialised or reset, and circuits are integrated using the forward Euler method
with an integration step-size of 0.1.

A simple generational genetic algorithm (GA) is employed to set the parameters of the
networks (Goldberg, 1989). The population contains 100 genotypes. Each genotype is a
vector comprising 196 real values (169 connections, 13 decay constants, 13 bias terms, and

3The reason for this last choice is the fact that the sound sensor proved to be 100% reliable in reality.
Of course, adding noise to the sound sensor would force the simulation to address the issue of the reliability
of the evolved signals and thus produce neural mechanisms able to cope with noisy communication. This
issue, while an interesting one, is beyond the scope of our research work.
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Figure 4.3: The fully connected CTRNN architecture. Neurons are represented as circles.
Circles with the light gray outline represent the input neurons, while circles with the
heavy gray outline represent the output neurons. Only the efferent connections for N1 are
drawn: all other neurons are connected in the same way. We show for all input neurons the
combination of sensors that serve as inputs, and for all output neurons the corresponding
actuator. N10 is not connected to any sensor or actuator.

a gain factor). Initially, a random population of vectors is generated by initialising each
component of each genotype to values chosen uniformly random in the range [0,1]. Subse-
quent generations are produced by a combination of selection with elitism, recombination
and mutation. For each new generation, the three highest scoring individuals (“the elite”)
from the previous generation are retained unchanged. The remainder of the new popula-
tion is generated by fitness-proportional selection from the 70 best individuals of the old
population. New genotypes, except “the elite”, are produced by applying recombination
with a probability of 0.1 and mutation. Mutation entails that a random Gaussian offset is
applied to each real-valued vector component encoded in the genotype, with a probability
of 0.15. The mean of the Gaussian is 0, and its standard deviation is 0.1. During evolution,
all vector component values are constrained within the range [0,1]. Genotype parameters
are linearly mapped to produce CTRNN parameters with the following ranges: biases βj ∈
[-2,2], weights ωji ∈ [−6, 6] and gain factor g ∈ [1,12]. Decay constants are firstly linearly
mapped onto the range [−0.7, 1.7] and then exponentially mapped into τi ∈ [10−0.7,101.7].
The lower bound of τi corresponds to a value slightly smaller than the integration step-size
used to update the controller; the upper bound corresponds to a value slightly bigger than



4.3. METHODS 41

the average time required for a robot to reach and perform a complete loop around the
band in shades of gray.

4.3.4 The fitness function

During evolution, each genotype is coded into a robot controller, and is evaluated for 10
trials, 5 in each environment. Both robots in the ten trials have the same controller, that
is, we use a homogeneous system. The sequence order of environments within the ten trials
does not influence the overall performance of the group since each robot controller is reset
at the beginning of each trial. Each trial differs from the others in the initialisation of the
random number generator, which influences the robots’ starting positions and orientation,
the position and amplitude of the way in zone (between 45◦ to 81◦), and the noise added
to motors and sensors. Within a trial, the robot life-span is 100 sec (1,000 simulation
cycles). The final fitness attributed to each genotype is the average fitness score of the 10
trials. In each trial, the fitness function E is given by the following formula:

E =
E1 + E2

2× (nc + 1)
,

where nc is the number of (virtual) collisions in a trial, that is the number of times the
robots get closer than 2.5 cm to each other (if nc > 3, the trial is terminated) and Ei,
i = 1, 2, is the fitness score of robot i, calculated as follows:

• If the trial is in Env.A, or the robot in either environment has not yet touched the
band in shades of gray or crossed the black edge of the band, then its fitness score

is given by Ei =
di−df

di

.

• Otherwise, that is if the band is reached in Env.B, Ei = 1 +
df−40

dmax−40 .

di is the initial distance of the robot to the light, df is the distance of the robot to
the light at the end of the trial and dmax = 120 cm is the maximum possible distance of
a robot from the light. In cases where roboti ends up in the target area in Env.A, we set
Ei = 2. From the above equations we can see that this is also the maximum value of Ei

that a robot can obtain in Env.B, which corresponds to the robot ending up 120 cm from
the light (df = 120). So if both robots are successful, the trial gets the maximum score of
2.

Notice that the design of the fitness function does not interfere with the individual
strategies that successful robots should employ in order to solve the task at hand. The
robots are simply demanded to perform the discrimination between the two environments.
Moreover, the choice between social and solitary behaviour is also left entirely to evolution,
since this fitness function rewards agents that develop successful discrimination strategies
and end up doing the correct action in each environment, regardless of any use of sound
signalling. That is, a genotype that controls a group that solves the task without any
signalling or communication can in principle achieve the same fitness score as one that
makes use of communication. Should evolution come up with a communication protocol,
this protocol is not predefined by the experimenter. The only level where our experimental
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setup constrains the way evolution can make use of the sound signalling system is of course
the level of the hardware, which cannot evolve.

4.4 Results: simulated agents

In this section, we introduce the evolutionary simulations that we ran in order to obtain
controllers that solve the task introduced in the previous sections and we then present a
series of post-evaluation tests concerning simulated robots, aimed to unveil operational
principles of the evolved behaviour. In section 4.4.1, we show that sound signalling is a
functional element of the behavioural strategies in the majority of successful groups of
robots.

Twenty evolutionary simulation runs, each using a different random initialisation, were
run for 12,000 generations. Thirteen evolutionary runs produced successful groups of
robots. Note that a group is successful if both robots approach the band and subsequently
(i) reach the target area through the way in zone in Env.A; (ii) leave the band performing
antiphototaxis in Env.B. We arbitrarily demand that the successful accomplishment of
this task corresponds to an average fitness score F ≥ 1.8. In those seven evolutionary runs
considered not successful, the fitness score recorded during the evolutionary phase by the
best groups at each generation was always lower than 1.8. For each successful run, we
chose to post-evaluate the best group of each generation whose fitness score was higher
than 1.8.

The post-evaluation tests are meant to provide a better estimate of the behavioural
capabilities of these groups. In fact, the fitness of the best evolved controllers during
evolution might have been an overestimation of their ability to guide the robots in the
task. In general, the best fitness scores take advantage of favourable conditions, which
are determined by the existence of inter-generational variation in starting position and
orientation and other simulation parameters. The entire set of post-evaluations should
establish whether the groups chosen from the thirteen successful runs can effectively solve
the task and at the same time ascertain whether signalling behaviour characterised the
successful strategies. We employed the average fitness score F over a set of 500 trials
in each type of environment as a quantitative measure of the effectiveness of the evolved
groups’ strategy.

Table 4.1 shows, for each successful evolutionary run (i), the results of the best group
among those chosen for post-evaluation. These groups are referred to as gi. We can notice
that all these groups achieve an average fitness score in each environment higher than 1.8
(see table 4.1 columns 2, 3, 6, and 7). Thus, they proved to be particularly successful
in performing the task. The post-evaluation tests also reveal that among the successful
groups, nine groups (g1, g2, g5, g6, g7, g8, g9, g13, g19) make use of sound signalling.
In particular, the use of sound strongly characterises the behavioural strategies of the
groups when they are located in Env.B. In Env.A signalling is, for all these groups, rather
negligible—see table 4.1 columns 4, 5, 8, and 9, which refer to the average percentage and
standard deviation of the time either robot emits a signal during a trial. In groups g10,
g14, g16, g18, the robots do not emit sound during post-evaluation in either environment.
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4.4.1 Sound signalling and communication

The results of post-evaluation analyses carried out so far have shown that in nine of the
best evolved groups, the robots emit sound during the accomplishment of the task in
Env.B. Note that the emission of sound is not demanded in order to navigate towards
the target and discriminate Env.A from Env.B. Indeed, the task and the fitness function
do not require the robots to display signalling behaviour (see section 4.3.4). Mechanisms
for phototaxis, antiphototaxis, and memory are sufficient for each robot to accomplish
the task. Therefore, in this section we show the results of further post-evaluation tests on
those groups in which the robots emit sound during the accomplishment of the task. These
tests aim to determine whether sound has a functional significance within the behavioural
strategies of the groups and, if the answer is positive, to identify the adaptive function of
sound use.

4.4.1.1 Behavioural features and mechanisms

We looked at the behaviour of the robots that emit sound during a successful trial in each
type of environment. During each trial, we recorded for each robot of a group the distance
to the light and the change over time of the sound output (i.e., cell potential of neuron N13

mapped into [0.0, 1.0] by a sigmoid function σ). These two variables are recorded both in
a normal condition and in a condition in which the robots can not hear each other’s sound

group Env.A Env.B

fitness signalling (%) fitness signalling (%)

mean sd mean sd mean sd mean sd

g1 1.92 0.31 0.00 0.00 1.98 0.13 17.39 0.30

g2 1.94 0.28 0.72 3.72 1.99 0.00 18.22 1.36

g5 1.99 0.10 0.00 0.00 1.98 0.10 13.36 1.58

g6 1.96 0.21 0.00 0.00 1.99 0.11 16.47 2.38

g7 1.99 0.11 0.00 0.00 1.95 0.21 15.06 2.82

g8 1.96 0.25 0.00 0.00 1.99 0.02 16.47 2.08

g9 1.99 0.12 0.00 0.00 1.97 0.16 16.38 2.62

g10 1.91 0.31 0.00 0.00 1.91 0.36 0.00 0.00

g13 1.87 0.43 1.72 8.14 1.95 0.09 20.88 2.44

g14 1.96 0.17 0.00 0.00 1.98 0.17 0.00 0.00

g16 1.89 0.33 0.00 0.00 1.94 0.27 0.00 0.00

g18 1.81 0.45 0.00 0.00 1.87 0.16 0.00 0.00

g19 1.91 0.27 0.00 0.00 1.98 0.06 12.65 0.99

Table 4.1: Results of post-evaluation tests showing for each best evolved successful group
of each evolutionary run (gi): the average and standard deviation of the fitness over 500
trials in Env.A (see columns 2, and 3) and in Env.B (see columns 6, and 7); the average
and standard deviation of the percentage of timesteps sound was emitted by either robot
over 500 trials in Env.A (see columns 4, and 5) and in Env.B (see columns 8, and 9).
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Figure 4.4: The graphs show some features of the behaviour of the group of robots g2 at
each timestep of a successful trial in Env.B. Graphs (a) and (b) show the robots’ distance
to the light. The areas in shades of gray represent the circular band. Graphs (c) and
(d) show the cell potential of neuron N13 mapped into [0.0, 1.0] by a sigmoid function σ
(i.e., the sound output) of each robot controller. Graphs (a) and (c) refer to the normal
condition. Graphs (b) and (d) refer to the not-other-sound condition (i.e., the robots do
not hear each other’s sound). Robot 1—see continuous lines—is always initialised closer
to the light than Robot 2—see dashed lines.

(i.e., the not-other-sound condition). In the latter circumstances, the input of neuron N9

of each robot controller is set to 1 only if the sound in the environment is produced by the
robot itself. Figure 4.4 shows the results of the tests for robots of group g2 in Env.B. We
show only the results of one signalling group (i.e., g2) since it turned out that the groups
that emit sound in Env.B share the same behavioural strategies. Therefore, everything
that is said for group g2 with respect to sound signalling, applies to groups g1, g5, g6, g7,
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g8, g9, g13, g19.

In figure 4.4a, and 4.4b, continuous and dashed lines refer to the robot-light distances
in, respectively, the normal condition and the not-other-sound condition. In both figures,
the areas in shades of gray represent the circular band. From these figures, we can recognise
three phases in the behaviour of the robots. In the first phase, the robot-light distance
initially decreases for both robots (phototaxis phase). When the robots touch the band,
the distance to the light remains quite constant as the robots circle around the band
trying to find the way in zone (integration over time phase). In the third phase the robot-
light distances increase and reach their maximum at the end of the trial (antiphototaxis
phase). We immediately notice that the behaviour of the robots in the normal condition
(see figure 4.4a) only slightly differs from what observed in the not-other-sound condition
(see figure 4.4b). The only difference concerns the third phase. In particular, while in
the normal condition both robots begin to move away from the light at the same time, in
the not-other-sound condition Robot 2 initiates the antiphototactic behaviour after Robot
1. If observed with respect to how the robots’ sound output unfolds in time, this small
behavioural difference turns out to be an extremely indicative cue as to the function of
sound.

Figure 4.4c, and 4.4d show that for both robots the sound output changes smoothly
and in the same way in both conditions. During the phototaxis phase, the sound output
decreases. During the integration over time phase, this trend is reversed. The sound
output starts to increase up to the point at which its value rises over the threshold of
0.5. The increment seems to be induced by the persistence of a particular sensory state
corresponding to the robot moving around the light on the band. Once the sound output
of a robot increases over the threshold set to 0.5, that robot starts emitting a tone. In
the normal condition we notice that, as soon as the sound output of Robot 1 rises over
the threshold of 0.5 (see continuous line in figure 4.4c around timestep 650) both robots
initiate an antiphototactic movement. Robot 2 leaves the band the moment Robot 1 emits
a signal, despite the fact that its own sound output is not yet over the threshold of 0.5.
Contrary to this, in the not-other-sound condition we notice that Robot 2 does not leave
the band at the same time as Robot 1, but it initiates antiphototaxis only at the time
when it starts emitting its own sound (see dashed line in figure 4.4d around timestep 830).

To qualitatively describe the behaviour of the robots in Env.A, we point the reader
to figure 4.5; in figure 4.5a, continuous and dashed lines refer to the robot-light distances
in the normal condition. From this figure, once again we can recognise three phases in
the behaviour of the robots. In the first phase, the robot-light distance initially decreases
for both robots (phototaxis phase). When the robots touch the band, the distance to
the light remains quite constant as the robots circle around the band trying to find the
way in zone (integration over time phase). In the third phase, the robot-light distances
decrease as the robots find the target area after they approach the light through the way
in zone. When signalling groups are located in Env.A, as can be observed in figure 4.5b,
the robots’ sound output undergoes a trend similar to the one shown in figure 4.4c. That
is, it decreases during the initial phototactic phase and starts rising during the integration
over time phase. However, when the robots are placed in Env.A, the increment of their
sound output is interrupted by the encounter of the way in zone (see figure 4.5b, around
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Figure 4.5: The graphs show some features of the behaviour of the group of robots g2 at
each timestep of a successful trial in Env.A. Graph (a) shows the robots’ distance to the
light. The areas in shades of gray represent the circular band. Graph (c) shows the cell
potential of neuron N13 mapped into [0.0, 1.0] by a sigmoid function σ (i.e., the sound
output) of each robot controller. Both graphs refer to the normal condition. Robot 1—see
continuous lines—is always initialised closer to the light than Robot 2—see dashed lines.

280 timesteps). As soon as the robot gets closer to the light via the way in zone, the sound
output begins to decrease. This process has been shaped by evolution in such a way that,
in order for the sound output to rise over the threshold of 0.5, it must be the case that no
way in zone has been encountered by the robots. In other words, it takes more or less the
time to make a loop around the light while moving on the circular band for a robot’s sound
output to rise over the threshold. Consequently, when the robot is located in Env.A, no
sound is emitted. Those post-evaluation trials in which sound has been recorded in Env.A
in signalling groups (see table 4.1 columns 4, and 5, groups g2, and g13) were due to the
effect of noise on perception and navigation trajectories; consequently, the sound output
of either robot erroneously rose above the threshold.

4.4.1.2 The role of sound

The way in which the distance to the light and the sound output of each robot change over
time in the two experimental conditions suggests that the sound is functionally relevant
to the accomplishment of the task. In particular, the signalling behaviour seems to be
strongly linked to mechanisms for environmental categorisation. As long as the latter
mechanisms work properly, the emission of sound after approximately one loop around
the light becomes a perceptual cue that reliably indicates to a robot the necessity to
move away from the light. Moreover, sound has a communicative function: that is, once
broadcast into the environment by one robot (e.g., Robot 1 in normal condition), it changes
the behaviour of the other robot (i.e., Robot 2 in normal condition) which stops circuiting
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Group g2
Env.A Env.B

fitness signalling (%) fitness signalling (%) Robot 1 (df ) Robot 2 (df )

mean sd mean sd mean sd mean sd mean sd mean sd

1.97 0.16 1.35 7.03 1.26 0.09 51.13 4.35 66.52 14.46 54.90 3.12

1.94 0.28 0.72 3.72 1.99 0.00 18.22 1.36 119.65 0.20 119.64 0.20

Table 4.2: Deaf setup (robots’ sound inputs set to 0): results of post-evaluation test
showing for group g2 the average and standard deviation of the fitness over 500 trials
in Env.A (see columns 1, and 2) and in Env.B (see columns 5, and 6); the average and
standard deviation of the percentage of timesteps the sound was on by either robot over
500 trials in Env.A (see columns 3, and 4) and in Env.B (see columns 7, and 8); the average
and standard deviation of the final distance (df ) of each robot to the light in Env.B (see
columns 9, 10, 11, and 12). The row in gray shows again the result of group g2 in the
normal condition, with no disruptions applied to the propagation of sound signals.

around the light and initiates antiphototaxis (see figure 4.4a and 4.4b).

To further test the causal relationship between the emission of sound and the switch
from phototaxis to antiphototaxis, we performed further post-evaluation tests. In these
tests, we post-evaluated group g2 for 500 trials in Env.A and 500 trials in Env.B, in
conditions in which the robots are not capable of perceiving sound. That is, their sound
input is set to 0 regardless of whether any agent emits a signal. We refer to this condition
as the deaf setup. We remind the reader that similar phenomena to the one concerning
g2 and illustrated in table 4.2, have been observed for all the other signalling groups. As
far as it concerns Env.A, the average fitness of the group does not differ much from the
average fitness obtained in the normal setup (see table 4.2 column 1 and 2). Concerning
Env.B, the average fitness of the group is lower than the average fitness recorded in the
normal setup (see table 4.2 column 5, and 6). Moreover, the robots’ average final distance
to the light is only about the same as the radius of the outer edge of the band (i.e., 60
cm to the light; see table 4.2 columns 9, 10, 11, and 12). Given that the robots never
collided, the decrease of the average fitness recorded in Env.B in the deaf setup can only
be attributed to the fact that the robots do not perform antiphototaxis. This confirms
that, in conditions in which the robots can not hear any sound, they do not switch from
phototaxis to antiphototaxis. The role of sound is indeed to trigger antiphototaxis in both
the emitter and the robot that is not emitting a tone yet.

4.4.1.3 Neural functionality and lesion analysis

In the case of a robot of a signalling group (e.g., g2), we have seen above that the output of
N13 (sound output) is integrating the information over time by rising and passing over the
threshold of 0.5 when the discrimination is performed. But since this is not the case for
non-signalling groups (e.g., g10), we should look elsewhere to find a neuron that performs
the integration. In figure 4.6 we plot the distance to the light as well as the firing rates
of all the neurons of the network, for one robot of groups g2 and g10, over time for both
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environments, during a successful trial. Notice that these values are not passed through
the sigmoid function, that is why the plot for N13 is different than the one in figure 4.4c,
where we plot the sound output (cell potential passed through the sigmoid function). We
notice that for group g2 there is N3 (that takes input from one floor sensor) whose firing
rate’s evolution through time has the characteristics defined above: starts rising (from 0)
when the robots start circling around the band (approximately constant distance to light)
and, in case the way in zone is encountered, it stops rising and starts decreasing; in case
the agent is in Env.B, it continues to rise and eventually passes beyond the threshold.
Immediately after we notice that the robot is leaving the band. This suggests that there
is also an internal integration mechanism, apart from the one present in the activation of
the sound output neuron. Concerning the behaviour of the robot of group g10, the neuron
that plays this role is N5 (that takes input from a combination of proximity sensors).
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Figure 4.6: Plot of the distance to the light (box at the top) and of the firing rate of all
neurons with time for a robot of g2 (continuous lines) and g10 (dashed lines)
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Table 4.3: Results of the lesion analysis for groups g2 and g10. After introducing a lesion in
all neurons of the network (N1 −N13), we measure the mean of the average final distance
df of the two robots in 500 evaluations in both environments.

neuron mean of the average df of the two robots

g10 g2
Env.A Env.B Env.A Env.B

N1 77.25 92.09 63.73 62.49

N2 21.26 118.11 18.08 119.64

N3 17.72 78.56 17.37 53.23

N4 45.94 45.15 38.93 41.95

N5 16.40 53.07 18.09 119.66

N6 20.18 118.82 17.69 119.47

N7 24.31 119.63 18.83 119.65

N8 22.02 119.68 17.86 119.63

N9 17.15 60.57 16.72 53.13

N10 19.65 117.37 17.51 119.65

N11 108.99 112.57 102.38 106.88

N12 81.34 90.21 42.58 43.98

N13 20.09 119.59 17.87 58.58

To prove that these neurons are indeed essential for the discrimination to take place,
we introduce lesions in the robot controllers which selectively damage the functionality of
one neuron at a time.4 Specifically, we confine the value of the firing rate of a neuron to
the average value observed throughout the robots lifetime and we re-evaluate the system
with the new conditions. We are interested in discovering the functionality of each neuron
in the network and also which neurons are indeed tied to the discrimination mechanism.
Table 4.3 gives us the results of this lesion analysis, by displaying the average final distance
of the two agents over 500 evaluations in Env.A and 500 in Env.B, for g10 and g2. What
we notice is that N3 is the integration neuron for g2 and N5 for g10, and without them
the robots are unable to trigger antiphototaxis (the average distances for Env.A suggest
that they do find the way in zone, while for Env.B that they stay on the band). For g2,
the sound input and output neurons are essential to complete the task in Env.B. What is
surprising though is that if N9 (sound input neuron) is disturbed, g10’s performance gets
disrupted, despite the fact that as we saw this genotype does not rely on the presence of
sound to trigger antiphototaxis. In detail, what happens is that the disruption prevents
robots from performing antiphototaxis in Env.B, while they are able to find the way in
zone in Env.A. In section 4.7 we provide further details on this behaviour.

To summarise, we can say that for all the best evolved groups of robots, there is a

4A more complete lesion analysis should also investigate the effect of introduction of lesions to groups of
neurons, in order to test the relationship and interplay among neurons. Instead, our analysis is simplified
and focuses on the study of the functionality of one neuron at a time, which proved to be enough to infer
some basic operational principles of our system.
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neuron other than the sound output neuron whose firing rate behaves similarly to neuron
N13 of the robots in group g2. That is, there is a neuron whose firing rate increases in
response to the persistence of the sensory states associated with moving around the light
on the band. For groups that never emit sound (i.e., g10, g14, g16, g18), if this increase is not
interrupted by the encounter of the way in zone, it eventually induces antiphototaxis. For
groups that emit sound (i.e., g1, g2, g5, g6, g7, g8, g9, g13, g19), this mechanism is linked to
the behaviour of neuron N13 as shown in figure 4.4c. The relationship between mechanisms
for integration of time and neuron N13 (which is responsible for sound emission) is the
basic difference between signalling and non-signalling groups.

4.5 Transfer to real robots

The task described in this chapter is characterised by the fact that not only the change
but also the persistence of particular sensorial states is directly linked to the effectiveness
of the evolved strategies. These strategies are generated by robot controllers developed
in a simulated world that is responsible for modelling the sensory states of s-bots acting
in Env.A or Env.B. Our simulated world (see section 4.3.2) models only a small subset
of the s-bot world physics, since it has been designed to speed up a particularly long
evaluation process (i.e., 12,000 generations, 100 genotypes, 10 evaluation trials for each
genotype, 1,000 simulated time cycles for each trial). Also, it does not model potential
inter-robot differences. As mentioned in section 4.3.2, we compensate for the effect of those
physical phenomena not modelled (e.g., acceleration, friction, inter-robot differences, etc.),
by adding random noise to the light and proximity sensor readings, the motor outputs,
the position of the robot, and the reading of the two floor sensors. However, there is
always the risk that the physics of our simulated world are insufficiently or incorrectly
defined, and that the evolved behavioural strategies exploit loopholes which limit their
effectiveness to an unrealistic scenario. Porting the controllers evolved in simulation onto
a real robot is the best way to rule out the above mentioned problem (Brooks, 1992). As
pointed out in section 4.2, this step has not previously been taken in previous research
work in which CTRNNs have been evolved to deal with tasks that required the integration
over time of sensory states. In this section, we provide evidence of the “portability” of
the evolved controllers by showing the results of tests in which real robots are repeatedly
evaluated in Env.A and Env.B. We chose to re-evaluate the controller of the successful
group g2 because this group during post-evaluation achieved a very high performance,
but also because in preliminary tests, among other equally successful controllers, this one
seemed to achieve the best sensory-motor coordination when downloaded on a group of
real robots. Experiments are performed with groups of two and four s-bots.

Jakobi (1997) claims that the robot does not have to act identically in simulation and
reality for the porting to be called successful. In fact, it is enough that its behaviour
satisfies some criteria defined by the experimenter. Following this principle, real robots
are considered successful if they carry out the main requirements of our task. That is, the
robots have to reach the band in shades of gray regardless of the type of environment and
subsequently (i) end up in the target area in Env.A, without crossing the inner black edge
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arena Env.A Env.B

(a) (b) (c)

Figure 4.7: The experimental setup. (a) A picture of the arena, with the points around the
band showing the locations where the robots were randomly positioned. (b) A snapshot
of a trial in which two robots find the way in zone in Env.A. (c) A snapshot of a trial in
Env.B. The robot with the lighter turret colour is the one that has signalled the absence
of a way in zone. Both robots have left the band and are performing antiphototaxis.

of the circular band; (ii) end up as far as possible from the light in Env.B. The robots
should also avoid collisions.

4.5.1 Experiments with two s-bots

In our real-world experimental setup, two s-bots (s-bot1 and s-bot2) are randomly posi-
tioned at a distance of 85 cm from the light. We performed 40 trials, 20 in each envi-
ronment. Each trial differs from the others for the randomly defined initial position and
orientation of the robots, and for the position of the way in zone in Env.A. The initial
position of the robots is randomly chosen among one of the sixteen possible starting posi-
tions which surround the light (see figure 4.7a). The width of the way in zone is fixed to
45◦, which is the smallest value encountered during evolution and the most difficult case
for a possible misidentification of an Env.A for an Env.B. The s-bots proved to be 100%
successful in both environments: there were no mistakes in discrimination, no collisions,
and no crossing of the black edge of the band.5 As was the case for the simulated robots
of group g2, the s-bots accomplished the task by using sound in a communicative context.
That is, the sound emitted by one s-bot triggers antiphototaxis in both robots. The fol-
lowing paragraphs provide further quantitative descriptions of the behaviour of simulated
and real robots. This data will help to quantify the extent to which the behaviour of
simulated robots diverges from the behaviour of real robots and to evaluate the reliability
of our simulated world as a tool for developing controllers for real robots.

Given the nature of the successful strategy of group g2, the start of the emission of
a tone can be used as a sign which precisely indicates when an s-bot has reached the
conclusion that it is located in Env.B rather than Env.A. We compute the offset between
the entrance position in the circular band of the robot that first emits a signal and the
position at which this robot starts to signal. This measure, called offset ∆, takes value

5The movies that correspond to these experiments can be found at http://iridia.ulb.ac.be/supp/

IridiaSupp2006-007.
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0◦ if the robot signals exactly after covering a complete loop around the circular band.
Negative values of the offset ∆ suggest that the robot signals before having performed a
complete loop, while positive values correspond to the situation in which the robot emits
a tone after having performed a loop around the light. The offset ∆ is used to compare
the behaviour of simulated and real robots, and is computed as follows (Tuci et al., 2004):

∆ = |α(te, ts)| − 2π, (4.2)

α(t1, t2) =

t2−1
∑

t=t1

ÂOB, A = Xt,B = Xt+1 (4.3)

where O corresponds to the position of the light, and α is the angular displacement of the
robot around the light from the starting position (the position at time te when the robot
touches the circular band) to the signalling position (the position at time ts when the
robot starts signalling). α is computed summing up all the convex angles ÂOB comprised
between two consecutive positions of the robot A and B.

During the tests on real robots, we observed that in Env.B it is always s-bot1 that
emits a signal. As shown in table 4.4, we see that the s-bot that first emits a signal does
so on average before completing a loop. However, given that the value of the offset ∆ is
larger than −45◦ (the width of the way in zone is equal to 45◦), the group does not run
into the risk of misinterpreting an Env.A as an Env.B. Further tests have proved that, if
left to act alone in an Env.B, s-bot2 always signals after completing a loop (i.e., positive
offset ∆, data not shown). This result can be accounted for by noting the existence of
various arbitrary mechanical and sensor differences between the two s-bots; inter-robot
differences that are impractical to include in the simulated world. Contrary to the s-bots,
the simulated robots of group g2 signal on average after completing the loop (see table 4.4).
The mismatch between the behaviour of simulated and real robots controlled by the same
neural network is an estimate of the magnitude of the divergence between the simulated
and real worlds. However, given that our real robots were 100% successful in both envi-
ronments, we conclude that the noise injected into the simulated world was sufficient to
cross the “reality gap” (Jakobi, 1997) and to capture the variability of the behaviour of
sensors and actuators of real hardware which can easily disrupt the effectiveness of the
evolved neural mechanisms. Note that the successful porting of the controller of a group
(i.e., g2) does not necessarily imply that controllers of other groups that were successful in
simulation would be equally successful in guiding real robots. For example, if the effects
of inter-robot differences on the mechanisms used for environmental discrimination induce
robots to anticipate (with respect to what the group does in simulation) the emission
of a signal, then simulated groups with a ∆ ∈ [−45◦, 0◦) could be more likely to fail.
In fact, these groups might fall into the error of signalling and consequently performing
antiphototaxis even if placed in an Env.A.

4.5.2 Experiments with four s-bots

We also performed a further experiment by porting the controllers of group g2 to a group
of four different s-bots—namely s-bot3, s-bot4, s-bot5 and s-bot6. The aim of these tests is
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groups Offset ∆

avg (degree) sd (degree)

two s-bots -30.6 11.75

four s-bots +18.22 12.97

simulated robots +31.6 16.05

Table 4.4: Average and standard deviation of the offset ∆ recorded for different group
types.

twofold: first, we test the ability of the evolved controllers to accomplish the task despite
the cardinality of the group being higher than that experienced during the evolutionary
phase. Second, we evaluate the effectiveness of our controllers with respect to individual
differences among the robots. The experiment consists of evaluating for 10 trials the
four-robots group in each environment.

The results are once again almost perfect.6 In all trials in Env.A, the robots found
the way in zone without erroneously emitting a tone or crossing the inner black edge of
the band in shades of gray. In Env.B we noticed that s-bot3 was always signalling first,
but never too early. In all trials, s-bot5 never emitted a tone and in a separate test we
discovered that it was signalling much too late, even after more than two full loops around
the band.7 Nevertheless, all robots reacted properly to the signal emitted by s-bot3, left
the band, and reached the appropriate distance from the light. In table 4.4 we see that,
with respect to the offset ∆, the behaviour of the four-robots group is closer to simulation
than the behaviour of the two-robots group. This is because the robot to signal first in
the four-robot group (s-bot3) does so with an offset ∆ closer to the one of simulated robots
than the robot to signal first in the two-robot experiment (s-bot1).

In one trial, s-bot5 while performing antiphototaxis as a reaction to the sound emitted
by s-bot3, made a turn of 180◦ and started moving wrongly towards the light. In all other
trials though we did not observe this error and it looks to be a hardware crash. Another
error which was not expected and revealed some property of our controller about which
we would not have found out had we not performed the four-robot test, is the fact that
the robot-robot avoidance behaviour does not work while the robots perform antiphoto-
taxis. In fact, as they leave the band after they perceive a sound signal, they ignore the
information coming from the proximity sensors, with the consequence that, should they
encounter another agent on their way, they collide against each other. A possible explana-
tion for this is that this condition was never encountered during evolution, and therefore
the mechanism shaped was confined to just leaving the band without paying attention to
obstacles (other robots). Finally, by allowing more agents to interact in the target area,
we discovered that the robot-robot avoidance mechanism is different once the robots are
interacting there—a case not often encountered during the two robot experiments–and

6The movies that correspond to these experiments can be found at http://iridia.ulb.ac.be/supp/

IridiaSupp2006-007.
7The light sensors of s-bot5 are the reason for this behaviour. In fact, their readings proved to be

different from those of the other robots (data not shown). By comparing the behaviour of this robot with
s-bot1, one can get an idea of the magnitude of the inter-robot differences.
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can be described as follows: if an agent detects others in its vicinity, it stops and spins
until the other agents have moved away.

4.6 On the adaptive significance of signalling

The results illustrated in section 4.4 have shown that the majority of the successful strate-
gies employ signalling behaviour and communication among the members of the groups.
This suggests that our decision to equip the robots with “ears” and a “mouth” turned out
to be helpful. However, by simply looking at the characteristics of our model, we cannot
necessarily see why evolution exploited these robots’ structures to develop a simple form of
communication. In principle, groups in which the use of sound is functionally relevant for
the success of the group, and groups in which it is not, can be equally successful. Yet, the
majority of the evolutionary runs that ended successfully (i.e., nine out of thirteen best
evolved groups) are characterised by group strategies that make use of sound signalling
and communication among the robots (see table 4.1). How can we account for this result?

It might be that there is in fact no selective advantage for groups in which the use
of sound is functionally relevant to their success with respect to alternative group types.
The evolution of signalling might simply be due to the effect of statistical drift of genetic
material over time in populations of simulated agents (i.e., genetic drift). However, we
collected evidence that rules out the genetic drift hypothesis, and that supports the idea
that there are selective pressures which favour signalling over non-signalling groups. The
rest of the section is dedicated to this issue.

4.6.1 Functions of sound signalling

We started our analysis by trying to understand whether during evolution sound had
fulfilled functions other than the one we observed in the best evolved groups of robots
during the post-evaluation tests shown in section 4.4.1. To do this, we post-evaluated (500
times in each type of environment) all the best groups at each generation (1 to 12,000) of
all the successful evolutionary runs. During this post-evaluation, we recorded the average
fitness in each environment and the average percentage of time per environment either
robot emits a signal during a trial. After post-evaluating these groups, we isolated those
whose average fitness was higher than 1.8. We noticed that after having excluded (i) those
groups that signal throughout the entire duration of a trial in both environments,8 (ii)
those groups that never signal in a trial in both environments, and (iii) those groups in
which sound was not functionally relevant for their behavioural strategies, we were left
with groups that signal only in Env.B for an average time of about one fourth of the
duration of a trial. Further investigation on the behaviour of these groups revealed that
in all of them sound was fulfilling one and only one function: triggering antiphototaxis in
Env.B.

8We do not further analyse the cases in which the robots signal throughout the entire duration of a trial
since we consider it obvious that in these cases the sound-emitting behaviour does not serve any specific
function.
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In other words, looking at the behaviour of all successful signalling groups of any
evolutionary simulation run, we discovered that whenever signalling is functionally relevant
to the success of the group, it is employed by the robots in Env.B as a self-produced
perceptual cue. This cue induces the emitter as well as the other robot of the group to
change its behaviour from light-seeking to light-avoidance. This evidence constrains our
investigation on the adaptive significance of sound signalling to only a specific case in
which we can arbitrarily associate to sound two functionalities: on the one hand, sound
is the means by which a robot emitter switches from phototaxis to antiphototaxis. We
refer to this as the solitary function. On the other hand, sound is the means by which the
robot emitter influences the behaviour of the other robot. In fact, the perception of sound
triggers antiphototaxis in the emitter as well as in the robot that is not yet emitting a
tone (see figure 4.4a and 4.4c). We refer to this as the social function. In the following,
we illustrate the results of post-evaluations that prove and explain why it is the latter
functionality which makes a group of signalling robots better adapted than other group
types.

4.6.2 The social function of sound signalling as a means to obtain ro-
bustness

The statistics shown in table 4.5 refer to a series of tests in which we post-evaluated (500
times in each environment) 100 different groups of robots of five different evolutionary runs
(runs 2, 10, 14, 16, 18), chosen among the best of each generation whose average fitness
was higher than 1.8. As far as it concerns run 2, we post evaluated: (i) 100 groups that use
sound signalling in the normal setup (see table 4.5 second row “sig”) and in the not-other-
sound setup (see table 4.5 fourth row “not-other”); (ii) 100 groups that do not use sound
signalling (see table 4.5 third row “non-sig”). Recall that the not-other-sound setup refers
to the case in which the robots do not hear each other’s sound (see also section 4.4.1).
The 100 non-signalling groups of robots of evolutionary run 2 are “predecessors” of the
signalling one. That is, they were the best groups some generations before the evolution
of successful signalling groups.

By looking at the statistics shown in table 4.5 we notice that: (a) the mean fitness
of signalling groups (run 2) is significantly higher than the fitness of any of the non-
signalling groups (run 2 “not-sig”, 10, 14, 16, and 18, pairwise Wilcoxon test with 99 %
confidence interval), for both environments; (b) the standard deviation of the fitness of
signalling groups (run 2) is smaller than the standard deviation of the fitness of any of
the non-signalling groups for both environments (run 2 “not-sig”, 10, 14, 16, and 18), for
both environments; (c) in Env.B, the mean fitness of signalling groups (run 2) recorded in
the not-other-sound condition is significantly smaller than the mean fitness of any of the
non-signalling groups (run 2 “not-sig”, 10, 14, 16, and 18, pairwise Wilcoxon test with
99% confidence interval). We consider (a) and (b) empirical evidence which suggests that
indeed signalling groups are on average better than non-signalling groups. Notice that,
although the difference among the groups is small, during evolution it may have influenced
the distribution of genetic material and consequently the emergence of the behavioural
strategies. For the sake of completeness, we also show the lower and upper quartile and
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the median of the distributions. This data confirms that the difference in performance
between the two groups seems to lie in the fact that non-signalling groups display a slightly
worse performance than signalling groups in few cases (see lower quartiles, run 2 “sig” and
“non-sig”). We consider (c) evidence suggesting that the beneficial effect of signalling is
not linked to the solitary function, since if we prevent signalling robots from hearing
each other’s sound (i.e., the not-other-sound setup) the solitary function is not by itself
sufficient to make the robots on average better than those that do not use signalling at all.
Consequently, it appears that groups of robots that use sound signalling have a selective
advantage over other types of groups, due to the social function of signalling.

In particular, we believe that the selective advantage of signalling groups is given by
the beneficial effects of communication with respect to a robust disambiguation of Env.A
from Env.B. The beneficial effect corresponds to robust individual decision-making and
faster group reaction, since signaller and hearer react at the same time. Moreover, the
effectiveness of the mechanisms which integrate sensory information over time in order to
produce the categorisation of the environment is disrupted by the random noise explicitly
injected into the simulated world, which strongly affects the sensors’ reading and the
outcome of any “planned” action. However, by communicating the outcome of their
decision about the state of the environment, signalling groups, contrary to other types
of group, might exploit social behaviour to counterbalance the disruptive effect of noise
on individual mechanisms for environmental discrimination. In total, in those groups in

run groups mean sd lower quartile median upper quartile

E
n
v.

A

2
sig 1.982 0.151 2 2 2

non-sig 1.942 0.251 2 2 2
not-other 1.870 0.391 2 2 2

10 non-sig 1.874 0.380 2 2 2
14 non-sig 1.897 0.331 2 2 2
16 non-sig 1.749 0.495 2 2 2
18 non-sig 1.871 0.402 2 2 2

E
n
v.

B

2
sig 1.989 0.082 1.995 1.996 1.997

non-sig 1.923 0.261 1.964 1.995 1.997
not-other 1.747 0.268 1.589 1.760 1.982

10 non-sig 1.905 0.308 1.966 1.995 1.997
14 non-sig 1.943 0.226 1.993 1.996 1.997
16 non-sig 1.945 0.210 1.992 1.995 1.997
18 non-sig 1.880 0.326 1.918 1.995 1.997

Table 4.5: The table shows the statistics of post-evaluation tests in which 100 different
groups of robots of five different evolutionary runs (runs 2, 10, 14, 16, 18), chosen among
the best of each generation whose average fitness was higher than 1.8. For run 2, we post
evaluated: (i) 100 groups that use sound signalling in the normal setup (see row “sig”)
and in the not-other-sound setup (see row “not-other”); (ii) 100 groups that do not use
sound signalling (see row “non-sig”).
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which antiphototaxis is triggered by the perception of sound rather than by an internal
state of the controller, a robot which by itself is not capable or not ready yet to make a
decision concerning the nature of the environment can rely on the decision taken by the
other robot of the group. Therefore, by reacting to the sound signal emitted by the group
mate, a robot initiates an action (i.e., antiphototaxis) which it may not have been capable
of, or ready to perform, otherwise.

The experiments performed on real hardware provide perfect examples of the benefits
of communication and social behaviour, given the presence of severe disruptions due to
inter-robot differences. For example, in the experiments with two real robots, we have
seen that s-bot2 signals always later than s-bot1 (see section 4.5.1). In the four-robots
experiments (see section 4.5.2), we noticed that s-bot4, s-bot5 and s-bot6 repeatedly benefit
from the sound signal emitted by s-bot3, which is the fastest—as well as proving extremely
accurate—robot to signal the absence of the way in zone in Env.B. If a robot that re-
acts to the non-self produced sound could not have exploited the signal emitted by the
other member of its group, it would have wasted precious time orbiting around the light.
Eventually, it would have switched to antiphototactic behaviour, but due to time limits it
would not have been able to reach the maximum possible distance to the light (see df in
section 4.3.4). Consequently, the fitness of the group would have been lower.

The performance of signalling groups not only exceeds the performance of non-
signalling groups in Env.B, but also in Env.A (pairwise Wilcoxon test with a 99% con-
fidence interval). It seems that signalling groups are better adapted to the “danger” of
discrimination mistakes in Env.A than are non-signalling groups, and thus “early” sig-
nalling seems to be an issue that has been taken care of by evolution. Our speculation
is that once signalling groups evolve, their signalling behaviour is refined, by categorising
the world later than in the case of non-signalling groups. Indeed, in table 4.6 we can
clearly see that signalling groups tend to initiate antiphototaxis later than non-signalling
groups. This happens in order to ensure that the chances of a potential disadvantage
resulting from social behaviour are minimised (e.g., see table 4.6: simulated robots of
group g2 signal on average after completing a loop—rather late). In other words, the use
of communication in a system can also affect aspects of the behaviour not directly related
to communication (i.e., the process of integration of inputs over time). This explains the
low performance recorded in the not-other-sound condition, compared to the normal con-
dition. When robots emit signals later (high offset ∆), the system becomes more robust
because the risk of a discrimination mistake in Env.A is minimised, at the cost of trig-
gering antiphototaxis in Env.B somewhat later. However, this is counterbalanced by the
effect of the social behaviour as explained above. To summarise, communication delays
the moment of categorisation (larger offset ∆), and at the same time anticipates the col-
lective response: putting robustness in Env.A and social behaviour in Env.B together, we
can account for the selective advantage of communication.

4.6.3 A further set of evolutionary simulations

The analysis detailed in section 4.6 suggests that the selective advantage of signalling over
non-signalling groups is the reason why we observe the evolution of signalling groups.
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Offset ∆

group mean sd

g1 +54.1 20.23

g2 +31.60 16.05

g5 -14.35 23.80

g6 +7.51 22.63

g7 +89.23 44.40

g8 +25.12 31.12

g9 +76.33 42.24

g10 +10.01 24.63

g13 +61.12 29.30

g14 -8.31 22.25

g16 +6.95 35.74

g18 +20.89 19.42

g19 -8.08 16.24

Table 4.6: Mean and standard deviation of the offset ∆ recorded for different groups, in
1,000 trials in Env.B. Rows in gray correspond to non-signalling groups, rows in white to
signalling groups.

Moreover, it suggests that it is the social function of signalling (the communication result-
ing from it) that makes these groups more fit than others. In other words, we can attribute
the evolution of signalling to its social function, and thus to the effect of emitted signals
on other members of the group. To further clarify this issue and to provide compelling
evidence about it, we decided to run further evolutionary simulations. In these simulations
we introduced a simple modification to the characteristics of the robot’s controller. This
modification is meant to remove those circumstances which presumably made it harder for
evolution to assemble the neural mechanisms in which the relationship between the per-
ception of sound and antiphototaxis takes only place in a robot that is currently emitting
a tone. More specifically, we explicitly demand that the solitary and the social function
of acoustic signals are disentangled.

In particular, in this further set of evolutionary runs, the robots are controlled by the
same type of thirteen neuron CTRNNs as described in section 4.3.2. However, contrary
to the evolutionary runs illustrated in section 4.4, in this set of simulations, neuron N10

of each robot controller receives a binary input which is set to 1 when the other robot
of the group is emitting a tone and to 0 otherwise, while neuron N9 receives a binary
input which is set to 1 only when the robot itself is emitting a tone and to 0 otherwise.
This modification is introduced to allow the robot to distinguish between self (i.e., the
input to neuron N9) and non-self (i.e., the input to neuron N10) produced sound. We
assume that such distinction can be performed by real robots, for example by exploiting
frequency differences among the signals—which is feasible on the s-bot, at least for two
different frequencies. However, it should be stressed that such a system is non-scalable as
it demand the dedication of a frequency to each robot. However, the number of frequencies



4.6. ON THE ADAPTIVE SIGNIFICANCE OF SIGNALLING 59

that can be reliably discriminated is very limited and currently no more than two.9

This setup should make equally possible the evolution of groups of robots which dis-
criminate between Env.A and Env.B through the following processes:

• B1 : processes that do not rely on the perception of sound signals (as in non-signalling
groups)

• B2 : processes only relying on the perception of self-produced sound (thus not making
use of communication, but making use of sound signalling)

• B3 : processes only relying on the perception of non-self-produced sound (thus relying
only on the communication resulting from the sound signalling)

• B4 : processes that rely on the perception of any sound signal, either self or non-self
produced (thus relying on the use of sound signalling, regardless of its function—
solitary or social)

We run a new set of twenty evolutionary simulations and subsequently we post-evaluate
the genotypes of each evolutionary run that achieved fitness over 1.8 during evolution. The
groups of robots controlled by networks built from the best evolved genotypes are referred
to as g∗1-g∗20, respectively. The results of the post-evaluation phase are shown in table 4.7.
We notice that fourteen out of twenty best evolved genotypes obtained an average fitness
higher than 1.8 in both environments. Among the successful groups, nine (g∗1, g∗7, g∗10,
g∗13, g∗15, g∗16, g∗17, g∗18 and g∗19) make use of signalling (see table 4.7 columns 4, 5,
8, and 9, which refer to the average percentage and standard deviation of the time either
robot emits a signal during a trial). The remaining four groups use process B1 to perform
the discrimination, that is they do not rely on sound signalling to solve the task.

To unveil the relationship between the emission of sound signals and the completion of
the task we perform further post-evaluation tests (i.e., 500 trials in Env.A and 500 trials in
Env.B), on the successful signalling groups in three different conditions: (i) the deaf setup
with both sounds inputs set to 0; (ii) the not-self-sound setup in which the robots can
only perceive the non-self produced sound. The input corresponding to the self produced
sound is set to 0; (iii) the not-other-sound setup in which the robots can only perceive the
self produced sound. The input corresponding to the non-self produced sound is set to 0.
The results of these analyses are shown in table 4.8.

The performance of groups g∗1, g∗10, g∗15, g∗17 and g∗18 is disrupted only in Env.B,
and only in the deaf and non-other-sound setup (see table 4.8 columns 4, and 12). Thus,
we can conclude that these groups (i) do not use sound in Env.A; (ii) use the non-self
produced sound to trigger antiphototaxis in Env.B. Concerning groups g∗13, g∗16 and
g∗19, their performance is mainly disrupted in Env.A, and only in the deaf and not-self-
sound setup (see table 4.8 columns 2, and 10). Through an analysis of the behaviour of

9Notice that these experiments were performed in order to enforce the hypothesis formulated above;
the fact that we use experimenter-introduced ways for discrimination between self and non-self sound
components is solely due to the fact that it helps us test that hypothesis. Otherwise, we believe that
such a methodology might bear upon the scalability of the system and should normally be avoided when
designing communication systems for robots.
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Table 4.7: Results of post-evaluation tests showing for each best evolved successful group
of each evolutionary run (g∗i): the average and standard deviation of the fitness over 500
trials in Env.A (see columns 2, and 3) and in Env.B (see columns 6, and 7); the average
and standard deviation of the percentage of timesteps sound was emitted by either robot
over 500 trials in Env.A (see columns 4, and 5) and in Env.B (see columns 8, and 9).

group Env.A Env.B

fitness signalling (%) fitness signalling (%)

mean sd mean sd mean sd mean sd

g∗1 1.96 0.26 4.64 14.61 1.99 0.07 31.07 3.20

g∗2 1.89 0.40 0.00 0.00 1.88 0.24 0.00 0.00

g∗3 1.90 0.39 0.00 0.00 1.90 0.35 0.00 0.00

g∗5 1.99 0.12 0.00 0.00 1.88 0.26 0.00 0.00

g∗7 1.77 0.54 2.97 6.88 1.99 0.01 19.48 2.04

g∗10 1.94 0.28 3.12 10.11 1.99 0.06 30.29 4.01

g∗12 1.98 0.45 0.00 0.00 1.91 0.40 0.00 0.00

g∗13 1.92 0.36 97.10 4.89 1.99 0.04 73.09 4.99

g∗15 1.93 0.46 5.04 12.64 1.98 0.09 32.47 2.87

g∗16 1.94 0.22 97.96 3.11 1.96 0.19 75.19 3.91

g∗17 1.96 0.24 4.12 12.12 1.98 0.13 30.01 4.14

g∗18 1.97 0.21 3.63 11.59 1.97 0.20 22.23 4.69

g∗19 1.88 0.43 96.71 3.52 1.99 0.11 77.07 5.23

g∗20 1.84 0.47 0.00 0.00 1.79 0.51 0.00 0.00

Table 4.8: Further results of post-evaluation tests with the deaf, not-self-sound, and not-
other-sound setups for the signalling successful groups g∗1, g∗7, g∗10, g∗13, g∗15, g∗16,
g∗17, g∗18 and g∗19. For each setup, the table shows the average and standard deviation
of the fitness over 500 trials in Env.A and in Env.B.

group deaf not-self-sound not-other-sound

Env.A Env.B Env.A Env.B Env.A Env.B

mean sd mean sd mean sd mean sd mean sd mean sd

g∗1 1.93 0.30 1.02 0.27 1.93 0.33 1.99 0.00 1.94 0.31 0.71 0.34

g∗7 1.82 0.46 1.83 0.37 1.79 0.53 1.99 0.00 1.81 0.45 1.83 0.36

g∗10 1.95 0.22 1.17 0.12 1.94 0.25 1.99 0.00 1.98 0.14 1.17 0.12

g∗13 1.01 0.79 1.74 0.66 1.93 0.38 1.99 0.09 0.99 0.80 1.75 0.52

g∗15 1.94 0.32 1.15 0.19 1.95 0.20 1.98 0.10 1.98 0.14 1.15 0.19

g∗16 0.97 0.55 1.76 0.36 1.93 0.42 1.98 0.12 0.91 0.80 1.75 0.42

g∗17 1.90 0.33 1.04 0.37 1.96 0.33 1.99 0.00 1.94 0.31 0.88 0.64

g∗18 1.98 0.17 1.13 0.09 1.96 0.22 1.98 0.17 1.99 0.09 1.13 0.09

g∗19 0.96 0.72 1.78 0.54 1.91 0.37 1.99 0.07 0.92 0.72 1.77 0.56
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robots of these groups with a simple graphical interface, we notice that antiphototaxis is
triggered by the absence of non-self produced sound (i.e., input to neuron N10 = 0) and
that the behaviour of the sound output neuron is the opposite of the case of group g2
(see figure 4.4). Thus, in these groups the external cue that triggers antiphototaxis is the
absence rather than the perception of non-self produced sound. Notice that all the above
groups make use of process B3 to discriminate between the two environments, that is,
antiphototaxis is triggered by the perception/absence of the tone emitted by their group
mates. The behaviour resulting from such a process is characterised by the fact that when
a robot takes a decision about the environment and emits a tone (as in e.g., g∗1) or ceases
to emit a tone (as in e.g., g∗13), this tone only triggers antiphototaxis in the other robot
of the group. That robot while switching to antiphototaxis will immediately emit a tone
itself that will be responsible for triggering antiphototaxis in the robot that first signalled
the absence of a way in zone.

Concerning the performance of group g7, it does not undergo any disruption. Thus, the
group can be equally successful by employing processes B1 and B3. However, judging from
the rather lower rates of success in both environments, we can see that this combination of
processes is not perfect. Still, it is an interesting solution that combines solitary and social
behaviour, as it can benefit from the social function of sound signalling without exclusively
relying on it. In other words, such a behaviour could end up being very robust in cases of,
for example, failure to perceive sound. Also, robots controller by such a genotype could
categorise the environment even if left alone; should there be social information, they
could still exploit it to speed up their decision-making.

The results of these evolutionary runs suggest that evolution only found solutions
in which robots perform antiphototaxis in response to a change in the reading of the
sound sensor that detects the presence/absence of the non-self produced sound. Signalling
groups are favoured over non-signalling groups because the emission of a tone by either
robot induces antiphototaxis in the other agent. The beneficial effect of this simple form of
communication is linked to the fact that social behaviour induces antiphototaxis in robots
which may not have been capable or ready of performing it otherwise. Evolution only
produced solutions displaying communication properties—it almost exclusively produced
discrimination mechanisms only relying on the perception of non-self-produced sound, thus
relying only on the communication resulting from the sound signalling.

Finally, it is interesting to notice that in earlier generations, robots of successful sig-
nalling groups seem to pay attention to both self and non-self sound inputs. Later on,
evolution filtered this redundancy and came up with a system where agents only pay at-
tention to sound emitted by the other agent. This shows a clear transition from solutions
using the process B4 to solutions using B3.

4.7 Discussion

Owing to the properties of our design methodology (i.e., evolutionary robotics), signalling
behaviours co-evolved with time-dependent categorisation structures, that is, integration
over time. In evolutionary terms, these non-reactive mechanisms might have paved the
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way for the evolution of signalling. In fact, we can draw some hints from the evolutionary
analysis we performed in section 4.6 concerning the evolution of signalling, which suggest
that evolution proceeds in an “incremental” way. We observed that signalling was present
in the population before successful solutions started to appear, in all the evolutionary
runs that produced signalling groups. However, it seemed to have no functional meaning:
signals seemed to be produced rather randomly and not with respect to the environmental
contingencies. Functional signalling behaviours seem to evolve shortly after evolution pro-
duces the first groups able to solve the task without any use of signalling. In other words,
communicative solutions seem to be subsequent to non-communicative ones. A possible
illustration of this process is that sound production that was previously irrelevant becomes
linked to the already evolved mechanisms for environmental discrimination and then, as
we have shown in section 4.6, the solutions making use of communication come to outper-
form those that do not. Another clue in support of these speculations is the comparison
of the mechanisms underpinning behaviour in both signalling and non-signalling groups,
which was discussed in section 4.4.1. Both solutions rely on an internal neuron integrating
sensory information over time; however, for communicative solutions, the sound output
behaves similarly.

What we can take from this discussion is that the evolution of signalling seems to
be strongly based on already evolved cognitive structures (discrimination capabilities) of
the agents (see also Nolfi, 2005). As said above, social solutions to the problem seem
to be subsequent to solitary ones. In other words, communication is built upon existing
individual behaviour and cognitive structures (categorisation). It should be noted that
robots of non-signalling group g10 do not ignore sound signals should they be perceived.
We tested the reaction of those robots to artificially produced signals and what we found
is that the robots stop and spin on the spot once they perceive sound (data not shown).
This might indeed suggest that, looking at things from a phylogenetic perspective, the first
step towards the evolution of signalling is that robots “learn” to pay attention to their
sound inputs. Once such a signalling mechanism evolves, it eventually acquires the social
function. In this sense, we could say that the behaviour of group g10 looks “precedent” to
the behaviour of g2.

Interestingly, signalling can also evolve should it be deprived of its social function. We
have performed an experiment running evolutions with noise only in the initial position
of the robots, without any noise in sensors/actuators and ensuring that the robots are
initialised in exactly anti-diametrical positions, so to experience exactly the same things
during their lifetime (data not shown). What we found is that a small subset of successful
strategies relies on the perception of acoustic signals to initiate the action of antiphoto-
taxis. However, as we also have argued in previous sections, the solitary function of sound
signalling does not provide any selective advantage to signalling groups.

Instead, it is the social function of signalling (the communication resulting from it)
that makes signalling groups more fit than others. In other words, we can attribute the
evolution of signalling to its social function, and thus to the effect of emitted signals on
other members of the group. This observation justifies the use of the word “signal” in
order to describe the emission of sound. In fact, according to Maynard-Smith and Harper
(2003), a signal evolves because of its effect on others. A signal is defined as “an act or
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structure that alters the behaviour of another organism, which evolved because the receiver’s
response has also evolved”. In contrast, a cue is defined as in Hasson (1994): “a feature
of the world, animate or inanimate, that can be used by an animal as a guide to future
action”. Obviously our robots do emit a sound “as a guide to future action” (to trigger the
action of antiphototaxis), but this is not the reason why signalling behaviours emerged in
the first place, even if they also display the latter functionality. Ethologists (see Tinbergen,
1964, for example) considered the existence of cues (or derived activities) as precursors of
signals and their subsequent ritualisation into signals crucial notions in an effort to explain
the evolution of communication. They saw ritualisation as the process of the conversion
of a movement or action initially not containing any communicative value into one that
does. In our case, this description is absolutely relevant and we could summarise by saying
that the individual categorisation seems to be the cue that later on is ritualised into the
(acoustic categorisation) signal.

In section 4.6.2 we have seen that signalling groups become more robust as they tend to
categorise the environment by initiating antiphototaxis later than non-signalling groups.
In other words, we observe that the social context has a bearing and effectively alters the
behaviour of the robots with respect to their decision-making. This observation brings to
mind examples from zoology and in particular social foraging (mentioned in section 4.1—
see Elgar, 1987; Fernandez-Juricic et al., 2005, for examples where the way foraging be-
haviour changes if the animals are situated in a social context is described). Overall,
we can say that the behaviour of the robots is re-shaped (through evolution) as a conse-
quence of the social context in which they are located and the availability at some point
in evolution of social information (e.g., categorisation signals).

4.8 Conclusion

In this chapter, we have presented a study on autonomous decision-making which focused
on the choice between solitary and social behaviour in a categorisation task. Communi-
cation emerged in a system provided with the necessary hardware (i.e., a “mouth” and
“ears”), while its use and characteristics were not predetermined by the experimenter, but
left to evolution to shape. The evolutionary process autonomously shaped (i) individual
categorisation capabilities, (ii) individual signalling capabilities, and (iii) social behaviour.

It turned out that evolution produced signalling behaviour tightly linked to the be-
havioural repertoire of the agent and that made social behaviour more efficient than soli-
tary behaviour, even though the former was not explicitly rewarded by the fitness function.
In fact, as we have discussed in section 4.6, communication serves to increase the robust-
ness and the speed of the categorisation. This study contributes to the understanding of
issues concerning the evolution of communication, and, more specifically, the identifica-
tion of conditions that might facilitate the emergence of communication in populations of
embodied agents.

It should definitely be acknowledged that there are elements in our experimental setup
that facilitate the evolution of cooperative behaviour, namely (i) the fact that our robot
group is composed of genetically identical clones, and (ii) the fact that it is the behaviour
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of the group that we evaluate after each trial. The above factors leave no room for conflicts
of interest or cheating. However, we should stress again that the evolution of signalling
and thus cooperation is neither trivial or obvious, in particular because it is not explicitly
favoured by the fitness function. The use of a functional and meaningful signalling system
is not a question with a binary answer based on chance. For a signalling system to
evolve, evolution must produce appropriate signals, appropriate reactions to signals and a
reorganisation of the decision-making mechanisms to ensure the robustness of the system.
Still, we can certainly ask what might happen if the individuals in the robotic group were
not genetically identical, and each robot had a different controller and was evaluated only
on the basis of its own performance. Floreano et al. (2007) report on a series of experiments
aimed at studying the evolutionary conditions for the emergence of visual communication,
and they note that “under individual selection, the ability to produce visual signals resulted
in the evolution of deceptive communication strategies in colonies of unrelated robots and
a concomitant decrease in colony performance”. Clearly the aspects of our experimental
setup that prevented conflicts of interest and deceptive communication between the robots
have had some bearing on our observed results. In future work we intend to withdraw
these assumptions and address the broader issue of conditions under which communication
may evolve despite the absence of explicitly group-level selection.

In this chapter we have demonstrated the portability of time-dependent decision-
making mechanisms that display integration over time properties onto real robots. Even
though the controllers were evolved in a simulated world and the simulation did not go
as far as implementing possible inter-robot differences (see section 4.5), the system was
always successful and we never observed any mistakes in categorising the environment.
Our results also show that the use of communication was particularly beneficial in the
real world, since the inter-robot differences did in fact severely disrupt the individual
decision-making mechanisms of certain agents (see for example s-bot5 in the four-robots
generalisation test described in section 4.5.2, that would need, if left alone, more than
two loops around the light to initiate antiphototaxis). However, it is easy to imagine a
case where a robot takes the wrong decision about the state of the world, and initiates
antiphototaxis emitting a tone in Env.A. That would cause the collapse of the whole sys-
tem, since all robots would perform the wrong action in that environment, even if their
individual discrimination mechanism would have produced a correct categorisation. This
event was never observed in reality (see section 4.5), suggesting that the evolved behaviour
is also very robust against inter-robot differences. This is an obvious danger that evolu-
tion managed to avoid, without the experimenter making this explicit anywhere in the
experimental design.

In parallel with studying the effectiveness of the evolved signalling mechanisms when
tested on real robots, we found that signalling evolved even in the absence of explicit
selected pressure coded in the fitness function. In fact, our analysis revealed a “hidden”
benefit for communication. This raises the following issue: should we always equip our
robots with “ears” and a “mouth” to make possible the switch from solitary to social
behaviour, even in cases when the benefit of communication in such a system is obscure
to us, the experimenters? The work presented in this chapter is an example in which
communication proves to be beneficial and the evolutionary machinery manages to discover
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ways to use it by linking it to the rest of the robot behaviour and in the process enhancing
the robustness of the system. That is, evolution found an efficient way to use these
hardware tools (i.e., “ears” and a “mouth”), and it is our belief that this might also
be the case with other more complex tasks as well. We cannot go so far as to claim
that incorporating long-range communication devices should be standard, but we can say
that evolution seems to discover efficient ways to use them. In other words, by using
evolutionary robotics within the context of collective or swarm robotics, such hardware
tools for long-range signalling might end up being beneficial for the group’s performance
on a certain task, even though communication might appear pointless to the experimenter
at the time of defining the building blocks of the behaviour.

Finally, the research detailed in this section will serve as the basis for the design of
controllers able to produce complex collective behaviour as functional self-assembly in
a group of autonomous robots. Indeed, the preliminary experiment presented in chap-
ter 7, section 7.2, is largely inspired by the experimental work that has been presented in
this chapter. The major difference will be the response to the individual and collective
decision-making; instead of individuals performing antiphototaxis, in the case of functional
self-assembly, individual agents should aggregate and assemble in order to overcome an
obstacle.
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Chapter 5

Experiment II: evolving
self-assembly

In this chapter, we report on a series of experiments, performed both in simulation and on
real hardware, about the evolution of self-assembly in a group of two robots (the s-bots).
Our goal is twofold: (i) to show that evolutionary robotics can be applied on real-world
tasks of fine sensory-motor coordination such as the physical connection between two
robots and (ii) to identify the minimal conditions for self-assembly in autonomous agents
and to minimise the assumptions made in previous research works treating this issue.

This chapter will be organised as follows: we start by providing, in section 5.1, a
brief background on self-assembly. In section 5.2 we provide a brief review of the state
of the art in the area of self-assembling robots and we discuss the limitations of these
systems, justifying the methodological choices we have made. In section 5.3 we describe
the evolutionary machinery and the experimental scenario used to design neural network
controllers. Then, in section 5.4 we show the results of post-evaluation tests on physical
robots controlled by the best performing evolved controller and in section 5.5 we shed light
on the mechanisms underpinning the behaviour of successful robots. The results presented
are discussed in section 5.6 and conclusions are drawn in section 5.7.

5.1 Background

According to Whitesides and Grzybowski (2002), self-assembly is defined as “the au-
tonomous organisation of components into patterns or structures without human inter-
vention”. Nature provides many examples of animals forming collective structures by
connecting themselves to one another. Individuals of various ant, bee and wasp species
self-assemble and manage to build complex structures such as bivouacs, ladders etc. Self-
assembly in social insects typically happens in order to accomplish some function (defence,
object transport, passage formation etc., see Anderson et al., 2002). In particular, ants of
the species Œcophylla longinoda can form chains composed of their own bodies which are
used to pool leaves together to form a nest, or to bridge a passage between branches in a
tree (Hölldobler and Wilson, 1978). Self-assembly is also widely observed at the molecular
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level (e.g., DNA molecules).
Although ubiquitous in nature, self-assembly remains in general a phenomenon whose

operational principles are, both in non-living and living organisms at any scale, not easy
to grasp because it is impractical to change many of the parameters that determine the
behaviour of the system components (see Whitesides and Grzybowski, 2002). However,
self-assembly is particularly appealing to various scientific disciplines. Understanding the
mechanisms of self-assembly in the cell may provide further insights to the emergence
of life starting from chemical reactions. From an engineering point of view, understand-
ing self-assembly may inspire the design of artificial self-assembling components. The
application of such systems can potentially go beyond research in robotics laboratories,
space applications being one of the most obvious possibilities (e.g. multi-robot planetary
exploration and on orbit self-assembly, see Izzo and Pettazzi, 2007).

5.2 Related work and motivations

In this section we review related work in the area of self-assembling robotic systems which
serves as motivation for the research work we present in this chapter.

Several examples of robotic platforms in the literature consist of connecting modules.
For a very comprehensive review of self-assembling robotic systems, we direct the reader to
the works of Yim et al. (2002a); Groß and Dorigo (2008b); Groß et al. (2006a); Tuci et al.
(2006). Following Yim et al. (2002a), it is possible to identify four different categories:
chain based, lattice based, mobile and stochastic reconfigurable robots. As this work
focuses on the design of autonomous control systems for a mobile self-reconfigurable robotic
system (the swarm-bot, see chapter 2, section 2.3.1), in the following, we provide a small
overview of this category only. We go on to discuss the platform that is used in this study:
the swarm-bot.

5.2.1 Mobile self-reconfigurable robots

In this class of self-assembling systems, individual units are capable of autonomous sensing
and motion; units can act independently in the environment. The first example of a
mobile self-reconfigurable robot was the CEBOT (see Fukuda and Nakagawa, 1987; Fukuda
and Ueyama, 1994). CEBOT is a heterogeneous system composed of cells with different
functions (move, bend, rotate, slide). Even though there are no quantitative results to
assess the performance and reliability of this system, Fukuda et al. (1988) have shown
how docking can be done between a moving cell and a static object cell with a hand-
crafted controller. Another robotic system capable of self-assembly is the Super Mechano
Colony (Damoto et al., 2001; Hirose, 2001). In this system, autonomous robotic wheels,
referred to as child units, can connect to and disconnect from a mother-ship. Yamakita
et al. (2003) achieved docking by letting the child unit follow a predefined path. Groß
et al. (2006b) recently demonstrated assembly between one and three moving child modules
and a static module. Hirose et al. (1996) presented a distributed robot called Gunryu.
Each robot is capable of fully autonomous locomotion and the assembled structure proved
capable of navigating on rough terrain where a single unit would topple over. However,
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autonomous self-assembly was not studied as the units were connected from beforehand by
means of a passive arm. Self-assembly is also not possible for the Millibot train (see Brown
et al., 2002), composed of multiple modules that are linearly linked, since no external sensor
has been implemented.

In all the above mobile self-reconfigurable systems, self-assembly is either not achieved
at all or is only possible between one unit moving autonomously and a static object/unit.
For the sake of consistency, we should also mention two important examples of chain
based reconfigurable robots, CONRO and PolyBot. CONRO (Castano et al., 2000) has
been used by Rubenstein et al. (2004) to demonstrate autonomous docking between two
robots, each composed of two modules and performing motion similar to snake robots.
It should be noted, however, that the control was heterogeneous at all levels and the
generality of the approach was limited due to orientation and distance constraints. More
specifically, the two robots were initially placed at a distance not exceeding 15 cm, with an
angular displacement of maximum 45◦. Concerning the control, it first achieved alignment
through the use of IR sensors and emitters, and then approaching and assembly. Yim et al.
(2002b) demonstrated self-assembly with PolyBot: a six-modules arm connected to a spare
module on a flat terrain. One end of the arm and the spare module were fixed to the walls
of the arena at known positions and the motion of the arm relied on knowledge of the
goal position and inverse kinematics. In the first of a three-phases procedure, the arm
approached the spare module exploiting the knowledge of the goal position and inverse
kinematics. The second phase allowed a further approach and alignment of the arm to
the spare module, exploiting IR sensors and emitters. The third phase finally led to the
connection to the spare module, which in turn detached from the wall (see Yim et al.,
2002b, for more details).

5.2.2 Self-assembly with the swarm-bot

The swarm-bot, a collective and mobile reconfigurable system (see Mondada et al., 2005;
Dorigo, 2005, and chapter 2.3.1, for details), consists of fully autonomous mobile robots
called s-bots, that can physically connect to each other and to static objects (preys, also
called s-toys). Groß et al. (2006a) presented experiments improving the state of the art in
self-assembling robots concerning the number of robots involved in self-assembly, the gen-
erality and reliability of the controllers, and the assembly speed. A significant contribution
of this work is in the design of distributed control mechanisms for self-assembly relying
only on local perception. In particular, self-assembly was accomplished with a modular
approach in which some modules have been evolved and others hand-crafted. The ap-
proach was based upon a signalling system which makes use of colours. For example,
the decision concerning which robot makes the action of gripping (the s-bot-gripper) and
which one is gripped (the s-bot-grippee) is made through the emission of colour signals,
according to which the s-bots emitting blue light are assuming the role of s-bot-gripper
and those emitting red light the role of s-bot-grippee. Thus, it is the heterogeneity among
the robots with respect to the colour displayed, a priori introduced by the experimenter,
that triggers the self-assembly process. That is, a single s-bot “born” red among several
s-bots “born” blue is meant to assume the role of s-bot-grippee while the remaining s-
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bot-grippers are progressively assembling. Once successfully assembled to another s-bot,
each blue light emitting robot was programmed to turn off the blue LEDs and to turn on
the red ones. The switch from blue to red light indicates to the yet non-assembled s-bots
the fact that a robot has changed role from s-bot-gripper to s-bot-grippee. This system is
therefore based on the presence of a behavioural or morphological heterogeneity. In other
words, it requires either the presence of a prey lit up in red or the presence of a robot not
sharing the controller of the others, which is forced to be immobile and to signal with a
red colour. O’Grady et al. (2005) bypassed this requirement by hand-crafting a decision-
making mechanism based on a probabilistic transition between states. More specifically,
the allocation of roles (which robot lights up red and triggers the process) depends solely
on a stochastic process.

Both research works report a success rate of 100% when trying to achieve assembly
between either two robots allowed to move autonomously, or between a robot and a static
teammate. Moreover, they report high success rates when the size of the group increases.
This high reliability was partly due to a recovery move which was triggered once the robots
“realised” that there was some inaccuracy in their effort to connect to each other.

5.2.3 Motivations

The research works presented above have been very successful since they also showed
how assembled structures can overcome limitations of the single robots, for instance in
transporting a heavy object or in navigating on rough terrain. However, these modularised
architectures are based on a set of a priori assumptions concerning the specification of
the environmental/behavioural conditions that trigger the self-assembling process. For
example, (a) the objects that can be grasped must be red, and those that should be
avoided must be blue; (b) the action of grasping is carried out only if all the “grasping
requirements” are fulfilled (among others, a combination of conditions concerning the
distance and relative orientation between the robots, see Groß et al., 2006a, for details).
If the experimenter could always know in advance in what type of world the agents will
be located, assumptions such as those concerning the nature of the object to be grasped
would not represent a limitation with respect to the domain of action of the robotic
system. However, since it is desirable to have agents that can potentially adapt to variable
circumstances or conditions that are partially or totally unknown to the experimenter, it
follows that the efficiency of autonomous robots should be estimated also with respect to
their capacity to cope with “unpredictable” events (e.g., environmental variability, partial
hardware failure, etc.). For example, failure to emit or perceive red light for robots guided
by the controllers presented above would significantly hinder the accomplishment of the
assembly task.

We believe that a sensible step forward in this direction can be made by avoiding
to constrain the system to initiate its most salient behaviours (e.g., self-assembly) in
response to a priori specified agent’s perceptual states. The research work described
in this chapter represents a significant step forward in this direction. It illustrates the
details of an alternative methodological approach to the design of homogeneous controllers
(i.e., where a controller is cloned on each robot of a group) for self-assembly in physical
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autonomous robots in which no assumptions are made concerning how agents allocate roles.
By using dynamical neural networks shaped by artificial evolution, we managed to design
mechanisms by which the allocation of the s-bot-gripper and the s-bot-grippee roles is the
result of an autonomous negotiation phase between the s-bots, and not predetermined by
the experimenter. In other words, the self-assembly process is triggered and regulated by
perceptual cues that are brought forth by the agents through their dynamical interactions.

Furthermore, coordination and role allocation in our system is achieved solely through
minimal sensors (distance and angle information) and without explicit communication,
contrary to the above works where the agents signal their internal states to the rest of
the group. Also, due to the nature of the sensory system used, the robots cannot sense
the orientation of their group-mates. In this sense, our approach is similar to (and largely
inspired from) the one of Quinn (2001); Quinn et al. (2003), where role allocation (leader-
follower) or formation movement is achieved solely through infrared sensors. In addition,
we also show that the evolved mechanisms are as effective as the modular and hand-coded
ones described in (Groß et al., 2006a; O’Grady et al., 2005) when controlling two real
s-bots.

Finally, we should stress that our design choices are governed by the principles of
autonomous decision-making, as they were presented in chapter 2, section 2.7.2.1. The
fitness function which is described in section 5.3.4 does not “encode” rules about the
way the robots should interact when trying to connect to each other. As mentioned
previously, Groß et al. (2006a) and O’Grady et al. (2005) make use of evolved modules
to solve the problem of assembly. It is out of the scope of this thesis to argue whether
these works use evolutionary robotics as the design methodology; however, they definitely
do not share the property of autonomous decision-making with other ER research works.
This is because (part of) the interactions among robots are imposed by the experimenter,
as we have explained above; the rules of the game are dictated and are not automatically
generated.

5.3 Methods

This section is structured as follows: we begin with the description of the task in sec-
tion 5.3.1, then we describe the simulation model used (see section 5.3.2) and the controller
and the evolutionary algorithm chosen (see section 5.3.3) and subsequently we describe
the fitness function in section 5.3.4.

5.3.1 The task

The task we consider is conceptually a very simple task. At the beginning of each trial,
two s-bots are positioned in a boundless arena at a distance randomly generated in the
interval [25 cm, 30 cm], and with predefined initial orientations α and β (see figure 5.1).
Our initialisation is inspired from the initialisation used in (Quinn, 2001). In particular,
we defined a set of orientation duplets (α, β) as all the combinations with repetitions from
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a set:

Θn =

{

2π

n
· i | i = 0, . . . , n− 1

}

, (5.1)

where n is the cardinality of the set. In other words, we systematically choose the initial
orientation of both s-bots drawing from the set Θn. The cardinality of the set of all the
different duplets—where we consider (α, β) ≡ (β, α)—corresponds to the total number of
combinations with repetitions, and can be obtained by the following equation:

(n+ k − 1)!

k!(n − 1)!
, (5.2)

where k = 2 indicates that combinations are duplets, and n = 4 lets us define the set of
possible initial orientations Θ4 = {0◦, 90◦, 180◦, 270◦}. From this, we generate 10 different
(α, β) duplets, that can be seen in table 5.1.

The goal is to design controllers that can achieve assembly regardless of the initial con-
figuration. More specifically, the robots at the beginning of a trial can be in symmetrical
(i.e., α = β) or asymmetrical configuration (i.e., α 6= β). Due to our initialisation schema,
none of the robots can know at the beginning of the trial if it will become the s-bot-gripper
or the s-bot-grippee at the end of the trial. This is because the setup is neutral towards
both α, β and a successful controller has to be successful in all 10 duplets of table 5.1.

α

β

S−bot L S−bot R

Figure 5.1: This picture shows how the s-bots’ starting orientations are defined given the
orientation duplet (α, β). S-bot L and s-bot R refer to the robots whose initial orientations
in any given trial correspond to the value of α and β, respectively.

Table 5.1: The orientation duplets for the set Θ4, used during evolution.
(s-bot L, s-bot R) (s-bot L, s-bot R)

1 (0◦, 180◦) 6 (90◦, 270◦)
2 (0◦, 270◦) 7 (90◦, 0◦)
3 (180◦, 270◦) 8 (90◦, 90◦)
4 (0◦, 90◦) 9 (180◦, 180◦)
5 (90◦, 180◦) 10 (0◦, 0◦)
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5.3.2 The simulation model

The controllers are evolved in a simulation environment which models some of the hardware
characteristics of the real s-bots (see Mondada et al., 2004, and chapter 2.3.1). In this
work, to allow robots to perceive each other, we make use of the omni-directional camera
mounted on the turret. The image recorded by the camera is filtered in order to return
the distance of the closest red, green, or blue blob in each of eight 45◦ sectors. A sector
is referred to as CAMi, where i ∈ {1, 2, . . . , 8}, denotes the index of the sector. Thus, an
s-bot to be perceived by the camera must light itself up in one of the three colours using
the LEDs mounted on the perimeter of its turret. An s-bot can be perceived in at most
two adjacent sectors. Notice that the camera can clearly perceive coloured blobs up to a
distance of approximately 50 cm, but the precision above approximately 30 cm is rather
low. Moreover, the precision with which the distance of coloured blobs is detected varies
with respect to the colour of the perceived object. We also make use of the optical barrier
which is a hardware component composed of two LEDs and a light sensor mounted on the
gripper (see figure 5.2b). By post-processing the readings of the optical barrier we extract
information about the status of the gripper and about the presence of an object between
the gripper claws. More specifically, the post-processing of the optical barrier readings
defines the status of two virtual sensors: a) the GS sensor, set to 1 if the optical barrier
indicates that there is an object in between the gripper claws, 0 otherwise; b) the GG
sensor, set to 1 if a robot is currently grasping an object, 0 otherwise. We also make use
of the GA sensor, which monitors the gripper aperture. The readings of the GA sensor
range from 1 when the gripper is completely open to 0 when the gripper is completely
closed. The s-bot actuators are the two wheels and the gripper.1

Colour LEDs
Camera

Gripper

(a) (b) (c)

Figure 5.2: (a) The s-bot. (b) The gripper and sensors of the optical barrier. (c) Depiction
of the collision manager. The arrow indicates the direction along which the s-bot-gripper
should approach the s-bot-grippee without incurring into collision penalties.

The simulator used to evolve the required behaviour relies on a specialised 2D dynamics

1Notice that in this research work we do not make use of the s-bot ’s degree of freedom for lifting the
grasped objects (see chapter 1, section 2.3.1); that is we only allow the rigid gripper to open and close,
and not to rotate vertically to the turret (see also figure 5.2b).
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engine (see Christensen, 2005). In order to evolve controllers that transfer to real hardware,
we overcome the limitations of the simulator by following the approach proposed in Jakobi
(1997); motion is simulated with sufficient accuracy, collisions are not. Self-assembly relies
on rather delicate physical interactions between robots that are integral to the task (e.g.,
the closing of the gripper around an object could be interpreted as a collision). Instead of
trying to accurately simulate the collisions, we force the controllers to minimise them and
not to rely on their outcome. In other words, in case of a collision, the two colliding bodies
are repositioned to their previous positions, and the behaviour is penalised by the fitness
function if the collision can not be considered the consequence of an accepted grasping
manoeuvre.

Concerning the simulation of the gripper, we modelled the two gripper claws as trian-
gles extending from the body of the robot. As the gripper opens, these triangles are pulled
in the robot’s own body, whereas as it closes they grow out of it. Thus the size of the
collision object changes with the aperture of the gripper. In order for a grip to be called
successful, we require that there is an object between the claws of the (open) gripper, as
close as possible to the interior of the gripper and that the claws close around it. In fact,
we require that the object and the gripper socket holding the two claws collide. However,
we do not penalise such a collision when the impact angle between the s-bots falls within
the range [-10◦,+10◦]. Figure 5.2c shows how this impact angle is calculated and also de-
picts the simulated robots we use. In this way, we facilitate the evolution of approaching
movements directed towards the turret of the robot to be gripped (see figure 5.2c). Robots
that rely on such a strategy when attempting to self-assemble in simulation, can also be
successful in reality. Other types of strategies based on rotating movements proved prone
to failure when tested on real hardware. Having taken care of the collisions involved with
gripping, the choice of a simple and fast simulator instead of one using a 3D physics engine
significantly speeds up the evolutionary process.

5.3.3 The controller and the evolutionary algorithm

The agent controller is composed of a CTRNN of ten hidden neurons and an arrangement
of eleven input neurons and three output neurons (see figure 5.3, Beer and Gallagher
(1992) and chapter 3, section 3.1.2 for a more detailed illustration of CTRNNs). Input
neurons have no state. At each simulation cycle, their activation values Ii—with i ∈
{1, 2, . . . , 11}—correspond to the sensors’ readings. In particular, I1 corresponds to the
reading of the GA sensor, I2 to the reading of the GG sensor, I3 to I10 correspond to the
normalised reading of the eight camera sectors CAMi, and I11 corresponds to the reading
of the GS sensor. Hidden neurons are fully connected. Additionally, each hidden neuron
receives one incoming synapse from each input neuron. Each output neuron receives one
incoming synapse from each hidden neuron. There are no direct connections between input
and output neurons. The state of each hidden neuron yi—with i ∈ {1, 2, . . . , 10}—and of
each output neuron oi—with i ∈ {1, 2, 3}—is updated as follows:

τi
dyi

dt
= −yi +

11
∑

j=1

ωjiIi +

10
∑

k=1

ωkiZ(yk + βk); oi =

10
∑

j=1

ωjiZ(yj + βj); (5.3)
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In these equations, τi are the decay constants, ωij the strength of the synaptic connection
from neuron i to neuron j, β the bias terms, and Z(x) = (1+e−x)−1 is a sigmoid function.
τi, β, and ωij are genetically specified networks’ parameters. Z(o1) and Z(o2) linearly
scaled into [-3.2 cm

s
, 3.2 cm

s
] are used to set the speed of the left and right motors. Z(o3) is

used to set the gripper aperture in the following way: if Z(o3) > 0.75 the gripper closes; if
Z(o3) < 0.25 the gripper opens. Cell potentials are set to 0 when the network is initialised
or reset, and circuits are integrated using the forward Euler method with an integration
step-size of 0.2.

I1 I2

H10

I3 I10 I11

H1 ...
O3O2O1

...

WHEEL L WHEEL R APERTURE
GRIPPER

GAGA GG GSCAM1 CAM8

Figure 5.3: Architecture of the neural network that controls the s-bots.

Each genotype is a vector comprising 263 real values. Initially, a random population of
vectors is generated by initialising each component of each genotype to values randomly
chosen from a uniform distribution in the range [−10, 10]. The population contains 100
genotypes. Generations following the first one are produced by a combination of selection,
mutation, and elitism. For each new generation, the five highest scoring individuals from
the previous generation are chosen for breeding. The new generations are produced by
making twenty copies of each highest scoring individual with mutations applied only to
nineteen of them. Mutation entails that a random Gaussian offset is applied to each real-
valued vector component encoded in the genotype, with a probability of 0.25. The mean
of the Gaussian is 0, and its standard deviation is 0.1.

5.3.4 The fitness function

During evolution, each group is evaluated 4 times at each of the 10 starting orientation
duplets that can be seen in table 5.1 for a total of 40 trials. Each trial (e) differs from the
others in the initialisation of the random number generator, which influences the robots
initial distance and their orientation by determining the amount of noise added to the
orientation duplets (α, β). During a trial, noise affects motors and sensors as well. In
particular, uniform noise is added in the range ±1.25 cm for the distance, and in the
range ±1.5◦ for the angle of the coloured blob perceived by the camera. 10% uniform
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noise is added to the motor outputs Z(oi). Uniform noise randomly chosen in the range
±5◦ is also added to the initial orientation of each s-bot. Within a trial, the robots life-span
is 50 simulated seconds (250 simulation cycles), but a trial is also terminated if the robots
incur in 20 collisions. In each trial e, each group is rewarded by the following evaluation
function:

Fe = Ae · Ce · Se (5.4)

This fitness function seeks to assess the ability of the two robots to get closer to each
other and to physically assemble through the gripper. Ae is the aggregation component,
computed as follows:

Ae =







1.0
1.0+atan(drr−16

16
)

if drr > 16 cm;

1.0 otherwise;
(5.5)

with drr corresponding to the distance between the two s-bots at the end of the trial e;
Ce is the collision component, computed as follows:

Ce =











1.0 if nc = 0;

0.0 if nc > 20;
1.0

0.5+
√

nc
otherwise;

(5.6)

with nc corresponding to the number of robot-robot collisions recorded during trial e;
Se is the self-assembly component, computed at the end of a trial (t = T with T ∈

(0, 250]), as follows:

Se =











100.0 if GG(T ) = 1, for any robot

1.0 +
29.0

T
P

t=0
K(t)

T
otherwise.

(5.7)

K(t) is set to 1 for each simulation cycle t in which the sensor GS of any s-bot is active,
otherwise K(t) = 0.

Notice that, given the way in which Fe is computed, no assumptions are made concern-
ing which s-bot assumes the role of s-bot-gripper and which one the role of s-bot-grippee.
The way in which collisions are modelled in simulation and handled by the fitness func-
tion is an element that favours the evolution of assembly strategies in which the s-bot-
gripper (after assuming its role) moves straight while approaching the s-bot-grippee (see
section 5.3.2). This has been done to ease transferability to real hardware. The fitness
assigned to each genotype is the average fitness achieved in the 40 evaluations.

5.4 Results

As was mentioned at the beginning of this chapter, the goal of this research work is to
design through evolutionary computation techniques dynamical neural networks to allow
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a group of two homogeneous s-bots to physically connect to each other. To pursue our
objective, we run for 10,000 generations twenty randomly seeded evolutionary simulations.
Although several evolutionary runs produced genotypes that obtained the highest fitness
score (i.e., FF = 100, see section 5.3.4), the ranking based on the evolutionary perfor-
mances has not been used to select a suitable controller for the experiments with real
robots. The reason for this is that during evolution, the best groups may have taken
advantage of favourable conditions, determined by the existence of between-generation
variation in the starting positions and relative orientation of the robots and other simu-
lation parameters. Thus, the best evolved genotype from generation 5,000 to generation
10,000 of each evolutionary run has been evaluated again on a series of 136,000 trials,
obtained by systematically varying the s-bots’ starting orientations. In particular, we
evaluated the evolved genotypes using a wider set of 16 initial orientations Θ16, defined
by equation 5.1. This set covers all the possible perceptual configurations for the starting
condition of one s-bot, which may perceive the other s-bot through one or two camera
sectors (see figure 5.8 for more details). From this set, equation 5.2 tells us that we can
derive 136 different duplets (α, β). Each starting condition (i.e., orientation duplet) was
tested in 1,000 trials, each time randomly choosing the robots’ distance from a uniform
distribution of values in the range [25 cm, 30 cm]. Noise is added to initial orientations,
sensors readings and motor outputs as described in section 5.3.4.

The best performing genotype resulting from the set of post-evaluations described
above was decoded into an artificial neural network which was then cloned and ported
onto two real s-bots. In what follows, first we provide the results of post-evaluation tests
aimed at evaluating the success rate of the real s-bots at the self-assembly task as well
as the robustness of the self-assembly strategies in different setups (see section 5.4.1).
Subsequently, we illustrate the results of analyses carried out with simulated s-bots, aimed
at unveiling operational aspects underlying the best evolved self-assembling strategy (see
section 5.5).

5.4.1 Post-evaluation tests on real s-bots

The s-bots’ controllers are evaluated four times on each of 36 different orientation duplets
(α, β), obtained drawing α and β from Θ8 (see table 5.2). The cardinality of this set of
duplets is given by equation 5.2, with n = 8, k = 2. In each post-evaluation experiment,
successful trials are considered those by which the robots manage to self-assemble, that
is, when one robot manages to grasp the other one. Note that, for real s-bots, the trial’s
termination criteria was changed with respect to those employed with the simulated s-
bots. We set no limit on the maximum duration of a trial, and no limit on the number
of collisions allowed. In each trial, we let the s-bots interact until physically connected.
In a single case we terminated the trial before the robots self-assembled because the s-
bots moved so far away from each other that they ended up outside the perceptual range
of their respective camera. This trial has been terminated after one minute of robot-
robot distance higher than 50 cm and it has been considered unsuccessful. As illustrated
later in the section, these new criteria allowed us to observe interesting and unexpected
behavioural sequences. In fact, the s-bots sporadically committed inaccuracies during
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their self-assembly manoeuvres. Unexpectedly, the robots demonstrated to possess the
required capabilities to autonomously recover from these inaccuracies. In what follows,
we provide the reader a detailed description of the performance of the real s-bots in these
post-evaluation trials.2

The first two tests with physical robots are referred to as test G25 and test G30.
These are tests in which the s-bots light themselves up in green and are initialised at a
distance from each other of 25 cm and 30 cm, respectively. The s-bots proved to be 100%
successful in both tests. That is, they managed to self-assemble in all trials. Table 5.3
gives more details about the s-bots’ performances in these trials. In particular, we notice
that the number of successful trials at the first gripping attempt is 28 and 29 trials out
of 36 respectively for G25 and G30 (see table 5.3, 2nd column). In a few trials, the s-
bots managed to assemble after two/three grasping attempts (see table 5.3, 3rd and 7th

column). The failed attempts were mostly caused by inaccurate manoeuvres—referred to
as inaccuracies of type I1—, in which a series of maladroit actions by both robots makes
impossible for the s-bot-gripper to successfully grasp the s-bot-grippee’s cylindrical turret.
In a few other cases, the group committed a different inaccuracy—referred to as I2—, in
which both robots assume the role of s-bot-gripper. In such circumstances, the s-bots head
towards each other until a collision between their respective grippers occurs. Note that, in
both G25 and G30, the s-bots always managed to recover from the inaccuracies and end
up successful.

As mentioned in section 5.3.2, the s-bots have to turn on their coloured LEDs in order
to perceive each other through the camera. However, as discussed in section 5.2.1, a
significant advantage of our control design approach is that the specific colour displayed

2Movies of the post-evaluation tests on real s-bots can be found at http://iridia.ulb.ac.be/supp/

IridiaSupp2008-002/.

Table 5.2: The orientation duplets for the set Θ8, used during the post-evaluations on
real hardware. Cells in gray represent the 10 duplets composing the set Θ4 (used during
evolution).

(s-bot L, s-bot R) (s-bot L, s-bot R) (s-bot L, s-bot R)

1 (0◦, 180◦) 13 (225◦, 315◦) 25 (90◦, 225◦)
2 (0◦, 270◦) 14 (45◦, 135◦) 26 (90◦, 315◦)
3 (180◦, 270◦) 15 (135◦, 225◦) 27 (90◦, 45◦)
4 (0◦, 90◦) 16 (135◦, 315◦) 28 (90◦, 135◦)
5 (90◦, 180◦) 17 (135◦, 45◦) 29 (180◦, 225◦)
6 (90◦, 270◦) 18 (135◦, 135◦) 30 (0◦, 45◦)
7 (90◦, 0◦) 19 (225◦, 225◦) 31 (180◦, 45◦)
8 (90◦, 90◦) 20 (45◦, 45◦) 32 (180◦, 135◦)
9 (180◦, 180◦) 21 (0◦, 225◦) 33 (270◦, 225◦)
10 (0◦, 0◦) 22 (0◦, 315◦) 34 (270◦, 315◦)
11 (45◦, 225◦) 23 (180◦, 315◦) 35 (270◦, 45◦)
12 (45◦, 315◦) 24 (0◦, 135◦) 36 (270◦, 135◦)
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has no functional role within the neural machinery that brings forth the s-bots’ actions.
In order to empirically demonstrate that the mechanisms underpinning the s-bots self-
assembling strategies do not depend on the specific colour displayed by the LEDs, we
repeated a third and a fourth time the 36 post-evaluation trials, both times by deliberately
changing the colour of the s-bots’ LEDs. The s-bots are placed at an initial distance of
30 cm from each other, and they are evaluated with the LEDs displaying blue light—this
test is referred to as B30—and with the LEDs displaying red light—this test is referred to
as R30.

The s-bots proved to be very successful both in B30 and R30 (see table 5.3). In the large
majority of the trials the s-bots managed to self-assemble at the first grasping attempt.
In a few trials, two or three grasping manoeuvres were required (see table 5.3, 3rd and 7th

column). A new type of inaccuracy emerged in test R30. That is, in three trials, after
grasping, the connected structure got slightly elevated at the connection point. We refer
to this type of inaccuracy as I3. Notice also that in a single trial, in test B30, the s-bots
failed to self-assemble (see table 5.3, last column). In this case, the s-bots moved so far
away from each other that they ended up outside the perceptual range of their respective
camera. This trial in which the s-bots spent more than 1 minute without perceiving each
other has been terminated, and it was considered unsuccessful.

For each single test (i.e., G25, G30, B30, and R30), the sequences of s-bots’ actions are

Table 5.3: Results of post-evaluation tests on real s-bots. G25 and G30 refer to the tests
in which the s-bots light themselves up in green and are initialised at a distance from each
other of 25 cm and 30 cm, respectively. B30 and R30 refer to the tests in which the s-bots
light themselves up in blue and red respectively, and are initialised at a distance of 30 cm
from each other. Trials in which the physical connection between the s-bots requires more
than one gripping attempt, due to inaccurate manoeuvres Ii, are still considered successful.
I1 refers to a series of maladroit actions by both robots which makes impossible for the
s-bot-gripper to successfully grasp the s-bot-grippee’s cylindrical turret. I2 refers to those
circumstances in which both robots assume the role of s-bot-gripper and collide at the level
of their grippers. I3 refers to those circumstances in which, after grasping, the connected
structure gets slightly elevated at the connection point. Failures correspond to trials in
which the robots do not manage to return to a distance from each other smaller than their
visual field.

Test
Number of successful trials per
gripping attempt and types of

inaccuracy

N.◦

failures

1st 2nd 3rd

N.◦ N.◦ I1 I2 I3 N.◦ I1 I2 I3
G25 28 7 6 1 0 1 2 0 0 0

G30 29 6 3 3 0 1 1 1 0 0

B30 26 5 3 2 0 4 8 0 0 1

R30 20 12 10 0 2 4 7 0 1 0
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Table 5.4: Summary of all the possible scenarios observed in real s-bots during post-
evaluation tests. States refer to particular s-bots’ spatial configurations that are either
representative of phases of a trial (e.g., RA-phase, Lost-phase), specific time in a trial
(Start, End), or denote inaccurate manoeuvres that do not hinder the robots from even-
tually connecting to each other (i.e., I1, I2, and I3, see caption of table 5.3 for further
details). The arrows indicate transitions between different states of a trial.

Start

Inaccuracy I3 End (success) Inaccuracy I1

Lost-phase Inaccuracy I2RA-phase

rather different from one trial to the other. However, these different histories of interactions
can be succinctly described by a combination of few distinctive phases and transitions
between phases which exhaustively “portray” the observed phenomena. Figure 5.4 shows
snapshots from a successful trial which represent these phases. The robots leave their
respective starting positions (see figure 5.4a) and during the starting phase (see figure 5.4b)
they tend to get closer to each other. In the great majority of the trials, the robots
move from the starting phase to what we call the role allocation phase (RA-phase, see
figure 5.4c). In this phase, each s-bot tends to remain on the right side of the other.
They slowly move by following a circular trajectory corresponding to an imaginary circle
centred in between the s-bots. Moreover, each robot rhythmically changes its heading
by turning left and right (see table 5.4, middle row, central image). The RA-phase ends
once one of the two s-bots—that is, the one assuming the role of the s-bot-gripper—stops
oscillating and heads towards the other s-bot—that is, the one assuming the role of the s-
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bot-grippee—which instead orients itself in order to facilitate the gripping (gripping phase,
see figure 5.4d). The s-bot-gripper approaches the s-bot-grippee’s turret and, as soon as its
GS sensor is active, it closes its gripper. A successful trial terminates as soon as the two
s-bots are connected (see figure 5.4e).

5.4.2 The recovery mechanism

As mentioned above, in a few trials the s-bots failed to connect at the first gripping
attempt by committing what we called inaccuracies I1 and I3 (see table 5.4 bottom row,
left and right images). These inaccuracies seem to denote problems in the sensory-motor
coordination during grasping. Recovering from I1 can be accomplished by returning to a
new RA-phase, in which the s-bots negotiate again their respective roles, and eventually
self-assemble. Recovering from I3 is accomplished by a slight backward movement of both
s-bots which restores a stable gripping configuration. Given that I3 has been observed
only in R30, it seems plausible to attribute the origin of this inaccuracy to the effects of
the red light on the perceptual apparatus of the s-bots. In particular, it could be that,
due to the red light, the s-bot-gripper perceives through its camera the s-bot-grippee at a
farther distance than the actual one. Alternatively, it could be that the red light perturbs
the regular functioning of the optical barrier and consequently the readings of the GS and
GG sensors. Both phenomena may induce the s-bot-gripper to keep on moving towards
the s-bot-grippee up to the occurrence of I3, even though the distance between the robots
and the status of the gripper of the s-bot-gripper would require a different response.

On the other hand, I2 seems to be caused by the effects of the s-bots’ starting positions
on their behaviour. In those trials in which I2 occurs, after a short starting phase, the
s-bots head towards each other until they collide with their grippers without going through
the RA-phase. The way in which the robots perceive each other at starting positions seems
to be the reason why they skip the RA-phase. Without a proper RA-phase, the robots
fail to autonomously allocate between themselves the roles required by the self-assembly
task (i.e., s-bot-gripper and s-bot-grippee), and consequently they incur in I2. In order to
recover from I2, the s-bots move away from each other and start a new RA-phase in which
roles are eventually allocated.

As shown in table 5.3, except for a single trial in test B30 in which the s-bots failed
to self-assemble, the robots proved capable of recovering from all types of inaccuracies.
This is an interesting result because it is evidence of the robustness of our controllers

(a) (b) (c) (d) (e)

Figure 5.4: Snapshots from a successful trial. (a) Initial configuration. (b) Starting phase.
(c) Role allocation phase. (d) Gripping phase. (e) Success (grip).
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with respect to contingencies never encountered during evolution. Indeed, as mentioned
in section 5.3.2, in order to speed up the evolutionary process, the simulation in which
controllers have been designed does not handle collisions with sufficient accuracy. In those
cases in which, after a collision, the simulated robots had another chance to assemble, the
agents were simply re-positioned at a given distance to each other. In spite of this, s-bots
guided by the best evolved controllers proved capable of engaging in successful recovering
manoeuvres which allowed them to eventually assemble.

In short, after an inaccuracy of some type has occurred, the robots have to reconfig-
ure and assume positions that can eventually lead to self-assembly. In most cases, the
inaccuracy leads to relative positions (and in general situations) not experienced during
evolution, since an inaccuracy of any type (practically always) leads to the termination of
the trial due to collisions. Thus, typically, the robots have to escape from these configu-
rations, recreate the conditions that can lead them to successful decision-making, and in
essence, repeat the role allocation process. In figure 5.5 we can see a typical example of
such a case; after an inaccuracy I1, the robots initially go away from each other and then
renegotiate their roles by repeating the RA-phase.

Still, in few cases, the recovery mechanism practically bypassed the RA-phase since
apparently the conditions for decision-making and self-assembly were already there. In
figure 5.6 we show snapshots of a trial with backtracking present in the recovery mecha-
nism. We see that after an inaccuracy I2, one of the robots backtracked and assumed the
s-bot-gripper role immediately. This is an interesting observation which suggests that dur-
ing evolution, backtracking was selected for, possibly serving other purposes, like collision
avoidance. In case the robots skip the new RA-phase, it takes fewer time for the system
to reconfigure and self-assemble.

Figure 5.5: Snapshots from a trial showing the recovery mechanism that involves repetition
of the RA-phase.

5.4.3 Comparison of simulated and real robots with respect to time

It is interesting to categorise our results with respect to the time it took for the robots
to self-assemble. Figure 5.7 shows the boxplot of trial length for all successful real robot
experiments, together with a set of 36 observations extracted from simulation for distances
25 and 30 cm (SimG25 and SimG30, respectively). In simulation, the set of 36 observations
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Figure 5.6: Snapshots from a trial showing a recovery mechanism that does not involve a
new RA-phase.

Figure 5.7: Boxplot showing the length of successful trials at the 1st, 2nd, and 3rd gripping
attempt per post-evaluation test G25, G30, B30, and R30. The boxplots labelled Sim25
and Sim30 refer to the length of successful simulated trials in which the s-bots have been
initialised as in the trials corresponding to boxplot labelled G25-1st, and G30-1st, B30-
1st, R30-1st, respectively. Boxes represent the inter-quartile range of the data, while the
horizontal bars inside the boxes mark the median values. The whiskers extends to the
most extreme data points within 1.5 of the inter-quartile range from the box. Crosses
denote outliers.

is drawn from Θ8 and it only contains successful trials (we randomly chose a seed for
which all 36 trials end up successful). For every real robot experiment, we group the trials
according to the attempt at which assembly was achieved. We will refer to the subset of
the experimental results for every experiment as follows: G25-1st, G30-1st, B30-1st and
R30-1st will refer to the subset of the corresponding experiment where no inaccuracies
were observed, G25-2nd, G30-2nd, B30-2nd and R30-2nd refer to trials where there was one
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inaccuracy observed and thus the system achieved self-assembly at the second attempt,
and G25-3rd, G30-3rd, B30-3rd and R30-3rd refer to trials were assembly was obtained at
the third attempt. By comparing the distributions of simulated and real s-bots without
inaccuracies (Sim25 against G25-1st, and Sim30 against G30-1st, B30-1st and R30-1st), we
notice that real s-bots tend to take longer time to accomplish their task than simulated
agents (Wilcoxon test, 99% confidence interval). It seems that the real-world noise (and
possibly other phenomena not accurately modelled in our simulated world, e.g., friction),
tends to increase the time required for the s-bots to physically assemble. The reader
should bear in mind that, in spite of the difference between the length of trials of real
and simulated s-bots, the robots’ controllers proved to be robust enough to accomplish
the task with high success rates in both simulation and on real robot hardware. Thus,
despite the quantitative differences between the behaviour of simulated and real robots,
we consider the experimentation on real hardware successful. Our approach is similar to
what described in chapter 4, section 4.5; we again follow Jakobi (1997), who claims that
the robots do not have to move identically in simulation and reality in order for the porting
to be called successful. In fact, it suffices that real robots carry out the main requirements
of the task, that is, in this experiment, to achieve self-assembly. By looking at figure 5.7,
we also notice that the coloured light emitted by the LED does not have any clear effect on
the length of the successful trials with a single gripping attempt (this is also confirmed by
Wilcoxon tests comparing the distributions corresponding to G30-1st, B30-1st and R30-
1st—no significant differences were found). As expected, trials that required more than
one gripping attempt lasted longer than those in which the s-bots managed to assemble
at the first attempt (Wilcoxon test, 99% confidence interval).

5.5 An operational description

Our research illustrates the details of an alternative methodological approach to the de-
sign of controllers for self-assembly in autonomous robots in which no assumptions are
made concerning how agents allocate roles in the self-assembly task. The evolved mecha-
nisms are as effective in controlling real robots as those described in (Groß et al., 2006a;
O’Grady et al., 2005, see section 5.2.2). Contrary to modular or hand-coded approaches,
the evolutionary one proved to be robust with respect to changes of the colour of the light
displayed by the LEDs. The controllers described in (Groß et al., 2006a; O’Grady et al.,
2005) require to be re-structured by the experimenter in order to cope with the same type
of changes.

In view of the results shown in section 5.4.1, we believe that evolved neuro-controllers
are a promising approach to the design of mechanisms for autonomous self-assembly. How-
ever, it is important to remark that the operational principles of self-assembly used by
s-bots controlled by our neuro-controllers, are less “transparent” than the modular or
hand-coded control described in (Groß et al., 2006a; O’Grady et al., 2005). Further re-
search and experimental analysis are required to unveil the operational principles of the
evolved neural controllers. What are the strategies that the s-bots use to carry out the
self-assembly task? How do they decide who is the s-bot-gripper, and who is the s-bot-
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grippee? Although extremely interesting, providing an answer to this type of questions is
not always a simple task. The methodologies at our disposal to uncover the operational
mechanisms of evolved neural networks are limited to systems with a small number of
neurons, or to cases in which the neural networks control simple agents that only move in
a one-dimension world, or by discrete steps (see Beer, 2003a, 2006; Keinan et al., 2006, for
examples). Due to the nature of our system, these methods cannot be directly employed
to investigate which mechanisms control the process by which two homogeneous s-bots dif-
ferentiate into s-bot-gripper and s-bot-grippee. In spite of these challenges, we describe in
the following the results of an initial series of studies focused on the relationship between
the s-bots’ starting orientations and the role allocation process.

5.5.1 The role of the initialisation

Do the robots’ orientations at the beginning of a trial influence the way in which roles
(i.e., s-bot-gripper versus s-bot-grippee) are allocated? We start our analysis by looking
at the results of the post-evaluation tests mentioned at the beginning of section 5.4. In
particular, we look at those data concerning the behaviour of the s-bots controlled by the
best performing genotype; that is, the genotype used to build the networks ported on the
real robots. Recall that, in these tests, the simulated s-bots have been evaluated on a
series of 136 starting orientation duplets (α, β) obtained from Θ16. For each orientation
duplet, the s-bots underwent 1,000 evaluation trials. For each trial, the initial distance
was randomly chosen from a uniform distribution of values in the range [25 cm, 30 cm].
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Figure 5.8: Depiction of three different s-bots’ starting conditions. In each picture, circles
represent the s-bots, filled arrows indicate the robots’ headings and the hollow arrows
their orientation. The numbers within the circles refer to the camera sectors CAMi with
i ∈ {1, 2, . . . , 8}. Filled sectors are those through which the s-bots perceive each other.
(a) In trials in which α and β are drawn from the set of starting orientations ΘA, robots
perceive each other in two camera sectors. (b) In trials in which α and β are drawn from
the set of starting orientations ΘB , robots perceive each other in one camera sector. (c)
In trials in which α ∈ Θi and β ∈ Θj, with i 6= j, robots perceive each other in one and
two camera sectors, respectively.
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Each duplet (α, β) defines a perceptual scenario at the beginning of a trial characterised
by the sector/s through which the robots perceive each other. We defined two subsets
of Θ16: ΘA and ΘB . These sets encompass those initial orientations that correspond to
a perception of the other robot through respectively two camera sectors and one camera
sector. As a consequence, each duplet (α, β) identifies one out of three different condi-
tions: α, β ∈ ΘA (see figure 5.8a), α, β ∈ ΘB (see figure 5.8b), or α ∈ Θi, β ∈ Θj with
i 6= j (see figure 5.8c). Note that, given the distance up to which a coloured blob can be
perceived by the s-bots’ camera (approximately 50 cm), and the dimension of each camera
sector (45◦), the three categories illustrated in figure 5.8 take into account all the possible
perceptual scenarios that the two s-bots system can experience at the beginning of a trial,
assuming that the robots are at less than 50 cm from each other. The 136 orientation
duplets include 16 symmetrical conditions in which α = β. In symmetrical orientation
duplets, the robots share the same perception at the beginning of the trial. That is, they
perceive each other through the same sector/s of their corresponding camera. Asymmet-
rical orientation duplets are those in which α 6= β. These tests have been repeated twice:
once without adding any noise to the robots’ orientations (α and β) and once by applying
a random offset to the robots’ orientations. These offsets are chosen in order not to disrupt
the perceptual scenario—i.e., the sector/s through which the robots perceive each other—
determined by the corresponding orientation duplet (α, β). The results are qualitatively
similar, we therefore in the following discuss only the results of the tests with noise. Recall
that, contrary to the real s-bots, the simulated robots, due to the way our simulator han-
dles collisions, cannot practically use the recovery manoeuvres observed in the real-world
experiments. That is, in these post-evaluation tests, the simulated s-bots are scored ac-
cording to a binary criterion: a trial can be either successful or unsuccessful. Unsuccessful
trials are considered those in which the robots did not manage to self-assemble within the
time-limit, as well as those that terminated due to the occurrence of collisions that are not
considered the result of an accepted grasping manoeuvre (see section 5.3.2 for details).

In figure 5.9a we plot the success rate of the simulated s-bots, controlled by the best
evolved genotype. In particular, we can see for all the duplets comprising set Θ16 the
percentage of successful trials. Dark colours refer to low success rates while circles with
light colours refer to high success rates. Circles that contain a cross (+) refer to cases
where the percentage of success is higher than 85%. The orientation duplets for which the
robots self-assembled in 85% or more of the trials amounted to 104 out of a total of 136
duplets. The remaining 32 orientation duplets—1 symmetrical and 31 asymmetrical—
contain few cases where the success rate is very low; more specifically, for one duplet
(α = β = 22.5◦) we noticed that the success rate was 0%. For this orientation combination
the robots always adopted the same role. The three boxes in the boxplot in figure 5.10a
correspond to the three initial perceptual scenarios depicted in figure 5.8. We notice that
the medians of the three distributions are all above 90%, which indicates that the robots
are quite successful in all scenarios. The 2nd and 3rd scenario include some trials where
the performance is rather low. However, we cannot conclude that a particular initial
perception scenario (e.g., perceiving a robot through one or two camera sectors) has a
direct impact on the success rate.

Before proceeding with our analysis of the mechanisms for role allocation, we need
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(a)

(b)

Figure 5.9: (a) Success rates across all duplets in the set Θ16. The darker the colour
of a circle, the lower the percentage of successful trials in the corresponding experiment;
(b) The role ratio for all duplets of set Θ16. The lighter the colour of a circle, the closer
the role ratio is to 1 in the corresponding experiment. Circles containing a cross (+)
indicate duplets for which the percentage of successful trials is higher than 85%. When
α = β = 22.5◦ the success rate is 0% and so there is no data to calculate the role ratio.



88 CHAPTER 5. EXPERIMENT II: EVOLVING SELF-ASSEMBLY

to clarify the following issues: First, the reader should bear in mind that, in our tests,
the s-bot-gripper is operationally defined as the robot that successfully grips the other
one. This definition has been chosen for being the most reliable in discriminating the
roles. Second, given the way in which α and β are varied in our tests, the operational
definition of the roles, and the s-bots success rate (see figure 5.10a), we can already exclude
that the system works by following simple rules by which the role is determined by the
initial individual perception. This is because the robots proved to be successful even in
symmetrical trials. In other words, having the same initial perception does not hinder the
robots from allocating different roles. Therefore, either the system has to be governed by
more complex principles based on the combination of α and β, or the initial orientations
have no bearing on the role allocation process. In the remainder of this section, we carry
out an analysis that helps us further clarify this issue.

For our role allocation analysis we chose only the orientation duplets for which the
robots self-assembled in 85% or more of the trials (104 out of 136 duplets). For the
remaining 32 orientation duplets for which the robots self-assembled in less than 85% of
the trials, we considered the sample size to be too small for a meaningful role allocation
analysis. This is mainly due to the operational definition of s-bot-gripper. Since there is no
s-bot-gripper in unsuccessful trials, the lower the s-bots success rate the smaller the sample
(i.e., the number of trials) in which the relationship between roles and starting perceptual
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Figure 5.10: (a) The plot shows the percentage of successful trials of simulated s-bots
controlled by the best evolved genotype for each of the three types of starting conditions:
(1) α, β ∈ ΘA, see figure 5.8a; (2) α, β ∈ ΘB, see figure 5.8b; (3) α ∈ Θi, β ∈ Θj,
and i 6= j, see figure 5.8c. Boxes represent the inter-quartile range of the data, while
the horizontal bars inside the boxes mark the median values. The whiskers extend to the
most extreme data points within 1.5 times the inter-quartile range from the box. Empty
circles mark the outliers. (b) The barplot shows the percentage of trials per level of role
ratio. Black bars refer to orientation duplets (α, β) with α = β, referred to as symmetrical
orientation duplets. Grey bars refer to orientation duplets (α, β) with α 6= β, referred to
as asymmetrical orientation duplets.
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scenario can be observed. By looking at the frequency (i.e., how many trials out of 1,000)
with which each s-bot (i.e., s-bot L and s-bot R) assumes the role of s-bot-gripper for any
given value of α and β, our analysis is intended to unveil any relationship between the
robots initial orientations and the role they assume during the trial. In particular, we
looked at the role ratio.

The role ratio can be considered a property of each orientation duplet. It indicates
how often a given robot (i.e., s-bot L or s-bot R) assumed the role of s-bot-gripper when
repeatedly evaluated on a given orientation duplet. In particular, the role ratio corresponds
to the highest frequency of assuming the s-bot-gripper role between the one recorded by
s-bot L and by s-bot R. Thus, the role ratio can vary between 50%, when both robots
assumed the s-bot-gripper role with the same frequency, to 100% when only one robot
assumes the s-bot-gripper role in all the trials that start with the same perceptual scenario
(i.e., evaluation trials repeated for a given orientation duplet). If the role ratio is around
50% for both symmetrical and asymmetrical trials, then this is an evidence that the initial
individual orientations have no bearing on the role allocation process. If instead, for
certain orientation duplets (α, β) the role ratio diverges significantly from the 50% value,
then we conclude that the system is governed by principles based on the combination of
the robots initial individual orientations.

In figure 5.10b, the role ratio is divided in five categories, represented on the x-axis,
and the orientation duplets are divided in two categories represented by the two types of
bars. The black bars refer to the percentage of symmetrical orientation duplets for each
category of role ratio. The grey bars refer to the percentage of asymmetrical orientation
duplets for each category of role ratio. By looking at figure 5.10b, we clearly see that while
the totality of the orientation duplets corresponding to symmetrical starting positions falls
into the category of role ratio [50%, 60%), the large majority of the orientation duplets
corresponding to asymmetrical starting positions falls into the category of role ratio [90%,
100%]. This means that, while in many of the asymmetrical trials the role of s-bot-gripper
is for the large majority (if not the totality) of the successful trials assumed by the same
robot (i.e., either s-bot L or s-bot R), in all the symmetrical trials both robots assume
the role of s-bot-gripper with more or less the same frequency. We also found out that
in asymmetrical trials with α = 0◦, it is the s-bot L that systematically assumes the
role of s-bot-gripper (data not shown). For all the other asymmetrical starting conditions
with α 6= 0◦, the role of s-bot L depends on the value of β. That is, except for the
orientation 0◦, for all the other duplets, no associations can be made between an s-bot ’s
initial orientation and its role. In these circumstances (i.e., α, β 6= 0◦), it seems to be
the combination of values of α and β which determines whether it is s-bot L or s-bot R
assuming the s-bot-gripper role.

For the sake of consistency, in figure 5.9b we plot the role ratio for all duplets in
Θ16. The darker the colour of a circle, the closer the role ratio is to 50%, while very
lightly coloured circles refer to role ratio close to 1. Circles that contain a cross (+) refer
to duplets for which the success rate (plotted in figure 5.9a) is higher than 85%, and
that have been taken into account to produce figure 5.10b. Notice that the duplet (α,
β)=(22.5◦, 22.5◦) for which the success rate is 0% is not represented by a circle in the role
ratio graph. In this figure, we can clearly see that duplets that lie on the diagonal, that
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is, symmetrical duplets, all have a dark colour denoting a role ratio around 50%, while for
the great majority of the rest of the duplets the role ratio is near 1, as denoted by circles
with light colours.

5.5.2 The role of noise

Our analysis revealed that, who is the s-bot-gripper and who is the s-bot-grippee is the result
of an autonomous negotiation phase between the two s-bots. The role allocation unfolds in
time during the entire duration of a trial. In the case in which the two robots have different
initial perceptions, the role that each s-bot assumes can (usually) be predicted knowing
the combination of α and β. This means that it is this combination which determines
the roles. In other words, perceiving the other robot at a specific distance and through a
given camera sector or at a certain angle does not inform a robot about the role it assumes
during the trial; this role equally depends on the initialisation of the other agent.

However, our results show that in those cases in which the robots start with an identical
perception, this symmetry does not hinder the robots from autonomously allocating dif-
ferent roles to successfully accomplish their task. In order to explain this fact, we perform
the following test: we systematically reduce the maximum of the random noise applied on
sensors and actuators downwards and until no noise is present, and we record the average
fitness of the system for 1,000 trials drawn from Θ8, for three different conditions: (i)
asymmetrical (α 6= β); (ii) symmetrical (α = β); (iii) symmetrical+1◦ (α = β + 1◦).

In figure 5.11 we plot the results of this test in a logarithmic scale. We can clearly
see that (i) for asymmetrical trials (see continuous line), the noise scaling factor has no
effect in performance and the initial asymmetry is what causes the differentiation of the
controllers; (ii) for symmetrical+1◦ (see dotted line), the same as in asymmetrical trials
holds, that is, even one degree of difference in the initial perceptions can be enough to
produce differentiation; (iii) for symmetrical trials (see dashed line), contrary to the rest
of the cases, the noise scaling factor is having a big impact on the success rate, that is, on
the amount of trials where differentiation is achieved. In particular, this factor has to be
over 10% in order for the performance to reach levels as high as with the other two cases.

Thus, we can say that in the symmetrical case, despite the lack of a priori existing
perceptual asymmetries that seem to be guiding the role allocation process, it is the (real-
world or injected into the simulation) random noise that injects asymmetries and eventu-
ally leads to role allocation. In this particular scenario, stochastic phenomena dominate
any causal relationship between environmental structures (i.e., how the robots perceive
each other at the beginning of a trial) and the role allocation process.

5.6 Discussion

In a context free of assumptions concerning the nature of the mechanisms underlying
the agents behavioural repertoire, our evolutionary robotics model exploits an automatic
design process which exploits some features of natural evolution to define the control struc-
tures that enable the robots to autonomously self-assemble by assuming complementary
roles (i.e., s-bot-gripper and s-bot-grippee). The results of post-evaluation analyses shown
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Figure 5.11: Logarithmic plot of the average fitness over 1,000 trials with the noise scaling
factor for three different conditions: asymmetrical, symmetrical and symmetrical+1◦.

in section 5.5 illustrate that the allocation of roles is the result of an autonomous negotia-
tion phase between the two robots. The outcome of any action an agent chooses depends
on the action of the other agent. In other words, none of the two agents can predict its
final role from its initial perception.

5.6.1 Minimal conditions for self-assembly

We have shown on real hardware that explicit communication to directly access the “in-
tentions” of the other agents (through explicit signals, as the ones used in Groß et al.,
2006a, for example) is not a necessary condition for coordination. Our robots coordinate
without direct and explicit communication. Noble (1998) reached a similar conclusion
with an evolutionary simulation model involving two simulated animals (controlled by
a CTRNN) contesting the possession of a resource. Moreover, in another work, Noble
(2000b) studied evolved strategies for communication and action in asymmetrical animal
contests and observed that the animats did not use an explicit signalling channel that was
available to them, but they rather exchanged information about fighting ability through
their movement. Groß and Dorigo (2008a) have also shown that cooperative behaviour can
be achieved without explicit means of communication. More specifically, in a cooperative
transport task, simulated robots could find effective transport strategies exploiting indirect
communication, that is, by interacting with each other indirectly through the object being
manipulated. Finally, our results are very similar to the results obtained in (Quinn, 2001;
Quinn et al., 2003), where role allocation (leader-follower) and formation movement is
achieved solely through infrared sensors and the control structure is once again an evolved
dynamic neural network. In particular, the work presented in Quinn (2001) reports on
role allocation between two robots for symmetrical and non-symmetrical cases. Whilst
the author qualitatively explains how the difference in the initial perceptions influences
the role allocation for non-symmetrical cases, an analysis of the evolved behaviour in case
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of “insufficient differences” is not performed. In the analysis performed in section 5.5, we
have explained quantitatively and to some degree qualitatively the effect of the starting
configuration on the final outcome of a trial (how roles are allocated); the great majority of
non-symmetrical configurations severely bias the role allocation process, while symmetrical
configurations are governed by stochastic phenomena that take over causal relationships
between initial conditions and the final role allocation.

Achieving coordination in the self-assembly task without access to the intentions or
even orientation of the other robot could help as a basis to also reconsider the design
of controllers for other group (or swarm) behaviours, for example flocking, where such
assumptions are made concerning the cognitive and communication capabilities of the
robots (see Kelly and Keating, 1996; Campo et al., 2006; Turgut et al., 2008, for exam-
ples). Concerning natural systems where flocking is observed (e.g., insect swarms or fish
schools), the principles underlying social interactions and information exchange are still
not known (see Couzin et al., 2005; Couzin, 2007). In (Couzin, 2007), the authors present
a model of self-organised flocking that does not require the presence of leaders and signals
to lead a group to coordinated flocking motion through information exchange. The au-
thors provide the agents with the knowledge of the position and direction vectors of other
individuals in a neighbourhood, since it is observed that animals often align their direction
of motion with that of nearby neighbours. Our evolutionary robotics model achieves such
a coordination with a more minimal setup: an evolved CTRNN can provide a robot with
the tools to monitor the activity of another robot, and thus extract useful information
(as the direction of motion of the other robot) without assuming this type of information
directly available to the robot.

5.6.2 Anti-coordination problems

The kind of scenario described in this chapter requires two agents to assume complemen-
tary (opposite) roles in order to autonomously solve a given task. This type of scenarios
are also referred to as anti-coordination problems. According to Lewis (1969), in coordi-
nation and anti-coordination problems, “two (or more) agents must choose one of several
alternative actions”. The author continues by stressing that “the outcome of any action
an agent might choose depends on the action of the other agents”.

Coordination and anti-coordination problems are particularly studied by biologists, ei-
ther by direct observation of the behaviour of animals in nature or captivity, or by the use
of analytical modelling tools, as in Maynard-Smith and Price (1973), where “limited-war”
type conflicts (without serious injuries) between conspecifics are studied. Typically, such
problems are studied with the use of game theory models (see Maynard-Smith, 1982; Hof-
bauer and Sigmund, 1998, for examples). The latter models allow biologists to predict the
outcome of coordination/anti-coordination problems given the set of behavioural strate-
gies available to the agent and the payoff corresponding to all the possible combinations
of actions among the actors. However, such analytical tools seem to be less suitable for
testing hypotheses concerning the nature of the underlying mechanisms that underpin the
agents’ behaviour. In order to shed light on similar mechanisms, we believe that evolution-
ary robotics models are suitable modelling tools and complementary to other analytical
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modelling tools at the disposal of biologists.

In the experiments we have presented, the robots manage to coordinate their actions,
“hovering” around the conditions that lead to assuming the s-bot-gripper role (oscilla-
tory movement). The way in which the robots solve the anti-coordination problem bears
striking similarities to the way in which animals solve conflicts. In fact, the conflict be-
tween two strategies as attack and flee (or surrender), approach or avoid, is very common
in nature. For example, gulls during fights adopt in turns agonistic (aggressive) postures
which are abandoned as the birds turn broadside to the antagonist—a consequence of fear.
Eventually, one bird will abandon the offensive and will adopt an appeasement posture
or run away (see Tinbergen, 1953, for details). The similarity of this behaviour with the
one of our robots is striking: it has even been observed that fighting birds walk parallel
or around each other, as our robots circle around each other (see table 5.4, RA-phase).
Similar coordination rituals are observed in gulls mating, in the “dance-fighting” observed
in the male starling (see Ellis, 1966), in the fighting behaviour but also the mating “zig-zag
dance” of the stickleback (Tinbergen, 1952), and in the parallel walks engaged in by red
deer stags (Clutton-Brock et al., 1979), which allow for each animal to assess the other’s
size and strength and to investigate possible asymmetries (Noble, 2000b). Recently, Liv-
nat and Pippenger (2006) showed that “an optimal decision-making system can involve
“selfish” agents that are in conflict with one another, even though the system is designed
for a single purpose”. Similarly, when the robots are in the role allocation phase (see
section 5.4.1), their behaviour can be seen as the sum of two conflicting tendencies (as-
sume the s-bot-gripper role or not) that co-exist at a dynamic equilibrium and oppose each
other at the point of wavering. Finally, parallels can also be drawn between our system
and simultaneous hermaphrodites, as snails, slugs and fish species. In those animal species,
individuals will have to take single mating decisions (“one-shot” games) that require the
coordination with the individual with whom they interact, since assuming the same role
will end up costly for both (for a comprehensive review of models that explore the origins
and solutions to such conflicts, we direct the reader to Anthes et al., 2006).

Obviously, the way in which our robots solve the self-assembly task is determined by
the way in which we set up our evolutionary processes. Understanding how our fitness
function constrains the evolution of the s-bots’ behaviour might help us learn more about
the evolved behaviour. With respect to this point, we decided to cast the fitness function
into a game-theoretic framework, and in particular to revisit it as the payoff matrix of a
simple anti-coordination game (a simple version of the “Hawk-Dove” game,3 see Maynard-
Smith, 1982; Maynard-Smith and Price, 1973). The fitness function selectively rewards
the robot group to achieve self-assembly: the robots must coordinate to decide who will
grip whom. A failure to take a decision will result in low fitness scores. The same goes
if both robots decide to assume the s-bot-gripper role; the robots will collide and will be
therefore punished by the fitness function. If we make a simplification and we assume that
i) if the role allocation is correct, the result is a successful grip and the fitness of the group
is maximum (100), ii) a failure in the decision-making (see Inaccuracy I3 in section 5.4.1)

3This game which is also known as the game of “Chicken” is based on the principle that the outcome
where neither player yields to the other is the worst possible one for both players.
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leads to 20 collisions and thus the robots receive a fitness score of 0, and iii) in case of
failure to allocate the roles during the length of a trial, robots receive just the aggregation
fitness component (Ae < 1) (see section 5.3.4 for details), the payoff matrix would be the
one in table 5.5.

Table 5.5: The payoff matrix of the game our robots are evolved to play. One robot
chooses a strategy from the columns, and the other from the rows. The payoff refers to
the fitness score assigned to the group after the end of the trial. Ae is the aggregation
component of the fitness function (see equation 5.4).

s-bot-gripper s-bot-grippee

s-bot-gripper 0 100

s-bot-grippee 100 Ae

Clearly, this problem has only one solution (the action of every agent is optimal ac-
cording to what the other agent does): that the agents should do the opposite of what the
other is doing and thus allocate roles. Notice that this solution is optimal regardless of the
selection type (group or individual). In other words, even if we were using heterogeneous
robots which were not evaluated collectively but individually, still the optimal solution
would be the coordination by role allocation. Given this operational description of the
system, we can justify the behaviour exhibited by the robots. More specifically, the cir-
cular movement with oscillations described in section 5.4.1 can be seen as the sum of two
components: assuming the s-bot-gripper role and abandoning it. A premature decision on
behalf of one robot to assume the s-bot-gripper role might lead to a decision-making error
and in the end the robots would end up receiving a fitness score of 0. Thus, a robot has
to assume this role while the other agent assumes the s-bot-grippee role.

Notice that all we did here was to simplify the description of the fitness function in
order to better understand why evolved controllers behave the way they do. Describing it
in game theory terms gave us the opportunity to view the experiment from a more high-
level point of view and to realise that our experiment was very close to the “Hawk-Dove”
game. This clarifies why our results are the way they are and shows that the solution found
is not just a random solution in a possible universe; instead, the principles characterising
this solution could only be the ones they are.

In an effort to explain the solution to such a simple anti-coordination problem, game
theory would go as far as explaining the obvious: agents have to allocate distinct roles.
On the contrary, ER models can go beyond the obvious and propose time-dependent
mechanisms at the neural level that can produce such role allocation. In this sense, we
believe that ER models can complement analytical models of biological studies, as game
theory models. However, the use of game theory language can yield limited benefits to
our ER experimentation.
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5.7 Conclusion

In this chapter, we have presented the results of an evolutionary methodology for the
design of control strategies for self-assembling robots. More specifically, to the best of
our knowledge, the control method we have proposed for the physical connection of two
robots is the only existing in the literature where the role allocation between gripper and
grippee is the result of an autonomous negotiation phase between the homogeneous robots;
there is no a priori injected behavioural or morphological heterogeneity in the system.
Instead, the behavioural heterogeneity emerges from the interaction between the robots.
Moreover, the communication requirements of our approach are reduced to the minimum;
simple coordination by means of dynamical interactions between the robots—as opposed
to explicit communication of internal states—is enough to bring forth differentiation within
the group. We believe that reducing the assumptions on necessary conditions for assembly
is an important step to obtain more adaptive and more general controllers for autonomous
self-assembly.

The results of this work are a “proof-of-concept”: they proved that dynamical neural
networks shaped by evolutionary computation techniques directly controlling the robots’
actuators can provide physical robots all the required mechanisms to autonomously per-
form self-assembly. Contrary to the modular or hand-coded controllers described in Groß
et al. (2006a); O’Grady et al. (2005), the evolutionary robotics approach did not require
the experimenter to make any a priori assumptions concerning the roles of the robots
during self-assembly (i.e., either s-bot-gripper or s-bot-grippee) or about their status (e.g.,
either capable of moving or required not to move). The evolved mechanisms proved to
be robust with respect to changes in the colour of the light displayed by the LEDs. Fur-
thermore, in section 5.4.1 we have presented a system that exhibits recovery capabilities
that could not be observed during the evolutionary simulation and that were not coded or
foreseen by the experimenter. Such a feature in our case comes for free, while in the case
of Groß et al. (2006a) a recovery mechanism had to be designed as a specific behavioural
module to be activated every time the robots failed to achieve assembly.

As mentioned in previous sections, our system is not as “transparent” as a hand-coded
control system is, as we cannot break its behaviour down to a set of rules or states. Such
an endeavour seems to be very challenging and particularly difficult, especially when the
network sizes are large and/or the movement of the robots takes place in a continuous
and noisy world, such as the real world. However, we would like to stress that we do
not consider this step a necessary precondition for the success of research work using
evolutionary robotics as a design methodology. Our view is that it is more important
to identify those choices that made the implementation and experimentation successful.
In other words, we put the stress on better understanding which principles make the
evolutionary machinery able to produce efficient rules to guide groups of robots, than on
identifying each and every one of these rules.

It should be noted that the robots initialisation is an important parameter for the evo-
lutionary processes. Our choice aimed to evolve a system that can cope with all possible
orientation duplets. Altering the proportion of symmetrical and asymmetrical orienta-
tion duplets experienced throughout evolution might have an impact on the evolved role
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allocation strategies. For example, it is possible that presenting evolution with more sym-
metrical examples can lead to the prevalence of strategies where the role ratio is around
50%. We believe that this is an important and interesting issue to be considered in future
work.

Future work will also focus on the scalability of our system. Can the controllers still
manage to achieve assembly if there are more than two robots involved? The fitness
function rewards two robots connecting to each other but it does not explicitly impose the
formation of one single structure: if we put more than three robots in our arena, nothing
guarantees the formation of one single swarm-bot. We did not perform a full scalability
test; however, we did some initial experimentation to see if the evolved controller tested on
the real robots can produce self-assembly with three robots. The results are encouraging
and we show the outcome of an example trial in figure 5.12. We see that one of the
robots “chooses” one neighbour over the other to grip, and after two robots assemble,
the third robot also becomes member of the structure; interestingly, the robots did not
go through the role allocation phase. We consider these hints that the system could
potentially scale, and this can lead from the study of self-assembly among s-bots to the
study of self-assembly among swarm-bots; however we wish to address this issue in future
work taking into account important issues that have been disregarded in the current work.
More specifically, the connected structure must have the ability to move coordinately: it
should be able to perform coordinated motion (see Baldassarre et al., 2007), which means
it should be equipped with more sensors and actuators (traction sensor and rotating turret
for the case of the s-bot), in order to actively participate in the assembly process. For
example, it could interact with other assembled structures or individual robots by either
receiving connections from them or grasping them. Also, if in any case scalability is a
desired property of our controllers, then it might be more useful to run new evolutionary
runs with more than two robots participating in the trials. This is because, the controllers
we evolved may be “optimised” for or targeted only to a two-robot case. This is a common
problem to ER experimentation; for example, the controllers evolved in (Quinn et al., 2003)
prove to be non-scalable; that is, they cannot successfully control a group of robots whose
cardinality is larger than the one with which they were evolved (see also Vicentini and
Tuci, 2007). However, we might expect the system to be able to cope with this challenge
to a certain extent due to its tolerance to inaccuracies and the recovery mechanism.

Figure 5.12: Snapshots from an example trial with 3 robots.

Finally, it should be mentioned that the research detailed in this section will be integral
to the study of functional self-assembly, that will be tackled in future work. More in detail,
we have managed to find a simulated environment that can sufficiently model the relevant
and important aspects involved with the fine-grained sensory-motor coordination required
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in order to achieve assembly on real robots. Thus, we will reuse this environment in order
to study cases when the assembly should not be a priori demanded, but instead, when
it should be a consequence of the environmental contingencies. In chapter 7, section 7.2
we present initial experimentation aimed to study the switch to collective behaviour in a
functional self-assembly scenario, that is, a scenario where the assembly is functional to
the achievement of some goal. That experiment will be an adaptation of the experiment
presented in chapter 4.
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Chapter 6

Experiment III: evolving
communication in morphologically
heterogeneous robots

This chapter is dedicated to the presentation of a research work aimed to investigate a
particular scenario that requires a group of robots to use communication in order to per-
form a collective navigation task. In particular, our objective is to prove that evolutionary
robotics methods can be successfully applied to the design of homogeneous controllers
for morphologically different groups of robots. Using ER, we want to obtain autonomous
time-based decision-making and communication in a heterogeneous group of robots, where
the role of each robot in the group should not be a priori defined by the experimenter, but
should emerge from its dynamical interaction with the rest of its teammates.

The organisation of this chapter is as follows: we start by providing the background, in
section 6.1, and the related work, in section 6.2, of the research work detailed in this chap-
ter. We continue with the presentation of the experimental setup in section 6.3, containing
the description of the task, the simulation model, the controller and the evolutionary algo-
rithm, and the fitness function. Results of our evolutionary simulation will be presented in
section 6.4, and the chapter closes with discussion and conclusions in sections 6.5 and 6.6,
respectively.

6.1 Background

In ER, the homogeneous approach (i.e., robots of a group that share the same controller
cloned on each agent) is extensively used to deal with morphologically identical robots.
This approach is preferred to alternative solutions because it facilitates the design process.
For example, the evaluation of the collective behaviour of various homogeneous groups can
be directly used to quantitatively estimate the effectiveness of their control structures and
subsequently to compare them (see for example the experiments detailed in chapters 4
and 5).

On the contrary, if the robots of a group do not share the same controller, it becomes

99



100 CHAPTER 6. EXPERIMENT III: MORPHOLOGICAL HETEROGENEITY

less intuitive to define the criteria to estimate, from the observation of the collective be-
haviour, the effectiveness of each control structure within a group and to compare different
controllers associated with different groups (see Quinn, 2001). Moreover, the homogeneity
of control structures does not preclude the emergence of behavioural specialisations. For
example, the work of Quinn et al. (2003) shows that leader/follower specialisation can
be obtained in a homogeneous group of robots by using dynamical neural network con-
trollers. Also, the experiment presented in chapter 5 demonstrated that role allocation can
be achieved with the use of a CTRNN cloned on two agents. In that chapter, we showed
that the same controller, when downloaded on robots with identical morphology, can ex-
ploit their history of interactions, noise in the sensors/actuators and potential differences
among the robots hardware in order to cause their specialisation or allocation of distinct
roles. In this case, we will explore the same approach, that is, the same dynamical neural
network ported on a group of real robots, but in order to study specialisation in a group
of heterogeneous robots.

To the best of our knowledge, the homogeneous approach has never been employed in
the context of morphologically different robots. In this latter context, the neuro-controller
may be required to deal with specialisation or role allocation among morphologically sim-
ilar robots, as well as to account for the morphological differences which characterise the
sensory-motor apparatus of the agents. In this work, the process by which a single con-
troller adapts to morphologically different robots is referred to as “dynamic speciation”.
The fact that the dynamic neuro-controller can take time into account to produce the
robot’s actions (robots can display time-based decision-making) plays an important and
central role in the differentiation of the controllers according to the morphological partic-
ularities of each type of robot. Given the nature of the adaptive task described in this
chapter, we decided to use it as a test-bed to explore the potentiality of the homogeneous
approach to design controllers for morphologically different robots.

In accordance to the principles of the design of experiments laid down in chapter 2,
section 2.7.2.1, our experimental setup will remain unbiased towards the nature/type of
communication and its relation to the rest of the behavioural repertoire of the robots.
Note also that designing a single controller for robots with different sensory systems is
not a trivial engineering task: this constitutes one more reason to resort to an automated
process.

6.2 Related work

Probably the best known control architecture for heterogeneous robots is AL-
LIANCE (Parker, 1998). ALLIANCE is a distributed, behaviour-based architecture that
allows for the control of teams of heterogeneous robots performing tasks consisting of
loosely coupled subtasks that could have ordering dependencies. ALLIANCE allows teams
of robots to adaptively choose between available actions, according to the state of the en-
vironment, the actions of other robots but also each robot’s internal states. A drawback
of ALLIANCE is the fixed structure among basic behaviours, which requires the designer
to a priori define the dependencies between behaviours.
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Recently, Tang and Parker (2005) presented ASyMTRe, a methodology for automati-
cally synthesising task solutions for heterogeneous multi-robot teams. In contrast to prior
approaches where the designer was required to specify the role allocation in a given task,
ASyMTRe automates how solutions are generated. This is done by the automatic synthe-
sis of multi-robot behaviours for accomplishing the team objectives, by putting together
basic behavioural schemas. It is important to stress that the method proposed provides
a mechanism for sharing sensory information among robots, so that more capable robots
can assist less capable robots in accomplishing their objectives.

The above works use behaviour-based robotics or basic pre-coded behavioural schemas
as part of the design methodology; instead, in the work presented in this chapter, we will
use evolutionary robotics to design the individual controllers of the heterogeneous robots.

Reference should also be made to (Werner and Dyer, 1992), where the authors evolved
neural networks to control male and female agents, due to the conceptual similarities of
that work and ours. The task was to co-evolve a population of embodied simulated males
and females who live in a grid world and can agree on the interpretation of signals emitted
only by the females. Females are supposed to guide the behaviour of perceived males,
while the latter are blind and can only perceive the signals emitted by the females. Indeed,
communication evolves and the authors also notice the evolution of different, competing
dialects. In this work, there are agents (males) deprived of some sensory capabilities (they
are blind), thus communication concerns their guidance by the females with full perception
capabilities. In contrast to (Werner and Dyer, 1992), in our experiments both types of
robots lack full sensory capacities and they have to complement each other in order to
fulfil the requirements of the task they will be confronted with.

There are a number of works carried out in the recent past in which agents asked to
solve rather simple tasks that require cooperation and coordination develop simple forms
of ritualised social interactions and/or signalling capabilities. We have previously reviewed
this literature in chapter 3, section 3.2, and we direct the reader to that chapter in order
to get a full flavour of the field. However, we repeat here the description of a couple of
research works that serve as direct inspiration for the experiment to be presented in the
following of this chapter.

In the work described in (Quinn, 2001; Quinn et al., 2003), a team of robots is re-
quired to move in an arbitrarily chosen direction by remaining at a distance from each
other smaller than the range of their infrared sensors. This work is particularly impor-
tant because it shows that it is possible to design, through artificial evolution, neural
mechanisms which, by simply using the infrared sensors readings, allow a group of homo-
geneous robots to engage themselves in social interactions which result in the emergence
of roles such as leader/follower. The authors also describe the evolution of communica-
tion among the robots by showing that behaviour for social coordination first evolves in a
non-communicative context, and only subsequently acquires its adaptive function.

In (Di Paolo, 2000), the author describes an experiment in which two autonomous
agents, equipped with sound sensors and effectors, have to remain close to each other as
long as possible. An operational description of the best evolved solutions reveals that
the sound signalling system is used by the agents both for self-stimulation and for social
interaction. This evidence seems to go against a shared perspective in biology/psychology
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which tends to distinguish the behaviour of natural organisms in socially and non-socially
relevant. The author uses the counter-intuitive result of his analysis to point out the
importance of grounding the functional description of the behaviour of natural organisms
into “what we know about the operation (at different level) of the system concerned” (Di
Paolo, 2000).

The experiment presented in this chapter is inspired by (Di Paolo, 2000) when it comes
to modelling the sound signalling system of our robots (see section 6.3.2). Furthermore, we
draw inspiration from Quinn et al. (2003), in order to design the fitness function described
in section 6.3.4. Other aspects of our work such as the nature of the cooperative scenario
used to investigate issues concerning the evolution of acoustic communication (i.e., social
interactions in morphologically heterogeneous robots) and other methodological choices
are original and innovative. In section 6.5, we will come back to the similarities and
differences between our work and those described in this section, and we will revisit the
novel and interesting parts of this research work.

6.3 Methods

This section is structured in the following way: first we describe the task we consider
in section 6.3.1. We go on to present the simulation model used (see section 6.3.2) and
the controller and the evolutionary algorithm chosen (see section 6.3.3), and we close by
describing the fitness function in section 6.3.4.

6.3.1 Description of the task

We consider the following experiment: three simulated robots are required to navigate
towards a light source, while remaining close to each other. The robots are placed in
an arena, as shown in figure 6.1. The arena is composed of walls and a light that is
always turned on. The light can be situated at the bottom left corridor (Env. L) or at
the bottom right corridor (Env. R). The robots are initialised with their centre anywhere
on an imaginary circle of radius 12 cm centred in the middle of the top corridor, at a
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Figure 6.1: (a) Env. L; (b) Env. R. In both pictures, the thick lines represent the arena
walls; the two small filled circles represent robots RIR, the small white circle represents
robot RAL; the light is represented by the filled circles at the bottom left/right.
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minimum distance of 3 cm from each other. Their initial orientation is always pointing
towards the centroid of the group. The goal of the robots is (i) to navigate towards the
light whose position changes according to the type of environment they are situated in,
and (ii) to avoid collisions.

The peculiarity of the task lies in the fact that the robots are equipped with different
sets of sensors. In particular, two robots are equipped with infrared and sound sensors but
they have no ambient light sensors. These robots are referred to as RIR (see figure 6.2a).
The other robot is equipped with ambient light and sound sensors but it has no infrared
sensors. We refer to this robot as RAL (see figure 6.2b). Robots RIR can perceive the
walls and other agents through infrared sensors, while the robot RAL can perceive the
light. Therefore, given the nature of the task, the robots are forced to cooperate in order
to accomplish their goal. In fact, it would be very hard for each of them to solve the task
solely based on their own perception of the world. RAL can hardly avoid collisions; RIR

can hardly find the light source. Thus, the task requires cooperation and coordination of
actions between the different types of robots.

Although the robots differ with respect to their sensory capabilities, they are ho-
mogeneous with respect to their controllers. That is, the same controller, synthesised
by artificial evolution, is cloned on each member of the group. Both types of robots are
equipped with a sound signalling system (more details in section 6.3.2). However, contrary
to other studies (see Nolfi, 2005; Marocco and Nolfi, 2006b; Baldassarre et al., 2003), we do
not assume that the agents are capable of distinguishing their own sound from that of the
other agents. The sound broadcast into the environment is perceived by the agent through
omnidirectional microphones. Therefore, acoustic signalling is subject to problems such
as the distinction between own sound from that of others and the mutual interference due
to lack of turn-taking (see Di Paolo, 2000).

Notice that the reason why we chose the group to be composed of two RIR and one RAL

robot is that this intuitively seems to be the smallest group capable of spatially arranging
itself adaptively in order to successfully navigate in the environment. Preliminary studies
have shown that with groups of two robots, evolution tends to favour solutions in which,
during navigation, RIR remains in front of RAL. This type of group has troubles in making
the left and the right turn. As we will show in the next sections of this document, a three
robot group in which RAL tends to remain behind the two RIR fellows, employs safer and
more robust navigation strategies, that allow the robots to successfully make both turns.

6.3.2 The simulation model

The controllers are evolved in a two-dimensional simulation environment which models the
kinematics of simple geometries and the functional properties of three types of sensors:
infrared, ambient light, and sound sensors (see Vicentini and Tuci, 2006, for a detailed
description of the simulator). As illustrated in figure 6.2a and 6.2b, our robots are mod-
elled as circular objects of 5.8 cm of radius. Differential Drive Kinematics equations, as
presented in (Dudek and Jenkin, 2000), are used to update the position of the robots
within the environment.

The morphological structure and sensory apparatus of our robots model some of the
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Figure 6.2: (a) The robots RIR; (b) The robots RAL;

characteristics of the s-bots (see Mondada et al., 2004, and chapter 2.3.1, for details). Each
robot RIR has 15 infrared sensors (IRi) placed on the perimeter of its circular body (see
figure 6.2a). Robot RAL has two ambient light sensors (AL1) and (AL2) positioned at
±67.5◦ with respect to its facing direction (see figure 6.2b). The signal of both infrared
sensors and ambient light sensors is a function of the distance between the robot and the
obstacle. Both RIR and RAL robots are equipped with a loudspeaker (L) that is situated
in the centre of the body of each robot, and with two omnidirectional microphones (S1

and S2), placed at ±45◦ with respect to the robot’s heading. Sound is modelled as an
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Figure 6.3: This picture has been adapted from (Di Paolo, 2000). It shows the working
principles of the shadowing mechanism.
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instantaneous, additive field of single frequency with time-varying intensity (ηi ∈ [0.0, 1.0])
which decreases with the square of the distance from the source, as previously modelled
in (Di Paolo, 2000). Robots can perceive signals emitted by themselves and by other
agents. The modelling of the perception of sound is inspired by what described in (Di
Paolo, 2000). There is no attenuation of intensity for self-produced signal. The perception
of sound emitted by others is affected by a “shadowing” mechanism which is modelled as
a linear attenuation without refraction, proportional to the distance (δsh) travelled by the
signal within the body of the receiver (see Di Paolo, 2000, for details). This distance is
computed as follows:

δsh = δsen(1−A), 0 ≤ A < 1, A =
δ2 −R2

δsen
2 (6.1)

where δsen is the distance between the sound source and the sensor, δ is the distance
between the sound source and the centre of the body of the receiver, and R is the robot’s
radius (see also figure 6.3). The self component of the sound signal is simply equal to ηi.
In order to calculate the non-self component, first we scale the intensity of sound emitted
by the sender (ηj) by applying the inverse square law with respect to the distance between
the sound source and the microphones of the receiver. Subsequently, we multiply the
scaled intensity with an attenuation factor ψ which ranges linearly from 1 when δsh = 0
to 0.1 when δsh = 2R. To summarise, the reading Ŝis of each sound sensor s of robot i is
computed as follows:

Ŝis = self + non-self;

self = ηi

non-self =
∑

j∈{1,2,3}
j 6=i

ηj
R2

δ2sen
ψ

(6.2)

The auditory receptive field of each microphone is bounded within the interval [0.0, 1.0].
Therefore, the sound sensor can be saturated by the self emitted sound in case a robot
emits at its highest intensity (ηi = 1.0).

10% uniform noise is added to all sensor readings, the motor outputs and the position
of the robot.

It should be reminded that sound is modelled as an instantaneous, additive field of
single frequency with time-varying intensity which decreases with the square of the dis-
tance from the source, as previously modelled in (Di Paolo, 2000)—a research work also
constrained in simulation. Notice that even if this model seems biologically plausible, and
even if we did not assume directional microphones or built-in or hard-wired sophisticated
discrimination mechanisms, its applicability on the available robotic hardware (i.e., the
s-bot) seems to be not feasible. This is mainly due to the fact that perception of sound is
particularly difficult to simulate accurately, due to noise in the environment and reflections
of the sound waves on the walls of the experimental room. In the case of the experiment
detailed in chapter 4, sound was modelled as a beep at a single frequency, which can eas-
ily be implemented on the s-bot. However, we believe that the sound model employed is
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Figure 6.4: The network architecture. Only the efferent connections for one neuron of
each layer are drawn. The input layer of RIR takes readings as follows: neuron N1 takes
as input IR0+IR1+IR2

3 , N2 ←
IR4+IR5+IR6

3 , N3 ←
IR8+IR9+IR10

3 , N4 ←
IR12+IR13+IR14

3 ,
N5 from sound sensor S2, and N6 from sound sensor S1. The input layer of RAL takes
readings as follows: N1 and N2 take input from ambient light sensors AL1, N3 and N4

take input from AL2, N5 from S2, and N6 from S1. M1 and M2 are respectively the left
and right motor. L is the loudspeaker.

the simplest possible that can provide the heterogeneous robots under consideration the
communication means to accomplish their task.

6.3.3 The controller and the evolutionary algorithm

The agent controller is composed of a network of five inter-neurons and an arrangement of
six sensory neurons and three output neurons (see figure 6.4). The sensory neurons receive
input from the agent sensory apparatus. Thus, for robots RIR, the network receives the
readings from the infrared and sound sensors. For robots RAL, the network receives the
readings from the ambient-light and sound sensors. The inter-neuron network (from N7

to N11) is fully connected. Additionally, each inter-neuron receives one incoming synapse
from each sensory neuron. Each output neuron (from N12 to N14) receives one incoming
synapse from each inter-neuron. There are no direct connections between sensory and
output neurons. The network neurons are governed by the following state equation:

dyi

dt
=











1
τi

(−yi + gIi) i ∈ {1, 2, . . . , 6}

1
τi

(

−yi +
k
∑

j=h

ωjiσ(yj + βj)

)

i ∈ {7, 8, . . . , 14}; σ(x) = 1
1+e−x

(6.3)
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where, using terms derived from an analogy with real neurons, yi represents the cell poten-
tial, τi the decay constant, g is a gain factor, Ii the intensity of the sensory perturbation
on sensory neuron i, ωji the strength of the synaptic connection from neuron j to neuron
i, βj the bias term, σ(yj + βj) the firing rate. For each i the indexes h and k are set
by taking into account the network architecture. The cell potentials yi of the 12th and
13th neuron, mapped into [0.0,1.0] by a sigmoid function σ and then linearly scaled into
[−6.5, 6.5], set the robot motors output. The cell potential yi of the 14th neuron, mapped
into [0.0, 1.0] by a sigmoid function σ, is used by the robot r to control the intensity of
the sound emitted ηr. The following parameters are genetically encoded: (i) the strength
of synaptic connections ωji; (ii) the decay constant τi of the inter-neurons and of neuron
N14; (iii) the bias term βi of the sensory neurons, of the inter-neurons, and of the neuron
N14. The decay constant τi of the sensory neurons and of the output neurons N12 and
N13 is set to 0.1. Cell potentials are set to 0 any time the network is initialised or reset,
and circuits are integrated using the forward Euler method with an integration step-size
of 0.1.

A simple generational genetic algorithm is employed to set the parameters of the net-
works (see Goldberg, 1989). The population contains 80 genotypes. Generations following
the first one are produced by a combination of selection with elitism, recombination and
mutation. For each new generation, the three highest scoring individuals (“the elite”)
from the previous generation are retained unchanged. The remainder of the new popula-
tion is generated by fitness-proportional selection (also known as roulette wheel selection)
from the individuals of the old population. Each genotype is a vector comprising 84 real
values (i.e., 70 connection weights, 6 decay constants, 7 bias terms, and a gain factor).
Initially, a random population of vectors is generated by initialising each component of
each genotype to values chosen uniformly random from the range [0,1]. New genotypes,
except “the elite”, are produced by applying recombination with a probability of 0.3 and
mutation. Mutation entails that a random Gaussian offset is applied to each real-valued
vector component encoded in the genotype, with a probability of 0.15. The mean of the
Gaussian is 0, and its standard deviation is 0.1. During evolution, all vector component
values are constrained to remain within the range [0,1]. Genotype parameters are linearly
mapped to produce network parameters with the following ranges: biases βi ∈ [−4,−2]
with i ∈ {1, 2, . . . , 6}, biases βi ∈ [−5, 5] with i ∈ {7, 8, . . . , 14}; weights ωij ∈ [−6, 6] with
i ∈ {1, 2, . . . , 6} and j ∈ {7, 8, . . . , 11}, weights ωij ∈ [−10, 10] with i ∈ {7, 8, . . . , 11} and
j ∈ {7, 8, . . . , 14}; gain factor g ∈ [1, 13]. Decay constants are firstly linearly mapped into
the range [−1.0, 1.3] and then exponentially mapped into τi ∈ [10−1.0, 101.3]. The lower
bound of τi corresponds to the integration step-size used to update the controller; the
upper bound, arbitrarily chosen, corresponds to about 1/20 of the maximum length of a
trial (i.e., 400 s).

6.3.4 The fitness function

During evolution, each genotype is translated into a robot controller, and cloned onto
each agent. Then, the group is evaluated twelve times, six in Env. L, and six in Env. R.
The sequence order of environments within the twelve trials has no bearing on the overall
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performance of the group since each robot controller is reset at the beginning of each
trial. Each trial (e) differs from the others in the initialisation of the random number
generator, which influences the robots’ starting position and orientation, and the noise
added to motors and sensors. Within a trial, the robot life-span is 400 simulated seconds
(4,000 simulation cycles). In each trial, the group is rewarded by an evaluation function
fe which seeks to assess the ability of the team to approach the light bulb, while avoiding
collisions and staying within the range of the robots’ infrared sensors:1

fe = KP
(

T
∑

t=i

[(dt −Dt−1)(tanh(
St

ρ
))]
)

As in Quinn et al. (2003), the simulation timesteps are indexed by t and T is the index
of the final timestep of the trial; dt is the Euclidean distance between the group location
at timestep t and its location at timestep t = 0, and Dt−1 is the largest value that dt has
attained prior to timestep t. Therefore, the term (dt −Dt−1) measures any gain that the
team has made on its previous best distance from its initial location which is taken to be
the centroid of the group.

The factor tanh(St

ρ
) reduces any fitness increment given by (dt −Dt−1) when one or

more robots are outside of the infrared sensor range: St is a measure of the team’s dispersal
beyond the infrared sensor range ρ (ρ = 24.6 cm) at timestep t. Recall that robot RAL

has no infrared sensors. Therefore, it does not have a direct feedback at each timestep of
its distance from its group-mates. Nevertheless, the sound can be indirectly used by this
robot to adjust its position within the group. If each robot is within ρ range of at least
another, then St = 0. Otherwise, the two shortest lines that connect all three robots are
found and St is the distance by which the longest of these exceeds ρ. The function tanh(x)
assures that, as the robots begin to disperse, the team’s score increment falls sharply.

P = 1− (
3
∑

i=1

ci/cmax) if
3
∑

i=1

ci ≤ cmax,

reduces the score in proportion to the number of collisions which have occurred during
the trial, where ci is the number of collisions of the robot i and cmax = 4 is the maximum

number of collisions allowed. P = 0 if
3
∑

i=1
ci > cmax.

The team’s accumulated score is multiplied by K = 3.0 if the group moved towards
the light bulb, otherwise K = 1.0. Note that a trial is terminated early if (a) the team
reached the light bulb (b) the team distance from the light bulb exceeds an arbitrary limit
set to 150 cm, or (c) the team exceeds the maximum number of allowed collisions cmax.

1Note that, this fitness function is very similar to the one used in Quinn et al. (2003) from which it
mainly differs for the parameter K. This parameter has been introduced to give a selective advantage to
those groups which move towards the light bulb. In order to facilitate comparisons between our work and
that detailed in Quinn et al. (2003), we provide a description of the fitness function which uses a similar
mathematical notation employed in Quinn et al. (2003).
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Figure 6.5: The robots’ initial positions (from P1 to P12) during the post-evaluation
phase. White circles refer to robot RAL, gray circles refer to robot RIR. For each robot,
the black arrows indicate the region within which the robot’s heading is randomly chosen.
See text in section 6.4 for details.

6.4 Results

Ten evolutionary simulations, each using a different random initialisation, were run for
between 2,500 and 3,600 generations of the evolutionary algorithm. The termination cri-
terion for each run was set to a time equal to 86,400 seconds of CPU time. Given the way
in which the fitness is computed and the dimensions of the world, scores higher than 200
refer to groups that manage to repeatedly get very close to the light in both types of envi-
ronment. Several runs produced successful groups, however the fitness of the best groups
of the most successful evolutionary runs oscillates quite a lot throughout the evolution.
These oscillations might be related to the phenomenon of the overestimation of the fitness
of the best groups. Maybe, during evolution, the best groups took advantage of favourable
conditions, which are determined by the existence of between-generation variation in the
starting positions and relative orientation of the robots and other simulation parameters.
Thus, in the next section, we show the results of a first series of post-evaluation tests
aimed to estimate the effectiveness of the best evolved navigation strategies of each run,
under circumstances in which the effect of favourable conditions linked to the initialisation
of the robots are ruled out.

6.4.1 First post-evaluation tests

In order to have a better estimate of the behavioural capabilities of the evolved controllers,
we post-evaluated, for each of the 10 evolutionary simulations, the genotype with the
highest fitness. The groups of robots controlled by neural networks built from these
genotypes are referred to as g1 to g10. During post-evaluation, each group is subject to
a set of 1,200 trials in both environments. The number of post-evaluation trials per type
of environment (i.e., 1,200) is given by systematically varying the initial positions of the
three robots according to the following criteria: (i) we defined four different types of spatial
arrangements in which the robots are placed at the vertices of an imaginary equilateral
triangle inscribed in a circle of radius 12 cm and centred in the middle of the top corridor
(see figure 6.5); (ii) for each spatial arrangement, we identified three possible relative
positions of the robot RAL with respect to the walls of the corridor (see white circle in
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figure 6.5); (iii) for each of these (four times three) initial positions, the post-evaluation
is repeated one hundred times. The initial orientation of each robot is determined by
applying an angular displacement randomly chosen in the interval [−30◦, 30◦] with respect
to a vector originating from the centre of the robot and pointing towards the centroid of
the group. The four times three different arrangements take into account a set of relative
positions among the robots and between the robots and the walls so that the success rate
of the group is not biased by these elements.

We decided to estimate the effectiveness of the robots’ behavioural capabilities during
post-evaluation by employing a binary criterion (successful/unsuccessful) instead of the
fitness function as during evolution. In particular, a group is considered successful if its
centroid is less than 10 cm away from the light bulb. However, preliminary tests showed
that the satisfaction of this criterion in 400 sec was too demanding for the robots. Many
of the initial positions resulting from the systematic variation as explained above require
the robots to spend a lot of the time at their disposal in re-arranging themselves to be able
to safely progress towards the light, leaving little time for navigation. It appeared that
some of the evolutionary conditions (e.g., the random initialisation of the robots’ initial
position and the few evaluation trials) did not favour groups capable of quickly arranging
themselves for phototaxis regardless their initial positions. Consequently, even groups
capable of moving towards the light without colliding resulted very often unsuccessful due
to lack of time to fulfil the criterion mentioned above. Since our interest is on collision
free navigation strategies and not on other characteristics of the phototactic movement
such as the speed (i.e., how quickly the robots get to the light bulb), we decided to make
the post-evaluation trials 2.5 times longer than the trials during evolution (i.e., 1,000 s,
10,000 simulation cycles). This should (i) give the robots enough time to compensate
for possible disruptive effects induced by initial positions never or very rarely experienced
during evolution, and (ii) provide us with a fair estimation of the navigation capabilities of
each of the groups selected for post-evaluation. At the beginning of each post-evaluation
trial, the controllers are reset (see section 6.3.3 for details).

The results of the post-evaluation phase are shown in figure 6.6. We notice that the
best groups are g9 and g10, that achieve a performance over 90% in both environments.
Groups g4 and g7 display a performance over 80% in both environments. The performance
of all the other groups is clearly unsatisfactory. Groups g2, g3, g5 and g8 proved to be
capable of accomplishing the task only when located in an Env. R, while group g1 is
particularly effective in Env. L. This phenomenon can be explained by considering that
the two environments require two different types of turn—a left turn in Env. L, and a
right turn in Env. R. By looking at the behaviour of the groups through a simple graphical
interface, we observed that the successful groups employ two different navigation strategies
to make the two types of turn (see section 6.4.2). We also observed that those groups
that systematically fail in any of the two environments, lack the capability to make both
turns. Note that when looking at the performances of the best evolved groups, as shown in
figure 6.6, one has to take into account the arbitrary criteria we chose to determine whether
or not a group of robots is successful in any given trial: no robot has to collide with the
walls or with the other robots. This is a very strict condition, which, given the nature of
the task, demands each agent to be very accurate in coordinating its movement. Some
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Figure 6.6: Results of post-evaluation showing the success rate (%) with confidence in-
terval (computed with the binomial test) over 1,200 trials per type of environment (black
bars refer to Env. L, and white bars to Env. R) of the groups of robots (g1 to g10) whose
controllers are built from the genotype with the highest fitness of each evolutionary sim-
ulation.

initial tests indicate that if we allow the group to make a certain number of collisions
(e.g., four) before defining a trial as a failure, then several groups would result almost
always successful in both types of environment (data not shown). Whether or not the
robots should be allowed to collide or the extent to which a single collision invalidates
the performance of the group are issues that go beyond the scope of this research work
and shall not be discussed any further. Instead, we focus on other performance measures
which tell us more about the characteristics of the best evolved groups. For instance, by
looking at the data shown in table 6.1, we notice that, except for group g2, the majority of
the failures in Env. L, are due to collisions. In Env. R, the performances of all the groups,
are sensibly better than those in Env. L (see columns 4 and 5, table 6.1). If we look at the
average distances to the light (see columns 6 and 7, table 6.1) and the relative standard
deviations (see columns 8 and 9, table 6.1), we can see that in Env. L failures happen
rather far away from the light. For example, for groups g3, g5 and g8—100% unsuccessful
in Env. L—the final distance to the light is almost equal to the initial distance. This
denotes a lack of coordination of movement during the initial phase, when the robots have
to assume a configuration which favours the group phototaxis. In Env. R, the smaller final
distances to the light seem to denote a problem, possibly common to several groups, in
making the right turn.

In the rest of this section, we concentrate on the analysis of the group g9, which proved
to be the most effective in the first post-evaluation test. The tests we are going to illus-
trate have been carried out for all the best evolved groups. It turned out that, successful
navigation strategies of any best evolved group are very similar from a behavioural point
of view, and in terms of the communication mechanisms exploited to obtain the coordi-
nation of actions. Therefore, the reader should consider the operational description of the
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behaviour of group g9 representative of all the successful navigation strategies of any best
evolved group. These groups seems to differ in terms of the robustness of the mechanisms
that underpin their behaviour rather than on the nature of these mechanisms.

6.4.2 A description of the behavioural strategies

In this section we provide a qualitative description of the individual motion of robots of
group g9 as observed through a simple graphical interface. First of all, we noticed that
the systematic variation of the initial positions of the robots during post-evaluation brings
about contingencies in which the coordination of movements of the group toward the target
requires an initial effort of the robots in re-arranging their relative positions.2 During this
initial phase of a trial a dynamic process guided by the nature of the flow of sensations
induces the specialisation of the controllers with respect to the physical characteristics of
the robots, and to the relative role that they play in the group. This phase is followed by
the navigation phase in which the group maintains a rather regular spatial configuration;
that is, the two robots RIR place themselves in between the target and the robot RAL.
However, note that while Env. L requires the group to make a left turn, Env. R requires the
group to make a right turn. This asymmetry in the environmental structures corresponds
to differences in behavioural strategies employed by the group to reach the target as shown

2The movies of the performances of the group in both environments are available at http://iridia.

ulb.ac.be/supp/IridiaSupp2006-006/.

Table 6.1: Further results of the post-evaluation test, showing for the best evolved groups:
(i) the percentage of unsuccessful trials due to exceeded time limit without the group hav-
ing reached the target (columns 2, and 3); (ii) the percentage of unsuccessful trials which
terminated due to collisions (columns 4, and 5); (iii) the average and standard deviation
of the final distance of the centroid of the group to the light during the unsuccessful trials
(respectively columns 6, 8 for Env. L, and columns 7, 9 for Env. R). Note that in all trials
the initial distance between the centroid of the group and the light is equal to 85.14 cm.

(%) of failure (%) of failure Distance to the light
due to time limit due to collisions avg std

group Env. L Env. R Env. L Env. R Env. L Env. R Env. L Env. R

g1 0.00 52.75 10.92 9.92 82.19 52.17 6.63 32.74

g2 85.33 1.83 14.67 3.17 66.30 46.17 4.36 18.22

g3 0.00 1.00 100.00 0.42 81.02 36.38 4.049 12.02

g4 0.67 0.50 14.00 4.50 57.83 69.30 13.50 15.32

g5 0.00 0.00 100.00 1.00 79.05 41.13 2.94 12.93

g6 0.00 31.00 23.42 17.08 77.50 64.27 11.89 29.92

g7 0.58 10.00 10.92 6.00 50.98 40.80 30.18 14.18

g8 0.00 0.00 100.00 1.92 80.94 53.03 2.34 11.59

g9 0.00 0.83 1.08 1.00 77.71 50.22 11.44 21.08

g10 0.00 2.17 1.75 1.50 82.28 90.37 13.19 31.81
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(a) (b)

Figure 6.7: Trajectories of the agents during a successful trial in (a) Env. L; (b) Env. R.
The black lines refer to the trajectories of robot RAL while the other lines refer to the
trajectories of robots RIR. The thick horizontal and vertical segments represent the walls.
In each figure, we depict only the side of the corridor where the light (the small black dot)
is located.

in figure 6.7. While in Env. L the robots simply turn towards the light keeping their relative
positions in the group, in Env. R we first observe an alignment of the agents along the far
right wall (see figure 6.7b). Subsequently, the agent close to the corner (see the dark gray
line) overcomes the other two and the group starts moving towards the target once the
classical configuration of the two robots RIR in between the target and the robot RAL is
re-established.

Another important qualitative element is that each of the members of the group is
characterised by a movement with a strong angular component (anti-clockwise). In other
words, the robots proceed toward the light by rotating on the spot. Within a trial, pure
linear movement replaces the rotational behaviour only sporadically and for a very short
interval. This can happen to avoid an imminent danger of collision or if required by
the navigational strategy of the group. The evolution of the rotational movement is not
particularly surprising if we think about its effect on the perception of sound. In particular,
the rotational movement can introduce rhythm in perception. The oscillations of perceived
sound, produced by the rotational movement and/or by the oscillations manifested in
signalling behaviour, can provide the robots the cues to adjust their relative positions.
Further and deeper investigations on the nature of sound signals and its relationship with
the robots’ motion will be carried out in the next sections.

The effect of the starting position and the rotational movement are phenomena that
have a strong effect on the time it takes the group to reach the target. Indeed, as resulted
from the post-evaluation test, most of the successful trials of group g9 last longer than the
400 sec given to the groups to complete the task during the evolutionary phase (data not
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shown).

6.4.3 A description of the signalling behaviour

The group is required to coordinate its actions to maintain its cohesion without incurring
into collisions and to get closer to the target. What is the role of signalling for the
achievement of these goals? Is signalling used by robot RAL to communicate to robots
RIR information concerning the relative position of the target? Similarly, is signalling
used by robots RIR to inform robot RAL on the position of obstacles against which it may
collide? In order to provide an answer to this type of questions, we carried out a series
of tests that look at the properties of the sound signals perceived by each robot during a
successful trial in each environment. Our goal is to identify oscillatory phenomena or other
distinctive features in sound production/perception whose properties can be exploited by
the robots to coordinate their actions. Despite the fact that our analysis is limited to
two successful trials, one for each type of environment, we hope that the results help us
formulate general hypotheses concerning the role of signalling in the coordination of the
group.

Before proceeding further, we should remind the reader that the intensity of sound
perceived at each microphone results from the summation of two components (the self
and the non-self) and the noise. The self component (i.e., the agent’s own signal) is only
determined by the intensity of the sound emitted by the robot itself. The non-self compo-
nent is determined by the intensity at which the sound is emitted from the loudspeaker of
a sender as well as by the relative distance and orientation of the loudspeaker with respect
to the receiver’s microphones (see section 6.3.2). Although the agents have no means to
distinguish between the self and the non-self components of the perceived sound, they can
act in a way to determine patterns in the flow of sensations which are informative on their
spatial relationship.

For robots of group g9, we proceeded by separately recording the self and the non-self
components of the sound perceived at each microphone, and the heading at each timestep
of each robot during a successful trial in each environment. As mentioned in section 6.4.2,
each robot of group g9 combines phototaxis with a rotational movement. The latter, due to
the simulated physics, can introduce rhythms in the perception of sound through its effects
on the non-self component. With a Fast Fourier Transform analysis (FFT), we transform
the sequences of heading and the self and non-self components of the sound signal perceived
by each robot at each microphone from the time domain into the frequency domain. By
looking at the power spectral density (PSD) we observe that: (a) the self component of
each robot does not display any harmonic (fni) at any frequency different from 0 Hz; (b)
for all the robots, there are three principal harmonic components in the spectrum of the
sequence of heading (see table 6.2 columns 3, 4, 5); (c) the non-self component of each
robot has only one principal harmonic (see table 6.2 columns 6, and 7); (d) fn1 of robot
RAL differs from fn1 of both robots RIR.

From point (a) we conclude that for each robot there are no oscillatory phenomena in
sound production. Oscillations are instead observed in the perceived sound. From points
(a), (b) and (c) we conclude that oscillations of the perceived sound are produced by
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Table 6.2: Frequencies (Hz) of the principal harmonic components fni in the sequence of
heading (columns 3, 4 and 5), and in the non-self component of the perceived sound signal
at sensor S1 (columns 6) and at sensor S2 (columns 7) for each robot.

heading non-self
S1 S2

Env. robot fn1 (Hz) fn2 (Hz) fn3 (Hz) fn1 (Hz) fn1 (Hz)

Env. L R1
IR 0.187 0.375 0.566 0.185 0.185

R2
IR 0.187 0.377 0.556 0.181 0.181

RAL 0.205 0.411 0.617 0.205 0.205

Env. R R1
IR 0.186 0.378 0.563 0.184 0.184

R2
IR 0.184 0.358 0.559 0.181 0.181

RAL 0.212 0.426 0.633 0.201 0.201

the rotational movement of each robot through the effect that the movement has on the
characteristic of the non-self components. A further evidence of the causal relationship
between the rotational movement and the oscillation of the non-self components is given
by the fact that the principal harmonic of the non-self components has a very similar
frequency to the first harmonic of each robot’s sequence of heading (see table 6.2, columns
3 and 6). Moreover, the similarities of the first harmonic of the non-self component between
robots RIR and the differences between robots RIR and robot RAL confirm that there is
a dynamic speciation of the characteristics of the homogeneous controllers with respect to
the physical properties of the robots. In particular, robot RAL rotates slightly faster than
the other two robots.

So far, we have identified periodic phenomena and their relative frequencies in sound
signals and in the rotational movement of the robots. The next step of our analysis focuses
on the characteristics of the non-self components. We use the frequencies of the principal
harmonic fn1 obtained from the PSD analysis to filter the sound signals. In particular, we
applied a narrow bandpass filter at frequencies 0 Hz and fn1. In this way, we transform
the non-self components into sinusoidal signals nsi = α + p sin(2πfn1t), where α is the
DC offset3 of the signal, p is the peak amplitude, and fn1 is the frequency of oscillation.
From our analysis, it results that the average amplitude and standard deviation of the self
components and the DC offset and peak of nsi with i ∈ {1, 2, 3} do not substantially differ
(i) among the robots; (ii) between the two sensors (S1 and S2); and (iii) between the two
environments (i.e., Env. L and Env. R).

In particular, the mean value of the self components contributes to more than 90% of
the perceived sound (see table 6.3 columns 2, and 8).4 Given the high intensity of the self
component, the non-self component can only induce changes in the perception of sound
that are less than 10% of the sensors’ receptive-field. By looking at the DC offset of the
sinusoidal signals nsi (see table 6.3 columns 4, 6, 10 and 12) we can infer that the non-self

3DC offset is the mean amplitude of a waveform; if the mean amplitude is zero, there is no DC offset.
4The self components are described by referring to their average and standard deviation since they do

not present any periodic oscillations.
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Table 6.3: This table shows, for each robot of group g9 and for each microphone (S1, and
S2): (i) the average and standard deviation of the intensity of the self component (columns
2, 3, 8, and 9); (ii) the DC offset (columns 4, 6, 10, and 12) and peak (columns 5, 7, 11, and
13) of the filtered non-self component nsi. Data refers to sound intensity values recorded
during a successful trial in each type of environment. See text in section 6.4.3 for details
on the filtering.

Env. L Env. R

self sinusoidal signal nsi self sinusoidal signal nsi
S1 S2 S1 S2

avg std DC peak DC peak avg std DC peak DC peak

R1
IR 0.934 0.030 0.115 0.076 0.106 0.056 0.937 0.027 0.103 0.070 0.093 0.051

R2
IR 0.932 0.035 0.133 0.018 0.120 0.014 0.933 0.035 0.107 0.054 0.098 0.041

RAL 0.926 0.018 0.115 0.064 0.115 0.060 0.921 0.020 0.135 0.014 0.136 0.012

components are already very weak, possibly due to the relatively far robot-robot distances.
Despite this, if we sum, for each robot (i), for each sensor (s) and for each environment, the
average intensity of the self component, the DC offset and the peak of the nsi, we obtain
values that give us an indication of what could be the reading of the sound sensors when
the non-self components are at their highest intensity. Since these values are higher than
1, it follows that the reading of the sound sensors saturate (i.e., Ŝis = 1). From this we
infer that, if not attenuated by the shadowing effect, the non-self plus the self component
can be sufficient to saturate the sensors’ receptive field of the receiver. If we combine this
data with the fact that the non-self components oscillate due to the rotational behaviour
of the robots, we can formulate the following hypothesis: during navigation, the readings
of the sound sensors of each robot may go through oscillations constrained between an
upper and a lower bound. The upper bound is reached when the sum of the self and the
non-self component corresponds to a value equal or bigger than the saturation value of
the sound sensors (1.0). The lower bound is close to the intensity of the self component
that is reached when the non-self components are strongly attenuated by the shadowing
effect.

These oscillations are very small since they concern less than 10% of the auditory
receptive field, and certainly not very regular since the random noise applied to the sensors
reading can disrupt the regularity of the oscillations determined by the contingencies (i.e.,
rotational movements and robots’ relative distances). However, in spite of being small and
noisy, these oscillations seem to be the only phenomenon related to the perception of sound
that play a significant role in the coordination of the group. In fact, given a controller
sufficiently sensitive to capture them, they may represent a valuable perceptive cue for
the receiver to spatially discriminate sound sources and consequently relative position and
orientation of the emitter/s. For example, low intensity of sound corresponds to conditions
in which the body of the receiver is placed in between its sound receptor and the sound
source; high intensity of sound corresponds to conditions in which the sound receptor is
in between the body of the receiver and the sound source. Robots capable of detecting
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these spatial relationships can use them to make movements towards or away from a
sound source. Moreover, the oscillations of perceived sound, produced by the rotational
movement might emphasise the intensity differences between the two sound receptors.
These differences also known as Interaural Intensity Differences (hereafter referred to as
IIDs, see Kandel et al., 2000) could provide the robots the cues to adjust their positions
relative to each other. These cues might be exploited by the robots to remain close to
each other while avoiding collisions and moving towards the target. Given the lack of
complexity in robots’ sound production, we exclude that signalling behaviour concerns
more articulated forms of communication. In the following section, we show the results
of further post-evaluation tests that are meant to assess whether oscillations in sound
perception and IIDs are cues used by the robots for spatial discrimination of sound sources
and coordination of actions.

6.4.4 Signalling behaviour and the group’s coordination of actions

In this section, our goal is to find out whether both types of robots exploit sound signalling
to mutually coordinate their actions. Alternatively, the use of sound may be limited to
robot RAL. Robots RIR may ignore the sound and base their movements on the readings
of the infrared sensors. This would be sufficient to keep both robots RIR close to robot
RAL. The latter, by moving towards the target, will inevitably bring the group to the
light. Another possibility is that none of the robots use sound. In this case, the group
might employ unchanging phototactic movement which may work as well given that the
dimensions of the corridors and the positions of the lights in the two environments do
not vary. For example, robot RAL may move for about 65 cm east/west according to the
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Figure 6.8: (a) Test A: robots RIR (the gray circles) are displaced of an angle α with
respect to robot RAL (empty circle). This picture represents a hypothetical state in which
the readings of the sound sensors of robot RAL are computed considering R1
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characteristics of the environment and then south; robots RIR have simply to follow RAL

avoiding collisions.
In the following, we run two post-evaluation tests, Test A, and Test B. In both tests, we

interfere with the propagation of sound in the environment by disrupting the orientation of
the robot emitter with respect to the heading of the receiver (see figure 6.8). In particular,
in each test, the robots undergo sets of 1,200 trials in each type of environment. For all
the simulation cycles following the first 10 seconds5 of each trial of a set, the sound sensors
reading of a type of robot (i.e., RAL or RIR) are computed with respect to a hypothetical
state of the system in which each robot of the other type is supposed to be re-oriented by
a fixed angular displacement, ranging from a minimum of 18◦ to a maximum of 180◦, with
a randomly chosen direction (clockwise or anti-clockwise) with respect to the heading of
the receiver. The magnitude of the angular displacement does not vary in each set of 1,200
trials in a given environment. Note that, the updating of the infrared sensors of robots RIR

and of the ambient light sensors of RAL do not undergo any disruption during these tests.
The hypothetical states are taken into account only as far as it concerns the updating of
the sound sensors’ reading of one type of robot at the time. In particular, in Test A, the
sound perceived by robot RAL is computed with reference to a hypothetical state in which
the orientation of both robots RIR with respect to RAL’s heading is changed in order to
meet the angular displacement requirements (see figure 6.8a). No disruptions are applied
to update the sound perceived by robots RIR. In Test B, the sound perceived by the
robots RIR is computed with reference to a hypothetical state in which the orientation
of robot RAL with respect to the RIR’s heading is changed in order to meet the angular
displacement requirements (see figure 6.8b). In this type of tests no disruptions are applied
to update the sound perceived by robot RAL.

By varying the sender-receiver orientation, we indirectly increase/decrease the mag-
nitude of the non-self component. In particular, those hypothetical states which tend to
shorten the length of the shadowed path of the non-self components with respect to what
indicated by the status of the system without disruptions, produce an increase of the in-
tensity of the non-self component (see section 6.3.2). Consequently, these circumstances
induce an increase of the proportion of time in a trial the sound sensors are saturated. On
the contrary, those hypothetical states which tend to increase the length of the shadowed
path of the non-self components with respect to what indicated by the status of the system
without disruptions, produce a decrease of the intensity of the non-self component (see
section 6.3.2). Consequently, these circumstances induce a decrease of the proportion of
time in a trial the sound sensors are saturated.

From what said above, we can infer that Test A and Test B disrupt any kind of regu-
larities in the perception of sound which are linked to sender-receiver relative orientation.
In particular, in section 6.4.3, we have seen that oscillations of the perceived sound and
IIDs are the only two phenomena of signalling behaviour which might be used by the
robots to coordinate their actions. In Test A and Test B, spatial cues provided by these
two phenomena do not refer anymore to the current status of the system but to hypothet-

5Applying any disruptions after 10 sec (i.e., 100 simulation cycles) gives the controllers sufficient time
to reach a functional state different from the initial one, arbitrarily chosen by the experimenter, in which
the cell potential of the neurons is set to 0 (see section 6.3.3).
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ical states artificially induced. Consequently, a drop in the group performance at Test A
is a sign that these cues are exploited by the robot RAL to successfully carry out their
task. Similarly, a drop in the group performance at Test B is a sign that these cues are
exploited by the robots RIR to successfully carry out their task. If both tests show a
drop in the group performance, we would say that sound signalling is a common means of
communication exploited by both types of robots to mutually coordinate their actions.

The results of Test A are shown in figure 6.9a and 6.9b. The results of Test B are
shown in figure 6.9c and 6.9d. From these graphs we notice that the performance of the
group is significantly disrupted by alterations which concern the orientation of one type of
robot with respect to the heading of the other type of robot. In particular, the bigger the
magnitude of the angular displacement, the higher the percentage of failure of the system.
The majority of failures are due to robot-wall collisions. Observing the behaviour of the
group in these conditions, we noticed that, under the effects induced by the disruptions,
the robots are not capable of remaining close to each other—i.e., within the infrared
sensors’ range. When the distances becomes too high, the robots start wandering around
the arena, and the trial terminates due to a collision of the robot RAL with the arena
walls. Only in few circumstances the robots do not lose contact to each other but they
are not capable of reaching the target within the time limits (see figure 6.9 black area of
the bars).

These results prove that the group performance is severely disrupted when the hypo-
thetical status of the system, used to update the sound sensor readings of either type of
robot, is significantly different from the current circumstances. If the oscillations of the
sound sensors’ reading and IIDs of either type of robots do not reflect the environmental
contingencies, the group performance in both environments is disrupted. We conclude
that, for both types of robots, spatial cues provided by the oscillations of perceived sound
and possibly by IIDs have a bearing on the development of effective navigational strate-
gies. Sound signalling seems to be a common means of communication exploited by both
types of robots to mutually coordinate their actions.

6.4.5 The significance of the Interaural Intensity Differences (IIDs)

In this section, we illustrate the results of further post-evaluation tests whose goal is to
determine whether IIDs are cues used by the robots to coordinate their actions. Alterna-
tively, oscillations of perceived sound may be sufficiently informative on the contingencies
to allow the robots to successfully accomplish their goal.

In these tests we progressively reduce the IIDs up to the point at which the two sound
receptors (S1 and S2) of a type of robot are impinged by the same stimulus. Consequently,
these disruptions hinder the possibility of the robots to use IIDs as cues for localisation
of sound sources and for their coordination of actions. At the same time, we preserve
the phenomenon of oscillations of perceived sound as cues for spatial discrimination and
localisation of sound sources.

In each test, the robots undergo sets of 1,200 trials in each type of environment. For
all the simulation cycles following the first 10 seconds of each trial of a set, the reading
of one sound sensor (i.e., S1 or S2) of a type of robot (i.e., RAL or RIR) are modified
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Figure 6.9: Percentage of failure during 1,200 trials in each type of environment in post-
evaluation tests with disruptions applied to the relative orientation of the robots during the
computation of the perceived sound. (a) and (b) refer to Test A. The robots RIR, during
all the simulation cycles following the first 10 seconds of any trial, are considered to be
re-oriented with respect to the heading of robot RAL by applying the angular displacement
indicated on the horizontal axis and randomly choosing the direction of displacement (i.e.,
clockwise or anti-clockwise). (c) and (d) refer to Test B. The robot RAL is re-oriented with
respect to the heading of each robot RIR as explained above. (a) and (c) refer to tests
in Env. L; (b) and (d) refer to tests in Env. R. The black area of the bars refers to the
percentage of trials terminated without collisions and with the group not having reached
the target. The light gray area of the bars refers to the percentage of trials terminated
due to robot-robot collisions. The dark gray area of the bars refers to the percentage of
trials terminated due to robot-wall collisions.

in order to reduce the IID of a given percentage, ranging from a minimum of 10% to a
maximum of 100% (i.e., both sensors return the same reading). The magnitude of the
decrease of the IIDs does not vary in each set of 1,200 trials in a given environment.
Disruptions which reduce the IIDs of a given percentage are independently applied to (i)
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Figure 6.10: The graphs show the percentage of failure during 1,200 trials in Env. L with
disruptions applied to: (a) robot RAL sound sensor S1; (b) robot RAL sound sensor S2;
(c) robot RIR sound sensor S1; (d) robot RIR sound sensor S2. The disruptions concern
the decrease of the the IIDs of the percentage indicated on the horizontal axis. The black
area of the bars refers to the percentage of trials terminated without collisions and with
the group not having reached the target. The light gray area of the bars refers to the
percentage of trials terminated due to robot-robot collisions. The dark gray area of the
bars refers to the percentage of trials terminated due to robot-wall collisions.

robot RAL and robots RIR, (ii) sound sensor S1 and S2, and (iii) Env. L and Env. R,
for a total of 8 different types of tests—two types of robots times two types of sound
sensor times two types of environment. If we observe a sensible drop of the percentage
of success of the group for disruptions applied to any of the two types of robot in any of
the two types of environment regardless of the sound sensor disrupted (S1 or S2), then we
conclude that, for that type of robot, IIDs are cues used to coordinate its actions during the
navigation towards the light. In any other circumstances, we conclude that the oscillations
of perceived sound, without IIDs, are sufficiently informative on the contingencies to allow
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Figure 6.11: The graphs show the percentage of failure during 1,200 trials in Env. R with
disruptions applied to: (a) robot RAL sound sensor S1; (b) robot RAL sound sensor S2;
(c) robot RIR sound sensor S1; (d) robot RIR sound sensor S2. See caption of figure 6.10
for details.

the robots to successfully accomplish their goal.

The results of the full series of tests show that for both types of robots and for both
sound sensors, the progressive reduction of the IIDs is associated with a drop in perfor-
mance of the group. When disruptions are applied to robot RAL in Env. L (see figure 6.10a
and b) and of robots RIR in Env. R (see figure 6.11c and d), regardless the sound sensor
disrupted, the rate of failure of the group in a type of environment is above 90% when
the IIDs are made unavailable to a type of robot (see figure 6.10a and b and figure 6.11c
and d, last bar of each graph). In these cases, we conclude that, IIDs are cues strictly
necessary for a specific type of robot to be able to coordinate its actions.

In all the other cases (robot RAL in Env. R, and robots RIR in Env. L), although a
progressive reduction of the IIDs corresponds to a drop in performance of the group, the
disruptions applied to any of the two sound sensors do not equally affect the performance
of the group. With the IIDs completely removed, the rate of failure of the group range in
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Table 6.4: Results of two post-evaluation tests for group g9. In Test C the group is
evaluated in a boundless arena; in Test D the group is located in two different types of
environment as depicted in figure 6.12. The last row, in gray, shows the results of the
post-evaluation test without disruptions in Env. L and Env. R. Columns 2, and 3 show
the percentage of unsuccessful trials due to exceeded time limit without the group having
reached the target. Columns 4, and 5 show the percentage of unsuccessful trials which ter-
minated due to collisions. Columns 6, 7, 8, and 9 show the average and standard deviation
of the final distance of the centroid of the group to the light during the unsuccessful trials
(respectively columns 6, 8 for the environment that requires a left turn, and columns 7, 9
for the environment that requires a right turn). Note that in all trials the initial distance
between the centroid of the group and the light is equal to 85.14 cm.

(%) of failure (%) of failure Distance to the light
due to time limit due to collisions avg std

Test left right left right left right left right
turn turn turn turn turn turn turn turn

C 76.50 81.75 0.00 0.00 20.73 20.34 2.54 2.27

D 15.33 10.00 16.25 1.67 29.49 28.76 7.09 12.01

0.00 0.83 1.08 1.00 77.71 50.22 11.44 21.08

between 40% and 60% in case in which disruptions concern (i) robot RAL sound sensor
S2 in Env. R; and (ii) robots RIR in Env. R (see figure 6.11). These results suggest that
the group is able to assume spatial configurations which facilitate the navigation in spite
of the absence of IIDs for either type of robot.

6.4.6 Robustness to environmental changes

In this section, we show the results of final post-evaluation analyses that aim to test the
robustness of the group navigation strategy in environments that differ from those experi-
enced by the robots during the evolutionary phase. Contrary to the evolution, in Test C,
we simply remove the walls. The absence of walls causes a sensible increase in the percent-

180 cm

��
��
��
��

��
��
��
��

80
 c

m

50 cm

180 cm

��
��
��

��
��
��

50 cm

80 cm

(a) (b)

Figure 6.12: Environment that requires (a) a left turn; (b) a right turn. These environ-
ments differ from Env. L and Env. R because the walls are replaced by round obstacles of
the diameter of a robot.
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age of failure in both environments (see columns 2, 3, table 6.4). The magnitude of the
disruption suggests that the walls are environmental structures systematically exploited
by the robots to approach the target. For example, the group navigation may be based
on a wall-following strategy that, given the structure of the world, guarantees the group
to reach the target. However, the fact that the average distance of the team’s centroid to
the light in the unsuccessful trials is around 20 cm seems to indicate that the absence of
walls does not hinder the capability of the group to perform phototaxis. Rather, the walls
seem to play an important role during the last phase of the group navigation, when the
centroid of the team is required to get into the proximity of the target.

In Test D, the group is located in two different types of environment as depicted in
figure 6.12. These environments differ from those experienced by the team during the
evolutionary phase because the walls are replaced by round obstacles of the diameter of
a robot (see figure 6.12). Note that the distance between any two round obstacles allows
a robot to pass between them. This means that the probability of robot RAL to collide
against one of those round objects depends very much on the spatial configuration of
the group during navigation. The results of this test tell us more about the obstacle
avoidance capability of the group. The fact that the percentage of unsuccessful trials is
around 31% when the light is on the left and only around 11% when the light is on the
right indicates that the navigation strategy of the group is quite robust to cope with the
kind of environmental changes we made.

6.5 Discussion

The results illustrated in section 6.4 have shown that dynamical neural networks, shaped
by artificial evolution, can be successfully used to design homogeneous control structures
for a group of morphologically heterogeneous cooperating and communicating robots.
Post-evaluation analyses unveiled the mechanisms which underpin the cooperation and
coordination of actions of the group. In particular, we focused on the study of the evolved
acoustic communication protocol of the best evolved successful group. First, we showed
that: (i) all the robots emit sound at a very high intensity; (ii) signalling behaviour is
not characterised by oscillatory phenomena; (iii) periodic phenomena, generated by the
receiver through a rotational movement associated to the phototaxis, characterise the per-
ception of sound. Then, we proved that oscillations of perceived sound and Interaural
Intensity Differences (IIDs) are cues exploited by the robots to generate adaptive actions
to safely navigate (i.e., without collisions) towards the target. In particular, the robots
exploit these cues to regulate their individual actions with respect to the relative position
of sound source(s).

It is reasonable to consider that the evolved behavioural and communication strategies
illustrated in section 6.4 are limited to the peculiarities of our simulations. However, our
successful results point to the relevance, for the robotics community, of features of our
methodological approach which are of more general applicability and re-usable in future
research works dealing with the design of homogeneous controllers for groups of heteroge-
neous cooperating and communicating robots. In particular, we draw the attention of the
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reader on the following distinctive features of our work: (i) the model of the sound; (ii)
the way in which the controllers are wired-up with the sensory apparatus of the robots;
(iii) the dynamic speciation of the homogeneous controller, whose mechanisms underpin
sensory-motor coordination and social interactions in structurally different agents.

As far as it concerns the model of sound, although inspired by the work of Di Paolo
(2000), it presents peculiarities of particular interest. As in (Di Paolo, 2000), and con-
trary to other experimental works, we did not make use of directional microphones, or any
other form of hard-wired/hand-coded mechanisms to discriminate between different sound
sources or between self and non-self produced sound. For example, in the work of Marocco
and Nolfi (2006b), four directional microphones capture the sound of the nearest robot
located within ±45◦ left or right of each microphone. These types of models not only are
hardly portable on a physical system, but they also preclude the possibility to investigate
the principles underlying behavioural coordination through sound signalling in a team
of autonomous agents. This follows from the fact that in these models, the problem of
synchronisation or turn-taking to avoid mutual interference, and of spatial discrimination
of sound sources, are eluded thanks to the implementation details. With respect to what
described in (Di Paolo, 2000), we strongly simplified the characteristics of the robot’s con-
troller. In particular, we did not implement the neural structures which provide the agents
in Di Paolo’s work the means to further regulate the intensity of emission of sound (i.e.,
regulation for sound effector, see Di Paolo, 2000) and the receptiveness of the sound sensory
neurons (i.e., sensory gain regulation, see Di Paolo, 2000). We simplified the mechanisms
to constrain the production of sound by fixing a limit to the intensity of the signal which
also corresponds to the saturation level of the sound sensors. That is, the self produced
sound can completely saturate the sound sensors of the emitter. Although arbitrarily im-
plemented by the experimenter, these simplifications were introduced to compensate for
an increase in structural complexity of the controller due to the nature of the agents’ sen-
sory apparatus. In particular, while in the work described in (Di Paolo, 2000) the agents
are equipped only with sound sensors, in this work the agents are equipped with sound
receptors as well as light or infrared sensors. Moreover, we investigated teams of three
robots instead of two robots. Possibly due to these differences, the evolved solutions in Di
Paolo’s work and in ours diverge significantly. While in Di Paolo’s model oscillations and
synchronisation in sound production underpin behavioural coordination, in our model,
there is no oscillation in sound production.

From an engineering point of view, it is worth to mention that, although extremely
effective in terms of collisions, the best evolved navigation strategies are not characterised
by a fast phototactic movement. In fact, the strong rotational movement allows for
behavioural coordination through sound signalling, while it slows down the movement
towards the light. We believe that alternative navigation strategies can potentially be
achieved by reintroducing some of the mechanisms originally proposed in (Di Paolo, 2000).
These mechanisms facilitate the evolution of oscillatory behaviour in sound production and
the distinction between self and non-self components, without having to model phenom-
ena such as time varying frequencies, Doppler effect, etc. A group of robots in which
each agent is capable of differentiating between self and non-self and of associating the
intensity of the sound perceived in each ear with the distance to the sound source, might
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employ linear rather than rotational movements. Other hardware specifications, such as
the position of the microphones on the robot body, could facilitate the evolution of faster
phototactic movement. These issues will be the subject of future investigations.

As far as it concerns the way in which the controllers are wired-up with the sensory
apparatus of the robots, we would like to provide further justifications for our implemen-
tation choices. Our goal was to generate through artificial evolution a controller capable
of guiding both types of robots. For this reason, we chose to keep the group homogeneous
with respect to the controllers. That is, at time 0 of each trial, each robot is equipped with
exactly the same control structure. However, the properties of the controllers allow for a
dynamic speciation: that is, a differentiation of the functionalities of each controller. This
differentiation is determined by the attainment, by each controller, of different stable os-
cillatory dynamics due to the oscillatory pattern experienced through the robot’s sensory
apparatus. The fact that the CTRNN controller can take time into account to produce the
robot’s actions (robots can display time-based decision-making) also plays an important
and central role in the differentiation of the controllers according to the morphological
particularities of each type of robot. Moreover, we wanted to reduce at a minimum the
number of parameters which define the search space of the evolutionary algorithm. For
this reason, we decided to use neural structures in which the same input neurons in dif-
ferent networks are linked to different type of sensors (see section 6.3.3 for details). Our
results suggest that implementation details make possible to generate through artificial
evolution homogeneous controllers that can efficiently guide morphologically identical as
well as morphologically different groups of robots. In our case, the differences in the flow
of sensation coming from different sensory channels (i.e., infrared sensors, ambient light
and sound sensors) contribute to induce the specialisation of the controllers with respect
to the physical characteristics of the robots, and to the relative role that they play in
the group (i.e., the dynamic speciation). This latter mechanism can also be exploited in
case of hardware failure, in which an on-line re-assignment of association between agent’s
sensors and network’s input neurons might provide a robust mechanism to preserve the
functionality of multi-robot systems. However, in order to efficiently exploit our method-
ological choices in the latter context, further investigations are required to determine the
plasticity of controllers in those circumstances in which they have already undertaken a
process of dynamic speciation. That is, it is an open question whether a neuro-controller
already specialised to receive as input the reading of a particular set of sensors is capable
of redefining its functionalities to guide a robot with a different set of sensors.

6.6 Conclusion

In a context where robots differ in their sensory capabilities, cooperation and coordina-
tion of actions of the group are achieved by using an acoustic communication protocol
controlled by evolved neural mechanisms. Acoustic signals, determined by the individual
emission of a single frequency tone, provide the perceptual cues used by the robots to go
beyond the limits of their sensory apparatus in order to obtain robust phototactic strate-
gies as well as obstacle avoidance behaviour. The results of a series of post-evaluation



6.6. CONCLUSION 127

tests carried out on the behavioural strategies of the best evolved group of robots, show
interesting operational aspects of the system (see sections 6.4.3, 6.4.4 and 6.4.5). In partic-
ular, our analyses highlighted fundamental relationships between the motion of the agents
and the appearance of waveforms in sound perception (i.e., affordances, see Gibson, 1977),
which are exploited by the robots to mutually coordinate their actions. We also provided
evidence that the agents’ motion is guided by mechanisms that exploit Interaural Intensity
Differences (IIDs): that is, cues used by natural organisms to localise sound sources.

To conclude, from the results of this research work we learn something about how evo-
lution exploits the physics of our system to develop group navigational strategies based
on the mutual coordination of actions and cooperation among the agents. The results
of this research work are a “proof-of-concept”: they show that dynamic artificial neu-
ral networks can be successfully synthesised by artificial evolution to design the neural
mechanisms required to underpin the behavioural strategies and adaptive communication
capabilities demanded by this task. In particular, we developed a sound signalling system
that allows a group of morphologically heterogeneous agents that differ in their sensory
capabilities to coordinate their actions in order to approach a light bulb without colli-
sions. Post-evaluation analyses unveil operational aspects of the best evolved behaviour.
For example, we show that adaptive group behaviour can be achieved without the need of
(i) individual built-in mechanisms for distinguishing between self and non-self produced
signal, and of (ii) complex neural structures that regulate the turn-taking during commu-
nication.

The analysis of evolved individual and social skills give us an estimation of the po-
tentiality of our implementation choices at various levels, from the model of sound to the
characteristics of the robots’ controller. Although the evolved behavioural and communi-
cation strategies may be limited to the peculiarities of this case study, our methodological
approach is of more general applicability. In particular, the dynamic speciation of the
robots’ controllers as well as the elements of the models which bring forth the causal rela-
tionships between the physics of the system and the nature of the best evolved collective
strategies are contributions of our work that roboticists can employ for the design of more
complex forms of social interactions and communication in groups of autonomous robots.

As a closing note, we would like to point out that we are considering alternative tasks
and experimental setups involving morphologically heterogeneous robots, which could al-
low the use of a model of sound which will be closer to the real hardware available (i.e.,
the s-bot) and which will be simple and straightforward to implement. This way, we will
be able to validate controllers evolved in simulation in the real world, an endeavour that
is always challenging but worth the try since it is the only reliable way to ascertain the
functionality and robustness of controllers for autonomous robots.
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Chapter 7

Future work and initial
experimentation

In this chapter, we present two basic axes of future research that are based on the ideas
and experiments detailed in previous chapters.

In section 7.1, we report on initial experimentation aimed at obtaining more com-
plex evolved signals in communicating robots; in particular, we detail the results of an
experiment about categorisation and communication. Similar to what was presented in
chapter 4, we use principles to obtain autonomous decision-making in a group of two
agents that have to collectively categorise their environment. The agents will be again
equipped with “ears” and a “mouth” for acoustic communication. However, differently to
what was presented in chapter 4, the agents have to categorise each their own sub-part
of the environment, to which the other agent has no sensory access; subsequently, the
collected information has to be combined and a collective action should be taken.

In section 7.2, we report on initial experimentation aimed to lead towards the evolution
of functional self-assembly with autonomous decision-making principles. More specifically,
our goal is to design robot controllers that allow robots to connect and disconnect from
each other in response to the environmental contingencies. The robots should interact with
the rest of the group and with the environment in order to “realise” whether assembly
is necessary. The research work that will be presented is an adaptation of the ideas
presented and the task considered in chapter 4; moreover, it is strongly correlated with
the experiments on self-assembly detailed in chapter 5.

7.1 Towards the evolution of more complex signals

In chapter 4 we presented original work that focused on the interplay between categori-
sation through integration over time of perceptual experiences and an evolved communi-
cation protocol. Communication signals were the result of categories formed on behalf of
the robots that are not directly available as sensor inputs. These signals can be called
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“deictic”,1 as the robots that emit and receive them are sharing the same environment
and the signals refer to an environmental state currently available to the robots.

The dance of the honey bee is a striking example from biology where an animal is
referring to states of the environment that are not currently available neither to the emitter
(dancing bee) nor to the receiver (bees in the nest) (Von Frisch, 1967). This is definitely
an example of more complex signalling mechanisms, that humans (and bees) possess, but
that do not characterise signalling systems of primates.

Man is apparently almost unique in being able to talk about things that
are remote in space or time (or both) from where the talking goes on. This
feature—“displacement”—seems to be definitely lacking in the vocal signalling
of man’s closest relatives, though it does occur in bee-dancing.

(Hockett, 1960)

In order to obtain more complex signalling capabilities that are closely linked to com-
plex cognitive phenomena as memory, we need to carry out research that aims at this
direction. In the following, we will present an experiment whose goal is to explore the
evolution of signalling behaviour and communication in a scenario where two robots do
not share the same environment but are exploring a sub-part of the world that is not
accessible to the other agent.

Even if “displaced” signals, that is, signals that are referring to a context independent
of the current sensory experience of the agents (as, e.g., in human language “I have seen
black floor”) have not been produced, this work might constitute the first step towards
understanding how we may arrive to the evolution of communication between agents that
do not share the same environment and that can potentially “talk” about their past
experiences.

More specifically, this research work is about the evolution of acoustic communication
in a two-robot system, in which the agents are required to coordinate their efforts to
perform a common task. The aim of this work is to demonstrate the effectiveness of a
very simple sound signalling system in a context in which the robots are demanded to
share individual experiences to build a common perspective of their world. The robots
can communicate by using the global binary signalling system also used in the experiment
presented in chapter 4.

We exploit the concept of autonomous decision-making in evolutionary robotics; the
designer is not required to make strong assumptions about the essential features on which
social interactions are based—e.g., assumptions concerning what communication is and
about the requirement of individual competences in the domain of categorisation and
naming. The results of the evolutionary process (i.e., the behaviour of the robots and the
underlying mechanisms) inform the designer on the effects that the physical interactions
among embodied agents and their world have on the evolution of individual behaviour and
social skills.

1According to Norwegian psycholinguist Ragnar Rommetveit, deictic words are “words that introduce

particulars of the speaker’s and hearer’s shared cognitive field into the message”.
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Similarly to (Di Paolo, 2000; Wischmann and Pasemann, 2006), communication is
based on the emission in time of asynchronous and mutually determined single tone sig-
nals. Differently, in our system the communication concerns events that are not directly
available to the sensorial input of the robots at the time it takes place. The results of this
work should be taken as a “proof-of-concept” concerning the potentiality of the proposed
approach to the design of acoustic communication mechanisms in multi-robot systems.
We demonstrate that it is possible to use evolution to define the mechanisms underlying
a bi-directional communication protocol based on a very simple acoustic system.

7.1.1 Methods

In the following we present the task in section 7.1.1.1, the simulation model used in
section 7.1.1.2, the controller and the evolutionary algorithm in section 7.1.1.3 and the
fitness function in section 7.1.1.4.

7.1.1.1 The task

The robot environment is a rectangular arena (120 cm by 50 cm) divided into two equal
sides (i.e., upper and lower side) by a horizontal bar that revolves (a revolving door).
There are three lights L1, L2 and L3. When L1 and L2 are turned on, L3 is turned off
and vice versa. L1 can only be seen by a robot located in the lower side of the arena
while L2 can only be seen by a robot located in the upper side of the arena. L3 can be
seen from anywhere in the environment. The arena floor is white except in the proximity
of L1 and L2 up to a distance of 15 cm from the lights, where the floor is painted black
or gray. The robots can experience four different combinations of black and gray zones
(see figure 7.1). The type of environment in which the robots are located is labelled

E10 E01 E00 E11

Figure 7.1: The four environments E10, E01, E00, and E11. L1, L2 and L3 refer to the
lights. The revolving door is indicated by the horizontal bar in the centre of the arena.
In each environment, the arrows indicate the direction in which the door revolves. The
cylinders with spikes on the white floor represent the robots.
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according to the combination of the colour of the floor in the two painted zones. In detail,
the environments are labelled Eij , where i corresponds to the colour of the floor in the
proximity of L1 and the second digit to the colour of the floor near L2. Gray colour
corresponds to 0, while black colour corresponds to 1. The four types of environment are:
E10, E01, E00, and E11. The revolving door rotates from the horizontal to the vertical
position if simultaneously pushed by both robots in the proper direction. Pushing forces
exerted by a single robot on the revolving door are not enough to open it. The direction of
rotation changes according to the type of environment. The robots have to exert forces to
make the door rotate (a) clockwise, if they are located in E00 or in E11; (b) anti-clockwise,
if located in E10 or in E10 (see the arrows in figure 7.1).

At the beginning of the first trial and in those that follow an unsuccessful one, the
robots are randomly placed in the proximity of L3. In trials following a successful one, the
robots are not repositioned. The sequence of desired actions that each robot is demanded
to carry out during a trial can be decomposed into two phases. At the beginning of the
first phase, L1 and L2 are turned on, the revolving door is in the horizontal position
and the colour of the floor in the proximity of L1 and L2 is set according to the type of
environment that characterises the trial. During this phase, the robots are required to find
the painted zone in their side of the white arena floor and remain for at least 6 sec on the
painted zone. This exploration is facilitated by the presence of the lights that can be used
as beacons (i.e., L1 for the robot located in the lower side and L2 for the robot located
in the upper side of the arena). The first phase terminates once the 6 sec on the painted
zones are elapsed for both robots. At this point, L1 and L2 are turned off, L3 turned on,
and the second phase begins. In the second phase, the two robots are required to move
back towards the middle of the arena, approach the revolving door, and simultaneously
push the door in order to open it and to reach the previously inaccessible opposite side
of the arena. As mentioned above, the direction of rotation changes according to the
type of environment. Therefore, in order to rotate the revolving door from the horizontal
towards the vertical position, the robots are required to exchange information about the
colour of the floor in the proximity of the light—L1 or L2—previously approached. A
trial successfully terminates once both robots, by rotating the revolving door, move into
the opposite side of the arena, and reach a distance of 24 cm from L3. At the end of a
successful trial, L3 is turned off, L1 and L2 are turned on, the rotating door automatically
returns to the horizontal position and a new trial begins. A trial is considered unsuccessful
if a single robot exerts forces in both arms of the revolving door (i.e., west and east of L3).
This behaviour, referred to as trial-and-error strategy, is penalised by the fitness function
(see section 7.1.1.4).

Note that this task requires coordination of actions, cooperation and communication
between the robots in order to open the revolving door. For each robot, the perception
of a gray or black floor can be associated both to a clockwise and anti-clockwise rotation
of the revolving door. Only the combination of the two coloured zones unambiguously
identifies a rotational movement. Since a robot can only walk on a single zone per trial,
the task can be successfully accomplished in all the environmental conditions only by a
group of robots that communicate through sound. Without communication, a single robot
can only exploit a trial-and-error strategy. By using a simple sound signalling system the
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robots should inform each other on the colour of the floor in the proximity of the light they
perceive—L1 or L2—and consequently push the door in the proper direction as explained
above. Finally, another important point is that the action of the robots with respect to
correctly positioning themselves at the side of the revolving door, is not a reaction to the
acoustic communication. Rather, the robots after the communication has taken place,
have to retain the information they have gathered about the environment until they arrive
to the vicinity of the revolving door and then assume the appropriate positions. In other
words, the communication act provides information that has to be kept in the memory of
the agents until they arrive to the point where they can pursue the correct action, with
respect to the environmental contingencies.

7.1.1.2 The simulation model

The robot and its world are simulated using simulation software based on the Open Dy-
namic Engine (see http://www.ode.org/), a 3D rigid body dynamics simulator that pro-
vides primitives for the implementation of detailed and realistic physics-based simulations.
This choice was driven by the need to simulate the dynamics of the revolving door and
the effect of the pushing forces robot exert on it. Our simulation models some of the
hardware characteristics of the real s-bots (see Mondada et al., 2004, and section 2.3.1, for
details). Our simulated robot has a differential drive motion provided by a traction system
composed of four wheels: two lateral, motorised wheels and two spherical, passive wheels
placed in the front and in the back, which serve as support. The four wheels are fixed to
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Figure 7.2: (a) The simulated robot. IRi, i ∈ {1, 2, . . . , 5} are the infrared sensors; ALi, i ∈
{1, 2} are the ambient light sensors; FS is the floor sensor; SI is the sound sensor (i.e., the
microphone); SO is the sound actuator (i.e., the loudspeaker); M1 and M2 are respectively
the left and right motor. (b) The network architecture: module MC and module MM . For
MC only the efferent connections for one neuron are drawn. SC is the binary categorisation
signal sent, at each updating cycle, by MC to MM .
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the cylindrical body that holds the sensors. In particular, robots make use of 5 infrared
sensors IRi, two ambient light sensors ALi, a floor sensor FS, a loudspeaker SO to emit
sound and an omni-directional sound sensor SI to perceive sound (see figure 7.2a). Light
levels change as a function of the robot’s distance from the lamp. FS, placed underneath
the robot, detects the level of gray of the floor. It outputs the following values: 0 if the
robot is positioned over white floor; 0.5 if the robot is positioned over gray floor; 1 if the
robot is positioned over black floor. SO produces a binary output (on/off). SI has no
directionality and intensity features. 10% uniform noise is added to IRi and ALi readings,
the motor outputs and the position of the robot.

7.1.1.3 The controller and the evolutionary algorithm

The controller of each agent is composed of two modules referred to as MC and MM (see
figure 7.2b). The modularisation is hand-coded to facilitate the evolution of successful
behavioural strategies. MC is a non-reactive module, that is, a six neurons fully connected
CTRNN (see chapter 3, section 3.1.2 and Beer and Gallagher, 1992). MC should detect
in which type of environment the robot is currently located. The categorisation has to be
based on the FS’s readings of both robots. Thus, it demands communication between the
agents. For this reason, MC takes input from FS and SI and it outputs the state of the
SO and SC (i.e., the binary categorisation signal). In other words, at every updating cycle,
MC is in charge of (a) managing sound by producing the signal the robot emits and by
receiving the signal of either robot, and (b) “informing” MM on the type of environment
in which the robot is currently located by setting the value of the binary categorisation
signal SC either to 0 or 1. MM is a reactive module, that is, a feed-forward artificial neural
network made of eight sensory neurons and two output neurons. MM is expected to (a)
guide the robot avoiding collisions with the arena walls, and (b) “parse” the value of SC

to determine in which side to push the revolving door (i.e., anti-clockwise if current trial
in E10 or E01, clockwise if current trial in E00 or E11, see also figure 7.1). MM takes input
from IRi, i ∈ {1, 2, . . . , 5}, from ALi, i ∈ {1, 2}, and SC , and it outputs the speed of
the robot’s wheels. The following associations (a) SC = 1, robots located in E10 or E01,
anti-clockwise rotational direction of the revolving door, and (b) SC = 0, robots located
in E00 or E11, clockwise rotational direction of the revolving door, are determined a priori
by the experimenter (see section 7.1.1.4). The neural mechanisms and the communication
protocol required by the robots to build these relationships from the sensors’ readings are
set by evolution.

The states of the neurons of MC and MM are governed by the following equations,
respectively:

dyi

dt
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where, using terms derived from an analogy with real neurons, yi represents the cell
potential, τi is the decay constant, g is a gain factor, Ii the intensity of the sensory
perturbation on sensory neuron i, ωji the strength of the synaptic connection from neuron
j to neuron i, β the bias term, σ(yj + β) the firing rate. The parameters ωji, τ , β and
g are genetically encoded. Cell potentials are set to 0 any time the network is initialised
or reset, and circuits are integrated using the forward Euler method with an integration
step-size of 0.1. Note that the cell potentials of MM ’s neurons do not depend on time.
That is, the neurons’ decay constant τ is set to 0.1, as the integration step-size dt. In
MC , the cell potentials yi of the 5th and the 6th neuron, mapped into [0,1] by a sigmoid
function σ, set the state of the robot’s sound actuator SO and of the binary categorisation
signal SC . The robot emits a sound if SO ≥ 0.5. SC = 1 if σ(y6 + β6) ≥ 0.5 otherwise
SC = 0. In MM , the cell potentials yi of the 9th and the 10th neuron, mapped into [0,1] by
a sigmoid function σ and then linearly scaled into [−6.5, 6.5], set the robot motors output.

A simple generational genetic algorithm is employed to set the parameters of the
networks (Goldberg, 1989). The population contains 80 genotypes. Generations following
the first one are produced by a combination of selection with elitism, recombination and
mutation. For each new generation, the three highest scoring individuals (“the elite”) from
the previous generation are retained unchanged. The remainder of the new population is
generated by fitness-proportional selection (also known as roulette wheel selection) from
the 64 best individuals of the old population. Each genotype is a vector comprising 67
real values, chosen uniformly random from the range [0, 1]. The first 18 genes are used to
set the parameters of MM (i.e., 16 connection weights, 1 bias term and 1 gain factor both
shared by all the input neurons). The other 49 genes are used to set the parameters of
Mc (i.e., 36 connection weights, 6 decay constants, 6 bias terms, and 1 gain factor).

7.1.1.4 The fitness function

During evolution, each genotype is translated into a robot controller (i.e., modules MC and
MM , see section 7.1.1.3), and cloned in each agent. Then, the two robot group is evaluated
two times in each environment type E11, E00, E01, and E10, for a total of eight trials. Note
that the sequence order of the environment type experienced by the robots—randomly
chosen at the beginning of each generation—has a bearing on the overall performance of
the group since the robots’ controllers are reset only at the beginning of the first trial. Each
trial differs from the others in the initialisation of the random number generator, which
influences the robots’ starting position and orientation anytime the robots are initialised,
and the noise added to motors and sensors. The robots are randomly placed in the
arena at the beginning of the first trial and repositioned in subsequent trials following
an unsuccessful one. Within a trial, the robots life-span is 90 simulated seconds (900
simulation cycles). A trial is terminated earlier in case a robot crashes with the arena
walls, or if the group successfully accomplishes its task. For each trial e ∈ {1, 2, . . . , 8},
the group is rewarded by an evaluation function which seeks to assess the ability of the
robots to open the revolving door located at the centre of the arena (see section 7.1.1.1).
This requires the robots to be able to determine the nature of the environment (i.e., E11,
E00, E01, or E10) by using acoustic communication. The final fitness F attributed to a
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group controlled by a specific genotype is the average group score over a set of eight trials,
and it is computed as follows:

F =
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ψr = 0 if robot r did not terminate the first phase of a trial, otherwise ψr = 1. ρr = 1
5

if robot r collided with the arena walls, otherwise ρr = 1. fmr = 1.0 − (drLi
) with drLi

corresponding to the normalised distance between the robot r and the light Li. During
the first phase of a trial i = 1 for the robot r located in the lower side of the arena, and
i = 2 for the robot r located in the upper side of the arena. During the second phase of a
trial, i = 1 for the robot r located in the upper side of the arena, and i = 2 for the robot
r located in the lower side of the arena. κr = 1 if robot r didn’t terminate the first phase
of a trial, or if, after having done so, it exerts pushing forces in the rotational direction
of the revolving door (see the arrows in figure 7.1). κr = 0.5 if robot r, after having
terminated the first phase of a trial, it exerts pushing forces in a direction opposite to the

rotational direction of the revolving door. fcer =
PT

s=(tc)(Ps−tc)

T−tc
, where tc corresponds to

the simulation cycles at 10 seconds after the end of the first part of the task, T corresponds
to the simulation cycles at the end of the trial e and

Ps−tc =

{

+1 if ((E11 ∨E00) ∧ (SC = 0)) ∨ ((E10 ∨ E01) ∧ (SC = 1))

−1 if ((E11 ∨E00) ∧ (SC = 1)) ∨ ((E10 ∨ E01) ∧ (SC = 0))
(7.5)

In other words, during the first phase of a trial, FMe rewards the robots for approaching
the light at the corresponding side of the arena (i.e., L1 for robot in the lower side; L2 for
robot in the upper side). During the second phase of a trial, FMe rewards the robots for
approaching the opposite side of the arena. FC rewards the robots for setting the state
of the fifth neuron (i.e., y5) of MC so that (a) SC results equal to 0 during the second
phase of trials in E00 and E11; (b) SC results equal to 1 during the second phase of trials
in E10 and E01 (see also section 7.1.1.3). Note that F does not refer anyhow to signalling
behaviour. F rewards the robots for accomplishing the task as detailed in section 7.1.1.1.
However, due to the nature of the task, the robots can be successful only if they coordinate
their actions using the sound signalling system. By leaving signalling behaviour out of the
fitness function, we clean our model from preconceptions concerning what (i.e., semantics)
and how (i.e., syntax) successful groups communicate, and we let evolution determine the
characteristics of the communication protocol.
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7.1.2 Results

Ten evolutionary simulations, each using a different random initialisation, were run for
4.800 generations. Given the nature of the fitness function, the highest fitness score that
a group can reach is 3.4. This score corresponds to the behaviour of a group in which
each robot (i) finds the coloured zone on the white arena floor; (ii) communicates to the
robot at the opposite side of the arena the colour encountered in its side; (iii) uses the
combination of colours to properly set the binary categorisation signal SC ; and (iv) pushes
the revolving door in the proper direction until it reaches the opposite side of the arena.

Notice, however, that fitness scores lower than 3.4 might be associated to equally
successful alternative strategies. In particular, successful strategies may have the fitness
component FC < 1 in case MC doesn’t correctly set SC for the entire length of the time
interval from tc to T as demanded by the fitness function (see section 7.1.1.4). For a group
to be successful, what matters is that (i) MC is capable of discriminating environments
in which the door revolves clockwise from those in which the door revolves anti-clockwise;
(ii) this discrimination is made available to MM through the value of SC ; (iii) differences
in time of SC ’s reading induce different behavioural responses. How these processes are
implemented may vary with respect to the nature of the mechanisms found by evolution.
Not all the implementations which allow a group to be successful get the highest fitness
score.

Thus, in order to have a better estimate of the behavioural capabilities of the best
evolved controllers, we post-evaluate, for each run, the genotype with the highest fitness.
These groups are referred to as gi, i ∈ {1, 2, . . . , 10}. The entire set of post-evaluations
(i.e., 2400 trials, 100 evaluations for each permutation, 100*N! with N=4) should es-
tablish whether a group of robots is capable of accomplishing the task as described in
section 7.1.1.1 in all four types of environment.

The results of the post-evaluation tests are shown in table 7.1. The data show that
only two groups (g2 and g4) have a very high success rate (higher than 98%) in all four
types of environment (see figure 7.1b, gray rows); g1, g3, g5, g8 and g9 are capable of
carrying out the task only when the door revolves clockwise, and g10 only when the door
revolves anti-clockwise; g6 and g7 fail in only one type of environment.

From a behavioural point of view, the failures are due to trial-and-error strategies.
That is, during the second phase of the task, both robots push the revolving door both
west and east of L3 instead of exerting forces directly on the proper side of the bar (see
table 7.2).

From table 7.3, we can deduce that failures due to collisions are very rare. The lower
success rate of g10 in E00 and E11 is mainly due to the fact that the robots of this group
are not able to exert enough forces to rotate the revolving door. From a mechanism point
of view, the failure of each single robot can be caused by either (a) MC failing to correctly
categorise the environment by properly setting SC as made explicit in section 7.1.1.3 or (b)
MM failing to “interprete” the value of SC as produced by MC . Post-evaluation tests show
that for almost all the unsuccessful groups, it is MC that by setting incorrectly the value of
SC , does not allow MM to choose the correct direction of rotation of the revolving door (see
table 7.4). It seems that robots of unsuccessful groups are not capable of informing each
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(%) Success

E10 E01 E00 E11

g1 0.0 0.0 100.0 100.0

g2 99.6 99.8 100.0 98.16

g3 0.0 0.0 97.8 96.3

g4 100.0 100.0 100.0 99.6

g5 0.0 0.0 79.7 82.5

g6 99.0 94.2 92.7 0.0

g7 99.5 99.5 100.0 0.0

g8 100.0 100.0 0.0 0.0

g9 0.0 0.0 100.0 99.8

g10 100.0 99.7 0.0 0.0

Table 7.1: Results of post-evaluation tests, showing for the best evolved groups of each
run the percentage of successful trials in each type of environment. In gray the successful
groups.

Table 7.2: Results of post-evaluation tests, showing for the best evolved groups of each
run the percentage of unsuccessful trials per robot in each type of environment due to
trial-and-error strategy. This corresponds to a robot exerting forces in both arms of the
revolving door (i.e., west and east of L3) instead of touching the bar on the correct side.
In gray the successful groups.

(%) Failure due to trail-and-error strategy

E10 E01 E00 E11

R1 R2 R1 R2 R1 R2 R1 R2

g1 100.0 100.0 100.0 100.0 0.0 0.0 0.0 0.0

g2 0.0 0.0 0.0 0.0 0.0 0.0 1.8 1.8

g3 99.3 99.33 99.5 99.5 0.0 0.0 0.0 0.0

g4 0.0 0.0 0.0 0.0 0.0 0.0 0.3 0.3

g5 99.7 99.7 99.5 99.5 1.3 1.7 0.0 0.0

g6 0.0 0.0 0.0 0.0 0.0 0.0 100.0 100.0

g7 0.0 0.0 0.0 0.0 0.0 0.0 100.0 100.0

g8 0.0 0.0 0.0 0.0 100.0 100.0 100.0 100.0

g9 100.0 100.0 100.0 100.0 0.0 0.0 0.0 0.0

g10 0.0 0.0 0.0 0.0 32.17 44.7 100.0 100.0

other about the colour of the painted zone in the proximity of L1 and L2. Consequently,
in the absence of an effective communication protocol, it turns out impossible for MC to
properly set SC . In the following paragraphs, we analyse the communication protocol used
by a successful group.

Figure 7.3a illustrates the structures of signalling behaviour of the successful group g4.
In this post-evaluation test, the group undergoes 4 trials with the environment presented
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Table 7.3: Results of post-evaluation tests, showing for the best evolved groups of each
run the percentage of unsuccessful trials per robot in each type of environment due to
collisions. In gray the successful groups. As we can see from the table, failures due to
collisions are very rare.

(%) Collisions

E10 E01 E00 E11

R1 R2 R1 R2 R1 R2 R1 R2

g1 0.00 0.00 0.00 0.0 0.00 0.00 0.00 0.17

g2 0.17 0.00 0.17 0.0 0.00 0.00 0.00 0.00

g3 0.17 0.50 0.00 0.5 0.00 0.33 0.00 1.00

g4 0.00 0.00 0.00 0.0 0.00 0.00 0.00 0.00

g5 1.50 0.33 0.33 1.5 0.33 0.50 0.17 0.17

g6 0.17 0.00 0.00 0.0 0.00 0.17 0.00 0.00

g7 0.00 0.00 0.00 0.0 0.00 0.00 0.00 0.00

g8 0.00 0.00 0.00 0.0 0.00 0.00 0.00 0.00

g9 0.00 0.00 0.00 0.0 0.00 0.00 0.00 0.17

g10 0.00 0.00 0.00 0.0 0.00 0.00 0.00 0.00

Table 7.4: Post-evaluation analysis of the 10 best groups. In gray the successful groups.
This table shows the percentage of the correctness of the binary categorisation signal SC

which is very high (> 95%) for all environments and both robots only for the two successful
evolutionary runs g2 and g4.

(%) of correctness of signal SC

E10 E01 E00 E11

R1 R2 R1 R2 R1 R2 R1 R2

g1 0.00 0.01 0.00 0.00 99.99 99.98 99.92 99.88

g2 99.64 95.76 95.70 99.71 100.00 100.00 98.26 98.27

g3 0.72 0.71 0.59 0.00 99.56 99.45 99.02 98.99

g4 100.00 100.00 100.00 100.00 100.00 100.00 99.72 99.74

g5 5.12 4.37 3.53 6.16 93.89 93.05 95.22 93.20

g6 99.83 99.83 99.33 99.33 94.64 94.42 0.00 0.00

g7 99.98 99.88 99.88 100.00 100.00 100.00 0.13 0.48

g8 100.00 100.00 100.00 100.00 0.00 0.00 0.00 0.00

g9 0.00 0.00 0.00 0.00 100.00 100.00 99.92 99.92

g10 98.58 90.024 89.86 98.49 100.00 100.00 5.94 5.93

in the following sequence: E10, E01, E00, and E11. In each trial the robots do not emit
sound before reaching the coloured zones. The perception of gray does not induce the
emission of sound. Therefore, in E00 no robots emit sound (see figure 7.3 trial 3). The
absence of sound in the environment letsMC set SC to 0 in both robots. SC = 0 is correctly
“interpreted” by MM modules so that both robots push the revolving door clockwise. The
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Figure 7.3: Post-evaluations of group g4. Dashed lines refers to the robot placed at the
beginning of trial 1, in the upper side of the arena; continuous lines refer to the robot
placed in the lower side of the arena. (a) Sound signals. (b) Floor sensors readings.
Dotted line indicates the state of L3, 1 = ON, 0 = OFF. On the x axis is indicated the
time of start and end of each trial.

perception of a black zone induces the robots to emit intermittent bursts of sound (see
figure 7.3a trials 1, 2 and 4). In trials E10 and E01, the perception of these intermittent
bursts induces the robot that is on gray to emit a continuous tone. The perception of
a continuous tone induces the robot on black to imitate its fellow, so that at the time
when L3 turns on (see figure 7.3b, dotted line) both robots emit a continuous tone. The
presence of sound in the environment lets MC set SC to 1 in both robots. SC = 1 is
correctly “interpreted” by MM modules so that both robots push the revolving door anti-
clockwise. Both robots autonomously stop emitting sound before the end of a trial in E10

or E01, few seconds after the aperture of the revolving door. Thus, at the beginning of
the following trial both robots are in the state of not emitting sound. In trials E11, the
asynchronous emission of intermittent bursts of sound by both robots determines moments
of silence which inhibit signalling behaviour. At the time when L3 turns on, none of the
robots is signalling. The absence of sound in the environment lets MC set SC to 0 in both
robots. SC = 0 is correctly “interpreted” by MM modules so that both robots push the
revolving door clockwise as in E00.
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7.1.3 Conclusion

We described a model in which artificial evolution is employed to design neural mechanisms
that control the motion of autonomous robots required to communicate through sound
to perform a common task. The results of this work are a “proof-of-concept”: they
demonstrate that evolution can exploit a simple sound system, detailed in section 7.1.1.3,
to design the mechanisms that allow two robots cooperate by using bi-directional acoustic
interactions. Post-evaluation tests illustrate the nature of the robots’ communication
protocol based on entirely evolved asynchronous and mutually determined single tone
signals.

Concerning future work, we believe that priority should be given to investigations
aimed at limiting the amount of a priori assumptions that we have been forced to make
in this first study. In particular, we are referring to the modularisation of the control
structures and the arbitrary associations detailed in section 7.1.1.3. This modularisation
was introduced in order to obtain solutions to the problems at hand; a fully integrated
approach did not lead to satisfactory solutions. This might be linked to bootstrapping
problems, related to the fitness function design, or, alternatively, to a difficulty introduced
by the fact that the robots have to share their communication medium, using the signalling
system also described in section 4.3.2. In future work, we will investigate a scenario where
the robots use a different audio channel to emit signals, e.g., by emitting at different
frequencies (see chapter 4, section 4.6.3—this modification can allow robots to distinguish
between self and non-self produced sound, and its implementation is feasible on the s-
bot, for two robots emitting at two distinct frequencies). Such a scenario will significantly
simplify the automatic design of the signalling protocols and might facilitate the evolution
of integrated controllers. Similarly, the use of sound signalling could be replaced by the
use of the omni-directional camera mounted on the turret of the s-bot, in a similar way
as it was used in section 5.3.2. The use of the camera could replace both the infrared
sensors and the sound sensors and actuators, since (i) the camera returns the distance of
the objects it perceives and (ii) the robots can light up in different colours (red, green
and blue) which can be discriminated by the camera and serve as distinct communication
signals.

This work can be seen as a first step in the investigation of the evolution of more
complex signals in groups of robots. We did not observe the emergence of displaced
signals—signals which convey information about the environment which is independent
from the current sensory state of the signalling robot. Instead, robots signal immediately
after they perceive the colour of the floor in the proximity of the lights. This bi-directional
communication is informing them on the position they should assume at the rotating
door. More speculation and further experimentation is needed in order to understand
how artificial agents can i) “store” in their memory structures information about the
environment they perceive; ii) share this information upon encounter with other agents at
a later time.

Finally, we would like to test this asynchronous single tone communication protocols on
the real hardware (i.e., the s-bots). This is an endeavour which has not been yet pursued,
as none of the research works treating this issue have presented real robot experiments (see
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Figure 7.4: Chain formation of ants of the species Œcophilla longinoda. Image adapted
from (Anderson et al., 2002).

Di Paolo, 2000; Wischmann and Pasemann, 2006, for examples). Concerning the nature
of our task, which demands many modifications in the environment (turning the lights
on/off) and coordinated physical interactions involved with pushing to open the revolving
door, it is of course a large constraint that makes the experimentation on real hardware
not so straightforward. We are currently speculating on a simpler setup which can allow
the evolution of similar communication protocols but which can facilitate the testing on
real robots.

7.2 Towards the evolution of functional self-assembly

In chapter 5 we have studied minimal mechanisms underlying self-assembly: how two
agents can coordinate their movements in order to decide which robot will grip the other.
In the work presented in that chapter, the formation of an assembled structure was the
goal. However, in nature (e.g., ants of the species Œcophilla longinoda), self-assembly
typically takes place in order to accomplish some function. For example, ants build chains
composed of their own bodies to bridge gaps (see Lioni et al., 2001; Anderson et al.,
2002, and figure 7.4). Similarly, in order for the robots to choose to move collectively as
an assembled structure, the environment must present some contingencies that demand
it. Trianni et al. (2004) define functional self-assembly as the phenomenon of “robots
physically connecting to each other, any time environmental contingencies prevent a single
robot to achieve its goal”.

In chapter 4 we studied the switch from solitary to social behaviour via communicative
acts which result from individual environmental categorisation. The environment where
the robots were located did not explicitly demand the use of social behaviour, no matter
how this is defined: the task could be solved by the robots either individually or by
cooperation. Imagine however an environment where a connected structure could be able
to achieve objectives that a single robot could not. Trianni and Dorigo (2005) and Groß
et al. (2006a) have demonstrated on real hardware how connected s-bots (i.e., a swarm-bot)
can pass over small troughs, that is, can bridge a gap. Time-dependent decision-making
mechanisms as those developed in chapter 4 can help the robots “realise” that social
behaviour in the form of self-assembly is required in order to achieve their objectives. In
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that case of course, the environment would explicitly require cooperation.

In this section we present a first step towards the evolution of functional self-assembly:
we extend the research work presented in chapter 4 by coming up with a similar exper-
imental setup and by requiring the robots to exhibit simple collective behaviours if the
environment requires them, in the form of aggregation. In the future, we wish to expand
this work by demanding that the robots i) self-assemble, ii) move coordinately to achieve
the group’s objective (for example cross a trough too large for a single robot to cross
etc.). This we will do by exploiting knowledge acquired during our experimentation on
the evolution of self-assembly, as presented in chapter 5.

An initial investigation of functional self-assembly in the context of collective robotics
has been performed by Trianni and Dorigo (2005). The authors performed research in an
abstract simulation environment and managed to evolve neuro-controllers able to bring
forth assembly and disassembly in a group of robots, according to the state of the part of
the environment in which they were located. Notice that the states of the environment were
directly available as inputs to the robots and that they were a priori associated to social
(group assembled) or solitary (group non-assembled) behaviour by the experimenters.

In the work we present in the following, which will be the basis of on-going experi-
mentation, we demand that the robots themselves determine if assembly is necessary or
not. Moreover, our experimental setup is oriented towards obtaining controllers that can
be ported on real hardware. More specifically, we will use the simulated environment
employed in the experiments on self-assembly detailed in chapter 5.

7.2.1 Methods

In this section we will present the task (see section 7.2.1.1), the simulation model used
in section 7.2.1.2, the controller and the evolutionary algorithm in section 7.2.1.3 and the
fitness function in section 7.2.1.3.

7.2.1.1 The task

The path towards the evolution of neural controllers for functional self-assembly in a
physical swarm-bot passes through the definition of the following experimental scenario.
A group of s-bots is placed in an arena that is surrounded by some obstacles that s-bots
cannot overcome individually. The arena may have a way out, that is, a passage through
which a solitary s-bot can exit (see figure 7.5a). However, an s-bot does not have the
perceptual abilities to detect the way out from every location in the arena. Therefore,
s-bots should first search for the way out and, if they do not find any as in figure 7.5b,
they should aggregate and self-assemble in order to collectively overcome the obstacles
that surround the arena. As mentioned above, we consider in this work only the first
part of this scenario concerning the decision to switch from the individual behaviour of
searching for the way out to the collective behaviour of aggregating in one place. The
second part of the scenario concerning self-assembly is on-going work.

It should be noted that this task is very similar to the task we tackled in chapter 4. We
introduced some modification (way out instead of way in zone, absence of a light, three
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robots instead of two, etc.) because we believe that the new setup is more suited to the
study of functional self-assembly.

7.2.1.2 The simulation model

The simulator used to evolve the required behaviour relies on a specialised 2D dynamics
engine (see Christensen, 2005), and we use a simulated version of the real s-bot (see
figure 7.6 which we reproduce again for the sake of completeness, and chapter 2.3.1 for
details).

Each s-bot is provided with four proximity sensors placed under the chassis—referred
to as ground sensors—that can be used for perceiving the ground’s grey level. When the
sensor is placed over white ground, it returns a high value due to the high reflectivity
of the ground. On the contrary, if the ground colour is black, the reflectivity is low and
consequently the sensor returns a value close to 0. The raw sensor readings are recorded
and scaled in the interval [0,1] before being processed by the neural controller.

Each robot is also equipped with an omni-directional camera, which is used to perceive
the presence and the corresponding distance of neighbouring s-bots. The omni-directional

(a) (b)

Figure 7.5: (a,b) The experimental arena contains a circular band in shades of grey, which
may or may not have the way out. Dark lines represent the trajectories of the three s-bots,
and empty circles indicate their starting positions.

Colour LEDs
Camera

Gripper

Figure 7.6: Image of an s-bot.
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camera can perceive the red colour continuously emitted by the s-bots by means of their
coloured LEDs embedded in the T-shaped ring (see figure 7.6). The circular image ob-
tained from the camera is filtered in order to extract only the red objects. Then, it is split
in 4 sectors of 90◦ each (front-left, front-right, rear-left, rear-right) and the distance of the
closest red object in each sector is computed. With such a system, the closest s-bot in
each sector can be perceived up to a distance of about 50 cm. Also in this case, distances
are scaled in the interval [0, 1] before being processed by the neural controller.

In order to communicate with each other, s-bots are provided with a very simple
signalling system, which can produce a continuous tone with fixed frequency and intensity.
When a tone is emitted, it is perceived by every robot in the arena, including the signalling
s-bot. The tone is perceived in a binary way, that is, either some s-bot is signalling in the
arena, or no one is, as was done in chapter 4.

Notwithstanding the efforts to devise a precise simulation, some characteristics of the
robots and of the robot-environment interaction may escape the modelling phase. For
this reason, noise is used to ensure that the evolved behaviour will cope with differences
between simulation and reality (Jakobi, 1997). Except for the binary communication
system, noise is simulated for all sensors and actuators, adding a random value uniformly
distributed in the interval [−5%, 5%] with respect to the maximum value.

Three s-bots are initially placed up to 25 cm from the centre of a boundless arena.
The arena contains a circular band in shades of grey (inner radius: 1.0 m; outer radius:
1.2 m—see figure 7.5). The outer border of the circular band is painted in black and
simulates the presence of a trough/obstacle that the s-bots cannot overcome individually:
the simulation is stopped whenever s-bots pass over the black border, and the trial is
considered unsuccessful. The grey level of the circular band can be perceived by the
s-bots only locally through the ground sensors. It is meant to warn s-bots about the
presence of the simulated trough/obstacle: the darker the ground colour, the closer the
danger. The s-bots can be placed in two different environments: in Env.A, the circular
band is discontinuous—i.e., there is a way out through which the s-bots can exit (see the
trajectories in figure 7.5a). In Env.B, the way out is not present and therefore s-bots
should aggregate after having searched for it (see the trajectories in figure 7.5b). The
amplitude of the way out is randomly selected in each trial within the interval [π/4, π/2].

7.2.1.3 The controller and the evolutionary algorithm

Homogeneous groups of s-bots are controlled by artificial neural networks, whose param-
eters are set by an evolutionary algorithm. A single genotype is used to create a group of
individuals with an identical control structure. Each s-bot is controlled by a CTRNN (see
chapter 3, section 3.1.2 and Beer and Gallagher, 1992). The neural network has a multi-
layer topology, as shown in figure 7.7: neurons NI,1 to NI,9 take input from the robot’s
sensory apparatus, neurons NO,1 to NO,3 control the robot’s actuators, and neurons NH,1

to NH,5 form a fully recurrent continuous time hidden layer. The input neurons are simple
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relay units, while the output neurons are governed by the following equations:

oj = σ(Oj + βj), Oj =

5
∑

i=1

WO(i, j) σ(Hi + βi), σ(z) =
1

1 + e−z
, (7.6)

where, using terms derived from an analogy with real neurons, Oj and Hi are the cell
potentials of respectively output neuron j and hidden neuron i, βj and βi are bias terms,
WO(i, j) is the strength of the synaptic connection from hidden neuron i to output neuron
j, and oj and hi = σ (Hi + βi) are the firing rates. The hidden units are governed by the
following equation:

dHj

dt
=

1

τj

(

−Hj +
5
∑

i=1

WH(i, j)σ(Hi + βi) +
9
∑

i=1

WI(i, j)Ii

)

, (7.7)

where τj is the decay constant, WH(i, j) is the strength of the synaptic connection from
hidden neuron i to hidden neuron j, WI(i, j) is the strength of the connection from input
neuron i to hidden neuron j, and Ii is the intensity of the sensory perturbation on neuron
i.

Four input neurons—NI,1 to NI,4—are set looking at the four sectors of the image
grabbed by the omni-directional camera. Four other input neurons—NI,5 to NI,8—are
set directly from the four ground sensors. Finally, input neuron NI,9 is a binary input
set by the perception of a sound signal. The neurons NO,1 and NO,2 are used to set the
speed of the s-bot ’s wheels. Neuron NO,3 is used to set the state of the loudspeaker, which
is turned on if the neuron output is higher than 0.5, and off otherwise. The weights of
the connection between neurons, the bias terms and the decay constants are genetically
encoded parameters. Cell potentials are set to 0 each time a network is initialised or
reset. State equations are integrated using the forward Euler method with an integration
step-size of 0.1 seconds.

In order to set the parameters of the s-bot ’ controllers, a simple generational evolution-
ary algorithm is employed (Goldberg, 1989). The population contains 100 genotypes that
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Figure 7.7: The multi-layer topology of the neural neural controller. The hidden layer is
composed of continuous time neurons with fully recurrent connections.
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are evolved for 5000 generations. Each genotype is a vector of 98 real values (85 synap-
tic connections, 5 decay constants and 8 bias terms) that are initially chosen uniformly
random from the range [−10, 10]. Subsequent generations are produced by a combination
of selection with elitism and mutation. Recombination is not used. At every generation,
the best 20 genotypes are selected for reproduction, and each generates 4 offspring. The
genotypes of the selected parents are copied in the subsequent generation; the genotypes
of the 4 offspring are mutated with a 50% probability of adding a random Gaussian offset
N(0, 1) to each real-valued gene. During evolution, genotype parameters are constrained
to remain within the range [−10, 10]. They are mapped to produce CTRNN parameters
with the following ranges: connection weights W (j, i) ∈ [−4, 4]; biases β ∈ [−4, 4]; con-
cerning decay constants, the genetically encoded parameters are first mapped onto the
range [−1, 3] and then exponentially mapped onto τ ∈ [10−1, 103]. The lower bound of τ
corresponds to the integration step size used to update the controller; the upper bound is
arbitrarily chosen and it is bigger than the maximum length of a trial.

7.2.1.4 The fitness function

During the evolution, a genotype is mapped into a control structure that is cloned and
downloaded onto all the s-bots taking part to the experiment (i.e., we use a homogeneous
group of s-bots). Groups of 3 s-bots are evaluated 10 times—i.e., 10 trials, 5 performed
in Env.A and 5 in Env.B. Each trial lasts 65 seconds and differs from the others in the
initialisation of the random number generator, which influences mainly the s-bots starting
positions and orientations and the way out amplitude, if present.

The evaluation function takes into account the behavioural state in which the s-bots
should be and it rewards their movements accordingly. When s-bots are placed in Env.A,
they should search for and traverse the way out, therefore they should always be in state
S. When s-bots are placed in Env.B, they should initially search for the way out, being in
state S, and after some searching they should aggregate, therefore switching to state C.
In order to evaluate the behaviour in Env.B, we ignore the time needed for searching the
way out and we consider that an s-bot switches to state C when it encounters the circular
band for the first time. In this way, we can systematically evaluate the movements of an
s-bot according to its behavioural state:

S(s, t) = Env.A OR dM (s, t) < 1.0, C(s, t) = NOT S(s, t), (7.8)

where dM (s, t) is the maximum distance from the centre reached by s-bot s at time t.
In other words, an s-bot is considered to be in state S if it is placed in Env.A or if the
maximum distance it reached from the centre of the arena is smaller than one meter, which
corresponds to the inner radius of the circular band. Otherwise, an s-bot is considered to
be in state C. Having defined the behavioural states at time t, an s-bot s should maximise
its distance from the centre of the arena when in state S, while it should minimise its
distance from the centre of mass of the group when in state C. Therefore, for each s-bot s
at step t, we compute the measure d(s, t) according to the following equation:

d(s, t) =

{

||X(s, t) −Xo|| if S(s, t),
1.0 − ||X(s, t)−Xc(t)|| if C(s, t),

(7.9)
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where X(s, t) are the coordinates of s-bot s at time t, Xo and Xc(t) are the coordinates of
the centre of the arena and of the centre of mass of the s-bots. Therefore, an s-bot should
always maximise d(s, t) in order to reach the optimal position: in state S, an s-bot should
move away from the centre, and it is considered successful if it reaches an optimal distance
DO(S) = 2.4 m (i.e., d(s, t) ≥ DO(S)); in state C, an s-bot should aggregate with the other
robots by reducing its distance from the centre of mass of the group, and it is considered
successful if it stays below an optimal distanceDO(C) = 0.25 m (i.e., d(s, t) ≥ 1.0−DO(C)).
We measure a normalised distance d̃(s, t) according to the behavioural state as follows:

d̃(s, t) =























Θ

(

d(s, t)

DO(S)

)

if S(s, t),

Θ

(

d(s, t)

1.0 −DO(C)

)

if C(s, t),

(7.10)

where Θ(x) simply bounds the value of x in the interval [0, 1]. In both behavioural states,
d̃(s, t) = 1 indicates that s-bot s at least reached the optimal distance DO at time t. We
conventionally say that a successful s-bot “achieves the optimal distance DO”.

In order to evolve the desired behaviour, we compute two measures that reward the
s-bot ’s movements both for its absolute position and for the stepwise increment of the
d(s, t):

fd(s, t) = τd · fd(s, t− 1) + (1− τd) · d̃(s, t), (7.11)

fi(s, t) =
d(s, t)− d(s, t− 1)

2dM
+ 0.5, (7.12)

where τd = 0.975 is the time constant of a moving average, and dM is the maximum
distance increment that an s-bot can cover in a single simulation cycle. The measure fd(s, t)
rewards the s-bot for the absolute position reached, and the moving average is justified by
the necessity to reward behaviours that keep the optimal distance for a long time (which
also justifies the high value we have chosen for the time constant τd). Differently, the
measure fi(s, t) rewards the s-bot for the stepwise increments toward an optimal position.
Notice that, while in state S robots should continue to move away from the centre of mass
even if they achieved the optimal distance DO(S), in C s-bots cannot decrease further their
distance from the centre of mass once the optimal distance DO(C) is reached. For this
reason, we set fi(s, t) = 1.0 when the s-bot is in state C and d̃(s, t) = 1.

Given the above measures computed for all s-bots and for all simulation cycles, the
fitness in a trial is computed as follows:

F =
1

N

N
∑

s=1

fd(s, T ) ·
1

NT

N
∑

s=1

T
∑

t=1

fi(s, t), (7.13)

where N = 3 is the number of s-bots and T = 650 is the number of simulation cycles of
the trial. Note that a trial is terminated whenever an s-bot passes over the black border
of the circular band—and in this case F = 0—or if s-bots collide when in state S.
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It is worth mentioning that when computing the individual performance, the be-
havioural state of an s-bot cannot be directly observed, because it is not explicitly encoded
in the controller or elsewhere. However, knowing the environment type and looking at the
movements of the robot, it is possible to estimate in which state an s-bot should be at any
given time: when an s-bot is placed in Env.A, it should search for the way out and exit
through it, therefore it should be in state S. When an s-bot is placed in Env.B, it should
initially search for the way out, being in state S, and at some point it should give up and
aggregate, therefore switching to state C. Given that it is not possible to exactly recognise
when an s-bot switches to state C, we compute the individual performance by considering
an s-bot in state C as soon as it encounters the circular band for the first time. Basing
on such estimation of the behavioural state, it is possible to systematically evaluate the
s-bot ’s performance.

Note that the evaluation function does not explicitly reward cooperation or commu-
nication. It rather rewards those agents that perform the correct movements in each
behavioural state, without any reference to the mechanism necessary to switch from one
state to the other.

7.2.2 Results

We performed 20 replications of the experiment, most of which were successful. For
each evolutionary run, we selected a single controller from the last generation. To do so,
we evaluated the 20 best individuals—the elite of the last generation—for 200 trials in
both environments, and we selected the genotype with the highest average performance.
As a result, we obtained 20 controllers—hereafter referred to as C1, . . . , C20—that were
further evaluated for 2000 trials, half in Env.A and half in Env.B. The obtained results
are summarised in table 7.5: in both environments, we computed the average performance
and its standard deviation (avg ± std), the rates of success %S (all s-bots achieve the
optimal distance DO), failure %F (no s-bot achieves the optimal distance DO), partial
success/failure %M (not all s-bots are successful or fail) and error %E (s-bots collide or
cross the black edge of the circular band). In each trial, we also computed the disparity,
which is defined as the percentage of the circular band that each robot covers in average
during a trial: a value smaller than 1 indicates that the single s-bot does not search the
whole circular band for the way out, while a value bigger than 1 indicates that the single
s-bot performs more than one tour (see figure 7.8). The disparity—together with the
success rate—is useful to quantitatively assess the quality of the evolved strategies.2

Successful controllers produce good search behaviours when s-bots are in state S: s-bots
avoid collisions and move away from the centre of the arena. Once on the circular band,
s-bots start looping in search of the way out, which is eventually found and traversed when
s-bots are placed in Env.A. On the contrary, if s-bots are placed in Env.B, the absence
of the way out is recognised by the s-bots through the integration over time of their
perceptual flow, which includes the signals that the s-bots may emit. As a consequence, a

2In chapter 4, we defined a measure called offset ∆ (see equation 4.2, which is similar to the measure of
disparity ; the difference is that for the calculation of the value of offset ∆ we demand that a robot signals,
while to measure the coverage of the band when we compute the disparity , this is not necessary.
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Table 7.5: Post-evaluation results. For both Env.A and Env.B we compute the perfor-
mance (avg ± std), the success rate (%S), the rate of partial success/failure (%M), the
rate of complete failure (%F) and the error rate (%E). Controllers are grouped according
to their classes, as indicated in the first column.

Env.A Env.B
avg ± std %S %M %F %E avg ± std %S %M %F %E

U

c4 0.82± 0.14 92.0 6.5 1.0 0.5 0.37± 0.11 19.4 18.9 61.7 0.0
c6 0.85± 0.06 98.6 1.2 0.0 0.2 0.31± 0.08 0.9 30.6 68.4 0.1
c14 0.83± 0.15 91.3 6.2 0.0 2.5 0.46± 0.15 2.5 65.1 24.0 8.4
c17 0.66± 0.07 74.3 25.4 0.1 0.2 0.39± 0.08 4.9 78.8 16.3 0.0

B

c1 0.86± 0.11 97.7 0.8 0.0 1.5 0.69± 0.07 95.9 2.8 1.3 0.0
c5 0.85± 0.13 92.1 5.7 0.0 2.2 0.57± 0.14 66.8 16.9 16.1 0.2
c8 0.83± 0.15 90.3 7.6 0.4 1.7 0.57± 0.12 34.3 55.2 9.2 1.3
c10 0.88± 0.07 99.0 0.6 0.0 0.4 0.66± 0.07 94.1 2.1 3.7 0.1
c16 0.85± 0.14 94.4 4.1 0.0 1.5 0.74± 0.13 94.1 2.3 1.4 2.2

M

c3 0.83± 0.15 85.8 11.7 0.0 2.5 0.63± 0.09 87.6 8.1 3.4 0.9
c7 0.79± 0.20 89.3 5.5 0.0 5.2 0.62± 0.25 49.5 34.2 10.5 5.8
c11 0.86± 0.07 98.9 0.6 0.0 0.5 0.61± 0.07 87.6 9.5 2.7 0.2
c13 0.85± 0.09 94.3 5.2 0.0 0.5 0.62± 0.07 93.0 5.3 0.8 0.9
c19 0.81± 0.15 94.8 2.3 0.6 2.3 0.67± 0.12 91.7 3.8 1.9 2.6
c20 0.87± 0.06 99.6 0.0 0.0 0.4 0.59± 0.07 79.3 11.3 9.3 0.1

C

c2 0.86± 0.10 98.6 0.1 0.0 1.3 0.82± 0.12 97.1 0.4 0.9 1.6
c9 0.87± 0.08 99.2 0.0 0.0 0.8 0.78± 0.12 88.1 8.3 3.1 0.5
c12 0.87± 0.05 99.6 0.3 0.0 0.1 0.74± 0.11 87.8 6.4 5.4 0.4
c15 0.86± 0.08 99.3 0.0 0.0 0.7 0.78± 0.13 96.6 0.4 0.6 2.4
c18 0.84± 0.18 95.8 0.0 0.0 4.2 0.83± 0.17 95.3 0.3 1.0 3.4

behavioural transition from state S to state C can be observed. The modalities with which
the transition is performed vary significantly across the different solutions synthesised
during different evolutionary runs. However, looking at the behaviour produced by the
evolved controllers, we recognised some similarities that let us classify the controllers in 4
classes.

Class U = {C4, C6, C14, C17} encompasses the “unsuccessful” controllers, that is, those
controllers that solve the task only in part. These controllers generally produce appropriate
search behaviours when s-bots are in state S, as confirmed by the good performance and
the high success rate in Env.A (see table 7.5). However, when s-bots are placed in Env.B,
they fail in systematically aggregating, scoring a low performance and a poor success rate.

The second class B = {C1, C5, C8, C10, C16} consists of controllers that produce a
strategy which we call “bouncing” after the aggregation behaviour of the s-bots in state C:
s-bots search for each other by continuously bouncing off the circular band, so that they
sooner or later meet and remain close. Communication is not exploited,3 and consequently

3Only C16 exploits signalling to trigger a synchronous switch to state C.
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Figure 7.8: The disparity of the evolved controllers. Boxes represent the inter-quartile
range of the data, while the horizontal lines inside the boxes mark the median values. The
whiskers extend to the most extreme data points within 1.5 times the inter-quartile range
from the box. The empty circles mark the outliers.

each s-bot individually switches from state S to state C, without any reference to the state
of the other robots. The bouncing behaviour is resilient to possible individual failures in
Env.A: by bouncing off the circular band, s-bots can continue searching for the way out,
even if less efficiently. This corresponds to high success rates in Env.A despite that the
s-bots perform in average less than one tour over the circular band, as indicated by the
corresponding disparity (see figure 7.8).

The third class M = {C3, C7, C11, C13, C19, C20} encompasses controllers that produce
a strategy which we refer to as “meeting”, due to the fact that s-bots aggregate by en-
countering at a meeting point, which is normally close to the centre of the arena. Except
for C7 and C19, controllers of this class do not make use of communication. The main
difference with class B controllers resides in the aggregation behaviour, which lets robots
leave the band and move in circles close to the centre of the arena, waiting for the other
s-bots to reach a similar position. This behaviour is not robust with respect to possible
decision errors in Env.A. As a consequence, evolution shaped the controllers of this class
to be characterised by a high disparity (see figure 7.8): s-bots perform more than one loop
over the circular band before switching to state C, which corresponds to robust individual
decisions and a high success rate in Env.A.

The last class C = {C2, C9, C12, C15, C18} is named “cooperative” because it encom-
passes controllers that produce communicative behaviours exploited for cooperation in the
decision making. In fact, s-bots are able to share the information they collect over time
through their signalling behaviour. The s-bots initially emit a sound signal, and they stop
only after looping on the circular band for some time. If any robot finds the way out,
signalling continues, inducing all other s-bots to remain in state S and to keep searching
for the way out. This leads to a high success rate in Env.A, and no complete failures
are observed (see table 7.5). When the way out is not present, all robots eventually stop
signalling, allowing the transition to state C and triggering the aggregation behaviour. By
sharing the information through communication, s-bots can collectively search the circular
band, splitting the task among them: as shown by the disparity data in figure 7.8, each
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s-bot covers from a quarter to half circle when placed in Env.B. This allows to consistently
reduce the search time, achieving high performance and high success rates. Communica-
tion is fundamental here, because it provides robustness to the decision-making process
and it makes the system more efficient by reducing the time necessary to take the decisions
to switch from solitary to collective behaviours.

In order to quantitatively compare the performance of the behaviours produced by the
evolved controllers, we used the performance data recorded over 2000 trials to perform a
series of pairwise Wilcoxon tests among all possible controller couples, which allowed to
produce the following ranking:

C4 ≺ C6 ≺ C17 ≺ C14 ≺ C3 ≺ C8 ≺ {C13, C11} ≺ C19 ≺ C1 ≺

≺ C20 ≺ C10 ≺ C5 ≺ C7 ≺ {C16, C12} ≺ C15 ≺ C9 ≺ C2 ≺ C18,

where Ci ≺ Cj indicates that Cj is statistically better than Ci with 99% confidence.
Controllers that have no statistical difference are reported in curly brackets. All class U
controllers have a low rank, as one would expect. Instead, it is worth noting that class
C controllers perform statistically better than the others. Moreover, other controllers
making use of communication but with a different strategy (namely C7-Meeting and C16-
Bouncing) occupy a good position in the rank. We can conclude that communication
can improve the efficiency and the robustness of the decision-making process. Robots
exploiting only local interactions are prone to decision errors or to behaviours that are less
efficient. Therefore, by cooperating through communication s-bots increase their ability
to make correct and unanimous decisions, consequently achieving a better performance.

7.2.3 Conclusion

We have studied the decision-making mechanisms that can let a group of robots switch
from a solitary to a collective behaviour. We have faced the problem through an evolu-
tionary approach in order to limit the a priori assumptions and search broadly the space of
the possible solutions. The results we obtained demonstrate that suitable decision-making
mechanisms can be evolved. Moreover, by providing the robots with a simple communi-
cation channel, the evolved cooperative strategies display higher efficiency and enhanced
robustness of the system. The use of communication generally results in a faster and more
robust decision-making process—a result that was also obtained in the experiment de-
tailed in chapter 4. Communication increases the otherwise limited information available
to each robot, not only about the quality of the physical environment but also and above
all about the social environment and about the internal states of other robots that, by
definition, are not directly accessible.

Future work will address a systematic analysis of the evolutionary pressures that
shaped the above mechanisms. Also, further testing with real robots has to be performed
in order to assess the portability of the evolved controllers on the real s-bot. Finally, we
plan to combine the decision-making processes studied here with the evolutionary ma-
chinery that brought forth self-assembly, as described in detail in chapter 5. Our aim
is to produce the first example of functional self-assembly of real swarm-bots based on
completely evolved controllers. Of course, it will probably be unlikely that we can employ
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the controllers for assembling robots already developed as a “plug-in”. Most probably, we
will have to launch new evolutionary processes to obtain assembly in a new, functional
context. If the assembly will be functional to the accomplishment of a certain task and
will also depend on the environmental structures, we might expect the development of
different role allocation mechanisms than those observed in chapter 5.
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Chapter 8

General conclusions

In this final section, we draw general conclusions from our experimental work. We start
by giving a brief summary of our contributions in section 8.1; this leads us to section 8.2,
where we discuss directions for evolutionary robotics research that we consider interesting
and promising.

8.1 A brief summary of our contributions

In this thesis we have presented original research work in which an automatic process
was employed to design controllers for groups of autonomous robots. More specifically,
artificial evolution was used to set the parameters of dynamical neural networks directly
controlling the robots’ actuators and receiving input from the robots’ sensory system.

Our contributions were on the design of non-trivial individual and collective behaviour;
in particular, our contributions include:

• The evolution of social behaviour and communication in a task where communication
was not a priori required. Communicative and non-communicative behaviour co-
evolved from scratch and time-based categorisation skills proved to be precursors of
evolved signals.

• The successful porting of time-dependent neuro-controllers on real robots for a col-
lective task requiring the integration over time of the robots’ perceptions.

• The evolution of self-assembly between two autonomous robots and the demonstra-
tion on real hardware of the effectiveness of the evolved neuro-controllers in directly
controlling the actuators of two agents. We prove that coordination and alloca-
tion of roles in self-assembling robots can be achieved without the use of explicit
communication or complex coordination mechanisms.

• The first example of homogeneous control for morphologically heterogeneous agents,
using evolved dynamical neural networks, which specialise “on-the-fly” on the basis
of each robot’s distinct morphology.

155
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Our approach narrows down the engineer’s assumptions about how a task should be
solved, about how robots should perceive their world. Solutions found in this way can
exploit subtle environmental features as they are perceived through the robot’s sensors.
Better controllers than those hand-crafted by human developers can be obtained in some
cases, since the automatic process can detect features of the robot-environment interaction
space that may be adaptive or beneficial for the robots. It is important to point out that
these features may not always be a priori evident to the experimenter. Moreover, the
approach exploits the interaction among robots and between robots and environment in
order to define the quality of a given controller, which may significantly contribute to
the adaptivity of the controllers. The adaptivity of a robotic system might be reduced
should the decisions concerning solitary or social behaviour be a priori determined by the
experimenter.

Our experiments focus on non-reactive collective tasks, that is, tasks where some sort
of memory is required on behalf of the robots in order to successfully carry them out
and the individual or collective decision-making is temporal. Arguably, the study of such
tasks can contribute to the complexification of tasks attacked by evolutionary techniques.
Moreover, in chapter 7, section 7.2, we have presented some initial experiments on the
evolution of functional self-assembly, a complex task that requires the robots engaged to
display complex categorisation skills, fine sensory-motor coordination and cooperation at
various different levels. A criticism often addressed to ER is that it fails to efficiently
address complex engineering tasks (Matarić and Cliff, 1996). The description of ER in
Wikipedia contains the following comment:1

Lately, the difficulty in “scaling up” the complexity of the robot tasks has
shifted attention somewhat towards the theoretical end of the field rather than
the engineering end.

The author of this thesis agrees that the average complexity achieved by evolution-
ary techniques is lower than that achieved by other design techniques, behaviour-based
robotics for example. However, we argue that the experiments presented in this thesis
contribute to scaling up the complexity tackled by ER. Furthermore, the experiments
had concrete engineering objectives as well as theoretical objectives, since the tasks we
considered were real-world collective tasks.

Also, for two of the tasks considered, namely self-assembly (see chapter 5) and social co-
operative categorisation (see chapter 4), we have showed that the evolved neuro-controllers
proved to be extremely efficient when controlling a group of real robots. This also con-
tributes to strengthening the evidence that the ER approach is a trustworthy technique
for the control of real robots. Again quoting Wikipedia we get:

Transferring controllers evolved in simulation to physical robots is very
difficult and a major challenge in using the ER approach. The reason is that
evolution is free to explore all possibilities to obtain a high fitness, including
any inaccuracies of the simulation. This need for a large number of evaluations,

1See http://en.wikipedia.org/wiki/Evolutionary_robotics.
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requiring fast yet accurate computer simulations, is one of the limiting factors
of the ER approach.

The author of this thesis fully agrees that the issue of the properly designed simulation
is extremely important in ER and that the existing examples of successful porting of
evolved neuro-controllers to real robots are still rather few. However, we have shown
that by modelling only the relevant issues of the robots’ environment accurately and by
avoiding a globally accurate and very precise simulation, we can achieve perfect results in
real-world conditions.

8.2 Looking forward

From an engineering problem-solving perspective, we believe that evolutionary techniques
will be used in the future to tackle complex tasks. The future might bring robots with
a wide variety of complex sensors whose readings may need to be combined in a very
sophisticated way so to produce sensible robot behaviour. For example, a robotic hand of
the future might contain hundreds of tactile sensors, and the precise and efficient control
of actuators present in it—on the basis of the current sensory readings but also of their
history—can be a very delicate and challenging task. Perhaps automatic approaches are
the right tool to address such issues.

Shifting to the other, more theoretical end, we believe that ER can be a valuable tool
at the disposal of biologists when studying issues as animal or human communication
and interaction. The research work presented in this thesis can be seen as a foundation
to study complex communication phenomena in natural and artificial organisms. Here,
among other research questions, we tried to identify pre-requisites for communication.
According to the author, a question that should be tackled in the future with the ER
approach is how we can really obtain complex communication skills (or even language
skills) in a population of initially non-communicating agents. Succeeding in answering
this question would definitely be relevant and useful in the effort to answer one of the
harder scientific problems currently: the evolutionary origins of human language.

Moreover, this approach could definitely complement the huge existing literature on
game theory, trying to explain one of the major transitions in evolution, the evolution
of communication. Using ER, we could revisit the evolution of cooperation and altru-
istic communication in nature. Consider, for example, the prisoner’s dilemma: agents
provided with certain cognitive skills have typically signalling capabilities built-in. The
ER approach could evolve signalling capabilities from scratch, shedding light on the ori-
gin of communicative behaviours. Interestingly, the community is moving into this very
promising and exciting direction (see Lipson, 2007), and the first results prove that while
deceptive communication arises in a purely competitive setting, cooperative communica-
tion arises only subject to group or kin selection (see Floreano et al., 2007).

To conclude, in the eyes of the author, ER is an approach that lies in the delicate bal-
ance between theoretical investigation and real-world engineering applications. We believe
that it is profitable for both sides if knowledge circulates and is shared: for example, the
theoretical challenge of identifying the minimal conditions for self-assembly could be very
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beneficial in an engineering setup. Also, theoretical assumptions could be verified or revis-
ited upon incoming real-world evidence. Perhaps the ER approach can be combined with
other approaches, depending on the goals of the experimenter. For engineering purposes,
hybrid approaches (partly hand-coded, partly evolved) that adhere to the principles of au-
tonomous decision-making and that aim at the adaptiveness of the system might prove to
work well and to be efficient. For more theoretical questions, blending the ER philosophy
with, for example, game theory, evolutionary dynamics or complex systems theory could
release huge hidden potential and allow us to study complex phenomena at the core of
(artificial) life from a more fine-grained point of view.
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Dorigo, M. and Şahin, E. (2004). Guest editorial. Special issue: Swarm robotics. Au-
tonomous Robots, 17(2–3):111–113.
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