
Année académique 2006–2007

Promoteur:
Prof. Marco Dorigo

Thése présentée en vue de l’obtention du
titre de Docteur en Sciences Appliquées

Ing. Thomas Halva Labella

Division of Labour in Groups of Robots

Universite Libre de Bruxelles

Universite d’Europe

Faculté des Sciences Appliquées
IRIDIA, Institut de Recherches Interdisciplinaires

et de Développements en Intelligence Artificielle

Universite Libre de Bruxelles

Doctor

Communitatis

Europeæ

Ing. Thomas Halva Labella

Division of Labour in Groups of Robots

“I try all things; I achieve what I can.”

(Herman Melville, Moby Dick.)

“Vedere le cose che non si vedono.

Guardare oltre l’orizzonte.”
(“To see the things that you can not see.

To look beyond the horizon.”
Sensei Fugazza)

Audio. Video. Disco.

(Latin: I hear. I see. I learn.)

Abstract

In this thesis, we examine algorithms for the division of labour in a
group of robot. The algorithms make no use of direct communication.
Instead, they are based only on the interactions among the robots and
between the group and the environment.
Division of labour is the mechanism that decides how many robots

shall be used to perform a task. The efficiency of the group of robots
depends in fact on the number of robots involved in a task. If too
few robots are used to achieve a task, they might not be successful or
might perform poorly. If too many robots are used, it might be a waste
of resources. The number of robots to use might be decided a priori
by the system designer. More interestingly, the group of robots might
autonomously select how many and which robots to use. In this thesis,
we study algorithms of the latter type.
The robotic literature offers already some solutions, but most of

them use a form of direct communication between agents. Direct, or ex-
plicit, communication between the robots is usually considered a nec-
essary condition for co-ordination. Recent studies have questioned this
assumption. The claim is based on observations of animal colonies,
e.g., ants and termites. They can effectively co-operate without di-
rectly communicating, but using indirect forms of communication like
stigmergy. Because they do not rely on communication, such colonies
show robust behaviours at group level, a condition that one wishes also
for groups of robots. Algorithms for robot co-ordination without direct
communication have been proposed in the last few years. They are in-
teresting not only because they are a stimulating intellectual challenge,
but also because they address a situation that might likely occur when
using robots for real-world out-door applications. Unfortunately, they
are still poorly studied.
This thesis helps the understanding and the development of such

algorithms. We start from a specific case to learn its characteristics.
Then we improve our understandings through comparisons with other
solutions, and finally we port everything into another domain.
We first study an algorithm for division of labour that was inspired

by ants’ foraging. We test the algorithm in an application similar to
ants’ foraging: prey retrieval. We prove that the model used for ants’
foraging can be effective also in real conditions. Our analysis allows
us to understand the underlying mechanisms of the division of labour
and to define some way of measuring it.
Using this knowledge, we continue by comparing the ant-inspired

algorithm with similar solutions that can be found in the literature
and by assessing their differences. In performing these comparisons,
we take care of using a formal methodology that allows us to spare
resources. Namely, we use concepts of experiment design to reduce the
number of experiments with real robots, without losing significance in
the results.
Finally, we apply and port what we previously learnt into another

application: Sensor/Actuator Networks (SANETs). We develop an ar-
chitecture for division of labour that is based on the same mechanisms
as the ants’ foraging model. Although the individuals in the SANET
can communicate, the communication channel might be overloaded.
Therefore, the agents of a SANET shall be able to co-ordinate without
accessing the communication channel.

Acknowledgements

The work presented in this thesis was financially supported by the
SWARM-BOTS project, a project funded by the Future and Emerging
Technologies programme (IST-FET) of the European Commission, un-
der grant IST-2000-31010, and from the “ANTS” Project, an "Action
de Recherche Concertée" funded by the Scientific Research Directorate
of the French Community of Belgium. The final part of the work was
funded by the Deutscher Akademischer Austauschdienst (DAAD) un-
der the grant 331 4 03 003.

I would like to thank the persons that supervised my work: Dr.
Marco Dorigo, Prof. Jean-Louis Deneubourg and Dr.-Ing. Falko
Dreßler. Marco has been a severe supervisor, but I learnt a lot from
him. I thank him for his criticisms (a lot) and his praises (a few). He
was a good guide, as Virgilio was for Dante. (I do not pretend I have
the qualities of Dante, but reaching the end of this thesis was surely
like Hell). From Jean-Louis, I learnt how to look at problems from the
outside (as a biologist) and not only from the inside (as an engineer).
Falko introduced me to the vast word of communication networks and
was the precious mentor that helped me to find the way.

I wish to thank the research directors of IRIDIA, Prof. Hugues
Bersini and Marco Dorigo, for providing an extremely friendly and stim-
ulating research environment. I thank all@iridia. In a purely random
order, they are: Mauro & Carlotta, Max & Roberta, Elio, Ciro, Rodi,
Campatzis, Anders, Rehan, Paola, Federico, Krzysztof (notwithstanding
the number of consonants, he is a good guy), Francisco, Josh & Julia,
Gianni, Bruno, Maria & Christian, Tom, Prasanna, Alex, Michael, An-
drea, Michela, Fabiola, Davide, Roberto. A special mention goes to Vito,
with whom I have shared the office for many years. Thank to him, we
all in IRIDIA could remind everyday Catullus’ Poem LXIX. All my sym-
pathy to Michela, who is now living with him. A special thank goes also
to Marcello for the wonderful work that he did for Chap. 5. Thanks to
my friends in Italy: Ginver, Il Billa, and the Pilgrim from Rome.

Moving here and there in Europe, allowed me to know many people.
They helped me to understand different cultures. I thank my trainer
in Belgium, Marc, his wife, Fiorella, and all the people at the Kei Shin
Kan Dojo in Brussels. Thanks also to my training-fellows in Italy: Paola
(sorry for leaving you alone in a grey city), Fabio & Lidia, Fabio, Fabio,
Alessandro, Sensei Fugazza, and all the others. Thanks also to the
people I met in Germany: Gerhard, Ulrich, all members of Post-SV

Karate Abteilung.
My family has supported me for many years, and are still doing

it although I think they have not really understood what I was doing
(neither did I sometimes). Thank you Mom and Patty. I miss you.
I should thank another person, but I do not find the words to de-

scribe how helpful she was for me. She was next to me when I had
bad times and she stood my mood changes. Without her, I would have
been locked long time ago in a hospital for mental illnesses. With all
my love, I want to thank you, Daniela.
Finally, I wish that my father was here to see also this moment

occurring. He has missed as much of my and my family’s, as we are
missing him.

Contents

1 Introduction 1
1.1 Background and Motivations 2

1.1.1 Multi Robot Systems 2
1.1.2 Comparisons of Different Solutions for Multi Robot

System (MRS) . 5
1.2 Main Contributions . 6
1.3 Structure of the Thesis and Relevant Publications 7

1.3.1 Additional Publications 9

2 Background 11
2.1 A Brief History of Robotics 11
2.2 Robotics Nowadays: a Gross Classification 15
2.3 Overview of MRSs . 16
2.4 Examples of MRSs . 19
2.5 Challenging the Traditional Approach 21

2.5.1 Biological Systems and Self-organisation 21
2.5.2 Swarm Robotics . 23

3 Experimental Tools 31
3.1 The MindS-bots . 31

3.1.1 Traction . 33
3.1.2 Gripper . 34
3.1.3 Sensors . 34

3.2 Rigid-body Simulation . 35
3.2.1 MindS-miss: a MindS-bot Simulator 37
3.2.2 swarmbot3d: an S-bot Simulator 40

3.3 BARAKA: a SANET Simulator 41
3.3.1 OMNeT++ . 43
3.3.2 Integrating ODE into OMNeT++ 49

4 A Bio-inspired Algorithm for Prey Retrieval 57
4.1 Prey Retrieval . 57
4.2 Division of Labour and Task Allocation 60
4.3 Prey Retrieval in Biological Systems 61
4.4 A Model of Prey Retrieval in Ants 63
4.5 Robots’ Control Algorithm 64

4.5.1 The Finite State Machine 65
4.5.2 Behaviours . 67

I

CONTENTS

4.5.3 The Learning Algorithm 68
4.6 "Learning" vs. "Adaptation" 70
4.7 Experiments . 72

4.7.1 Experimental Set-up 73
4.8 Experiments: Efficiency . 74

4.8.1 Real Robots . 75
4.8.2 Simulation . 75
4.8.3 Discussion . 76
4.8.4 An Analytical Model for the Efficiency 79

4.9 Experiments: Division of Labour 83
4.9.1 Real Robots . 83
4.9.2 Simulation . 85
4.9.3 Discussion . 85

4.10Experiments: Selection of the Best Individuals 88
4.10.1Real Robots . 89
4.10.2Simulation . 89
4.10.3Discussion . 89

4.11Experiments: Dynamic Environments 91
4.12Conclusions . 93

5 Other Algorithms for Division of Labour 95
5.1 Two Learning Algorithms . 95

5.1.1 ALLIANCE . 96
5.1.2 Li . 100

5.2 On the Comparison of Algorithms for Swarm Robotics . . . 103
5.3 Test Application . 105
5.4 Modified Algorithms for Prey Retrieval 105

5.4.1 ALLIANCE . 105
5.4.2 Li . 108

5.5 Experiments: Methodology 111
5.6 Experiments: Efficiency . 111

5.6.1 Simulation . 111
5.6.2 Real Robots . 111
5.6.3 Discussion . 114

5.7 Experiments: Division of Labour 119
5.7.1 Simulation . 119
5.7.2 Real Robots . 119
5.7.3 Discussion . 119

5.8 Experiments: Dynamic Environments 122
5.9 Conclusions . 122

6 Division of Labour in SANETs 127
6.1 Sensor/Actuator Networks 128
6.2 A Scenario for SANETs . 130
6.3 Agents’ Control: Application Layer 132
6.4 Agents’ Control: Network Layer 134

6.4.1 AntHocNet: Route Discovery 135
6.4.2 AntHocNet: Routing 136
6.4.3 Modifications to AntHocNet and Additional Features 137

6.5 Agents’ Control: Cross-layer Interactions 139

II

CONTENTS

6.6 Agents’ Control: Inter-agent Interactions 140
6.6.1 Packet Filtering . 141
6.6.2 Help-request Behaviours 142

6.7 Experiments: Set-up . 147
6.8 On the Measurement of the Division of Labour in SANETs 149

6.8.1 Hierarchic Social Entropy 152
6.9 Results . 154
6.10Conclusions . 163

7 Conclusions 165
7.1 Summary of Contributions 166
7.2 Future Work . 168

A Reinforcement Learning and MRSs 169
A.1 Partially Observable Markov Decision Process (POMDP)

for Prey Retrieval . 171

B On the “Efficiency” and the “Performance”
of a Group of Robots 175

III

CONTENTS

IV

List of Figures

2.1 A replica of the tortoise by Grey Walter. 12
2.2 Elektro and Sparko, two robots of the 30s 13
2.3 Internals of Elektro . 14
2.4 Pictures of sensor nodes . 20
2.5 Examples of self-organised patterns 22
2.6 Examples of self-organised collective building 24
2.7 Example of self-organised aggregation 25

3.1 Pictures of a MindS-bot . 32
3.2 Computer generated views of a MindS-bot 32
3.3 Details of the traction system of a MindS-bot 33
3.4 Details of the gripper of a MindS-bot 34
3.5 Details of the sensors of a MindS-bot 35
3.6 Picture of a Robertino robot 37
3.7 Simulation of a Robertino robot 38
3.8 A simulated MindS-bot . 39
3.9 Simulated arena in MindS-miss 40
3.10Picture of an s-bot . 41
3.11Simulated s-bots . 42
3.12Examples of modules and channels in OMNeT++ 44
3.13UML sequence diagram of the OMNeT++ simulation kernel 45
3.14Simulated environment in the Mobility Framework 47
3.15Implementation of a mobile host in the Mobility Framework 48
3.16Integration of ODE into OMNeT++ 50
3.17UML sequence diagram for the integration between OM-

NeT++ and ODE . 51
3.18BARAKA class diagram . 52
3.19UML sequence diagram of the simulation of a robot 54

4.1 Foraging and retrieving behaviour of ants 61
4.2 Finite state machine that describes the transitions be-

tween the states in a MindS-bot 65
4.3 Relationship between Pl and the mean time spent in the

nest . 69
4.4 Comparison between the fixed increment and decrement

algorithm and the Variable Delta in two example cases . . 71
4.5 Set-ups of the experiments 74
4.6 Efficiency and performance of the MindS-bots 76

V

LIST OF FIGURES

4.7 Efficiencies of the s-bots . 77
4.8 Performances of the s-bots 78
4.9 Relative performances of the s-bots 78
4.10Q-Q plot of the residuals of the linear models for learning

and control groups . 81
4.11Estimated distribution of Pl in the MindS-bots 83
4.12Estimated and theoretical distribution of the number of

active foragers . 84
4.13Dynamics of the distribution of Pl in the MindS-bots 84
4.14Dynamics of the distribution of Pl in the s-bots 86
4.15Division of labour in the s-bots 87
4.16Division of labour in changing environments 92

5.1 Collaborative stick pulling 100
5.2 Li’s original algorithm . 101
5.3 Comparison of the efficiency of different learning algo-

rithms in simulation . 112
5.4 Comparison of the performance of different learning algo-

rithms in simulation . 113
5.5 Comparison of the efficiency of different learning algo-

rithms with real robots . 115
5.6 Comparison of the performance of different learning algo-

rithms with real robots . 115
5.7 Q-Q plot of linear model residuals for different learning

algorithms . 118
5.8 Comparison in simulation of the estimated distributions

of the time to wait in the nest of different algorithms 120
5.9 Comparison with real robots of the estimated distribution

of the time to wait in the nest of different algorithms 121
5.10Dynamics of Tl in a dynamic environment 123
5.11Percentage of most active robots in dynamic environments 124

6.1 Motes’ behaviour for help-request task 144
6.2 Robots’ behaviour for help-request task 146
6.3 Protocol for mote-robot communication: normal case . . . 147
6.4 Protocol for mote-robot communication: error messages . . 148
6.5 Set-up of the experiments. Views of the network and of

the simulated world . 150
6.6 Examples of task distribution among the agents 151
6.7 Examples of dendrograms 153
6.8 Relationship between dendrograms and hierarchic social

entropy . 154
6.9 Hierarchic social entropy of the SANET 155
6.10Final distribution of task probabilities (four robots) 157
6.11Final distribution of task probabilities (eight robots) 158
6.12Final distribution of task probabilities (twelve robots) . . . 159
6.13Dynamics of the distribution of task probabilities (four

robots) . 160
6.14Dynamics of the distribution of task probabilities (eight

robots) . 161

VI

LIST OF FIGURES

6.15Dynamics of the distribution of task probabilities (twelve
robots) . 162

A.1 Interactions between one agent and the environment in
the Reinforcement Learning framework 170

A.2 A MDP for prey retrieval . 172
A.3 POMDPs derived from the Markov Decision Process (MDP) 174

VII

LIST OF FIGURES

VIII

List of Tables

4.1 Predicates and constants used by the control algorithm of
a MindS-bot . 66

4.2 Predicates and constants used by the control algorithm of
a s-bot . 66

4.3 Behaviours activated in each state of the MindS-bot 68
4.4 Values of the parameters of the linear regression models . 82
4.5 Number of times that a MindS-bot was a forager 89
4.6 Number of times that an s-bot was a forager 90

5.1 Values of the parameters used in Li 102
5.2 Variables for distributed learning in prey retrieval 109
5.3 Initialisation values for distributed learning in prey retrieval109
5.4 Constant values for distributed learning in prey retrieval . 110
5.5 Linear regression model parameters of the algorithms . . . 117

6.1 Type of packets generated by the application layer 134
6.2 Type of packets generated by the network layer 139
6.3 Parameter values of robots and motes 151

IX

LIST OF TABLES

X

List of Algorithms

1 Ants’ learning model . 64
2 Variable Delta learning algorithm 69
3 ALLIANCE . 108
4 Distributed learning for prey retrieval 110

XI

LIST OF ALGORITHMS

XII

Chapter 1

Introduction

Robots have lived in the mind of mankind probably since the begin-
ning of its history. Obviously not in the way we know them nowadays.
They were sometimes made of living flesh (Frankenstein), sometimes of
wood (Pinocchio), or also of mud (the Golem). The words “robot” and
“robotics” are in fact quite recent,1 but the idea of autonomous arti-
facts created by men was always there. The progress of technology in
the last half-century allowed us to start seriously thinking to design
and develop autonomous artifacts. This led to the birth of robotics as
a scientific field.
Computer science, semi-conductor electronics and robotics were

born nearly together, somewhere in the middle of the 20th century. To-
day, we are surrounded by computers and electronic devices, which en-
tered into a nearly symbiotic relationship with mankind. Where are the
robots? If we take aside those used for factory automation, where are
the robots that used to populate our science fiction books and movies?
Robotics for industrial automation has enormously developed from

its beginning. We are now able to build (nearly) fully automated fac-
tories, but we have not yet a robot that can prepare and bring us a
decent coffee. Robotics outside industries in fact poses several prob-
lems that are hard to solve. Additionally, human beings are limited
designer, because we can not fully understand and foresee the prob-
lems that might occur in open environments. It is our opinion that the
lack of rigorous procedural methods is also responsible to the under-
development of robotics.
This thesis does not offer a solution to all the problems, especially

the coffee one. On the opposite, we study only one particular problem
of autonomous robotics: division of labour. We show how our problem
can be solved taking inspiration from biology. Differently to what com-
monly observed in the robotic literature, we base our study on a formal
research methodology. We do think that if other researchers follow our
example, it might in the long term help autonomous robotics to exit the
universities and enter the real world.

1“Robot” comes from the Czech word “robotnik” and appeared in English in 1923.
“Robotics” was used for the first time by Asimov [1991] in a 1941 science fiction story.

1

CHAPTER 1. INTRODUCTION

This thesis contributes to the research in robotics, and not only,
under different aspects. We need to give the reader a brief overview of
the background and the motivations of our work before pointing out our
contributions. This is the content of the following section. Section 1.2
summarises the main contributions of our work. Section 1.3 describes
the structure of this thesis and lists the publications of ours that are
related to each chapter.

1.1 Background and Motivations

The main contributions of this thesis cover two aspects of robotics:
communication-less division of labour in Multi Robot Systems (MRSs),
and comparisons of different control algorithms. This is a rough sum-
mary and a gross categorisation of our work, but it is sufficient for the
goals of this section. The following subsections introduce these aspects
and clarify the background and the motivations of our research.

1.1.1 Multi Robot Systems

Robotics mainly focused on the development of single robots during its
youth. Emphasis was on issues such as, for instance, how to sense
and represent the environment, how to decide on the base of the repre-
sentation and how to recognise and react to changes. The last decade
has seen more and more research on groups of robots. These systems
are also known as Multi Robot Systems. They share the same prob-
lems as single robots, but they pose additional issues. For example:
how and what shall the robots communicate to each other or how to
co-ordinate their actions to achieve a goal. Even more recently, re-
searchers have studied heterogeneous systems like Sensor/Actuator
Networks (SANETs). These systems comprise mobile robots and a net-
work of fixed sensors. Robots and sensors can communicate usually
through a wireless channel.
This thesis addresses one of the core issues of MRSs: what is the

point of using more than one robot? Only one robot could be sufficient
for most of the applications cited in the literature. Let us take the
application used for most of our thesis: search and retrieval of objects
(Sec. 4.1). More robots can retrieve more prey than one alone. More
robots require however more power and more complex co-operation
schemes. More robots also create more interferences among the group
members. Are more robots also more efficient than a single one? How
can we improve the efficiency of a group of robots?
There are many strategies to improve the efficiency. One can pro-

gram the robots better, or build them better. Another option, the one
we study in the next chapters, is to improve the efficiency by means
of autonomous division of labour: the group selects, without human
intervention, which and how many robots should be involved in a task.
More interestingly and following a recent research line, the mecha-

nisms for division of labour in which we are interested shall not use di-
rect communication or any representation of the environment. The rea-

2

CHAPTER 1. INTRODUCTION

sons for this choice are explained below. In the following thesis we refer
to communication as always direct communication. Communication-
less algorithms are therefore algorithms that do not use direct commu-
nication. This definition is however not totally correct because these al-
gorithms might use some other form of communication, e.g. stigmergy
(Sec. 2.5.1). We could discuss for many pages and chapters about
the meaning of the words “direct”, “communication” and also “repre-
sentation”, but this would be out of the scope of this thesis.2 This
point deserves nevertheless more elaboration because it is an impor-
tant working hypothesis of ours.
We say that communication is direct if an observer can find in the

code that controls a robot a set of instructions that explicitly send a
message to another robot. This is a very rough definition, but it is
sufficient for the context of this thesis.
Communication-less co-operation algorithms have been proposed

only recently. To understand their usefulness is better first to describe
the traditional (with communication) approach to collective robotics.

Traditional Approach to Robot Group Design

The most important difference between robots for automation and sci-
ence-fiction-like robots is the environment that surrounds them. In
a factory, robots are along an assembly line. They are always in a
set of predefined states. Also the pieces on which they are working
are in a set of predefined states. A number of precautions are taken in
designing the factory in order to guarantee that this condition is always
met. This is thus defined a constrained environment as opposed to a
free environment.
Free environments pose more difficult problems. The most impor-

tant and most commonly addressed in the literature are the uncer-
tainty of the environment and adaptation to new conditions.
Suppose that one wants to use robots to explore an unknown envi-

ronment. A typical example could be distant planets. We do not need
however to go so far to find unknown environments. Our oceans are
probably more unknown than the universe [Schätzing, 2006]. The fun-
damental problem is that the environment is not unknown only to the
robots, but also to their designer.
Uncertainty has usually been tackled by having robots first explore

the environment and build a map of it. Each robot explores a part of
the environment and communicates its findings to the others. Once a
map is available, the robots can use it to plan their actions. There are
many sub-problems that have to be solved to pursue this approach, for
instance:

• how to elaborate the sensor signals to extract the information use-
ful to build the map;

2For instance, Di Paolo [1998] says that “in most studies of the evolution of communi-
cation [. . .], authors either provide a new definition of [communication], or at least find it
necessary to revise previous definitions”. For an introduction to the problem of defining
representation, the reader can look at Harvey [1996].

3

CHAPTER 1. INTRODUCTION

• how robots can know their position in order to update the map
and to plan their actions (this problem is know as localisation);

• how to recognise changes in the environment, and to take fast
decisions if they are dangerous for the robot;

• how to reduce the sensor noise that might invalidate the results
of the previous points;

• how to know and recognise which other robots are present, what
they are doing and where they are;

• how to assure the availability of a communication medium for
information exchange.

The last point includes:

• the definition of a reliable (i.e., persistent) physical transmission
medium;

• the definition of a medium access protocol;

• the definition of a networking protocol;

• the definition of common semantics and ontology for the content
of the information to be exchanged.

The last point includes that robots will be able to communicate only
what they were instructed to say. They can not create new concepts
and can not communicate things that were not foreseen.
A number of researchers have recently questioned this approach.

They especially criticise the use of communication channels and plan-
ning. In fact, all the problems listed above are due to the decision of
building a map and of communicating it. They are not directly related
to the original problem, that is, the uncertainty of the environment.
These criticisms are based on recent studies on self-organisation

and biological systems (Sec. 2.5.1). These studies have shown that
animal societies can achieve goals equally or more complex than those
of the robots, but with simpler individual behaviours and using much
simpler communication systems. The field in which these researchers
are active is called Swarm Intelligence (SI).

The Swarm Intelligence Approach

The swarm intelligence approach to robot design can be summarised
in the following way: do not make complex robot behaviours, but ex-
ploit the complexity of the environment. The robots are seen as part of
a complex dynamic system. There is no more any distinction between
robots on one side and environment on the other, but they are merged
in a holistic system. Each robots’ action is going to modify the environ-
ment in a complex way. The other robots can perceive the modifications
and react accordingly on the base of simple rules. This is indeed the
way in which, for instance, termites, bees and ants build their nests.

4

CHAPTER 1. INTRODUCTION

We think that the major contribution from SI, or better its applica-
tion to robotics, Swarm Robotics (SR) (Sec. 2.5), is to clearly show that
the use of communication, planning, mapping (or any other explicit
representation of the environment) are not a necessity. They are used
because they have been common part of the design process: modelling,
division in modules, specification of modules interfaces and interac-
tions. This process sees the environment merely as a passive element.
SI suggests to use it actively.
Some researchers in this area claim that the traditional approach is

wrong, because it is not akin to anything in nature. We consider this
a pretty fundamentalist position. On the other hand, researchers of
the traditional approach defend their position with claims like: “if my
robot has communication capability, why should I not make use of it?”.
They then develop their algorithms accordingly. We do not agree with
this position either. There are in fact some conditions where it is not
possible to have communication, For example:

• The communication channel is not available because it is being
set up. For instance, during the synchronisation of the robots to
access the wireless channel. The physical transmission devices
of the robots have to be in phase when accessing the wireless
channel for sending or receiving air frames. If they are not, air
frames might get lost or collide. Getting in phase requires robots
to co-ordinate, but they can not communicate yet.

• In underwater robotics, acoustic communication remains the only
practical methodology for long-range communication. Acoustic
communication is however fundamentally limited by the speed of
sound in water (around 1500 m/s) and by the fact that acous-
tic attenuation increases with the sound frequency. The result is
that the best communication bandwidth is usually in the range
2400–4800 Baud. The further the robots are, the narrower the
bandwidth becomes [Whitcomb, 2000]. It can also reach few bits
per second. Such bandwidth can saturate easily and become use-
less, thus the robots should co-ordinate reducing, or eliminating,
the communication.

• Exploration on a planet, which is under magnetic storm. The
wireless communication channel is too noisy to be useful.

• The available radio frequencies of a wireless channel are already
overloaded (e.g., robots used for rescue after a disaster).

Our interest in communication-less division of labour is not then a
mere theoretical exercise. It is based on the remark that the traditional
approach in some application domains can not cope with situations
likely to occur.

1.1.2 Comparisons of Different Solutions for MRS

When comparing the robotic literature with that of some other field of
science, one particular difference appears. There are very few works in

5

CHAPTER 1. INTRODUCTION

robotics which compare solutions obtained following different method-
ologies. In particular, to the best of our knowledge, no such compar-
isons have been done in the field of SR.
Let us take for instance the field of Operation Research. Researcher

continuously compare their algorithm with others on a particular prob-
lem. The best algorithm becomes the “state of the art”. New ideas are
then compared and tested against the current state of the art. These
experiments do not exist in robotics, neither does the concept of “state
of the art” . The works in the literature mostly show particular solu-
tions to particular problems, but there are very few comparisons.
On the one hand, this is understandable. Let us consider a nor-

mal cycle of research in autonomous robotics (not for industrial pur-
poses). Researchers usually start developing a prototype of the robot.
This is then used to run experiments, during which the problems of
the prototype arise. Researchers have to come back and fix them on
the hardware. Then experiments can start again but the robots, being
still prototypes, often require maintenance. When the hardware starts
to be reliable, there is the problem of the power sources: the current
robots used for research last for a few experiments in a row, then the
robots must stop and the batteries be recharged. When the first round
of experiments is over, the fellowship of the researcher too, and a new
researcher will have to start from scratch. As it can be seen, the exper-
imental part is highly resource consuming. Thus, it is not surprising
that researchers prefer to use the robots mostly for proof-of-concept
experiments than for comparisons with other solutions.
On the other hand, this should not be taken for excuse. Other sci-

entific areas face the same problems, but they nevertheless do compar-
isons. For instance, doctors test drugs on their patients to know which
one is more effective. In case of long lasting illnesses, a research might
also last ten years. Researchers in these areas have developed a num-
ber of different techniques which allows them to reduce the resource
usage. A branch of statistics, called experiment design, is dedicated to
this purpose. We would like to see more of it in the field of robotics.

1.2 Main Contributions

The main contributions of this thesis are as follows:

• Introduction of a new algorithm for division of labour in a group
of robots. The algorithm is inspired by ants’ foraging behaviour. It
is based on a simple form of learning and does not use any form
of direct communication.

• Validation of the algorithm through a formal and methodological
use of both simulation and real robots.

• Formal comparisons among different algorithms for division of
labour. The formal methodology makes use of concepts from ex-
periment design, which are never used in robotics—at least ex-
plicitly. They help us to assess which algorithms are the best

6

CHAPTER 1. INTRODUCTION

within a given set using a minimal number of experiments (recall
that they are the most time consuming part of the research). This
work paves the way to the development, one day, of the concept of
“state of the art algorithm” also in robotics.

• We do not only take inspiration from biology, but we give some-
thing back too. The validation of our algorithm for division of
labour strongly supports the argument that learning is an impor-
tant factor in division of labour and that no communication is re-
quired in animal societies. There are still many biologists against
this argument.

• We developed a new type of simulator for SANETs. The simula-
tor, called BARAKA (Sec. 3.3), combines two different simulation
paradigm: discrete event simulation and continuous time simula-
tion.

• Implementation of a new algorithm for division of labour with the
choice of more than one task. While the case with many tasks is
studied in mainstream robotics, this is new in SR and bio-inspired
robotics.

• A new approach to the development of SANETs. This approach
features a stricter interaction between application and network
layers in robot and sensor node.

1.3 Structure of the Thesis and Relevant

Publications

Chapter 2 gives a more detailed introduction on MRSs. It starts with
the narration of the birth of the first robots, both real and imaginary.
It describes then the history and development of MRSs, highlighting
the current problems and giving an overview on current works. The
chapter continues describing the concept of self-organisation as it was
developed in biology and how this is used as foundation for SR. Af-
ter having read it, the reader should have all necessary background
information for the following chapters.
Chapter 3 describes the tools that were used for the experiments

of this thesis. We used both real robots and simulators. The real
robots were built using Lego MindstormsTM. The simulators were ei-
ther adapted or totally developed for the experiments. The following
publications are related to the content of this chapter:

• T.H. Labella. Prey retrieval by a swarm of robots. Thesis for
the Diplôme d’Études Approfondies (DEA). Technical Report TR-
IRIDIA-2003-16, IRIDIA, Université Libre de Bruxelles, Brussels,
Belgium, 2003.

• M. Dorigo, E. Tuci, R. Groß, V. Trianni, T.H. Labella, S. Nouyan,
C. Ampatzis, J.-L. Deneubourg, G. Baldassarre, S. Nolfi, F. Mon-
dada, D. Floreano, and L.M. Gambardella. The SWARM-BOTS

7

CHAPTER 1. INTRODUCTION

project. In E. Şahin and W. Spears, editors, Proceedings of the First
International Workshop on Swarm Robotics at SAB 2004, volume
3342 of Lecture Notes in Computer Science, pages 31–44. Springer
Verlag, Berlin, Germany, 2004b.

• T.H. Labella, I. Dietrich, and F. Dressler. BARAKA: A hybrid sim-
ulator of sensor/actuator networks. In Proceedings of the Sec-
ond IEEE/Create-Net/ICST International Conference on COMmu-

nication System softWAre and MiddlewaRE (COMSWARE 2007),
Bangalore, India, January 7–12, 2007. In press.

Chapter 4 describes a new algorithm for division of labour. The
algorithm was developed after a model of ants’ foraging. This model
was previously tested only through numerical simulations. We provide
an empirical and stronger validation of the model. We also analyse
how the division of labour changes according to different environmental
parameters, and how the group performs in changing environments.
This work was published in:

• T.H. Labella, M. Dorigo, and J.-L. Deneubourg. Efficiency and
task allocation in prey retrieval. In A.J. Ijspeert, M. Murata,
and N. Wakamiya, editors, Biologically Inspired Approaches to Ad-
vanced Information Technology: First International Workshop, BioA-

DIT 2004, volume 3141 of Lecture Notes in Computer Science.
Springer Verlag, Heidelberg, Germany, 2004a.

• T.H. Labella, M. Dorigo, and J.-L. Deneubourg. Self-organised
task allocation in a group of robots. In R. Alami, editor, 7th Inter-
national Symposium on Distributed Autonomous Robotic Systems

(DARS04), pages 371–380, Toulouse, France, June 23–25, 2004b.

• T.H. Labella, M. Dorigo, and J.-L. Deneubourg. Division of labour
in a group of robots inspired by ants’ foraging behavior. ACM
Transactions on Autonomous and Adaptive Systems, 1(1):4–25,
2006a.

Chapter 5 considers other algorithms that might be used for division
of labour. We evaluate algorithms similar to ours and compare their re-
sults. This allows us to clearly state which are the differences between
the algorithms, and also gives us some hint on why they are different.
The experiments were done using a formal methodology which allowed
us to spare a lot of resources and to get, for instance, valid results after
only five replications with real robots. This work, which was done in
collaboration with Marcello Cirillo, a Master student under our super-
vision, is new and not yet published. Publications are on-going work at
the time of writing.
Chapter 6 extends the work of the previous chapters in the context

of SANETs. In a SANET, robots have to interact with sensor nodes.
They are small devices that can sense the environment, send and re-
ceive messages. The chapter focuses on the division of labour in a
SANET when there are more than one task to choose. Related publica-
tions are:

8

CHAPTER 1. INTRODUCTION

• T.H. Labella, G. Fuchs, and F. Dressler. A simulation model
for self-organised management of sensor/actuator networks. In
Fachgespräch über Selbstorganisierende, Adaptive, Kontextsensi-

tive verteilte Systeme (SAKS), University of Kassel, Germany,
March 23–24 2006b.

• T.H. Labella and F. Dressler. A bio-inspired architecture for divi-
sion of labour in SANETs. In Proceedings of the First IEEE/ACM
International Conference on Bio Inspired Models of Network, Infor-

mation and Computing Systems (BIONETICS 2006), Cavalese, Italy,
December 11–13, 2006. In press.

Finally, Chap. 7 draws the final conclusions of our work.

1.3.1 Additional Publications

We published also other articles during our research that are not strict-
ly related to the topic of this thesis. The following list completes our
publication list:

• A. Bonarini, M. Matteucci, G. Invernizzi, and T. H. Labella. Con-
text and motivation in coordinating fuzzy behaviors. In M. Colom-
betti, A. Bonarini, and P.L. Lanzi, editors, Proceedings of the Sev-
enth Meeting of the Italian Association for Artificial Intelligence

(AI*IA 2000). AI*IA, Milano, Italy, 2000.

• A. Bonarini, M. Matteucci, G. Invernizzi, and T.H. Labella. An ar-
chitecture to coordinate fuzzy behaviors to control an autonomous
robot. Fuzzy Sets and Systems, 134(1):101–115, 2001.

• E. Şahin, T.H. Labella, V. Trianni, J.-L. Deneubourg, P. Rasse,
D. Floreano, L.M. Gambardella, F. Mondada, S. Nolfi, and
M. Dorigo. SWARM–BOT: Pattern formation in a swarm of self–
assembling mobile robots. In A. El Kamel, K. Mellouli, and
P. Borne, editors, Proceedings of IEEE International Conference on
System, Man and Cybernetics (SMC2002). IEEE Press, New York,
NY, 2002.

• V. Trianni, T.H. Labella, R. Groß, E. Şahin, M. Dorigo, and J.-
L. Deneubourg. Modeling pattern formation in a swarm of self-
assembling robots. Technical Report IRIDIA-TR-2002-12, IRIDIA,
Université Libre de Bruxelles, Brussels, Belgium, 2002.

• V. Trianni, R. Groß, T.H. Labella, E. Şahin, P. Rasse, J.-L. Deneu-
bourg, and M. Dorigo. Evolving aggregation behaviors in a swarm
of robots. In W. Banzhaf, T. Christaller, P. Dittrich, J.T. Kim, and
J. Ziegler, editors, Advances in Artificial Life - Proceedings of the
7th European Conference on Artificial Life (ECAL), volume 2801 of
Lecture Notes in Artificial Intelligence. Springer Verlag, Berlin, Ger-
many, 2003.

9

CHAPTER 1. INTRODUCTION

• M. Dorigo, V. Trianni, E. Şahin, R. Groß, T.H. Labella, G. Bal-
dassarre, S. Nolfi, J.-L. Deneubourg, F. Mondada, D. Floreano,
and L.M. Gambardella. Evolving self-organizing behaviors for a
Swarm-Bot. Autonomous Robots, 17(2–3):223–245, 2004a.

• V. Trianni, T.H. Labella, and M. Dorigo. Evolution of direct com-
munication for a swarm-bot performing hole avoidance. In M. Do-
rigo, M. Birattari, C. Blum, L.M. Gambardella, F. Mondada, and
T. Stützle, editors, Ant Colony Optimization and Swarm Intelligence
– Proceedings of ANTS 2004 – Fourth International Workshop, vol-
ume 3172 of Lecture Notes in Computer Science, pages 131–142.
Springer Verlag, Berlin, Germany, 2004.

• T.H. Labella and M. Birattari. Polyphemus: De alieni generorum
abacorum racemo. Technical Report IRIDIA-TR-2004-15, IRIDIA,
Université Libre de Bruxelles, Brussels, Belgium, 2004.

• M. Dorigo, E. Tuci, V. Trianni, R. Groß, S. Nouyan, C. Ampatzis,
T.H. Labella, R. O’Grady, M. Bonani, and F. Mondada. Compu-
tational Intelligence: Principles and Practice, chapter SWARM-BOT:
Design and Implementation of Colonies of Self-assembling Robots.
IEEE Computational Intelligence Society, New York, NY, 2006.

10

Chapter 2

Background

In this thesis, we study systems composed of more than one robot.
Before entering into the details of our research, we want to guide the
reader into this field. This chapter can not unfortunately be a complete
guide to robotics. Even a rough summary might take more space than
this thesis.
We start by giving a historical perspective in Sec. 2.1. We describe

some of the tentatives of men to build moving artifacts. Looking at
them with nowadays eyes, they look everything but scientific works.
In Sec. 2.2, we give a loot at nowadays robotics, giving an overview
of the different research areas. We start from a gross classification of
the areas, to reach the more restricted sector where we carried out our
work. Section 2.3 gives a more proper classification of the specific area
of interest in this thesis, Multi Robot Systems (MRSs), and Sec. 2.4
lists some examples of research in the area. Finally, Sec. 2.5 describes
a recent approach to MRS, the one we follow in this thesis.

2.1 A Brief History of Robotics

Robotics can be defined as “the technology dealing with the design, con-
struction, and operation of robots in automation”1 and has developed
since the second half of the 20th century. It is a broad and multidisci-
plinary area. It spans over electronics, mechanics, computer science,
artificial intelligence, control theory, and also bio-informatics.
The English word “robot” is older than the technological applica-

tions. It appeared in 1923, in the English translation of a 1920 Czech
play, “R.U.R.” (Rossum’s Universal Robots), by Karel Čapek (1890–
1938). It is astonishing, if we consider that Turing will propose only
thirteen years later his model of a computing machine, which today
is known as “Universal Turing Machine” [Turing, 1936]. The original
Czech word, “robotnik”, means “slave”. It comes from “robota” which
means “forced labour”.2 The word refers to human artifacts that should

1Merriam Webster on-line dictionary at http://www.m-w.com/.
2The complete etymology can be found at http://www.etymonline.com/.

11

http://www.m-w.com/
http://www.etymonline.com/

CHAPTER 2. BACKGROUND

Figure 2.1: A replica of the tortoise by Grey Walter.

perform work for men. It differs from other machines built by men be-
cause of the strict integration between the mechanical, electronic and
logic components, and for its ability of moving and exploring/modifying
the environment.
The concept of a “robot” is one variation of a theme that is really

common in the literature and in mythology: the myth of creation. We
go at least as far back as the ancient legend of Cadmus, who sowed
dragon teeth that turned into soldiers, and the myth of Pygmalion,
whose statue of Galatea came to life. In classical mythology, Hep-
haestus created mechanical servants, ranging from intelligent, golden
handmaidens to more utilitarian three-legged tables that could move
about under their own power. A Jewish legend tells of the Golem, a
clay statue animated by Kabbalistic magic. Similarly, in the Younger
Edda, Norse mythology tells of a clay giant, Mökkurkálfi or Mistcalf,
constructed to aid the troll Hrungnir in a duel with Thor, the God of
Thunder. Other examples in more “modern” literature comprise Pinoc-
chio [Collodi, 1883] and Frankestein [Shelley, 1818].
The first application of robotics as commonly understood today

started to appear after World War II. In 1948, Grey Walter at Bristol
University, England, created the first autonomous mobile robots, al-
though he “programmed” them using analogical circuits. The “tortoise”
(Fig. 2.1), as it was called, was wired to display animal-like behaviours,
like approaching light sources using a photo-receptor. The Unimate,
the first industrial arm robots, appeared in 1961 and joined the Gen-
eral Motors’ assembly line. In 1966, the Stanford Research Institute
produced “Shakey”, the first robot which was able to plan its actions.
This period can be considered the beginning of robotics as a scientific
and technological discipline. However, the word “robotics” is older than

12

CHAPTER 2. BACKGROUND

Figure 2.2: Elektro, in the middle, and Sparko, right. The robots were
created by Westinghouse in the 30s. Nothing is known about the hu-
manoid on the left.

these examples. It appeared in a 1941 science fiction story by Asimov
[1991]: science fiction anticipated reality.
Before World War II, humans built a number of machines that show

striking resemblance with the contemporary idea of a robot. We can go
far back in time, to ancient Greece. Around 350 BCE, the Greek math-
ematician Archytas of Tarentum (428–347 BCE—the city is now called
Taranto, in south Italy) built “The Pigeon”, a mechanical bird used for
studies on flight. In 1495, Leonardo da Vinci (1452–1519) designed a
mechanical knight that was apparently able to sit up, wave its arms,
and move its head and jaw. It is not known however if he actually
built this device. In 1738, the french engineer Jacques de Vaucanson
(1709–1782) built two “automata” which were able to play the flute and
tambourine, plus a duck made of four hundreds moving parts. The
duck is considered his masterpiece: it could flap its wings, drink wa-
ter, digest grain and defecate. In 1898, Nikola Tesla (1856-1943) made
a demonstration with a remotely-operated boat. Last, but not least,
Westinghouse created in the 30s a human-like robot called Elektro and
its companion dog Sparko (Fig. 2.2 and 2.3). Elektro was able to move
legs and arms, to turn the head and even to smoke. Sparko was also a
masterpiece of technology: it could stay sit.

13

CHAPTER 2. BACKGROUND

Figure 2.3: Internals of Elektro

14

CHAPTER 2. BACKGROUND

2.2 Robotics Nowadays: a Gross Classifica-

tion

After robotics moved out of the science fiction context, it expanded
considerably. It is possible to classify the works of the last years in a
number of ways, which are usually not mutually exclusive. We do not
want to list all of them in this chapter. We make use of some broad
classification, in order to immediately cut away those works that are
not directly related with what we present in this thesis. What follows
should not be considered as an authoritative and accepted categorisa-
tion of robotics. It is only meant as an aid to the reader to place the
research field of this thesis in a broader context.
Robots can be remote-controlled or autonomous. The main differ-

ence is that a remote-controlled robot executes a set of low level com-
mands coming from a remote operator. For example, it could be a robot
used for submarine exploration or by a surgeon for a delicate operation.
In case of autonomous robots, the computer on board has some auton-
omy in taking decisions on which action should be done according to
the information coming from the sensors.3 For an autonomous robot
to work, it is essential that it is provided with some means of perceiving
the environment (i.e., the sensors) and of modifying it (i.e., the actua-
tors).
Autonomous robots can be fixed in the environments or can be free

to move. An assembly line in a factory is an example of fixed robot, the
Sojourner rover which landed on Mars in 1997 is a quite convincing
example of a moving one.
Different works in the literature focus on different aspects of a robot:

the mechanics, the electronics, or the control program. The latter refers
to the program that makes one or more robots move and act in the
environment and is the focus of this thesis. Control programs can
be divided into several layers. At the lower level, there is fine control
of the actuators and the drivers of the sensors. At the middle layer,
there is usually the code that takes care of elaborating the raw data
coming from the sensors in order to have a better and more schematic
representation of the state of the environment. This part is usually
called feature extraction. Finally, at the top level, there is the decision
centre: it reads the information coming from the sensors and uses it to
send the appropriate commands to the actuators. This part of program
is usually called the “high level control”. In this thesis, we also refer to
it using the words “robot program” or “robot controller”.
The final gross classification useful for the moment concerns the

number of robots taken into account in the experiments. During the
first decades of robotics, experiments were done using only one robot.
This was due most likely to the high costs of the robots. They were
also made of very delicate pieces, and required a lot of maintenance. In
the last two decades, researchers have given more and more attention
to systems made of several robots, on which we focus now. They are

3Obviously, a robot can never be totally autonomous, at least until it will be able to
switch itself on and off.

15

CHAPTER 2. BACKGROUND

called Multi Robot Systems (MRSs).

2.3 Overview of Multi Robot Systems

The recent increase of interest in Multi Robot Systems was certainly
helped by the reduction of hardware prices. This alone does not explain
why so many researchers have started working on this subject. As
some author proposed, MRSs are interesting because some

[. . .] tasks may be inherently too complex (or impossible) for

a single robot to accomplish, or performance benefits can be

gained from using multiple robots; building and using several

simple robots can be easier, cheaper, more flexible and more

fault tolerant than having a single powerful robot for each sep-

arate task; and the constructive, synthetic approach inherent

in cooperative mobile robotics can possibly yield insights into

fundamental problems in the social sciences (organisation the-

ory, economics, cognitive psychology), and life sciences (theo-

retical biology, animal ethology). [Cao et al., 1997, page 7.]

We focus below only on works in which robots collaborate in order
to achieve a task, a sub-field of MRSs that is often called co-operative
robotics. The reader should remember however that there are also
works in which autonomous robots are in competition among them.
The most spectacular case is probably RoboCup.4 In a RoboCup com-
petition, two teams of robots (either simulated or real) play against each
other in a soccer match. Scientific and practical issues include combin-
ing reactive approaches and modelling/planning approaches, real-time
recognition, planning, reasoning, strategy acquisition, and agent mod-
elling [Kitano et al., 1997, Asada and Kitano, 1999, Asada et al., 1999].
Even if we look only at co-operative robotics, the literature offers a

massive number of works. To account for all of them, researchers have
proposed several classification criteria [see Cao et al., 1997, Farinelli
et al., 2004, Gerkey and Matarić, 2004, for some examples]. The most
extensive and acknowledged classification was proposed by Dudek
et al. [1996]. They propose a number of taxonomic axes and then list
for each axis the solutions usually found in the literature. They also
review the best known works in order to classify them. Their paper is
useful therefore not only for their classification criteria, but also as a
basis for an overview of MRSs. The axes they propose are as follows:

Size : a multi robot system can be formed by one robot (the “minimal
collective” [Dudek et al., 1996, p. 379]), two robots (the “simplest
group”), or by a limited number n of robots.

Communication range : in most systems, each robot can communi-
cate only to a certain distance. To the extremes of this axis, there
are robots which do not communicate (their range is 0) or which
can communicate with all the other robots in the environments (so

4http://www.robocup.org/

16

CHAPTER 2. BACKGROUND

that the range can be considered as infinite). Limitless communi-
cation is a property that depends both on the characteristic of the
environment and on the means of communication. Between the
two extremes, there is the case in which robots can communicate
only with nearby robots. Their communication range is finite and
smaller than the environment. The authors refer however only to
direct forms of communication. Even in case of a zero-range, “it is
possible for robots to communicate with each other indirectly by
observing their presence, absence or behaviour (as many animals
seem to)” [Dudek et al., 1996, p. 380].

Communication topology : if robots communicate, they might not di-
rectly communicate with every other robot, even if they are near.
In some cases, there is a hierarchy along which messages should
pass. Dudek et al. identified four common communication topolo-
gies in the literature: robots can broadcast their messages, which
are received by any other robot within communication range; com-
munication is address-based, so that each robot can communi-
cate with only one other robot; communication must follow the
path in a tree that defines the hierarchy; finally, the robots are
linked in a general graph, along whose edges robots communi-
cate.

Communication bandwidth : there can be costs related to communi-
cation which affect the available bandwidth. There might be no
costs and thus infinite bandwidth or high costs and low band-
width. Between them, Dudek et al. place another category, which
is relevant for the applications discussed in Sec. 2.5. For these
kinds of robots, the costs of communicating are comparable to
those of moving in the environment. In fact, the robots commu-
nicate changing the environment. The extreme case is the one
without bandwidth at all. In such case, robots are not even able
to sense each other. This is considered to be an “impractical case
if coordinated collective behaviour is desired” [Dudek et al., 1996,
p. 381].

Collective reconfigurability : it refers to the rate at which the collec-
tive can spatially reorganise itself and it is usually related to the
communication range and topology. Robots can have fixed posi-
tions, change their position occasionally following communication
(as in formation control) or have completely dynamic and arbitrary
locations.

Processing abilities : there are several software architectures that can
be used for the controllers of the robots. The common and gen-
eral models are: a finite state automata, a push-down automata,
Turing machines and Neural Networks.

Collective composition : the robots in a MRS might be different both
in the hardware and in the software. Differences in the former
usually imply differences in the latter. This is why Dudek et al.
give only three possible values for this axis: groups where robots

17

CHAPTER 2. BACKGROUND

are completely identical (hardware and software), where they are
physically homogeneous and groups which are heterogeneous.
The authors point out that even in case of identical robots, they
can still assume different roles based on environmental and sta-
tistical factors.

The control system of a single robot operating alone, that is, not a
MRS, can be described as follows: given a condition, or state, of the en-
vironment, the robot has to perform a series of actions to reach a goal.
The goal can be to have an object carried from one place to another, to
have the robot in a fixed position, to move so that all the environment
has been explored, and so forth. The control system analyses sensor
data to identify the current state and to select the best action in order to
reach the goal. There are two approaches to the decision process: a re-
active system considers only the current state and binds it to a specific
action, creating a mapping from the state space to the action space; a
planning approach selects the best action according to predictions of
future states which are elaborated using a model of the environment.
Sensor data is then reanalysed to decide on the next action and to give
feedback to the system.
When dealing with only one robot, control algorithms must take care

of a number of problems, listed as follows:

Unpredictable changes. If the environment is dynamic, it can change
because of factors that are not under the control of the robot. If
a reactive architecture is used, the state-action mapping may not
be valid any more. If planning is used, the foreseen states do not
occur and new predictions are needed, but the environment can
change again before the new predictions are available.

Sensor reliability. Sensors can be unreliable or they can return the
same data in different states (a phenomenon known as sensor
aliasing or partial observability). For instance, if a new state of the
environment was reached, e.g., the goal is closer, and the control
system reads the same data as at the beginning, the robot would
think that no progress has been made and select the wrong action.

Unknown environments. If a robot worked in a new environment, the
outcome of any of its actions might be partially or completely un-
known. In this case the model used for the planning or the map-
ping in a reactive system may be wrong and ineffective. Experi-
ence collected in the past can be used by the robot to improve
the state-action mapping or the model of the environment, for in-
stance by means of reinforcement learning (App. A).

Real time requirements. The product space between state and action
is generally huge. Looking for the best action in case of planning,
or for the best mapping in the case of a reactive system, can take
too much time. This is usually a problem when the robot has to
operate in a critical environment where decisions must be taken
fast or where fast learning is desired.

18

CHAPTER 2. BACKGROUND

MRSs amplify these problems. Each robot must take care of the
others. From the point of view of each robot, the environment is more
dynamic because the other robots can change it by means of their ac-
tions. Each control system shall consider both the actual state of the
environment and all possible combinations of the states of the other
robots. This gives rise to a combinatorial increase of the state space
with the number of robots. Moreover, if no communication is used,
the states of other robots are unknown, hence the environment is only
partially observable. If communication is used, the capacity of the com-
munication channel can easily saturate with a high number of robots.

2.4 Examples of MRSs

The following examples show some of the problems and the solutions
that have been studied in the literature on MRSs. They show a sort of
“mainstream” approach for the design of MRSs on which we discuss in
the following section.
Goldberg and Matarić [2000] use Augmented Markov Models (AMMs)

to control the robots. An AMMs is a kind of Markov Chain that is
incrementally generated through node splitting in order to catch hidden
states. They use a foraging task to test their algorithm: robots have
to search the environment for different objects and retrieve them to
a predefined area (this task is described in more detail in Sec. 4.1).
The authors wanted to tackle the problem of dynamic environments.
They use in each robot several AMMs. Each of them is used to track
a different timescale. This feature is tested in environments where the
number of the items to retrieve changes during the experiments.
Matarić [1997b] addresses the problem of learning in a puck re-

trieval task when the state-action space is large. The dimension is dras-
tically decreased using behaviours instead of actions as basic blocks
of the decision process. Behaviours are goal-driven control laws that
achieve sub-goals and are not learnt during experiments. She uses a
reinforcement function that is the sum of three different components.
The first one takes care of internal events triggered by behaviour acti-
vations, like the collection or the dropping of pucks. The second one
considers the distance to neighbours and has a positive value when
it increases. The third one, initialised when a puck is grasped, gives
positive reinforcement when the distance to the home decreases while
carrying a puck.
In Matarić [1997a], the task is to learn social behaviours in order

to reduce interference among robots that is “an unavoidable aspect of
multi-agent interaction and is the primary impetus behind social rules”
[Matarić, 1997a, p. 192]. Reinforcement is composed again of three
parts. A progress estimator gives a reward whenever a progress toward
the immediate goal is done. The second reinforcement comes from the
observation and imitation of the behaviours of the others. Finally, a
third reward is given by other agents in order to share reinforcement
when involved in social interactions.
Balch and Arkin [1994] analyse the effects of communication in

19

CHAPTER 2. BACKGROUND

Figure 2.4: Pictures of sensor nodes. On the left a picture of a BTNode.
On the right, front and bottom of a MICA2DOT.

foraging and other tasks. Their conclusion is that communication
improves performances when little environmental communication is
available. However, it is not essential for tasks which include im-
plicit communication and the benefit of using complex communication
strategies instead of simple ones is small.
Other researchers have focused on issues related to multi-robot

planning. A plan is usually created in a centralised fashion and then
distributed to each robot to be executed, as in Bruce and Veloso [2002].
Their planning method is based on Rapidly-Exploring Random Trees
(RTT) and is used for navigation tasks. The planning algorithm ex-
pands a path one step from the current position to a goal or, with a
small probability, toward a random position. This algorithm has a good
performance when the application is as real-time constrained and dy-
namic as a RoboCup match.
Interesting forms of learning can be studied when the system is

composed of two groups of robots in competition. Riley and Veloso
[2002] try to learn the opponent’s strategies during a RoboCup match
to find a counter-strategy to apply. A centralised system keeps statis-
tics about the opponent’s positions and the ball movements to feed a
number of different opponent models. The best fitting one is then used
to plan the counter-strategy.
A recent research field studies a group of mobile robots interact-

ing with a Sensor Network (SN). A SN is made of a number of “sen-
sor nodes”, also known as “motes”. Sensor nodes are small embed-
ded systems, provided with their own power supplies, with the ability
of sensing the environment, processing data and communicating with
the neighbours via a wireless channel. Figure 2.4 shows two types of
sensors that were developed in recent years. Sensor networks can be
applied to several areas [Akyildiz et al., 2002]: military applications, en-
vironmental protections (e.g., flood or fire detection), health (e.g., moni-
toring of physiological data of patients in a hospital), home automation,
and so on (see Culler and Mulder [2004] for a general overview).
Systems made of mobile robots and sensor nodes are called Sen-

20

CHAPTER 2. BACKGROUND

sor/Actuator Networks (SANETs). The USC Robotics Research Lab was
probably among the first ones to study SANET [Sukhatme and Matarić,
2000]. The robots they use are called Robomotes [Dantu et al., 2005,
Sibley et al., 2002], but are provided with limited actuators. In fact,
they can be considered more as mobile sensors than robots, because
they can modify the environment only by moving. Chapter 6 deals with
SANETs. The reader can find in Sec. 6.1 more details about them.

2.5 Challenging the Traditional Approach

The previous examples of MRSs show something in common. Although
they differ in the applications and in the architectures of the con-
trollers, the algorithms are designed to learn, handle, and update a
model of the environment. The models were the AMM, topological map
of the environment, strategies of the opponent and so on. This ap-
proach has been recently questioned.
Researchers in robotics have looked into biological system to take

inspiration for their control algorithms. The reasons are easy to under-
stand. Some biological systems comprise many animals which have to
work together, exactly as in a MRS. The observed final behaviour of the
group is usually robust to changes in the environment. The animals
work in a distributed fashion and the resulting behaviour scales well
with the number of individuals involved. Moreover, the group can eas-
ily adapt to unknown environments. These are all precious qualities
that every researcher wishes for her/his MRS.
The next subsection describes some of the most important findings

in biological systems. We discuss how they can be applied in robotics
in Sec. 2.5.2.

2.5.1 Biological Systems and Self-organisation

Throughout its history, computer science has now and then tried to
apply ideas coming from biology and other natural sciences to its do-
main. We observed the birth of Genetic Algorithms, Cellular Automata
and Neural Networks, just to name a few. The same is happening with
robotics. In fact, Nature is full of examples of systems made of many
individuals that can collaborate with each other in order to achieve
complex behaviours. Such behaviours are often robust with respect
to changes in the environment. Moreover, the final result is usually
above the capabilities of the individuals. In this section, we are going
to briefly introduce and describe some of these biological systems.
These systems are instances of self-organising systems. Self-organi-

sation usually refers to a broad range of pattern-formation processes,
such as the stripes of zebras and tigers (Fig. 2.5) [Camazine et al.,
2001]. It is also used for sand grains assembling into rippled dunes,
chemical reactants forming swirling spirals and fish joining together in
schools.
A self-organising system is characterised by the following compo-

nents [Camazine et al., 2001]:

21

CHAPTER 2. BACKGROUND

Figure 2.5: Examples of self-organised pattern. Images copied with
permission from Camazine et al. [2001].

Positive feedback: it occurs when small perturbations of the system
change its dynamics in such a way as to increase the perturba-
tions themselves. The feedback leads to a snowball amplifica-
tion of the original perturbations. Perturbations can come from
changes in the environment or by some random behaviour of the
system.

Negative feedback: it is the opposite of the positive process feedback.
Perturbations of the system changing its dynamic have the effect
of reducing the causes of the perturbations. In self-organising
systems, it usually starts having effects after positive feedback
and has the purpose of keeping the system under control. Without
negative feedback, a system can literally explode.

Information gathering from one’s neighbours: individuals in a self-
organising system are usually unable to perceive all the environ-
ment and act solely on the base of the information they can collect
from the local neighbourhood. For instance, a fish in a school fol-
lows the direction of the fish immediately around it.

Information gathering from work in progress: if the individuals are
involved in a collective effort, as a colony of termites building a
nest, stimuli coming from the emerging structure can be a source
of information for the individuals. Such form of communication
is called stigmergy and was proposed for the first time by Grassé
[1959]. Stigmergic communication explains why social insects,
for instance, are able to build structures as complex as their nest
without a central instance directing the work.

Turing [1952] explained how patterns like those in Fig. 2.5 can
emerge. He proposed an interaction between two chemicals, a reactant
and an inhibitor, which diffuse at different speeds. The most important
point of his theory is that the system is not at equilibrium. The result
is locally determined by the concentration of the two chemicals. The

22

CHAPTER 2. BACKGROUND

equation that Turing proposed are now known as Reaction-Diffusion
equations.
Self-organisation is found in cells as well as in the behaviours of

animals. We cited above the case in which termites build their nest.
It occurs also in other building processes by other animals, such as
ants (Fig. 2.6(a) and 2.6(b)). Ants of the family Leptothorax albipennis
colonise crevices in rocks. They do not have therefore to build a roof or
a floor for their nest, but they build a wall around the brood using sand
grains, leaving a small entrance. The area surrounded by the wall is
proportional to the size of the colony, and it is adapted if some of their
nest-mates are removed. Additionally, these ants can adapt the shape
of the wall to the cavity and exploit, for instance, partial walls made of
rocks [Camazine et al., 2001]. Two are the main behaviours involved
in this process. First, ants collect sand grains and bring them near
the brood, depositing them with higher probability where more grains
are already present (this is an example of stigmergy). Second, the ants
inside the nest push the grain outwards. The probability of each ant
both of depositing a grain and of picking it up increases with the grain
density (positive feedback). There is also an additional effect, given by
the pheromone emitted by the brood in the centre. The pheromone
concentration decreases when moving away from the brood. Ants have
a higher probability of dropping their grains if this concentration is
small. All these factors, combined together, are enough to explain the
pattern observed in Fig. 2.6(a).
Similar procedures, in which the action of an individual depends

only on what it perceives in its neighbourhood, can also be used to
simulate the construction process of, for instance, a wasp nest. The
results are shown in Fig. 2.6(c) and are explained in detail by Camazine
et al. [2001].
Self-organisation appears also in case of aggregation of animals.

Ants can, for instance, form chains to reach a target far away or to
pull together leaves for their nest (see Fig. 2.7).

2.5.2 Swarm Robotics

The word self-organisation has been used more and more often in com-
puter science and lately also in robotics. It is at the base of Swarm
Intelligence (SI) [Beni and Wang, 1989, Bonabeau et al., 1999]. SI
can be described as “any attempt to design algorithms or distributed
problem-solving devices inspired by the collective behaviour of social
insect colonies” [Bonabeau et al., 1999]. Martinoli [2001] points out
that the SI approach emphasises “parallelism, distributedness, and ex-
ploitation of direct (agent-to-agent) or indirect (via the environment)
local interactions among relatively simple agents”. SI depends on de-
centralised local control of a large number of simple agents. The role
of the environment is stressed, although this environment is usually
virtual rather than real. A swarm intelligence system will contain no
explicit model of the environment, individual agents can both receive
information about the environment and act on that environment to

23

CHAPTER 2. BACKGROUND

(a) Leptothorax albipennis
ants building a circular
wall using grains of sand.

(b) Closeup on Leptothorax albipennis

ants while building the wall.

(c) Simulation of collective building using cubic and hexagonal 3D
lattices.

Figure 2.6: Examples of self-organised collective building. Images
copied with permission from Camazine et al. [2001].

24

CHAPTER 2. BACKGROUND

Figure 2.7: Example of self-organised aggregation. Images copied with
permission from Camazine et al. [2001].

25

CHAPTER 2. BACKGROUND

change it.
When applied to robotics, SI is referred to as Swarm Robotics (SR).

This definition might however be criticised, because there are a “pleth-
ora” of definitions of SR “often with vague and overlapping meanings”.
The quotes are from Dorigo and Şahin [2004] that propose some cri-
teria to label a work as belonging to SR: (i) should aim for scalability
and should be relevant for the coordination of large numbers of robots;
(ii) should consist of a small number of homogenous groups, each con-
taining a large number of members; (iii) should be based on robots that
are ill-equipped to carry out tasks on their own and that perform better
when they cooperate; and (iv) should be based on robots that should
have only local and limited sensing and communication ability.
We have to point out that the characterisation of self-organisation

given in Sec. 2.5.1 is only one of the possible. Self-organisation can
be found also in physics, mathematics and chemistry. Every discipline
has its own description of self-organisation, which can be slightly dif-
ferent from the others. For instance, stigmergy does not play an impor-
tant role in the examples of SR that we describe later. We chose to give
the biological definition because biology is the source of the algorithm
studied in Chap. 4.
Control algorithms in SR are very simple and do not use complex

representations of the environment or of the other robots (compare this
approach to a Partially Observable Markov Decision Process (POMDP),
as described in App. A). Achievement of a task is solely based on
inter-robot interactions. Attention is more on robot–robot and robot–
environment interactions than on the control systems, which are con-
sequently mostly reactive. The use of probabilistic decisions is also
common, and the communication is mostly indirect.5

The main advantage of SR, among those listed in the literature, is
that the control architecture of the robot is scalable and can be used
both for a few or thousand units. This leads to robust behaviour of the
group, because robots can be easily added and removed and because
of the redundancy of the units. Moreover, since the control algorithms
do not depend on a detailed model of the environment and of the oth-
ers, the group of robots can easily adapt to unknown and dynamic
environments.
It should be noted that other works in the literature have a similar

approach, but they refer to themselves as Minimalist Robotics [Jones
and Matarić, 2003, Wilson et al., 2004]. They use a minimal design for
both the robots and the control algorithms, as in SR. They also stress
the importance of the interactions among robots and with the environ-
ment. Researchers are still debating about the differences between the
two fields. The main difference seems to be that the minimalist ap-

5There is still a lot of debate on how to define and classify the different forms of com-
munication. We use the term “indirect” communication, which is unfortunately all but
well settled and defined. By “indirect” communication we mean that there is nothing in
the robots’ program that an observer can interpret as an act of transmitting information
to other robots. In the experiments of Chap. 4 and following, robots use neither wireless
or infrared communication nor signalling. Nevertheless, they do communicate by mod-
ifying the environment—for instance, by retrieving a prey. The information is hidden in
this modification, and thus not “directly” available.

26

CHAPTER 2. BACKGROUND

proach does not stress the biological inspiration. In the following, we
present some of the most representative works coming from both fields
without making any distinction. The issues addressed by both fields
are important in the context of this thesis.
Kube and Zhang [1996] describe a box pushing system in which a

number of robots move boxes to a goal location. Kube and Bonabeau
[2000] further explore the same task, and its relationship to the co-
operative transport of prey performed by ants. When cooperatively
transporting prey, ants show realigning and repositioning behaviours.
These same behaviours were adapted for use with robots, to overcome
the stagnation that can result from several robots pushing the object in
different directions. The system relies on the robots being phototropic,
and hence attracted to the brightly lit goal. The approach of these stud-
ies differs from earlier approaches to box pushing that used a combi-
nation of centralised planning, conflict resolution and explicit commu-
nication between robots to coordinate their actions (e.g., Mataric et al.
[1995]).
Holland and Melhuish [1999] used groups from six to ten physical

robots in their experiments, which consisted in clustering pucks of two
different colours. The robots were programmed with a fixed set of be-
haviours, they used no memory and no communication. They had no
means of self-localisation either. They wandered in the arena avoid-
ing obstacles, and they picked up pucks when they encountered them.
They dropped their load if they encountered another puck. The authors
demonstrated that the robots were able to cluster the pucks in groups.
Then, they augmented the robots’ behaviours with a “pull back” rule
that was differentially applied, depending on the colour of the puck the
robot was carrying. The pull back rule required the robot to pull pucks
of one colour back for some distance before releasing them. The ef-
fect of its application was that the pucks were sorted such that those
to which the pull-back rule applied formed an annular ring around a
central cluster of the other frisbees. The result was that frisbees scat-
tered across the arena were collected up by the robots, and sorted into
clusters of different colours, even though the robots were only follow-
ing simple local rules. Holland and Melhuish address the problem of
over-crowding by measuring the number of collisions between robots
because they are “responsible for the large deterioration in performance
when the number of robots [is] increased beyond a small limit” [Holland
and Melhuish, 1999, p. 181]. They analyse the system by looking at the
qualitative and quantitative effects of parameter changes in the con-
trol algorithm. The interested reader is referred to the original paper.
Their work was recently continued by Wilson et al. [2004]. These works
demonstrate that sorting and clustering can be achieved by a group of
simple, autonomous and reactive robots that can communicate via the
environment.
Krieger and Billeter [2000] show an example of bio inspired divi-

sion of labour (see Sec. 4.1). They use the activation-threshold model
[Bonabeau et al., 1996], coming from the biological literature to explain
the division of labour in animal societies. According to this model, there
are stimuli associated with tasks (e.g., the larval pheromone concentra-

27

CHAPTER 2. BACKGROUND

tion for the task of feeding) and “individuals start to become engaged in
task performance when the level of the task-associated stimuli exceeds
their threshold” [Bonabeau et al., 1997]. In the experiments by Krieger
and Billeter, the robots have to collect items and bring them back to
the nest. Each item helps to increase the level of “nest energy”. Robots
search for items when the level of nest energy is below a threshold. The
thresholds are assigned at the beginning and do not change during the
experiments. The results show that the group of robots can allocate
tasks efficiently also in noisy environments.
Melhuish et al. [2001] did experiments in patch sorting. It is a form

of clustering where more than one type of object is present in the arena.
The goal is to have one cluster for each item class in the environment.
They show that a simple 4-rule behaviour implemented by a swarm of
robots can achieve the task. They observe that the performance of the
system decreases with the number of classes of objects to cluster and
that the time to complete the task is minimal when four classes are
used.
Agassounon et al. [2001] and Agassounon and Martinoli [2002] ad-

dress the problem of task allocation in a colony. The task is the clus-
tering of small cylindrical pucks. They try three different algorithms.
The first one uses two timers to synchronise robot activities. Robots
search for a maximum time of Tsearch, after which they rest for Trest. The
counter for the search phase is reset when a new puck is found. In
this way, workers can estimate the local density of items, and if this is
too small they rest, decreasing the total number of workers. The values
for Tsearch and Trest are fixed and therefore the algorithm is not robust
with respect to changes in the environment. Moreover, environmen-
tal conditions must be known a priori to use optimal values for Tsearch

and Trest. The authors then developed an auto-calibrating system. At
the beginning, each robot measures the mean time it takes to find a
puck, and then adapts its Tsearch using this statistic. A third improve-
ment is achieved allowing the robots to communicate their estimations
to neighbours, which can use this information to improve the value of
Tsearch.
Ijspeert et al. [2001] showed how robots can collaborate in order to

pull a stick out of a hole without using communication. The behaviour
of the robots is characterised by a gripping time parameter (GTP), which
sets the time to wait for help from other robots. Li et al. [2002, 2004]
proposed an adaptation algorithm to adjust the GTP in order to im-
prove the collaboration rate. They tested it only in simulation and in
an extended version of the problem where k robots are needed. This
algorithm is discussed in more detail in Chap. 5.
In Jones and Matarić [2002, 2003], robots have to collect items of

different colours and in a predefined sequence. Two control algorithms
were implemented. The first one is based on timers connected to each
item colour. If too much time has passed without any item of one
colour found, robots focus on the next colour. The second algorithm
is probability based. Each robot has associated probabilities to ignore
items of a given class or to drop them before reaching the home region.
As the reader has probably already noted, what these examples have

28

CHAPTER 2. BACKGROUND

in common is the simplicity of the control algorithms with respect to
the complexity of the task. The drawback of the simplicity is often the
performance of the group. Let us take for example the patch sorting
problem. A group of robots with perfect knowledge of the environment,
of the number and the types of items and of the activity of the other
robots can achieve the result in optimal time.

29

CHAPTER 2. BACKGROUND

30

Chapter 3

Experimental Tools

The work presented in the next chapters was carried out using several
tools. We describe them in this chapter, instead of talking about them
wherever they were used. The information that follows is more tech-
nical than scientific. If the reader wants to get informed immediately
on the scientific contributions of our work, she/he can skip to the next
chapters. We think however that it is more complete if we also describe
our work tools, because we invested a considerable amount of time in
their development.
We are not going to give many details. Most of the tools were already

described somewhere else. We only report the features that might be
interesting and useful to better understand the next chapters. There
is only one exception. Section 3.3 describes a new hybrid simulator,
called BARAKA, that we developed for the experiments of Chap. 6. To
the best of our knowledge, there is not yet a simulator like ours, and
thus we provide all the details that are required to understand its fea-
tures.
Section 3.1 describes the real robots used in this thesis for experi-

ments, theMindS-bots. Section 3.2 introduces the concept of rigid-body
simulations. It is used by the software libraries that were employed to
develop the robot simulator of Section 3.2.1, 3.2.2 and 3.3.

3.1 The MindS-bots

The MindS-bot (Fig. 3.1 and 3.2) are real robots, created using Lego
MindstormsTM. The advantage of Lego is that it allows a faster proto-
typing phase because it is composed of modular pieces easy to connect
to each other. The disadvantage is the mechanical reliability, given the
type of plastic used by Lego. The robots need frequent maintenance
because of the elasticity of and the connections between some of its
components.
The processing unit is an Hitachi H8300-HMS 1 MHz microproces-

sor with 32Kb RAM and an on-board ROM. The processor is embedded
in the central top block of the MindS-bots. The block has also three in-
puts for the sensors and three outputs for the motors (used for the two

31

CHAPTER 3. EXPERIMENTAL TOOLS

Figure 3.1: A picture of a realMindS-bot (left) and a computer generated
view (right). See the text for more details.

(a) Top view of an MindS-bot. The blue
bricks are light sensors. The gripper
arms are half opened to have an idea
of the grasping area. The front bumper
takes less space on the horizontal axis
than the back one in order to permit an
easier grasping of prey.

(b) Side view of an MindS-bot. Tracks
do not occupy vertical space that can be
used by the gripper when it is open.

Figure 3.2: Computer generated views of an MindS-bot.

32

CHAPTER 3. EXPERIMENTAL TOOLS

Figure 3.3: Details of the traction system. The gripper’s arms can be
placed over the tracks when the gripper is open. A small reduction
in the transmission between the motors and the tracks allows for a
stronger traction at the cost of a slower speed. The parts of the robots
that are not of interest are transparent. The small picture on the bot-
tom right corner shows the perspective of the MindS-bot.

tracks and for the gripper). The front part of the MindS-bots features
also an Infra-Red receiver and transmitter. The latter is used to down-
load the program on the robots and to upload the data collected during
the experiments. It could also used for robot-to-robot communication,
but this feature is not used in this thesis.
When we built the robot, we had to face some mechanical issues that

were important for the experiments in prey retrieval of Chap. 4 and 5.
For instance, the robot should be strong enough to pull a prey, and it
should have a strong gripper not to lose it. The following subsections
detail more the MindS-bot ’s components.

3.1.1 Traction

The MindS-bot uses tracks to move on the ground (Figure 3.3). They
offer a good compromise between traction power and space compact-
ness. Tracks allow a good traction because of a high friction with the
ground. Moreover, the gripper’s arms can be placed over them when
the gripper is open, as can be noticed in Figure 3.1 and 3.3. Low arms
allow to have a more stable and resistant grasp, but it is important that
arms do not protrude too much from the MindS-bot ’s shape in order to
reduce the danger of getting stuck into other objects.
A reduction between the motors’ and the tracks’ gears increases

the traction power, although it slows down the MindS-bot. However,

33

CHAPTER 3. EXPERIMENTAL TOOLS

Figure 3.4: Details of the gripper. The series of gears create a reduction
which is strong enough to block the gripper. The parts of the robots
that are not of interest are transparent. The small picture on the top
left corner shows the perspective of the MindS-bot.

its speed is still about 12 cm/sec, which is considered enough for the
experiments.

3.1.2 Gripper

Two arms, placed symmetrically with respect to the centre of the robot
and actuated by the same motor, form the gripper (Figure 3.4). The
movement is controlled by a motor, whose pulley is connected by an
elastic ring to an axle at the bottom of the MindS-bot. The rotation of
the motor is transmitted to a worm screw placed on the other side of
the axle. The worm screw is connected to the two arms by means of a
series of gears. The centres of rotation of the arms result to be nearly
at the front end of the robot, increasing the area in which a prey can
be grasped.
The series of reductions, especially with the endless screw, allows

the gripper to be strong and fix in a position. However, the arms are
not completely blocked because of the mobility between gears. Having
more gears in a series amplifies this phenomenon, which results that a
MindS-bot might lose a prey while pulling it.
The rubber connecting the two pulleys is also used to prevent dam-

ages to the motor. If the gripper is stuck and cannot move, the rubber
will slide over the pulley, allowing the motor to rotate freely.

3.1.3 Sensors

MindS-bots perceive the environment by means of two light sensors and
two bumpers. The front light sensor (the blue brick on the top-right of

34

CHAPTER 3. EXPERIMENTAL TOOLS

Figure 3.5: Details of the sensors. Light sensors are on the top to
reduce problems with the shadows of other MindS-bots. The back touch
sensor is pressed when the back lever is pushed against the MindS-bot.
When the front whisker is pressed, an axle connected to it pushes the
button of the touch sensor that is placed under the robot. The parts of
the robots that are not of interest are transparent. The small picture
on the top left corner shows the perspective of the MindS-bot.

Figure 3.5) is used to sense the prey. The back light sensor (top left
of the same picture) is used to search for the nest, identified by a light
source in the experiments of Chap. 4 and 5. The front and back touch
sensors are activated respectively by the movement of the back lever
and by a pressure on the front whisker.
We recall that the processing unit of the MindS-bot has only input

for three sensors. In order to use all four sensors, two of them have to
share the same input. We connected the back bumper and the front
light sensor to the same input. The back bumper is only useful when
the MindS-bot moves backward. We see later (Sec. 4.5) that the MindS-
bot move backwards only when it comes back to the nest or when it
is retrieving a prey. In these cases, the robot is not interested in prey
anymore and it does not need to use the front light sensor.

3.2 Rigid-body Simulation

Rigid-Body simulation is a simulation framework that has become more
and more popular in robotics, but also in other fields of computer sci-
ence, like computer games. It basically consists in simulating the New-
tonian physics of body movements. The increase popularity is due to
the realistic simulations that can be achieved, but also from the in-
creasing computational power of nowadays computer.
There are several software libraries that simulate rigid bodies. We

used VortexTM 1 and Open Dynamics Engine (ODE)2 in our work. Vor-

1http://www.cm-labs.com/products/vortex/
2http://www.ode.org

35

http://www.cm-labs.com/products/vortex/
http://www.ode.org

CHAPTER 3. EXPERIMENTAL TOOLS

texTM is a commercial product, ODE is open source. They work how-
ever approximately in the same way.
The libraries provide primitives to define a body by its mass, mo-

mentum of inertia, initial position and velocity. Different bodies can
be attached to each other through a number of joints: free, extensible,
hinges, ball&sockets, and so on. Each body can also have more geome-
tries attached to it, which are used to give a shape to the body. The
libraries offer also primitives to apply forces and torques to the body
(as a motor does on the wheel of the car).
Additionally, VortexTM and ODE offers two very important functions.

The first one takes the state of the environment at time t and computes
the new state at time t+ ∆, where ∆ is a user defined parameter. This
function integrates the equation of motion and returns the solution at
time t + ∆. The second function checks whether any two objects are
colliding. If it is the case the function introduces new forces between
the objects in order to avoid the penetration of the bodies. The latter
function is also used to compute friction at the contact points. In this
way, if we apply a torque to the hinges that connect four spheres to a
parallelepiped, and the spheres touch the ground, we can simulate the
wheels of a car on a road.
It is up to the user to set up the objects correctly and to iteratively

call the two functions to advance the simulation. Between two calls to
the integration step, the program can perform whatever task it needs
to do. It can change, for instance, the torque applied to some robots’
wheel in order to avoid an obstacle.
An example can clarify these concepts. In Chap. 6 we need to sim-

ulate Robertino robots.3 Robertino is a three-wheeled omnidirectional
robot, with six infrared sensors around the body and an omnidirec-
tional camera. Figure 3.6 shows the robot and the detail of one of its
wheels. It is a Swedish wheel, which allows the robot to have a strong
grip in the direction of the rotation of the motor, but a nearly null fric-
tion along the axis of the motor. Three such wheels grant the robot
the capability to reach every configuration (position plus rotation) on a
plane.
Figure 3.7 illustrates how we simulate the Robertino robot with

ODE. Wheels are simulated with three spheres. The spheres are con-
nected to the main body through three hinge joints. The main body of
the robot is placed in the centre of mass. The robot is approximated by
two cylinders (two geometries) linked to the main body. Weight of the
body and dimensions of the geometries are the same as those of the
real Robertino. The hinges are free to turn around the radial axes. The
motors of the robot are simulated by applying torques to the spheres
along the rotational axes.
ODE allows to specify two friction coefficients for each geometry.

We set very low friction between wheels and ground in the direction of
the radial axes and high friction in the perpendicular direction, that is,
the direction in which the wheel turns. This can effectively simulate a
Swedish wheel.

3http://www.openrobertino.org/

36

http://www.openrobertino.org/

CHAPTER 3. EXPERIMENTAL TOOLS

(a) Robertino (b) Close-up
on one of the
three Swedish
wheels

Figure 3.6: Picture of a Robertino robot.

3.2.1 MindS-miss: a MindS-bot Simulator

MindS-miss was developed to simulate the MindS-bots. It is based on
ODE and simulates a dynamical model of the MindS-bots, with its
mass, maximal velocity, inertia momentum, and so on. The model
is not a perfect replica of the MindS-bots because it would make the
simulation too slow. Only the most important feature are simulated,
as shown in Fig. 3.8. Each robot was modelled with a limited num-
ber of bodies and geometries: main body, front and back bumpers and
six wheels (a replacement of the tracks, three at each side of the main
body). When the robot’s controller decides to move, MindS-miss applies
a torque to the six wheels to let them move.
The simulation of the gripper is somewhat simplified because it is

obtained creating a temporary joint between the robot main body and
the grasped object. The MindS-bots can not grip immediately, because
of the time it takes to move the arms. MindS-miss simulates this by
introducing a delay between the command to close the gripper and the
creation of the joint.
The simulator was developed following the indications of Jakobi

et al. [1995]. The authors discuss in this paper how to create reliable
simulator. A simulator is considered reliable if a controller developed
only in simulation can be used as it is also on the real robot. This
includes reliable simulation of the sensors and of the actuators.
We used the sampling technique to obtain a reliable model of the

two light sensors. We sampled sensor readings in the real environ-

37

CHAPTER 3. EXPERIMENTAL TOOLS

(a) (b)

(c) (d)

(e)

Figure 3.7: This sequence shows how the Robertino robots (Fig. 3.6) is
built and simulated in ODE. (a) We take three spheres which simulate
the wheels. (b) We define a body with the same weight of the real robot,
and attach two cylinders to it. The dimension of the cylinders follows
that of the real robot. (c) The wheels are connected to the main body
through three hinges like the one depicted in (d). The first axis of each
hinge is blocked, so that the second axis, the one around which the
sphere rotates, points toward the centre of the robot. Two different
friction coefficients are defined for each wheel: a small one for the
direction along the line that connects the centre of the robot to the
wheel, and a big one for the perpendicular direction. In this way we
can efficiently simulate the Swedish wheels of the robot. The resulting
simulated object is shown in (e).

38

CHAPTER 3. EXPERIMENTAL TOOLS

Figure 3.8: A simulated MindS-bot is a simplified but physically accu-
rate version of the original one. Six cylinders are used to simulate the
tracks. The gripper is simulated by a sticky plate on the front, which
works also as bumper. When the plate touches a prey, MindS-miss sim-
ulates the gripper by dynamically creating a joint between prey and
robot.

ment for a robot in front of an object. The samples were collected
for different distances and orientations. We compiled a look-up table
with the data. When the controller requires a sensor reading, MindS-
miss finds in the respective look-up tables the readings to pass to the
specific controller. If the information is missing for a particular orien-
tation/distance pair, MindS-miss interpolates the data from the nearest
data points. A random noise is then added to the value. Noise is also
added to the wheel speed requested by the controller before applying
the torque to the wheels.

Parameters that were not easily measurable, such as the coefficient
of dynamic friction between two objects or the exact speed of the tracks
of the MindS-bots, were reasonably guessed and then hand-tuned in
order to obtain the same physical behaviour of the MindS-bots.

The resulting simulated environment is depicted in Fig. 3.9. Visual
rendering was not used during the experiments. A render was however
available to visually control the behaviour of the robots. The render is
based on OpenGL4 libraries.

More details about the implementation of MindS-miss can be found
in Cirillo [2005].

4http://www.opengl.org/

39

http://www.opengl.org/

CHAPTER 3. EXPERIMENTAL TOOLS

Figure 3.9: A group of six simulated MindS-bots in their starting posi-
tions, at the beginning of an experiment. The black cylinder is a prey.

3.2.2 swarmbot3d: an S-bot Simulator

swarmbot3d was developed by the members of the SWARM-BOTS proj-
ect.5 The project aimed at studying new approaches to the design and
implementation of self-organising and self-assembling artifacts, called
s-bots. The s-bots (Fig. 3.10) are small autonomous robots, capable of
moving in and sensing the environment, and with some small capabil-
ities of changing it. They can however join together and form a bigger
structure, called swarm-bot [Mondada et al., 2004]. In such formation
they can overcome limitations of their structure and achieve task that
are beyond the capability of the single robots.
An s-bot has fifteen infrared sensors around its main circular body,

eight light sensors and eight triplet of red-blue-green LEDs. There are
four additional infrared sensors on the bottom, between the tracks.
The cylinder on the top holds the mirror for an omnidirectional camera,
and near to it there are two speakers and four microphones. Finally,
it also has two accelerometer to know its inclination and two tempera-
ture/humidity sensors.
Two motors move the tracks independently, and another let the cir-

cular body rotate around the vertical axis. One gripper on the front
allows connection with other s-bots. The gripper is strong enough to
lift another s-bot. Another gripper on the side, fixed on an actuated
arm, allows for looser connections with the others. The microprocessor
is an XSCALE, with 64MB RAM, running Linux. Wireless communica-
tion is used to transfer the program and data to and from the robots.
swarmbot3d is based on Vortex. It allows the user to choose between

different models to be simulated, ranging from a very simple one to a
highly detailed one (Fig. 3.11), which is nearly a perfect replica of the
real s-bot. Obviously, there is a trade-off between the detail level and
the simulation speed. When simulating many s-bots using the detailed
model, the simulation can be slower than reality.

5http://www.swarm-bots.org

40

http://www.swarm-bots.org

CHAPTER 3. EXPERIMENTAL TOOLS

Figure 3.10: Picture of an s-bot.

The design of swarmbot3d followed the same criteria as MindS-miss
to obtain a reliable simulation.

3.3 BARAKA: a SANET Simulator

When we were looking for a Sensor/Actuator Network simulator to use
for the experiments in Chap. 6, we found ourselves in front of a serious
problem: there is no simulator for SANETs. Or better, there is no
simulator that takes equally care of both the networking of the nodes
and the realistic movements of the robots. The simulators described
so far, for instance, are realistic for what concerns the physics and the
movements of the robots in the environments. If we wanted to simulate
also wireless communication between them, this would be no easy task.
The simulators lack an efficient way of simulating the physical layer,
the medium access layer, and the networking layer. These are needed
if we want to implement new algorithms that work on the networking
of the robots.
The networking community already offers good tools to simulate the

protocol behaviour needed for inter-nodes communication, but the en-
vironment is often grossly modelled. We decided to take one of these
network simulators and extend it in order to accurately simulate also
the movements of the robots using ODE. The resulting simulator,
called BARAKA, is, to the best of our knowledge and at the moment
of writing, the only simulator that accurately simulates both the net-

41

CHAPTER 3. EXPERIMENTAL TOOLS

(a) Picture of all the models that can be simulated with swarmbot3d.

(b) Close-up on the detailed simulated model.

Figure 3.11: Models of simulated s-bots.

42

CHAPTER 3. EXPERIMENTAL TOOLS

working and interactions with the environment. For this reason, we
are going to detail it more than the simulators above.
The following section describes the features of the network simulator

from which we started our work. Then, we describe how we joined the
network simulation with ODE.

3.3.1 OMNeT++

From http://www.omnetpp.org/:

OMNeT++ is a public-source, component-based, modular
and open-architecture simulation environment with strong
GUI support and an embeddable simulation kernel. Its pri-
mary application area is the simulation of communication
networks and because of its generic and flexible architec-
ture, it has been successfully used in other areas like the
simulation of IT systems, queueing networks, hardware ar-
chitectures and business processes as well. OMNeT++ is
rapidly becoming a popular simulation platform in the sci-
entific community as well as in industrial settings.

OMNeT++ is a discrete event simulator. It simulates modules that
can send messages to each other if they are connected through chan-
nels (Fig. 3.12). Modules, channels and messages are implemented
as C++ objects. Each message represents an event and is stored in the
scheduler of OMNeT++. The simulator, after having initialised the mod-
ules, takes the first event in the list and delivers it to its destination.
The delivery occurs by calling a method of the module and giving the
message as parameter. The module processes the event, then the con-
trol returns to the simulation kernel, which takes the following event
in the list. Modules can send messages to others (if they are connected
through a channel) or to themselves (in this case they mostly simulate
internal timers). A delivery time is associated to each message and
determines its position in the scheduler list.
An example helps to better understand. Let us take the module

comp[0] in Fig. 3.12, which simulates a computer connected in a Token
Ring topology with the other computers. Let us suppose that the com-
puter sends a message to its neighbour (comp[1]) every 30 s. What hap-
pens is summarised in Fig. 3.13. During the initialisation phase, the
module that simulates comp[0] schedules a message for itself at time
0 s, that is, at the beginning of the simulation. When the simulation
starts, the scheduler of OMNeT++ takes this message out of the list,
and delivers it to the module comp[0]. The module is waken up by this
message and prepares a message to be sent to comp[1]. Then comp[0]
sends the message, that is, calls a function of OMNeT++ to store the
message in the schedule list. Given the length of the message, the
speed of the connection between the computers and the current status
of the channel (busy or free), OMNeT++ calculates the delivery time of
the message to comp[1]. After having sent the message, comp[0] sends
another message, but this time to itself and specifying that the arrival

43

http://www.omnetpp.org/

CHAPTER 3. EXPERIMENTAL TOOLS

Figure 3.12: Examples of modules and channels in OMNeT++. Modules
can receive and send messages through connections.

44

CHAPTER 3. EXPERIMENTAL TOOLS

Figure 3.13: UML sequence diagram of the OMNeT++ simulation ker-
nel. The left bar represents the simulation kernel, the other two the
objects that simulate the computers in the Token Ring network of
Fig. 3.12. The continuous-line arrows from one bar to another rep-
resent normal C++ methods call. The parameters of the calls are those
between brackets. For instance, scheduleAt(0s, timer) sched-
ules the message timer to be delivered to the calling module at time
0 s. send(gate 1, msg) send the message msg through the chan-
nel connected to the first gate of the module. The simulation kernel
checks who is connected to the other end of the channel and delivers
the message accordingly. Dashed lines show when a module returns
the control flow to the caller.

45

CHAPTER 3. EXPERIMENTAL TOOLS

time should be 30 s later. When the module has finished, OMNeT++
processes the next message in the list.
The simulation continues till there are no more messages to be de-

livered or till a specified time limit has been reached. The current sim-
ulated time is the time of the message that is being processed, thus it
might advance with big steps if nothing is supposed to happen in the
meanwhile, or it might not advance at all, if the simulator is process-
ing two concurrent events. Here comes the definition of “discrete event
simulator”.
OMNeT++ has several other nice features, like a scripting language

and a very useful GUI, but this is not the place to discuss about them.
We want only to mention two facts, because we need them later. First, a
module in OMNeT++ can be a compound module, made of several sub-
modules. Each sub-module can communicate with the sub-modules
of the same module, or can be connected with the parent module. A
message sent from a sub-module to the parent module is in fact sent
to the outside, and can thus reach other modules in the simulation.
Secondly, modules can communicate also using the standard C++ way,
that is, by direct calls of each other methods (this last way is in fact
more efficient that using messaging).
Networks are probably the best systems to be simulated in this way,

but OMNeT++ can be used to simulate other systems as well. It is in
fact more a simulation framework than an actual simulators. Many
other details must be implemented in order to simulate, for instance,
mobile networks and SANETs.
The networking community has developed a number of additional li-

braries to be used with OMNeT++. For instance, the “INET Framework”
implements all the IP/TCP communication mechanisms. For our work,
we used the “Mobility Framework (MF)”.6

The MF takes care of placing the simulated hosts in the environ-
ment. A special module, the channelcontrol module, connects hosts
that could theoretically communicate with each other (Fig. 3.14). After
every movement of any host, the channelcontrol updates its connections
according to the new position.
Each host is simulated as a compound module. It contains five other

modules (Fig. 3.15(a)). Three of them simulate the standard networking
layers: application layer, networking layer and physical transmission
device (the NIC). There is an additional module to update the position of
the host in the OMNeT++ arena (mobility), and a blackboard for cross-
layer communication. The working of the application and network layer
are explained in more detail in Chap. 6 and below. We focus now on
the NIC module, which is another compound module (Fig. 3.15(b)).
We see in Fig. 3.15(a) that the NIC module is the one connected to

the parent module, that is, it is the one that receives messages from
outside. Being it another compound module, the message reaches first
the snrEval module (Fig. 3.15(b)). The purpose of the snrEval mod-
ule is to evaluate the signal-to-noise ratio of the incoming packet. The
snrEval receives all the message immediately, as if it was sent with infi-

6http://mobility-fw.sourceforge.net/

46

http://mobility-fw.sourceforge.net/

CHAPTER 3. EXPERIMENTAL TOOLS

Figure 3.14: Snapshot of a simulation using the Mobility Framework.
Several mobile hosts, represented with the icon of a laptop, are spread
in the environment. Nodes are connected to those hosts which could
theoretically receive their messages. According to the simulated power
transmission, their position and the characteristics of the environment,
the channelcontrol module (top left) takes care of updating the connec-
tions between modules.

47

CHAPTER 3. EXPERIMENTAL TOOLS

(a) Architecture of the modules
that simulate mobile hosts.

(b) Details of the NIC
layer.

Figure 3.15: Implementation of a mobile host in the Mobility
Framework. Any mobile host is simulated using five different mod-
ules (left). Three of them (on the left of Fig. 3.15(a)) take care of the
simulation of the physical transmission device (the NIC), the network
layer and the application layer. One module (bottom right) controls the
position of the host in the simulated environments. The last one (top
right) is a blackboard that is used for cross-layer communication. On
the right, we see that the NIC layer is also a compound module, made
of a signal-to-noise-ratio evaluator, a decider and the MAC layer. See
the text for a description of the functions of all modules.

48

CHAPTER 3. EXPERIMENTAL TOOLS

nite speed. After the arrival of the message, it changes into a “receiving”
state. Knowing the length of the message and the transmission speed
of the other nodes, the snrEval schedules a timer for itself when the
real transmission should be concluded. Whatever other message might
be received in the meanwhile is considered just noise and decreases the
signal-to-noise ratio. The snrEval does not discard messages, but just
records the level of noise during the transmission. When the transmis-
sion is over, the message is pushed up to the snrDecider module.
The snrDecider receives the message and the signal-to-noise ratios

measured by the snrEval during the transmission. If the noise was
too high the packet might be dropped. The reason for decoupling the
receiving process in two parts in motivated by the fact that in the snrDe-
cider it is possible to implement some form of error correction mecha-
nisms.
If the snrDecider decides that the message is valid, it is pushed up

to themac module, which takes care of the medium access control pro-
tocol in use. The mac is also connected to the NIC compound module,
thus the mac can receive and send messages to the network layer. In
case the mac receives a message from the network layer, it is pushed
immediately to the snrEval (if it is not currently busy with another
transmission) for sending. In this case the snrDecider is not useful.
We described the MF to give the user the feeling of how detailed

a simulation with OMNeT++ can be, and also to let her/him under-
stand better how discrete event simulators work. For this thesis, we
modified only the application and the network layers, the upper ones,
and used what was already available in the community for the lower
layers. Namely, we used an already implemented simulation of the
IEEE 802.11 protocol for wireless communication. Network and appli-
cation layer are described in Chap. 6.

3.3.2 Integrating ODE into OMNeT++

To integrate the two different types of simulation, we decided to port
ODE inside OMNeT++. The integration takes two steps: first, imple-
ment a module that simulates the physical environment and that takes
care of calling the integration and collision detection steps of ODE; sec-
ond, allow the hosts to interact with this module (e.g., to check whether
there are obstacles to be avoided).
We created a new module called odesim (Fig. 3.16(a)) belonging to

the class ODESimulator (Fig. 3.18, described below). It has no con-
nection to any other module in the simulation. This module neither
receives messages from nor send messages to the others. It only sends
messages to itself regularly every ∆ in order to take an integration step
and to perform collision detection and resolution (Fig. 3.17).
The application layer module of every other node is in charge of in-

teracting with the physics module. More specifically, we defined two
module types, or C++ classes, SimulatedMote and SimulatedRobot,
which are in charge of interacting with OMNeT++ and ODE. The rele-
vant part of the class diagram of BARAKA is shown in Fig. 3.18.

49

CHAPTER 3. EXPERIMENTAL TOOLS

(a) Snapshot of the network simulation

(b) Snapshot of the physical environment

Figure 3.16: Integration of ODE into OMNeT++. The new simulator
can handle both the details of network communication and of physical
environments.

50

CHAPTER 3. EXPERIMENTAL TOOLS

Figure 3.17: UML sequence diagram of the integration between OM-
NeT++ and ODE. The left bar refers to the simulation kernel of OM-
NeT++. The right bar refers to the OMNeT++ module which implements
the real world simulation with ODE.

51

C
H
A
P
T
E
R
3
.
E
X
P
E
R
IM
E
N
T
A
L
T
O
O
L
S

Figure 3.18: UML class diagram of the most relevant classes of BARAKA. Classes with blue and italic names are abstract
interfaces. The classes on the top left corner of the pictures deal mostly with the simulation of motes and robots as network
nodes. The classes on the top right corner implement motes and robots as physical objects. The classes on the bottom,
which derive from the other two groups, are the one actually used for the simulation of motes and robots in BARAKA. See
the text for more details.

5
2

CHAPTER 3. EXPERIMENTAL TOOLS

Two classes implement the controllers of the motes, MoteControl-
ler, and of the robots, RobotController. They both derive from the
abstract interface class Controller. The way in which the controllers
can issue commands to motes and robots is defined by two interfaces,
RealWorldObject and Robot. RealWorldObject describes the capa-
bilities of both motes and robots (like sending a message, or recording
sound). Robot describes the additional capabilities of a robot (typically,
to move).
The classes SimulatedMote and SimulatedRobot are an imple-

mentation of respectively RealWorldObject and Robot. They take the
commands of the controllers and implement them in the simulated en-
vironments. As future work, it will be possible to implements other
classes that work on the real hardware. The controllers’ code can be
then run, as it is, both on the real hardware and on simulation.

SimulatedMote and SimulatedRobot derives from two group of
classes. The first group is represented by the classes OMNETObject and
BasicApplicationLayer. BasicApplicationLayer is a class pro-
vided by the Mobility Framework. OMNETObject derives from it and
implements the interface given by RealWorldObject. OMNETObject
basically implements all the capabilities of robots and motes that have
to deal with networking, like sending and receiving of messages, or the
use of timers.
The second group is formed by the classes ODEObject and ODECom-

positeObject. They are general classes used to implement the physi-
cal aspects of robots and motes. An object of type ODEObject has one
body and one geometry. It is mainly used to simulate the motes and
other obstacles that might be placed in the environment. ODEObject
interacts with ODESimulator, which simulates the physical world us-
ing the ODE library. ODEObject can refer to ODESimulator to cre-
ate the body in the simulated world, but also to know the current
position and rotation of the object. ODECompositeObject is an ex-
tension to ODEObject that allows the object to have more bodies con-
nected through joints and several geometries. It is used to simulate the
robots. ODECompositeObject can use ODESimulator to obtain the list
of nearby objects. This is useful to simulate proximity sensors or the
camera of the robots.

SimulatedMote and SimulatedRobot can simulate both the net-
working of the objects and their behaviours in the physical world by
deriving from both groups of classes. The simulation kernel contains
several instances of the classes SimulatedMote and SimulatedRobot,
one for each robot or mote that has to be simulated. We call each
instance a “simulated object”.
During the initialisation phase of the simulation kernel, the simu-

lated objects can create bodies and geometries in the physical world
(Fig. 3.19). This process is visually represented in Fig. 3.7. After that
robots and motes have been built, timers are set and used to simulate
the control cycles of robots’ and motes’ controllers.
When the control cycle timers expire, the simulated objects activate

their controllers. These might in their turn call methods of the simu-
lated objects in order to, e.g., obtain the infrared sensor values or set

53

CHAPTER 3. EXPERIMENTAL TOOLS

Figure 3.19: UML sequence diagram that shows how OMNeT++ can be
used to simulate a physical robot. During initialisation, the class that
simulates the robot creates its physical components. To create them
with the ODE library, the class needs some parameters. The class gets
them via a call to the odesim module. When the robot is created, it is
registered within odesim for the simulation of its physical behaviour.
The delivery of messages from other modules by the simulation kernel
is implemented by forwarding the incoming message to the robot’s con-
troller class. Finally, at every control cycle, implemented via timers,
the simulatedRobot modules simply activate the robot’s controller. This
might in its turn call functions of simulatedRobot to obtain, e.g., the
value of the infrared sensors or to set the direction and speed of mo-
tion.

54

CHAPTER 3. EXPERIMENTAL TOOLS

the speed of the wheels. The simulated objects might need to interact
with odesim to complete the required operation.
The network connections to other agents are kept up to date by

the mobility module of each node. It regularly queries odesim for the
position of the agents and then inform channelControl.
The physical simulation based on ODE has shown to be reliable.

The results obtained by the two other simulators described earlier in
this chapter could be successfully replicated also with real robots. OM-
NeT++ has also shown in the networking community to be a valid sim-
ulation tool. We are thus confident that the two tools joint together
can be useful for simulation of Sensor/Actuator Networks. A formal
validation is however still missing.

55

CHAPTER 3. EXPERIMENTAL TOOLS

56

Chapter 4

A Bio-inspired Algorithm
for Prey Retrieval

This chapter starts the discussion about the central topic of our work:
division of labour. Here, we describe an algorithm for division of labour
that is inspired by an ants’ foraging model. The model is particularly
interesting because it emphasises the role played by individual learning
and stresses the distributed aspect of foraging, the lack of a governing
hierarchy, and the self-organisation of the ants. In few words, it is a
good candidate for Swarm Robotics. We test the algorithm in a test
problem that is much similar to ants’ foraging: prey retrieval. It is also
known in the literature as foraging or search&retrieve.
We start describing the problem of prey retrieval in Sec. 4.1. The

same section gives also a formal definition of division of labour. Sec-
tion 4.2 points out different uses of the words “division of labour” and
“task allocation” throughout the literature and fixes the meaning used
in this thesis. Section 4.3 provides an overview of what is known about
ants’ foraging. Section 4.4 introduces and describes the model we are
going to study. Section 4.5 depicts the robots controller and our ver-
sion of the algorithm. Sections 4.8 to 4.11 describe the characteristics
of our algorithm, as we observed them during the experiments, and its
analysis.

4.1 Prey Retrieval

Prey retrieval is easy to describe: a group of robots has to look for
objects (i.e., prey) spread in the environment and retrieve them to a
special area, called nest. This problem is often used in the literature,
although under different names, such as search & rescue or foraging.
We use the words prey retrieval to emphasise the similarity with the
corresponding behaviour observed in ants.
Prey retrieval is often used as a model for other real-world appli-

cations such as toxic-waste cleanup, search and rescue, demining or
collection of terrain samples in unknown environments. It is among

57

CHAPTER 4. A BIO-INSPIRED ALGORITHM FOR PREY RETRIEVAL

the canonical tasks for collective robotics listed by Cao et al. [1997].
The main scientific question is whether there is an actual performance
gain in using more than one robot, since the task can be accomplished
by a single one [Cao et al., 1997]. Stated in another way, the question
is whether more robots are also more efficient.
This problem can be better understood if we look at what happens

in animal societies, for instance ants. Ants need to search the envi-
ronment for food items in order to survive and to provide energy to
the colony. For the energetic economy of the nest, prey items are an
income.
Not all ants can forage: if all ants were foraging, none could defend

the nest or feed the brood. Searching also has drawbacks, that can
come from dangers in the environment or from predators. It is also
possible that foragers interact in an inefficient way, for instance trying
to collectively retrieve an item that could be carried by one ant only
or obstructing the way one to the other. From the nest-energy point
of view, these effects represent costs that decrease the net income of
energy.
Income and costs depend on the number X of ants that are explor-

ing the environment. We can assume that the retrieval rate of prey is
approximately αXP , where P is the total amount of prey in the envi-
ronment and α is the probability that one ant finds one prey in one unit
of time, i.e., the discovery rate.1 P is generally not constant in time.
It can change because new prey appear or because foragers retrieved
some of them. To be more general, prey can also disappear (e.g., if it
is an insect that is walking through the area). Prey dynamics can be
modelled according to the following equation:

dP

dt
= φ− αXP − βP ,

where φ represents the “appearing” and β the “disappearing” prey rate.
This equation tells that the equilibrium is reached for

P =
φ

αX + β
,

which is a stable point since α > 0, X > 0, β ≥ 0 and therefore −αX − β,
the eigenvalue of the system, is less than 0. The energetic income
rate of the colony i(X) is proportional to the retrieved-prey rate at the
equilibrium:

i(X) ∝ αX
φ

αX + β
. (4.1)

It is harder to find a good approximation for a proper cost function
c(X), given that it depends on factors in the environment that are a
priori unknown. It is still possible to derive some of its characteristics
considering what it should represent. Since it must consider the total
amount of energy spent for survival by all the individuals of the colony,

1The following model of foraging is not intended as a model of the results that we show
later. It is meant only to help the reader understand the problem of prey retrieval.

58

CHAPTER 4. A BIO-INSPIRED ALGORITHM FOR PREY RETRIEVAL

it must be proportional to the total number of colony members, N ,
which is constant. It must also take into account the energy spent
by foragers and the possibility that they get lost or killed (in this case
the colony loses resources to exploit). Therefore, the first derivative
of c(X), must be greater than 0. Finally, we should also consider the
influence of negative interactions between foragers, which increases
with the square of their number. Thus the second derivative must also
be greater than 0. As a first approximation, c(X) can be given by:

c(X) = δN + ǫX + γX2 , (4.2)

with δ > 0, ǫ > 0 and γ > 0.
Both income and costs increase with X, but not in the same way.

The income saturates when X becomes too high (robots can not retrieve
more prey than their actual number in the environment), but costs
potentially increase without limit. On the other hand, if X = 0, the
income is null, but the costs are not. In both situations, the colony
can not survive. The colony should “operate” between a minimum and
a maximum value of X.
The efficiency of foraging can be defined as

η =
i(X)

c(X)
. (4.3)

We come back now to robots. From the engineering perspective, an
important issue is how to improve the efficiency of the group. We see
three possible strategies:

Increase the income: an increase of i(X) increases also η. In a Multi
Robot System (MRS), it can be achieved by using better sensors or
improving the search strategy of the single robots. This improves
the retrieval rates of the robots and therefore the prey income.
This strategy implies that the robots have to move less to find a
prey, and therefore they consume less energy. This is accounted
in the linear term of (4.2).

Decrease the costs: much of the costs come from negative interfer-
ences among the robots. Several works in the literature recognise
that this is one of the major problems in a MRS [Balch, 1999,
Goldberg and Matarić, 1997]. Interferences increase theoretically
with the square of the number of robots, and therefore their con-
tribution to the costs can be more relevant.

Use an optimal number of robots: this strategy comes from the ob-
servation that if X = 0, then i(0) = 0, c(0) = δN , and therefore
η = 0. If X → ∞, then i(X) → K, c(X) → ∞ and therefore η → 0.
This means that there is an optimal value of X that maximises η,
which can be represented as:

X̂ = argmax
X∈[0,N]

i(X)

c(X)
.

59

CHAPTER 4. A BIO-INSPIRED ALGORITHM FOR PREY RETRIEVAL

The robotics literature offers several examples of how to implement
these strategies. The reduction of costs can be obtained, for instance,
by using communication to co-ordinate the robots and avoid interfer-
ences. Balch and Arkin [1994] studied the effects of different forms of
communication in different tasks.
Other solutions implement better behaviours. Goldberg and Matarić

[1997] estimate where the interferences occur the most, by counting
the number of collisions or manoeuvres to avoid other robots. With this
data, they design a control algorithm that avoids the most problematic
zones. Schneider-Fontán and Matarić [1996] reduce the interferences
by assigning a predefined part of the arena to each robot, and each
robot to one particular area.
The optimal number of robots can be estimated a priori if the char-

acteristics of the environment are well known and fixed, as done for
instance by Hayes [2002]. Otherwise, the group of robots should be
provided with some form of adaptation in order to cope with uncertain
and dynamic environments.
We refer to the mechanism that tunes the number of robots involved

in the retrieval task as division of labour.

4.2 Division of Labour and Task Allocation

There are some problems with our definition of division of labour. In
the robotics literature the terms “division of labour” and “task allo-
cation” are often used as synonym, although we see some important
differences in their use.
“Task allocation” is the term more often used in more traditional

robotic studies. These studies include many tasks that can be per-
formed by one or more robots. By “task”, the authors mean a set
of operations with a starting time and a duration. The problem is to
find the best assignment robots/tasks, once the robots’ qualities are
known. This is the meaning used, for instance, by Gerkey and Matarić
[2004], who recently proposed a taxonomy of task allocation problems.
They analyse some of the known solutions which use intentional coop-
eration [Parker, 1998]. Focusing only on intentional cooperation, they
exclude basically all the field of SR. Other examples of task allocation
are found in Jin et al. [2003] and Flint et al. [2004]. They study dis-
tributed control and task allocation for Unmanned Air Vehicles (UAV).
In these examples however, robots have enough information in order to
create explicit models of the environments and of their own capabilities,
unlike the SR approach.
“Division of labour” is more typical of bio-inspired researches. Here,

authors tackle the problem of “how many robot shall perform one
task?” [Labella et al., 2006a, Agassounon et al., 2004, Li et al., 2004].
By “task”, these authors mean a set of operations that live as long as
the system itself.
Biology gives to “division of labour” a meaning that does not always

match the one used in the robotics literature. The works in the robotics
literature describe as “division of labour” the fact that some individual

60

CHAPTER 4. A BIO-INSPIRED ALGORITHM FOR PREY RETRIEVAL

1 cut it?
recruit near nestmates?
go back and recruit
nestmates?

pull it alone?
2

3

Figure 4.1: Foraging and retrieving behaviour of ants. An ant performs
a random walk in the environment until it finds a prey. Then, it takes
some decisions about how to retrieve it. Transport can be done alone
or in group. Once the prey is in the nest, the ant goes back directly to
where the prey was found.

performs a task more and more often (as we do in Sec. 4.9), therefore
they reason at the individual level. For biologists, division of labour is a
phenomenon that is related to observations of the group, not of the in-
dividuals (e.g., measuring the average number of robots foraging in the
environment). What roboticists call “division of labour” is for biologist
“specialisation”. On the other hand, a roboticist might think that “spe-
cialisation” implies adaptation to a task, so that an individual “learns”
to perform it more efficiently, which is not what biologists mean. It is
not our intention here to argue for one definition or the other, but only
to let the reader understand which is the one that we use in this thesis.

4.3 Prey Retrieval in Biological Systems

A wide range of different foraging behaviours is observed during prey
scavenging and prey retrieval, but the mechanisms governing their
emergence remain unclear. Figure 4.1 sketches the general behaviour
of ants. When they find a prey after having randomly explored the
environment, they take decisions following this schema [Detrain and
Deneubourg, 1997, Hölldobler and Wilson, 1990]:

• they first try to pull the prey and if it is too heavy they can recruit
local nest-mates by emitting a chemical signal;

• they can decide to return to the nest and recruit nest-mates by
laying a pheromone trail;

• they can cut the prey on place with their jaws and retrieve smaller
pieces.

The retrieval can be done solitary or in group, if the prey is too big.
Once back in the nest, the forager exits and directly returns to the
place where the prey was found.
In many species [Cammaerts, 1980, Cammaerts and Cammaerts,

1980, Detrain and Pasteels, 1991, 1994], the colony activity is regu-
lated through the use of chemical trails and recruitment in the nest,

61

CHAPTER 4. A BIO-INSPIRED ALGORITHM FOR PREY RETRIEVAL

which is more intense for large than for small prey. These collective
responses (cooperative retrieval, trail recruitment, and so forth) re-
sult from decision-making systems which are poorly understood. The
main issues are about the behaviours of ants, the criteria they use to
estimate the characteristics of the prey and the way they coordinate
their movements and decide whether to recruit or not. Some of these
problems are solved through cooperation and synchronisation emerg-
ing from simple interactions among individuals and between individu-
als and the prey. Coordination in collective transport seems to occur
through the item transported: a movement of one ant engaged in group
transport is likely to modify the stimuli perceived by the other group
members. This is an example of stigmergy [Sudd, 1963]. The task
in progress generates new stimuli to which the insects react by con-
tinuing the task and possibly creating new information sources. The
prey is at the same time the object transported and the media allowing
the coordination of transporters (including the decision to recruit) in
order to retrieve it. The movements of the prey contain the essential
information used by ants: any movement indicates, without the use of
any measure of the prey size and weight, that the pulling force is suf-
ficient. This criterion, although very simple, is of high importance for
a colony since it is used to decide whether to recruit and involve more
individuals in a task.
The Mediterranean terrestrial species Pheidole pallidula and Œco-

phylla longinoda are main models for the understanding of prey re-
trieval. Pheidole (and also Œcophylla) helps understanding how dead
prey of different sizes induce different global foraging patterns and dif-
ferent levels of cooperation. It also raises several questions about the
informative content of the food itself and the modulation of individual
behaviour at the food source.
Pheidole pallidula is divided in two castes: minor and major. One

minor can carry small items while medium-sized prey or cumbersome
body parts are retrieved by groups of cooperating minors. Most scav-
enged insects individually retrieved show an average weight of 0.86
mg. Larger prey are carried back to the nest by the ants collectively
[Detrain, 1990]. A very large food item induces a massive recruitment
of both minors and majors which dissect the prey directly at the food
site. Food discovery and trail recruitment is done exclusively by the
minors, whose poison gland contains trail pheromone. Majors perceive
and follow these trails but cannot produce the pheromone [Ali et al.,
1988, Detrain and Pasteels, 1991]. The majors caste is only involved in
recruitment for heavy prey which they cut into pieces.
InŒcophylla longinoda, the collective and individual behaviours are

similar to those of Pheidole. Retrieval consists of two periods (motion-
less and high speed retrieval) constituted by a succession of moves
and stops. These periods are increasing exponentially with the mass
of the prey. The proportion of the motionless period is approximately
70-60%, but decreases as the mass of the prey increases (77% to 57%
respectively for 0.4 g and 2.8 g). The population size around the prey
follows the same dynamics. However, for Œcophylla, when a plateau
is reached, a decrease of the population around the prey is observed.

62

CHAPTER 4. A BIO-INSPIRED ALGORITHM FOR PREY RETRIEVAL

Comparing different masses, the higher the mass, the lower this de-
crease, which shows the impact of the retrieval speed on the population
size around the prey.
It has been noted that the foraging behaviour of a single ant may

be influenced by several factors, like age or genetic differences. A few
authors pointed out that learning might play a key role. Different forms
of learning related to ants have been described:

• food acceptance in relation to food quality [Sudd and Sudd, 1985];

• sectorial fidelity in individual foragers [Hölldobler, 1976, 1980,
Wehner et al., 1983]

• route-fidelity to permanent food sources, characterised by a time
scale of weeks or months, in species using trunk-trails [Rosengren
and Fortelius, 1986].

Among these works, we focused our attention on the learning model
proposed by Deneubourg et al. [1987]. The model emphasises the role
played by learning during individual lifetime. No direct communica-
tion, not even signalling, is necessary for the colony to adapt to the
environment. It is appealing and tempting to use it also for a group of
robots whenever division of labour is needed.

4.4 A Model of Prey Retrieval in Ants

Deneubourg et al. [1987] proposed a simple learning model to explain
the foraging patterns observed in Neoponera apicalis (now known as
Pachycondyla apicalis). This species is characterised by a small colony
size, around one hundred adults. The ants are diurnal and forage
individually, meaning that no recruitment is observed. They retrieve
usually small insects and larvae. One group of ants usually forage next
to the nest in overlapping individual zones. Another group forages far
from the nest, where a marked spatial fidelity can be noted. This means
that these foragers have “personal” zones where they return regularly
over a period of one month or more [Fresneau, 1985].
Deneubourg et al. assume that each ant has a probability Pl of

leaving the nest at each iteration. When it does, it goes with probability
Qi, i ∈ {1, 2, . . .N}, to one of the N possible foraging sites. Each site
has probability ri of containing a prey. The idea of the model is that
the ant increases its Pl and Qi if the trip to the site i is successful.
The increments are constant, respectively ∆+

P and ∆+
Q. If the trip is

unsuccessful, the ant decreases both Pl and Qi using ∆−

P and ∆−

Q. The
part that concerns the adaptation of Pl is summarised in Alg. 1.
What the model suggests is that there is a positive feedback that

brings the ants to specialise in foraging or in remaining inactive in the
nest. The same feedback brings the ants into focusing only in a small
set of possible foraging sites. Deneubourg et al. prove that their model
is able to explain:

63

CHAPTER 4. A BIO-INSPIRED ALGORITHM FOR PREY RETRIEVAL

Algorithm 1 The original ants’ learning model proposed by
Deneubourg et al. [1987] to model ants’ learning. Here, only the adap-
tation of Pl, the probability to leave the nest, is reproduced.

Pl ← Pmin;

if success then
Pl ← min{1, Pl + ∆+

P }
fi

if failure then
Pl ← max{Pmin, Pl −∆−

P }
fi

• the efficient distribution of foragers in the foraging area, as a func-
tion of different characteristic of the food distribution;

• the foraging pattern similar to that of the spatial fidelity in ants or
the flower constancy in bumblebees;

• the division of initially identical potential foragers into highly ac-
tive and largely inactive ones;

• the age-dependent division of foragers into active and inactive
ones.

However, in their words, the model is “theoretical and somewhat specu-
lative”. In fact, they tested the model only with numerical simulations.
This model emphasises the role played by learning during individual

lifetime. It is appealing and tempting to use it also for a group of robots
whenever division of labour is needed. However, before doing so, a few
initial steps are required. First of all, the theoretical model needs more
robust validation. Secondly, it must undergo a deeper analysis in order
to be effectively used in other contexts. This is the rationale behind our
experiments with the robots.

4.5 Robots’ Control Algorithm

We implemented this learning algorithm and tested it with the MindS-
bots (Sec. 3.1) and the simulated s-bots (Sec. 3.2.2).2 The algorithm
was slightly modified to take care of convergence problems. Before
presenting the results, this section describes the control system of the
robots.
The control algorithm is based on a simple finite state machine. The

robots change state according to some predefined conditions, except in
one case where the transition is controlled by the learning algorithm.
In each state, the robot can perform a predefined set of behaviours,
like random walk or obstacle avoidance. In the following, we detail the
finite state machine (Sec. 4.5.1), the behaviours (Sec. 4.5.2), and the
learning algorithm (Sec. 4.5.3).

2For simplicity, we refer to the simulated s-bot only as “s-bot” in the rest of the chapter

64

CHAPTER 4. A BIO-INSPIRED ALGORITHM FOR PREY RETRIEVAL

Figure 4.2: Finite state machine that describes the transitions between
the states in the robots. The labels on each edge represent the predi-
cates that let the transition occur whenever they are true. Their mean-
ing and definition are given in Table 4.1 and 4.2. The robots start in the
Rest state. The transition from Rest to Search (dash-dotted) is based
on the probability Pl. The transition from Deposit to Rest (bold arrow)
represents a successful retrieval (Pl is increased), the one from Search
to Give Up (also a bold arrow) is a failure (Pl is decreased).

4.5.1 The Finite State Machine

The finite state machine is depicted in Fig. 4.2. Different states rep-
resent the different phases of prey retrieval, that is, the sub-tasks in
which the overall prey retrieval task is decomposed. These sub-tasks
are as follows:

Search The robot looks for a prey. It has to avoid collision with other
robots. If a prey is found, the robot grasps it. If it has spent too
much time searching a prey without finding any, it gives up.

Retrieve The robot looks for the nest and pulls a prey into it.

Deposit The robot leaves the prey in the nest and turns on the spot
so that its front points outward and its back to the centre of the
nest.

Give Up The robot looks for the nest and returns to it.

Rest The robot rests in the nest before restarting searching.

Transitions between states occur on the base of events that are ei-
ther external (e.g. finding a prey or entering the nest) or internal to the
robot (e.g. a timeout). The labels on the edges in the graph of Fig. 4.2
show the conditions (called also predicates) that must be true for the
transition to occur. The way of evaluating the predicates is slightly
different for the MindS-bots and the s-bots, because of the different
sensors. The complete list of the predicates, their meanings and how
they are evaluated is given in Table 4.1, for the MindS-bots, and in Ta-
ble 4.2 for the s-bots. Their truth values are evaluated from raw sensor

65

CHAPTER 4. A BIO-INSPIRED ALGORITHM FOR PREY RETRIEVAL

Table 4.1: Definition of predicates and constants used by the control
algorithm of a MindS-bot. On the left column there is the symbolic
name of constants (in italic in the upper part of the table) and of con-
ditions (bottom part). On the right there is a brief explanation of their
meanings.

B_T front light sensor reading when a black object
is in the gripper

N_T back light sensor reading when the MindS-bot
is in the nest

T_L maximum time to spend to look for a prey

in_nest back light ≥ N_T
gripper_close the last command issued to the gripper motor

was to close it
prey_in_gripper front light reading ≤ B_T

have_prey gripper_close ∧ prey_in_gripper
obstacle_back the back bumper is pressed
obstacle_front ¬ prey_in_gripper ∧ the front bumper is

pressed
timeout time elapsed from the beginning of the search

phase > T_L

Table 4.2: Definition of predicates and constants used by the control
algorithm of an s-bot. The format is the same as in Table 4.2.

G_T maximum gripping distance
N_T distance of the lamp from the border of the

nest
T_L maximum time to spend to look for a prey

in_nest lamp distance ≤ N_T
gripper_close the last command issued to the gripper motor

was to close it
prey_in_gripper distance of the prey ≤ G_T

have_prey gripper_close ∧ prey_in_gripper
object_back the IR sensors on the back signal the presence

of an object
object_front ¬ prey_in_gripper ∧ the IR sensors on the

front signal the presence of an object
timeout time elapsed from the beginning of the search

phase > T_L

66

CHAPTER 4. A BIO-INSPIRED ALGORITHM FOR PREY RETRIEVAL

readings at every control cycle.
The transition between Rest and Search occurs with probability Pl

each second. Updates of Pl occur during the transitions from Search to
Give Up (a failure) and from Deposit to Rest (a success). Section 4.5.3
explains how the probability changes during these transitions.

4.5.2 Behaviours

The robots use a number of behaviours, i.e., sub-procedures that di-
rectly react to sensor inputs, to achieve each sub-task. Each behaviour
can be executed only if some predicates, called activation conditions,
are true. Theoretically, there could be more than one behaviour that
could be executed and whose actions could be in conflict. For instance,
one behaviour could try to avoid an obstacle by going backward and a
second one could search in the environment by going forward. To avoid
this problem, behaviours are hierarchically ordered and only the first
whose activation condition is true is executed. This architecture is
known in the literature as subsumption architecture [Brooks, 1991].
The behaviours used by the robots are as follows:

AvoidObstacle It tries to avoid an obstacle. If there is only an obsta-
cle on the back of the robot, it moves forward for short time. If
there is only an obstacle on the front, the robot moves backward,
and then rotates with equal probability either to the right or to the
left. Rotation was introduced to avoid dead locks. In fact, other
behaviours start by moving the robot forward. If they were exe-
cuted after AvoidObstacle, the robot would hit the obstacle again
and again. Finally, if there are obstacles on both sides, the motors
are switched off and the robot does not move.

CloseGripper This behaviour activates the gripper of the robot and
records the new state of the gripper in the robot’s memory.

OpenGripper It opens the gripper and records the new state of the
gripper in the robot’s memory.

Explore It deals with all the aspects of searching and finding a prey. It
starts by choosing a random direction, and then moves the robot
straight on. If the robot senses a prey, this behaviour moves the
robot toward the prey.

We recall that the MindS-bots can sense the prey only with their
light sensor on the front, while the s-bots can use their omnidirec-
tional camera. The MindS-bots are penalised because they have to
approach the prey directly in order to recognise it, while s-bots
can just pass nearby. We modified the Explore behaviour in the
MindS-bots to account for this. The MindS-bots can randomly stop
and turn on the spot to look whether there are prey around. In
this way, they increase the probability to find a prey.

SearchNest It searches the direction of nest by following the light gra-
dient. It then moves backward the robot toward it.

67

CHAPTER 4. A BIO-INSPIRED ALGORITHM FOR PREY RETRIEVAL

Table 4.3: List of behaviours activated in each state of the MindS-bot.
For each behaviour, its activation condition is described using the for-
malism of predicate logic. The meaning of each predicate is illustrated
in Table 4.1 and 4.2. In each state, behaviours are listed in activation
order, the one with highest priority being on the top. The execution of
a behaviour inhibits the activation of all the others below it.

State Behaviour Conditions

Search CloseGripper hit_prey
AvoidObstacle object_front ∧¬have_prey

∨ object_back
OpenGripper gripper_closed

∧¬prey_in_gripper
Explore

Give Up AvoidObstacle object_back
SearchNest

Retrieve AvoidObstacle object_back
SearchNest

Deposit LeavePrey have_prey
SearchNest

Rest ExitFromNest

LeavePrey It opens the gripper to leave the prey. The MindS-bots turn
90° before opening the gripper, and then realign in order to point
outward. This gives time to the experimenter to take the prey out
of the arena before the MindS-bot might exit and hit again against
the prey. With the s-bots, free prey in the nest are automatically
removed by the simulator.

ExitFromNest This behaviour does not move the robot, but is in
charge of deciding when the robot should start looking for prey.

The robot might execute one or more of these behaviours in each
state using different priorities, as summarised in Table 4.3.

4.5.3 The Learning Algorithm

Pl, the probability to leave the nest, is modified according to Alg. 2. It
keeps trace of the consecutive number of successes and failures of the
robots. This number is then multiplied by a fixed amount ∆ before
being added to or subtracted from the probability. The variation of
the probability to leave the nest is continuously increasing in case of
continuous successes or failures. The larger the number of successes
(failures) is, the larger is the reward (penalty) given by this algorithm,
which thereby introduces a form of non-linearity. In the following, we
refer to this algorithm as Variable Delta (VD) learning algorithm.
The range of Pl is limited to [Pmin, Pmax] in order to avoid that a null

or a too high value is reached. In fact, if all robots had Pl = 0, none
of them would exit the nest any more. If Pl was too high, adding or

68

CHAPTER 4. A BIO-INSPIRED ALGORITHM FOR PREY RETRIEVAL

Algorithm 2 Variable Delta learning of Pl, the probability to leave the
nest. The variables succ and fail are the number of consecutive suc-
cesses and failures.
succ← 0; fail← 0; Pl ← Pinit;

if success then
succ← succ+ 1
fail← 0
Pl ← min{Pmax, Pl + succ ·∆}

fi

if failure then
succ← 0
fail← fail+ 1
Pl ← max{Pmin, Pl − fail ·∆}

fi

mean resting time in the nest

Pl

t
=

1
P

l

0 p1 p1 + ∆ p2 p2 + ∆ 1

t 2
t 1

Figure 4.3: Relationship between Pl and the mean time spent in the
nest. Adding a fixed value ∆ to p2 has no noticeable effect on the mean
time spent in the nest t2. The effect is more sensible with low probabil-
ities, for instance p1.

subtracting ∆ to it would have no sensible effects on the mean time
spent in the nest. The relationship between Pl and the mean resting
time is in fact as depicted in Fig. 4.3. It is clear from the plot that
adding ∆ to p2 does not change much the mean time when compared
to what is obtained adding ∆ to p1.
The algorithm that we implemented is slightly different from the

original one proposed by Deneubourg et al. [1987]. More precisely, the
original schema uses fixed increments and decrements. In our imple-
mentation, the update of Pl is variable, and depends on the number of
successes and failures. It is not the purpose of this chapter to discuss
and compare different algorithms, but the difference between the two
deserves an explanation here.
At the time of the experiments, we were concerned with the time it

takes to run the experiments. Such value is particularly important for
the experiments with the MindS-bots. They are not so robust to stand
long experiments, and especially their batteries tends to empty quite

69

CHAPTER 4. A BIO-INSPIRED ALGORITHM FOR PREY RETRIEVAL

fast.3 In a preliminary set of experiments, we wanted to understand
how much time it would take to the robots to adapt to unknown en-
vironments. We took four MindS-bots and put them in an arena with
eight prey, which is a relative high number given the dimensions of the
arena and the number of robots. Then we observed the dynamics of the
Pl of the robots. Figure 4.4(a) shows a typical result when the Alg. 1 is
used. The MindS-bots reach Pmin more than 2000 s after the last prey
was retrieved. Using the VD algorithm, this time is reduced to about
1000 s (Fig. 4.4(b)). This suggest that the VD allows faster convergence
to the equilibrium point of the system. Therefore, it allows to carry out
the experiments in less time.

4.6 "Learning" vs. "Adaptation"

The reader might probably wonder if the Variable Delta is a proper
learning algorithm, or maybe just a simple form of adaptation. Our
opinion is that this is a matter of definitions. It is the same problem as
the use of the words “division of labour”, “task allocation” and “special-
isation” discussed in Sec. 4.2.

The robotics community tends to associate “learning” with “Rein-
forcement Learning (RL)” (App. A). The most fundamentalist ones
would argue that every work that use the word “learning” should be
done in the framework of RL. Algorithms such as VD should be called
“adaptation”. In biology however, “learning” has a different meaning.
It refers to a behaviour observed in animals that produces a “durable
modification of [another] behavior in response to information acquired
from specific experiences [within a given time scale]” [Alcock, 1995].

How learning (in the biological meaning) occurs is mostly unknown.
There might be different ways of obtaining the “durable modification of
behaviours”. Identifying RL with learning means to mix the definition
of an observed phenomenon with one of its implementation. RL is not
the only form of learning, albeit one of the most used in robotics. In
the Machine Learning field, for instance, one can find also Supervised
or Unsupervised Learning, Transduction, and so forth [Vapnik, 1998,
Hinton and Sejnowski, 1999]. The VD algorithm studied in this chapter
is another possibility.

It would be of no particular use to compare the VD algorithm with
those already proposed for RL, such as Q-learning and TD(λ) [Sut-
ton and Barto, 1998]. This becomes clear if we try to model the prey
retrieval task using the formalism normally used in these cases, the
Partially Observable Markov Decision Process, as we briefly show in
App. A. Given the capabilities of our robots, the result is a degenerate
case. The methods already developed for RL are best suited for a more
complex Markov Decision Process.

3The experiments in Sec. 4.8 took 40 min. Full batteries were enough to run no more
than 3 experiments in a row.

70

CHAPTER 4. A BIO-INSPIRED ALGORITHM FOR PREY RETRIEVAL

0 500 1000 1500 2000 2500 3000 3500

0.
00

0.
02

0.
04

0.
06

Fixed Delta Rule

time (s)

pr
ob

ab
ili

ty
 to

 le
av

e
th

e
ne

st

0
2

4
6

8

of

 p
re

y

prey

1st robot
2nd robot
3rd robot
4th robot

(a) Fixed increments and decrements to update the probability to leave
the nest. The MindS-bots reach the minimum value nearly two 2000 s
after the last prey was retrieved.

0 500 1000 1500 2000 2500 3000 3500

0.
00

0.
02

0.
04

0.
06

Variable Delta Rule

time (s)

pr
ob

ab
ili

ty
 to

 le
av

e
th

e
ne

st

0
2

4
6

8

of

 p
re

y

prey

1st robot
2nd robot
3rd robot
4th robot

(b) VD algorithm to update the probability to leave the nest. The MindS-
bots reach the minimum value nearly 1000 s after the last prey was
retrieved.

Figure 4.4: Comparison between the dynamics of the probabilities of
leaving the nest in two example cases when a system of four MindS-bots
is given eight prey to retrieve at the beginning of an experiment. Data
of the upper plot shows results for MindS-bots that used the original
algorithm from Deneubourg et al. [1987] (Alg. 1). The bottom plot was
obtained with MindS-bots that used the VD (see text for details) (Alg. 2).
The thin black line is the number of prey in the environment (see the
scale on the right axes). The thick lines are the probabilities of leaving
the nest for each robot used in the experiment (see the scale on the left
axes).

71

CHAPTER 4. A BIO-INSPIRED ALGORITHM FOR PREY RETRIEVAL

4.7 Experiments

The first concern of our experiments is to validate the theoretical model
by Deneubourg et al. [1987]. Afterwards, we can analyse it further in
order to understand its’ features. For this purpose, we implemented
Alg. 2 in a group of robots using two different platforms, as antici-
pated in Sec. 4.5: the MindS-bots (Sec. 3.1) and an s-bot simulator
(Sec. 3.2.2).
The question whether to use real robots or simulation (or both)

has been an important issue in the history of robotics. Till the end
of the 80s, it was quite common to use for Artificial Intelligence in
general, and robotics in particular, simulators mostly based on a log-
ical representation of the world. This method was challenged by the
new born behaviour-based robotics [Arkin, 1998]. The position of these
researcher was that any simulation is limited, because the model on
which it is based will never be able to reproduce the complexity of the
environment. Moreover, since the simulation is created by human be-
ings, it could be that we do not implement some important aspects of
which we are unaware. Put in simpler word, their position is that the
environment is the best model of itself.
Although their argumentation is sound, it conflicts with a very use-

ful aspect of simulation: it is faster to run a program than to run an
experiments with real robots. It is also safer: the worst that can happen
to a program is that it crashes, but if a robot does the same, it costs
money and time to repair it. The speed issue is particularly important
for those fields where researcher have to run hundreds of experiments,
such as Evolutionary Robotics [Nolfi and Floreano, 2000]. Jakobi et al.
solved the conflict proposing the concept of Minimal Simulation [Jakobi
et al., 1995]. In short, they suggested to create a simulator that im-
plements a minimal set of important features of the environment, and
wrap the rest with noise and uncertainty. The authors claim that the
controller developed with this simulator is indeed more robust. In fact
the controller can not be based on “tricks” or particular features that
might result from a bad implementation or from wrong modelling of the
environment.
We decided to use both simulation and real robots in order to take

the best out of them. The experiments with real robots validate the
theoretical model of Deneubourg et al., and might be used to define
the path for further analyses. The experiments in simulation are first
verified against the result with the real robots. Then, they are used to
evaluate more efficiently different set-ups and hypotheses. Moreover,
using heterogeneous experimental tools, we are more confident that
the learning algorithm under study can be applied in a broad range of
situations.
In applying Alg. 2 in a group of robots, we expect to observe:

Efficiency increase In the case where the number of exploring robots
(those with high Pl) is much higher than the number of prey in
the arena, the success rate would be low for most of the robots.
The unsuccessful robots would decrease their Pl and spend more

72

CHAPTER 4. A BIO-INSPIRED ALGORITHM FOR PREY RETRIEVAL

time in the nest, leaving more room for the others to work. In
the other case, where there are far fewer exploring robots than
prey in the arena, some of the robots in the nest would eventu-
ally exit. These exiting robots would have a high probability of
success. They would therefore increase their Pl and spend more
time in foraging. This is an amplification phenomenon typical of
many biological systems (Sec. 2.5.1 and Camazine et al. [2001]).
The efficiency of the group would improve in both cases without
external intervention.

Division of labour Some robots could retrieve by chance more prey
than others. The Pl of these “lucky” robots would increase and
they would spend more time in foraging. The more the time they
would spend foraging, the more prey they would retrieve and the
higher their Pl would become. The opposite would hold true for
those robots that were less successful. These are again ampli-
fication phenomena like those above. Moreover, every time a
particular robot retrieves a prey, the probability for any of the
other robots to immediately retrieve a prey decreases. Competi-
tion among the robots would therefore arise, because one robot
can increase its Pl only by making more likely that the Pl of the
others decreases. After a while, we would observe that Pl has ei-
ther high or low values, unevenly distributed among the robots,
and only those with high Pl would be actively searching the envi-
ronment.

Selection of best individuals In case of a heterogeneous group, some
robots might be better suited for retrieving. These individuals
would retrieve on average more prey than the others, therefore
their Pl would also tend to be higher. At the group level, we would
therefore observe a mechanism for division of labour that takes
into account differences among the robots without having neither
a global knowledge of the individuals in the group, nor a model of
their capabilities.

Adaptation to dynamic environments If the density of prey changes,
say it increases, some of the robots in the nest would eventually
exit and be successful in retrieving. They would therefore increase
their Pl. The number of active robots and the efficiency would
increase. The same would hold true in the opposite case, when the
density decreases: robots that were active would decrease their Pl

and spend more time in the nest.

The following section gives additional details about the set-up used
during the experiments. Section 4.8 to Sec. 4.11 describe the experi-
ments that we carried out to test these hypotheses.

4.7.1 Experimental Set-up

The experiments were carried out in a circular arena (Fig. 4.5) with
a diameter of 2.40 m. A light bulb is used to signal the position of

73

CHAPTER 4. A BIO-INSPIRED ALGORITHM FOR PREY RETRIEVAL

(a) Snapshot of an experiment with
four MindS-bots.

(b) Snapshot of an experiment with six
s-bots.

Figure 4.5: Set-ups of the experiments. The nest is indicated by a light
in the centre. The robots in the nest are resting and not active. The
other robots are searching the environment, and one in each picture
has found and is retrieving a prey.

the nest in the centre of the arena. Walls and floors are white in the
experiments with the MindS-bots, prey are black.
The search timeout is fixed to 228 s for the MindS-bots and 71.2 s

for the s-bots. These values are the estimated median times needed
by a single robot to find one prey when it is alone in the arena.4 ∆ is
set to 0.005. Pmin is set to 0.0015, Pmax to 0.05, Pinit to 0.033, which
correspond to a mean time spent in the nest of approximately 11 min,
20 s and 30 s respectively. The experiments described in the following
sections lasted 40 min. The values of the parameters were chosen on
the basis of a trial-and-error methodology and on some a priori consid-
erations. Pmin, for instance, is such that the mean resting time in the
nest is long enough compared to the duration of the experiments, leav-
ing however to the robots the opportunity of exploring the environment
a few times. The mean resting time corresponding to Pmax is negligible
with respect to the duration of the experiments.
Prey appear randomly in the environment during the experiments.

The probability with which this happens each second is referred to
as prey density and changed across the experiments. A new prey is
placed randomly in the arena so that its distance from the centre is in
[0.5 m, 1.1 m].

4.8 Experiments: Efficiency

To test whether the VD algorithm increases the efficiency of the group,
we generated a set of random instances before running the experi-
ments. An instance, parametrised by prey density, describes where
and when prey appear in the environment. Then a group of robot was

4Notice that these values do not depend only on the speed of the robots, but also on
their sensors. The s-bots can detect a prey in their surroundings with the omnidirectional
camera more easily than the MindS-bots, which need to have the prey in front of their
light sensor to perceive it.

74

CHAPTER 4. A BIO-INSPIRED ALGORITHM FOR PREY RETRIEVAL

tested with and without learning for each instance. In case learning
was not used, the Pl of the robots is fixed to 1. In such group, all
robots search and retrieve prey, which is the solution most often seen
in the literature when division of labour is not used.
In Sec. 4.1, we gave a definition of efficiency (4.3). This definition

was useful to discuss the issues related to prey retrieval, but it is unfor-
tunately of little practical use. The problem is that the costs of retrieval
are difficult to quantify. Therefore, we make use in this section of an
estimation of the costs, the group duty time. The group duty time is
the sum of the time that each robot spent in searching or retrieving,
that is, the time it was “on duty”. Costs are a monotonically increasing
function of the group duty time: the higher it is, the higher the proba-
bility that some robot gets lost or breaks down, the higher the energy
consumption, and so forth. Thus, the efficiency index that we use is

ν =
performance

∑

robots duty time
, (4.4)

where performance is the number of retrieved prey. It is easy to see
that if ν increases, η increases too.

4.8.1 Real Robots

We used groups of four MindS-bots chosen out of a pool of six. The four
robots were changed after each experiment.5 Each trial lasted 2400 s
(40 min). We created ten instances with prey density set to 0.006 s−1.
Each experiment was replicated with a control group made of the same
robots with Pl fixed to 1 and using the same instances.6 Figure 4.6
summarises the results: on the left side, there are the values of ν for
both the adapting and the control group; on the right side, there is the
ratio between the number of retrieved prey and the total number of prey
appeared during the experiment. When the robots used adaptation,
there were 2.57 active robots and 2.44 prey on average in the arena
in the period between 1000 s and 2400 s. In the control experiments,
there were 3.63 active robots and 3.49 prey.

4.8.2 Simulation

The simulation experiments used groups that varied from 2 to 8 s-bots
with increments of two units. The groups were tested with prey density
equal to 0.005 s−1, 0.01 s−1, 0.02 s−1 and 0.04 s−1. We used fifty in-
stances for each combination of prey density/group size. To have a ref-
erence point, we tested a single robot also on the same instances. The
experiments lasted 2400 s (simulated time). As we did with the MindS-
bots, the experiments where replicated with a control group which did

5The choice was not completely random but was biased by the status of the MindS-
bots after each experiment. For instance, those with low battery or those which needed
some maintenance were taken out and new ones were added to the group.
6In both original and control experiments, a computer next to the arena signalled the

time and the position of the new prey.

75

CHAPTER 4. A BIO-INSPIRED ALGORITHM FOR PREY RETRIEVAL

adpt

ctrl

0.0010 0.0015 0.0020

efficiency

ν
gr

ou
p

adpt

ctrl

0.6 0.7 0.8 0.9 1.0

performance

ratio of retrieved prey

gr
ou

p

Figure 4.6: Left: Value of ν (Eq. 4.4) when Pl is adapted (bottom) and
when it is not (top) in the MindS-bots. Right: relative performance of
the adapting and control group (1 on the x axis means 100% of prey
retrieved in an experiment). The right and left limits of a box extend
from the first to the third inter-quartile of the distribution of the results.
The line in the box shows the median value. The whiskers extend to
the most extreme data point which is no more than 1.5 times the inter-
quartile range from the box. Circles are considered outliers. Data refers
to ten experiments.

not use adaptation. The results are summarised in Fig. 4.7, which re-
ports the final distribution of the values of ν for different combination
of prey density and group size. Figure 4.8 reports the final distribu-
tion of the performances of the different groups in each environment.
Figure 4.9 summarises the relative performance of the groups, that
is, the number of retrieved prey divided by the total number of prey
appeared during the experiments.

4.8.3 Discussion

The group that uses adaptation is significantly more efficient both in
the case of the real robots (after 1400 s)7 and of simulation8 (confidence
level 95%).
There is no statistical difference in the performances between the

two groups of MindS-bots,9 while in simulation the control group per-
forms better.10 However, in the latter case the average difference of
retrieved prey is 3.4 units, that is, a negligible amount with respect to
the total (see Fig. 4.8). The only exception is for prey density 0.04 s−1

and 2 s-bots, where the control group retrieved on average 8.9 prey
more. The group size seems not to have effect on the performance of
the group, but this is mainly due to the fact that the relative number
of retrieved prey, that is, the number of retrieved prey divided the total
number of prey, is on average already close to 1, as shown if Fig. 4.9.

7Sign test. Null hypothesis: ν is the same in the two colonies. Alternative hypothesis:
ν, and therefore the efficiency, improves with adaptation.
8Wilcoxon rank sum test. Null hypothesis: as in footnote 7. Alternative hypothesis:

as in footnote 7.
9Permutation test. Null hypothesis: the performances are the same. Alternative hy-

pothesis: the learning group performs better. p-value: 0.53.
10Wilcoxon rank sum test. Null hypothesis: the same as in footnote 9. Alternative
hypothesis: the same as in footnote 9.

76

CHAPTER 4. A BIO-INSPIRED ALGORITHM FOR PREY RETRIEVAL

0.
00

1
0.

00
2

0.
00

5
0.

01
0

0.
02

0
0.

05
0 efficiency

prey density (s−1)

ν

0.005 0.01 0.02 0.04

2 robots
4 robots
6 robots
8 robots

1 robot
control median

Figure 4.7: Effects of prey density and group size on the efficiency
of retrieval in the simulated s-bots. The plots report the results of
fifty experiments for each prey density (on the x axis), for each group
dimension (different filling of the boxes). Both the x and the y axes use
a logarithmic scale. The horizontal black line shows the median value
of the efficiency of one adapting robot tested in the same conditions as
the other groups. The diamonds show the median value obtained in
the control experiments. We show only the median values and not the
whole distribution for the sake of readability of the plot. See text for
the discussion.

77

CHAPTER 4. A BIO-INSPIRED ALGORITHM FOR PREY RETRIEVAL

5
10

20
50

10
0

performance

prey density (s−1)

re
tr

ie
ve

d
pr

ey

0.005 0.01 0.02 0.04

2 robots
4 robots
6 robots
8 robots

1 robot
control median

Figure 4.8: Performance of different set-ups in simulation. The x and
y axes are in logarithmic scale. The value plotted is the number of
retrieved prey. For the meaning of the boxes and the other signs, see
Fig. 4.6 and Fig. 4.7. Data refers to fifty replications.

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

relative performance

prey density (s−1)

re
tr

ie
ve

d
pr

ey
 r

at
io

0.005 0.01 0.02 0.040.005 0.01 0.02 0.04

2 robots
4 robots
6 robots
8 robots

1 robot
control median

Figure 4.9: Relative performance of different set-ups in simulation. The
x is in logarithmic scale. The value plotted is the number of retrieved
prey divided by the total number of prey appeared in the experiments.
For the meaning of the boxes and the other signs, see Fig. 4.6 and
Fig. 4.7. Data refers to fifty replications.

78

CHAPTER 4. A BIO-INSPIRED ALGORITHM FOR PREY RETRIEVAL

Both in simulation and with the real robot, the differences in perfor-
mance, if any, are not enough to explain the difference in efficiency.
Therefore, the improvement is due to the decrease of the group duty
time. We show in Sec. 4.9 that this is achieved by division of labour.
We see in Fig. 4.7 that the gap between adapting and control group

tends to decrease when the prey density increases. This is not surpris-
ing, because it is better to use all available robots, as the control group
does, in rich environments. However, it is important to observe that ν
decreases with the group size also when adaptation is used. One pos-
sible explanation is that the VD algorithm is not good in reducing the
number of explorers. For instance, if the optimal number of explorers
is 2 for a given prey density, the robots might end up with 2.5 for a
group of 4 s-bots and 3.5 for 8 s-bots.
An alternative explanation is related to the way we measure ν, which

depends on the group duty time. The latter depends on the group
size. In fact, all the robots in a group spend some time in searching
because none of them can have Pl = 0 (recall that Pl ∈ [Pmin, Pmax] and
Pmin > 0), so each robot contributes to the final group duty time. These
two explanations do not exclude each other, but it is important to test
if the first case does occur, as it would show a limit of the algorithm.
Section 4.9 provides a partial answer to this issue.

4.8.4 An Analytical Model for the Efficiency

The high quantity of data for the s-bots allows us to find a relationship
between ν, the group size G, and the density of the prey D. It shall be
pointed out that such relationship can show a local trend of ν, that is, it
is limited to the set of parameter that we used for the experiments. We
try later to generalise the results, but we want to make clear now that it
should be considered as a mere speculation and that more experiments
are required in order to validate it. Nevertheless, we do believe it is
worth to show the results of this generalisation.
The data in Fig. 4.7 shows a nearly linear dependency between the

abscissa and the ordinate. Recalling that the graph uses logarithmic
scale for both, the relationship between ν and D might be exponential.
For what concerns the dependency on G, little can be said for prey den-
sity 0.005 s−1 and 0.01 s−1, but the results for 0.02 s−1 and 0.04 s−1

suggest that it might also be exponential. The same observations are
valid also for the data of the control group.
The relationship between ν, D and G can be easily found through

linear regression. We chose to fit several models based on the consid-
erations above, for example:

ν = αD − βG+ δ ,

ν = α lnD − βG+ δ ,

ν = α lnD − β lnG+ δ .

The best fitting model turned out however to be:

ln ν = α lnD − β lnG+ δ ,

79

CHAPTER 4. A BIO-INSPIRED ALGORITHM FOR PREY RETRIEVAL

which simplifies, after simple modifications, into:

ν = γ
Dα

Gβ
, (4.5)

where γ = eδ.
Eq. (4.5) is the best fitting model for both the learning and the con-

trol group. The goodness of the fitting was evaluated using standard
procedures. Outliers were first discarded (3 out of 800 data points
for both type of groups) to find the values of the parameters of the
the model. Then, we chose the model which minimises the sum of
the square of the residuals. A residual is the difference between the
prediction of (4.5) and the empirical value at one data point. We also
controlled that the distribution of residuals may be considered a Gaus-
sian distribution. If the residuals were normally distributed, then they
would be uncorrelated and could be seen as a white noise applied to
the output of the model.
The Quantile-Quantile plots in Fig. 4.10 show that the residual dis-

tribution of the model (4.5) approximate quite well that of a normal dis-
tribution, except for low values of residuals. The lower tail of the resid-
ual distribution is “thicker” than the Gaussian, meaning that there are
more low values in the residuals distribution than in the normal dis-
tribution. This anomaly accounts however for no more than 5% of all
the data points in both the learning and in the control group. We think
therefore the residual distribution can still be well approximated by the
normal distribution.
The fact that ν depends on D and G in the same way both in the

learning and in the control group suggests that the VD algorithm brings
forth only a quantitative improvement in the group. Table 4.4 shows
the estimated value for 〈α, β, γ〉 and their 95%-confidence interval. The
values suggest that the group of learning s-bots is more efficient be-
cause of a combination of two factors. On the one hand, its lower
α means that the contribution given by prey density to ν is higher
than in the control group (note that D is a probability per second, thus
D ≤ 1 s−1). This suggests that the learning group is better in retrieving
prey. On the other hand, the lower β increases the efficiency too, there-
fore the learning colony is also better in coping with the interferences
coming from increasing group size.
Given that

∂ν

∂D
> 0

∂ν

∂G
< 0

∀ D ∈ [0, 1] , ∀ G > 0 ,

the efficiency is always increasing for increasing prey density and de-
creasing for increasing group size. This is true for both learning and
control groups. This observation is supported by Fig. 4.7.
Figure 4.7 shows also that the efficiency gap between learning and

control group decreases when increasing the prey density. Given the
model (4.5) and the values in Table 4.4, it is possible to estimate the
values of D and G for which the learning group is more efficient than

80

CHAPTER 4. A BIO-INSPIRED ALGORITHM FOR PREY RETRIEVAL

−3 −2 −1 0 1 2 3

−
0.

8
−

0.
4

0.
0

0.
4

normal Q−Q plot

theoretical quantiles

sa
m

pl
e

qu
an

til
es

(a) Q-Q plot for the learning group.

−3 −2 −1 0 1 2 3

−
0.

6
−

0.
2

0.
2

0.
4

normal Q−Q plot

theoretical quantiles

sa
m

pl
e

qu
an

til
es

(b) Q-Q plot for the control group.

Figure 4.10: Q-Q plot (Quantile-Quantile plot) of the residuals of the
linear models for learning an control groups. The quantiles of the resid-
ual sample distribution is plotted against the theoretical quantiles of
the normal distribution. If the two distributions were identical, the
points should lie on a line. The plots show that the residual distribu-
tion is similar to the Gaussian, except for the lower tail. Lower sample
quantiles tend to have lower values than the corresponding normal
quantiles. The number of data points that are sensibly away from the
line account however for less than the 5% of all the data points in both
cases.

81

CHAPTER 4. A BIO-INSPIRED ALGORITHM FOR PREY RETRIEVAL

Table 4.4: Values of the parameters of Eq. (4.5) obtained for the learn-
ing and the control colony. Each row reports the estimated value and,
below it, the 95%-confidence interval of each parameter.

parameter learning control

α 0.65 0.97
[0.63, 0.66] [0.95, 0.98]

β 0.78 0.95
[0.76, 0.81] [0.93, 0.98]

γ 0.33 0.85
[0.30, 0.36] [0.79, 0.92]

the control group. From

0.33
D0.65

G0.78
> 0.85

D0.97

G0.95

and after simple simplifications, we obtain that the VD improves the
efficiency of the robots if

D < 0.52G0.53 . (4.6)

There are two possible reasons to explain why the control group
becomes more efficient. Firstly, the maximum value that Pl can have
is at maximum Pmax = 0.05, that is, each s-bot spends on average 20 s
in the nest. When D is high, an s-bot might find and retrieve a prey in
20 s, and therefore it is a waste of time to rest in the nest. Secondly,
adaptation is not costless for the group, since it takes some time for Pl

to move from the initial value Pinit to Pmax, which is again a waste if D
is high. These are however hypotheses that have to be tested.

To conclude this section, we want to remind once again that the
results of this section come from a series of approximations, and are
therefore quantitatively not reliable. This is particularly true for the
values in Table 4.4 and for (4.6). They are interesting not for the nomi-
nal values per se, but for the qualitative features that they highlight. It
might still be that the results of this sections are quantitatively correct,
but it is not possible to state anything without further experiments.
Unfortunately, the particular set-up we used does not allow to test big-
ger group sizes because there is not enough room in the nest for all
the robot. It does not allow higher prey density either, because this
would require more experimenter and prey item for the experiments
with the MindS-bots. Both of this resources were limited at the time of
the experiments.

The procedure described in this section has however a very inter-
esting outcome. The parameters 〈α, β, γ〉 bind the effect of learning to
the environmental conditions. They can be used as a measurement of
the quality of an algorithm and thus can be used to compare different
solutions, as we do in Chap. 5.

82

CHAPTER 4. A BIO-INSPIRED ALGORITHM FOR PREY RETRIEVAL

frequencies of Pl after 2400s

probability to leave the nest

nu
m

be
r

of
 r

ob
ot

s

0.00 0.01 0.02 0.03 0.04 0.05

0
4

8
12

Figure 4.11: Frequencies of Pl observed in the MindS-bots 2400 s after
the beginning of experiments. The two peaks demonstrate the occur-
rence of division of labour. 40% of the observation are above 0.025.

4.9 Experiments: Division of Labour

Section 4.8 shows that the learning group is more efficient. The dif-
ferences of the performances in both simulation and hardware, when
present, are not enough to explain the improvement. Therefore, we de-
duce that adaptation reduces the group duty time. There are two ways
in which the group can achieve this: in the first case, all robots end
up having the same, albeit low, Pl so that the mean number of robots
in the foraging area is reduced; in the second case, only few robots
are active forager with high Pl and the others have low Pl. Obviously,
the robots with high Pl would spend more time in searching than the
others, therefore we could observe division of labour.
At any given instant t after the beginning of the experiment, the

value of Pl in a robot is a random variable which has different values
for every robot and every experiment. Whether the group uses division
of labour or not can be observed in the distribution of Pl: if it does,
then at the end of the experiments the distribution of Pl will present
two peaks; otherwise it will have only one peak.

4.9.1 Real Robots

The value of Pl for each MindS-bot were recorded during the experi-
ments of Sec. 4.8.1, in order to estimate its distribution. The result
after 2400 s, plotted in Fig. 4.11, clearly shows two peaks. The low-
est point of the valley seems to be around 0.0225. In fact, there was
no MindS-bot with Pl between 0.02 and 0.025. Figure 4.12 shows the
distribution of the number of MindS-bots with Pl > 0.025 in the ten
experiments. Figure 4.13 reports the distribution of Pl over time.

83

CHAPTER 4. A BIO-INSPIRED ALGORITHM FOR PREY RETRIEVAL

number of Mind−Sbots with Pl > 0.025

number of robot

nu
m

be
r

of
 e

xp
er

im
en

ts
0 1 2 3 4

0
1

2
3

4

observed
theoretical

Figure 4.12: Distribution of the number of MindS-bots with Pl > 0.025
observed in each experiment compared with the theoretical binomial
distribution with p = 0.4.

0 500 1000 1500 2000

0.
00

0.
01

0.
02

0.
03

0.
04

0.
05

time (s)

P
l

0
5

10
15

nu
m

be
r

of
 r

ob
ot

s

observed distribution of Pl through time (MindS−bots)

Figure 4.13: Dynamics of the observed frequency of Pl in the MindS-
bots. The darkness of a cell in position (t, p) is proportional to the
number of MindS-bots with p = Pl after t seconds from the beginning
of the experiment. The relationship is given by the bar on the right.
At t = 0 all the MindS-bots have Pl = 0.033 (see the black stripe on the
left). After 1000 s the number of MindS-bots with low Pl (the loafers)
drastically increases (see the dark stripe on the bottom). Similarly,
after 1500 s, the number of robots with high Pl (the foragers) increases,
although slowly and reaching a lower value than that of the loafers (top-
right part of the plot).

84

CHAPTER 4. A BIO-INSPIRED ALGORITHM FOR PREY RETRIEVAL

4.9.2 Simulation

We analysed the effects of group size and prey density on division of
labour using the data from the experiments of Sec. 4.8.2. The evolution
of the distribution of Pl (Fig. 4.14) is similar to Fig. 4.13, for each com-
bination of prey density and group size. The distributions if Fig. 4.14
show a wider gap between the two peaks than in the case of the MindS-
bots. To better account for it, we classify the s-bots in three classes:
foragers, loafers and undecided. Foragers are those s-bots whose Pl

is bigger than 0.042, while loafers have Pl lower than 0.007, and the
rest are undecided (notice that this last group spans over a range of
values for Pl that is five times bigger than the others). Foragers are in
fact those in the top stripes in Fig. 4.14, loafers those in the bottom
one. Figure 4.15 plots the proportions of s-bots belonging to each class
at 2400 s. The graphs clearly show a strong division of labour in the
colonies, whose individuals tend to have either high or low Pl but, re-
membering that the group of undecided spans over a broader range of
Pl, seldom values in between.

4.9.3 Discussion

It might be objected that the right peak of Fig. 4.11 could be the result
of a few experiments in which all the MindS-bots happened to have high
Pl. To see that this is not the case, it is enough to look at the number of
MindS-bots with Pl > 0.025 at the end of the experiments, and how this
number is distributed. From the data in Fig. 4.11, we know that 40%
of the population has Pl > 0.025. Therefore, the number of MindS-bots
with Pl > 0.025 in each experiment should follow a binomial distribution
with p = 0.4. Figure 4.12 shows that the profiles of the theoretical and
the observed distributions are indeed very similar.
The evolution of the distribution of Pl over time (Fig. 4.13) shows

that the MindS-bots with high Pl appear later than those with low
Pl (the former at 1500 s, the latter at 1000 s). All MindS-bots start
with the same Pl, as can be seen from the black stripe for t = 0 and
0.03 ≤ Pl ≤ 0.035. After some time, some MindS-bots reduce their Pl be-
cause they are not successful (see the black stripes that start at 250 s
and 500 s for Pl = 0.025 and Pl = 0.015), while the others alternate suc-
cesses with failures (indicated by the region in the middle of y range
that remains dark till 1500 s). The number of MindS-bots in the arena
decreases, that is, there are less competitors for those which managed
to keep their Pl high enough. Less competitors implies more and easier
retrievals, which increase the Pl of the remaining foragers. It may be
hypothesised that the presence of robots with low Pl is necessary for
the group with high Pl to appear. However, Fig. 4.14 shows that this
is true only for some particular conditions. When the environment be-
comes richer and richer, the foragers tend to appear earlier and earlier,
even before the loafers.
As we expected, the ratio of foragers in the s-bot group increases

with higher prey density for fixed group size. More interestingly for
most prey densities, the proportions of foragers for group of six and

85

CHAPTER 4. A BIO-INSPIRED ALGORITHM FOR PREY RETRIEVAL

0.00 0.02 0.04
2 s−bots

0.00 0.02 0.04
4 s−bots

0.00 0.02 0.04
6 s−bots

500
1000

1500
2000

0.00 0.02 0.04

density 0.005

8 s−bots

500
1000

1500
2000

density 0.010
500

1000
1500

2000
density 0.020

500
1000

1500
2000

density 0.040

observed distribution of P
l through tim

e (s−
bots)

Figure 4.14: Dynamics of the observed frequency of Pl in the s-bots.
Each row of the array of plots refers to different group sizes, each col-
umn to different prey densities. For the description of the plot, see
Fig. 4.13.

86

CHAPTER 4. A BIO-INSPIRED ALGORITHM FOR PREY RETRIEVAL

2 4 6 8

group size

pe
rc

en
ta

ge

0
20

40
60

80

loafers undecided foragers

(a) prey density = 0.005 s−1

2 4 6 8

group size

pe
rc

en
ta

ge

0
20

40
60

80

loafers undecided foragers

(b) prey density = 0.01 s−1

2 4 6 8

group size

pe
rc

en
ta

ge

0
20

40
60

80 loafers undecided foragers

(c) prey density = 0.02 s−1

2 4 6 8

group size

pe
rc

en
ta

ge

0
20

40
60

80 loafers undecided foragers

(d) prey density = 0.04 s−1

Figure 4.15: Division of labour in the s-bots. Each group of four
columns refers to different environments with increasing prey density.
Each bar refers to a group size (see the legend). Each bar is divided
into three parts whose height is proportional to the ratio of robots be-
longing to the following groups: foragers (Pl > 0.043) on the top, loafers
(Pl < 0.007) at the bottom, and undecided (0.007 ≤ Pl ≤ 0.043) in between.
For example, if the top part is 25% of the total height of the bar for a
group of 8 robots, it means that on average 2 robots were foragers.

87

CHAPTER 4. A BIO-INSPIRED ALGORITHM FOR PREY RETRIEVAL

eight s-bots are nearly the same, and thus there are in average more
foragers in the latter group.11 This phenomenon could explains the
loss in efficiency when increasing the group size even when s-bots learn
(Sec. 4.8.3). Because of the particular set-up used for the experiments,
we could not test colonies with more than eight individuals: if more
robots had been used, there would not have been room enough in the
nest for them all. As a mere speculation, it can be said that the VD
algorithm, or the set of parameters chosen for it, can be effective only
to a certain extent and that other rules or other parameter settings
could work better in such conditions.

4.10 Experiments: Selection of the Best In-

dividuals

The VD algorithm is based only on individual successes or failures.
If one robot, for any reason, is better than the others for the task of
retrieving, then it will be more successful and therefore it will more
likely become a forager. This might seem an obvious conclusion, but it
needs anyway to be validated.
Generally speaking, the differences can be artificially created or in-

trinsic in the robots. In the first case, for instance, some robots can
be intentionally designed for the task of retrieving while the others are
designed to explore the environment to find and mark dangerous spots.
In the second case, the differences come from the imperfections of the
robots’ components, which can never be identical (e.g., one motor that
is less powerful than another). Any mechanism for division of labour
should take into account this type of heterogeneity of the group.

This section shows that individual learning can be effective to select
the best suited individuals for the retrieving task. We want to stress the
fact that the VD algorithm does not care of the other robots. In fact, a
robot neither knows how many nest-mates are present, nor whether it
is working in a group or alone. There is no model either of the environ-
ment or of the robot’s own capabilities.
For what concerns the experiments with real robots, the MindS-bots

are built identically and the only differences come from the compo-
nents. For the experiments with the s-bots, we artificially introduced
some heterogeneity. In the following, we are interested in those robots
whose Pl is greater than 0.025. Abusing of the definition given in
Sec. 4.9.3, we refer to them as foragers. Note that both with MindS-
bots and s-bots the robots are not aware of such concepts as “being a
forager” or “being undecided”. These are categories defined a posteriori,
that is, they are arbitrary definitions, whose purpose is to help in the
discussion. Therefore, it is possible to modify them, if this helps to
explain better the results of the experiments.

11This is true also for prey density 0.04 s−1, where there are on average 4.23 foragers
in a group of 8 robots vs. 3.98 in a colony of 6.

88

CHAPTER 4. A BIO-INSPIRED ALGORITHM FOR PREY RETRIEVAL

Table 4.5: For each MindS-bot, identified by an unique name, the total
number of experiments in which it was used and the number of times
it was a forager (Pl > 0.025) are reported. Data refers to ten experiment,
four MindS-bots per experiment.

ID Tot. Exp. #foragers

MindS-bot1 6 5
MindS-bot2 3 2
MindS-bot3 9 1
MindS-bot4 9 4
MindS-bot5 3 0
MindS-bot6 10 4

4.10.1 Real Robots

We used the data from the experiments of Sec. 4.8.1, where we use
groups of 4 robots selected out of a pool of N = 6 robots. Table 4.5 re-
ports the number of times each MindS-bot was observed to be a forager
at the end of the experiments.

4.10.2 Simulation

We created six s-bots that differ in their maximum speed. More pre-
cisely, the maximum speed of the first s-bot was equal to the one in the
previous experiments multiplied by 0.5. The speed of each of the other
five robots was scaled respectively by 0.7, 0.9, 1.1, 1.3, 1.5. The six
robots were combined into all possible colonies of four robots, forming
fifteen different groups. Each group was tested in the same fifty in-
stances randomly created with prey density 0.01 s−1. The groups were
simulated for 2400 s and we counted how many times each s-bot in
each group ended up being a forager are reported in Table 4.6.

4.10.3 Discussion

Given the stochastic nature of the experiments, we can model the fact
that a robot i is a forager at the end of an experiment as a random
event. For both the MindS-bots and the s-bots, we used groups of 4
robots out of 6. This makes a total of

(

6
4

)

= 15 combinations of robots.
The probability of robot i to be a forager at the end of the experiment
may depend on the specific group Gk, k ∈ {1, . . . , 15}, to which i belongs:
we denote this probability by Pf(i|k).
There are two possibilities, depending on whether the following con-

dition is true or not:

∃ i, k, j : Pf(i|k) 6= Pf(i|j), k 6= j . (4.7)

If (4.7) is true, there is at least one robot for which the probability to
be a forager depends on which nest-mates are present, that is, division
of labour exploits mechanical heterogeneity of the robots, which is what

89

CHAPTER 4. A BIO-INSPIRED ALGORITHM FOR PREY RETRIEVAL

Table 4.6: Number of times that each s-bot was a forager. Each column
refers to one of the six s-bots. Columns are ordered by increasing max-
imum speed. Each row refers to one of all the possible combinations
of four robots taken from a group of six and are sorted by ascending
mean group speed. Each group of robots was tested fifty times. The
number in the cells reports how many times an s-bot became a forager
(Pl > 0.025), when used in the given group, after 2400 s.

Group s-bot1 s-bot2 s-bot3 s-bot4 s-bot5 s-bot6

1 6 19 14 26 – –
2 5 10 21 – 20 –
3 7 11 – 26 23 –
4 10 12 19 – – 24
5 5 8 – 19 – 26
6 6 – 16 12 25 –
7 4 8 – – 31 24
8 4 – 11 18 – 19
9 – 14 17 18 17 –
10 3 – 16 – 17 21
11 – 7 16 11 – 25
12 3 – – 12 20 19
13 – 13 12 – 17 21
14 – 8 – 17 15 20
15 – – 11 9 11 23

90

CHAPTER 4. A BIO-INSPIRED ALGORITHM FOR PREY RETRIEVAL

we want to prove. On the contrary, if (4.7) is false, then Pf(i|k) = Pf(i)
(that is, the probability of i being a forager is not a function of the group
Gk to which it belongs and is independent of other robots) and we have
that either the following condition is true:

∃ i, j : i 6= j, Pf(i) 6= Pf(j) , (4.8a)

in which case, once again, division of labour exploits mechanical dif-
ferences, or the following equations are true:

Pf(i) = Pf(j) ∀ i, j ∈ {1, . . . , N} , (4.8b)

in which case there is no exploitation of differences (note that (4.8a)
and (4.8b) are mutually exclusive).
For what concern the MindS-bots, if we assume that (4.7) is false,

we can show that also (4.8b) is false considering the data in Table 4.5,
which reports the number of times each MindS-bot was observed to be
a forager at the end of the experiments. In fact, a statistical analysis
of this data shows that (4.8b) can be rejected with confidence 95%.12

Thus, we are in the case where either (4.7) or (4.8a) is true. It is not
necessary which one because both of them prove that VD considers
individual differences for the division of labour.
This way of proving our thesis might seem complex but it has a

great advantage: it allows us to reach significant conclusions with only
10 experiments. Consider the simpler approach of testing all possible
groups with different instances: it would require 15 experiments (all
the combinations of 4 robots out of 6) for each instance.
For what concerns the s-bots, there is a statistically relevant dif-

ference both among the groups and the individuals (confidence level
95%).13. Therefore we can conclude that both individual character-
istics and average abilities of the group are crucial to select the best
individuals to become foragers. This suggests that the situation more
likely to have occurred with the MindS-bots is (4.7). Finally, Pf(i) in-
creases with the speed of s-bot i (confidence level 95%).14

4.11 Experiments: Dynamic Environments

The last series of experiments shows the ability of the group that uses
the VD algorithm to adapt to changing environments. The experiments
were done only using the s-bots because the MindS-bots could not reli-
ably work for the amount of time required.
We simulated 2, 4, 6 and 8 s-bots in fifty instances of an environ-

ment with prey density initially set to 0.005 s−1. The robot were ini-
tialised as in the previous experiments. The prey density was changed

12χ2 test. Null hypothesis: (4.8b). Alternative hypothesis: (4.8a). This test can be used
only if the data sets are independent, which is granted by assuming that (4.7) is false.
13Two-way ANOVA test. Null hypothesis: no difference between groups and robots.
Alternative hypothesis: there are differences among the groups and the robots.
14Paired Wilcoxon test. Null hypothesis: Pf(i) = Pf(j) ∀ i, j ∈ [1, 6]. Alternative hypoth-
esis: Pf(1) < Pf(2) < Pf(3) < Pf(4) < Pf(5) < Pf(6). Bonferroni correction was applied to
account for multiple tests.

91

CHAPTER 4. A BIO-INSPIRED ALGORITHM FOR PREY RETRIEVAL

dynamic
(3600 s)

dynamic
(7200 s)

static
(3600 s)

type of environment
pe

rc
en

ta
ge

0
20

40
60

80
(a) 2 s-bots

dynamic
(3600 s)

dynamic
(7200 s)

static
(3600 s)

type of environment

pe
rc

en
ta

ge

0
20

40
60

80

(b) 4 s-bots

dynamic
(3600 s)

dynamic
(7200 s)

static
(3600 s)

type of environment

pe
rc

en
ta

ge

0
20

40
60

80

(c) 6 s-bots

dynamic
(3600 s)

dynamic
(7200 s)

static
(3600 s)

type of environment

pe
rc

en
ta

ge

0
20

40
60

80

(d) 8 s-bots

Figure 4.16: Effects of changing environments on the proportion of
foragers. Each graph refers to a different group size. The first bar in
each graph shows the division of labour after 3600 s, just before the
prey density changes from 0.005 s−1 to 0.04 s−1 (see Fig. 4.15 for the
meaning of the bar). The second bar shows the final proportions at
7200 s from the beginning, and the third one refers to a similar group
of s-bots that works from the beginning with prey density 0.04 s−1 and
measured at 3600 s from the beginning.

to 0.04 s−1 at 3600 s, later than the overall duration of the previous
simulations in order to assure that the group had reached a stable
working regime. We then estimated the distribution of Pl 3600 s after
the change, that is 7200 s from the beginning of the experiments.
Figure 4.16, which uses the same definitions of loafers, undecided

and foragers as in Fig. 4.15 and Sec. 4.9.2, reports the results. The
first two bars in each graph refer to the proportions of the three classes
after 3600 s and 7200 s in the dynamic environment and show how all
the groups can effectively adapt to the new situation. In all cases, the
number of foragers increases.
The distribution of the s-bots at 3600 s and 7200 s corresponds with

the one reported in Fig. 4.15 for similar prey densities. While this was
quite obvious for the distribution at 3600 s, it was not so for that at
7200 s since the initial conditions of the group in the second half were
different than in Sec. 4.9.2.
To cross check, we performed another set of experiments where the

robots were initialised all with Pinit = 0.033, that is, as in Sec. 4.9.
We took from the fifty instances of the previous experiments only the
events from 3600 s to 7200 s, and translated back in time so that the

92

CHAPTER 4. A BIO-INSPIRED ALGORITHM FOR PREY RETRIEVAL

robots work from the beginning in an environment with prey density
0.04 s−1. Then we recorded the distribution of Pl in the groups after
one simulated hour. The result is shown in the third bars of the plots
in Fig. 4.16. We use the words static environment to refer to this setup
and dynamic environment for the one where the prey density changes.
The end distribution in the static environment shows no relevant

difference with the one at 7200 s in the dynamic environment.15 This
result shows that the final distribution of foragers in the environment
is a function only of the prey density and the group size, thus it is not
influenced by the initial conditions.

4.12 Conclusions

The very simple algorithm proposed to model ants’ learning can be suc-
cessfully implemented also on robots. This chapter shows how the
simple learning rule of Alg. 2 can improve the efficiency of a group of
robots. What is more interesting, is that the robots do not need to ex-
plicitly communicate with each other, but they exploit only the local
information available in the environment for co-ordination.
The group is more efficient because the robots achieve division of

labour. Reducing the number of active robots decreases the inter-
ferences among members of the group and increases the quality of
retrieval. The algorithm implemented and discussed in the previous
pages, the Variable Delta algorithm, is also able to autonomously se-
lect the best robots for retrieving. To obtain similar results, most ap-
proaches in mainstream robotics would have first estimated the “fit-
ness” of each robot for retrieval, using some well defined metric. The
“fitness” values would then be communicated to other robots, and an
arbitration would occur. In our case, the robots do not know anything
about themselves and how they were built. They even do not know
whether there are other robots in the arena.
Our analysis of the VD algorithm shows indeed that a robotic system

using it has all the qualities that one wishes for a group of robots: effi-
ciency, scalability and robustness. Our work is however important not
only for the robotics community, but for biologists as well. Not many
biologists agree that simple rules might be at the origin of group-level
complex behaviours. Not many agree that learning could explain the
interesting patterns and features observed in ants’ (and other species’)
behaviour. Our work is in fact a strong argument in favour of learning,
because we show that it works not only in simple and numerical worlds
(like the simulations by Deneubourg et al. [1987]), but also in reality
by means of real robots.
The next chapter focuses on different learning strategies. The pur-

pose is to use the knowledge gained in this chapter to compare them
and to gain some insight about their applicability in prey retrieval.

15Kolmogorov-Smirnoff test. Null hypothesis: The distributions of Pl are the same.

93

CHAPTER 4. A BIO-INSPIRED ALGORITHM FOR PREY RETRIEVAL

94

Chapter 5

Other Algorithms
for Division of Labour

In Chap. 4, we showed that there is a way for a group of robots to effi-
ciently co-operate without using explicit communication. The solution
is based on individual learning, meaning that the robots use only local
information to modify their behaviour. We analysed one particular form
of learning, inspired by ants’ behaviour. The literature offers however
solutions similar to ours. Would other learning algorithms prove to be
better than Variable Delta (Alg. 2)? In this chapter, we try to answer
this question.
Comparisons between different algorithms in robotics is however

not straightforward. There are a number of issues that have to be
taken into account in order to obtain scientifically sound results. We
first introduce the algorithms on which we focus our analysis. Then
we describe the issues related to the comparison and detail the way we
addressed them. Subsequently, we detail the modifications we did to
the algorithms and the results of our analysis.

5.1 Two Learning Algorithms

Among the several learning algorithms proposed in the literature for
groups of robots, we decided to focus our attention on two in particular:
ALLIANCE by Parker [1998] and the one described by Li, Martinoli, and
Abu-Mostafa [2004].1

Our choice was done according to the following criteria:

• the adaptation mechanisms used by the two algorithms resemble
the VD (Alg. 2), although there are some important differences
that might play an important role;

• one algorithm, ALLIANCE, is well known and tested in main-
stream robotics, the other was developed for Swarm Robotics (SR),

1The authors do not provide a name for their algorithms. For the sake of simplicity,
we name it “Li” in the rest of this chapter.

95

CHAPTER 5. OTHER ALGORITHMS FOR DIVISION OF LABOUR

thus they are represent to some degree a broad range of research
areas.

5.1.1 ALLIANCE

ALLIANCE, designed by Parker [1998], is a fully distributed, behav-
iour-based software architecture, developed to obtain fault tolerant co-
operative control of teams of mobile robots. Robots learn and adapt
their behaviour in an automatic way, even when a centralised knowl-
edge is absent. It is a well known and widely used learning strategy in
mainstream robotics.
ALLIANCE was not specifically designed for SR. Robots explicitly

communicate their current activities to the other team-mates. Robots
use this information to decide the actions to perform, and this is con-
trary to what is normally seen in SR.
ALLIANCE does not assume or require availability of the communi-

cation medium, neither does it require the agents to be fully reliable.
ALLIANCE was designed to work also in case of such problems arise.
Communication-less robots as in SR are thus seen as a worst-case
scenario. It is also worth to note that Parker developed ALLIANCE con-
sidering much more complex objectives than prey retrieval. The work
of the group of robots is usually divided into a number of tasks that
can be executed concurrently or in a given order.
ALLIANCE is based on the following assumptions [Parker, 1998]:

1. the robots of the team can detect the effect of their own actions,
with some probability greater than 0;

2. robot i can detect the actions of other team members for which
i has redundant capabilities, with some probability greater than
0; these actions may be detected through any available means,
including explicit broadcast communication;

3. robots of the team do not lie and are not intentionally adversarial;

4. the communication medium is not guaranteed to be available;

5. the robots do not possess perfect sensors and effectors;

6. any of the robot subsystems can fail, with some probability greater
than 0;

7. if a robot fails, it can not necessarily communicate its failure to
its team mates;

8. a centralised store of complete world knowledge is not available.

The goal of ALLIANCE is to allow each robot of the team to select
appropriate actions to perform. The choice is made considering the
requirements of the final goal, the activities of other robots (this infor-
mation is available through a broadcast communication), the current
environmental conditions and the robot’s own internal status.

96

CHAPTER 5. OTHER ALGORITHMS FOR DIVISION OF LABOUR

The whole mechanism is implemented using impatience and ac-
quiescence. They are modelled with two mathematical functions, de-
scribed below. Each task of the team corresponds in the robots to a
behaviour set. Impatience and acquiescence are used to evaluate the
motivation of a robot to execute one of high-level behaviour sets. While
impatience incentives a robot to perform tasks in which other robots
fail, acquiescence enables a robot to handle situations in which the
robot itself fails to accomplish its task. Each behaviour is assigned a
parameter, the threshold of activation (θ), that determines the level of
motivation beyond which the behaviour set will become active.
We follow a bottom-up approach to describe ALLIANCE: first we

describe some functions that are used as the fundamental building
blocks and then how to calculate impatience, acquiescence and mo-
tivation. Thereafter, we describe how parameter learning takes place.
R = {r1, r2, . . . , rn} is the set of n heterogeneous robots composing the
team. T = {task1, task2, . . . , taskm} is the set of m independent tasks and
Ai = {ai1, ai2, . . .} the set of behaviours for robot ri. Robots may have
different ways of performing a task. ALLIANCE uses a set of n func-
tions {h1(a1k), h2(a2k), . . . , hn(ank)}, where hi(aik) returns the task in T
that robot ri is working on when it activates behaviour set aik.
The robots use sensors to know whether a behaviour set can be

activated. ALLIANCE models this with a simple function:

sensory_feedbackij(t) =

1 if the sensory feedback in robot ri at
time t indicates that the behaviour
set aij is applicable, and

0 otherwise.

.

The communication between robots is modelled by the function

comm_received(i, k, j, t1, t2) =

1 if robot ri has received message
from robot rk concerning task
hi(aij) in the time span [t1, t2],
and

0 otherwise.

.

In ALLIANCE, when the controller is performing a set of behaviours
related to a task, it inhibits the behaviour sets of other tasks. This is
to say, that robots perform only one task at a time. To model the task
selection, ALLIANCE uses the function

activity_suppressionij(t) =

0 if another behaviour set aik is
active, k 6= j, on robot ri at time
t, and

1 otherwise.

.

Before formally defining the impatience of a robot, we still need to
define three parameters. The first one, φij(k, t), gives the amount of
time during which robot ri is willing to allow robot rk ’s communication
message to affect the motivation of behaviour set aij. The second and
third ones, δ_slowij(k, t) and δ_fastij(t), give the rates of impatience of

97

CHAPTER 5. OTHER ALGORITHMS FOR DIVISION OF LABOUR

robot ri concerning behaviour set aij either while robot rk is performing
the task corresponding to behaviour set aij (i.e., hi(aij)) or in absence of
other robots performing the task hi(aij), respectively. The impatience
of the robot is given by

impatienceij(t) =

mink(δ_slowij(k, t)) if comm_received(i, k, j, t − τi, t) = 1 and
comm_received(i, k, j, 0, t− φij(k, t)) = 0, and

δ_fastij(t) otherwise.
.

The impatience rate will be the minimum slow rate, δ_slowij(k, t), if
robot ri has received communication indicating that robot rk has been
performing the task hi(aij) for the past τi time units, but not for
longer than φij(t) time units. Otherwise, the impatience rate is set
to δ_fastij(t).

The motivation of a robot to perform a task is reset the first time
it hears about another robot performing the same task. Using δt to
indicate the last time that the robot communicated with the others, the
reset is modelled by the function

impatience_resetij(t) =

0 if ∃k : comm_received(i, k, j, t− δt, t) = 1 and
comm_received(i, k, j, 0, t− δt) = 0, and

1 otherwise.
.

This reset function causes the motivation to be reset to 0 if ri has just
received its first message from robot rk indicating that rk is performing
task hi(aij).

The robot acquiescence is implemented using two parameters, ψij(t)
and λij(t). The first one, ψij(t), gives the time that robot ri wants to per-
form the task before yielding to another robot. The second parameter,
λij(t) gives the time robot ri wants to maintain the task before giving
up to possibly try another one. The following function indicates when
the robot has decided to acquiesce its task:

acquiescenceij(t) =

0 if behaviour set aij of robot ri has been active
for more than ψij(t) time units at time t and
∃x : comm_received(i, x, j, t − τi, t) = 1 or behaviour
set aij of robot ri has been active for more than
λij(t) time units at time t, and

1 otherwise.

.

98

CHAPTER 5. OTHER ALGORITHMS FOR DIVISION OF LABOUR

At this point, each robot evaluates its motivation as follows:

mij(0) =0

mij(t) =[mij(t− 1) + impatienceij(t)]

× sensory_feedbackij(t)

× activity_suppressionij(t)

× impatience_resetij(t)

× acquiescenceij(t) .

The corresponding behaviour set is activated whenever mij(t) > θ. Ro-
bots broadcast their current activities at a rate ρi.
Parker [1997] extended the original architecture to allow the robots

to learn the parameters used in ALLIANCE: δ_fastij(t), δ_slowij(t) and
ψij(t). The extended architecture is called L-ALLIANCE, but for the
sake of simplicity we refer to it using still the original name, ALLIANCE.
Learning uses a performance metric defined by:

task_timei(k, j, t) =

average time over last µ trials of rj ’s performance of task
hi(aij) + one standard deviation of these µ attempts, as
measured by ri.

The parameters are then updated as follows:

φij(k, t) = time during which robot ri is willing to allow robot
rk ’s communication message to affect the motivation
behaviour set aij

= task_timei(i, j, t)

δ_slowij(k, t) = rate of impatience of robot ri concerning behaviour
set aij after discovering robot rk performing the task
corresponding to this behaviour set

=
θ

φij(k, t)

min_delay =minimum allowed delay

max_delay =maximum allowed delay

high = max
k,j

task_timei(k, j, t)

low = min
k,j

task_timei(k, j, t)

scale_factor =
max_delay −min_delay

high− low

zcase1
=

θ

min_delay − (task_timei(i, j, t)− low) · scale_factor

zcase2
=

θ

min_delay + (task_timei(i, j, t)− low) · scale_factor

δ_fastij = rate of impatience of robot ri concerning behaviour
set aij in the absence of other robots performing a
similar behaviour set

99

CHAPTER 5. OTHER ALGORITHMS FOR DIVISION OF LABOUR

Figure 5.1: Example of collaborative stick pulling. Two robots have to
collaborate in order to pull a stick out of the floor [Ijspeert et al., 2001].

=

zcase1
if the robot expects to perform the task
better than any other team member and
no robot is currently performing it, and

zcase2
otherwise.

ψij(t) = time robot ri wants to maintain behaviour set aij ’s
activity before yielding to another robot

= task_timei(i, j, t)

The reader can find more details about ALLIANCE, L-ALLIANCE and
motivations of the algorithm in Parker [1998, 1997].

5.1.2 Li

The second candidate for comparison is an adaptive line-search algo-
rithm presented by Li et al. [2004, 2003, 2002]. The goal of the algo-
rithm is to offer a method to improve the performance of an artificial
swarm on a given task.
The task addressed by the authors is distributed stick pulling, as

described and analysed by Martinoli and Mondada [1995] and Ijspeert
et al. [2001]. Robots equipped with a gripper and proximity sensors
search for sticks in a circular arena to pull them out of the ground. The
length of each stick has been chosen in a way that a single robot can
not succeed on its own in the task, but only a collaboration between
two agents with two successive grips can lead to the accomplishment
of the task (Fig. 5.1).
The control system of the agents used by Ijspeert et al. was relatively

simple. Each robot randomly moved in the arena. When it found a
stick, it tried to pull it out of the ground. The agent could recognise by
the speed of the elevation arm whether another team mate was already
holding the same stick or not. In the first case, the task is completed;
the robots left the stick out of the ground and started searching for
new ones. In the second case, the robot held the stick for a given time,
waiting for another agent to come and to complete the task.

100

CHAPTER 5. OTHER ALGORITHMS FOR DIVISION OF LABOUR

Figure 5.2: The original learning algorithm designed to improve the
swarm’s performance by means of an adaptive change of the GTP pa-
rameter, as presented by Li et al. [2004]. The meaning of the variables
are described in Table 5.1.

The maximum delay that a robot waits holding the stick is called
Gripping Time Parameter (GTP). The experiments by Martinoli and
Mondada and Ijspeert et al. showed how the GTP can improve the per-
formance of the swarm. The number of robots in the swarm is another
important factor that influences the performance.
Li et al. [2004] introduced two generalised versions of the stick

pulling experiments. They have the same structure of the original ex-
periment, but they extend its purposes focusing on different aspects of
collaboration. The authors explore issues related to sequential collab-
oration and to parallel collaboration, by using longer or heavier sticks.
In case of longer sticks, k robots have to sequentially lift the stick. For
heavier sticks, k agents have to lift it at the same time.
The authors then proposed a learning algorithm to adapt the GTP

in order to maximise the overall performance of the colony and tested
it in simulation. Two different types of reinforcement signal are used.
A local one rewards the agent when it achieves a successful collab-
oration, pulling a stick out of the ground. The second one, a global
reinforcement signal, is broadcast to all the agents and contains the
performance of the group. The global reinforcement signal is partic-
ularly important in the generalised version of the stick pulling experi-
ment that requires sequential collaboration, because in this case only
the robot that makes the final grip knows if the collaboration has been
successful.
The algorithm is illustrated in Fig. 5.2. It starts by initialising the

variables that hold offset and multiplication factors of the GTP (δ−,

101

CHAPTER 5. OTHER ALGORITHMS FOR DIVISION OF LABOUR

Table 5.1: Values of the parameters used in the original work of Li et al.
[2004].

(a) Algorithmic variables

Range Description
s {+,−} search direction

∆+ [2, 60] GTP offset (s)
∆

−
[−60,−2] GTP offset (s)

δ+ [1.1, 5] GTP factor
δ
−

[0.2, 0.9] GTP factor
r0 {void} ∪ R previous performance
r R current performance

repeat Boolean reinforcement flag
switch Boolean directing flag

(b) Algorithmic parameters

Value Description
Tm 2400 average period for rein-

forcement signal s
E 1.9 GTP offset enlarge factor
F 0.3 GTP factor enlarge ratio
U 2 GTP offset shrink factor
V 0.5 GTP offset shrink factor

δ+, ∆− and ∆+). Then, each agent first updates its GTP in a random
chosen direction s ∈ {+,−}. In the stick pulling experiment is not clear
for the robots if an increase or a decrease of the GTP improves the
performance. Low GTP would not give time to other robots to come
and help. If the robots had high GTP, they would all spend most of the
time waiting and never helping the others, except when there are more
robots than sticks to pull.

After a period Tm, the robot checks its performance using the two re-
inforcement signals. If the performance is better than before, then the
agent updates the GTP in the same direction. Otherwise, it changes
the direction and it also undoes the last update made to the GTP. Off-
set and multiplication factor of the GTP (δ−, δ+, ∆− and ∆+) are also
changed during learning in order to speed up the convergence of the
parameter to the optimal value. They are increased when the same di-
rection is chosen twice, while they are decreased when the performance
oscillates.

In the stick pulling experiment, as well as in prey retrieval, every
agent has the same capabilities of the others. In the first set-up, they
have to grip sticks out of the floor, while in the second one the task
is accomplished when a robot retrieves a prey found in the environ-
ment. Also the shape of the arena used in the original stick pulling
experiments is circular, as the one we prepared for our experimental
setup.

102

CHAPTER 5. OTHER ALGORITHMS FOR DIVISION OF LABOUR

5.2 On the Comparison of Algorithms

for Swarm Robotics

The two algorithms explained in Sec. 5.1 work similarly to VD (Alg. 2),
in the sense that they increase or reduce some parameters to modify
the robots’ behaviour. But what does “similar” exactly mean? Accord-
ing to an English dictionary2 “similar” refers to “objects that have char-
acteristics in common and that are strictly comparable”. “Comparable”
means that the “objects are suitable for a comparison”.3 A “compari-
son” is the “examination of two or more items to establish similarities
and dissimilarities”.4

Just the definition of the word poses us a difficult problem: how do
we perform a comparison? At a closer look, the three algorithms (VD,
ALLIANCE and Li) are not strictly comparable. They were developed for
different applications and they aim at modifying different parameters:
probability to exit the nest for VD, time to wait before executing a task
and duration of the task for ALLIANCE, time to wait before giving up a
task for Li.
Let us focus first on the difference of application domains, and more

generally of the contexts in which these algorithms have been devel-
oped. A context comprises the goal the robots have to achieve, the
environmental set-up and also the robots used for the experiments. If
we want to compare objects, we first have to define a common context.
It would make no sense, for instance, to compare the colour of a car
with the number of apples in a barrel: in the first case we look at the
colour because we are interested in the aesthetics of the car, thus is a
visual context; in the second case, we are interested, for instance, in
the productivity of a farm, thus it is an economical context.
A look at the robotics literature shows that we often lack a common

context. Most of the papers propose particular solution for ad hoc set-
ups. Our work in Chap. 4 is no exception: the VD is tested in robots
which work in an environment modelled after ants’ foraging. To make
things even more difficult, there is no such thing as a common robotic
platform which is used throughout the literature. Researchers often
use prototypes or robots that were developed by their institutions. Only
recently, a set of common robotic platforms seems to emerge (most
noticeably, the ones from MobileRobots Inc.5 and K-Team6). Finally,
the algorithms, being for particular purposes, might exploit features
typical of the application taken into consideration but that might not be
found elsewhere. These factors do not allow, for instance, to compare
our results directly with the data published by other researchers.
Here comes the need to define first a common context for the exper-

iments. Which one?
It would make sense to test the different algorithms in different ap-

2http://www.m-w.com/dictionary/similar
3http://www.m-w.com/dictionary/comparable
4http://www.m-w.com/dictionary/comparison
5http://www.mobilerobots.com/
6http://www.k-team.com/

103

http://www.m-w.com/dictionary/similar
http://www.m-w.com/dictionary/comparable
http://www.m-w.com/dictionary/comparison
http://www.mobilerobots.com/
http://www.k-team.com/

CHAPTER 5. OTHER ALGORITHMS FOR DIVISION OF LABOUR

plications, set-ups and with different robotic platforms. Unfortunately,
experiments in robotics are costly. Any experiment requires time, peo-
ple, space if done with real robots, and obviously money to buy/build
the robots. Thus, a researcher is forced to limit herself/himself to a
limited number of experiments.
This is indeed the normal way to proceed in most sciences. In

medicine, for instance, subjects with the same illness are given differ-
ent (or no) treatments. This allows to find out whether a medicament
is effective against a particular pathology. Tests on different drugs or
on different pathologies are either done later by the same team, or in
parallel by other researchers.
For what concerns our case, we decided to focus only on the two

algorithms presented in Sec. 5.1 and, given the hardware and the re-
sources available, in a prey retrieval domain. It is not however an easy
task. The robotics literature does not offer, to the best of our knowl-
edge, a formal method to compare algorithms. Indeed, “there are no
generally accepted global criteria to evaluate a swarm system’s perfor-
mance” [Rybski et al., 2003]. There are however authors that propose
analytical models of their systems, e.g., Lerman et al. [2001]. It would
be possible to compare the analytical models derived from different al-
gorithms to find out their differences. This approach has one interest-
ing benefit: in order to write down a model, researchers have usually
to identify the main elements of their system and how they interact. In
other words: in order to write the model, one has to understand the
phenomena. There is however one major drawback: one usually needs
to make a number of assumptions and simplifications in order to be
able to obtain the model. Given the important role that the complex-
ity of interactions plays in fields like Swarm Robotics, it might happen
that some important features of the system are overlooked and that the
results of the model diverge from that of reality. We experienced this
problem in previous research [Trianni et al., 2002].
We show in this chapter a complementary approach. Instead of com-

paring the algorithms from an abstract point of view, we do it empiri-
cally, “on the field”, basing our results on experiments with real robots
and detailed simulations. The experiments take place in well defined
laboratory conditions. The advantage of this approach is that we need
many fewer simplifications and assumptions than in the previous case.
The major drawback is that the experiments require more time and are
quite resource-hungry. Thus, we had to plan and carefully design our
experiments in order to get sound results with little effort. We give, in
the following sections, enough details about our methodology so that
other researchers could build on and continue our work. If more and
more comparisons like the one in this chapter were carried out in the
robotics community (and in the swarm robotics community in partic-
ular), they would eventually create a common knowledge-base among
the researchers in robotics that would allow for more advances in the
field.
There is still one question that needs to be addressed. Having fixed

the application, we have then to modify the algorithms and to “port”
them to the new task. How much can we change of an algorithm and

104

CHAPTER 5. OTHER ALGORITHMS FOR DIVISION OF LABOUR

still call it with its original name? Or, rephrasing, can we relate the re-
sults of a modified algorithm with its original one and say, for instance,
that “our modified version of algorithm ‘A’ was the best in the experi-
ments, thus ‘A’ is the best algorithm”? The answer is quite easy: no.
We cannot consider a modified algorithm as the original one. We can
not use the original algorithm either, because its assumptions might
not hold true in our domain or because it was developed for different
contexts.
The answer to this problem comes from the observation that each

learning algorithm in the literature, and those in Sec. 5.1 in particular,
proposes a way of adapting some parameters of the robot’s behaviour.
What we do, is to implement and/or modify the same adaptation mech-
anism for our parameter, the time the robots spend in the nest (Tl),
and then we test the modified versions of the algorithms. Section 5.1
describes our modifications. We warn the reader that in this chap-
ter we refer for the sake of simplicity to our modified version of the
algorithms using the original names. Every time the reader reads “al-
gorithm A”, she/he should understand “our algorithm based on the
adaptation mechanism of algorithm A”.

5.3 Test Application

There is little to say about the test application used in the experiments:
it is the same task and arena used to analyse VD in Chap. 4. We used
the same real robots, the MindS-bots (Sec. 3.1), and an ad hoc MindS-
bot simulator, called “MindS-miss” (Sec. 3.2.1). The environment is still
as described in Sec. 4.7.1. The value of the parameters for VD did not
change, those of the other algorithms are given in Sec. 5.4.
The robots run the same control program as described in Sec. 4.5.

The only thing that changes is the way in which robots go from Rest to
Search. This transition is triggered differently according to the learning
algorithm under study.
For what concerns the purpose of the experiments, described from

Sec. 5.6 to Sec. 5.8, we repeat some of the experiments of Chap. 4:
efficiency, division of labour and dynamic environments.

5.4 Modified Algorithms for Prey Retrieval

The algorithms described in Sec. 5.1 could not directly be used in our
test application. In this section we describe our modifications to port
them to prey retrieval.

5.4.1 ALLIANCE

Our modifications to ALLIANCE address the work hypotheses of the
original algorithms that do not hold true in the prey retrieval domain
and that we listed in Sec. 5.1.1.

105

CHAPTER 5. OTHER ALGORITHMS FOR DIVISION OF LABOUR

In our test domain, the robots can not directly communicate and
are homogeneous, even if run-time problems or mechanical diversities
could lead to different efficiency. There is only one high level behaviour
set. It leads the robots to search for prey in the environment and to
retrieve what it has been found to the nest or to come back after the
expiration of a timeout. The original assumptions 2,4 and 7 have to be
modified in the following way:

2. robot i can not directly detect the actions of other team members
(the robots we used do not have sensor capability to distinguish
team mates and their actions);

4. the communication medium is never available;

7. if a robot fails, it can not directly communicate its failure to its
teammates;

Taking into consideration this situation, we can simplify motivation,
acquiescence and impatience as we describe below.

Motivation The motivation value is simplified into:

m(t) = [m(t− 1) + impatience(t)] ·acquiescence(t) . (5.1)

When the value of the function is greater than the threshold of
activation θ, the robot is forced to exit from the nest and to look
for prey.

This function is evaluated only when the robot is in the nest. The
moment it enters the nest, say t′, acquiescence(t′) = 0 (see below),
and thus m(t′) = 0. For t > t′, acquiescence(t) is constant, and thus
m(t) depends only on impatience(t).

We eliminated the other components that are based on communi-
cation and on the presence of other behaviour sets. Robots can
always perform the retrieval task, thus sensory_feedbackij(t) is al-
ways 1.

Acquiescence This function is used by the robot controller to evaluate
when it is time to give up and to come back to the nest.

The value of this function becomes really important when the be-
haviour set is active (that is, when the robot is searching for prey).
When the time spent by the robot in searching exceeds the time-
out, the function value is set to 0, thus

acquiescence(t) =

0 if timeout expired and the robot
is not in the nest

1 otherwise.
. (5.2)

After giving up, the robot returns to the nest and rests. Motivation
value is first reset and then it begins to increase again. Once the
resting period starts, acquiescence remains constantly equal to 1.

106

CHAPTER 5. OTHER ALGORITHMS FOR DIVISION OF LABOUR

The value for the timeout is the same used for the experiments in
Chap. 4.

As we did for motivation, we had to simplify the original acqui-
escence function, to eliminate all the parameters dependent on
direct communication among robots and on the presence of more
than one high level behaviour set. The original formulation of
acquiescence was based on the parameter ψij(t) that is adapted
during the experiments. We did not adapt the acquiescence for
two reasons: first, we are interested only in the adaptation of the
time to rest in the nest; second, changing the time spent out of
the nest, which is equal for the other algorithms, would introduce
too much diversity among the algorithms and make our analysis
more difficult.

Impatience Considering that in our case robots are not aware of the
state of the nest-mates, their impatience values grow indepen-
dently of each other, as it is specified by

impatience(t) = δfast(t) , (5.3)

δfast(t) =
θ

min_delay + (task_time(t)− low) · scale_factor
, (5.4)

scale_factor =
max_delay −min_delay

high− low
, (5.5)

where task_time(t) is the average time to retrieve a prey over
robot’s trials on the prey retrieval task plus one standard devi-
ation.

The constant max_delay is set equal to the timeout. The constant
min_delay represents the minimum possible delay employed by
a robot to exit the nest, to grab a prey and to retrieve it. We
experimentally estimated it by placing a prey just outside the nest
and in front of the robot.

In the original description of the algorithms, high and low repre-
sent the maximum and minimum value of task_time(t) for all the
robots and all the tasks. Given that the robots can not know the
performance of their nest-mates, we set these values to:

low = min_delay

high = max_delay

and thus scale_factor = 1.

In the experiments with VD in Chap. 4, the initial probability to leave
the nest was such that the robots waited on average 30 s in the nest.
We initialised the motivation value at time t = 0 to 0.87 · θ. With this
value, the first exit from the nest is after about 30 s from the beginning
of the experiment. It should also be noted that, after our simplifica-
tions, the actual value of θ is not so important as it was in the original

107

CHAPTER 5. OTHER ALGORITHMS FOR DIVISION OF LABOUR

Algorithm 3 Modified version of ALLIANCE used for prey retrieval.

m(0) = 0.87 ·θ
proc update_when_returning_to_nest ≡
task_time(t) = average searching time+

searching time standard deviation
δfast(t) = θ

min_delay+(task_time(t)−low)

impatience(t) = δfast(t)
.
proc rest_in_the_nest ≡
while m(t) < θ do

sleep(1 s)
m(t) = m(t− 1) + impatience(t)
if resting_time > Tmax then
m(t) = θ

fi
od
.

work, thus we set it to 1. The robot can rest in the nest for a maximum
of Tmax = 1

Pmin
seconds, where Pmin is the value used for VD and thus

Tmax = 667 s. This is the maximum average time spent in the nest by
robots that use VD.7

The algorithm we used for the experiments is summarised in Alg. 3.
The two most important features are that this algorithm is time based
(we recall that VD is probability based) and that the adaptation occurs
on the base of the whole history of the system, summarised by the
mean time to retrieve a prey and its standard deviation. ALLIANCE does
not make any difference between a successful and an unsuccessful
retrieval. In the second case, the timeout value is used when evaluating
the new task_time(t).

5.4.2 Li

In our application, robots do not use communication. Thus, we have to
get rid of the global reinforcement signal used by Li et al. when porting
their algorithm. We limit our reinforcement signal only to the local one.
This should not lead to information loss, because in prey retrieval ex-
periments each agent knows when its task has been successful (a prey
retrieved to the nest is obviously a success, while the expiration of the
search timeout must be considered as a failure). The global reinforce-
ment signal was mostly useful for situations where local feedback was
not readily available, such as in the case of sequential collaboration.
In the original algorithm, the search direction s is chosen in a ran-

dom way, because it is not obvious if the GTP must be increased or

7Notice that VD does not set a maximum amount of time to spend in the nest. For
every time t, no matter how big, the probability that a robot rests for more than t seconds
is never null, and this for every Pl < 1.

108

CHAPTER 5. OTHER ALGORITHMS FOR DIVISION OF LABOUR

Table 5.2: Values and bounds of the variables in the modified version
of the algorithm designed by Li et al. [2004].

Range Description
∆+ [2, 30]
∆− [-30,-2]
δ+ [1.1, 5]
δ− [0.2,0.9]
r {success, failure} ∪ {void} current performance

repeat Boolean reinforcement flag
switch Boolean direction flag

Table 5.3: Initialisation values of the enlarge and shrink factors and
offsets in our version of the algorithm by Li et al. [2004].

Variable Init value
∆+ 5
∆− -5
δ+ 2.4
δ− 0.5

decreased to improve the performance of the system. In our case, we
need to adapt Tl according to the amount of prey found by the agents
in the environment. It is quite obvious that it is better to decrease the
time spent in the nest after a success, and to increase it after a failure.
It would be pointless to change our parameter in a random way, since
the algorithm would waste time in order to find the correct direction for
update.

As for ALLIANCE, we set Tmax to 1
Pmin

(667 s) and Tinit to 30 seconds.
We also had to find new values and bounds for the other parameters
used by Li et al.. They are summarised in Table 5.2. Table 5.3 shows
the initialisation values of the parameters. Table 5.4 lists the constants
we used in our adaptation of the algorithm, which are unchanged from
the original. The values were tuned so that four successful retrievals
bring the time to rest in the nest from its lower value (1 s) to its max-
imum (667 s). This is the same number of iterations that VD requires
to go from Pmin to Pmax.

The Tm parameter (average period for reinforcement signal) is use-
less for our purposes, because the reinforcement is assigned to each
robot when it comes back to the nest after a trial (successful or unsuc-
cessful).

Algorithm 4 summarises the structure of our modified version of the
original Li’s learning strategy. As ALLIANCE, the main difference with
respect to VD is that it is time based. As VD, it uses varying increments
to change Tl, but it uses a more complex evaluation.

109

CHAPTER 5. OTHER ALGORITHMS FOR DIVISION OF LABOUR

Table 5.4: Constants used in our version of the algorithm, but not
changed from the original algorithm by Li et al. [2004].

Value Description
E 1.9 Tl offset enlarge factor
F 0.3 Tl factor enlarge ratio
U 2 Tl offset shrink divider
V 0.5 Tl factor shrink ratio

Algorithm 4 Li’s algorithm for prey retrieval. Tl is the time an agent
has to stay in the nest. The function restrict_to_range() checks if its
parameters are out of their bounds, and modifies them accordingly.

initialisation:
initialise(∆+,∆−, δ+, δ−)
r ← void; repeat← false ; Tl ← Tinit

if prey retrieved then
if r = void then
repeat← false

elsif r = success then
if repeat then

∆− ← E ·∆−

δ− ← δ− + F · (δ− − 1)
restrict_to_range(∆−, δ−)

fi
repeat← ¬repeat

elsif r = failure then
Tl ←

1
δ+
Tl −∆+

restrict_to_range(Tl)

∆+ ←
∆+

U

δ+ ← δ+ − V · (δ+ − 1)
restrict_to_range(∆+, δ+)
repeat← false

fi
Tl ← δ− · (Tl + ∆−)
restrict_to_range(Tl)
r ← success

fi

if timeout then
if r = void then
repeat← false

elsif r = failure then
if repeat then

∆+ ← E ·∆+

δ+ ← δ+ + F · (δ+ − 1)
restrict_to_range(∆+, δ+)

fi
repeat← ¬repeat

elsif r = success then
Tl ←

1
δ−
Tl −∆−

restrict_to_range(Tl)

∆− ←
∆−

U

δ− ← δ− − V · (δ− − 1)
restrict_to_range(∆−, δ−)
repeat← false

fi
Tl ← δ+ · (Tl + ∆+)
restrict_to_range(Tl)
r ← failure

fi

110

CHAPTER 5. OTHER ALGORITHMS FOR DIVISION OF LABOUR

5.5 Experiments: Methodology

The methodology used during the experiments follows the one of
Chap. 4. Position and probability of prey appearance, i.e., the prey
density, were used to generate a set of instances for the experiments.
An instance was then used for groups of different sizes and using dif-
ferent learning algorithms. For the experiments with real robots, the
instances of the experiments included also which robots from our pool
had to be used.
If compared with Chap. 4, we invert here the order of showing the

results: first we show the results in simulation and then those with real
robots. In Chap. 4, our priority was to validate a theoretical model, that
is, to show that it works also in the reality. This is the reason why the
experiments with real robots, which are more important in this case,
were shown first. The results in simulation were then used for a better
understanding of the results.
In this chapter, we do not have to test theoretical models anymore.

The algorithms that we study here were already shown to work (al-
though the one by Li et al. [2004] only in simulation). Our favourite
experimental tool is now simulation, because it allows to test more
conditions than real robots. Simulation needs to be validated though:
this is the reason why we experimented also with the real robots and
why we show also these results.

5.6 Experiments: Efficiency

5.6.1 Simulation

We tested groups of 2, 4 and 6 simulated MindS-bots, using 40 in-
stances obtained with prey density 0.005 s−1, 0.01 s−1 and 0.02 s−1

(120 instances in total). Each experiment lasted 3600 s.
Figure 5.3 shows the resulting efficiencies for each algorithm in each

environmental condition. Figure 5.4 reports the performances of the
groups.

5.6.2 Real Robots

The experiments with real robots were also run for 3600 s. Repeating
the experiments for all combinations of prey density/group size was
not realistic,8 therefore we focused only on special cases. Validation of
the results in simulation and parsimonious use of the resources (i.e.,
the time required for the experiments) were the rationale for the choice
of the cases to test.
We can roughly distinguish the results of Fig. 5.3 in two fuzzy cat-

egories: experiments that show a big difference in the efficiencies, and

8Three algorithms time three colony sizes time three prey densities means 27 h per
instance. Considering the time it takes to recharge the batteries and the probability
that robots break (thus the probability to have to repeat the experiment, which in our
experience was a value next to 0.5), this time can be multiplied by a factor of three.

111

C
H
A
P
T
E
R
5
.
O
T
H
E
R
A
L
G
O
R
IT
H
M
S
F
O
R
D
IV
IS
IO
N
O
F
L
A
B
O
U
R

0.005 0.01 0.02

5e
−

04
1e

−
03

2e
−

03
5e

−
03

1e
−

02

efficiency (2 robots)

prey density (s−1)

ν

5e
−

04
1e

−
03

2e
−

03
5e

−
03

1e
−

02
5e

−
04

1e
−

03
2e

−
03

5e
−

03
1e

−
02

VD
ALLIANCE
Li

0.005 0.01 0.02

5e
−

04
1e

−
03

2e
−

03
5e

−
03

1e
−

02

efficiency (4 robots)

prey density (s−1)

ν

5e
−

04
1e

−
03

2e
−

03
5e

−
03

1e
−

02
5e

−
04

1e
−

03
2e

−
03

5e
−

03
1e

−
02

VD
ALLIANCE
Li

0.005 0.01 0.02

5e
−

04
1e

−
03

2e
−

03
5e

−
03

1e
−

02
efficiency (6 robots)

prey density (s−1)

ν

5e
−

04
1e

−
03

2e
−

03
5e

−
03

1e
−

02
5e

−
04

1e
−

03
2e

−
03

5e
−

03
1e

−
02

VD
ALLIANCE
Li

Figure 5.3: Comparison of the efficiencies of the three learning algorithms in simulation. Each plot refers to different group
sizes. In each plot, we show the results of the three algorithms for each prey density. For the meaning of the bars, see
Fig. 4.6. Data refers to 40 runs.

1
1
2

C
H
A
P
T
E
R
5
.
O
T
H
E
R
A
L
G
O
R
IT
H
M
S
F
O
R
D
IV
IS
IO
N
O
F
L
A
B
O
U
R

0.005 0.01 0.02

1
2

5
10

20
50

performace (2 robots)

prey density (s−1)

re
tr

ie
ve

d
pr

ey

1
2

5
10

20
50

1
2

5
10

20
50

VD
ALLIANCE
Li

0.005 0.01 0.02

1
2

5
10

20
50

performace (4 robots)

prey density (s−1)

re
tr

ie
ve

d
pr

ey

1
2

5
10

20
50

1
2

5
10

20
50

VD
ALLIANCE
Li

0.005 0.01 0.02

1
2

5
10

20
50

performace (6 robots)

prey density (s−1)

re
tr

ie
ve

d
pr

ey

1
2

5
10

20
50

1
2

5
10

20
50

VD
ALLIANCE
Li

Figure 5.4: Comparison of the performances of the three learning algorithms in simulation. See Fig 5.3 for a description of
the plot. Data refers to 40 experiments.

1
1
3

CHAPTER 5. OTHER ALGORITHMS FOR DIVISION OF LABOUR

experiments that show a small difference in the efficiencies. We se-
lected one set-up for each category in order to validate the simulation.
We have then the following cases:

1. we use prey density D and group size G so that the experiments
done with 〈D,G〉 in simulation show a big difference in the effi-
ciencies, with algorithm ‘X’ being the best;

2. we use a tuple 〈D,G〉 that shows a small difference in the efficien-
cies, and thus nearly no differences between algorithms.

In choosing the values to use for D and G, we had to take care of
the following problems. A value of G = 6 is not desirable because there
is a high probability that robots break and that we have to rerun the
experiment (we recall that Lego, while being good for fast prototyping,
is not robust enough for long experiments). Moreover, we had in to-
tal only 6 MindS-bots available, thus one broken robot or one empty
battery would block all the experiments, since we would not have had
any spare robot to use while fixing the other one. High prey density,
D = 0.02, had to be avoided too, since it means a high rate of prey
appearance. The experimenter could not follow the rate of appear-
ance correctly in placing the prey. Moreover, preliminary experiments
showed us that with such rate we would have pretty soon exhausted
our prey reserve.
Our final choice was to test the real robots using D = 0.01 and group

size G = 4, as an example of case 1 (big difference in the efficiencies),
and D = 0.005 and G = 4 for case 2. Each set-up was tested with five
instances. Figure 5.5 shows the efficiencies of the groups, and Fig. 5.6
the final performances.

5.6.3 Discussion

We first analyse the results in simulation. The efficiencies of the three
algorithms are statistically different with 95% confidence.9 More pre-
cisely, ALLIANCE is more efficient than the other two algorithms,10 but
there is no significant difference between VD and Li.11 It should be
noted however that ALLIANCE shows also the bigger variance of the
results.
Looking at the performances of the groups, we see that the situa-

tion changes. There is also here an important difference among algo-
rithms,12 but this time ALLIANCE is the worst among the three algo-

9Friedman two-way test. Null hypothesis: the median efficiency of the tree algorithms
is the same. Alternative hypothesis: there is at least one algorithm with different median
efficiency.
10For both comparisons we used the random permutation test. Null hypothesis: me-
dian efficiency of ALLIANCE is equal to the other algorithms. Alternative hypothesis:
median efficiency of ALLIANCE is bigger.
11Random permutation test. Null hypothesis: median efficiencies are the same. Alter-
native hypothesis: median efficiencies are different. p-value: 0.6426.
12Same test as footnote 9, using performances instead of efficiencies.

114

CHAPTER 5. OTHER ALGORITHMS FOR DIVISION OF LABOUR

0.005 0.01

0.
00

2
0.

00
3

0.
00

5

efficiency (4 robots)

prey density (s−1)

ν

0.
00

2
0.

00
3

0.
00

5
0.

00
2

0.
00

3
0.

00
5

VD
ALLIANCE
Li

Figure 5.5: Comparison of the efficiency of the three learning algo-
rithms using real robots. The algorithms were tested with a group of
four robots, and prey density of 0.005 s−1 and 0.01 s−1. Data refers to
5 runs.

0.005 0.01

10
15

20
30

performance (4 robots)

prey density (s−1)

re
tr

ie
ve

d
pr

ey

10
15

20
30

10
15

20
30

VD
ALLIANCE
Li

Figure 5.6: Comparison of the performance of the three learning algo-
rithms using real robots. The algorithms were tested with a group of
four robots, and prey density of 0.005 s−1 and 0.01 s−1. Data refers to
5 runs.

115

CHAPTER 5. OTHER ALGORITHMS FOR DIVISION OF LABOUR

rithms.13 Again, there is no difference between VD and Li.14

We recall that the efficiency is the ratio between the performance
of the group and its group duty time (see Eq. (4.4)). Low performance
can lead to high efficiency only if the group duty time decreases more
than the performance. Thus, it seems that ALLIANCE implements as a
matter of fact a very conservative strategy for prey retrieval. The robots
rest longer in the nest and exit more seldom than with the other two
algorithms. This implies that when they exit, the environment is also
richer in prey than with the VD and Li (because less prey have been
removed by other robots), thus they are able to retrieve immediately
a prey. Moreover, there are less nest-mates that could disturb their
retrieval. The drawback of this strategy is that the robots retrieve less
prey.
The results with real robots are similar to simulation. If we look at

the efficiencies with four robots and prey density 0.01 s−1, we have a
statistically relevant difference among the algorithms15 (and this with
only five instances). ALLIANCE is more efficient than the other two,16

which do not show any difference among them.17 For prey density
0.005 s−1, there is no statistical difference.18 Finally, ALLIANCE is the
worst performing algorithm.19

Can we say that the experiments with real robots validated the sim-
ulation? In Sec. 5.6.2 we listed the two outcomes of the experiments
in simulation. The possible outcomes with real robots for case 1 in
simulation could have been:

1-I. a big difference in the efficiencies, with algorithm ‘X’ being still the
best;

1-II. a big difference in the efficiencies, with another algorithm, say ‘Y’,
being the best;

1-III. a small difference in the efficiencies, which does not give any sta-
tistically relevant difference.

In cases 1-I and 1-II a few instances are enough to obtain a signifi-
cant result. If either case 1-II or 1-III occurs, they are both against the
result obtained in simulation, thus we can assert that the simulation
is not valid. If case 1-I occurs, simulation and reality give the same
results, but we can not draw any conclusion, because we can not be
sure that the simulator always agrees with reality.
A similar reasoning can be applied to case 2 for simulation. The

possible outcomes of the experiments with the real robots are:

13Same tests as footnote 10, using performances instead of efficiencies.
14Random permutation test. Null hypothesis: median performances are the same.
Alternative hypothesis: median performances are different. p-value: 0.8858.
15Same test as footnote 9.
16Same tests as footnote 10.
17Random permutation test. Null hypothesis: median efficiencies are the same. Alter-
native hypothesis: median efficiencies are different. p-value: 0.2201.
18Same test as footnote 9.
19Same tests as footnote 12 and 13.

116

CHAPTER 5. OTHER ALGORITHMS FOR DIVISION OF LABOUR

Table 5.5: Linear regression model parameters for the efficiencies of
the three learning algorithms. For each algorithm and parameter, we
report the nominal value of the fitted model and its 95%-confidence
interval.

parameter VD ALLIANCE Li

α 0.70 0.60 0.69
[0.66, 0.74] [0.55, 0.65] [0.65, 0.72]

β 0.58 0.52 0.55
[0.52, 0.63] [0.46, 0.58] [0.50, 0.60]

γ 0.16 0.13 0.15
[0.13, 0.20] [0.01, 0.16] [0.13, 0.19]

2-I. a small difference in the efficiencies, which does not give any sta-
tistically relevant difference;

2-II. a big difference in the efficiencies (it does not matter now which
algorithm is the best one).

Case 2-II would invalidate the simulator.

The results with real robots correspond to the only two cases that
do not allow us to invalidate the simulator: case 1-I and 2-I. We could
have done more experiments with prey density 0.005 s−1 in order to
have a statistical relevance, but we think that it would have been only
a waste of resources. The results in simulation agree so far with those
with real robots, both qualitatively and quantitatively (compare Fig. 5.3
with Fig. 5.5 and Fig. 5.4 with Fig. 5.6). Therefore, we thought it would
not have been useful to make more experiments, given that at this
point it would have been very likely to obtain the same results as in
simulation.

We can now try to use the analytical model of the efficiency that we
derived in Sec. 4.8.4 in order to measure the differences among the
algorithms. The model (4.5) is given by

ν = γ
Dα

Gβ
,

which we fit with the data from the simulation. The values for 〈α, β, γ〉
that we obtained for each algorithm are listed in Table 5.5, together
with their 95%-confidence intervals. The goodness of fit is shown by
the Q-Q plots of Fig. 5.7 (the meaning of these graphs is explained in
Sec. 4.8.4).

The values of the parameters confirm what we previously observed.
Because its α is the lowest, we deduce that ALLIANCE is better than
the others in exploiting high prey densities (αALLIANCE < αLi ≡ αVD, but
D ≤ 1 s−1), by using a conservative strategy. All three algorithms react
in the same way to the group size (βALLIANCE ≡ βLi ≡ βVD).

117

CHAPTER 5. OTHER ALGORITHMS FOR DIVISION OF LABOUR

−3 −2 −1 0 1 2 3

−
0.

6
−

0.
2

0.
2

0.
4

normal Q−Q plot

theoretical quantiles

sa
m

pl
e

qu
an

til
es

(a) Q-Q plot for VD

−3 −2 −1 0 1 2 3

−
0.

8
−

0.
4

0.
0

0.
4

normal Q−Q plot

theoretical quantiles

sa
m

pl
e

qu
an

til
es

(b) Q-Q plot for ALLIANCE

−3 −2 −1 0 1 2 3

−
0.

6
−

0.
2

0.
2

0.
4

normal Q−Q plot

theoretical quantiles

sa
m

pl
e

qu
an

til
es

(c) Q-Q plot for Li

Figure 5.7: Q-Q plot (Quantile-Quantile plot) of the residuals of the lin-
ear models for each learning algorithm. See Fig. 4.10 for the description
of the plots.

118

CHAPTER 5. OTHER ALGORITHMS FOR DIVISION OF LABOUR

5.7 Experiments: Division of Labour

5.7.1 Simulation

We used the data of the experiments in Sec. 5.6.1. At the end of the
experiments, we collected the value of Tl for ALLIANCE and Li, and Pl

for VD. In order to have comparable results, we do not use for VD the
estimated distribution of Pl, but that of 1

Pl
, that is, the mean time to

spend in the nest. The results, for different prey densities, group sizes
and algorithms are shown in Fig. 5.8.

5.7.2 Real Robots

As in simulation, we used the data from the experiments in Sec. 5.6.2.
The results are depicted in Fig. 5.9.

5.7.3 Discussion

The most interesting result is that ALLIANCE decreases the group duty
time (Sec. 5.6.3) by not differentiating the individuals of the colony.
Its distribution of Tl has in fact only one peak, with the majority of
the individuals between 200 s and 300 s, in simulation as well as with
real robots. Adaptation to different conditions is achieved by modifying
the tails of the distribution, but the peak remains nearly always in the
same area.

Li’s distribution shows mostly one peak too. There are some cases
where it is possible to see a small peak for high Tl (i.e., prey density
0.005 s−1, 0.01 s−1 and group size 4 and 6) but they are negligible
when compared to those of VD in the same conditions. This is true for
both simulation and real robots.

We think that these differences can be explained by two factors.
Firstly, given the conservative strategy of ALLIANCE, the competition
between the robots is reduced. With ALLIANCE, robots exit more sel-
dom, thus there is time for a conspicuous number of prey to appear
in the environment. It is true that one successful robot reduces the
number of prey in the environment, and thus the probability that other
robots are successful, but the decrease in case of ALLIANCE is negligi-
ble.

Secondly, VD introduces a stronger non-linearity than Li and AL-
LIANCE. Li uses variable increments and decrements of Tl. VD does
the same but with probabilities, which are in inverse relationship with
time. A decrement of low probabilities corresponds to a huge increment
of times, while a decrement of high probabilities corresponds to a small
increment of time (see Fig. 4.3). Therefore, VD pushes more easily the
individuals toward Tmax than Li and ALLIANCE.

119

CHAPTER 5. OTHER ALGORITHMS FOR DIVISION OF LABOUR

T
l

density
0.0 0.2 0.4 0.6 0.8 1.0

0
100

200
300

400
500

600
700

T
l

density
0.0 0.2 0.4 0.6 0.8 1.0

0
100

200
300

400
500

600
700

T
l

density
0.0 0.2 0.4 0.6 0.8 1.0

0
100

200
300

400
500

600
700

T
l

density
0.0 0.2 0.4 0.6 0.8 1.0

0
100

200
300

400
500

600
700

T
l

density
0.0 0.2 0.4 0.6 0.8 1.0

V
D

A
LLIA

N
C

E
Li

0
100

200
300

400
500

600
700

T
l

density
0.0 0.2 0.4 0.6 0.8 1.0

0
100

200
300

400
500

600
700

T
l

density
0.0 0.2 0.4 0.6 0.8 1.0

0
100

200
300

400
500

600
700

T
l

density
0.0 0.2 0.4 0.6 0.8 1.0

0
100

200
300

400
500

600
700

T
l

density
0.0 0.2 0.4 0.6 0.8 1.0

0
100

200
300

400
500

600
700

observed distribution of T
l

prey density 0.005 s −1
prey density 0.01 s −1

prey density 0.02 s −1

2 robots4 robots6 robots

Figure 5.8: Estimated distribution of Tl for each algorithm. Each graph
in a row refers to the same group size, specified on the left. Each graph
in a column refers to the same prey density, specified on the bottom.
The x-axis of each graph is divided into seven intervals, each hundred-
seconds long. Each interval contains three bars, one per algorithm.
The height of each bar represents the ratio of robots that have been
observed to have Tl in the respective interval at the end of the exper-
iments. For VD, we use Tl = 1

Pl
, that is, the mean time spent in the

nest. For instance, the rightmost triplet of bars in a plot, refers to the
ratio of robots that had Tl ∈ (600, 700].

120

CHAPTER 5. OTHER ALGORITHMS FOR DIVISION OF LABOUR

observed distribution of Tl in real robots

Tl

de
ns

ity

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

VD
ALLIANCE
Li

0 100 200 300 400 500 600 700

(a) Distribution of Tl for 4 robots and prey density 0.005 s−1.

observed distribution of Tl in real robots

Tl

de
ns

ity

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

VD
ALLIANCE
Li

0 100 200 300 400 500 600 700

(b) Distribution of Tl for 4 robots and prey density 0.01 s−1.

Figure 5.9: Comparison with real robots of the estimated distribution
of Tl of the three algorithms. For a description of the plot, see Fig. 5.8.

121

CHAPTER 5. OTHER ALGORITHMS FOR DIVISION OF LABOUR

5.8 Experiments: Dynamic Environments

We run the same type of experiments as in Sec. 4.11, but only in simu-
lation. Real robots could not in fact reliably work for the time required
for the following experiments. The previous sections showed however
that the matching between simulation and real robots is really good.
We briefly recall in what the experiments consist: a group of robots
works initially with a low prey density, 0.005 s−1; after 3600 s the prey
density changes to a higher value, 0.02 s−1, and the group works for
another 3600 s. The prey densities used in this case represent the min-
imum and maximum used for the previous experiments. Accordingly,
we tested groups of 2, 4 and 6 robots. In all cases, the robots are
initialised as in the experiments of Sec. 5.6 and 5.7.
The results are summarised in Fig. 5.10. Both VD and Li adapt

the group to the new environment. The number of active robots, those
with low Tl, decreases in fact at the beginning of the experiments for all
group sizes, and increases after 3600 s. ALLIANCE instead shows not
adaptation at all: the number of active robots continue to decrease.
It would be fairer to say that ALLIANCE does not show any adapta-
tion in this time-frame (two simulated hours). We hypothesise that the
conservative strategy brought forth by ALLIANCE makes the dynam-
ics of the group much slower than the change that we tested in these
experiments, and a bigger simulation time might show indeed some
adaptation also with ALLIANCE.
The lack of adaptation in ALLIANCE is better seen in Fig. 5.11,

where we plot how the percentage of the most active robots changes
through time. The “most active” robots are those with 0 s ≤ Tl ≤ 100 s
for VD and Li, and with 200 s < Tl ≤ 300 s for ALLIANCE. These ranges
correspond to the bottom darkest bands of Fig. 5.10.
We think that the “slowness” of ALLIANCE might be explained by its

use of the mean and standard deviation of the time to find a prey (see
Alg. 3). Such values are calculated on the base of the whole history
of the group, and thus past events play an important role also in the
future events of the system.

5.9 Conclusions

We compared different algorithms for learning the time to rest in the
nest in a group of robots involved in prey retrieval. Comparisons among
different algorithms is not commonly seen in the robotic literature, even
less in SR, which is much younger. There are several practical reasons
for this: differences in the application domains and in the hardware
make difficult for two algorithms to be comparable.
We think that comparisons among different solutions are indeed

necessary for the development of robotics. They might be done analyti-
cally, but the more important results are those obtained with empirical
experiments. In fact, also theoretical results need to be validated.
This chapter shows how we can conduct empirical tests to assess

the differences between algorithms. Our way to proceed, mixing simu-

122

CHAPTER 5. OTHER ALGORITHMS FOR DIVISION OF LABOUR

0200400600
Tl

0200400600
Tl

de
ns

ity
de

ns
ity

0.
00

5
s−1

0.
02

 s−1

0
10

00
30

00
50

00
70

00

0200400600

tim
e

(s
)

Tl

0
10

00
30

00
50

00
70

00
tim

e
(s

)
0

10
00

30
00

50
00

70
00

tim
e

(s
)

ob
se

rv
ed

 d
is

tr
ib

ut
io

n
of

 T
l t

hr
ou

gh
 ti

m
e

(d
yn

am
ic

 e
nv

iro
nm

en
t)

V
D

A
LL

IA
N

C
E

Li

2 robots 4 robots 6 robots

Figure 5.10: Dynamics of Tl in a dynamic environment. Each algorithm
was tested in an environment with prey density initially at 0.005 s−1.
After 3600 s, the prey density changes to 0.02 s−1. Each plot in a row
refers to experiments with a given group size (specified on the left).
Each plot in a column refers to one algorithm (specified on the bot-
tom). The content of the plot is explained in Fig. 4.13. The vertical
line in the middle of each plot marks the moment when the prey den-
sity changes. Data refers to forty experiments for each combination of
algorithm/group size.

123

CHAPTER 5. OTHER ALGORITHMS FOR DIVISION OF LABOUR

0 1000 2000 3000 4000 5000 6000 7000

0
20

60
10

0

percentage of active robots

time (s)
%

VD ALLIANCE Li

(a) 2 robots

0 1000 2000 3000 4000 5000 6000 7000

0
20

60
10

0

percentage of active robots

time (s)

%

VD ALLIANCE Li

(b) 4 robots

0 1000 2000 3000 4000 5000 6000 7000

0
20

60
10

0

percentage of active robots

time (s)

%

VD ALLIANCE Li

(c) 6 robots

Figure 5.11: Percentage of most active robots in dynamic environ-
ments. For each colony size, we plot the percentage of most active
robots through time. The “most active” robots are those with 0 s ≤ Tl ≤
100 s for VD and Li, and with 200 s < Tl ≤ 300 s for ALLIANCE. Such
intervals correspond to the bottom dark lines of Fig. 5.10.

124

CHAPTER 5. OTHER ALGORITHMS FOR DIVISION OF LABOUR

lation and real robots and using appropriate experiment design, allows
us to obtain valid results while sparing important resources. Recalling
that prey retrieval is used as a model for other real-life applications, we
obtained the following practical results:

• ALLIANCE is a very conservative learning algorithm, thus it is best
suited for applications in which energy is a major concern (like
exploration and collection of samples on a planet, where robots
should work as long as possible);

• we can measure the diversities among the algorithms using the
formula (4.5) and the estimated values of its parameters, as in
Table 5.5;

• VD and Li are not distinguishable for what concerns the out-
come;20 both perform better than ALLIANCE and thus are best
suited for applications where the number of retrieved items is
more important (like search and rescue);

• ALLIANCE does not adapt well to changes in the environments,
thus it is better to choose VD or Li for applications where adaptiv-
ity is important (like again search and rescue, or all other scenar-
ios where the environment might change suddenly).

20VD is much simpler to describe and implement (compare Alg. 2 vs. Alg. 4), thus it
might be a better choice for the designer of a group of robots. It must be noted however
that the complexity of Li comes from the fact that it was originally developed for a different
application domain.

125

CHAPTER 5. OTHER ALGORITHMS FOR DIVISION OF LABOUR

126

Chapter 6

Division of Labour
in Sensor/Actuator
Networks

One of the possible ways of extending the work presented in the pre-
vious chapters is by increasing the number of tasks that the robots
have to perform. We implemented an architecture for division of labour
over several task in a Sensor/Actuator Network (SANET). SANETs are
a new research field, where mobile robots co-operate with sensor net-
works (SN) for the achievement of a goal. The objects composing the SN
are referred to as “motes”. We give an overview of the field in Sec. 6.1,
and describe which are the common research issues in the area. In
order to better understand the work presented in this chapter, we pro-
pose in Sec. 6.2 a fictitious application which might require a solution
like the one we present in this chapter. This scenario requires that
robots and motes perform different tasks concurrently.
Chapter 4 and 5 showed how division of labour can occur thanks

to the interactions among the robots and with the environment. More
specifically, division of labour is based on positive feedback and on
competition among the robots. A successful robot rests less in the
nest and thus increases the probability to be more successful (positive
feedback). A successful robot decreases the probability of success of
the other robots (competition). We tried to introduce the same types
of interactions in a SANET to solve scenarios like the one in Sec. 6.2.
Sections 6.3 to Sec. 6.6 describe a control architecture for robots and
motes that induces division of labour exploiting the same interactions
described above.
The second part of the chapter, Sec. 6.7 to Sec. 6.9, shows some

of the results that we obtained. We ran experiments in simulation.
We took particular attention in implementing a realistic simulator
(Sec. 3.3), which is, to the best of our knowledge, something not yet
seen in the literature.
SANETs are still a pretty new object of research and their peculiarity

is in the high heterogeneity between their components, the motes and

127

CHAPTER 6. DIVISION OF LABOUR IN SANETs

the robots. Research both in networking and in robotics has dealt with
heterogeneous systems, therefore SANETs should be no problem. We
think however that SANETs are a different issue. Let us take for exam-
ple a heterogeneous group of robots. The individuals are different, but
only to a given extent. Some might roll, others might fly, but they are
all robots, that is, they can sense, interact with and modify the envi-
ronment. The difference between robots and motes is more profound
and qualitatively different: no matter how one improves or modifies a
mote, it will never become a robot. The dualism of SANETs reflects into
the approaches that are usually followed in the literature, as we show
in the next section.
Robots and motes have different requirements, can do different

things and, finally, are usually analysed in different ways. It is there-
fore not straightforward to find a way to analyse a SANET as a whole.
Our experiments were meant to understand the behaviour of the whole
group and thus we limit our observations only to the particular aspect
of interest for this thesis, i.e., division of labour. There are however
several other aspects that are interesting and on which we will base
our future work: end-to-end delays, self-organised congestion control,
energy aware routing or Quality of Service, just to name a few.

6.1 Sensor/Actuator Networks

Recent advances in electrical engineering have enabled the develop-
ment of low-cost, low-power, multifunctional “sensor nodes” or “motes”.
Motes are small embedded systems, provided with their own power
supplies (Fig. 2.4), with the ability of sensing the environment, pro-
cessing data and communicating with the neighbours, forming a SN.
The research issues connected to SN span over a broad range of

topics. Being embedded systems, the electronics of a mote should be
designed in order to be compact and to be energy efficient. Motes have
also to communicate often with a destination that is farther than the
communication range of a single mote. Thus, researchers have fo-
cused on the implementation of ad hoc routing protocols to allow the
SN to work with unknown and dynamic topologies. Trakadas et al.
[2004] and Abolhasan et al. [2004] classified and reviewed most of
the known routing mechanism for SN, and more generally for mobile
ad hoc networks: distributed spanning tree, geographic routing, dy-
namic addressing techniques, cluster routing protocols, and others.
Researchers have developed also bio-inspired protocols, most notice-
ably AntHocNet [Di Caro et al., 2005]. We discuss about it more in
detail in Sec. 6.4.
The routing algorithms can roughly be classified in three categories:

proactive, reactive and hybrid. Proactive algorithms keep up-to-date
routes for each destination during all the lifetime of the node. Reactive
algorithms search routes to a specific destination only when the upper
layer wants to establish a new data session. When the session is closed,
the route is usually deleted. The advantage of proactive algorithms is
that the data transmission delay is usually smaller, because nodes do

128

CHAPTER 6. DIVISION OF LABOUR IN SANETs

not need to find routes to a destination, but at a cost of a high overhead
in the network. A lot of packets flow in the network only to maintain
the routing information up-to-date. Reactive algorithms reduce the
overhead and are also inherently more robust because they do not need
to track changes in the network. The disadvantage is that a route
discovery takes place every time a node wants to start a transmission.
For this reason, hybrid methods have recently appeared. Their purpose
is to mix the two routing strategies, proactive and reactive, in order to
obtain the best out of them.
This little digression1 about SNs is justified by the fact that they

have recently been coupled with Multi Robot Systems. The result is
called “Sensor/Actuator Networks (SANETs)”.2

There are typically two approaches to SANETs. Researchers in the
field of networking usually envisage applications where the robots are
“helpers” of the SN, for instance by replacing out-of-work pieces [Corke
et al., 2004] or, since they have room for bigger batteries and they
can afford more powerful transmission, they work as gateways for long
distance communication [Butler, 2003]. Roboticists tend to see the re-
lationship between robots and motes the other way round, using motes
as intelligent landmarks for robot navigation [Batalin et al., 2004b, Po-
duri and Sukhatme, 2004, Corke et al., 2003, Sinopoli et al., 2003].
Navigation is a fundamental problem, because it is required for every
activity that the robots should perform. The approach is usually to
create a sort of potential field among the motes that the robots follow
in order to reach their destination.
One of the reasons for the increasing attention to SANETs in the

last years is that there are a number of challenging research issues
connected to these heterogeneous systems [Akyildiz and Kasimoglu,
2004]. They have usually strong real-time requirements (think, for in-
stance, to an application like intrusion detection or forest monitoring).
Robots and motes have to co-ordinate differently within themselves and
between each others. They have moreover conflicting design require-
ments: on the one hand, the latency of the SANET should be low, so
that the robots can react promptly to new situations; on the other hand,
energy consumption and network lifetime usually imply a reduced use
of the transmission media, and thus higher time to send a message and
higher latency.
The protocols used for communication are spread on several, mostly

orthogonal, “planes”. The management plane takes care of the power
consumption, the mobility of the nodes and the repair in case of fail-
ure. The co-ordination plane handles the behaviours of the nodes (both
motes and robots) according to the information received from the other
planes. The communication plane deals with the construction of phys-
ical channels, the access into the medium (MAC) and the selection of
paths between one node and the other. The challenging aspect is that

1If the reader wants to know more about SN, we suggest the works by Chong and
Kumar [2003], Akyildiz et al. [2002], Estrin et al. [2002].
2The literature offers several other names for the same systems, such as “Robot and

Sensor Networks” [Kumar et al., 2004], or “Wireless Sensor and Actor Networks” [Akyildiz
and Kasimoglu, 2004].

129

CHAPTER 6. DIVISION OF LABOUR IN SANETs

this three planes have to strictly interact. Data received by a node
at the communication plane should be submitted to the co-ordination
plane which decides how the node should act on the data. The man-
agement plane is responsible for monitoring and controlling the actions
decided by the co-ordination plane so that the node operates properly.
It can also provide information needed by the co-ordination layer to
make decisions.
We could find no work about division of labour in SANETs. There

are however a few works about task allocation. As an example, Batalin
and Sukhatme [2003] proposed a task-allocation method for alarm re-
sponse based on the interactions among SN and robots. Their solution
makes use of implicit assumptions that can not be granted in case of
dynamic environments and/or a huge number of robots in the system.
For instance, the motes know how many robots are present and which
are their positions,3 which might be hard to keep in the motes’ mem-
ory if there are many robots. In case of highly dynamic environments,
this solution would require the propagation of the information about
each robot in a very short time, or at least faster than the dynam-
ics of changes, but the high data rate might congestion the network.
Gerkey and Matarić [2002] proposed a market-based task allocation
schema. The agents bid to acquire a task based on the estimation
of their capabilities. The authors’ auction involves the whole SANET.
They are aware that this might be a problem and envisage to solve
it by running only localised actions. Clustering methods provide the
inherent capability of performing operations in a local context. You-
nis et al. [2003] exploited this behaviour for task allocation in SNs.
Batalin and Sukhatme [2004] used a greedy policy to allocate tasks.
Every task is allocated to the best available agent. “It has been shown
that greedy algorithms provide good approximate solutions to” the task
allocation problem [Batalin et al., 2004a]. Low et al. [2006] used a bio-
inspired task allocation mechanism. It is based on the threshold model
[Bonabeau et al., 1996] and is used to allocate the task of tracking ob-
jects in the network. As in the architecture we describe below, their
agents adapt during the network lifetime.
Possible applications for SANETs include intrusion detection (motes

detect an intrusion, and robots move to intercept the intruder) and
forest monitoring (motes detect a fire and robots shall go to the place
and extinguish the fire). SANETs might also be useful for precision
agriculture (that is, the ability to intervene in differentiated ways on
different zones of a field). Issues in rescue applications have been only
recently investigated [Kumar et al., 2004].

6.2 A Scenario for SANETs

To better understand what comes in the next pages, we prefer to start
by giving an example of a possible application for SANETs. We refer to

3The problem of localisation in SN has also been extensively studied. See, for instance,
Galstyan et al. [2004], Corke et al. [2003], Bulusu et al. [2001].

130

CHAPTER 6. DIVISION OF LABOUR IN SANETs

this example in the next sections in order to clearly explain concepts
that might remain otherwise too abstract.
The scenario is about search and rescue. The uncertainty of the

environment after a disaster, its sudden changes, and the need to act
as fast as possible, make this application quite challenging.
Suppose that a SANET is used to help the rescue team after, for

instance, an earthquake. As very first step, the rescue team deploys
the motes.4 The task of the motes is to sense the environment and
send data to the headquarter. Interesting information to send might be
the temperature (to discover fire), sound (in case of some victims are
calling for help), pictures and videos (so that the rescue team sees the
situation). Robots are used to support the operations of the rescuers.
In addition to capturing information, robots can also operate on the
field. In the future, they might be able to give first aid to victims, ex-
tinguish fire, or secure the place before the rescue team arrives. Motes
decide by analysing their readings that a robot is required in a particu-
lar area. Robots listen for “help calls” by motes and, in case, reach the
problematic spot.
This scenario requires robots and motes (henceforth commonly re-

ferred to as agents) to perform different tasks. The agents performing
a task should be spread in the environment, so that the measurements
cover homogeneously the area. Additionally, two neighbouring agents
should not perform the same task. It would make no sense, for in-
stance, if all neighbouring motes measure the temperature, because
this information is likely not to be different. It is not useful too if motes
in another cluster record sound at the same time. In this case, the
rescue team would receive redundant information about a part of the
environment and nothing about the rest.
To avoid the aforementioned problem, agents need to homoge-

neously distribute the task execution on the area. This could be done
in different ways:

1. the headquarter could send instruction to the agents about what
they have to do;

2. agents might be pre-programmed and then deployed on the area;

3. agents distribute the load autonomously using direct communi-
cation (e.g., one of the methods described in Sec. 6.1;

4. agents work autonomously but using communication-less co-or-
dination, that is, without explicitly communicating their activity
to the other agents.

Solutions 1 and 3 require the transmission of packets on the net-
work, that is, explicit communication. In opposition to Chap. 4 and
Chap. 5, the agents have now a communication medium. In such sce-
nario however, the network is already heavily used to transmit huge

4Deployment of motes for a Sensor Network is a broad research area. For the moment,
the reader can imagine that motes are dropped from flying vehicles, either autonomous
or manned.

131

CHAPTER 6. DIVISION OF LABOUR IN SANETs

amounts of data (videos, sounds, etc.)5 and thus the medium might
be de facto useless for co-ordination. Solution 2 shifts the problem
to the deployment phase and might require reprogramming in case of
changes in the environment. Reprogramming might occur via network
or through mobile robots that reach a node and reprogramme it lo-
cally. The first solution would stress the network even more, the sec-
ond would take away resources from the SANET.
In this chapter we present a control architecture for SANETs that

aims at solution 4. There are other issues that might be worth investi-
gating in this scenario, like network load sharing, energy consumption,
redundancy and robustness. For the time being, we focus only at the
implementation of a communication-less co-ordination mechanism.
The following pages describe our architecture, which includes the

implementation of the network layer and of the application layer of
each agent. The main characteristics of our architecture are:

1. tight interaction between the two layers, which are not seen any-
more as two independent modules;

2. probabilistic decisions;

3. exploitation of inter-agent interactions;

4. adaptation.

The previous chapters already showed that exploitation of interac-
tions, adaptation during individual lifetime and probabilistic decision
are a valid mean for division of labour. We are going now to test if this
holds true also for SANETs.

6.3 Agents’ Control: Application Layer

We first describe the application layer, how it chooses the tasks that
the individuals have to perform, and its adaptation mechanism. Sec-
tion 6.4 proceeds by describing the network layer and how it deals with
routing of messages to the destination. Finally in Sec. 6.5 and Sec. 6.6,
we point out the interactions within and between the agents.
Robots and motes know a priori the list of possible tasks that they

can perform. Both have in common, for instance, “measurement of
temperature”, “video recording”, but only robots can explore the envi-
ronment or answer to help requests by other nodes.
Robots and motes have generally different sets of tasks. However,

we used for our experiments four tasks, both for motes and robots.
We refer to the set of tasks as Tagent = {T1,T2,T3,T4}. The robots’ and
motes’ four tasks are described below.
Each agent k associates real number τk

i to each task i, with i ∈ Tagent.
At the moment of selecting a task to perform, agent k chooses randomly

5It should also be pointed out that the current transmission rate of real motes is only
of some kB/s.

132

CHAPTER 6. DIVISION OF LABOUR IN SANETs

between the tasks. The probability of choosing task i is

P (i) =
(τk

i)βtask

∑

j∈Tagent
(τk

j)βtask
, (6.1)

with βtask ≥ 1. This equation is similar to the one used to model
how ants choose one path among those that bring to a food source
[Bonabeau et al., 1999]. In the original formulation, τk

i was the con-
centration of pheromone on path i. The parameter βtask was introduced
to increase the exploitation of good paths. If βtask = 1, then P (i) is
proportional to τk

i . If βtask > 1, then tasks with high τk
i have higher

probability to be selected than in the previous case.
Agents have the capability to perceive whether their actions are suc-

cessful or not, either by directly sensing the environment, or by receiv-
ing a feedback from other nodes (we discuss more of this in Sec. 6.5).
The agent first initialises τk

i = τinit, ∀i ∈ Tagent. If the agent is successful
in performing task i, then

τk
i = min{τmax, τ

k
i + ∆τ} (6.2)

and
τk
i = max{τmin, τ

k
i −∆τ} (6.3)

if it is unsuccessful.
We use four tasks for the experiments in Sec. 6.9. For three of them,

the behaviours of robots and motes are the same:

T1. measure the temperature locally and send it to the rescue team
headquarter;

T2. record the sound in the surroundings and send it to the head-
quarter;

T3. record a video of the place and send it to the headquarter.

Task T1 is terminated immediately because it creates and sends only
one small packet. Tasks T2 and T3 occupy the node for more time,
because they generate a stream of packets, which is usually a big load
for the network. T2 differs from T3 because it generates less packets
than the latter.
Motes’ and robots’ behaviours are different in the case of the fourth

task:

T4. motes broadcast a help requests, robots answer to them and travel
where they are needed.

Generally, motes might decide that they need help by analysing their
data, or after instructions from the base. In our experiments, motes’
help needs are modelled with a stochastic process. Robots listen for in-
coming help requests and answer to them by first travelling where it is
required and then by completing the task (for instance, by taking care
of a victim). It is assumed that the robots can perceive the direction
and the distance of their neighbours, motes and robots. It is not the

133

CHAPTER 6. DIVISION OF LABOUR IN SANETs

Table 6.1: Type of packets generated by the application layer.
Type Description

BASEHELLO packet regularly generated from the
base host to broadcast its address

TEMPERATURE packet containing a temperature
reading (task T1)

SOUND type associated to a stream of
packets which contains the sound
recorded by the agent (task T2)

VIDEO type associated to a stream of
packets which contains the video
recorded by the agent (task T3)

HELPREQUEST packet used during the execu-
tion of task T4 for mote-robot co-
ordination

ERROR used by the network layer to signal
an error to the application layer; it
contains the information about the
packet which generated the error

purpose of our work to address this issue, but it might be done, e.g.,
by triangulating the signal emitted by a node, by using a directional
antenna, or by means of a vision system.
Task T4 requires co-ordination between robots and motes. The

agents exchange a number of messages between them to perform the
task. The robot can use the route discovery capability of the network
layer to find a path to its destination. In SN, the topology of the network
mostly corresponds to the topology of the environment. The network
topology can be seen then as a simple map of the environment, which
the robot can exploit to travel through it.
All the tasks generate and send different types of packets. They are

listed in Table 6.1.

6.4 Agents’ Control: Network Layer

The communication range of robots and motes is not enough for them
to send messages directly to every other agent in the environment. For
this reason they need to relay messages to their neighbours, which
then relay again to some other node, till the messages reach their des-
tination. This process is called routing. The traffic generated by the
nodes due to their activity is a uniform one. This means that we do
not expect, a priori, bursts of packets to be always generated from a
part of the area. Nodes might generate high traffic (e.g., when perform-
ing task T3), but the probability that it occurs is generally uniformly
distributed on the area.
We already discussed about routing protocols in Sec. 6.1. We chose

to focus on AntHocNet [Di Caro et al., 2005] for our application. An-

134

CHAPTER 6. DIVISION OF LABOUR IN SANETs

tHocNet is a bio-inspired, self-organising, routing algorithm, inspired
by the food searching behaviour of ants. There are two main reasons
why we chose this algorithm: firstly, it is inspired by ants’ behaviour
and perfectly fits in the context of our work; second, and more impor-
tant, Di Caro et al. showed that it performs better than AODV [Perkins
et al., 2003, Perkins and Royer, 1999], the state of the art for routing
algorithms in ad hoc networks.
AntHocNet is a hybrid multi-path algorithm. It is reactive in the

sense that it does not keep up-to-date information on all possible
destinations. It builds routes to a destination only when the upper
layer wants to communicate with it. Once one or more paths have
been found to the desired destination, AntHocNet proactively maintains
them till the data session is over.
The routing information of node i is kept in a table Ri. Each entry

Ri
nd ∈ R of the table represents an estimation of the goodness to go from
node i to node d using node n as next hop. The higher Ri

nd is, the better
the path to d via n is. Ri is called pheromone table, because its content
simulates the pheromone traces that ants lay in the environment to
find the shortest path to food sources.
When the application layer wants to send a message to a host for

which there is no known path, AntHocNet starts a route discovery pro-
cess. When one or more routes have been found, AntHocNet routes the
data on the newly discovered paths. To describe AntHocNet we need
to describe the two phases separately. We do this in Sec. 6.4.1 and
Sec. 6.4.2. In Sec. 6.4.3, we describe our modifications and extensions
to the original algorithm in order to fit it in our work with SANETs.

6.4.1 AntHocNet: Route Discovery

If a node wants to send packets to a destination for which it does not
know any route, it broadcasts a route discovery packet, containing the
address of the desired destination d. In the original formulation, this
packet is called a forward ant. For consistency with the other types of
packets we describe later, we call it ROUTEDISCOVERY. The request is
treated by the other nodes as a normal data packet.
The packet is transmitted to the node’s neighbours. They might

know a route that reaches d, or not. If the node knows how to reach
the destination, it randomly chooses a next hop n to relay the request
to. The probability P i

nd at node i to choose n as next hop to reach d is:

P i
nd =

(Ri
nd)

βdisc

∑

j∈Ni

d

(Ri
jd)βdisc

, (6.4)

where N i
d is the set of neighbours for which a path to d is known. βdisc

is a parameter that can control the exploratory behaviour of the algo-
rithm, in the same fashion as for task selection.
If a neighbour does not know anything about d, it broadcasts the

incoming request again. Due to broadcasting, the discovery messages
can proliferate quickly and follow different paths in the network.

135

CHAPTER 6. DIVISION OF LABOUR IN SANETs

The ROUTEDISCOVERY packet stores the path travelled so far. If
a node receives several requests originating from the same node, it
compares the path of each packet with the shortest known path, the
distance being measured in number of hops. The packet is let through
if the new incoming packet is not worse than a1 times the shortest
number of hops. This filter reduces the overhead by killing packets that
have travelled over bad paths. There is a less restrictive acceptance
factor a2 in the case the first hop of an incoming packet is different
from the first hop of the best packet. This strategy is used also in other
works [Marina and Das, 2001] in order to obtain a uniformly spread
set of paths.
AntHocNet assumes that the paths are symmetric: if node A can

directly communicate with node B, then node B can directly communi-
cate with node A. This is a reasonable assumption also in our set-up.
On arrival to destination, the receiving node generates a ROUTEDIS-
COVERYRESPONSE packet (backward ant in the original description),
which is sent back with high priority along the same path P of the in-
coming packet. Its travel back is used to estimate T̂P , the time it would
take for a packet to travel over P to the destination. The estimation is
iterative:

T̂P =
∑

i∈P

T̂ i .

T̂ i is calculated by each node i as:

T̂ i = (Qi
MAC + 1)T̂ i

MAC ,

where Qi
MAC is the number of waiting messages at the MAC layer of

node i, and T̂ i
MAC is the moving average waiting time at the MAC layer.

The ROUTEDISCOVERYRESPONSE sets up a path to destination d in
each node i ∈ P. Each node first calculates the value ρi

d to use to
update the pheromone table:

ρi
d =

(

T̂ i
d + hThop

2

)−1

,

where T̂ i
d is the estimated travelling time to go from i to d, h is the

number of hops and Thop is a parameter representing the time to take
one hop in unloaded conditions. And finally,

Ri
nd = γRi

nd + (1− γ)ρi
d . (6.5)

Once a node starts the route discovering process, it waits for a re-
sponse for some time and buffers the data to send. If it did not receive
any after some time (1 s in the original work), it starts the discovering
process again. The node repeats the process for a maximum number
of times (originally 3) before giving up.

6.4.2 AntHocNet: Routing

Once one or more routes have been found, AntHocNet can start the
data session. For each packet, the node chooses randomly the next

136

CHAPTER 6. DIVISION OF LABOUR IN SANETs

hop. The probability for each hop is calculated with (6.4), only using a
different exponent, βrout, higher than βdisc. The higher exponent results
in a greedier behaviour with respect to good paths. The probabilistic
data routing leads to data load spreading, relieving congested paths.
To maintain the routing information up-to-date, AntHocNet sends

special packets, called proactive forward ants, every n data packets.
Proactive forward ants are normally unicast, sent to the next hop as
ROUTEDISCOVERY packets using pheromone values, but they also have
a small probability p to be broadcast. These packets serve a double pur-
pose: they probe and keep up-to-date existing paths, and they explore
new paths that might have come into existence.

6.4.3 Modifications to AntHocNet and Additional Fea-
tures

The most important extension in our implementation of AntHocNet is
the definition of different message classes. Each class is associated
to one task of the application layer, and each node keeps a different
routing table for each class. We elaborate more on this point in Sec. 6.5.
Both AntHocNet and our modified version use HELLOMESSAGE

packets, which are periodically broadcast from the nodes to their neigh-
bours. After a node receives a HELLOMESSAGE, it expects to receive it
regularly. If it does not occur within a given amount of time, the neigh-
bour and all its associated routes are deleted from the routing table. In
our case, the HELLOMESSAGE rates are different for robots and motes.
The robots use a higher sending rate than the motes. The nodes use
also two different timeouts in case the node is mobile (shorter timeout)
or not (longer timeout). The information about the mobility of the nodes
is contained in the HELLOMESSAGE. The list of all packet types used
by the network layer is listed in Table 6.2.
If a node does not find a route to the destination (because there is

no path, or because the discovery message was lost), it takes one of
two actions according to who originated the message: if the message
comes from the application layer, the network layer notifies it about the
failure; if the message came from someone else, it sends a ROUTEFAIL-
URE packet to the origin. The packet is used at the origin to assess the
failure in performing a task.
In a SANET, most of the packets are likely to contain data coming

from sensor readings. In order to reduce the congestion of the net-
work, a node might decide, instead of routing a packet, to drop it. The
decision is probabilistic and is described in Sec. 6.6.1.
We do not collect only statistics about the waiting time at the MAC

layer, but also different other information, like the signal-to-noise ra-
tio and the energy required for transmission. This allows the nodes
to choose the next hop using several criteria. Every node might de-
cide to route its data trying to maximise different objectives. It might
choose, for instance, the route with higher minimal signal-to-noise ra-
tio, increasing the reliability of the message delivery. The node might
also choose to use different criterion in different moments. If it detects

137

CHAPTER 6. DIVISION OF LABOUR IN SANETs

important information to be sent, it might decide to use a route that
minimises the end-to-end delay, short routes with low traffic. If the
node has low power level, it might decide to send the message to a very
near node.6

Statistics about the paths are not stored only in the ROUTEDISCOV-
ERYRESPONSE packets, but in all the packets that the network layer
receives. In this way, other nodes can passively set up routes to other
hosts when they receive a message from it. This avoids the need of
reinforcing the paths during transmission, at the cost of slightly bigger
network packets. The reader should remember that in our scenario we
envisage the transmission of heavy data (images, sound, videos), thus
a couple of bytes more should not influence much the performance of
the SANET.
The different information about routes with respect to AntHocNet

requires also a small change in the way the pheromone table is up-
dated. The content of our routing tables is not single values, but
tuples R

i
nd = 〈t, h, e, s,m, v〉, where t is the estimation of the trans-

mission time, h is the number of hops in the route, e is the en-
ergy required for transmission, s is the minimal signal-to-noise ratio
of all the links in the path, m ∈ {true, false} denotes if the next hop
n is mobile, and v ∈ {true, false} whether it is still valid for routing.
R

i
nd ∈ R = R

3 × N× {true, false}2.
At the arrival of a new packet with data about the route to d through

n, we update the routing table using a custom function ⊕. If ri
nd is the

information obtained from the incoming packet,

R
i
nd = R

i
nd ⊕ r

i
nd

performs a weighted sum of the real values t, h, e, s (like (6.5)) and sets
m to the new value. All occurs only if both the previous information
and the new information are valid.7

To find the next hop for routing, we use a function r : R → R
+ and

calculate the probability of using n as next hop to d with

P i
nd =

r(Ri
nd)

β

∑

j∈Ni

d

r(Ri
jd)β

. (6.6)

The higher r(Ri
nd) is, the more likely node n will be chosen as next

hop. To change the strategy of routing, a node would simply change
the function r(·). If the node wants to be sure that a packet reaches
its destination, it might choose routes with good signal-to-noise ratio,
and use r(Ri

nd) = s (s is the estimated signal-to-noise ratio contained in

6The distance of a node can be estimated by the receiving power of the message, as
measured by the antenna, that is, by the physical layer. It should be noted however that
it is not really important in this case to know the real distance, but the power required
for the transmission.
7In our case it can not happen that motes become mobile, and thus changing m

might seem useless. It can happen, in applications different from our scenario and
experiments, that some robot decides to “become” a mote, that is, not to move. The robot
could decide it because the network in that point is particularly under load, or because
there was a failure of one mote and the network lost connectivity.

138

CHAPTER 6. DIVISION OF LABOUR IN SANETs

Table 6.2: Type of packets generated by the network layer.
Type Description

HELLOMESSAGE generated and broadcast by ev-
ery node to inform the neighbours
about one node’s presence; it con-
tains information about node’s mo-
bility

ROUTEDISCOVERY used to discover routes to a speci-
fied destination

ROUTEDISCOVERYRESPONSE used by nodes to reply to ROUTE-
DISCOVERY requests

ROUTEFAILURE generated when no route for a des-
tination is found or when a node re-
jects and incoming packet

DATA used at the network layer to trans-
port data from the application layer

R
i
nd). If the node prefers that the message arrives as soon as possible,
it might choose routes with short travel time and use r(Ri

nd) = 1
t
(t is

the estimated transmission time).
It is not our purpose in these pages to test different routing strate-

gies, thus r(·) is mostly unchanged in our experiments (there is just
one exception, explained later). The actual function is:

rtime(R
i
nd) =

{

1
t
if t 6= 0,

H if t = 0.
,

r(Ri
nd) =

0 if n is not a valid hop ,

H if n is a valid hop and n = d,
rtime(R

i

nd
)

2 if n is a valid hop, n 6= d

and n is a mobile hop,

rtime(R
i
nd) otherwise.

,

where H is a high-value constant. As it can be seen, this function
increases the probability to route packets through nodes which are not
mobile, i.e., the motes. This is because a link to a mobile node is likely
to break soon, while the motes can form a sort of stable backbone.
If a node is not able to find a route to the destination, it generates

a ROUTEFAILURE packet which is sent to the source of the packet. If
the source is the node itself, the network layer sends a ERROR packet
to the application layer.

6.5 Agents’ Control: Cross-layer Interactions

The application layer interacts with the network layer by two means.

1. Every message from the application layer is associated to a task.
The network layer uses different routing tables for each task.

139

CHAPTER 6. DIVISION OF LABOUR IN SANETs

When it receives a message from the application layer, it routes
the packet using the information contained in the table associ-
ated to the message’s task. This means that the node starts a new
route discovery for the destination if there is no known route for
the task, even though routes are known for other tasks.

2. When performing task T4 for driving a robot, the application layer
uses the information stored in the routing table in order to reach
its destination. The route is evaluated on the base of the hop
count contained in the routing table (Sec. 6.6.2) and the valid-
ity of neighbours. The application layer modifies the content of
the routing table, by invalidating the nodes that the robot has
reached. In this way the robot can proceed to the following node
in the path.

Different tables might be useful to have different routes emerg-
ing for different tasks. The probabilistic routing mechanism coupled
with competition among packets for the routes might be enough to au-
tonomously choose different routes for different packets. If there were
more than one possible destination, like in the case of more than one
rescue team base, these mechanisms would be sufficient for anycast
communication8 in the SANET. Although we designed our SANET with
this idea in mind, it is not our purpose in these pages to investigate
this topic further.
The network layer is mostly responsible to assess the success or the

failure of tasks T1, T2 and T3. It is the network layer that informs the
application layer to update the task table.
The application layer considers the above tasks successful by de-

fault. The update for success (6.2) takes place immediately after the
task has been selected. In the case the network layer received a ROUTE-
FAILURE packet related to the task, the application updates the task
table using (6.3), the update for failure. It might seem that this up-
date schema is unbalanced toward reinforcing the tasks, and that τk

i

for task i can never become less than τinit. We show in the next section
that there are other cases in which the update for failure takes place.

6.6 Agents’ Control: Inter-agent Interactions

One of the main interactions between the agents in our SANET oc-
curs at the network layer. A node, upon arrival of a packet to route,
might decide to drop it and then inform the source. We describe this
mechanism in the following section. Section 6.6.2 illustrates the sec-
ond important interaction: the robot-mote co-ordination in case of help
requests (task T4).

8In anycast communication, the destination is neither one node (unicast), nor all the
nodes (broadcast), nor a group of nodes (multicast), but one of a group of node (it does
not matter which one).

140

CHAPTER 6. DIVISION OF LABOUR IN SANETs

6.6.1 Packet Filtering

The rejection of others’ messages plays an important role in the division
of labour. It is the source of the negative feedback which is required by
the agents to specialise. Agents do not need to signal to their neigh-
bours the task they are currently executing, because their output is
likely to be read anyway by nearby agents because of routing. This is
why it is reasonable to directly use this ‘free’ source of information as
base mechanism for agents’ adaptation.
To understand better this mechanism, we can make a parallel with

the prey retrieval task shown in Chap. 4. The robots compete among
themselves to retrieve prey. If one robot is successful, the other robots
have lower probability to retrieve a prey, because of the reduced num-
ber of prey. The more successful a robot is, the more it will repeat
the successful task. In our SANET application, the agents compete to
send a message to a common destination. An agent that can send a
message is considered successful and increases the probability to re-
peat the same action (that is, to send the same type of message), while
its neighbours’ probability decreases. The opposite occurs when the
agent’s packets are rejected, according to the mechanism described
below.
Each node remembers the last packet it received of a given type and

for a given destination.9 Upon arrival of a new packet to route, each
node compares it with the one previously stored. It then probabilisti-
cally decides whether the packet should be routed or not. In case the
node decides to route the packet, it increases the probability to route
it again later and decreases the τk

i related to the packet type. If the
node rejects the packet, it decreases the probability to route it later,
increases its τk

i and sends a ROUTEFAILURE message to the source.
This mechanism does not take place in the following cases:

1. the packet is broadcast (it might be some important message to
spread in the network);

2. the packet is not the first packet of a stream generated by T2 or T3

(streams are interrupted at the beginning, but not when the con-
nection with the destination has already been established);

3. it is a packet belonging to T4 (this task requires a strict co-ordina-
tion between robots and motes, thus it should not be interrupted);

4. the packet comes from a source further than a given hop-count
threshold D (packets from near sources have correlated content,
and thus they can be dropped without losing much information).

Each node keeps a table Q of values Qi
d ∈ [Qmin,Qmax] for known

destinations d and packet class i. The probability P i
d to route a packet

9This implementation might require much memory and might not scale well. Other
solutions can be used on devices with limited memory. We could use a limited array for
recording the last messages. If the array is full and a new message should be stored, then
the oldest element can be deleted. This system would have only the effect to weaken the
interaction between nodes, which could however be compensated by some other means.

141

CHAPTER 6. DIVISION OF LABOUR IN SANETs

is

P i
d =

Qi
d if this is the first packet

of class i for d seen, or

Qmin + α1α2(Qi
d −Qmin) otherwise.

,

where
α1 = (1 − e−

5h

D) , α2 = (1− e−γ1∆t) ,

h is the number of hop travelled from the incoming packet, ∆t is the
elapsed time from the previous known message, 0 < Qmin < Qmax ≤ 1,
γ1 > 0. The coefficients α1 and α2 decrease the probability to route a
packet for nearer sources and for similar information recently trans-
mitted. It it known that α1 ≈ 1 when the exponent 5h

D
≈ 5, that is,

h ≈ D. Therefore, the effect of α1 smoothly decreases for h approaching
the threshold D.
Every Qi

d is first initialised to Qinit. If a node decides to reject a
packet, it updates Qi

d using

Qi
d = max{Qi

d −∆Q,Qmin} ,

and uses
Qi

d = min{Qi
d + ∆Q,Qmax} ,

if it decides to route the packet. Additionally, if the node rejects a
packet of class i, it increases its own τk

i with (6.2), and decreases it
with (6.3) for each packet that is routed.
Note that the threshold D grants that this interaction between

agents is localised, that is, does not involve all the agents in the area.

6.6.2 Help-request Behaviours

In the scenario described in Sec. 6.2, motes can detect whether they re-
quire additional help from robots. In a real application, the mote could
decide this either by analysing the sensor data, or by direct instruction
from the rescue team.
When a mote’s application layer chooses to perform task T4, it first

checks if there are any local help requests waiting to be fulfilled. The
controller then works as represented in Fig. 6.1:

start If there is no need to call for help, the mote considers it as a
failure, and thus updates τk

T4

10 accordingly using (6.3). In the
opposite case, it broadcasts a help request, and updates τk

T4
for a

success.

request sent The mote waits for some robots to reply. The mote re-
ceives usually many packets from the robots when it is in this
state. Most of the packets are only used by the robots to estimate
the distance from the mote (see later, when we discuss the robots’
behaviour) and do not contain an acceptance of the task. The first
robot that sends an acceptance packet is assigned to the task. If

10According to our enumeration of the task listed in Sec. 6.3 and to the convention
used in the same section, 4 is the number associated to the help-request task.

142

CHAPTER 6. DIVISION OF LABOUR IN SANETs

the mote does not receive a positive answer before MTreq seconds,
it broadcasts the request again. It repeats this for a maximum
of Mretr times and then gives up. Note that in this case the mote
does not decrease τk

T4
.

waiting for robot The mote waits for the robot that was assigned the
task. During this period, the robot is travelling the network to
reach its destination. It regularly sends messages to the mote
which are both used as ‘keep alive’ messages and to update the
robot’s routing table. These messages contain also the expected
maximum time the robot requires to travel one hop. If the mote
does not receive again a message from the robot within this time,
the mote ‘drops’ the robot, broadcasts again the request and re-
turns to the request sent state. Upon arrival, the robot sends
a message to signal it is on the place, and the mote considers
the request fulfilled. If the mote receives a message from other
robots accepting the request while the task is still assigned to the
previous robot, the mote sends back a refusal packet (the actual
communication protocol is described below).

end The mote selects another task to perform.

The robots store every help request they receive in a temporary
buffer. They increase their τk

T4
for each incoming packet in order to

improve the likelihood of robots to perform the task. The reason is that
it makes sense in applications like our scenario to push the robots to
perform more a task which requires mobility than to ‘waste’ them for
tasks which could be done by the motes. Upon arrival, the robots al-
ways send a message to the mote. The purpose of this message is to
activate the route discovery process of the network layer in order to
obtain the estimated number of hops required to reach the destination.
When the application layer selects the help-request task, the control

system of the robot works as follows (Fig. 6.2):

start The robot checks whether there is any request pending.

select destination The robot probabilistically chooses one host among
the set HD of possible destinations. The probability for each host
d ∈ HD is given by:

P(d) =
h−0.5

d
∑

i∈HD

h−0.5
i

,

where hj is the distance in number of hops of host j, obtained from
the routing table. The exponent −0.5 favours near destinations,
but leaves a fair chance to further destinations to be chosen.

ask destination The robot informs the destination that it is willing to
take the request. The mote decides whether the robot can con-
tinue or not. The mote may reject because the request was al-
ready fulfilled, because another robot is working on it, or because
the mote is currently busy with another task. If the robot does not

143

CHAPTER 6. DIVISION OF LABOUR IN SANETs

Figure 6.1: Motes’ behaviour for help-request task. The dash-dotted ar-
row represents a transition that occurs thanks to an incoming packet,
in this case a robot that answers the mote’s request or that signals its
arrival. The dotted arrow stands for an incoming packet from the robot
that gave up the task. Continuous-line arrows are internal events that
the mote evaluates at each control step. See the text for the description
of the states.

144

CHAPTER 6. DIVISION OF LABOUR IN SANETs

receive an answer after RTreq seconds, it sends the request again
for a maximum of Rretr times, then it gives up.

find next hop The robot looks into the routing table to select the next
hop of the route to its destination. The next hop is used as de-
scribed in Sec. 6.4.3, but using:

r(Ri
nd) =

0 if n is not valid,

H if n is valid and n = d,
1
h
otherwise.

.

H is the same constant used for packet routing (see Sec. 6.4.3).
The different function r(·) used in this case accounts for the fact
that robots are not like packets that flow in the network. The func-
tion used for packets takes into account the transmission time,
which involves the waiting time at the MAC layer, the congestion
of the network, and so on. Robots care mainly about the physical
distance, which is approximated by the hop count h.

request next hop If no next hop is found, the robot sends a message
to the destination and waits for a reply. This message is used to
start the route discovery process at the network layer. As in ask
destination, the robot waits RTreq seconds before sending another
request, for a maximum of Rretr times, then it gives up.

go to next hop The robot proceeds towards the next hop. When it
reaches a distance RDappr, it invalidates the hop’s entry in the
routing table, and sends a message to the destination, in order to
start a new route discovery process. When it reaches the distance
RDreach, it considers the hop reached and searches for a new one.
If the previous message did not get lost, the routing table should
already contain the information to find immediately the new hop.
If the robot has been trying to reach the hop for more than RTtrav,
it gives up.

go to destination In this state, the robot behaves mostly as in go to
next hop, only the robot does not need to send a message to the
destination when it is at RDappr from it. When the robot is at less
that RDreach from destination, it signals that it has arrived, and
updates its τk

T4
for a success.

failure The robot is in this state after a rejection from the mote or a
timeout. It updates τk

T4
for a failure.

end The robot ends the execution of this task and the application layer
chooses a new one.

The messages exchanged between robots and motes consist of three
Boolean fields: ra, ma and a. The robots set ra (it stands for “robot
acknowledgement”) to true when they ask to be assigned the help re-
quest, or when they send messages to find the next hops in the route.
Motes set ma (“mote acknowledgement”) to true to inform the robots

145

CHAPTER 6. DIVISION OF LABOUR IN SANETs

Figure 6.2: Robots’ behaviour for help-request task. The dash-dotted
arrow represents a transition that occurs thanks to an incoming
packet, in this case a robot that answers the mote’s request or that
signals its arrival. The dotted arrow stands for an incoming packet
from the robot that gave up the task. Continuous-line arrows are in-
ternal events that the mote evaluates at each control step. See the text
for the description of the states.

146

CHAPTER 6. DIVISION OF LABOUR IN SANETs

Figure 6.3: Protocol for mote-robot communication: normal case. This
graph represents the normal communication between a robot and a
mote for the achievement of task T4. The mote is represented by the
left bar, the robot by the right bar. Time flows downward. Arrows
represent the messages exchanged between the agents. The text above
each arrow describes which of the three Boolean fields of the message
are set in the message.

that they are in charge of the request. Motes set it to false if the
mote gives up the task or if other robots ask for a request already as-
signed. Finally, robots set a (“arrived”) to true to inform the motes that
they arrived to destination. Figure 6.3 summarises the communication
between a robot and a mote in the normal case, that is, where no rejec-
tion takes place. Figure 6.4 shows how robots and motes communicate
failures and timeouts.

6.7 Experiments: Set-up

We run experiments only in simulation, as we explained in the intro-
duction. We simulated SANETs in a rectangular area, whose side is
500 m. Twenty-five motes are placed in a grid that covers the envi-
ronment. This is a likely placement for the scenario of Sec. 6.2. To

147

CHAPTER 6. DIVISION OF LABOUR IN SANETs

Figure 6.4: Protocol for mote-robot communication: error messages.
The meaning of the bars and of the arrows is as described in Fig. 6.3.
The robot in the middle, with a bold frame, is the one that previously
negotiated and obtained the assignment of the request. The first block
of messages, at the top, describes the case in which the mote gives
up the task, and signals it to the robot. The second case describes
the situation when another robot is asking for the assignment of the
request but this was already given to Robot 1. Finally, the bottom
block illustrates how the robot signals to the mote that it gives up the
task.

148

CHAPTER 6. DIVISION OF LABOUR IN SANETs

simulate however a real deployment process, the motes are randomly
placed in an area 5 m around the actual grid point. Robots are placed
at the corners of the environment. We tested 1, 2 and 3 robots at each
corner, for total group sizes of 4, 8 and 12 robots. Figure 6.5 shows the
set-up, from the point of view both of the network and of the simulated
world.
Three of the tasks in which the agents are occupied involve the

transmission of the data to a common destination: the rescue team
base, according to our scenario, or the sink, according to the network-
ing jargon. The base is placed in one of the corner of the environment
(top left corner of Fig. 6.5(a)). The area is thus symmetrical along one
of the diagonals.
Robots and motes do not know the address of the base. The applica-

tion layer of the base broadcasts regularly a packet which contains its
address. The agents start working only after the arrival of this message.
Given the importance of this information, it is replicated and broadcast
also by each node’s HELLOMESSAGE, generated by the network layer.
Apart from broadcasting its address, the application layer of the base
only receives and records the messages it received. The network layer
of the base is the same as the other nodes.
The help requests are randomly generated by the motes, with a vari-

able probability per second, called help density. For the experiments,
we used help density 12.5 10−6s−1, 25 10−6s−1 and 50 10−6s−1. Each
combination of robot group size/help density was tested in forty dif-
ferent runs. Each run is described by a seed for the random number
generator and the misplacement of the motes. Another random num-
ber generator, initialised with a different seed, is used to generate the
help-request events during the simulation.
The values of the agents’ parameters are summarised in Table 6.3.

6.8 On the Measurement of the Division

of Labour in SANETs

Before showing the actual results of our simulations, we have to spend
a few words to introduce how we measure the division of labour in the
context of SANETs.
We could just show the distributions of the probability of performing

each task among the agents, as we did in the previous chapters (e.g.,
Fig. 4.14 and Fig. 5.8). This information is not enough for SANETs
because it does not consider the position of the agents. Take for in-
stance Fig. 6.6. The two figures show two cases with the same distri-
bution among the agents, but with two different spatial distribution. In
Fig. 6.6(a), the agents actively performing the task are separated, and
thus the task is distributed over the environment. If the task were ‘tem-
perature reading’, the base host would receive in this case information
about unrelated zones of the environment. In Fig. 6.6(b), the agents are
neighbours: the base host would receive redundant information about
one area, and nothing about the rest of the environment.

149

CHAPTER 6. DIVISION OF LABOUR IN SANETs

(a) Network view

(b) Simulated world

Figure 6.5: Set-up of the experiments. Views of the network (a) and
of the simulated world (b). (a) Motes are placed on a grid that covers
the environment. Robots, in this case four, are placed on the corners.
The base host, the one which receives the information that the agents
collect, is on the top left corner (over the icon of the robot). The pur-
pose of the other objects (odesim and channelControl) is described in
Sec. 3.3.2. (b) The real dimension of the motes, usually few centime-
tres, was increased to make them visible. By comparison, the robot in
the bottom left corner in the simulated world view is 42 cm tall.

150

CHAPTER 6. DIVISION OF LABOUR IN SANETs

Table 6.3: Parameter values of robots and motes.
(a) Network layer

Parameter Value
βdisc 1.0
βrout 2.0
a1 0.4
a2 0.9
γ2 0.01 s−1

Qmin 0.01
Qmax 1.0
Qinit 1.0
∆Q 0.02
hello period - robots 30 s
hello period - motes 120 s
hello timeout - robots 180 s
hello timeout - motes 600 s
D 2

(b) Application layer

Parameter Value
Nrobot 4
Nmote 4
βtask 3.0
τmin 0.1
τmax 10
∆τ 0.5
τinit 3.0
MTreq 30 s
Mretr 3
RTreq 30 s
Rretr 3
RTtrav 300 s
RDappr 10 m
RDreach 4 m
sound stream size 40 kB
video stream size 400 kB

0 100 200 300 400 500

0
10

0
30

0
50

0

task spatial distribution

X

Y

(a)

0 100 200 300 400 500

0
10

0
30

0
50

0

task spatial distribution

X

Y

(b)

Figure 6.6: Examples of task distribution among the agents. The two
plots show the distribution of the probability to perform a task among
the agents. Agents are distributed on a grid that covers the environ-
ment and are represented as circles. The darker and the bigger the
circle, the higher the probability for that agent to perform the task. In
both graphs, most agents have low probability associated to the task,
except for two of them. Thus, the distribution among the agents of the
probability of performing a task is the same in the two cases. On the
left side, the agents are far from each other. On the right side, the two
agents are neighbours, and thus the task is concentrated only in one
part of the environment.

151

CHAPTER 6. DIVISION OF LABOUR IN SANETs

To overcome this problem, we use the hierarchic social entropy of
the group. The hierarchic social entropy is a measure of diversity first
introduced by Balch [2000]. It allows to estimate how heterogeneous
a system is, and also to compare the level of heterogeneity of different
systems. In the following we describe how we calculate the hierarchic
social entropy for our system.

6.8.1 Hierarchic Social Entropy

The first step for the measurement of the hierarchic social entropy is
to cluster neighbouring agents that have the same probability distribu-
tion on the tasks. We represent each agent as a point in a (Nagent + 1)-
dimensional space. The co-ordinates of the points are the probabilities
for each agent to perform each task except one,11 and its x and y posi-
tions in the environment. The co-ordinates are all normalised so that
the points lie in the hypercube with side 1.12

The cluster algorithm works simply by joining those points which
are no more distant than a given parameter d. The distance is usually
the Euclidean distance. It is obviously critical to choose a good value for
d. If d = 0, the number of clusters C is equal to the number of agents
A. If d =

√

Nagent + 1, there would be only one cluster that includes
the whole hypercube. For this reason, it is common use to show how C
changes with d, thus C = C(d), and which agents are clustered together
for a given d. This is well summarised by a dendrogram, as those shown
in Fig. 6.7.
After the clustering algorithm has been applied to the agents of our

SANET, a single cluster includes those agents which are “alike”. Agents
in a cluster have similar probabilities to perform each task and are
physically near. Two agents with the same distribution of probabilities
but physically away from each other, or two agents near but with totally
different probabilities require high values of d to be clustered. A good
division of labour algorithm for a SANET will show a dendrogram like
Fig. 6.7(b), a bad one will look like Fig. 6.7(a).
For a given d, we know the number of clusters C(d) and the number

I(i, d) of agents included in each cluster i ∈ {1, 2, . . .C(d)}. Picking up an
agent randomly, the probability that it belongs to cluster i is then pi =
I(i,d)

A
. We can measure then the diversity of the group using Shannon’s

information entropy [Shannon, 1949]:

H = −K

C(d)
∑

i=1

pi log2 pi (6.7)

where K is a constant. It merely amounts to the choice of a unit of
measure, thus it is commonly set to 1.
The information entropy H has several important features. For our

purpose, we point out that H ≥ 0, and H = 0 only if ∃i : pi = 1, that

11The probabilities are obviously not independent, since they all sum to 1.
12The probabilities are, by definition, already in [0, 1]. The x and y co-ordinates of the
agents are divided by the size of the environment.

152

CHAPTER 6. DIVISION OF LABOUR IN SANETs

0.
0

0.
5

1.
0

1.
5 cluster dendrogram

node ID

d

10 15 9 14 4 5 27 3 8 2 7 6 1 26 23 24 25 28 19 20 22 21 29 13 18 12 17 11 16

(a)

0.
0

0.
5

1.
0

1.
5 cluster dendrogram

node ID

d

26 1 6 2 3 12 22 13 7 8 11 16 21 28 17 29 18 19 24 23 27 20 25 10 14 5 4 9 15

(b)

Figure 6.7: Examples of dendrograms. The y axis represents the clus-
tering parameter d. The agents (robots and motes) lay on the x axis.
Two agents are connected to a node which is at the minimum height
required to cluster the agents together. This is repeated recursively for
each new formed cluster. A horizontal line at height d crosses the tree
in a number of points equal to the number of clusters present for that
particular value of d. The left picture shows a group of agents which are
very similar, and thus can immediately be clustered with small value
for d. The right plot shows a group of heterogeneous agents, which
require higher d to be clustered together.

is, if there is only one cluster. H is maximised if pj = pk ∀j, k, that is,
if pi = 1

C(d) , and in this case H is monotonically increasing with C(d).
Given that the number of clusters decreases with d, we can deduce that
H is a monotonically decreasing function of d.

Balch [2000] defines hierarchic social entropy as:

S =

∫ ∞

0

H(d) dd = −

∫ ∞

0

C(d)
∑

i=1

pi log2 pi dd . (6.8)

The usefulness of the hierarchic social entropy is clearly illustrated
in Fig. 6.8: the more diverse a group, the higher its hierarchic social
entropy. The hierarchic social entropy is thus a valid means to measure
the level of specialisation in a group of robots. Its strength is in the fact
that it can include both spatial information and probability distribution
over the tasks.

It is not enough, though. Let us consider the case in which all the
robots have high probability of performing T4. In this case the hierar-
chic social entropy decreases, although this might not be considered
a bad situation. It is reasonable that most mobile agents perform this
task, because it is the main reason why robot were introduced in an
SN in the first place.

153

CHAPTER 6. DIVISION OF LABOUR IN SANETs

Figure 6.8: Relationship between dendrograms and hierarchic social
entropy. The dendrogram on the left refers to a more heterogeneous
group than the one on the right. The bottom plots show how the en-
tropy H changes with the clustering parameters d. The area beneath
the curve is the hierarchic social entropy. The later the clustering of
two nodes occurs, that is, the more heterogeneous a group is, the big-
ger is the hierarchic social entropy.

6.9 Results

The results of the forty replications for each pair robot number/help
density are summarised in Fig. 6.9. The plots show the distribution
of the hierarchic social entropy at different time steps. The bottom
and upper line in the plots represent approximated lower and upper
bounds. The lower bound corresponds to the hierarchic social en-
tropy calculated at the beginning of an experiment, that is, when the
robots and the motes have uniform probability of executing each task.
The only component which is taken into consideration when clustering
is thus the physical distance between the nodes, since it is the only
source of diversity.
The upper bound was estimated by finding the combination of robot

positions and agents’ task probabilities that maximises S. During the
search for the maximum, the position of the motes was never changed
from the initial one. Given the complexity of the function S and the di-
mensions of the search space, we could not afford to find the optimum.
We calculated the local maxima reached from a random initial position
by an optimisation algorithm. We repeated the process for several ini-
tial positions. The upper lines in Fig. 6.9 are the medians of the results.
The lines are therefore not real upper bounds, but help the reader to
understand how well our SANET is able to differentiate its members.
Figure 6.9 shows the value of hierarchic social entropy for differ-

ent time steps. We see that already after 120 s the agents are able to

154

C
H
A
P
T
E
R
6
.
D
IV
IS
IO
N
O
F
L
A
B
O
U
R
IN
S
A
N
E
T
s

3.
5

4.
0

4.
5

5.
0

5.
5

6.
0

hierarchic social entropy (120 s)

robot number

S
4 8 12

1.25e−05
2.5e−05
5e−05

(a) 120 s

3.
5

4.
0

4.
5

5.
0

5.
5

6.
0

hierarchic social entropy (1200 s)

robot number

S

4 8 12

(b) 1200 s

3.
5

4.
0

4.
5

5.
0

5.
5

6.
0

hierarchic social entropy (2400 s)

robot number

S

4 8 12

(c) 2400 s

3.
5

4.
0

4.
5

5.
0

5.
5

6.
0

hierarchic social entropy (3600 s)

robot number

S

4 8 12

(d) 3600 s

Figure 6.9: Hierarchic social entropy of the SANET. The three graphs show snapshots at different time steps of the
distribution of values of S, the hierarchic social entropy, for different group sizes and help densities. S is plotted on the y
axis. On the x axis there is the number of robots used. Each bar in the triplet corresponding to a number of robots refers
to different help densities. The meaning of the boxes is as in Fig. 4.7. The lines at the top and at the bottom represent
approximated upper and lower bounds for the entropy.

1
5
5

CHAPTER 6. DIVISION OF LABOUR IN SANETs

differentiate. At 1200 s, the agents reach the maximum value of hier-
archic social entropy, which they keep till approximately 2400 s. The
hierarchic social entropy slowly decreases afterwards, till the situation
depicted for 3600 s.
The hierarchic social entropy can increase because the agents are

more apart in the environment, because they have different task prob-
abilities, or a combination of both. Given that most of the agents are
motes, and that the robots start from outside and move inward the net-
work, the physical distance component can only be reduced. Therefore
the hierarchic social entropy increases because of a more heteroge-
neous distribution of probabilities.
The help density has practically no influence on the hierarchic social

entropy. This is in fact not a surprise. Probably, higher help density
would decrease the hierarchic social entropy. High help density would
push more and more agents to perform task T4. Their task probability
would be thus very similar, and the only source of differentiation would
be the position in the environment.
The distribution of task probabilities among the agents can be seen

from Fig. 6.10 to Fig. 6.12. Except for the distributions regarding T4,
most of the plots show that agents have probabilities spread all over the
[0, 1] interval. Nevertheless, all distributions show a multimodal profile,
T4 included. This is a sign that the agents are distributing the tasks
among them. The peaks of the distributions might be due to a few clus-
ters of agents placed only in particular areas of the environment. The
results about the hierarchic social entropy however reassure us that
this is not the case, and that agents with the same (high) probability to
perform a task are also spatially separated.
This last claim is supported also by the observation of the evolu-

tion of the task probability distributions over time (from Fig. 6.13 to
Fig. 6.15). What struck our attention is that, while the hierarchic so-
cial entropy does not change between 1200 s and 2400 s, the distribu-
tions still do. There are new peaks arising (corresponding to the stripes
for P ∈ (0.4, 0.5] that become darker and darker in Fig. 6.13 to Fig. 6.15)
even after 1500 s. If more and more agents get similar probability of
performing a task, they become more “alike” and thus the hierarchic
social entropy should decrease. This does not occur only in the case
the nodes become more “alike” in the task probability space but they
are further away in the physical space. It is like the nodes move on
a hypersphere in the clustering space. That is, if two nodes have the
same high probability of performing a task, they are far one from the
other in order to keep the same distance in the clustering space.
It is also possible to note that more and more agents set their prob-

ability of performing a task next to the right peak value. This is shown
by the stripes that become darker and darker beside the main one
(P ∈ (0.3, 0.4] and P ∈ (0.5, 0.6]), starting at about 2300 s. We think
that this phenomenon could explain the slow decrease of the hierar-
chic social entropy at the end of the experiments. At 2300 s in fact,
a consistent number of agents has probability in (0.4 ∈ 0.5], but they
are relatively far from each other. When other agents get probability in
(0.3, 0.4] and (0.5, 0.6] (and become similar in the task space), they fill the

156

C
H
A
P
T
E
R
6
.
D
IV
IS
IO
N
O
F
L
A
B
O
U
R
IN
S
A
N
E
T
s

0.
00

0.
10

0.
20

0.
30

0 0.2 0.4 0.6 0.8 1

0.
00

0.
10

0.
20

0.
30

0 0.2 0.4 0.6 0.8 1

0.
00

0.
10

0.
20

0.
30

0 0.2 0.4 0.6 0.8 1

0.
0

0.
2

0.
4

0.
6

0.
8

0 0.2 0.4 0.6 0.8 1

0.
00

0.
10

0.
20

0.
30

0 0.2 0.4 0.6 0.8 1

0.
00

0.
10

0.
20

0.
30

0 0.2 0.4 0.6 0.8 1

0.
00

0.
10

0.
20

0.
30

0 0.2 0.4 0.6 0.8 1

0.
0

0.
2

0.
4

0.
6

0.
8

0 0.2 0.4 0.6 0.8 1

0.
00

0.
10

0.
20

0.
30

0 0.2 0.4 0.6 0.8 1

0.
00

0.
10

0.
20

0.
30

0 0.2 0.4 0.6 0.8 1

0.
00

0.
10

0.
20

0.
30

0 0.2 0.4 0.6 0.8 1

0.
0

0.
2

0.
4

0.
6

0.
8

0 0.2 0.4 0.6 0.8 1

observed distribution task probabilities at 3600 s

task: Temperature task: Sound task: Video task: Help

5e
−

05
2.

5e
−

05
1.

25
e−

05

Figure 6.10: Final distribution of task probabilities (four robots). Each histogram in the plot array refers to a combination
of tasks (one per column) and help densities (one per row). The histograms show the estimated density of task probability
among the agents of the SANET. The x axes of the plots refer to the probability of performing a task, The y axes to the ratio
of agents that were observed having probability of performing a task in the relative x range after 3600 s (note the different
y scale for the last task).

1
5
7

C
H
A
P
T
E
R
6
.
D
IV
IS
IO
N
O
F
L
A
B
O
U
R
IN
S
A
N
E
T
s

0.
00

0.
10

0.
20

0.
30

0 0.2 0.4 0.6 0.8 1

0.
00

0.
10

0.
20

0.
30

0 0.2 0.4 0.6 0.8 1

0.
00

0.
10

0.
20

0.
30

0 0.2 0.4 0.6 0.8 1

0.
0

0.
2

0.
4

0.
6

0.
8

0 0.2 0.4 0.6 0.8 1

0.
00

0.
10

0.
20

0.
30

0 0.2 0.4 0.6 0.8 1

0.
00

0.
10

0.
20

0.
30

0 0.2 0.4 0.6 0.8 1

0.
00

0.
10

0.
20

0.
30

0 0.2 0.4 0.6 0.8 1

0.
0

0.
2

0.
4

0.
6

0.
8

0 0.2 0.4 0.6 0.8 1

0.
00

0.
10

0.
20

0.
30

0 0.2 0.4 0.6 0.8 1

0.
00

0.
10

0.
20

0.
30

0 0.2 0.4 0.6 0.8 1

0.
00

0.
10

0.
20

0.
30

0 0.2 0.4 0.6 0.8 1

0.
0

0.
2

0.
4

0.
6

0.
8

0 0.2 0.4 0.6 0.8 1

observed distribution task probabilities at 3600 s

task: Temperature task: Sound task: Video task: Help

5e
−

05
2.

5e
−

05
1.

25
e−

05

Figure 6.11: Final distribution of task probabilities (eight robots). See Fig. 6.10 for the meaning of the plots.

1
5
8

C
H
A
P
T
E
R
6
.
D
IV
IS
IO
N
O
F
L
A
B
O
U
R
IN
S
A
N
E
T
s

0.
00

0.
10

0.
20

0.
30

0 0.2 0.4 0.6 0.8 1

0.
00

0.
10

0.
20

0.
30

0 0.2 0.4 0.6 0.8 1

0.
00

0.
10

0.
20

0.
30

0 0.2 0.4 0.6 0.8 1

0.
0

0.
2

0.
4

0.
6

0.
8

0 0.2 0.4 0.6 0.8 1

0.
00

0.
10

0.
20

0.
30

0 0.2 0.4 0.6 0.8 1

0.
00

0.
10

0.
20

0.
30

0 0.2 0.4 0.6 0.8 1

0.
00

0.
10

0.
20

0.
30

0 0.2 0.4 0.6 0.8 1

0.
0

0.
2

0.
4

0.
6

0.
8

0 0.2 0.4 0.6 0.8 1

0.
00

0.
10

0.
20

0.
30

0 0.2 0.4 0.6 0.8 1

0.
00

0.
10

0.
20

0.
30

0 0.2 0.4 0.6 0.8 1

0.
00

0.
10

0.
20

0.
30

0 0.2 0.4 0.6 0.8 1

0.
0

0.
2

0.
4

0.
6

0.
8

0 0.2 0.4 0.6 0.8 1

observed distribution task probabilities at 3600 s

task: Temperature task: Sound task: Video task: Help

5e
−

05
2.

5e
−

05
1.

25
e−

05

Figure 6.12: Final distribution of task probabilities (twelve robots). See Fig. 6.10 for the meaning of the plots.1
5
9

C
H
A
P
T
E
R
6
.
D
IV
IS
IO
N
O
F
L
A
B
O
U
R
IN
S
A
N
E
T
s

0 500 1500 2500 3500

0.
0

0.
4

0.
8

0 500 1500 2500 3500

0.
0

0.
4

0.
8

0 500 1500 2500 3500

0.
0

0.
4

0.
8

0 500 1500 2500 3500

0.
0

0.
4

0.
8

0 500 1500 2500 3500

0.
0

0.
4

0.
8

0 500 1500 2500 3500

0.
0

0.
4

0.
8

0 500 1500 2500 3500

0.
0

0.
4

0.
8

0 500 1500 2500 3500

0.
0

0.
4

0.
8

0 500 1500 2500 3500

0.
0

0.
4

0.
8

0 500 1500 2500 3500

0.
0

0.
4

0.
8

0 500 1500 2500 3500
0.

0
0.

4
0.

8
0 500 1500 2500 3500

0.
0

0.
4

0.
8

observed distribution task probabilities through time

task: Temperature task: Sound task: Video task: Help

5e
−

05
2.

5e
−

05
1.

25
e−

05

Figure 6.13: Dynamics of the distribution of task probabilities (four robots). Each plot in the array refers to a combination
of tasks (one per column) and help densities (one per row). The task probabilities are on the y axes, the time from the
beginning of the experiments on the x axes. The meaning of the plots is as in Fig. 4.13. The plots refer to experiments with
four robots in the SANET. 1

6
0

C
H
A
P
T
E
R
6
.
D
IV
IS
IO
N
O
F
L
A
B
O
U
R
IN
S
A
N
E
T
s

0 500 1500 2500 3500

0.
0

0.
4

0.
8

0 500 1500 2500 3500

0.
0

0.
4

0.
8

0 500 1500 2500 3500

0.
0

0.
4

0.
8

0 500 1500 2500 3500

0.
0

0.
4

0.
8

0 500 1500 2500 3500

0.
0

0.
4

0.
8

0 500 1500 2500 3500

0.
0

0.
4

0.
8

0 500 1500 2500 3500

0.
0

0.
4

0.
8

0 500 1500 2500 3500

0.
0

0.
4

0.
8

0 500 1500 2500 3500

0.
0

0.
4

0.
8

0 500 1500 2500 3500

0.
0

0.
4

0.
8

0 500 1500 2500 3500

0.
0

0.
4

0.
8

0 500 1500 2500 3500

0.
0

0.
4

0.
8

observed distribution task probabilities through time

task: Temperature task: Sound task: Video task: Help

5e
−

05
2.

5e
−

05
1.

25
e−

05

Figure 6.14: Dynamics of the distribution of task probabilities (eight robots)1
6
1

C
H
A
P
T
E
R
6
.
D
IV
IS
IO
N
O
F
L
A
B
O
U
R
IN
S
A
N
E
T
s 0 500 1500 2500 3500

0.
0

0.
4

0.
8

0 500 1500 2500 3500

0.
0

0.
4

0.
8

0 500 1500 2500 3500

0.
0

0.
4

0.
8

0 500 1500 2500 3500

0.
0

0.
4

0.
8

0 500 1500 2500 3500

0.
0

0.
4

0.
8

0 500 1500 2500 3500

0.
0

0.
4

0.
8

0 500 1500 2500 3500

0.
0

0.
4

0.
8

0 500 1500 2500 3500

0.
0

0.
4

0.
8

0 500 1500 2500 3500

0.
0

0.
4

0.
8

0 500 1500 2500 3500

0.
0

0.
4

0.
8

0 500 1500 2500 3500

0.
0

0.
4

0.
8

0 500 1500 2500 3500

0.
0

0.
4

0.
8

observed distribution task probabilities through time

task: Temperature task: Sound task: Video task: Help

5e
−

05
2.

5e
−

05
1.

25
e−

05

Figure 6.15: Dynamics of the distribution of task probabilities (twelve robots)

1
6
2

CHAPTER 6. DIVISION OF LABOUR IN SANETs

positions between the previous agents. They are therefore also physi-
cally nearer, and this is why the hierarchic social entropy decreases.
The distributions regarding task T4 are qualitatively different from

the others. There are many more inactive agents than in the other
case. This can be easily explained by the low rates used to generate
the requests. As a matter of fact, the higher the help density, the more
agents get involved in the task T4, as can be easily seen in the rightmost
plots from Fig. 6.10 to Fig. 6.12

6.10 Conclusions

This chapter described a common architecture for division of labour in
SANETs. We see our work as an important contribution to the field.
Namely:

• We implemented a communication-less mechanism for division of
labour. Although it might sound paradoxical, it could happen
that agents in a SANET can not use the communication media
(e.g., the wireless channel) to co-ordinate the division of labour.
It is the case, for instance, when it is overloaded. To the best of
our knowledge, ours is the first communication-less mechanism
for division of labour in SANETs.

• We modified AntHocNet to explicitly take into consideration the
heterogeneity of the agents.

• We proposed an architecture based on cross-layer interactions.
Although this is an often-discussed topic in the community [e.g.
Winter, 2006], we are aware of no work in which division of labour
is achieved through cross-layer interactions.

• By means of the hierarchic social entropy, we showed how it is
possible to analyse the SANET as a whole, and not by looking at
its two components (robots and motes) independently.

• We implemented a new simulator that can handle both the simu-
lation of the real world and of the networking. This is also some-
thing new in the community.

We could say, to summarise and abstract our contribution to the field,
that we helped to look at SANETs in a holistic fashion, and not as made
of two distinct parts. One of the purposes of our architecture is in fact
the integration of two different platforms.
Future works will focus on energy-aware routing and reconfigura-

tion. Motes are small devices and thus have limited energy capacity. In
most operational conditions for SN, such as surveillance or monitoring,
it is critical to reduce the energy consumption in order to increase the
network life time. Most of the energy is used for wireless communi-
cation. Network life time can be increased by sending messages over
routes that spare the overall energy consumption, or by selecting routes
that do not involve a node with depleted capacity. Our modifications

163

CHAPTER 6. DIVISION OF LABOUR IN SANETs

to AntHocNet allow to select routes based on several policies, included
energy saving. They also allow to change the policy during the node
lifetime, and to use different criteria for different packet types. This
could be exploited to satisfy some Quality-of-Service requirements of
the network.
Reconfiguration is essential for adaptive systems. If a SANET has

to work in unknown or dynamic environments, its members should be
able to change their behaviours to improve the group’s performance.
The architecture that we designed can be effectively used for auton-
omous reconfiguration and adaptation of the SANET to different con-
ditions. The advantage of our approach is that the overhead is quite
limited. The agents mostly adapt using the information that they can
receive locally, that is, the packets that were routed through them. The
only overhead is introduced by the ROUTEFAILURE packets.
Our architecture can still be improved. Figure 6.9 shows that the hi-

erarchic social entropy is still far from the approximated upper bound.
One could do better, for instance, by pre-programming the nodes to
perform specific tasks, and then to deploy them uniformly in the envi-
ronment. The hierarchic social entropy so achieved would probably be
the maximum. The problem with this approach is that it is not an easy
task to re-program the network after it has been deployed, especially if
the network is overloaded.
Robots could be helpful for reprogramming the nodes. They could

reach the nodes that have to be reprogrammed and instruct them about
their new task. But this task of the robots’ is nothing else than another
formulation of our task T4.
The work presented in the last pages is still preliminary, and thus it

can be improved in many directions. Other researchers might also de-
sire to compare their algorithms with ours. Another important feature
discussed in the previous pages is that we propose a way of looking at
the system which allows direct comparisons and evaluations. We hope
that this could inspire other researchers to compare different solutions
for SANETs, as we did for prey retrieval in Chap. 5.

164

Chapter 7

Conclusions

Division of labour is an effective way of improving the resource usage of
Multi Robot Systems. We studied in the previous chapters how division
of labour can be achieved through communication-less algorithms.1

We focused on this class of algorithms because they can be helpful in
situations likely to occur in real-world applications. It might happen
that the robots can not access the communication channel, because it
is not yet set up or it is overloaded. It might also be that robots have
no communication channel at all.
Communication-less algorithms for co-ordination are also a stimu-

lating intellectual challenge. Many, not only in robotics, still consider
co-ordination without direct communication a sort of paradox. Works
like ours and all the field of Swarm Robotics show that indeed direct
communication is not always a necessity.
We proposed in Chap. 4 a division of labour algorithm inspired by

ants’ behaviour. The robots do not need to explicitly communicate with
each other, but they exploit only the local information available in the
environment for co-ordination. We showed that the algorithm could im-
prove the efficiency of the group of robots. Moreover, robots using this
algorithm could autonomously recruit the nest-mates that were best
suited for retrieval. The algorithm used neither direct communication
nor representations of the environment and of the robots. It worked
by exploiting the complexity of the interactions among the robots and
between the robots and the environment.
We took then some of the algorithms known in the literature and

we compared them with ours in Chap. 5. The comparison was done
using concepts of experiment design that that helped us to spare ex-
perimental time. We were able to find a difference between the algo-
rithms. Thanks to the results, we were able to say which algorithms
performed better. We were also able to trace the global behaviour of the
group to the particular implementations of the algorithms, that is, to
the learning rule used by the robots. The work in this chapter is still
not sufficient to name one of the algorithms as the “state of the art”.

1We recall that by “communication-less” algorithms we refer to algorithms that do not
use direct communication (see Chap. 1).

165

CHAPTER 7. CONCLUSIONS

Nevertheless, this is the first step in this direction and paves the way
to future comparisons.
We finally exploited the knowledge of the mechanisms at work to

move from one task to more tasks in Chap. 6. The control architec-
ture for robots and motes that we described can be used to address at
the same time the problems of division of labour, multi criterion rout-
ing and reconfiguration, although we analysed only the first one. Even
though the robots and the motes can communicate with each other,
the division of labour occurs by means of indirect communication. We
mean that the agents never exchange messages which explicitly as-
sign one agent to one task. Nor were the packets explicitly used for
co-ordination. The agents took their decisions only by looking at the
packets which travel through them. Agents never asked for information
to far away nodes (except for when robots were answering to motes’ help
requests). They use instead the information that is already included in
the packets they receive for routing.
The main advantage of using communication-less systems, like ours

and those of SR, is that the system might perform more robustly than
using a traditional approach. The redundancy and the simplicity of sin-
gle individuals can also have important economic aspects. Each single
unit might be produced with cheap methods and nevertheless the sys-
tem might reach better results than using a few expensive robots.
If robotic systems in general are not yet ready for real-world outdoor

applications, this is even truer for SR. In fact, the advantage of SR is
counterbalanced by a non-trivial problem. The experiments described
in the previous pages showed that the global behaviour of the robots is
mostly due to the interactions among robots and between robots and
environment. Such interactions are usually complex and non-linear. It
is hard for a human designer to foresee which global behaviour might
emerge from the simple behaviours of the robots. This implies also that
it is difficult to find the robots’ behaviours that bring to a desired global
behaviour.

7.1 Summary of Contributions

This thesis showed how division of labour can be achieved without
direct communication among the robots. The main contributions of
our work are as follows:

• We introduced a new, bio-inspired, algorithm for division of
labour. We proved that this algorithm is a valid mean to improve
the efficiency of the group. It is adaptive and can also automati-
cally select the individuals best suited for the task. The analysis
of its characteristics allowed us to understand how the algorithm
works and gave us also some means of measuring its qualities.

• Through our analysis of the algorithm, we validated also the origi-
nal model proposed in biology, which was tested only in numerical
simulations.

166

CHAPTER 7. CONCLUSIONS

• We introduced elements of experiment design for the comparison
of different algorithms. This allowed us to reduce the number of
experiments required to assess significant differences, and thus
to spare resources.

• We assessed which algorithm is more efficient and which performs
better. We were also able to trace the global behaviour of the group
to the particular implementations of the algorithms, that is, to the
learning rule used by the robots. Continuing in this direction, we
will be eventually able to create a common knowledge base about
the algorithms for robot co-ordination.

• We developed a communication-less algorithm for SANETs. To the
best of our knowledge, this is the first algorithm of this kind. We
analysed it and proposed also some way of measuring the degree
of division of labour in SANETs. This method will be used for
future comparisons with other solutions.

• We developed a new simulator, BARAKA, for experimentation with
SANETs. It was intentionally developed for our work and repre-
sents a novelty in the SANET research panorama.

Looking back at our work, we can summarise it by saying that we
showed how we can synthesise robots’ behaviour for SR. The prob-
lem of synthesising robots’ behaviour given a desired global behaviour
is in fact a hard one, as we explained in the previous section. Some
recent works have followed a top-down approach. For instance, in Evo-
lutionary Robotics (ER) [Nolfi and Floreano, 2000, Trianni, 2006] the
designer of the system fixes an evaluation function of the group (called
fitness function) and then uses evolutionary algorithms to set up the
parameters of the neural networks that control the robots.
This thesis showed how we can proceed in the opposite direction,

that is, bottom-up. We started from a given algorithm, we tried to
understand its characteristics and we compared it with others. Finally
we tried to apply our understandings to other domains.
We think that it is really important to test different solutions in this

process, as we did in Chap. 5. Comparisons are necessary for the de-
velopment of robotics. We could see the scientific evolution of a field,
and also of robotics, as an evolutionary process. Evolution is roughly
based on two processes: generation of new individuals and selection.
Mutations and crossover (for species that use sexual reproduction) con-
tinuously generate new individuals with new characteristics. Selection
lets only the fittest mate and reproduce, increasing thus the average
fitness of the population. In the same fashion, new scientific ideas are
continuously brought forth to explain some facts or to propose new so-
lutions to a problem. Only the best ideas, that is, the ones that show
best results, are the ones that remain “alive” in the community. We
do think that robotics has showed a lot of new ideas, but very little
selection.

167

CHAPTER 7. CONCLUSIONS

7.2 Future Work

Our work can be expanded in several directions. We can expand the
work presented in each chapter individually, but we can also think of
new research directions.
The first way of expanding our work is to find other algorithms for

comparisons, and then use also other test applications. Pursuing this
direction, we will be able to create a common knowledge in the robotic
community about the characteristic of different algorithms for different
applications. We will eventually know which is the best algorithm for a
given application.
Our work on SANETs still requires validation with real hardware.

This is the most-likely next step of our work. There is however a practi-
cal problem, because this validation requires a lot of resources. Work-
ing with fewer resources, we will set up only some proof-of-concept
experiments with fewer motes and in a smaller area. We are however
confident that the validation will be successful. We took particular
attention in the development of our simulator, using the knowledge ac-
quired by the previous experience. Since the previous simulations were
successfully validated, we do not expect BARAKA to fail.
A further extension of our work in SANETs consists in making the

task more complex. We will put more obstacles in the environment. The
obstacles could eventually move, simulating for instance a collapse of
some structure. This will be useful to study the ability of our SANET to
adapt.
The whole thesis focused only on division of labour based on indi-

vidual learning. An interesting extension would be to study the effects
of other techniques combined with ours. For instance, we will study
the effects of division of labour which uses both communication and
individual learning. We recall that we forbade our robots to use com-
munication not because we are against it, but because it is a situation
still poorly analysed in the literature. Yet, it is likely to occur. We are
sure that communication combined with learning can improve the effi-
ciency of the group of robots. What we do not know yet is whether the
two elements simply sum up their effects or whether they work syner-
gically. It could also occur that the result is less than the sum of both
effects. In the last two cases, then it would be important to know why.
In every case, it is still a long way before we will be able to have the

decent coffee of which we were dreaming at the beginning of this thesis.

168

Appendix A

Reinforcement Learning
and MRSs

Reinforcement Learning (RL) is a computational approach to learning
from interaction to achieve a goal. RL means

. . . learning what to do—how to map situations to
actions—so as to maximize a numerical reward signal [Sut-
ton and Barto, 1998].

The learner and decision-maker is called an agent. The things it
interacts with, comprising everything outside the agent, are called the
environment. We first introduce the theory of RL for a single agent and
then expand it to multiple agents, MRS included.
The agent-environment interaction is shown in Fig. A.1. The agent

interacts with the environment at a sequence of discrete time steps t =
0, 1, 2, 3 At each time step t, the agent can perceive the environment
through its sensors. The environment can be in any state st ∈ S, where
S is the set of all possible states. The agent can perform an action
at ∈ A(st), where A(st) is the set of actions available in state st. As a
consequence of this action, the agent receives a reward signal rt+1 ∈ R

and the environment is in state st+1. This reward signal is the most
important aspect of RL.
The agent keeps a mapping π : S × A → [0, 1], where A =

⋃

s∈S A(s).
π(s, a) is called a policy, and returns the probability that the agent per-
forms action a if the state is s. RL methods modify the agent’s policy
as a result of its experience. Because it is time dependent, the policy is
often written as πt(s, a). The agent’s goal, roughly speaking, is to find
the policy π∗(s, a) that maximises the total amount of reward it receives
over the long run.
The total amount of reward to maximise can be specified in different

ways. If, for instance, the agent should work for only T time steps, at
time t it chooses the action that maximises

Rt =

T−t
∑

k=1

rt+k , (A.1)

169

APPENDIX A. Reinforcement Learning AND MRSs

Figure A.1: Interactions between one agent and the environment in the
RL framework.

called return. If T →∞, that is if the agent’s task goes on without limit,
(A.1) can easily diverge. In such cases, it is preferable to maximise the
discounted return:

Rt =

∞
∑

k=1

γk−1rt+k , (A.2)

where γ is a parameter, 0 ≤ γ ≤ 1, called discount factor.
A Markov Decision Process (MDP) is used as the theoretical back-

ground of RL. A MDP is defined by the set S of states and A of actions.
In a MDP, the following property is true:

P (st+1 = s, rt+1 = r|st, at, rt, st−1, at−1, . . . , r1, s0, a0, r0) =

= P (st+1 = s, rt+1 = r|st, at) ,

for every time step t, for every state s and st, for every reward r and rt
and for every action at. This means that the probability to go into a new
state and obtain a certain reward does not depend on the history of the
system, but only on the current state and action. Given this property,
a MDP is completely described by the following distribution:

Pa
ss′ = P (st+1 = s′|st = s, at = a) ,

which gives the transition probability from one state to the other, and
by

Ra
ss′ = E [rt+1|st = s, at = a, st+1 = s′] ,

that is, the expected reward of the next action [Sutton and Barto, 1998].
The extension of a MDP to more agents is quite straightforward,

from the formal point of view. We assume that there are k agents
working together. The set of states is still indicated by S. Each
agent i has its own set of available actions Ai =

⋃

s∈S Ai(s). The
set of combined actions A is defined as the Cartesian product of all
sets Ai, that is, A = ×k

i=1Ai. Therefore, an element a ∈ A is in
fact the vector [a1, a2, . . . , ak], which represent the actions of all the
agents. The transition probabilities are expressed as above, except
that a is substituted by a, a vector of actions. Each agent might have
different goals, which are expressed by different rewards. Therefore,
the expected reward becomes a vector to account for different agents:

170

APPENDIX A. Reinforcement Learning AND MRSs

R
a
ss′ = [Ra

ss′,1,R
a
ss′,2, . . . ,R

a
ss′,k]. Such framework is often referred to as

a Markov Game [Littman, 1994]. From the practical point of view, the
extension to MRS increases combinatorially the search space, therefore
it is more difficult to find optimal policies for all the agents.
Things can go even worse. In fact, an important assumption so far

was that each agent can perfectly perceive the state of the environment
and knows the actions of the other agents. Such assumption might
not hold true in case of unreliable sensors or communication media
among the agents. In this case, the MDP model must be extended into
a Partially Observable Markov Decision Process. The sets S, A, the
transition probabilities and the rewards are defined as in a MDP. The
sensors of agent i can produce an observation ω ∈ Ωi. The set Ω of
combined observations of the group is defined as Ω = ×k

i=1Ωi. The re-
lationship between the observations and the states in the environment
is given by

Oa

ωs = P (ωt = ω|st = s,at−1 = a) ,

that is, the probability that the combined observation at time t of the
actual state st given the previous combined action at−1 is ω. Note that
according to this formulation, it could happen that the agents would
perceive the same observation ω in two different states, hence the par-
tial observability of the environment.
Pynadath and Tambe [2002] analysed the time complexity of finding

the optimal combined policy in a POMDP using different communica-
tion strategies among the agents. Their finding is that communication
does not decrease the complexity when either the observations are not
related to the states or there is only one possible observation for each
state. Otherwise, communication can decrease the complexity only if it
is cost-less, that is, if using it does not effect the reward of the agents.
For the other cases, the more general ones, the complexity of finding
optimal policies is NEXP.1 The reader can refer to the original paper for
further details.

A.1 POMDP for Prey Retrieval

The state of the environment is described by the number p of prey,
while si ∈ Si = {searching, resting} describes the state of each robot.
The environment is therefore fully described by the tuple 〈p,S = ×N

i Si〉,
where N is the number of robots. We can reduce the action set A

by considering only the most important action for each robot i, that is,
whether to exit the nest (ai = 1) or not (ai = 0). Therefore,A = ×N

i=1{0, 1}.
If a robot k is in the searching state, then ak = 0. The result can be
seen in Fig. A.2. The state transition probabilities could be calculated
knowing the probability that a new prey appears and the probability
that one robot successfully retrieves a prey. Likewise for the expected
reward vector R. We do not report them here because they are not
important for this discussion.

1NEXP is the class of problems which can be solved in exponential time by a non-
deterministic Turing Machine [Garey and Johnson, 1979].

171

APPENDIX A. Reinforcement Learning AND MRSs

Figure A.2: A MDP for prey retrieval. Each state of the environment
is identified by the number of the prey in it and by the state of all the
robots (’s’ stands for searching and ’r’ for resting). We did not report all
the possible transition between states, but just some to give an idea.
Dashed arrows are transition due to new prey appearing. Dash-dotted
arrows represent a robot that exits the nest. Continued arrows are
for successful retrievals, while dotted arrows are for failures. Labels
next to the arrow have the form p|a|r, where p indicates the number of
appeared prey (0 or 1), a ∈ A is an action vector (see text), and r is the
reward.

172

APPENDIX A. Reinforcement Learning AND MRSs

The important observation is that, given the sensor capabilities of
our robots, the environment is in fact partially observable. The robots
do not communicate and do not try to recognise the nest-mates, thus
they can only observe their own state si. The MDP reduces to the
POMDP shown in Fig. A.3(a). Given that our robots can not know
the number of prey in the environment either, the POMDP becomes
as in Fig. A.3(b). The only possible transitions are: resting → searching
and searching → resting. Given that the decision point of the robot is
in the resting state, the other state can in fact be ignored. The MDP
is therefore a degenerated one: only one state (resting), two actions
(exit the nest or not), and the expected reward which is the average of
the rewards of all the real environment states unknown to the robots
(Fig. A.3(c)). The methods already developed for RL are best suited for
more complex MDP.

173

APPENDIX A. Reinforcement Learning AND MRSs

(a) First simplification: the robots can know only their own state.

(b) Second simplification: robots do not know how many prey are in
the environment.

(c) Final simplification: a robots can not perform any action in state
’s’ (a timeout is modelled as a automatic transition to ’r’ with null
reward associated).

Figure A.3: POMDPs derived from the MDP. The limitations of our
robots are introduced stepwise to show the degradation from a fully
specified MDP for prey retrieval to a degenerated case. States and tran-
sitions are as in Fig. A.2. For simplicity, we do not report the labels
associated with each transition.

174

Appendix B

On the “Efficiency”
and the “Performance”
of a Group of Robots

To compare the results of different algorithms, we use the concept
of efficiency and performance that we describe in Sec. 4.1. However,
the robotics literature offers several definitions for them, especially for
“performance”. For instance: Hayes [2002] defines “performance” as
the time to find one object; Krieger and Billeter [2000] consider the in-
verse of the the total energy used by the robots normalised by their total
number; Balch and Arkin [1998] use the time until completion of the
task; Schneider-Fontán and Matarić [1996] the number of the retrieved
prey and the time required to retrieve 80% of the prey; Balch and Arkin
[1994] use “a combination of the time to complete the task and the cost
of the system” (in their case, the cost of the system is estimated using
the number of robots, multiplied by a constant). This appendix justifies
our choice on the base of the definition, the etymology and the common
use of the two terms.
Both “efficiency” and “performance” are used when someone or

something is doing an action or an operation. The word that gives less
problems is “efficiency”, defined in the Merriam-Webster dictionary,1

as:

1 : effective operation as measured by a comparison of pro-
duction with cost (as in energy, time, and money) 2 : the
ratio of the useful energy delivered by a dynamic system to
the energy supplied to it.

“Efficiency” comes from the adjective “efficient”, that derives from the
participle “efficiens” of the Latin verb “efficiere”, which means “to work
out, to accomplish”. It acquired the meaning “productive, skilled” only
starting from 1787.2

1http://www.m-w.com
2http://www.etymonline.com

175

http://www.m-w.com
http://www.etymonline.com

APPENDIX B. ON THE “EFFICIENCY” AND THE “PERFORMANCE”

OF A GROUP OF ROBOTS

A fast search on the Internet, returns several different definitions
given to “efficiency” according to the domain in which it is used. Here
are some examples:3

• skillfulness in avoiding wasted time and effort;4

• the ratio of the energy output to the energy input;5

• an ability to perform well or achieve a result without wasted en-
ergy, resources, effort, time or money; [. . .] greater efficiency is
achieved where the same amount and standard of services are
produced for a lower cost, if a more useful activity is substituted
for a less useful one at the same cost or if needless activities are
eliminated;6

• a measure of the amount a parallel program spends doing com-
putation as opposed to communication;7

• in mechanics, it is the ratio of the actual mechanical advantage
(AMA) to the ideal mechanical advantage (IMA).8

From its definitions and etymology, we understand that “efficiency”
is a concept related on how well a job is accomplished, regardless of the
final result. The ability in concluding the operation is measured looking
at the ratio between two quantities, ideally “what has been obtained”
and “how much has been spent”. For instance, if we are talking about
a thermodynamical machines, efficiency is the ratio between the work
delivered and the heat supplied. It we are talking about a financial
operation, it is the ratio between income and costs. The definition given
by (4.3) falls perfectly into line with these interpretations.
Merriam-Webster defines “performance” as:

1 a : the execution of an action, b : something accomplished

but also as:

4 a : the ability to perform (see EFFICIENCY) b : the manner in
which a mechanism performs.

“Performance” derives from the verb “to perform”, which comes from
the Anglo-French “performir”, altered from the old French “parfornir”
which meant “to do, to carry out, to finish, to accomplish”. It derives
from “par” (“completely”) and “fornir” (“to provide”).
“Performance” is used with different meanings on the Internet:9

• the act of performing, of doing something successfully;10

3http://www.google.com/search?q=define:efficiency
4http://www.cogsci.princeton.edu/cgi-bin/webwn
5http://sol.crest.org/renewables/SJ/glossary/E.html
6http://www.iime.org/glossary
7http://www.tc.cornell.edu/Services/Edu/Topics/Glossary/index.asp
8http://www.free-definition.com/Mechanical-efficiency.html
9http://www.google.com/search?q=define:performance
10http://www.cogsci.princeton.edu/cgi-bin/webwn

176

http://www.google.com/search?q=define:efficiency
http://www.cogsci.princeton.edu/cgi-bin/webwn
http://sol.crest.org/renewables/SJ/glossary/E.html
http://www.iime.org/glossary
http://www.tc.cornell.edu/Services/Edu/Topics/Glossary/index.asp
http://www.free-definition.com/Mechanical-efficiency.html
http://www.google.com/search?q=define:performance
http://www.cogsci.princeton.edu/cgi-bin/webwn

APPENDIX B. ON THE “EFFICIENCY” AND THE “PERFORMANCE”

OF A GROUP OF ROBOTS

• any recognised accomplishment: “they admired his performance
under stress”;11

• a measure of how well a fund is doing: two commonly used mutual
fund performance measures are yield (which measures dividends)
and total return (which measures dividends plus changes in net
asset value);12

• refers to the metrics related to how a particular request is han-
dled: for example, if a particular query takes 5 seconds to run,
and after performance tuning, it now takes 3 seconds to run, we
have boosted the performance of this query;13

• in engineering, performance relates to measuring some output or
behaviour.14

Alongside with these, we find also some other definitions that tends
to use “efficiency” and “performance” as synonyms, such as the follow-
ing definition of “efficiency”:

• A measure of the body’s performance – the ratio of output over
input.15

The impression is that when we talk about the “performance” of
an operation, we usually focus on its final result. The “performance”
is measured on the base of a metric that we define a priori and that
is used to compare the results of the systems under observation. We
are not, generally speaking, interested in how the final result has been
obtained, i.e. in an efficient or inefficient way. As an example, let us
consider a race car. It is more important the maximum speed than how
much it consumes. Thus, the performance metric in this case is km/h
and not l/km (litre per kilometre).
Confusion arises because sometimes the efficiency is used as a met-

ric for the performance, as when an engineer has to reduce the con-
sumptions of a car engine. This case explains why the two words may
be used sometimes as synonym and why one can be used in the def-
inition of the other. However, we would like to stress the point that
“performance” is related to one metric, whereas “efficiency” involves
always a comparison of two quantities. The following definition of “per-
formance” states it quite clearly:

• “performance” is the degree to which a project or institution oper-
ates or operated according to various criteria or quality standards,
such as Efficiency, Effectiveness, and Relevance.16

Given that “performance” focuses on the final result of the system
under observation, each researcher defines the performance metric ac-
cording to what his final purpose is. If we stick to prey retrieval in

11http://www.cogsci.princeton.edu/cgi-bin/webwn
12http://www.oneinvest.com/bancone/mfgNOP.htm
13http://www.sql-server-performance.com/glossary.asp
14http://www.free-definition.com/Performance.html
15www.soton.ac.uk/~engenvir/glossary.html
16http://www.dfid.gov.uk/aboutdfid/files/glossary_p.htm

177

http://www.cogsci.princeton.edu/cgi-bin/webwn
http://www.oneinvest.com/bancone/mfgNOP.htm
http://www.sql-server-performance.com/glossary.asp
http://www.free-definition.com/Performance.html
www.soton.ac.uk/~engenvir/glossary.html
http://www.dfid.gov.uk/aboutdfid/files/glossary_p.htm

APPENDIX B. ON THE “EFFICIENCY” AND THE “PERFORMANCE”

OF A GROUP OF ROBOTS

robotics, one researcher might be interested in the retrieval of toxic
items in the environment, which must be removed as soon as possible.
The performance metric he would likely choose is the time to complete
the mission. If he envisions a demining application, then the metric
will be the number of retrieved item. If he just want to improve other
solutions, he will choose to use the efficiency as performance metric.

178

Bibliography

M. Abolhasan, T. Wysocki, and E. Dutkiewicz. A review of routing pro-
tocols for mobile ad hoc networks. Ad Hoc Networks, 2:1–22, 2004.

W. Agassounon and A. Martinoli. Efficiency and robustness of
threshold-based distributed allocation algorithms in multi-agent sys-
tems. In C. Castelfranchi and W.L. Johnson, editors, Proceedings of
the First International Joint Conference on Autonomous Agents and

Multi-Agent Systems (AAMAS-02), pages 1090–1097. ACM Press, New
York, NY, 2002.

W. Agassounon, A. Martinoli, and R.M. Goodman. A scalable, dis-
tributed algorithm for allocating workers in embedded systems. In
Proceedings of IEEE System, Man, and Cybernetics Conference SMC-

01, pages 3367–3373. IEEE Press, New York, NY, 2001.

W. Agassounon, A. Martinoli, and K. Easton. Macroscopic modeling
of aggregation experiments using agents in teams of constant and
time-varying sizes. Autonomous Robots, 17(2–3):163–192, 2004.

I.F. Akyildiz and I.H. Kasimoglu. Wireless sensor and actor networks:
research challenges. Ad Hoc Networks, 2(4):351–367, 2004.

I.F. Akyildiz, W. Su, Y. Sankarasubramaniam, and E. Cayirci. Wireless
sensor networks: a survey. Computer Networks, 38(4), 2002.

J. Alcock. Animal Behavior. Sinauer, Sunderland, MA, 5th edition,
1995.

M.F. Ali, E.D. Morgan, C. Detrain, and A.B. Attygale. Identification
of a component of the trail pheromone of the ant Pheidole pallidula
(Hymenoptera: Formicidae). Physiological Entomology, 13:257–265,
1988.

R.C. Arkin. Behavior Based Robotics. MIT Press/Bradford Books, Cam-
bridge, MA, 1998.

M. Asada and H. Kitano, editors. RoboCup-98: Robot Soccer World Cup
II, volume 1604 of Lecture Notes in Computer Science, 1999. Springer
Verlag, Heidelberg, Germany.

M. Asada, H. Kitano, I. Noda, and M. Veloso. RoboCup: Today and
tomorrow – What we have learned. Artificial Intelligence Journal, 110:
193–214, 1999.

179

BIBLIOGRAPHY

I. Asimov. I, Robot. Bantam Books, NY, 1991.

T. Balch. Hierarchic social entropy: An information theoretic measure
of robot group diversity. Autonomous Robots, 8(3):209–238, 2000.

T. Balch. The impact of diversity on performance in multi-robot for-
aging. In O. Etzioni, J.P. Müller, and J.M. Bradshaw, editors, Pro-
ceedings of the Third International Conference on Autonomous Agents

(Agents’99), pages 92–99. ACM Press, New York, NY, 1999.

T. Balch and R.C. Arkin. Communication in reactive multiagent robotic
systems. Autonomous Robots, 1(1):27–52, 1994.

T. Balch and R.C. Arkin. Behavior-based formation control for multi-
robot teams. IEEE Robotics and Automation, 14(6):926–939, 1998.

M.A. Batalin and G.S. Sukhatme. Sensor network-based multi-robot
task allocation. In Proceedings of the IEEE International Conference
on Intelligent Robots and Systems (IROS2003), volume 2, pages 1939–
1944. IEEE Press, New York, NY, 2003.

M.A. Batalin and G.S. Sukhatme. Using a sensor network for dis-
tributed multi-robot task allocation. In Proceedings of the IEEE In-
ternational Conference on Robotics and Automation (ICRA2004), vol-
ume 1, pages 158–164. IEEE Press, New York, NY, 2004.

M.A. Batalin, M. Rahimi, Y. Yu, D. Liu, A. Kansal, G.S. Sukhatme, W.J.
Kaiser, M. Hansen, G.J. Pottie, M. Srivastava, and D. Estrin. Call and
response: Experiments in sampling the environment. In A. Arora and
R. Govindan, editors, Proceedings of the 2nd International Conference
on Embedded Networked Sensor Systems (SenSys’04), pages 25–38.
ACM Press, New York, NY, 2004a.

M.A. Batalin, G.S. Sukhatme, and M. Hattig. Mobile robot navigation
using a sensor network. In Proceedings of the IEEE International Con-
ference on Robotics and Automation (ICRA2004), pages 158–164. IEEE
Press, New York, NY, 2004b.

G. Beni and J. Wang. Swarm intelligence. In Proceedings of the 7th An-
nual Meeting of the Robotics Society of Japan, pages 425–428, Tokyo,
Japan, 1989.

E. Bonabeau, G. Theraulaz, and J.-L. Deneubourg. Quantitative study
of the fixed threshold model for the regulation of division of labor in
insect societies. Proceedings of the Royal Society of London, Series
B-Biological Sciences, 263:1565–1569, 1996.

E. Bonabeau, A. Sobkowski, G. Theraulaz, and J.-L. Deneubourg.
Adaptive task allocation inspired by a model of division of labor in
social insects. In D. Lundh, B. Olsson, and A. Narayanan, editors,
Biocomputing and Emergent Computation, pages 36–45. World Scien-
tific, UK, 1997.

180

BIBLIOGRAPHY

E. Bonabeau, M. Dorigo, and G. Theraulaz. Swarm Intelligence: From
Natural to Artificial Systems. Oxford University Press, New York,
1999.

A. Bonarini, M. Matteucci, G. Invernizzi, and T. H. Labella. Context
and motivation in coordinating fuzzy behaviors. In M. Colombetti,
A. Bonarini, and P.L. Lanzi, editors, Proceedings of the Seventh Meet-
ing of the Italian Association for Artificial Intelligence (AI*IA 2000).
AI*IA, Milano, Italy, 2000.

A. Bonarini, M. Matteucci, G. Invernizzi, and T.H. Labella. An architec-
ture to coordinate fuzzy behaviors to control an autonomous robot.
Fuzzy Sets and Systems, 134(1):101–115, 2001.

R.A. Brooks. Intelligence without representation. Artificial Intelligence,
47:139–159, 1991.

J. Bruce and M Veloso. Real-time randomized path planning for robot
navigation. In Proceedings of the 2002 IEEE/RSJ International Con-
ference on Intelligent Robots and Systems (IROS ’02). IEEE Press, New
York, NY, 2002.

N. Bulusu, J. Heidemann, and D. Estrin. Adaptive beacon placement.
In P. Dasgupta and W. Zhao, editors, Proceedings of the 21st Confer-
ence on Distributed Computing Systems (ICDCS-21), pages 489–498.
IEEE Press, New York, NY, 2001.

J. Butler. Robotics and microelectronics: Mobile robots
as gateways into wireless sensor networks. Technol-

ogy@Intel Magazine, May 2003. Available on-line at
http://www.intel.com/technology/magazine/research/it05031.pdf.

S. Camazine, J.-L. Deneubourg, N.R. Franks, J. Sneyd, G. Theraulaz,
and E. Bonabeau. Self-Organisation in Biological Systems. Princeton
University Press, Princeton, NJ, 2001.

M.C. Cammaerts. Systémes d’approvisionnement chez Myrmica
scabrinodis. Insectes Sociaux, 27(4):328–242, 1980.

M.C. Cammaerts and R. Cammaerts. Food recruitment strategies of the
ants Myrmica sabuleti and Myrmica ruginodis. Behavioral Processes,
5:251–270, 1980.

Y.U. Cao, A.S. Fukunaga, and A.B. Kahng. Cooperative mobile robotics:
Antecedents and directions. Autonomous Robots, 4(1):7–27, 1997.

C.-Y. Chong and S. Kumar. Sensor networks: Evolution, opportunities,
and challenges. Proceedings of the IEEE, 91(8), 2003.

M. Cirillo. A formal methodological approach for comparison of control
algorithms for Swarm Robotics. Master’s thesis, Politecnico di Milano,
Milan, Italy, 2005.

Collodi. Pinocchio, 1883.

181

http://www.intel.com/technology/magazine/research/it05031.pdf

BIBLIOGRAPHY

P. Corke, R. Peterson, and D. Rus. Networked robots: Flying robot
navigation using a sensor net. In P. Dario and R Chatila, edi-
tors, Proceedings of the Eleventh International Symposium of Robotics
Research (ISRR2003), volume 15 of Springer Tracts on Advanced
Robotics (STAR). Springer Verlag, Heidelberg, Germany, 2003.

P. Corke, S. Hrabar, R. Peterson, D. Rus, S. Saripalli, and G. Sukhatme.
Autonomous deployment and repair of a sensor network using an
unmanned aerial vehicle. In Proceedings of the IEEE International
Conference on Robotics and Automation (ICRA2004), volume 4, pages
3602–3608. IEEE Press, New York, NY, 2004.

E. Şahin, T.H. Labella, V. Trianni, J.-L. Deneubourg, P. Rasse, D. Flo-
reano, L.M. Gambardella, F. Mondada, S. Nolfi, and M. Dorigo.
SWARM–BOT: Pattern formation in a swarm of self–assembling mo-
bile robots. In A. El Kamel, K. Mellouli, and P. Borne, editors, Pro-
ceedings of IEEE International Conference on System, Man and Cyber-

netics (SMC2002). IEEE Press, New York, NY, 2002.

D.E. Culler and H. Mulder. Smart sensors to network the world. Scien-
tific American, June 2004.

K. Dantu, M.H. Rahimi, H. Shah, S. Babel, A. Dhariwal, and G.S.
Sukhatme. Robomote: Enabling mobility in sensor networks. In
IEEE/ACM Fourth International Conference on Information Processing

in Sensor Networks (IPSN-SPOTS), pages 404–409. IEEE Press, New
York, NY, April 2005.

J.-L. Deneubourg, S. Goss, J.M. Pasteels, D. Fresneau, and J.-P.
Lachaud. Self-organization mechanisms in ant societies (II): Learn-
ing in foraging and division of labor. In J.M. Pasteels and J.-L.
Deneubourg, editors, From Individual to Collective Behavior in So-
cial Insects, volume 54 of Experientia Supplementum, pages 177–196.
Birkhäuser Verlag, Basel, Switzerland, 1987.

C. Detrain. Field study on foraging by the polymorphic ant species
Pheidole pallidula. Insectes Sociaux, 37(4):315–332, 1990.

C. Detrain and J.-L. Deneubourg. Scavenging by Pheidole pallidula:
a key for understanding decision-making systems in ants. Animal
Behaviour, 53:537–547, 1997.

C. Detrain and J.M Pasteels. Caste differences in behavioral thresholds
as a basis for polyethism during food recruitment in the ant Pheidole
pallidula (Nyl.) (Hymenoptera: Myrmicinae). Journal of Insect Behav-
ior, 4(2):157–176, 1991.

C. Detrain and J.M. Pasteels. Regulated food recruitment through indi-
vidual behavior of scouts in the ant Myrmica sabuleti (Hymenoptera:
Formicidae). Journal of Insect Behavior, 7(6):767–777, 1994.

G. Di Caro, F. Ducatelle, and L.M. Gambardella. AntHocNet: An adap-
tive nature-inspired algorithm for routing in mobile ad hoc networks.

182

BIBLIOGRAPHY

European Transactions on Telecommunications, Special Issue on Self-

organization in Mobile Networking, 16(5):443–455, 2005.

E. A. Di Paolo. An investigation into the evolution of communication.
Adaptive Behavior, 6(2):285–324, 1998.

M. Dorigo and E. Şahin. Guest editorial. Autonomous Robots, 17(2–3):
111–113, 2004.

M. Dorigo, V. Trianni, E. Şahin, R. Groß, T.H. Labella, G. Baldassarre,
S. Nolfi, J.-L. Deneubourg, F. Mondada, D. Floreano, and L.M. Gam-
bardella. Evolving self-organizing behaviors for a Swarm-Bot. Au-
tonomous Robots, 17(2–3):223–245, 2004a.

M. Dorigo, E. Tuci, R. Groß, V. Trianni, T.H. Labella, S. Nouyan,
C. Ampatzis, J.-L. Deneubourg, G. Baldassarre, S. Nolfi, F. Mondada,
D. Floreano, and L.M. Gambardella. The SWARM-BOTS project. In
E. Şahin and W. Spears, editors, Proceedings of the First International
Workshop on Swarm Robotics at SAB 2004, volume 3342 of Lecture
Notes in Computer Science, pages 31–44. Springer Verlag, Berlin, Ger-
many, 2004b.

M. Dorigo, E. Tuci, V. Trianni, R. Groß, S. Nouyan, C. Ampatzis, T.H.
Labella, R. O’Grady, M. Bonani, and F. Mondada. Computational In-
telligence: Principles and Practice, chapter SWARM-BOT: Design and
Implementation of Colonies of Self-assembling Robots. IEEE Compu-
tational Intelligence Society, New York, NY, 2006.

G. Dudek, M. Jenkin, E. Milios, and D. Wilkes. A taxonomy for multi-
agent robotics. Autonomous Robots, 3:375–397, 1996.

D. Estrin, D. Culler, K. Pister, and G.S. Sukhatme. Connecting the
physical world with pervasive networks. PERVASIVE Computing,
pages 59–69, January 2002.

A. Farinelli, L. Iocchi, and D. Nardi. Multirobot systems: a classifica-
tion focused on coordination. IEEE Transactions on System Man and
Cybernetics, part B, 34(5):2015–2028, 2004.

M Flint, E. E. Fernández-Gaucherand, and M.M. Polycarpou. A proba-
bilistic framework for passive cooperation among UAV’s performing a
search. In B. De Moor, P. Van Dooren, V. Blondel, and J. Willems, ed-
itors, Proceedings of the Sixteenth International Symposium on Math-
ematical Theory of Networks and Systems (MTNS2004), Leuven, Bel-
gium, July 5–9 2004.

D. Fresneau. Individual foraging and path fidelity in a Ponerine ant.
Insectes Sociaux, 32:109–116, 1985.

A. Galstyan, B. Krishnamachari, K. Lerman, and S. Pattem. Dis-
tributed online localization in sensor networks using a moving target.
In K. Ramchandran and J. Sztipanovits, editors, IPSN’04: Proceed-
ings of the third international symposium on Information processing in

sensor networks, pages 61–70. ACM Press, New York, NY, 2004.

183

BIBLIOGRAPHY

Michael R. Garey and David S. Johnson. Computers and Intractabil-
ity / A Guide to the Theory of NP-Completeness. W.H. Freeman &
Company, San Francisco, CA, 1979.

B.P. Gerkey and M.J. Matarić. A market-based formulation of sensor-
actuator network coordination. In G.S. Sukhatme and T. Balch, edi-
tors, Proceedings fo the AAAI Sping Symposium on Intelligent Embed-
ded and Distributed Systems, pages 21–26. AAAI Press, San Jose,
CA, 2002.

B.P. Gerkey and M.J. Matarić. A formal analysis and taxonomy of task
allocation in multi-robot systems. International Journal of Robotics
Research, 23(9):939–954, 2004.

D. Goldberg and M.J. Matarić. Reward maximization in a non-
stationary mobile robot environment. In C. Sierra, M. Gini, and J.S.
Rosenschein, editors, Proceeding of The Fourth International Confer-
ence on Autonomous Agents (Agents 2000), pages 92–99. ACM Press,
New York, NY, 2000.

D. Goldberg and M.J. Matarić. Interference as a tool for designing and
evaluating multi-robot controllers. In Proceedings of the 14th Na-
tional Conference on Artificial Intelligence (AAAI-97), pages 637–642.
MIT Press, Cambridge, MA, 1997.

P.P. Grassé. La reconstruction du nid et les coordinations inter-
individuelles chez Bellicositermes natalensis et Cubitermes. La
théorie de la stigmergie: essai d’interpretation des termites construc-
teurs. Insectes Sociaux, 6:41–83, 1959.

I. Harvey. Untimed and misrepresented: connectionism and the com-
puter metaphor. AISB Quarterly, (96):20–27, 1996.

A.T. Hayes. How many robots? Group size and efficiency in collective
search tasks. In H. Asama, T. Arai, T. Fukuda, and T. Hasegawa, ed-
itors, Proceedings of the 6th International Symposium on Distributed
Autonomous Robotic Systems (DARS-02), pages 289–298. Springer
Verlag, Heidelberg, Germany, 2002.

G. Hinton and T.J. Sejnowski, editors. Unsupervised Learning and Map
Formation: Foundations of Neural Computation. MIT Press, Cam-
bridge, MA, 1999.

O. Holland and C. Melhuish. Stigmergy, self-organization and sorting
in collective robotics. Artificial Life, 5(2):173–202, 1999.

B. Hölldobler. Recruitment behavior, home range orientation and ter-
ritoriality in harvester ants Pogonomyrmex. Behavioral Ecology and
Sociobiology, 1:3–44, 1976.

B. Hölldobler. Canopy orientation: a new kind of orientation in ants.
Science, 210:86–88, 1980.

184

BIBLIOGRAPHY

B. Hölldobler and E.O. Wilson. The Ants. Springer Verlag, Heidelberg,
Germany, 1990.

A.J. Ijspeert, A. Martinoli, A. Billard, and L.M. Gambardella. Collab-
oration through the exploitation of local interactions in autonomous
collective robotics: The stick pulling experiment. Autonomous Robots,
11(2):149–171, 2001.

N. Jakobi, P. Husbands, and I. Harvey. Noise and the reality gap: the
use of simulation in evolutionary robotics. In F. Moran, A. Moreno,
J.J. Merelo, and P. Chacon, editors, Advances in Artificial Life: Pro-
ceedings of the Third European Conference on Artificial Life, volume
929 of Lecture Notes in Computer Science, pages 704–720. Springer
Verlag, Heidelberg, Germany, 1995.

Yan Jin, A.A. Minai, and M.M. Polycarpou. Cooperative real-time
search and task allocation in UAV teams. In Proceedings of the 42nd
IEEE Conference on Decision and Control, volume 1, pages 7–12. IEEE
Press, New York, NY, 2003.

C. Jones and M.J. Matarić. Sequential task execution in a minimalist
distributed robotic system. Technical Report IRIS-02-414, Institute
for Robotics and Intelligent Sytems, University of Southern Califor-
nia, Los Angeles, CA, March 2002.

C.V. Jones and M.J. Matarić. Adaptive division of labor in large-scale
minimalist multi-robot systems. In IEEE/RSJ International Confer-
ence on Intelligent Robots and Systems, volume 2, pages 1969–1974.
IEEE Press, New York, NY, 2003.

H. Kitano, M. Asada, Y. Kuniyoshi, I. Noda, E. Osawa, and H. Matsub-
ara. Robocup: a challenge AI problem. AI Magazine, 18(1), 1997.

M.J.B. Krieger and J.-B. Billeter. The call of duty: Self-organised task
allocation in a population of up to twelve mobile robots. Robotics and
Autonomous Systems, 30(1-2):65–84, 2000.

C. Kube and E. Bonabeau. Cooperative transport by ants and robots.
Robotics and Autonomous Systems, 30(1-2):85–101, 2000.

C. Kube and H. Zhang. The use of perceptual cues in multi-robot
boxpushing. In Proceedings of the IEEE International Conference on
Robotics and Automation (ICRA), volume 3, pages 2085–2090. IEEE
Press, New York, NY, 1996.

V. Kumar, D. Rus, and S. Singh. Robot and sensor network for first
responders. PERVASIVE Computing, pages 24–33, October 2004.

T.H. Labella. Prey retrieval by a swarm of robots. Thesis for the Diplôme
d’Études Approfondies (DEA). Technical Report TR-IRIDIA-2003-16,
IRIDIA, Université Libre de Bruxelles, Brussels, Belgium, 2003.

T.H. Labella and M. Birattari. Polyphemus: De alieni generorum abaco-
rum racemo. Technical Report IRIDIA-TR-2004-15, IRIDIA, Univer-
sité Libre de Bruxelles, Brussels, Belgium, 2004.

185

BIBLIOGRAPHY

T.H. Labella and F. Dressler. A bio-inspired architecture for division of
labour in SANETs. In Proceedings of the First IEEE/ACM International
Conference on Bio Inspired Models of Network, Information and Com-

puting Systems (BIONETICS 2006), Cavalese, Italy, December 11–13,
2006. In press.

T.H. Labella, M. Dorigo, and J.-L. Deneubourg. Efficiency and task allo-
cation in prey retrieval. In A.J. Ijspeert, M. Murata, and N. Wakamiya,
editors, Biologically Inspired Approaches to Advanced Information
Technology: First International Workshop, BioADIT 2004, volume
3141 of Lecture Notes in Computer Science. Springer Verlag, Heidel-
berg, Germany, 2004a.

T.H. Labella, M. Dorigo, and J.-L. Deneubourg. Self-organised task allo-
cation in a group of robots. In R. Alami, editor, 7th International Sym-
posium on Distributed Autonomous Robotic Systems (DARS04), pages
371–380, Toulouse, France, June 23–25, 2004b.

T.H. Labella, M. Dorigo, and J.-L. Deneubourg. Division of labour in a
group of robots inspired by ants’ foraging behavior. ACM Transactions
on Autonomous and Adaptive Systems, 1(1):4–25, 2006a.

T.H. Labella, G. Fuchs, and F. Dressler. A simulation model for
self-organised management of sensor/actuator networks. In Fach-
gespräch über Selbstorganisierende, Adaptive, Kontextsensitive ver-

teilte Systeme (SAKS), University of Kassel, Germany, March 23–24
2006b.

T.H. Labella, I. Dietrich, and F. Dressler. BARAKA: A hybrid sim-
ulator of sensor/actuator networks. In Proceedings of the Second
IEEE/Create-Net/ICST International Conference on COMmunication

System softWAre and MiddlewaRE (COMSWARE 2007), Bangalore, In-
dia, January 7–12, 2007. In press.

K. Lerman, A. Galsyan, A. Martinoli, and A.J. Ijspeert. A macroscopic
analytical model of collaboration in distributed robotic systems. Arti-
ficial Life, 7(4):375–393, 2001. © MIT Press.

L. Li, A. Martinoli, and Y.S. Abu-Mostafa. Emergent specialization
in swarm systems. In H. Yin, N. Allinson, R. Freeman, J. Keane,
and S. Hubbard, editors, Intelligent Data Engineering and Automated
Learning (IDEAL 2002), volume 2412 of Lecture Notes in Computer Sci-
ence, pages 261–266. Springer Verlag, Heidelberg, Germany, 2002.

L. Li, A. Martinoli, and Y.S. Abu-Mostafa. Diversity and specialization
in collaborative swarm systems. In C. Anderson and T. Balch, edi-
tors, Proceedings of the 2nd International Workshop on the Mathemat-
ics and Algorithms of Social Insects, pages 91–98, Atlanta, Georgia,
December 15–17 2003.

L. Li, A. Martinoli, and Y.S. Abu-Mostafa. Learning and measuring
specialization in collaborative swarm systems. Adaptive Behavior, 12
(3–4):199–212, 2004.

186

BIBLIOGRAPHY

M.L. Littman. Markov games as a framework for multi-agent reinforce-
ment learning. In W.W. Cohen and H. Hirsh, editors, Proceedings of
the 11th International Conference on Machine Learning, pages 157–
163. Morgan Kaufmann, San Fransisco, CA, 1994. ISBN 1-55860-
335-2.

K.H. Low, W.K. Leow, and M.H.Jr. Ang. Autonomic mobile sensor
network with self-coordinated task allocation and execution. IEEE
Transactions on Systems, Man and Cybernetics, Part C, 36(3):315–
327, 2006.

M. Marina and D. Das. On-demand multipath routing for mobile ad hoc
networks. In Proceedings of IEEE International Conference on Network
Protocols (ICNP), pages 14–23. IEEE Press, New York, NY, 2001.

A. Martinoli. Collective complexity out of individual simplicity. invited
book teview on “swarm intelligence: From natural to artificial sys-
tems” by e.bonabeau, m. dorigo, and g. theraulazg. Artificial Life, 7
(3):315–319, 2001.

A. Martinoli and F. Mondada. Collective and cooperative group be-
haviours: Biologically inspired experiments in robotics. In Proceed-
ings of the Fourth International Symposium on Experimental Robotics,
pages 3–10, Stanford, CA, 1995. Springer Verlag.

M.J. Matarić. Learning social behaviors. Robotics and Autonomous
Systems, 20:191–204, 1997a.

M.J. Matarić. Reinforcement learning in the multi-robot domain. Au-
tonomous Robots, 4(1):73–83, 1997b.

M.J. Mataric, M. Nilsson, and K.T. Simsarin. Cooperative multi-robot
box-pushing. In Proceedings of the IEEE/RSJ International Confer-
ence on Intelligent Robots and Systems (IROS), volume 3, pages 556–
561. IEEE, 1995.

C. Melhuish, M. Wilson, and A. Sendova-Franks. Patch sorting: Multi-
object clustering using minimalist robots. In J. Kelemen and P. Sosík,
editors, Proceedings of the Sixth European Conference on Artificial Life,
volume 2159 of Lecture Notes in Computer Science, pages 543–552.
Springer Verlag, Heidelberg, Germany, 2001.

F. Mondada, G. Pettinaro, A. Guignard, I. Kwee, D. Floreano, J.-L.
Deneubourg, S. Nolfi, L.M. Gambardella, and M. Dorigo. Swarm-
Bot: A new distributed robotic concept. Autonomous Robots, 17(2–3):
193–221, 2004.

S. Nolfi and D. Floreano. Evolutionary Robotics: The Biology,

Intelligence, and Technology of Self-Organizing Machines. MIT
Press/Bradford Books, Cambridge, MA, 2000.

L.E. Parker. L-ALLIANCE: Task-oriented multi-robot learning in
behavior-based systems. Journal of Advanced Robotics, pages 305–
322, 1997.

187

BIBLIOGRAPHY

L.E. Parker. ALLIANCE: An architecture for fault tolerant multi-robot
cooperation. IEEE Transactions on Robotics and Automation, 14(2):
220–240, 1998.

C.E. Perkins and E.M. Royer. Ad hoc On-Demand Distance Vector
Routing. In 2nd IEEE Workshop on Mobile Computing Systems and
Applications, pages 90–100. IEEE Computer Society, Los Alamitos,
CA, 1999.

C.E. Perkins, E.M. Belding-Royer, and S. Das. Ad hoc on demand
distance vector (AODV) routing. IETF RFC 3561, 2003. URL
http://www.ietf.org/rfc/rfc3561.txt.

S. Poduri and G.S. Sukhatme. Constrained coverage for mobile sen-
sor networks. In Proceedings of the IEEE International Conference
on Robotics and Automation (ICRA2004), pages 165–172. IEEE Press,
New York, NY, 2004.

D.V. Pynadath and M. Tambe. The communicative multiagent team
decision problem: Analyzing teamwork theories and models. Journal
of Artificial Intelligence Research, 16:389–423, 2002.

P. Riley and M Veloso. Planning for distributed execution through use
of probabilistic opponent model. In M. Ghallab, J. Hertzberg, and
P. Traverso, editors, Proceedings of the Sixth International Conference
on AI Planning and Scheduling (AIPS-2002), pages 72–81. AAAI, Menlo
Park, CA, 2002.

R. Rosengren and W. Fortelius. Orstreue in foraging ants of the Formica
rufa group. Insectes Sociaux, 33:306–337, 1986.

P. Rybski, A. Larson, H Veeraraghavan, M. LaPoint, and M. Gini. Per-
formance evaluation of a multi-robot search & retrieval system: Ex-
periences with MinDART. Technical Report 03-011, Department of
Computer Science and Engineering, University of Minnesota, MN,
February 2003.

F. Schätzing. Nachrichten aus einem unbekannten Universum. Kiepen-
heuer & Witsch, Köln, Germany, 2006.

M. Schneider-Fontán and M.J. Matarić. A study of territoriality: The
role of critical mass in adaptive task division. In P. Maes, M.J.
Matarić, J.-A. Meyer, J. Pollack, and S.W. Wilson, editors, From
Animals to Animats 4, Fourth International Conference on Simulation

of Adaptive Behavior (SAB-96), pages 553–561. MIT Press/Bradford
Books, Cambridge, MA, 1996.

C.E. Shannon. The Mathematical Theory of Communication. Univeristy
of Illinois Press, 1949.

M.W. Shelley. Frankestein, or the modern prometheus, 1818.

188

http://www.ietf.org/rfc/rfc3561.txt

BIBLIOGRAPHY

G.T. Sibley, M.H. Rahimi, and G.S Sukhatme. Robomote: a tiny mo-
bile robot platform for large-scale ad-hoc sensor networks. In Pro-
ceedings of IEEE International Conference on Robotics and Automa-

tion (ICRA’02), volume 2, pages 1143–1148. IEEE Press, New York,
NY, 2002.

B. Sinopoli, C. Sharp, L. Schenato, S. Schaffert, and S. Sastry. Dis-
tributed control applications within sensor networks. Proceedings of
the IEEE, 91(9):1235–1246, 2003.

J.H. Sudd. How insects work in group. Discovery, 24(6):15–19, 1963.

J.H. Sudd and M.E. Sudd. Seasonal changes in the response of wood-
ants to sugar baits. Ecological Entomology, 10:89–97, 1985.

G.S. Sukhatme and M.J. Matarić. Embedding robots into the internet.
Communications of the ACM, pages 67–73, May 2000.

R.S. Sutton and A.G. Barto. Reinforcement Learning: An Introduction.
MIT Press, Cambridge, MA, Cambridge, MA, 1998.

P. Trakadas, T.B. Zahariadis, S. Voliotis, and C. Manasis. Efficient
routing in pan and sensor networks. Mobile Computing and Commu-
nications Review, 8(1):10–17, 2004.

V. Trianni. On the Evolution of Self-Organising Behaviours in a Swarm
of Autonomous Robots. PhD thesis, Université Libre de Bruxelles,
Brussels, Belgium, 2006.

V. Trianni, T.H. Labella, R. Groß, E. Şahin, M. Dorigo, and J.-
L. Deneubourg. Modeling pattern formation in a swarm of self-
assembling robots. Technical Report IRIDIA-TR-2002-12, IRIDIA,
Université Libre de Bruxelles, Brussels, Belgium, 2002.

V. Trianni, R. Groß, T.H. Labella, E. Şahin, P. Rasse, J.-L. Deneubourg,
and M. Dorigo. Evolving aggregation behaviors in a swarm of robots.
In W. Banzhaf, T. Christaller, P. Dittrich, J.T. Kim, and J. Ziegler,
editors, Advances in Artificial Life - Proceedings of the 7th European
Conference on Artificial Life (ECAL), volume 2801 of Lecture Notes in
Artificial Intelligence. Springer Verlag, Berlin, Germany, 2003.

V. Trianni, T.H. Labella, and M. Dorigo. Evolution of direct commu-
nication for a swarm-bot performing hole avoidance. In M. Dorigo,
M. Birattari, C. Blum, L.M. Gambardella, F. Mondada, and T. Stützle,
editors, Ant Colony Optimization and Swarm Intelligence – Proceed-
ings of ANTS 2004 – Fourth International Workshop, volume 3172 of
Lecture Notes in Computer Science, pages 131–142. Springer Verlag,
Berlin, Germany, 2004.

A. Turing. On computable numbers, with an application to the
Entscheidungsproblem. Proceedings of the London Mathematical So-
ciety, 2(42):230–265, 1936.

189

BIBLIOGRAPHY

A. Turing. The chemical basis for morphogenesis. Philosophical Trans-
actions of the Royal Society of London, Series B, 237(641):37–72,
1952.

V.N. Vapnik. Statistical learning theory. Wiley, New York, NY, 1998.

R. Wehner, R.D. Harkness, and P. Schmid-Hempel. Foraging Strategies
in Individually Searching Ants Cataglyphis bicolor. G. Fisher Verlag,
Stuttgart, Germany, 1983.

L.L. Whitcomb. Underwater robotics: Out of the research laboratory
and into the field. In Proceedings of the 2000 IEEE International Con-
ference on Robotics and Automation (ICRA 2000), volume 1, pages
709–716, New York, NY, 2000. IEEE Press.

M. Wilson, C. Melhuish, A.B. Sendova-Franks, and S. Scholes. Al-
gorithms for building annular structures with minimalist robots in-
spired by brood sorting in ant colonies. Autonomous Robots, 17:115–
136, 2004.

R. Winter. A Cross-layer Framework for Network-wide Adaptations and
Optimizations in Mobile Ad Hoc Networks. PhD thesis, Freie Univer-
sität Berlin, Germany, 2006.

M. Younis, K. Akkaya, and A. Kunjithapatham. Optimization of Task
Allocation in a Cluster-Based Sensor Network. In Proceedings of the
Eighth IEEE Symposium on Computers and Communications (ISCC

2003), pages 329–334. IEEE Computer Society, Los Alamitos, CA,
2003.

190

	1 Introduction
	1.1 Background and Motivations
	1.1.1 Multi Robot Systems
	1.1.2 Comparisons of Different Solutions for MRS

	1.2 Main Contributions
	1.3 Structure of the Thesis and Relevant Publications
	1.3.1 Additional Publications

	2 Background
	2.1 A Brief History of Robotics
	2.2 Robotics Nowadays: a Gross Classification
	2.3 Overview of MRSs
	2.4 Examples of MRSs
	2.5 Challenging the Traditional Approach
	2.5.1 Biological Systems and Self-organisation
	2.5.2 Swarm Robotics

	3 Experimental Tools
	3.1 The MindS-bots
	3.1.1 Traction
	3.1.2 Gripper
	3.1.3 Sensors

	3.2 Rigid-body Simulation
	3.2.1 MindS-miss: a MindS-bot Simulator
	3.2.2 swarmbot3d: an S-bot Simulator

	3.3 BARAKA: a SANET Simulator
	3.3.1 OMNeT++
	3.3.2 Integrating ODE into OMNeT++

	4 A Bio-inspired Algorithm for Prey Retrieval
	4.1 Prey Retrieval
	4.2 Division of Labour and Task Allocation
	4.3 Prey Retrieval in Biological Systems
	4.4 A Model of Prey Retrieval in Ants
	4.5 Robots' Control Algorithm
	4.5.1 The Finite State Machine
	4.5.2 Behaviours
	4.5.3 The Learning Algorithm

	4.6 "Learning" vs. "Adaptation"
	4.7 Experiments
	4.7.1 Experimental Set-up

	4.8 Experiments: Efficiency
	4.8.1 Real Robots
	4.8.2 Simulation
	4.8.3 Discussion
	4.8.4 An Analytical Model for the Efficiency

	4.9 Experiments: Division of Labour
	4.9.1 Real Robots
	4.9.2 Simulation
	4.9.3 Discussion

	4.10 Experiments: Selection of the Best Individuals
	4.10.1 Real Robots
	4.10.2 Simulation
	4.10.3 Discussion

	4.11 Experiments: Dynamic Environments
	4.12 Conclusions

	5 Other Algorithms for Division of Labour
	5.1 Two Learning Algorithms
	5.1.1 ALLIANCE
	5.1.2 Li

	5.2 On the Comparison of Algorithms for Swarm Robotics
	5.3 Test Application
	5.4 Modified Algorithms for Prey Retrieval
	5.4.1 ALLIANCE
	5.4.2 Li

	5.5 Experiments: Methodology
	5.6 Experiments: Efficiency
	5.6.1 Simulation
	5.6.2 Real Robots
	5.6.3 Discussion

	5.7 Experiments: Division of Labour
	5.7.1 Simulation
	5.7.2 Real Robots
	5.7.3 Discussion

	5.8 Experiments: Dynamic Environments
	5.9 Conclusions

	6 Division of Labour in SANETs
	6.1 Sensor/Actuator Networks
	6.2 A Scenario for SANETs
	6.3 Agents' Control: Application Layer
	6.4 Agents' Control: Network Layer
	6.4.1 AntHocNet: Route Discovery
	6.4.2 AntHocNet: Routing
	6.4.3 Modifications to AntHocNet and Additional Features

	6.5 Agents' Control: Cross-layer Interactions
	6.6 Agents' Control: Inter-agent Interactions
	6.6.1 Packet Filtering
	6.6.2 Help-request Behaviours

	6.7 Experiments: Set-up
	6.8 On the Measurement of the Division of Labour in SANETs
	6.8.1 Hierarchic Social Entropy

	6.9 Results
	6.10 Conclusions

	7 Conclusions
	7.1 Summary of Contributions
	7.2 Future Work

	A Reinforcement Learning and MRSs
	A.1 POMDP for Prey Retrieval

	B On the ``Efficiency'' and the ``Performance''of a Group of Robots

