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Abstract

In this dissertation, we tackle two of the main open problems in swarm robotics:
design and verification. We do so by using formal methods, in particular model
checking.

Designing and developing individual-level behaviors to obtain a desired
swarm-level goal is, in general, very difficult, as it is difficult to predict and
thus design the non-linear interactions of tens or hundreds of individual robots
that result in the desired collective behavior. The most common approach to the
design of robot swarms is the bottom-up approach: in a trial-and-error process,
the designer develops and improves the behavior of the individual robots until
the desired collective behavior is obtained. This approach is not optimal: being a
non-structured approach, the quality of the obtained swarm depends completely
on the ingenuity and expertise of the designer. Moreover, the trial-and-error
process is time consuming and cannot provide guarantees on the obtained results
in terms of system correctness and properties. In this dissertation, we present
our novel contribution to the top-down design of robot swarms: property-driven
design. Property-driven design is based on the concepts of prescriptive modeling
and model checking. Using property-driven design it is possible to design robot
swarms in a systematic way, realizing systems that are “correct by design”.
We demonstrate property-driven design on two case-studies: aggregation and
foraging.

Developing techniques to analyze and verify a robot swarm is a necessary step
in order to employ swarm robotics in real-world applications. Swarm robotics
systems are particularly challenging to analyze: robot swarms can be observed
and thus analyzed at the macroscopic or microscopic level. Usually, robot
swarms are analyzed using computer simulations or rate equations. Computer
simulations are an irreplaceable tool for analyzing the behavior of a robot swarm.
However, they can only validate a small subset of the possible execution scenarios
and are impractical to exhaustively verify a collective behavior. Rate equations,
instead, are able to analyze the steady-state behavior of a robot swarm, that is, its
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long-term average behavior. However, with rate equations it is difficult to analyze
the evolution of the swarm’s behavior or any far-from-equilibrium anomalies. In
this dissertation, we explore the use of formal methods, in particular of model
checking, to analyze and verify the properties of robot swarms. Model checking
allows us to formally describe a set of desired properties of a system, in a
more powerful and precise way compared to other mathematical approaches,
and verify whether a given model of a system satisfies them. We propose two
different approaches: we develop a model of a robot swarm performing collective
decision using Bio-PEPA, which allows researchers to define a single high level
model that can then be analyzed using stochastic simulations, rate equations
and model checking; we also develop a model of a collective transport behavior
using Klaim, which allows researchers to capture both the hardware and the
behavior of the robots used.
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Chapter 1

Introduction

The history of mankind has been characterized by the development of tools:
since the invention of the stone hand axe, humans have developed aids to carry
out more and more complex tasks. Robots, one of the most advanced products
of mankind, can be considered as a very particular kind of tools. Similar to
the hand axe or the steam engine, each robot has its own purpose: welding,
painting, cleaning, etc. However, differently from the majority of tools, robots do
not simple aid humans in tackling tasks, but they replace them.

Robots now routinely substitute humans in some well-structured tasks, to the
point that 60% of tasks in the automotive industry are currently performed by
robots, a number which is predicted to raise to 80% by 2050 (Pelez and Kyriakou,
2008). In the coming years, robots will substitute humans also in situations that
require the ability to adapt and face unforeseen events and unstructured environ-
ments. Autonomous robots will perform more and more complex and delicate
tasks in fields as diverse as health care and education, where it is predicted that,
by 2050, they will perform 60% and 30% of all tasks respectively (Pelez and
Kyriakou, 2008). In the forthcoming years, we will observe the wonder of cars
built almost exclusively by robots which will autonomously carry humans to
their destinations, where they will cooperate with other robots to perform their
everyday jobs.

The ubiquity of robots and their large number will necessarily require every
robot to interact and cooperate not only with humans but also with other robots.
Robot to robot cooperation provides a pletora of opportunities: multi-robot
systems can autonomously execute multiple tasks at the same time and they
can combine their abilities to achieve better performance compared to single-
robot systems. In this dissertation, we focus on a particular kind of multi-robot
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2 CHAPTER 1. INTRODUCTION

systems: robot swarms.
Robot swarms are large groups of robots that operate without relying on any

external infrastructure and on any form of centralized control. The collective
behavior of a robot swarm is the results of the local interactions between the
robots, and between the robots and the environment in which they act. The
design of robot swarms is guided by swarm intelligence principles, which promote
the realization of systems that are fault tolerant, scalable, and flexible. The discipline
that studies robot swarms is called swarm robotics (Dorigo et al., 2014).

Swarm robotics appears to be a promising approach when different activities
must be performed concurrently, when high redundancy and the lack of a
single point of failure are desired, and when it is technically unfeasible to setup
an infrastructure to control the robots in a centralized way. Some examples
of potential applications of swarm robotics are: demining, search and rescue,
cleaning, exploration, transportation of large objects, surveillance.

Despite its many potential applications and the potential to promote the
realization of systems which are fault tolerant, scalable and flexible, swarm
robotics has not been used yet for real-world applications. A deep analysis of the
literature on swarm robotics leads us to conjecture that the main current limit
of swarm robotics is the lack of an engineering methodology. In other words, in
order to tackle real-world applications, we first need a mature swarm engineering.

Swarm engineering is the systematic application of scientific and technical
knowledge to model and specify requirements, design, realize, verify, validate,
operate and maintain a robot swarm.

We maintain that, in order to tackle real-world applications, the priority
should be given to developing a systematic approach to design robot swarms and
a formal way to verify and analyze their properties.

In this dissertation, we present some advances in the state of the art in
swarm engineering: we propose a novel approach to the design and analysis of
robot swarms based on the use of formal methods. In particular, we use model
checking, a technique that allows one to formally verify properties of a given
model, to design and analyze a robot swarm.

The design of robot swarms is challenging. Robot swarms are self-organized
systems that have a dual nature: the individual, or microscopic level, and the
collective, or macroscopic level. The individual level is the behavior displayed by
a single robot. The collective level is the behavior displayed by the swarm and it
is the result of the interaction of the individual behaviors.
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On the one hand, the dual nature of robot swarms is key in achieving fault
tolerance, scalability and flexibility. On the other hand, it is the source of difficult
design challenges. The swarm robotics engineer must think at the collective level,
but develop at the individual level: developers of robot swarms are caught between
collective-level missions, and individual-level software. In fact, missions are
expressed at the collective level, such as “monitor the perimeter of a building
for intruders” or “transport these heavy objects”, but the only controllable/pro-
grammable components of a robot swarm are the individual behaviors of the
robots. Conversely, at the individual level, collective-level missions could be
meaningless: for example, for a single robot it is impossible to monitor an entire
building at the same time or transport an object if it is too heavy to move. How-
ever, the swarm is an “immaterial” concept and thus it cannot be programmed.

Unfortunately, designing and developing the behavior of the individual robots
to obtain a desired swarm-level goal is, in general, very difficult, as it is difficult to
predict and thus design the non-linear interactions of tens or hundreds individual
robots that result in the desired collective behavior.

In system engineering, one common approach is the divide et impera1: a
complex problem is recursively divided into subproblems which are simple to
solve; the solutions of each subproblem are then combined together to obtain
the solution to the original problem. The divide et impera approach is based
on the assumption that solutions can be combined “linearly”, that is, modules
developed to solve specific subproblems interact with each other in a simple way
which is possible to predict precisely. This approach is not feasible for the design
of robot swarms: solutions for subproblems interact in a non-linear way, which
is generally difficult to predict, often resulting in a system unable to solve the
complete problem. For this reason, traditional system engineering approaches
are ineffective in swarm robotics (Wooldridge and Jennings, 1998, Banzhaf and
Pillay, 2007).

Even general design approaches for multi-robot and multi-agent systems
cannot be employed for robot swarms. The design of multi-robot and, more
in general, multi-agent systems, has been address in many research papers
(Zambonelli et al., 2001, Bordini, 2009, Goldberg and Mataric, 2001). However,
the design of robot swarms poses challenges that are not present in multi-agent
systems. Indeed, the characteristics of robot swarms, such as high number of
individuals, strong decentralization, local communication and action, are usually
regarded as characteristics that make a multi-agent system “too complex to

1divide and rule



4 CHAPTER 1. INTRODUCTION

manage effectively” (Wooldridge and Jennings, 1998).
Due to the impossibility of using design approaches taken from system

engineering or multi-robot systems, other design approaches are necessary.
The most common approach to the design of robot swarms is the bottom-up

approach: in a trial-and-error process, the designer develops and improves the
behavior of the individual robots until the desired collective behavior is obtained.
This approach is not optimal: being a non-structured approach, the quality of
the obtained swarm depends completely on the ingenuity and expertise of the
designer. Moreover, the trial-and-error process is time consuming and cannot
provide guarantees on the obtained results in terms of system correctness and
properties. Top-down approaches tackle some of these limits, but, up to now, the
developed top-down approaches are very complex and task-specific.

In this dissertation, we present our novel contribution to the top-down design
of robot swarms: property-driven design. Property-driven design is based on
the concepts of prescriptive modeling and model checking. Using property-
driven design it is possible to design robot swarms in a systematic way, realizing
systems that are “correct by design”.

Developing techniques to analyze a robot swarm is also a necessary step in
order to employ swarm robotics in real-world applications.

Any system needs to be verified and analyzed before it is used. This is partic-
ularly true for systems that interact physically with humans or the environment,
as failures and unexpected behaviors could result in damage to people or objects.
For this reason, it is necessary to formally analyze any robotics system to verify
that it satisfies properties such as safeness and reliability.

Robot swarms are particularly challenging to analyze: due to their self-
organized dual nature, robot swarms can be observed and thus analyzed at
the macroscopic or microscopic level.

The analyses performed at the two level can be significantly different: the
microscopic level allows the research to analyze in details the interactions be-
tween robots and between robots and environment. However, this level of detail
becomes an obstacle when the size of the swarm is large, as it becomes com-
putationally unfeasible to track the interactions of tens or hundreds of robots.
For this reason, very often robot swarms are analyzed at the macroscopic level,
considering only the collective behavior of the swarm.

The most common approaches to the analysis of a robot swarms is either
using computer simulations or rate equations.
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Computer simulations are irreplaceable tools for analyzing the behavior of a
robot swarm, as they allow researchers to observe both the individual behaviors
of the robots and the collective behavior of the swarm at the same time. However,
computer simulations can only validate a small subset of the possible execution
scenarios and are impractical to exhaustively verify a collective behavior. In
other words, they cannot ensure a complete coverage of the critical aspects of
the system nor the absence of anomalies.

Rate equations, instead, are able to analyze the steady-state behavior of a
robot swarm, that is, its long-term average behavior. For instance, using rate
equations it is possible to ensure that the behavior of the robot swarm converges
to a desired objective. However, with rate equations it is difficult to analyze
the evolution of the behavior of the robot swarm or any far-from-equilibrium
anomalies.

In this dissertation, we explore the use of formal methods, in particular of
model checking, to analyze and verify the properties of a robot swarm. Model
checking allows us to formally describe a set of desired properties of a system, in
a more powerful and precise way compared to other mathematical approaches,
and verify whether a given model of a system satisfies them.

In this dissertation, we propose two different approaches: we develop a model
of a robot swarm performing collective decision using Bio-PEPA, which allows
researchers to define a single high level model, that can then be analyzed using
stochastic simulations, rate equations and model checking; we also develop a
model of a collective transport behavior using Klaim, which allows researchers
to capture both the hardware and behavior of the robots used.

Contributions and related publications

In this section, we list the contributions presented in this dissertation and list the
related scientific publications.

1. We provide a precise definition of swarm robotics and its characteristics.
See Chapter 1.

• Dorigo, M., Birattari, M., and Brambilla, M. (2014). Swarm robotics.
Scholarpedia, 9(1):1463,

2. We perform an in-depth analysis of the state of the art of swarm robotics.
Our focus is on swarm robotics as an engineering field. See Chapter 2.
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• Brambilla, M., Ferrante, E., Birattari, M., and Dorigo, M. (2013). Swarm
robotics: A review from the swarm engineering perspective. Swarm
Intelligence, 7(1):1–41.

3. We present a novel top-down method for the design of robot swarms based
on prescriptive modeling and model checking. See Chapter 3.

• Brambilla, M., Pinciroli, C., Birattari, M., and Dorigo, M. (2012). Pro-
perty-driven design for swarm robotics. In Proceedings of AAMAS,
pages 139–146. International Foundation for Autonomous Agents and
Multiagent Systems (IFAAMAS).

• Brambilla, M., Dorigo, M., and Birattari, M. (2014). Property-driven
design for robot swarms: A design method based on prescriptive
modeling and model checking. ACM Transactions on Autonomous and
Adaptive Systems. Submitted for publication.

4. We present two novel ways to use model checking to analyze robot swarms.
In particular, we use Bio-PEPA and Klaim to perform a complete analysis
of two robot swarms performing collective decision-making and collective
transport. See Chapter 4.

• Massink, M., Brambilla, M., Latella, D., Dorigo, M., and Birattari, M.
(2012). Analysing robot swarm decision-making with Bio-PEPA. In
Swarm Intelligence, volume 7461 of Lecture Notes in Computer Science,
pages 25–36. Springer, Berlin, Heidelberg.

• Massink, M., Brambilla, M., Latella, D., Dorigo, M., and Birattari, M.
(2013). On the use of Bio-PEPA for modelling and analysing collective
behaviours in swarm robotics. Swarm Intelligence, 7(2–3):201–228.

• Gjondrekaj, E., Loreti, M., Pugliese, R., Tiezzi, F., Pinciroli, C., Bram-
billa, M., Birattari, M., and Dorigo, M. (2012). Towards a formal
verification methodology for collective robotic systems. In Formal Meth-
ods and Software Engineering, volume 7635 of Lecture Notes in Computer
Science, pages 54–70. Springer, Berlin, Heidelberg.

5. We analyze a collective transport behavior developed by us for the Swar-
manoid project. The behavior can be used to let a group of robots transport
an object to a goal area while simultaneously avoid obstacles. This behavior
is analyzed in Section 4.2.
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• Ferrante, E., Brambilla, M., Birattari, M., and Dorigo, M. (2010). Look
out!: Socially-mediated obstacle avoidance in collective transport. In
Proceedings of the Seventh International Conference on Swarm Intelligence
(ANTS), number 6234 in Lecture Notes in Computer Science, pages 572–
573. Springer, Berlin, Heidelberg.

• Ferrante, E., Brambilla, M., Birattari, M., and Dorigo, M. (2013). So-
cially-mediated negotiation for obstacle avoidance in collective trans-
port. In Proceedings of the International Symposium on Distributed Au-
tonomous Robotics Systems(DARS), volume 83 of Springer Tracts in Ad-
vanced Robotics Series, pages 571–583. Springer, Berlin, Heidelberg.

• Dorigo, M., Floreano, D., Gambardella, L., Mondada, F., Nolfi, S.,
Baaboura, T., Birattari, M., Bonani, M., Brambilla, M., Brutschy, A.,
Burnier, D., Campo, A., Christensen, A., Decugnière, A., Di Caro, G.,
Ducatelle, F., Ferrante, E., Förster, A., Martinez Gonzales, J., Guzzi,
J., Longchamp, V., Magnenat, S., Mathews, N., Montes de Oca, M.,
O’Grady, R., Pinciroli, C., Pini, G., Rétornaz, P., Roberts, J., Sperati, V.,
Stirling, T., Stranieri, A., Stützle, T., Trianni, V., Tuci, E., Turgut, A. E.,
and Vaussard, F. (2012). Swarmanoid: a novel concept for the study of
heterogeneous robotic swarms. IEEE Robotics & Automation Magazine,
20(4):60–71.

Other contributions:

6. We briefly present ARGoS: the first simulator expressly conceived for swarm
robotics. All the simulated experiments presented in this dissertation have
been conducted using the ARGoS simulator. See Appendix A.4.

• Pinciroli, C., Trianni, V., O’Grady, R., Pini, G., Brutschy, A., Brambilla,
M., Mathews, N., Ferrante, E., Caro, G. D., Ducatelle, F., Stirling, T.,
Gutierrez, A., Gambardella, L. M., and Dorigo, M. (2011). ARGoS: A
modular, multi-engine simulator for heterogeneous swarm robotics. In
Proceedings of the IEEE/RSJ International Conference on Intelligent Robots
and Systems (IROS), pages 5027–5034.

• Pinciroli, C., Trianni, V., OGrady, R., Pini, G., Brutschy, A., Brambilla,
M., Mathews, N., Ferrante, E., Di Caro, G., Ducatelle, F., Birattari, M.,
Gambardella, L. M., and Dorigo, M. (2012). ARGoS: A modular, paral-
lel, multi-engine simulator for multi-robot systems. Swarm Intelligence,
6(4):271–295.
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7. We present a collective behavior performing group size counting. This work
is briefly described in Section 2.1.3.

• Brambilla, M., Pinciroli, C., Birattari, M., and Dorigo, M. (2009). A
reliable distributed algorithm for group size estimation with minimal
communication requirements. In Fourteenth International Conference on
Advanced Robotics (ICAR) 2009. Proceedings on CD-ROM, paper ID 137.

8. We used evolutionary robotics to developed a robot swarm able to perform
aggregation. The developed behavior was analyzed using rate equations.
This work is not presented in this dissertation.

• Francesca, G., Brambilla, M., Trianni, V., Dorigo, M., and Birattari,
M. (2012). Analysing an evolved robotic behaviour using a biological
model of collegial decision making. In Proceedings of the 12th Inter-
national Conference on Adaptive Behavior (SAB), volume 7426 of Lecture
Notes in Computer Science, pages 381–390. Springer, Berlin, Heidelberg.

Dissertation outline

The rest of the dissertation is organized as follows.
In Chapter 2, we present the background of this dissertation. In particular, in

Section 2.1 we present the state of the art in swarm robotics, concerning design
methods, analysis methods and collective behaviors; in Section 2.2, we give an
introduction to formal methods, focusing on the tools used in this dissertation.

In Chapter 3, we present property-driven design, a design method for swarm
robotics based on prescriptive modeling and model checking. We employ
property-driven design to develop two robot swarms able to tackle aggrega-
tion and foraging.

In Chapter 4, we present two different approaches for the analysis of robot
swarms using model checking: in Section 4.1, we use Bio-PEPA to analyze a
collective decision-making behavior; in Section 4.2, we use Klaim to analyze a
collective transport behavior.

In Chapter 5, we conclude this dissertation with a summary of the main
contributions and some future directions.

Finally, in Appendix A, we describe the simulated and real-robot platforms
used in this dissertation.



Chapter 2

Background

In this chapter, we introduce the context in which the research described in this
dissertation has been carried out.

In Section 2.1, we present a review of the literature on swarm robotics. In
particular, after introducing swarm robotics, we present the literature on de-
sign methods, analysis methods and collective behaviors. We conclude with a
discussion about the current limits of swarm robotics.

In Section 2.2, we introduce the formal methods that are an essential tool
in all the novel design and analysis methods presented in this dissertation. In
particular, we introduce model checking together with the model formalism and
logic languages adopted to perform model checking.

2.1 Swarm robotics

Swarm robotics (Dorigo et al., 2014) studies how to design large groups of robots
that operate without relying on any external infrastructure and on any form
of centralized control. In a robot swarm, the collective behavior of the robots
results from local interactions between the robots and between the robots and
the environment in which they act. The absence of a centralized controller and
the great redundancy that characterize a robot swarm promote the realization of
systems that are fault tolerant, scalable and flexible.

Different definitions and characterizations of swarm robotics have been pro-
posed and adopted by Sahin (2005), Beni (2005) and Dorigo and Şahin (2004).

Swarm robotics appears to be a promising approach when different activities
must be performed concurrently, when high redundancy and the lack of a single
point of failure are desired, and when it is technically unfeasible to setup an

9
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infrastructure to control the robots in a centralized way. Examples of tasks
that could be profitably tackled using swarm robotics are demining, search and
rescue, planetary or underwater exploration, and surveillance.

Swarm robotics stems from swarm intelligence, the disciplines that studies
how simple individuals can self-organize to produce complex and fascinating
behaviors both in natural and artificial systems (Bonabeau et al., 1999, Dorigo
and Birattari, 2007).

The main source of inspiration for swarm intelligence are social animals.
Swarms of ants, colonies of bees, flock of birds and school of fish are some
examples of how simple individuals can become successful when they gather in
groups. Some examples of collective behaviors of social animals can be found in
Figure 2.1.

Desirable properties of robot swarms

The characteristics of swarm robotics encourage the realization of systems that
are fault tolerant, scalable and flexible.

Swarm robotics promotes the development of systems that are able to cope
well with the failure of one or more of their constituent robots: the loss of
individual robots does not imply the failure of the whole swarm. Fault tolerance
is enabled by the high redundancy of the swarm: the swarm does not rely on any
centralized control entity, leaders, or any individual robot playing a predefined
role.

Swarm robotics also enables the development of systems that are able to cope
well with changes in their group size: ideally, the introduction or removal of
individuals does not cause a drastic change in the performance of the swarm.
Scalability is enabled by local sensing and communication: provided that the
introduction and removal of robots does not dramatically modify the density of
the swarm, each individual robot will keep interacting with approximately the
same number of peers, those that are in its sensing and communication range.

Finally, swarm robotics promotes the development of systems that are able to
deal with a broad spectrum of environments and operating conditions. Flexibility
is enabled by the distributed and self-organized nature of a robot swarm: in a
swarm, robots dynamically allocate themselves to different tasks to match the
requirements of the specific environment and operating conditions; moreover,
robots operate on the basis of local sensing and communication and do not rely
on pre-existing infrastructure or on any form of global information.
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(a) Ants physically connect one to the other
to reach a leaf.

(b) A school of fish forms a ball to protect
from a predator.

(c) A swarm of bees protects its hive. (d) A flock of birds forms a v-formation.

Figure 2.1: Examples of collective behaviors of social animals. Sources: (a) CC BY 2.0 -
Kasi Metcalfe - http://www.flickr.com/photos/kasimetcalfe/339113868 (b) CC BY 2.0 - Adam Rifkin
- http://www.flickr.com/photos/ifindkarma/8668633683 (c) CC BY 2.0 - Max Westby - http://www.

flickr.com/photos/max_westby/1168957201 (d) CC BY 2.0 - Michael Patrick - http://www.flickr.com/
photos/michaelpatrick/6470101243

http://www.flickr.com/photos/kasimetcalfe/339113868
http://www.flickr.com/photos/ifindkarma/8668633683
http://www.flickr.com/photos/max_westby/1168957201
http://www.flickr.com/photos/max_westby/1168957201
http://www.flickr.com/photos/michaelpatrick/6470101243
http://www.flickr.com/photos/michaelpatrick/6470101243
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Potential applications of swarm robotics

The properties of robot swarms make them appealing in several potential fields
of application.

The use of robots for tackling dangerous tasks is clearly appealing as it
eliminates or reduces risks for humans. The dangerous nature of some tasks
implies a high risk of losing robots. In these cases, a solution that is fault tolerant
is necessary, making dangerous tasks an ideal field of application for robot
swarms. Example of dangerous tasks that could be tackled using robot swarms
are demining, search and rescue, and toxic cleaning.

Other potential applications for robot swarms are those in which it is difficult
or even impossible to estimate in advance the resources needed to accomplish
the task. For instance, allocating resources to manage an oil leak can be very
hard because it is often difficult to estimate the oil output and to foresee its
development. In these cases, it is necessary to adopt a solution that is scalable
and flexible. A robot swarm could be an appealing solution: robots can be added
or removed in time to provide the appropriate amount of resources and meet
the requirements of the specific task. Example of tasks that might require an a
priori unknown amount of resources are search and rescue, transportation of
large objects, tracking, and cleaning.

Another potential field of application for swarm robotics are tasks that have
to be accomplished in large or unstructured environments, in which there is no
available infrastructure that can be used to control the robots, such as no available
communication network or global localization system. Robot swarms could
be employed for such applications because they are able to act autonomously
without the need of any infrastructure or any form of external coordination.
Examples of tasks in unstructured and large environments are planetary or
underwater exploration, surveillance, demining, cleaning, and search and rescue.

Some environments might change rapidly over time. For instance, in a
post earthquake situation, buildings might collapse changing the layout of the
environment and creating new hazards. In these cases, it is necessary to adopt
solutions that are flexible and can react to events. Swarm robotics could be used
to develop flexible systems that can adapt to new operating conditions. Example
of tasks in environments that change over time are patrolling, disaster recovery,
search and rescue, cleaning.

We believe that, to develop robot swarms able to cope with the practical chal-
lenge of real-world applications, it is necessary to develop a swarm engineering.
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Swarm engineering

Swarm engineering is the systematic application of scientific and technical knowl-
edge to model and specify requirements, design, realize, verify, validate, operate
and maintain a swarm intelligence system. Swarm engineering as a term was
introduced by Kazadi (2000), who recognized that the focus of swarm intelli-
gence research is moving towards “the design of predictable, controllable swarms
with well-defined global goals and provable minimal conditions”. He also adds that “to
the swarm engineer, the important points in the design of a swarm are that the swarm
will do precisely what it is designed to do, and that it will do so reliably and on time”
(Kazadi, 2000). However, the first work to formally introduce swarm engineering
was published only five years later, with the seminal paper by Winfield et al.
(2004).

Swarm engineering is still in a very early stage and its development is not
homogeneous. On the one hand, some topics, such as design and analysis, have
already received attention from the swarm robotics community and several ap-
proaches have been proposed. For these topics, our goal is to present and classify
the existing works and identify the current limits. On the other hand, other top-
ics, such as requirements analysis, maintenance and performance measurement,
have received almost no attention. In Section 2.1.4, we propose a discussion of
these topics with the hope to foster new ideas and promote their development.

The outline of this section

In Section 2.1.1, we discuss methods to design robot swarms. In Section 2.1.2, we
discuss methods to analyze robot swarms. In Section 2.1.3, we discuss some of the
possible collective behaviors a robot swarm can exhibit. By collective behaviors we
mean behaviors of the swarm considered as a whole. Such collective behaviors
can be used as building blocks in applications, such as foraging or construction
(see also Section 2.1.4).

In Section 2.1.4, we conclude with a discussion of the open problems in swarm
robotics and swarm engineering.

2.1.1 Design

In this section, we classify the available methods to design robot swarms by
dividing them in manual design methods and automatic design methods.

The difference between these two classes of methods is in the role of the
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human designer: in the first class, manual design methods, the human designer
designs and develops the robot swarms relying on his ingenuity and expertise;
in the second class, automatic design methods, the human designers specifies
the setup of a computationally intensive process that automatically develops the
desired robot swarm.

In the following, we discuss manual design methods and automatic design
methods by describing the general principles and the relative advantages and
disadvantages.

Manual design methods

In swarm robotics, the most commonly used design method consists in develop-
ing, by hand, the individual behaviors of the robots which results in the collective
behavior of the swarm.

It is possible to manually develop a robot swarm in two ways: bottom-up and
top-down. In the bottom-up approach, the developer, in a trial-and-error iterative
process, implements, analyzes and improves the behavior of the individual robots
until the desired collective behavior is obtained. In the top-down approach,
instead, the developer performs an analysis of the desired collective behavior
and then tries to derive the behavior of the individual robots.

Bottom-up approaches have as their major limit that the quality of the ob-
tained robot swarm completely depends on the ingenuity and expertise of the
designer, as the trial-and-error process does not provide any guidance to obtain
a quality result. Despite this limit, bottom-up approaches are the most used
for the design of robot swarms, mainly because, up to now, there is no general
top-down approach.

Bottom-up. Generally, in swarm robotics, the behavior of an individual robot is
reactive: a robot takes decisions only on the basis of its sensory inputs and/or
its internal memory without planning its actions (Brooks, 1986). This allows
developer to use probabilistic finite state machines (PFSMs).

In the context of the PFSMs used in robotics, states represent possible actions
of the robot whereas transitions represent conditions on the sensory inputs of the
robots; the current state of the PFSM represents the current action performed by
the robot. Two states are connected if the two related actions can be performed in
a sequence. For example, a robot searching for an object and grabbing it can be
represented by the state search linked to the state grab by the transition object
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found. Transitions in PFSMs can be deterministic, as in the previous example, or
probabilistic, if a transition has a certain probability to be selected. The transition
probability between states can be fixed or can change over time.

The main advantages of using PFSMs are: i) actions and conditions can be eas-
ily combined in a structured way; ii) PFMSs can be used recursively, generating
behaviors composed of sub-behaviors; iii) PFSMs are easy to read, understand
and analyze; iv) PFSMs modularity promotes the reuse of the developed behav-
iors.

PFSMs have been used to develop several collective behaviors, such as ag-
gregation (Soysal and Şahin, 2005), chain formation (Nouyan et al., 2008) and
task-allocation (Liu et al., 2007, Labella et al., 2006). These behaviors will be
explained in more details in Section 2.1.3.

Another manual bottom-up approach is virtual physics. In virtual physics,
each robot is considered as a virtual particle that exerts virtual forces on other
robots.

One of the first works using virtual physics-based design was by Khatib
(1986), who used the concept of artificial potential field. In this and in some
following works, the robots are subject to repulsive virtual forces originating
from the environment: the goal is associated with an attractive force and the
obstacles with repulsive forces. Later, Spears et al. (2004) proposed a complete
virtual physics-based design method called physicomimetics framework.

The main advantages of virtual physics-based design methods are: i) a single
mathematical rule smoothly translates the entire sensory inputs space into the
actuators output space without the need for multiple rules or behaviors; ii) the
obtained behaviors can be combined using vectorial operations; iii) some proper-
ties (such as fault tolerance, stability, etc.) can be proved using theoretical tools
from physics, control theory or graph theory (Gazi and Passino, 2002).

The virtual physics-based method is often used to design collective behaviors
that require a robot formation. Examples of such behaviors are pattern formation,
collective exploration and coordinated motion (see Section 2.1.1).

Top-down. An alternative approach for the manual design of robot swarms is the
top-down approach. In the top-down approach, the developer designs first the
collective behavior of the swarm and then derives the behavior of the individual
robots. This process is very challenging, as there is no proven methodology to
derive individual behaviors from a collective behaviors. Below we present some
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top-down design approaches that tackle this challenge.
Bachrach et al. (2010) proposed a scripting language called Protoswarm based

on the amorphous computational medium (Beal, 2004). The amorphous computa-
tional medium considers the environment as filled with individuals able both to
perform computations and to communicate with their neighbors. Using Proto-
swarm it is possible to define behaviors for an individual by writing scripts at the
collective level. Several collective-level primitives exist in the scripting language,
both related to space and time. These primitives are automatically translated into
individual behaviors by exploiting the underlying local communication. This
language, even though it cannot be considered a standalone design method, can
significantly ease the design process thanks to its collective-level primitives. The
use of the amorphous computational medium is particularly suited for sensor
networks, where the great number of individuals guarantees that the system is
able to cover the entire environment with a single connected communication
network.

Kazadi et al. (2009) developed a top-down design approach based on Hamil-
tonian vector fields called the Hamiltonian method: starting from a mathematical
description of a collective behavior, the method automatically derives micro-
scopic rules that minimize or maximize a selected numerical value (e.g., the
virtual potential energy of a particular state of the swarm). The main draw-
back of the Hamiltonian method is that it deals only with spatially-organizing
behaviors, such as pattern formation.

Berman et al. (2009) proposed a top-down approach for the design of a task
allocation behavior. The authors describe the system as a Markov chain in which
states represent tasks and edges represent the possibility for a robot to move
from a task to another. Using a stochastic optimization method, it is possible to
derive the probabilities that governs how robots change task in order to minimize
the time needed to converge to the desired allocation. This approach is specific
for task allocation and it has not been extended to other collective behaviors.

Hamann and Wörn (2008) proposed a method inspired by statistical physics.
The authors use Langevin and Fokker-Planck equations to derive the individual
behaviors of the robots from the collective behavior of the swarm. A similar
approach was used also by Berman et al. (2011a), who used a set of advection-
diffusion-reaction partial differential equations to derive the individual behaviors
of a swarm performing task allocation. Both methods are based on advanced
mathematical techniques and on a detailed model of the interactions of the
individual robots, which is usually difficult to realize. Moreover, such methods
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rely on ordinary or partial differential equations, which provide reliable results
only if it is assumed that the swarm size tends to infinite. In real applications
of swarm robotics this is very often not the case, since typically robot swarms
are composed of no more than a hundred robots and often of just a few tens of
robots (Brambilla et al., 2013).

In this dissertation, we propose property-driven design, a novel method for
the top-down design of robot swarms. See Chapter 3 for more details.

Automatic design methods

The use of automatic design methods allows the automatic generation of behav-
iors without the explicit intervention of the developer, avoiding altogether the
individual/collective problem.

In the following, we present some works on evolutionary robotics, reinforce-
ment learning and other automatic design methods for swarm robotics.

Evolutionary Robotics. Evolutionary robotics (Nolfi and Floreano, 2000) is an
automatic design method that applies evolutionary computation techniques
(Goldberg, 1989, Holland, 1975) to single and multi-robot systems. Evolutionary
computation is inspired by the Darwinian principle of natural selection and
evolution. As such, it is usually presented using a vocabulary borrowed from
biology.

Within swarm robotics, evolutionary robotics has been used in many proof-
of-concept test-cases in order to test the effectiveness of the method (Baldassarre
et al., 2007, Groß and Dorigo, 2008a, Sperati et al., 2008) or as a tool to answer
some more fundamental scientific questions (Trianni and Dorigo, 2006, Tuci et al.,
2004, Pini and Tuci, 2008, Ampatzis et al., 2008). In this dissertation, we analyze
evolutionary robotics from an engineering perspective, that is, we describe its
strengths and weaknesses as a design method.

The evolutionary robotics method can be described by the following process.
At the beginning, a population of individual behaviors is generated at random.
In each iteration, a number of experiments for each individual behavior is ex-
ecuted. In general, the same individual behavior is used by all the robots in
the experiment. In each experiment, a fitness function is used to evaluate the
collective behavior of the swarm resulting from that individual behavior. At this
point, a selection of the highest scoring individual behaviors are modified by
genetic operators, such as cross-over and mutation, and used for the subsequent
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iterations. See Waibel et al. (2009) for a taxonomy of fitness functions in swarm
robotics.

In evolutionary robotics, the evolutionary method is used to find the parame-
ters of an artificial neural network. Although several types of neural networks
exist in the literature, they can be roughly categorized in two main classes: feed
forward neural networks (Fine, 1999) and recurrent neural networks (Beer and
Gallagher, 1992, Elman, 1990). Feed-forward neural networks are used for indi-
vidual behaviors that require no memory of previous observations and actions.
Conversely, recurrent neural networks are used for individual behaviors that
require a memory of previously seen input patterns (Ampatzis, 2008).

Evolutionary robotics is a very powerful approach for the design of robot
swarms, as it solves the problem of identifying the behavior of the individual
robots that results in the desired collective behavior. Nonetheless, evolutionary
robotics has many limitations, some of which are: i) evolution is a computation-
ally intensive process, that does not give any guarantees on its convergence to
a solution; ii) neural networks are black-box and it is often very difficult to un-
derstand their behavior; iii) the high representational power of neural networks
results in overfitting, that is, the obtain behaviors do not work properly once
instantiated on real robots; iv) from an engineering point of view, the complexity
of behaviors currently synthesized through artificial evolution is relatively low
and the same results may often be achieved by designing the behavior by hand.

Reinforcement learning. Reinforcement learning has not been extensively stud-
ied in swarm robotics as its application presents several issues.

The main issue is the decomposition of global rewards into individual re-
wards (Wolpert and Tumer, 1999). In fact, usually the performance is evaluated
at the collective level, but the behaviors to reward lay at the individual level.
This challenging problem is called spatial credit assignment. Matarić (1998, 1997)
addressed this issue by performing experiments with few robots (2 to 4), using
communication or signaling to share the reward.

Additionally to the spatial credit assignment, there are also other issues: i) The
size of the state space faced in RL problems is huge due to the complexity of the
robot-to-robot interactions. ii) The environment perception is incomplete. This makes
the search of the behavior even more complex (Kaelbling et al., 1998). iii) The
environment, as seen from the individual robot perspective, is non-stationary due
to the fact that each robot action is influenced by the actions performed by other
robots in the same environment or by changes in the environment itself.
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Panait and Luke (2005) conducted an extensive review of the state of the art
of automatic design methods for multi-agent and multi-robot systems.

Other automatic design methods. In this section, we outline other works on au-
tomatic design that do not belong to evolutionary robotics or reinforcement
learning.

In many works, the design of the robot swarm is not completely automatic,
as the authors design an individual behavior manually and uses an optimization
algorithm to assign some of its parameters. For example, this is the case of
ALLIANCE (Parker, 1996), a multi-robot architecture that focuses on the achieve-
ment of fault tolerant, robust and adaptive task allocation in a team of robots.
Another example can be found in the work of Li et al. (2004), who proposed an
algorithm that enables on-line learning of some parameters of the robot behav-
iors in order to achieve diversity and specialization. The learning algorithm is
specifically thought for their application: a stick pulling task.

Other approaches try to overcome the limits of evolutionary robotics by either
using alternative optimization algorithms or alternative controller architectures.
For example, Pugh and Martinoli (2007) compared the particle swarm optimiza-
tion against a genetic algorithm for on-line learning parameters for a swarm of
robots performing obstacle avoidance. They also defined metrics to measure
diversity and specialization, and concluded that particle swarm organization is
able to achieve a higher degree of diversity in the swarm. Ferrante et al. (2013b)
explored an approach based on grammar evolution to tackle a foraging case
study, showing how grammar evolution can promote the evolution of behaviors
which are easy to understand and reuse.

Finally, in Francesca et al. (2014) we proposed a new approach to the problem
of automatic design: a probabilistic finite state machine is automatically gener-
ated by an optimization algorithm combining pre-defined simple behaviors and
conditions. A more detailed discussion of how this work can be extended using
formal methods is presented in Chapter 5.

2.1.2 Analysis

Analysis is an essential phase in an engineering process. In the analysis phase, the
swarm engineer studies whether a general property of the designed collective
behavior holds or not. The ultimate goal is to verify that a swarm of robots
exhibits the desired collective behavior with the desired properties. Properties of
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the collective behaviors are usually analyzed by means of models.
Robot swarms can be modeled at two different levels: the individual level, or

microscopic level, that models the characteristics of the single individuals and the
interactions among them; the collective level, or macroscopic level, that models
the characteristics of the swarm as a whole. The development of models for
analyzing robot swarms at both levels of abstraction is still a subject of study and
research. In fact, modeling both the microscopic and the macroscopic level and
their interaction is very difficult due to the nature of self-organized systems (Ab-
bott, 2006). As a consequence, the vast majority of modeling techniques that are
used nowadays focus on one level at a time.

The main analysis technique used in this dissertation is model checking
applied to Markov chains. For the sake of completeness, in this section, we
present some analysis approaches that used Markov chains and model checking,
but we postpone a full discussion on this techniques to Section 2.2.1.

We classify the literature on analysis according to whether the main concern
is to capture the microscopic or the macroscopic aspects. We conclude with an
overview of how the analysis with real robots is conducted.

Microscopic models

Microscopic models focus on the behavior and state of each robot individually,
describing both robot-to-robot and robot-to-environment interactions. This level
of detail allows us to analyze a robot swarm thoroughly.

The level of detail considered in microscopic models can vary greatly: sim-
plest models consider the robots as point-masses; intermediate-complexity mod-
els consider 2D worlds with kinematic physics; more complex models consider
3D worlds with dynamic physics where the details of each sensor and actua-
tor are modeled. For a complete analysis of the different levels of abstraction
see Friedmann (2010).

As said, microscopic models give us a very detailed view of a swarm. How-
ever, this high level of detail is also the source of the main issue with microscopic
models: limited scalability. In order to describe the behavior of a swarm it is
necessary to replicate one description of a single individual by the number of
individuals in the swarm. This results in a model with a large number of com-
ponents, which is computationally heavy to treat. For this reason, microscopic
models are usually analyzed via computer simulation.

Simulations are among the most used tools to analyze robot swarms. The
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possibility to simulate in details robot swarms comes at a cost: performing
a complete analysis of the robot swarm becomes virtually impossible, as it is
impossible to analyze all possible executions of a system. For this reason, it might
happen that some rarely occurring problems are not found using simulations.

Simulators employed in swarm robotics have many characteristics in common
with simulators employed to study other mobile robotics systems. However,
general-purposes robotics simulators usually do not cope well with large number
of robots, as scalability is not their main concern. Vaughan (2008) proposed a
benchmark to study scalability in multi-robot simulators and applied it to the
Stage simulator. In Pinciroli et al. (2012), we developed a simulator for swarm
robotics by focusing explicitly on the scalability issue. The developed simulator
was able to simulate 105 robots in real time. For a survey of various simulation
platforms in robotics see Kramer and Scheutz (2007).

Only few authors have focused on microscopic models that do not involve
simulations. A recent example is the work of Dixon et al. (2011), who first
modeled the behavior of the individual robots as a Markov chain and then
modeled the behavior of the swarm as the and-composition of individual-level
models. They finally applied complete model checking to this model by using
linear temporal logic to define properties of individual robots and of the swarm.
This approach is not scalable, as the number of states of the model increases
exponentially with the number of robots preventing the possibility to analyze
swarms larger than a few individuals. Furthermore, linear temporal logic does
not allow for the probabilistic quantification of properties, which is an important
feature to analyze stochastic systems such as robot swarms. In Section 2.2.2, we
present the stochastic temporal logic used in this dissertation.

In Gjondrekaj et al. (2012), we analyzed a collective transport collective behav-
ior at the microscopic level. In this work, we modeled the hardware components
of the robots to understand in details their interactions with each other and
with the other robots. This approach suffers from the same scalability limits as
the one presented by Dixon et al. (2011): the model is too detailed to analyze
a large robot swarm. However, in this case we focus on collective transport, a
task involving a limited number of robots; moreover we employ statistical model
checking, which allows us to partially overcome the scalability issues. More
details can be found in Section 4.2.
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Macroscopic models

Macroscopic models consider robot swarms as a whole. The individual robots
of the swarm are not taken into account, in favor of a description of the swarm
at a higher level. Macroscopic models are the most commonly used models for
the analysis of robot swarms.

In this section, we provide a broad overview of the main contributions in
this area. We classify works on macroscopic modeling into four categories. In
the first category, we consider works resorting to rate or differential equations.
In the second category, we consider works employing Langevin and Fokker-
Plank equations. In the third category, we present works where classical control
and stability theory are used to prove properties of a robot swarm. In the last
category, we consider other approaches.

Rate and differential equations. Rate equations are ordinary differential equa-
tions (ODE) which are used to describe the time evolution of the behavior of
the robot swarm. The analysis performed using rate equations is also known
as fluid flow analysis (Zarzhitsky et al., 2005) or steady-state analysis (Lerman
et al., 2001).

The macroscopic model used is usually derived from a model of the behavior
of individual robots, such as the probabilistic finite state machine used for the
design of such behavior. More in details:

i) First, a set of variables is defined. Usually, one variable is defined for each
state of the individual-level probabilistic finite state machine. These variables
are used to track the proportion of robots that are in the corresponding states.

ii) Second, for each variable, a rate equation is defined. This equation describes
the instantaneous incoming and outgoing flow of robots to the state to which
the variable is associate. This flow is given typically as a function of the
number of robots in the preceding and following states. The rate equation
contains a set of parameters, at least one for each input and output transition
of the corresponding state. Numerically, these parameters can be derived
either from the description of the system or empirically.

The rate equations method has been used to model many robot swarms. In their
seminal work, Martinoli et al. (1999) used rate equations to model a clustering
behavior. Lerman et al. (2001) and Martinoli et al. (2004) used rate equations to
model a stick pulling experiment, in which two robots need to cooperate in order
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to pull sticks out of their holes. Lerman and Galstyan (2002) modeled foraging
under the effect of interference. In this case, the authors were able to model
the individual performance in foraging as a decreasing function of group size.
Trianni et al. (2002) used rate equations to model a chain formation behavior and
an aggregation behavior, implemented using probabilistic finite state machines.
Campo and Dorigo (2007) modeled the collective behavior of robots performing
foraging in an environment containing more than one food source. Winfield
et al. (2008) used rate equations to model a swarm of robots whose goal is to stay
together while avoiding collisions. Liu and Winfield (2010) used rate equations
to model foraging involving the collection of energy units. Finally, Pinciroli
et al. (2013) used rate equations to model an aggregation collective behavior. In
this work a flying robot can actively control the number of robots aggregating
beneath it.

Rate equations are a very powerful technique to analyze a robot swarm.
However, they suffer from some limitations:

• in the general case, robot positions in space are not explicitly modeled and
actions are assumed to have all the same duration. This hinders the analysis
of systems that are strongly characterized by spatial or temporal aspects.
Task-specific solutions to this problem have been proposed (Galstyan et al.,
2005);

• rate equation can only describe the steady-state behavior of the swarm, not
its far-from-convergence behavior;

• the reliability of the obtained results depends on the size of the swarm
considered, when swarms composed of less than hundreds or thousands
individuals are considered, the results are in general poor.

Langevin and Fokker-Plank equations A recent advancement in macroscopic
modeling based on differential equations is due to Hamann and Wörn (2008),
who introduced the Langevin and Fokker-Plank equations, both borrowed from
the statistical physics literature, to the swarm robotics community.

The Langevin equation is a stochastic differential equation that describe the
motion of a particle in a fluid. The Langevin equation can be used to define
a “mesoscopic” model (intermediate level between micro and macro). In fact,
the motion of the particle is modeled using two components: a deterministic
component, that represents the microscopic laws of motion of that particle, and
a stochastic component, that represents the interaction of the particle with the
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environment (in this case the ensemble of particles composing the fluid). In the
swarm robotics context, the deterministic component of the Langevin equation
models the deterministic motion of the robot controlled by its individual behavior,
whereas the stochastic part models the interaction of the robot with the other
robots, considered as a flow, and with the environment.

From the Langevin equation it is possible to derive the Fokker-Plank equation.
The Fokker-Plank equation can be used to describe the dynamics of the entire
swarm. It models the time-evolution of the probability density function that
describes the state, such as the position or the velocity, of the all robots in the
environment. The derivation of the Fokker-Plank equation starting from the
Langevin equation is possible using tools of statistical mechanics plus some
problem-dependent intuition.

Hamann and Wörn (2008) applied this modeling method to analyze coordi-
nated motion, aggregation and foraging. Recently, the authors modeled aggrega-
tion in presence of a temperature gradient in the environment, and provided a
comparison with another model called Stock & Flow (Schmickl et al., 2009).

A similar approach was adopted also by Berman et al. (2009), who used a
set of advection-diffusion-reaction partial differential equations to derive the
individual behaviors of a swarm performing task allocation. In Berman et al.
(2011c), this approach is applied to an area coverage behavior. Dantu et al.
(2012) compared the results obtained in this work with those obtained from a
simulation of the same behavior. The goal of the authors was to understand the
effects of noise and errors on the collective behavior.

Another interesting study on the use of the Fokker-Plank equation was done
by Prorok et al. (2011). In their work, the authors compared four different models
of an area coverage behavior. They did it by measuring the area covered by the
robots. Each model is characterized by being microscopic or macroscopic, and
spatial or non-spatial. The predictions obtained from the models are compared
with the results of both simulated and real-robot experiments. The authors
showed that predictions of the spatial and non-spatial models differ for short
time spans, for which the results of spatial models are more accurate, but are
very similar for long time spans.

The Fokker-Plank equation approach has the advantage that it can be used, in
principle, to model any swarm robotics collective behavior. There are, however,
some limits: i) the Fokker-Plank equation is difficult to be solved analytically and
sometimes requires computationally demanding numerical algorithms; ii) com-
munication aspects, at present, are very difficult to model; iii) similar to rate
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equations, to obtain accurate results, only large swarms can be considered; iv) the
development of the Langevin and Fokker-Plank equations is very difficult, as
it is usually difficult to model in a precise mathematical way the individual-to-
individual and individual-to-swarm interactions.

Classical control and stability theory. Some works use classical control and sta-
bility theory to prove properties of the swarm. Liu et al. (2003) and Gazi and
Passino (2005) modeled a swarm of agents in a one-dimensional space using
discrete-time discrete-event dynamical systems. Liu and Passino (2004) and Gazi
and Passino (2004b) used Lyapunov stability theory to prove that the behavior
studied was able to let a swarm achieve coherent social foraging in presence of
noise. Similarly, Gazi and Passino (2003, 2004a) proved that, in specific condi-
tions, a swarm of agents aggregates in one point of the environment. Schwager
et al. (2011) modeled a swarm of communicating robots as a linear, discrete-time
dynamical system. The authors then used their model and Lyapunov stability
theory to study how different communication topologies affect the stability of
the system. Finally, Hsieh et al. (2008) used delay differential equations to model
task-allocation (agents allocating and re-allocating to different physical sites),
proving the stability of the reached configuration. In the same work, the authors
also proposed a method to compute the optimal transition matrix in order to
obtain a swarm that reaches the desired configuration.

All these modeling methods have the advantage to be based on strong mathe-
matical formulations. However, the main problem with these methods is that they
usually ignore characterizing aspects of swarm robotics, such as asynchronicity,
stochasticity and the absence of global information.

Other modeling approaches. In the third and final category we consider works
in modeling that resort to other mathematical frameworks.

Soysal and Şahin (2007) modeled aggregation using Markov chains and vali-
dated the prediction using simulation.

The work of Turgut et al. (2008b) represents one of the first modeling attempts
to bridge studies of flocking within physics with studies of flocking within
robotics. In their study, the authors modeled alignment in flocking. The model
shows that there is a phase transition from ordered flocking to non-ordered
flocking corresponding to a critical value of noise in the sensor used to perceive
the heading of other robots. The results were validated using simulation.
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Correll (2008) used a population dynamics model to find the parameters used
in two task-allocation behaviors. Using the model and an optimization algorithm,
the authors could estimate the parameters that lead to the optimal distribution
of robots.

Mathews et al. (2010) modeled a problem in which a flying robot selects one
mobile robot within a group to establish a communication channel with it. To
model the swarm, the authors used the theory of branching processes (Kendall,
1966).

Hamann (2012) developed two simple models for robot swarms. In the first,
the performance of a generic robot swarm is explained using the interaction
between cooperation and interference. In the second, the consensus achievement
behavior is studied using a simple probabilistic model based on the urn problem.

Konur et al. (2012) analyzed a robot swarm by using model checking. In
particular, they developed a macroscopic Markov chain model of a robot swarm
performing foraging and subsequently analyzed its properties using model
checking. For more details about model checking, which is central in this
dissertation, see Section 2.2.3.

In Massink et al. (2013), we introduced the use of Bio-PEPA to analyze consen-
sus achievement in a robot swarm. Bio-PEPA is a high level modeling language.
From a description of a system formulated in Bio-PEPA, one can automatically
derive different models apt to perform stochastic simulation, fluid flow (ODE)
analysis, and model checking. These models are guaranteed to be consistent.
This work is presented in more details in Section 4.1.

Real-robot analysis

The ultimate goal of swarm robotics is to produce swarms of real robots. Despite
the amount of sophisticate analysis methods, some properties of these swarms
cannot be reliably assesses neither with mathematical models nor with simula-
tions. In fact, it is practically unfeasible to simulate all the aspects of reality (Frigg
and Hartmann, 2012, Brooks, 1990). Experiments with real robots help to test
the robustness of collective behaviors against noisy sensors and actuators. The
transfer from simulation to real robots is particularly relevant in complex systems
such as swarm robotics: small differences between simulations and reality could
lead to widely diverging behaviors.

It must be noted that in all real-robot experiments presented in the analyzed
literature, the experiments are performed in controlled environments. By con-
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trolled environments we mean artificial arenas in which most conditions—e.g.,
light intensity, radio interference and floor smoothness—can be controlled by the
experimenter. This is often very far from the scenarios in which robot swarms
are supposed to operate. For this reason, real-robot experiments should not be
considered as a way to validate collective behaviors for their use in real-world
applications, but rather as a way to test them against realistic noise patterns in
sensors and actuators.

In Section 2.1.3, we present more than sixty publications dealing with col-
lective behaviors in the swarm robotics field. Slightly more than half of these
publications presented results obtained only through simulations or models. We
believe that the reason behind this choice is that, in general, it is easier, faster and
safer to perform experiments using models or simulations than using robots.

In the papers that included experiments with real robots, the scope of the
use of the robots can be divided in two categories: proof-of-concept experiments
and extensive experiments. The first category includes slightly more than half
of the analyzed works that involve real-robot experiments. In these works,
few runs (typically one) of an experiment are performed with real robots. The
aim of real-robot experiments within these works is to show that the proposed
collective behavior is realizable. Examples of this kind of experiment can be
found in the works by Payton et al. (2001) and Spears et al. (2004). In the
other category, instead, several runs are executed and data is gathered to be
analyzed for comparison with simulated runs or to show properties of the
swarm. Examples of this kind of experiments can be found in the works by
Çelikkanat and Şahin (2010) and O’Grady et al. (2010).

2.1.3 Collective behaviors

In this section, we present a review of the main collective behaviors studied
in the swarm robotics literature. These collective behaviors are basic swarm
behaviors that could be combined to tackle complex real-world applications as,
for example, foraging or construction. We classify these collective behaviors
into four main categories: spatially-organizing behaviors, navigation behaviors,
collective decision-making and other collective behaviors.

In the first category, spatially-organizing behaviors, we consider behaviors
that focus on how to organize and distribute robots and objects in space. In the
second category, navigation behaviors, we consider behaviors that focus on how
to organize and coordinate the movements of a swarm of robots. In the third
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category, collective decision-making, we consider behaviors that focus on letting a
group of robots agree on a common decision or allocate among different parallel
tasks. In the last category, other collective behaviors, we consider behaviors that
do not fall into any of the categories mentioned above.

For each category, we give a brief description of the collective behavior, its
source of inspiration, the most common used approaches and the most significant
available results.

Spatially-organizing behaviors

In this section, we describe collective behaviors that focus on how to organize and
distribute robots and objects in space. In the following, we present works on ag-
gregation, pattern formation, chain formation, self-assembly and morphogenesis,
and object clustering.

Aggregation. The goal of aggregation is to group all the robots of a swarm in
a region of the environment. Despite being an apparently simple collective
behavior, aggregation is a very useful building block, as it allows a swarm of
robots to get sufficiently close one another so that they can interact.

Aggregation is a very common behavior in nature. For example, aggregation
can be observed in bacteria, cockroaches, bees, fish and penguins (Camazine
et al., 2001). Other examples of natural systems performing aggregation have
been described by Grünbaum and Okubo (1994), Breder Jr (1954), Jeanson et al.
(2005), Amé et al. (2006).

The most common design approach used to obtain aggregation is based on
probabilistic finite state machines: the robots explore an environment and, when
they find other robots, they decide stochastically whether to join or leave the
aggregate. In this approach, a stochastic component is often used in order to
promote the formation of a single aggregate. Other studies focus on the use of
evolutionary robotics to obtain aggregation.

Garnier et al. (2005) developed a robot swarm to replicate the behavior ob-
served in cockroaches by Jeanson et al. (2005). The robots are able to collectively
aggregate in a circular arena using a PFSM approach.

Another example of an aggregation behavior based on a PFSM was developed
by Soysal and Şahin (2005, 2007). In their work, a robot can be in one of three
states: the repel state, in which the robot tends to get away from other robots;
the approach state, in which the robot tends to get closer to other robots; and the
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wait state, in which the robot stands still. Soysal and Şahin were able to achieve
both moving and static aggregation behaviors by changing the parameters of the
collective behavior.

An example of aggregation obtained with artificial evolution was developed
by Trianni et al. (2003). The authors obtained two sets of parameters for a neural
network achieving both moving and static aggregates.

Soysal et al. (2007) presented some rules of thumb for obtaining aggregation
behaviors through artificial evolution. Moreover, they proposed a comparison
between the probabilistic finite state machine approach by Soysal and Şahin
(2005) and the artificial evolution approach by Bahçeci and Şahin (2005).

Pattern formation. Pattern formation aims at deploying robots in space in a reg-
ular and repetitive manner. Robots usually need to keep specific a distance
between each other in order to create a desired pattern.

Pattern formation can be found both in biology and in physics. Some biologi-
cal examples are the spatial disposition of bacterial colonies and the chromatic
patterns on some animal’s fur (Meinhardt, 1982). Some physics examples are
molecules distribution and crystal formation (Langer, 1980), and Bénard cells
(Getling, 1998).

The most common way to develop pattern formation behaviors in robot
swarms is to use virtual physics-based design. Virtual physics-based design uses
virtual forces to coordinate the movements of robots.

Bahçeci et al. (2003) presented a review of works on pattern formation in
which they analyzed centralized and decentralized behaviors. Another review
on the topic has been published in 2009 by Varghese and McKee.

Spears et al. (2004) developed a collective behavior for pattern formation that
is one of the first applications of virtual physics-based design. In their work, they
use the virtual forces to form an hexagonal lattice. In the same work, Spears et al.
showed that, by creating two groups of robots with different attraction/repulsion
thresholds, it is also possible to obtain a square lattice. More details can be found
in a subsequent work (Spears and Spears, 2012).

Shucker and Bennett (2007) presented a behavior in which robots interact
via virtual springs. These virtual springs are used by a robot to compute attrac-
tion/repulsion virtual forces. Differently from Spears et al.’s work, in this work,
the robots can interact in different ways (full connectivity, first neighbors, N-
nearest, . . . ). Each type of interaction has different characteristics and gives rise
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to different patterns. Additional theoretical work is presented in a subsequent
paper (Shucker et al., 2008).

Flocchini et al. (2008) focused on a theoretical analysis of pattern formation.
The authors were able to formally prove that with a robot swarm some patterns
are achievable only with some kind of global knowledge such as a common
orientation given by a compass.

Chain formation. In the chain formation behavior, robots have to position them-
selves in order to connect two points. The chain that they form can then be used
as a guide for navigation.

The chain formation behavior takes its inspiration from foraging ants.
Deneubourg et al. (1990) studied and modeled the behavior of Argentine ants,
which form chains of individuals connecting their nest with foraging areas.

Chains of robots can be obtained in multiple ways: the most used design
approaches are probabilistic finite state machines, virtual physics-based design
and artificial evolution.

Nouyan et al. (2008, 2009) developed a behavior, based on probabilistic fi-
nite state machines, in which the robots have two different exchangeable roles:
explorer and chain member. In the explorer role, the robots are searching for
chain members or for the goal area. When they find either a chain member or
the goal, they switch to the chain member role and stop. Chain members can
become explorer again according to a probability that increases over time if no
other robot is perceived. Different configurations and approaches are analyzed
and presented.

Maxim et al. (2009) used virtual physics-based design to form chains of robots.
Virtual forces are used to keep a specific distance between robots and between a
robot and the walls of the environment. The developed behavior creates chains
that are strongly based on the shape of the environment, which is assumed to be
composed of narrow corridors.

Sperati et al. (2011) used artificial evolution to obtain a chain formation behav-
ior. In their work, the robots, by using communication through colored LEDs, are
able to follow each other forming a double chain between two designated areas.
Differently from other chain formation behaviors, in this work the obtained chain
is composed of moving robots.
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Self-assembly and morphogenesis. In robotics, self-assembly is the process by
which robots physically connect to each other. Self-assembly can be used for
different purposes. For example, to increase stability when navigating on rough
terrains or to increase the pulling power of the robots. Morphogenesis is the pro-
cess that leads a swarm of robots to self-assemble following a particular pattern,
and can be used by the swarm to self-assemble into a structure that is particularly
appropriate for a given task. For example, a line formation can allow to pass on
a narrow bridge, while a blob-like formation will make moving on rough terrain
more stable.

Self-assembly can be observed in several species of ants. Ants are able
to physically connect in order to perform different tasks. Some examples of
structures created by ants are bridges, rafts, walls and bivouacs (Anderson et al.,
2002). Self-assembly and morphogenesis are studied also by developmental
biology: scientists study how cells develop and self-organize to form tissues and
organs (Turing, 1953).

From the swarm robotics perspective, there are two main challenges: how
to self-assemble into a desired target structure (i.e., morphogenesis), and how
to control the obtained structure to tackle specific tasks. Works focusing on the
first issue are usually based on probabilistic finite state machines and rely on
communication for coordination. Works focusing on the second issue, make use
either of artificial evolution or of probabilistic finite state machines.

A review of the literature on self-assembly and morphogenesis has been
presented by Groß and Dorigo (2008b). Here, we discuss only some examples of
recent works.

O’Grady et al. (2009) presented a morphogenesis behavior for self-assembling
robots that are able to signal docking points on their body to other robots using
LEDs. Different structures, such as lines, stars and circles, can be obtained
by having the robots signal docking points in different positions. A scripting
language for the morphogenesis process has been presented by Christensen et al.
(2008). Both works were realized in the context of the Swarm-Bots project (Dorigo
et al., 2006).

Results on the control aspect of self-assembly depend strongly on the goal of
the specific swarm. O’Grady et al. (2010) demonstrated that physically connected
robots can navigate through difficult terrains better than robots that are not
connected. In O’Grady et al.’s work, robots randomly explore an environment
with slopes. Each robot is able to measure the steepness of these slopes and
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when a slope is steeper than a certain threshold, it can initiate a self-assembling
procedure. Once connected into a structure, the robots can navigate in hazardous
terrains thanks to the high mechanical stability given by the new morphology.
Mondada et al. (2005) showed that physically connected robots are able to cross
a ditch that is too large for a single robot to overcome. Finally Groß and Dorigo
(2009) showed that physically connected robots are able to obtain better results,
in terms of speed and distance, in the transportation of heavy objects when
compared to non-connected robots.

The Symbrion and Replicator projects tackled both the morphogenesis and
the control aspects of self-assembly (Levi and Kernbach, 2010). In these projects,
swarms of self-assembling robots capable of creating 3D structures are stud-
ied. Such robots are able, when connected, to share energy and computational
resources with their neighbors.

Another aspect of self-assembly is how to make the swarm decide who should
assemble with whom. In the work of Ampatzis et al. (2009), two robots have to
assemble to each other without prior knowledge of who will grip and who will
be gripped. The authors proposed a solution based on artificial evolution and
recurrent neural networks which can make time-dependent decisions.

Mathews et al. (2012) used a heterogeneous approach: a flying robot is used
to recognize the task to tackle and guide ground-based robots. The flying robot
communicates to the ground based robots which robots should self-assemble
and what kind of structure to create to tackle the task.

Object clustering and assembling. Here, we present works in which robots move
objects spread in an environment. The robots can follow two kinds of behaviors:
clustering and assembling. The goal of object clustering and assembling is to group
objects close one to the other. The difference between clusters and assembles
is that clusters are composed of non-connected objects, whereas assembles are
composed of physically linked objects. The object clustering and assembling
behaviors are fundamental components of any construction process.

The object clustering and assembling behaviors are displayed by many social
insects. For example, ants exhibit brood clustering (Franks and Sendova-Franks,
1992) and termites are able to deposit mud to build complex nests (Grassé,
1959). To do this, insects usually exploit natural occurring gradients, such as
temperature gradients, or pheromones gradients.

In swarm robotics, object clustering and assembling are usually approached
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using probabilistic finite state machines. The robots explore the environment at
random and react in different ways to the discovery of available objects or of
part of the cluster/assemble to create.

In almost all analyzed works, robots group objects sequentially or quasi
sequentially. In fact, parallelism could potentially create collisions and inter-
ference and thus is usually avoided. To avoid such problems, a robot usually
prevents other robots from depositing objects at the same time, either by using
communication or by physically blocking access to the cluster site.

Object assembles are usually obtained using blocks with some kind of self-
alignment mechanism based, for example, on magnets.

One of the pioneering work in object clustering is the one by Beckers et al.
(1994). In this work, the robots follow a very simple behavior: they explore the
environment at random and, when they find an object, they pick it up. A robot
with an object moves at random in the environment and deposits the object with
a probability proportional to the number of other objects observed. Following
these simple rules, the robots are able to create clusters of objects.

Melhuish et al. (1999b) presented a work in which robots create clusters of
object roughly in the shape of a wall. In this work, disks are scattered around
the environment and a specific area is marked for disk clustering. Such area is
located half way between a light and a line on the ground. The robots measure
the distance between the line on the ground and the light to recognize the
clustering area. The robots follow simple rules to cluster the object roughly in
the shape of a wall. In a following work, Stewart and Russell (2006) developed a
similar mechanism in which the position of the cluster is marked by a moving
robot instead of a fixed light.

Wawerla et al. (2002) developed a behavior to create simple 2D walls made of
blocks of alternating color. A robot performs random walk in search for a block.
After collecting a block, the robot searches either for the seed block or for the
partially constructed wall. When it finds the wall or the seed block, the robot
checks if no other robot is already placing a block by using local communication,
and then places the blocks.

Werfel (2006) developed a method for creating arbitrary 2D structures with
blocks placed over a virtual grid. In this work, all robots have knowledge of
a matrix which encodes the final structure to create. Such plan is used by the
robots also as a frame of reference. The idea is the following: when a robot finds
part of the structure, it follows it counting the placed blocks. Block-counting
allows the robot to locate itself in the frame of reference of the structure to create.
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Once the robot knows its position with respect to the placed blocks, it can decide
where to place the next block using its knowledge of the final structure. This
approach was also extended to create 3D structures (Werfel and Nagpal, 2008)
and tested using real robots (Werfel et al., 2011).

Navigation behaviors

In this section, we describe collective behaviors that cope with the problem of
coordinating the movements of a swarm of robots. We review works on collective
exploration, coordinated motion and collective transport.

Collective exploration. Here, we analyze two kinds of collective behaviors that,
together, can be used to achieve collective exploration of an environment: area
coverage and swarm-guided navigation. The goal of area coverage is to deploy robots
in an environment in order to create a regular or irregular grid of communi-
cating robots. The obtained grid can be employed, for example, to monitor the
environment for hazardous leaks or to guide other robots. We call the behavior
necessary to guide the navigation of other robots swarm-guided navigation. Since
the two behaviors are strongly linked, many works focus on both at the same
time.

Area coverage and navigation are common behaviors of social animals. For
example, ants use pheromones trails to find the shortest route between two points
and bees directly communicate destinations in the environment by means of
dances (Camazine et al., 2001). Area coverage has been intensively studied also
by the wireless sensor networks community. A survey of area coverage behaviors
for wireless sensor networks was conducted by Wang et al. (2009).

In swarm robotics, the most common way to tackle area coverage is to use
virtual physics-based design to obtain a grid covering the environment. Works
on swarm-guided navigation instead focus on communication, thus usually em-
ploy probabilistic finite state machines and take inspiration either from network
routing protocols or natural systems.

Payton et al. (2001) used robots as “virtual pheromones”. Some robots, which
are already deployed, are able to create a gradient between the source and
the target by exchanging messages. This gradient can then be exploited for
navigation by other robots or by a human.

Howard et al. (2002) developed a behavior using virtual physics-based design.
Each robot is repelled by other robots and by obstacles. This approach allows
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the robots to maximize the area covered and form a connected communication
network.

O’Hara and Balch (2007) presented a behavior that exploits pre-deployed sen-
sors to perform foraging in an environment that can change over time. Through
a distributed Bellman-Ford algorithm, a navigation route towards a specific goal
is found and then followed by the mobile robots.

Nouyan et al. (2009) used chain formation to link an object in the environment
with the robot nest. The robots in the chain display a pattern of repeating colors
to indicate in which direction is the nest and in which direction is the object.
This information is used by the other robots to navigate the environment.

Di Caro et al. (2009) presented a work in which robots are able to navigate
from a source to a target location. The proposed behavior is based on commu-
nication with other passive robots already available in the environment. These
passive robots are assumed busy with other collective behaviors but are able to
guide the navigating robots.

Stirling and Floreano (2010) used a swarm of flying robots to achieve area
coverage. In their work, the robots are deployed sequentially and each robot
determines its position according to the position of the previously deployed
robots. Only one or few robots, called explorers, are flying at the same time,
whereas the great majority is attached to the ceiling and act as communication
relays. One particular aspect of Stirling and Floreano’s approach is the ability to
explore an environment with a limited number of robots, as the robots can leave
an area once it has been visited. This work was developed for the Swarmanoid
project (Dorigo et al., 2012).

Ducatelle et al. (2011a) proposed a collective behavior based on network
routing, capable of guiding a robot from a source area to a target. Similarly to
what happens in packet routing, the robots keep a table of the distance of other
robots with respect to the target. A robot can then use the entries in the table and
reach the target. Ducatelle et al. studied two different experimental setups. In
the first, only a single robot is moving while the others act as beacons to guide it.
In the second, all the robots are moving between two points, creating a dynamic
chain.

Ducatelle et al. (2011b) studied collective exploration using a heterogeneous
robotic swarms. They tackled an indoor navigation task, in which a swarm of
wheeled robots move back and forth between a source and a target location. The
path of the wheeled robots are guided by a swarm of flying robots that can attach
to the ceiling and overview the progress of the wheeled robots. Their solution is
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based on mutual adaptation: wheeled robots execute instructions given by flying
robots, and flying robots observe the behavior of wheeled robots to adapt their
position and the instructions they give. Ducatelle et al. developed the swarm
using a probabilistic finite state machine together with techniques from network
routing protocols.

Coordinated motion. In coordinated motion, also known as flocking, robots move
in formation similarly to schools of fish or flocks of birds. For a group of
autonomous robots, coordinated motion can be useful as a way to navigate in
an environment with limited or no collisions between robots and as a way to
improve the sensing abilities of the swarm (Kaminka et al., 2008).

Coordinated motion behaviors are frequent in almost all social animals. In
particular, flocking in group of birds or schooling in group of fish are impressive
examples of self-organized coordinated motion (Okubo, 1986). Through coordi-
nated motion, animals gain several advantages, such as a higher survival rate,
more precise navigation and reduced energy consumption (Parrish et al., 2002).

In swarm robotics, coordinated motion behaviors are usually based on virtual
physics-based design. Robots are supposed to keep a constant distance from one
another and an uniform alignment while moving (Reynolds, 1987). Coordinated
motion behaviors have also been obtained via artificial evolution.

The first work on coordinated motion was published by Reynolds (1987) in
the domain of computer graphics. Reynolds developed a flock of virtual birds
in which the individuals are able to sense the velocity and the range of the
neighbors. The individuals follow three simple rules: collision avoidance, velocity
matching and flock centering. Collision avoidance keeps the individuals from
colliding one with the other. Velocity matching ensures that each individual
matches the speed of its neighbors and flocking centering forces each individual
to stay close to its neighbors.

Balch and Hybinette (2000) proposed a coordinated motion behavior based
on social potentials. Each robot knows the position and orientation of the robots
in its sensing range and thus it is able to compute the target position to reach.
The authors created a coordinated motion behavior that is able to avoid obstacles
and form different patterns, such as lines, diamonds and squares.

Baldassarre et al. (2003) used artificial evolution to tune the parameters of a
neural network in order to perform coordinated motion. The authors were able
to obtain three coordinated motion behaviors. These behaviors differ by how
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each robot moves with respect to the others. In the first behavior, the robots keep
a constant speed. In the second one, only one robot moves, while the rest of the
swarm tries to remain close to it. In the last behavior, the robots rotate around
the center of the swarm.

Turgut et al. (2008a) developed a virtual heading sensor which allows each
robot to sense the heading direction of the other robots. With this information
and knowing the distance of the neighbors by means of an infrared sensor, the
swarm was able to obtain coherent coordinated motion and obstacle avoidance
in absence of a common goal direction. The developed behavior is one of the first
true implementation of Reynolds (1987)’s flocking behavior with real robots. The
authors evaluated the performance of their behavior by using different metrics
and validated it with the use of several robots.

Çelikkanat and Şahin (2010), extending the work of Turgut et al. (2008a),
showed that it is possible to insert some “informed” robots in the swarm in order
to direct the movement of other “non-informed” robots. The informed robots are
the only ones in the group with knowledge of the goal direction. Increasing the
number of informed robots or decreasing the individual tendency to follow other
robots increase the accuracy of motion of the group with respect to the desired
goal direction. These works have been extended by Ferrante et al. (2010b) who
developed alternative communication strategies in which some robots explicitly
communicate their headings.

Stranieri et al. (2011) first introduced the idea of coordinated motion without
the need for all robots to perceive the orientation of their neighbors. Their work
has been extended by Ferrante et al. (2012), thus we present in detail only this
most recent work.

Ferrante et al. (2012) proposed a coordinated motion behavior that, differently
from other works, does not require an explicit alignment rule: the robots in
the swarm use only attraction and repulsion rules. The key difference is in the
novel way in which the robots translate the vector computed using the attraction
and repulsion rules into wheel actuation. In fact, in all previous works, the
robots changed their angular speed according to the direction of this vector
while keeping their forward velocity fixed. In this work instead, the robots
change also their forward speed, according to the magnitude of the computed
vector. Additionally, the authors showed that the swarm is able to navigate both
with and without the presence of informed robots, that is, robots that know the
desired direction to follow.
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Collective transport. Collective transport, also known as group prey retrieval, is
a collective behavior in which a group of robots has to cooperate in order to
transport an object. In general, the object is heavy and cannot be moved by
a single robot, making cooperation necessary. The robots need to agree on a
common direction in order to effectively move the object towards a target.

Ants often carry prey cooperatively. Kube and Bonabeau (2000) analyzed
how cooperative transport is achieved in ant colonies. When ants find their
target, they physically attach to it and then start to pull and push. If they do
not perceive any movement for period of time, they change the orientation of
their body and try again. If even this does not work, they detach, re-attach at a
different point and try again.

Berman et al. (2011b) studied the same behavior observing how ants interact
with fabricated elastic structures. Using the data retrieved from these observa-
tions, the authors developed a mathematical model of how collective transport
is performed by ants.

In swarm robotics, collective transport behaviors are obtained by using proba-
bilistic finite state machines or artificial evolution. Cooperation is obtained either
through explicit communication of the desired motion direction, or through
indirect communication, that is, by measuring the force applied to the carried
object by the other robots.

Donald et al. (1997) proposed three behaviors based respectively on: force
sensing, position sensing and orientation sensing. This work was one of the first
works aimed at studying collective transport without a centralized controller and
with limited communication.

Campo et al. (2006) proposed a collective behavior in which the robots decide
a common direction at the beginning of the experiment by communicating their
individual direction. In this way the robots are able to drag an object towards a
goal area, even if this area is not perceived by all robots.

Groß and Dorigo (2009) used artificial evolution to tune the parameters of
a neural network to achieve collective transport. The obtained behavior was
able to cope with different object sizes and weights as well as with different
numbers of robots (from 4 to 16). Various metrics and extensive simulations
were used to validate the results. In their work, Groß and Dorigo were able to
obtain three different transport strategies. In the first, the robot directly connects
to the object and move it. In the second, the robots connect to each other and
then to the object to move it. In the third, and last strategy the robots are not



2.1. SWARM ROBOTICS 39

directly connected to the object but form a circle around the object and push it.
Baldassarre et al. (2006) used artificial evolution and neural networks to

perform collective transport. The obtained behavior exploits a sensor able to
perceive the force applied by other robots on the chassis. With this sensor, the
robots are able to perform collective obstacle avoidance while going towards a
target area.

In Ferrante et al. (2013a), we developed a collective transport behavior in
which, through communication, a group of robots can agree on a common
moving direction towards a goal by averaging the individual desired direction.
The proposed solution is able to make robots move towards a common goal
while avoiding obstacles. This work was developed for the Swarmanoid project
(Dorigo et al., 2012). In Section 4.2 of this dissertation, we present a more detailed
analysis of this work using model checking.

Collective decision-making

Collective decision-making deals with how robots influence each other when
making choices. It can be used to answer two opposite needs: agreement and
specialization. A typical example of agreement in robot swarms is consensus
achievement. The desired outcome of consensus achievement is that all the robots
of the swarm eventually converge towards a single decision among the possible
alternatives. A typical example of specialization, instead, is task allocation. The
desired outcome of task allocation is that the robots distribute themselves over
the different possible tasks in order to maximize the performance of the swarm.

Consensus achievement. Consensus achievement is a collective behavior used to
allow a swarm of robots to reach consensus on one choice among different
alternatives. The choice is usually the one that maximize the performance of the
swarm. Consensus is generally difficult to achieve in swarm of robots because
very often the best choice may change over time or may not be evident to the
robots due to their limited sensing capabilities.

Consensus achievement is displayed in many insect species. For example,
ants are able to decide between the shortest of two paths using pheromones
(Camazine et al., 2001). Bees have mechanisms to collectively decide which is the
best foraging area or which is the best nest location among several possibilities
(Couzin et al., 2005). These mechanisms work even if not all the individuals in the
swarm have an opinion on the best choice. Cockroaches also display consensus
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achievement behaviors when performing aggregation (Amé et al., 2006).

In swarm robotics, the approaches used for consensus achievement can be
divided into two categories according to how communication is used. In the first
category, direct communication is used: each robot is able to communicate its
preferred choice or some related information. In the second category, instead,
indirect communication is used: the decision is performed through some indirect
clues, such as the density of the robot population.

Wessnitzer and Melhuish (2003) proposed a collective behavior in which
robots “hunt” two moving targets. The robots decide which target to follow
first, follow it and block it. They then do the same for the second target. Two
consensus achievement behaviors are proposed: in the first, the robots simply
follow the robot closest to a target, resulting in a decision based on the spatial
distribution of the swarm; in the second, the robots vote, using a majority rule,
to decide which target to follow.

Garnier et al. (2005, 2009) studied consensus achievement in cockroaches by
using a swarm of robots to replicate the experiment by Amé et al. (2006). In their
work, consensus achievement is obtained through indirect communication. The
focus of this work is both on consensus achievement and aggregation. A math-
ematical model of the same behavior was developed by Correll and Martinoli
(2007). In a similar work, Campo et al. (2011) presented a collective behavior in
which the swarm aggregates on the smallest resource that can host the whole
group. A further extension was proposed by Francesca et al. (2012). The authors
used evolutionary robotics to replicate the results obtained by Amé et al. (2006)
comparing the two works also using a macroscopic model.

Gutiérrez et al. (2010) developed a strategy for consensus achievement
through direct communication in a swarm of robots performing foraging. The
robots are able to decide between two foraging areas. When two robots get close,
they exchange their measured distances between the nest and the latest visited
goal. Each robot performs an average of its measured distance with the one
received from the other robots. In this way, the robots are able to agree on which
area is the closest to the nest and discard the other one even when the measured
distances are noisy.

Parker and Zhang (2011) proposed a consensus achievement behavior based
on quorum sensing. The behavior is inspired by how ants and bees choose the
best nest over multiple alternatives (Couzin et al., 2005). When a robot finds a
new alternative, it evaluates its quality and sends recruiting messages to other
robots to advertise it. The frequency of these messages is proportional to the
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perceived quality of the alternative. Thanks to the different message frequencies
associated with the different alternatives, over time all robots converge on the
best alternative. The behavior is implemented as a probabilistic finite state
machine.

Montes de Oca et al. (2011) focused on consensus achievement in a scenario
where robots perform multiple parallel executions of collective transport in
groups of three from a nest area to a goal area. The robots need to reach
consensus between two possible paths, one longer than the other. Each individual
robot has a preferred path. When a group of three robots is formed in the nest,
the robots choose the path that is preferred by the majority of them. The chosen
path becomes the preferred one for all the robots in the group. Since the robots
choosing the short path take less time to complete the execution, they are more
often in the nest. This results in more groups formed by robots preferring the
short path than those preferring the long path. This asymmetry eventually makes
the robots use the shortest path. In this work, consensus is achieved both through
direct and indirect communication, as the robots use direct communication at
group level, and indirect communication at the swarm level. In Section 4.1 of
this dissertation, we present a more detailed analysis of this work using model
checking.

Task allocation. Task allocation is a collective behavior in which robots distribute
themselves over different tasks. The goal is to maximize the performance of the
swarm by letting the robots dynamically choose which task to perform.

Task allocation can be observed in natural systems such as ant and bee
colonies (Theraulaz et al., 1998). For example, in ant or bee colonies, part of
the swarm can perform foraging while another part looks after the larvae. Task
allocation is not fixed but can change over time.

In swarm robotics, task allocation is mainly obtained through the use of
probabilistic finite state machines. To promote specialization, the probabilities
of selecting one of the available tasks are either different among the robots or
they can change in response to task execution or messages from other robots. In
swarm robotics, task allocation has been studied mainly on robots performing
foraging.

In one of the first works on task allocation, Krieger and Billeter (2000) devel-
oped a very simple, threshold based mechanism. Robots have to collect objects
that are then converted into energy in the nest. While foraging, the robots con-
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sume energy. To replenish this energy, the robots can draw it from a common
reservoir. Each robot decides to leave and collect objects or to stay in the nest
according to a probability. This probability depends on whether the nest energy
is above or below a given threshold. Since this threshold is different for each
robot in the swarm, the number of robots allocated to foraging or to resting is a
function of the energy level of the nest.

Agassounon and Martinoli (2002) studied task allocation in a foraging task
similar to the one studied by Krieger and Billeter (2000). However, in this case the
probability to select the foraging task or the resting task depends on individual
observations of the environment and of other robots. Thus, the probability is a
function of the success or failure of the last foraging trial, of the frequency with
which other robots are encountered when foraging or of the perceived density
of objects. A mathematical model of a similar task allocation behavior has been
developed by Liu et al. (2007).

Yun et al. (2009) studied the problem of how to allocate robots on a construc-
tion site so that the number of assembling operation to do is shared equally. Each
robot computes optimal equal-mass partitions, that is, partitions with the same
number of operations, by sharing information with its neighbors. The developed
behavior is robust to changes in the environment and scalable with the number
of robots.

Pini et al. (2009) developed a task allocation behavior in a swarm of robots
performing foraging using a bucket brigade approach. In this work, the exper-
iment arena is divided in three areas, the first one is the nest, the second one
is an exchange area and the third one is where the objects are. In the exchange
area, the robots have the possibility to wait for other robots in order to exchange
the object in a bucket-brigade fashion. Through different thresholds on the wait-
ing time, the robots autonomously change their role between those who bring
objects from the source to the exchange area and those who bring objects from
the exchange area to the nest.

Halász et al. (2012) studied task allocation using robots performing stick
pulling. Robots must remove sticks scattered in the environment. To remove a
stick, two robots must cooperate performing two part of the tasks: one holds
a stick from the top and the other from the bottom. Once a robot finds a stick,
it holds its top and waits for another robot to complete the second part of the
task. If after a certain waiting time no one helped, the robot leaves the stick and
searches for another one. This waiting time is changed dynamically according to
how well a robot performed in the past. Although the results were not conclusive,
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the authors observed that, over time, the robots develop a preference for one of
the two parts of the tasks, specializing in robots holding the top part of a stick
and robots holding the bottom part.

Pini et al. (2011) considered a situation in which robots can choose between
carrying an object directly from the source to the nest and storing it in a dedicated
two-sided structure called TAM (Brutschy et al., 2012) (see Appendix A.2). Stored
objects can be collected by robots waiting on the other side of the structure and
carried to the nest. The authors develop a mechanism that allows the robots to
choose whether to use the structure on the basis of the cost involved.

Other collective behaviors

In this section, we present some works in swarm robotics that we consider
significant but that do not fall in any of the categories presented above.

Collective fault detection. Autonomous robots have still a limited reliability.
Even though the quality and robustness of the hardware is increasing, hardware
failures are still quite common. Techniques to allow robots to autonomously
detect failures and faulty behaviors have been developed.

Christensen et al. (2009) developed a swarm-level fault detection behavior
based on firefly synchronization. All the robots in the swarm are emitting a
signal in a synchronous way. The robots are able to perceive if another robot is
in a faulty state by observing if it is synchronized with them. If a robot is not
synchronized, it is assumed to be faulty and a response is initiated.

Group size regulation. Group size regulation is the collective capability of creat-
ing or selecting a group of a desired size. This can be useful for many reasons.
For example, Lerman and Galstyan (2002) showed that an excessive number
of robots can reduce the performance of the swarm, and demonstrated for dif-
ferent behaviors that it is possible to identify a group size that maximizes the
performance of the swarm.

Melhuish et al. (1999a) developed a behavior inspired by fireflies to achieve
the formation of groups of the desired size. Each robot can emit, at a random
time, a signal. The robots then count the number of signals received over a period.
The obtained number can be used by the robots to estimate the size of the group
and thus to create groups of the desired size. In a related work (Brambilla et al.,
2009), we improved the original behavior by introducing a more strict signaling
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order. With this improvement we were able to obtain a more robust and reliable
estimate of the size of the group.

Pinciroli et al. (2013) studied a collective behavior able to form groups of
robots of the desired size. The swarm is composed of flying robots and ground
robots. The ground robots perform aggregation under the flying robots. The
probabilities used by them to join or leave a group are communicated by the
flying robots according to the size of the group itself. With this simple mechanism
the robots are able to form groups of various sizes.

Human-swarm interaction. Robot swarms are conceived to be autonomous and
to make decisions in a distributed way. While these are in general considered to
be positive features, they also limit the degree of control of a human operator
over the swarm. In fact, since there is neither a leader nor centralized control,
the operator does not have a simple way to control the behavior of the swarm.
Human-swarm interaction studies how a human operator can control a swarm
and receive feedback information from it.

McLurkin et al. (2006) developed a simple mechanism in which robots are
able to provide information to human operators using LEDs and sound.

Naghsh et al. (2008) proposed an analysis of different possible approaches to
human-swarm interaction, classifying them in direct human-swarm interaction,
direct swarm-human interaction, and remote interaction via base station.

Podevijn et al. (2012) used a Microsoft Kinect system to give commands
through gestures to a swarm of robots. The human operator is able to command
the swarm to select, split, merge and rotate.

Giusti et al. (2012) used a similar approach based on gestures. The robots
observe the gestures of a human operator. Each robot is able to guess the
performed gesture, but due to its limited vision capabilities, different robots
could make a different guess. To reach consensus, the robots vote using multi-
hop communication and finally execute the order associated with the performed
gesture.

Kolling et al. (2012) presented two approaches to control a swarm. The first
approach is based on global communication: a human operator uses a central
computer to select and control a subgroup of robots. The second approach is
based on local interactions: the human operator places pre-programmed beacons
in the environment. These beacons are used to communicate a new behavior to
the robots that are in their communication range.
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2.1.4 Open issues in swarm robotics

Swarm robotics has several possible applications, including: exploration, surveil-
lance, search and rescue, humanitarian demining, intrusion tracking, cleaning,
inspection and transportation of large objects. Despite their potential to be ro-
bust, scalable and flexible, up to now, robot swarms have never been used to
tackle a real-world application and are still confined to the world of academic
research. At the current state of development of the swarm robotics field, the
focus is mostly on obtaining a desired collective behaviors and understanding
their properties. For this reason, researchers usually tackle simplified testbed
application, such as foraging and construction.

Foraging is the most used testbed application in swarm robotics. Robots have
to retrieve “prey” objects from an environment and bring them back to a “nest”.
Foraging, while simple, can be considered as an abstraction of more complex
applications, such as demining and search and rescue. Foraging is also used to
investigate the effect of interference in robot swarms (Lerman and Galstyan, 2002).
In particular, foraging is commonly used as a testbed for collective exploration,
collective transport and collective decision-making.

Another testbed application that has attracted a lot of interest recently is con-
struction. Swarms of robots could be used to build complex structures in those
cases in which humans would be unable to, such as underwater and in space.
Moreover, construction could greatly benefit from the parallelism and flexibility
of robot swarms. Construction is a complex task that requires the combination
of several collective behaviors, such as object clustering and assembling to gather
material, collective transport to carry material, and collective decision-making
to allocate the robots to the different sub-tasks of the construction process. A
recent example of construction performed by flying robots can be found in the
work by Lindsey et al. (2012). Even though this construction system cannot be
considered a swarm, as the robots exploit a centralized system for localization
and action planning, the presented problem can be considered as an interesting
testbed for swarm robotics.

There are many possible reasons for the absence of robot swarms in the real
world, such as the hardware limitations of the available robots. We foresee that,
in the near future, swarm robotics will be used more and more frequently to
tackle real-world applications. With an increasing use of robot swarms, we en-
vision an increasing need for a swarm engineering, that is, a need for methods
for: 1) requirement modeling and specification, 2) design and realization, 3) ver-
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ification and validation, and 4) operation and maintenance. In the following,
we analyze how these aspects of swarm engineering have been tackled and we
discuss some open problems.

Requirement modeling and specification. With the application of swarm robotics
to real-world scenarios, we foresee an increasing need for well defined processes
to help in requirement gathering and for formal languages to help in requirement
specification. Up to now, none of these processes have been studied directly
in swarm robotics. This is probably due to the lack of real-world applications.
Effort will therefore be necessary to understand whether existing requirement
gathering processes and existing requirement specification languages from other
fields can be re-used or adapted to swarm robotics or whether new ones need to
be developed.

Property-driven design, the design approach proposed in this dissertation,
can be considered a first approach to the requirement specification problem.
More details can be found in Chapter 3.

Design and realization. The design aspect of swarm engineering was discussed
thoroughly in Section 2.1.1. One main issue remains open: the lack of general and
effective methods for the top-down design of collective behaviors. Automatic
design methods can be considered as top-down methods. However, even if
these methods are improving, a lot of domain knowledge is still required to
tackle medium to complex applications, in particular to define the setup of the
automatic process.

In this dissertation, we present a novel approach for the top-down design of
robot swarms based on prescriptive modeling and model checking. For more
details, see Chapter 3.

Verification and validation. Verification and validation exploit analysis methods,
which have been discussed in detail in Section 2.1.2. Despite the great number of
analysis methods, performing verification and validation of a robot swarm and
comparing one system with another is still very difficult. The reason behind this
is the lack of well defined metrics and testbed applications. Very often, metrics
are too tightly related to a specific solution and thus cannot be reused for other
systems or for comparisons. The lack of common metrics is also related to the
lack of well defined testbed applications. As said, foraging and construction are
the only commonly used testbed applications. However, foraging is limited in
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its use to some collective behaviors, such as task allocation or area coverage and
cannot be used in others. Moreover, as discussed in the taxonomy presented
by Winfield (2009), there is no single definition of a standard foraging scenario.
In order to promote the comparison of robot swarms, it would be necessary
to define a set of standard foraging scenarios and promote the distribution of
open-source behaviors and public available datasets. Construction, as a testbed,
suffers from similar limitations.

In addition, in order to apply swarm robotics to real-world applications it
will be necessary to formally verify properties of robot swarms, such as their
safety. In this dissertation, we show how formal methods can be used to perform
verification. More details can be found in Chapter 4.

Operation and maintenance. Robot swarms have the potential advantage to re-
quire limited manual intervention because of their fault tolerance, scalability
and flexibility. Although these three characteristics might reduce the need for
maintenance, this might be true only up to a given extent. Further studies are
necessary to understand when and how to perform maintenance on a robot
swarm. Moreover it is necessary to study if it is possible to derive general main-
tenance principles or if different collective behaviors need different maintenance
approaches.

Regarding operation, one key issue is how to let humans and swarms coop-
erate. In fact, due to the lack of a centralized controller, it is in general very
difficult to effectively control a swarm once it starts operating. This means that,
for example, it might be difficult to stop a swarm that is behaving in an unpre-
dicted or dangerous way. Some studies on human-swarm interaction have been
recently published (see Section 2.1.3) but this issue still remains open.
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2.2 Formal methods

The year 1999 marked the first use of artificial intelligence in a space mission:
the Remote Agent, NASA’s autonomous spacecraft controller, was used to pilot
the Deep Space 1 flight (Rayman et al., 2000). NASA’s Remote Agent was a
complex piece of software that strongly exploited concurrency. To ensure its
reliability, before being employed, it was subject to more than 300 hours of
testing. Unfortunately, despite this in depth testing, a deadlock occurred, putting
at risk the success of the mission. The problem was soon identified and solved.
The mission was completed with success, but the need for a more formal and
complete verification of the reliability of software was once more highlighted.

In the aftermath of the problem, Havelund et al. (2001) performed a complete
analysis of Remote Agent’s software to search for possible deadlocks. They did
not perform the analysis manually. Instead, they used model checking, a newly
developed technique at that time. Thanks to model checking, the authors were
able to identify five potential deadlock conditions in the software, among which
the one that happened during the real mission.

Model checking (Clarke, 1997) is a technique that can be used to analyze
a system: given a model of the system, using model checking it is possible to
formally prove that the model satisfies a given property, such as the absence of
deadlocks. It can be used in safe-critical applications in which simulations and
experiments might not be enough to guarantee the correctness of a system. In
fact, simulations and experiments can only test a subset of all possible execution
scenarios of a system. Model checking, instead, perform an automatic and
exhaustive analysis of the model to formally verify whether the given properties
are satisfied by the given model. This approach has been applied with success to
several different fields, such as electronic circuits (Burch et al., 1990), space-craft
controllers (Havelund et al., 2001), embedded real-time systems (Stankovic, 1996),
wireless sensor networks (Clarke, 1997) and mobile robotics (Jeyaraman et al.,
2005, Fisher and Wooldridge, 1997, Bruni et al., 2012). It was recently applied
also to the verification of robot swarms (Konur et al., 2012).

In its simplest form, model checking requires two components: a model of
the system to analyze and a list of properties that the system must satisfy. Model
checking is then performed using model checkers.

In this section, we present the formalisms and languages used to perform
model checking for the design and analysis of robot swarms.

There are several formalisms that can be used to define a model for model
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checking (Berard et al., 2010). In this dissertation, we use two families of for-
malisms: Markov chains and process algebras. Even though some differences
exists between Markov chains and process algebras, these two families of for-
malisms are strongly connected, to the point that it is possible to formally prove
a structural correspondence between the two (Brinksma and Hermanns, 2001). In
Section 2.2.1, we present the general concepts behind Markov chains and process
algebras. We postpone the presentation of the details of the two process algebras
used in this dissertation, Bio-PEPA and Klaim, to Chapter 4.

There are also several languages that can be used to specify properties for
model checking (Berard et al., 2010). All languages used to define properties for
model checking are based on mathematical logic. In this dissertation, we use
three different logics: probabilistic computation time logics (PCTL), continuous
stochastic logic (CSL) and mobile stochastic logic (MoSL). All these three logics
belong to the family of stochastic temporal logics. Stochastic temporal logics will
be presented in Section 2.2.2. We postpone the presentation of the details of each
particular logic used in this dissertation to Chapter 4.

Finally, after presenting the formalism to define models and the logics to
specify properties, in Section 2.2.3, we present the basic concepts of model
checking and statistical model checking.

2.2.1 Model formalisms for model checking

In this section, we present the two families of formalisms used to model robot
swarms for model checking: Markov chains and process algebras. In particular,
we briefly present how Markov chains can be used for modeling a robot swarm.
For a complete review of modeling and analysis techniques in swarm robotics
see Section 2.1.2. For a complete and formal presentation of Markov chains
see Norris (1998). We also give a brief description of the characteristics common
to all process algebras. More informations on process algebras can be found
in Fokkink (2000). More information about the two process algebras used in
this dissertation, Bio-PEPA and Klaim, can be found in Chapter 4. A discussion
about the relationship between process algebras and Markov chains can be found
in Brinksma and Hermanns (2001).

Markov Chains

Markov chains can be used to model or design the behavior of the robots:
states represent actions that robots can perform, such as random walk and grasp
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object. Transitions link two states and are activated through transition conditions
such as obstacle seen and object grasped. As an example of a Markov chain
of a robot performing foraging, see Figure 2.2a. Markov chains must have a
starting node and a finite or countable number of states.

Markov chains can be used to model a robot swarm in two ways: as a
microscopic Markov chain, that is, a model that consider each individual robots,
and as a macroscopic Markov chain, that is, a model that consider the swarm as a
whole.

A microscopic Markov chain describes the behavior of the individual robots
and their interactions. In a microscopic Markov chain, the collective behavior
of the swarm is usually developed starting from the and-composition of the
Markov chains describing the individual behaviors of the robots (Dixon et al.,
2011). Figure 2.2b shows an example of a microscopic Markov chain of a swarm
of four foraging robots.

A macroscopic Markov chain, instead, describes the swarm as a whole, with-
out considering the individual robots composing it. In general, similar to models
based on rate equations, a macroscopic Markov chain is developed starting from
a Markov chain describing the behavior of a generic individual of the swarm
augmented by associating a counter to each state. Such counters are used to keep
track of the number of robots that are in the associated state. It is important to
note that, differently from rate equation models, the counter is not the proportion
of the total number of robots in the associated state, but the effective number
of robots. Figure 2.2c shows an example of a macroscopic Markov chain of a
swarm of foraging robots.

When compared to macroscopic Markov chains, microscopic Markov chains
give a finer description of the robots and their interactions, which are fundamen-
tal components of any robot swarm. However, they suffer from the state-space
explosion problem (Pelánek, 2009): in a microscopic Markov chain, the number
of states grows exponential with the number of robots. The number of states in
a microscopic Markov chain is kn, where n is the number of robots and k is the
number of states of the Markov chain of each individual robot. In a macroscopic
Markov chain instead, the number of states follows the binomial coefficient
(n+k−1

k−1 ).
As it is possible to see in Table 2.1, even for very small swarms, the number

of states composing a microscopic Markov chain gets very large, making mi-
croscopic Markov chains computationally intractable using standard techniques.
For this reason, macroscopic Markov chains are usually employed to model robot
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(a) A Markov chain describing the behavior of an individual foraging robot.

(b) A simplified view of a microscopic Markov chain of a foraging swarm
composed of four robots. The model is the and-composition of the Markov
chains describing the behavior of the individual robots, as in Figure 2.2a.
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(c) A simplified view of a macroscopic Markov chain of a foraging swarm. The
model consists of the Markov chain describing the behavior of the individual
robots, as in Figure 2.2a, to which counters are associated.

Figure 2.2: Different approaches to modeling a robot swarm using Markov chains.
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Table 2.1: The number of states of a microscopic and macroscopic Markov chain as the
swarm size increases. We consider a swarm in which the behavior of the individual
robots is composed of k = 5 states, as the one in Figure 2.2a.

Number of robots Macro Micro

n (n+k−1
k−1 ) kn

1 5 5
5 126 3125
10 1001 9.76 ∗ 106

50 3.16 ∗ 105 8.88 ∗ 1034

100 4.60 ∗ 106 7.89 ∗ 1069

500 2.66 ∗ 109 3.05 ∗ 10349

1000 4.21 ∗ 1010 9.33 ∗ 10698

swarms (Brambilla et al., 2013).
In this dissertation, we used a macroscopic Markov chain to analyze a col-

lective decision-making behavior, see Section 4.1, and a microscopic model to
analyze a collective transport behavior, see Section 4.2.

Time in Markov chains can be modeled in two different ways: discrete and
continuous. In discrete time Markov chains (DTMC), time assumes only values
in Z+, whereas in continuous time Markov chains (CTMC), time can assume any
value in R+. The choice between DTMC and CTMC depends on the system to
model: in case time is not a critical aspect and can be easily discretized, DTMC
are more convenient; on the contrary, when it is important to keep precisely track
of times, DTMC should be preferred. Note that DTMCs and CTMCs have the
same expressive power (Serfozo, 1979).

Practically, one of the main difference between DTMC and CTMC lies in
the meaning of the transition parameters. In DTMC, transition parameters
represent the probability p that a robot moves from a state to another over a
fixed time period; for this reason, transition parameters for DTMC must be in
the interval [0, 1]. In CTMC, instead, transitions parameters represents the rate λ

at which a robot moves from a state to another. This rate follows an exponential
distribution of parameter λ ∈ (0, ∞). Restriction to exponential distributions
does not represent a real limitation since it possible to model most random
distribution by suitable combinations of negative exponential ones (Fang, 2001).

A last kind of Markov chains are Markov chains with reward structures. Re-
ward structures are real valued quantities that can be assigned to states or
transitions. They can be used to reason about the expected value of the amount



2.2. FORMAL METHODS 53

of times a certain transition happens or a certain state is reached.

Process algebras

A process algebra (Bergstra and Klop, 1984, Bergstra et al., 2001), also called
process calculus, is a formal language used to specify and describe distributed
systems. In particular, process algebras are well suited for modeling systems
characterized by communication and concurrency. Distributed systems are de-
scribed using process algebras as collections of processes and actions they can
execute. Interactions between processes is described in terms of communication.

Process algebras are characterized by having a formally defined structured
operational semantics that structures processes into labelled transition systems, that is,
a series of states and transitions that describe how the system evolves. Drawing
a parallel with Markov chains, in process algebras, we can interpret processes
as states and actions as transitions: for example, P a−→ Q means that process
P performs the atomic action a after which it behaves as Q. This can be used
to model robots that perform differently after completing a specific action. For
example, in modeling a search and retrieve scenario, a robot searching for an
object may perform the action find after which it behaves as a retrieving robot:

R searching
find−−→ R retrieving. By defining processes, actions and their relationship

it is possible to describe a dynamic system.
One of the characteristics of process algebras is the ability to define pro-

cesses hierarchically, that is, the ability to define a process as a composition
of concurrent components. In this way, a “robot swarm process” can be seen
as composed of several “individual robot processes”. There are several ways
to compose processes: the most important two are parallel composition and
sequential composition. Many other compositional operators are available, we
refer the interested reader to Fokkink (2000).

Prescriptive and descriptive models

In this dissertation, we employ models both for the design (see Chapter 3) and
analysis (see Chapter 4) of robot swarms. Models used for the design and
analysis of robot swarms are technically identically: the same formalisms and
the same modeling techniques are used to develop them. However, they are
conceptually different. In fact, the models used for the design of robot swarms
describe systems that have not been developed yet, that is, they are used to
develop a system, not to describe it. We call this kind of models prescriptive
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models. Instead, the models for the analysis of robot swarms describe systems
that are already completed. We call this kind of models descriptive models. In this
dissertation, we use both prescriptive and descriptive models.

The difference between prescriptive and descriptive models is not only se-
mantic. In fact, there is a fundamental difference between these two kinds of
models: how parameters are set. In descriptive modeling, the parameters of the
model are derived from the observations of the system being described. Usually,
these parameters are chosen so that the analysis of the model produces results
that are comparable with those of the real system. In prescriptive models, this is
not possible, as there is no system from which one can derive the parameters. Pa-
rameters of prescriptive models are thus derived from the informations available
before the development of the system, such as the geometry of the environment
and through educated guess.

2.2.2 Property definition languages for model checking

The most common way to formally express properties in model checking is
through the use of logic predicates (Clarke, 1997). In this dissertation, we em-
ploy probabilistic temporal logics. Probabilistic temporal logics are a family of
mathematical logics that allow us to express concepts related to time in which
propositions can be, not only true or false, but also have a certain probability of
being true. Probabilistic temporal logics are well suited for swarm robotics as
they can capture both the time-related and stochastic aspects that characterize
robot swarms.

Among the many mathematical logics belonging to the family of probabilistic
temporal logic, in this dissertation, we use probabilistic computation time logics
(PCTL), continuous stochastic logic (CSL) and mobile stochastic logic (MoSL). In
this section, we limit our discussion to PCTL as it is the simplest of the three.
We do not discuss in details CSL, as it can be considered, for the goals and
purposes of this dissertation, a continuous-time version of PCTL. Some relevant
parts of CSL will be presented in Section 4.1. MoSL, an extension of CSL, will be
presented in Section 4.2.

PCTL, originally developed by Hansson and Jonsson (1994) is a probabilistic
extension of CTL (Computation Tree Logic), a branching time logic. CTL and
PCTL are based on the concept of computation tree. A computation tree can
be used to represent the temporal evolution of a Markov chain. It consists
of a potentially infinite rooted tree in which the root is the initial state of a
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Figure 2.3: A simple Markov chain (on the left) and part of its computation tree (on the
right).

corresponding Markov chain, and each node is a possible state of the system.
Edges link a state with its next possible states. Each path on the tree represents
a possible execution of the system. Since a sequence of nodes represents the
time evolution of a system, the transition between two nodes is usually called
a time-step. An example of a simple Markov chain and its computation tree is
displayed in Figure 2.3.

On a computation tree it is possible to analyze temporal properties due to the
fact that the computation tree gives us a temporal evolution of the Markov chain.
Examples of such properties are: eventually the system will reach state B

or if the system starts from state B then it will never reach state A.
These properties can be expressed using computation tree logic (CTL).

PCTL extends CTL by introducing probabilities. It is thus possible to express
properties such as property α will eventually become true with probability 0.45 or there
is a 0.7 probability that α will hold true for 10 seconds. Understanding the details of
PCTL is not essential to understand the general principles of this dissertation.
Nonetheless, we think that a simple introduction (based on Hansson and Jonsson
(1994) and Ciesinski and Größer (2004)) can be useful for those interested in using
PCTL for model checking in swarm robotics.

A brief introduction to PCTL

The syntax of PCTL is composed of state formulae, generally identified by the
upper case greek letter Φ, and path formulae, generally identified by the lower case
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greek letter φ. Path formulae are infinite sequences of state formulae ordered
over time: φt = Φ0 → Φ1 → . . . → Φi → . . ., where φt is a generic path. State
and path formulae allow us to define properties both on events that are related
to a single state, such as the probability of a deadlock, and events that span over
multiple states, such as the ability of a system to complete a task after recovering
from a failure.

Standard logic constants and operators, such as >, ∧,⇒, ¬, are available in
PCTL together with operators for probabilistic and temporal properties. For-
mulae like ∀ φ and ∃ φ are replaced by P./p[φ], where P indicates the probabil-
ity operator, p ∈ [0, 1] ⊂ R is a probability limit and ./ is a placeholder for
{>,≥,≤,<}. An example of such formulae is P≥p(φ), which asserts that the
probability that φ holds true is at least p.

Two temporal operators are available in PCTL: X, called next and U≤t, called
bounded until. Xφ denotes that φ holds in the next state. The bounded until
operator deserves a more in depth analysis, since it is less immediate than the
next operator, and it constitutes the basis for deriving more complex temporal
operators.

φ1U≤tφ2 denotes that φ1 has to hold from now until, within at most t time
units, φ2 becomes true. More formally, considering σ as a path of the model,

σ |= φ1U≤tφ2 ⇔ ∃ t1 ≤ t.σ(t1) |= φ2 ∧ ∀ t0 ≤ t1.σ(t0) |= φ1

were σ(t) is the state in σ occupied at time t and σ |= φ means that path σ satisfies
formula φ. In the variant without time bound t, it is required that eventually a
state is reached in σ in which φ2 holds, and that all preceding states satisfy φ1.
Again, more formally:

σ |= φ1Uφ2 ⇔ ∃ t1.σ(t1) |= φ2 ∧ ∀ t0 ≤ t1.σ(t0) |= φ1

The next and until operators are the only necessary operators to express
temporal conditions. Other useful temporal operators can be derived from these
two. Of particular interest are: 3, which reads as “eventually”; 3≤t, which reads
as “sometimes within the next t steps”; 2, which reads as “always”; and 2≤t,
which reads as “always within the next t steps”.

In case the Markov chain being analyzed is augmented with rewards struc-
tures, it is possible to express properties about them by using reward formulae.
We consider two types of reward formulae: R{rwlabel}./p[F proposition] and
R{rwlabel}./p[C≤t], where rwlabel is the name of the reward structure in the model
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Table 2.2: Some examples of PCTL formulae with their natural language equivalent.

Formula Natural language equivalent

P≥0.75[3≤1000task completed] With a probability greater than 0.75 the system
completes the task before 1000 time-steps.

P≤0.05[2waiting robots > 10] The probability that there will be more than 10
robots blocked in the waiting states is less than
0.05. This means that there could be more than
10 resting robots at a certain point in time, but
some of them will be eventually start working
again.

P>0.95[2(request→ 3≤10response)] There is a probability greater than 0.95 that
every request is answered within 10 time-steps.

P<0.10[32deadlock] The probability that the system will eventually
get in a deadlock is less than 0.10.

which the formula refers to, ./ is a placeholder for {>,≥,≤,<}, p ∈ [0, 1] is a
probability, F returns the expected value of a reward structure accumulated until
a state is reached where proposition holds, and C returns the expected value of the
reward structure up to time t. Note that, in reward formulae, ./ p can be replaced
by =?, which returns the expected probability value instead of performing a
comparison with a predefined value.

Together, probabilistic and temporal operators make PCTL a very flexible
and powerful logic, which can be used to express many interesting properties of
particular interest for swarm robotics. The use of probabilistic temporal logics
allows the developer to express properties that are difficult or impossible to
express using algebraic mathematics.

In Table 2.2, we list some examples of PCTL formulae with the double intent
of demonstrating the capabilities of PCTL and of listing some common properties
of robot swarms.

2.2.3 Model checking

Having presented model formalisms and logics to define properties, we now
have all the elements necessary to perform model checking. Model checking
can be used to verify, over all possible executions, that a system satisfies a set of
properties. This capability is an advantage over simulations as the probability
to find a problem in the system using model checking is not related to the
probability that the problem itself manifests.



58 CHAPTER 2. BACKGROUND

In its simplest form, model checking is performed through state space enu-
meration: all possible executions of a model are enumerated and considered
one by one to verify whether the desired property are valid or not. Practically,
this means that the computation tree of a model (see Figure 2.3) is explored
depth-first, and a property is verified on each resulting path. More advanced
techniques can be employed in order to avoid the complete exploration of the
computation tree. The current state-of-the-art approaches are based on binary
decision diagrams (Kwiatkowska et al., 2004).

Model checking allows the user not only to verify that a model satisfies a
specific probabilistic property (e.g., P≥0.75[φ]? TRUE), but also to compute with
which probability the model satisfies it (P=?[φ]? 0.86). This characteristic is very
useful to find the best parameters of a model that maximize the probability to
satisfy a specific property.

Using model checking, it is also possible to analyze the probability distribu-
tion of a property, for instance to compute the variance of the observed variable.
This would be impossible with fluid flow analysis, as using fluid flow analysis
it is only possible to obtain the expected value of an observed variable. Addi-
tionally, model checking can be used also as a diagnostic tool, as it provides
counterexamples for non-validated properties, which can help in the debug
phase.

A first limit of model checking is that it verifies a system model, and not the
system itself: for this reason the quality of the results obtained with model check-
ing depends on the quality of the model used. In general thus, model checking
is a good approach to validate the design of a system, not its implementation.
Complementary techniques, such as testing or model validation, are necessary
to find implementation problems.

The main limit of model checking is that, in general, it is impossible to
analyze models composed of a high number of states. This problem, known as
“state explosion”, has been subject of many studies and techniques to reduce the
number of states of a model have been developed (Pelánek, 2009). Despite such
techniques, even state-of-the-art model checkers cannot handle models larger
than 1010 states (Kwiatkowska et al., 2004).

As said in Section 2.2.1, unfortunately, simple microscopic Markov chains
used to model robot swarms can rapidly become larger than 1010 when the
size of the swarm increases. For this reason, model checking in swarm robotics
has been performed usually using macroscopic Markov chains with a relatively
limited number of robots.
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Figure 2.4: Overview of the statistical model checking approach

A way to overcome this problem is statistical model checking. Statistical model
checking, also known as approximate model checking, is a novel approach
to model checking (Nimal, 2010). Compared to traditional model checking,
statistical model checking does not explore completely the state space of a model.
Instead, it samples a large but limited number of executions of the model and
uses statistic estimators to compute the result.

Several solving techniques are available for statistical model checking (Nimal,
2010). The most used is the confidence interval method. An overview of the
statistical model checking approach is given in Figure 2.4. In statistical model
checking, confidence interval methods provide an estimate of the probability
with which a given property holds with a certain level of reliability. A confidence
interval is an estimated interval of a certain width 2w such that, if the estimation
is repeated a number of times, then the real probability lays within this interval
100× (1− α)% of the times. The reliability parameter α is the level of confidence.
Assume, for all i ∈ {1, . . . , N}, that {Yi}i is a set of realizations of the Bernoulli
random variables Xi, where Xi is 1 if property φ on a randomly generated path σ

of length k holds, and 0 otherwise. It is assumed that all Yi are independent and
identically distributed (i.i.d.) and normally distributed. Using the central-limit
theorem it is possible to derive a lower bound on the required number of paths
N that need to be generated in order to provide an estimate of the probability
with the required accuracy w and level of confidence α. It is also possible, given
α and a desired number of paths N, to calculate the accuracy w. Several other
methods are available as well, such as the asymptotic confidence interval method
(ACI) and the approximate model checking technique (AMC) that use different
bounds for the minimal sample size N. The latter also uses different notions of
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accuracy and confidence. For a detailed comparison of these methods we refer
to the work by Nimal (2010).

The confidence interval method has also been adapted to estimate the ex-
pected value of rewards, that is, for reward formulae of type R=?[φ]. Let Σ
be a reward structure and φ a property over paths σ. The random variable
Xφ,Σ(σ) can now be defined to produce a reward value, that is, it is of type
Xφ,Σ(σ) ∈ Ω → R+. It is assumed that the random variables are i.i.d. and nor-
mally distributed. For the rest, the method is similar to the confidence interval
method described above.

Using statistical model checking it is possible to perform model checking
also on very large models, even on microscopic models of robot swarms. In this
dissertation, we employ both complete model checking and statistical model
checking.



Chapter 3

Design of robot swarms using model
checking

3.1 Introduction

In this section, we present property-driven design, a top-down design method
for robot swarms based on prescriptive modeling and model checking. The
developer creates a prescriptive model of the desired robot swarm and uses it as
a blueprint for the implementation and improvement of the final swarm. The use
of model checking allows the developer to formally verify properties directly on
the model, reducing the need for testing in simulation or with robots. In property-
driven design, different “views” of the system to realize are produced, from the
most abstract (the properties of the system) to the most concrete (the final robot
swarm). This is similar to model-driven engineering (Miller and Mukerji, 2003)
where software is designed through a series of model transformations from
platform-independent models to executable platform-specific models.

Property-driven design addresses the shortcomings of the existing approaches.

• It aims at providing a method to formally specify the requirements of the
desired robot swarm;

• It reduces the risk of developing the “wrong” robot swarm, that is, a robot
swarm that does not satisfy the requirements;

• It promotes the re-use of available models and tested solutions;

• It can be used to develop platform-independent models that help in identi-
fying the best robotic platform to use;

61
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Figure 3.1: The four phases of property-driven design.

• It helps to shift the focus of the development process from implementation
to design.

Property-driven design is a step forward in the development of swarm en-
gineering: the systematic application of scientific and technical knowledge to
specify requirements, design, realize, verify, validate, operate and maintain an
artificial swarm intelligence system (Brambilla et al., 2013).

To illustrate and validate property-driven design, we apply it to two case
studies: aggregation and foraging.

In Section 3.2, we present property-driven design. In Section 3.3, we present
the two case studies. In Section 3.3.3, we discuss the obtained results.

This chapter is based on Brambilla et al. (2012, 2014a)

3.2 Property driven design

Property-driven design is composed of four-phases: i) the requirements of the
robot swarm are first formally described in the form of desired properties;
ii) subsequently, a prescriptive model of the robot swarm is created; iii) this
prescriptive model is used as a blueprint to implement and improve a simulated
version of the desired robot swarm; iv) the final robot swarm is implemented.

A schema showing the different phases of property-driven design is presented
in Figure 3.1.

In each of the phases of property-driven design, a new layer is added to the
system. Layers differ in their level of abstraction: the properties layer is the most
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abstract, in which only the goal characteristics of the robot swarm are stated; the
robots layer is the most concrete, in which the actual software for the real robots
is developed and deployed. The addition of a new layer brings the system closer
to its final state.

Each phase of property-driven design is characterized by a development/val-
idation cycle: the focus of the developer is on the newly introduced layer, but
all previously developed layers are still active, that is, they are still improved
and expanded, should this be needed in order do guarantee the consistency
of all layers. The newly introduced layer provides the developer with further
information on the system. This information is used to improve the system being
developed, to validate its prescriptive model, and to verify its properties. For
example, the development of the system in simulation provides the developer
with new data that can be used to improve and validate the prescriptive model
and further verify that the desired properties hold.

Phase one: Properties – In this phase, the developer formally specifies the
requirements of the robot swarm in the form of desired properties. These
properties are the distinguishing features of the robot swarm that the developer
wants to realize. They can be task specific, such as the system eventually completes
task X, or they can express more generic properties, such as the system keeps
working as long as there are at least N robots or the system will never be in state Y
for more than t time-steps. The clearer and more complete these properties are in
this phase, the more the developed robot swarm will meet expectations. Clearly
stated requirements help reducing the risk of developing “the wrong robot
swarm.” For simplicity, we assume that requirements do not change during the
development of the robot swarm.

Phase two: Model – In this phase, the developer creates a prescriptive model
of the robot swarm. Usually, the prescriptive model describes how robots change
state over time, where a state is an abstract simplified description of the actions
of a robot (see also Section 2.2.1). The prescriptive model should be sufficiently
detailed to capture the behavior of the robots and their interaction, but should
not be too detailed, in order to avoid unnecessary complication.

Once a first draft of the prescriptive model is produced, the desired prop-
erties stated in phase one are verified using model checking. As in test-driven
development (Beck, 2003), at first it is possible that the prescriptive model does
not satisfy all the desired properties. In an iterative process, the developer ex-
pands and improves the prescriptive model, until the properties are satisfied.
The outcome of this process is a prescriptive model of the collective behavior of
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the robot swarm that satisfies the stated properties.
Phase three: Simulation – In this phase, the developer uses the prescriptive

model as a blueprint to implement and improve the robot swarm using a physics-
based computer simulation (henceforth simply simulation). By blueprint we
mean that the prescriptive model is used to identify the most relevant aspects of
the robot swarm to realize. This allows the developer to focus on these aspects
and neglect other minor details. For example, if a prescriptive model shows
that, by entering state i, an individual robot affects the performance of the whole
swarm more than by entering state j, the developer can focus on the first and
temporarily ignore the second. Moreover, concentrating on the prescriptive
model at design time allows the developer to direct his efforts towards high-level
decisions rather than on the implementation.

It is possible that the implementation choices or other unforeseen aspects of
the system yield in a simulated system that does not behaves as predicted by
the prescriptive model. In this case the developer must go back to the previous
phases, modify the prescriptive model to consider the results obtained from the
simulation, and verify whether the required properties still hold true.

Phase four: Robots – In the last phase, the developer realizes the final robot
swarm. Similarly to the transition between the prescriptive model and the
simulation, if the implementation on robots reveals that some assumptions made
during the previous phases do not hold, it might be necessary to modify the
simulated version or the prescriptive model, in order to keep all levels consistent.

3.3 Case studies

In this section, we illustrate property-driven design using two very common case
studies from the swarm robotics literature (Brambilla et al., 2013): aggregation
and foraging.

In both case studies, we perform model checking using PRISM, a state-of-the-
art suite for model checking (Kwiatkowska et al., 2004). PRISM is free and is
released as open source software under the GNU General Public License (GPL).1

3.3.1 Aggregation

In the first case study, we tackle aggregation: robots have to cluster in an area of
the environment. The robots have neither knowledge of the position of the other

1http://www.prismmodelchecker.org
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robots nor a map of the environment. We choose aggregation as a case study
for various reasons: i) aggregation is a simple case study and this allows us to
focus on the development process; ii) aggregation is a common case study in
swarm robotics (Brambilla et al., 2013); iii) aggregation possesses many of the
salient traits of swarm robotics; it is completely distributed, it is based on simple
robot-to-robot interactions, and it is characterized by stochasticity and spatial
aspects.

The aggregation case study that we discuss in this section is similar to the
one presented by Jeanson et al. (2005). We consider a dodecagonal environment
with two black spots of equal size called area A and area B. We call area C the
remaining white area. Each of the black spots is large enough to host all the
robots. See Figure 3.5 for a picture of the environment. We consider three swarm
sizes: 10, 20 and 50. We use three different arenas for the three different group
sizes, respectively of 4.91 m2, 19.63 m2 and 50.26 m2.

In the following, we will apply the 4-phase process explained in Section 3.2.

Phase one: Properties – The main property that the robot swarm must satisfy
is “eventually all the robots form an aggregate either on area A or area B”. We set a
time limit of 1000 seconds. Using PRISM syntax, we can define the following
property:

P ≥ k[F ≤ 1000 (Sa = Nt)|(Sb = Nt)] (3.1)

In less formal terms, we want to know whether, in the first thousand seconds
(F ≤ 1000), the number of robots in area A (Sa) or in area B (Sb) is equal to the
total number of robots in the swarm ((Sa = Nt)|(Sb = Nt)), with a probability
greater or equal to k (P ≥ k). The value of k depends on the size of the swarm:
k = 0.80 for Nt = 10; k = 0.40 for Nt = 20; and k = 0.01 for Nt = 50;

Another property is that the aggregate, once formed, is stable for at least 10
seconds, that is, robots do not change state once the aggregate is formed. We
want this to happen more than two thirds of the time an aggregate is formed:

(Sa = Nt)|(Sb = Nt)⇒ P ≥ 0.67 [G ≥ 10 (Sa = Nt)|(Sb = Nt)] (3.2)

In natural language, Property 3.2 can be expressed in this way: from the ag-
gregate state ((Sa = Nt)|(Sb = Nt)) is it true with probability of at least 0.67
(P ≥ 0.67) that the robot swarm stays for at least 10 seconds (G ≥ 10) in the
aggregate state?

Phase two: Model – To develop the prescriptive model for the aggregation
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Figure 3.2: The prescriptive model for aggregation. Each state is used to count the
number of robots in the corresponding area.

case study, we consider the three areas in which the environment is divided.
We define three states: Sa, Sb and Sc. A robot in area A or B is in state Sa

or Sb, respectively. Robots outside area A or B are in state Sc. We develop a
discrete-time macroscopic prescriptive model. In a macroscopic model each state
is associated with a counter to track the number of robots currently in that state
(see Section 2.2.1). In this model, we have three counters, a, b and c, where
a+b+c=N_t, associated to the respective states. See Figure 3.2 for the model of the
system.

In this initial stage of the definition of the prescriptive model, we assume
that the system can be effectively described by a non-spatial model, that is, a
model in which the trajectories of the robots are ignored and a robot can move
instantaneously from area C to area A or B, and vice versa. Moreover, for the
moment, we also ignore the effects of interferences between robots (Lerman et al.,
2005). In case these assumptions prove to be not realistic and the results obtained
with the prescriptive model do not match those obtained in simulation or with
the final robot swarm, we will modify them in the following phases, as explained
in Section 3.2.

The first design attempt is the following: a robot performs random walk and,
when it finds a black area, it stops. A robot stopped on a black area has a fixed
probability to leave.

Since the prescriptive model is non-spatial and ignores interference, we con-
sider only the geometric properties of the areas to compute pCA, that is, the
instantaneous probability that a robot transitions from SC to SA. A robot in area
C can either go to area A, go to area B or stay in area C. This means that a robot
in area C has a probability of going from area C to area A equal to pCA = AA

Aarena
,

of going from area C to area B equal to pCB = AB
Aarena

, and of staying in area C
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Table 3.1: Model checking results for the first solution with a fixed pAC. Column pAC
shows the best value of pAC. Columns Pr 1 and Pr 2 show whether Property 3.1 and 3.2
are satisfied and the exact values of the probabilities involved in their definition

Nt AA Aarena pCA pAC Pr 3.1 Pr 3.2

10 0.38 m2 4.91 m2 0.08 0.05 X (0.75) X (0.46)

20 0.78 m2 19.63 m2 0.06 0.04 X (0.15) X (0.07)

50 3.14 m2 50.26 m2 0.06 0.04 X (8.8× 10−5) X (3.7× 10−5)

equal to pCC =
AC

Aarena
= 1− (pCA + pCB). Note that pCA = pCB, since the two areas

have the same size.
The remaining probabilities depend on the behavior of the robots. The aggre-

gate can be obtained in area A or area B, thus we set the probabilities of leaving
these two areas to be equal: pAC = pBC. A robot in area A can only go to area
C or stay in area A, thus pAA = 1− pAC. The same holds for area B. From the
above, it follows that pAA = pBB. The only independent probability remaining is
pAC. Through model checking, we can find the value of pAC that maximizes the
probability involved in the definition of Property 3.1.

Using model checking, we can find the best values for parameter pAC and
whether the required properties are satisfied. Using PRISM we can also compute
the exact probabilities involved in the definition of the properties. In other words,
we can use PRISM to answer the question: “what is the probability that an aggregate
is formed in less than 1000 seconds?”. Table 3.1 shows that this first attempt at
tackling the aggregation case study is unsuccessful. The behavior obtains poor
results and the system does not cope well with increasing group sizes.

An analysis of the prescriptive model can help us in improving the developed
behavior. From the obtained results we observed that a fixed pAC does not
promote the formation of a single aggregate. A better solution is to let a robot
decide whether to leave according to the number of sensed robots around it: with
only few robots nearby, the probability to leave the aggregate pAC is high and
vice versa. We set pAC = 1− pmin−AC ∗ (Ns + 1), where pmin−AC is the minimum
staying probability we want for a robot and Ns is the number of other robots
sensed. We add 1 to the number of robots sensed, as we include also the robot
that is choosing its next action. Subsequently, using model checking, we find
the best value of pmin−AC for the different group sizes. As reported in Table 3.2,
results are significantly better both for Property 3.1 and Property 3.2.

With the current prescriptive model we are also able to define specifications of
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Table 3.2: Model checking results for the second solution where pAC = 1− pmin−AC ∗ (Ns +
1). Column pmin−AC shows the best value of pmin−AC. Column Pr 1 and Pr 2 are defined
as in Table 3.1.

Nt AA Aarena pCA pmin−AC Pr 3.1 Pr 3.2

10 0.38 m2 4.91 m2 0.08 [0.19, 0.24] X (0.95) X (0.92)

20 0.78 m2 19.63 m2 0.06 0.12 X (0.79) X (0.87)

50 3.14 m2 50.26 m2 0.06 0.10 X (0.25) X (0.71)

Figure 3.3: A screenshot of the simulated version of the robot swarm with 20 robots.

the hardware capabilities of the robots: a ground sensor, to differentiate between
the two black areas A and B and the white area C; a sensor to detect nearby
robots; and wheels to move. An example of such a robot is the e-puck (Mondada
et al., 2009), which can be extended with a range and bearing board that allows
it to perceive the presence of neighboring robots (Gutiérrez et al., 2009).

Phase three: Simulation – In this aggregation case study, the prescriptive
model captures well the microscopic behavior of the single robots, thus it is quite
straightforward to implement the robot swarm in simulation. However, several
implementation details are not explicitly present in the prescriptive model, such
as how the robots perform random walk, and have now to be programmed
explicitly.

We implement the robot swarm using the ARGoS simulator (Pinciroli et al.,
2012). Figure 3.3 presents a screenshot of the simulated robot swarm.

We perform three different sets of experiments, one for each group size.
To validate the prescriptive model we measure the average time necessary to
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Figure 3.4: The results obtained with the ARGoS simulator. The graphs show the time
at which the experiment is stopped. This time is less then 10,000 seconds in case the
aggregate is formed, or equal to 10,000 seconds in case the aggregate is not formed.
Results are presented for different pmin−AC over 100 runs for 10, 20 and 50 robots.

form a complete aggregate on 100 runs with different values of pmin−AC. The
robots are deployed in a random position at the beginning of each experiment.
Each experiment is halted when a complete aggregate is formed or after 10,000
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seconds.
As reported in Figure 3.4, for all the three group sizes, the best results are

obtained with the value pmin−AC predicted using the prescriptive model. However,
the results related to Property 3.1 obtained with the simulated version of the
robot swarm are usually worse than those predicted by the prescriptive model,
in particular with 20 and 50 robots. With 10 robots and pmin−AC = 0.22 the
simulated robot swarm was able to form a complete aggregate before 10,000
seconds 100 times out of 100, in line with the predictions of the prescriptive
model. However, with 20 robots and pmin−AC = 0.12, an aggregate was formed
in less than 1,000 seconds only 53 times out of 100, whereas in the prescriptive
model this happened with probability 0.79. With 50 robots and pmin−AC =

0.10 the difference is even more evident: only 2 runs out of 100 resulted in
an aggregation time of under 1,000 seconds whereas the prescriptive model
predicted a probability of 0.25.

As explained in Section 3.2, since the results obtained from the prescriptive
model do not match those obtained with simulations, we need to modify the
model in order to make them consistent. Our conjecture is that the discrepancy
in performance between the prescriptive model and the simulated robot swarm
is due to the fact that, as the number of robots grows, interference between
robots reduces pCA. This is because the robots spend time avoiding collisions and
because the robots stopping in the black areas prevent other robots from accessing
them. These aspects are not considered explicitly in the model. Reducing pCA
in the model allows us to obtain results that are closer to those obtained in
simulation. For 10 robots there is no need to modify pCA, as the results already
match. For 20 robots and pCA = 0.05, we observe that Property 3.1 is satisfied:
robots form an aggregate in less than 1,000 seconds with probability 0.53. This
matches the results obtained in simulation. For 50 robots we set pCA = 0.04,
which gives a probability of 0.01.2 Table 3.3 presents a comparison between
the number of successful aggregates obtained before 1,000 seconds obtained in
simulation and those obtained with model checking with the old and pCA new
values.

To test Property 3.2, we perform 100 runs of the simulated experiments for
10,000 seconds with the three group sizes. In the experiments, we measure
whether the robot swarm satisfies Property 3.2, that is, whether a complete

2To obtain better results with 50 robots it would be necessary to develop one behavior for Nt < 50 and a
different behavior for Nt ≥ 50. Since our main goal is to introduce property-driven design, for the sake of
simplicity we avoid this. Note however that, as showed in Figure 3.4, using our approach we were able to
find the best parameter for Nt = 50.
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Table 3.3: A comparison between model checking and simulation. The table presents the
probability involved in the definition of Property 3.1 (model checking) compared to the
experimental results over 100 runs (simulation).

Nt Model checking (old pCA val.) Model checking (new pCA val.) Simulation

10 0.95 with pCA = 0.08 0.95 with pCA = 0.08 100/100

20 0.79 with pCA = 0.06 0.53 with pCA = 0.05 53/100

50 0.25 with pCA = 0.06 0.01 with pCA = 0.04 2/100

aggregate, once formed, lasts more than 10 seconds. In all the cases in which a
complete aggregate was formed before 10,000 seconds, Property 3.2 was satisfied.

Videos of the simulated experiments are available in the supplementary
material (Brambilla et al., 2014b).

Phase four: Robots – We perform 10 experiments with a group of 10 e-pucks
in an arena identical to the simulated one. A screenshot of an experiment can be
seen in Figure 3.5. Figure 3.6 shows a comparison between the time necessary
for achieving aggregation obtained with the robots and in simulation. A video
of a run is available in the supplementary material (Brambilla et al., 2014b).

In 10 runs out of 10, both Property 3.1 and Property 3.2 were satisfied. The
results obtained with the robots are in line with those obtained in simulation.

The obtained robot swarms is able to aggregate satisfying the required prop-
erties. For this reason, there is no need to further update the prescriptive model
and we can declare the process completed.3

3.3.2 Foraging

In the second case study, we tackle foraging. In the simplest form of foraging,
robots harvest objects and store them in the nest. The objects can be scattered in
random positions or located in specific areas in the environment called sources.
Foraging can be seen as an abstraction of more complex and realistic applications,
such as search and rescue, land mine removal, waste cleaning and automated
warehouse operation.

The number of objects retrieved typically depends on the number of robots:
a single robot can perform foraging alone, but additional robots could be added
to increase the performance of the swarm as robots working in parallel are able
to retrieve more objects per time unit than a single robots. However, when the

3The obtained results are satisfying for Nt = 10 and Nt = 20
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Figure 3.5: A picture of an experiment performed with 10 e-puck robots.
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Figure 3.6: A graph showing the empirical cumulative distribution Fn(x) of the time
necessary to achieve aggregation obtained with robots (10 runs) and in simulation (100
runs). In both cases Nt = 10 and pmin−AC = 0.22.
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density of the robots in the environment increases, the performance of each
single robot may be reduced due to interference (Lerman and Galstyan, 2002,
Pini et al., 2009).

In this case study, we assume that the robotic platform is given: the task must
be tackled using e-pucks (Mondada et al., 2009). The e-puck does not have the
manipulation capabilities to interact with physical objects, so we consider an
abstract version of foraging: instead of interacting with objects, e-pucks interact
with TAM devices (Brutschy et al., 2010). The TAM is a device similar to a booth,
in which a robot can enter. It has a system of light barriers to sense the presence
of a robot, and an LED that can be used to communicate information about its
internal state. In this case study, TAMs are used to simulate the manipulation of
objects: an e-puck can enter in a TAM, wait a fixed time and leave to simulate
harvesting or storing an object.

The arena comprises 20 TAMs: 5 TAMs on the north wall act as the nest, each
of these TAMs is a storing location; 15 TAMs on the other walls act as sources,
locations where objects can appear. At any given time, in the arena there are O
objects available, that is, a new object appears as soon as one is harvested by a
robot. We perform experiments in which O equals {2, 4, 6, 8, 10}. The number of
available storing locations depends on the number of robots currently storing an
object: it can vary from 5, when no robot is using a storing location, to 0 if all
are in use.

The state of a TAM is encoded using colors: green when the TAM is available
for storage; blue when the TAM has an object available for harvesting; red when
the TAM is busy, that is, a TAM in which a robot is currently harvesting or
storing an object; off/black when the TAM is unavailable.

The environment is enclosed in 2 m× 2 m square (see Figure 3.7 and Fig-
ure 3.12). Note that there is no globally perceivable clue in the environment
that informs the robots of the position of the nest, differently from many other
foraging studies (See Brambilla et al. (2013) for a review including work on
foraging).

To allow robots to see the TAMs, we use e-pucks equipped with an omnidi-
rectional camera.4 Using the omnidirectional camera, robots can see the LEDs of
the TAMs within a range of 0.5 m.

In the following, we will apply the 4-phase process presented in Section 3.2. In
the foraging case study, we use the continuous time version of the Markov chain
model, to model more easily the duration of some actions, such as harvesting

4See http://www.gctronic.com for more details.
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Figure 3.7: A screenshot of the simulated version of foraging using 20 robots. Green
lighted TAMs signal storage locations, blue lighted TAMs signal objects to be taken, dark
TAMs are not available.

and storing an object.

Phase one: Properties – In foraging, the main requirement is that the swarm
retrieves at least a certain number of objects within a fixed time:

Robj ret ≥ k [C ≤ 600] (3.3)

where Robj ret indicates that we are interested that the expected value of the
reward obj ret is greater or equal than k, and C ≤ 600 indicates that we are
interested in the cumulative value over 600 seconds. The number k of objects that
we wish to retrieve depends on Nt, the number of robots composing the swarm,
and on O, the number of objects available in the environment at any given time;
see Table 3.4.

Another requirement is on the worst case performance, that is, we want to ensure
that the robot swarm is able to retrieve at least a minimum number of objects in
600 seconds. Model checking allows us to formally verify this condition since we
can compute not only the expected value, but also its cumulative distribution (or,
conversely, the density function). Formally, the second requirement is defined
as:

P ≥ 0.90 [F ≤ 600 obj ret > 40] (3.4)
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Table 3.4: The value of k necessary to satisfy Property 3.3 for different values of Nt, the
number of robots composing the swarm, and values of O, the number of objects available
in the environment at any given time.

Nt O k

20 2 45

20 4 55

20 6 65

20 8 75

20 10 85

Nt O k

10 6 40

20 6 65

50 6 90

100 6 75

In natural language, Property 3.4 can be expressed as: is it true with probability
greater than 0.90 (P ≥ 0.90) that at least 40 objects are retrieved (obj ret > 40)
in less than 600 seconds (F ≤ 600)? To simplify the discussion, we verify
Property 3.4 only in the case where Nt = 20 and O = 6.

Phase two: Model – To build the prescriptive model, we consider the different
actions that a robot must perform. We then associate a state of the Markov chain
to each of these actions.

A robot searches for objects by performing random walk in the environment
(So state). Once an object is found, the robot tries to harvest it (H state); in case of
multiple objects in range, the robot goes towards the closest one. If the harvest
action is unsuccessful, because, for instance, another robot harvests the object,
the robot goes back to searching. When the object is reached, the robot waits
inside the TAM for a fixed amount of time until the object is harvested (Hw state).
Once the robot has harvested an object, it proceeds to search for the nest by
performing random walk (Sn state). As soon as an available storage location is
found, the robot tries to store the carried object (ST state); also in this case, the
closest storage location is approached if multiple storing locations are seen. If
the store action is unsuccessful, the robot searches for another storage location
until the object is stored. Similar to the harvest operation, also in this case the
robot waits inside a TAM for a fixed amount of time until the object is stored
(STw state). A successful store operation increases the object counter (obj_ret).
The robot then searches for a new object to harvest.

Robots always try to avoid collisions with obstacles and other robots. Practi-
cally, this produces two behaviors: when a robot is trying to enter a TAM (state H

or state ST), it follows a vector that is the sum of a vector pointing to the desired
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Figure 3.8: The continuous time Markov chain used to model foraging. H is the harvest
state; Hw is the wait to harvest state; So is the search object state; Ao is the avoid (while
searching for an object) state; ST is the store state; STw is the wait to store state; Sn is the
Search nest state; An is the Avoid (while searching for the nest) state; Transitions are labeled
with their respective rates multiplied by the number of robots currently in that state:
λi→j is the rate at which an individual robot moves from state i to state j; Ni is the
number of robots currently in state i. To compute the expected number of objects
retrieved, we keep track of the number of times the transition from STw to So, labeled
Obj ret, happens.

destination and a vector pointing away from the closest obstacle. When a robot is
performing random walk without a specific destination instead (state So or state
Sn), if it encounters an obstacle or another robot, it starts turning on the spot for a
random number of steps and then it begins again to move straight. This random
number of steps follows a geometrical distribution. We model these different
reactions in two different ways: in the first case, the action of the robot is not
significantly disturbed, as the robot performs only a slight change of trajectory
towards its goal. For this reason, this first kind of collision avoidance affects only
the time to complete the action, but does not change the behavior of the robot.
In the second case, instead, the robot completely changes its direction to avoid a
collision, resulting in a significant change in its behavior and its chance to find
objects or the nest. For this reason, the second kind of collision avoidance is
modeled by adding two states: state Ao in case the robot is avoiding a collision
when searching for an object, and state An in case the robot is avoiding a collision
when searching for the nest.

See Figure 3.8 for a complete view of the prescriptive model.

We now have the structure of the behavior that the robots should follow. We
need to assign values to the transition rates. We compute the transition rates
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considering the behavior of a single robot. For the macroscopic model, the
rates are then multiplied by the current number of robots in the related state, as
illustrated in Figure 3.8.

All the rates involved in the definition of the model depend on the geomet-
rical characteristics of the environment and/or on the behavior of the robots.
Unfortunately, differently from the previous case study, we cannot completely
define them a priori since it is impossible to identify the correct value of the
parameters involved in their definition without experimental data. Note that the
goal of this phase is not to create a model that is as precise as possible, but one
that can be used by us to develop and improve the desired robot swarm. Since
we do not have experimental data, the model we are creating is largely arbitrary.
Other valid choices could have been made. We make some working hypotheses
about the system that can be subject to refinements or changes in the subsequent
phases, should they prove not to be sufficiently accurate or correct. In particular,
parameters will be fitted once experimental data are available, that is, in phase
three.

In the following, we present how each rate is defined. We define λSo→H, the
rate at which a robot finds an object, as proportional to the density of available
objects in the environment:

λSo→H = α
O

Aarena
,

where O is the number of objects available at any given time, Aarena is the area of
the environment and α is a parameter.

We define λSo→Ao, the rate at which a robot searching for an object finds
another robot and then performs obstacle avoidance, as proportional to the
density of robots in the environment:

λSo→Ao = β
Nt

Aarena
,

where Nt is the total number of robots in the environment, and β is a parameter.

Rates λSn→ST and λSn→An are defined similarly, considering the number of
storage locations instead of the number of objects:

λSn→ST = γ
D

Aarena
,
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λSn→An = δ
Nt

Aarena
,

where D is the number of storage locations and γ and δ are two parameters.
Rates λAo→So and λAn→Sn depend on the time necessary for a robot to perform

obstacle avoidance. As said before, if a robot encounters an obstacle or another
robot while searching for objects or for the nest, it performs collision avoidance
by turning on the spot for a random number of steps distributed geometrically
and then it starts again searching for objects or the nest. The rate at which a
robot moves from collision avoidance back to search is thus:

λAo→So = λAn→Sn = poa,

where poa is the parameter of the geometrical distribution.
We define λH→Hw and λST→STw, the rates at which a robot going towards an

object-TAM or a storage-TAM manages to enter it, as the reciprocal of the time
necessary to get in the TAM, counted from the instant in which the robot sees it:

λH→Hw = λST→STw =
(r

s

)−1
,

where r is the range at which a robot sees a TAM and s is the forward speed of a
robot.

A robot trying to enter a TAM is not always successful, other robots may
“steal” its object by occupying the storage location before it can do it. This means
that not all robots going towards a TAM enter it. Some are interrupted by other
robots and thus are forced to search for another available TAM. This is modeled
by the transition H→ So and ST→ Sn. We define λH→So and λST→Sn, the related
rates, as proportional to the density of robots in the environment:

λH→So = ε
Nt

Aarena
,

λST→Sn = η
Nt

Aarena
,

where ε and η are parameters. We expect ε and η to have different values,
as storage locations are all next to each other, generating more interference,
while objects to harvest in general are evenly distributed along the walls of the
environment.

The last rates we need to define are λHw→Sn and λSTw→So, the rates at which
robots in the TAM complete their operations and exit. These rates are the
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reciprocal of the time spent by a robot in a TAM:

λHw→Sn = λSTw→So = (tTAM)−1 ,

where tTAM is the time spent by a robot in a TAM.

Since we do not have empirical data to estimate the parameters, at this point
we cannot use model checking to compute the expected number of objects
retrieved, or whether the desired properties are satisfied. However, even without
empirical data, we can use the model to improve the behavior of the robots. For
example, by analyzing the model, we can observe that increasing the rate at
which the robots find objects or storage locations—that is, increasing λSo→H and
λSn→ST—results in an increase of objects retrieved.

In order to increase these rates, we cannot modify the number of objects
available at any given time or the number of storage locations, since they are
given. We could act on the parameters, but it is not clear how to change the
behavior of the robots to increase these parameters. Even though we cannot
change the dimensions of the environment, we can change the size of the area
effectively covered by the robots. In other terms, we can change the behavior of
the robots so that they do not cover the whole environment when searching for
objects or storage locations. In particular, we could let robots avoid places where
they know they will not find anything useful.

In the behavior defined before, robots searching for objects and for the nest go
straight until they find an obstacle such as a wall or another robot. This means
that robots that are carrying an object while searching for the nest may go close
to other available objects, interfering with robots not carrying objects. Similarly,
robots searching for objects often go close to the storing locations, interfering
with the other robots. A possible solution is that robots searching for objects
avoid storing locations as soon as they see them and, similarly, robots searching
for the nest avoid objects as soon as they see them. This improved behavior is
depicted in Figure 3.9.

This improvement in the behavior can be modeled by decreasing the value of
Aarena. The rates are updated in the following way:

λSo→H = α
O
Ao

,

where Ao is the area explored by the robots searching for objects and avoiding
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Figure 3.9: The modification of the behavior used to reduce interference and reduce
the area searched by the robot. A robot (depicted as a green circle with a yellow arrow
on top) carrying an object performs collision avoidance (full arrow) as soon as it sees
an other object, instead of reaching to the wall (dotted arrow). The light blue circular
sections represent the areas in which a robot sees an object. The same applies to robot
searching for the nest, even though it is not displayed in the figure.

storage locations, with Ao < A;

λSn→ST = γ
D
An

,

where An is the area explored by the robots searching for storage locations and
avoiding objects, with An < A; All other rates are left unchanged since the
density of the robots involved in their definition does not change. For example,
consider λSo→Ao. The area involved in the definition of this rate is reduced, as
explained above. However, also the number of robots operating in that area is
reduced. In other words, even though the area considered is reduced, the density
of robots does not change.

More complex improvements, such as task allocation mechanisms, could
be implement to further increase the performance of the system, should the
obtained performance not be sufficient. However, for the sake of brevity and
clarity we limit our design process to the simple improvement presented above.

Phase three: Simulation – In this phase, we implement the foraging robot
swarm using the ARGoS simulator (Pinciroli et al., 2012).

The prescriptive model developed in phase two provides us with a detailed
blueprint to implement the robot swarm: the behavior of the individual robot
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Table 3.5: The numerical parameters used in the foraging prescriptive model. The values
are obtained from the experimental data obtained in phase three.

Value
O {2, 4, 6, 8, 10}
Nt {10, 20, 50, 100}
D 5
Aarena 4 m2

α 4× 10−2

β 1× 10−2

γ 3.9× 10−2

δ 9× 10−3

Value
poa 0.20
r 0.5 m
s 0.1 m s−1

ε 6.5× 10−2

η 1.01× 10−1

tTAM 3 s
Ao 3 m2

An 3.7 m2

can be implemented using a finite state machine that resembles the Markov
chain defined in phase two. Nonetheless, some implementation details, such
as how robots stop inside a TAM, have been ignored in the prescriptive model,
in order to focus on the more important details at design time and have to be
programmed explicitly at this moment.

We measured the number of objects retrieved over 600 seconds on 100 runs.
We first performed experiments using the initial behavior and then using the im-
proved one, as explained in the previous phase. Table 3.5 shows the parameters
used for model checking derived from the experimental data.

We can now compute the expected number of objects retrieved in 600 seconds
using model checking on the developed model and compare these values with
the results obtained from the simulated experiments.

Figure 3.10 shows the results obtained in simulation together with the ex-
pected results predicted by the prescriptive model. These results have been
obtained using 20 robots with different values of O, the number of objects avail-
able at any time. Figure 3.11 shows the results obtained with O = 6 and a
different number of robots. Table 3.6 shows whether Property 3.3 is satisfied.

In Figure 3.10 it is possible to observe that indeed the behavior improvement
introduced in phase two significantly increases the number of objects retrieved.
The improved behavior is always significantly better than its counterpart—
Wilcoxon test with p < 0.01.

The correspondence between the results obtained from the prescriptive model
and the ones obtained from the simulations is quite good, even though not perfect.
For our goals and purposes, the model captures qualitatively the behavior of the
robot swarm, thus it is not necessary to further refine it.

We also verify Property 3.4 using model checking and compare it with the
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Figure 3.10: A comparison between the results obtained using 20 robots with the original
behavior and with the improved one for different values of O, which is the number of
objects available at any time. Box plots show results obtained over 100 experimental
runs using the ARGoS simulator, while diamonds show the expected results obtained
with PRISM.
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Figure 3.11: The number of object retrieved with different swarm sizes and O = 6. Box
plots show results obtained over 100 experimental runs using the ARGoS simulator,
while diamonds show the expected results obtained with PRISM.
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Table 3.6: A table presenting whether the simulated systems are able to satisfy Prop-
erty 3.3. k is the threshold on the expected number of objects retrieved. Property 3.3 is
satisfied if the values obtained in simulations are greater or equal than k. The results
are presented both for the original and the improved behavior, showing whether they
satisfy Property 3.3 and the value of the median.

Nt O k Original Improved

20 2 45 X (43) X (48)

20 4 55 X (58) X (63)

20 6 65 X (64) X (71)

20 8 75 X (70) X (78)

20 10 85 X (75) X (85)

Nt O k Original Improved

10 6 40 X (41) X (43)

20 6 65 X (64) X (71)

50 6 90 X (87) X (101)

100 6 75 X (76) X (97)

Figure 3.12: A picture of an experiment performed with 20 e-puck robots and O = 6.

results obtained from the simulations. Model checking tells us that Property 3.4
is not satisfied in the prescriptive model of the original behavior with 20 robots
and O = 2. This matches the experimental results, where 15 runs over 100
resulted in less than 40 objects retrieved. Instead, with the improved behavior,
property 3.4 is satisfied. This matches the experimental results, where only 2
runs over 100 resulted in less than 40 objects retrieved.

All experimental data can be found in the supplementary material (Brambilla
et al., 2014b).

Phase four: Robots – We performed 10 experiments with a group of 20
e-pucks in an arena identical to the simulated one. A picture of an experiment
can be seen in Figure 3.12. Videos of the performed experiments can be found
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Figure 3.13: A graph showing the empirical cumulative distribution Fn(x) of the number
of object retrieved using robots (10 runs) and in simulation (100 runs). In both cases
Nt = 20 O = 6.

in the supplementary material (Brambilla et al., 2014b). Figure 3.13 shows that
the results obtained with real robots and simulated robots are very similar.
Property 3.4 is satisfied. There is no need to update the model and thus we can
declare the process completed.

3.3.3 Discussion

The two case studies presented in the section show that using property-driven
design we were able to develop two robot swarms that tackle successfully aggre-
gation and foraging: all the required properties are satisfied.

As shown, with property-driven design it is possible to analyze and develop
behaviors characterized both by numerical and non-numerical parameters. For
example, in the aggregation case we analyzed the effects of changing the proba-
bility to leave a black area, whereas in the foraging case we analyzed the effects
of changing the exploration behavior.

One of the main advantages of property-driven design is that it allows the
developer to focus on the design of the system rather than on its implemen-
tation: by focusing the designing efforts on the abstract model of the system,
the developer can concentrate on the important aspects of the system to create
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because “whereas a simulation should include as much detail as possible, a good
model should include as little as possible” (Smith, 1978). As an example, in the
foraging case study we leveraged the prescriptive model developed in phase
two of property-driven design to identify possible improvements of the partially
realized system: we were able to identify the important aspects of the system
being designed, which allowed us to avoid wasting time on improving other
non-relevant aspects.

Another advantage of property-driven design is the reduced risk of devel-
oping a robot swarm that does not satisfy the requirements. Up to now, there
was no clear way to specify the requirements of a robot swarm. In property-
driven design, requirements are specified in a formal way at the beginning of
the development process in terms of desired properties. Moreover, thanks to
model checking it is possible to evaluate whether the robot swarm fulfills such
properties at each step of the design and development process. This advantage
of property-driven design has been highlighted by both case studies.

Finally, property-driven design addresses also the problem of the low re-
usability of solutions in swarm robotics. Usually behaviors for robot swarms
are developed in a disposable way. This is due to the fact that there is no clear
distinction between the design and the implementation. Thus, if a different hard-
ware platform is available, or a slightly different task is tackled, it is necessary to
start from scratch. With property-driven design instead, the prescriptive model
developed in phase two can be partially or completely reused: i) the model is
hardware independent, so that it can be adapted to the available robots, or even
guide the process of deciding the best robot to use; and ii) the model can be
extended to deal with new properties and verify if they are satisfied even without
testing the system in simulation or with robots. The reusability of the prescrip-
tive model reduces the risk that designers “reinvent the wheel” each time they
develop a robot swarm. For example, the model of foraging developed in the
presented case study could be easily adapted for robots with more sofisticated
manipulation capabilities. In the future, it is also possible to imagine a set of
publicly available models for swarm robotics applications that can be reused and
modified by other developers.

The development process of the case studies presented in the section high-
lights also some issues with property-driven design.

The main issue is that ultimately the step from the prescriptive model to
its implementation remains in the hands of the developer. Nonetheless, the
prescriptive model can be used as a blueprint for the implementation process,
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providing the developer with a valuable tool to obtain robot swarms with prov-
able properties.

Another issue is the strong reliance on modeling. Modeling robot swarms is a
difficult task on its own: robot-to-robot interactions, spatial and temporal features
and interference are difficult to completely describe using models. Luckily,
modeling robot swarms has been the focus of a large number of studies (see
two reviews of the literature by Brambilla et al. (2013) and Lerman et al. (2005))
providing a solid theoretical foundation to property-driven design.

3.4 Summary

Property-driven design is a top-down design method based on prescriptive
modeling and model checking: the desired robot swarm is first described using
a set of properties; subsequently a prescriptive model of the robot swarm is
created; the prescriptive model is used as a blueprint for the implementation of
the robot swarm first in simulation and then with robots.

Property-driven design is conceived to be part of swarm engineering: the
systematic application of scientific and technical knowledge to specify require-
ments, design, realize, verify, validate, operate and maintain a swarm intelligence
system. Up to now, the design and development of a robot swarm is performed
using a code-and-fix approach based completely on the ingenuity and experience
of the developer who does not have any scientific or technical support in his
activity. Property-driven design aims at providing such scientific and techni-
cal support, with many advantages compared to the traditional unstructured
approach.

In this section, we demonstrated, by tackling two different case studies, that
property-driven design is an effective method for the design and development
of robot swarms.



Chapter 4

Analysis of robot swarms using
model checking

In this chapter, we demonstrate the use of model checking to analyze and verify
robot swarms.

In Section 4.1, we analyze a collective decision-making behavior using a
macroscopic Markov chain model developed with Bio-PEPA.

In Section 4.2, we analyze a collective transport behavior using a microscopic
Markov chain model developed with Klaim.

In Section 4.3, we provide a discussion concerning the use of model checking
for the analysis of robot swarms.

This chapter is based on Massink et al. (2012, 2013), Gjondrekaj et al. (2012).

4.1 Analysis of a collective decision-making behavior using Bio-
PEPA

As presented in Chapter 2, the most common ways to analyze a robot swarm
is through the use of stochastic simulations (Dixon et al., 2011) and fluid flow
analysis (Lerman et al., 2005). In this dissertation, we present the use of model
checking as an effective analysis tool in swarm robotics.

Stochastic simulations, fluid flow analysis and model checking allow a devel-
oper to perform different analyses of a system behavior. However, for each of
these analyses, a specific model is, in general, necessary: stochastic simulation
is usually performed on microscopic models, fluid flow analysis is usually per-
formed on macroscopic models based on rate equations, and model checking
is usually performed on Markov chains. This means that, in order to perform

87
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a complete analysis of a robot swarm, it would be necessary to produce three
different models. This model multiplication would greatly increase the effort
necessary for the analysis process. Moreover, when dealing with different mod-
els, the issue of mutual consistency must be addressed, as different models are,
in general, syntactically and semantically different. As a consequence, in the
great majority of the cases only one model is produced.

In this section of this dissertation, we present a novel approach to model
robot swarms based on Bio-PEPA (Ciocchetta and Hillston, 2009), which allows
one to perform different consistent analyses of a system from the same formal
specification.

Bio-PEPA is a process algebra originally developed for biochemical systems.
It has been adopted to analyze a number of biological systems (Ciocchetta and
Hillston, 2012) and disease spread (Benkirane et al., 2012), and it has also been
used to analyze emergency egress (Massink et al., 2011a) and crowd dynam-
ics (Massink et al., 2011b). These two last applications are particularly interesting
for swarm robotics, as they concern systems characterized by a high number of
individuals and lack of a centralized controller.

Bio-PEPA is well suited to analyze and develop robot swarms; with Bio-PEPA
it is possible to develop a specification at the macroscopic level while providing
also primitives for spatial and temporal description and for the composition
of robot into teams or groups. Moreover, Bio-PEPA enables the developer to
define species, which can be used to characterize groups of robots with specific
attributes and actions; for instance, species can be used to differentiate between
groups of robots performing different tasks at the same location.

In this dissertation, we use Bio-PEPA to further analyze a collective decision-
making behavior that has been studied in a number of other papers (Montes de
Oca et al. (2011), Scheidler (2011) and Valentini et al. (2012)). The case study
consists of a robot swarm that have to identify the shortest path between two
possible alternatives. We validate our results against those presented in Montes
de Oca et al. (2011).

The outline of this section is as follows. In Section 4.1.1, we give a brief
presentation of Bio-PEPA. In Section 4.1.2, we present the case study and its
Bio-PEPA specification. In Section 4.1.4, we present and validate our results.
In Section 4.1.8, we present a summary of analysis of a robot swarm using
Bio-PEPA.
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4.1.1 Bio-PEPA

Bio-PEPA is a process algebra originally developed by Ciocchetta and Hillston
(2009) based on the Performance Evaluation Process Algebra (PEPA) (Hillston,
1996). For more information about process algebras, see Section 2.2.1.

The particular aspect that distinguishes Bio-PEPA from other process algebras
is the way in which processes are interpreted. In Bio-PEPA, processes represent
groups of similar entities. The interactions between processes, that is, the inter-
actions between groups of entities, affect their population sizes. In the context
of swarm robotics we use the abstraction of “processes as groups of entities” to
model groups of robots performing different operations. We use the concept
of interaction to model, for example, the movement of robots between different
locations and for the formation of teams. The idea is that movement of robots
between locations can be modeled as a simultaneous decrease of the size of a
population situated in the location that is left and the increase of the size of a
population in the location of arrival. This is similar to models based on rate
equations. Regarding team formation, another feature, specific to Bio-PEPA, is
particularly useful: the possibility to express the multiplicity of entities involved
in single interactions, known as “stoichiometry” in the context of biochemistry.
With this feature one can specify, for example, that three single robots can form
a single team that subsequently is treated as a single entity in a new kind of
“species”.

Interactions among processes have durations that are modeled as continuous
random variables with negative exponential distributions. The use of negative ex-
ponential distributions stems form the fact that Bio-PEPA semantics is based on
continuous time Markov chains (CTMCs). In practice, restriction to exponential
distributions does not represent a real limitation since it has been shown that any
random distribution can be approximated by suitable combinations of negative
exponential ones, of course at the cost of larger models, which can be amelio-
rated by suitable exploitation of process algebra equivalences (Tschaikowski and
Tribastone, 2012).

A further feature of Bio-PEPA is that the rates at which interactions occur
can be defined as general functions of the sizes of the groups involved in the
interaction. This provides great flexibility in the definition of such rates1.

1At the current state of Bio-PEPA, some Bio-PEPA specifications cannot be analyzed with the full array
of analysis methods available. For example, it is not possible to directly use Gillespie’s stochastic simulation
algorithms to analyze specifications with interactions that depend on more than two species as input. An
intermediate step to simplify the model is necessary. Additionally, caution is needed with the interpretation
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We now briefly present the aspects of the Bio-PEPA language that are directly
relevant for this dissertation. The interested reader can find further details of
Bio-PEPA in Ciocchetta and Hillston (2009).

Bio-PEPA specifications consist of two main kinds of components.
The first kind of components is called the “species” component. Each species

defines the behavior of all the individuals belonging to it. Species components
are composed together in order to build a model using the parallel composition
operator with synchronization on shared actions. The name “species” derives
from the biochemical origins of Bio-PEPA; in the context of swarm robotics,
the name “population” is usually preferred; in the following, we will consider
“species” and “population” as synonyms. Species components are usually called
processes in other process algebras.

The second kind of component is called model component. Model components
define how species components are composed together in order to build a model
using the parallel composition operator with synchronisation on shared actions.

The syntax of Bio-PEPA components is thus defined as follows, where S
stands for a species component and P for a model component:

S ::= (α, κ) op S | S + S | C with op = ↓ | ↑ | ⊕ | 	 | � and P ::= P ��
L

P | S(x)

The prefix combinator “op” in the prefix term (α, κ) op S represents the impact
that action α has on species S. Specifically, ↓ indicates that the number of entities
of species S decreases when α occurs, and ↑ indicates that this number increases.
The amount of the change is defined by the (stoichiometry) coefficient κ. This
coefficient captures the multiples of an entity involved in an interaction. The
default value of κ is 1, in which case we simply write α instead of (α, κ). To better
understand this formula consider the follow example: (a, 3)↓B, which can be
interpreted as upon action a, three instances of species B are removed from the
population. Action durations are assumed to be random variables with negative
exponential distributions, characterized by their rates. The rate of action α is
defined by a so called functional rate or kinetic rate. Action rates are defined in
the context section of a Bio-PEPA specification. The operator “+” expresses the
choice between possible actions, and the constant C is defined by the equation
C=S.

The process P ��
L

Q denotes cooperation between model components P and Q,

of numerical solutions of the sets of ordinary differential equations derived from a Bio-PEPA specification.
We will address these issues in more detail in the analysis of the robot swarm decision-making strategy in
Section 4.1.4. More information can be found in Ciocchetta and Hillston (2009).
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the set L determines those actions on which P and Q are forced to synchronize.
The shorthand P ��

∗
Q denotes cooperation on all actions that P and Q have in

common. In the model component S(x), the parameter x ∈ IR represents the
initial amount of the species.

As a simple example, consider two groups of robots, R and B, identified by
their respective color, red and blue. Assume that we want to model the formation
of a group T of teams each composed of two red robots and a blue one. Assume
furthermore that the team formation occurs with a rate r that is proportional to
the population size of red and blue robots. In Bio-PEPA this behavior can be
modeled as follows. The effect of the formation of a team, represented by action
mk team, on the three “species” can be defined as:

R
def
= (mk team, 2)↓R B

def
= (mk team, 1)↓B T

def
= (mk team, 1)↑T

The system can then be described by the following model component:

(R(r0) ��
{mk team}

B(b0)) ��
{mk team}

T(0)

where r0 and b0 denote the initial population sizes of the groups of red and
blue robots, respectively, and 0 denotes that initially T is empty. What remains
to define is the rate at which the teams are formed, that is, the rate of action
mk team. This rate could be defined as fmk team = r× R× B.

Operationally, what happens is that every time a mk team action occurs, the
three species that share this action are synchronized and two red robots and one
blue are taken away from the species R and B, respectively. At the same time one
new team is generated and added to the species T increasing its population size
by 1. How often the mk team action occurs is given by its rate function, which
in turn depends on the actual population sizes of the species R and B and a
constant rate r. Note also that, whenever one of these population sizes become
zero, the rate goes to zero too and the interaction can no longer take place.

One of the distinguishing characteristics of Bio-PEPA are locations, which are
meant to be a symbolic representation of physical space. Locations are specified
by extending prefix terms with the notation @. For instance, in order to specify
that action α, has an effect op on population S that is located in location l, and
in particular involves κ individuals of S, we write (α, κ) op S@l. Additionally,
locations are used in model components in order to specify the initial size of
the various populations in each location. Each location used in a Bio-PEPA
specification must be declared; thus, a Bio-PEPA system specification with loca-
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tions consists of a set of species components, a model component, and a context
containing definitions of locations, functional/kinetic rates, parameters, and so
on.

Bio-PEPA is given a formal operational semantics based on continuous time
Markov chains (CTMCs) and on ordinary differential equations (ODE) (Cioc-
chetta and Hillston (2008) and Ciocchetta and Hillston (2009)).

Bio-PEPA is supported by a suite of software tools which automatically pro-
cess Bio-PEPA models and generate internal representations suitable for differ-
ent types of analysis as described in detail in Ciocchetta and Hillston (2009)
and Ciocchetta et al. (2009). These tools include mappings from Bio-PEPA to dif-
ferential equations (ODE) supporting a fluid flow approximation (Hillston, 2005),
stochastic simulation models (Gillespie, 1977), CTMCs with levels (Ciocchetta
and Hillston, 2008) and PRISM models (Kwiatkowska et al., 2011) amenable to
statistical model checking. Consistency of the analyses is supported by a rich
theory including process algebra, and the relationships between CTMCs and
ODE.

4.1.2 Collective decision-making: a Bio-PEPA specification

To demonstrate the characteristics of Bio-PEPA, in this section we analyze a
robot swarm performing collective decision-making, as originally presented by
Montes de Oca et al. (2011)2. The goal of the robot swarm is to perform foraging:
the robots carry objects from a start area to a goal area. Differently from other
foraging scenarios (Brambilla et al., 2013), the objects to be carried are too heavy
for a single robot, thus cooperation is necessary: the robots form teams of three
to be able to carry an object.

The scenario is very similar to the ants double bridge experiment (Goss et al.,
1989). The start and the goal areas are connected by two paths: a short path and a
long path. Similar to what ants do in the double bridge experiments, robots have
to collectively identify and choose the shortest path. Differently from what ants
do, robots do not use pheromones but a voting process based on the majority
rule.

Each robot has a preferred path. When a group is formed in the start area
(Figure 4.1a), a vote takes place and the group chooses the path that is preferred
by the majority of the robots composing it (Figure 4.1b). The chosen path also

2Since an implementation of this system using real robots is not available, the physics-based simulation
will be considered our ground truth, that is, not another analysis phase, but the subject of our analysis effort.
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Figure 4.1: The foraging scenario analyzed in this section. The robots start in the start
area. Groups are formed and their path is chosen using the majority rule. In this figure
two examples of the voting process are shown: (a) a group is formed; (b) the group has
chosen the short path; (c) while the first group is active, another group is formed; (d) the
second group has chosen the long path, at the same time the first group is coming back;
(e) the first group is back in the start area and is disbanded; note how all the robots of
the disbanded group have now the same preference.
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becomes the new preferred path for all the robots composing the group (Figure
4.1e). For example, if two robots prefer the short path and one robot prefers the
long path, the short path is chosen for the next run, and the robot that preferred
the long path changes its preference to the short path. Note that the voting
process takes place only in the start area and no other event can change the
preference of the robots. This means that robots come back to the start area
following the same path taken for the outgoing trip. Figure 4.1 shows a schema
of the scenario.

Since the robots taking the short path spend less time out of the start area
than the robots taking the long path, their participation in the vote is, on average,
more frequent. This results in the formation of more groups preferring the short
path. If, initially, half of the robots have a preference for the short path and
half for the long path, over time, all robots will converge on preferring the short
path. More details are given in the work by Montes de Oca et al. (2011) and in
Section 4.1.3.

We chose this collective decision-making behavior as a case study for Bio-
PEPA since it displays several interesting characteristics common to many robot
swarms:

• Simplicity: the collective behavior is simple enough that it is possible to
analyze it without being hampered by the implementation details.

• Direct cooperation: the robots must form groups of three to carry the
objects.

• Indirect cooperation: the vote process creates an opinion dynamic that let
the robots collectively choose the shortest path.

• Space and time aspects: space and time play an important role and must
be carefully modeled. In particular, the voting process is spatially located
in the start area and only the robot in the start area at a given moment can
take part in it. Additionally, the time necessary for the robots to carry an
object, which depends on the length of the chosen path, affects the opinion
dynamic.

This system has been analyzed in several other works: Montes de Oca et al.
(2011) presented a simple fluid flow analysis and a Monte Carlo simulation,
Scheidler (2011) presented a more complex fluid flow analysis, Valentini et al.
(2012) presented an analysis based on absorbing Markov chains. In these works,
each analysis was based on a different model. In our work, we use a single
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Figure 4.2: Locations and transitions of robots in the simplified Bio-PEPA specification.

Bio-PEPA description to perform three different kinds of analysis: stochastic
simulation, model checking and fluid flow analysis.

4.1.3 The Bio-PEPA specification

In this section, we present the Bio-PEPA specification of the system.
As shown in Figure 4.2, the system is described through eight Bio-PEPA

locations: two boundary locations, start and goal; a location A where robot
teams select the short or long path to goal according to the decision taken when
leaving start and, similarly, location B, where robot teams select the short or
long path back to start, again according to the previously taken decision. We
have then two locations for each path, L1 and L2 for the long path and S1 and S2
for the short one.

We also define a set of Bio-PEPA species to specify the behavior of the robots.
For example in start we distinguish two species of robots: those that the last
time returned via the short path, denoted as Robo start fromS, and those that
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Robo start fromS = (allS, 3)↓Robo start fromS@start+
(S2L1, 2)↓Robo start fromS@start+
(S1L2, 1)↓Robo start fromS@start+
(go S1 start, 3)↑Robo start fromS@start;

Teams A S = (allS, 1)↑Teams A S@A+
(S2L1, 1)↑Teams A S@A+
go A S1↓Teams A S@A;

Figure 4.3: Two species components synchronized on action S2L1.

returned via the long path, denoted as Robo start fromL. In the following we will
refer to these two groups also as the S-population and the L-population, respectively.
Similarly, other locations contain populations of teams of robots that move in
the direction from the start area to the goal area and those that move in the
opposite direction. For example, in location S1 we can have Teams S1 StoG and
Teams S1 GtoS, where StoG denotes the direction from the start area to the goal
area and GtoS the opposite direction.

The Bio-PEPA fragment below specifies the behavior of a robot. Robots leave
the start area in groups of three. Each group is randomly composed of three
robots. There are four possible compositions:

• all robots from the S-population;

• all robots from the L-population;

• two robots from the S-population and one robot from the L-population;

• two robots from the L-population and one robot from the S-population.

These combinations are modeled as four different actions: allS, allL, S2L1 and
S1L2. In Bio-PEPA, the formation of teams of robots is modeled by the coefficient
that indicates how many entities are involved in an action. For example, upon
action allS, three robots of the S-population leave start (indicated by (allS, 3)↓),
to form a team in choice point A (indicated by (allS, 1)↑ in Teams A S) which will
take the short path when it continues its journey towards the goal area (popula-
tion Teams A S@A). Since action allS is shared between the species components
Robo start fromS and Teams A S, this movement occurs simultaneously with the
rate of action allS that will be defined later on.

In a similar way, upon action S2L1, which is present in the three species
components Robo start fromS, Teams A S and Robo start fromL (two of which
are shown in Figure 4.3), all three species components synchronize, resulting
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in two robots from the S-population and one from the L-population leaving the
start area and forming at the same time one new team in choice point A in the
population Teams A S. Teams A S is the population of those teams in choice
point A that decided to take the short path. The synchronization pattern of the
components is given by the model component shown later on. The excerpt above
only shows the behavior of teams voting for the short path. The behavior of
those voting for the long path is similar and omitted for reasons of space. For
the same reason also the behavior of teams moving between different locations
is not shown.

The actions denoting teams of robots leaving the start area need to occur with
appropriate rates. In particular, it is defined as a fixed rate move, multiplied by
the probability of forming a team with a particular composition:

• A group of three robots that are all from the S-population has a probability
to occur equal to

pSSS =
(RSS)

(RSS) + (RSL)
· (RSS− 1)
(RSS− 1) + (RSL)

· (RSS− 2)
(RSS− 2) + (RSL)

where, for the sake of readability, Robo start fromL@start, which is the pop-
ulation of robots with preference for the long path in the start area, is
abbreviated as RSL and Robo start fromS@start, which is the dual popula-
tion with preference for the short path, is abbreviated as RSS.

Table 4.1 lists all species components used in the Bio-PEPA specification.

• A similar probability pLLL can be defined for a group of three robots from
the L-population.

• The probability to extract two robots from the S-population and one from
the L-population is:

pSSL =
(RSS)

(RSS) + (RSL)
· (RSS− 1)
(RSS− 1) + (RSL)

· (RSL)
(RSS− 2) + (RSL)

• Similarly probabilities for pSLS, pLSS, pLLS, pLSL and pSLL can be defined.

• Therefore, the total probability that two, out of the three members of a team,
vote for the short path is pSSL + pSLS + pLSS while that for the long path
is pSLL + pLSL + pLLS.

Once these probabilities are defined, we can define the rates of the related events:
The rates of actions S2L1 and S1L2 can now be defined as (pSSL+ pSLS+ pLSS) ·
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move and (pSLL + pLSL + pLLS) ·move, respectively. Note that the sum of these
eight probabilities, pSSL, pSLS, pLSS, pSLL, pLSL, pLLS, pSSS and pLLL, amounts
to 1. In this way, the total rate at which teams of robots leave the start area is
constant and given by the parameter ‘move’ independently from the composition
of the teams formed.

The rate at which teams move from A to S1 and to L1 is dependent on
the number of teams present in A and are walk normal · Teams A S@A and
walk normal · Teams A L@A, respectively. The rate parameter walk normal speci-
fies the time it takes a robot team to move from choice-point A to the first section
of a path.

Finally, the overall system definition shows the initial size of robot populations
in each location. The overall robot behavior is defined using cooperation on
shared actions (see page 91 for a definition and example):

Robo start fromS@start(SS) ��
∗

Robo start fromL@start(SL) ��
∗

Teams A S@A(0) ��
∗

Teams A L@A(0) ��
∗

Teams S1 StoG@S1(0) ��
∗

Teams S1 GtoS@S1(0) ��
∗

Teams S2 StoG@S2(0) ��
∗

Teams S2 GtoS@S2(0) ��
∗

Teams L1 StoG@L1(0) ��
∗

Teams L1 GtoS@L1(0) ��
∗

Teams L2 StoG@L2(0) ��
∗

Teams L2 GtoS@L2(0) ��
∗

Teams goal fromS@goal(0) ��
∗

Teams goal fromL@goal(0) ��
∗

Teams B fromS@B(0) ��
∗

Teams B fromL@B(0)

where the number SS in Robo start fromS@start(SS) (resp. SL) is the initial size
of the robot S-population (resp. L-population) present in the start area (@start).

There is a further issue to consider: how to model the length of the paths.
This can be done in two ways. The first is to model each path by two sections,
as illustrated above, and set one path longer than the other by choosing a
different rate for the movement between sections on the paths. However, as
also discussed in Montes de Oca et al. (2011), this model has the disadvantage
that the duration of path traversal is essentially modeled by a short series of
exponential distributions which in general approximates the average duration
well, but not the variability. It therefore does not reflect very well realistic robot
behavior. An alternative is to choose the same rate for each section and to vary
the number of sections on each path to model their difference in length. In this
way, the traversal time of a path is modeled by a sequence of say m exponentially
distributed random variables with rate λ, also known as an Erlang distribution,
using the well-known method of stages (see Kleinrock (1975) p. 119).3

3 The mean (variance, resp.) of an Erlang distribution with m phases of rate λ is m/λ (m/λ2 resp.).
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We model the two paths of the environment with 8 sections for the short path
and 15 sections for the long path. Each section takes, on average, ten time units
to traverse by a robot team. This is modeled in the system by defining the rate
walk normal = 0.1. Considering also the movements from the choice points to
the path and those from the path to the start area and the goal area, in this way
the short path takes on average 100 time units to traverse, and the long one 170.
This is comparable to the latency periods used in Montes de Oca et al. (2011)
(end of Section 4) and provides a good approximation of the actual variability
observed in robot movement. Other free variables of the model not provided
in Montes de Oca et al. (2011) have been selected by us.

The analysis presented in Montes de Oca et al. (2011), which we will use to
compare our results with in the next section, is based on the assumption that,
at any time, there is a constant number k of active teams (that is, not in the
start area). The number k is a parameter of the model. To model this in the
Bio-PEPA model, we use the parameter min start, which is a rate that can be
used to control the minimum number of robots in the start area at any time. As
we will see in the next section, after a short initial transitory period, the following
holds in the model with a good approximation: k = (32−min start)/3.4

A more detailed graphical representation of the complete Bio-PEPA specifica-
tion is presented in Figure 4.4. The figure presents the various locations of the
model. In each location there are two populations. Their names have been abbre-
viated for reasons of presentation. Names starting by R indicate populations of
robots, names starting by T refer to populations of teams. Names ending in S
refer to populations of elements that are in favor of the short path, those ending
in L refer to elements in favor of the long path. The arrows after the names of
the populations in the locations on the paths indicate the direction of movement
of the elements of the population, so those moving from the start area to the goal
area are indicated by an arrow pointing downwards, whereas those moving from
the goal to the start are indicated by an arrow pointing upwards. The actions
that label the transitions between locations correspond to those in the Bio-PEPA
specification, though, for reasons of readability, only one action is shown (allS)
of all those between the start area and choice point A.

Thus an appropriate choice of m and λ can guarantee the required values for the mean and variance,
approximating a normal distribution.

4In Bio-PEPA, one can make use of a predefined function H which takes a number as an argument. If
this number is zero, H returns zero, otherwise it returns 1. To guarantee a minimum number min start of
robots, in the start area, the rate of action S2L1 can then be defined as: S2L1 = (pSSL + pSLS + pLSS) ∗
move ∗ H((RSS + RSL)−min start); the same must be done for the other related rates.
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Figure 4.4: Graphical representation of the full Bio-PEPA swarm decision-making model.
Note that, for reason of clarity, we do not show the 8 locations on the short path (S1
through S8) nor the 15 on the long path (L1 through L15), but only the first and last.
Arrows ⇑ and ⇓ indicate the moving direction of the related teams.
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Table 4.1: All species components used in the Bio-PEPA specification.

Species name Description

Robo start fromS Robots in location start which prefer the short
path.

Robo start fromL Same as above, but for the long path.

Teams A S Teams at location A , that is, performing the
choice between the two paths, which prefer the
short path.

Teams A L Same as above, but for the long path.

Teams S1 StoG
. . .
Teams S8 StoG

Teams on the short path, which is composed of
a total of 8 states, going from start to goal.

Teams S1 GtoS
. . .
Teams S8 GtoS

As above, but from goal to start.

Teams L1 StoG
. . .
Teams L15 StoG

Teams on the long path, which is composed of
a total of 15 states, going from start to goal.

Teams L1 GtoS
. . .
Teams L15 GtoS

As above, but from goal to start.

Teams B fromS Teams at location B coming from the short path.

Teams B fromL Same as above, but from the long path.

Teams goal fromS Teams at location goal from the short path.

Teams goal fromL Same as above, but from the long path.
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4.1.4 Analysis

In the following, we illustrate three different forms of analysis of the same
Bio-PEPA specification and compare their results with those available in the lit-
erature (Montes de Oca et al., 2011). Good correspondence of the results would
validate our model and confirm that Bio-PEPA is a viable formal language to
analyze a robot swarms, with the additional advantage that a single specification
can be used for multiple kinds of analysis. This also means that, due to the pre-
cise and unambiguous mathematical semantics of the language, the results of the
different analyses are formally related and coherent since they are systematically
derived from the same specification.

We consider a swarm with a population of 32 robots, unless stated otherwise.
We furthermore consider the following parameters for the model: initially SS =

16 and SL = 16, move = 0.28, walk normal = 0.1.

4.1.5 Stochastic simulation

The first kind of analysis we present uses stochastic simulation. The analysis we
perform using stochastic simulation is limited in its depth. Our goal here is not
to perform a complete analysis of the system using stochastic simulation, but to
demonstrate its feasibility and to provide minimal results that will be used as
starting point for a more in depth analysis performed using other approaches.

We use stochastic simulation to check the average number of active teams for
different assumptions on the minimal number of robots that are present in the
start area. This validation is necessary to be able to compare the results of our
analysis with those presented in Montes de Oca et al. (2011).

The Bio-PEPA tool suite relies on an implementation of Gillespie’s stochastic
simulation algorithm (Gillespie, 1977). The original algorithm assumed that
only interactions with at most two species were used in the model and that the
rates were simple products of a constant and a population size. In the Bio-PEPA
model, this is indeed the case with the exception of the rate functions involved
in the team formations, which are slightly more general, but can be reduced to a
product of a constant and the population size.

Figure 4.5 presents two stochastic simulation results, averaged over 10 sim-
ulation runs, for min start = 5 (Figure 4.5 left) and min start = 2 (Figure 4.5
right), showing the number of robots on both paths and in the start area, and the
number of teams on each path. The figure shows that the number of active teams
on the paths quickly increases to 9 in case of min start = 5 and 10 in case of
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min start = 1 and then stabilizes. This means that the rate at which robots leave
the start area, i.e. move = 0.28, is sufficiently high to quickly reach a situation that
presents the desired number of active teams. This allow us to compare the results
of this analysis with the results obtained with the physics-based simulation and
Monte Carlo simulation reported in Montes de Oca et al. (2011).

4.1.6 Statistical model checking

For the analysis of properties of the Bio-PEPA model we will make use of
statistical model checking, as the number of states of the model makes complete
model checking computationally intractable. In particular, we use confidence
interval methods, as presented in Section 2.2.3, to estimate probability and
rewards.

The Bio-PEPA specification developed in Section 4.1.2 can be translated auto-
matically into a model expressed in the PRISM input language by the Bio-PEPA
tool suite described in Ciocchetta et al. (2009). The translation mechanism itself
is described in Ciocchetta and Hillston (2009). The PRISM model is a stochastic
model having a CTMC as underlying mathematical structure.

One of the principal properties of interest for decision making involves con-
vergence. The first concern is whether convergence on one of the paths occurs
at all. In principle, the swarm could converge to a mixed decision situations, in
which no single path is chosen. We will show that such situation occurs with
zero probability. A second concern is whether convergence on a single path
always occurs eventually, that is, the system does not enter in some form of oscil-
lation that prevents convergence. Two kinds of convergence would be possible:
convergence on the long path and convergence on the short path. Convergence
on the short path (Convergence on S) can be defined as the situation in which
each of the 32 robots is either in a team on the short path, or in the S-population
in the choice points, the start area or the goal area.

In terms of the population sizes in the various locations, convergence on the
short path can be formalized as the following proposition:

Convergence on S ≡ 3 ∗ (Teams S1 StoG@S1 + · · ·+ Teams S8 StoG@S8)+

3 ∗ (Teams S1 GtoS@S1 + · · ·+ Teams S8 GtoS@S8)+

3 ∗ Teams goal f romS@goal + Robo start f romS@start+

3 ∗ (Teams A S@A + Teams B f romS@B) = 32
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Figure 4.5: Number of active teams for min start = 5 (left) and min start = 2 (right)
with move = 0.28. The graphs show the average values over 10 runs.
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“Convergence on L” can be defined similarly, but requiring that the above sum is
equal to 0 instead of 32.

The formula to obtain an estimate of the probability that the system eventually
converges either on the long or on the short path can now be expressed in terms
of the formulae just introduced:

P =? [true U (“Convergence on L” | “Convergence on S”)] (4.1)

Recall that P =? is used to compute a probability, and U reads as “until”.

For 100 sample paths, a confidence level α = 0.01 and a maximum sample
path length of 20,000 we obtain that for each k ranging from 1 to 10 the system
converges to the short or the long path with probability 1. In fact, convergence
takes place in each of the sample paths, so mixed decision situations do not
occur.

The next question of interest is then what is the probability that the system
converges on the short path. More precisely, this question should be formulated
as “what is the probability that the system did not converge on the long path
until it converges on the short path”. The latter can be expressed as:

P =? [!“Convergence on L” U “Convergence on S”] (4.2)

where that ! stands for negation.

The analyses of Formula 4.2 for a number of teams k ranging from 1 to 10 is
shown in Figure 4.6 as a solid line. The analyses have been based on 100 random
sample paths, a confidence level α = 0.01 and a maximal sample path length of
20,000. In the figure the widths of the confidence interval are shown as vertical
bars. The results are compared to those obtained via physics-based simulation
and Monte Carlo simulation of the same case study reported in Montes de Oca
et al. (2011) and shown as dotted and dashed lines, respectively. The latter are
close to the results obtained with the Bio-PEPA specification and well within the
error-margins.

The expected number of teams formed until convergence has taken place on
the short or the long path can be analyzed by statistical model checking using a
reward formula:

R{“teams”} =? [F (“ Convergence on S”|“ Convergence on L”)] (4.3)

The formula refers to the reward structure labeled “teams” that counts the num-
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Figure 4.6: Probability of convergence on the short path (100 samples). k is the number
of active teams in the system.

reward ‘‘teams’’

[go A S1] true : 1;

[go A L1] true : 1;

endreward

Figure 4.7: Reward structure to count team formations.

ber of teams that were formed. In terms of the Bio-PEPA model, the formation of
teams is directly related to the occurrence of the actions ‘go A S1’ and ‘go A L1’,
that is, when teams move from choice point A to one of the paths. The specific
reward structure required is shown in Figure 4.7. Essentially this represents the
fact that every time action ‘go A S1’ or ‘go A L1’ occurs, the total number of
teams formed so far is incremented by 1.

Figure 4.8 shows results on the expected number of team formations until
convergence on the short or long path (Formula 4.3) using 1000 samples, α = 0.01
and maximal path length of 20,000. The width of the confidence intervals are
shown as error-bars.

The results obtained by statistical model checking, physics-based simulation
and Monte Carlo simulation are consistent for values of k up to 7. They diverge
for higher values of k. The divergence can be explained by the differences in
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Figure 4.8: Expected number of team formations until convergence (1000 samples). k is
the number of active teams in the system.

the underlying models that are used. The Monte Carlo simulations are obtained
from an ODE model in which it is assumed that, at any point in time, a constant
fixed fraction of the total population is in the start area. Such a fixed fraction
can only be maintained if, upon arrival of a team in the start area, a new team
forms and leaves the start area immediately. In the Bio-PEPA model this can
be approximated by choosing a high rate for the parameter ‘move’. In fact, as
can be observed in Figure 4.9, for move = 30 the results of the Bio-PEPA model
follow a similar tendency as the results for the Monte Carlo simulation. An
explanation for this tendency is that, for high values of k, the system needs more
team formations to converge. This is due to the fact that when k is high, a robot
team returning to the start area can influence the opinion only of the few robots
that are in the start area: 5 robots for k = 9 and only 2 for k = 10.

For k = 9 there is a further divergence between the results obtained by
Monte Carlo simulation and stochastic model checking. This can most likely
be explained by the fact that Monte Carlo simulations start from an initial state
in which a large fixed fraction of the population is already out of the start area
and distributed over the paths in a particular proportion. The number of team
formations needed to reach such a state is not considered in the Monte Carlo
simulation. On the other hand, in the Bio-PEPA model (and in the physics-based
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Figure 4.9: Expected number of team formations until convergence for different rates at
which teams leave the start area in the Bio-PEPA model. k is the number of active teams
in the system.

simulation) all robots are initially in the start area and subsequently distribute
over the two paths. This results in many different intermediate distributions
over the paths, which are likely to have an effect on the average number of team
formations needed to reach convergence. Furthermore, for k = 10 ,and for k = 9
to a somewhat lesser extent, border effects might arise: the system is stretched to
an extreme situation in which, at any time, only 2 robots remain in the start area.
This small number is a source of strong stochastic fluctuations that might cause
“accidental” convergence earlier than what one could expect given the size of the
population.

The physics-based simulation is based on the assumption that the teams leave
the start area on average every 40 seconds, until a number of k teams are active.
In the Bio-PEPA specification, this can be modeled by setting move = 0.025.
The formation of teams is suspended whenever there are k teams active and is
resumed when teams return to the start area. For this value of move, statistical
model checking produces results that are comparable with those produced by
the physics-based simulation (as shown in Figure 4.9). These results can be
explained by observing that in the model used for the physics-based simulation
when k is high, the average number of active teams is actually substantially lower



4.1. ANALYSIS OF A ROBOT SWARM USING BIO-PEPA 109

0 1000 2000 3000 4000

Time (s)

0

2

4

6

8

10

12

14

16
P

op
ul

at
io

n
si

ze
Total teams on paths k=9
Total teams on paths k=10

Figure 4.10: Number of active teams for min start = 5 (k = 9) and min start = 2 (k = 10)
for move = 0.025 (average over 10 independent simulation runs).

than the nominal value k. This can also be made visible using simulation of the
Bio-PEPA specification as shown in Figure 4.10 for an average of the number of
active teams over 10 simulation runs for k = 9 and k = 10 and move = 0.025. As
a consequence, the number of robots in the start area is larger than the nominal
N − 3k, which in turn means that there are more robots that provide implicitly
feedback on which of the two paths is the shortest. This explains why the
expected number of teams formed until convergence obtained with statistical
model checking does not differ much from those obtained with physics-based
simulation (for move = 0.025).

The difference between physics-based simulation and statistic model checking
for higher values of the parameter move can be explained by looking at the early
phases of the experimental runs. In the early phases, there are more robots in
the start area and they leave that area relatively quickly before feedback from
returning teams can be taken into account. This is possibly leading to larger
stochastic fluctuations before the system converges on one of the paths, resulting
in more team formations.

A similar analysis using the same formula, but substituting teams with the
reward structure total time (shown in Figure 4.7), gives the expected time until
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Figure 4.11: Expected convergence time (100 samples), move = 0.28.

convergence (for move = 0.28). Figure 4.11 shows the expected convergence time.
No data from the literature concerning this aspect is available for comparison.

The total model-checking time to produce the data in Figure 4.6 was ca. 10
minutes, those in Figure 4.8 ca. 48 minutes and those in Figure 4.11 ca. 5 minutes5.

By separating the reward structure in Figure 4.7 into one for the expected
number of teams that decide to take the short path (S-teams) and one for those
that decide to take the long path (L-teams), the contribution of each kind can
be made visible using a reward formula similar to that shown in Formula (4.3).
The result is shown in Figure 4.12. For any value of k the number of S-teams is
always higher than the number of L-teams. This can be explained by the fact
that initially the S-population and the L-population in the start area have equal
size and that the probability that the system converges on the short path is more
than 50% in all cases.

4.1.7 Fluid flow analysis

The third kind of analysis we consider is a fluid flow approximation of the ordi-
nary differential equations (ODE) underlying the Bio-PEPA specification. Based

5Model-checking was performed on an iMAC with a 3.2 GHz Intel core i3 processor and 4 GB memory
running the MacOS X operating system.
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Figure 4.12: Expected S-teams and L-teams formed until convergence (move = 0.28).

on the Bio-PEPA syntax, the underlying ODE model can be generated automat-
ically and in a systematic way, as shown in Hillston (2005) and in Ciocchetta
and Hillston (2009), using the Bio-PEPA tool suite presented in Ciocchetta et al.
(2009). This provides yet another view on the behavioral aspects of the system.
It is then possible, for example, to explore numerically the sensitivity of the
system to initial values and discover stationary points and other aspects related
to stability analysis.

The derivation of an ODE model from a Bio-PEPA specification is based on
the following steps (see Ciocchetta and Hillston (2009)):

1. define the n × m matrix D, where n is the number of species and m is
the number of actions. The entries of the matrix D are obtained in the
following way. For each species component Ci, the prefix sub-terms Cij are
considered. These are the sub-terms in the form (αj, κij) op Si@l defined in
the Bio-PEPA model. Such sub-terms represent the change of the species i
as a consequence of action j. If the term contributes to an increase of the
population size of the species then the entry is +κij, if it contributes to a
decrease then the entry is −κij;

2. define the m× 1 vector v f (t), where m are the rates of the action defined in
the Bio-PEPA model;
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3. associate the variable xi(t), the expected value of the population size at
time t, with each component Ci and the definition of the n× 1 vector x(t).

The ODE system is then obtained as:

dx(t)
dt

= D× v f (t)

with initial population sizes xi0 , for i = 1, ..., n.
To illustrate these steps, consider the slightly extended toy example intro-

duced in Section 4.1.1 in which teams can also be dissolved into individual red
and blue robots as follows:

R
def
= (mk team, 2)↓R + (dis, 2)↑R

B
def
= (mk team, 1)↓B + (dis, 1)↑B

T
def
= (mk team, 1)↑T + (dis, 1)↓T

with the following model component:

(R(r0) ��
{mk team,dis}

B(b0)) ��
{mk team,dis}

T(t0)

If we let the functional rates for this toy example be mk team = 0.002 ∗ R ∗ B and
dis = 0.2 ∗ T we obtain the following ODE:

dR(t)
dt = −2.0 · r · R(t) · B(t) + 2.0 · s · T(t)

dB(t)
dt = −1.0 · r · R(t) · B(t) + 1.0 · s · T(t)

dT(t)
dt = +1.0 · r · R(t) · B(t)− 1.0 · s · T(t)

where r = 0.002 and s = 0.2, to be solved with respect to the initial condition
r0 = 200, b0 = 100 and t0 = 500. The numeric solution of this ODE for the above
mentioned initial values is shown in Figure 4.13.

We now consider the real swarm robotics case study: the derivation of an
ODE model from the Bio-PEPA specification results in a model composed of 54
ordinary differential equations.

In Figure 4.14 we can observe the total fraction of robots in the S-population
over time, that is, both those present in the start area and those composing a
team6. The fluid approximation for a model with initially 32 robots in the start

6To guarantee continuity of the ODE model, the H-function has been removed and replaced by setting
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Figure 4.13: Expected population sizes of R, B and T over time (ODE) for the small toy
example presented in Section 4.1.1.
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move = 0.03 to approximate a scenario in which k = 7.
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area, of which 16 would vote for the short path and 16 for the long path, predicts
that the system converges in 100% of the cases to the short path for the given
initial values. Stochastic simulation over 100 independent runs (G100) shows
that such convergence happens only in 85% of the cases, which corresponds to
what we found with statistical model checking for a comparable value of k (see
Figure 4.6). The difference can be explained by the larger effect of stochastic fluc-
tuations that occur in stochastic simulations of the system when the population
is small. The probability that the system “accidentally” converges on the long
path is, in that case, relatively high. In fact, if a somewhat larger population is
considered, a good correspondence can be observed between the fluid approxi-
mation and stochastic simulation over 1000 independent runs (G1000), as shown
in Figure 4.15 for N = 320.

Note that the model considered here and in the following ignores the effect
of interference between robots, that is, it is assumed that the size of the paths are
scaled in such a way that the density of the robots, thus the number of collisions,
is kept constant and equal to the model with 32 robots for any swarm size. An
ODE analysis performed on a model which considers a large number of robots
can provide interesting insights in the behavior of the decision-making strategy,
allowing us, at the same time, to avoid accidental stochastic fluctuations that
occur with small populations.

For large populations the probability that the system “accidentally” converges
to the long path tends to zero. In fact, single simulation trajectories tend to
approximate the deterministic ODE solution very well for a finite time horizon
when the specification satisfies certain scaling conditions and the population
considered in the simulation is sufficiently large. An example is shown in
Figure 4.16 for N = 32000. This is a well-studied phenomenon (Kurtz, 1970)
which has been applied for an analysis of the double bridge experiment with
ants in Bio-PEPA (Massink and Latella, 2012), for the analysis of crowd dynamics
(Massink et al., 2011b) and in the context of stochastic process algebra (Tribastone
et al., 2012).

A further interesting observation can be made with the help of the graph in
Figure 4.16. Different phases of collective behavior can be distinguished. There
is a first phase in which robots leave the start area at a constant rate. This can be
observed up to ca. time 200. After that, robots begin to return to the start area,
first from the short path and later on from the long path, providing feedback
to the population in the start area. At about time 600, it can be observed that
the feedback begins to have effect on the decision on which path to take, and an
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Figure 4.15: Fluid approximation (ODE) versus the mean of 1000 simulation trajectories
(G1000), for NS = NL = 160. Parameters are move = 0.03 ∗ 10 and walk normal = 0.1.

increasing number of teams take the short path rather than the long path with
the consequence that the S-population in the start area continues to increase, and
that of the L-population continues to decrease.

In Figure 4.17 we can observe a number of ODE trajectories for different
initial values of the S-population (NS) and the L-population (NL) in the start
area. The trajectories start from the points indicated on the diagonal and end
in one of the two stationary points of the system indicated by a cross at (0,
15710) and at (3110, 0). Clearly, the system is bi-stable. For some initial value
combination of NS between 12,000 and 14,000 and NL between 20,000 and 22,000,
where the total swarm size is NS + NL = 32, 000, a sudden shift takes place from
trajectories converging on the long path to trajectories converging on the short
path. In, Fig 4.17 we can also observe the effect of the last phase of the collective
behavior where the feedback of the returning leads to small circle-like shapes in
the curves.

Both in Figure 4.16 and Figure 4.17 the number of robots in the start area
stabilizes around 15,710 in case of convergence on the short path, and on about
3,110 in case of convergence on the long path. That means that, in the former
case, about 50% of the total population resides in the start area and that, on
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Figure 4.16: Fluid approximation (ODE) versus single simulation trajectory (G1), for
NS = NL = 16000. Parameters are move = 0.03 ∗ 1000 and walk normal = 0.1.

average, 5,430 teams circulate on the short path. In the latter case, there are far
fewer robots in the start area and on average 9,630 teams circulate on the long
path.

Note that Figure 4.17 has been obtained via an automatic translation of the
Bio-PEPA specification into SBML (Bornstein et al., 2004), which is a standard
markup language widely used in systems biology, and then via another trans-
lator7 from SBML into the Octave (Eaton, 2002) or equivalently into the Matlab
language (Gilat, 2004). Such tool-chain allows further numerical exploration of
the generated ODEs with powerful applied mathematics tool suites.

In the last analysis we present, we consider the case in which both paths
have equal length. This analysis allows us to verify that the system is able to
converge to a single solution which depends exclusively on the initial number of
robots in the S-population or in the L-population. In Figure 4.18, we show how
the fractions of robots in the S-population are changing over time. The graph
shows an ODE trajectory for an initial S-population of 480 over 1000 total robots
in the nest and one for an initial S-population of 520 over 1000 total robots. As
expected, for an initial S-population above 500 the population converges on the

7See http://www.ebi.ac.uk/compneur-srv/sbml/converters/SBMLtoOctave.html
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for a population of 32,000 robots. ODE trajectories for different initial values of NS and
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Figure 4.18: Fluid flow approximation (ODE) of the case in which path S and L have the
same length and S-population is set at 480 or 520.

‘short’ path, and for an initial S-population below 500 it converges on the ‘long’
path, despite both paths are of equal length. So the population converges on the
path with the highest initial consensus.

4.1.8 Summary

In this section, we analyzed a swarm robotics system using Bio-PEPA. The
behavior analyzed is a decision-making behavior originally presented in Montes
de Oca et al. (2011). Bio-PEPA (Ciocchetta and Hillston, 2009) is a language
based on the process algebra PEPA. It was originally developed for the stochastic
modeling and analysis of biochemical systems. By using Bio-PEPA we were able
to model the robot swarm addressing issues like direct and indirect cooperation,
team formation, heterogeneous team behaviors, voting, and certain spatial and
temporal aspects.

The main advantage of the use of Bio-PEPA is that it allows the researcher
to perform a variety of analyses starting from a single microscopic specification.
Among the possible analyses, we performed stochastic simulation, fluid flow
(ODE) approximation and statistical (stochastic) model checking. The possibility
to perform different analyses from the same specification reduces the effort
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necessary for the analysis process, while preserving the mutual consistency of
the results.

In the presented analysis, we showed that using Bio-PEPA we are able obtain
results compatible with those obtained using other approaches, such as the
results presented in Montes de Oca et al. (2011) via physics-based simulation
and Monte Carlo simulation.



120 CHAPTER 4. ANALYSIS OF ROBOT SWARMS USING MODEL CHECKING

4.2 Analysis of a collective transport behavior using Klaim

In this section, we introduce a different analysis approach for robot swarms
based on Klaim and StoKlaim.

This approach involves two phases. In the first phase, we model the be-
havior of the individual robots and the environment with the formal language
Klaim (De Nicola et al., 1998). Klaim is a tuple-space-based coordination lan-
guage that enables us to define an accurate model of a distributed system using a
small set of primitives. In the second phase, we enrich the model with stochastic
aspects, using Klaim’s stochastic extension StoKlaim (De Nicola et al., 2007),
and formalize the desired properties using MoSL (De Nicola et al., 2007). MoSL
is a stochastic logic that permits specifying time-bounded probabilistic reacha-
bility properties and properties about resource distribution. The properties of
interest are then verified against the StoKlaim specifications by exploiting the
analysis tool Sam (De Nicola et al., 2007, Loreti, 2013).

To demonstrate the approach, we analyze a collective transport scenario (Fer-
rante et al., 2013a), in which, while avoiding obstacles, a group of three robots
must carry an object that is too heavy for a single robot to move. This behavior
is a good candidate to establish the validity of our approach since it has many
of the features that characterize collective robotic systems. Indeed, the system
is completely distributed, the robots do not have any global knowledge, such
as a map of the environment indicating the goal area and the position of the
obstacles.

Modeling a robot swarm performing collective transport is challenging. In-
deed, for understanding its dynamics, it is necessary to model in detail both
the spatial aspects, that is, the positions of robots, obstacles and carried object,
and the temporal aspects, that is, the robots’ action execution time. Without
these aspects, it would be impossible to formally verify the correctness of a
collective transport behavior. Usually, the models of robot swarms presented in
the literature (Lerman et al., 2005, Galstyan et al., 2005) ignore or simplify these
spatial and temporal aspects in order to have smaller and simpler models that
can better scale to analyze swarms composed of a large number of robots.

In order to model the collective transport behavior presented here, we sacrifice
scalability for a very detailed model of the system. In collective transport this
is usually not a problem, as the robots involved are usually less than 10 (see
Section 2.1.3). Differently from existing approaches, which mainly focus on
micro- or macroscopic aspects of the system, we employ Klaim to capture both
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hardware aspects of the robots and their behavior.
Klaim and StoKlaim are well suited to model a robot swarm due to their

compositionality and high modularity, which allow us to easily and flexibly
experiment with different parameters of the scenario and of the robots’ behavior.
This enable us, for example, to optimize the performance of the system or
prevent instabilities. Moreover, the possibility to change the parameters of
the environment permits to easily check the collective behavior of the robots
under different environmental conditions without the need for time-consuming
experiments in simulation or with robots.

The rest of this section is structured as follows: In Section 4.2.1, we intro-
duce the considered robotics scenario. In Section 4.2.2, we review the formal
basis underlying the proposed verification approach, namely the specification
language Klaim, the stochastic extension StoKlaim, the stochastic logic MoSL,
and the analysis tool Sam. In Section 4.2.3, we describe the relevant aspects
of the Klaim specification of the scenario, while in Section 4.2.4, we present
its stochastic analysis. Finally, in Section 4.2.5 we give a brief summary of the
presented analysis.

4.2.1 A collective robotics scenario

In order to illustrate our approach, we consider a collective transport behavior
that we originally presented in Ferrante et al. (2010a, 2013a):8 the scenario
involves three identical robots that must collectively transport an object to a goal
area. See Figure 4.19 for an image of the assembled robots.

The robots operate in an arena containing obstacles. A light source indicates
the position of the goal area. It is assumed that the three robots have already
physically assembled to the object being carried and cannot disassemble until
the goal area is reached.

The robots involved in the experiment are foot-bots. The foot-bot is an
advanced mobile robot equipped with: (i) a light sensor, to perceive the direction
to a light source; (ii) a distance scanner, to obtain relative distances from objects in
the environment; (iii) a range and bearing communication system, to communicate
with other robots; (iv) wheels, to move around the environment. More information

8Note that in Ferrante et al. (2013a) we presented this collective transport behavior performing only
simulated experiments. A more robust and advanced version of this behavior has been developed in the
context of the Swarmanoid project (Dorigo et al., 2012), where it was also tested using real robots. This
upgraded version does not need a light source neither as a goal direction nor for reference. The result
analyzed in this section refers to the simulated experiments presented in Ferrante et al. (2013a).
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Figure 4.19: A picture that shows three foot-bots attached to the object to carry, in this
case another robot of a different kind. See Dorigo et al. (2012) for more information on
the use of this robot assemble.

about the foot-bot can be found in Appendix A.3.
The behavior of the individual robots is identical: each robot, based on

its available information, calculates its desired direction, that is, the direction it
would follow if it were alone. Since each robot has a local perception of the
environment, the desired directions of the robots could differ. In fact, at each
given moment, one robot could sense or not the position of the goal and/or
the position of obstacles. According to the available information, in any given
moment, a robot can be informed, that is, it has a desired direction to follow, or
non-informed otherwise. Informed robots communicate to the other robots their
desired direction. Finally, to actuate the wheels, all robots, informed or not, use
a socially mediated direction obtained by averaging the received directions, so that
all robots can follow the same direction even if they have a different perception
of the environment. More information can be found in Ferrante et al. (2013a).

A diagrammatic description of the individual behavior, together with an
explanation of the used notation, is presented in Figure 4.20. The individual
behavior is composed of several modules. In the figure, each rounded rectangle
is a behavioral module, whereas non-rounded rectangles are hardware modules.
Each behavioral module takes an input and produces an output. The output is
usually a set of variables that can be input to other modules or set as actuator
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Figure 4.20: A diagrammatic description of the individual behavior highlighting the roles
of sensors and actuators and the information exchange between the different hardware
and behavioral modules.
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values, while the input can be the result of other modules or sensor readings.
The complete individual behavior is composed of five behavioral modules, which
interact with three sensors and two actuators. We now present the role of each
module. Note that all angles considered in the following are relative to the
position of the goal area, identified by a light source.

The goal direction module queries the light sensors to calculate the vector vgd.
This vector originates from the center of the robot and is directed towards the
position of maximum light intensity sensed, which, in this scenario, corresponds
to the goal area. The length of this vector is set to 1. In case no light is perceived,
the vector is set to null.

The obstacle avoidance module queries the distance scanner sensor to calculate
the vector voa. This vector originates from the center of the robot and is directed
towards the points away from the closest obstacle perceived. The length of the
vector voa corresponds to the distance to the closest object rescaled in [0, 1], where
1 indicates an obstacle closer than 0.1 m and 0 indicates an obstacle at the furthest
distance at which the distance scanner can perceive obstacles, that is, 1.5 m. If
case no obstacle is perceived, the vector is set to null.

The direction arbiter module takes as inputs vgd and voa and calculates the
individual desired direction θda, that is, the desired direction of the robot before
computing the mediated direction. Since the length of voa is proportional to how
close an obstacle is, we use it to represents the urgency to avoid the obstacle.
In particular, this length is used as a weight to combine the directions towards
the goal area and the direction to follow to avoid obstacles into the individual
desired direction. The weighted combination of vgd and voa is performed only if
these vectors are both non-null. In case both vgd and voa are null, θda is set to null
as well. In case only one between the two is null, θda is set equal to the angle of
the non-null one.

The direction mediation module takes as inputs the individual desired direction
θda and the received messagesM containing the desired directions, in terms of
angles, of the other robots. It produces two outputs: the first is θdn, the mediated
direction. In case θda is non-null, the robot is said to be informed, and θdn is
computed as the average of the individual desired direction and the desired
directions of the other robots received inM. In case θda is null, the robot is said
to be non-informed, and θdn is set to the average of the desired directions received
in M. The second output is m, which is the direction communicated to the other
robots. If the robot is informed, m contains θda; if the robot is non-informed, m
contains θdn.
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The motion control module converts the direction θdn into the actual wheel
speeds using the following equation:

wl = u + ωb , wr = u−ωb , ω = Kpθdn,

where wl, wr are the rotation speed of the left/right wheel respectively, b is the
distance between the center of the robot and each of the wheels, u and ω are
the forward and angular velocities respectively. The forward velocity u is kept
constant, whereas we vary the angular velocity ω proportionally to the socially
mediated direction θS to be followed. Kp is a proportional factor. For more
information about motion control see Ferrante et al. (2013a).

4.2.2 Formal foundations of the verification approach

In this section, we provide a brief overview of the formal methods exploited
by the proposed approach for specifying and verifying the collective transport
behavior presented above.

Specification

Klaim is a process algebra whose actions are primitives taken from Linda (Car-
riero and Gelernter, 1989), a tuple-space model for sharing memory in distributed
systems, augmented with information on the location of the nodes where the
processes and tuples are allocated (De Nicola et al., 1998).

In this section, we employ a version of Klaim enriched with some standard
control flow constructs (i.e., if-then-else, for and while sequence, etc.). These
constructs simplify the specification task and can be easily defined in the lan-
guage originally presented in De Nicola et al. (1998). Note also that, in Klaim,
it is possible to define (possibly recursive) functions. All these characteristics
make Klaim appear as a standard high-level programming language, which is
practical for modeling software programs or generating software programs from
a given Klaim specification. Nonetheless, thanks to its rigorous mathematical
definition, Klaim is a complete formal specification language, which can thus be
used to formally verify properties.

For simplicity, in this section we present only the operators and constructs
that are used for the definition of our collective transport model. We refer
to De Nicola et al. (1998) for a formal presentation of the language and to Bettini
et al. (2002) for a Java framework for programming in Klaim.
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In Klaim, a distributed system is modeled as a net of nodes, each one with a
local data repository and a set of running processes. Moreover, nodes can share
data through a common data space.

Nets are finite collections of nodes composed by means of the parallel compo-
sition operator ‖ . Nodes are in the form s ::ρ C, where s is a unique locality name,
ρ is an allocation environment, and C is a set of components. Locality names can
be used to represent, for example, a physical location or a network address. An
allocation environment provides a name resolution mechanism by mapping locality
variables l, which are aliases for locality names, into localities s. The distinguished
locality variable self is used by processes to refer to the address of their current
hosting node. In the rest of this section, we will use the notation ` to range over
locality names and locality variables. Components are finite plain collections of
tuples 〈t〉 and processes P, composed by means of the parallel operator | . Tuples
are pieces of data shared between processes, as defined in Linda (Carriero and
Gelernter, 1989).

Processes are the Klaim active computational units and may be executed
concurrently either at the same locality or at different localities. They are built
up from basic actions (see below) and process calls A(p1, . . . , pm) by means of
sequential composition P1 ; P2, parallel composition P1 | P2, conditional choice
if (e) then {P} else {Q}, iterative constructs for i = n to m { P } and
while (e) {P}, and (possibly recursive) process definitions A( f1, . . . , fn) , P
with fi pairwise distinct. Notably, A denotes a process identifier, while fi and
pj denote formal and actual parameters respectively, as defined below. More-
over, e ranges over expressions, which contain basic values (booleans, integers,
strings, floats, etc.) and value variables x, and are formed by using the standard
operators on basic values, simple data structures (i.e., arrays and lists) and the
non-blocking retrieval actions inp and readp (explained below).

During their execution, processes perform some basic actions. In Klaim,
such actions are defined augmenting the actions available in the original Linda
definition. Actions in(T)@` and read(T)@` are retrieval actions and permit to
withdraw/read data tuples from the tuple space hosted at the (possibly remote)
locality `: if multiple matching tuples are found, one is non-deterministically
chosen, otherwise the process is blocked. Actions exploit templates as patterns
to select tuples in shared tuple spaces. Tuples t are sequences of actual fields, i.e.
locality names, locality variables, expressions and processes. Instead, templates T
are sequences of actual and formal fields, where the latter are written ! x, ! l or ! X
and are used to bind variables to values, locality names or processes, respectively.
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Table 4.2: Klaim operations.

Klaim operation Description

in(T)@` Reads and removes a tuple matching template
T from location `; blocking.

in(T)@` Same as above, but non-blocking.

read(T)@` Reads but does not removes a tuple matching
template T from location `; blocking.

readp(T)@` Same as above, but non-blocking.

out(t)@` Add tuple t to location `; non-blocking

eval(P)@` Moves process P to location `; non-blocking

rpl(T)→ (t)@` Replaces a tuple matching T with tuple t in
location `; if no tuple matches T, it behaves as
out(t)@`

For the sake of readability, we use “ ” to denote a wild card formal field in a
template; this corresponds to a formal field ! dc using the variable dc that does
not occur elsewhere in the specification. Actions inp(T)@` and readp(T)@` are
non-blocking versions of the retrieval actions: namely, during their execution
processes are never blocked. Indeed, if a matching tuple is found, inp and readp
act similarly to in and read, and additionally return the value true; otherwise
they return the value false and the executing process does not block. inp(T)@`

and readp(T)@` can be used where either a boolean expression or an action
is expected (in the latter case, the returned value is simply ignored). Action
out(t)@` adds the tuple resulting from the evaluation of t to the tuple space
of the target node identified by `, while action eval(P)@` sends the process
P for execution to the (possibly remote) node identified by `. Both out and
eval are non-blocking actions. Action rpl(T)→ (t)@` atomically replaces a non-
deterministically chosen tuple in ` matching the template T by the tuple t; if
no tuple in ` matches T, the action behaves as out(t)@`. Finally, action x := e
assigns the value of e to x and, differently from all the other actions, it is not
indexed with an address because it always acts locally.

Analysis

Quantitative analysis of a Klaim specification can be enabled by associating a
rate to each action, thus obtaining a StoKlaim (De Nicola et al., 2007) specifica-
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tion. This rate is the parameter of an exponentially distributed random variable
accounting for the action duration time. A real valued random variable X has
a negative exponential distribution with rate λ > 0 if and only if the probability
that X ≤ t, with t > 0, is 1− e−λ·t. The expected value of X is λ−1, while its
variance is λ−2. The operational semantics of StoKlaim permits associating to
each specification a continuous time Markov chain (CTMC) that can be used to
perform quantitative analyses of the considered system.

The desired properties of a system under verification are formalised using
the stochastic logic MoSL (De Nicola et al., 2007). MoSL formulae use predicates
on the tuples located in the considered Klaim net to express the reachability of
the system goal, or more generally, of a certain system state, while passing or
not through other specific intermediate states. Therefore, MoSL can be used to
express quantitative properties of the overall system behavior, such as, whether
the robots are able to reach the goal or whether collisions between the robots and
the obstacles ever happen in the system. The results of the evaluation of such
properties do not have a rigid meaning, like true or false, but have a probabilistic
nature as, for example, in 99.7% of the cases, the robots reach the goal within t time
units.

Verification of MoSL formulae over StoKlaim specifications is assisted by
the analysis tool Sam (De Nicola et al., 2007, Loreti, 2013), which uses statistical
model checking (Calzolai and Loreti, 2010) to estimate the probability of the
property satisfaction. In this way, the probability associated to a path-formula is
determined after a set of independent observations and the algorithm guarantees
that the difference between the computed value and the exact one exceeds a
given tolerance ε with a probability that is less than a given error probability p.

4.2.3 Specification of the robotics scenario

In this section, we present the Klaim specification of the robots’ behavior infor-
mally introduced in Section 4.2.1. We also specify the details of the robots and
the arena where the robots move. We use Klaim to model also these aspects be-
cause, on the one hand, the language is expressive enough to suitably represent
them and, on the other hand, this approach enables the use of existing tools for
the analysis of Klaim specifications.

Here, we focus only on the qualitative aspects of the scenario. In the next
section, our specification will be enriched with quantitative aspects by associating
a rate to each Klaim action, thus obtaining a StoKlaim specification.



4.2. ANALYSIS OF A COLLECTIVE TRANSPORT BEHAVIOR USING KLAIM 129

robot 3

robot2

Abehaviour

TUPLE SPACE

robot1

Acommunication

TUPLE SPACE

env

AmoveAlight Adistance

Figure 4.21: Graphical representation of the Klaim specification

The scenario model

The overall scenario is modeled in Klaim by the following net:

robot1 ::{self 7→robot1} Abehaviour | CrobotData 1

‖ robot2 ::{self 7→robot2} Abehaviour | CrobotData 2

‖ robot3 ::{self 7→robot3} Abehaviour | CrobotData 3

‖ env ::{self 7→env,r1 7→robot1,r2 7→robot2,r3 7→robot3} Alight | Adistance | Acommunication | Amove | CenvData

which is graphically depicted in Figure 4.21. The three robots are modeled as
three Klaim nodes whose locality names are robot1, robot2 and robot3. Similarly,
the environment around the robots is modeled as a node, with locality name env.
The allocation environment of each robot node contains only the binding for self
(i.e., self 7→ roboti), while the allocation environment of the env node contains
the binding for self (i.e., self 7→ env) and the bindings for the robot nodes (i.e.,
ri 7→ roboti, with i ∈ {1, 2, 3}).

The behavior of the individual robots is modeled as a process identified by
Abehaviour, which is the same in all three robots. The items of local knowledge data
CrobotData i of each robot, that is, sensor readings and computed data, are stored
in the tuple space of the corresponding node.

The processes running on the env node provide environmental data to the
robots’ sensors and keep this information up-to-date in time, according to the
actions performed by the robots’ actuators. The process Alight, given the position
of the light source and the current position of the robots, periodically computes
the information about the light position perceived by each robot and sends
it to them. This data corresponds to the values obtained from light sensors
and is stored in the tuple space of each robot. Similarly, the process Adistance

provides each robot with information about the obstacles around it. The process
Acommunication models the communication infrastructure and, hence, takes care of
delivering the messages sent by the robots by means of their range and bearing
communication systems. Finally, the process Amove periodically updates the
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robots’ positions according to their directions.
The data within the env node can be static, such as the information about the

obstacles and the source of light, or dynamic, such as the robots’ positions. The
tuples CenvData are stored in the tuple space of this node and their meaning is as
follows: 〈“pos”, x1, y1, x2, y2, x3, y3〉 represents the positions (x1, y1), (x2, y2) and
(x3, y3) of the three robots; 〈“light”, xl, yl, i〉 represents a light source, with inten-
sity i and origin in (xl, yl); 〈“obstacles”, m〉 indicates the total number of obstacles
present in the environment; and 〈“obs”, n, x1, y1, x2, y2, x3, y3, x4, y4〉 represents
the n-th rectangular-shaped obstacle, with vertices (x1, y1), (x2, y2), (x3, y3) and
(x4, y4).

It is worth noting that, while the Klaim process Abehaviour is intended to
model the actual robot’s behavior, the Klaim processes and data representing
the robots’ running environment (i.e., sensors, actuators, obstacles, goal, etc.) are
just models of the environment and of physical devices needed for the analysis.
In other words, the model of the environment is not meant to be realistic or
descriptive, only functional to the analysis.

The model

Each robot executes an individual behavior that interacts with the robot’s tuple
space for reading and producing sensors and actuators data to cyclically perform
the following activities: sensing data about the local environment, elaborating the
retrieved data to make decisions, and acting according to the elaborated decisions,
that is, transmitting data to other robots and actuating the wheels to move.

As introduced in Chapter 2, models of robot swarms can be developed at
different scales. The majority of the models are macroscopic, that is, they consider
the swarm as a whole, ignoring the individual robots. In case of collective
transport, ignoring the individual robots would prevent us from understanding
the interactions between the robots, which in turn, would prevent us from
understanding the behavior of the swarm. Moreover, since collective transport is
a collective behavior focused on the spatial interactions between the robots and
the carried object, we strongly believe that it is necessary to develop a model
that describes carefully both spatial and temporal aspects of the system. For
this reason, we chose to develop a model at the microscopic level. Moreover, we
not only consider the individual behavior of the robots, but also its constituent
modules and the robots’ sensors and actuators.

In this section, we illustrate the data associated to the robots’ sensors and
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actuators, and the Klaim specification of the individual behavior of the robots.
The full specification can be found in Gjondrekaj et al. (2011).

Robots’ sensor and actuator data. The light sensor data is modeled in Klaim as
a tuple of the form 〈“light”,~̀ 〉, where “light” is a tag indicating the sensor
originating the data while ~̀ is an array of 24 elements. For each i ∈ [0, 23], ~̀ [i]
represents the light intensity perceived by the sensor along the direction 2π i

24 .
Process Alight, running in the environment node, generates a tuple containing
the light sensor data for each robot.

The tuple containing the measures of the distance scanner sensor is similar:
it is of the form 〈“obs”, ~d〉, where “obs” is the tag associated to distance scanner
sensor data and d is an array of 24 elements. For each i ∈ [0, 23], ~d[i] is the
distance to the closest obstacle measured by the sensor along the direction 2π i

24 .
Process Adistance, running in the environment node, generates a tuple containing
the distance scanner data for each robot.

The range and bearing communication system acts as both a sensor and an
actuator: it allows a robot to send messages to other robots in its neighborhood
and to receive messages sent by them. Process Acommunication, running in the
environment node, routes the messages produced by each robot to the other
robots. This process models the communication medium and specifies the
range and bearing communication system without considering explicitly all the
details of the underlying communication framework. Each robot stores received
messages in a local tuple of the form 〈“msgs”, [m1, m2, . . . , mn]〉 representing
a queue of length n containing messages m1,m2,. . . ,mn . Instead, to send a
message to the other robots, a message is locally stored as a tuple of the form
〈“msg”, m〉. The process running on the environment node is in charge of
reading each message and propagating it to the other robots that are in the
sender’s communication range.

Finally, the wheel actuators are modeled as a process running in the env node
that reads the new directions to be followed by the robots (i.e., tuples of the form
〈“move”, θ〉) and updates the robots’ position (which is, in fact, an information
stored in the tuple space of the environment node). This slightly differs from
the original specification given in Section 4.2.1, where the motion control module
converts the direction calculated by the direction mediation module into speeds
for the two wheels. This simplification does not affect the quality of the model
and eases the analysis process.
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Robot’s behaviour. We model the individual behavior of the robots following
the schema presented in Section 4.2.1 and in Figure 4.20. In particular, we define
one process for each module as follows:

Abehaviour , AgoalDirection | AobstacleAvoidance | AdirectionArbiter | AdirectionMediation |
AmotionControl

We provide a description of each process by presenting its Klaim model. To ease
comprehension the model is presented with comments, starting with // . Note
that all processes are defined as recursive. This is just an artifice to represent the
fact that the processes are executed continuously, as on the real robots, and do
not end once completed.

The goal direction module is modeled as a process that takes as input the last
light sensors readings and returns the vector vgd:

AgoalDirection ,
xsum , ysum := 0;
read(“light”, !`)@self ; // Read the tuple containing the light sensor readings

for i = 0 to 23{
xsum := xsum + `[i] · cos(2πi/24) ; // Calculate the coordinates of the final point of the

ysum := ysum + `[i] · sin(2πi/24) ; // vector (with the origin as initial point) resulting

} ; // from the vectorial sum of the reading vectors

if ((xsum ! = 0) ∧ (ysum ! = 0)) then { // Check if the light is perceived

∠ vgd := Angle(0, 0, xsum, ysum) ; // Calculate ∠ vgd, i.e., the direction of vector vgd

rpl(“vgd”, )→ (“vgd”,∠ vgd)@self ; // Update the vector vgd data

} else {
inp(“vgd”, )@self // If the light is not preceived, remove the previous vector vgd data

} ; AgoalDirection

The read action never blocks the execution of process AgoalDirection as sensor
readings are continuously generated by the Alight process.

The function Angle(x0, y0, x1, y1), used above and in subsequent parts of the
specification, returns the direction of the vector from (x0, y0) to (x1, y1). We refer
the interested reader to Loreti (2013) for its formal definition in Klaim.

The obstacle avoidance module is modeled as a process that takes as input the last
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distance sensors readings and returns the vector voa:

AobstacleAvoidance ,
xsum , ysum := 0 ; min := obs dMAX;
read(“obs”, !d)@self ; // Read the tuple representing the distance sensor readings

for i = 0 to 23{
xsum := xsum + d[i] · cos(2πi/24) ; // Calculate the coordinates of the final point of the

ysum := ysum + d[i] · sin(2πi/24) ; // vectorial sum of the reading vectors

if (d[i] < min) then min := d[i] // Calculate the minimum length of the vectors

};
‖ voa ‖ := min/obs dMAX ; // Calculate ‖ voa ‖, i.e., the length of vector voa rescaled in [0, 1]

∠ voa := Angle(0, 0, xsum, ysum) ; // Calculate ∠ voa, i.e., the direction of vector voa

rpl(“voa”, , )→ (“voa”, ‖ voa ‖,∠ voa)@self ; // Update the vector voa data

AobstacleAvoidance

where obs dMAX is the maximum range of the distance sensor (in Ferrante et al.
(2013a), it is set to 1.5 m).

The direction arbiter module is modeled as a process that takes vgd and voa as
input and returns the direction θda:

AdirectionArbiter ,
in(“voa”, !voa l, !θoa)@self ; // Read and consume the tuple containing voa (always present)

if (inp(“vgd”, !θgd)@self) then { // Read and consume the tuple containing vgd (if available)

vda
x := (1− voa l) · cos(θoa) + voa l · cos(θgd) ; // Calculate the coordinates of the

vda
y := (1− voa l) · sin(θoa) + voa l · sin(θgd) ; // vector to the desired direction

θda := Angle( 0, 0, vda
x , vda

y ) ; // Compute the angle θda

rpl(“da”, )→ (“da”, θda)@self ; // Update the angle θda data

} else {
if (voa l < 1) then { // Check if any obstacle has been detected

rpl(“da”, )→ (“da”, θoa)@self // Use the obstacle avoidance direction as θda

}
} ; AdirectionArbiter

Differently from sensor readings, data produced by other modules (e.g. vgd and
voa) are removed from the tuple space when read.

The direction mediation module is modeled as a process that takes as input the
direction θda computed by the process AdirectionArbiter and the last received mes-
sages from other robots and returns the direction θdn, to be used by the process



134 CHAPTER 4. ANALYSIS OF ROBOT SWARMS USING MODEL CHECKING

AmotionControl, and a message m, to be sent to the other robots via the Acommunication

process that models the range and bearing system:

AdirectionMediation ,
c , sumx , sumy := 0;
rpl(“msgs”, !l)→ (“msgs”, [])@self ; // Read and reset the list of received messages

while (l == θ :: tail) { // Scan the list

l := tail;
sumx := sumx + cos(θ) ; // Calculate the sum of the received directions

sumy := sumy + sin(θ);
c := c + 1 // Increase the counter of the received messages

};
if (c == 0) then { // If there are no received messages,

if (inp(“da”, !θda)@self) then { // but the robot is informed

rpl(“dir”, )→ (“dir”, θda)@self ; // Update the direction data for the motion control

rpl(“msg”, )→ (“msg”, θda)@self // Update the message to be sent to the other robots

}
} else { // If there are received messages,

θdn := Angle( 0, 0, sumx, sumy ) ; // calculate the average direction and proceed

( rpl(“dir”, )→ (“dir”, θdn)@self // Update the data for the motion control

|
( if (inp(“da”, !θda)@self) then { // If the robot is informed

m := θda // send θda

} else { // If the robot is non-informed

m := θdn // send θdn

};
rpl(“msg”, )→ (“msg”, m)@self // Update the message to be sent to the other robots

)

)

} ; AdirectionMediation

Notice that the tuple containing the direction θda is consumed when read. Thus,
to avoid blocking the execution of the process, to read such tuple an action inp
(within the condition of an if construct) is exploited.

The last module is the motion control, which is modeled as a process that takes as
input the direction computed by the process AdirectionMediation and output a tuple
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that is used by the process Amove to move the robot:

AmotionControl ,
in(“dir”, !θdn)@self ; // wait (and consume) a direction of movement

rpl(“move”, )→ (“move”, θdn)@self ; // transmit the direction to the wheels actuator

AmotionControl

As previously explained (page 131), we do not model the conversion of the
direction calculated by the direction mediation module into speeds for the wheels.
We instead direct model its displacement.

4.2.4 Stochastic specification and analysis

In this section, we first augment the Klaim specification presented in the previ-
ous section with action rates, in order to obtain a StoKlaim stochastic model.
We then use this model to perform model checking and verify properties of the
collective transport behavior presented. Using statistical model checking, we
first analyze the system success in moving the object in the scenario presented
in Ferrante et al. (2013a), obtaining accurate estimations of the system perfor-
mance expressed in terms of the probability of reaching the goal. We then change
the experimental setup to analyze the performance of the collective transport
behavior in different scenarios, with different obstacle and light source positions.

Modeling the system at a very detailed level allows us to analyze also what
happens in case the order of execution of the modules composing the individual
behavior of the robot is not deterministic. In other words, in our model, modules
of different robots are not executed synchronously following a predefined order,
but have follow a stochastic schedule dictated by the rate of the actions associated
to each module. This is different from computer simulators, such as the one
used in Ferrante et al. (2013a), where all robots act synchronously, but also
from macroscopic models, in which stochasticity is used only in the action
completed by the different robots. This low-level synchronization might hide
possible problems caused by sensing or communication delays which could arise
in real-robot experiments.

We now enrich the Klaim specification introduced in the previous section
with stochastic aspects and consider the scenario presented in Ferrante et al.
(2013a) and depicted in Figure 4.22. Seven rectangular objects are scattered in
the arena, while the light source is positioned high above the goal area and is
always visible to the robots. Following the experimental setup used in Ferrante
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Figure 4.22: Arena and initial configuration

et al. (2013a), we assume that robots are able to perform 10 sensor readings per
second on average and that they have an average speed of 0.02 m/s , and model
the part of the specification modeling the environment as able to perform a mean
of 100 operations per second. Starting from these parameters, we derive specific
rates for defining the StoKlaim specification.

Augmenting the Klaim specification with rates to obtain a StoKlaim specifi-
cation consists in annotating each tuple-manipulating operation, that is, those
presented in Table 4.2 with appropriate rates. As an example, we report be-
low the stochastic definition of process AobstacleAvoidance, which extends the one
presented in Section 4.2.3:

AobstacleAvoidance ,
xsum , ysum := 0 ; min := obs dMAX;
read(“obs”, !d)@self : λ1 ;

for i = 0 to 23{ . . . };
‖ voa ‖ := min/obs dMAX ; ∠ voa := Angle(0, 0, xsum, ysum);

rpl(“voa”, , )→ (“voa”, ‖ voa ‖,∠ voa)@self : λ2 ;
AobstacleAvoidance

The actions highlighted by a gray background are those annotated with rates λ,
where λ1 = 24.0 and λ2 = 90.0. These rates guarantee that obstacle avoidance
data are updated every 1

24 + 1
90 time units on average, i.e. about 20 times per

second. We refer the interested reader to Gjondrekaj et al. (2011) for the rest of
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the stochastic specification.
The result of a stochastic simulation run of the StoKlaim specification, per-

formed using Sam, is reported in Figure 4.23a. The trajectories followed by the
three robots in this run are plotted in the figure with three different colors. The
figure shows that the robots reach the goal without collisions. On an Apple iMac
computer (2.33 GHz Intel Core 2 Duo and 2 GB of memory) the simulation of a
single run needs an average time of 123 seconds.

We now analyze the probability to reach the goal without colliding with any
obstacles. The property “robots have reached the goal area” is formalized in MoSL,
for the specific system under analysis, by the formula φgoal defined below:

φgoal = 〈“pos”, !x1, !y1, !x2, !y2, !x3, !y3〉@env→ y1 ≥ 4.0∧ y2 ≥ 4.0∧ y3 ≥ 4.0

This formula relies on the consumption operator, 〈T〉@l → φ, that is satisfied
whenever a tuple matching template T is located at l and the remaining part
of the system satisfies φ. Hence, formula φgoal is satisfied if and only if tuple
〈“pos”, x1, y1, x2, y2, x3, y3〉, where each yi is greater than 4.0, is in the tuple space
located at env (all robots are in the goal area). Similarly, the property “a robot
collided an obstacle” is formalized by:

φcol = 〈“collision”〉@env→ true

where tuple 〈“collision”〉 is a tuple that can be generated by the process Amove

located at env whenever a robot collided an obstacle. See Gjondrekaj et al. (2011)
for the implementation details.

The considered analyses have been then performed by estimating the total
probability of the set of runs satisfying ¬φcolU≤tφgoal where the formula φ1U≤tφ2

is satisfied by all the runs that reach within t time units a state satisfying φ2

while only traversing states that satisfy φ1. In the analysis, a time-out of 500 s
has been considered.

Under the experimental conditions presented in Ferrante et al. (2013a) we
get that the goal can be reached without collisions with probability 0.916, while
robots do not reach the goal or collide with obstacles with probability 0.084.9

These results are in accordance with those reported in Ferrante et al. (2013a),
where the estimated probability to reach the goal is 0.94. We conjecture that the
slight difference in the results is mainly due to a different way of modeling robots
movement, which is computed via a physics-based computer simulator in Ferrante

9These and the following values have been estimated performing statistical model checking using SAM
with parameters p = 0.1 and ε = 0.1.



138 CHAPTER 4. ANALYSIS OF ROBOT SWARMS USING MODEL CHECKING

(a) (b)

Figure 4.23: Some simulation results obtained for the robotics scenario from Ferrante
et al. (2013a)

et al. (2013a), whereas in our case it is approximated as the vectorial sum of the
movement of each single robot.

The next analysis we present has the goal of understanding the effect of the
light source position on the behavior of the robots. To this end, we modify the
original scenario by placing the light source at ground level, so that it can be
obscured by objects and other robots and prevent the robots from perceiving
it in some cases. The obtained results show that the behavior of the robots is
drastically influenced. Under this configuration, the robots are not able to reach
the goal area and the probability to reach the goal without collisions becomes
close to 0.0. See Figure 4.23b for a stochastic simulation trace of a failed run.

To understand if this problem manifests itself also in other environments, we
analyze the collective behavior in a environment with two obstacles and the light
in the same low-height position as in the previous analysis. The environment
is shown in Figure 4.24a. At the beginning, the obstacles do not hide the light
to the robots. However, when the first obstacle enters in the range of the robots’
distance sensors, the robots turn to right, enter in the shadow cast by the second
object and then never reach the goal area.

The problem created by not having an always available light source can be
avoided by modifying the individual behavior of the robots so that, when the
light is not perceived, the last known goal direction is used. This approach was
indeed used in the collective transport behavior developed for the Swarmanoid
project (Dorigo et al., 2012). An analysis of this improved behavior shows that this
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(a) (b)

Figure 4.24: Some simulation results obtained for a simple robotics scenario

simple policy increases the probability to reach the goal area without collisions,
from 0.234 to almost 1.0. A successful stochastic simulation run is presented in
Figure 4.24b.

4.2.5 Summary

We have presented a novel approach to the formal verification of collective robotic
systems and validated it against the traditional approach based on physics-based
simulations. We first developed a Klaim model of the robot swarm. This
was completed modeling the constituent modules of the individual behavior of
the robots, together with their sensors and actuators. We then extended this
model with rates to obtain a StoKlaim model. This model was then used to
perform statistical model checking. The results of the analysis showed results
which are in accordance with those produced via physics-based simulations and
reported in Ferrante et al. (2013a), that have been in fact exploited for tuning the
quantitative aspects of our analysis.

In this section, we presented how it is possible to develop a detailed and
accurate model of a system by describing its modules using Klaim. This detailed
model allowed us to formally analyze the performance of the studied collective
behavior and to identify its limits. This is due to the fact that our model is able to
take into account the exact positions of the robots at any given time, in addition
to their sensors and actuators.

Such kind of detailed model is very well suited for collective transport sce-
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narios, where usually a limited number of robots are involved; however, it may
become intractable using available model checkers when the number of robots
grows significantly. To deal with such kind of scenarios, the abstraction level
of the model has to be increased in accordance with the number of robots, by
focusing on those aspects of the system that become most relevant.
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4.3 Discussion

In this chapter, we presented two examples of the use of model checking for the
analysis of robot swarms.

In Section 4.1, we applied model checking to a collective decision-making
behavior. We developed the model using Bio-PEPA, which allowed us to define
a single high-level specification of the system and subsequently perform several
kinds of analyses: stochastic simulation, fluid flow analysis and statistical model
checking. The analysis of the system performed using model checking allowed
us to formally verify various properties of the system, such as its convergence to
the best path under different initial conditions.

In Section 4.2, we applied model checking to a collective transport behavior.
We used Klaim, which allowed us to model in details the system, to study
the robot-to-robot interactions as well as the sensor-to-actuator interactions of
each single robot. The analysis performed using model checking allowed us
to formally verify various properties of the system, such as its probability to
successfully complete the transport of the object in different environments.

The analyses performed in this chapter show us that model checking is a
viable and profitable way to analyze a robot swarms. Model checking allow us
to analyze a system both at the macroscopic, as demonstrated in the collective
decision-making case study, and at the microscopic level, as demonstrated in the
collective transport case study.

It is worth noting that the models developed for model checking are, in
general, qualitatively similar to those developed for other analysis methods as,
for example, rate equations. This means that such models suffer from the same
limits and drawbacks, especially considering spatial and temporal aspects of
robot swarms. However, this also means that it is possible to exploit the results
obtained from a large corpus of techniques and results available in the literature,
see Section 2.1.

Model checking has many advantages over the use of other analysis ap-
proaches: it allow us to perform a complete analysis of a system, contrary to
stochastic and physics-based simulations which are only limited to the specific
instances observed. It also allow us to observe the system far from its average
behavior or with a limited number of robots, something that is not possible using
rate equations and fluid-flow analysis. In particular, an analysis involving the
sensors and actuators of robots, as presented in Section 4.2, would be impossible
using these techniques.
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Concluding, in this chapter, we demonstrated that model checking can be
successfully employed for the analysis of robot swarms.



Chapter 5

Conclusions

In this chapter we summarize the main contributions of this dissertation and we
present future research directions concerning the design and analysis of robot
swarms. In particular, we focus on the use of formal methods in swarm robotics.

In this dissertation, we showed how model checking can be successfully
employed for the design and analysis of robot swarms.

In Chapter 3, we showed how model checking can be used as a tool to
assist the design of a robot swarms in a novel design method called property-
driven design. Property-driven design is a design method based on prescriptive
modeling and model checking. It consists of four phases: in the first phase, the
requirements of the system to design are specified in the form of properties;
in the second phase, the prescriptive model of the system to design is created
and improved until the desired properties are satisfied; in the third phase, the
prescriptive model is used as a blueprint to implement the desired system in
a physics-based simulation; in the fourth phase, the physic-based simulation is
used to implement the system on real robots.

We demonstrated how property-driven design can be used to specify the
requirements of a robot swarms and to realize swarms which satisfy the desired
properties “by design”. Property-driven design provides several advantages
compared to a “code-and-fix” design approach: it allows the designer to avoid
the need of “reinventing the wheel”, as different models can be reused as starting
points for the development of multiple robot swarms; moreover, it allows the
designer to focus on the important aspects of the systems, postponing the need
to deal with implementation details; finally, since most of the design iterations
are done on the model, it allows the designer to minimize the work on the
implementation on simulated or real robots, shortening the total time necessary
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to complete the system.
One of the limits of property-driven design is that, even though it provides

the designer with a blueprint to implement the desired robot swarm, it is still
necessary for the designer to use its ingenuity and expertise to derive the be-
havior of the individual robots from the model of the collective behavior. This
problem could be solved, as explained in next section, with the integration of
property-driven design with automatic design methods.

In Chapter 4, we showed how model checking can be used as a tool to analyze
robot swarms. In particular, we used two process algebras, specifically Bio-PEPA
and Klaim, to model two collective behaviors: a collective decision-making
behavior and a collective transport behavior. The developed models where then
analyzed using model checking.

We demonstrated how model checking can be used both on macroscopic and
microscopic models. Moreover, we showed how model checking can be used
to perform a complete analysis of a system, as well as to analyze the behavior
of the system far from its equilibrium, thus proving a more complete analysis
approach compared to stochastic and physics-based simulations and fluid-flow
analysis.

Model checking is a powerful analysis approach. However, it must be noted
that the quality of the performed analysis strongly depends on the quality of the
model used. Modeling a robot swarm is not simple. Capturing the robot-to-robot
and robot-to-environment interactions that are at the core of a robot swarm is
not always easy, since it is not easy to model in detail such interactions and
their temporal and spatial characteristics. Fortunately, it is possible to exploit the
available techniques for modeling robot swarm available in the literature (see
Chapter 2). Also in this case, the difficulty of developing models of robot swarms
for model checking can be reduced using automatic technique, as explained in
the next section.

Concluding, in this dissertation we demonstrated how formal methods, and
in particular, model checking, can be successfully employed for the design and
analysis of robot swarms.

Future work

We believe that formal methods will eventually become a standard asset in the
toolbox of the swarm engineer and will help in promoting the use of swarm
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robotics for real-world applications. Here, we highlight some ideas that can
promote the use of model checking in swarm robotics.

Guidelines for formal methods in swarm robotics
In this dissertation, we explored the use of formal methods for the design
and analysis of robot swarms. Various approaches and formalisms have
been presented and used, each one with distinguishing strengths and limits.
As a future research, it would be useful to provide guidelines on how to
choose the best suited formalism or approach for each class of collective
behaviors, following the classification of collective behaviors presented in
Section 2.1.3. This would promote the use of formal methods as an analysis
and development tool in swarm robotics.

Automatic property-driven design
One currently adopted solution to the problem of deriving individual be-
haviors that result in the desired collective behavior is automatic design (see
Section 2.1). One possible way to overcome the limits of property-driven
design is to enhance it using automatic design: once a model of the system
to realize has been completed, it can be used to guide the optimization
process used to produce the behavior of the individual robots. A possible
way to implement this would be to unify property-driven design and Au-
toMoDe (Francesca et al., 2014), an automatic design method that creates
collective behaviors in the form of probabilistic finite state machines.

Automatic modeling of robot swarms using model checking
Developing a model of a robot swarms is a complex and time consuming
process. A possible way to reduce the effort necessary is to use techniques
such as Bayesian estimation and model comparison (Strelioff et al., 2007)
to automatically identify the parameters of a predefined model or the best
model out of set of given models. Through the creation of a set of predefined
publicly available models, for instance a set of models for each collective
behavior identified in Section 2.1, it would be possible to automatically
develop a model of a system with limited intervention of the designer.

Direct verification of robot swarms
As said, the quality of the results obtainable through model checking
strongly depends on the quality of the model used. One of the problems
of models is that they are, by definition, a simplified view of the system
being analyzed, meaning that a property valid on the model might not be
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valid on the modeled system, for instance because of a bug in the imple-
mentation. A way to side-step this problem would be to perform model
checking directly on software without using a model. Techniques for per-
forming model checking on high-level programming languages are already
available (Visser et al., 2003). These techniques cannot be directly applied
to swarm robotics, as the collective behavior of the swarm is not encoded
directly, but results from the robot-to-robot and robot-to-environment in-
teractions. However, it could be possible to formally verify the software of
the individual robots and “link” it to a user-defined model of the collective
behavior using statistical model checking to verify the consistency of the
models.

Debugging in robot swarms through runtime verification
Debugging and faulty prevention in swarm robotics are challenging, as
they suffer from the same problems related to design and analysis: the
inability to predict the collective behavior from the individual behaviors. A
possible solution to this problem could be to use model checking to perform
runtime verification (Bauer et al., 2006): First, a model of the system under
analysis is created; then, during the execution of the system, using Bayesian
estimation (Epifani et al., 2009), the parameters of the model are automatic
tuned to match the observation of the current execution of the system;
finally, model checking is performed at runtime, and if the results obtained
predict that the system will enter a faulty state, the swarm can be stopped
and its behavior improved before critical faults manifest.

Online adaptation of robot swarms based on runtime verification
Runtime verification also allows us to provide the robot swarm with online
adaptation. The parameter of a predefined model of the system are updated
at runtime using the local or global observation of the execution of the
system via Bayesian estimation (Epifani et al., 2009). With this up-to-date
model it is then possible to perform runtime model checking and verify
that the performance of the robots are within the expected parameters. In
case this is not true, it is possible to let the swarm adapt its behavior, using
the result of model checking as a feedback to guide this adaptation.



Appendix A

The robots and the simulation
platform

In this appendix, we describe the tools utilized to carry out the experiments
described in Chapter 3 and Chapter 4.

A.1 The e-puck robot

In this section, we introduce the e-puck robot, which has been used to perform
the experiments presented in Chapter 3.

The e-puck1 (Figure A.1) is a small wheeled robot designed for research and
education (Mondada et al., 2009). It has a diameter of 7.5 cm, a height of 6 cm
and a weight of 660 g. Despite its small size, the e-puck is rich in sensors and
actuators.

• 8 infrared proximity sensors placed around the body of the e-puck for
measuring the proximity of obstacles neighboring the e-puck.

• A 3-axis accelerometer measuring the acceleration of the e-puck and its
inclination.

• 3 microphones allowing to localize the source of a sound by triangulation.

• A camera (640x480 pixels) in front of the e-puck.

• 2 stepper motors, one for each wheel, having a full rotation of 1000 steps
per wheel.

• A speaker.
1http://www.e-puck.org/

147



148 APPENDIX A. THE ROBOTS AND THE SIMULATION PLATFORM

Figure A.1: The e-puck robot.

• 8 red LEDs placed around the body of the e-puck.

• One green LEDs placed in the transparent body.

One of the most interesting characteristics of the e-puck is its modularity.
The e-puck can be extended using additional modules. For the experiments
presented in this dissertation, we used the following additional modules:

• A ground sensor composed of three infrared sensors able to distinguish the
color of the ground under the robot.

• The Overo Gumstick module,2 a single-board computer that extends the
computing capabilities of an e-puck and allows it to run linux. The Overo
Gumstick also includes: 3 additional long-range infrared sensors for obsta-
cle avoidance, 8 additional RGB LEDs and a wireless ethernet adapter.

• The Ominivision module,3 which allows the robot to have an omnidirec-
tional vision of its surrounding. It also include an extra battery for extended
duration.

• The range and bearing module (Gutiérrez et al., 2009), which allows the

2http://www.gctronic.com/doc/index.php/Overo_Extension
3http://www.gctronic.com/doc/index.php/Omnivision_Module_V2

http://www.gctronic.com/doc/index.php/Overo_Extension
http://www.gctronic.com/doc/index.php/Omnivision_Module_V2
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Figure A.2: The TAM together with an e-puck.

e-puck to perceive the range and bearing of neighboring robots and com-
municate with them.

A.2 The TAM

The TAM is essentially a booth into which an e-puck can enter (see Figure A.2
for an image). We designed the TAM to simulate the execution of a task by an
e-puck even if the e-puck does not have the necessary capabilities to complete the
task. For example, it can be used to simulate the deactivation of a land mine by
an e-puck even if an e-puck is clearly not equipped for this task. The simulation
is performed simply by letting the e-puck wait for a specific time inside a TAM.

Physically, the TAM has a cubical shape with a length of 12 cm in every
dimension. We designed the weight of the body of the TAM so that an e-puck
can enter into the TAM without accidentally moving it. The e-puck can perceive
the LEDs of the TAM only from an acute angle: Experiments have shown that
the TAM can be recognized by the e-pucks from a distance up to 80 cm and an
angle of 45±4◦.

The TAM is based on Arduino4, an open-source experimental platform that
uses an Atmel AVR micro-controller as central processor. It is controlled by
a central 8-bit RISC processor, an ATmega328P running at 16 MHz, which is

4http://www.arduino.cc/

http://www.arduino.cc/
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equipped with 2kB main memory and 32kB flash memory. The central processor
controls the sensors and actuators of the TAM.

The TAM has two IR light barriers, an IR transceiver and three RGB LEDs.
The IR light barriers are used to detect the presence of a robot in the TAM. The
IR transceiver of the TAM is used to communicate with a robot that has entered
the TAM by using the e-puck library IRcom5.

The communication between the TAM and the central computer is wireless,
implemented using a 2.4 GHz XBee mesh networking module. Mesh networking
enables experiments with a large number of TAMs allowing scalability.

A.3 The foot-bot robot

In this section, we introduce the foot-bot robot, which has been used to perform
the experiments presented in Chapter 4.

The foot-bot robot is a modular robot composed of many sensors and ac-
tuators, collectively referred to as modules. Each module is controlled by a
dedicated dsPIC micro-controller. The foot-bot is equipped with a main proces-
sor board, a Freescale i.MX31 ARM 11 low-energy 533 MHz processor running
linux. The main board features 128 MB of ddr ram and 64 MB of flash. The
dsPICs on the modules communicate with the central processor asynchronously
using a common bus and the ASEBA software platform (Magnenat et al., 2011).

Figure A.3 shows a picture of the foot-bot where only the sensors and the
actuators used in this dissertation are marked. The foot-bot is 29 cm tall and has
a radius of 8.5 cm. Its weight is 1.8 Kg. It uses a lithium polymer battery with
very long duration and that can be hot-swapped during an experiment thanks
to the presence of a super capacitor.

The complete list of robot’s sensor and actuators is the following:

• Two differential drive treels, a combination of tracks and wheels, are used
for locomotion in normal and rough terrains.

• A turret actuator allows a plastic ring with 12 RGB LEDs and a gripper
to rotate 360 degrees around the vertical axis of the robot. The ring is
used both to emit light with different colors and as a docking mechanism
for another foot-bots. In fact, the gripper is especially designed to fit this
specific plastic ring and to hold into it while open.

5http://gna.org/projects/e-puck/

http://gna.org/projects/e-puck/
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Range and Bearing sensors

Distance scanner sensors

Gripper and turret actuators

Wheels actuator

Figure A.3: The foot-bot robot. In evidence the sensors and actuators used in the
experiment presented in this dissertation.

• 24 infrared sensors, that are evenly distributed around the foot-bot’s body,
have two functionalities. First, as a proximity sensor, they can detect obsta-
cles in close range (5 cm). Second, as a light sensor, they can measure the
intensity and the direction of the ambient light, even when placed far away
from the robot.

• 4+8 additional infrared sensors, usually referred to as ground sensors, are
located underneath the robot, between the two tracks and on the outside
part, respectively. They are used to detect the color of the ground in the
gray scale.

• Two Pixelplus 2.0 MegaPixels CMOS cameras provide basic visual informa-
tion. The first camera is located in the above part of the robot, in the center.
It point upwards towards a mirror located at the top of a glass tube. This
provides the foot-bot with omni-directional vision capabilities. The second
camera is also located on the top but in a non-central position, and can be
installed to either look upwards towards the ceiling or forward along the
X-Y plane.

• A rotating scanner, composed of two short and two long distance scanners
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Figure A.4: Architecture of the ARGoS simulator.

based on infrared sensors, is used to measure distances. It can detect
distance to obstacles very precisely, at the expenses of a poor 360 degrees
resolution due to the limited rotation speed.

• A range and bearing sensing and communication board. It is composed
of 20 infrared transmitters, of 12 receivers, and of a radio communication
device. The infrared transmitters and receivers have two functionalities.
First, they are used to detect the range and the bearing of neighboring
foot-bots. Second, they are used for local communication. This module is
only used for communication in this dissertation.

• A three-axes accelerometer and a three-axes gyroscope installed on the left
treel.

A.4 The ARGoS simulator

All the experiments described this dissertation have been carried out also using
a physics-based simulator called ARGoS, which stands for Autonomous Robots
Go Swarming (Pinciroli et al., 2011, 2012). Argos is an open source simulator6

specifically designed for research in swarm robotics. It was developed in the
context of the Swarmanoid project.

The overall architecture of ARGoS is shown in Figure A.4. ARGoS has been
developed with two key concepts in mind: flexibility and efficiency. Flexibility
refers to the possibility to tune the experiments according to the needs. Efficiency

6ARGoS simulator, http://iridia.ulb.ac.be/argos, February 2013.

http://iridia.ulb.ac.be/argos
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refers to the possibility to perform experiments with large numbers of robots
and achive high performance in term of execution speed. Flexibility has been
achieved through a modular design of the simulator: all components, such as
robots, sensors, actuators, physics engines, visualization engines, are plugins
that can be freely selected and included/excluded. In addition, efficiency in
ARGoS has been pursued through parallelization, that is, multiple sensors or
multiple physics engine can run in parallel on multiple cores. Parallelization
of the physics engine has been achieved via partitioning of the simulated space
into non-overlapping sub-spaces and assignment of each sub-space to a separate
physics engine.

One of the key features of ARGoS, it is that the control software written
for testing on ARGoS can be seamlessly instantiated on real robots without the
need for any kind of modification or translation. This is achieved via a control
interface (Figure A.4), which is an abstraction layer between the controller and
the sensors/actuators. The user can then decide whether to compile the control
software for the simulation or for the real robot.
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Bahçeci, E., Soysal, O., and Şahin, E. (2003). A review: pattern formation
and adaptation in multi-robot systems. Technical Report CMU-RI-TR-03-43,
Robotics Institute, Carnegie Mellon University, Pittsburgh, PA. 2.1.3

Balch, T. and Hybinette, M. (2000). Social potentials for scalable multi-robot
formations. In Proceedings of the 2000 IEEE International Conference on Robotics
and Automation (ICRA), pages 73–80. IEEE Press, Piscataway, NJ. 2.1.3

Baldassarre, G., Nolfi, S., and Parisi, D. (2003). Evolving mobile robots able to
display collective behaviors. Artificial Life, 9(3):255–267. 2.1.3

Baldassarre, G., Parisi, D., and Nolfi, S. (2006). Distributed coordination of
simulated robots based on self-organization. Artificial Life, 12(3):289–311. 2.1.3

Baldassarre, G., Trianni, V., Bonani, M., Mondada, F., Dorigo, M., and Nolfi, S.
(2007). Self-organized coordinated motion in groups of physically connected
robots. IEEE Transactions on Systems, Man, and Cybernetics – Part B, 37(1):224–239.
2.1.1

Banzhaf, W. and Pillay, N. (2007). Why complex systems engineering needs
biological development. Complexity, 13(2):12–21. 1

Bauer, A., Leucker, M., and Schallhart, C. (2006). Model-based runtime analysis of
distributed reactive systems. In Proceedings of the Australian Software Engineering
Conference (ASWEC), page 10. IEEE press. 5

Beal, J. (2004). Programming an amorphous computational medium. In Pro-
ceedings of the International Workshop on Unconventional Programming Paradigms
(UPP), volume 3566 of Lecture Notes in Computer Science, pages 97–97. Springer,
Berlin, Heidelberg. 2.1.1

Beck, K. (2003). Test-driven Development: By Example. Addison-Wesley, Boston,
MA. 3.2

Beckers, R., Holland, O., and Deneubourg, J.-L. (1994). From local actions to
global tasks: stigmergy and collective robotics. In Artificial life IV, pages 181–
189. MIT Press. 2.1.3



BIBLIOGRAPHY 157

Beer, R. D. and Gallagher, J. C. (1992). Evolving dynamic neural networks for
adaptive behavior. Adaptive Behavior, 1(1):91–122. 2.1.1

Beni, G. (2005). From swarm intelligence to swarm robotics. In Swarm Robotics,
volume 3342 of Lecture Notes in Computer Science, pages 1–9. Springer, Berlin,
Heidelberg. 2.1

Benkirane, S., Norman, R., Scott, E., and Shankland, C. (2012). Measles epidemics
and PEPA: An exploration of historic disease dynamics using process algebra.
In Formal Methods, volume 7436 of Lecture Notes in Computer Science, pages
101–115. Springer, Berlin, Heidelberg. 4.1

Berard, B., Bidoit, M., Finkel, A., Laroussinie, F., Petit, A., Petrucci, L., and Sch-
noebelen, P. (2010). Systems and Software Verification: Model-Checking Techniques
and Tools. Springer, Berlin, Heidelberg. 2.2

Bergstra, J., Ponse, A., and Smolka, S., editors (2001). Handbook of Process Algebra.
Elsevier Science Publishers, Amsterdam, The Netherlands. 2.2.1

Bergstra, J. A. and Klop, J. W. (1984). Process algebra for synchronous communi-
cation. Information and Control, 60(1–3):109–137. 2.2.1
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