Université Libre de Bruxelles Année académique 2007-2008
Faculté des Sciences Appliquées

Fault Detection in Autonomous Robots

Endogenous fault detection through fault injection and learning -
exogenous fault detection based on firefly-inspired synchronization

Anders Lyhne Christensen

Directeur de Thése: Prof. Marco Dorigo These présentée en vue de I'obtention du
titre de Docteur en Sciences de I'Ingénieur

Statement

This dissertation has been submitted in partial fulfilment of the requirements for an advanced
degree at Université Libre de Bruxelles. The dissertation describes an original research carried
out by the author. It has not been previously submitted to the Université Libre de Bruxelles
or to any other university for the award of any degree. Nevertheless, some chapters of this
dissertation are partially based on articles that, during his doctoral studies, the author, together
with a number of co-workers, submitted for publication in the scientific literature. Details can

be found in Section [1.2

Brief quotations from this dissertation are allowed without special permission, provided that
accurate acknowledgement of source is made. Requests for permission for extended quotation

from or reproduction of this manuscript in part or in whole may be granted by the copyright
holder.

Abstract

In this dissertation, we study two new approaches to fault detection for autonomous robots.
The first approach involves the synthesis of software components that give a robot the capacity
to detect faults which occur in itself. Our hypothesis is that hardware faults change the flow of
sensory data and the actions performed by the control program. By detecting these changes,
the presence of faults can be inferred. In order to test our hypothesis, we collect data in
three different tasks performed by real robots. During a number of training runs, we record
sensory data from the robots both while they are operating normally and after a fault has been
injected. We use back-propagation neural networks to synthesize fault detection components
based on the data collected in the training runs. We evaluate the performance of the trained
fault detectors in terms of the number of false positives and the time it takes to detect a fault.
The results show that good fault detectors can be obtained. We extend the set of possible
faults and go on to show that a single fault detector can be trained to detect several faults in
both a robot’s sensors and actuators. We show that fault detectors can be synthesized that are
robust to variations in the task. Finally, we show how a fault detector can be trained to allow
one robot to detect faults that occur in another robot.

The second approach involves the use of firefly-inspired synchronization to allow the presence
of faulty robots to be determined by other non-faulty robots in a swarm robotic system. \We
take inspiration from the synchronized flashing behavior observed in some species of fireflies.
Each robot flashes by lighting up its on-board red LEDs and neighboring robots are driven to
flash in synchrony. The robots always interpret the absence of flashing by a particular robot as
an indication that the robot has a fault. A faulty robot can stop flashing periodically for one
of two reasons. The fault itself can render the robot unable to flash periodically. Alternatively,
the faulty robot might be able to detect the fault itself using endogenous fault detection and
decide to stop flashing. Thus, catastrophic faults in a robot can be directly detected by its
peers, while the presence of less serious faults can be detected by the faulty robot itself, and
actively communicated to neighboring robots. We explore the performance of the proposed
algorithm both on a real world swarm robotic system and in simulation. We show that failed
robots are detected correctly and in a timely manner, and we show that a system composed of
robots with simulated self-repair capabilities can survive relatively high failure rates.

We conclude that i) fault injection and learning can give robots the capacity to detect faults
that occur in themselves, and that ii) firefly-inspired synchronization can enable robots in a
swarm robotic system to detect and communicate faults.

Acknowledgements

| first visited IRIDIA on a grey and windy Monday morning in late-September 2004. The place
was quite a sight. It was 8.45 a.m. and nobody was around. There was construction material
everywhere and the wind was coming in through cracks in the plastic that sparsely covered the
window frames where glass used to be. | was unsure if | had come to the right place — and even
if | had, | was seriously considering getting out of there as fast as | could. But then a great
mixture of people started dropping in and before | knew it, | had given a presentation, met the
“IRIDIA gang" and seen the robots. IRIDIA was an extremely inspiring place: | met people who
were working on all sorts of projects such as ant-inspired algorithms for route planning, the
modeling of biological networks, computational chemistry and swarm robotics. The place had
a special buzz and | was sold. When | was about to leave after less than 24 hours in Bruxelles,
Prof. Marco Dorigo offered me a Ph.D. position. “When should | start?” - “Next week!". And
so | did.

Now, three and a half years later, | look back at my time at IRIDIA with a lot of fond memories:
it was fun, challenging, interesting and full of experiences. | would first of all like to deeply thank
Prof. Marco Dorigo for his supervision and for finding the funding that allowed me to complete
my doctoral studies. | would also like to thank the people from IRIDIA who made my stay at ULB
so enjoyable: Alexandre Campo, Bruno Marchal, Carlo Pinciroli, Carlotta Piscolo, Christophe
Philemotte, Elio Tuci, Federico Vincentini, Giovanni Pini, Hughes Bersini, Javier Martinez,
Jodelson Sabino, Krzysztof Socha, Marcello Cirillo, Marco Montes de Oca, Mauro Birattari, Max
Manfrinn, Muriel Decreton, Navneet Bhalla, Paola Pellegrini, Prasanna Balaprakash, Roderich
Gross, Shervin Nouyan, Thijs Urlings, Thomas Halva Labella, Thomas Stuetzle, Tom Lenaerts,
Utku Salihoglu, Vito Trianni, and Yann-Aél Le Borgne. Special thanks go to Christos Ampatzis,
Francisco Santos, and Rehan O’'Grady - | have had numerous interesting discussions with you
guys, and without our collaboration, this dissertation would still have been far from completion.

| thank all the people from the swarm-bots project for their hard work and especially Francesco
Mondada and his group at the EPLF for designing and building the robots without which the
work presented in this dissertation would not have been possible.

| would like to thank Prof. Francisco Cercas and the people at Departamento de Ciéncias e
Tecnologias da Informagdo, ISCTE, University of Lisbon, who have given me a warm welcome
and who have been kind enough to give me time to finish this dissertation.

Andreia, thank you so much for your love and for your ever optimistic and playful nature!

Mona, your friendship is extraordinary - it really means a lot to me. You showed me a different
side of Brussels and | wish you and your soon-expanding family all the best!

| would like to acknowledge support from COMP2SYS, a Marie Curie Early Stage Research
Training Site funded by the European Community’s Sixth Framework Program (grant MEST-
CT-2004-505079). The information provided in this dissertation is the sole responsibility of the
author and does not reflect the European Commission’s opinion. The European Commission is
not responsible for any use that might be made of data appearing in this dissertation.

Vi

To my family.

Vil

viii

Contents

[1.3.1 Selt-Assembly, Morphology Control and Selt-Recontfiguration|

[1.3.2 Evolutionary Robotics| L

T4

Summary|

2 Related Work|

P.1

Endogenous Fault Detection|

P2

Exogenous Fault Detection|.

[3__Robotic Hardwarel

[3.1.1 The s-bot Camera and Image Processing.

[3.1.2 Examples of Studies Conducted with S-bots|

[3.2

Other Multi-Robot and Modular Robotic Systems|

[3.3

Summary| ... e e e

Fault Detection based on Fault Injection and Learning|

@1

Methodology|

@2

[4.3

10
14

15
16
18

21
21
24
25
26
28

29
30
33
35
36
36
38
38

4.3.3 Performance Evaluationl 38
B4 Results 40
4.4.1 Tuning the Input Group Distance| 40
Gi7 F » 5 Perf : 2l e Jead l
s-bot setups| 45

{4.4.3 Reducing the Number of False Positives| 46
.44 Faults in Both Sensors and Actuators|. 49
.45 Robustness to Variations in the Taskl 51
|4.4.6 Exogenous Fault Detection in a Cooperative Task| 52
45 Extensions and Limitationsl L. 55
4.6 Summary| e 59
5__Fault Detection in Swarms of Robots| 61
b1 Motivationl 62
[5.2 Synchronization in Natural and Artificial Systems| 65
[5.3 Synchronization in Robots| 67
[5.3.1 Discrete Oscillators| o 67
[5.3.2 Synchronization Experiments in Simulation|. 68
[5.3.3 Synchronization Experiments with Real Robots| 72
5.4 Fault Detection in Swarms of Robots| 73
[5.4.1 Detecting Faults in Non-Synchronized Robots| 73
b4.2 Time Overheadl 75
[5.4.3 Implementation| 76
[5.4.4 Fault Detection Experiments with Real Robots|. 77
[5.4.5 Fault Tolerance Experiments with Real Robots|. 78
[5.4.6 Limitations of the Approach|. 79
[5.4.7 Limitations of the Current Implementation of the Approach| 79

5.5 Summary and Directions for Future Work| 80
|6 Summary and Future Work| 83
6.1 Summary of Contributions| 83
6.2 Challenges for the Future| 84

[Conclusions| 89

PDP (g].

|A.1 Software Architecture for Fault Detection based on Fault Injection and Learning| 91

A2 Summary| e 98
|List of Figures| 99
[List of Tables 103
References 105

xi

xli

Introduction 1
CHAPTER

Imagine a future in which we are surrounded by robots: Robots to clean, robots to garden,
robots to cook, robots to take out the trash, and so on. From the beginning of civilization,
we have been preoccupied with constructing tools and modifying the environment around us to
make our lives easier, better, more efficient, and so on. The construction of intelligent machines
to perform more sophisticated tasks including domestic chores is the next step on this quest.
We do, however, face a number of challenges that must be overcome before we can sit back,
relax and let the robots do the rest.

As many have pointed out [Pollack, 1981, |[Kurzweil, 2005, Butterfield, [2006, Gates, 2006], the
field of autonomous robotics is in its infancy and in many ways resembles the field of computers
30 to 40 years ago. In the 1970s, every computer manufacturer had to custom-design and
custom-build everything including the boards to hold the electronics and software such as the
operating system (if any). As a result, the computers were expensive, they were not very reliable
and they could only perform basic tasks compared to today’s standards. Currently, the field of
robotics is in a similar phase: Robot manufacturers usually have to design a significant amount
of new hardware and develop a custom software stack for every new robot that they produce.
Although there have been recent efforts to standardize interfaces and control software for
autonomous robots, there is still no de facto method for object identification, map construction,
speech recognition, and so on. As a result, robots are expensive, they break easily, and they
are often only of interest to researchers and hobbyists.

Over the past four decades, we have witnessed how hardware and software components for
personal computers have been standardized. As a result, we have much cheaper computers
that can perform a much broader range of tasks. Arguably, computers have also become
more reliable despite the many-fold increase in complexity that hardware and software have
undergone. Still, few of us would like to let our lives depend on our personal computer. And
the upside is that we don’t really have to: in case we accidentally spill a cup of coffee over our
keyboard in an absent moment or if our harddisk crashes, it may feel like the end of the world,
but after all, we (usually) survive. For robots the same may not hold true. If a robot stops
working in the way it is supposed to, the consequences could be dire and easily go beyond a
lost document and the cost of a new harddisk: because robots operate in the physical world,
an undetected fault in a domestic service or leisure robot could result in human injury and/or
material damage. Imagine, for instance, that a robot experiences a fault while ironing clothes
and that the fault prevents the robot from moving a joint - the situation could result in a fire.

Mobile robots used in labs today have been found to be rather unreliable: in a recent paper [Carl-
son et al., [2004], the reliability of fifteen mobile robots from three different manufacturers was
tracked over a period of three years and the average mean time between failures was found to be
24 hours. The result suggests that faults in mobile robots are quite frequent. As we encounter

more and more robots in our daily lives, and as more businesses and government organizations
start to rely on robots, it becomes increasingly important to make intelligent machines depend-
able and safe. It can, however, be both difficult and costly to make a system detect faults
and respond correctly and safely to their presence. If we consider mechanical systems such
as cars, air planes, washing machines and robots, we find that fault tolerance has only been
implemented in places where it has been absolutely necessary. An unnoticed leak of oil from a
hydraulic pump controlling the flaps of a commercial airliner can have fatal consequences, while
a similar leak in a washing machine merely causes a wet floor and ruins the laundry. The main
reason that fault detection and identification is not a common built-in feature in all systems is
that it often requires special software and hardware to monitor the system. This prolongs the
development time and increases complexity and cost.

In this thesis, we study new ways of detecting faults in autonomous robots. Discovering that
a fault has occurred is the first step in the process of ensuring that a robot remains safe and
dependable even if something stops functioning correctly. We first study a method that enables
a robot to discover that a fault, such as a broken wheel, has occurred in itself. There are
various ways of detecting such faults: we could for instance add sensors for proprioception such
as encoders. If an encoder detects that a wheel is not turning when it should, we could interpret
that as a symptom of a fault. Alternatively, we could build a model of how the robot is supposed
to behave and compare the actual behavior to the behavior predicted by the model. We discuss
some of the established techniques in more detail in Chapter 4] We present an alternative
method for detecting faults, namely through fault injection and learning. We collect data while
a robot is operating normally and after faults have been injected. Based on the collected data,
we train the robot to detect the presence of faults. Our method has the advantage that no
additional sensors are needed and we do not need to build an analytical model of how a robot
should behave (which is a non-trivial task in many cases).

Some faults are, however, hard to detect in the robot in which they occur. These faults include
software bugs that cause the on-board software to hang, sensor failures that prevent a robot
from detecting that something is wrong and mechanical faults such as an unstable connection
to a power source. Alternatively, a robot might be able to detect a fault, but the fault itself
might still render the robot unable to alert a human operator or another robot. When multiple
robots are present or even working together on some task, it can therefore be advantageous
to give robots the capacity to detect faults in each other. Based on this premise, we show
how one robot can learn to detect faults that occur in another robot: we record training data
from one robot while the other robot is operating normally and while it is subject to a fault.
There appears, however, to be no way to scale this approach to larger groups or swarms of
robots. We discuss this issue and we go on to propose a different method for detecting non-
operational robots in swarms of robots. Our method enables robots in a multi-robot system
to detect faults in one another: operational robots emit periodic flashes of light that nearby
robots can detect. Non-operational robots do not emit flashes periodically and they can thus
be detected. Inspired by the behavior observed in some species of fireflies, the robots are able
to synchronize their periodic flashing. When the robots are synchronized, it is straightforward
to detect non-operational robots: whenever a synchronized robot flashes it can detect faults by
looking for non-flashing robots.

1.1 Problem Statement

1.1 Problem Statement

We study the activity known as fault detection for autonomous robots. Fault detection is
a binary decision process confirming whether or not a fault has occurred in a system. A
fault is an unexpected change in system function which hampers or disturbs normal operation,
causing unacceptable deterioration in performance [lsermann and Ballé, [1997]. A fault tolerant
system is capable of continued operation, possibly at a degraded performance, in the event
of faults in some of its parts. Fault tolerance is a sought-after property for critical systems
due to economic and/or safety concerns. In most systems, the capability to detect faults is a
prerequisite for ensuring that proper action is taken when faults occur. Other aspects of fault
tolerance include fault identification, namely determining the type and location of faults, and
fault accommodation which comprises any steps necessary to ensure continued safe operation
of the system.

In this thesis, we focus on fault detection: we first tackle the problem of how to give robots
the capacity to detect endogenous faults, that is, the capacity of a robot to detect faults in
itself. Not all faults can be detected in the robot in which they occur: catastrophic faults, such
as complete failure, render a robot incapable of detecting faults and/or taking any deliberate
action. We therefore also study how robots in a multi-robot system can detect exogenous faults
— that is, how robots can detect faults that occur in one another.

1.2 Thesis Structure and Contribution of Research

In this section, we provide an overview of the thesis structure and the scientific publications
produced over the past three and a half years leading to this thesis.

In Chapter[2] we review the history and the state-of-the-art of fault detection and fault tolerance
in robotics. The chapter is divided into two sections: one dedicated to endogenous fault
detection and one dedicated to exogenous fault detection.

In Chapter [3) we go on to present the swarm-bot robotic platform that we have used for the
work presented in this thesis. The platform consists of a number of autonomous mobile robots
that have the ability to physically connect to each other to form larger robotic entities. We
review the hardware and present some of the studies conducted on the swarm-bot platform.

In Chapter 4} we focus on automatic synthesis of fault detection modules. More specifically,
we propose a methodology based on fault injection and learning for obtaining fault detection
modules. We let one or more robots perform a given task while we record the sensory data and
the control signals sent to the actuators of the robot(s). During the recording phase, we inject
simulated hardware faults in the robots’ actuators. In this way, we obtain a set of recorded
sensor readings and actuator control signals corresponding both to when a robot is operating
normally and to when faults are present. We train neural networks to detect faults based on
the data collected. We first introduce the methodology (see Section . We then present
the three tasks in which we test the performance of the approach (see Section . We go
on to present how training data is collected and how the performance of a fault detector can
be measured (see Section [4.3). In Section we present the results of experiments with real

1.2 Thesis Structure and Contribution of Research

robots. The results show that the proposed method enables the accurate and timely detection
of faults. This work was published in:

o A. L. Christensen, R. O’Grady, M. Birattari, and M. Dorigo, “Automatic Synthesis
of Fault Detection Modules for Mobile Robots”, Proceedings of the NASA/ESA
conference on Adaptive Hardware and Systems (AHS-2007), |IEEE Computer Society,
Los Alamitos, CA, pages 693-700, 2007

We then go on to show that the method is applicable when faults in both sensors and actuators
are considered (see Section [4.4.4). Autonomous mobile robots often navigate in environments
in which the conditions and task parameters are unknown and sometimes change over time. A
fault detection approach has to be robust to such changes in order to be generally applicable.
In Section [4.4.5 we show that faults can be correctly and timely detected in a task that varies
from trial to trial.

One of the three tasks for which we choose to evaluate fault detection based on fault injection
and learning is a leader and follower navigation task. Two robots move around in an arena
enclosed by walls. One robot is assigned the leader role while the other robot is assigned the
follower role. The leader performs a random walk in the environment while the follower simply
follows the leader. In a set of additional experiments, we record sensory data and actuator
control signals from the leader robot while we inject faults in the follower. Based on the data
collected, we train a neural network that gives the leader the capacity to detect faults in the
follower robot. We show that the leader is able to detect faults that occur in the follower, that
is, exogenous faults. This work was presented in:

e A. L. Christensen and R. O’Grady and M. Birattari and M. Dorigo, “Exogenous Fault
Detection in a Collective Robotic Task”, Proceedings of the 9th European Conference
on Artificial Life (ECAL2007), Springer Verlag, Berlin, Germany, pages 555-564, 2007

The studies related to fault detection through fault injection and learning were extended with
experiments involving more complex setups such as varying environmental conditions and a
larger set of faults. The result was a publication in the journal Autonomous Robots:

e A. L. Christensen, Rehan O'Grady, Mauro Birattari and Marco Dorigo, “Fault Detec-
tion in Autonomous Robots Based on Fault Injection and Learning’, Autonomous
Robots, 24(1), pages 49-67, 2008

In Section we conclude the chapter with a discussion of the limitations of fault detection
based on fault injection and learning. We discuss how some of these limitations potentially
could be overcome and how the methodology could be extended to include fault identification.
We argue that there appears to be no general way of synthesizing modules for exogenous fault
detection using our methodology when larger groups or swarms of robots are considered.

In Chapter 5 we propose a method that gives the constituent robots in a multi-robot system
the capacity to detect faults that occur in one another (exogenous faults). We exploit some of

1.3 Other Scientific Contributions

the high-level principles underlying synchronizing systems found in Nature to obtain a robust,
simple, distributed approach to fault detection in groups or swarms of robots. Through local
interactions, a group of robots is able to synchronize and reach a state in which they flash
periodically in unison. When a robot breaks down, it ceases to flash. By detecting the ab-
sence of flashes, operational robots can effectively detect failed robots. We first motivate our
approach and discuss alternatives (see Section . We then discuss synchronization among
pulse-coupled oscillators in natural and artificial systems (see Section[5.2)). We explore different
parameter settings of a model adapted to our robots and present synchronization results ob-
tained in simulation (see Section [5.3.2)). We go on to demonstrate synchronization in a group
of 10 real robots (see Section[5.3.3). In Section we discuss how faults can be detected by
detecting non-synchronized (non-flashing) robots and we test the approach on real robots. In
one experiment, we give the robots the ability to simulate repair of one another. We show that
a group of robots with these capabilities can detect faults and survive a relatively high rate of
failure.

The work on synchronization and fault detection presented in Chapter [5| has been submitted
for publication at ICRA and the IEEE Transactions on Evolutionary Computation:

e A. L. Christensen, R. O’'Grady and M. Dorigo, "Synchronization and Fault Detection
in Autonomous Robots", Submitted to the IEEE/RSJ 2008 International Conference
on Intelligent Robots and Systems, under review

e A. L. Christensen, R. O'Grady and M. Dorigo, "From Fireflies to Fault Tolerant
Swarms of Robots", Submitted to IEEE Transactions on Evolutionary Computation,

under review

In Chapter[7] we conclude and discuss directions for future work.

All of the publications discussed in this chapter and the work presented in this thesis are based
either partly or completely on experiments with real robotic hardware.

1.3 Other Scientific Contributions

We have conducted a number of other studies that are not directly related to the topic of
this thesis. These studies fall into two categories: One that is concerned with self-assembly,
morphology control, and self-reconfiguration, while the other is concerned with a controller
design methodology called evolutionary robotics, which relies on artificial evolution. In the
following two sections, we present in brief our scientific contributions not directly related to the
main topic of this thesis.

1.3.1 Self-Assembly, Morphology Control and Self-Reconfiguration

The swarm-bot robotic platform used in this thesis belongs to a class of multi-robot systems in
which the individual units can physically connect to one another and form larger structures (see
Chapter [3|for details on the robotic hardware). Self-assembly is a mechanism that allows teams

1.3 Other Scientific Contributions

of cooperating robots to overcome the physical limitations of the individual team members.
Figure shows two examples of physically connected robots carrying out tasks impossible for
a single robot: on the left, a group of robots is crossing a trough impassable by a single robot
and on the right, a group of robots is navigating rough terrain on which a single robot would
topple over. Self-assembly is challenging because it requires numerous autonomous robots with
limited sensory capabilities to coordinate their actions. Decentralized control is usually favored
in multi-robot systems for the benefits it confers of scalability, robustness and flexibility [Cao
et al., (1997, |Bonabeau et al., 1999, Shen et al., 2004]. However, distributed control renders
the problem of coordination more difficult, as the individual agents usually have only a partial
view of the system and have to act based on local information alone.

We first demonstrated that self-assembly can increase the task-execution performance of a real
multi-robot system in the following publications:

e R. O'Grady, R. Gross, A. L. Christensen, F. Mondada, M. Bonani and M. Dorigo, “Per-
formance Benefits of Self-Assembly in a Swarm-Bot", Proceedings of the 2007
IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS '07), IEEE
Computer Society, Los Alamitos, CA, pages 716-725, 2007

e R. O'Grady, R. Gross, A. L. Christensen, and M. Dorigo, “Self-Assembly Strategies in
a Group of Autonomous Mobile Robots”, Submitted to Autonomous Robots, under

review

Figure 1.1: Two examples of robotic entities self-assembled into morphologies appropriate for
the task. Left: A connected robotic entity crosses a trough. A line formation is well-suited
to this task, since it allows the entity to stretch further and requires only a minimum number
of robots to be suspended over the trough at any one time. Right: A more dense structure
provides greater stability for rough terrain navigation.

The examples in Figure highlight the importance of the morphology of the self-assembled
robotic entities. The elongated structure (left) allows the robots to reach across the trough
while the dense structure (right) provides stability on rough terrain.

1.3 Other Scientific Contributions

We developed a novel directional self-assembly mechanism. This mechanism allows the robots
to specify the location and orientation of the connections made during the self-assembly process.
We built a set of local pattern extension rules on top of the directional self-assembly mechanism.
In the following publications, we demonstrated self-organized growth of specific morphologies
on a real-world self-assembling multi-robot system:

e A. L. Christensen, R. O'Grady and M. Dorigo, “A Mechanism to Self-Assemble Pat-
terns with Autonomous Robots”, Proceedings of the 9th European Conference on
Artificial Life (ECAL2007), Springer Verlag, Berlin, Germany, pages 716-725, 2007

e A. L. Christensen, Rehan O’Grady and Marco Dorigo, “Morphology Control in a Self-
Assembling Multi-Robot System”, /EEE Robotics & Automation Magazine, 14(4),
pages 18-25, 2007

e R. O'Grady, A. L. Christensen and M. Dorigo, "Self-Assembly and Morphology Con-
trol in a Swarm-Bot", Proceedings of the 2007 IEEE/RSJ International Conference
on Intelligent Robots and Systems, |IEEE Computer Society, Los Alamitos, CA, pages
2551-2552, 2007

e A. L. Christensen, R. O’Grady, and Marco Dorigo, “Morphogenesis: Shaping Swarms
of Intelligent Robots, AAAI-07 Video Proceedings, 2007, Best Video Award

e R. O’Grady, A. L. Christensen, and M. Dorigo, "SWARMORPH: Morphology Control
with a Swarm of Self-Assembling Robots". Extended abstract accepted for the
Workshop on Self-Reconfigurable Robots/Systems and Applications, held as part of 2007
IEEE/RSJ International Conference on Intelligent Robots and Systems, San Diego, CA,
2007, unpublished

e R. O’Grady, A. L. Christensen, and M. Dorigo, "SWARMORPH: Multi-Robot Mor-
phogenesis Using Directional Self-Assembly", Submitted to IEEE Transactions on
Robotics, under review

We extended the work listed above and showed how arbitrary morphologies can be formed
in a way that could enable the adaptive use of the morphologies in practical task-execution
scenarios. \We showed how morphology size can be regulated. We demonstrated how multiple
identical morphologies can be assembled. Finally, we showed how robots with no a priori
knowledge of a task can form morphologies based on instructions from robots already engaged
in task-execution:

e A. L. Christensen, R. O'Grady, and M. Dorigo, "SWARMORPH-script: A Language
for Arbitrary Morphology Generation in Self-Assembling Robots". Swarm Intelli-
gence, accepted for publication

In another study, we showed for the first time how real robots capable of self-assembly can
autonomously self-reconfigure between different morphologies:

1.3 Other Scientific Contributions

e R. O'Grady, A. L. Christensen, and M. Dorigo, "Autonomous Reconfiguration in a
Self-Assembling Multi-Robot System", Submitted to the Sixth International Confer-
ence on Ant Colony Optimization and Swarm Intelligence (ANTS 2008), accepted for
publication

Our ongoing research concerns leveraging the morphology generation approach to add functional
value to a group of robots. More specifically, we want to give the robots the capability to identify
different types of obstacles, assemble into appropriate morphologies and then to overcome the
obstacles. In an all-terrain navigation task, for example, the group could self-assemble into
a line morphology in order to cross a ditch, while uneven or hilly terrain could trigger self-
reconfiguration into a dense morphology that provides stability (see the examples in Figure.

1.3.2 Evolutionary Robotics

The field in which evolutionary techniques are applied in order to design robotics hardware
and/or control software is called evolutionary robotics [Nolfi and Floreano| 2000]. One direction
of studies in this field is concerned with cognitive science and psychology [Harvey et al., 2005],
while another direction focuses on the use of evolutionary techniques as an engineering tool.
Our interest falls in the latter category. A robotics setup where artificial evolution can be applied
usually starts off with one or more robots and a task that we want the robot(s) to solve. A
fitness function is defined, which, given a behavior, assigns a score reflecting the goodness of
that behavior with respect to the task. An evolutionary algorithm is then used to search for a
good controller. The controllers themselves may consist of rule sets, decision trees or similar,
but it has become common to use artificial neural networks (ANNs) due to their versatility and
tolerance to noisy sensory input. If the controller is represented as an ANN, an evolutionary
algorithm can be applied in order to optimize the weights, and possibly the morphology, of
the network. Solutions found in this way can exploit subtle environmental features as they
are perceived through the robot's sensors. Therefore, artificial evolution might not only be a
time-saving approach for synthesizing controllers: better controllers than those hand-crafted by
human developers can be obtained in some cases [Nolfi and Floreano, [2000].

Although promising, evolutionary methods have to our knowledge only been successfully applied
to relatively simple tasks and are not yet used extensively in industry as a tool for automatic
controller design. This is most likely explained by the fact that reaching the point where
artificial evolution produces a controller that solves a given task is a difficult, tedious and time-
consuming process, which involves a large amount of trial-and-error. First of all, it can be
difficult to define a fitness function for the task that we wish our robots to perform. Secondly,
the fitness function has to assign scores in such a way that gradients in the fitness landscape
push evolution towards good solutions. Thirdly, it can be difficult to start the evolutionary
machinery, that is, to initially find regions of the fitness landscape with gradients that lead the
search towards better solutions (this is also know as the bootstrapping problem). Fourthly,
determining a good type, size and morphology of a neural network (unless under evolutionary
control) often have to be done on a trial-and-error basis. If evolutionary robotics is to be used
in more complex scenarios, we need to improve our understanding and methods for designing
suitable evolutionary setups. Based on this premise, we suggested a structured method for

1.3 Other Scientific Contributions

applying evolutionary robotics methods to synthesize robot controllers. We chose a collective
navigation task in which multiple physically connect robots should safely navigate an arena
containing holes. This work was published in:

e A. L. Christensen and M. Dorigo, “Evolving an Integrated Phototaxis and Hole-
Avoidance Behavior for a Swarm-bot”, Artificial Life X: Proceedings of the Tenth
International Conference on the Simulation and Synthesis of Living Systems, MIT Press,
Cambridge, MA, pages 248-254, 2006

In a continuation of our work, we applied two different types of incremental evolution to the
same task. Incremental evolution is a method in which evolution begins with a population that
has already been trained for a simpler, but in some way related task [Harvey et al.| |1994]. This
is done by changing the fitness function and/or the environment during evolution in order to
make the task progressively more complex. In this way, bootstrapping problems can possibly be
overcome and evolution can be sped up. The use of incremental evolution can, however, require
a substantial engineering effort, because the goal-task has to be organized into a number of sub-
tasks of increasing complexity. Our research concerning incremental evolution was published
in:

e A. L. Christensen and M. Dorigo, “Incremental Evolution of Robot Controllers for
a Highly Integrated Task”, From Animals to Animats 9: 9th International Conference
on Simulation of Adaptive Behavior, SAB 2006, Springer Verlag, Berlin, Germany, pages
473-484, 2006

In a social scenario, establishing whether collaboration is required to achieve a certain goal
is a complex problem that requires decision making capabilities and coordination among the
members of the group. Depending on the environmental contingencies, solitary actions may
result more efficient than collective ones and vice versa. If each robot in a group has only
limited knowledge about the environment, estimating the opportunity to persevere individually
or to engage in collaboration may be very difficult or expensive. We used artificial evolution to
synthesize neural controllers that let robots decide when to switch from solitary to collective
actions based on the information gathered through time. This work was presented in:

e V. Trianni, C. Ampatzis, A. L. Christensen, E. Tuci, M. Dorigo and Stefano Nolfi, “From
Solitary to Collective Behaviours: Decision Making and Cooperation”, Proceedings
of the 9th European Conference on Artificial Life (ECAL2007), Springer Verlag, Berlin,
Germany, pages 575-584, 2007

Recently, we have managed to evolve homogeneous controllers that let real robots self-assemble.
We demonstrated how robots are able to allocate roles between them without the use of explicit
signals. This work has been submitted for publication in:

1.3 Other Scientific Contributions

e E. Tuci, C. Ampatzis, V. Trianni, A. L. Christensen, and M. Dorigo, (2008), "Self-
Assembly in Physical Autonomous Robots: the Evolutionary Robotics Approach".
Submitted to Artificial Life XI, the 11th Conference on the Simulation and Synthesis of
Living Systems, accepted for publication

e C. Ampatzis, E. Tuci, V. Trianni, A. L. Christensen and M. Dorigo, "Evolving Autonomous
Self-Assembly in Homogeneous Robots". Submitted to the Artificial Life Journal, under
review

All of the studies listed in this chapter were carried out with the aid of a robot simulation tool
that we developed. We briefly discuss the motivation behind the simulator and its main design
philosophies in the next section.

1.3.3 Simulation Tools

The significance of suitable simulation tools is seldom emphasized in scientific publications on
robotics. The robots themselves tend to steal the spot light. However, the majority of the
software developed in many robotics projects (including the swarm-bots projectE]) is not for
execution on real robots, but rather for execution on workstations. Simulators allow researchers
to develop and test controllers on their own workstations before the controller is executed on real
robotic hardware. In simulation, ideas can easily be tested. Development can start before the
hardware is available. A large number of experiments can be conducted in simulation with little
or no manual intervention, and so on. We have developed our own simulator called TwoDee
which started out as a fast, specialized simulator for evolutionary robotics. The simulator itself
grew over time to include the Common Interface, which is essentially an implementation of the
robot APl in TwoDee. The Common Interface allows hand-coded control programs to be run
both in simulation and on the real robots without any change to the source code. TwoDee has
formed the basis of simulator for the e-puck robotic platform and parts of TwoDee have been
included in the simulator currently being developed as part of the swarmanoid projeclﬂ

The TwoDee Simulator

TwoDee is a fast, specialized multi-robot simulator for the swarm-bot robotic platform. TwoDee
has a custom rigid body physics engine, specialized to simulate only the dynamics in environ-
ments containing flat terrain, walls and holes. This restriction allows for certain optimizations in
the computation of the physics and thereby reduces the computational resources necessary for
running simulations significantly (see [Christensen| 2005] for more details on TwoDee). TwoDee
is written in C++. It compiles and runs on POSIX.1 compatible operating systems such as

'The swarm-bots project was sponsored by the Future and Emerging Technologies program of the European
Commission. The project aimed to study new approaches to the design and implementation of self-organizing and
self-assembling artifacts. This novel approach found its theoretical roots in recent studies in swarm intelligence,
that is, in studies of the self-organizing and self-assembling capabilities shown by social insects and other animal
societies. For more information see http://www.swarm-bots.org.

2The swarmanoid project is a Future and Emerging Technologies project funded by the European Commis-
sion. The main scientific objective of this research project is the design, implementation and control of a
novel distributed robotic system. The system will be made up of heterogeneous, dynamically connected, small
autonomous robots. For more information see www.swarmanoid.org.

10

1.3 Other Scientific Contributions

Linux and under CygWin in Windows. With relatively few change it should be compilable
and able to run natively on other operating systems such as Microsoft Windows. Autoconf
and automake from the GNU Autotools project are used for dependency checking and build
management. At the time of writing, TwoDee comprises approximately 85.000 lines of source
code.

The Common Interface and Hand-Coded Controllers

Experimentation on real robotic hardware is often a time-consuming and tedious process. The
robots to which we had access were specially designed and built for the swarm-bots project.
The robots suffered from a number of nuisances that can be partly attributed to the prototypic
nature of the hardware. Before each experiment, every robot had to be tested and re-calibrated
and a robot would often break down during experiments. Hence, running experiments on real
robots is time consuming.

Before TwoDee was developed, control programs would either be developed directly on the real
robots or they would first be developed in an initial version for some particular simulator. Code
is very rarely correct the first time it is executed and usually significant amount of testing and
debugging is required in order to locate and fix design errors and bugs. Testing and debugging
directly on the real robots is slow and tedious: each new version of the control program needs
to be compiled for, transferred to and tested on one or more real robots. When the control
program is run, the behavior of the system has to be observed in real-time. The debugging
facilities on the real robots are minimal and it is hard to locate the source of an error. Often,
encountered issues are difficult to replicate. Furthermore, it can sometimes be hard to determine
if the problem is due to a bug in the control program code, an error in the design of the control
algorithm, or if the incorrect behavior is due to a hardware hick-up.

When an initial version of the control program would be developed in simulation first, it would
have to use the particular interface and representations for simulator of choice. When a satisfac-
tory performance had been reached in simulation, the control program would be re-implemented
to interface with the sensors and actuators on real robots. Although some of the logical errors
in the code usually had been caught in the initial version developed for the simulator, the new
version for the real robots would usually still have to undergo a non-negligible debugging phase.
In case experimentation on real robotic hardware led to changes concerning the high-level logic
of the controller, those changes had to be implemented in the simulator version of the control
program if results obtained in simulation were needed. In this way, two versions — one for a
particular simulator and one for the real robots — had to be developed and maintained.

The Common Interface is a simple idea that alleviates the need for reimplementing or changing
code in order to move a control program from simulation to real hardware and back. The
Common Interface is basically the real robot API encapsulated in a C++ interface (an abstract
class) and some scaffolding code to startup, initialize and run control programs. Control pro-
grams read sensors and control actuators through the Common Interface. On real robots, a
call to a Common Interface method is mapped to the corresponding real robot API call. In
simulation, on the other hand, arguments and return values are converted and/or computed
in order to comply with the representations and the interface of the simulator. In this way,

11

1.3 Other Scientific Contributions

all the simulator-specific code lives inside the Common Interface and is invisible to the control
program. The same control programs can thus be compiled and run in simulation and on real
robots.

The Common Interface does not remove the need for testing and debugging code on real robots
since there will always be differences between simulation and reality. However, since the same
control program runs in both simulation and on real robots, only one version of the control
program needs to be maintained. It is hard to quantify the benefits of the approach, but
we believe that the Common Interface has significantly shortened the development cycles for
control programs.

Simulation and Evolutionary Robotics

Our initial work in the field of evolutionary robotics moved us to develop TwoDee. Artificial evo-
lution of robot controllers is often carried out in simulation for practical reasons. It is common
to evaluate thousands of controllers in order to find a good solution. Running the evolution in
a software simulator can be orders of magnitude faster than on real robots. Furthermore, there
is no risk of damaging hardware, no need to re-calibrate sensors and actuators, and robots do
not run out of batteryf| in simulation.

Evolving controllers in software simulators is, however, not a perfect solution. We can run
into a number of problems when we try to transfer controllers that have been evolved in
software simulators to real, physical robots. An evolved controller might rely on subtle cues
and symmetries present in a simulated environment, which are slightly different in the real
world. Real sensors and actuators are not ideal, meaning that they are not always as precise
and reliable as one could hope for. The complex dynamics of the real world cannot be simulated
with perfect accuracy. These aspects have to be taken into account if the controllers evolved
in software are meant to be used on physical robots. Unfortunately, there is no general method
to ensure that controllers evolved in software simulation are transferable to physical robots. An
obvious approach is to try to narrow the gap between simulation and reality as much as possible
— that is, to develop or use software that attempts to simulate reality faithfully. This is typically
done by modeling robots and the environment in high detail and by using a software dynamics
engine, such as Vortex and Open Dynamics Engine (ODE).

During the life-time of the swarm-bots project a number of simulators have been built and a
quick web search shows that several generic and architecture-specific mobile robot simulators
exist. We chose to develop an entirely new simulator for multiple reasons, the two major ones
being performance and flexibility. \WWhen the work described in this thesis began, we tested a
number of simulators. We evaluated one of the more mature simulators called MISS which uses
the Vortex dynamics engine. However, with the available hardware resources at the time{z_r] an
average evaluation consisting of 100 individuals per generation, each evaluated for 400 control

3Unless, of course, the battery power plays a role for the controllers being evolved and therefore is modelled
explicitly in software; for instance if a robot should learn to move to a special area to recharge when its battery
level gets low.

*Available hardware resources: 15 single AMD Athlon 1800-2800+ nodes and 16 dual Opteron 1.8 GHz nodes
shared between the researchers in our lab. Estimates are based on the assumption that we have exclusive access
to one third of the processing power, that is, 16 CPUs.

12

1.3 Other Scientific Contributions

cycles (40 seconds), for 100 generations, took on average between 10 and 12 hours. Now
in order to draw any general conclusions on the feasibility of a given evolutionary setup, it is
necessary to run multiple evolutions with different initial random seeds: Running at least 10
and often 20 or more evolutions is common practice in literature, which means that a given
evolutionary strategy takes many days to evaluate. If only few strategies need to be evaluated,
this is not a major problem. However, a significant amount of trial-and-error is often necessary
in order to shape evolution so that the solutions found are satisfactory and thus the evaluation
time makes the whole process tedious.

Another widely used, relatively inexpensive strategy for easing the transfer of controllers from
simulation to reality involves adding noise to sensory reading and to actuator outputs. The effect
of adding noise is two-fold: Real sensors and actuators are noisy by nature and controllers should
be robust enough to handle this; furthermore, small differences between the simulated and real
versions of the sensors and actuators can be masked by the noise. Jakobi advocates an extreme
approach in which the parts of the simulated world (e.g. the presence of a corridor) that a robot
should not rely on are hidden by a noise [Jakobi, [1997a,b, [Miglino et al., [1995]. While adding
noise to sensors and actuators does not have a significant effect on a simulator’s performance,
the use of detailed robot and environment models and rigid body engines has a huge impact
on the number of CPU cycles required for running evolution in simulation.

We built TwoDee to be flexible in the sense that different versions of the same sensors could
easily be implemented. Different researchers and different experiments require different imple-
mentations of sensors and actuators. Combined with our custom rigid body physics engine,
TwoDee performs quite well: we benchmarked TwoDee against another simulator, NS, devel-
oped towards the end of the swarm-bots project. NS is built on a general-purpose rigid-body
dynamics engine ODE. The benchmark results showed that TwoDee outperforms NS by several
orders of magnitude, and that TwoDee scales close to linearly, both time-wise and space-wise,
in the number of physically connected robots simulated (see [Christensen, 2005|] for detailed
benchmark results). With TwoDee, we have successfully been able to simulate up to 1.000.000
connected robots on a normal workstation?]

TwoDee, TwoDeePuck and the Autonomous Robots Go Swarming Simulator

Parts of TwoDee have been used in two other simulators:

e TwoDeePuck [Bury, 2007] is a simulator for the e-puck robotic platform. The structure
and non-s-bot specific code of TwoDee was used and in some cases modified and extended
in order to simulate groups of e-puck robots. The resulting simulator, TwoDeePuck, has
been used by several undergraduate and master students.

e Autonomous Robots Go Swarming (ARGoS) is a simulator under development as part
of the swarmanoid project (see http://www.swarmanoid.org/simulation). The goal of
ARGoS is to allow for the simulation of different types of interacting robots in complex
man-made environments, e.g. a kitchen or a living room. The simulator is adaptive

A normal workstation in this case is an Athlon XP 1800+ with 512 MB of RAM running Debian Linux. When
TwoDee simulates 1.000.000 physically connected robots the memory usage is approximately 500 MB of RAM.

13

1.4 Summary

in the sense that the user can replace or choose between various implementations of
central components, such as the physics engine. The simulator also allows the user to
use different physics engines at the same time, e.g. a simple 2D physics engine for robots
and items on the floor plane combined with a specialized 3D physics engine for flying
robots. Parts of the code for TwoDee has been modified and is used in ARGoS, namely
its specialized physics engine, some sensor and actuator implementations, components
for rendering and the concept of the Common Interface.

At the time of writing, TwoDee is still being used as a platform for controller development and
test.

1.4 Summary

In this chapter, we have motivated why fault detection and fault tolerance are important subjects
to study before autonomous robots can be widely adopted. As we entrust more and more tasks
to robots, it becomes increasingly important to ensure that the robots remain safe — even in the
event of partial or complete failure. We stated the main topic of this thesis, namely endogenous
and exogenous fault detection for autonomous robots. We listed the original research and the
publications on which this thesis is based. We briefly presented original research related to
two other topics in which we have made scientific contributions: morphology control and
evolutionary robotics. Finally, we presented TwoDee, a fast and flexible simulator that was
initially developed with evolutionary robotics in mind. Over the past years, the simulator has
grown, it has been used by several researchers, and it has been used in part in two other
simulators, namely TwoDeePuck and ARGoS.

14

Related Work))

Fault detection is based on observations of a system’s behavior (for an introduction see [Iser-
mann, [1997]). Deviations from normal behavior can be interpreted as symptoms of a fault in
a system. Fault detection is an important activity in many automated systems ranging from
car engines to complex chemical plants |Gertler, 1998]. A specific fault detection approach is
a concrete method for observation processing. Observations can for instance be the current
temperature of a car engine or the measured flow of a solution through a certain part of a
chemical plant. Some faults can be detected by checking the observations against some pre-
defined limits, e.g. 100 degrees Celsius or 0.2 |/s. Under normal operation, these limits should
not be exceeded and in case they are, it may indicate the presence of a fault.

Fault detection can be achieved by adding special-purpose hardware such as torque sensors and
encoders [Terra and Tinos, [2001]. However, the sensors responsible for detecting faults are
subject to faults themselves. Thus, we are faced with a dilemma: the more hardware we add in
order to facilitate fault detection, the more faults we have to consider. Adding hardware also
increases cost, complexity and power consumption. It is, therefore, something that we would
like to avoid in many cases. Reducing cost and complexity would, for example, be crucial in
projects such as the National Aeronautics and Space Administration’s (NASA) swarm missions,
in which cooperating swarms of hundreds to thousands of small-scale autonomous robots explore
the solar system [Hinchey et al., 2004]. Given the high number of robots, simplicity and small
size are high priorities. Similarly, for domestic adoption of service and leisure robots, the number
and complexity of components have to be kept low in order to reach a price point that allows
for high market penetration [Kochan, [2005].

If a wheel on a robot breaks, how can the robot discover this? We could add rotary encoders
that measure the angular rotation of the robot’s wheels and verify that the shafts are turning
as they are supposed to. As mention above, this increases the cost and complexity of the
robot. Furthermore, if the motors that drive the robot are operating normally but if one of
the wheels has fallen off, we will be unable to detect this if we rely on the readings from the
encoders only. Alternatively, we could construct a model of how the robot is supposed to
move given the speeds of the left wheel and the right wheel, respectively. Determining how an
autonomous robot actually moves is however difficult, especially when a robot is operating in
an unknown environment. Even when sensors, such as a GPS receiver, are available, noise and
poor resolution of the readings can make it hard to determine if a robot is operating normally or
if it is subject to a fault. In Section we discuss these issues further and we review existing
methods for endogenous fault detection in autonomous robots.

Some faults cannot be detected by the robot in which they occur: For instance a dead battery, a
short-circuit on the main board, or a bug that causes the on-board software to hangE] Systems

!Some tolerance to these types of faults can be achieved by adding redundant software and hardware components

15

2.1 Endogenous Fault Detection

composed of multiple, homogeneous robots can potentially exploit their inherent redundancy
in order to achieve a high degree of tolerance to individual failures. To realize this potential, it
is in general necessary that robots can detect faults in each other. In Section we discuss
proposed techniques for exogenous fault detection and fault tolerance in multi-robot systems.

2.1 Endogenous Fault Detection

Endogenous fault detection generally falls into two categories: model-based methods (analyt-
ical) and model-free methods (data-driven). A large body of research in model-based fault
detection approaches exists [Gertler, 1988, |[sermann and Ballé, 1997]. In model-based fault
detection, some model of the system or of how it is supposed to behave is constructed. The
actual behavior is then compared to the predicted behavior and deviations can be interpreted
as symptoms of faults. A deviation is called a residual, that is, the difference between the
predicted and the observed value.

In the domain of mobile autonomous robots, accurate analytical models are often not feasible
due to uncertainties in the environments, noisy sensors, and imperfect actuators. A number
of methods have been studied to deal with these uncertainties. Many of these methods are
model-free since they are not based on analytical models of the systems but instead data-
driven. Fault detection is nevertheless often performed based on residuals. Artificial neural
networks and radial basis function networks have, for instance, been used for fault detection
and identification based on residuals [Vemuri and Polycarpou, 1997, [Terra and Tinos, 2001,
Patton et al., 2000]. In Skoundrianos and Tzafestas [2004], the authors train multiple local
model neural networks to capture the input-output relationship for the components in a robot
for which faults should be detected. The authors focus on detecting faults in the wheels of a
robot, and the input and the output are the voltage to the motor driving a wheel and the speed
of the wheel, respectively. Supervised learning is used to train the local model neural networks.
During operation, the speeds predicted by the local models are compared to the actual speed
and the residuals are computed.

Another popular approach to fault detection is to operate with multiple global models of the
system concurrently. Each model corresponds to the behavior of the system in a given fault
state, for example a broken joint, a flat tire, and so on. The fault corresponding to a particular
model is considered to be detected when that model’s predictions are a sufficiently close match
to the currently observed behavior. Banks of Kalman filters have been used for such state
estimation [Roumeliotis et al., 1998, |Goel et al., [2000]. In their basic form, Kalman filters are
based on the assumption that the modeled system can be approximated as a Markov chain
built on linear operators perturbed by Gaussian noise [Kalman, 1960]. Robotics systems are,
like many other real-world systems, inherently nonlinear. Furthermore, discrete fault state
changes can result in discontinuities in behavior. Extensions, such as the extended Kalman
filter (EKF) and the unscented Kalman filter (UKF), overcome some of these limitations. In
EKFs, the state transitions and the models can be non-linear functions, but they must be

as it is often done in critical systems such as aircraft and spacecraft. However, as we have discussed, adding
hardware components and increasing development cost are not always feasible options.

16

2.1 Endogenous Fault Detection

differentiable so that the Jacobian matrix can be computed. In UKFs, a few sample points are
picked and propagated through the model allowing the mean and covariance to be estimated
even for models comprised of highly non-linear functions [Julier and Uhlmann| [1997]. EKFs
and UKFs have been extensively used for localization for mobile robots [Smith and Cheeseman,
1986, Leonard and Durrant-Whyte, 1991} |Ashokaraj et al., 2004], but in the domain of fault
detection and fault identification for autonomous robots these techniques are often used in
combination with other methods.

Dynamic Bayesian networks represent another technique that does not require that the under-
lying phenomenon can be reasonably modeled as a linear system [Lerner et al., 2000]. Recently,
computationally efficient approaches for approximating Bayesian belief using particle filters have
been studied as a means for fault detection and identification [Dearden et al., 2004, Verma
et al., 2004, Li and Kadirkamanathan, 2001]. Particle filters are Monte Carlo methods capable
of tracking hybrid state spaces of continuous noisy sensor data and discrete operation states.
The key idea is to approximate the probability density function over fault states by a swarm
of points or particles. One of the main issues related to particle filters is tracking multiple
low-probability events (faults) simultaneously. A scalable solution to this issue has recently
been proposed [Verma and Simmons, 2006)].

Artificial immune-systems (AlS) are a biologically inspired approach to fault detection. An AlS is
a classifier that distinguishes between self and non-self |Forrest et al.,[1994]. In fault detection,
“self” corresponds to fault-free operation while “non-self” refers to observations resulting from
a faulty behavior. AIS have been applied to robotics, see for example [Canham et al., |2003]
in which fault detectors are obtained for a Khepera robot and for a control module of a BAE
Systems Rascal robot. The two systems are first trained during fault-free operation and their
capacity to detect faults is then tested.

Marsland et al.|[2005] have suggested using a novelty filter based on a clustering neural network
and habituation for inspection and fault detection. Through unsupervised learning, a novelty
filter learns to ignore sensory data similar to data previously perceived. The authors evaluated
the approach in various configurations using a Nomad 200 robot placed in different environments
and the robot correctly detected environmental differences. Novelty detection has the potential
to be used for fault detection assuming that a fault would have some impact on what a robot
perceives. However, when a novelty filter detects a new situation some supervisor has to
determine if the novelty of the situation is due to external factors such a new type of environment
or due to an internal fault. Fault detection through novelty detection is therefore best suited
for cases in which robots operate semi-autonomously, such as in inspection tasks in which an
operator is notified whenever a robot encounters a novel situation.

The approach that we propose in Chapter [4] relies on artificial neural networks that are trained
to discriminate between behaviors when a robot is operating normally and behaviors when the
presence of a fault is affecting the robot’s performance. We rely on a single neural network
only, as opposed to the multiple local model neural networks and the multi-model approaches
mentioned above. We do not use explicit or analytical modeling of the system (which can be
complicated for all but the simplest systems). The approach that we suggest for endogenous
fault detection in Chapter [4| shares features with artificial immune system-based fault detection

17

2.2 Exogenous Fault Detection

approaches in the sense that a classifier discriminates between normal and incorrect behavior
without the use of any explicit model. The aim is to detect the difference between normal and
abnormal behaviors, based on the flow of information from a robot’s sensors and the subsequent
flow of control signals from the control program to the robot’s actuators. However, in contrast
with the studies on AIS and novelty detection, we use supervised learning. When an artificial
neural network is trained, we include training data with both positive and negative examples,
which potentially allows the proposed method to be extended to fault identification.

2.2 Exogenous Fault Detection

In robotics, exogenous fault detection is the process through which one robot detects faults
that occur in other, physically separate robots.

Parker| [1998] has demonstrated that cooperating teams of robots based on the ALLIANCE
software architecture can achieve a high degree of fault tolerance. Fault tolerance is obtained
by modeling “motivations” mathematically and by adaptive task selection based on these mo-
tivations. When a robot fails to register satisfactory progress in its current task (for instance
due to the presence of a fault), it decreases its motivation for performing the task. Eventually,
the robot will switch to another task that it may still be able to perform. Alternatively, another
robot will discover that there is limited or no progress in the task undertaken by the failed
robot, and take over. Other approaches such as MURDOCH |Gerkey and Matari¢, [2002ba|
and TraderBots [Dias et al., 2004] have been proposed. In both MURDOCH and TraderBots,
explicit communication is used to negotiate task allocation. Fault detection and fault tolerance
are built into this negotiation process.

The approaches mentioned above are all for multi-robot systems which consist of relatively
complex robots. The robots often allocate tasks and track the progress of the mission by
communicating over a network. Other multi-robot systems consist of multiple, relative simple
robots. In these systems, the behavior of a robot is typically determined by what robot can
perceive in its immediate surroundings (as opposed to what it has negotiated over a network).
Each robot acts according to a limited set of rules. Multi-robot systems in this category are
often referred to as swarm robotic systems (the multi-robot system used in the research covered
in this thesis, the swarm-bot platform, is a swarm robotic system, see Chapter [3)).

In some cases, fault tolerance is an inherent property of the swarm robotic system and is not
handled explicitly. [Lewis and Tan|[1997] have shown that their control algorithm for maintaining
geometric formations exhibits correct behavior even if one of the robots fails. Winfield and
Nembrini| [2006] performed failure mode and effect analysis (FMEA) on a containment task
for a swarm of robots connected through local wireless links. The authors found that their
system exhibited a high level of tolerance to individual failures, but at the same time that
certain types of faults could effectively anchor the swarm at the failed robot’s position. In
their conclusion, they envisage a new behavior in which the swarm can identify failed members
and isolate them from the rest of the swarm. In both [Lewis and Tan, 1997] and [Winfield
and Nembrini, 2006] mentioned above, fault tolerance is a consequence of the simple and
adaptive nature of the controller design and not of explicit fault detection, identification and

18

2.2 Exogenous Fault Detection

accommodation. Although attempts to generalize fault tolerance by design have been made
(see for instance [Winfield et al., 2005]), it is unknown whether such designs are feasible (or
even theoretically possible) for all systems and all tasks.

In [Li and Parker, 2007], the authors use sensor analysis to facilitate fault detection in a tightly-
coupled multi-robot team. Their “sensor analysis for fault detection” (SAFDetection) is based on
data collection during normal operation and subsequent abnormality detection. The approach
combines data clustering techniques with the generation of a probabilistic state diagram to
model normal operation of the multi-robot system. The whole multi-robot team is regarded
as a single monolithic entity with a unified set of sensors. This puts limits on the size of the
teams since the amount of data communicated and processed centrally is proportional to the
number of robots in the team. In [Li and Parker, 2007|, the authors state that they intend to
extend their approach to distributed monitoring.

In Chapter 5} we study a completely distributed approach that builds on the principles behind
synchronization observed in fireflies to implement a heartbeat-like fault detection scheme for
swarms of robots. Fault tolerance is achieved by explicit exogenous fault detection (as op-
posed to implicit fault tolerance by design). Unlike many previously studied approaches, the
approach that we propose does not depend on radio communication, a centralized coordination
mechanism, or a strict definition of tasks and progress.

19

Robotic Hardware 3
CHAPTER

In this chapter, we present the multi-robot platform, swarm-bot, which has been used for the
research covered in this thesis. We discuss how it compares to other multi-robot systems,
and we provide examples of studies conducted on this platform. In multi-robot systems fault
detection and fault tolerance are central issues, especially when the robots often work in close
collaboration, e.g. to transport a heavy object. In case one robot fails, the whole system could
stop functioning if the other robots are unable to detect the fault and take the necessary steps
to exclude and/or repair the failed robot. On the other hand, the robots in such systems can
benefit from redundancy: in case one robot breaks down, another robot can take steps to
repair the failed robot or take over the failed robot’s task. In order to leverage the redundancy,
however, the robots need to have the capacity to detect and act upon faults that occur in one
another.

3.1 The swarm-bot Platform

The research covered in this thesis was conducted on the swarm-bot robotic platform [Mondada
et al., 2005]. This innovative platform was designed and built by Mondada’s group at the
Ecole Polytechnique Fédérale de Lausanne in Switzerland. The swarm-bot system consists of
a number of mobile autonomous robots called s-bots. An s-bot with indications of its sensors
and actuators is shown in Figure [3.1]

The s-bot is 10 cm high without the perspex tube housing its camera mirror and has a diameter
of 11.6 cm without its gripper. Thanks to a traction system that combines tracks and wheels,
the s-bot can rotate efficiently about its own axes and navigate on uneven terrain. The body
of the s-bot contains the majority of the s-bot sensory and processing systems. The body is
mounted above the chassis. A motorized axis allows the s-bot body to rotate with respect to
the chassis.

S-bots have the capacity to form physical connections with each other. Physical connections
between s-bots are established by a gripper-based connection mechanism, see Figure 3.2l The
entity formed by two or more connected s-bots is called a swarm-bot (in the examples shown in
Figure[L.1]on page [} the s-bots form swarm-bots). Each s-bot is surrounded by a transparent
ring that contains 8 sets of RGB-colored LEDs. This LED ring can be grasped by other s-bots.
An optical light barrier inside the s-bot gripper indicates when another s-bot’s LED ring (or
another graspable object) is between the jaws of the gripper. The LEDs in the ring can be
individually controlled. The two examples in Figure [3.3|show an s-bot with all its LEDs off and
illuminated, respectively.

The s-bot has 15 proximity sensors distributed around its body that allow for the detection of
obstacles. A 3-axis accelerometer provides information on the s-bot’s inclination that can be

21

3.1 The swarm-bot Platform

Spherical mirror

S-bot:

- Body diameter: 116mm
- Body height: 100mm
- Weight: ~700g

- Autonomy: 2h+ o [] []

- Rotation of the main
body with respect to

the motion base
- 400 MHz XScale CPU
- 15x 20 MHz PICs
- WiFi communication
- Linux OS
- All-terrain mobility

Proximity sensors Differential treels

Figure 3.1: The s-bot: An autonomous, mobile robot capable of self-assembly. Processor:
400 MHz XScale CPU, operating system: Linux, weight: ~700 g, battery allows for ~2 h of
operation between recharges.

22

3.1 The swarm-bot Platform

Figure 3.2: lllustration of the gripper-based connection mechanism: One s-bot grasping the
transparent LED-right of another s-bot.

Figure 3.3: A: an s-bot with all its LEDs off. B: an s-bot with its red LEDs illuminated.

23

3.1 The swarm-bot Platform

Red -
W Green
W Blue
17cm
Red

Red

Figure 3.4: An image captured by a robot's omni-directional camera and the processing steps
to obtain information about the LEDs of nearby robots. A: The captured image. B: After color
segmentation with indications of the distance estimates from the robot that captured the image
to some of the LEDs detected.

used to detect if the s-bot is in danger of toppling over. Other sensors provide the s-bot with
proprioceptive information about its internal motors. This includes positional information (e.g.,
of the rotating turret) and torque information (e.g., of forces acting on the traction system).
Traction sensors are mounted in the junction between the chassis and the main body. The
traction sensors enable an s-bot to perceive forces acting on the chassis, such as when another
physically connected robot pulls or pushes the chassis. The traction sensors can help coordinate
physically connected s-bots because each robot can perceive when the rest of the swarm-bot
attempts to move or change direction.

Each s-bot is equipped with a 400 MHz XScale CPU and runs a customized version of the Linux
operating system. Control programs for s-bots are usually written in C or C++. The sensors can
be read and actuators can be controlled through an application programming interface (API).
Control programs for s-bots operate in a discrete manner: a control program is run as a
succession of sense-think-act cycles. In each cycle, the control program reads data from sensors
such as the on-board camera, infrared proximity sensors, and so on, processes the data, and
sends control signals to the actuators such as the motors that drive the robot. A control cycle
period of 0.10-0.15 s is common.

3.1.1 The s-bot Camera and Image Processing

The s-bot has omni-directional vision, achieved using a camera that points upwards at a hemi-
spherical mirror. A transparent perspex tube holds the mirror in place. The camera captures
images of the robot’s surroundings reflected in the hemispherical mirror. When the s-bots op-
erate on flat terrain, the distance in pixels from the center of an image to a perceived object
can be used to estimate the physical distance between the robot and the object. An example

is shown in Figure [3.4]

The camera sensor records 640x480 pixel color images. The s-bots have sufficient on-board
processing power to scan entire images and identify objects based on color information. The

24

3.1 The swarm-bot Platform

image processor is configured to detect the location of the colored LEDs of the s-bots and
discard any other information. The image processor divides the image into a grid of multi-pixel
blocks and returns the color prevalent in each block (or indicates the absence of any color).
Depending on light conditions, the camera can detect illuminated LEDs on other s-bots up to
50 cm away.

3.1.2 Examples of Studies Conducted with S-bots

The swarm-bot platform was novel given that it was one of the first multi-robot systems in which
the units can self-assemble into larger robotic entities (swarm-bots) while still be sophisticated
enough to carry out meaningful tasks individually.

A number of studies have been dedicated to the subject of self-assembly on the swarm-bot
platform. The challenge lies in coordinating a number of autonomous s-bots so that they
connect physically and form a connected robotic entity - a swarm-bot. It has been demonstrated
that control programs — partly evolved and partly hand-coded — can steer the s-bots to self-
assemble [Gross et al., 2005, [2006a]. One of the fundamental issues is deciding how to initiate
the self-assembly process. In [Gross et al., 2005], different colors were used to distinguish
between the robot (or object) that seeds the self-assembly process and the rest of the group.
A robot operating individually would illuminate its blue LEDs, while a robot that was part of a
robotic entity would illuminate its red LEDs. When blue robots connect to the structure, they
themselves become red in order to attract other robots.

Recently, control programs based almost entirely on neural networks were synthesized through
artificial evolution [Tuci et al. [2008, /Ampatzis et al., 2008]. The neural controllers had no
control over the colored LEDs and the robots did not change color depending on their role.
Evolution found a solution to the role allocation problem (that is, the problem of deciding who
should grip who) in which the robots perform repetitive oscillating movements — swinging from
left to right. At one point, the robots make a collective decision: one moves and initiates the
self-assembly process, while the other turns its gripper away from the approaching robot in
order to let itself be grasped.

Once assembled, physically connected s-bots need to coordinate when they have to move,
e.g. to overcome a steep hill or transport a heavy object. The robots basically have to agree on
a common direction of movement. Trianni et al. have evolved neural network-based controllers
for coordinated motion and hole avoidance [Trianni et al., 2004, Trianni and Dorigo, 2006].
Coordination between the robots is facilitated by the traction sensors: the robots can detect
forces acting on their turret in the horizontal plane. In subsequent work, we have evolved neural
network-based controllers capable of coordinated motion while moving towards a light source
and avoiding holes [Christensen and Dorigo, 2006a,b].

It has been demonstrated that physically connected robots are able to carry out tasks that a
single robot could not. O’Grady et al. have demonstrated how cooperating s-bots are able to
overcome a steep hill on which an s-bot operating alone would topple [O'Grady et al., 2005,
2007c, |2008b]. |Gross et al.| [2006a], Tuci et al. [2006] and |Gross and Dorigo [2008a] have
demonstrated how s-bots can attach to a heavy object (and to each other) and transport the
object. [Nouyan et al.| [2006] and Nouyan et al.| [2008] have shown how a group of s-bots is

25

3.2 Other Multi-Robot and Modular Robotic Systems

able to form logical chains of robots from a predefined location (the nest) to an object (the
prey) and to transport the object along the chain to the nest.

As mentioned in Section the morphology formed when robots self-assemble is important.
In collaboration with Marco Dorigo and Rehan O’Grady, we have demonstrated how the mor-
phology generated through self-assembly can be controlled [Christensen et al., 2007a)c, |O"Grady
et al., 2007a| |Christensen et al., 2007b| (O'Grady et al., 2007b, [2008a, |Christensen et al., [2008].
The goal of our ongoing research is to let robots identify different types of obstacles and then
assemble into appropriate morphologies in order to overcome the obstacles.

3.2 Other Multi-Robot and Modular Robotic Systems

Research in multi-robot systems began in the domain of modular self-reconfigurable systems. A
modular self-reconfigurable robotic system is composed of numerous units and is able to change
its own shape by rearranging the connectivity between its units. A system can reconfigure in
order to adapt to new circumstances, perform new tasks, or recover from faults. In order to
recover from a fault and self-repair, the units need to be able to detect faults.

The past 20 years have produced a large body of research in self-reconfigurable modular robotic
systems and associated connection mechanisms. The individual modules vary in autonomy of
control from system to system. However, the individual modules are usually simple and can
seldom — as opposed to s-bots — carry out meaningful tasks independently.

Fukuda et al.'s CEBOT system [Fukuda et al., (1991, Kawauchi et al., [1993] is one of the first
realizations of a reconfigurable modular robotic system. The architecture consists of heteroge-
neous modules with different functions, e.g. to rotate, move, and bend. Various prototypes of
the CEBOT system comprising different shapes and connection mechanisms have been studied.

Hirose et al.’s Gunryu concept [Hirose et al., |1996] consists of a number of autonomous mobile
units each equipped with an actuator that allows the modules to form physical connections with
each other. However, only two prototype modules connected by a passive arm have been built.

PolyBot [Yim et al., |2003, 2000] is a modular chain robot in which each module has one degree
of freedom. It has been demonstrated that an arm consisting of multiple PolyBot modules is
capable of operating in 3D space and that such an arm can grasp and dock with additional
modules. The PolyBot system uses hermaphroditic connection plates with four grooved pins
and four holes on each plate. When two modules connect, the grooved pins on the connection
plate of one module match up with the four holes on the connection plate of the other module.
Connections are formed and released by a shape-memory alloy latching mechanism.

The CONRO [Castano et al., [2000] system consists of a number of roughly shaped rectangular
boxes with a female connector on one face and male connectors on three of the other faces.
Rubenstein et al. have recently shown that CONRO is capable of autonomous docking (self-
assembly) [Rubenstein et al., 2004].

In the Millibot Train system [Brown et al., 2002], multiple mobile robots can physically connect
into a line formation. The objective is to enhance the mobility of the system, for instance,
enabling a train of connected robots to cross obstacles that a single robot would not be able

26

3.2 Other Multi-Robot and Modular Robotic Systems

to cross. So far, only a teleoperated train composed of seven prototype modules has been
demonstrated [Brown et al., [2002].

The systems presented above all employ connection mechanisms based on penetration and
shape matching. This requires precise alignment of the modules when connections are formed.
Furthermore, connections between modules can only be made at predefined locations on the
module bodies, sometimes only at a single location.

Super-Mechano Colony (SMC) [Damoto et al., 2001, |Yamakita et al., 2003| is composed of one
parent unit and several child units that are responsible for locomotion when they are attached
to the parent unit. In the SMC Rover [Motomura et al., 2005|, the child units are called Uni-
Rovers. Each Uni-Rover is composed of a wheel and a single manipulator. The Uni-Rovers
can attach to the parent unit at one of six locations. When six Uni-Rovers connect to the
parent unit, the artifact effectively becomes a six wheeled rover. For another prototype of the
SMC, (Gross et al.| [2006b] showed self-assembly of two child units.

M-TRAN [Murata et al., 2002] is a hybrid system in which each module consists of three parts:
an active block, a passive block and a link between them. A module is equipped with an
on-board microprocessor, inter-module communication/power transmission devices and inter-
module connection mechanisms. Each block has three connection surfaces composed of a
combination of permanent and electrical magnets. M-TRAN is able to metamorphose into
different robotic configurations. Examples include a legged machine for which a coordinated
walking motion was generated.

SuperBot [Shen et al., 2006] is a new deployable self-reconfigurable system for real-world ap-
plications outside laboratories. The system takes inspiration from CONRO and M-TRAN.
SuperBot combines the advantages of chain-based and lattice-based robotic systems to ac-
complish multi-modal locomotion. Each module can dock with other modules in six different
positions. A prototype consisting of six modules has been built [Salemi et al., [2006].

ATRON [@stergaard et al., |2006] is a cubic lattice-based reconfigurable robot. It is composed
of self-contained modules that can attach to each other, share power, communicate to form a
larger robotic entity and reconfigure into different shapes. Each module is composed of two
hemispheres, connected by a slip-ring. The two hemispheres can rotate independently while
still transfer power and communicate with each other.

For detailed overviews of self-reconfigurable systems and self-assembling systems see [Yim et al.,
2007], [Gross et al., |2006a] and [Gross and Dorigo| 2008b]

Flexibility is one of the key potential advantages of multi-robot systems in which the units have
the capabilities to carry out tasks individually. Multi-robot systems composed of units that
are capable of carrying out tasks individually is a topic of increasing interest to researchers.
Multi-robot systems of this flavor have a number of advantages over single robot systems.
In particular, the robots in such systems can either execute tasks in parallel, or can carry
out more demanding tasks by cooperating with each other. Such systems can be used for
surveillance [Roman-Ballesteros and Pfeiffer, 2006], physical manipulation [Matari¢ et al., 1995,
Gerkey and Matari¢, 2002b], exploration [Burgard et al., [2000], and so on.

Multi-robot systems of this type can be composed of robots that were designed to operate alone,
for instance Sony’s AIBO [Fujita et al., 2000], or they can be composed of robots that were

27

3.3 Summary

designed to cooperate such as the s-bots. Examples of other multi-robot systems that consist
of autonomous mobile robots are I-SWARM, [Woern et al., Sept. 2006, Seyfried et al., 2005],
iRobot’s SwarmBots [McLurkin, {2004, McLurkin and Smith| 2004], and Pherobots [Payton
et al, 2001]. The Khepera [Mondada et al., |1994] is a miniature robot designed to allow
researchers to efficiently (thanks to its small size and relatively low cost) investigate control
algorithms. The Khepera robot has been quite successful and numerous studies in collective
robotics have been conducted on this platform. A new miniature robot architecture, the e-
puck (see www.e-puck.org), has recently been developed at Ecole Polytechnique Fédérale de
Lausanne. The e-puck is an open and extendable hardware platform. Similar to the Khepera,
the e-puck is mainly for education and research.

Multi-robot systems can also consist of different types of robots: In the swarmanoid project (see
http://www.swarmanoid.org), the aim is to build a heterogeneous swarm of robots consisting
of three different types of robots — foot-bots, hand-bots and eye-bots — that can cooperate in
order to carry out tasks in indoor environments. The eye-bots (flying robots) can guide foot-
bots (operating on the ground) and hand-bots (operating on the ground, on tables, shelves,
etc.).

3.3 Summary

In this chapter, we presented the swarm-bot platform used for the research presented in this
thesis. The platform is a multi-robot system which is composed of a number of autonomous
robots called s-bots. S-bots can physically connect and form larger robotic entities — swarm-
bots. We discussed some of the studies that have been conducted on the swarm-bot platform
such as self-assembly, coordinated motion, cooperative transport and morphogenesis.

Over the past 20 years researchers have been increasingly interested in building and controlling
self-reconfigurable and multi-robot systems. These systems have a number of potential advan-
tages over single robot systems, such as flexibility, adaptability, and inherent redundancy at the
unit level. Fault detection and fault tolerance is particularly important in these systems, since
robots often have to work together in order to complete tasks. If one robot fails, it could com-
promise the whole group and its mission. However, when faults are correctly detected, these
systems could achieve a high level of tolerance to individual failures due to the redundancy at
the unit level.

28

Fault Detection based on Fault Injection and

Learning 4
CHAPTER

In this chapter, we propose a new method for synthesizing fault detection modules for au-
tonomous robots. The method requires no special fault detection hardware and relatively little
computational resource to run the fault detection software. Fault detection has been a topic of
many previous studies and a popular approach for detecting faults is to build a model of how
a system or a robot is supposed to behave. If the difference between the actual behavior and
the behavior predicted by the model differ, it could be due to the presence of a fault. However,
building an analytical model of how an autonomous robot is supposed to behave is a non-trivial
task: due to noisy sensors, imperfect actuators and general uncertainty about the environment,
this approach is difficult to apply in practice.

The method that we propose is model-free since is does not rely on an explicit model of the
system. Instead, we record sensory data, firstly over a period of time when a robot is operating
normally, and secondly over a period of time when various types of hardware faults are present
in the robot. We then train a neural network to detect faults based on the data recorded.

In the following section, we provide an overview and a formal description of the proposed
approach. In Section we present three different tasks in which we test our fault detection
approach. We then go on to present how we collect training data and how we evaluate the
performance of fault detectors (see Section [4.3)). In Section we present results. We
first consider only faults in the traction system of the robots and evaluate the performance of
fault detectors for the three tasks (see Section [4.4.1] to and we then go on to test the
performance when faults in both sensors and actuators are considered (see Section [4.4.4). Since
autonomous mobile robots often navigate in uncertain environments, we test the performance
of our approach when a task varies from trial to trial (see Section [4.4.5). In a leader and
follower task involving two robots, we show that the leader robot is able to detect faults in
the follower robot (see Section [4.4.6). Although we demonstrate that the leader can detect
exogenous faults, it is unlikely that the approach presented in this chapter can be used for
exogenous fault detection in larger groups or swarms of robots. In Section we discuss the
cause of this limitation and we discuss various other aspects such as how to extend the approach
to include fault identification, improve its scalability, and how fault detectors could be trained
on data obtained in simulation. Finally, we conclude with a summary of the proposed method

and the results obtained (see Section [4.6)).

29

4.1 Methodology

Develop control Collect training Train fault Evaluate fault
program data detector detector

Figure 4.1: The four steps of our methodology for obtaining and evaluating fault detectors
based on fault injection and learning.

4.1 Methodology

An overview of our method for obtaining and evaluating fault detectors based on fault injection
and learning is illustrated in Figure[d.1] First the control program specifying the desired behavior
for a fully operational robot is developed. We then collect training data during a phase in which
the control program is run on real robotic hardware. During the training runs, sensory data and
actuator control signals are collected while the robot is operating normally and after faults have
been injected. We then train a fault detector on the data collected. Finally, the performance
of the fault detector is evaluated.

The fault detection problem is to determine if the robot performs its task correctly, or if some
fault in the hardware or in a software sub-system (but not a bug in the control program itself)
is degrading the robot's performance. If a fault is detected, a signal can be sent to the control
program itself, another robot, or a human operator. In our design, the fault detector is an
isolated software component that passively monitors the performance of the robot through the
information that flows in and out of the control program. A conceptual illustration of the
relationship between the control program, the robotic platform, and the fault detection module

can be seen in Figure [4.2]

The control program is run as a succession of sense-think-act cycles. In each cycle, the control
program reads data from sensors such as the on-board camera, infrared proximity sensors,
light sensors, and so on, processes the data, and sends control signals to the actuators such
as the motors that drive the robot. A control cycle period is typically between 0.10 s and
0.15 s, depending on the task and the amount of computation needed to extract the relevant
information from the sensory data.

Our hypothesis is that knowledge of the flow of sensory inputs describing the state of the world
as perceived by the robot, and the resulting flow of control signals that steer the robot, are
sufficient to discriminate between situations in which the robot operates normally and situations
in which the presence of one or more faults hamper its performance. An intuitive motivation
for why this is often true for autonomous robots is that a control program already requires a
certain amount of continuously updated information about the state of the world to successfully
steer the robot to perform its task in an unstructured environment. If we, for instance, design
a control program to steer a robot between two arbitrary points A and B, we would need some
sensory data telling us if we have left A and if we have reached B, perhaps also the current
relative direction to B, proximity sensor readings for avoiding obstacles, and so on. If such
information were not used, we would have to rely on a blind random walk and chance. Thus,
the continuously updated information used by a control program in many cases contains some
indications on how a task is progressing. We should therefore be able to determine if a robot

30

4.1 Methodology

Sensory data

Sensor API
\ 4 \ 4
Control Program Fault Detector
A
Actuator API
SWIFI Module

Actuator control
signals

Figure 4.2: The fault detection module monitors the sensory data read by the control program
and the consequent control signals sent to the actuators. The fault detection module is passive
and does not interact with the robot hardware or the control program. The SWIFI Module
facilitates fault injection (see text).

is operating normally or not based on the sensory data used by the control program.

The actions that a control program performs, that is, the signals which a control programs
sends to the robot’s actuators, can help us to determine if a robot has as fault. When a fault
occurs, e.g. an actuator or a sensor breaks, the resulting behavior of the robot is an interaction
between the fault and the control program. To illustrate this, assume that the robot in our
example from above is propelled by a pair of differential drive wheels and with some means of
sensing the relative direction 6 to the point B. A simple way of steering the robot towards B
would be to let the speeds of the left and right wheels, respectively, depend on 6 in the following
way, assuming that 6 is in the interval [—7, 7] and that =,k > 0:

s5; = v —ko (4.1)
sy = x+Kk0

If the motor driving one of the wheels breaks causing the wheel to stop turning, then the robot
will either turn continuously about the broken wheel if x > k7 or it will turn until k0| = =
and then stop if z < k. Hence, the subsequent flow of actuator control signals (and sensory
inputs) depends not only on the type and location of the fault, but on the interplay between
the control program and the fault.

If we take a white-box approach, we can use our knowledge of the control program and possible

31

4.1 Methodology

faults to build a fault detection module (for instance, if we know that x < kx and if k0| = =
for a number of consecutive control cycles, one of the wheels is probably broken). However,
this approach does not scale well neither with the complexity of the original control program
nor with the number of faults considered. Many interactions between a fault and the actions
taken by a control program can also be significantly more complicated than our example above.

In our method, we take a black-box approach and consider only the inputs and the outputs of
the control program, that is, the robot’s flow of sensory data into the control program and the
resulting flow of control signals sent from the control program to the actuators. Our hypothesis
is that this information alone is sufficient to discriminate between situations in which the robot
operates as normally and situations in which the presence of one or more faults hampers its
performance. We record the flow of sensory data and control signals in situations where a robot
is operating normally and where the robot is subject to a fault, respectively.

There are several methods for obtaining flows of sensory data and control signals for robots with
faults: A broken robot can be used, readings can be obtained using a detailed software simulator,
or faults can be purposefully provoked by the experimenter. In this study, we apply the latter
technique: in a modified version of the on-board software, we provoke (simulated) hardware
faults on real robots. We apply a well-established technique known as software implemented
fault injection (SWIFI) used in dependable systems research. The technique is usually applied
to measure the robustness and fault tolerance of software systems [Hsueh et al., 1997, Arlat
et al., [1990]. In our case, we inject faults to discover how sensory data and the control signals
change when faults are present. The idea is that by actively controlling the state of the robot
(for instance by injecting faults or by using a broken robot) and recording the flow of sensory
data and control signals, we can use supervised learning techniques and obtain a classifier that,
based on that flow, can determine the state of the robot.

Some methods for fault detection base classification on the most recent observations only.
The approach presented in this chapter allows classification based on both current and past
observations, since many faults can only be detected if a system is observed over time. This
is especially true for mechanical faults in mobile robots; a fault causing a wheel to block, for
instance, can only be detected once the robot has tried to move the wheel for a period of
time long enough for the absence of movement to be detectable. This period of time could
be anywhere from a few milliseconds if, for example, dedicated torque sensors or encoders in
the wheels are used, to several seconds if the presence of a fault has to be inferred based on
information from non-dedicated sensors.

We use time delay neural networks (TDNNs) as classifiers [Waibel et al., 1989, |Clouse et al.,
1997]. TDNNs are feed-forward networks that allow reasoning based on time-varying inputs
without the use of recurrent connections. In a TDNN, the values for a group of neurons are
assigned based on a set of observations from a fixed distance into the past. The TDNNs used
in this study are normal multilayer perceptrons for which the inputs are taken from multiple,
equally spaced points in a delay-line of past observations. TDNNs have been extensively used
for time-series prediction due to their ability to make predictions based on data distributed in
time. A large variety of other classifiers existE] such as linear classifiers, Bayesian networks,

!For introductions to these topics see [Duda et all 2000} |Devroye et all [1996 [Jensen| [1996} [Rabiner| 1989]
Cristianini and Shawe-Taylor| [2000].

32

4.1 Methodology

hidden Markov models, support vector machines, and so on. The main reason why we chose
artificial neural networks in this study is that this type of classifier is often used in robotics and
generally enough for our concerns.

4.1.1 Formal Definitions

Our aim is to obtain a function that maps from a set of current and past sensory data, S, and
control signals, A, to either 0 or 1 corresponding to no-fault and fault, respectively:

x: 8, A= {01} (4.3)

We assume that such a function exists and we approximate it with a feed-forward neural network.
We let I C (S U A) be the inputs to the network. We choose a network that has a single
output neuron whose output value is in the interval [0, 1]. The output value is interpreted in a
task-dependent way. For instance, a threshold-based classification scheme can be applied where
an output value above a given threshold is interpreted as 1 (fault), whereas an output value
below the threshold is interpreted as 0 (no-fault).

Sensory Data, Control Signals and Fault State: We perform a number of runs each
consisting of a number of control cycles (sense-compute-act loops). For each control
cycle, ¢, we record the sensory data and control signals to and from the control program.
We let i/, denote a single set of control program inputs and outputs (CPIO), that is, the
CPIO for control cycle ¢ in run 7. We let s denote the number of values in a single CPIO
set, that is s = |il.|. We let I" be the ordered set of all CPIO sets for r. Similarly, for
each control cycle we let f! denote the fault state for control cycle ¢ in run r, where
fI' = 1if a fault has been injected and 0 otherwise. Hence, fI = 0 when the robot is
operating normally and f! = 1 otherwise.

Tapped Delay-Line and Input Group Distance: The CPIO sets are stored in a tapped
delay-line, where each tap has size s. The input layer of a TDNN is logically organized in
a number of input groups go, g1, - - -, gn—1 and each group consists of precisely s neurons,
that is, one neuron for each value in a CPIO set. The activation of the input neurons in
group g; are then set according to g; = i._, ;, where c is the current control cycle and d
is the input group distance. See Figure [4.3]for an example. If we choose an input group
distance d = 1, for example, the TDNN has access to the current and the n — 1 most
recent CPIOs, whereas if d = 2, the TDNN has access to the current and every other
CPIO set up to 2(n — 1) control cycles into the past, and so on. In this way, the input
group distance specifies the relative distance in time between the individual groups and
(along with the number of groups) how far into the past a TDNN “sees”.

TDNN Structure and Activation Function: The input layer of the TDNN is fully connected
to a hidden layer, which is again fully connected to the output layer. The output layer
consists of a single neuron whose value reflects the network’s classification of the current
inputs. The activations of the neurons are computed layer-by-layer in a feed-forward

33

4.1 Methodology

Sensory data

Sensor API

v 4

Control Program ‘ ‘ Fault Detector ‘
A

Actuator API

Fault detector

\ Sensory
data

Actuator control

Input layer

Tapped
delay-line

T Actuator
control signals

Figure 4.3: An illustration of a fault detection module based on a TDNN. The current control
program input and output (CPIO) is stored in the tapped delay-line and the activations of the
neurons in the logical input groups are set according to the current and past CPIOs. In the
example illustrated, there are 3 input groups and the input group distance d is 4.

34

4.1 Methodology

manner and the following sigmoid activation function is used to compute the neurons’
outputs in the hidden and the output layers:

1

fla) = Trea (4.4)

where a is the activation of the neuron.

Classification and Learning: The output of the TDNN has a value between 0 and 1. The
error factor used in the back-propagation algorithm is computed as the difference between
the fault state f! and the output o.:

E.= fcr — Oc- (4'5)

The neural networks are all trained by a standard batch learning back-propagation algo-
rithm to minimize the absolute value of the error factor E. in (4.5) [Rumelhart et al.,
1936).

In summary, sensor and actuator data is collected from a number of runs on real robots and
different types of faults are injected. A TDNN is trained to discriminate between normal and
faulty operation. By storing past observations in a tapped delay-line, the TDNN can base
classification on how the flow of information changes over time.

4.1.2 Faults

Faults in the mechanical system that propels the robot can be hard to detect when no spe-
cial hardware to facilitate fault detection is used. Unlike faults in sensors, which are usually
immediately observable due to inconsistencies or abrupt changes in the sensory values, faults
in the mechanical system have to be inferred from the unexpected consequences (due to the
presence of faults) of the actions performed by the robot. There is often a latency associated
with the detection of faults in the mechanical systems of a robot because the consequences of
the robot's actions need to become apparent before the presence of a fault can be inferred.

We focus principally on faults in the mechanical system that propels the s-bots. This system
consists of a set of differential treels, that is, combined tracks and wheels (see Chapter[3). Given
that the treels contain moving parts and that they are used continuously in most experiments,
they are the components in which the majority of faults occur.

We analyze two types of faults. Both types can either be isolated to the left or the right treel or
they can affect both treels simultaneously. The first type of fault causes one or both treels to
stop moving. This usually happens if the strap that transfers power from the electrical motors
to the treels breaks or jumps out of place. Whenever this happens, the treels stop moving. We
denote this type of fault as stuck-at-zero. The second type of fault occurs when an s-bot’s
software sub-system crashes leaving one (or both) motor(s) driving the treels running at some
undefined speed. The result is that a treel no longer can be controlled by the on-board software.
We refer to this type of fault as stuck-at-constant.

35

4.2 The Three Experimental Setups

To collect training data, a number of runs are conducted. In each run, the s-bot starts in a
nominal state and during the run, a fault is injected. The fault is implemented in the on-board
software by discarding the control program’s commands to the failed part and by substituting
them according to the type of fault injected. If, for instance, a stuck-at-constant fault is injected
in the left treel, the speed of that treel is set to a random value, and all future changes in speed
requested by the control program are discarded.

4.1.3 Software Architecture

The software architecture has been designed in a way that allows faults to be injected and a
fault detector to run without making any changes to an existing controller. In order to take
advantage of our fault detection approach, an existing control program only needs to incorporate
code for accommodating detected faults. This is made possible by a layered architecture that
makes extensive use of the Common Interface (see page [11)). One layer allows training data
to be collected and allows a fault detector to passively monitor the flow of sensory data and
actuator control signals. Another layer implements the fault injection and simulation logic. The
software architecture is detailed in Appendix [A.1]

4.2 The Three Experimental Setups

We have chosen three setups in which to study fault detection based on fault injection and
learning. The setups are called find perimeter, follow the leader, and connect to s-bot, re-
spectively, and they are described in Figure [4.4] In all setups, we use a 180x180 cm? arena
surrounded by walls.

In the find perimeter setup, an s-bot follows the perimeter of a dark square drawn on the arena
surface. In this setup, the four infrared ground sensors are used to discriminate between the
normal light-colored arena surface and the dark square.

In the follow the leader setup, an s-bot (the leader) performs a random walk in the environment
and another s-bot (the follower) follows. The two robots perceive one another using their omni-
directional cameras. The infrared proximity sensors are used to detect and avoid walls. Objects
up to 50 cm away can be seen reliably through the camera. Infrared proximity sensors have a
range from a few centimeters up to 20 cm depending on the reflective properties of the obstacle
or object. Faults are injected in the follower only.

In the connect to s-bot setup, one s-bot tries to connect to another, stationary s-bot. The
connection is made using the gripper. The connecting s-bot uses the camera to perceive the
location of the other robot. Faults are only injected in the s-bot that is trying to form the
connection.

Readings from sensors such as infrared ground sensors are straightforward to normalize and feed
to the input neurons of a neural network. The camera sensor, in contrast, captures 640x480
color images. For these more complex sensor readings to serve as input to a neural network,
relevant information must be extracted and processed beforehand. As discussed in Chapter (3]
the s-bots have sufficient on-board processing power to scan entire images and identify objects

36

4.2 The Three Experimental Setups

Find perimeter: An s-bot is situated in an arena with a dark colored square drawn on
an otherwise light floor. A light source is placed in the center of the square. The task
for the s-bot is to follow the perimeter of the square.

o L o L @L L L

(1) (2) (3) (4) (5)

Sensors: IR ground (4 inputs), light (8 inputs)
Control period: 100 ms

Follow the leader: Two s-bots are placed in a square environment bounded by walls.
One of the s-bots has been preassigned the leader role, while the other has been
preassigned the follower role. The leader moves around in the environment. The
follower tails the leader and tries to stay at a distance of 35 cm. If the follower falls
behind, the leader waits. Faults are injected in the follower only.

& ¢ o
ees ees o &)
(1) (@) (3) (4) (5)
Sensors: Camera (16 inputs), IR proximity (15 inputs)

Control period: 150 ms

Connect to s-bot: One s-bot attempts to physically connect to a stationary s-bot
using its gripper. When a successful connection has been made, the s-bot waits for
10 seconds, disconnects, moves back, and tries to connect again. Faults are injected
in the connecting s-bot only.

o o oo oo oo o o
(1) (2) (3) (4) (5)
Sensors: Camera (16 inputs), optical sensors in gripper (4 inputs)

Control period: 150 ms

Figure 4.4: Description of the three setups: find perimeter, follow the leader, and connect to
s-bot. For each setup a list of sensors used and the control cycle period for the controllers are
shown. The number in brackets after each sensor listed corresponds to the number of input
values the sensor provides to the fault detector at each control cycle.

37

4.3 Data Collection, Training and Performance Evaluation

based on color information. The image processor is configured to detect the location of colored
LEDs of the s-bots only, and discard any other information. The s-bot camera captures images
of the robot's surroundings reflected in a hemispherical mirror. Since the robots operate on flat
terrain, the distance in pixels from the center of an image to a perceived object corresponds
to the physical distance between the robot and the object. In order to make this information
available to a neural network, we divide the image into 16 non-overlapping slices of equal size
in terms of the field of view they cover. Each slice corresponds to a single input value. The
value is set depending on distance to the closest object perceived in the slice. If no object is
perceived, the value for a slice is 0. Used in this way, the camera sensor effectively becomes a
range sensor for colored LEDs.

4.3 Data Collection, Training and Performance Evaluation
4.3.1 Data Collection

A total of 60 runs on real s-bots are performed for each of the three setups. In each run, the
robot(s) start in a nominal state, and at some point during the run a fault is injected. The
fault is injected at a random point in time after the first 5 seconds of the run and before the
last 5 seconds of the run according to a uniform distribution. Hence, a robot spends on average
50% of the time that a run lasts in a nominal state. When a fault is injected, there is a 50%
probability that a fault affects both treels instead of only one of the treels, and faults of the
type stuck-at-zero and stuck-at-constant are equally likely to occur. Each run consists of 1000
control cycles and for each control cycle the sensory data, control signals, and the current fault
state are recorded. In the find perimeter setup, 1000 cycles correspond to 100 seconds, while
for the follow the leader and in the connect to s-bot setups 1000 cycles correspond to 150
seconds, due to the longer control cycle period.

4.3.2 Training and Evaluation Data

The data sets recorded in each setup are partitioned into two subsets, one consisting of data
from 40 runs, which is used for training; and one consisting of the data from the remaining 20
runs, which is used for a final performance evaluation. The TDNNs all have a hidden layer of
5 neurons and an input layer with 10 input groups.

4.3.3 Performance Evaluation

The performance of the trained neural networks is computed based on the 20 runs in each setup
reserved for evaluation. A network is evaluated on data from one run at a time, and the output
of the network is recorded and compared to the fault state.

The two main performance criteria for a fault detection approach are reliability of detection
and speed of detection. In our approach, the interpretation of the output of the trained neural
network has an important impact on both criteria. The simplest interpretation mechanism is
to define a threshold. An output value above this threshold is considered an indication that a
fault is present, whereas an output value below the threshold is considered an indication that

38

4.3 Data Collection, Training and Performance Evaluation

\ \ \ I
Fault detecior ouiat —
. au etector ou

Fault is injected P

L0 e

Fault detected for threshold 0.75

Output neuron activation

0 100 200 300 400 500 600 700 800 900

Control step

Figure 4.5: An example of the output of a trained TDNN during a run. The dotted line shows
the optimal output. At control cycle 529 a fault is injected. Five different thresholds are
indicated, 0.10, 0.25, 0.50, 0.75, and 0.90, and a false positive for threshold 0.50 is shown
at control cycle 304 (the output has a value greater than 0.50 before the fault was injected
at control cycle 529). The latency for a threshold is the number of control cycles from the
moment the fault is injected till the moment the output value of the TDNN becomes greater
than the threshold. In the example above, the latency for threshold 0.75 is 43 control cycles
because the output of the TDNN reaches 0.75 only at control cycle 562, that is, 43 control
cycles after the fault was injected.

39

4.4 Results

the robot is in a nominal state. In the next section, we present results for five such thresholds:
0.10, 0.25, 0.50, 0.75, and 0.90.

A graphical representation of TDNN's output during an evaluation run is shown in Figure [4.5]
In the run shown, a fault was injected at control cycle 529. The number of false positives
is the number of control cycles before a fault is injected for which the output of the TDNN
exceeds the given threshold. Choosing a threshold of 0.50 would, for example, result in one
false positive, since the output of the network is higher than 0.50 for one control cycle (cycle
304) before the fault was injected. If we choose a higher threshold, either 0.75 or 0.90, false
positives are avoided. However, choosing a higher threshold has a negative impact on another
aspect of a fault detector’s performance, namely its latency. Latency is the number of cycles
between the occurrence and detection of a fault. In the example in Figure the fault is
detected at control cycle 553, 561, 570, 572, and 574 for the thresholds 0.10, 0.25, 0.50, 0.75,
and 0.90, yielding latencies of 24, 32, 41, 43, 45 control cycles, respectivelyE]

For some tasks, the recovery procedure is costly, and fewer false positives might be desirable
even at the cost of a higher latency. For other tasks, undetected faults can have serious
consequences and a low latency is more important than reducing the number of false positives.
We can gain fine control over the balance between latency and number of false positives by
choosing an appropriate threshold.

4.4 Results

We first evaluate the effect of the input group distance on the performance of a fault detector
with respect to its latency and number of false positives (Section . The input group
distance determines how far into the past a fault detector “sees”. We then evaluate the perfor-
mance of the fault detectors in the follow the leader and connect to s-bot setups (Section [4.4.2).
In some situations, false positives can be costly and we show how the output of a TDNN can
be reinterpreted to avoid nearly all false positives (Section 4.4.3). We test if the proposed
method is applicable when faults in both sensors and actuators are considered (Section [4.4.4)).
We show that it is possible to obtain a fault detector that can generalize if the task varies
between runs (Section [4.4.5)). Finally, we demonstrate fault detection through fault injection
and learning can be extended to exogenous fault detection, that is, the capacity of one robot
to detect faults in another, physically separate robot.

4.4.1 Tuning the Input Group Distance

To find an input group distance that performs well, we trained fault detectors with input group
distances ranging from 1 to 10. Figure [4.6] and Figure [4.7] show respectively a box-plot of the
IatenciesE] and a box-plot of the number of false positives observed during 20 evaluation runs

2It is important to note that a latency of 24 control cycles may seem long, but the faults that we are trying
to detect do not always have an immediate impact on the performance of a robot. If, for instance, the fault
injected causes a treel to block (a fault of the type stuck-at-zero), the fault can only be detected if the control
program tries to set the treel to a non-zero speed. In particular, if the control program is setting low speeds
(values close to zero) it might take a long time before a fault can be detected.

3For the latency results, we only include data from runs in which the fault was detected. See Table for the
number of undetected faults for different input group distances and thresholds.

40

4.4 Results

Latency
° Group distance
N7 W 1cycle B 3cycles M@ 5cycles @ 7cycles O 9cycles
B 2cycles B 4cycles [6cycles O 8cycles O 10 cycles
L[]
o
O_
—
.0 [] .0
0. °
%] %_ ¢ B
o ¢ !
[&]) 1
> 1
2 L] L] L] ! L]
g 8— ° . ° L) : oo T
% o . Ceo; ! .T'.T
5] ° .] o8 1e®@® l. I X
° o o o : . :: \
o [° [° : T * :"’ H r:I :
< 7 ° ° 8o ° T Yo ! Tiler : ' :T'
o hd e o °® T e :'.: 0:':.' ! l [
‘e L. r N T: | TI: . ,) ! |
Te | T (Y fl T, 1 |T|I ' TT‘- r 1
...| ITITI Ir‘.T||TTTr |ITIII r I . T
o _| oy r.l.l' R I ! \
] I i |H et
! l Il Hu H N T I N Tl
l' H 1 e Ll [Y [Lyt
v, SRy (IR I I_l.'l.l 11t -'l-'l‘ L Ly
[| i 1 4
o — Lig L 1 1 L 1

0.10 0.25 0.50 0.75 0.90

Threshold

Figure 4.6: Box-plot of the latencies observed in 20 evaluation runs in the find perimeter
setup using fault detectors with input group distances from 1 to 10. Results are shown for
the thresholds 0.10, 0.25, 0.50, 0.75, and 0.90. Each box comprises observations ranging from
the first to the third quartile. The median is indicated by a horizontal bar, dividing the box
into the upper and lower part. The whiskers extend to the farthest data points that are within
1.5 times the interquartile range. Outliers are shown as dots. The results show that the input
group distance does not have a major influence on the latency of a fault detector, while larger
thresholds yield longer latencies.

41

4.4 Results

False positives

° U Group distance
N s Bl 1cycle B 3cycles M@ 5cycles @ 7cycles O 9cycles
. B 2cycles B 4cycles @ 6cycles O 8cycles O 10cycles
o
S 4
—
(]
[]
o L[]
(%] o |
g -
> ° [
o .
g 3 T : .
g . : e ®
O 1 e ee
B .
g 1 T: 'I- T o
['e ° .
Do T . .
IS | I T : : r‘|’ T L4 °
N 1 o : : e, T 1 * :
| VT b °
: I HH H Wil ger iy e e .
i 2 1 R RS * R . .
o - 111T1Tiy 11 IIHUH Iili:ﬁnu;u il!-sa!&!ﬁ 28ccaaa 13
T T T T T
0.10 0.25 0.50 0.75 0.90
Threshold

Figure 4.7: Box-plot of the number of false positives observed in 20 evaluation runs in the find
perimeter setup using fault detectors with input group distances from 1 to 10. Results are
shown for the thresholds 0.10, 0.25, 0.50, 0.75, and 0.90. For low input group distances, 1 and
2 in particular, the fault detector in general detects a large number of false positives, while no
clear trend is observed for fault detectors with input group distances above 4. See the caption

of Figure [4.6] for details on box-plots.

42

4.4 Results

Table 4.1: Median latencies during 20 evaluation runs in the find perimeter setup with fault
detectors using input groups distances from 1 to 10 and for the thresholds: 0.10, 0.25, 0.50,
0.75, and 0.90.

Threshold
0.10 0.25 0.50 0.75 0.90
1 105 12.0 17.0 175 20.5
2 8.0 12.0 14.0 17.0 20.0
S| 3 11.5 12.0 14.5 16.0 18.5
s 4 13.0 14.0 15.0 16.0 19.0
© [5 13.0 16.0 175 20.0 21.0
S| 6 135 15.0 16.0 20.0 24.0
| 7 115 13.0 15.5 20.0 235
58 125 125 185 21.0 225
[9 11.0 13.0 145 175 215
10 105 125 165 18.0 225

in the find perimeter setup. Results are shown for the five thresholds: 0.10, 0.25, 0.50, 0.75,
and 0.90. The median latencies and number of false positives for each configuration of input

group distance and threshold are summarized in Table [4.1] and Table respectively.

The latency results in Figure show no clear correlation between latency and input group
distance. The false positive results in Figure however, show that for low input group
distances, 1 and 2 in particular, the fault detector in general detects a large number of false
positives. No clear trend is observed regarding the number of false positives for fault detectors
with input group distances above 4.

An input group distance of 1 means that the TDNN is provided with data from the past 10
control cycles (because there are 10 input groups). 10 control cycles are equal to 1 second
in the find perimeter setup. Similarly, an input group distance of 2 means that the TDNN is
provided with data from the past 2 seconds, but only from every other control cycle. The false
positive results indicate that data from a period longer than 2 seconds (i.e., an input group
distance higher than 2) is needed for accurate classification.

The results in Figure [4.6] and Figure [4.7] show that the performance of the fault detectors, both
in terms of latency and in terms of the number of fault positives, is clearly affected by the
choice of the classification threshold: the lower the threshold, the lower the latency of the fault
detector and the more false positives are observed. For the fault detector with an input group
distance of 5, for instance, the median latency is 13 control cycles when a threshold of 0.10 is
used, whereas the median latency is 21 when a threshold of 0.90 is used. For the same fault
detector, the median number of fault positives is 11 if a threshold of 0.10 is used, while no false
positives are observed when a threshold of 0.90 is used.

In a few cases, a fault is never detected. Undetected fault occur when a TDNNs output never
exceeds the chosen threshold after a fault has been injected. The number of undetected faults
for different thresholds and input group distances is shown in Table All undetected faults
were observed when low input group distances were used.

43

4.4 Results

Table 4.2: Median number of false positives observed during 20 evaluation runs in the find
perimeter setup with fault detectors using input groups distances from 1 to 10 and for the
thresholds: 0.10, 0.25, 0.50, 0.75, and 0.90.

Threshold
0.10 0.25 0.50 0.75 0.90
1 34.0 16.0 4.0 0.0 0.0
2 235 5.0 0.0 0.0 0.0
8|3 13.0 8.0 0.0 0.0 0.0
S 4 4.0 2.0 0.0 0.0 0.0
s[5 11.0 3.0 0.0 0.0 0.0
S| 6 95 0.0 0.0 0.0 0.0
| 7 11.0 15 0.0 0.0 0.0
58 9.0 35 0.0 0.0 0.0
£ 9 105 25 0.0 0.0 0.0
10 9.0 4.0 15 0.0 0.0

Table 4.3: Number of undetected faults observed during 20 evaluation runs in the find perimeter
setup, for five different thresholds, using input group distances from 1 to 10.

Threshold
0.10 0.25 0.50 0.75 0.90
1 0 1 1 2 2
2 1 1 1 3 3
S| 3 0 0 0 1 3
s 1 0 0 1 1 2
S [5 0 0 0 1 1
§ 6 0 0 0 0 0
o | 7 0 0 0 0 0
58 0 0 0 0 0
= 9 0 0 0 0 0
10 0 0 0 0 0

In the other two setups, follow the leader and connect to s-bot, we did a similar study of the
effect of the input group distance and the performance of the fault detectors. We found that
an input group distance of 5 performed well in all setups. The experiments that we present in
the following sections are all, therefore, conducted using an input group distance of 5. Since
we use TDNNs with 10 input groups, an input group distance of 5 means that a TDNN can see
4.5 s into the past in the find perimeter setup, in which the control period is 0.10 s. TDNNs in
the follow the leader and connect to s-bot setups see 6.75 s into the past since the controllers
in these setups run with a control period of 0.15 s.

44

4.4 Results

Latency False positives
o
L] - L]
8 4 Q :
S |
|
|
o | o .
s3] n -
g - g -
S g | S Rl
S ® | —_ o o)
o _ _ ' ') S '
5 i j | ! £ '
S ¢4 ° : : ; ' S !
|
| —_—
o ! 8 |
S . | s
- :
o - ‘:l - . _ o4 e
I T T T

T T T T T [
0.10 0.25 0.50 0.75 0.90 0.10 0.25 0.50 0.75 0.90

Threshold Threshold

Figure 4.8: Box-plot of the latencies and number of false positives observed during 20 evaluation
runs in the follow the leader setup for different thresholds and an input group distance of 5.
See the caption of Figure [4.6] for details on box-plots.

4.4.2 Fault Detection Performance in the follow the leader and connect
to s-bot setups

We trained a fault detector to detect faults in the follow the leader setup and another fault
detector to detect faults in the connect to s-bot setup. Box-plots of the false positives and
the latency results observed in 20 evaluation runs in the follow the leader and connect to
s-bot setups are shown in Figure and Figure respectively. In both setups, the fault
detector was configured to use an input group distance of 5. The number of undetected faults
observed during the evaluation runs in the two setups is shown in Table [4.4] Two interesting
tendencies can be seen: The number of false positives observed in the follow the leader setup
is comparatively high, while in the connect to s-bot the observed latencies are high when
compared with the results obtained in the two other setups. In the follow the leader setup,
there are two robots moving around and the fault detector for the follower, in which faults
were injected, has to infer the presence of faults based on its interactions with the leader.
Misclassification of the follower's state can occur in situations where, for instance, the leader
and the follower are moving at constant speeds in a given direction. In these cases, the follower
receives sensory data similar to those in situations where both its treels are stuck-at-zero: The
leader waits for the follower, but due to the fault, the follower does not move. The fact that
the control program (and therefore the fault detector) depends on a dynamic feature of the
environment (the /eader) seems to complicate the classification of the robot’s state. However,
the performance of the fault detector is still quite good, especially considering that the leader
is often the only object perceivable by the follower (the proximity sensors will only sense the
presence of walls at distances lower than approximately 10 cm).

The comparatively high latencies observed in the connect to s-bot setup are similarly due to
a task-dependent feature: After a successful connection has been made, the connecting robot

45

4.4 Results

Latency False positives
8
8 - - N
— - -_ '
o | | | ! o
[¢3} ! ! ' o -
8 - E i g 7| -
[E] 1 L [} \
3 84 ! . & o |
° . ! ° o - , .
= ' = —
c ! c l .
o o _| i o '
(@) < ! o '
o - .
n ' o
8 | . I :
; X) -
! —_— —_— —_— . L] L]
ol — — o — - BN = i
T T T T T I I T T T
0.10 0.25 0.50 0.75 0.90 0.10 0.25 0.50 0.75 0.90
Threshold Threshold

Figure 4.9: Box-plot of the latencies and number of false positives observed during 20 evaluation
runs in the connect to s-bot setup, for different thresholds and an input group distance of 5.
See the caption of Figure [4.6] for details on box-plots.

Table 4.4: Number of undetected faults observed during 20 evaluation runs in the follow the
leader and connect to s-bot setups, for different thresholds, using an input group distance of
5.

Threshold
0.10 0.25 0.50 0.75 0.90
Follow the leader 0 0 0 0 0
Connect to s-bot 1 2 2 2 3

waits for 10 seconds before disconnecting, moving back, and attempting to form the connection
anew. During the waiting period it is not possible to detect if a fault has occurred in the treels
or not. Even if a stuck-at-constant fault is injected, causing one or both treels to be assigned a
random and non-changeable speed, the outcome is the same: The robot does not move because
it is physically connected to the other robot. Thus, it can take longer to detect a fault due to
these particular situations in which a fault does not have an effect on the behavior of the robot.

4.4.3 Reducing the Number of False Positives

The simplest way to interpret the output of a TDNN trained to detect faults is to compare the
value of the output neuron against a threshold. Values above the threshold are interpreted as
evidence of a fault whereas values below the threshold mean that no fault is detected. The
fault detectors presented so far follow this simple classification scheme and results have been
presented for five thresholds: 0.10, 0.25, 0.50, 0.75, and 0.90.

For many robotic tasks, a latency of a few seconds does not represent a risk: as long as a
fault is eventually detected, the robot is able to communicate this to a human operator or
to other robots, who can then take the necessary steps to ensure that the task is progressed.

46

4.4 Results

False positives

o _|
o
Bl Normal
O Smoothed
Q .
[] []
3 .
— o
S ®
(&)
o
b
o
5 « .
O]
[]
o _|
—
° T
|
o . _ B_

| | |
Find perimeter Follow the leader Connect to s—bot

Setup

Figure 4.10: Box-plot of false positives results observed in 20 runs in each of the three setups
using fault detectors in which the output of the TDNN is used directly and fault detectors in
which the output is smoothed by computing the moving average over 25 control cycles. A
threshold of 0.75 was used for all fault detectors. False positives were only observed during one
run in the follow the leader setup when the TDNN'’s output was smoothed. The run is not
shown in the figure since it is out of scale (164 false positives were detected during this run).
See the caption of Figure [4.6] for details on box-plots.

47

4.4 Results

Latency
o
O p—
N
B Normal b
O Smoothed
o N -
n — |
— [J) |
[7)) 1
[} 1
© |
5 o |
1
S 27) T
e} [] |
g - |
o T)
[] [}
3 : '
o = T
== |
£ , M
O p— L £

| | |
Find perimeter Follow the leader Connect to s—bot

Setup

Figure 4.11: Box-plot of latency results observed in 20 runs in each of the three setups using
fault detectors in which the output of the TDNN is used directly and fault detectors in which
the output is smoothed by computing the moving average over 25 control cycles. A threshold
of 0.75 was used for all fault detectors. See the caption of Figure [4.6] for details on box-plots.

48

4.4 Results

Accommodating a fault, on the other hand, is usually expensive, as other robots need to take
action or a human operator needs to evaluate and solve the situation. Frequent false positives,
therefore, are likely to have a negative impact on the performance.

One way of reducing the number of false positives is to choose a high threshold, e.g. 0.90,
which results in fewer false positives than lower thresholds (see for instance Figure [4.9). Many
of the false positives observed occur for a single or few consecutive control cycles only (like in
the example in Figure [4.5). This suggests an alternative way of reducing the number of false
positives: to smooth the output of the trained neural networks in order to remove spikes of false
positives. We do this by computing the moving average of a trained TDNN's output value and
basing the classification on this moving average rather than on the TDNN's output directly. We
configured the fault detectors to use a moving average over 25 control cycles of the TDNN's
output and a threshold of 0.75. Figure and show respectively the number of false
positives and the latencies observed in 20 evaluation runs for each task.

By computing the moving average and thereby smoothing the output of the TDNN, we almost
completely eliminate false positives. As the results in Figure show, however, this is at
the cost of a higher latency. Since the moving average increases latency, it can result in more
undetected faults as more runs finish before faults are detected. In the find perimeter setup,
two faults were not detected when averaging the output over 25 control cycles, compared to
only 1 when averaging was not used. Similarly, in the connect to s-bot setup, 5 faults were not
detected when a moving average was used, compared to 2 when the output of the TDNN was
used directly. In the follow the leader setup, all faults were detected in both cases.

4.4.4 Faults in Both Sensors and Actuators

Possible faults are not limited to the mechanical systems that propel robots; other hardware,
such as sensors, can also fail. In this section, we demonstrate that our approach is equally
applicable to faults in the sensors. We also show that a single appropriately trained fault
detector is capable of detecting faults in both sensors and actuators. We first evaluate our
approach when only faults in sensors are considered. We then go on to evaluate the approach
when faults in both sensors and the treels are considered. All experiments are conducted in the
find perimeter setup.

We conducted a set of runs in which we injected faults in the front infrared ground sensor, that
is, the infrared ground sensor located closest to the gripper (see Figure [3.1). We conducted
another set of runs in which we injected faults in the first and second light sensor counter-
clockwise from the gripper when an s-bot is seen from above (see Figure . We trained a
TDNN with an input group distance of 5 on 40 runs: 20 runs during which a fault was injected
in the front ground sensor and another 20 runs during which a fault was injected in the light
sensors. The fault detector was evaluated on 20 runs: 10 runs in which a fault was injected in
the ground sensor and another 10 runs in which a fault was injected in the light sensors.

We performed a set of experiments to determine if a single fault detector can be trained to
detect faults in both the sensors and actuators. We trained a fault detector on a training set

4We initially tried to inject faults in the first light sensor only, but a fault in a single light sensor had no effect on
the performance of the robot: with seven out of eight light sensors working the robot still completed the task.
We therefore injected faults in both the first and the second light sensor.

49

4.4 Results

Latency
o _|
© N T
! H
o _| 1
rs} ! |
n \ |
@ o _| X 1
(S} < !
> ! \
2 . ! |
o o _| X
5 ®
c
8 -
o
Q -
0
o | 4
i
I
1 £
o — £
| | |
Treels only Light and ground only Both
Faults

Figure 4.12: Box-plot of latency results for fault detectors trained to detect faults in the treels
only (from Section [4.4.1)), in the ground and light sensors only, and a fault detector trained
to detect faults in both the ground and light sensors and the treels. In each case, the fault
detector was evaluated on 20 runs in which faults corresponding to those the fault detector was
trained to detect were injected. All three fault detectors were configured to use the output of
the TDNN directly and to use a threshold of 0.75. See the caption of Figure [4.6] for details on
box-plots.

50

4.4 Results

consisting of 40 runs: 20 runs in which a fault was injected in either one or both treels and
20 runs in which a fault was injected in either the ground sensor or light sensors. The fault
detector was evaluated on 20 runs: 10 runs in which a fault was injected in either the ground
sensor or in the light sensors, and another 10 runs in which a fault was injected in either one
of the treels or in both treels.

Figure shows the latencies observed for the fault detector trained to detect faults in the
sensors only and for the fault detector trained to detect faults in both the sensors and actuators.
For each detector, we performed 20 evaluation runs. We have included the results for a fault
detector trained to detect faults in the actuators (treels) only from Section [4.4.1] to allow for
comparison.

The results show that a fault detector can be trained to detect faults in the ground sensor and
faults in the light sensors. Furthermore, they show that we can train a single fault detector
to detect faults in both the sensors and the treels. When a threshold of 0.75 (or higher) is
used, no false positives were observed during any of the evaluation runs using the respective
fault detectors. The median latency observed for the sensor-only fault detector was 7 control
cycles (0.7 seconds). The median latency observed for the sensor and actuator fault detector
was 20 control cycles (2.0 seconds), when a threshold of 0.75 was used, which is equivalent to
the median latency observed for the treels-only fault detector (see Figure [4.12)).

4.4.5 Robustness to Variations in the Task

Autonomous mobile robots often navigate in environments in which the exact conditions and
task parameters are unknown and sometimes even change over time. A fault detector has to be
robust to such changes in order to be generally applicable. We trained a fault detector on data
from three variations of the connect to s-bot setup. In addition to the original setup in which
one s-bot connects to another stationary s-bot (see Figure [4.4)), we collected data from runs in
two additional setups, namely connect to moving s-bot and connect to swarm-bot, illustrated

in Figure [4.13]

In the connect to moving s-bot setup, the s-bot to which a connection should be made (the
seed) initially moves around instead of being passive. The seed only stops moving when the
two robots get within a distance of 30 cm or less of one another. In the connect to swarm-
bot setup, the connecting s-bot connects to a swarm-bot. In our experiment, the swarm-bot
consists of three s-bots connected in a linear formation.

We trained a fault detector with an input group distance of 5 and 10 hidden nodes on a training
set consisting of 60 runs: 30 runs in the original setup described in Figure and 15 runs
in each of the two setups illustrated in Figure The fault detector was evaluated on data
from 20 runs: 10 runs in the original setup and 5 in each of the new setups. In order to reduce
the number of false positives, the moving average of the TDNN's output was computed (as
explained in Section and compared against a threshold of 0.90. The results observed in
20 evaluation runs using the output of the TDNN directly and using a moving average window
length of 25 control cycles are shown in Figure [4.14]

When the output of the TDNN was used directly one fault was not detected, whereas two faults
were not detected when a moving average window length of 25 was used. When the output of

51

4.4 Results

Connect to moving s-bot: One s-bot attempts to physically connect to another s-bot
(the seed) using its gripper. As long as the connecting s-bot is farther than 30 cm
from the seed, the seed moves around. When the two robots get within 30 cm of one
another, the seed stops. When a successful connection has been made, the connecting
s-bot waits for 10 seconds, disconnects, moves back, and tries to connect again. Faults
are injected in the connecting s-bot only.

o © e3 8 Z Q

(1) (2) (3) (4) (5)

Connect to swarm-bot: One s-bot attempts to physically connect to a swarm-bot
using its gripper. In our experiment, the swarm-bot consists of three s-bots physically
connected in a linear formation. When a successful connection has been made, the
connecting s-bot waits for 10 seconds, disconnects, moves back, and tries to connect
again. Faults are injected in the connecting s-bot only.

(© N0 o OO (©;9:9:9 ©:10:9:9 o o>

(1) (2) (3) (4) (5)

Figure 4.13: Two additional setups for the connect to s-bot controller used to evaluate if a
fault detector can generalize over variations of the task.

the TDNN is smoothed over 25 control cycles, false positives only occur in two out of the 20
evaluation runs. Hence, our results indicate that it is possible to train fault detectors that are
robust to variations in the task.

4.4.6 Exogenous Fault Detection in a Cooperative Task

In robotics, exogenous fault detection is the activity in which one robot detects faults that occur
in other, physically separate robots. The s-bot hardware platform used for the experiments in
this thesis was originally designed and built in order to study multi-robot and swarm-robotic
systems. Such systems have the potential to achieve a high degree of fault tolerance: if one
robot fails while performing a task, another robot can take over and complete the task. Various
approaches to fault detection and fault tolerance in multi-robot systems have been proposed,
such as Parker's ALLIANCE [Parker, 1998|, Lewis and Tan's virtual structures [Lewis and Tan),
1997|, Gerkey and Matari¢’s MURDOCH |Gerkey and Matari¢, 2002bja], and Dias et al.’s
TraderBots [Dias et al., 2004] among others (see Section [2.2)).

In order to evaluate the applicability of fault injection and learning to exogenous fault detection,

52

4.4 Results

Latency False positives
—
| 2
: . ®
o - X o
g S 1 ‘ 3 ¥ 7
© l ! ©
> | ! >
o ' | o o |
§ , _e ™ °
IS €
S o S o
o g -+ O g H
L]
! o _| °
' -
: —T
i
o - - o | —
T T T T
25 1 25
Moving average window length Moving average window length

Figure 4.14: Box-plot of the latencies and the number of false positives observed during 20
evaluation runs using a fault detector trained on data from a total of 60 runs in all three
variations of the connect to... setup. Results are shown for moving average window lengths of
1 (equivalent to using the output of the TDNN directly) and 25. A threshold of 0.90 was used.
See the caption of Figure [4.6] for details on box-plots.

we attempted to get the leader to detect faults injected in the follower in the follow the leader
setup. We recorded sensory data for the leader robot while faults were injected in the follower.
An overview of the software architectures is shown in Fig. [4.15] The Control Programs are
responsible for steering the robots. They read sensory inputs and send control signals to the
robots” actuators. The Fault Detectors passively monitor the flow of sensory inputs and control
signals that pass to and from the Control Programs. Faults are simulated by the SWIFI Layer
in the follower. When the follower’'s Control Program sends actuator control signals, these
commands pass through the SWIFI Layer. If no fault is currently being simulated the SWIFI
Layer forwards all actuator control signals to the robot hardware. If a fault has been injected,
control signals to the hardware affected by the fault are discarded. In the case of endogenous
fault detection, the fault detector is located in the follower in which faults are also injected
(see Figure [4.15] top). However, for the experiments in this section concerning exogenous fault
detection based on fault injection and learning, the fault detector is located in the leader robot

(see Figure bottom).

In order to train an exogenous fault detector, we collected sensory data (camera and infrared
proximity sensors) and actuator control signals from the leader while faults were injected in
the follower robot. The recorded readings from the leader were correlated with the fault state
of the follower and a TDNN was trained on 40 runs to detect exogenous faults. Box-plots
of the latencies and number of false positives observed during 20 evaluation runs are shown
in Figure In the figure, we have plotted results for the leader performing exogenous
fault detection and the results for the follower performing endogenous fault detection during
the same runs to allow for comparison. Both fault detectors were configured to use an input
group distance of 5 and a classification threshold of 0.75. The median latency for the leader

53

4.4 Results

c Leader Follower
2 0
o) "6 Sensor data Sensor data
o £ ' '
O +
24
8L Control Control Fault
cS Program Program Detector
w o
= \ I SWIFI
Actuator control signals Actuator control signals Layer
c Leader Follower
o 8
5 4= Sensor data Sensor data
2 9 ¢ ¢
O ®
9 e Control Fault Control
55 Program Detector Program
O
. \ i SWIFI
Actuator control signals Actuator control signals Layer

Figure 4.15: The software architecture for endogenous and exogenous fault detection based on
fault injection and learning.

performing exogenous fault detection is 19 control cycles, while the median latency for the
follower performing endogenous fault detection is 14 control cycles. This difference of 5 control
cycles corresponds to 750 ms. The median number of false positives is 5 control cycles for both
the exogenous and endogenous detector. Visual inspection of Figure confirms that the
performance of the two fault detectors is comparable. In every trial, the fault injected was
detected by both the leader and the follower.

In order to reduce the number of false positives, we can compute the moving average of the
trained TDNN's output as explained in Section [4.4.3] Figure shows the false positive
results for the different lengths of the moving average window. For moving average windows up
to and including 10 control cycles, false positives occur in several trials. For longer windows,
false positives are only observed in one or two trials. When a moving average window of length
50 is used, the exogenous fault detector produces no false positives.

For window lengths of 20-50, false positives for the follower performing endogenous fault de-
tection occurred in one of the 20 trials. These results are not shown in Figure since they
are outside the scale of the figure. The endogenous fault detector produced 173 false positives
with a window length of 20 control cycles and 128 false positives with a window length of 50
cycles for the trial in question. When the moving average is used, the latencies are increased
by the length of the moving average window (results are not shown). Thus, introducing a
threshold-based classification scheme based on the moving average of the TDNN output value
can remove false positives in exogenous fault detection, but this comes at the cost of a higher
latency.

54

4.5 Extensions and Limitations

Latency False positives
o _|
[
(=}
— L]
& g -
.
S o
8 4 -
o N . 0 ¥
o o
[} Q o
3 8 4 & v :
—_ — . -
o o
£ y £ 8 —
c g Q '
o 9 o
= o 1
- N -
2 - . 1 o | w
T -
= |
o - - - o

T T T T
Exogenous Endogenous Exogenous Endogenous

Figure 4.16: Box-plot of the performance results in terms of latency and number of false
positives observed in 20 evaluation runs for the follower performing endogenous fault detection
and for the leader performing exogenous fault detection during the same runs. For both sets
of results, the output of the TDNN is used directly and compared against a threshold of 0.75.
See the caption of Figure [4.6] for details on box-plots.

4.5 Extensions and Limitations

Below we list some possible extensions to the methodology that we have introduced in this
chapter. We also discuss some of the limitations of the methodology and how these limitations
could be addressed.

Fault Identification

In ongoing research, we are studying extensions to our approach that will allow for fault iden-
tification. Our aim is to obtain neural networks that can not only detect the presence of a
fault but also the location of the fault. If the control program is made aware that a particular
component is broken, it could direct the robot to perform tasks for which the component is
not needed or only use the subset of behaviors that do not need the faulty component. For
example, a control program might be designed to transport an object by grasping it with its
gripper and then pulling the object. If this control program were informed that there was a fault
in the gripper, it could change its behavior to push the object without grasping it - this might
be less efficient than pulling, but would enable the robot to carry out its task despite the faulty
gripper. One way of extending the proposed methodology to include fault identification would
be to add more output neurons to the classifying neural network. Different output neurons
would then correspond to different faults. Another approach could be to use multiple neural
networks, one for each component in which faults should be identified.

The Neural Networks are Large

In TDNNSs, the number of input neurons is the product of the number of taps and the number
of sensor readings and actuator control signals used from every control step. In the experiments

55

4.5 Extensions and Limitations

Figure 4.17: Box-plot of the performance results in terms of the number of false positives
observed in 20 evaluation runs for the follower performing endogenous fault detection and for
the leader performing exogenous fault detection during the same runs for different lengths of the
moving window. For both sets of results, the moving average is compared against a threshold

Control cycles

100

80

60

40

20

False positives

e -

-——-—a

O Exogenous
B Endogenous

Length of moving average window (control cycles)

of 0.75. See the caption of Figure [4.6] for details on box-plots.

56

4.5 Extensions and Limitations

in this chapter, we used TDNNs with 10 taps. The resulting neural networks had a total of
126, 315 and 205 neurons in the find perimeter task (14 inputs), the follow the leader task
(33 inputs) and the connect to s-bot task (22 inputs), respectively. All the input neurons from
all taps are fully connected to the neurons in the hidden layer. We used 5 hidden nodes in the
fault detectors. The resulting number of weights for the neural networks for the fault detectors
in the find perimeter task, the follow the leader task and the connect to s-bot task was 711,
1679 and 1129, respectively. Neural networks of this size can be problematic when storage and
computation resources are scarce (which is often the case for autonomous robots).

In our experiments, we used relatively few sensory inputs in the neural networks (14, 33, and 22
respectively). If we had used data from more sensors, such as data from rotary encoders, the
number of weights would have increased by 50 per additional sensory input vaIue. Similarly, if
we add more taps in order to refine the time-resolution of the inputs and/or expand the time
frame based on which the TDNNs classify the state of a robot, for every additional tap the size
of the TDNN would grow at a rate equal to the number of sensory inputs times the number
of neurons in the hidden layer. Thus, the scalability properties of TDNNs may effectively limit
the number of taps and/or sensor inputs on which a fault detector can base classification. This
could be a limiting factor on the performance of the detector.

Other, more sophisticated flavors of neural networks, such as recurrent neural networks [Williams
and Zipser, |1989| Werbos, 1990, Beer, 1995], are able to reason based on data distributed in
time without requiring a tapped delay-line of past inputs. These neural networks retrain an
internal state (memory) between subsequent propagations of input data. As a result, the size
of these types of networks scales better with the number of inputs. Furthermore, we do not
have to experimentally find a good value for the tap distance d, which determines how far into
the past the TDNN sees. For other types of recurrent neural networks, these parameters are
adjusted in the learning phase in the form of the weights on the recurrent connections (and
possibly decay constants). In other words, different neural network structures could be used in
order to decrease the space and time complexity of the fault detector.

Further fine-tuning or the use of other classifiers, such as the increasingly popular support-vector
machines [Cristianini and Shawe-Taylor, [2000], could improve the classification quality, reduce
the memory foot-print, and/or require fewer computational resources. However, since our aim
was to show that the proposed methodology requires neither particular classifiers nor dedicated
hardware, we chose the TDNN which is one of the simplest types of neural networks that are
able to perform classification based on data distributed in time.

The Amount of Training Data Required is Significant

In order to train a fault detector, a significant amount of training data needs to be collected.
It takes time to conduct the data collection experiments with real robots. When a control
program is changed or if new faults should be considered, new data collection runs may be
necessary. This can pose an obstacle to the practical application of the technique described in
this chapter.

SAn additional 50 weights are needed because each input has to be replicated once for each tap (= 10) and
every copy of the neuron has to be connected to all the neurons in the hidden layer (= 5).

57

4.5 Extensions and Limitations

One way in which the data collection process could be sped up is by using simulation. Experi-
ments could be setup and replicated multiple times in simulation with little effort. If a control
program is changed or if additional faults are included, a new set of data collection experiments
could easily be rerun on a workstation or on a cluster.

In evolutionary robotics, we face a number of issues when we transfer controllers synthesized
in simulation to real robots. No simulation is completely accurate and the differences between
simulation and the real world can mean that controllers behave differently in simulation and on
real robots. The same may hold true if we use data from simulation to train a fault detector for
real robots: there may be differences between the two environments that prevent accurate and
timely detection of faults. As discussed in Section there are various ways in which we can
address this problem: either by building more accurate (and complex) simulators or by using
noise as a means to mask discrepancies and hide features that we do not want fault detectors
to rely on.

Another approach could be to use sensory data preprocessing and/or sensor fusion in order
to let fault detection depend on high-level (processed) features instead low-level sensory data.
We could for instance preprocess camera data (position of nearby LEDs) so that the relative
locations of nearby teammates were extracted and used by a fault detector. Since we can
choose what information to extract and choose how the information should be preprocessed,
we could chose the type of high-level features for which there is a good correspondence between
simulation and reality. In this way, sensory data preprocessing and/or sensor fusion may help
alleviate some of the transfer issues.

One Neural Network May Not Be Able To Generalize in Complex Tasks

In this chapter, we presented results for three different tasks. We also showed how a fault
detector was able to generalize over variations of the connect to s-bot task. However, when
a task becomes more complex and consists of multiple sub-tasks it is questionable if a single
neural network would be able to generalize and accurately detect faults in all sub-tasks. If we
combined the three tasks discussed in this chapter, a robot could for instance first try to find
the perimeter of a dark geometric shape on the area floor (find perimeter) until it encountered
another robot. One of the two robots would assume the role of the leader, while the other
robot would assume the role of the follower, and the robots would subsequently move around
together (follow the leader). In case a certain obstacle was encountered, the two robots could
self-assemble (connect to s-bot) in order to overcome the obstacle. In this scenario — and for
complex tasks in general — we could train not one, but several neural networks: one for each
sub-task. Fault detection could then be based on the output of the neural network specially
trained for the sub-task which the robot is currently performing.

The Approach Does Not Scale to Exogenous Fault Detection in Groups or Swarms of
Robots

In Section we demonstrated how the leader robot was able to detect faults in the follower
robot. Exogenous fault detection based on fault injection and learning was applicable in this
case because it was straightforward to associate sensory readings from the leader robot with

58

4.6 Summary

Figure 4.18: An example of three robots, A, B and C, in which robot A has experienced a fault
while within the perceptual range of B but outside of the perceptual range of C. The perceptual
ranges of B and C, respectively, are indicated by circles.

the state of the follower. The only robot that the leader was able to perceive at any time was
the follower. If the task had been different and involved more robots, it would be less clear
how to associate a certain flow of sensory information from one robot with the state of another
robot.

Imagine, for instance, three robotsE] A, B and C that move around randomly in an arena. If
robot A experiences a fault while robot B is within perception range, but while robot C cannot
perceive A, we might conclude that robot B should be able to detect the fault in A, while robot
C should not be able to detect the fault (at least not directly). The situation is illustrated in
Figure [4.18] In this case, we could use readings from robot B in order to train an exogenous
fault detector, and we could discard the readings from C. When the robots B and C move,
however, the situation changes. Robots B and C might be able to perceive robot A from time
to time. In that case, it is no longer obvious how to associate sets of sensor readings and
actuator control signals to the state of A. It is therefore difficult to obtain meaningful training
data and to synthesize a fault detector.

Exogenous fault detection based fault injection and learning is hard to apply in multi-robot
systems because there seems to be no general method of associating a certain set of sensory
data with the state of a particular robot that would allow for subsequent training of a fault
detector. In Chapter[5 we propose a different approach that allows for exogenous fault detection
in large groups of robots. The method relies on firefly-inspired visual synchronization.

4.6 Summary

Dependable fault detection and fault response mechanisms are likely to be a central requirement
for autonomous robots before we can realistically expect them to be widely adopted in domestic

5We assume that the robots are homogeneous, but the issue exists regardless of whether the robots are homo-
geneous or heterogeneous.

59

4.6 Summary

and industrial environments. Due to concerns over safety and potential costs incurred by
malfunctioning robots, the scope of the tasks with which robots can be entrusted will remain
fairly narrow until a high level of dependability can be attained. In this chapter, we have
suggested a new method for synthesizing fault detectors for autonomous mobile robots. We
first presented the approach. Our method is based on learning from examples in which robots
operate normally and in which faults are present, respectively. We then went on to test the
approach on three different tasks with real autonomous robots. The tasks differed significantly
in terms of both the actions performed by the robot(s) and the sensors and actuators used.

The results suggest that fault detection through fault injection and learning is a viable method to
generate fault detectors for autonomous mobile robots. The robots need not be equipped with
dedicated or redundant sensors for the method to be applicable. For all the results presented,
the only data used was the information flowing between the control program and the robots’
sensors and actuators necessary for navigation. Although the performance of fault detectors
could probably be improved if data from more (possibly dedicated) sensors were used, our results
show that a fairly small amount of key information is sufficient to obtain good fault detectors.

We explored various aspects of the method: We showed that it is possible to train fault detectors
to detect faults in both actuators and sensors. We demonstrated that a single fault detector
is capable of detecting faults of different types and locations. We showed that we can train a
fault detector to be robust to variations in the task performed by a robot. Finally, we showed
how the proposed method can be extended to exogenous fault detection: in the follow the
leader task, we trained a fault detector for the leader robot to detect faults that occurred in
the follower robot.

Finally, we discussed various ways in which the approach could be improved and we discussed
some of its limitations. We discussed how these limitations possibly could be overcome. How-
ever, one of the inherent limitations of the method is that it does not generalize to exogenous
faults detection for groups or swarms of robots. In the next chapter, we address this issue and
propose a method for exogenous fault detection based on visual firefly-like synchronization.

60

Fault Detection in Swarms of Robots 5

CHAPTER

Nature has produced a multitude of remarkably robust and adaptive systems. These qualities
are often derived from underlying self-organization mechanisms and from massive built-in re-
dundancy. Examples can be found at scales from the nano to the macro: nanostructures [Pohl
et al., [1999], the architecture of a cell [Misteli, [2001], ensembles of cells forming organs such
as a human heart [Peskin, [1975], and societies of insects [Bonabeau et al.,1997]. As engineers,
we can learn from and try to imitate such natural systems in which complex behavior results
from the basic rules of interaction between essentially simple components.

In this chapter, we exploit some of the high-level principles behind synchronizing systems found
in Nature in order to obtain a robust, simple, distributed approach to exogenous fault detection
in groups or swarms of autonomous robots. By detecting faults, a multi-robot system can
leverage its multiplicity and ensure continued operation by reassigning functional robots to the
failed robots’ task or by taking steps to have the failed robots repaired. |Carlson et al.| [2004]
tracked the reliability of 15 mobile robots from three different manufacturers over a period
of three years and found the average mean time between failures to be 24 hours. The result
suggests that faults in mobile robots are quite frequent. As the number of constituent robots
increases, we would expect the rate of failure to grow correspondingly. Faults are therefore
likely to be common events in multi-robot systems.

The method presented in the previous chapter gives a robot the capacity to detect faults in
itself. As discussed in Chapter [2, many other studies have been devoted to endogenous fault
detection. Some faults are, however, hard to detect in the robot in which they occur. These
faults include software bugs that cause a control program to hang, sensor failures that prevent
a robot from detecting that something is wrong, and mechanical faults such as an unstable
connection to a power source. Alternatively, a robot might be able to detect a fault, but the
fault itself might still render the robot unable to alert other robots or a human operator. The
robustness of a multi-robot system can therefore be improved by giving robots the ability to
detect faults in one another, that is, implementing an exogenous fault detection scheme.

Exogenous fault detection and fault tolerance in multi-robot systems have been studied in [Parker|
1998, |Gerkey and Matari¢, 2002bjal |Dias et al., 2004] among others. The types of systems
studied in the literature differ from the types of systems in which we are interested. Whereas
previous studies have mostly been concerned with multi-robot systems that rely on high-level co-
ordination and sophisticated reasoning, we are interested in systems composed of simple robots
that self-organize through local interactions. In the majority of the proposed approaches, the
robots are required to be tightly coupled. Radio communication is used to facilitate fault de-
tection and/or fault tolerance. As the number of robots grows, tightly coupled systems become
harder to realize due to scalability issues.

61

5.1 Motivation

When we look at Nature, we seldom find centralized approaches. Instead, we find numerous
examples of decentralized and self-organized systems: schools of fish changing direction at the
same time and never colliding, trail formation in ants, and termite mound construction without
a pre-defined blueprint or a central coordination mechanism [Camazine et al., 2001]. The
philosophy behind Nature-inspired swarm robotics, such as the method that we present in this
chapter, is to rely on self-organization through local interactions between robots. The potential
advantages of designs adhering to this philosophy include scalability, inherent parallelism, and
robustness to individual failures [Cao et al., {1997, Bonabeau et al., (1999, Shen et al.,|2004]. The
approach that we advocate in this chapter is completely distributed. Through local interactions,
a group of robots are able to synchronize and reach a state in which they flash periodically in
unison. When a robot breaks down it also ceases to flash. By detecting the absence of flashes,
operational robots can effectively detect failed robots.

This chapter is organized as follows: In Section we motivate our approach. In Section[5.2}
we discuss previous studies related to synchronization among pulse-coupled oscillators in natural
and artificial systems. In Section [5.3] we show how simulated and real robots can synchronize
their flashing and we explore various parameters such as robot density, group size and coupling
strength. In Section we show how non-operational robots can be detected and we provide
results for a system where the robots have (simulated) self-repair capabilities. A summary of
the results and directions for future research are provided in Section

5.1 Motivation

If one robot in a multi-robot system needs to detect a fault in one of its team members, it has
to either observe the team member directly, observe the results of its actions, or attempt some
form of communication with the team member. In the previous chapter, we demonstrated how
we could obtain fault detectors capable of detecting endogenous faults by passively monitoring
the flow of sensory data and actuator control signals. However, as we concluded, there appears
to be no general and meaningful way of associating sensory data and actuator control signals
from one robot to the state of another robot when the robots have limited sensing capabilities
and when they are in motion. This is not to claim that fault detection through observation
does not work for any multi-robot system: if the robots are sufficiently sophisticated to observe
one another’s actions and if they have sufficient knowledge of one another’s task, they could
detect faults by observation only.

Instead of detecting faults through passive observation, robots can take action in order to
facilitate fault detection. One way of detecting faults is to force each unit to perform a certain
action periodically. In the real world, this type of approach is for instance used in trains: a
driver of a locomotive has to press a switch (the dead man’s switch) from time to time in
order for the train to continue its course. The purpose of the switch is to provide a fail-safe
in case the driver becomes incapacitated. If the driver does not press the switch periodically,
the locomotive stops. Similarly, in some distributed computer systems, periodic messages are
broadcast by nodes to indicate that they are still operational.

In multi-robot systems, we can adopt a similar strategy: every robot periodically takes a certain
deliberate action which can be perceived by other robots. By detecting the absence of the action

62

5.1 Motivation

over a certain time period, team members can detect non-operational robots. On the s-bots
we have a number of options concerning the type of deliberate action: Wi-Fi communication,
sound emission and change of the LED color configuration. Over a Wi-Fi network, robots could
periodically send out broadcast messages to indicate that they are still operational. If sound is
used, the robots could periodically emit a tone with a certain frequency. If visual communication
is used, s-bots could periodically change the color of their LEDs. Below we first discuss the
three different options (Wi-Fi, sound and LEDs) and go on to discuss different protocols for
periodic deliberate actions that allow for exogenous fault detection.

Situated and Abstract Communication

Stgy| [2001] makes the distinction between situated and abstract communication. Wi-Fi com-
munication and sound (although to a less degree) suffer from the fact that they provide abstract
as opposed to situated communication: when one robot communicates it is not obvious for other
robots to determine the source relative to their own frame of reference. Thus, the messages are
separated from the environment localization information [Stgy, 2001]. To illustrate how this
is an issue, imagine a team of three robots: one of the robots perceives only one “I am alive”
message over the Wi-Fi network (or hears only one beep sound if auditory communication is
used). Hence, one of its two team members are no longer operational, but which one? Unless
the robots have unique features (for instance bar-codes that can be read by nearby robots, dif-
ferent colors, or similar) to distinguish them and somehow encode this feature in the message
(for instance an ID), other robots will not know which robot is sending the message. Thus, the
robots will know that one of their teammates has become non-operational, but they have no
way of knowing which one and can therefore do little to accommodate the fault.

In some cases radio communication and auditory communication can be situated to a certain
degree: technologies like ZigBee and Bluetooth (currently none of these technologies have been
implemented on the s-bots) allow robots to propagate signals locally. In some cases, a crude
approximation of the direction and distance to the emitting source can be obtained. In dense
swarms of robots it is, however, still problematic to determine exactly what robot emitted
which signal. A similar problem manifests itself with auditory communication: if multiple
microphones are used (s-bots have four microphones), a robot can with reasonable accuracy
detect the direction of a sound source using time delay estimates. However, estimating the
distance with a sufficiently high accuracy is still difficult.

Visual communication is situated. Whenever a robot changes the colors of its LEDs, other
robots nearby perceive this from their own perspective. The source and relative location of
the emitting robot is therefore immediately obvious. The s-bots can control their LEDs and
set each of the eight sets of RGB colored LEDs to one of three colors — red, green and blue.
[lluminated LEDs can be perceived and distinguished by s-bots up to 50 cm away depending on
light conditions. In the next section, we discuss different protocols for exogenous fault detection
based on visual communication.

Protocols for Exogenous Fault Detection based on Periodic Action

We discuss three different protocols for exogenous fault detection based on periodic action and
the s-bots’ ability to control the color configuration of their on-board LEDs:

63

5.1 Motivation

Unsynchronized flashing: S-bots change the color of their LEDs periodically. Every two
seconds, for instance, an s-bot changes from either red to green or from green to red. A
robot that does not change the color of its LEDs may have a fault.

Ping-pong: With a low probability, a robot sends out a message (a ping) to which surrounding
robots should respond (a pong). If a robot does not reply, it may have a fault. In the
following, we assume that a robot sends out a ping by illuminating its red LEDs while
other robots respond with a pong by illuminating their green LEDs.

Synchronized flashing: Robots change color in a synchronized fashion, any robot that is not
flashing when the rest of the swarm flashes may have a fault.

In the unsynchronized flashing protocol, every robot has to constantly monitor all surrounding
robots. Keeping track of individual robots is hard. The image processing capability of the
s-bots is limited: the s-bots can only see illuminated LEDs. Features of such as the gripper,
the treels, and chassis cannot be identified by the image processor. Each LED is detected as
one or more distinct blobs (see Figure on page for an example). One robot can partly
or completely occlude another robot. When a robot moves around, the perspex tube holding
the camera and the hemispherical mirror (see Figure on page shakes and as a result
even static objects “jump around” from frame to frame. Hence, it can be difficult for a robot to
determine what LEDs belong to which robot, especially when two or more neighboring robots
are close to one another. Furthermore, due to the robots’ limited visual range, they enter and
exit each other’'s view repeatedly. These issues can make it hard identify and track moving
robots and thus to realize a working implementation of the unsynchronized flashing protocol.

In the ping-pong protocol, the pinging robot (a robot that illuminates its red LEDs for a brief
period of time) has to ensure that all the surrounding robots correctly respond with a pong (by
illuminating their green LEDs for a brief period of time). In the ping-pong protocol, a robot
therefore also needs keep track of surrounding robots, but only when it decides to send out a
ping. When a robot sends out a ping it can stop its motion so that the camera and perspex tube
do not move. In this way, the s-bot can see more accurately if the surrounding robots respond
correctly. The issue of keeping track of surrounding robots is therefore not as pronounced in
the ping-pong protocol as it is in the unsynchronized flashing protocol. There are, however,
two issues with the ping-pong protocol:

e A robot fails to see a ping. Example: One robot (N) cannot see a pinging robot (P)
when robot P changes color in order to ping. Robot P, on the other hand, sees robot N
before the response time limit is reached. Robot P could (wrongly) conclude that N is
non-operational because N does not respond to the ping that it did not see.

e Constant pong. Example: One robot receives ping messages from different robots in
succession and it therefore replies by constantly having its green LEDs illuminated for an
extended period of time. A robot that is merely responding to one ping immediately after
another is hard to distinguish from a robot that has become non-operational while it was

replying.

64

5.2 Synchronization in Natural and Artificial Systems

The issues related to the ping-pong protocol and to the unsynchronized flashing protocol could
probably be solved by making the protocols more complex or by introducing better sensory
equipment. However, since our aim is to demonstrate exogenous fault detection on real s-bots,
we have chosen the synchronized flashing protocol: when robots flash in unison, there is no
need for a single robot to identify all its neighbors. It is sufficient for a robot to detect LEDs
with the wrong color (which is evidence that one of the team members in not flashing) while
the robot itself is flashing. In this way, more complex reasoning such as constantly keeping
track of all the surrounding robots is not necessary. Furthermore, the two issues listed above
for the ping-pong protocol do not exist for the synchronized flashing protocol: since the robots
flash in synchrony, every robot is in effect “pinging” and “ponging” at the same time.

The challenge in implementing a synchronized flashing protocol is to make all the robots change
color periodically at the same time. However, Nature has already solved this problem in an
elegant manner. In the following sections, we discuss synchronization in natural and artificial
systems and we show how robots can synchronize based on a firefly-inspired approach. We then
demonstrate an algorithm to reliably detect non-operational robots. Finally, we show how 10
real s-bots are capable of detecting faults in each other and how they can survive a high rate
of failure when they have the capacity to repair one another.

5.2 Synchronization in Natural and Artificial Systems

In Nature, we find many examples of coupled oscillating systems that lead to various types
of synchronous behavior. The canonical example is large groups of tropical fireflies, found on
river banks in Southeast Asia, which spontaneously synchronize their rhythmic flashes [Buck|
1988, [Smith| 1935]. Other examples include cardiac cells [Glass, 2001], choruses of grasshop-
pers [Snedden et al. [1998], female menstrual cycles [McClintock, (1971], and clapping in the-
aters [Néda et al., 2000].

Systems of coupled oscillators can be divided into two classes: oscillators that continuously
influence one another (see for instance [Strogatz, 2000]) and so called integrate-and-fire or
pulse-coupled oscillators, where one oscillator only influences other oscillators during short,
periodic pulses. In this study, we focus on the latter type. The internal state or activation
of each oscillator increases over time until it reaches a certain threshold. When the threshold
is reached, the oscillator discharges (fires) and the activation instantly jumps back to zero —
the cycle then repeats. When a nearby oscillator observes a flash it immediately increases its
activation by a (small) amount. If this increase causes the oscillator’s activation to exceed the
firing threshold, the oscillator fires, resets its activation to zero, and commences a new cycle.
Analytically, many pulse-coupled networks can be written in the following form [Izhikevich),
1999]:

i = flai) + ey h(z:)dt—t5), (5.1)
JEN

where z; € [0, 1] denotes the activation of oscillator . The function f describes its dynamics.
The pulse-coupling constant e defines the strength of the coupling between oscillators. N is

65

5.2 Synchronization in Natural and Artificial Systems

Threshold

Influence:

Threshold

Activation ——=

Time ——=

Figure 5.1: An example of two pulse-coupled oscillators. Both oscillators increase at a constant
rate until the threshold is reached or until one oscillator observes that the other one fires. When
an oscillator’s activation reaches the threshold, the oscillator fires. If one oscillator observes
the other’s firing, it increases its own state by €z, where € is the pulse-coupling constant and
x the activation of the oscillator.

the set of oscillator i's neighbors. The pulse-coupling function h describes the effect of the
firing of another oscillator j on i. The time ¢} marks the moment when j last fired. The delta
distribution function 6(t) satisfies that § = 0 for all t #£ 0, §(0) = oo and [§ = 1. An example
with two oscillators for which f is constant and A is linear is shown in Figure [5.1

Peskin| [1975] was the first to propose a model for self-synchronization of pulse-coupled oscilla-
tors after observing cardiac pacemaker cells. Mirollo and Strogatz later showed that a population
of fully connected pulse-coupled oscillators almost always evolves to a state in which all os-
cillators are firing synchronously [Mirollo and Strogatz, |1990]. Recently, Lucarelli and Wang
[2004] showed that a group of pulse-coupled oscillators will eventually synchronize even when
each oscillator interacts with only a subset of the population. This holds true for systems with
changing topologies as long as the interaction graphs are connected.E] Ramire Avila [2004] has

!We obtain the interaction graph for a population of oscillators by letting every oscillator correspond to a node

66

5.3 Synchronization in Robots

experimentally shown that light emitting pulse-coupled oscillators synchronize.

Understanding synchronization is not only important for describing natural phenomena — syn-
chronization is a central issue in distributed computing and distributed sensing. The problem
of establishing a consistent global time base across nodes in a distributed system subject to
message delays, network congestion, node failures, and clock skews has received a great deal
of attention (see for instance [Tanenbaum and van Steen, 2002, Elson and Estrin, 2001]).
The behavior of fireflies has inspired algorithms for heartbeat synchronization in overlay net-
works [Babaoglu et al., 2007], imposing reference timing in wireless networks [Tyrrell and Auer,
2007], and in sensor networks for coordinating sensing and communication [Werner-Allen et al.,
2005].

In this study, we rely on local visual communication. We are therefore not faced with issues
such as variable propagation delays and congestion that several studies on synchronization
across data networks have had to deal with.

5.3 Synchronization in Robots

We propose an approach for synchronization based on local visual communication. The ap-
proach resembles behavior observed in fireflies: we let each robot act as an integrate-and-fire
oscillator and when the activation of the oscillator reaches a certain threshold, the robot lights
up its red LEDs as in the example shown in Figure[3.3|and resets its oscillator. When neighboring
robots (within 50 cm) detect the flash, they increment their own activation.

5.3.1 Discrete Oscillators

Due to the inherent discreteness of the sense-think-act control paradigm, we transform the
continuous model in Eqn. [5.1]into a discrete model with piece-wise linear dynamics:

z(n+ 1) :xi(n)—i—%—i—eai(n)h(:pi(n)), (5.2)
where z;(n) is the activation of robot ¢ at control cycle n. T is the period between flashes of an
isolated robot. In this study, we have chosen T' to be 100 control cycles(which corresponds to
15 s). We experiment with different values for the pulse-coupling constant € in Section [5.3.2]
a;(n) is the number of flashing robots seen by i at control step n. We use the linear pulse-
coupling function:

h(z) == (5.3)

When z;(n) exceeds 1, robot i flashes and its activation is reset to 0. There is a (small)
latency between the moment that the control program sends a signal to the flash LEDs and
until the moment they respond. Before a neighboring robot can perceive a flash, it must have
already recorded and processed a frame from its on-board camera in which the flash is visible.

in the graph with an edge to each member of its neighbor set.

67

5.3 Synchronization in Robots

This step entails an additional latency. Furthermore, images from the camera are retrieved and
processed asynchronously by the on-board software in a separate execution thread. We have
experimentally found that we can compensate for these delays by keeping the flash LEDs on
for 5 control cycles(0.75 s). Flash spans of this length allow the robots to reach and remain
in a synchronized state. When robots in a synchronized system keep their flash LEDs on for 5
consecutive control cycles, they perceive the flashes from other robots, while they are flashing
themselves. This creates a stable fix-point for the system. We compute «;(n) based on the
most recent frame recorded by the on-board camera. In order to prevent the robots from
perceiving the same flashes multiple times, we compute a;(n) in the following way: we dissect
a robot’s omni-directional field of view into 16 equally sized slices and count only flashes from
slices from which no flashes were perceived in the previous control cycle. In this way, we obtain
a reasonable estimate of the number of flashing robots without the need to identify and track
individual robots (as discussed in Section it is difficult for one robot to keep track of each
neighboring robot).

5.3.2 Synchronization Experiments in Simulation

We are interested in the time it takes for all robots to synchronize. We define the system to be
synchronized when it is in a state where the value of every activation z;(n) is no further than
1/T from all other activations. An example of the development of activation values sampled
every T during a run with 25 robots in simulation is shown in Figure The activation for
each robot at every T—th simulation step is plotted as a cross. In the example, the robots
synchronize after 435 s.

The time it takes for a swarm of robots to synchronize depends, apart from the parameters € and
T, also on the density of robots, on how the robots move, and on the total number of robots.
In a given environment, the density of robots together with the total number of robots define
the average degree and the diameter of the interaction graph, while the pattern of movement
for the robots defines its dynamic properties. As the pattern of movement is strongly task-
dependent, we limit our experiments to two extreme cases: one in which all robots perform a
random walk and one in which all robots are static. In both types of experiments, the robots
start at random positions and with random orientations. In the experiments with static robots,
a check is performed before the start of each experiment to ensure that the interaction graph
is connected. In case it is not, all the robots are repositioned until a configuration is found that
produces a connected interaction graph.

In simulation, we have explored the rate of synchronization for swarms of 10, 25, 50, and 100
robots (see Figure [5.3). Moreover, we tested the rate of synchronization at densities of 2, 4,
6, 8, and 10 robots/m? in square-shaped arenas with 50 robots (see Figure . Finally, we
tested the rate of synchronization for pulse-coupling strengths e ranging from 0.01 to 0.50 (see
Figure 5.5). In all figures, one bar represents the mean synchronization rate observed in 100
replications of the experiment and the error-bars denote the standard deviation.

For all experimental configurations, moving robots tend to synchronize faster than static robots.
Visual inspection of the experiments confirmed that a system of static robots in many cases
reaches a state of near-synchrony, where flashes propagate in waves through the swarm before

68

5.3 Synchronization in Robots

Evolution of activations

1= 1o E: T T T
PR A S S L
+ R t N
S + |
0.8 Al
RS B I
:3 .
c Yt + .
§06f i it .
ey + % :"
rzu ft ._10 ., ."**3***+++++++++++
5 P .';!i. '
< 04 r ¥ L ‘.' ii + —
R S ! : »‘.¥‘ '
0_2,.v Lt . i;tt' ‘ —
dolEe M
o+ ! f 1 .
o L= [P I | |
0 100 200 300 400 500
Time (s)

600

Figure 5.2: An example of the evolution of activations sampled every T" in 25 mobile robots
over the course of 10 minutes. One cross represents the activation for a single robot at the

corresponding time.

Time to synchronize vs. swarm size

250 T T T T T
mobile ——
static
— 200 - |
2
L
N
S 150 - .
ey
(8]
=
&
o 100 - |
8
L
£
Foso -
0 I I I I I
10 25 50 75 100

Number of robots

Figure 5.3: Synchronization rate in groups of 10 to 100 simulated robots. Each bar summarizes
100 runs and error-bars denote the standard deviation. The density was 8 robots/m? and a

coupling constant of € = 0.1 was used in all runs.

69

5.3 Synchronization in Robots

Time to synchronize vs. density

\ \ \ \
= mobile —— _|
700 static

600 I
500 - I
400 - 1
300 I

200 1

gl W

2 10
Den5|ty (robots per m?

Time to synchronize (s)

Figure 5.4: Synchronization rate in a group of 50 simulated robots at different densities. Each
bar summarizes 100 runs and error-bars denote the standard deviation. A coupling constant of
e = 0.1 was used in all runs. Due to the limited sensory range of the s-bots (up to 50 cm)
experiments with static robots at a density of 2 robots/n? were not conducted. At this density,
the interaction graph is almost never connected when the robots are distributed randomly.

Time to synchronize vs. coupling strenght

I I I I T
1200 - mobile —— |
static

1000
800 — -
600 - I

400 - 1

ﬁﬁﬁﬁ

0.01 0.02 0.05 0.10 0.20 0.50
Coupling constant (e)

Time to synchronize (s)

200

Figure 5.5: Synchronization rate a group of 50 simulated robots for coupling constants
0.01,0.02,0.05,0.10,0.20,0.50. Each bar summarizes 100 runs and error-bars denote the stan-
dard deviation. The density was 6 robots/m?,

70

5.3 Synchronization in Robots

t=0.00s t=0.60s

t=120s t=180s

Figure 5.6: An example of a flash wave in a group of static robots.

the robots synchronize. Snapshots of a flash wave propagating through a static swarm of robots
is shown in Figure [5.6] When the flash wave starts, all the robots have activations close to the
firing threshold and they therefore flash as soon as a nearby robot flashes. Flashes would not
propagate in waves if robots could perceive and respond to flashes instantly, because as soon as
one robot flashes, all robots would flash (and they would be synchronized). Wave propagation
of flashes can thus occur due to the latencies associated with turning on the flash LEDs in the
flashing robot and the image capture and image processing.

In moving robots, the wave propagation phenomenon is not as pronounced. Robots that are
close to each other have similar activation values when flashes propagate in waves. However,
when the robots move, the interaction graph changes. This means that the individual robots
do not remain at the same distance from the origin of the flash wave as the system evolves.
When individuals that are close to the robot that triggers the flash waves move away, they
cause other robots (more distant from the wave origin) to flash sooner. Similarly, as individuals
further away from the robot that triggers the flash wave move closer to the wave origin, they
are driven to flash sooner, thus speeding up the global synchronization process.

71

5.3 Synchronization in Robots

Table 5.1: Synchronization rate for 10 real robot.

Mean St.dev. Shortest Longest
Static 94s 72s 55 s 174 s
Moving 77s 28s 30s 118 s

The synchronization rate scales linearly (with a gentle slope) with swarm sizes up to 100 s-bots
(see Figure [5.3). The mean synchronization rate for a group of 10 s-bots is 62 s, while for
100 s-bots the rate is 164 S — less than 3 times as long.

The synchronization rate at different densities plotted in Figure [5.4] shows that denser swarms
tend to synchronize faster. When a swarm is dense, more members are within each others’
sensory range. The results indicate that the larger the subset of robots each individual interacts
with, the faster the overall group synchronizes.

The strength of each interaction is controlled by the coupling constant €. The results in
Figure show that if € is large a swarm tends to synchronize faster. Setting € too high is,
however, problematic when we want to detect faults because one robot — including a failed one
— has a significant effect on its neighbors. Furthermore, for large swarm sizes, high values of ¢
can make the system unstable and prevent it from synchronizing.

5.3.3 Synchronization Experiments with Real Robots

We conducted two sets of experiments with 10 real robots: one set of experiments with static
robots and one set of experiments with moving robots (random walk and obstacle avoidance).
The experiments were performed in a walled arena with dimensions 1.6 m x 1.6 m (yielding a
density of 4 robots/m?). The coupling constant € was set to 0.1 and the flash period T" was
100 control cycles. The robots were assigned different initial random activations. The initial
positions for the robots were obtained in the same way as in simulation (see Section [5.3.2)).
Based on video recordings, the synchronization rate was measured as the time from the frame in
which the robots were started until the first frame in which all the robots had their flash LEDs
illuminated. Figure shows an example of synchronized robots flashing. The experimental
setups with static robots and with moving robots, respectively, were replicated 10 times with
different initial conditions. A summary of the results is shown in Table Videos of the
experiments can be downloaded from:

http://iridia.ulb.ac.bel/supp/lridiaSupp2008-012

In real robots, we observe the same trend as in simulation: moving robots tend to synchronize
faster than static robots. The mean synchronization rate of static robots was 94 s while the
mean synchronization rate for mobile robots was 77 S. In all 10 experiments with static robots
and in all 10 experiments with moving robots, the robots synchronized. The results indicate that
real robots operating as pulse-coupled oscillators are able to synchronize despite the discrete
nature of the control sense-think-act paradigm and despite the inherent latencies associated
with the sensory and actuator systems.

72

5.4 Fault Detection in Swarms of Robots

Figure 5.7: A photo of synchronized robots flashing at the same time.

5.4 Fault Detection in Swarms of Robots

Synchronization can be used as an exogenous fault detection tool if the robots assume that a
robot that is not flashing has a fault. A robot can decide to stop flashing if it detects a fault in
itself. In this way, it can implicitly signal that it requires assistance. A robot also stops flashing
when it experiences a catastrophic fault (software bug, physical damage, and so on...) which
causes the control program and thus the periodic flashing to stop. When operational robots
discover a non-flashing teammate they know that a fault has occurred and they can take steps
to rectify the situation. Conceptually, the scheme is straightforward. However, two issues need
to be addressed in order for the scheme to be implemented on real robots: it cannot be assumed
that the robots are always synchronized and the sensory range of the robots is limited.

5.4.1 Detecting Faults in Non-Synchronized Robots

In a normal situation, the robots would be operational and synchronized (see Figure [5.8p).
However, when robots commence a task or when they encounter each other after having been
separated for a period of time, their activations are likely to differ. In other words, they are
not synchronized. This means that one robot cannot assume that another robot has become
non-operational just because the two robots do not flash in unison. To address this issue, a
flashing robot does not immediately consider another robot non-operational if the two robots
do not flash at the same time. Instead, the flashing robot (F) treats the robot (V) that did not
flash when F flashed as a candidate robot. We say that F becomes suspicious of N. If N flashes
before F flashes again, both robots are operational but they are just not (yet) synchronized (see
Figure) However, if F flashes again before N flashes, F assumes that N is non-operational
(see Figure[.8k). Hence, a robot detects a fault if it flashes twice while observing that another
robot does not flash at all.

There is however a problem with this scheme. In fact, there is a rare situation in which one

73

5.4 Fault Detection in Swarms of Robots

a) Operational and synchronized: b) Operational but not synchronized:
Flash Flash Flash Flash
() (;) () (;) (; 1?2) (; 2 ()
@ ® O @ O (@
Flash Flash Time Flash Flash Time
. > I : : : >
to +% t0+T to+% to to + Ay to + Az to + Az
c) One robot failed: d) One robot failed with flash LEDs on:
Flash Flash Flash
() (; 2)? ; ! ()? (N
Time Flash Flash Flash Time
| | | > | | | >
to to+ L to + T to + 3L to to+ L to + £ + 5 controlcycles
Legend:
Non-flashing Flashing Failed SuSpICIOuS Rabot detects
bot robot bot bot a failed robot

? !

Figure 5.8: Four possible scenarios. See text.

74

5.4 Fault Detection in Swarms of Robots

operational robot (R2) can flash twice while another operational robot (RI) does not flash
a single time. This can happen when RI flashes right before R2 and when R2 subsequently
perceives sufficient flashes to increase its activation so much that it flashes again before RI
flashes a second time. However, R2's second flash will often provoke R1 to flash. R2 can, in
fact, calculate the sufficient conditions under which its second flash will provoke R1 to flash.
When these conditions are met and R2's second flash does not provoke R1 into flashing, R2
can safely assume that R1 has a fault. We let A denote the amount by which R2’s activation
has been increased due to flashes from other robots. In the worst case, R1’s activation has
not been advanced by any flashes. When R2 reaches the firing threshold (= 1) RI’s activation
is therefore at most A away from the firing threshold, i.e. RI’s activation is at least 1 — A.
Assuming that the two robots perceive each others’ flashes, R2’'s second flash will increase R1's
activation by at least eh(1 — A). Thus, R2's second flash will drive R1 to flash if:

eh(1—A) > A. (5.4)

Thus, if R2 flashes twice while R1 does not flash at all (including not being provoked to flash
by R2's second flash) and if Eqn. is true, R2 can conclude that R1 has a fault. Otherwise
R2 must wait until its next flash to determine whether or not R1 is operational. If R1 has still
not flashed in the meantime it must have a fault.

The case in which a robot breaks down while it is flashing is not caught by the scheme pre-
sented above. In other words, no robot would ever become suspicious of a robot that becomes
non-operational while its flash LEDs are illuminated. Consequently, the non-operational robot
would never be detected. Faults that occur while the robot is flashing, leaving the flash LEDs
illuminated, however, can easily be detected: when a robot’s activation passes its midpoint
(0.5), it becomes suspicious of any robot that has its flash LEDs illuminated. If the candidate
robot still has it LEDs on after the normal flash span (5 control cycles), the suspicious robot
can conclude that the candidate robot with the flash LEDs on is not operating correctly. This
situation is illustrated in Figure [5.8d.

5.4.2 Time Overhead

When a group of robots start a new task, they are not always synchronized. This means that the
robots do not flash at the same time. While a group of robots is in the process of synchronizing,
they frequently become suspicious. While they are suspicious, they stop performing the task
and wait while they determine if the candidate robot is non-operational or if it is just not
synchronized. This has a negative impact on the performance of the group as time that could
have been used for carrying out a task is spent on being suspicious. In Figure we have
plotted the average percentage of control cycles that the robots were suspicious in the beginning
of an example run.

The time initially spent by the robots on being unnecessarily suspicious while a group of robots is
synchronizing can be reduced or eliminated entirely by introducing a warm-up period. During the
warm-up period a robot ignores any indications of faults and does not become suspicious. If we
had introduced a warm-up period of 120 Sor longer in the experiment summarized in Figure[5.9]

75

5.4 Fault Detection in Swarms of Robots

Time spent in suspicious state while synchronizing
25% T T T T

20%

15%

10%

5%

I I
0 50 100 150 200
Time (s)

Percentage of control cycles spent suspicious

Figure 5.9: Average percentage of the control cycles spent in the suspicious state over intervals
of 15 s during a run with 50 simulated robots in a 2.5 m x 2.5 m arena. The robots were not
initially synchronized.

none of the robots would have become suspicious during the initial synchronization period, and
the initial overhead of the stop-while-suspicious strategy would have been eliminated. However,
there is a trade-off between the length of the warm-up period and the latency of fault detection
since faults cannot be detected during the warm-up period.

5.4.3 Implementation

An overview of the control and fault detection logic executed every control cycle is shown in
Algorithm [I} The activation x is incremented by the sum of the constant increase 1/7" and
the product of the coupling strength ¢, the number of flashes seen «, and the pulse-coupling
function h(z). When z exceeds 1, the robot flashes and checks for non-flashing robots, while
if 2 has just passed 0.5, a check is made to determine if any neighboring robot has become
non-operational with its flash LEDs illuminated. In case a candidate robot is found, the robot
stops and waits until it can be decided whether the candidate is operational or not. If no
candidate was found, the robot performs a random walk while avoiding obstacles.

The logic for checking for non-flashing candidates and for candidates with their flash LEDs

76

5.4 Fault Detection in Swarms of Robots

illuminated is shown in Algorithm [2] and Algorithm [3] respectively.

Algorithm 1: ControlCycle()

ReadSensors();

if HasFlashed(candidate) then
candidate = none;

end

T — x+ + + eah(z);

A — A+ eah(x) ;

if © > 1 then
FlashAndCheckForFailedRobots();
T« 0;

end

if © has passed 0.5 then
CheckForFailedRobotsWithFlashOn();

end

if candidate # none then
StopMoving();

else
RandomWalkAndAvoidObstacles();

end

Algorithm 2: FlashAndCheckForFailedRobots()

TurnOnFlashLeds(5 cycles) ;
if candidate = none then
candidate = CheckForNonFlashingRobots();
A =0;
else
if ch(1— A) > A then
failedrobot < candidate;
...A fault has been detected. Take

...actions to deal with the fault.
else
...Wait until next flash before concluding
...if the candidate robot has failed or not.
end

end

Algorithm 3: CheckForFailedRobotsWithFlashOn()

candidate = CheckForFlashingRobots();
if candidate # none then
StopMoving();
if CandidateRobotStillFlashing() after 5 control cycles then
failedrobot «— candidate;

...A fault has been detected. Take

...actions to deal with the fault.
end

end

5.4.4 Fault Detection Experiments with Real Robots

In 10 experiments, we measured the time it took for one or more robots to detect and react
to a failed robot. We took the first steps towards a scenario in which one or more robots

77

5.4 Fault Detection in Swarms of Robots

Table 5.2: Fault reaction time results on real robots

Mean reaction time 53.2s
Standard deviation 31.3s
Shortest reaction time | 30.2' s
Longest reaction time | 135.5'S

can facilitate the repair of a failed robot — either directly or by physically connecting and
transporting the failed robot[f] to a special zone where the robot is then repaired or replaced.
The experiments were performed in the same arena and with the same parameter settings as
the synchronization experiments for mobile robots described in Section[5.3.3|(an arena of 1.6 m
x 1.6 m, e = 0.1, and T' = 100 control cycles). In each experiment, we let a group of 10 robots
synchronize and then we simulated a catastrophic fault in one of the robots. We measured the
time from the moment a fault was injected until one of the operational robots reacted to the
fault by detecting the fault and physically connecting to the failed robot. The results are shown
in Table

The fault was correctly detected in all 10 experiments. The mean reaction time was 53.2 S.
This result includes the times required for the following activities: an operational robot detects
the absence of a flash, the operational robot is suspicious for up to 7' (15 s), the operational
robot navigates to and grasps the failed robot.

The shortest reaction time to a fault was 30.2 S. In the corresponding experiment, the fault was
injected just before the other robots in the swarm flashed and a nearby robot therefore became
suspicious less than a second after the fault had been injected. Furthermore, the robot that
detected the fault was close to the failed robot and had an orientation that allowed it to quickly
connect to the failed robot. In the experiment in which the longest reaction time (135.5 S) was
observed, at first only a single operational robot detected the fault. It unsuccessfully attempted
to grasp the failed robot twice. Eventually another operational robot detected the fault and
connected to the failed robot.

In one of the experiments, a real fault occurred. After an operational robot had detected and
connected to the robot in which we had injected a fault, a robot experienced a real hardware
[/O error. The error rendered the robot unable to control any of its actuators, including its
treels and its LEDs. This real (non-simulated) fault was also detected and an operational robot
connected to the failed robot.

5.4.5 Fault Tolerance Experiments with Real Robots

In order to test our approach in a scenario where more than one robot can become non-
operational, we conducted an experiment with a group of 10 robots, in which a fault was
injected in an operational robot with a probability of p = 0.0005 every control cycle. We
simulated a repair mechanism that allowed one robot to “repair” another robot by physically

2S-bots have been shown capable of collectively transporting objects that are larger and heavier than an s-bot,
see for instance [Gross et al.| 2006c].

78

5.4 Fault Detection in Swarms of Robots

connecting to it and by illuminating its blue LEDs for 15 S. When a failed robot detected that it
had been “repaired”, it set its activation to a random value and restarted its controller. We let
the experiment run for 12 minutes. All robots were operational from the start of the experiment
and the first fault occurred after 20 s. During the experiment a total of 13 simulated faults
occurred. At one point a total of four robots were non-operational, while only one robot was
non-operational when the experiment was stopped.

A robot experienced a real hardware | /O fault similar to the one described above in Section
Two neighboring robots detected the fault and connected to the robot with the real fault. After
the two robots had connected to the failed robot and performed the repair action, we removed
the failed robot from the arena. We let the other nine robots continue while we restarted and
reintroduced the failed robot 3 min later. Furthermore, we manually put a robot upright after
it had toppled over due to a collision with two other robots. A video of the experiment can be
found on:

http://iridia.ulb.ac. bel/supp/lridi aSupp2008-012

The results suggest that our approach is robust in situations where multiple faults can be present
at the same time. Furthermore, when the robots can repair one another, a swarm of robots
can survive a relatively high rate of failure.

5.4.6 Limitations of the Approach

For our approach to work, we assume that when a robot experiences a fault, it also ceases to
flash periodically. For catastrophic faults such as the real hardware I/O fault that occurred
in two experiments described above, the s-bots do, in fact, automatically stop their periodic
flashing as a direct consequence of the fault. However, a fault such as a broken wheel or a
toppled robot does not automatically cause a robot to stop flashing. For those types of faults,
we assume that the robot can detect the fault itself using for instance the fault injection and
learning technique described in Chapter 4] A robot that detects a fault in itself by means
of endogenous fault detection can decide to stop its periodic flashing in order to signal other
robots for assistance. However, if the endogenous fault detector fails to detect a certain fault
and if the robot’s software and hardware still render it capable of flashing, other robots will be
unable to determine that the robot has a fault.

5.4.7 Limitations of the Current Implementation of the Approach

The current implementation of the s-bot vision software only allows the s-bots to see objects
that display illuminated LEDs. In our experiments, the s-bots therefore always illuminate their
on-board LEDs in some color — in red to indicate that they are flashing and in green in order
to be visible to other robots while they are not flashing. Robots with simulated faults stopped
flashing periodically, but their LEDs remained illuminated in the color configuration they had
when the fault occurred. Some faults, such as a dead battery, would cause an s-bot to go
dark, that is, since the robot would no longer display any LEDs it would not be visible to the
other s-bots. If we assume that operational robots have their LEDs illuminated in some color

79

5.5 Summary and Directions for Future Work

and if dark s-bots could be detected in some way, faults causing an s-bot to turn dark could
be easily detected: the absence of any illuminated LEDs would immediately indicate that the
dark s-bot had become non-operational. In the current implementation, however, we have not
implemented any way of detecting dark s-bots.

In our experiments, we assumed that the presence of a fault causes a robot to stop moving.
This means that it was sufficient for a robot to also stop when it became suspicious of a non-
flashing robot in order to determine if the robot eventually would flash or if it had a fault.
Some real catastrophic faults, such as hardware 1/O faults, may not always cause a robot to
stop its movement. In order to ensure that faults are correctly detected even when the faulty
robot is moving, a suspicious robot would have to track the candidate robot and stay within
visual range until it could determine whether or not the candidate robot has a fault.

5.5 Summary and Directions for Future Work

In this chapter, we have presented a distributed approach to determine the presence of faults in
members in swarms of robots. Our algorithm is inspired by the synchronous flashing behavior
observed in some species of fireflies. Robots flash periodically by lighting up their on-board
LEDs. Whenever a robot perceives a flash from a nearby robot, it increases its own activation
and flashes slightly sooner than if it had not seen a flash. We showed that swarms of simulated
and real robots following this scheme are driven to flash in synchrony. The rate of synchroniza-
tion was found to depend on the size of the swarm, the number of robots that each member
interacts with, the coupling strength between the robots (the effect of one robot’s flash on
another nearby robot), and whether the robots move or are stationary.

In our exogenous fault detection scheme, the periodic flashes function as a heartbeat mechanism.
A failed robot need not explicitly signal other nearby robots that it requires assistance — it only
needs to stop flashing. We do not, therefore, need to distinguish between robots that have
decided to stop flashing after they have detected a fault in themselves and robots that, for
instance, have experienced a catastrophic fault rendering them unable to take any action —
including flashing. We showed that real robots are able to detect and respond to faults by
detecting non-flashing robots. We also showed that the scheme is robust to multiple faults
and that a team of robots with self-repair capabilities is able to survive a relatively high rate of
failure.

In many previous studies fault detection was facilitated by global negotiation and radio commu-
nication. In contrast, our firefly-inspired fault detection approach is completely distributed and
relies on local information only. A potential advantage of a distributed approach is scalability,
which becomes an increasingly important factor as larger swarms of, for instance, hundreds or
thousands of robots are considered. In our experiments, we found that the rate of synchroniza-
tion depends on the size of a swarm. This means that as the size of a swarm grows it takes
longer for the robots to synchronize. However, swarms need not be globally synchronized for
our fault detection scheme to work efficiently — it suffices that robots are synchronized locally
with nearby robots. It would thus be interesting to determine the performance of our approach
when a swarm is in a global state of near-synchrony, for instance, when waves of flashes are
propagating through the swarm (see Section [5.3.2).

80

5.5 Summary and Directions for Future Work

A potential direction for future research is implementing and evaluating the performance of our
approach in a real task-execution scenario. While carrying out a task, operational robots could
detect and transport failed robots to a pre-designated zone and alert a human operator, who
could then repair or replace the failed robots. Another interesting question is how to extend the
approach to take advantage of possible heterogeneities in a swarm, e.g. robots with different
sensory, manipulation, and/or repair capabilities. This type of heterogeneity could possibly be
leveraged to facilitate faster synchronization, faster fault detection and true self-repair, while
still allowing for a completely distributed, swarm intelligent approach.

81

Summary and Future Work 6

In this chapter, we summarize our contributions and we give directions for future studies.

6.1 Summary of Contributions

In Chapter [1, we motivated why fault detection and fault tolerance represent important chal-
lenges that need to be addressed before widespread adoption of autonomous robots for domestic
and for industrial purposes can occur. Since robots operate in the physical world, a malfunc-
tioning robot can directly cause human injury and/or material damage. In Chapter we also
listed the scientific publications on which this thesis is based. We listed and summarized our sci-
entific contributions related to morphology control and to evolutionary robotics. We presented
TwoDee, a fast and flexible s-bot simulator. TwoDee has been used by several researchers and
parts of it have been reused in two other simulators, namely TwoDeePuck and ARGoS.

In Chapter 2} we reviewed the literature on endogenous fault detection for autonomous robots,
exogenous fault detection and fault tolerance in multi-robot systems.

In Chapter [3] we presented the swarm-bot robotic platform and the capabilities of constituent
s-bots. The main novelty of the swarm-bot platform is that its components, the s-bots, can
self-assemble in order to overcome their individual physical limitations. At the same time, a
single s-bot is capable of carrying out meaningful tasks on its own. We discussed some of
the studies conducted with the s-bots such as self-assembly, coordinated motion, cooperative
transport, and morphology control. We described other multi-robot systems and modular self-
reconfigurable robotic systems, and we argued why fault detection and fault tolerance are
important in such systems.

In Chapter[4} we proposed a new method for detecting endogenous faults in autonomous robots.
We demonstrated how fault injection and learning can be applied in order to synthesize fault
detectors. For three tasks, find perimeter, follow the leader, and connect to s-bot, we collected
training data in 40 experiment of 1000 control cycles for each task (corresponding to 100,
150 and 150 seconds, respectively). We injected faults during the data collection runs. We
subsequently trained time delay neural networks to classify the state of a robot, that is, whether
it is operating normally or if it has a fault, based on the sensory data used for navigation by the
control program and the control signals sent to the robot’s actuators. We demonstrated how
faults could be accurately detected with a relatively low latency. We also demonstrated that
fault detectors can be trained to be robust to variations in a task. Finally, we demonstrated
how a fault detector could be obtained that gave the leader the capacity to detect faults that
occurred in the follower. Our results show that a fairly small amount of information from non-
dedicated sensors and knowledge about the control program’s actions (actuator control signals)
was sufficient to achieve accurate and timely fault detection.

83

6.2 Challenges for the Future

Two of the tasks, namely the follow the leader task and the connect to s-bot task, involved two
or more robots. For previous studies in endogenous fault detection it has been uncommon to
consider complex multi-robot setups. Furthermore, many studies in model-based fault detection
are concerned with deriving an analytical model of how an operational robot moves - but the
derived model is never tested on real robots (for an example see [Dixon et al., [2001]). We
therefore consider it a significant contribution that we have demonstrated the applicability of
the proposed method — not only on real robotic hardware, but that we have demonstrated good
performance in complex setups involving multiple robots.

In Chapter[5] we proposed a method for exogenous fault detection in large groups or swarms of
robots. We showed how robots acting as pulse-coupled oscillators are able to synchronize the
periodic flashing of their LEDs. We explored the synchronization rate in simulation for various
values of parameters such as pulse-coupling strength, density and group size. We demonstrated
that a system composed of 10 real robots synchronized in 10 replications of an experiment in
which they remained static and in 10 replications of an experiment in which they performed
random walk and obstacle avoidance. In our exogenous fault detection approach, the periodic
flashes function as a heartbeat mechanism: robots that do not flash are assumed to have a
fault, while robots that flash periodically are assumed to be operational. We showed that real
robots have the capacity to detect and respond to faults by detecting non-flashing robots.
With a group of 10 real robots, we demonstrated how exogenous faults were correctly detected
in 10 replications of an experiment in which one fault was injected in each replication. We
also showed that the approach is applicable when multiple robots experience faults and that a
team of robots with self-repair capabilities is able to survive a relatively high rate of failure. In
two experiments, a real fault occurred. In both experiments, the fault was correctly detected
and operational robots connected to the failed robot to simulate its repair. To the best of
our knowledge, the experiments presented in Chapter [are the first in which real autonomous
robots detect exogenous faults and take action in order to repair failed robots (in this case by
physically connecting to them and by performing a simulated repair action).

Many of the previously proposed methods for exogenous fault detection rely on radio communi-
cation and/or global knowledge of the system. Our approach is completely distributed and uses
only locally accessible information. We therefore believe it scales to large groups or swarms of
robots.

6.2 Challenges for the Future

Below we discuss directions for future work and some of the open challenges concerning the
proposed methods for endogenous and exogenous fault detection, respectively.

Endogenous Fault Detection

In Chapter[4] we described how endogenous fault detectors were trained to distinguish incorrect
behavior from normal behavior based on observations from experiments in which faults were
simulated. An obvious extension would be to include fault identification, that is, not only to
detect the presence of a fault, but also its location. This could be useful when, for instance, a

84

6.2 Challenges for the Future

gripper breaks during transport of a heavy object. If the control program is made aware that
the robot has a fault and that the failed component is its gripper, the control program could,
for instance, steer the robot to push the object instead of unsuccessfully trying to connect to
the object and pull it. One way of extending our methodology to include fault identification
is to add more output neurons to the neural network in the fault detector. Different output
neurons would then correspond to different types of faults. Another approach would be to use
multiple neural networks, one for each fault type/location.

In our experiments concerning endogenous fault detection, we trained time delay neural net-
works. We used data from several sensors and a total of 10 taps. As a result, the neural
networks became large in terms of the number of neurons in the network and the weights that
define the connections between the neurons. We furthermore had to experimentally determine
a good value for the input group distance (the parameter that defines the amount of time the
network 'sees’ into the past). We used time delay neural networks due to their ability to classify
based on data distributed in time and their simple feed-forward structure. As discussed in Sec-
tion one of the ways to improve the scalability of the approach is to use more sophisticated
neural network structures such as recurrent neural networks. We have conducted some initial
experiments concerning the evolution of continuous real-time recurrent neural networks (see
[Beer, 1995]) in simulation and the results are promising. It is, however, still an open question
if fault detectors trained (in this case evolved) in simulation have a good performance on real
robots.

In general, it would be beneficial to study ways to obtain training data (at least partially) for fault
detectors in simulation. One of the issues with the synthesizing fault detectors based on fault
injection and learning is the effort needed to collect training data. If some or all training data
could be obtained in simulation instead, the approach would be far easier to apply in practice.
Imagine, for instance, the addition of a fault injection module and a data collection module
in the Autonomous Robots Go Swarming (ARGoS) simulator currently under development for
the swarmanoid project (see page : researchers could synthesize fault detection modules by
specifying the sensors, actuators, possible faults, and by selecting a special data collection mode
in the simulator. The simulator would then run the controllers a certain number of times, inject
faults and save sensory data and actuator control signals. The data collected could subsequently
be used for training a fault detector. The whole process could largely be automated when data
collection experiments are conducted in simulation.

For the above scheme to work, however, it is important that the fault detectors can transfer
from simulation to reality. Since ARGoS allows the user to specify different physics engines,
researchers could choose the more accurate and complex engine when collecting fault detection
training data. For simulation-only based training to work on real robots, we may face issues sim-
ilar to those that we find in evolutionary robotics, namely crossing the reality gap [Jakobi et al.|
1995]. No simulation is completely accurate and the differences between simulation and the
real world may cause differences in behavior when controllers have been evolved in simulation.
Similarly, fault detectors trained on data from simulation may rely on features that may not
exist in the reality or that may differ to a degree that prevents a fault detector from achieving
a good performance. One way of overcoming this issue is by adding noise [Jakobi, 1998] or by
using sensor fusion as discussed in Section With sensor fusion, fault detectors could rely on

85

6.2 Challenges for the Future

more high-level information for which it may be easier to assure good correspondence between
simulation and reality. The use of sensor fusion to bridge the reality gap is an approach that
needs to be explored to determine if it is applicable in fault detection based on fault injection
and learning.

Exogenous Fault Detection

We have demonstrated that a group of robots acting as pulse-coupled oscillators synchronize
both when all the robots are static and when they perform random walk. We demonstrated how
synchronization can be used for exogenous fault detection. It would be interesting to test the
approach in a real task-execution scenario in order to determine its performance. Whenever a
fault is detected, some meaningful accommodation action should be performed by one or more
operational robots. A first step could be for another robot to take over the failed robot’s task.
In a more elaborate scheme, we could utilize the s-bots’ ability to connect to and transport one
another. A failed robot could be moved out of the way or transported to a special repair zone
where a human operator could repair and/or replace the failed robot. In a real task-execution
scenario, it would also be interesting to combine endogenous fault detection with exogenous
fault detection. In case a robot detects an endogenous fault, it could stop flashing in order to
(implicitly) signal for assistance.

Multi-robot systems do not always consist of homogeneous robots. New initiatives, such as the
swarmanoid project, are focused on the study of heterogeneous robotic systems, that is, multi-
robot systems consisting of units with different capabilities. Firefly-inspired synchronization and
exogenous fault detection could be applied in such systems as well. However, given that the
constituent robots differ in sensory, navigation and manipulation hardware, a number of options
for leveraging the heterogeneity in the context of synchronization and fault detection exist.
Consider, for instance, the system shown in Figure [6.1| composed of s-bots navigating on the
ground plane using a differential drive system and eye-bots |[Roberts et al., 2007] navigating in
the air using a quad-rotor propulsion system. The eye-bots are designed to carry high-resolution
camera equipment in order to provide long-range sensing from elevated positions. The eye-bots
have few manipulation capabilities. In contrast, the s-bots have only short range sensing
capabilities (around 50 cm depending on light conditions) but they can grasp one another and
cooperatively transport items such as a broken robot. This type of heterogeneity could possibly
be leveraged to facilitate faster synchronization, faster fault detection and a higher degree
of fault tolerance. In Chapter 5| we concluded that the more members each robot interacts
with, the faster the swarm synchronizes. Since eye-bots interact with (or at least perceive)
more robots due to their long range sensing capabilities and due to their elevated position, they
could serve as synchronization facilitators: for robots on the ground the pulse-coupling constant
e could be higher for flashes perceived from above than from other s-bots. Alternatively, s-bots
could adjust their activation only when flashes from above are perceived and ignore flashes
from other s-bots altogether.

The eye-bots are in a good position to detect failed (non-flashing) robots (see Figure [6.1]).
Similarly they can effectively guide operational s-bots to rescue or repair failed robots. Hence,
our method for exogenous fault detection based on firefly-inspired synchronization could be

86

6.2 Challenges for the Future

Figure 6.1: An example of a heterogeneous swarm of robots: s-bots navigate on the ground
using a differential drive systems, while eye-bots are quad-rotor flying robots with long-range
sensing capabbilities.

87

6.2 Challenges for the Future

specialized to take advantage of certain heterogeneities in robot swarms in order to provide
faster synchronization, faster fault detection and faster response to faults.

88

Conclusions 7
CHAPTER

Detecting faults in autonomous robots is challenging. Robots have limited sensing capabilities
and imperfect actuators, and they are often situated in unstructured environments. Due to these
factors it can be hard to determine if a robot is operating normally or if a fault has occurred.
One method for implementing fault detection capabilities in autonomous robots is to add
redundant sensors and/or proprioceptive sensors. If redundant sensors are used, discrepancies
between the readings from sensors measuring the same phenomenon can be symptoms of a
fault. Proprioceptive sensors, on the other hand, can verify that actuators are functioning
correctly. In both cases, faults can be detected in a relatively straightforward manner, namely
by comparing readings and/or by checking that readings are within acceptable bounds. The
addition of hardware, however, drives up the cost, complexity and power consumption and it is
therefore not an option in many cases. Furthermore, with the added complexity there is more
hardware that can break. An alternative (or complementary) approach is to try to distinguish
between normal and abnormal operation through more complex reasoning based on readings
from existing sensors. There are two main categories of such techniques, namely model-based
approaches and model-free approaches.

In model-based approaches, some model of how a system is supposed to behave is constructed
and the actual behavior of the robot is compared to the predictions of the model. If the predicted
behavior and the actual behavior differ sufficiently, the robot is not operating as it is supposed
to, which can be due to the presence of a fault. Two central issues in applying model-based
fault detection in autonomous robots are: i) it is a non-trivial effort requiring expert knowledge
to construct the analytical model of the system, and ii) it can be difficult to determine if any
discrepancies between the predicted and actual behavior is due to noisy sensors and imperfect
actuators or due to a fault.

In model-free approaches, fault detectors are usually obtained through the application of data-
driven techniques. We discussed how for instance artificial immune systems and novelty filters,
can be employed in order to provide abnormality (fault) detection. The method we proposed
for endogenous fault detection is model-free. We trained fault detectors to detect faults based
on data collected through experiments with real robots. Over a number of trials, the robot for
which a fault detector was desired performed its task. During each trial, a fault was injected.
We recorded what the robot sensed and the signals that the control program sent to the robot’s
actuators. We trained a neural network to classify the state of the robot, that is, whether the
robot has a fault or not, based on the data collected. Since the faults are purposefully injected
in our approach, we can correlate sensory data and actuator control signals with the state of
the robot. In this way, supervised learning can be used to train a neural network to distinguish
between normal operation and operation influenced by the presence of a fault.

Catastrophic faults cannot be detected by the robots in which they occur. In some cases, a

89

robot might be able to detect that it has a fault, but still be unable to take any action as a
consequence of the fault. Catastrophic faults have to be detected externally. In multi-robot
and modular robotic systems, robots often cooperate closely and fault detection and fault
accommodation is necessary to ensure that a fault in one unit does not comprise the operation
of the whole system. On the other hand, a multi-robot system has the potential to achieve a
high degree of tolerance to faults, namely by leveraging their multiplicity. When a robot fails,
another robot can take steps to repair the failed robot or take over the failed robot’s task.

We showed that fault injection and learning could give one robot the capacity to detect faults
in another robot. However, we also discussed why fault injection and learning is difficult to use
for exogenous fault detection in groups or swarms of robots: when a fault is injected in one of
the robots, it is not clear how and which sensory data and actuator control signals should used
for training a fault detector.

We proposed a novel method based on firefly-inspired synchronization for exogenous fault
detection in swarms of robots. As opposed to fault injection and learning, our firefly-inspired
method for exogenous fault detection requires the robots to take deliberate action in order to
facilitate fault detection. In our approach, the robots flash periodically by changing the color
of their on-board LEDs to notify surrounding team members that they are still operational. If
one robot sees that another robot no longer emits flashes periodically, it can conclude that
the non-flashing robot has become non-operational. Due to the limited sensing capabilities of
the robots used and in order to simplify the approach, we let the system of robots operate
as pulse-coupled oscillators. This means that whenever one robot flashes, the team members
within visual range of the flashing robot each flash slightly sooner than they would have if they
had not seen the flash. As a result, the robots eventually synchronize and flash periodically in
unison. When the robots are synchronized, it is relatively simple to detect non-flashing robots:
each robot can detect non-flashing team members by looking for LEDs that do not have the
right color when the rest of the swarm of robots flashes.

On a real world multi-robot system comprised of 10 real robots, we demonstrated that robots
do synchronize when they act as pulse-coupled oscillators. In a set of experiments, we simulated
faults in one of the robots. In all the experiments, the faulty robot was correctly detected. The
results indicate that our approach gives robots in a swarm the capacity to detect non-operational
members of the swarm. In fact, in two of our experiments, a real fault occurred in one of the
robots. In both cases, some of the other robots correctly detected this fault.

In the near future, we expect to see an increased effort going into the research of new ap-
proaches to fault detection and fault tolerance for autonomous robots. Robots need to be both
safe and dependable before they can enter our homes and before they can be entrusted with
mission and business-critical tasks. With the research covered in this thesis, we have taken a
step in this direction: we have proposed and demonstrated new methods for endogenous and
exogenous fault detection, respectively, and our research and conclusions have been supported
by experiments conducted on real robots.

90

Appendix . A

A.1 Software Architecture for Fault Detection based on Fault
Injection and Learning

In this appendix, we present the software architecture that allows us to collect training data
and to inject faults without changing a control program for which we want to synthesize a
fault detector (see Chapter [4] for more on fault injection and learning). The architecture is
enabled by the Common Interface. As described in Section the Common Interface is an
encapsulation of the s-bot API that allows a control program to run in simulation and on real
robots without change. In the following, we illustrate the concept of the Common Interface
and why it is particularly useful when we want to collect data, inject faults and detect faults.

If we do not use the Common Interface, sensors are read and control signals are sent to the
robot’s actuators through the s-bot API functions on a real s-bots. The prototypes for two of
the API functions are shown below:

/1 Defined in ‘‘sbot.h’

/** Set the speed of the tracks.
left: Left notor speed. [-127;127].
right: Right notor speed. [-127;127].
One unit corresponds to 2.8 nnis.
*/
voi d setSpeed(int left, int right);

/** Read the value of all proximty sensors. \\
sensors: Array of distances to objects. For each value, 20
is 15 cm 50is 5 cm 1000 is 1 cm 3700 is 0.5 cm [0;8191]
*/
voi d get All Proxi mi tySensors(unsigned int sensors[15]);

The functions are declared in C. The corresponding methods in the Common Interface imple-
mented in C++ are shown below:

91

A.1 Software Architecture for Fault Detection based on Fault Injection and Learning

// Defined in ‘‘ci_sbot.h"’

cl ass CCl Sbot

{
publi c:

virtual void SetSpeed(int left, int right);

virtual void GetAll ProxinmitySensors(unsigned int sensors[15]);

}

The parameters | eft, ri ght, and sensor s[15] have the same meaning in the Common
Interface as in the s-bot API. As it can be seen, the Common Interface and the real s-bot API
are nearly identical, except for the fact that the Common Interface lives in a class (CCl Shot)
whereas the s-bot APl is a set of C functions. When a control program written for the Common
Interface is started it is given an instance of a specialization of CCl Sbot . On real s-bot this
instance is a specialization in which all methods of the Common Interface call their s-bot API
counterpart, for instance:

voi d CCl Real Shot : : Set Speed(int left, int right)

{
set Speed(left,right); // Call the real s-bot API

}

CCl Real Shot is a specialization of the abstract common interface class CCl Sbhot. The
specialization of CCl Sbot for our simulator, TwoDee, implements the method Set Speed in
a different way:

voi d CCl TwoDeeSbot : : Set Speed(int left, int right)

{
Cwheel sAct uat or* pcWheel sActuator = m pcSbot - >Get Act uat or (ACTUATOR_WHEELS) ;
i f (pcWheel sActuator == NULL)

{
/'l 1f no wheels actuator is present, we add a noi sy one by default:
pcWieel sAct uat or = new CwWheel sAct uat or (" Wheel sAct uat or",
m_pcTwoDeeSbot) ;
pcWheel sAct uat or = new CNoi syAct uat or (" Noi syWheel sAct uat or ",
m _pcTwoDeeSbot ,
pcWeel sActuat or, 0.05);
m_pcTwoDeeSbot - >AddAct uat or (pcWheel sAct uat or) ;
}

pcWheel sAct uat or - >Set Qut put (0, (float) (left + Cl_MAX SBOT_SPEED) /
(Cl _MAX_SBOT_SPEED * 2));

pcWheel sActuator->Set Qutput (1, (float) (right + C_MAX SBOT_SPEED) /
(Cl _MAX_SBOT_SPEED * 2));

92

A.1 Software Architecture for Fault Detection based on Fault Injection and Learning

In the implementation of the Common Interface for TwoDee, the method translates any argu-
ments and return values between the representation used by a control program and TwoDee
and vice versa as in the above example.

A control program written for the Common Interface reads sensors and controls the robot
through the methods specified in the interface CCl Sbot and does thus not depend on whether

the underlying implementation is an instance of CCl Real Sbot or CTwoDeeConmonl nt er f aceSbot
(or some other specialization). In the next section, we demonstrate how this allows for a layered
architecture, in which the data recorder and the fault injection layers can be implemented in

an elegant manner.

A.1.1 The Common Interface and Layers

We have implemented a specialization of the CCl Sbot called CCl Sbot Layer. A layer
forwards the calls it gets from above (with above meaning closer to the control program) to
some specialization of the CCl Shot below (with below meaning closer to the hardware). As
illustrated in the following the example, this concept is really simple:

voi d CCl Sbhot Layer: : Set Speed(int left, int right)

{
m _pcCl Sbot Bel ow >Set Speed(|l eft, right);

}

unsi gned i nt CCl Sbot Layer: : Get Proxi mi tySensor (unsi gned i nt sensor)

{

return m pcCl Sbot Bel ow >Get Pr oxi m t ySensor (sensor) ;

}

In the CCl Sbot Layer, all methods are implemented in this way: all calls are forwarded to an-
other layer below and the values returned from below are forwarded to the layer above. The layer
itself does not add, remove or alter any data. However, specializations of the CCl Sbot Layer
class can add functionality such as record the speeds to the left and right treel during data col-
lection. Alternatively, the fault injection module can intercept and propagate a fault-dependent
speed to one or both of the treels (in case a simulated fault is present) whenever a control
program tries to set the speeds of the treels. Figure illustrates the relationship among the
CCl Shot and its specializations in UML notation.

The control signal recorder (CCl Ref | ect i onSbot) and the fault injector (CCl SW FI Sbot)
both inherit from CCl Sbot . The CCl Ref | ecti onSbot records the control signals sent by
the control program to the robot’s actuators. The signals are recorded so that training data
can be collected and saved and so that a fault detector can read them in order to classify
the state of the robot. The control program is unaware that it is sending control signals and
reading sensory data through an instance of the CCl Ref | ecti onSbot class. Thus, in order
to collect training data, we do not need to modify a control program.

93

A.1 Software Architecture for Fault Detection based on Fault Injection and Learning

CClShot

CCIRealSbot CCITwoDeeShot CClISbotLayer

CCIReflectionSbot CCISWIFISbot

Figure A.1: The Common Interface s-bot class CCl Sbot and its specializations

94

A.1 Software Architecture for Fault Detection based on Fault Injection and Learning

Classification

of the robot’s
state
Control Program <4 Fault Detector or Data Recorde
Actuator control signals from Sensory data from the Sensory data from the robot’s
the control program robot’s sensors sensors and control signals
sent by the control program

Reflection Layer
CCIReflectionShot

Actuator control signals from Sensory data filtered)
the control program by the SWIFI module according
the current simulated fault state

SWIFI Layer

CCISWIFISbot

Actuator control signals filtered by
the SWIFI module depending ol Raw sensory data
the simulated fault state of the rob

Sensor and actuator control
CCIRealSbot or CCITwoDeeShot

Figure A.2: The relationships between the different layers and modules for fault detection based

on fault injection and learning.

95

A.1 Software Architecture for Fault Detection based on Fault Injection and Learning

Figure illustrates the relationships among the various layers and modules. The control
program is situated at the very top together with either a fault detector or a data collection
module. During the training data collection phase, the data collection module is responsible for
acquiring sensory data and actuator control signals. When a fault detector has been trained,
the data collection module is no longer needed and it is replaced by the fault detector. In each
control cycle, the control program acquires and processes readings from some of the robot’s
sensors and subsequently sends signals to the robot’s actuators such as the treels. Control
signals pass down through the Reflection layer that records them. The Reflection layer in
turn forwards the signals to the SWIFI layer which is responsible for injecting and simulating
faults. If a fault is being simulated, the SWIFI layer modifies that control signals according
to the type of fault before the control signals are passed on to either the real robot Common
Interface implementation or to the TwoDee Common Interface implementation. Sensory data
are requested by the control program pass from the hardware (or a simulator) and up to the
control program. First through the SWIFI layer which, in case a fault has been injected in
the sensor, modifies the data according to the fault currently being simulated. If no fault
is simulated, the sensory data passes through the SWIFI layer unmodified. The Reflection
layer forwards the sensory data from the SWIFI layer to the control program (or to the fault
detector). Below we provide illustrative examples of how the SWIFI layer and the Reflection
layer are implemented.

SWIFI Layer

The SWIFI layer (CCl SW FI Sbot) is responsible for injecting and simulating faults. The
SWIFI layer is located right on top of the layer that communicates with either the real hardware
or with TwoDee (see Figure [A.2)).

Sensory data from the hardware/simulator and control signals to a robot’s actuators all pass
through the SWIFI layer. The SWIFI layer thus can modify the information that passes though
it whenever a fault is simulated. The implementations in the SWIFI layer of the two methods
for setting the speed of the treels and for getting a proximity sensor reading, respectively, are
shown below:

96

A.1 Software Architecture for Fault Detection based on Fault Injection and Learning

/1 An exanple of how faults in an actuator is inplenented:
voi d CCl Faul t ySbot : : Set Speed(int n_left, int n_right)
{
if (meTotal Crash ! = FAULT_TYPE_NONE)
{
m_pcCl Sbot Bel ow >Set Speed(0, 0);
} else {
int nLeftSpeed = Set Val ueDependi ngOnFaul t St at us(LEFT_TREEL) ;
i nt nRi ght Speed = Set Val ueDependi ngOnFaul t St at us(Rl GHT_TREEL) ;
m_pcCl Sbot Bel ow >Set Speed(nLef t Speed, nRi ght Speed) ;

}
}

/1 An exanple of how faults in a sensor is inplenented:
unsi gned i nt CCl SW FI Sbhot : : Get Proxi mi t ySensor (unsi gned sensor)

{
if (meProximtySensors & ((1 << sensor) & m.unProxintySensor Mask))
{
return Set Val ueDependi ngOnFaul t St at us(PROXI M TY_SENSOR) ;
}
return m_pcCl Sbot Bel ow >Get Pr oxi m t ySensor (sensor) ;
}

Faults are injected based on fault events. Fault events can either be generated probabilistically
on the fly, but in the experiments described in Chapter /4| they were loaded from an external
file. In this way, the training data collected can be correlated with the state of a robot off-
line. A fault event is composed of three pieces of information: the time (from the start of an
experiment) at which the fault state of the robot should change, the affected component (for
instance the left treel) and the type of fault (for instance stuck-at-one).

Reflections Layer

The Reflection layer is responsible for storing the control signals sent by the control program so
that they can be saved for training purposes and for a fault detector once it has been trained.
For instance, the method Set Speed is part of CCl Sbot (Common Interface) and it is the
method called by control programs to set the speeds of the left and right treel, respectively.
The Reflection layer records speeds set by the control program so that they can be retrieved
later by the data collection module or by a fault detector:

97

A.2 Summary

voi d CCl Refl ectionSbot:: Set Speed(int left, int right)

{

m nLeft Speed = left;

m nRi ght Speed = right;

m _pcCl Sbot Bel ow >Set Speed(m nLeft Speed, m nRi ght Speed) ;
}

voi d CCl Refl ecti onShot:: Refl ecti onGet Set Speed(int* pn_left, int* pn_right)

{
(*pn_left) = mnLeft Speed;
(*pn_right) = mnR ght Speed,;
}

The method Ref | ecti onCGet Set Speed is used exclusively by the data collection module
and by fault detectors to monitor the actuator control signals sent by the control program to
a robot’s treels. Because of the Reflection layer and the control program does not need to
be changed in order to keep the data collection module or a fault detector informed about its
actions. The Reflection layer provides this functionality transparently.

A.2 Summary

In this appendix, we presented the software architecture for our fault detection through fault
injection and learning approach. We showed how the Common Interface enables us to rely on
a layered architecture. We have implemented two layers: the SWIFI layer, which is responsible
for injecting and simulating faults, and the Reflection layer, which records the actuator control
signals sent by the control program.

One of the main benefits of using the Reflection layer and the SWIFI layer is that fault detection
capabilities can be added to an existing controller without changing the controller (expect for
the addition of logic for handling detected faults): the recording of actuator control signals and
fault injection is handled outside of the main control program. Furthermore, other layers can be
added in the future: one could for instance envision a logging layer that would enable a robot’s
actions and sensory data to be sent in real-time to a workstation. Another layer that could
ease the deployment of the same control on different robots is an Alignment layer, that is, a
layer which transforms actuator control signals and sensory data in a robot-dependent manner
to minimize individual differences between robots from the point of view of control programs.

98

List of Figures

[1.1 Two examples of robotic entities self-assembled into morphologies appropriate

for the task. Left: A connected robotic entity crosses a trough. A line formation

is well-suited to this task, since it allows the entity to stretch further and requires

only a minimum number of robots to be suspended over the trough at any one

time. Right: A more dense structure provides greater stability for rough terrain

navigation.| L L L

[3.1 The s-bot: An autonomous, mobile robot capable of self-assembly. Processor:

400 MHz XScale CPU, operating system: Linux, weight: ~700 g, battery allows

for ~2 h of operation between recharges.|.

22

(3.2 Illustration of the gripper-based connection mechanism: One s-bot grasping the

transparent LED-right of another s-bot.|

B3 A . h Al EDs off & . T [TEDs Tum; .

23
23

[3.4 An image captured by a robot's omni-directional camera and the processing

steps to obtain information about the LEDs of nearby robots. A: The captured

image. B: After color segmentation with indications of the distance estimates

from the robot that captured the image to some of the LEDs detected.|.

[4.1 The four steps of our methodology for obtaining and evaluating fault detectors

based on fault injection and learning.| oL

[4.2 The fault detection module monitors the sensory data read by the control pro-

gram and the consequent control signals sent to the actuators. The fault de-

tection module is passive and does not interact with the robot hardware or the

control program. The SWIFI Module facilitates fault injection (see text).

B3 ALl : ol : | TONN_ T l

control program input and output (CPIO) is stored in the tapped delay-line and

the activations of the neurons in the logical input groups are set according to

the current and past CPIOs. In the example illustrated, there are 3 input groups

and the input group distance dis4.|

34

|4.4 Description of the three setups: find perimeter, follow the leader, and connect

to s-bot. For each setup a list of sensors used and the control cycle period

| : | hown T1 ber o brackets af . l

corresponds to the number of input values the sensor provides to the fault

detector at each controlcycle. |

LIST OF FIGURES

LIST OF FIGURES

G5

An example of the output of a trained TDNN during a run. The dotted line

shows the optimal output. At control cycle 529 a fault is injected. Five different

thresholds are indicated, 0.10, 0.25, 0.50, 0.75, and 0.90, and a false positive

for threshold 0.50 is shown at control cycle 304 (the output has a value greater

than 0.50 before the fault was injected at control cycle 529). The latency

for a threshold is the number of control cycles from the moment the fault is

injected till the moment the output value of the TDNN becomes greater than

the threshold. In the example above, the latency for threshold 0.75 is 43 control

cycles because the output of the TDNN reaches 0.75 only at control cycle 562,

that is, 43 control cycles after the fault was injected.|

4.6

Box-plot of the latencies observed in 20 evaluation runs in the find perimeter

setup using fault detectors with input group distances from 1 to 10. Results are

shown for the thresholds 0.10, 0.25, 0.50, 0.75, and 0.90. Each box comprises

observations ranging from the first to the third quartile. The median is indicated

by a horizontal bar, dividing the box into the upper and lower part. The whiskers

extend to the farthest data points that are within 1.5 times the interquartile

range. Qutliers are shown as dots. The results show that the input group

distance does not have a major influence on the latency of a fault detector,

while larger thresholds yield longer latencies. |

G7

Box-plot of the number of false positives observed in 20 evaluation runs in the

find perimeter setup using fault detectors with input group distances from 1 to

10. Results are shown for the thresholds 0.10, 0.25, 0.50, 0.75, and 0.90. For

low input group distances, 1 and 2 in particular, the fault detector in general

detects a large number of false positives, while no clear trend is observed for

fault detectors with input group distances above 4. See the caption of Figure|4.6|

for details on box-plots. |

43

Box-plot of the latencies and number of false positives observed during 20 eval-

uation runs in the follow the leader setup tor different thresholds and an input

group distance of 5. See the caption of Figure |4.6| for details on box-plots.| . . .

@9

Box-plot of the latencies and number of false positives observed during 20 eval-

uation runs in the connect to s-bot setup, tor different thresholds and an input

group distance of 5. See the caption of Figure [4.6] for details on box-plots.| . . .

@10

Box-plot of talse positives results observed in 20 runs in each of the three setups

using fault detectors in which the output of the TDNN is used directly and fault

detectors in which the output is smoothed by computing the moving average

over 25 control cycles. A threshold of 0.75 was used tor all tault detectors. False

positives were only observed during one run in the follow the leader setup when

the TDNN's output was smoothed. The run is not shown in the figure since

it is out of scale (164 false positives were detected during this run). See the

caption of Figure [4.6| for details on box-plots.|

100

LIST OF FIGURES LIST OF FIGURES

[4.11 Box-plot of latency results observed in 20 runs in each of the three setups using |
fault detectors in which the output of the TDNN is used directly and fault |

|

|

detectors in which the output is smoothed by computing the moving average

over 25 control cycles. A threshold of 0.75 was used for all fault detectors. See

the caption of Figure4.6|for details on box-plots.| 48

[4.12 Box-plot of latency results for fault detectors trained to detect faults in the

treels only (from Section |4.4.1f), in the ground and light sensors only, and a

fault detector trained to detect faults in both the ground and light sensors

and the treels. In each case, the fault detector was evaluated on 20 runs in

which faults corresponding to those the fault detector was trained to detect

were Injected. All three fault detectors were configured to use the output of the
TDNN directly and to use a threshold ot 0.75. See the caption of Figure[4.6]for
details on box-plots.| 50

[4.13 Two additional setups for the connect to s-bot controller used to evaluate if a |

| fault detector can generalize over variations of thetask. | 52

[4.14 Box-plot of the latencies and the number of false positives observed during 20

evaluation runs using a fault detector trained on data from a total of 60 runs

in all three variations of the connect to... setup. Results are shown for moving

average window lengths of 1 (equivalent to using the output of the TDNN
directly) and 25. A threshold of 0.90 was used. See the caption of Figure |4.6|
for details on box-plots. | 53

[4.15 The software architecture tor endogenous and exogenous fault detection based |

| on fault injection and learning.| L. 54

[4.16 Box-plot of the performance results in terms of latency and number of false

positives observed in 20 evaluation runs for the follower performing endogenous

fault detection and for the leader performing exogenous fault detection during

the same runs. For both sets of results, the output of the TDNN is used directly

and compared against a threshold of 0.75. See the caption of Figure |4.6| for

details on box-plots.| 55

|4.17 Box-plot of the performance results in terms of the number of false positives

observed in 20 evaluation runs for the follower performing endogenous fault

detection and for the leader performing exogenous fault detection during the

same runs for different lengths of the moving window. For both sets of results,

the moving average is compared against a threshold of 0.75. See the caption of
Figure [4.6| for details on box-plots.| 56

[4.18 An example of three robots, A, B and C, in which robot A has experienced a |

| fault while within the perceptual range of B but outside of the perceptual range |

| of C. The perceptual ranges of B and C, respectively, are indicated by circles. | . 59

101

LIST OF FIGURES LIST OF FIGURES

[5.1 An example of two pulse-coupled oscillators. Both oscillators increase at a |

| T Fold | . 1 : : l

| the other one fires. When an oscillator’'s activation reaches the threshold, the |

| oscillator fires. It one oscillator observes the other’s firing, it increases its own |

| state by e x, where ¢ is the pulse-coupling constant and x the activation of the |

[5.2 An example of the evolution of activations sampled every 7" in 25 mobile robots |

| over the course of 10 minutes. One cross represents the activation for a single |

| robot at the corresponding time. |. L. 69

[5.3 Synchronization rate in groups of 10 to 100 simulated robots. Each bar sum- |

| marizes 100 runs and error-bars denote the standard deviation. The density was |

| 8 robots/m* and a coupling constant of ¢ = 0.1 was used in all runs. | 69

[5.4 Synchronization rate in a group of 50 simulated robots at different densities. |
| E . N | 7 | ord deviati : l

[coupling constant of ¢ = 0.1 was used in all runs. Due to the limited sensory |

‘ range of the s-bots (up to 50 cm) experiments with static robots at a density
of 2 robots/n? were not conducted. At this density, the interaction graph is
[almost never connected when the robots are distributed randomly.| 70

[5.5 Synchronization rate a group of 50 simulated robots for coupling constants |
| 0.01,0.02,0.05,0.10,0.20,0.50. Each bar summarizes 100 runs and error-bars |

| denote the standard deviation. The density was 6 robots/m?|. 70
[5.6 An example of a flash wave in a group of static robots.| 71
[5.7 A photo of synchronized robots tlashing at the same time|. 73
[5.8 Four possible scenarios. Seetext.|. L. 74

[5.9 Average percentage of the control cycles spent in the suspicious state over |

[intervals of 15 Sduring a run with 50 simulated robots in a 2.5 m x 2.5 m arena. |

| The robots were not initially synchronized.| 76

6.1 An example of a heterogeneous swarm of robots: s-bots navigate on the ground |

[using a differential drive systems, while eye-bots are quad-rotor flying robots |

[with long-range sensing capabbilities.| o oL 87

[A.1 The Common Interface s-bot class CCl Sbot and its specializations| 94

|A.2 The relationships between the ditferent layers and modules for fault detection |

| based on fault injection and learning.| L. 95

102

List of Tables

|4.1 Median latencies during 20 evaluation runs in the find perimeter setup with |
tault detectors using input groups distances from 1 to 10 and for the thresholds: |
0.10, 0.25, 0.50, 0.75, and 0.90. | 43
[4.2 Median number of false positives observed during 20 evaluation runs in the find |
perimeter setup with fault detectors using input groups distances from 1 to 10 |
and for the thresholds: 0.10, 0.25, 0.50, 0.75, and 0.90. | 44
[4.3 Number of undetected tfaults observed during 20 evaluation runs in the find |
perimeter setup, for five different thresholds, using input group distances from |
1to 100 . . o o o e 44
[4.4 Number of undetected faults observed during 20 evaluation runs in the follow |
the leader and connect to s-bot setups, for different thresholds, using an input |
group distance of 5.| 46
[5.1 Synchronization rate for 10 real robot.| 0. 72
5.2 Fault reaction time results on real robotsl 78

103

LIST OF TABLES LIST OF TABLES

104

Bibliography

C. Ampatzis, E. Tuci, V. Trianni, A. L. Christensen, and M. Dorigo. Evolving autonomous self-
assembly in homogeneous robots. Technical Report TR/IRIDIA/2008-04, IRIDIA, Université
Libre de Bruxelles, Belgium, 2008. Submitted to Artificial Life.

J. Arlat, M. Aguera, L. Amat, Y. Crouzet, J. Fabre, J. Laprie, E. Martins, and D. Powell.
Fault injection for dependability validation: A methodology and some applications. IEEE
Transactions on Software Engineering, 16(2):166—182, 1990.

I. Ashokaraj, A. Tsourdos, P. Silson, and B. A. White. Sensor based robot localisation and
navigation: using interval analysis and unscented Kalman filter. In Proceedings of the 2004
IEEE/RSJ International Conference on Intelligent Robots and Systems, IROS'04, pages 64—
70. IEEE Press, Las Vegas, NV, 2004.

O. Babaoglu, T. Binci, M. Jelasity, and A. Montresor. Firefly-inspired heartbeat synchronization
in overlay networks. In Proceedings of the First International Conference on Self-Adaptive
and Self-Organizing Systems, SASQO’07, pages 77-86. IEEE Computer Society Press, Los
Alamitos, CA, 2007.

R. D. Beer. On the dynamics of small continuous-time recurrent neural networks. Adaptive
Behavior, 3(4):469, 1995.

E. Bonabeau, M. Dorigo, and G. Theraulaz. Swarm Intelligence: From Natural to Artificial
Systems. Oxford University Press, New York, NY, 1999.

E. Bonabeau, G. Theraulaz, J. L. Deneubourg, S. Aron, and S. Camazine. Self-organization in
social insects. Trends in Ecology & Evolution, 12(5):188-193, 1997.

H. B. Brown, J. M. V. Weghe, C. A. Bererton, and P. K. Khasla. Millibot trains for enhanced
mobility. [EEE/ASME Transactions on Mechatronics, 7(4):452-461, 2002.

J. Buck. Synchronous rhythmic flashing of fireflies. Il. Quarterly Review of Biology, 63:265-289,
1988.

W. Burgard, M. Moors, D. Fox, R. Simmons, and S. Thrun. Collaborative multi-robot explo-
ration. In Proceedings of the 2000 IEEE International Conference on Robotics and Automa-
tion, ICRA’00, volume 1, pages 476-481. IEEE Computer Society Press, Los Alamitos, CA,
2000.

L. Bury. Conception et implémentation en c++ d'un simulateur pour les robots e-puck et
réalisation de tests de validation pour la cinématique de base. Technical Report - Master
Thesis, IRIDIA, Université Libre de Bruxelles, Belgium, 2007.

105

BIBLIOGRAPHY BIBLIOGRAPHY

E. Butterfield. The future of robots - tomorrow’s domestic help at your service. PC World,
October 2, 2006.

S. Camazine, N. R. Franks, J. Sneyd, E. Bonabeau, J.-L. Deneubourg, and G. Theraula. Self-
Organization in Biological Systems. Princeton University Press, NJ, 2001.

R. Canham, A. Jackson, and A. Tyrrell. Robot error detection using an artificial immune
system. In Proceedings of NASA/DoD Conference on Evolvable Hardware, 2003, pages
199-207. IEEE Computer Society, Washington, DC, 2003.

Y. U. Cao, A. S. Fukunaga, and A. Kahng. Cooperative mobile robotics: Antecedents and
directions. Autonomous Robots, 4(1):7-27, 1997.

J. Carlson, R. R. Murphy, and A. Nelson. Follow-up analysis of mobile robot failures. In Pro-
ceedings of the 2004 |EEE International Conference on Robotics and Automation, ICRA 04,
pages 4987-4994. IEEE Computer Society Press, Los Alamitos, CA, 2004.

A. Castano, W.-M. Shen, and P. Will. CONRO: Towards deployable robots with inter-robots
metamorphic capabilities. Autonomous Robots, 8(3):309-324, 2000.

A. L. Christensen. Efficient neuro-evolution of hole-avoidance and phototaxis for a swarm-bot.
Technical Report TR/IRIDIA/2005-14, IRIDIA, Université Libre de Bruxelles, Belgium, 2005.
DEA Thesis.

A. L. Christensen and M. Dorigo. Evolving an integrated phototaxis and hole-avoidance behavior
for a swarm-bot. In L. M. Rocha, L. S. Yaeger, M. A. Bedau, D. Floreano, R. L. Goldstone, and
A. Vespignani, editors, Artificial Life X: Proceedings of the Tenth International Conference
on the Simulation and Synthesis of Living Systems, pages 248-254. MIT Press, Cambridge,
MA, 2006a.

A. L. Christensen and M. Dorigo. Incremental evolution of robot controllers for a highly inte-
grated task. In S. Nolfi, G. Baldassarre, R. Calabretta, J. Hallam, D. Marocco, J.-A. Meyer,
O. Miglino, and D. Parisi, editors, From Animals to Animats 9: 9th International Conference
on Simulation of Adaptive Behavior, SAB 2006, volume 4095 of Lecture Notes in Artificial
Intelligence, pages 473—484. Springer Verlag, Berlin, Germany, 2006b.

A. L. Christensen, R. O’Grady, and M. Dorigo. A mechanism to self-assemble patterns with
autonomous robots. In Proceedings of the 9th European Conference on Artificial Life
(ECAL2007), pages 716-725. Springer Verlag, Berlin, Germany, 2007a.

A. L. Christensen, R. O'Grady, and M. Dorigo. Morphogenesis: Shaping swarms of intelligent
robots. In AAAI-07 Video Proceedings. AAAI Press, 2007b.

A. L. Christensen, R. O'Grady, and M. Dorigo. Morphology control in a self-assembling multi-
robot system. IEEE Robotics & Automation Magazine, 14(4):18-25, 2007c.

A. L. Christensen, R. O'Grady, and M. Dorigo. SWARMORPH-script: A language for arbitrary
morphology generation in self-assembling robots. Swarm Intelligence, 2008. In press.

106

BIBLIOGRAPHY BIBLIOGRAPHY

D. Clouse, C. Giles, B. Horne, and G. Cottrell. Time-delay neural networks: Representation
and induction of finite-state machines. IEEE Transactions on Neural Networks, 8:1065-1070,
1997.

N. Cristianini and J. Shawe-Taylor. An introduction to Support Vector Machines. Cambridge
University Press, Cambridge, UK, 2000.

R. Damoto, A. Kawakami, and S. Hirose. Study of super-mechano colony: concept and basic
experimental set-up. Advanced Robotics, 15(4):391-408, 2001.

R. Dearden, F. Hutter, R. Simmons, S. Thrun, V. Verma, and T. Willeke. Real-time fault
detection and situational awareness for rovers: Report on the Mars technology program task.

In Proceedings of IEEE Aerospace Conference, volume 2, pages 826-840. IEEE Computer
Society Press, Los Alamitos, CA, 2004.

L. Devroye, L. Gyorfi, and G. Lugosi. A Probabilistic Theory of Pattern Recognition. Springer
Verlag, New York, NY, 1996.

M. B. Dias, M. B. Zinck, R. M. Zlot, and A. Stentz. Robust multirobot coordination in dynamic
environments. In Proceedings of IEEE Conference on Robotics and Automation, ICRA’04,
volume 4, pages 3435 — 3442. |IEEE Press, Piscataway, NJ, 2004.

W. Dixon, |. Walker, and D. Dawson. Fault detection for wheeled mobile robots with parametric
uncertainty. In Proceedings of the 2001 IEEE/ASME International Conference on Advanced
Intelligent Mechatronics, volume 2, pages 1245-1250. |IEEE Press, Piscataway, NJ, 2001.

R. O. Duda, P. E. Hart, and D. G. Stork. Pattern Classification. Wiley, New York, NY, 2nd
edition, 2000.

J. Elson and D. Estrin. Time synchronization for wireless sensor networks. In Proceedings of the
15th International Parallel and Distributed Processing Symposium, pages 1965-1970. |IEEE
Computer Society, Washington, DC, 2001.

S. Forrest, A. Perelson, L. Allen, and R. Cherukuri. Self-nonself discrimination in a computer.
In Proceedings of the 1994 IEEE Symposium on Research in Security and Privacy, volume
212, pages 202-212. IEEE Computer Society Press, Los Alamitos, CA, 1994.

M. Fujita, M. Veloso, W. Uther, M. Asada, H. Kitano, V. Hugel, P. Bonnin, J.-C. Bouramoug,
and P. Blazevic. Vision, strategy, and localization using the Sony legged robots at RoboCup-
98. Al Magazine, 21(1):47-56, 2000.

T. Fukuda, M. Buss, H. Hosokai, and Y. Kawauchi. Cell structured robotic system CEBOT:
control, planning and communication methods. Robotics and Autonomous Systems, 7(2-3):
239-248, 1991.

B. Gates. A robot in every home. Scientific American, December 2006.

B. P. Gerkey and M. J. Matari¢. Pusher-watcher: An approach to fault-tolerant tightly-coupled
robot coordination. In Proceedings of IEEE International Conference on Robotics and Au-
tomation, ICRA’02, pages 464 — 469. |IEEE Press, Piscataway, NJ, 2002a.

107

BIBLIOGRAPHY BIBLIOGRAPHY

B. P. Gerkey and M. J. Matari¢. Sold!: auction methods for multirobot coordination. [EEE
Transactions on Robotics and Automation, 18(5):758-768, 2002b.

J. Gertler. Fault Detection and Diagnosis in Engineering Systems. CRC Press, Boca Raton,
FL, 1998.

J. J. Gertler. Survey of model-based failure detection and isolation in complex plants. IEEE
Control Systems Magazine, 8:3-11, 1988.

L. Glass. Synchronization and rhythmic processes in physiology. Nature, 410:277-284, 2001.

P. Goel, G. Dedeoglu, S. Roumeliotis, and G. Sukhatme. Fault detection and identification in
a mobile robot using multiple model estimation and neural network. In Proceedings of IEEE
International Conference on Robotics and Automation, ICRA'00, volume 3, pages 2302-2309.
IEEE Computer Society Press, Los Alamitos, CA, 2000.

R. Gross, M. Bonani, F. Mondada, and M. Dorigo. Autonomous self-assembly in a swarm-bot.
In K. Murase, K. Sekiyama, N. Kubota, T. Naniwa, and J. Sitte, editors, Proceedings of
the 3rd International Symposium on Autonomous Minirobots for Research and Edutainment
(AMIRE 2005), pages 314-322. Springer Verlag, Berlin, Germany, 2005.

R. Gross, M. Bonani, F. Mondada, and M. Dorigo. Autonomous self-assembly in swarm-bots.
IEEE Transactions on Robotics, 22(6):1115-1130, 2006a.

R. Gross and M. Dorigo. Evolution of solitary and group transport behaviors for autonomous
robots capable of self-assembling. Adaptive Behavior, 2008a. In press.

R. Gross and M. Dorigo. Self-assembly at the macroscopic scale. Proceedings of the IEEE,
2008b. In press.

R. Gross, M. Dorigo, and M. Yamakita. Self-assembly of mobile robots—from swarm-bot to
super-mechano colony. In Proceedings of the 9th International Conference on Intelligent
Autonomous Systems, pages 487-496. I0S Press, Amsterdam, The Netherlands, 2006b.

R. Gross, E. Tuci, M. Dorigo, M. Bonani, and F. Mondada. Object transport by modular robots
that self-assemble. In Proceedings of the 2006 IEEE International Conference on Robotics
and Automation, pages 2558-2564. IEEE Computer Society Press, Los Alamitos, CA, 2006c.

I. Harvey, E. A. Di Paolo, R. Wood, M. Quinn, and E. Tuci. Evolutionary robotics: A new
scientific tool for studying cognition. Artificial Life, 11(1-2):79-98, 2005.

I. Harvey, P. Husbands, and D. Cliff. Seeing the light: Artificial evolution, real vision. In
Proceedings of the Third International Conference on Simulation of Adaptive Behavior: From
animals to animats 3, pages 392-401. MIT Press, Cambridge, MA, 1994.

M. Hinchey, J. Rash, C. Rouff, and W. Truszkowski. NASA’s swarm missions: the challenge of
building autonomous software. IT Professional, 6:47-52, 2004.

S. Hirose, T. Shirasu, and E. F. Fukushima. Proposal for cooperative robot “Gunryu” composed
of autonomous segments. Robots and Autonomous Systems, 17:107-118, 1996.

108

BIBLIOGRAPHY BIBLIOGRAPHY

M. Hsueh, T. Tsai, and R. lyer. Fault injection techniques and tools. Computer, 30(4):75-82,
1997.

R. Isermann. Supervision, fault-detection and fault-diagnosis methods — An introduction. Con-
trol Engineering Practice, 5(5):639-652, 1997.

R. Isermann and P. Ballé. Trends in the application of model-based fault detection and diagnosis
of technical processes. Control Engineering Practice, 5(5):709-719, 1997.

E. M. Izhikevich. Weakly pulse-coupled oscillators, FM interactions, synchronization, and os-
cillatory associative memory. IEEE Transactions on Neural Networks, 10(3):508-526, 1999.

N. Jakobi. Evolutionary robotics and the radical envelope-of-noise hypothesis. Adaptive Be-
havior, 6(2):325, 1997a.

N. Jakobi. Half-baked, ad-hoc and noisy: Minimal simulations for evolutionary robotics. In
P. Husbands and |. Harvey, editors, Proceedings of the Fourth European Conference on
Artificial Life: ECAL97, pages 348-357. MIT Press, Cambridge, MA, 1997b.

N. Jakobi. Evolutionary robotics and the radical envelope-of-noise hypothesis. Adaptive Be-
havior, 6(2):325-368, 1998.

N. Jakobi, P. Husbands, and I. Harvey. Noise and the reality gap: The use of simulation in
evolutionary robotics. pages 704-720. Springer Verlag, Berlin, Germany, 1995.

F. V. Jensen. Introduction to Bayesian Networks. Springer Verlag, New York, NY, 1996.

S. J. Julier and J. K. Uhlmann. A new extension of the Kalman filter to nonlinear systems. In
Proceedings of the 11th International Symposium on Aerospace/Defense Sensing, Simulula-
tion and Controls, volume 3, pages 182-193. SPIE, Bellingham, WA, 1997.

R. Kalman. A new approach to linear filtering and prediction problems. Journal of Basic
Engineering, 82(1):35-45, 1960.

Y. Kawauchi, M. Inaba, and T. Fukuda. A principle of distributed decision making of celluar
robotic system (CEBOT). In Proceedings of the 1993 IEEE International Conference on
Robotics and Automation, ICRA'93, pages 833-838. IEEE Press, Piscataway, NJ, 1993.

A. Kochan. A bumper year for robots. Industrial Robot: An International Journal, 32:201-204,
2005.

R. Kurzweil. The Singularity is Near. Viking Adult, New York, NY, 2005.

J. J. Leonard and H. F. Durrant-Whyte. Mobile robot localization by tracking geometric
beacons. IEEE Transactions on Robotics and Automation, 7(3):376-382, 1991.

U. Lerner, R. Parr, D. Koller, and G. Biswas. Bayesian fault detection and diagnosis in dynamic
systems. In Proceedings of the 7th National Conference on Artificial Intelligence, pages
531-537. AAAI Press/The MIT Press, Cambridge, MA, 2000.

109

BIBLIOGRAPHY BIBLIOGRAPHY

M. A. Lewis and K. H. Tan. High precision formation control of mobile robots using virtual
structures. Autonomous Robots, 4(4):387-403, 1997.

P. Li and V. Kadirkamanathan. Particle filtering based likelihood ratio approach to fault diag-
nosis in nonlinear stochastic systems. |[EEE Transactions on Systems, Man and Cybernetics,
Part C, 31(3):337-343, 2001.

X. Li and L. E. Parker. Sensor analysis for fault detection in tightly-coupled multi-robot team
tasks. In Proceedings of the 2007 IEEE International Conference on Robotics and Automation,
ICRA’07, pages 3269-3276. IEEE Computer Society Press, Los Alamitos, CA, 2007.

D. Lucarelli and I. J. Wang. Decentralized synchronization protocols with nearest neighbor
communication. In Proceedings of the 2nd International Conference on Embedded Networked
Sensor Systems, pages 62—68. ACM Press, New York, NY, 2004.

S. Marsland, U. Nehmzow, and J. Shapiro. On-line novelty detection for autonomous mobile
robots. Robotics and Autonomous Systems, 51(2-3):191-206, 2005.

M. J. Matari¢, M. Nilsson, and K. Simsarian. Cooperative multi-robot box-pushing. In Pro-
ceedings of the 1995 IEEE/RSJ International Conference on Intelligent Robots and Systems,
pages 556-561. IEEE Computer Society Press, Los Alamitos, CA, 1995.

M. K. McClintock. Menstrual synchrony and suppression. Nature, 229(5282):244-245, 1971.

J. McLurkin. Stupid robot tricks: A behavior-based distributed algorithm library for program-
ming swarms of robots, 2004. Master Thesis, MIT.

J. McLurkin and J. Smith. Distributed algorithms for dispersion in indoor environments using a
swarm of autonomous mobile robots. In Proceedings of the 6th International Symposium on
Distributed Autonomous Robotic Systems (DARS), pages 399-408. Springer, Tokoyo, Japan,
2004.

O. Miglino, H. H. Lund, and S. Nolfi. Evolving mobile robots in simulated and real environments.
Artificial Life, 2(4):417-434, 1995.

R. E. Mirollo and S. H. Strogatz. Synchronization of pulse-coupled biological oscillators. SIAM
Journal on Applied Mathematics, 50(6):1645-1662, 1990.

T. Misteli. The concept of self-organization in cellular architecture. The Journal of Cell Biology,
155(2):181-186, 2001.

F. Mondada, E. Franzi, and P. lenne. Mobile robot miniaturization: A tool for investigation in
control algorithms. In Proceedings of the Third International Symposium on Experimental
Robotics, pages 501-513. Springer Verlag, Berlin, Germany, 1994.

F. Mondada, L. M. Gambardella, D. Floreano, S. Nolfi, J.-L. Deneubourg, and M. Dorigo. The
cooperation of swarm-bots: Physical interactions in collective robotics. IEEE Robotics &
Automation Magazine, 12(2):21-28, 2005.

110

BIBLIOGRAPHY BIBLIOGRAPHY

K. Motomura, A. Kawakami, and S. Hirose. Development of arm equipped single wheel rover:
Effective arm-posture-based steering method. Autonomous Robots, 18(2):215-229, 2005.

S. Murata, E. Yoshida, A. Kamimura, H. Kurokawa, K. Tomita, and S. Kokaji. M-TRAN:
Self-reconfigurable modular robotic system. [EEE-ASME Transactions on Mechatronics, 7
(4):431-441, 2002.

Z. Néda, E. Ravasz, Y. Brechet, T. Vicsek, and A. L. Barabasi. Self-organizing processes: The
sound of many hands clapping. Nature, 403(6772):849-850, 2000.

S. Nolfi and D. Floreano. Evolutionary Robotics: The Biology, Intelligence, and Technology of
Self-Organizing Machines. MIT Press/Bradford Books, Cambridge, MA, 2000.

S. Nouyan, R. Gross, M. Bonani, F. Mondada, and M. Dorigo. Group transport along a robot
chain in a self-organised robot colony. In Proceedings of the 9" Int. Conf. on Intelligent
Autonomous Systems, pages 433—442. 10S Press, Amsterdam, The Netherlands, 2006.

S. Nouyan, R. Gross, M. Bonani, F. Mondada, and M. Dorigo. Teamwork in self-organised
robot colonies. IEEE Transactions on Evolutionary Computation, 2008. In press.

R. O'Grady, A. L. Christensen, and M. Dorigo. Self-assembly and morphology control in a
swarm-bot. In Video Proceedings of the 2007 International Conference on Intelligent Robots
and Systems, pages 2551-2552. IEEE Computer Society, Los Alamitos, CA, 2007a.

R. O'Grady, A. L. Christensen, and M. Dorigo. SWARMORPH: Morphology control with a
swarm of self-assembling robots. In Workshop on Self-Reconfigurable Robots/Systems and
Applications, IEEE/RSJ International Conference on Intelligent Robots and Systems, San
Diego, CA. 2007b. Unpublished manuscript.

R. O'Grady, A. L. Christensen, and M. Dorigo. SWARMORPH: Multi-robot morphogenesis
using directional self-assembly. /EEE Transactions on Robotics, 2008a. Submitted.

R. O’'Grady, R. Gross, A. L. Christensen, and M. Dorigo. Self-assembly strategies in a group of
autonomous mobile robots. Autonomous Robots, 2008b. Submitted.

R. O'Grady, R. Gross, A. L. Christensen, F. Mondada, M. Bonani, and M. Dorigo. Performance
benefits of self-assembly in a swarm-bot. In Proceedings of the 2007 IEEE/RSJ International
Conference on Intelligent Robots and Systems, IROS'07), pages 716-725. IEEE Press, Las
Vegas, NV, 2007c.

R. O'Grady, R. Gross, F. Mondada, M. Bonani, and M. Dorigo. Self-assembly on demand in a
group of physical autonomous mobile robots navigating rough terrain. In M. S. Capcarrere,
A. A. Freitas, P. J. Bentley, C. G. Johnson, and J. Timmis, editors, Advances in Artificial
Life: 8th European Conference, ECAL 2005, volume 3630 of Lecture Notes in Artificial
Intelligence, pages 272-281. Springer Verlag, Berlin, Germany, 2005.

L. E. Parker. ALLIANCE: an architecture for fault tolerant multirobot cooperation. [IEEE
Transactions on Robotics and Automation, 14(2):220-240, 1998.

111

BIBLIOGRAPHY BIBLIOGRAPHY

R. Patton, F. Uppal, and C. Lopez-Toribio. Soft computing approaches to fault diagnosis
for dynamic systems: A survey. In A. Edelmayer and C. Banyasz, editors, Proceedings of
4th IFAC Symposium on Fault Detection supervision and Safety for Technical Processes,
volume 1, pages 298-311. Elsevier, Oxford, UK, 2000.

D. W. Payton, M. Daily, R. Estkowski, M. Howard, and C. Lee. Pheromone robotic. Autonomous
Robots, 11(3):319-324, 2001.

C. S. Peskin. Mathematical aspects of heart physiology. Courant Institute of Mathematical
Sciences, New York University, New York, 1975.

K. Pohl, M. C. Bartelt, J. de La Figuera, N. C. Bartelt, J. Hrbek, and R. Q. Hwang. Identifying
the forces responsible for self-organization of nanostructures at crystal surfaces. Nature, 397
(6716):238, 1999.

A. Pollack. Technology; robot’s future as a servant. The New York Times, April 9 1981.

L. R. Rabiner. A tutorial on hidden Markov models and selected applications in speech recog-
nition. Proceedings of the IEEE, 77(2):257-286, 1989.

G. M. Ramire Avila. Synchronization Phenomena in Light Controllered Oscillators. PhD thesis,
Université Libre de Bruxelles, Brussels, Belgium, Feburary 2004.

J. Roberts, T. Stirling, J. Zufferey, and D. Floreano. Quadrotor using minimal sensing for
autonomous indoor flight. In European Micro Air Vehicle Contference and Flight Competition
(EMAV2007). DVD-ROM Proceedings, Toulouse, France, 2007.

I. Roman-Ballesteros and C. Pfeiffer. A framework for cooperative multi-robot surveillance tasks.
In Electronics, Robotics and Automotive Mechanics Conference, CERMA2006, volume 2,
pages 163-170. IEEE Computer Society, Los Alamitos, CA, 2006.

S. Roumeliotis, G. Sukhatme, and G. Bekey. Sensor fault detection and identification in a
mobile robot. In Proceedings of IEEE/RSJ International Conference on Intelligent Robots
and Systems, volume 3, pages 1383-1388. IEEE Computer Society Press, Los Alamitos, CA,
1998.

M. Rubenstein, K. Payne, and P. Will. Docking among independent and autonomous CONRO
self-reconfigurable robots. In Proceedings of the 2004 IEEE International Conference on
Robotics and Automation, ICRA'04, volume 3, pages 2877-2882. IEEE Press, Piscataway,
NJ, 2004.

D. E. Rumelhart, G. E. Hinton, and R. J. Williams. Learning internal representations by back-
propagating errors. Nature, 323:533-536, 1986.

B. Salemi, M. Moll, and W.-M. Shen. SUPERBOT: A deployable, multi-functional, and mod-
ular self-reconfigurable robotic system. In Proceedings of the 2006 IEEE/RSJ International

Conference on Intelligent Robots and Systems, pages 3636-3641. IEEE Press, Piscataway,
NJ, 2006.

112

BIBLIOGRAPHY BIBLIOGRAPHY

J. Seyfried, M. Szymanski, N. Bender, R. Estana, M. Thiel, and H. Worn. The I-SWARM
Project: Intelligent small world autonomous robots for micro-manipulation. Springer Verlag,
Berlin, Germany, 2005.

W.-M. Shen, M. Krivokon, H. Chiu, J. Everist, M. Rubenstein, and J. Venkatesh. Multimode
locomotion for reconfigurable robots. Autonomous Robots, 20(2):165-177, 2006.

W.-M. Shen, P. Will, A. Galstyan, and C. M. Chuong. Hormone-inspired self-organization and
distributed control of robotic swarms. Autonomous Robots, 17(1):93-105, 2004.

E. N. Skoundrianos and S. G. Tzafestas. Finding fault - fault diagnosis on the wheels of a
mobile robot using local model neural networks. |[EEE Robotics & Automation Magazine, 11
(3):83-90, 2004.

H. M. Smith. Synchronous flashing of fireflies. Science, 82(2120):151-152, 1935.

R. Smith and P. Cheeseman. On the representation and estimation of spatial uncertainty. The
International Journal of Robotics Research, 5(4):56, 1986.

W. A. Snedden, M. D. Greenfield, and Y. Jang. Mechanisms of selective attention in grasshopper
choruses: who listens to whom? Behavioral Ecology & Sociobiology, 43(1):59-66, 1998.

K. Stgy. Using situated communication in distributed autonomous mobile robots. In Proceed-
ings of the 7th Scandinavian Conference on Artificial Intelligence, pages 44-52. 10S Press,
Amsterdam, The Netherlands, 2001.

S. H. Strogatz. From Kuramoto to Crawford: exploring the onset of synchronization in popu-
lations of coupled oscillators. Physica D, 143(1-4):1-20, 2000.

A. S. Tanenbaum and M. van Steen. Distributed Systems: Principles and Paradigms. Prentice
Hall, Upper Saddle River, NJ, 2002.

M. Terra and R. Tinos. Fault detection and isolation in robotic manipulators via neural networks:
A comparison among three architectures for residual analysis. Journal of Robotic Systems,
18(7):357-374, 2001.

V. Trianni and M. Dorigo. Self-organisation and communication in groups of simulated and
physical robots. Biological Cybernetics, 95:213-231, 2006.

V. Trianni, T. H. Labella, and M. Dorigo. Evolution of direct communication for a swarm-
bot performing hole avoidance. In M. Dorigo, M. Birattari, C. Blum, L. M. Gambardella,
F. Mondada, and T. Stiitzle, editors, Ant Colony Optimization and Swarm Intelligence —
Proceedings of ANTS 2004 - Fourth International Workshop, volume 3172 of Lecture Notes
in Computer Science, pages 131-142. Springer Verlag, Berlin, Germany, 2004.

E. Tuci, C. Ampatzis, V. Trianni, A. L. Christensen, and M. Dorigo. Self-assembly in physical
autonomous robots: the evolutionary robotics approach. In Artificial Life X1, 11th Conference
on the Simulation and Synthesis of Living Systems, 2008. In press.

113

BIBLIOGRAPHY BIBLIOGRAPHY

E. Tuci, R. Gross, V. Trianni, F. Mondada, M. Bonani, and M. Dorigo. Cooperation through self-
assembly in multi-robot systems. ACM Transactions on Autonomous and Adaptive Systems,
1(2):115-150, 2006.

A. Tyrrell and G. Auer. Imposing a reference timing onto firefly synchronization in wireless
networks. In Proceedings of the 65th IEEE Conference on Vehicular Technology, VT(C2007,
pages 222-226. |IEEE Computer Society Press, Los Alamitos, CA, 2007.

A. Vemuri and M. Polycarpou. Neural-network-based robust fault diagnosis in robotic systems.
IEEE Transactions on Neural Networks, 8(6):1410-1420, 1997.

V. Verma, G. Gordon, R. Simmons, and S. Thrun. Real-time fault diagnosis. /EEE Robotics &
Automation Magazine, 11(2):56—66, 2004.

V. Verma and R. Simmons. Scalable robot fault detection and identification. Robotics and
Autonomous Systems, 54(2):184-191, 2006.

A. Waibel, T. Hanazawa, G. Hinton, K. Shikano, and K. Lang. Phoneme recognition using
time-delay neural networks. IEEE Transactions on Acoustics, Speech, and Signal Processing,
37:328-339, 1989.

P. J. Werbos. Backpropagation through time: what it does and how to do it. Proceedings of
the IEEE, 78(10):1550-1560, 1990.

G. Werner-Allen, G. Tewari, A. Patel, M. Welsh, and R. Nagpal. Firefly-inspired sensor network
synchronicity with realistic radio effects. In Proceedings of the 3rd International Contference
on Embedded Networked Sensor Systems, pages 142-153. ACM Press, New York, NY, 2005.

R. J. Williams and D. Zipser. A learning algorithm for continually running fully recurrent neural
networks. Neural Computation, 1, 1989.

A. F. T. Winfield, C. J. Harper, and J. Nembrini. Towards dependable swarms and a new
discipline of swarm engineering. In Swarm Robotics Workshop: State-of-the-art Survey,
pages 126-142. Springer Verlag, Berlin, Germany, 2005.

A. F. T. Winfield and J. Nembrini. Safety in numbers: fault-tolerance in robot swarms. Inter-
national Journal of Modelling, Identification and Control, 1(1):30-37, 2006.

H. Woern, M. Szymanski, and J. Seyfried. The I-SWARM project. In The 15th IEEE Interna-
tional Symposium on Robot and Human Interactive Communication, ROMAN 2006, pages
492-496. IEEE Computer Society Press, Los Alamitos, CA, Sept. 2006.

M. Yamakita, Y. Taniguchi, and Y. Shukuya. Analysis of formation control of cooperative
transportation of mother ship by SMC. In Proceedings of the 2003 International Conference
on Robotics and Automation, ICRA'03, volume 1, pages 951-956. IEEE Computer Society
Press, Los Alamitos, CA, 2003.

M. Yim, D. G. Duff, and K. D. Roufas. PolyBot: a modular reconfigurable robot. In Proceedings
of the 2000 IEEE International Conference on Robotics and Automation, ICRA 00, volume 1,
pages 514-520. |IEEE Press, Piscataway, NJ, 2000.

114

BIBLIOGRAPHY BIBLIOGRAPHY

M. Yim, K. Roufas, D. Duff, Y. Zhang, C. Eldershaw, and S. B. Homans. Modular reconfigurable
robots in space applications. Autonomous Robots, 14(2-3):225-237, 2003.

M. Yim, W.-M. Shen, B. Salemi, D. Rus, M. Moll, H. Lipson, E. Klavins, and G. S. Chirikjian.
Modular self-reconfigurable robot systems. IEEE Robotics & Automation Magazine, 14(1):
43-52, 2007.

E. H. @stergaard, K. Kassow, R. Beck, and H. H. Lund. Design of the ATRON lattice-based
self-reconfigurable robot. Autonomous Robots, 21(2):165-183, 2006.

115

	Introduction
	Problem Statement
	Thesis Structure and Contribution of Research
	Other Scientific Contributions
	Summary

	Related Work
	Endogenous Fault Detection
	Exogenous Fault Detection

	Robotic Hardware
	The swarm-bot Platform
	Other Multi-Robot and Modular Robotic Systems
	Summary

	Fault Detection based on Fault Injection and Learning
	Methodology
	The Three Experimental Setups
	Data Collection, Training and Performance Evaluation
	Results
	Extensions and Limitations
	Summary

	Fault Detection in Swarms of Robots
	Motivation
	Synchronization in Natural and Artificial Systems
	Synchronization in Robots
	Fault Detection in Swarms of Robots
	Summary and Directions for Future Work

	Summary and Future Work
	Summary of Contributions
	Challenges for the Future

	Conclusions
	Appendix
	Software Architecture for Fault Detection based on Fault Injection and Learning
	Summary

	List of Figures
	List of Tables
	References

