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Abstract

In ant societies, and, more in general, in insect societies, the activities of the individuals, as well
as of the society as a whole, are not regulated by any explicit form of centralized control. On the
other hand, adaptive and robust behaviors transcending the behavioral repertoire of the single
individual can be easily observed at society level. These complex global behaviors are the result
of self-organizing dynamics driven by local interactions and communications among a number
of relatively simple individuals. The simultaneous presence of these and other fascinating and
unique characteristics have made ant societies an attractive and inspiring model for building
new algorithms and new multi-agent systems. In the last decade, ant societies have been taken as a
reference for an ever growing body of scientific work, mostly in the fields of robotics, operations
research, and telecommunications.

Among the different works inspired by ant colonies, the Ant Colony Optimization metaheuristic
(ACO) is probably the most successful and popular one. The ACO metaheuristic is a multi-agent
framework for combinatorial optimization whose main components are: a set of ant-like agents,
the use of memory and of stochastic decisions, and strategies of collective and distributed learning.
It finds its roots in the experimental observation of a specific foraging behavior of some ant
colonies that, under appropriate conditions, are able to select the shortest path among few possi-
ble paths connecting their nest to a food site. The pheromone, a volatile chemical substance laid
on the ground by the ants while walking and affecting in turn their moving decisions according
to its local intensity, is the mediator of this behavior. All the elements playing an essential role
in the ant colony foraging behavior were understood, thoroughly reverse-engineered and put
to work to solve problems of combinatorial optimization by Marco Dorigo and his co-workers
at the beginning of the 1990’s. From that moment on it has been a flourishing of new com-
binatorial optimization algorithms designed after the first algorithms of Dorigo’s et al., and of
related scientific events. In 1999 the ACO metaheuristic was defined by Dorigo, Di Caro and
Gambardella with the purpose of providing a common framework for describing and analyzing
all these algorithms inspired by the same ant colony behavior and by the same common process
of reverse-engineering of this behavior. Therefore, the ACO metaheuristic was defined a poste-
riori, as the result of a synthesis effort effectuated on the study of the characteristics of all these
ant-inspired algorithms and on the abstraction of their common traits. The ACO’s synthesis
was also motivated by the usually good performance shown by the algorithms (e.g., for several
important combinatorial problems like the quadratic assignment, vehicle routing and job shop
scheduling, ACO implementations have outperformed state-of-the-art algorithms).

The definition and study of the ACO metaheuristic is one of the two fundamental goals of the
thesis. The other one, strictly related to this former one, consists in the design, implementation,
and testing of ACO instances for problems of adaptive routing in telecommunication networks.

This thesis is an in-depth journey through the ACO metaheuristic, during which we have
(re)defined ACO and tried to get a clear understanding of its potentialities, limits, and relation-
ships with other frameworks and with its biological background. The thesis takes into account
all the developments that have followed the original 1999’s definition, and provides a formal and
comprehensive systematization of the subject, as well as an up-to-date and quite comprehensive
review of current applications. We have also identified in dynamic problems in telecommuni-



cation networks the most appropriate domain of application for the ACO ideas. According to
this understanding, in the most applicative part of the thesis we have focused on problems of
adaptive routing in networks and we have developed and tested four new algorithms.

Adopting an original point of view with respect to the way ACO was firstly defined (but
maintaining full conceptual and terminological consistency), ACO is here defined and mainly
discussed in the terms of sequential decision processes and Monte Carlo sampling and learning. More
precisely, ACO is characterized as a policy search strategy aimed at learning the distributed pa-
rameters (called pheromone variables in accordance with the biological metaphor) of the stochastic
decision policy which is used by so-called ant agents to generate solutions. Each ant represents
in practice an independent sequential decision process aimed at constructing a possibly feasible so-
lution for the optimization problem at hand by using only information local to the decision step.
Ants are repeatedly and concurrently generated in order to sample the solution set according to the
current policy. The outcomes of the generated solutions are used to partially evaluate the current
policy, spot the most promising search areas, and update the policy parameters in order to possibly
focus the search in those promising areas while keeping a satisfactory level of overall exploration.

This way of looking at ACO has facilitated to disclose the strict relationships between ACO
and other well-known frameworks, like dynamic programming, Markov and non-Markov decision
processes, and reinforcement learning. In turn, this has favored reasoning on the general properties
of ACO in terms of amount of complete state information which is used by the ACO’s ants to take
optimized decisions and to encode in pheromone variables memory of both the decisions that
belonged to the sampled solutions and their quality.

The ACO’s biological context of inspiration is fully acknowledged in the thesis. We report
with extensive discussions on the shortest path behaviors of ant colonies and on the identifi-
cation and analysis of the few nonlinear dynamics that are at the very core of self-organized
behaviors in both the ants and other societal organizations. We discuss these dynamics in the
general framework of stigmergic modeling, based on asynchronous environment-mediated com-
munication protocols, and (pheromone) variables priming coordinated responses of a number
of “cheap” and concurrent agents.

The second half of the thesis is devoted to the study of the application of ACO to problems
of online routing in telecommunication networks. This class of problems has been identified in the
thesis as the most appropriate for the application of the multi-agent, distributed, and adaptive
nature of the ACO architecture. Four novel ACO algorithms for problems of adaptive routing in
telecommunication networks are throughly described. The four algorithms cover a wide spec-
trum of possible types of network: two of them deliver best-effort traffic in wired IP networks, one
is intended for quality-of-service (QoS) traffic in ATM networks, and the fourth is for best-effort traf-
fic in mobile ad hoc networks. The two algorithms for wired IP networks have been extensively
tested by simulation studies and compared to state-of-the-art algorithms for a wide set of refer-
ence scenarios. The algorithm for mobile ad hoc networks is still under development, but quite
extensive results and comparisons with a popular state-of-the-art algorithm are reported. No
results are reported for the algorithm for QoS, which has not been fully tested. The observed ex-
perimental performance is excellent, especially for the case of wired IP networks: our algorithms
always perform comparably or much better than the state-of-the-art competitors. In the thesis
we try to understand the rationale behind the brilliant performance obtained and the good level
of popularity reached by our algorithms. More in general, we discuss the reasons of the general
efficacy of the ACO approach for network routing problems compared to the characteristics of
more classical approaches. Moving further, we also informally define Ant Colony Routing (ACR),
a multi-agent framework explicitly integrating learning components into the ACO’s design in
order to define a general and in a sense futuristic architecture for autonomic network control.

Most of the material of the thesis comes from a re-elaboration of material co-authored and
published in a number of books, journal papers, conference proceedings, and technical reports.
The detailed list of references is provided in the Introduction.
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