
Université Libre de Bruxelles

Ecole Polytechnique de Bruxelles

CODE - Computers and Decision Engineering

IRIDIA - Institut de Recherches Interdisciplinaires

et de Développements en Intelligence Artificielle

Population-based Heuristic Algorithms

for Continuous and Mixed

Discrete-Continuous Optimization Problems

Tianjun LIAO

Promoteur:

Prof. Marco DORIGO

Co-promoteur:

Dr. Thomas STÜTZLE

Thése présentée à la Ecole Polytechnique de Bruxelles de l’Université Libre de Bruxelles en

vue de l’obtention du titre de Docteur en Sciences de l’Ingenieur.

Année Académique 2012-2013

ii

Summary

Continuous optimization problems are optimization problems where all variables

have a domain that typically is a subset of the real numbers; mixed discrete-

continuous optimization problems have additionally other types of variables, so

that some variables are continuous and others are on an ordinal or categorical

scale. Continuous and mixed discrete-continuous problems have a wide range

of applications in disciplines such as computer science, mechanical or electrical

engineering, economics and bioinformatics. These problems are also often hard to

solve due to their inherent difficulties such as a large number of variables, many

local optima or other factors making problems hard. Therefore, in this thesis our

focus is on the design, engineering and configuration of high-performing heuristic

optimization algorithms.

We tackle continuous and mixed discrete-continuous optimization problems

with two classes of population-based heuristic algorithms, ant colony optimization

(ACO) algorithms and evolution strategies. In a nutshell, the main contributions

of this thesis are that (i) we advance the design and engineering of ACO algo-

rithms to algorithms that are competitive or superior to recent state-of-the-art

algorithms for continuous and mixed discrete-continuous optimization problems,

(ii) we improve upon a specific state-of-the-art evolution strategy, the covariance

matrix adaptation evolution strategy (CMA-ES), and (iii) we extend CMA-ES to

tackle mixed discrete-continuous optimization problems.

More in detail, we propose a unified ant colony optimization (ACO) framework

for continuous optimization (UACOR). This framework synthesizes algorithmic

components of two ACO algorithms that have been proposed in the literature

and an incremental ACO algorithm with local search for continuous optimization,

which we have proposed during my doctoral research. The design of UACOR

allows the usage of automatic algorithm configuration techniques to automatically

derive new, high-performing ACO algorithms for continuous optimization. We also

propose iCMAES-ILS, a hybrid algorithm that loosely couples IPOP-CMA-ES, a

CMA-ES variant that uses a restart schema coupled with an increasing population

iii

size, and a new iterated local search (ILS) algorithm for continuous optimization.

The hybrid algorithm consists of an initial competition phase, in which IPOP-

CMA-ES and the ILS algorithm compete for further deployment during a second

phase. A cooperative aspect of the hybrid algorithm is implemented in the form

of some limited information exchange from IPOP-CMA-ES to the ILS algorithm

during the initial phase. Experimental studies on recent benchmark functions

suites show that UACOR and iCMAES-ILS are competitive or superior to other

state-of-the-art algorithms.

To tackle mixed discrete-continuous optimization problems, we extend ACOMV

and propose CESMV, an ant colony optimization algorithm and a covariance ma-

trix adaptation evolution strategy, respectively. In ACOMV and CESMV, the de-

cision variables of an optimization problem can be declared as continuous, ordinal,

or categorical, which allows the algorithm to treat them adequately. ACOMV and

CESMV include three solution generation mechanisms: a continuous optimization

mechanism, a continuous relaxation mechanism for ordinal variables, and a cate-

gorical optimization mechanism for categorical variables. Together, these mecha-

nisms allow ACOMV and CESMV to tackle mixed variable optimization problems.

We also propose a set of artificial, mixed-variable benchmark functions, which can

simulate discrete variables as ordered or categorical. We use them to automati-

cally tune ACOMV and CESMV’s parameters and benchmark their performance.

Finally we test ACOMV and CESMV on various real-world continuous and mixed-

variable engineering optimization problems. Comparisons with results from the

literature demonstrate the effectiveness and robustness of ACOMV and CESMV

on mixed-variable optimization problems.

Apart from these main contributions, during my doctoral research I have ac-

complished a number of additional contributions, which concern (i) a note on the

bound constraints handling for the CEC’05 benchmark set, (ii) computational re-

sults for an automatically tuned IPOP-CMA-ES on the CEC’05 benchmark set and

(iii) a study of artificial bee colonies for continuous optimization. These additional

contributions are to be found in the appendix to this thesis.

iv

Acknowledgements

I express my deep gratitude to my supervisors, Prof. Marco Dorigo and Dr. Thomas

Stützle for giving me the chance to do research at IRIDIA. I thank them for their

supervision that had a great influence not only on this thesis but also on my

attitude to work and life. They are very professional. I feel very lucky to work

with them. They are deeply engraved in my mind.

I first contacted Marco by email on January 6, 2009. He swiftly replied me with

interest. From then on, he fully supported me in many aspects including invitation

letter, fellowship, inscription and so on. He was patient and always efficiently

replied me in everything I proposed to him. Finally, on November 11, 2009, I

started my PhD research in IRIDIA. Marco is not only the “rider on a swarm”

as reported by magazine The Economist but also a very nice PhD supervisor. I

like his smile, his straightforward and serious attitude to work, and especially his

clear-cut, short sentences. I am proud of him. I greatly appreciate his careful

proof reading of my articles and thesis. We cooperate well in many aspects with

a tacit mutual understanding.

I thank my co-supervisor, Dr. Thomas Stützle, a super kind person. He plays a

crucial role in my research. His charisma and his spirit of scientific research deeply

affected me. He is a fantastic scientist and PhD supervisor. In the field of heuristic

optimization, his knowledge is just like the ocean, never a rim. He soaks up new

subjects as a sponge soaks up water. His comments are always very helpful. He

delivers positive energy and passion. His passion, expertise and critical thought

promoted each of my research activities. We work together almost every day, on

each of my research articles. We exchange opinions and share what we like and

what we do not. I enjoy much working with him. In fact, he is more like my

colleague and friend. As writing here, my mind has flashed back to many scenes

of the past. I do not want to continue because those words sound that I am going

to leave. In fact, I expect working longer with him, even a life time.

I express my appreciation to Prof. Yuejin Tan, Associate Prof. Kewei Yang and

their related departments. They gave me the chance to study abroad and helped

v

me to apply for a fellowship from the China Scholarship Council.

Special thanks to the co-authors in my publications and fellow IRIDIAns. All

of them, Anthony Antoun, Doǧan Aydın, Prasanna Balaprakash, Hugues Bersini,

Leonardo Bezerra, Stefano Benedettini, Saifullah bin Hussin, Mauro Birattari,

Manuele Brambilla, Arne Brutschy, Alexandre Campo, Sara Ceschia, Muriel De-

creton, Antal Decugniére, Jérémie Dubois-Lacoste, Eliseo Ferrante, Gianpiero

Francesca, Matteo Gagliolo, Lorenzo Garattoni , Kiyohiko Hattori, Stefanie

Kritzinger, Benjamin Lacroix, Manuel López-Ibáñez, Renaud Lenne, Dhanan-

jay Ipparthi, Bruno Marchal, Franco Mascia, Nithin Mathews, Marie-Éléonore

Marmion, Roman Miletitch, Marco A. Montes de Oca, Daniel Molina, Prospero

C. Naval, Rehan O’Grady, Sabrina Oliveira, Michele Pace, Paola Pellegrini, Leslie

Pérez Cáceres, Carlo Pinciroli, Giovanni Pini, Carlotta Piscopo, Gaëtan Pode-

vijn, Andreagiovanni Reina, Andrea Roli, Francesco Sambo, Francisco C. Santos,

Alexander Scheidler, Krzysztof Socha, Touraj Soleymani, Alessandro Stranieri,

Wenjie Sun, Vito Trianni, Roberto Tavares, Ali Emre Turgut, Gabriele Valen-

tini and Zhi Yuan helped me in different ways throughout these years. I also

thank Prof. Hugues Bersini, co-director of IRIDIA with Prof. Marco Dorigo, for

making IRIDIA such an enjoyable research lab. I also want to thank Prof. Marc

Schoenauer from INRIA Saclay-̂Ile-de-France, Prof. Bernard Fortz, Prof. Hugues

Bersini, Dr. Mauro Birattari and Dr. Manuel López-Ibáñez from Université Libre

de Bruxelles for their useful comments.

My special appreciation goes to my parents, Yingmin Liao and Xiaoou Xu, and

Miss Jinyu Zhang. I thank very much for their love and care. I also thank all my

dear friends. They gave me very much support during the time I lived in Brussels.

This work was supported by the E-SWARM project, Engineering Swarm

Intelligence Systems, funded by the European Union’s Seventh Framework

Programme (FP7/2007-2013) / ERC grant agreement nº 246939 and by the

Meta-X project, Metaheuristics for Complex Optimization Problems, funded by

the Scientific Research Directorate of the French Community of Belgium. Tianjun

Liao acknowledges a fellowship from the China Scholarship Council.

Tianjun Liao

June 18th, 2013

Brussels, Belgium.

vi

Contents

1 Introduction 1

1.1 Goal and methodology . 3

1.2 Main contributions . 4

1.3 Additional contributions . 7

1.4 Publications . 8

1.4.1 International journal submissions 9

1.4.2 International conferences and workshops (peer-reviewed) . . 10

1.5 Structure of the thesis . 11

2 Background 13

2.1 Continuous optimization . 14

2.1.1 Local search algorithms . 15

2.1.2 Metaheuristic based algorithms 18

2.1.3 Benchmark functions sets 23

2.2 Mixed discrete-continuous optimization 27

2.3 Basic Algorithms . 29

2.3.1 ACOR . 29

2.3.2 CMA-ES . 31

2.4 Automatic algorithm configuration 34

2.4.1 Iterated F-Race . 34

2.4.2 Tuning methodology . 35

2.5 Summary . 36

3 UACOR: A unified ACO algorithm for continuous optimization 39

3.1 ACO algorithms for continuous optimization 41

3.1.1 Algorithmic components . 43

3.2 UACOR . 46

3.3 Automatic algorithm configuration 48

3.4 Algorithm evaluation . 54

vii

CONTENTS

3.5 UACOR+: Re-designed UACOR . 62

3.6 Summary . 65

4 iCMAES-ILS: A cooperative competitive hybrid algorithm for

continuous optimization 67

4.1 iCMAES-ILS algorithm . 69

4.1.1 ILS . 69

4.1.2 iCMAES-ILS . 70

4.2 Algorithm analysis and evaluation 71

4.2.1 Algorithm analysis: the role of ILS 72

4.2.2 Performance evaluation of iCMAES-ILS 76

4.3 A tuned version of iCMAES-ILS . 78

4.3.1 Automatic algorithm configuration 78

4.3.2 Performance evaluation of iCMAES-ILSt 80

4.4 Comparisions of iCMAES-ILS and UACOR+ 85

4.5 Summary . 88

5 Mixed discrete-continuous optimization 89

5.1 Artificial mixed discrete-continuous benchmark functions 91

5.2 ACOMV: ACO for mixed discrete-continuous optimization problems 94

5.2.1 Algorithm analysis . 99

5.3 CMA-ES extensions for mixed discrete-continuous optimization . . 104

5.3.1 CES-RoundC . 104

5.3.2 CESMV . 105

5.3.3 CES-RelayC . 107

5.4 Automatic tuning and performance evaluation 108

5.4.1 Automatic tuning . 108

5.4.2 Performance evaluation on benchmark functions 109

5.5 Application to engineering optimization problems 114

5.6 Summary . 123

6 Summary and future work 125

6.1 Summary . 125

6.2 Future work . 128

Appendices 131

A The results obtained by UACOR+ 131

viii

CONTENTS

B Mathematical formulation of engineering problems 141

C A note on the bound constraints handling for the CEC’05 bench-

mark set 147

C.1 Introduction . 147

C.2 Experiments on enforcing bound constraints 149

C.3 The impact of bound handling on algorithm comparisons 150

C.4 Conclusions . 151

D Computational results for an automatically tuned IPOP-CMA-ES

on the CEC’05 benchmark set 155

D.1 Introduction . 155

D.2 Parameterized iCMA-ES . 158

D.3 Experimental setup and tuning . 159

D.4 Experimental study . 161

D.4.1 iCMA-ES-tsc vs. iCMA-ES-dp 162

D.4.2 iCMA-ES-tsc vs. iCMA-ES-tcec 166

D.4.3 Comparison to state-of-the-art methods that exploit CMA-ES167

D.5 Additional experiments . 168

D.5.1 Comparison to other results by iCMA-ES 168

D.5.2 Tuning setup . 169

D.6 Conclusions and future work . 171

E Artificial bee colonies for continuous optimization: Experimental

analysis and improvements 177

E.1 Introduction . 177

E.2 Artificial bee colony algorithm . 179

E.2.1 Original ABC algorithm . 179

E.2.2 Variants of the artificial bee colony algorithm 182

E.3 Experimental setup . 189

E.3.1 Benchmark set . 190

E.3.2 Local search . 191

E.3.3 Tuner setup and parameter settings 192

E.4 Experimental results and analysis 194

E.4.1 Main comparison . 194

E.4.2 Detailed analysis of ABC algorithms 198

E.4.3 Comparison with SOCO special issue contributors 207

E.5 Discussion and conclusions . 208

ix

CONTENTS

x

Chapter 1

Introduction

Continuous and mixed discrete-continuous optimization problems arise in many

real-world optimization tasks in many areas such as computer science, mechanical

or electrical engineering, economy and bioinformatics where solution improvement

potentially leads to considerable benefit. Consider a few examples of such prob-

lems arising in engineering. A wind turbine may consist of two, three, four, or

even more blades. The shape of each blade itself can be described by a set of

continuous variables that describe length, thickness, curvatures, etc. In addition,

different material compositions for the blades are available. Hence, such a problem

may have continuous, integer, but also ordinal or categorical variables that need

to be set appropriately to optimize one or several aspects of performance. Another

example is the design of an aircraft system that consists of many engineering com-

ponents. The coordinate and shape of each mechanical component itself can be

described by a set of continuous or ordinal variables. Different material composi-

tions, structural models and even high-level conceptual models can be described

by a set of categorical variables. The values of these variables need to be optimized

for one or several aspects of performance of an aircraft system.

Continuous optimization problems are optimization problems where all vari-

ables have a domain that typically is a subset of the real numbers; mixed discrete-

continuous optimization problems have additionally other types of variables, so

that some variables are continuous and others can be ordinal or categorical. These

problems are often hard to solve. In the case of continuous variables, the search

space contains an infinite number of solutions. The search space may involve com-

plex landscape properties due to nonlinear objective functions; objective functions

where derivatives may not be easily computable; correlated variables; and objective

functions may have multiple local optima. Often, problems are black-box prob-

lems in the sense that there is no available explicit mathematical formulation. For

example, this is always the case when the performance associated to specific vari-

1

1. INTRODUCTION

able settings has to be estimated by simulations. Due to these difficulties inherent

to these problems and to these problems’ importance in the real world, the design

and configuration of high-performing continuous and mixed discrete-continuous

optimization algorithms is a highly active research area.

Algorithms for solving continuous optimization problems include analytical

methods and approximation algorithms. Analytical methods guarantee to find

an exact globally or locally optimal solution and can theoretically provide the cer-

tification of the optimality of the solution if enough time is permitted [Andréasson

et al., 2005, Griva et al., 2009]. These methods require either exhaustive search

or symbolic mathematical computation. They often turn out to be impractical

for complex real-world optimization problems. Approximation algorithms are al-

gorithms that are used to find approximate solutions to optimization problems,

such as derivative-based approximation methods [Stoer et al., 1993], direct search

methods [Conn et al., 2009], and heuristic algorithms [Hoos and Stützle, 2005].

Derivative-based approximation methods (e.g., steepest descent [Battiti, 1992],

conjugate gradient method [Stoer et al., 1993] and Newton’s method [Peitgen,

1989]) require the computation of numerical objective function values from the

search space and derivative information of the function being optimized. Direct

search methods such as downhill simplex method [Nelder and Mead, 1965], Powell’s

method [Powell, 1964] and pattern search [Torczon, 1997]) do not require derivative

information. Derivative-based approximation methods and direct search methods

are typically developed in mathematical programming.

In this thesis, we focus on heuristic algorithms [Hoos and Stützle, 2005], an

important class of approximation algorithms. Heuristic algorithms are used to

quickly and heuristically find satisfactory solutions. The higher level strategies to

guide and improve subordinate heuristic methods are also called metaheuristics.

Many metaheuristics have been proposed so far, in particular for tackling contin-

uous optimization problems. They include Genetic Algorithms (GA) [Goldberg,

1989], Evolution Strategies (ESs) [Beyer and Schwefel, 2002, Hansen and Oster-

meier, 2001], Particle Swarm Optimization (PSO) [Kennedy and Eberhart, 1995],

Differential Evolution (DE) [Storn and Price, 1997], Ant Colony Optimization

(ACO) [Dorigo and Di Caro, 1999, Dorigo and Stützle, 2004, Socha and Dorigo,

2008] and Artificial Bee Colony (ABC) [Karaboga and Basturk, 2007]. Several of

these methods such as PSO, DE, or ABC have originally been proposed for tack-

ling continuous optimization problems. However, also most other metaheuristic

methods have been adapted for solving continuous optimization problems and the

design and configuration of high-performing heuristic algorithms for this task is

2

one of the most active areas in optimization.

Building further on continuous optimization, mixed discrete-continuous opti-

mization come forth. This is often a harder task because both continuous and

discrete variables have to be considered in the optimization process. Mixed inte-

ger programming (linear or nonlinear) refers to mathematical programming with

continuous and integer variables with linear or nonlinear objective function and/or

constraints [Bussieck and Pruessner, 2003]. In this thesis, we consider mixed

discrete-continuous optimization problems where the discrete variables can be or-

dinal or categorical. Ordinal variables exhibit a natural ordering relation (e.g.,

{small,medium, large}). Categorical variables take their values from a finite set of

categories [Abramson et al., 2009], which often identify non-numeric elements of an

unordered set (e.g., colors, shapes or types of material). Categorical variables do

not have a natural ordering relation and therefore require the use of specific algo-

rithm techniques for handling them. To the best of our knowledge, the approaches

to mixed discrete-continuous problems available in the literature are targeted to

either handle mixtures of continuous and ordinal variables or mixtures of continu-

ous and categorical variables. In other words, they do not consider the possibility

that the formulation of a problem may involve at the same time the three types

of variables. Hence, there is a need for algorithms that allow the explicit dec-

laration of each variable as either continuous, ordinal or categorical. Note that

mixed discrete-continuous optimization does not enjoy, despite its high practical

relevance, such a great popularity as continuous optimization and therefore fewer

algorithms for handling these problems are available.

1.1 Goal and methodology

The main goals of this thesis are

• to design and configure high performing algorithms for continuous optimiza-

tion; and

• to design and configure high performing algorithms for mixed discrete-

continuous optimization that can explicitly declare each variable as either

continuous, ordinal or categorical and treat them adequately.

Instead of inventing completely new algorithms or new metaphors for optimiza-

tion, in this thesis we focus on the enhancement of one new and promising method,

ant colony optimization algorithm for continuous optimization [Socha and Dorigo,

3

1. INTRODUCTION

2008] and another, already well-established method, covariance matrix adaptation

evolution strategy [Hansen and Ostermeier, 2001]. We show how, by systematically

engineering new algorithmic variants of these methods and by exploiting systemat-

ically automatic algorithm configuration tools, we can improve significantly their

performance and apply them to new domains.

1.2 Main contributions

In this section, we highlight the main contributions of this thesis, which can be

seen as a systematic engineering of high-performance, population-based heuristic

algorithms for continuous and mixed discrete-continuous optimization problems.

A unified ant colony optimization framework for continuous opti-

mization (UACOR)

We first studied the most popular ACO algorithm for continuous domains

proposed by Socha and Dorigo [2008], called ACOR. In this thesis, we describe

the UACOR framework. It combines algorithmic components from three exist-

ing algorithms, ACOR, another recent ACO algorithm, DACOR, proposed by

Leguizamón and Coello [2010], and an incremental ACO algorithm with local

search for continuous optimization (IACOR-LS), which we recently proposed

ourselves1. UACOR can be seen as an algorithmic framework for continuous ACO

algorithms from which earlier continuous ACO algorithms can be instantiated

by using specific combinations of the available algorithmic components and

parameter settings. The design of UACOR also allows the usage of automatic

algorithm configuration techniques to automatically derive new ACO algorithms

for continuous optimization. We use irace [López-Ibáñez et al., 2011] to auto-

matically configure two new ACO algorithms. Their competitive performance

to other state-of-the-art algorithms shows the high potential ACO algorithms

have for continuous optimization and the high potential automatic algorithm

configuration techniques have for the development of continuous optimizers from

1IACOR-LS [Liao et al., 2011b] is a significant algorithm component that contributes to
UACOR. It is a variant of ACOR that uses local search and that features a growing solution
archive. I proposed IACOR-LS during my doctoral research and the paper describing IACOR-
LS received the best paper award of the ACO-SI track at GECCO 2011. While IACOR-LS
is actually an original contribution that was obtained during the initial stages of my doctoral
research, it is now superseded by the UACOR framework from which also the original IACOR-
LS can be instantiated. Therefore, I decided to not present IACOR-LS in very detail in this
thesis but to directly focus on the presentation and the experimental analysis of the UACOR
framework.

4

algorithm components. The UACOR framework is presented in Chapter 3.

Enhancing CMA-ES: A cooperative-competitive hybrid algorithm

We investigate evolution strategies and, in particular, the covariance matrix

adaptation evolution strategy (CMA-ES) [Hansen and Ostermeier, 1996, 2001,

Hansen et al., 2003], which is an established state-of-the-art algorithm for contin-

uous optimization. A CMA-ES variant that uses a restart schema coupled with an

increasing population size, called IPOP-CMA-ES, was the best performing algo-

rithm on the CEC’05 benchmark set for continuous function optimization [Auger

and Hansen, 2005, Suganthan et al., 2005]. This CEC’05 benchmark function set

and some of the algorithms proposed for it play an important role in the assess-

ment of the state of the art in continuous optimization. We propose iCMAES-ILS,

which is a structurally simple, hybrid algorithm that loosely couples IPOP-CMA-

ES with an iterated local search (ILS) algorithm. The hybrid iCMAES-ILS algo-

rithm consists of an initial competition phase, in which IPOP-CMA-ES and the

ILS algorithm compete for further execution in the deployment phase, where only

one of the two algorithms is run until the budget is exhausted. The initial com-

petition phase features also a cooperative aspect between IPOP-CMA-ES and the

ILS algorithm.

We compare iCMAES-ILS to its component algorithms, IPOP-CMA-ES

and ILS, and also to a number of alternative hybrids we propose between

IPOP-CMA-ES and ILS. These hybrids are based on using algorithm portfolios,

interleaving the execution of IPOP-CMA-ES and ILS, and using ILS as an

improvement method between restarts of IPOP-CMA-ES. These comparisons

indicate that iCMAES-ILS reaches statistically significantly better performance

than almost all competitors and, thus, establishes our hybrid design as the

most performing one. Additional comparisons to two state-of-the-art CMA-ES

hybrid algorithms (MA-LSCh-CMA [Molina et al., 2010a] and PS-CMA-ES

[Müller et al., 2009]) further show statistically significantly better performance of

iCMAES-ILS over these competitors. We use irace [López-Ibáñez et al., 2011]

to automatically tune iCMAES-ILS to obtain further performance improvements.

Overall, these experimental results establish iCMAES-ILS as a new state-of-the-

art algorithm for continuous optimization. iCMAES-ILS is presented in Chapter 4.

A set of artificial, mixed discrete-continuous benchmark functions

Many benchmark instances for continuous optimization problems are available,

but this is not the case for mixed discrete-continuous optimization problems.

5

1. INTRODUCTION

Therefore, we propose a new set of artificial, mixed discrete-continuous bench-

mark functions, which can simulate discrete variables as ordered or categorical.

The artificial mixed-variable benchmark functions have characteristics such

as non-separability, ill-conditioning and multi-modality. These benchmark

functions provide a flexible environment for investigating the performance of

mixed discrete-continuous optimization algorithms and the effect of different

parameter settings on their performance. They are very useful as a training set

for deriving high-performance parameter settings through the usage of automatic

configuration methods.

Ant colony optimization for mixed discrete-continuous optimization

problems (ACOMV)

We present ACOMV, an ACO algorithm to tackle mixed-variable optimiza-

tion problems. The original ACOMV algorithm was proposed by Socha in his PhD

thesis. Starting from this initial work of Socha, we re-implemented the ACOMV al-

gorithm in C++, which reduced strongly the computation time when compared to

the original implementation in R. We also refined the original ACOMV algorithm

and added a restart operator. We used subset of the artificial, mixed discrete-

continuous benchmark functions we have proposed in this thesis for a detailed

study of specific aspects of ACOMV and to derive high-performance parameter

settings through automatic algorithm configuration. In addition, also method-

ological improvements were made. While in the original work of Socha ACOMV

was specifically tuned on each engineering test problem, now one single parame-

ter setting, obtained by a tuning process on the new benchmark functions (which

are independent of the engineering test functions), is applied for the final test on

the mixed-variable engineering problems. Finally, a further contribution is that

we strongly extended the test bed of engineering benchmark functions that were

originally considered by Socha.

We used irace [López-Ibáñez et al., 2011] to automatically tune the pa-

rameters of ACOMV. We applied ACOMV to eight mixed discrete-continuous

engineering optimization problems. Experimental results showed that ACOMV

reaches a very high performance: it improves over the best known solutions

for two of the eight engineering problems, and in the remaining six it finds

the best-known solutions using fewer objective function evaluations than most

algorithms from the literature. ACOMV is presented in Chapter 5.

Covariance matrix adaptation evolution strategy for mixed discrete-

6

continuous optimization problems (CESMV)

We propose CESMV, a covariance matrix adaptation evolution strategy for

mixed discrete-continuous optimization problems. CESMV allows the user to ex-

plicitly declare each variable as continuous, ordinal or categorical. In CESMV,

continuous variables are handled with a continuous optimization approach (CMA-

ES), ordinal variables are handled with a continuous relaxation approach (Round),

and categorical variables are handled with a categorical optimization approach

(CESMV-c) in each generation.

We also propose CES-RoundC and CES-RelayC which use other approaches to

handle categorical variables from CESMV. In CES-RoundC, categorical variables,

together with ordinal variables, are handled by rounding continuous variables in

each generation. CES-RelayC is a relay version of the two-partition strategy where

variables of one partition (usually the categorical ones) are optimized separately

for fixed values of the variables of the other partition (usually the continuous and

ordinal ones).

Using the benchmark functions, the proposed algorithms are automatically

configured. We evaluate CESMV, CES-RoundC and CES-RelayC, and we iden-

tify CESMV as the most high-performing variant. Then we compare CESMV to

ACOMV on the artificial, mixed discrete-continuous functions. The experimen-

tal results show that CESMV is competitive or superior to ACOMV. Finally we

test CESMV and ACOMV on mixed-variable engineering benchmark problems and

compare their results with those found in the literature. The experimental re-

sults establish ACOMV and CESMV as new state-of-the-art algorithms for mixed

discrete-continuous optimization problems. CESMV is presented in Chapter 5.

1.3 Additional contributions

In this section, we highlight the additional contributions of this thesis.

A note on the handling of bound constraints for the CEC’05 benchmark

function set

The benchmark functions and some of the algorithms proposed for the special

session on real parameter optimization of the 2005 IEEE Congress on Evolutionary

Computation (CEC’05) play an important role in the assessment of the state of

the art in continuous optimization. In this note, we first show that, if boundary

constraints are not enforced, state-of-the-art algorithms produce on a majority of

the CEC’05 benchmark functions infeasible best candidate solutions, even though

the optima of 23 out of the 25 CEC’05 functions are within the specified bounds.

7

1. INTRODUCTION

This observation has important implications on algorithm comparisons. In fact,

this note also draws the attention to the fact that authors may have drawn wrong

conclusions from experiments using the CEC’05 problems. We refer to Appendix

C for more details.

Computational results for an automatically tuned IPOP-CMA-ES on

the CEC’05 benchmark set

We experimentally show that IPOP-CMA-ES can be significantly improved

with respect to its default parameters by applying an automatic algorithm

configuration tool. In particular, we consider a separation between tuning and

test sets. We refer to the Appendix D for more details.

Artificial bee colonies for continuous optimization: experimental anal-

ysis and improvements

The artificial bee colony (ABC) algorithm is a recent class of swarm intelligence

algorithms that is loosely inspired by the foraging behavior of a honeybee swarm.

It was introduced in 2005 using continuous optimization as example application.

Similar to what has happened with other swarm intelligence techniques, after the

initial proposal several researchers have studied variants of the original algorithm.

Unfortunately, often the tests of these variants have been made under different

experimental conditions and under different fine-tuning efforts for the algorithm

parameters. We review various of the proposed variants to the original ABC

algorithm. Next, we experimentally study several of the proposed variants under

two settings, namely under their original parameter settings and after the use of

an automatic algorithm configuration tool to provide a same effort for parameter

fine-tuning. Finally, we study the effect of an additional local search phase on the

performance of the ABC algorithms. We refer to Appendix E for more details.

1.4 Publications

During the development of the research presented in this thesis, a number of arti-

cles have been produced that the author, together with co-authors, has published or

submitted for publication to journals and international conferences or workshops.

The majority of these articles deal with ant colony optimization and evolutionary

algorithms for continuous and mixed discrete-continuous optimization problems.

8

1.4.1 International journal submissions

1. Tianjun Liao and Thomas Stützle. A Simple and Effective Cooperative-

Competitive Hybrid Algorithm for Continuous Optimization. Submitted to

IEEE Transactions on Systems, Man, and Cybernetics, Part B.

This article is about the enhancements on CMA-ES using a cooperative-competitive hybrid

algorithm. The article establishes the proposed iCMAES-ILS algorithm as a new state-of-

the-art algorithm for continuous optimization. This article mainly contributes to Chapter

4.

2. Tianjun Liao, Doǧan Aydın, and Thomas Stützle. Artificial Bee Colonies

for Continuous Optimization: Framework, Experimental Analysis, and Im-

provements. Conditionally accepted for Swarm Intelligence.

This article reviews the proposed variants to the original ABC algorithm, and experimen-

tally analyzes the proposed variants under both original and tuned parameter settings

and shows the impact of an additional local search phase has on the performance of ABC

algorithms. This article is given in Appendix E.

3. Tianjun Liao, Thomas Stützle, Marco A. Montes de Oca, and Marco Dorigo.

A Unified Ant Colony Optimization Algorithm for Continuous Optimization.

Revision submitted to European Journal of Operational Research.

This article proposes a unified ant colony optimization framework for continuous opti-

mization (UACOR). It shows the high potential ACO algorithms have for continuous

optimization and that automatic algorithm configuration has a high potential also for the

development of continuous optimizers out of algorithm components. This article mainly

contributes to Chapter 3.

4. Tianjun Liao, Krzysztof Socha, Marco A. Montes de Oca, Thomas Stützle,

and Marco Dorigo. Ant Colony Optimization for Mixed-Variable Optimiza-

tion Problems. Conditionally accepted for IEEE Transactions on Evolution-

ary Computation.

This article proposes ACOMV, an ant colony optimization algorithm to tackle mixed

discrete-continuous optimization problems. This article also proposes a new set of artifi-

cial, mixed-variable benchmark functions. Comparisons with results from the literature

demonstrate the effectiveness and robustness of ACOMV. This article mainly contributes

to parts of Chapter 5.

9

1. INTRODUCTION

5. Tianjun Liao, Daniel Molina, Marco A. Montes de Oca, and Thomas Stützle.

A Note on the Bound Constraints Handling for the IEEE CEC’05 Benchmark

Function Suite. Third revision submitted to Evolutionary Computation.

The note shows that, if boundary constraints are not enforced, state-of-the-art algorithms

produce on a majority of the CEC’05 benchmark functions infeasible best candidate so-

lutions. This note also draws the attention to the fact that authors may have drawn

wrong conclusions from experiments using the CEC’05 problems. This article is given in

Appendix C.

6. Tianjun Liao, Marco A. Montes de Oca, and Thomas Stützle. Computa-

tional Results for an Automatically Tuned CMA-ES with Increasing Popu-

lation Size on the CEC’05 Benchmark Set. Soft Computing, 17(6):1031-1046.

2013.

The article shows that IPOP-CMA-ES can be significantly improved with respect to its

default parameters by applying an automatic algorithm configuration tool. In particular,

we consider a separation between tuning and test sets. This article is given in Appendix

D.

1.4.2 International conferences and workshops (peer-

reviewed)

1. Tianjun Liao and Thomas Stützle. Benchmark Results for a Simple Hybrid Al-

gorithm on the CEC 2013 Benchmark Set for Real-parameter Optimization. Pro-

ceeding of IEEE Congress on Evolutionary Computation (CEC 2013). Special

Session & Competition on Real-parameter Single Objective Optimization. IEEE

Press, Piscataway, NJ, USA, 2013. Accepted.

2. Tianjun Liao and Thomas Stützle. Expensive Optimization Scenario: IPOP-

CMA-ES with a Population Bound Mechanism for Noiseless Function Testbed.

In A. Auger et al. (eds.), Proceedings of the Workshop for Real-Parameter Op-

timization of the Genetic and Evolutionary Computation Conference (GECCO

2013). ACM Press, New York, NY, 2013. Accepted.

3. Tianjun Liao and Thomas Stützle. Testing the Impact of Parameter Tuning on

a Variant of IPOP-CMA-ES with a Bounded Maximum Population Size on the

Noiseless BBOB Testbed. In A. Auger et al. (eds.), Proceedings of the Workshop

for Real-Parameter Optimization of the Genetic and Evolutionary Computation

Conference (GECCO 2013). ACM Press, New York, NY, 2013. Accepted.

10

4. Tianjun Liao and Thomas Stützle. Bounding the Population Size of IPOP-CMA-

ES on the Noiseless BBOB Testbed. In A. Auger et al. (eds.), Proceedings of

the Workshop for Real-Parameter Optimization of the Genetic and Evolutionary

Computation Conference (GECCO 2013). ACM Press, New York, NY, 2013.

Accepted.

5. Manuel López-Ibáñez, Tianjun Liao, and Thomas Stützle. On the Anytime Be-

havior of IPOP-CMA-ES. In C.A. Coello Coello et al. (eds.), Proceedings of

Parallel Problem Solving from Nature 2012 (PPSN 2012), Vol. 7491 in Lecture

Notes in Computer Science, pages 357-366, Springer, Heidelberg, Germany.

6. Tianjun Liao, Daniel Molina, Thomas Stützle, Marco A. Montes de Oca, and

Marco Dorigo. An ACO Algorithm Benchmarked on the BBOB Noiseless Func-

tion Testbed. In A. Auger et al. (eds.), Proceedings of the Workshop for Real-

Parameter Optimization of the Genetic and Evolutionary Computation Conference

(GECCO 2012), pages 159-166, ACM Press, New York, NY, 2012.

7. Doǧan Aydın, Tianjun Liao, Marco Montes de Oca, and Thomas Stützle. Im-

proving Performance via Population Growth and Local Search: The Case of the

Artificial Bee Colony Algorithm. In Jin-Kao Hao et al. (eds.), Proceedings of

the 10th International Conference on Artificial Evolution (EA 2011), Vol. 7401 in

Lecture Notes in Computer Science, pages 85-96, Springer, Heidelberg, Germany,

2012.

8. Tianjun Liao, Marco A. Montes de Oca, and Thomas Stützle. Tuning Parameters

across Mixed Dimensional Instances: A Performance Scalability Study of Sep-

G-CMA-ES. In E.Özcan et al. (eds.), Proceedings of the Workshop on Scaling

Behaviours of Landscapes, Parameters, and Algorithms of the Genetic and Evo-

lutionary Computation Conference (GECCO 2011), pages 703-706, ACM Press,

New York, NY, 2011.

9. Tianjun Liao, Marco A. Montes de Oca, Doǧan Aydın, Thomas Stützle, and Marco

Dorigo. An Incremental Ant Colony Algorithm with Local Search for Continuous

Optimization. In N. Krasnogor et al. (eds.), Proceedings of the Genetic and Evo-

lutionary Computation Conference (GECCO 2011), pages 125-132, ACM Press,

New York, NY, 2011. This paper received the best paper award of the

ACO-SI track at GECCO 2011.

1.5 Structure of the thesis

The thesis is structured as follows. Chapter 2 describes the models of the contin-

uous and mixed discrete-continuous optimization problems, and reviews the main

11

1. INTRODUCTION

related optimization techniques relevant for this thesis. The two basic algorithms,

(ACOR and CMA-ES), on which large parts of this thesis rely on, are then intro-

duced. We also describe the automatic algorithm configuration technique irace

and the tuning methodology we used for the thesis.

Chapter 3 proposes a unified ACO framework for continuous optimization,

which combines algorithmic components from three existing algorithms, ACOR,

DACOR and IACOR-LS. We call this framework UACOR. UACOR’s design makes

the automatic generation of new and high performing continuous ACO algorithms

possible through the use of automatic algorithm configuration tools.

Chapter 4 proposes a structurally simple, hybrid algorithm that loosely cou-

ples IPOP-CMA-ES with an iterated local search (ILS) algorithm. We call this

algorithm iCMAES-ILS. iCMAES-ILS consists of an initial competition phase that

also features a cooperative aspect between IPOP-CMA-ES and the ILS algorithm.

We also propose an automatically tuned iCMAES-ILS to examine further possible

performance improvements.

Chapter 5 is concerned with mixed discrete-continuous optimization. We de-

tail ACOMV and study specific aspects of ACOMV. We present three CMA-ES

extensions for tackling mixed discrete-continuous optimization problems. We also

propose a set of artificial mixed-variable benchmark functions. Using the bench-

mark functions, we identify CESMV as the most high-performing variant and then

compare CESMV and ACOMV. Finally, we test CESMV and ACOMV on mixed-

variable engineering benchmark problems and compare their results with those

found in the literature.

Chapter 6 concludes the thesis and give directions for future work.

This thesis includes appendices A, B, C, D and E. Appendix A gives the results

obtained by a re-designed and improved UACOR framework. Appendix B pro-

vides mathematical formulations for the mixed-variable engineering optimization

problems used in Chapter 5. Appendix C gives a note on the bound constraints

handling for the CEC’05 benchmark function set. Appendix D shows computa-

tional results for an automatically tuned CMA-ES with increasing population size

on the CEC’05 benchmark set. Appendix E provides experimental analysis and

shows improvements to the artificial bee colonies for continuous optimization.

12

Chapter 2

Background

Generally speaking, optimization is the task of finding in a search space a solution

with a best possible objective function value for a given problem. In this chapter,

we describe in concise terms the research area and the most important techniques

on which this thesis is based. In particular, we focus mainly on the description

of the problem classes that we will tackle in this thesis and the main algorithmic

techniques we use. We will discuss in a bit more detail the specific algorithmic

techniques that form the basis of this thesis, while the others are only sketched.

Some room is also given to the description of the benchmark sets that are used

to evaluate the algorithms we proposed. In this thesis, we applied automatic

algorithm configuration tools to obtain high-performing parameter settings and we

studied the impact the usage of automatic configuration tools has when compared

to an algorithm using default parameters. The automatic algorithm configuration

tool used in this thesis and the methodology to apply these tools in continuous

optimization are also shortly discussed.

This chapter is structured as follows. In Section 2.1, we describe the model of

continuous optimization problems. We concisely review the main local search and

metaheuristic optimization techniques for continuous optimization and the related

benchmark function sets relevant for this thesis. In Section 2.2, we describe the

model of mixed discrete-continuous optimization problems. We then classify and

briefly describe the main approaches to tackle mixed variable problems available

in the literature. In Section 2.3, we introduce in more detail the basic algorithms

that contribute to this thesis. Section 2.4 describes an automatic algorithm con-

figuration technique and the tuning methodology that we used in this thesis. We

summarize the chapter in Section 2.5.

13

2. BACKGROUND

2.1 Continuous optimization

Continuous optimization problems are optimization problems where all variables

have a domain that typically is a subset of the real numbers. We describe a model

for a continuous optimization problem as follows:

Definition A model R = (S,Ω, f) of a continuous optimization problem con-

sists of

• a search space S defined over a finite set of continuous variables and a set

Ω of constraints among the variables;

• an objective function f : S ∈ R→ R to be minimized.

The search space S is defined by a set of D variables xi, i = 1, . . . , D, all of

which are continuous and for each xi, i = 1, . . . , D, we have that the domain of a

variable x is a subset of the real numbers. A solution S ∈ S is a complete value

assignment, that is, each decision variable is assigned a value. A feasible solution

is a solution that satisfies all constraints in the set Ω. A global optimum S∗ ∈ S

is a feasible solution that satisfies f(S∗) ≤ f(S) ∀S ∈ S. The set of all globally

optimal solutions is denoted by S∗,S∗ ⊆ S. Solving a continuous optimization

problem requires finding at least one S∗ ∈ S∗.

This thesis considers, without loss of generality, minimization since maximizing

an objective function is equivalent to minimizing the objective function multiplied

by minus one. If the set of constraints Ω is empty, the resulting continuous opti-

mization problems are called unconstrained. In this thesis, we consider only prob-

lems with the simplest types of constraints, called bound constraints, which consist

in lower and upper bounds on the values that each variable can take. In the case

of the bound constraints, a solution S ∈ S is often given by S = (x1, x2, . . . , xD)

and xi ∈ [Ai, Bi], where [Ai, Bi] is the search interval of dimension i, 1 ≤ i ≤ D.

Particularly, we have xi ∈ [A,B] if all variables are within the same range. Bound

constraints arise in many practical problems, and are frequent in the benchmark

problems for continuous optimization (e.g., CEC’05 benchmark functions [Sug-

anthan et al., 2005]) that currently play an important role in the evaluation of

continuous optimization algorithms.

Continuous optimization problems arise in a wide variety of real-world applica-

tions [Gönen, 1986, Jones and Pevzner, 2004, Zenios, 1996]. Often, these problems

are difficult to solve. They involve an infinite number of possible solutions already

14

for a single variable and usually they have (many) more than one variable. The

search space frequently involves complicated landscape properties such as nonlin-

ear objective functions, objective functions where derivatives may not be easily

computable or may not be computable at all; the variables may be correlated;

and objective functions may have multiple local optima [Conn et al., 2009]. Some

problems are black-box problems in the sense that there is no available explicit

mathematical formulation. For example, this is always the case when the perfor-

mance associated to specific variable settings has to be estimated by simulations.

Due to these difficulties, which are inherent to many continuous problems, ana-

lytical or derivative-based methods [Stoer et al., 1993] are often impractical. As

alternatives, derivative-free direct search methods [Conn et al., 2009, Kolda et al.,

2003] such as downhill simplex method [Nelder and Mead, 1965], Powell’s method

[Powell, 1964, 2006, 2009] and pattern search [Torczon, 1997] have been devel-

oped in the mathematical programming literature. Metaheuristic optimization

algorithms for tackling continuous optimization problems have also seen rapid de-

velopment [Goldberg, 1989, Hansen and Ostermeier, 2001, Karaboga and Basturk,

2007, Kennedy and Eberhart, 1995, Molina et al., 2010a, Socha and Dorigo, 2008,

Storn and Price, 1997].

2.1.1 Local search algorithms

Since many derivative-free direct search methods were designed to converge to lo-

cal optima, we consider them in the scope of local search methods. Note that the

local search methods described here do not necessarily converge to the closest local

minimum as would do local iterative improvement algorithms in combinatorial op-

timization [Hoos and Stützle, 2005]. In fact, all the local search methods discussed

here make use of a step size parameter that defines how far away new tentative

search points are from the current ones. This step size is a crucial parameter of all

these methods and in virtually all these methods the step size is adapted during

the run of the algorithm.

The downhill simplex method for nonlinear continuous optimization was orig-

inally proposed by Nelder and Mead [1965], and it is also called Nelder-Mead

method; a simplex is a convex polytope of D + 1 vertices in D dimensions.1 This

method measures the objective function at each candidate solution arranged as a

simplex, and then replaces one of these candidate solution with a new solution.

1The Nelder-Mead “simplex” method should not be confused with the Simplex method
[Dantzig and Thapa, 1997, 2003] for linear programming.

15

2. BACKGROUND

Much attention has been given to this method in literature and a large number

of modifications [Kelley, 1999, Price et al., 2002, Tseng, 1999] to downhill simplex

method have been proposed.

Powell’s method, strictly called Powell’s conjugate direction set, was originally

proposed by Powell [1964]. It minimizes a D-dimensional objective function by

searching along a set of conjugate directions that are constructed by line search

vectors. A new line search vector is generated by a linear combination of line search

vectors, and it is added to the line search vector list for next usage. Recently,

Powell [2002] proposed UOBYQA, an unconstrained derivative-free direct search

method using a quadratic model and the trust region paradigm [Conn et al., 1987].

Vanden Berghen and Bersini [2005] proposed a parallel, constrained extension of

the UOBYQA, called CONDOR, which uses the results of the parallel computation

to increase the quality of multivariate Lagrange interpolation [De Boor and Ron,

1990]. More recently, Powell [2006] proposed NEWUOA, which accelerates the

creation of the quadratic model for UOBYQA. BOBYQA [Powell, 2009] is an

extension of the NEWUOA that is able to handle bound constraints.

Pattern search is stated using a “pattern” of solutions to search. The origi-

nal pattern search algorithm was proposed by Hooke and Jeeves [1961]. Torczon

[1997] unifies a class of derivative-free direct search methods [Box, 1957, Davi-

don, 1991, Dennis and Torczon, 1991, Hooke and Jeeves, 1961] and introduces a

generalized definition of pattern search methods. The definition requires the ex-

istence of a lattice T that if {S1, . . . , SN} are the first N iterates generated by

a pattern search method, then there exists a scale factor φN such that the steps

{S1 − S0, S2 − S1, . . . , SN − SN−1} all lie in the scaled lattice φNT ; lattice T is

independent of the objective function. Audet and Dennis Jr [2006] proposed a

mesh-based direct search algorithm called MADS.

In the following, we describe in some more detail the local search methods that

are used in Chapters 3 and 4.

Powell’s conjugate direction set

Powell’s conjugate direction set method starts from an initial solution S0 ∈ RD.

In the first iteration, it performs D line searches using the unit vectors ei as initial

search directions ui. The initial step size of the search is a parameter ss. At each

step, the new initial solution for the next line search is the best solution found

by the previous line search. A solution S ′ denotes the minimum found after all

D line searches. Next, the method eliminates the first search direction by doing

ui = ui+1, ∀i ∈ {1 : D − 1}, and replacing the last direction uD by S ′ − S0.

16

Then a move along the direction uD is performed. The next iteration is executed

from the best solution found in the previous iteration. The method terminates

after a maximum number LSIterations of iterations, or when the tolerance, that is

the relative change between solutions found in two consecutive iterations, is lower

than a certain threshold. We used an implementation of the method as described

in [Press et al., 1992].

BOBYQA

The bound constrained optimization by quadratic approximation (BOBYQA) al-

gorithm [Powell, 2009] constructs at each iteration a quadratic model that interpo-

lates m solutions in the current trust region, and samples a new, minimal solution

using the model. The model is then updated by the true evaluation value of the

new solution. If a new best-so-far solution is obtained, the trust region centers at

this solution and enlarges its radius; otherwise, if the new solution is worse than the

best-so-far solution, the trust region reduces its radius. The recommended minimal

number of solutions to compute the quadratic model is m = 2D+1 [Powell, 2009].

The method terminates after a maximum number LSIterations of iterations, or

when the tolerance, that is the relative change between solutions found in two

consecutive iterations, is lower than a certain threshold. We used the BOBYQA

implementation of NLopt, a library for nonlinear optimization [Johnson, 2008].

Mtsls1

Mtsls1 [Tseng and Chen, 2008] is a recent, derivative-free local search algorithm

for continuous optimization. The Mtsls1 local search has shown high performance

and it is a crucial component of several high-performing algorithms for continuous

optimization [LaTorre et al., 2011, Tseng and Chen, 2008]. Mtsls1 starts from an

initial candidate solution S = (x1, x2, . . . , xD) with an initial step size ss. The

default setting of ss in Mtsls1 [Tseng and Chen, 2008] is 0.5 × (B − A). In each

Mtsls1 iteration, Mtsls1 searches along all dimensions one by one in a fixed order.

The search in dimension i works as follows. First, set x′i ← xi − ss and evaluate

the resulting solution x′. If f(x′) < f(x), xi ← x′i and the search continuous in

the next dimension i + 1; otherwise, set x′′i ← xi + 0.5 × ss and evaluate x′′. If

f(x′′) < f(x), xi ← x′′i and the search continues in dimension i + 1. If both tests

fail, xi remains as is and the next dimension i + 1 is examined. If one Mtsls1

iteration does not find an improvement in any of the dimensions, the next Mtsls1

iteration halves the search step size. The method terminates after a maximum

17

2. BACKGROUND

number LSIterations of iterations.

2.1.2 Metaheuristic based algorithms

Over the past decade, research efforts in the development of new, improved con-

tinuous optimization algorithms based on standard metaheuristic techniques have

seen rapid development. These efforts mainly include techniques such as Genetic

Algorithms (GAs) [Goldberg, 1989], Evolution Strategies (ESs) [Beyer and Schwe-

fel, 2002, Hansen and Ostermeier, 2001], Particle Swarm Optimization (PSO)

[Kennedy and Eberhart, 1995], Differential Evolution (DE) [Storn and Price, 1997],

Ant Colony Optimization (ACO)[Dorigo and Stützle, 2004, Socha and Dorigo,

2008], Artificial Bee Colonies (ABC) [Karaboga and Basturk, 2007] and Memetic

Algorithms (MAs) [Kramer, 2010, Molina et al., 2010a, Moscato, 1999].

Genetic Algorithms

Genetic Algorithms (GAs) are inspired from natural evolution [Goldberg, 1989,

Holland, 1975]. GAs make use of a population of solutions and iteratively adapt

it by selection, crossover and mutation. Each iteration is called a generation. In

each generation, promising solutions are stochastically selected from the current

population, and solutions are recombined or mutated to produce new solutions.

From the newly generated solutions through recombination and mutation and the

solutions in the current generation, a new population of solutions is selected for

the next generation.

Originally, problems were usually coded in chromosome using binary strings

[Goldberg, 1989]. When tackling continuous optimization problems, nowadays

real-numbers are frequently used in the solution representation and these algo-

rithms are called real-coded GAs [Herrera et al., 1998, Lucasius and Kateman,

1989, Wright, 1991]. Much research on real-coded GAs is focused on the devel-

opment of effective crossover operators. A crossover operator usually uses two

parent solutions and combines their features to generate an offspring. Herrera

et al. [2003] provide a taxonomy of crossover operators and analyze representa-

tive crossover operators such as discrete crossover operator, aggregation based

crossover operator, neighbourhood-based crossover operator. Promising perfor-

mance was also observed for hybrid crossover operators that combine two or more

basic ones [Herrera et al., 2005]. Mutation is an operation that provides a random

diversity in the population. The design of the effective mutation operators, the

probability of applying mutation operator and the strength of the perturbation in

18

the mutation operator have frequently been studied [Herrera and Lozano, 2000,

Hinterding, 1995, Michalewicz, 1992, Smith and Fogarty, 1997].

A common trend nowadays is to combine genetic algorithms with local search

algorithms that improve some or all individuals of a population. These genetic

local search or evolutionary local search algorithms are also often called memetic

algorithms [Moscato, 1999]. This trend has mainly been started in applications to

combinatorial optimization, but recently it became clear that this is also a very

promising approach to enhance genetic algorithms for continuous optimization

problems. For example, Lozano et al. [2004], Molina et al. [2010a,b, 2011] combine

a real-coded genetic algorithm [Herrera et al., 1998] and a local search procedure

[Hansen and Ostermeier, 2001, O’Reilly and Oppacher, 1995] to improve solutions.

Evolution Strategies

Evolution Strategies (ESs), as also GAs, belong to the class of evolutionary algo-

rithms. ES was developed in the 1970s by Ingo Rechenberg, Hans-Paul Schwefel

and their co-workers [Rechenberg, 1971, Schwefel, 1975]. ESs primarily apply mu-

tation and selection to a population of individuals (or even a “single” solution)

to iteratively search better solutions. When applied to continuous optimization

problems, ESs use a real encoding, that is, for each variable a real number is given.

Mutation is usually performed by adding a normally distributed random value to

each variable value. The step size, which is also called mutation strength, is the

standard deviation of the normal distribution. The selection in ESs is based on

fitness rankings, not on the actual fitness values. The resulting algorithm is there-

fore invariant with respect to monotonic transformations of the objective function.

The first evolution strategy is the (1 + 1)-ES [Rechenberg, 1971, Schwefel, 1975].

The term (1 + 1) refers to its selection strategy. It selects among two solutions:

the current solution (parent) and the result of its mutation. Only if the mutant’s

fitness is at least as good as the parent’s solution, it becomes the parent of the

next generation. Otherwise the mutant is disregarded.

Two canonical versions of ESs were defined. They are (µ+λ)-ES and (µ, λ)-ES.

µ and λ denote the number of parents and offspring, respectively. In (µ+λ)-ES, µ

parents generate λ offspring and then µ elite parents are selected out of the µ+ λ

solutions. In (µ, λ)-ES, the µ parents are discarded and the µ new parents for the

next iteration are selected only from the λ offspring, λ > µ.

A particularly successful ES algorithm for continuous optimization, called

Covariance Matrix Adaptation Evolution Strategy (CMA-ES), was proposed by

Hansen and Ostermeier [1996, 2001], Hansen et al. [2003]. It is a (µ, λ)-evolution

19

2. BACKGROUND

strategy that uses a multivariate normal distribution to sample new solutions at

each iteration. CMA-ES can be used as a stand-alone algorithm but also as a local

search as done by Ghosh et al. [2012], Molina et al. [2010a], Müller et al. [2009].

IPOP-CMA-ES is a CMA-ES variant that uses a restart schema coupled with an

increasing population size. It was the best performing algorithm of the special ses-

sion on real parameter optimization of the 2005 IEEE Congress on Evolutionary

Computation (CEC’05) [Suganthan et al., 2005].

Particle Swarm Optimization

Particle Swarm Optimization (PSO) is a swarm intelligence optimization algo-

rithm that was inspired by the behavior of flocks of birds [Kennedy and Eberhart,

1995, 2001, Poli et al., 2007]. It was primarily used to tackle continuous optimiza-

tion problems. In the PSO algorithm, the position of a particle corresponds to

a solution in the search space and each particle has an associated velocity. The

particles are organized according to some population topology such as a fully-

connected one or ring graphs before the algorithm is run. This topology defines

the neighborhood between particles [Clerc and Kennedy, 2002]. The algorithm

then proceeds iteratively by updating in each iteration first the velocity and then

the position of the particle. The velocity update for a particle is influenced by the

best position the particle had so far and typically the position of the best particle

in its neighborhood, which is defined by the population topology. Since the orig-

inal PSO algorithm was proposed [Kennedy and Eberhart, 1995], many different

variants of PSO algorithms have been proposed. These variants mainly refer to

variations of the velocity update of a particle and the population topology [Clerc

and Kennedy, 2002, Gimmler et al., 2006, Kennedy and Mendes, 2002, Mendes

et al., 2004, Petalas et al., 2007, Poli et al., 2007, Shi and Eberhart, 1998].

Recently, the performance of PSO was further improved by using effective learn-

ing techniques or local search procedure. Liang et al. [2006] proposed a compre-

hensive learning PSO that updates a particle’s velocity by using all other particles’

best information in history. Montes de Oca et al. [2011] proposed an incremental

social learning in particle swarms that consists in a PSO algorithm with a growing

population size in which the initial position of new particles is biased toward the

best-so-far solution; Powell’s conjugate directions set [Powell, 1964] was used in

this algorithm as a local search procedure to improve solutions. Müller et al. [2009]

embedded CMA-ES as a local optimizer into PSO.

20

Differential Evolution

Differential Evolution (DE) [Storn and Price, 1997] is an efficient population-based

algorithm for continuous optimization. DE’s basic strategy includes a cycle of

mutation, crossover and selection. After initialization, DE produces a new vector

by adding the weighted difference between two vectors in the population to a third

vector. This operation is called mutation and the newly generated vector is called

a mutant vector. After the mutation phase, a crossover operation is applied to a

pair of a predetermined vector, the so called target vector, and its corresponding

mutant vector to generate a trial vector. The objective function value of each trial

vector is then compared to that of its corresponding target vector. If the trial

vector is better than the corresponding target vector, the trial vector replaces the

target vector and it is added to the next generation. Otherwise, the target vector

remains in the current population.

A large number of DE variants were developed [Das et al., 2011]. The devel-

opments mainly refer to parameter control, new mutation, crossover and selection

operators, adaptive mechanisms and hybridization with other techniques. Some

prominent DE variants are described in the following. SaDE [Qin et al., 2009]

adaptively updates trial vector generation strategies and the control parameters;

JADE [Zhang and Sanderson, 2009] introduces a new mutation operator, and uses

an optional external archive to record history information and to adaptively up-

date control parameters; DEGL [Das et al., 2009] introduces two neighborhood

topologies to balance exploitation and exploration; HDDE [Dorronsoro and Bou-

vry, 2011] includes two heterogeneous islands in which different mutation operators

are generated; MOS-DE [LaTorre et al., 2011] hybridizes DE with a local search

technique. Das et al. [2011] surveyed more details of state-of-the-art DE variants

and we refer to this paper for more details.

Ant Colony Optimization

Ant Colony Optimization (ACO) algorithms were first proposed for tackling com-

binatorial optimization problems [Dorigo et al., 1991, 1996]. ACO algorithms for

combinatorial optimization problems make use of a so-called pheromone model

in order to probabilistically construct solutions. A pheromone model consists of

a set of numerical values, called pheromones, that are a function of the search

experience of the algorithm. The pheromone model is used to bias the solution

construction towards regions of the search space containing high quality solutions.

The ACO metaheuristic [Dorigo and Di Caro, 1999, Dorigo and Stützle, 2004] de-

21

2. BACKGROUND

fines a class of optimization algorithms inspired by the foraging behavior of real

ants. The main algorithmic components of the ACO metaheuristic are the ants’

solution construction and the update of the pheromone information. Additional

“daemon actions” are procedures that carry out tasks that cannot be performed

by single ants. A common example is the activation of a local search procedure to

improve an ant’s solution or the application of additional pheromone modifications

derived from globally available information about, for example, the best solutions

constructed so far. Although daemon actions are optional, in practice they can

greatly improve the performance of ACO algorithms.

After the initial proposals of ACO algorithms for combinatorial problems,

often ant-inspired algorithms for continuous optimization problems were pro-

posed [Bilchev and Parmee, 1995, Dréo and Siarry, 2004, Hu et al., 2008, 2010,

Monmarché et al., 2000]. However, as explained in [Socha and Dorigo, 2008], most

of these algorithms use search mechanisms different from those used in the ACO

metaheuristic. The first algorithm that can be classified as an ACO algorithm for

continuous domains is ACOR [Socha and Dorigo, 2008]. In ACOR, the discrete

probability distributions used in the solution construction by ACO algorithms

for combinatorial optimization are substituted by probability density functions

(PDFs) (i.e., continuous probability distributions). ACOR uses a solution archive

[Guntsch and Middendorf, 2002] for the derivation of these PDFs over the search

space. Additionally, ACOR uses sums of weighted Gaussian functions to generate

multimodal PDFs. DACOR [Leguizamón and Coello, 2010] is another recent ACO

algorithm for continuous optimization. IACOR-LS algorithm [Liao et al., 2011b]

is a more recent variant that I have proposed during my doctoral research.

Artificial Bee Colonies

Artificial Bee Colony (ABC) is a recent class of swarm intelligence algorithms

that is loosely inspired by the foraging behavior of a honeybee swarm [Karaboga,

2005, Karaboga and Basturk, 2007]. The ABC algorithm involves three phases of

foraging behavior which are conducted by employed bees, onlookers and scouts,

respectively. Each food source corresponds to a solution of the problem. Employed

bees and onlooker bees both exploit current food sources (solutions) by visiting its

neighborhood. While there is a one-to-one correspondence between employed bees

and food sources, that is, each employed bee is assigned to a different food source,

the onlooker bees select randomly the food source to exploit, preferring better

quality food sources. Scout bees explore the area for new food sources (solutions)

if current food sources are deemed to be depleted. If more than limit times an

22

employed bee or an onlooker bee has visited unsuccessfully a food source, a scout

bee searches for a new, randomly located food source.

The original ABC algorithm was introduced in 2005 using its example appli-

cation to continuous optimization problems [Karaboga, 2005]. The original ABC

algorithm obtained encouraging results on some standard benchmark problems,

but, being an initial proposal, still a considerable performance gap with respect

to state-of-the-art algorithms was observed. In particular, it was found to be rela-

tively poor performing on composite and non-separable function as well as having

a slow convergence rate towards high quality solutions [Akay and Karaboga, 2012].

Therefore, in the following years, a number of modifications of the original ABC al-

gorithm were introduced trying to improve performance [Alataş, 2010, Aydın et al.,

2012, Banharnsakun et al., 2011, Diwold et al., 2011a, Gao and Liu, 2011, Kang

et al., 2011, Zhu and Kwong, 2010]. Unfortunately, so far there is no comprehen-

sive comparative evaluation of the performance of ABC variants on a significantly

large benchmark set available.

2.1.3 Benchmark functions sets

Test functions are commonly used to evaluate continuous optimization algorithms.

The history of test functions can be traced back to many years ago in the field of

mathematical optimization and many of the functions defined there are still nowa-

days used to evaluate continuous optimization. A well known example is Rosen-

brock [1960], who introduced a non-convex function, called Rosenbrock function,

which is known to have a global minimum inside a long, narrow, parabolic shaped

flat valley. There were also many other well known functions proposed such as Ack-

ley [Ackley, 1987], Griewank [Griewank, 1981] and Rastrigin [Törn and Zilinskas,

1989]. These test functions have often been used to tune, improve and compare

continuous optimization algorithms.

To measure the performance of continuous optimization algorithms on a variety

of function characteristics, sets of test functions were introduced. One early test

function set is De Jong’s set of five functions [Jong, 1975], which was used to test

the performance of various genetic algorithms. In May 1996, Bersini et al. [1996]

organized the first international contest on evolutionary optimization at the IEEE

international conference on evolutionary computation, where a benchmark set of

five functions with different characteristics (e.g., unimodality, multi-modality and

separability) was given. Eight participants tested their algorithms on this contin-

uous function benchmark. In the same year, Whitley et al. [1996] discussed some

23

2. BACKGROUND

basic principles that can be used to develop benchmark function sets. Several

years later, various benchmark function sets [Hansen et al., 2009a, Herrera et al.,

2010, Suganthan et al., 2005, Tang et al., 2007] were established and are nowadays

widely used for evaluating continuous optimization algorithms. One influential,

and nowadays widely used benchmark set was proposed for the special session on

real parameter optimization of the 2005 IEEE Congress on Evolutionary Computa-

tion (CEC’05) [Suganthan et al., 2005]. The CEC’05 benchmark set comprises 25

benchmark functions, each of which is freely scalable. It specifies problem dimen-

sionality, defined domains of variables, algorithm termination error values and the

maximum number of function evaluations available for the continuous optimizers.

The CEC’05 set has become a standard benchmark set that any researcher can

use to evaluate the performance of new algorithms and compare algorithms. The

central role that the CEC’05 benchmark function set currently plays is illustrated

by the more than 600 citations in google scholar (as of April 2013) to the original

technical report that introduced the benchmark function set. These benchmark

functions and some of the algorithms proposed for them play an important role in

the assessment of the state of the art in the continuous optimization field.

A recent special issue of the Soft Computing journal (SOCO) [Herrera et al.,

2010, Lozano et al., 2011] provided another set of 19 freely scalable benchmark

functions to evaluate the latest development of continuous algorithms for tackling

large scale functions. Thirteen continuous optimizers based on different meta-

heuristics were finally selected for publication [Lozano et al., 2011]. Functions

fsoco1–fsoco6 were originally proposed for the special session on large scale global

optimization organized for the IEEE 2008 Congress on Evolutionary Computation

(CEC’08) Tang et al. [2007]. Functions fsoco7-fsoco11 were proposed at the 9th In-

ternational Conference on Intelligent Systems Design and Applications (ISDA’09).

Functions fsoco12-fsoco19 are hybrid functions that each combine two functions be-

longing to fsoco1–fsoco11. The CEC’05 and the SOCO benchmark sets include both

functions that show a number of different characteristics. Their functions include

unimodal functions such as Sphere and Schwefel 1.2, multi-modal functions such

as Ackley and Rastrigin, and some functions contained in the benchmark sets are

separable while others are not. Both benchmark sets comprise a number of hy-

brid functions. However, algorithm behavior and relative algorithm performance

may differ quite strongly between the two benchmark sets. For example, IPOP-

CMA-ES is among the top performers across the CEC’05 benchmark function set

[Suganthan et al., 2005], while its performance compared to other algorithms on

the SOCO benchmark set is much worse [Herrera et al., 2010, Lozano et al., 2011].

24

In fact, a significant difference between the CEC’05 and the SOCO benchmark

function set is that 16 of the 25 CEC benchmark functions are rotated with re-

spect to the orthogonal Cartesian coordinate system, which is not done in the

SOCO benchmark function set.2 The CEC’05 and SOCO benchmark function set

are used in this thesis for evaluating continuous optimization algorithms. The

CEC’05 and SOCO benchmark functions together with their main properties are

listed in Tables 2.1 and 2.2.

Another relevant recent benchmark set is the Black-Box Optimization Bench-

marking (BBOB) benchmark set [Hansen et al., 2009a]. Despite that this bench-

mark set was not used in this thesis, it has attracted our attention in our ongoing

works [Liao and Stützle, 2013a,b,c, Liao et al., 2012]. The BBOB benchmark set

was originally proposed in the Black-Box Optimization Benchmarking workshop

that was organized as part of GECCO 2009. Since this first edition, the workshop

has been organized three more times. In the BBOB benchmark set [Hansen et al.,

2009a], 24 systematic, scalable benchmark functions are presented. Except the

first subgroup of separable functions, the benchmark functions are non-separable

and most of the functions are rotated, such as those in the CEC’05 benchmark

set. BBOB also provides tools for post-processing and presenting results. Differ-

ent from other benchmark sets [Herrera et al., 2010, Suganthan et al., 2005, Tang

et al., 2007], the BBOB benchmark set especially puts emphasis on the success

rates and the used number of function evaluations to reach thresholds on the func-

tion values to be reached. The maximum number of function evaluations is not

fixed in the experimental setups.

2In the SOCO benchmark set the functions are not rotated mainly because rotating the
functions for evaluation is rather costly especially for the large dimensions that are considered
in the SOCO benchmark function set [Herrera et al., 2010, Lozano et al., 2011].

25

2. BACKGROUND

Table 2.1: High-level description of the benchmark functions of the CEC’25 benchmark
set. Given is in the column ID the function identifier, in column Name/Description the
common name for the function or a short description, in column range the feasible range
of the variables’ values, whether the functions are unimodal or multi-modal (column
Uni/Multi-modal), whether the functions are separable (Y) or not (N) and whether the
functions are rotated (Y) or not (N).

ID Name/Description Range [Xmin, Xmax]D Uni/Multi-modal Separable Rotated
fcec1 Shift.Sphere [-100,100]D U Y N
fcec2 Shift.Schwefel 1.2 [-100,100]D U N N
fcec3 Shift.Ro.Elliptic [-100,100]D U N Y
fcec4 Shift.Schwefel 1.2 Noise [-100,100]D U N N
fcec5 Schwefel 2.6 Opt on Bound [-100,100]D U N N
fcec6 Shift.Rosenbrock [-100,100]D M N N
fcec7 Shift.Ro.Griewank No Bound [0,600]D† M N Y
fcec8 Shift.Ro.Ackley Opt on Bound [-32,32]D M N Y
fcec9 Shift.Rastrigin [-5,5]D M Y N
fcec10 Shift.Ro.Rastrigin [-5,5]D M N Y
fcec11 Shift.Ro.Weierstrass [-0.5,0.5]D M N Y
fcec12 Schwefel 2.13 [-π,π]D M N N
fcec13 Griewank plus Rosenbrock [-3,1]D M N N
fcec14 Shift.Ro.Exp.Scaffer [-100,100]D M N Y
fcec15 Hybrid Composition [-5,5]D M N N
fcec16 Ro. Hybrid Composition [-5,5]D M N Y
fcec17 Ro. Hybrid Composition [-5,5]D M N Y
fcec18 Ro. Hybrid Composition [-5,5]D M N Y
fcec19 Ro. Hybrid Composition [-5,5]D M N Y
fcec20 Ro. Hybrid Composition [-5,5]D M N Y
fcec21 Ro. Hybrid Composition [-5,5]D M N Y
fcec22 Ro. Hybrid Composition [-5,5]D M N Y
fcec23 Ro. Hybrid Composition [-5,5]D M N Y
fcec24 Ro. Hybrid Composition [-5,5]D M N Y
fcec25 Ro. Hybrid Composition [2,5]D† M N Y
† denotes initialization range but not bound constraints. Its global optimum is outside of initialization

range.

Table 2.2: High-level description of the benchmark functions of the SOCO benchmark
set. Given is in the column ID the function identifier, in column Name/Description the
common name for the function or a short description, in column range the feasible range
of the variables’ values, whether the functions are unimodal or multi-modal (column
Uni/Multi-modal), whether the functions are separable (Y) or not (N) and whether the
functions are rotated (Y) or not (N).

ID Name/Description Range [Xmin, Xmax]D Uni/Multi-modal Separable Rotated
fsoco1 Shift.Sphere [-100,100]D U Y N
fsoco2 Shift.Schwefel 2.21 [-100,100]D U N N
fsoco3 Shift.Rosenbrock [-100,100]D M N N
fsoco4 Shift.Rastrigin [-5,5]D M Y N
fsoco5 Shift.Griewank [-600,600]D M N N
fsoco6 Shift.Ackley [-32,32]D M Y N
fsoco7 Shift.Schwefel 2.22 [-10,10]D U Y N
fsoco8 Shift.Schwefel 1.2 [-65.536,65.536]D U N N
fsoco9 Shift.Extended f10 [-100,100]D U N N
fsoco10 Shift.Bohachevsky [-15,15]D U N N
fsoco11 Shift.Schaffer [-100,100]D U N N
fsoco12 Composition fsoco9 ⊕0.25 fsoco1 [-100,100]D M N N
fsoco13 Composition fsoco9 ⊕0.25 fsoco3 [-100,100]D M N N
fsoco14 Composition fsoco9 ⊕0.25 fsoco4 [-5,5]D M N N
fsoco15 Composition fsoco10 ⊕0.25 fsoco7 [-10,10]D M N N
fsoco16 Composition fsoco9 ⊕0.5 fsoco1 [-100,100]D M N N
fsoco17 Composition fsoco9 ⊕0.75 fsoco3 [-100,100]D M N N
fsoco18 Composition fsoco9 ⊕0.75 fsoco4 [-5,5]D M N N
fsoco19 Composition fsoco10 ⊕0.75 fsoco7 [-10,10]D M N N

26

2.2 Mixed discrete-continuous optimization

Many real-world optimization problems can be modeled using combinations of

continuous and discrete variables. Mixed integer programming (linear or nonlinear)

refers to mathematical programming with continuous and integer variables in the

(linear or nonlinear) objective function and constraints [Bussieck and Pruessner,

2003, Nemhauser and Wolsey, 1988, Wolsey, 1998]. In this thesis, we consider

mixed discrete-continuous optimization problems where the discrete variables can

be ordinal or categorical. Ordinal variables exhibit a natural ordering relation

(e.g., integers or {small,medium, large}). Categorical variables take their values

from a finite set of categories [Abramson et al., 2009], which often identify non-

numeric elements of an unordered set (e.g., colors, shapes or types of material). We

describe a model for a mixed discrete-continuous optimization problem as follows:

Definition A model R = (S,Ω, f) of a mixed discrete-continuous optimiza-

tion problem consists of

• a search space S defined over a finite set of both discrete and continuous

decision variables and a set Ω of constraints among the variables;

• an objective function f : S→ R to be minimized.

The search space S is defined by a set of n = d + r variables xi, i = 1, . . . , n,

of which d are discrete and r are continuous. The discrete variables include o

ordinal variables and c categorical ones, d = o + c. o or c can be equal to zero.

When o = 0, the discrete variables only include categorical variables; when c = 0,

the discrete variables only include ordinal variables; when o = c = 0, the problem

is a particular case of mixed variables with an empty set of discrete variables,

namely a continuous optimization problem. A solution S ∈ S is a complete value

assignment, that is, each decision variable is assigned a value. A feasible solution

is a solution that satisfies all constraints in the set Ω. A global optimum S∗ ∈ S

is a feasible solution that satisfies f(S∗) ≤ f(S) ∀S ∈ S. The set of all globally

optimal solutions is denoted by S∗,S∗ ⊆ S. Solving a mixed discrete-continuous

optimization problem requires finding at least one S∗ ∈ S∗.

Mixed discrete-continuous optimization does not enjoy, despite its high prac-

tical relevance, such a great popularity as continuous optimization and therefore

fewer algorithms for handling these problems are available in the literature. These

algorithms may be divided into three groups.

27

2. BACKGROUND

The first group is based on a two-partition approach, in which the variables

are partitioned into continuous variables and discrete variables. Variables of one

partition are optimized separately for fixed values of the variables of the other

partition [Lucidi et al., 2005, Praharaj and Azarm, 1992, Sambo et al., 2012,

Wagner et al., 2011]. This approach often leads to a large number of objective

function evaluations [Stelmack and Batill, 1997]. Additionally, since the depen-

dency between variables belonging to different partitions is not explicitly handled,

algorithms using this approach are prone to finding sub-optimal solutions.

The second group takes a continuous relaxation approach [Dimopoulos, 2007,

Gao and Hailu, 2010, Guo et al., 2004, Lampinen and Zelinka, 1999a,b, Mashinchi

et al., 2011, Rao and Xiong, 2005, Turkkan, 2003]. In this group, all variables

are handled as continuous variables. Ordinal variables are relaxed to continuous

variables, and are repaired when evaluating the objective function. The repair

mechanism is used to return a discrete value in each iteration. The simplest

repair mechanisms are truncation and rounding [Guo et al., 2004, Lampinen and

Zelinka, 1999a]. It is also possible to treat categorical variables using continuous

relaxations [Abhishek et al., 2010]. In general, the performance of algorithms based

on the continuous relaxation approach depends on the continuous solvers and on

the repair mechanism.

The third group uses a categorical optimization approach [Abramson, 2002,

2004, Abramson et al., 2009, Audet and Dennis, 2001, Deb and Goyal, 1998,

Kokkolaras et al., 2001, Ocenasek and Schwarz, 2002, Socha, 2008] to directly

handle discrete variables without a continuous relaxation. Thus, any possible or-

dering relations that may exist between discrete variables are ignored and, thus,

all discrete variables, ordinal and categorical, are treated as categorical ones.3 In

this group, continuous variables are handled by a continuous optimization method.

Genetic adaptive search [Deb and Goyal, 1998], pattern search [Audet and Dennis,

2001], and mixed Bayesian optimization [Ocenasek and Schwarz, 2002] are among

the approaches that have been proposed.

The mixed discrete-continuous optimization problems found in the literature

often originate from the mechanical engineering field. Unfortunately, these prob-

lems cannot be easily parametrized and flexibly manipulated for investigating

the performance of mixed discrete-continuous optimization algorithms in a sys-

tematic way. Therefore, a set of mixed discrete-continuous benchmark functions

3Note that the special case of mixed discrete-continuous optimization problems, where the
variables can be either continuous or categorical, is also called mixed-variable programming
problem [Abramson, 2002, Audet and Dennis, 2001].

28

that allow the definition of a controlled environment for the investigation of al-

gorithm performance and tuning of algorithm parameters are required. One way

how to construct mixed-variable benchmark functions was originally proposed by

Socha [2008]. Following these ideas, we propose a set of artificial mixed discrete-

continuous benchmark functions (See Section 5.1) that any researcher can use to

evaluate the performance of new algorithms and compare algorithms.

2.3 Basic Algorithms

In this section, we introduce the two basic heuristic optimization techniques on

which large parts of this thesis rely on: ACOR and CMA-ES.

2.3.1 ACOR

ACO algorithms for combinatorial optimization problems make use of a so-called

pheromone model in order to probabilistically construct solutions. A pheromone

model consists of a set of numerical values, called pheromones, that are a func-

tion of the search experience of the algorithm. The pheromone model is used

to bias the solution construction towards regions of the search space containing

high quality solutions. As such, ACO algorithms follow a model-based search

paradigm [Zlochin et al., 2004] as, for example, also estimation of distribution al-

gorithms [Larrañaga and Lozano, 2002] do. In ACO for combinatorial optimization

problems, the pheromone values are associated with a finite set of discrete compo-

nents. This is not possible if continuous variables are involved. Therefore, Socha

and Dorigo [2008] replaced the discrete probability distribution with probability

density functions (PDFs) in the solution construction for continuous domains and

proposed an ACO algorithm for continuous domains, called ACOR. ACOR won

the 2012 European Journal of Operational Research Top Cited Article Award and

had more than 360 citations according to google scholar as of March 2013. ACOR

uses a solution archive [Guntsch and Middendorf, 2002] for the derivation of these

PDFs over the search space. Additionally, ACOR uses sums of weighted Gaussian

functions to generate multimodal PDFs.

ACOR initializes the solution archive with k solutions that are generated uni-

formly at random. Each solution is a D-dimensional vector with real-valued com-

ponents xi ∈ [A,B], i = 1, . . . , D. We assume that the optimization problems are

unconstrained except possibly for bound constraints of the D real-valued variables

xi. The k solutions of the archive are kept sorted according to their quality (from

29

2. BACKGROUND

best to worst) and each solution Sj has associated a weight ωj. This weight is

calculated using a Gaussian function as:

ωj =
1

qk
√

2π
e
−(rank(j)−1)2

2q2k2 , (2.1)

where rank(j) is the rank of solution Sj in the sorted archive, and q is a parameter

of the algorithm. The result of computing rank(j) − 1 is that the best solution

receives the highest weight.

The weights are used to choose probabilistically a guiding solution around

which a new candidate solution is generated. The probability of choosing solution

Sj as a guiding solution is given by ωj/
∑k

a=1 ωa so that the better the solution,

the higher the chances of choosing that solution to guide the search. Once a

guiding solution Sguide is chosen, the algorithm samples the neighborhood of the

i-th real-valued component of the guiding solution Siguide using a Gaussian PDF

with µiguide = Siguide, and σiguide equal to

σiguide = ξ
k∑
r=1

|Sir − Siguide|
k − 1

, (2.2)

which is the average distance between the value of the i-th component of Sguide and

the values of the i-th components of the other solutions in the archive, multiplied

by a parameter ξ. The process of choosing a guiding solution and generating a

candidate solution is repeated a total of Na times (corresponding to the number of

“ants”) per iteration. Before the next iteration, the algorithm updates the solution

archive keeping only the best k of the k+Na solutions that are available after the

solution construction process.

An outline of ACOR is given in Algorithm 1. The structure of the solution

archive and the Gaussian functions used to generate PDFs in ACOR are shown in

Figure 2.1. Thanks to the pheromone representation used in ACOR (that is, the

solution archive), it is possible to take into account the correlation between the

decision variables. A non-deterministic adaptive method for doing so is presented

in [Socha and Dorigo, 2008]. This method rotates coordinate axes and recalculates

all the current coordinates of all the solutions in the archive to construct new

temporary solutions according to an adaptively generated orthogonal base. After

the solution construction process, this method converts those temporary solutions

back into the original coordinate system. More details are given in [Socha and

Dorigo, 2008].

30

Algorithm 1 Outline of ACOR
Input: k, Na, D, q, ξ, and termination criterion.
Output: The best solution found

Initialize and evaluate k solutions
/* Sort solutions and store them in the archive */
T = Sort(S1 · · ·Sk)
while Termination criterion is not satisfied do

/* Generate Na new solutions */
for l = 1 to Na do

/* Construct solution */
Select Sguide according to weights
for i = 1 to D do

Sample Gaussian (µiguide, σ
i
guide)

end for
Store and evaluate newly generated solution

end for
/* Sort solutions and select the best k */
T = Best(Sort(S1 · · ·Sk+Na), k)

end while

2.3.2 CMA-ES

Evolution Strategies primarily apply mutations based on a multivariate normal

distribution and rank-based selection to a population of individuals to iteratively

search better solutions. (µ, λ)-ES is one canonical version of ES. µ and λ denote

the number of parents and offspring, respectively. In (µ, λ)-ES, the old µ parents

are discarded and the new, elite µ parents for the next iteration are only selected

from λ offspring, λ > µ. Hansen and Ostermeier [1996, 2001], Hansen et al.

[2003] proposed a particularly successful ES algorithm for continuous optimization,

called Covariance Matrix Adaptation Evolution Strategy (CMA-ES), which is a

(µ, λ)-evolution strategy that iteratively uses a multivariate normal distribution to

sample new solutions. CMA-ES adapts the full covariance matrix of this normal

distribution to guide the sampling of new solutions. The search mechanism is

invariant against linear transformations of the search space, which clearly is a

desirable property for a continuous optimization algorithm

The core steps of CMA-ES in each iteration are sampling of a new popula-

tion, selection, and adaption of the step size and the covariance matrix. At each

iteration t, CMA-ES samples λ individuals according to a multi-variate normal

distribution Si = m t + σt × Ni
(
0,C t

)
, i = 1 . . . λ, where N

(
0,C t

)
denotes a

normally distributed random vector with mean 0 and covariance matrix C t. σt

31

2. BACKGROUND

)(1Sf

)(kSf

)(jSf

)(2Sf
1S
2S

kS

jS

i1
1

2
1
2
2

1
2

i
2

i
j

1
j

2
j

1
k

2
k

i
k

D

D
2

D
j

D
k

i
gg

i
g
i

i21 D Sfgggg g

2
gg

2
g
2

guide

Figure 2.1: This figure indicates the structure of the solution archive and the
Gaussian functions used to generate PDFs in ACOR.

is the step size, σt > 0. All λ individuals Si use the same distribution with mean

m t. Then these individuals are evaluated and ranked according to their objective

function values. Using the ranked population, the distribution parameters m t, σt

and C t are updated for a new iteration. The new mean of the distribution m t+1

is set to the weighted sum of the best µ individuals (m =
∑µ

i=1wix
t
iλ

, with wi > 0

for i = 1 . . . µ and
∑µ

i=1wi = 1, where index iλ denotes the i-th best individual).

Then two evolution paths called p t+1
σ and p t+1

c are computed. An evolution path

p is expressed by a sum of consecutive steps of the distribution mean, the strategy

takes over a number of generations. Specifically, if consecutive steps are taken

in a similar (opposite) direction, the evolution paths become long (short). pσ
makes consecutive movements of the distribution mean orthogonal in expectation;

pc facilitates a much faster variance increase of favorable directions. Finally p t+1
σ

and p t+1
c are used to updated σt+1 and C t+1. For a detailed explanation of the

CMA-ES equations for computing p t+1
σ and p t+1

c and updating σt+1 and C t+1, we

refer to Hansen [2010].

The popularity of CMA-ES is illustrated by the more than 1100 citations to

Hansen and Ostermeier [2001] according to google scholar as of March 2013. CMA-

ES can be used as a stand-alone algorithm but it is often used as a local optimizer

in other metaheuristics [Ghosh et al., 2012, Molina et al., 2010a, Müller et al.,

2009]. IPOP-CMA-ES embeds CMA-ES into a restart mechanism that increases

the population size between successive runs of CMA-ES. IPOP-CMA-ES is a cur-

rent state-of-the-art algorithm for continuous optimization and it was the best per-

32

Algorithm 2 Outline of IPOP-CMA-ES

Input: An initial candidate solution S and termination criterion
Output: The best found solution

while termination criterion is not satisfied do
while stopping criterion for restart is not satisfied do

/* CMA-ES iterations */
Sample a new population (λ, σ0)
Selection Best(Sort(S1 · · ·Sλ), µ)
Adapt step size and covariance matrix

end while
Increase population size and uniformly sample an initial solution

end while

forming algorithm of the special session on real parameter optimization at CEC’05.

Whether and how much IPOP-CMA-ES could be further improved therefore be-

comes very interesting. An outline of the IPOP-CMA-ES algorithm is given in

Algorithm 2. The default parameter settings of IPOP-CMA-ES are the follow-

ing. The initial population size is λ = 4 + b3 ln(D)c and the number of search

points selected for the parent population is µ = b0.5λc. The initial step-size is

σ0 = 0.5(B−A). At each restart, IPOP-CMA-ES increases the population size by

a factor d = 2. Restarts are triggered using the three paramaters stopTolFunHist,

stopTolFun and stopTolX ; they refer to the improvement of the best objective

function value in the last 10 + d30D/λe generations, the function values of the

recent generation, and the standard deviation of the normal distribution in all

coordinates, respectively.

Recently, Hansen [2009] proposed BIPOP-CMA-ES. It is a CMA-ES variant

that couples two restart regimes, one with an increasing population size as in IPOP-

CMA-ES and another with small population sizes. At each restart of BIPOP-

CMA-ES, by comparing the budget of function evaluations used so far in the corre-

sponding regime, the regime with smaller budget value is applied. The first regime

with an increasing population size is applied for the first restart. BIPOP-CMA-

ES and IPOP-CMA-ES obtained the best performance on the BBOB benchmark

set [Hansen et al., 2009a] in 2009 and 2010. Alternative restart strategies were

proposed by Loshchilov et al. [2012a]. Various IPOP-CMA-ES variants [Brockhoff

et al., 2012, Hansen, 2009, Loshchilov et al., 2012b,c,d, 2013] were also tested in

the BBOB benchmark set.

33

2. BACKGROUND

2.4 Automatic algorithm configuration

Assigning appropriate values for the parameters of optimization algorithms is an

important task [Birattari, 2009]. Although algorithm designers have spent a con-

siderable effort in the design choices and certainly also in the definition of its

parameters, over the last few years evidence has arisen that many algorithms’

performance can be improved by considering automatic algorithm configuration

and tuning tools [Adenso-Diaz and Laguna, 2006, Balaprakash et al., 2007, Bartz-

Beielstein, 2006, Birattari et al., 2002, Hutter et al., 2007, 2009a,b, Nannen and

Eiben, 2007]. Many successful studies involve tuning discrete optimization algo-

rithms [Balaprakash et al., 2007, Birattari et al., 2002, Hutter et al., 2009b] and

also continuous optimization algorithms [Hutter et al., 2009a, Montes de Oca et al.,

2011, Smit and Eiben, 2009, Yuan et al., 2010].

In the design of algorithm frameworks, the entries of algorithmic components

can be designed as tunable parameters. The combination of algorithmic compo-

nents via automatic algorithm configuration tools has also shown its extraordi-

nary potential for obtaining new state-of-the-art algorithms. For instance, Khud-

aBukhsh et al. [2009] proposed the SATenstein framework and instantiated a new

state-of-the-art local search algorithm for the SAT problem. López-Ibáñez and

Stützle [2010], López-Ibáñez and Stützle [2012] automatically configured a multi-

objective ACO algorithm that outperformed previously proposed multi-objective

ACO algorithms for the bi-objective traveling salesman problem. Dubois-Lacoste

et al. [2011] configured new state-of-the-art algorithms for five variants of multi-

objective flow-shop problems. More recently, the ideas behind the combination

of algorithm frameworks and automatic algorithm configuration techniques have

been extended to the programming by optimization paradigm [Hoos, 2012].

2.4.1 Iterated F-Race

In this thesis, we employ Iterated F-Race [Birattari et al., 2010], a racing algorithm

for algorithm configuration that is included in the irace package [López-Ibáñez

et al., 2011] for automatic algorithm configuration and parameter tuning. Iterated

F-Race is an algorithm that repeatedly applies F-Race [Birattari et al., 2002] to a

set of candidate configurations that are generated via a sampling mechanism that

intensifies the search around the best found configurations. The generated candi-

date configurations then perform a “race”. At each step of the race, each surviving

candidate configuration is run on one training problem. Poor performing candi-

34

date configurations are eliminated from the race based on the result of statistical

tests. To this aim, the results of each surviving configuration on the same training

problem is ranked. Note that this ranking corresponds to blocking in statistical

tests since ranks are determined on a same training problem. In fact, ranking is

useful in the context of continuous and mixed-variable function optimization to

account for the different ranges of the values of the benchmark functions. With-

out ranking, few functions with large values would dominate the evaluation of the

algorithm performance. Based on the obtained ranks, the Friedman two-way anal-

ysis of variance by ranks checks whether sufficient statistical evidence is gathered

that indicates that some configurations behave differently from the rest. If the

null hypothesis of the Friedman test is rejected, Friedman post-tests are used to

eliminate the statistically worse performing candidates. The irace automatic con-

figuration tool handles four parameter types: continuous (r), integer (i), ordinal

(o) and categorical (c).

With Iterated F-race, algorithm parameters are tuned using a machine learning

approach in which an algorithm is trained on a set of problem instances and later

tested on another set. In this thesis, the performance measure for tuning is the

error of the objective function value obtained by the tuned algorithm after a certain

number of function evaluations. The error value is defined as f(S)− f(S∗), where

S is a candidate solution and S∗ is an optimal solution. In [López-Ibáñez et al.,

2012], we used the hypervolume as performance measure for tuning, a well-known

quality measure in multi-objective optimization, to assign a single numerical value

to the anytime behavior of an algorithm’s run.

2.4.2 Tuning methodology

This thesis is not the first to try to further tune continuous optimization algo-

rithm using automatic algorithm configuration tools. A PSO algorithm was used

by Bartz-Beielstein [2006] as a benchmark algorithm to be tuned for evaluating

Sequential Parameter Optimization (SPO). CMA-ES was used by Hutter et al.

[2009a] as a benchmark algorithm to be tuned for evaluating SPO+, their im-

proved variant of SPO [Bartz-Beielstein, 2006]. Following earlier work on SPO,

they tuned CMA-ES only on individual functions, thus, in this sense “overtuning”

CMA-ES on individual functions. (One has to remark, however, that the inter-

est of Hutter et al. [2009a] was to evaluate SPO and the improved variant SPO+

rather than proposing a new, generally improved parameter setting for CMA-ES.)

Another attempt of tuning a variant of CMA-ES was made by Smit and Eiben

35

2. BACKGROUND

[2010]. From a tuning perspective, it should be mentioned that they tuned their

algorithm on multiple functions. For the tuning, they used the CMA-ES variant

they used on each ten dimensional function, then they were running the tests with

the tuned algorithm on the same functions of dimension ten. Same was done by

Montes de Oca et al. [2011] for re-designing and tuning a PSO algorithm for large

scale continuous function optimization.

In the methodological approach to tuning continuous optimization algorithms,

this thesis tries to avoid a bias of the results obtained due to potentially overtuning

[Birattari, 2009] the algorithm on the same benchmark functions as those on which

the algorithm is tested. As such, this gives a better assessment of the potential

for what concerns the tuning of continuous optimizers as we have a separation

between tuning and test set. In this thesis, the tuning and test sets involve three

degrees of separation as follows:

• A separation of dimensionality between tuning and test set. For instance,

we tuned algorithms on small dimensional functions and later tested them

on (much) larger dimensional versions of the same functions. [Liao et al.,

2011c, Montes de Oca et al., 2011].

• A separation of the functions used in the tuning and test set. For instance,

we tuned algorithms on small dimensional functions and later tested them

on a different set of functions. [Liao and Stützle, 2013, Liao et al., 2013a,

López-Ibáñez et al., 2012].

• A separation between tuning functions and real world problems. For in-

stance, we tuned algorithms on artificial benchmark functions and later

tested them on real-word optimization problems. [Liao et al., 2013b]

The differences in the applied approaches to tuning with respect to the sepa-

ration of tuning and test sets is summarized in Figure 2.2.

2.5 Summary

In this chapter, we described the models of continuous optimization problems,

and reviewed the main optimization techniques (i.e., local search algorithms and

metaheuristic based algorithms) and discussed the main benchmark function sets

that are relevant for this thesis. We also described the models of mixed discrete-

continuous optimization problems, and classified the main approaches to tackle

mixed variable problems from the literature. We explained in some more detail

36

Figure 2.2: Summary of the methodological approach to tuning continuous opti-
mization algorithms from few recent articles [Bartz-Beielstein, 2006, Hutter et al.,
2009a, Smit and Eiben, 2010] and this thesis. The approaches differ in the usage of
a single versus multiple functions and the degree of separation between tuning and
test set. The difference of colors between tuning and test set indicates a separation
of the functions used in the tuning and test set.

37

2. BACKGROUND

the two basic algorithms ACOR and CMA-ES, on which large parts of this thesis

rely on. We described an automatic algorithm configuration technique and the

tuning methodologies we used in the thesis.

38

Chapter 3

UACOR: A unified ACO algorithm for continuous opti-
mization

Metaheuristics are a family of optimization techniques that have seen increasingly

rapid development and have been applied to numerous problems over the past

few years. A prominent metaheuristic is ant colony optimization (ACO). ACO

is inspired by the ants’ foraging behavior and it was first applied to solve dis-

crete optimization problems [Dorigo and Stützle, 2004, Dorigo et al., 1991, 1996].

Recently, adaptations of ACO to continuous optimization problems were intro-

duced. Socha and Dorigo [2008] proposed one of the now most popular ACO

algorithms for continuous domains, called ACOR. It uses a solution archive as

a form of pheromone model for the derivation of a probability distribution over

the search space. Leguizamón and Coello [2010] proposed an extension of ACOR,

called DACOR, that had the goal of better maintaining diversity during the search.

Subsequently, we proposed IACOR-LS, an incremental ant colony algorithm with

local search for continuous optimization [Liao et al., 2011b]. IACOR-LS uses a

growing solution archive as an extra search diversification mechanism and a local

search to intensify the search.

In this chapter, we propose an ACO algorithm for continuous optimization,

which combines algorithmic components from ACOR, DACOR and IACOR-LS.

We call this algorithm UACOR. From UACOR, one can instantiate the original

ACOR, DACOR and IACOR-LS algorithms by using specific combinations of the

available algorithmic components and parameter settings. However, one also can

obtain combinations of the algorithmic components that are different from any

of the already proposed ones, that is, one may instantiate new, continuous ACO

algorithms. UACOR’s design makes the automatic generation of high performance

continuous ACO algorithms possible through the use of automatic algorithm con-

figuration tools.

39

3. UACOR: A UNIFIED ACO ALGORITHM FOR CONTINUOUS
OPTIMIZATION

The combination of algorithmic components via automatic algorithm configu-

ration tools has already shown its high potential for obtaining new state-of-the-art

algorithms for combinatorial optimization problems. For example, Dubois-Lacoste

et al. [2011], KhudaBukhsh et al. [2009], López-Ibáñez and Stützle [2012] config-

ured new state-of-the-art algorithms for the SAT problem, the bi-objective travel-

ing salesman problem and the multi-objective flow-shop problem, respectively.

UACOR is a highly configurable algorithm, and thus it can also be considered

a framework from which new state-of-the-art ACO algorithms for continuous op-

timization can be derived. In this chapter, we show how this can be done through

the use of an automatic configuration tool. In particular, we use Iterated F-race

[Birattari et al., 2010] as implemented in the irace package [López-Ibáñez et al.,

2011]. As the set of training benchmark functions we use low dimensional versions

of the functions used in the SOCO and CEC’05 benchmark sets. We configure

two new ACO variants; UACOR-s is configured on the SOCO benchmark (the -s

suffix stands for SOCO) set and UACOR-c on the CEC’05 benchmark set (the

-c suffix stands for CEC). UACOR-s and UACOR-c are then tested on higher di-

mensional versions of the SOCO and CEC’05 benchmark functions. The results

show that (i) UACOR-s performs superior or competitive to all the 16 algorithms

benchmarked on the SOCO function set and that (ii) UACOR-c performs compet-

itive to IPOP-CMA-ES [Auger and Hansen, 2005] and superior to other five recent

state-of-the-art algorithms benchmarked on the CEC’05 function set. These ex-

perimental results illustrate the high potential of ACO algorithms for continuous

optimization. To the best of our knowledge, this is also the first trial where a con-

tinuous optimizer framework is automatically configured. Previous applications of

automatic configuration for continuous optimization were applied to already fully

designed algorithms. Finally we re-design UACOR by implementing CMA-ES

[Hansen and Ostermeier, 1996, 2001, Hansen et al., 2003] as an alternative local

search procedure, which further improves the performance of UACOR.

The chapter is organized as follows. Section 3.1 introduces ACO for continuous

domains, reviews the three continuous ACO algorithms underlying UACOR, and

identifies their algorithmic components in a component-wise view. Section 3.2 de-

scribes UACOR. In Section 3.3, we automatically configure UACOR to instantiate

UACOR-s and UACOR-c and in Section 3.4, we evaluate their performance. The

performance of a re-designed and improved UACOR is shown in Section 3.5 and

conclude in Section 3.6.

40

3.1 ACO algorithms for continuous optimization

The UACOR framework build upon and extends the ACOR algorithm for continu-

ous optimization. In fact, from UACOR we can also instantiate directly the ACOR

algorithm. The main details of the ACOR algorithm have already been described

in Section 2.3.1 and we refer the reader to the details described there. Next we de-

scribe DACOR [Leguizamón and Coello, 2010] and IACOR-LS [Liao et al., 2011b],

two more recent ACO algorithms for continuous optimization.

DACOR

Different from ACOR, DACOR keeps the number of ants (Na) equal to the solution

archive size k and each of the Na ants constructs at each algorithm iteration a

new solution. A further difference of DACOR with respect to ACOR is the specific

choice rule for the guiding solution Sguide. With a probability Qbest ∈ [0, 1], ant j

chooses as Sguide the best solution, Sbest, in the archive; with a probability 1−Qbest,

it chooses as Sguide the solution Sj. A new solution is generated in the same way

as in ACOR, and then compared to Sj (independently of whether Sbest or Sj was

chosen as guiding solution). If the newly generated solution is better than Sj, it

replaces Sj in the archive; otherwise it is discarded. This replacement strategy is

different from the one used in ACOR in which all the solutions in the archive and

all the newly generated ones compete.

IACOR-LS

IACOR-LS’s main distinctive features are a solution archive whose size increases

over time to enhance the algorithm’s search diversification, and a local search

procedure to enhance its search intensification [Liao et al., 2011b]. Additionally,

IACOR-LS uses a different choice rule for the guiding solution than ACOR. At each

algorithm iteration of IACOR-LS, the best solution in the archive Sbest is chosen

as the guiding solution Sguide with a probability equal to the value of a parameter

EliteQbest ∈ [0, 1]; with a probability of 1−EliteQbest, each solution in the archive

is used as Sguide to generate a new solution. With this choice rule, either only one

new solution is constructed by an “elite” guiding solution or k new solutions are

constructed by k ants at each algorithm iteration. This latter aspect makes the

action choice roles of IACOR-LS also different from the one used in DACOR. Each

new solution is constructed in the same way as in ACOR. Finally, Sguide and the

newly generated solution are compared. If the newly generated solution is better

41

3. UACOR: A UNIFIED ACO ALGORITHM FOR CONTINUOUS
OPTIMIZATION

than Sguide, it replaces it in the archive; otherwise it is discarded.

IACOR-LS initializes the archive with InitAS solutions. Every GrowthIter it-

erations a new solution is added to the archive until a maximum archive size is

reached. The new solution is initialized as follows:

Snew = Srand + rand(0, 1)(Sbest − Srand) , (3.1)

where Srand is a random solution and rand(0, 1) is a random number uniformly

distributed in [0, 1).

In IACOR-LS, the local search procedure is called at each iteration and for

LsIter iterations. If the local search succeeds in improving the solution from which

it is called, this improved solution replaces the original solution in the archive. The

maximum number of times the local search procedure is called from the same ini-

tial solution is limited to LsFailures calls. The initial solution for the local search

is chosen as follows. The best solution is deterministically chosen as the initial

solution if it has been called less than LsFailures times. Otherwise a random solu-

tion from the archive is chosen as the initial solution, excluding all those solutions

for which the number of times they have been chosen as initial solutions is equal

to LsFailures.

The step size to be used in the local search procedure is set as follows. First,

a solution different from the best one is chosen randomly in the archive. The step

size is then set to the maximum norm (|| · ||∞) of the vector that separates this

random solution from the best solution. As a result, step sizes tend to decrease

upon convergence of the algorithm and, in this sense, the step sizes are chosen

adaptively to focus the local search around the best-so-far solution. In our previous

experiments, Powell’s conjugate directions set [Powell, 1964] and Lin-Yu Tseng’s

Mtsls1 [Tseng and Chen, 2008] local search methods (see also Section 2.1.1) have

shown very good performance.

IACOR-LS uses a default restart mechanism that restarts the algorithm and

re-initializes the archive of size InitAS with the best-so-far solution Sbest and Ini-

tAS−1 random solutions. The restart criterion is the number of consecutive it-

erations, StagIter, with a relative solution improvement lower than a threshold ε.

IACOR-LS also integrates a second restart mechanism, which consists in restarting

and initializing a new initial archive of size RestartAS (RestartAS is a parameter

different from InitAS) with Sbest in the current archive and RestartAS−1 solutions

that are initialized at positions biased around Sbest; these positions are defined by

Sbest +10Shakefactor · (Sbest − Srand). The restart criterion is the number of consec-

42

utive iterations, StagIter, with a relative solution improvement percentage lower

than a certain threshold 10StagThresh.

3.1.1 Algorithmic components

We define several algorithmic components for UACOR by abstracting the partic-

ular design alternatives taken in ACOR, DACOR and IACOR-LS. This results in

seven main groups of algorithmic components, which are described next, before

detailing the outline of UACOR.

1. Mode. Two alternative UACOR modes, called DefaultMode and EliteMode,

are identified. DefaultMode consists in deploying a number of ants in each

algorithm iteration to construct solutions. EliteMode allows in each algo-

rithm iteration to deploy only one “elite” ant with a probability of EliteQbest

∈ [0, 1]. The “elite” ant selects Sbest in the archive as Sguide to construct a

new solution.

2. Number of ants. Two design choices for defining the number of ants

deployed are identified. Na defines the number of ants as an independent

parameter (Na ≤ k) while NaIsAS defines the number of ants to be equal to

k, the size of the solution archive.

3. Choice of guiding solution. This algorithmic component chooses how to

select Sguide to sample new solutions. Three design choices are identified:

(i) Sbest is selected as Sguide with a probability Qbest ∈ [0, 1]; (ii) Sguide is

probabilistically selected from the solutions in the archive depending on their

weight; (iii) solution Sl is selected as Sguide, where l is the index of the

currently deployed ant.

4. Update of solution archive. The update of the solution archive con-

cerns the replacement of solutions in the archive. We identified three design

choices. A parameter RmLocalWorse defines whether UACOR globally re-

moves the Na worst solutions among all k+Na solutions, or whether UACOR

makes the decision about the acceptance of Sl locally. In the latter case, we

use a parameter SnewvsGsol to decide whether the solution generated by ant

l is compared with Sguide or with the previous l-th solution to remove the

worse one.

5. Local search. We consider three options for the use of a local search pro-

cedure. If parameter LsType is set to F (for false), no local search procedure

43

3. UACOR: A UNIFIED ACO ALGORITHM FOR CONTINUOUS
OPTIMIZATION

is used. Otherwise, LsType invokes either Powell’s conjugate directions set

[Powell, 1964] or Mtsls1 [Tseng and Chen, 2008]. Both local search proce-

dures use a dynamic calling strategy and an adaptive step size, which follow

the choices taken for IACOR-LS.

6. Incremental archive size. The possibility of incrementing the archive size

is considered. If parameter IsIncrement is set to F, the incremental archive

mechanism is not used. Otherwise, if IsIncrement is set to T (for true),

UACOR invokes the incremental archive mechanism.

7. Restart mechanism. Three options for the restart mechanism are identi-

fied. If parameter RestartType is set to F, the restart mechanism is not used.

Otherwise, RestartType invokes either of the two restart mechanisms, which

are introduced in IACOR-LS. They are labeled as 1st and 2nd, respectively.

Table 3.1 summarizes the algorithmic components defined above and their op-

tions. Some algorithmic components are only significant for a specific value of other

components. We discuss the connection between these algorithmic components in

Section 3.2.

44

T
ab

le
3.

1:
A

lg
or

it
h
m

ic
co

m
p

on
en

ts
of

U
A

C
O

R

A
lg

or
it

h
m

C
om

p
on

en
ts

O
p

ti
on

s
D

es
cr

ip
ti

o
n

M
o
d

e
{D

ef
a
u
lt
M
od
e,

E
li
te
M
od
e
}

D
efi

n
it

io
n

o
f

U
A

C
O

R
m

o
d

e

A
n
ts

N
u

m
b

er
{N

a
,
N
a
Is
A
S
}

D
efi

n
it

io
n

o
f

th
e

n
u

m
b

er
o
f

a
n
ts

d
ep

lo
y
ed

S
ol

u
ti

on
C

on
st

ru
ct

io
n

s

sa
m

p
le

th
e

n
ei

gh
b

or
h

o
o
d

of
th

e
so

lu
ti

o
n

co
m

p
o
n

en
t

o
f
S
g
u
id
e

U
si

n
g

a
G

a
u

ss
ia

n
P

D
F

se
le

ct
S
b
e
st

in
a

p
ro

p
or

ti
on

o
f
Q
b
e
s
t
∈

[0
,1

],

H
ow

S
g
u
id
e

is
se

le
ct

ed
fr

o
m

th
e

so
lu

ti
o
n

a
rc

h
iv

e
se

le
ct

p
ro

b
ab

il
is

ti
ca

ll
y

b
y

w
ei

g
h
ts

,

se
le

ct
S
l

fo
r

th
e

an
t
l

S
ol

u
ti

on
A

rc
h

iv
eU

p
d

at
e

re
m

ov
e

b
y

gl
ob

al
ly

ra
n

k
in

g,

H
ow

N
a

w
o
rs

e
so

lu
ti

o
n

s
a
re

re
m

ov
ed

fr
o
m

th
e

a
rc

h
iv

e
re

m
ov

e
b
y

co
m

p
ar

in
g

w
it

h
S
g
u
id
e
,

re
m

ov
e

b
y

co
m

p
ar

in
g

w
it

h
S
l

L
o
ca

lS
ea

rc
h

{F
,

P
ow

el
l,

M
ts

ls
1
}

D
efi

n
it

io
n

o
f

a
lo

ca
l

se
a
rc

h
p

ro
ce

d
u

re

In
cr

em
en

ta
lA

rc
h

iv
e

{F
,

T
ru

e}
D

efi
n

it
io

n
o
f

a
n

in
cr

em
en

ta
l

a
rc

h
iv

e
m

ec
h

a
n

is
m

R
es

ta
rt

M
ec

h
an

is
m

{F
,

1s
t,

2s
t}

D
efi

n
it

io
n

o
f

a
re

st
a
rt

m
ec

h
a
n
is

m

45

3. UACOR: A UNIFIED ACO ALGORITHM FOR CONTINUOUS
OPTIMIZATION

3.2 UACOR

The three ACO algorithms described in the previous section as well as many others

that may result from the combination of their components are subsumed under the

general algorithmic structure provided by UACOR. In this section, we describe the

connections of the algorithmic components of UACOR by a flowchart and show

how from UACOR we can instantiate the algorithms ACOR, DACOR and IACOR-

LS. The flowchart of UACOR is given in Fig. 3.1. The related parameters are

given in Table 3.2. Some settings take effect in the context of certain values of

other settings.

UACOR starts by randomly initializing and evaluating the solution archive of

size InitAS. Next, UACOR selects a mode, which can be either the default mode

or an elite mode.

We first describe the default mode, which is invoked if parameter DefaultMode

is set to T (true). At each iteration, Na new solutions are probabilistically con-

structed by Na ants (recall that an ant in our case is the process through which a

solution is generated). If the parameter NaIsAS is set to T, the number of ants is

kept equal to the size of the solution archive. If the parameter NaIsAS is set to

F (false), a parameter Na, Na ≤ k, is activated. Each ant uses a choice rule for

the guiding solution. The parameter Qbest ∈ [0, 1] controls the probability of using

Sbest as Sguide. With a probability 1−Qbest, Sguide is selected in one of two different

ways. If parameter WeightGsol is T, Sguide is probabilistically selected from the

solutions in the archive by their weights as defined by Equation 2.1. Otherwise,

solution Sl (l is associated with the index of the current ant to be deployed) is

chosen as Sguide. Once Sguide is selected, a new solution is generated. This process

is repeated for each of the Na ants. Next, UACOR updates the solution archive

by removing Na solutions. If parameter RmLocalWorse is F, UACOR removes

the Na worst solutions among all the k + Na solutions as in ACOR. If parameter

RmLocalWorse is T, one of two possibilities is considered. If parameter SnewvsG-

sol is T, each newly generated solution is compared to the corresponding Sguide to

remove the worse one; otherwise, it is compared to the corresponding Sl to remove

the worse one. Finally, a new solution archive is generated.

The elite mode is invoked if parameter DefaultMode is set to F. The elite

mode at each algorithm iteration deploys only one “elite” ant. With a probability

EliteQbest, 0 ≤ EliteQbest ≤ 1, it selects Sbest in the archive as Sguide. If the newly

generated solution is better than this Sbest, it replaces it in the solution archive;

with a probability 1−EliteQbest the solution construction follows the default mode.

46

b

Qbest >rand

WeightGsol

Set a guiding solution

Sample Gaussian around the guiding solution

Initialize and evaluate solution archive

T

RmLocalWorse

T

SnewvsGsol

DefaultMode
F

EliteQbest >rand T

End

T

F

Select Sbest

Sample Gaussian

Generate a new solution

Remove a worse solutoin

Select Sbest

T

While termination criterion not satisfied

For (l = 1 to Na)

NaIsAS

T

Generate a new solution

T

F

Local search

Incremental archive mechnism

Restart mechanism

Snew vs. Sbest

Begin

Set a guiding solution

Na <= k

F
F

F

Remove Na worse solutions

F

Sort Na+AS solutions Snew vs.
lS

 Select lS

Generate a new solution archive

 Na = k

Select Mode

Set number of ants

 Na k Set Na <= k
T

Select S by weight

F

Snew vs. Gsol

Optional

Figure 3.1: A flowchart for UACOR. For an explanation of the parameters we
refer to the text.

47

3. UACOR: A UNIFIED ACO ALGORITHM FOR CONTINUOUS
OPTIMIZATION

After updating the solution archive, UACOR sequentially considers three pro-

cedures. These are a local search procedure, a mechanism for increasing the archive

size and a restart mechanism, respectively. Recall that the options of these proce-

dures were described in Section 3.1.

We use a simple penalty mechanism to handle bound constraints for UACOR.

We use

P (x) = fes ·
D∑
i=1

Bound(xi) , (3.2)

where Bound(xi) is defined as

Bound(xi) =


0, if xmin ≤ xi ≤ xmax

(xmin − xi)2, if xi < xmin

(xmax − xi)2, if xi > xmax

(3.3)

and xmin and xmax are the minimum and maximum limits of the search range,

respectively, and fes is the number of function evaluations that have been used

so far. For avoiding that the final solution is outside the bounds, the bound

constraints are enforced by clamping the final solution S to the nearest solution

on the bounds, resulting in solution S ′, if S violates some bound constraints. If

S ′ is worse than the best feasible solution found in the optimization process, S ′ is

replaced by it.

3.3 Automatic algorithm configuration

We automatically configure UACOR before evaluating its performance on bench-

mark functions. As the benchmark functions, we employ the 19 functions from

the SOCO benchmark set [Herrera et al., 2010] (fsoco1-fsoco19) and the 25 functions

from the CEC05 benchmark set [Suganthan et al., 2005] (fcec1-fcec25). Note that

in both benchmark sets, the functions allow for different dimensionalities. These

two benchmark sets have been chosen as they have become standard benchmark

sets for testing continuous optimizers. The SOCO benchmark set was used in a

special issue of the journal Soft Computing and it extends the benchmark sets

of earlier benchmarking studies on the scaling behavior of continuous optimizers

such as the one held at the CEC’08 conference. The CEC’05 benchmark set was

used for a comparison of evolutionary optimizers at the special session on real pa-

rameter optimization of CEC’05 conference [Suganthan et al., 2005]. Classified by

48

function characteristics, the SOCO benchmark set consists of seven unimodal and

12 multimodal functions, or, four separable and 15 non-separable functions. The

CEC’05 benchmark set consists of five unimodal and 20 multimodal functions, or,

two separable and 23 non-separable functions. For a detailed description of the

benchmark functions, we refer the reader to [Herrera et al., 2010, Suganthan et al.,

2005], and to the description in Section 2.1.3.

In our experiments, we follow the termination conditions suggested for the

SOCO and CEC benchmarks [Herrera et al., 2010, Suganthan et al., 2005] to make

our results comparable to those of other papers. In particular, we use a maximum

of 5 000×D function evaluations for the SOCO functions, and 10 000×D for the

CEC’05 functions, where D is the dimensionality of a function.

For automatically configuring UACOR, we employ Iterated F-Race [Birattari

et al., 2010], a method for automatic algorithm configuration that is included in

the irace package [López-Ibáñez et al., 2011] and that was described in Section

2.4.1. In a nutshell, Iterated F-Race repeatedly applies F-Race to a set of candi-

date configurations. F-Race is a racing method that at each iteration applies all

surviving candidate configurations to an instance of a combinatorial problem or a

function in the continuous optimization case. If a candidate configuration is found

to perform statistically worse than others (as determined by the Friedman two-way

analysis of variance by ranks and its associated post-tests), it is eliminated from

the race. F-race finishes when only one candidate survive or the allocated com-

putation budget to the race is used. Iterated F-Race then samples new candidate

configurations around the best candidate configurations found so far. The whole

process is repeated for a number of iterations (hence the name Iterated F-Race).

The automatic configuration tool handles all parameter types of UACOR: con-

tinuous (r), integer (i) and categorical (c). The performance measure used for

tuning is the error of the objective function value obtained by the tuned algo-

rithm after a certain number of function evaluations. The error value is defined

as f(S) − f(S∗), where S is a candidate solution and S∗ is the optimal solution.

In the automatic tuning process, the maximum budget is set to 5 000 runs of UA-

COR. The settings of Iterated F-Race that we used in our experiments are the

default [Birattari et al., 2010, López-Ibáñez et al., 2011]. We conduct automatic

configuration for UACOR in two stages. In the first stage, we tuned UACOR on

the SOCO training instances to instantiate UACOR-s. 19 SOCO benchmark func-

tions of dimension 10 were sampled as training instances in a random order. In

the second stage, we tuned UACOR on the CEC’05 training instances to instanti-

ate UACOR-c. 25 CEC’05 benchmark functions of dimension 10 were sampled as

49

3. UACOR: A UNIFIED ACO ALGORITHM FOR CONTINUOUS
OPTIMIZATION

training instances in a random order.

The tuned parameter settings for both, UACOR-s and UACOR-c, are pre-

sented in the central and right part of Table 3.2. This table also gives the parame-

ter settings for the UACOR’s instantiations of ACOR, DACOR and IACOR-Mtsls1.

Their parameters were also automatically tuned as mentioned above for the SOCO

and CEC’05 benchmark sets, respectively, and for these specific parameter con-

figurations we again use the extensions ’-s’ and ’-c’ depending on the benchmark

functions used for automatic configuration. Considering that UACOR-s does not

use the restart mechanisms of UACOR after tuning and UACOR-c does, when

tuning these three ACO algorithms on the SOCO training instances, we deploy

them as proposed in the original literature; when tuning them on CEC’05 training

instances, we extend them to use the restart mechanisms of UACOR to improve

performance.

As a further illustration of the respective algorithm structures, we highlight

UACOR-s and UACOR-c in the flowcharts of UACOR in Fig. 3.2 and 3.3. Both

use DefaultMode, select Sbest as Sguide with a probability Qbest ∈ [0, 1], use Mtsls1

local search and the incremental archive mechanism. The parameter settings in

which they differ, imply a more explorative search behavior of UACOR-c than

that of UACOR-s. In fact, (i) UACOR-c sets the number of ants equal to the size

of the solution archive while UACOR-s defines it as an independent parameter

(Na ≤ k); (ii) UACOR-c frequently chooses all solutions of the archive as Sguide (as

in DACOR), while UACOR-s probabilistically selects Sguide based on its weight;

(iii) UACOR-c makes a local acceptance decision comparing Sl to Sguide, while

UACOR-s globally removes the Na worst solutions among all k+Na solutions; (iv)

UACOR-c uses a restart mechanism for diversifying the search while UACOR-s

does not. Considering parameter values, UACOR-c has larger initial archive size

and less iterations of local search exploitation, which is consistent with the idea of a

strong search exploration than UACOR-s; the larger values of Qbest and GrowthIter

would imply UACOR-c and UACOR-s differ. Similar remarks hold also for the

settings of the ’-c’ and ’-s’ variants of ACOR, DACOR and IACOR-Mtsls1. Note

that the more explorative settings on the CEC’05 benchmark set are somehow

in accordance with the perceived higher difficulty of this benchmark set than the

SOCO set. In fact, in the CEC’05 benchmark set the best available algorithms fail

to find quasi-optimal solutions much more frequently than in the SOCO benchmark

function set.

50

.
T

ab
le

3.
2:

T
h

e
le

ft
p

ar
t

of
th

e
ta

b
le

gi
ve

s
th

e
li

st
of

p
ar

am
et

er
se

tt
in

gs
an

d
th

ei
r

d
om

ai
n

s.
S

om
e

se
tt

in
gs

ar
e

on
ly

si
gn

ifi
ca

n
t

fo
r

ce
rt

ai
n

va
lu

es
of

ot
h

er
se

tt
in

gs
.

T
h

e
p

ar
am

et
er

se
tt

in
gs

of
th

e
au

to
m

at
ic

al
ly

co
n

fi
gu

re
d

al
go

ri
th

m
s

ar
e

gi
ve

n
in

th
e

ce
n
tr

al
p

ar
t

an
d

th
e

ri
gh

t
p

ar
t,

d
ep

en
d

in
g

on
w

h
ic

h
tr

ai
n

in
g

se
t

of
b

en
ch

m
ar

k
fu

n
ct

io
n

s
w

as
u

se
d

fo
r

tu
n

in
g.

M
o
d
u
le

P
ar

a
N

am
e

T
y
p

e
D

om
ai

n
T

u
n
in

g
o
n

S
O

C
O

T
u
n
in

g
o
n

C
E

C
’0

5

A
C

O
R
-s

D
A

C
O

R
-s

IA
C

O
R
-M

ts
ls

1
-s

U
A

C
O

R
-s

A
C

O
R
-c

D
A

C
O

R
-c

IA
C

O
R
-M

ts
ls

1
-c

U
A

C
O

R
-c

M
o
d
e

D
ef
a
u
lt
M
od
e

c
{T

,
F
}

T
T

F
T

T
T

F
T

E
li
te
Q
b
e
s
t

r
[0

,
1]

*
*

0
.0

5
0
8

*
*

*
0
.7

9
7
4

*

D
ef

N
an

ts

In
it
A
S

i
[2

0,
10

0]
8
7

4
0

6
4
8

9
2

8
1

5
4

6
6

N
a
Is
A
S

c
{T

,
F
}

F
T

T
F

F
T

T
T

N
a

i
[2

,
20

]
2

*
*

1
6

1
4

*
*

*

S
ol

C
on

st
r

Q
b
e
s
t

r
[0

,
1]

0
0
.1

1
9
3

0
0
.1

8
9
5

0
0
.1

2
8
7

0
0
.5

3
5
1

W
ei
gh
tG

so
l

c
{T

,
F
}

T
F

F
T

T
F

F
F

q
r

(0
,

1)
0
.2

8
6
9

*
*

0
.2

5
9
1

0
.0

9
4
0
1

*
*

*

ξ
r

(0
,

1)
0
.7

1
8
7

0
.6

7
0
5

0
.8

7
8
2

0
.6

5
1
1

0
.6

9
9
8

0
.7

3
5
7

0
.9

1
6
4

0
.6

9
4
5

S
A

U
p

d
at

e
R
m
L
oc
a
lW

o
rs
e

c
{T

,
F
}

F
T

T
F

F
T

T
T

S
n
ew

vs
G
so
l

c
{T

,
F
}

*
F

T
*

*
F

T
T

L
S

L
sT

yp
e

c
{F
,P

ow
el

l,
M

ts
ls

1
}

F
F

M
ts

ls
1

M
ts

ls
1

F
F

M
ts

ls
1

M
ts

ls
1

L
sI
te
r

i
[1

,
10

0]
*

*
8
5

8
4

*
*

3
9

2
8

L
sF
a
il
u
re
s

i
[1

,
20

]
*

*
1

8
*

*
3

7

In
cA

rc
h

Is
In
cr
em

en
t

c
{T

,
F
}

F
F

T
T

F
F

T
T

G
ro
w
th
It
er

i
[1

,
30

]
*

*
4

4
*

*
1
0

1
3

R
es

ta
rt

M
ec

h

R
es
ta
rt
T
yp
e

c
{F
,1

st
,2

n
d
}

F
F

1
st

F
2
n

d
2
n

d
2
n

d
2
n

d

S
ta
gI
te
r

r
[1

,
10

00
]

*
*

1
8

*
9
3
9

3
1
3

6
1
1

S
ta
gT

h
re
sh

r
[-

15
,

0]
*

*
*

*
-3

.3
8
6

-2
.3

0
2

-3
.0

4
1

-2
.5

3
9

S
h
a
ke
fa
ct
o
r

r
[-

15
,

0]
*

*
*

*
-4

.9
9
3

-4
.1

6
3

-0
.0

4
9
7
9

-0
.0

2
0
6
1

R
es
ta
rt
A
S

i
[2

,
10

0]
*

*
*

*
6
6

7
1

3
1
0

*
d
en

ot
es

th
e

va
lu

e
of

th
e

p
ar

am
et

er
is

n
ot

re
le

va
n
t

fo
r

th
e

co
rr

es
p

o
n
d
in

g
a
lg

o
ri

th
m

.

51

3. UACOR: A UNIFIED ACO ALGORITHM FOR CONTINUOUS
OPTIMIZATION

b

Qbest >rand

WeightGsol

Set a guiding solution

Sample Gaussian around the guiding solution

Initialize and evaluate solution archive

T

RmLocalWorse

DefaultMode

T

End

Select Sbest

T

While termination criterion not satisfied

For (l = 1 to Na)

NaIsAS

Generate a new solution

F

Local search

Incremental archive mechnism

Begin

Na <= k

F

Remove Na worse solutions

Sort Na+AS solutions

Generate a new solution archive

Select Mode

Set number of ants

Set Na <= k
T

Select S by weight

F

Mtsls1

UACOR-s

T

Figure 3.2: UACOR-s is highlighted in the flowchart of UACOR.

52

b

Qbest >rand

WeightGsol

Set a guiding solution

Sample Gaussian around the guiding solution

Initialize and evaluate solution archive

RmLocalWorse

T

SnewvsGsol

DefaultMode

T

End

Select Sbest

T

While termination criterion not satisfied

For (l = 1 to Na)

NaIsAS

T

Generate a new solution

T

F

Local search

Incremental archive mechnism

Restart mechanism

Begin

F

Remove Na worse solutions

F

 Select lS

Generate a new solution archive

Select Mode

Set number of ants

 Na k

F

Snew vs. Gsol

Mtsls1

UACOR-c

2nd

T

Figure 3.3: UACOR-c is highlighted in the flowchart of UACOR.

53

3. UACOR: A UNIFIED ACO ALGORITHM FOR CONTINUOUS
OPTIMIZATION

3.4 Algorithm evaluation

In this section, we evaluate UACOR-s and UACOR-c on the 19 SOCO benchmark

functions of dimension 100 and 25 CEC’05 benchmark functions of dimensions

30 and 50. Each algorithm was independently run 25 times on each function.

Whenever a run obtains a new best error value, we record the number of function

evaluations used, and the new best error value. Following the rules of the SOCO

algorithm comparison, error values lower than 10−14 are approximated to 10−14

(10−14 is referred as optimum threshold for SOCO functions). For CEC’05 func-

tions, error values lower than 10−8 are approximated to 10−8 (10−8 is the optimum

threshold for CEC’05 functions). On each benchmark function of each dimension-

ality we compute the average error obtained by an algorithm. These average errors

on all test functions in each benchmark set (SOCO or CEC’05) are then used to

compare the algorithms’ performance. To analyze the results we first use a Fried-

man test at the 0.05 α-level to determine whether there are significant differences

among the algorithms compared [Conover, 1998]. In fact, in all cases the null hy-

pothesis of equal performance is rejected and we then determine the significance of

the difference between the algorithms of interest based on the computed minimum

difference between the sum of the ranks that is statistically significant.

Experiments on SOCO benchmark set

First, we compare UACOR-s with the three ACO algorithms, ACOR-s, DACOR-s

and IACOR-Mtsls1-s. The left plot of Figure 3.4 shows that UACOR-s improves

upon these ACO algorithms on the distribution of average errors across the 19

SOCO benchmark functions. In particular, UACOR-s performs statistically sig-

nificantly better than ACOR-s and DACOR-s. This test is based on the average

error values that are reported in Table 3.3. In fact, on 14 of the 19 functions the

average error obtained by UACOR-s is below the optimum threshold, while for

ACOR-s, DACOR-s and IACOR-Mtsls1-s such low average error values are only

obtained 0, 1, and 8 times, respectively. (The main responsible for the large

differences between the performance of ACOR-s and DACOR-s on one side and

UACOR-s and IACOR-Mtsls1-s on the other side is due to the usage or not of

a local search procedure to improve candidate solutions.) The larger number of

optimum thresholds reached also is the reason why UACOR-s has a lower 75th per-

centile than ACOR-Mtsls1-s. Only on three functions, on which UACOR-s does

not reach the optimum threshold, it obtains slightly worse average errors than

IACOR-Mtsls1-s.

54

A
C

O
r−

s

D
A

C
O

r−
s

IA
C

O
r−

m
ts

ls
1

−
s

U
A
C
O
R
−
s

1e−14

1e−09

1e−04

1e+01

1e+06

+ +
Optima 0 1 8 14

A
ve

ra
g
e

 E
rr

o
rs

 o
f

F
it
n

e
s
s
 V

a
lu

e

A
rc

h
S

iz
e

=
1

A
rc

h
S

iz
e
=

5
0

A
rc

h
S

iz
e
=

1
0

0

A
rc
h
S
iz
e
=
in
c

1e−14

1e−09

1e−04

1e+01

1e+06

+
Optima 6 8 9 14

A
ve

ra
g
e

 E
rr

o
rs

 o
f

F
it
n

e
s
s
 V

a
lu

e

Figure 3.4: The box-plots show the distribution of the average errors obtained
on the 19 SOCO benchmark functions of dimension 100. The left plot compares
the performance of UACOR-s with ACOR-s, DACOR-s and IACOR-Mtsls1-s. The
right plot shows the benefit of the incremental archive size used in UACOR-s. A
+ symbol on top of each box-plot denotes a statistically significant difference at
the 0.05 α-level between the results obtained by the indicated algorithm and those
obtained with UACOR-s. The absence of a symbol means that the difference is not
statistically significant. The numbers on top of a box-plot denote the number of the
averages below the optimum threshold 10−14 found by the indicated algorithms.

As a next step, we investigate the benefit of the incremental archive mechanism

used by UACOR-s when compared to a fixed archive size. The right boxplot of

Figure 3.4 shows that UACOR-s performs more effective than with archive sizes

fixed to 1, 50 and 100, respectively. (Note that for an archive size one, the resulting

algorithm is actually an iterated Mtsls1 local search algorithm [Tseng and Chen,

2008].) The differences are statistically significant for the archive sizes 1 and

the average errors of UACOR-s obtain the largest number of times the optimum

threshold number (14 versus 6, 8 and 9, respectively).

Finally, we compare UACOR-s with all 13 candidate algorithms published in

the SOCO special issue and to the three algorithms that were chosen as reference

algorithms.1 Figure 3.5 shows that UACOR-s performs statistically significantly

better than 10 other algorithms. Recall that IPOP-CMA-ES [Auger and Hansen,

1Information about these 16 algorithms is available at
http://sci2s.ugr.es/eamhco/CFP.php

55

3. UACOR: A UNIFIED ACO ALGORITHM FOR CONTINUOUS
OPTIMIZATION

D
E

C
H

C

IP
O

P
−

C
M

A
−

E
S

S
O

U
P

D
E

D
E

−
D

4
0

−
M

m

G
O

D
E

G
a

D
E

jD
E

ls
c
o

p

S
a

D
E

−
M

M
T

S

M
O

S
−

D
E

M
A

−
S

S
W

R
P

S
O

−
v
m

IP
S

O
−

P
o
w

e
ll

E
vo

P
R

O
p

t

E
M

3
2

3

V
X

Q
R

1

U
A
C
O
R
−
s

1e−14

1e−09

1e−04

1e+01

1e+06

+ + + + + + + + + +
Optima 6 0 2 8 9 6 9 10 12 13 8 4 5 0 4 5 14

A
ve

ra
g

e
 E

rr
o

rs
 o

f
F

it
n

e
s
s
 V

a
lu

e

16 algorithms in SOCO

Figure 3.5: The box-plots show the distribution of the average errors obtained on
the 19 SOCO benchmark functions of dimension 100. The results obtained by the
three reference algorithms (left), 13 algorithms (middle) published in SOCO and
UACOR-s (right) are shown on the left plot. The line at the bottom of the boxplot
represents the optimum threshold (10−14). A + symbol on top of the two box-
plot denotes a statistically significant difference at the 0.05 α-level between the
results obtained with the indicated algorithm and those obtained with UACOR-s
detected with a Friedman test and its associated post test on the 17 algorithms.
The absence of a symbol means that the difference is not significant. The numbers
on top of a box-plot denote the number of averages below the optimum threshold
10−14 found by the indicated algorithms.

2005] is considered to be a representative of the state-of-the-art for continuous

optimization and MA-SSW [Molina et al., 2010b, 2011] was the best performing

algorithm at the CEC’2010 competition on high-dimensional numerical optimiza-

tion. UACOR-s performs statistically significantly better than these two algo-

rithms. The best performing algorithm from the SOCO competition is MOS-DE

[LaTorre et al., 2011], an algorithm that combines differential evolution and the

Mtsls1 local search algorithm. It is noteworthy that UACOR-s performs compet-

itive to MOS-DE. Although UACOR-s does not obtain on more functions lower

average errors than MOS-DE than vice versa, UACOR-s gives on more functions

the zero threshold (14 versus 13).

56

Experiments on the CEC’05 benchmark set

We next evaluate UACOR-c on the CEC’05 benchmark set of dimension 30 and 50.

Tables 3.4 and 3.5 show the average error values across the 25 CEC’05 benchmark

functions obtained by UACOR-c, ACOR-c, DACOR-c, IACOR-Mtsls1-c, IPOP-

CMA-ES [Auger and Hansen, 2005] and other five recent state-of-the-art algo-

rithms.

Table 3.4 shows that UACOR-c gives across the 30 and 50 dimensional prob-

lems, on more functions lower average errors than ACOR-c, DACOR-c and IACOR-

Mtsls1-c than vice versa. Considering the average error values across all these

CEC’05 benchmark functions, UACOR-c performs statistically significantly better

than DACOR-c and IACOR-Mtsls1-c. It is important to highlight the following two

observations. First, UACOR-c significantly outperforms IACOR-Mtsls1-c on the

CEC’05 benchmarks while UACOR-s was superior to IACOR-Mtsls1-s but with-

out statistical significance. Second, the opposite happens with ACOR: ACOR-c

performs roughly on par with UACOR-c but ACOR-s is significantly outperformed

by UACOR-s on the SOCO benchmark set. (Recall that also ACOR and IACOR-

Mtsls1 were tuned for each of the benchmark sets.) In fact, the flexibility of UA-

COR makes it adaptable to each of the benchmark sets and allows it to outperform

other available ACO algorithms.

Of particular interest is the comparison between UACOR-c and IPOP-CMA-

ES, the data of which are taken from the literature [Auger and Hansen, 2005]. The

latter is an acknowledged state-of-the-art algorithm on the CEC’05 benchmark

set. UACOR-c shows competitive performance to IPOP-CMA-ES and it gives on

slightly more functions lower average errors than IPOP-CMA-ES than vice versa.

The average error values that correspond to a better result between UACOR-c and

IPOP-CMA-ES are highlighted in Table 3.4.

As a final step, we compare UACOR-c with five recent state-of-the-art contin-

uous optimization algorithms published since 2011. These reference algorithms in-

clude HDDE [Dorronsoro and Bouvry, 2011], Pro-JADE [Epitropakis et al., 2011],

Pro-SaDE [Epitropakis et al., 2011], Pro-DEGL [Epitropakis et al., 2011] and

ABC-MR [Akay and Karaboga, 2012]. In the original literature, these algorithms

were tested on the CEC’05 benchmark set for which the parameter values of the

algorithms were either set by experience or they were manually tuned. We di-

rectly obtain the data of the five algorithms on the CEC’05 benchmark set from

the original papers. Table 3.5 shows that UACOR-c gives on the 30 and 50 di-

mensional problems on more functions lower average errors than each of these five

57

3. UACOR: A UNIFIED ACO ALGORITHM FOR CONTINUOUS
OPTIMIZATION

state-of-the-art algorithms. For each algorithm, Table 3.6 summarizes the average

ranking, the number of times the optimum thresholds is reached and the number

of lowest average error values obtained across all six algorithms that are compared.

Although with the exception of ABC-MR the differences to these algorithms are

not found to be statistically significant (neither are the differences among these al-

gorithms statistically significant), it is a noteworthy result that UACOR-c obtains

the best average ranking, the highest number of optimum thresholds and that it

is the best performing algorithm for most functions.

Table 3.3: The average errors obtained by ACOR-s, DACOR-s, IACOR-Mtsls1-s,
MOS-DE and UACOR-s for each SOCO function. The numbers in parenthesis at
the bottom of the table represent the number of times an algorithm is better, equal or
worse, respectively, than UACOR-s. Error values lower than 10−14 are approximated
to 10−14. The average errors that correspond to a better result between MOS-DE
and UACOR-c are highlighted.

Dim fsoco ACOR-s DACOR-s IACOR-Mtsls1-s MOS-DE UACOR-s

100

fsoco1 5.32E−14 1.00E−14 1.00E−14 1.00E−14 1.00E−14
fsoco2 2.77E+01 3.82E+01 5.27E−12 2.94E−12 6.53E−12
fsoco3 1.96E+02 2.86E+03 4.77E+02 2.03E+01 3.81E+02
fsoco4 6.34E+02 3.89E+02 1.00E−14 1.00E−14 1.00E−14
fsoco5 2.96E−04 4.96E−01 1.00E−14 1.00E−14 1.00E−14
fsoco6 2.04E−08 3.49E+00 1.00E−14 1.00E−14 1.00E−14
fsoco7 9.94E−10 5.01E−01 1.00E−14 1.00E−14 1.00E−14
fsoco8 4.39E+04 2.28E+04 1.39E+00 9.17E−02 1.54E+00
fsoco9 4.78E+00 1.84E+02 1.62E−01 1.00E−14 1.00E−14
fsoco10 2.75E+00 2.09E+01 1.00E−14 1.00E−14 1.00E−14
fsoco11 3.96E+00 1.90E+02 1.67E−01 1.00E−14 1.00E−14
fsoco12 1.13E+01 2.39E+02 4.01E−02 1.00E−14 1.00E−14
fsoco13 1.47E+02 3.92E+02 4.19E+01 1.75E+01 9.31E+01
fsoco14 3.40E+02 2.40E+02 9.23E+00 1.68E−11 1.00E−14
fsoco15 5.89E−01 4.41E+00 1.00E−14 1.00E−14 1.00E−14
fsoco16 1.61E+00 4.18E+02 4.24E−01 1.00E−14 1.00E−14
fsoco17 6.27E+01 6.65E+02 8.40E+01 1.43E+01 5.30E+01
fsoco18 1.57E+01 1.17E+02 1.07E−01 1.00E−14 1.00E−14
fsoco19 1.48E+00 1.61E+01 1.00E−14 1.00E−14 1.00E−14

By fsoco (1, 0, 18)† (0, 1, 18)† (3, 8, 8) (5, 13, 1)

† denotes a significant difference between the corresponding algorithm and UACOR-s by a Fried-
man test at the 0,05 α-level over the distribution of average errors of ACOR-s, DACOR-s,
IACOR-Mtsls1-s and UACOR-s.

58

Table 3.4: The average errors obtained by ACOR-c, DACOR-c, IACOR-Mtsls1-c, IPOP-
CMA-ES and UACOR-c for each CEC’05 function. The numbers in parenthesis at the
bottom of the table represent the number of times an algorithm is better, equal or worse,
respectively, compared to UACOR-c. Error values lower than 10−8 are approximated to
10−8. The average errors that correspond to a better result between IPOP-CMA-ES and
UACOR-c are highlighted.

Dim fcec ACOR-c DACOR-c IACOR-Mtsls1-c IPOP-CMA-ES UACOR-c

30

fcec1 1.00E−08 1.00E−08 1.00E−08 1.00E−08 1.00E−08
fcec2 1.00E−08 4.74E+00 1.00E−08 1.00E−08 1.00E−08
fcec3 3.88E+05 4.21E+06 2.19E+05 1.00E−08 2.92E+05
fcec4 2.75E−04 2.62E+02 9.45E+03 1.11E+04 4.11E+03
fcec5 1.00E−08 1.00E−08 6.79E−08 1.00E−08 1.00E−08
fcec6 8.99E+00 2.50E+01 1.64E+02 1.00E−08 2.92E+01
fcec7 1.80E−02 1.54E−02 1.00E−02 1.00E−08 8.96E−03
fcec8 2.00E+01 2.02E+01 2.00E+01 2.01E+01 2.00E+01
fcec9 2.50E+01 6.35E+01 1.00E−08 9.38E−01 1.00E−08
fcec10 4.51E+01 6.58E+01 1.19E+02 1.65E+00 1.06E+02
fcec11 3.75E+01 3.19E+01 2.36E+01 5.48E+00 2.15E+01
fcec12 3.59E+03 1.92E+04 7.89E+03 4.43E+04 1.16E+04
fcec13 3.67E+00 4.57E+00 1.28E+00 2.49E+00 1.46E+00
fcec14 1.25E+01 1.34E+01 1.32E+01 1.29E+01 1.29E+01
fcec15 3.40E+02 3.28E+02 2.48E+02 2.08E+02 2.26E+02
fcec16 1.33E+02 1.93E+02 2.49E+02 3.50E+01 2.29E+02
fcec17 1.49E+02 1.81E+02 3.35E+02 2.91E+02 2.62E+02
fcec18 9.12E+02 9.07E+02 9.02E+02 9.04E+02 8.77E+02
fcec19 9.11E+02 9.07E+02 8.92E+02 9.04E+02 8.82E+02
fcec20 9.12E+02 9.07E+02 8.97E+02 9.04E+02 8.78E+02
fcec21 5.38E+02 5.00E+02 5.12E+02 5.00E+02 5.00E+02
fcec22 9.08E+02 8.70E+02 9.90E+02 8.03E+02 9.80E+02
fcec23 5.75E+02 5.35E+02 5.66E+02 5.34E+02 5.34E+02
fcec24 2.27E+02 7.85E+02 1.26E+03 9.10E+02 8.30E+02
fcec25 2.19E+02 2.31E+02 5.60E+02 2.11E+02 4.74E+02

50

fcec1 1.00E−08 1.00E−08 1.00E−08 1.00E−08 1.00E−08
fcec2 1.80E−04 2.61E+03 4.08E−07 1.00E−08 1.00E−08
fcec3 6.68E+05 6.72E+06 5.60E+05 1.00E−08 6.06E+05
fcec4 8.36E+03 4.69E+04 5.33E+04 4.68E+05 4.15E+04
fcec5 2.23E−05 2.02E−01 7.95E−07 2.85E+00 1.00E−08
fcec6 2.92E+01 5.18E+01 1.73E+02 1.00E−08 5.00E+01
fcec7 9.93E−03 1.08E−02 4.53E−03 1.00E−08 7.68E−03
fcec8 2.00E+01 2.02E+01 2.00E+01 2.01E+01 2.00E+01
fcec9 4.82E+01 1.15E+02 1.00E−08 1.39E+00 1.00E−08
fcec10 9.77E+01 1.42E+02 2.83E+02 1.72E+00 2.63E+02
fcec11 7.30E+01 5.81E+01 4.63E+01 1.17E+01 4.57E+01
fcec12 2.74E+04 1.07E+05 1.47E+04 2.27E+05 5.26E+04
fcec13 7.24E+00 1.06E+01 2.13E+00 4.59E+00 2.38E+00
fcec14 2.24E+01 2.29E+01 2.26E+01 2.29E+01 2.24E+01
fcec15 3.26E+02 3.61E+02 2.64E+02 2.04E+02 3.00E+02
fcec16 1.10E+02 1.64E+02 2.89E+02 3.09E+01 2.74E+02
fcec17 1.62E+02 2.45E+02 5.65E+02 2.34E+02 4.64E+02
fcec18 9.33E+02 9.26E+02 9.31E+02 9.13E+02 8.83E+02
fcec19 9.34E+02 9.27E+02 9.18E+02 9.12E+02 8.83E+02
fcec20 9.36E+02 9.27E+02 9.19E+02 9.12E+02 8.95E+02
fcec21 5.39E+02 9.82E+02 5.12E+02 1.00E+03 5.00E+02
fcec22 9.48E+02 9.07E+02 1.06E+03 8.05E+02 1.06E+03
fcec23 5.56E+02 1.02E+03 5.53E+02 1.01E+03 5.39E+02
fcec24 2.94E+02 9.06E+02 1.40E+03 9.55E+02 1.30E+03
fcec25 2.63E+02 3.39E+02 9.52E+02 2.15E+02 7.59E+02

By fcec (19, 7, 24) (14, 4, 32)† (8, 8, 34)† (20, 8, 22)

† denotes a significant difference between the corresponding algorithm and UACOR-s by a Friedman
test at the 0,05 α-level over the distribution of average errors of ACOR-c, DACOR-c, IACOR-Mtsls1-c
and UACOR-c.

59

3. UACOR: A UNIFIED ACO ALGORITHM FOR CONTINUOUS
OPTIMIZATION

Table 3.5: The average errors obtained by HDDE, Pro-JADE, Pro-SaDE, Pro-DEGL, ABC-MR
and UACOR-c for for each CEC’05 function. The numbers in parenthesis at the bottom of
the table represent the number of times an algorithm is better, equal or worse, respectively,
compared to UACOR-c. Error values lower than 10−8 are approximated to 10−8. The lowest
average errors values are highlighted.

Dim fcec HDDE Pro-JADE Pro-SaDE Pro-DEGL ABC-MR UACOR-c

30

fcec1 1.00E−08 1.00E−08 1.00E−08 1.00E−08 1.00E−08 1.00E−08
fcec2 8.13E+00 1.00E−08 1.00E−08 1.00E−08 1.00E−08 1.00E−08
fcec3 2.31E+06 1.85E+04 2.28E+06 4.20E+04 2.20E+05 2.92E+05
fcec4 1.33E+02 1.00E−08 2.00E−05 1.00E−08 1.00E−08 4.11E+03
fcec5 7.66E+02 5.90E+01 5.51E+01 1.91E+01 6.02E+03 1.00E−08
fcec6 3.19E+01 1.89E+01 1.36E+00 1.20E+00 1.38E+02 2.92E+01
fcec7 4.70E+03 4.70E+03 4.70E+03 4.69E+03 1.49E−02 8.96E−03
fcec8 2.09E+01 2.09E+01 2.10E+01 2.09E+01 2.09E+01 2.00E+01
fcec9 3.91E+00 1.00E−08 1.00E−08 3.58E+01 6.60E+01 1.00E−08
fcec10 6.01E+01 8.18E+01 1.01E+02 5.18E+01 2.01E+02 1.06E+02
fcec11 2.57E+01 3.01E+01 3.37E+01 2.01E+01 3.56E+01 2.15E+01
fcec12 7.86E+03 2.63E+04 1.48E+03 2.35E+04 9.55E+04 1.16E+04
fcec13 2.04E+00 3.32E+00 2.95E+00 3.40E+00 1.07E+01 1.46E+00
fcec14 1.27E+01 1.29E+01 1.31E+01 1.24E+01 1.88E−01 1.29E+01
fcec15 3.17E+02 3.71E+02 3.86E+02 3.53E+02 2.88E+02 2.26E+02
fcec16 8.58E+01 1.14E+02 6.97E+01 1.76E+02 3.06E+02 2.29E+02
fcec17 1.01E+02 1.45E+02 7.20E+01 1.60E+02 3.01E+02 2.62E+02
fcec18 9.03E+02 8.60E+02 8.56E+02 9.09E+02 8.12E+02 8.77E+02
fcec19 9.04E+02 8.90E+02 8.67E+02 9.10E+02 8.17E+02 8.82E+02
fcec20 9.04E+02 8.96E+02 8.52E+02 9.10E+02 8.23E+02 8.78E+02
fcec21 5.00E+02 5.06E+02 5.00E+02 6.79E+02 6.42E+02 5.00E+02
fcec22 8.76E+02 8.95E+02 9.09E+02 8.94E+02 9.04E+02 9.80E+02
fcec23 5.34E+02 5.00E+02 5.00E+02 6.77E+02 8.20E+02 5.34E+02
fcec24 2.00E+02 2.00E+02 2.00E+02 7.77E+02 2.01E+02 8.30E+02
fcec25 1.28E+03 1.67E+03 1.63E+03 1.64E+03 2.00E+02 4.74E+02

50

fcec1 1.00E−08 1.00E−08 1.00E−08 1.00E−08 1.00E−08 1.00E−08
fcec2 3.30E+02 1.00E−08 7.40E−04 1.00E−08 1.00E−08 1.00E−08
fcec3 4.44E+06 4.30E+04 7.82E+05 1.93E+05 1.13E+06 6.06E+05
fcec4 2.94E+03 3.19E−01 6.64E+01 1.08E−01 3.82E+02 4.15E+04
fcec5 3.22E+03 1.83E+03 1.95E+03 2.23E+03 1.03E+04 1.00E−08
fcec6 5.74E+01 1.04E+01 1.15E+01 8.77E−01 2.47E+03 5.00E+01
fcec7 6.20E+03 6.20E+03 6.20E+03 6.20E+03 8.10E−01 7.68E−03
fcec8 2.11E+01 2.10E+01 2.11E+01 2.11E+01 2.11E+01 2.00E+01
fcec9 1.87E+01 2.77E+01 6.61E−01 7.94E+01 2.59E+02 1.00E−08
fcec10 1.13E+02 1.99E+02 6.23E+01 9.24E+01 4.58E+02 2.63E+02
fcec11 5.19E+01 6.03E+01 6.61E+01 6.14E+01 7.03E+01 4.57E+01
fcec12 3.84E+04 9.45E+04 7.34E+03 6.32E+04 8.88E+05 5.26E+04
fcec13 4.36E+00 9.14E+00 6.90E+00 5.41E+00 3.50E+01 2.38E+00
fcec14 2.23E+01 2.26E+01 2.28E+01 2.26E+01 2.32E+01 2.24E+01
fcec15 2.62E+02 3.80E+02 3.96E+02 3.44E+02 2.52E+02 3.00E+02
fcec16 1.05E+02 1.44E+02 4.85E+01 1.63E+02 3.39E+02 2.74E+02
fcec17 1.15E+02 1.92E+02 9.36E+01 1.94E+02 3.08E+02 4.64E+02
fcec18 9.17E+02 9.26E+02 9.05E+02 9.28E+02 9.85E+02 8.83E+02
fcec19 9.16E+02 9.32E+02 8.97E+02 9.28E+02 9.70E+02 8.83E+02
fcec20 9.16E+02 9.33E+02 9.11E+02 9.29E+02 9.70E+02 8.95E+02
fcec21 7.37E+02 5.00E+02 5.00E+02 9.50E+02 8.34E+02 5.00E+02
fcec22 9.01E+02 9.49E+02 9.60E+02 9.28E+02 8.75E+02 1.06E+03
fcec23 7.85E+02 5.00E+02 5.06E+02 9.35E+02 5.71E+02 5.39E+02
fcec24 2.00E+02 2.00E+02 2.00E+02 6.81E+02 2.01E+02 1.30E+03
fcec25 1.37E+03 1.71E+03 1.69E+03 1.67E+03 2.01E+02 7.59E+02

By fcec (17, 4, 29) (19, 7, 24) (21, 6, 23) (18, 4, 28) (15, 4, 31)†

† denotes a significant difference between the corresponding algorithm and UACOR-c by a Friedman test at the
0,05 α-level over the distribution of average errors of HDDE, Pro-JADE, Pro-SaDE, Pro-DEGL, ABC-MR
and UACOR-c.

60

T
ab

le
3.

6:
G

iv
en

ar
e

th
e

av
er

ag
e

ra
n
k
,

th
e

n
u
m

b
er

of
op

ti
m

u
m

th
re

sh
ol

d
s

re
ac

h
ed

,
an

d
th

e
n
u
m

b
er

of
ti

m
es

th
e

lo
w

es
t

av
er

ag
e

er
ro

rs
re

ac
h
ed

b
y

ea
ch

al
go

ri
th

m
p
re

se
n
te

d
in

T
ab

le
3.

5.
In

ad
d
it

io
n
,
w

e
gi

ve
th

e
p
u
b
li
ca

ti
on

so
u
rc

e
fo

r
ea

ch
re

fe
re

n
ce

al
go

ri
th

m
.

A
lg

or
it

h
m

s
A

ve
ra

ge
R

an
k
in

g
N

u
m

of
O

p
ti

m
a

N
u

m
o
f

lo
w

es
t

av
er

a
g
e

er
ro

r
va

lu
es

P
u

b
li

ca
ti

o
n

S
o
u

rc
es

U
A

C
O

R
-c

3
.0

5
8

2
1

P
ro

-S
aD

E
3.

19
4

1
6

IE
E

E
T

E
C

,
2
0
1
1

P
ro

-J
A

D
E

3.
40

6
1
3

IE
E

E
T

E
C

,
2
0
1
1

H
D

D
E

3.
44

2
7

IE
E

E
T

E
C

,
2
0
1
1

P
ro

-D
E

G
L

3.
69

5
1
0

IE
E

E
T

E
C

,
2
0
1
1

A
B

C
-M

R
4.

23
5

1
3

In
fo

rm
a
ti

o
n

S
ci

en
ce

s,
2
0
1
2

61

3. UACOR: A UNIFIED ACO ALGORITHM FOR CONTINUOUS
OPTIMIZATION

3.5 UACOR+: Re-designed UACOR

Recently, a number of high-performing algorithms have been proposed that inte-

grate CMA-ES as a local search algorithm into another metaheuristic. Examples

of such approaches are a recent memetic algorithm [Molina et al., 2010a], the inte-

gration of CMA-ES into a PSO algorithm [Müller et al., 2009], or a DE algorithm

[Ghosh et al., 2012]. Such an approach is particularly relevant in case functions are

rotated because CMA-ES is invariant against linear transformations of the search

space. Clearly, this may also help the UACOR framework to improve results on

rotated functions, thus, mainly on the CEC benchmark set.

In this section, we re-design the UACOR algorithm by implementing CMA-ES

as a alternative local search procedure. We called this updated version UACOR+.

The initial population size of the CMA-ES is set to a random size between

λ = 4 + b3 ln(D)c and 23 × λ = 4 + b3 ln(D)c. The initial step size is kept

the same adaptive way as other local search methods. There are no fixed number

of iterations that are given to CMA-ES local search procedure. The CMA-ES local

search procedure run until one of the three stopping criteria [Auger and Hansen,

2005] is triggered. The three stopping criteria use three parameters stopTolFun-

Hist(= 10−20), stopTolFun(= 10−12) and stopTolX (= 10−12); they refer to the

improvement of the best objective function value in the last 10 + d30D/λe gener-

ations, the function values of the recent generation, and the standard deviation of

the normal distribution in all coordinates, respectively.

We repeat the automatic algorithm configuration for UACOR+ as in Section

3.3. The tuned parameter settings of UACOR+’s instantiations, UACOR+-s and

UACOR+-c are given in the appendix in Table A.1. The flowcharts of UACOR+-s

and UACOR+-c are given in the appendix in Fig. A.1 and A.2, page 133 and 134.

A sensible change is that UACOR+-s still uses Mtsls1 as local search procedure

and UACOR+-c uses CMA-ES as local search procedure. We repeat the same

experimental study for UACOR+ as those for UACOR. The experimental results

of UACOR+ are shown in Figures A.3 and A.4, Tables A.2, A.3, A.4 and A.5. We

summarize the main changes of the results of UACOR+ with respect to those of

UACOR as follows.

1. In the SOCO benchmark functions, the results of UACOR+-s becomes signif-

icantly better than those of ACOR-s, DACOR-s and IACOR-Mtsls1-s, while

the results of UACOR-s are only significantly better than those of ACOR-

s and DACOR-s ; UACOR+-s performs significantly better than 12 other

algorithms in SOCO, two more than UACOR-s does. The performance dif-

62

ference between UACOR-s and UACOR+-s is mainly caused by their slightly

different parameter values on the same UACOR instantiation, which were

obtained from a stochastic tuning procedure.

2. In the CEC’05 benchmark functions, the results of UACOR+-c are signifi-

cantly better than those of ACOR-c, DACOR-c and IACOR-Mtsls1-c, while

the results of UACOR-c are only significantly better than those of DACOR-c

and IACOR-Mtsls1-c; UACOR+-c also more often obtains the lower aver-

age error values than IPOP-CMA-ES than UACOR-c; UACOR+-c obtains

significantly better resuls than those obtained by HDDE , Pro-JADE, Pro-

SaDE , Pro-DEGL and ABC-MR, while UACOR-c only matches their results

when aggregated across the whole benchmark set.

Fig. 3.6 shows correlation plots that illustrate the relative performance for

UACOR-s and UACOR+-s on the SOCO benchmark set and for UACOR-c and

UACOR+-c on the CEC’05 benchmark set. There is no statistically significant dif-

ference between the results of UACOR-s and UACOR+-s. However, UACOR+-c

reaches statistically significantly better performance than UACOR-c. This com-

parison confirms our expectation of using CMA-ES as a alternative local search

procedure to improve results on rotated functions.

63

3. UACOR: A UNIFIED ACO ALGORITHM FOR CONTINUOUS
OPTIMIZATION

1e−14 1e−09 1e−04 1e+01 1e+06

1
e
−

1
4

1
e
−

0
9

1
e
−

0
4

1
e
+

0
1

1
e
+

0
6

UACOR
+
−s(opt 14)

U
A

C
O

R
−

s
 (

o
p

t
 1

4
)

f_id_opt

2

3

8

1317

−Win 4

−Lose 1

−Draw 14

Average Errors−SOCO

5e−01 1e+01 5e+025
e
−

0
1

5
e
+

0
1

3

8

13
17

1e−08 1e−05 1e−02 1e+01 1e+04

1
e
−

0
8

1
e
−

0
5

1
e
−

0
2

1
e
+

0
1

1
e
+

0
4

UACOR
+
−c(opt 13)

U
A

C
O

R
−

c
 (

o
p

t
 8

)

f_id_opt

3

4

6

7

8

9

10
11

12

13

14

1516 17
1819202122232425

28

29

31

32

33

34

35
36

37

38

39

404142 43444546
4748
4950

−Win 29 +

−Lose 10

−Draw 11

Average Errors−CEC05

1e−02 1e+021
e
−

0
2

1
e
+

0
2

(a) (b)

Figure 3.6: Correlation plots of UACOR-s and UACOR+-s on 19 SOCO function of
dimension 100, UACOR-c and UACOR+-c and 25 CEC’05 benchmark functions
over dimensions 30 and 50 (the indexes of 50 dimensional functions are labeled
from 26 to 50). Each point represents the average error value obtained by either
of the two algorithms. A point on the upper triangle delimited by the diagonal
indicates better performance for the algorithm on the x-axis; a point on the lower
right triangle indicates better performance for the algorithm on the y-axis. The
number labeled beside some outstanding points represent the index of the corre-
sponding function. The comparison is conducted based on average error values and
the comparison results of the algorithm on the x-axis are presented in the form of
-win, -draw, -lose, respectively. We marked with a + symbol those cases in which
there is a statistically significant difference at the 0.05 α-level between the algo-
rithms checked by a two-sided Wilcoxon matched-pairs signed-ranks test between
UACOR-s and UACOR+-s. The number of opt on the axes shows the number
of means that is lower than the zero threshold, obtained by the corresponding
algorithm.

64

3.6 Summary

In this chapter, we proposed UACOR, a unified ant colony framework, that inte-

grates algorithmic components from three previous ACO algorithms for continuous

optimization problems, ACOR [Socha and Dorigo, 2008], DACOR [Leguizamón and

Coello, 2010] and IACOR-LS [Liao et al., 2011b]. The UACOR framework is flex-

ible and allows the instantiation of new ACO algorithms for continuous optimiza-

tion through the exploitation of automatic algorithm configuration techniques. In

fact, in this way we can obtain from the available algorithmic components new

ACO algorithms that have not been considered or tested before.

In the experimental part of the chapter, we have shown that the combina-

tion of a flexible, unified algorithm for continuous optimization and automatic

algorithm configuration tools can be instrumental for generating new, very high

performing algorithms for continuous optimization. We have configured UACOR

using Iterated F-Race [Birattari et al., 2010], an automatic algorithm configura-

tion technique implemented in the irace package [López-Ibáñez et al., 2011], on

small dimensional training functions taken from two well-known benchmark sets,

the SOCO and the CEC’05 benchmark sets, for continuous optimization. The

computational results showed that the tuned UACOR algorithms obtain better

performance on each of the benchmark sets than the tuned variants of the three

ACO algorithms that underly the UACOR framework, namely ACOR, DACOR and

IACOR-LS. Moreover, when UACOR is automatically configured for the SOCO

benchmark set, it performs better or competitive to all the recent 16 algorithms

benchmarked on this benchmark set; when configured for the CEC’05 benchmark

set, it performs competitive to IPOP-CMA-ES, the acknowledged state-of-the-art

algorithm on this benchmark set and also competitive or superior to other five

recent high-performance continuous optimizers that were evaluated on this bench-

mark set.

Finally we proposed UACOR+, a re-designed and improved UACOR that now

also includes the option of using CMA-ES as a local search. The computational

results showed that the tuned UACOR+ algorithms statistically significantly im-

prove ACOR, DACOR and IACOR-LS on each of the benchmark sets. When

UACOR+ is automatically configured for the SOCO benchmark set, it performs

statistically significantly better than 12 of the recent 16 algorithms benchmarked

on this benchmark set. When configured for the CEC’05 benchmark set, it per-

forms superior to IPOP-CMA-ES and statistically significantly better than other

five recent high-performance continuous optimizers that were evaluated on this

65

3. UACOR: A UNIFIED ACO ALGORITHM FOR CONTINUOUS
OPTIMIZATION

benchmark set.

In summary, in this chapter we have proven the high potential ACO algorithms

have for continuous optimization and that automatic algorithm configuration has

a high potential also for the development of continuous optimizers out of algorithm

components. This should encourage also other researchers to apply such automatic

algorithm configuration techniques in the design of continuous optimizers.

66

Chapter 4

iCMAES-ILS: A cooperative competitive hybrid algo-
rithm for continuous optimization

The development of algorithms for tackling difficult, high-dimensional continu-

ous optimization problems (e.g. high-dimensional CEC’05 benchmark functions

[Suganthan et al., 2005]) is a main research theme in population based heuris-

tic algorithms. While initially pure algorithm strategies have been tested exten-

sively [Hansen and Ostermeier, 1996, 2001, Karaboga and Basturk, 2007, Kennedy

and Eberhart, 1995, Socha and Dorigo, 2008, Storn and Price, 1997], in the past

few years most newly proposed algorithms that reach state-of-the-art performance

combine elements from different algorithmic techniques, that is, they are hybrid

algorithms. A popular class of hybrid approaches embeds local optimizers into

global optimizers. Several examples that follow this approach use the covariance

matrix adaptation evolution strategy (CMA-ES) [Hansen and Ostermeier, 1996,

2001, Hansen et al., 2003] as a local optimizer and embed it into a real-coded

steady state genetic algorithm (SSGA) [Molina et al., 2010a], particle swarm op-

timization (PSO) [Müller et al., 2009], differential evolution (DE) [Ghosh et al.,

2012] or into the UACOR framework as done in the previous chapter, Section 3.5.

Alternative approaches include the definition of algorithm portfolios [Gomes and

Selman, 2001, Huberman et al., 1997] or the exploitation of algorithm selection

techniques [Bischl et al., 2012, Rice, 1976]. Peng et al. [Peng et al., 2010] define a

portfolio of four algorithms and do report, on few classical benchmark functions,

some improvements over IPOP-CMA-ES [Auger and Hansen, 2005]. More recently,

algorithm selection is being explored as one possible way to improve upon state-

of-the-art algorithms. One common way is to define problem features and based

on the measured feature values to choose an algorithm for final execution. This

approach has been followed by [Bischl et al., 2012], where features for continuous

optimization problems taken from [Mersmann et al., 2011] have been exploited.

67

4. ICMAES-ILS: A COOPERATIVE COMPETITIVE HYBRID ALGORITHM
FOR CONTINUOUS OPTIMIZATION

However, they conclude that the feature computation gives a significant overhead

leading to a situation that it may make this approach not advantageous.

In this chapter, we propose iCMAES-ILS, a structurally simple, hybrid al-

gorithm that loosely couples IPOP-CMA-ES with an iterated local search (ILS)

algorithm. The hybrid iCMAES-ILS algorithm consists of an initial competition

phase, in which IPOP-CMA-ES and the ILS algorithm compete for further execu-

tion in the deployment phase, where only one of the two algorithms is run until the

budget is exhausted. The initial competition phase features also a cooperative as-

pect between IPOP-CMA-ES and the ILS algorithm. In fact, first IPOP-CMA-ES

is run for a specific initial budget and the best solution found by IPOP-CMA-ES

is used to bias the acceptance decision in the ILS algorithm, which is run next for

a same initial budget as IPOP-CMA-ES.

We consider iCMAES-ILS to be a simple algorithm since the two algorithms

it is based upon can be seen as black boxes and the main design issue is on how

to interleave the execution of the two component algorithms. iCMAES-ILS is also

related to approaches for algorithm selection [Rice, 1976]. However, instead of

extracting sometimes complex problem features and then deciding upon which

algorithm to execute [Bischl et al., 2012], we use the performance of the two

component algorithms in an initial competition phase as the feature and then

directly employ the better one, thus, making again the design of iCMAES-ILS

very simple.

We also show that iCMAES-ILS is an effective algorithm that reaches (and

actually statistically significantly surpasses) state-of-the-art performance. As our

testbed, we use all 25 benchmark functions of 30 and 50 dimensions from the

CEC’05 benchmark [Suganthan et al., 2005]. We use this benchmark set to com-

pare iCMAES-ILS to its component algorithms, IPOP-CMA-ES and ILS, and also

to a number of alternative hybrids between IPOP-CMA-ES and ILS based on using

portfolios, interleaving the execution of IPOP-CMA-ES and ILS, and using ILS as

an improvement method between restarts of IPOP-CMA-ES. These comparisons

indicate that iCMAES-ILS reaches statistically significantly better performance

than almost all competitors and, thus, establishes our hybrid design as the most

performing one. Additional comparisons to two state-of-the-art CMA-ES hybrid

algorithms (MA-LSCh-CMA [Molina et al., 2010a] and PS-CMA-ES [Müller et al.,

2009]) further show statistically significantly better performance of iCMAES-ILS

over these competitors. In a final step, we tune iCMAES-ILS by applying irace

[López-Ibáñez et al., 2011] to examine the further performance improvements that

can be expected from a more careful fine-tuning of the algorithm parameters.

68

Overall, our experimental results establish iCMAES-ILS as a new state-of-the-art

algorithm for continuous optimization.

The chapter is organized as follows. Section 4.1 describes iCMAES-ILS. In

Section 4.2, we analyze, evaluate and compare iCMAES-ILS to results from the

literature. In Section 4.3, we further fine-tune iCMAES-ILS and examine the

further performance improvements. We end by some discussion and concluding

remarks in Sections 4.4 and 4.5.

4.1 iCMAES-ILS algorithm

The iCMAES-ILS algorithm build upon and extends IPOP-CMA-ES for continu-

ous optimization. The main details of the IPOP-CMA-ES algorithm have already

been described in Section 2.3.2 and we refer the reader to the details described

there. Next, we describe the ILS algorithm and then describe the hybrid iCMAES-

ILS algorithm.

4.1.1 ILS

Iterated local search [Lourenço et al., 2010] is a stochastic local search method

[Hoos and Stützle, 2005] that iterates between improvements through local search

and solution perturbations that are used to define new promising starting solutions

for a local search. An additional acceptance criterion decides from which candidate

solution the search is continued. Recently, iterated local search has been applied

to solve continuous optimization problems [Gimmler, 2005, Kramer, 2010] showing

very promising results. For this chapter, we present a new iterated local search

algorithm (labeled as ILS), where a high-performing derivative-free local search

algorithm for continuous optimization, Mtsls1 [Tseng and Chen, 2008], is used.

The Mtsls1 local search was chosen since it is a crucial component of several high-

performing algorithms for continuous optimization [LaTorre et al., 2011, Liao et al.,

2011b]. Mtsls1 iteratively searches along dimensions one by one in a certain step

size. If one Mtsls1 iteration does not find an improvement in any of the dimensions,

the next Mtsls1 iteration halves the search step size. For more details, we refer

back to Chapter 2, Section 2.1.1, page 17. Algorithm 3 gives an outline of the

proposed ILS algorithm. For purposes that are explained later, we use two input

solutions, S and Sbest; the behavior of a standard ILS algorithm [Lourenço et al.,

2010] would be obtained by setting S = Sbest. In our ILS algorithm, local search is

first executed generating a new solution Snew. If Snew is better than the best-so-far

69

4. ICMAES-ILS: A COOPERATIVE COMPETITIVE HYBRID ALGORITHM
FOR CONTINUOUS OPTIMIZATION

Algorithm 3 Outline of the ILS algorithm
Input: Candidate solution S, Sbest and termination criterion
Output: the best found solution

while termination criterion is not satisfied do
Snew ← LS (S, ss, LSIterations) /* Local search procedure */
if f(Snew) < f(Sbest) then
S ← Snew

Sbest ← Snew

else
S ← Srand + r × (Sbest − Srand) /* Perturbation */

end if
end while

solution Sbest, Snew undergoes a refinement local search (that is, no perturbation

is applied before calling the next time the local search procedure). Otherwise, the

local search continues from a solution obtained by perturbation. The perturbation

uses information from Sbest. It is biased towards the best-so-far solution Sbest using

S = srand + r× (Sbest−Srand), where Srand is a random solution and r is a random

number chosen uniformly at random in [0, 1).

4.1.2 iCMAES-ILS

iCMAES-ILS is a hybrid of IPOP-CMA-ES and ILS. iCMAES-ILS consists of two

phases, competition and deployment. In the competition phase, IPOP-CMA-ES

and ILS start from the same initial solution and are sequentially executed with the

same budget of function evaluations, CompBudget. After the competition phase,

the one of the two that found the better solution is deployed for the remaining

budget. Specifically, if ILS finds a better solution than IPOP-CMA-ES, iCMAES-

ILS applies ILS for the remaining budget. Otherwise, iCMAES-ILS restarts IPOP-

CMA-ES from the best-so-far solution with its initial default parameter settings.

The restart of IPOP-CMA-ES is triggered by the end of the competition phase,

that is, not due to the internal termination criterion of IPOP-CMA-ES; as we

will show in Section 4.2, this external restart trigger is beneficial to iCMAES-ILS’

performance.

In iCMAES-ILS, the input Sbest of ILS is set to the best-so-far solution returned

by the IPOP-CMA-ES. Thus, the competition phase in iCMAES-ILS includes also

some aspect of cooperation between the two algorithms implemented through the

transfer of a candidate solution from IPOP-CMA-ES to ILS. The transferred can-

didate solution influences the search behavior of ILS by biasing the acceptance

decision and the perturbation. In an independent ILS algorithm, which we will

use as a reference for comparison, the input Sbest is set to the same as the input

70

Algorithm 4 Outline of iCMAES-ILS
Input: Candidate solution S and termination criterion (TotalBudget)
Output: the best found solution
CompBudget← compr × TotalBudget
Sbest ← IPOP-CMA-ES (S, CompBudget)
S′best ← ILS (S, Sbest, CompBudget)
/* Heuristic deployment */
if f(S′best < f(Sbest) then

ILS (S′best, S
′
best, TotalBudget−2×CompBudget) /* ILS found better solution than IPOP-

CMA-ES */
else

IPOP-CMA-ES (Sbest, TotalBudget−2×CompBudget) /* IPOP-CMA-ES found better so-
lution than ILS */

end if

Evaluate fitness values

Remark:
If（ILS better)
 deploy ILS from best-so-far solution
Else
 restart IPOP-CMA-ES from best-so-far solution

Start from one solution

Transfer fitness value

Remark:
The input Sbest of ILS is
assigned to the best-so-far
solution returned by
IPOP-CMA-ES

Figure 4.1: A schematic view of iCMAES-ILS in the perspective of optimization
process.

candidate solution S. We set CompBudget= compr×TotalBudget, where Total-

Budget is the maximum number of function evaluations in each algorithm run. As

default, we use compr = 0.1. An outline and a schematic view of iCMAES-ILS is

given in Algorithm 4 and Fig. 4.1, respectively.

4.2 Algorithm analysis and evaluation

Experimental setup

Our test-suite consists of 25 CEC’05 benchmark functions (functions labeled as

fcec∗) of dimensions 30 and 50. We followed the protocol described in [Suganthan

et al., 2005] for the CEC’05 test-suite, that is, the maximum number of function

evaluations is 10 000×D. The investigated algorithms were independently run 25

71

4. ICMAES-ILS: A COOPERATIVE COMPETITIVE HYBRID ALGORITHM
FOR CONTINUOUS OPTIMIZATION

Table 4.1: Given are the default parameter settings of iCMAES-ILS. (B − A) is
the size of the initial search interval. TotalBudget is the maximum number of
function evaluations.

Algorithm Components Parameter settings

IPOP-CMA-ES

Init pop size: λ0 = 4 + b3 ln(D)c
Parent size: µ = bλ/2c

Init step size: σ0 = 0.5× (B −A)
IPOP factor: ipop = 2

stopTolFun = 10−12

stopTolFunHist = 10−20

stopTolX = 10−12

ILS LSIterations = 1.5×D

Competition Design compr = 0.1

times on each function. We report error values defined as f(S)−f(S∗), where S is

a candidate solution and S∗ is the optimal solution. Error values lower than 10−8

are clamped to 10−8, which is used as the zero threshold. To ensure that the final

solution obtained by iCMAES-ILS is inside the bounds, the bound constraints of

the benchmark functions are enforced by clamping the variable of each generated

solution that violates the bound constraints to the nearest value on the bounds

before evaluating a solution. Our analysis considers the average errors on each

function, and the distribution of the average errors on the CEC’05 benchmark

function set over dimensions 30 and 50. We apply the Friedman test at the 0.05

α-level to check whether the differences in the average rank values obtained by

multiple algorithms over the CEC’05 benchmark functions is statistically signifi-

cant. The parameter settings used for iCMAES-ILS are listed in Table 4.1. The

parameter settings of IPOP-CMA-ES and ILS in iCMAES-ILS are the same as the

default IPOP-CMA-ES and ILS algorithms, respectively.

4.2.1 Algorithm analysis: the role of ILS

As a first indication of performance, we present in Table 4.2 the average errors

by ILS, IPOP-CMA-ES, and iCMAES-ILS for 25 CEC’05 function of dimension

50. Interestingly, iCMAES-ILS obtains lower average errors than ILS and IPOP-

CMA-ES on most of the functions: iCMAES-ILS finds 19 lowest average error

values while ILS and IPOP-CMA-ES find 7 and 10, respectively. These results

indicate that iCMAES-ILS finds better results than its component algorithms,

that is, it shows some synergetic effect through the hybrid design.

Next, we analyze the role of ILS in iCMAES-ILS on the 18 benchmark functions

72

of dimension 50, where iCMAES-ILS obtained either a better or a worse average

error than IPOP-CMA-ES alone. On a per function basis, Fig. 4.2 shows the

development of the average error for IPOP-CMA-ES and iCMAES-ILS over the

number of function evaluations (also called SQT curves [Hoos and Stützle, 2005]

for solution quality over time). The ILS phase in iCMAES-ILS is shown between

the two vertically dotted lines in the SQT curves for iCMAES-ILS. It is observed

that in functions fcec8, fcec12, fcec13, fcec14, fcec15, fcec21, fcec23, fcec25, where the

average error after the ILS execution is lower than after executing IPOP-CMA-ES,

iCMAES-ILS strongly improves upon IPOP-CMA-ES w.r.t. final average solution

quality. Only for functions fcec6, fcec9, the improvement by ILS does not lead to a

final improvement of iCMAES-ILS over IPOP-CMA-ES. For functions fcec4, fcec11,

fcec16, fcec17, fcec18, fcec22, ILS does not find any further improvement over IPOP-

CMA-ES. However, the external restart triggered through the end of the ILS phase

seems to be helpful, as indicated by the very good performance of iCMAES-ILS

w.r.t. IPOP-CMA-ES on these functions. Specially in functions fcec4 and fcec17,

we can observe that the external restart trigger obviously helps. In fact, on these

two functions IPOP-CMA-ES would not restart according to its internal restart

criterion and, thus, stagnate on high average error values. Only for functions fcec5,

fcec10, the restart trigger does not help. Table 4.3 summarizes our observations.

73

4. ICMAES-ILS: A COOPERATIVE COMPETITIVE HYBRID ALGORITHM
FOR CONTINUOUS OPTIMIZATION

Table 4.2: The average errors obtained by ILS, IPOP-CMA-ES, and
iCMAES-ILS for each CEC’05 benchmark function of dimension 50.
Error values lower than 10−8 are approximated to 10−8. The lowest
average error values are highlighted.

fcec ILS IPOP-CMA-ES iCMAES-ILS

fcec1 1.00E−08 1.00E−08 1.00E−08
fcec2 1.00E−08 1.00E−08 1.00E−08
fcec3 2.56E+05 1.00E−08 1.00E−08
fcec4 9.28E+04 1.72E+04 1.11E+04
fcec5 1.48E+04 6.25E−02 6.40E−01
fcec6 8.19E+01 1.00E−08 1.04E+01
fcec7 4.63E−03 1.00E−08 1.00E−08
fcec8 2.00E+01 2.09E+01 2.00E+01
fcec9 1.99E−01 4.37E+00 4.41E+00
fcec10 4.58E+02 2.26E+00 5.35E+00
fcec11 4.86E+01 9.24E−03 1.00E−08
fcec12 1.43E+04 4.25E+04 2.25E+04
fcec13 2.28E+00 4.44E+00 2.50E+00
fcec14 2.36E+01 2.28E+01 2.27E+01
fcec15 2.26E+02 2.00E+02 1.40E+02
fcec16 3.80E+02 1.21E+01 1.15E+01
fcec17 9.87E+02 2.12E+02 1.80E+02
fcec18 1.05E+03 9.13E+02 9.12E+02
fcec19 1.01E+03 9.14E+02 9.14E+02
fcec20 1.03E+03 9.15E+02 9.15E+02
fcec21 5.48E+02 6.55E+02 5.00E+02
fcec22 1.31E+03 8.20E+02 8.16E+02
fcec23 6.09E+02 6.97E+02 5.39E+02
fcec24 2.00E+02 2.00E+02 2.00E+02
fcec25 2.19E+02 2.14E+02 2.13E+02

No.lowest values 7 10 19

Table 4.3: Summary of the impact of ILS on iCMAES-ILS performance over 25
independent runs. Success (Failure) denotes that iCMAES-ILS does (not) finally
improve upon IPOP-CMA-ES. The percentage of runs in which ILS obtains an
improvement over IPOP-CMA-ES is given in the parenthesis.

ILS improvement⇒Success fcec8(100%), fcec12(12%), fcec13(80%), fcec14(28%), fcec15(48%),
fcec21(24%), fcec23(72%), fcec25(4%)

ILS stagnation ⇒Success fcec4, fcec11, fcec16, fcec17, fcec18, fcec22
ILS improvement⇒Failure fcec6(56%), fcec9(44%)
ILS stagnation ⇒Failure fcec5, fcec10

Remark: if ILS improves, iCMAES-ILS deploys ILS for the remaining budget.
If ILS does not improve over the best solution found by IPOP-CMA-
ES so far, iCMAES-ILS restarts IPOP-CMA-ES for the remaining
budget.

74

0e+00 1e+05 2e+05 3e+05 4e+05 5e+05

2
e
+

0
4

5
e
+

0
4

1
e
+

0
5

Function evaluations

A
ve

ra
g

e
 e

rr
o

rs
 o

f
fi
tn

e
s
s
 v

a
lu

e
s

2
e
+

0
4

5
e
+

0
4

1
e
+

0
5

IPOP−CMA−ES

iCMAES−ILS

f4−50D

0e+00 1e+05 2e+05 3e+05 4e+05 5e+05

1
e
−

0
1

1
e
+

0
1

1
e
+

0
3

1
e
+

0
5

Function evaluations

A
ve

ra
g

e
 e

rr
o

rs
 o

f
fi
tn

e
s
s
 v

a
lu

e
s

1
e
−

0
1

1
e
+

0
1

1
e
+

0
3

1
e
+

0
5

IPOP−CMA−ES

iCMAES−ILS

f5−50D

0e+00 1e+05 2e+05 3e+05 4e+05 5e+051
e
−

0
8

1
e
−

0
3

1
e
+

0
2

1
e
+

0
7

1
e
+

1
2

Function evaluations

A
ve

ra
g

e
 e

rr
o

rs
 o

f
fi
tn

e
s
s
 v

a
lu

e
s

1
e
−

0
8

1
e
−

0
3

1
e
+

0
2

1
e
+

0
7

1
e
+

1
2

IPOP−CMA−ES

iCMAES−ILS

f6−50D

0e+00 1e+05 2e+05 3e+05 4e+05 5e+05

2
0
.0

2
0
.5

2
1
.0

2
1
.5

Function evaluations

A
ve

ra
g

e
 e

rr
o

rs
 o

f
fi
tn

e
s
s
 v

a
lu

e
s

2
0
.0

2
0
.5

2
1
.0

2
1
.5

IPOP−CMA−ES

iCMAES−ILS

f8−50D

0e+00 1e+05 2e+05 3e+05 4e+05 5e+05

5
1
0

2
0

5
0

1
0
0

Function evaluations

A
ve

ra
g

e
 e

rr
o

rs
 o

f
fi
tn

e
s
s
 v

a
lu

e
s

5
1
0

2
0

5
0

1
0
0

IPOP−CMA−ES

iCMAES−ILS

f9−50D

0e+00 1e+05 2e+05 3e+05 4e+05 5e+05

2
5

2
0

5
0

2
0
0

1
0
0
0

Function evaluations

A
ve

ra
g

e
 e

rr
o

rs
 o

f
fi
tn

e
s
s
 v

a
lu

e
s

2
5

2
0

5
0

2
0
0

1
0
0
0

IPOP−CMA−ES

iCMAES−ILS

f10−50D

0e+00 1e+05 2e+05 3e+05 4e+05 5e+051
e
−

0
8

1
e
−

0
5

1
e
−

0
2

1
e
+

0
1

Function evaluations

A
ve

ra
g

e
 e

rr
o

rs
 o

f
fi
tn

e
s
s
 v

a
lu

e
s

1
e
−

0
8

1
e
−

0
5

1
e
−

0
2

1
e
+

0
1 IPOP−CMA−ES

iCMAES−ILS

f11−50D

0e+00 1e+05 2e+05 3e+05 4e+05 5e+05

4
e
+

0
4

6
e
+

0
4

1
e
+

0
5

Function evaluations

A
ve

ra
g

e
 e

rr
o

rs
 o

f
fi
tn

e
s
s
 v

a
lu

e
s

4
e
+

0
4

6
e
+

0
4

1
e
+

0
5

IPOP−CMA−ES

iCMAES−ILS

f12−50D

0e+00 1e+05 2e+05 3e+05 4e+05 5e+05

4
6

8
1
0

Function evaluations

A
ve

ra
g

e
 e

rr
o

rs
 o

f
fi
tn

e
s
s
 v

a
lu

e
s

4
6

8
1
0

IPOP−CMA−ES

iCMAES−ILS

f13−50D

0e+00 1e+05 2e+05 3e+05 4e+05 5e+05

2
2
.8

2
3
.0

2
3
.2

2
3
.4

Function evaluations

A
ve

ra
g

e
 e

rr
o

rs
 o

f
fi
tn

e
s
s
 v

a
lu

e
s

2
2
.8

2
3
.0

2
3
.2

2
3
.4

IPOP−CMA−ES

iCMAES−ILS

f14−50D

0e+00 1e+05 2e+05 3e+05 4e+05 5e+05

1
4
0

1
6
0

1
8
0

2
0
0

2
4
0

Function evaluations

A
ve

ra
g

e
 e

rr
o

rs
 o

f
fi
tn

e
s
s
 v

a
lu

e
s

1
4
0

1
6
0

1
8
0

2
0
0

2
4
0

IPOP−CMA−ES

iCMAES−ILS

f15−50D

0e+00 1e+05 2e+05 3e+05 4e+05 5e+05

2
0

5
0

1
0
0

Function evaluations

A
ve

ra
g

e
 e

rr
o

rs
 o

f
fi
tn

e
s
s
 v

a
lu

e
s

2
0

5
0

1
0
0

IPOP−CMA−ES

iCMAES−ILS

f16−50D

0e+00 1e+05 2e+05 3e+05 4e+05 5e+05

1
8
0

1
9
0

2
0
0

2
1
0

2
2
0

2
3
0

Function evaluations

A
ve

ra
g

e
 e

rr
o

rs
 o

f
fi
tn

e
s
s
 v

a
lu

e
s

1
8
0

1
9
0

2
0
0

2
1
0

2
2
0

2
3
0

IPOP−CMA−ES

iCMAES−ILS

f17−50D

0e+00 1e+05 2e+05 3e+05 4e+05 5e+05

9
1
5

9
2
0

9
2
5

9
3
0

Function evaluations

A
ve

ra
g

e
 e

rr
o

rs
 o

f
fi
tn

e
s
s
 v

a
lu

e
s

9
1
5

9
2
0

9
2
5

9
3
0

IPOP−CMA−ES

iCMAES−ILS

f18−50D

0e+00 1e+05 2e+05 3e+05 4e+05 5e+05

6
0
0

8
0
0

1
2
0
0

1
6
0
0

Function evaluations

A
ve

ra
g

e
 e

rr
o

rs
 o

f
fi
tn

e
s
s
 v

a
lu

e
s

6
0
0

8
0
0

1
2
0
0

1
6
0
0

IPOP−CMA−ES

iCMAES−ILS

f21−50D

0e+00 1e+05 2e+05 3e+05 4e+05 5e+05

8
2
0

8
4
0

8
6
0

8
8
0

9
0
0

9
2
0

Function evaluations

A
ve

ra
g

e
 e

rr
o

rs
 o

f
fi
tn

e
s
s
 v

a
lu

e
s

8
2
0

8
4
0

8
6
0

8
8
0

9
0
0

9
2
0

IPOP−CMA−ES

iCMAES−ILS

f22−50D

0e+00 1e+05 2e+05 3e+05 4e+05 5e+05

6
0
0

8
0
0

1
2
0
0

1
6
0
0

Function evaluations

A
ve

ra
g

e
 e

rr
o

rs
 o

f
fi
tn

e
s
s
 v

a
lu

e
s

6
0
0

8
0
0

1
2
0
0

1
6
0
0

IPOP−CMA−ES

iCMAES−ILS

f23−50D

0e+00 1e+05 2e+05 3e+05 4e+05 5e+05

2
1
3
.5

2
1
4
.0

2
1
4
.5

2
1
5
.0

Function evaluations

A
ve

ra
g

e
 e

rr
o

rs
 o

f
fi
tn

e
s
s
 v

a
lu

e
s

2
1
3
.5

2
1
4
.0

2
1
4
.5

2
1
5
.0

IPOP−CMA−ES

iCMAES−ILS

f25−50D

Figure 4.2: SQT curves of IPOP-CMA-ES and iCMAES-ILS. The ILS phase in
iCMAES-ILS is shown between the two vertically dotted lines.

75

4. ICMAES-ILS: A COOPERATIVE COMPETITIVE HYBRID ALGORITHM
FOR CONTINUOUS OPTIMIZATION

4.2.2 Performance evaluation of iCMAES-ILS

As a next step, we compare the performance of iCMAES-ILS to a number of al-

ternative possibilities that include using ILS and IPOP-CMA-ES as standalone

algorithms, defining combinations between IPOP-CMA-ES and ILS, and algo-

rithms that integrate CMA-ES into other global optimization methods. We next

introduce the other combinations of ILS and IPOP-CMA-ES and the CMA-ES

hybrids.

1. We designed three different combinations between IPOP-CMA-ES and

ILS. They are labeled as iCMAES-ILS-portfolio, iCMAES-ILS-relay and

iCMAES-LTH-ILS, respectively. iCMAES-ILS-portfolio is a portfolio-based

algorithm, in which ILS and IPOP-CMA-ES run in parallel each with half

of TotalBudget. iCMAES-ILS-relay follows a high-level relay hybrid scheme

[Talbi, 2002], in which ILS relays IPOP-CMA-ES in a number of cycles, in

which ILS and IPOP-CMA-ES use in each run relayP × TotalBudget eval-

uations until the total budget is exhausted. iCMAES-LTH-ILS follows a

low-level teamwork hybrid (LTH) scheme [Talbi, 2002], where ILS is embed-

ded as a local search procedure before IPOP-CMA-ES restarts; ILS uses in

each of its runs lsP×TotalBudget evaluations. We test values of relayP and

lsP ∈ {0.01, 0, 025, 0.05, 0.1, 0.25, 0.5}. A schematic view of iCMAES-ILS-

portfolio, iCMAES-ILS-relay and iCMAES-LTH-ILS is shown in Fig.4.3.

2. We compare iCMAES-ILS also to results obtained from two state-of-the-art

algorithms, MA-LSCh-CMA [Molina et al., 2010a] and PS-CMA-ES [Müller

et al., 2009], which use CMA-ES as a local search method and to the re-

sults of IPOP-CMA-ES-cec05 [Auger and Hansen, 2005]. In MA-LSCh-CMA

[Molina et al., 2010a], CMA-ES is used as a local search procedure, and

SSGA [Herrera et al., 1998] is specifically designed for diversification. In PS-

CMA-ES [Müller et al., 2009], multiple instances of CMA-ES concurrently

explore different search space regions and exchange information as the par-

ticle swarm does, then adapt the search direction and distribution in each

CMA-ES instance. Recall that IPOP-CMA-ES-cec05 are the results for the

CEC’05 benchmark functions taken from [Auger and Hansen, 2005]; IPOP-

CMA-ES-cec05 is a Matlab version of IPOP-CMA-ES and it handles bound

constraints by an approach based on penalty functions, which is described

in [Hansen et al., 2009c].

76

ILS

iCMAES
1. iCMAES-ILS-Portfolio

ILS

iCMAES2. iCMAES-ILS-Relay iCMAES

ILS

iCMAES
3. iCMAES-LTH-ILS

ILSILS

Before restart

Figure 4.3: A schematic view of three combinations of IPOP-CMA-ES and ILS we
used as comparison to our hybrid design. The empty points denote solutions that
are transferred between IPOP-CMA-ES and ILS.

Table 4.4 gives average algorithm rankings on the CEC’05 benchmark function

set over dimensions 30 and 50. We carry out a Friedman test at the 0.05 α-level

to check for the significance of the differences between the best ranked algorithm

and the others. The results of the Friedman tests are given in the last column of

Table 4.4. ∆Rα is the minimum significant difference between the algorithms. The

numbers in parenthesis are the differences of the sum of ranks relative to the best

algorithm. Algorithms that are significantly worse than the best ranked algorithm

are indicated in bold face. The experimental results identify iCMAES-ILS as the

best ranked algorithm. In particular, iCMAES-ILS performs statistically signifi-

cantly better than (i) its component algorithms IPOP-CMA-ES and ILS; (ii) most

other hybrid algorithms including iCMAES-ILS-portfolio, the worst three ranked

iCMAES-ILS-relay variants and all variants of iCMAES-LTH-ILS; (iii) various al-

gorithms from literature, namely MA-LSCh-CMA [Molina et al., 2010a], PS-CMA-

ES [Müller et al., 2009] and IPOP-CMA-ES-cec05 [Auger and Hansen, 2005]. No

statistically significant difference was found between iCMAES-ILS and the best

three ranked iCMAES-ILS-relay variants, which indicates that iCMAES-ILS-relay

with few cycles reaches promising performance.

The detailed average error values of MA-LSCh-CMA, PS-CMA-ES, IPOP-

CMA-ES-cec05 and iCMAES-ILS are given in Table 4.8 (results for the other

algorithms are given in the supplementary material http://iridia.ulb.ac.be/

supp/IridiaSupp2012-017. It is observed that on the uni-model functions (fcec1

to fcec5) over dimension 30 and 50, iCMAES-ILS performs better than IPOP-

77

http://iridia.ulb.ac.be/supp/IridiaSupp2012-017
http://iridia.ulb.ac.be/supp/IridiaSupp2012-017

4. ICMAES-ILS: A COOPERATIVE COMPETITIVE HYBRID ALGORITHM
FOR CONTINUOUS OPTIMIZATION

CMA-ES-cec05 on more functions than vice-versa. It indicates that iCMAES-ILS

improves the performance of IPOP-CMA-ES-cec05 on both multi-modal and uni-

model functions. In contrast, MA-LSCh-CMA and PS-CMA-ES cannot match

such a good performance. Both perform worse than IPOP-CMA-ES on the uni-

model functions. In particular, we compare iCMAES-ILS and IPOP-CMA-ES-

cec05. A two-sided Wilcoxon matched-pairs signed-rank test at the 0.05 α-level

is used to check whether the differences in the distribution of the average re-

sults obtained by the two algorithms are statistically significant. Table 4.5 shows

that iCMAES-ILS statistically significantly improves upon IPOP-CMA-ES-cec05

on the CEC’05 benchmark set over dimensions 30 and 50 and on each of them. To

the best of our knowledge, no other algorithm in the literature of the affine fields

such as Particle Swarm Optimization (PSO) [Kennedy and Eberhart, 1995], Dif-

ferential Evolution (DE) [Storn and Price, 1997] and Artificial Bee Colony (ABC)

[Karaboga and Basturk, 2007] has obtained statistically significantly better results

than IPOP-CMA-ES-cec05 across the whole (that is, not only across a subset of

the) CEC’05 benchmark set.

4.3 A tuned version of iCMAES-ILS

In this section, we examine how much iCMAES-ILS further profits from a fine-

tuning of its parameters through automatic algorithm configuration techniques.

4.3.1 Automatic algorithm configuration

For the fine-tuning, we again employ iterated F-race [Birattari et al., 2010], a rac-

ing algorithm for algorithm configuration that is included in the publicly available

irace package [López-Ibáñez et al., 2011].1 For tuning iCMAES-ILS, we con-

sider different variants of ILS, in particular, a tunable perturbation mechanism

that biases towards the best solution. This mechanism follows the original equa-

tion S = Srand + r × (Sbest − Srand), but r is now a random number uniformly

distributed in [BiasExtent, 1), where BiasExtent is a tunable continuous parame-

ter, 0 ≤ BiasExtent < 1. If BiasExtent = 0, the perturbation mechanism is same as

the default in iCMAES-ILS. As the value of BiasExtent increases, an increasingly

strong bias towards the best solution is induced. We also consider a tunable initial

step size of ILS. This size is set to ssr times the initial search range, where ssr is a

1For details on the working of iterated F-race we refer to [Birattari et al., 2010] and the user
guide in [López-Ibáñez et al., 2011]. See also Section 2.4.1 for some more details.

78

Table 4.4: The average ranks with respect to the average error values are given.
The Friedman test at significance level α = 0.05 is used. ∆Rα is the minimum
significant difference 95.05. The numbers in parenthesis are the difference of the
sum of ranks relative to the best algorithm iCMAES-ILS. Algorithms that are
significantly different from iCMAES-ILS are indicated in bold face.

Algorithms Average Rank (∆R)

Proposed iCMAES-ILS 7.28 (0)

Component algorithms
IPOP-CMA-ES 9.79 (125.5)
ILS 14.39 (355.5)

Other hybrids

iCMAES-ILS-portfolio 9.29 (100.5)

iCMAES-ILS-relay-025 8.15 (43.5)
iCMAES-ILS-relay-01 8.52 (62.0)
iCMAES-ILS-relay-05 8.69 (70.5)
iCMAES-ILS-relay-0025 9.68 (120.0)
iCMAES-ILS-relay-005 9.86 (129.0)
iCMAES-ILS-relay-001 11.63 (217.5)

iCMAES-LTH-ILS-025 9.46 (109.0)
iCMAES-LTH-ILS-01 9.70 (121.0)
iCMAES-LTH-ILS-005 9.78 (125.0)
iCMAES-LTH-ILS-05 9.90 (131.0)
iCMAES-LTH-ILS-0025 10.28 (150.0)
iCMAES-LTH-ILS-001 10.33 (152.5)

Literature
PS-CMA-ES 9.95 (133.5)
IPOP-CMA-ES-cec05 11.53 (212.5)
MA-LSCh-CMA 11.79 (225.5)

tunable continuous parameter, 0 < ssr ≤ 1. In total, we expose eleven parameters

that directly control internal parameters of iCMAES-ILS. These eleven parame-

ters are given in Table 4.7, together with the internal parameter of iCMAES-ILS

controlled by each of them, their default value and the range considered for tuning.

The setting of iterated F-race we used are the default [López-Ibáñez et al.,

2011]. The budget of each run of iterated F-race is set to 5 000 runs of iCMAES-

ILS. The performance measure is the fitness error value of each instance. Iterated

F-race handles two parameter types of iCMAES-ILS, continuous (r) and ordinal

(o). The inputs are the parameter ranges given in Table 4.7 and a set of training

instances.

As the training instances, we follow [Liao et al., 2013a] and consider a separa-

tion between training and test set to prevent the bias of the results due to poten-

tially overtuning iCMAES-ILS. We use the 10-dimensional benchmark functions

from the recent special issue of the Soft Computing journal (labeled as SOCO)

[Herrera et al., 2010, Lozano et al., 2011]. This SOCO benchmark set consists of

79

4. ICMAES-ILS: A COOPERATIVE COMPETITIVE HYBRID ALGORITHM
FOR CONTINUOUS OPTIMIZATION

Table 4.5: The numbers in parenthesis represent the number of times IPOP-
CMA-ES-cec05 is better, equal or worse, respectively, compared to iCMAES-
ILS. Error values lower than 10−8 are approximated to 10−8.

IPOP-CMA-ES-cec05 vs iCMAES-ILS

Dim 30 by fcec: (4, 6, 15)† Dim 50 by fcec: (6, 4, 15)† Total by fcec: (10, 10, 30)†

† denotes a significant difference over the distribution of average errors between IPOP-CMA-
ES-05 and iCMAES-ILS by a two-sided Wilcoxon matched-pairs signed-ranks test at the
0,05 α-level.

19 functions. Four of these functions are the same as in the CEC’05 benchmark

set and are therefore removed from the training set. The training functions are

then sampled in a random order from all possible such functions. The number of

function evaluations of each run is equal to 5 000×D according to the termination

criteria in the definition of the SOCO benchmark set.

The tuned settings of iCMAES-ILS are presented in the last column of Table 4.7

and we label the tuned iCMAES-ILS as iCMAES-ILSt. The tuned parameter set-

tings of the IPOP-CMA-ES component imply a larger exploration at the beginning

of the search than in the default settings; the tuned parameter setting of the ILS

component imply a shorter local search, a larger initial step size and a slightly

stronger bias by the perturbation than in the default version.

4.3.2 Performance evaluation of iCMAES-ILSt

We apply iCMAES-ILSt to the CEC’05 benchmark functions of 30 and 50 di-

mensions as described in the experimental setup in Section 4.2 and compare its

results to iCMAES-ILS, a tuned ILS (labeled as ILSt) and a tuned IPOP-CMA-

ES [Liao et al., 2013a] (labeled as IPOP-CMA-ESt). The parameters and the

parameter ranges considered for tuning ILS and IPOP-CMA-ES as well as the

tuning setup and effort is the same as for tuning iCMAES-ILS. The parame-

ters of ILSt and IPOP-CMA-ESt are given in the supplementary information

pages http://iridia.ulb.ac.be/supp/IridiaSupp2012-017. Table 4.6 sum-

marizes the average ranking obtained by iCMAES-ILS, ILSt, IPOP-CMA-ESt and

iCMAES-ILSt. A Friedman test at the 0.05 α-level is used to check for the sig-

nificance of the differences between the best ranked algorithm iCMAES-ILSt and

the other algorithms. We find that iCMAES-ILSt is statistically significantly bet-

ter than ILSt and IPOP-CMA-ESt; iCMAES-ILSt also statistically significantly

improves upon iCMAES-ILS. The detailed average error values obtained by ILSt,

IPOP-CMA-ESt, iCMAES-ILS and iCMAES-ILSt are listed in Table 4.9. These

80

http://iridia.ulb.ac.be/supp/IridiaSupp2012-017

results further indicate the high performance that is reached by the design of

iCMAES-ILS and they also show the further improvement obtained through au-

tomatic algorithm configuration.

Table 4.6: The average ranks with respect to the average error values are given.
The Friedman test at significance level α = 0.05 is used. ∆Rα are the minimum
significant difference 13.24 for dimension 30 (left table) and 13.74 for dimension
50 (right table), respectively. The numbers in parenthesis are the difference of the
sum of ranks relative to the best algorithm iCMAES-ILSt. Algorithms that are
significantly different from iCMAES-ILSt are indicated in bold face.

Dim=30 Algorithms Average Rank (∆R)

iCMAES-ILSt 1.82 (0)
iCMAES-ILS 2.36 (13.5)
IPOP-CMA-ESt 2.38 (14.0)
ILSt 3.44 (40.5)

Dim=50 Algorithms Average Rank (∆R)

iCMAES-ILSt 1.80 (0)
IPOP-CMA-ESt 2.38 (14.5)
iCMAES-ILS 2.44 (16.0)
ILSt 3.38 (39.5)

81

4. ICMAES-ILS: A COOPERATIVE COMPETITIVE HYBRID ALGORITHM
FOR CONTINUOUS OPTIMIZATION

T
ab

le
4.7:

P
aram

eters
th

at
h
ave

b
een

con
sid

ered
for

tu
n
in

g.
G

iven
are

th
e

d
efau

lt
valu

es
of

th
e

p
aram

eters
an

d
th

e
ran

ges
w

e
con

sid
ered

for
tu

n
in

g.
T

h
e

last
colu

m
n

is
th

e
tu

n
ed

p
aram

eter
settin

gs.
A

lgorith
m

C
om

p
on

en
ts

P
a
ra

m
e
te

r
In

te
rn

a
l

p
a
ra

m
e
te

r
D

e
fa

u
lt

R
a
n

g
e

T
u

n
e
d

IP
O

P
-C

M
A

-E
S

a
In

it
p

op
size:

λ
0

=
4

+
ba

ln
(D

)c
3

r
[1
,1

0]
9.68

7
b

P
a
ren

t
size:

µ
=
bλ
/
bc

2
r

[1
,5

]
1.6

14
c

In
it

step
size:

σ
0

=
c·(B

−
A

)
0.5

r
(0
,1]

0
.68

25
d

IP
O

P
fa

cto
r:

ipo
p

=
d

2
r

[1
,4

]
3.2

45
e

sto
p
T
o
lF
u
n

=
10
e

−
1
2

r
[−

20
,−

6
]

−
9.02

3
f

sto
p
T
o
lF
u
n
H
ist

=
10
f

−
20

r
[−

20
,−

6
]

−
1
0.8

2
g

sto
p
T
o
lX

=
10
g

−
1
2

r
[−

20
,−

6
]

−
1
6.2

6

IL
S

ir
L
S
Itera

tio
n
s

=
ir ×

D
1.5

o
(1,1

.2
5
,1.5

,1.7
5
,2)

1
ss
r

ss
=

ss
r ×

(B
−
A

)
0
.5

r
(0
,1]

0
.67

0
3

bia
s
e

B
ia
sE

xten
t

=
bia
s
e

0
r

[0,1)
0
.01

9
10

C
om

p
etition

D
esign

com
p
r

C
o
m
p
B
u
d
get

=
com

p
r ×

T
ota

lB
u
d
g
et

0.1
o

(0
.0

5,0.1,0.1
5,0

.2,0.25
,0
.3

)
0
.1

5

82

Table 4.8: The average errors obtained by IPOP-CMA-ES-CEC05, MA-LSch-CMA, PS-CMA-ES and
iCMAES-ILS for each CEC’05 function. Error values lower than 10−8 are approximated to 10−8. The
lowest average errors values are highlighted.

Dim fcec IPOP-CMA-ES-CEC05 MA-LSch-CMA PS-CMA-ES iCMAES-ILS

30 Dim

fcec1 1.00E−08 1.00E−08 1.00E−08 1.00E−08
fcec2 1.00E−08 1.00E−08 1.00E−08 1.00E−08
fcec3 1.00E−08 2.75E+04 2.96E+04 1.00E−08
fcec4 1.11E+04 3.02E+02 4.56E+03 1.74E+02
fcec5 1.00E−08 1.26E+03 2.52E+01 1.00E−08
fcec6 1.00E−08 1.12E+00 1.15E+01 8.67E+00
fcec7 1.00E−08 1.75E−02 1.00E−08 1.00E−08
fcec8 2.01E+01 2.00E+01 2.00E+01 2.00E+01
fcec9 9.38E−01 1.00E−08 8.76E−01 7.16E−01
fcec10 1.65E+00 2.25E+01 5.57E−01 3.10E+00
fcec11 5.48E+00 2.15E+01 7.10E+00 1.87E−02
fcec12 4.43E+04 1.67E+03 8.80E+02 2.60E+03
fcec13 2.49E+00 2.03E+00 2.05E+00 1.41E+00
fcec14 1.29E+01 1.25E+01 1.24E+01 1.30E+01
fcec15 2.08E+02 3.00E+02 1.37E+02 1.36E+02
fcec16 3.50E+01 1.26E+02 1.59E+01 1.48E+01
fcec17 2.91E+02 1.83E+02 9.15E+01 2.11E+02
fcec18 9.04E+02 8.98E+02 9.05E+02 8.96E+02
fcec19 9.04E+02 9.01E+02 8.85E+02 8.96E+02
fcec20 9.04E+02 8.96E+02 9.05E+02 8.96E+02
fcec21 5.00E+02 5.12E+02 5.00E+02 5.00E+02
fcec22 8.03E+02 8.80E+02 8.43E+02 8.12E+02
fcec23 5.34E+02 5.34E+02 5.34E+02 5.33E+02
fcec24 9.10E+02 2.00E+02 2.00E+02 2.00E+02
fcec25 2.11E+02 2.14E+02 2.10E+02 2.03E+02

50 Dim

fcec1 1.00E−08 1.00E−08 1.00E−08 1.00E−08
fcec2 1.00E−08 3.06E−02 7.36E−06 1.00E−08
fcec3 1.00E−08 3.21E+04 9.10E+04 1.00E−08
fcec4 4.68E+05 3.23E+03 2.17E+04 1.11E+04
fcec5 2.85E+00 2.69E+03 1.79E+03 6.40E−01
fcec6 1.00E−08 4.10E+00 2.91E+01 1.04E+01
fcec7 1.00E−08 5.40E−03 1.00E−08 1.00E−08
fcec8 2.01E+01 2.00E+01 2.00E+01 2.00E+01
fcec9 1.39E+00 1.00E−08 5.45E+00 4.41E+00
fcec10 1.72E+00 5.01E+01 5.33E+00 5.35E+00
fcec11 1.17E+01 4.13E+01 1.59E+01 1.00E−08
fcec12 2.27E+05 1.39E+04 6.90E+03 2.25E+04
fcec13 4.59E+00 3.15E+00 4.15E+00 2.50E+00
fcec14 2.29E+01 2.22E+01 2.15E+01 2.27E+01
fcec15 2.04E+02 3.72E+02 1.25E+02 1.40E+02
fcec16 3.09E+01 6.90E+01 1.62E+01 1.15E+01
fcec17 2.34E+02 1.47E+02 9.13E+01 1.80E+02
fcec18 9.13E+02 9.41E+02 8.70E+02 9.12E+02
fcec19 9.12E+02 9.38E+02 9.13E+02 9.14E+02
fcec20 9.12E+02 9.28E+02 9.09E+02 9.15E+02
fcec21 1.00E+03 5.00E+02 6.62E+02 5.00E+02
fcec22 8.05E+02 9.14E+02 8.63E+02 8.16E+02
fcec23 1.01E+03 5.39E+02 8.12E+02 5.39E+02
fcec24 9.55E+02 2.00E+02 2.00E+02 2.00E+02
fcec25 2.15E+02 2.21E+02 2.14E+02 2.13E+02

No.lowest values 16 13 21 30

83

4. ICMAES-ILS: A COOPERATIVE COMPETITIVE HYBRID ALGORITHM
FOR CONTINUOUS OPTIMIZATION

Table 4.9: The average errors obtained by ILSt, IPOP-CMA-ESt, iCMAES-ILS and iCMAES-
ILSt for each CEC’05 function. Error values lower than 10−8 are approximated to 10−8. The
lowest average errors values are highlighted.

Dim fcec ILSt IPOP-CMA-ESt iCMAES-ILS iCMAES-ILSt

30 Dim

fcec1 1.00E−08 1.00E−08 1.00E−08 1.00E−08
fcec2 1.00E−08 1.00E−08 1.00E−08 1.00E−08
fcec3 2.13E+05 1.00E−08 1.00E−08 1.00E−08
fcec4 2.25E+04 1.00E−08 1.74E+02 1.00E−08
fcec5 7.01E+03 1.00E−08 1.00E−08 1.00E−08
fcec6 7.80E+01 1.00E−08 8.67E+00 1.00E−08
fcec7 1.18E−02 1.00E−08 1.00E−08 1.00E−08
fcec8 2.00E+01 2.08E+01 2.00E+01 2.00E+01
fcec9 1.00E−08 1.99E+00 7.16E−01 5.70E−01
fcec10 1.42E+02 1.59E+00 3.10E+00 1.63E+00
fcec11 2.43E+01 5.09E−05 1.87E−02 4.08E−02
fcec12 1.91E+03 4.22E+02 2.60E+03 6.11E+02
fcec13 1.16E+00 2.53E+00 1.41E+00 1.69E+00
fcec14 1.39E+01 1.10E+01 1.30E+01 1.16E+01
fcec15 2.80E+02 2.00E+02 1.36E+02 1.16E+02
fcec16 2.76E+02 1.11E+01 1.48E+01 1.18E+01
fcec17 4.14E+02 2.08E+02 2.11E+02 1.67E+02
fcec18 9.90E+02 9.04E+02 8.96E+02 8.96E+02
fcec19 9.81E+02 9.04E+02 8.96E+02 8.96E+02
fcec20 9.92E+02 9.04E+02 8.96E+02 8.96E+02
fcec21 5.52E+02 5.00E+02 5.00E+02 4.89E+02
fcec22 1.17E+03 8.17E+02 8.12E+02 8.11E+02
fcec23 5.34E+02 5.34E+02 5.33E+02 5.33E+02
fcec24 2.00E+02 2.00E+02 2.00E+02 2.00E+02
fcec25 2.10E+02 2.09E+02 2.03E+02 2.02E+02

50 Dim

fcec1 1.00E−08 1.00E−08 1.00E−08 1.00E−08
fcec2 1.00E−08 1.00E−08 1.00E−08 1.00E−08
fcec3 2.92E+05 1.00E−08 1.00E−08 1.00E−08
fcec4 8.45E+04 1.00E−08 1.11E+04 1.00E−08
fcec5 1.35E+04 1.00E−08 6.40E−01 1.00E−08
fcec6 3.75E+01 1.00E−08 1.04E+01 1.01E+01
fcec7 4.04E−03 1.00E−08 1.00E−08 1.00E−08
fcec8 2.00E+01 2.10E+01 2.00E+01 2.00E+01
fcec9 1.00E−08 4.18E+00 4.41E+00 2.11E+00
fcec10 4.06E+02 2.71E+00 5.35E+00 2.43E+00
fcec11 4.78E+01 6.03E−02 1.00E−08 1.13E−01
fcec12 9.60E+03 4.69E+03 2.25E+04 4.24E+03
fcec13 1.92E+00 4.70E+00 2.50E+00 2.72E+00
fcec14 2.37E+01 2.09E+01 2.27E+01 2.12E+01
fcec15 2.92E+02 2.00E+02 1.40E+02 1.20E+02
fcec16 3.33E+02 5.34E+00 1.15E+01 5.26E+00
fcec17 7.01E+02 6.36E+01 1.80E+02 4.42E+01
fcec18 9.89E+02 9.13E+02 9.12E+02 9.06E+02
fcec19 9.80E+02 9.13E+02 9.14E+02 9.10E+02
fcec20 1.01E+03 9.13E+02 9.15E+02 9.10E+02
fcec21 5.60E+02 7.05E+02 5.00E+02 5.32E+02
fcec22 1.33E+03 8.19E+02 8.16E+02 8.23E+02
fcec23 5.67E+02 7.30E+02 5.39E+02 5.39E+02
fcec24 2.00E+02 2.00E+02 2.00E+02 2.00E+02
fcec25 2.20E+02 2.13E+02 2.13E+02 2.13E+02

No.lowest values 12 23 22 36

84

4.4 Comparisions of iCMAES-ILS and UACOR+

As a final step, we compare iCMAES-ILS to UACOR+, the UACOR version that

included CMA-ES as a local search as proposed in Chapter 3. For this analysis, we

consider the average errors on each function, and the distribution of the average

errors. For a fair comparison, the same tuning setup and effort is considered for

obtaining the parameter settings.

We first re-tuned UACOR+-c allowing this time also to tune the parameters of

CMA-ES (resulting in a configuration labeled as UACOR+-ct). For this, we used

tuning setup and effort to be the same as tuning iCMAES-ILS to result in iCMAES-

ILSt. The parameter values of the tuned CMA-ES in UACOR+-ct are popula-

tion size λ = 4 + b9.600 ln(D)c, parent size µ = bλ/1.452c, stopTolFun10−8.854,

stopTolFunHist = 10−9.683 and stopTolX = 10−12.55. These parameter values are

derived from Liao et al. [2013a]. The initial step size of CMA-ES in UACOR+-ct

is defined adaptively as in UACOR+, not a fixed parameter value. We then ran

UACOR+-ct on the CEC’05 benchmark functions of dimensions 30 and 50, and we

compare the results of UACOR+-ct to those of IPOP-CMA-ES-cec05, UACOR+-

c, and iCMAES-ILSt. From the correlation plots in the Fig. 4.4, we can clearly

observe that UACOR+-ct statistically significantly improves upon UACOR+-c;

UACOR+-ct statistically significantly improves also upon IPOP-CMA-ES-cec05.

Recall that UACOR+-c did not improve in a statistically significant way upon

IPOP-CMA-ES-cec05. These comparisons clearly show the effectiveness of the

tuned parameter values. Nevertheless, iCMAES-ILSt still performs statistically

significantly better than UACOR+-ct.

Next we investigate the performance of iCMAES-ILSt on the SOCO benchmark

set where UACOR+-s has obtained a very good performance and IPOP-CMA-ES

performs rather poorly. We tuned iCMAES-ILSt with the same tuning setup and

effort as for tuning UACOR+-s. The tuned version is labeled as iCMAES-ILSt-s.

We then tested iCMAES-ILSt-s on the SOCO benchmark functions of dimen-

sions 100 and 200. As shown in the correlation plot in the Fig. 4.5, iCMAES-

ILSt-s statistically significantly improves upon a tuned IPOP-CMA-ES, labeled as

iCMAESt-s, with the same tuning setup and effort as for tuning iCMAES-ILSt-s.

However, the results of iCMAES-ILSt-s is statistically significant worse than those

of UACOR+-s. The worse results obtained by iCMAES-ILSt-s may be explained

by the use of IPOP-CMA-ES that is known to perform poorly on these bench-

mark functions. However, it is noteworthy that iCMAES-ILSt-s has impressive

results on function fsoco8, which is a hyperellipsoid rotated in all directions. Other

85

4. ICMAES-ILS: A COOPERATIVE COMPETITIVE HYBRID ALGORITHM
FOR CONTINUOUS OPTIMIZATION

1e−08 1e−05 1e−02 1e+01 1e+04

1
e
−

0
8

1
e
−

0
5

1
e
−

0
2

1
e
+

0
1

1
e
+

0
4

UACOR
+
−ct(opt 13)

U
A

C
O

R
+
−

c
(o

p
t
1

2
)

f_id_opt

4

8910

11

12

13
14

15
16

17
1819202122232425

29

31

33
3435

36

37

38
39

40
41

42
43444546474849

50

−Win 26 +

−Lose 10

−Draw 14

Average Errors−CEC05

1e−02 1e+021
e
−

0
2

1
e
+

0
2

1e−08 1e−05 1e−02 1e+01 1e+04

1
e
−

0
8

1
e
−

0
5

1
e
−

0
2

1
e
+

0
1

1
e
+

0
4

UACOR
+
−ct(opt 13)

IP
O

P
−

C
M

A
−

E
S

−
c
e

c
0

5
 (

o
p
t

 1
1

)

f_id_opt

4

8

910
11

12

13
14

15
16

17
18192021222324

25

29

30

31

33

3435

36

37

38
39

40

41

42
43444546474849

50

−Win 24 +

−Lose 13

−Draw 13

Average Errors−CEC05

1e−02 1e+021
e
−

0
2

1
e
+

0
2

(a) (b)

1e−08 1e−05 1e−02 1e+01 1e+04

1
e
−

0
8

1
e
−

0
5

1
e
−

0
2

1
e
+

0
1

1
e
+

0
4

iCMAES−ILSt (opt 13)

U
A

C
O

R
+
−

c
t(

o
p
t
1

3
)

f_id_opt

89 10

11

12

13
14

15
16

17
1819202122232425

31

333435

36

37

38
39

40
41

42
43444546474849

50

−Win 28 +

−Lose 8

−Draw 14

Average Errors−CEC05

1e−02 1e+021
e
−

0
2

1
e
+

0
2

(c)

Figure 4.4: Correlation plots of UACOR+-c and UACOR+-ct, IPOP-CMA-ES-
cec05 and UACOR+-ct, UACOR+-ct and iCMAES-ILSt on 25 CEC05 benchmark
functions of dimensions 30 and 50 (the indexes of 50 dimensional functions are
labeled from 26 to 50). Each point represents the average error value obtained
by either of the two algorithms. A point on the upper triangle delimited by the
diagonal indicates better performance for the algorithm on the x-axis; a point on
the lower right triangle indicates better performance for the algorithm on the y-
axis. The number labeled beside some outstanding points represent the index of
the corresponding function. The comparison is conducted based on average error
values and the comparison results of the algorithm on the x-axis are presented in
the form of -win, -draw, -lose, respectively. We marked with a + symbol those cases
in which there is a statistically significant difference at the 0.05 α-level between
the algorithms checked by a Friedman test and its post tests over IPOP-CMA-ES-
cec05, UACOR+-c, UACOR+-ct and iCMAES-ILSt. The number of opt on the
axes shows the number of means that is lower than the zero threshold, obtained
by the corresponding algorithm.

86

1e−14 1e−09 1e−04 1e+01 1e+06

1
e
−

1
4

1
e
−

0
9

1
e
−

0
4

1
e
+

0
1

1
e
+

0
6

iCMAES−ILSt−s (opt 14)

iC
M

A
E

S
t−

s
 (

o
p

t
 0

)

1

2

34

5
67

8

9

10

11

1213
14

15

161718

19

20

21

22
23

24 25
2627

28

29

30

3132
33

34

353637

38

−Win 32 +

−Lose 6

−Draw 0

Average Errors−SOCO

5 20 100 500

5
5
0

5
0
0

1e−14 1e−09 1e−04 1e+01 1e+06

1
e
−

1
4

1
e
−

0
9

1
e
−

0
4

1
e
+

0
1

1
e
+

0
6

iCMAES−ILSt−s (opt 14)

U
A

C
O

R
+
−

s
(o

p
t
2

5
)

f_id_opt

2

3

4
6

8

911 12

13

1416

17

18

21

22

23
25

27

28
30

31

32

3335

36

37

−Win 6 +

−Lose 20

−Draw 12

Average Errors−SOCO

5 20 100 500

1
.0

e
−

1
4

912
18 14

16
23

31 3335

(a) (b)

Figure 4.5: Correlation plots of iCMAESt-s and iCMAES-ILSt-s, UACOR+-s and
iCMAES-ILSt-s on 19 SOCO function of dimensions 100 and 200 (the indexes of
200 dimensional functions are labeled from 20 to 38); Each point represents the
average error value obtained by either of the two algorithms. A point on the upper
triangle delimited by the diagonal indicates better performance for the algorithm
on the x-axis; a point on the lower right triangle indicates better performance for
the algorithm on the y-axis. The number labeled beside some outstanding points
represent the index of the corresponding function. The comparison is conducted
based on average error values and the comparison results of the algorithm on the
x-axis are presented in the form of -win, -draw, -lose, respectively. We marked with
a + symbol those cases in which there is a statistically significant difference at the
0.05 α-level between the algorithms checked by a Friedman test and its post tests
over iCMAESt-s, iCMAES-ILSt-s and UACOR+-s. The number of opt on the axes
shows the number of means that is lower than the zero threshold, obtained by the
corresponding algorithm.

87

4. ICMAES-ILS: A COOPERATIVE COMPETITIVE HYBRID ALGORITHM
FOR CONTINUOUS OPTIMIZATION

algorithms such as UACOR+-s, other enhanced DE or PSO variants that have

been benchmarked on the SOCO benchmark functions as well, could not find the

optimum of this function.

4.5 Summary

In this chapter, we have introduced iCMAES-ILS, a hybrid algorithm where IPOP-

CMA-ES and ILS compete in an initial competition phase for further deployment.

The main advantages of iCMAES-ILS are its simple design and its effectiveness

as demonstrated through the excellent performance on the CEC’05 benchmark

functions set. The computational results with a default parameter settings and

further fine-tuned parameter settings establish iCMAES-ILS as a state-of-the-art

algorithm for continuous optimization. In fact, iCMAES-ILS improves statistically

significantly over IPOP-CMA-ES, ILS, MA-LSCh-CMA, PS-CMA-ES and it gives

better results than other possible hybrid designs such as iCMAES-ILS-portfolio,

iCMAES-ILS-relay and iCMAES-LTH-ILS. At the end of the chapter, we discuss

the comparisons of iCMAES-ILS and UACOR+ proposed in the Chapter 3 on the

CEC’05 and SOCO benchmark functions set, respectively. As a result, each of

iCMAES-ILS and UACOR+ shows own advantages with respect to the two dif-

ferent benchmark functions sets. iCMAES-ILS performs statistically significantly

better than UACOR+ on the CEC’05 benchmark functions set; UACOR+ per-

forms statistically significantly better than iCMAES-ILS on the SOCO benchmark

functions set.

88

Chapter 5

Mixed discrete-continuous optimization

Many real-world optimization problems can be modeled using combinations of

continuous and discrete variables. Due to the practical relevance of these discrete-

continuous problems, a number of optimization algorithms for tackling them have

been proposed. These algorithms are mainly based on Genetic Algorithms [Gold-

berg, 1989], Differential Evolution [Storn and Price, 1997], Particle Swarm Opti-

mization [Kennedy and Eberhart, 2001] and Pattern Search [Torczon, 1997]. Mixed

integer programming (linear or nonlinear) refers to mathematical programming

with continuous and integer variables in the (linear or nonlinear) objective func-

tion and constraints [Bussieck and Pruessner, 2003]. In this thesis, we consider

more general, mixed discrete-continuous optimization problems where the discrete

variables can be ordinal or categorical. Ordinal variables exhibit a natural or-

dering relation (e.g., integers or {small,medium, large}) and are usually handled

using a continuous relaxation approach [Dimopoulos, 2007, Gao and Hailu, 2010,

Guo et al., 2004, Lampinen and Zelinka, 1999a,b, Mashinchi et al., 2011, Rao and

Xiong, 2005, Turkkan, 2003]. Categorical variables take their values from a finite

set of categories [Abramson et al., 2009], which often identify non-numeric ele-

ments of an unordered set (e.g., colors, shapes or types of material). Categorical

variables do not have a natural ordering relation and therefore require the use of a

categorical optimization approach [Abramson, 2002, 2004, Abramson et al., 2009,

Audet and Dennis, 2001, Deb and Goyal, 1998, Kokkolaras et al., 2001, Ocenasek

and Schwarz, 2002] that does not assume any ordering relation. To the best of

our knowledge, the approaches to mixed discrete-continuous problems available

in the literature are targeted to either handle mixtures of continuous and ordinal

variables or mixtures of continuous and categorical variables. In other words, they

do not consider the possibility that the formulation of a problem may involve at

the same time the three types of variables. Hence, there is a need for algorithms

that allow the explicit declaration of each variable as either continuous, ordinal or

89

5. MIXED DISCRETE-CONTINUOUS OPTIMIZATION

categorical.

To tackle mixed discrete-continuous optimization problems, in this chapter,

ACOMV and CESMV, an ant colony optimization and a covariance matrix adap-

tation evolution strategy algorithms are presented, respectively. In ACOMV and

CESMV, the decision variables of an optimization problem can be declared as

continuous, ordinal, or categorical, which allows the algorithm to treat them ad-

equately. ACOMV and CESMV include three solution generation mechanisms: a

continuous optimization mechanism, a continuous relaxation mechanism for or-

dinal variables, and a categorical optimization mechanism for categorical vari-

ables. Together, these mechanisms allow ACOMV and CESMV to tackle mixed

variable optimization problems. We also propose a set of artificial mixed discrete-

continuous benchmark functions, which can simulate discrete variables as ordered

or categorical. We use them to automatically tune ACOMV and CESMV’s param-

eters and benchmark their performance. Finally, we test ACOMV and CESMV

on various real-world continuous and mixed discrete-continuous engineering opti-

mization problems. Comparisons with results from the literature demonstrate the

effectiveness and robustness of ACOMV and CESMV on mixed discrete-continuous

optimization problems.

The original ACOMV algorithm was proposed by Socha in his PhD thesis

[Socha, 2008]. Starting from this initial work of Socha, we re-implemented the

ACOMV algorithm in C++, which reduced strongly the computation time when

compared to the original implementation in R. In this thesis, we refine the origi-

nal ACOMV algorithm and implement ACOMV with a restart operator. We also

propose and generate a large set of new benchmark functions for mixed discrete-

continuous optimization problems. We use these benchmark problems for a de-

tailed study of specific aspects of ACOMV and to derive high-performance pa-

rameter settings through automatic tuning tools. In addition, also methodological

improvements were made. While in the original work of Socha ACOMV was specif-

ically tuned on each real-world engineering test problem on which ACOMV was

finally evaluated, now one single parameter setting, obtained by a tuning pro-

cess on new benchmark functions, which are independent of the engineering test

functions, is applied for the final test on mixed discrete-continuous engineering

problems. Another contribution here is that we increased further the test bed

of engineering problems that were originally considered by Socha. Finally, the

development of CESMV is an original contribution of this thesis.

The chapter is organized as follows. In Section 5.1, we first present a new set

of artificial, mixed discrete-continuous benchmark functions, which can simulate

90

discrete variables as ordered or categorical. In section 5.2, we detail ACOMV; next

in Section 5.3, we introduce three ways of handling categorical variables in a exten-

sion of CMA-ES to mixed discrete-continuous optimization problems. The three

resulting variants are labeled as CESMV CES-RoundC and CES-RelayC, respec-

tively. Afterwards, the automatic tuning of the parameters of ACOMV, CESMV,

CES-RoundC and CES-RelayC is presented in Section 5.4.1. We first examine

the performance of CESMV, CES-RoundC and CES-RelayC in Section 5.4.2, and

identify CESMV as the best performing variant. Finally, we compare CESMV and

ACOMV on mixed discrete-continuous benchmark functions. In Section 5.5, we ap-

ply ACOMV and CESMV to mixed-variable engineering benchmark problems and

compare the results of ACOMV and CESMV with those found in the literature.

5.1 Artificial mixed discrete-continuous benchmark func-

tions

The real-world mixed-variable problems cannot be easily parametrized and flexi-

bly manipulated for investigating the performance of mixed-variable optimization

algorithms in a systematic way. In this section, we propose a set of new, artificial

mixed-variable benchmark functions that allow the definition of a controlled envi-

ronment for the investigation of algorithm performance and the automatic tuning

of algorithm parameters [Birattari et al., 2010, Hutter et al., 2009b]. These new

artificial benchmark functions will be used in the evaluation of the various algo-

rithms for mixed discrete-continuous optimization problems that are proposed in

this thesis. Our proposed artificial mixed-variable benchmark functions are defined

in Table 5.1. These functions originate from some typical continuous functions of

the CEC’05 benchmark set [Suganthan et al., 2005]. The functions we have cho-

sen here represent the most widely used continuous optimization functions used

in the literature. The decision variables consist of continuous and discrete vari-

ables; n is the total number of variables and M is a random, normalized, n × n
rotation matrix. The problems’ global optima ~S∗ are shifted in order not to give

an advantage to methods that may have a bias towards the origin of the search

space [Eiben and Bäck, 1997]. The proposed benchmarks allow three settings for

discrete variables. The first setting consists of only ordinal variables; the second

setting consists of only categorical variables; and the third setting consists of both

ordinal and categorical variables. MinRange and MaxRange denote the lower and

upper bound of variable domains, respectively.

We use the two-dimensional, not shifted, randomly rotated Ellipsoid mixed-

91

5. MIXED DISCRETE-CONTINUOUS OPTIMIZATION

Table 5.1: Artificial mixed-variable benchmark functions. In the upper part the
objective functions are defined; the variables are defined in the lower part of the
table.

Objective functions

fEllipsoidMV
(~x) =

∑n
i=1(β

i−1
n−1 zi)

2,

fAckleyMV
(~x) = −20e−0.2

√
1
n

∑n
i=1(z

2
i) − e 1

n

∑n
i=1(cos(2πzi)) + 20 + e,

fRastriginMV
(~x) = 10n+

∑n
i=1(z2i − 10 cos(2πz2i)),

fRosenbrockMV
(~x) =

∑n−1
i=1 [100(zi+1 − z2i)2 + (zi − 1)2],

fSphereMV
(~x) =

∑n
i=1 z

2
i ,

fGriewankMV
(~x) = 1

4 000

∑n
i=1 z

2
i −

∏n
i=1 cos(zi√

i
) + 1,

Definition of mixed variables

1st setting:



~z = M(~x− ~S∗) : ~S∗ = (R1
∗R

2
∗ . . . R

r
∗O

1
∗ O

2
∗ . . . O

o
∗)
t,

if (fRosenbrockMV
), ~z = ~z + 1,

~S∗ is a shift vector, n = o+ r,

~x = (R1R2 . . . Rr O1O2 . . . Oo)t,

Ri ∈ (MinRangei,MaxRangei), i = 1, . . . , r

Oi ∈ T,T = {θ1, θ2, ..., θti} : ∀l θtl ∈ (MinRangei,MaxRangei) i = 1, . . . , o

2nd setting:



~z = M(~x− ~S∗) : ~S∗ = (R1
∗R

2
∗ . . . R

r
∗ C

1
∗ C

2
∗ . . . C

c
∗,)

t,

if (fRosenbrockMV
), ~z = ~z + 1,

~S∗ is a shift vector, n = c+ r,

~x = (R1R2 . . . Rr C1 C2 . . . Cc)t,

Ri ∈ (MinRangei,MaxRangei), i = 1, . . . , r

Ci ∈ T,T = {θ1, θ2, ..., θti} : ∀l θtl ∈ (MinRangei,MaxRangei) i = 1, . . . , c

3rd setting:



~z = M(~x− ~S∗) : ~S∗ = (R1
∗R

2
∗ . . . R

r
∗O

1
∗ O

2
∗ . . . O

o
∗ C

1
∗ C

2
∗ . . . C

c
∗)
t,

if (fRosenbrockMV
), ~z = ~z + 1,

~S∗ is a shift vector, n = o+ c+ r,

~x = (R1R2 . . . Rr O1O2 . . . Oo C1 C2 . . . Cc)t,

Ri ∈ (MinRangei,MaxRangei), i = 1, . . . , r

Oi ∈ T,T = {θ1, θ2, ..., θti} : ∀l θtl ∈ (MinRangei,MaxRangei) i = 1, . . . , o

Ci ∈ T,T = {θ1, θ2, ..., θti} : ∀l θtl ∈ (MinRangei,MaxRangei) i = 1, . . . , c

variable function as an example of how to construct artificial mixed-variable bench-

mark functions. The way how to construct mixed-variable functions was originally

proposed by Socha [2008]. We re-describe it in the following. We start with a

92

two-dimensional, continuous, not shifted, randomly rotated Ellipsoid function:

fEL(~x) =
2∑
i=1

(β
i−1
2−1 zi)

2,


x1, x2 ∈ [−3, 7],

~z = M~x,

β = 5.

(5.1)

In order to transform this continuous function into a mixed-variable one, we

discretize the continuous domain of variable x1 ∈ [−3, 7] into a set of discrete

values, T = {θ1, θ2, ..., θt} : θi ∈ [−3, 7]. This results in the following mixed-

variable test function:

fELMV
(x1, x2) = z2

1 + β · z2
2 ,


x1 ∈ T,

x2 ∈ [−3, 7],

~z = M~x,

β = 5.

(5.2)

The set T is created by choosing t uniformly spaced values from the original

domain [−3, 7] so that ∃i=1,...,t θi = 0. In this way, it is always possible to find the

optimum value fELMV
(0, 0)t = 0, regardless of the chosen t discrete values.

Problems that involve ordinal variables are easy to simulate with the aforemen-

tioned procedure because the discrete points in the discretization for variable x1

are naturally ordered. To simulate problems involving categorical variables only,

the discrete points are randomly re-ordered. In this setting, a different ordering is

generated for each run of the algorithm. This setting allows us to investigate how

the algorithm performs when the ordering of the discrete points is not well defined

or unknown.

The artificial mixed-variable benchmark functions have characteristics such

as non-separability, ill-conditioning and multi-modality. Non-separable functions

often exhibit complex dependencies between decision variables. Ill-conditioned

functions often lead to premature convergence. Multi-modal functions have mul-

tiple local optima and require an efficient global search. Therefore, these charac-

teristics are expected to be a challenge for different mixed-variable optimization

algorithms. The flexibility in defining functions with different numbers of discrete

points and the possible mixing of ordered and categorical variables enables system-

atic experimental studies addressing the impact of function features on algorithm

performance.

93

5. MIXED DISCRETE-CONTINUOUS OPTIMIZATION

5.2 ACOMV: ACO for mixed discrete-continuous opti-

mization problems

In this section, we detail ACOMV, an ant colony optimization algorithm for tack-

ling mixed discrete-continuous optimization problems. We start by describing the

structure of ACOMV. Then, we describe the probabilistic solution construction

for continuous variables, ordinal variables and categorical variables, respectively.

In Section 5.2.1, we give analysis on some specific aspects of ACOMV.

ACOMV structure

ACOMV uses a solution archive, SA, as a form of pheromone model for the deriva-

tion of a probability distribution over the search space, following in this way

the principle of population-based ACO [Guntsch and Middendorf, 2002] and also

ACOR [Socha and Dorigo, 2008]. The solution archive contains k complete solu-

tions of the problem. While a pheromone model in combinatorial optimization

can be seen as an implicit memory of the search history, a solution archive is an

explicit memory.

Given an n-dimensional mixed discrete-continuous problem and k solutions,

ACOMV stores the value of the n variables and the objective function value of

each solution in the solution archive. Fig. 5.1 shows the structure of the solution

archive. It is divided into three groups of columns, one for continuous variables,

one for ordinal variables, and one for categorical variables.

The basic flow of the ACOMV algorithm and many of its particular choices

follow ACOR. We describe the main details in what follows. The solution archive

is initialized with k randomly generated solutions. Then, these k solutions are

sorted according to their quality (from best to worst). A weight ωj is associated

with solution Sj. This weight is calculated using a Gaussian function defined by:

ωj =
1

qk
√

2π
e
−(rank(j)−1)2

2q2k2 , (5.3)

where rank(j) is a function that returns the rank of solution Sj, and q is a param-

eter of the algorithm. By computing rank(j)−1, which corresponds to setting the

mean of the Gaussian function to 1, the best solution receives the highest weight,

while the weight of the other solutions decreases exponentially with their rank. At

each iteration of the algorithm, m new solutions are probabilistically constructed

by m ants, where an ant is a probabilistic solution construction procedure. The

weight of a solution determines the level of attractiveness of that solution during

94

)(1Sf

)(kSf

)(jSf

)(2Sf

3

2
11S

2S

kS

jS

k

2
2C

2
jC

1
1O 2

1O
2
2O1

2O

1
jO 2

jO

1
1R 2

1R
2
2R1

2R

1
jR 2

jR

Array(C)Array(O)Array(R)
1
1C 2

1C
1
2C

1
jC

2
kC1

kO 2
kO1

kR 2
kR 1

kC

RACO cACOMV oACOMV 

1
o

2
o

j
o

k
o

1
r

2
r

j
r

k
r

1
c

2
c

j
c

k
c

Figure 5.1: The structure of the solution archive used by ACOMV. The solutions
in the archive are sorted according to their quality (i.e., the value of the objective
function f(Sj)); hence, the position of a solution in the archive always corresponds
to its rank.

the solution construction process. A higher weight means a higher probability of

sampling around that solution. Once the m solutions have been generated, they

are added into the solution archive. The k + m solutions in the archive are then

sorted and the m worst ones are removed. The remaining k solutions constitute

the new solution archive. In this way, the search process is biased towards the best

solutions found during the search. During the probabilistic solution construction

process, an ant applies the construction mechanisms of ACOR, ACOMV-o and

ACOMV-c. ACOR handles continuous variables, while ACOMV-o and ACOMV-c

handle ordinal variables and categorical variables, respectively. Their detailed de-

scription is given in the following subsection. An outline of the ACOMV algorithm

is given in Algorithm 5. The functions Sort and Best in Algorithm 5 implement

the sorting of the archive and the selection of the k best solutions, respectively.

Probabilistic Solution Construction for Continuous Variables

Continuous variables are handled by ACOR [Socha and Dorigo, 2008]. In ACOR,

the construction of new solutions by the ants is accomplished in an incremental

95

5. MIXED DISCRETE-CONTINUOUS OPTIMIZATION

Algorithm 5 Outline of ACOMV

Initialize decision variables
Initialize and evaluate k solutions
/* Sort solutions and store them in the archive SA */
SA← Sort(S1 · · ·Sk)
while termination criterion is not satisfied do

/* ConstructAntSolution */
for 1 to m do

Probabilistic Solution Construction for ACOR
Probabilistic Solution Construction for ACOMV-o
Probabilistic Solution Construction for ACOMV-c
Store and evaluate newly generated solutions

end for
/* Sort solutions and select the best k solutions */
SA← Best(Sort(S1 · · ·Sk+m), k)

end while

manner, variable by variable. First, an ant chooses probabilistically one of the

solutions in the archive. The probability of choosing solution j is given by:

pj =
ωj∑k
l=1 ωl

, (5.4)

where ωj is calculated according to Equation (5.3).

An ant then constructs a new continuous variable solution around the chosen

solution j. It assigns values to variables in a fixed variable order, that is, at the

i-th construction step, 1 ≤ i ≤ r, an ant assigns a value to continuous variable i.

To assign a value to variable i, the ant samples the neighborhood around the value

Ri
j of the chosen j-th solution. The sampling is done using a normal probability

density function with mean µ and standard deviation σ:

g(x, µ, σ) =
1

σ
√

2π
e−

(x−µ)2

2σ2 . (5.5)

When considering continuous variable i of solution j, we set µ = Ri
j. Further-

more, we set

σ = ξ

k∑
l=1

|Ri
l −Ri

j|
k − 1

, (5.6)

which is the average distance between the values of the i-th continuous variable of

the solution j and the values of the i-th continuous variables of the other solutions

in the archive, multiplied by a parameter ξ. This parameter has an effect similar to

96

that of the pheromone persistence in ACO. The higher the value of ξ, the lower the

convergence speed of the algorithm. This process is repeated for each dimension

by each of the m ants.

Thanks to the pheromone representation used in ACOR (that is, the solution

archive), it is possible to take into account the correlation between the decision

variables. A non-deterministic adaptive method for doing so is presented in [Socha

and Dorigo, 2008]. It is effective on the rotated benchmark functions proposed later

(see Table 5.1) and it is also used to handle the variable dependencies of mixed

discrete-continuous engineering problems in Section 5.5.

Probabilistic Solution Construction for Ordinal Variables

If the considered optimization problem includes ordinal variables, the continuous

relaxation approach, ACOMV-o, is used. ACOMV-o does not operate on the actual

values of the ordinal variables but on their indices in an array. The values of the

indices for the new solutions are generated as real numbers, as it is the case for

the continuous variables. However, before the objective function is evaluated, the

continuous values are rounded to the nearest valid index, and the value at that

index is then used for the objective function evaluation. The reason for this choice

is that ordinal variables do not necessarily have numerical values; for example, an

ordered variable may take as possible values {small,medium, large}. ACOMV-o

otherwise works exactly as ACOR.

Probabilistic Solution Construction for Categorical Variables

While ordinal variables are relaxed and treated by the original ACOR, categorical

variables are treated differently by ACOMV-c as this type of variables has no

predefined ordering. At each step of ACOMV-c, an ant assigns a value to one

variable at a time. For each categorical variable i, 1 ≤ i ≤ c, an ant chooses

probabilistically one of the ti available values vil ∈ {vi1, . . . , viti}. The probability

of choosing the l-th value is given by

pil =
wl∑ti
j=1wj

, (5.7)

where wl is the weight associated to the l-th available value. The weight wl is

calculated as

97

5. MIXED DISCRETE-CONTINUOUS OPTIMIZATION

wl =



ωjl
uil

+
q

η
, if (η > 0, uil > 0),

ωjl
uil
, if (η = 0, uil > 0),

q

η
, if (η > 0, uil = 0),

(5.8)

where ωjl is calculated according to Equation (5.3) with jl being the index of the

highest quality solution that uses value vil for the categorical variable i. uil is the

number of solutions that use value vil for the categorical variable i in the archive

(hence, the more common the value vil is, the lower is its final weight); thus, uil
is a variable whose value is adapted at run-time and that controls the weight of

choosing the l-th available value. uil = 0 corresponds to the case in which the l-th

available value is not used by the solutions in the archive; in this case the weight

of the l-th value is equal to
q

η
. η is the number of values from the ti available ones

that are not used by the solutions in the archive; η = 0 (that is, all values are

used) corresponds to the case in which
q

η
is discarded. Again, η is a variable that

is adapted at run-time and, if η = 0, it is natural to discard the second component

in Equation (5.8). Note that uil and η are nonnegative numbers, and their values

are never equal to zero at the same time. q is the same parameter of the algorithm

that was used in Equation (5.3). Here we note that Equation (5.8) here is a refined

version of its corresponding equation given in the Socha’s PhD thesis.

The weight wl is therefore a sum of two components. The first component

biases the choice towards values that are chosen in the best solutions but do not

occur very frequently among all solutions in the archive. The second component

plays the role of exploring values of the categorical decision variable i that are

currently not used by any solution in the archive; in fact, the weight of such values

according to the first component would be zero and, thus, this mechanism helps

to avoid premature convergence (in other words, to increase diversification).

Restart strategy

ACOMV uses a restart strategy for fighting stagnation. This strategy consists in

restarting the algorithm without forgetting the best-so-far solution in the archive.

A restart is triggered if the number of consecutive iterations with a relative solution

improvement lower than a certain threshold ε is larger than MaxStagIter.

98

5.2.1 Algorithm analysis

Analysis of ACOMV-o and ACOMV-c

We first verify the relevance of the design choice we have taken in ACOMV, namely

combining a continuous relaxation approach, ACOMV-o, and a native categorical

optimization approach, ACOMV-c, in one single algorithm. We analyze the perfor-

mance of ACOMV-o and ACOMV-c on two sets of the mixed discrete-continuous

benchmark functions that were proposed in Section 5.1. The first set of benchmark

functions involves continuous and ordinal variables. The second set of benchmark

functions involves continuous and categorical variables.

For the two settings described in Section 5.1, we evaluate the

performance of ACOMV-o and ACOMV-c on six benchmark functions

with different numbers t of discrete points in the discretization, t ∈
{2, 5, 10, 20, 30, ..., 90, 100, 200, 300, ..., 900, 1 000}, and dimensions 2, 6 and 10; this

results in 18 groups of experiments (six benchmark functions and three dimensions)

for the first and the second set of benchmark functions. In this study, half of the

dimensions are continuous variables and the other half are discrete variables. The

continuous variables in these benchmark functions are handled by ACOR, while

the discrete variables are handled by ACOMV-o and ACOMV-c, respectively.

To ensure a fair comparison in every group of experiments, we tuned the pa-

rameters of ACOMV-o and ACOMV-c using Iterated F-Race [Balaprakash et al.,

2007, Birattari et al., 2010] with the same tuning budget on a training set of

benchmark functions. The performance measure for tuning is the objective func-

tion value of each instance after 10 000 function evaluations. The tuning budget

for Iterated F-Race is set to 2 000 runs of ACOMV-o and ACOMV-c. The training

set involves ordinal and categorical variables with a random number of t discrete

points, t ∈ {2, 5, 10, 20, 30, ..., 90, 100, 200, 300, ..., 900, 1 000}. In a test phase, we

conducted experiments with benchmark functions different from those used in the

training phase. The comparisons for each possible number t of discrete points

were performed independently in each experiment group (defined by benchmark

function and dimension). In total, we conducted 378 = 21× 6× 3 comparisons for

ordinal and categorical variables, respectively. In each experiment, we compare

ACOMV-o and ACOMV-c without restart mechanism by measuring the solution

quality obtained by 50 independent runs. A uniform random search (URS) method

[Brooks, 1958] is included as a baseline for comparison. It consists in sampling

search points uniformly at random in the search domain and keeping the best

solution found.

99

5. MIXED DISCRETE-CONTINUOUS OPTIMIZATION

Table 5.2: Comparison between ACOMV-o, ACOMV-c and uniform random search
(URS) for two setups of discrete variables. For each comparison, we give the
frequency with which the first mentioned algorithm is statistically significantly
better, indistinguishable, or worse than the second one.

1st setup 2nd setup
Ordinal variables Categorical variables

ACOMV-o vs. ACOMV-c 0.63, 0.35, 0.02 0.07, 0.00, 0.93
ACOMV-o vs. URS 0.98, 0.02, 0.00 0.78, 0.12, 0.10
ACOMV-c vs. URS 0.93, 0.07, 0.00 0.96, 0.04, 0.00

Rastrigin−ordinal variables

Num of discrete points in the discretization

A
ve

ra
g

e
 o

b
je

c
ti
ve

 f
u

n
c
ti
o

n
 v

a
lu

e

2 10
1

10
2

10
3

0
1

0
2

0
3

0
4

0
5

0

ACOMV − c

ACOMV − o
Uniform random search (URS)

Rastrigin−categorical variables

Num of discrete points in the discretization

A
ve

ra
g

e
 o

b
je

c
ti
ve

 f
u

n
c
ti
o

n
 v

a
lu

e

2 10
1

10
2

10
3

0
1

0
2

0
3

0
4

0
5

0
ACOMV − c

ACOMV − o
Uniform random search (URS)

Figure 5.2: The plot shows the average objective function values obtained
by ACOMV-o and ACOMV-c on the 6 dimensional function fRastriginMV

after
10 000 evaluations, with the number t of discrete points in the discretization
t ∈ {2, 5, 10, 20, 30, ..., 90, 100, 200, 300, ..., 900, 1 000}.

Table 5.2 summarizes the results of the comparison between ACOMV-o,

ACOMV-c and URS for ordinal and categorical variables. The Wilcoxon rank-sum

test at the 0.05 α-level is used to test the statistical significance of the differences

in each of the 378 comparisons. In the case of ordinal variables, the statistical

analysis revealed that in 63% of the 378 comparisons ACOMV-o reaches statis-

tically significantly better solutions than ACOMV-c, in 2% of the experiments

ACOMV-c is statistically significantly better than ACOMV-o, and in the remain-

ing 35% of the cases there was no statistically significant difference. As expected,

both ACOMV-o and ACOMV-c outperform URS: they perform significantly bet-

ter in 98% and 93% of the cases, respectively, and they never obtain statistically

significantly worse results than URS. In the case of categorical variables, the sta-

tistical analysis revealed that in 93% of the 378 comparisons ACOMV-c reaches

100

statistically significantly better solutions than ACOMV-o and in 7% of the exper-

iments ACOMV-o is statistically significantly better than ACOMV-c. Again, both

ACOMV-o and ACOMV-c outperform URS. They perform better in 96% and 78%

of the cases, respectively, and ACOMV-c never obtains statistically significantly

worse results than URS.

These experiments confirm our expectation that ACOMV-o is more effective

than ACOMV-c on problems with ordinal variables, while ACOMV-c is more ef-

fective than ACOMV-o on problems with categorical variables. In Fig. 5.2, the

comparisons on fRastriginMV
are shown. As seen in the figure, the categorical opti-

mization approach, ACOMV-c, reaches approximately the same objective function

values no matter whether the discrete variables are ordinal or categorical. The

continuous relaxation approach ACOMV-o performs better than ACOMV-c in the

case of ordinal variables, but its performance is not as good when applied to the

categorical case.

Effectiveness of the restart mechanism

Here we show that ACOMV’s restart mechanism really helps in improving its

performance. We conducted 50 independent runs using a maximum of 1 000 000

evaluations in each run. In Fig. 5.3, we show ACOMV’s run-length distributions

(RLDs, for short) on two multi-modal functions fAckleyMV
and fGriewankMV

with

continuous and categorical variables with t = 100 discrete points. An empirical

RLD gives the estimated cumulative probability distribution for finding a solution

of a certain quality as a function of the number of objective function evaluations.

(For more information about RLDs, we refer the reader to [Hoos and Stützle,

2005].) As expected, ACOMV’s performance is strongly improved by the restart

mechanism. For example, in the case of fAckleyMV
in two, six and ten dimensions,

ACOMV reaches a solution whose objective function value is equal to or less than

1.00E−10 with probability 1 or 100% success rate, and in the case of fGriewankMV

in two, six and ten dimensions ACOMV reaches a solution whose objective func-

tion value is equal to or less than 1.00E−10 with probability 1, 0.82 and 0.85

respectively. Without restart, ACOMV stagnates at much lower success rates.

Analysis of Equation (5.8)

We experimentally explored different options for the shape of Equation (5.8) to

illustrate the influence of alternative choices for Equation. We perform two experi-

ments on two multi-modal functions fAckleyMV
and fGriewankMV

with continuous and

101

5. MIXED DISCRETE-CONTINUOUS OPTIMIZATION

Ackley− categorical variables

Number of function evaluations

P
ro

b
a

b
ili

ty
 o

f
s
o

lv
in

g
 t

h
e

 p
ro

b
le

m

10
2

10
3

10
4

10
5

10
60

.0
0

.2
0

.4
0

.6
0

.8
1

.0

Dim=2 Dim=6

Dim=10

Restart

Non−restart

Griewank− categorical variables

Number of function evaluations

P
ro

b
a

b
ili

ty
 o

f
s
o

lv
in

g
 t

h
e

 p
ro

b
le

m

10
2

10
3

10
4

10
5

10
60

.0
0

.2
0

.4
0

.6
0

.8
1

.0

Dim=2 Dim=6

Dim=10

Restart

Non−restart

Figure 5.3: The RLDs obtained by ACOMV with restarts and without restarts.
The solution quality threshold is 1.00E−10. D indicates the dimensionality of the
benchmark problem. Half of the dimensions are categorical variables and the other
half are continuous variables.

categorical variables with t = 100 discrete points. The details of the benchmark

functions and the experimental setup is explained in Sections 5.1 and 5.4.1. The

two experiments are based on the following alternative choices for Equation (5.8).

(1) We modify Equation (5.8) to

wl =

{
ωjl , if (uil > 0),

0, if (uil = 0).
(5.9)

That is, we omit the terms uil and
q

η
in Equation (5.8).

(2) We modify Equation (5.8) to

wl =


ωjl
uil
, if (uil > 0),

0, if (uil = 0).
(5.10)

That is, we omit the term
q

η
in Equation (5.8).

We tuned the parameters of two versions of ACOMV that use the two alter-

native Equations (5.9) and (5.10), respectively, by the same automatic tuning

procedure used for tuning the original ACOMV with Equation (5.8) to ensure a

fair comparison.

Summary information based on RLDs are given in Fig. 5.4 and 5.5. The results

of experiment (1) show that the RLDs obtained by using Equation (5.8) clearly

dominate those obtained by using Equation (5.9). In fact, the success rates ob-

102

Ackley− categorical variables

Number of function evaluations

P
ro

b
a

b
ili

ty
 o

f
s
o

lv
in

g
 t

h
e

 p
ro

b
le

m

10
2

10
3

10
4

10
5

10
60

.0
0

.2
0

.4
0

.6
0

.8
1

.0

Dim=2
Dim=6

Dim=10

Dim=2

Equation (5.8)

Equation (5.9)

Griewank− categorical variables

Number of function evaluations

P
ro

b
a

b
ili

ty
 o

f
s
o

lv
in

g
 t

h
e

 p
ro

b
le

m

10
2

10
3

10
4

10
5

10
60

.0
0

.2
0

.4
0

.6
0

.8
1

.0

Dim=2

Dim=6

Dim=10

Dim=2

Equation (5.8)

Equation (5.9)

Figure 5.4: The RLDs obtained by the two ACOMV variants with Equation (5.8)
and (5.9) in 50 independent runs. The solution quality threshold is 1.00E−10. D
indicates the dimensionality of the benchmark problem. Half of the dimensions
are categorical variables and the other half are continuous variables.

Ackley− categorical variables

Number of function evaluations

P
ro

b
a

b
ili

ty
 o

f
s
o

lv
in

g
 t

h
e

 p
ro

b
le

m

10
2

10
3

10
4

10
5

10
60

.0
0

.2
0

.4
0

.6
0

.8
1

.0

Dim=2

Dim=6

Dim=10

Equation (5.8)

Equation (5.10)

Griewank− categorical variables

Number of function evaluations

P
ro

b
a

b
ili

ty
 o

f
s
o

lv
in

g
 t

h
e

 p
ro

b
le

m

10
2

10
3

10
4

10
5

10
60

.0
0

.2
0

.4
0

.6
0

.8
1

.0

Dim=2

Dim=6

Dim=10

Equation (5.8)

Equation (5.10)

Figure 5.5: The RLDs obtained by the two ACOMV variants with Equation (5.8)
and (5.10) in 50 independent runs. The solution quality threshold is 1.00E−10.
D indicates the dimensionality of the benchmark problem. Half of the dimensions
are categorical variables and the other half are continuous variables. The RLDs
obtained by ACOMV with Equation (5.10) in dimensions two, six and ten are
sequentially shown as the increasing number of function evaluations to solve the
problem at the first time.

103

5. MIXED DISCRETE-CONTINUOUS OPTIMIZATION

tained by Equation (5.9) in dimensions six and ten are zero and therefore not shown

in Figure 5.4. The same conclusions hold for experiment (2): the RLDs obtained

by using Equation (5.8) dominate those obtained by using Equation (5.10) in all

cases, illustrating in this way the benefit of Equation (5.8). Finally we approve

the shape Equation (5.8) through fair comparisons.

5.3 CMA-ES extensions for mixed discrete-continuous op-

timization

In this section, we present three CMA-ES extensions for mixed discrete-continuous

optimization. As for ACOMV, the three CMA-ES extensions allow the user to ex-

plicitly declare each variable of a mixed-variable optimization problem as continu-

ous, ordinal or categorical. They feature different approaches for handling categor-

ical variables and use the same approach for continuous and ordinal variables. We

start by describing CES-RoundC, a basic CMA-ES extension for handling mixed

discrete-continuous optimization. There we introduce the approaches for handling

continuous and ordinal variables. Then we present CESMV and CES-RelayC fo-

cusing on the different approaches for handling categorical variables.

5.3.1 CES-RoundC

In CES-RoundC, continuous variables are handled with a continuous optimization

approach (CMA-ES), and both, ordinal and categorical, variables are handled

with a continuous relaxation approach through rounding. We label the continuous

relaxation approach as Round. Round is the same mechanism as ACOMV for

ordinal variables on the page 97. Before the objective function is evaluated, the

continuous values are rounded to the nearest valid index, and the value at that

index is then used for the objective function evaluation. Round otherwise works

exactly as CMA-ES. When the considered optimization problem includes ordinal

or categorical variables, Round is used.

The CES-RoundC algorithm is described as follows. CES-RoundC initializes a

population with 4 + ba ln(D)c randomly generated solutions. Then, CES-RoundC

applies the mechanisms of CMA-ES and Round to iteratively generate new popula-

tions. The number of search points selected for the parent population is µ = bλ/bc.
The initial step-size is σ(0) = c(B−A). CES-RoundC uses the same restart schema

as in [Auger and Hansen, 2005]. At each restart, CES-RoundC increases the pop-

ulation size by a factor d and randomly generates a new population of solutions.

104

CMA-ES
Round

Round
CMA-ES

Round
Round

 CES-RoundC
Initialization

Restart criterion

CES-RoundC
restart

Sampling Sampling

Gen++ Gen++

Figure 5.6: A schema of the CES-RoundC algorithm flow. The blue squares denote
using Round to tackle categorical variables; The gray squares denote using CMA-
ES and Round to tackle continuous and ordinal variables. The restart criterion
rectangle denotes the triggering of the restart in CES-RoundC. The number of
population generations is labeled as Gen. The initial value of Gen is equal to one.
After each generation, Gen+ +.

Restarts are triggered using the three parameters stopTolFunHist(= 10−f), stop-

TolFun(= 10−e) and stopTolX (= 10−g); they refer to the improvement of the best

objective function value in the last 10 + d30D/λe generations, the function values

of the recent generation, and the standard deviation of the normal distribution in

all coordinates, respectively. The parameter settings of CES-RoundC are the same

as those for CMA-ES. Note that a, b, c, d, e, f, g are the exposed parameters that

are used for automatic tuning later. A schema of the CES-RoundC algorithm flow

is shown in Fig 5.6.

5.3.2 CESMV

CESMV and CES-RoundC differ from the approach to handle categorical vari-

ables. In CESMV, continuous variables are handled with a continuous optimization

approach (CMA-ES), ordinal variables are handled with Round, and categorical

variables are handled with a categorical optimization approach (CESMV-c) in each

generation. A schema of the CESMV algorithm flow is shown in Fig 5.7. We focus

on the description of the CESMV-c approach in the following.

CESMV-c is analogous to ACOMV-c. CESMV-c is a population based categor-

ical optimization approach. It is independent from the approaches for continuous

and ordinal variables. It uses informations from the population of categorical

variables and from the solution fitness values. In CESMV, the population size for

CESMV-c is the same as with CMA-ES. The initial population size is 4+ba ln(D)c.
At each restart, the population size for CESMV-c is increased by a factor d as in

105

5. MIXED DISCRETE-CONTINUOUS OPTIMIZATION

CMA-ES
Round

CESmv-c
CMA-ES

Round
CESmv-c

 CESmv
Initialization

Restart criterion

CESmv
restart

Sampling Sampling

 Gen++ Gen++

Figure 5.7: A schema of the CESMV algorithm flow. The blue squares denote using
CESMV-c to tackle categorical variables; the gray squares denote using CMA-ES
and Round to tackle continuous and ordinal variables. The restart criterion rect-
angle denotes the triggering of the restart in CESMV. The number of generations
is labeled as Gen. The initial value of Gen is equal to one. After each generation,
Gen+ +.

CMA-ES. In CESMV-c, for each categorical variable i, 1 ≤ i ≤ c, each solu-

tion entry in the population chooses probabilistically one of the ti available values

vil ∈ {vi1, . . . , viti}. The probability of choosing the l-th value is given by

pil =
wl∑ti
j=1wj

, (5.11)

where wl is the weight associated to the l-th available value. The weight wl is

calculated as

wl =



ωjl
uil

+
1

Gen× η
, if (η > 0, uil > 0),

ωjl
uil
, if (η = 0, uil > 0),

1

Gen× η
, if (η > 0, uil = 0),

(5.12)

A weight ωj is associated with solution Sj. This weight is calculated using a

Gaussian function defined by:

ωj =
1

σ
√

2π
e
−(rank(j)−1)2

2σ2 , (5.13)

where σ = max(1/Gen, 0.5), and rank(j) is a function that returns the rank of

solution Sj. ωjl is calculated according to Equation (5.13) with jl being the index

of the highest quality solution that uses value vil for the categorical variable i.

CESMV-c and ACOMV-c have three main differences. These differences are

that (i) in each generation of ACOMV, the solution entries are chosen by a certain

106

number of ants to sample values, while in each generation of CESMV, each solution

entry in the population is used. (ii) ACOMV-c uses parameter q in Equation 5.8,

while CESMV-c use an adaptive variable 1/Gen to replace with q, resulting the

new Equation 5.12; (iii) The computation of σ in Equation 5.13 does not follow the

way of Equation 5.3. σ in Equation 5.13 is simply defined as σ = max(1/Gen, 0.5).

In CESMV, σ value is therefore kept equal to 0.5 from the second generation on.

This lower bound 0.5 is used to keep CESMV a sufficient deviation to search large

mixed-variable domains.

5.3.3 CES-RelayC

The high performance of CMA-ES in continuous optimization has attracted re-

searchers to extend it to tackle mixed discrete-continuous problems by using a

two-partition strategy [Sambo et al., 2012, Wagner et al., 2011]. The two-partition

strategy for mixed discrete-continuous problems consists in partitioning the vari-

ables into continuous and discrete variables, the variables of one partition are

optimized separately for fixed values of the variables of the other partition. For

instance, in [Wagner et al., 2011], a basic two-partition strategy was successfully

applied for track cycling problem with mixed discrete-continuous variables. CMA-

ES was first used to optimize continuous variables for fixed values of the discrete

variables; then, a simple discrete optimization method (e.g. random search) was

used to optimize discrete variables for setting the continuous variables to the best

found setting in the previous phase.

In this section, we propose CES-RelayC, a relay version following the two-

partition strategy where variables of one partition (containing the categorical ones)

are optimized for fixed values of the variables of the other partition (containing

the continuous and ordinal ones). In CES-RelayC, CESMV-c handles categorical

variables in one partition and IPOP-CMA-ES and Round handle continuous and

ordinal variables in another partition.

We describe CES-RelayC by focusing on how it handles continuous and cat-

egorical variables. The population is initialized with Cpop randomly generated

solutions. CESMV-c is then applied to update the values of the categorical vari-

ables of the Cpop solutions. Next, the best ranked solution of this generation,

SC−Gen, is recorded, and the values of the continuous variables of SC−Gen are used

as the initial solution for IPOP-CMA-ES approach. The values of the categori-

cal variables in SC−Gen remain fixed, while IPOP-CMA-ES is run for a maximum

of Reval function evaluations. Next, the best-so-far solution after running IPOP-

107

5. MIXED DISCRETE-CONTINUOUS OPTIMIZATION

CES-RelayC
Initialization CESmv-c

 IPOP-CMA-ES and
Round (fixed C variables)

CESmv-c

Restart criterion

CES-RelayC
 restart

 Gen++ Gen++

GenCS GenCS 

bestROS bestROS 

 IPOP-CMA-ES and
Round (fixed C variables)

Figure 5.8: A schema of the CES-RelayC algorithm flow. After initialization,
CESMV-c is first applied to update the values of the categorical variables. Next,
the best ranked solution of this phase, SC−Gen, is recorded, and the values of the
continuous (and ordinal) variables of SC−Gen are used as initial solution for the
IPOP-CMA-ES (and Round) phase. Using the values of the categorical variables
fixed to those in SC−Gen, IPOP-CMA-ES (and Round) is then applied, resulting
SRO−best. In the next generation, CESMV-c updates the values of the categor-
ical variables with those of continuous (and ordinal) variables fixed to those of
in SRO−best. The process continues until the stopping condition CES-RelayC is
satisfied. CES-RelayC uses the same restart mechanism as ACOMV for fighting
stagnation.

CMA-ES is recorded in SRO−best. With the values of the continuous variables fixed

to those of SRO−best, CESMV-c generates new values of the categorical variables

for the next generation. The process continues until the stopping condition CES-

RelayC is satisfied. CES-RelayC uses the same restart mechanism as ACOMV for

fighting stagnation. A schema of the CES-RelayC algorithm flow is shown in Fig

5.8.

5.4 Automatic tuning and performance evaluation

5.4.1 Automatic tuning

Besides serving for experimental studies, the new benchmark functions proposed

in Section 5.1 can be used to generate a training set of problems for the automatic

parameter tuning of mixed-variable optimization algorithms. The tuning of an

108

Table 5.3: Parameter settings for ACOMV tuned by Iterated F-race
Parameter Symbol Value
Number of ants m 5
Influence of best quality solutions q 0.05099
Width of the search ξ 0.6795
Archive size k 90
Stagnating iterations before restart MaxStagIter 650
Relative improvement threshold ε 10−5

Table 5.4: Parameter settings for CES-RoundC, CESMV and CES-RelayC
Parameter Internal parameter CES-RoundC CESMV CES-RelayC
a Init pop size: λ0 = 4 + ba ln(D)c 5.679 3.158 5.979
b Parent size: µ = bλ/bc 2.216 1.804 1.615
c Init step size: σ0 = c · (B −A) 0.23690 0.1597 0.28280
d IPOP factor: ipop = d 1.728 1.913 2.722
e stopTolFun = 10e −14.62 −10.21 −13.28
f stopTolFunHist = 10f −10.14 −12.51 −14.58
g stopTolX = 10g −10.21 −11.9 −11.66
Cpop Pop size for CESMV-c = Cpop - - 806
Reval Evaluations for IPOP-CMA-ES = Reval - - 6078
MaxStagIter Stagnating iterations before restart = MaxStagIter - - 20
ε Relative improvement threshold = ε - - 10−5

algorithm on a training set that is different from the test set is important to allow

for an unbiased assessment of the algorithm’s performance on (by the algorithm

unseen) test problems [Birattari, 2009]. We therefore generate a training set of

benchmark functions across all six mixed-variable benchmark functions, across

various dimensions [Liao et al., 2011c] (taken from the set n ∈{2, 4, 6, 8, 10,

12, 14}), and across various ratios of ordinal and categorical variables. As in the

other tuning tasks in this thesis, we use Iterated F-Race [Balaprakash et al., 2007,

Birattari et al., 2010] that is included in the irace [López-Ibáñez et al., 2011]. The

performance measure for tuning is the objective function value of each problem

instance after 10 000 function evaluations. The tuning budget for Iterated F-Race

is set to 5 000 runs of each algorithm. We use the default settings of Iterated

F-Race [Birattari et al., 2010, López-Ibáñez et al., 2011]. The obtained parameter

settings after tuning ACOMV, CES-RoundC, CESMV, and CES-RelayC are given

in Tables 5.3 and 5.4. Next, we use these parameter settings for a validation of

performance.

5.4.2 Performance evaluation on benchmark functions

First we examine the performance of the three CMA-ES extensions, CES-

RoundC, CESMV and CES-RelayC on artificial mixed-variable benchmark func-

tions (fSphereMV
, fEllipsoidMV

, fRosenbrockMV
, fAckleyMV

, fRastriginMV
and fGriewankMV

)

109

5. MIXED DISCRETE-CONTINUOUS OPTIMIZATION

with continuous and categorical variables and with dimensions four, ten and

twenty. Half of the dimensions are categorical variables and the other half are con-

tinuous variables. The experimental results are measured across 50 independent

runs of 1 000 000 objective function evaluations for instances with t = 10 discrete

points. In Fig. 5.9 we show their run-time behavior by using run-length distribu-

tions (RLDs, for short) [Hoos and Stützle, 2005]. An (empirical) RLD provides a

graphical view of the development of the empirical frequency of finding a solution

of a certain quality as a function of the number of objective function evaluations.

Except the 10 and 20 dimensional versions of fEllipsoidMV
and fRastriginMV

, the so-

lution quality required is set to 1.00E−10, which is used as zero threshold. The

solution quality required for the 10 and 20 dimensional fEllipsoidMV
and fRastriginMV

functions is enlarged due to the inherent difficulty of these problems, the required

values are shown in the title of the corresponding RLDs plot. Success rate is the

proportion of successful runs in the total number of runs. A successful run is a run

during which the algorithm finds the required solution quality. Convergence speed

refers to the number of function evaluations used to reach 100% success rate or

a specific success rate required in some cases. Faster (slower) convergence speed

corresponds to fewer (more) function evaluations needed.

CESMV and CES-RoundC

CESMV performs clearly better than CES-RoundC on both success rates and con-

vergence speed. As seen from the simplest fSphereMV
, in four, ten and twenty

dimensions CESMV reaches a solution whose objective function value is equal to

or less than 1.00E−10 with probability 1; CES-RoundC reaches a solution whose

objective function value is equal to or less than 1.00E−10 with probability 1, 0.64

and about 0.44 respectively. Comparing to CESMV, CES-RoundC stagnates at

much lower success rates in higher dimensions, and converges much more slowly.

CESMV and CES-RelayC

The success rates reached by CES-RelayC are never lower than 60%. CES-RelayC

reaches a 100% success rate in fSphereMV
, fAckleyMV

in all dimensions; in dimen-

sion four, CES-RelayC reaches a 100% success rate for all functions except for

fEllipsoidMV
(96%), fRastriginMV

(98%) and fGriewankMV
(98%). Only in some cases

such as the ten and twenty dimensional fRosenbrockMV
function, CES-RelayC stag-

nates at a success rates lower than 100%. CES-RelayC clearly improves over CES-

RoundC. However, CES-RelayC performs worse than CESMV, especially concern-

110

Table 5.5: The number of function evaluations used by CES-RelayC and CESMV

for obtaining a 100% success rate in fSphereMV
, fAckleyMV

of each dimension.
Function Dimension CES-RelayC CESMV

fSphereMV

4 14 628 2 657
10 100 356 7 451
20 167 752 15 386

fAckleyMV

4 17 864 5 536
10 112 574 15 257
20 308 256 37 120

ing convergence speed. CES-RelayC uses much larger number of function evalu-

ations to find the solution quality required than CESMV does. This conclusion

is clearly illustrated by their performance on fSphereMV
and fAckleyMV

. Table 5.5

shows the number of function evaluations used by CES-RelayC and CESMV for

obtaining a 100% success rate in fSphereMV
, fAckleyMV

of each dimension. Despite

the relay and restart mechanisms in CES-RelayC facilitates the high success rates,

this two partition mechanism converges slower than the CESMV algorithm can

not be avoided. In summary, we identify CESMV as the best performing variant

among the three CMA-ES extensions.

CESMV and ACOMV

Next, we compare the performance of CESMV and ACOMV. As seen from Fig.

5.9, either ACOMV or CESMV obtains the best performance on most of the func-

tions. With respect to success rates, CESMV performs better than ACOMV. Over

dimension four, ten and twenty, CESMV obtains 100% success rate when applied

to solve almost all the functions, while ACOMV stagnates at lower success rates in

some cases such as fRosenbrockMV
and fGriewankMV

functions. For fRosenbrockMV
and

fGriewankMV
, CESMV clearly obtains larger success rates than ACOMV. With re-

spect to convergence speed, in some functions such as fSphereMV
, fAckleyMV

, ACOMV

reach 100% success rate faster than CESMV.

We also evaluate the performance of CESMV and ACOMV on the artificial

mixed-variable benchmark functions with continuous and ordinal variables. The

experimental setups are the same as those with categorical variables. As seen from

Fig. 5.10, CESMV and ACOMV reach very similar performance in the benchmark

function with four dimension. In fact, ACOMV even more often reaches 100%

success rate faster than CESMV. However, in dimensions ten and twenty, CESMV

clearly performs better than ACOMV in most cases. Most striking are the example

of the 20 dimensional fRastriginMV
and fGriewankMV

functions, for which ACOMV

can not find an optimum solution while CESMV reaches very high success rates.

111

5. MIXED DISCRETE-CONTINUOUS OPTIMIZATION
2

con
tin

u
ou

s
an

d
2

categorical
variab

les

S
p

h
e

re
−

 c
a

te
g

o
ric

a
l v

a
ria

b
le

s

N
u

m
b

e
r o

f fu
n

c
tio

n
 e

va
lu

a
tio

n
s

Probability of solving the problem

1
0

2
1

0
3

1
0

4
1

0
5

1
0

6

0.0 0.2 0.4 0.6 0.8 1.0

A
C

O
m

v

C
E

S
−

R
o

u
n

d
C

C
E

S
m

v

C
E

S
−

R
e

la
y
C

E
llip

s
o

id
−

 c
a

te
g

o
ric

a
l v

a
ria

b
le

s

N
u

m
b

e
r o

f fu
n

c
tio

n
 e

va
lu

a
tio

n
s

Probability of solving the problem

1
0

2
1

0
3

1
0

4
1

0
5

1
0

6

0.0 0.2 0.4 0.6 0.8 1.0

A
C

O
m

v

C
E

S
−

R
o

u
n

d
C

C
E

S
m

v

C
E

S
−

R
e

la
y
C

R
o

s
e

n
b

ro
c
k

−
 c

a
te

g
o

ric
a

l v
a

ria
b

le
s

N
u

m
b

e
r o

f fu
n

c
tio

n
 e

va
lu

a
tio

n
s

Probability of solving the problem

1
0

2
1

0
3

1
0

4
1

0
5

1
0

6

0.0 0.2 0.4 0.6 0.8 1.0

A
C

O
m

v

C
E

S
−

R
o

u
n

d
C

C
E

S
m

v

C
E

S
−

R
e

la
y
C

A
c
k

le
y

−
 c

a
te

g
o

ric
a

l v
a

ria
b

le
s

N
u

m
b

e
r o

f fu
n

c
tio

n
 e

va
lu

a
tio

n
s

Probability of solving the problem

1
0

2
1

0
3

1
0

4
1

0
5

1
0

6

0.0 0.2 0.4 0.6 0.8 1.0

A
C

O
m

v

C
E

S
−

R
o

u
n

d
C

C
E

S
m

v

C
E

S
−

R
e

la
y
C

R
a

s
trig

in
−

 c
a

te
g

o
ric

a
l v

a
ria

b
le

s

N
u

m
b

e
r o

f fu
n

c
tio

n
 e

va
lu

a
tio

n
s

Probability of solving the problem

1
0

2
1

0
3

1
0

4
1

0
5

1
0

6

0.0 0.2 0.4 0.6 0.8 1.0

A
C

O
m

v

C
E

S
−

R
o

u
n

d
C

C
E

S
m

v

C
E

S
−

R
e

la
y
C

G
rie

w
a

n
k

−
 c

a
te

g
o

ric
a

l v
a

ria
b

le
s

N
u

m
b

e
r o

f fu
n

c
tio

n
 e

va
lu

a
tio

n
s

Probability of solving the problem

1
0

2
1

0
3

1
0

4
1

0
5

1
0

6

0.0 0.2 0.4 0.6 0.8 1.0

A
C

O
m

v

C
E

S
−

R
o

u
n

d
C

C
E

S
m

v

C
E

S
−

R
e

la
y
C

5
con

tin
u

ou
s

an
d

5
categorical

variab
les

S
p

h
e

re
−

 c
a

te
g

o
ric

a
l v

a
ria

b
le

s

N
u

m
b

e
r o

f fu
n

c
tio

n
 e

va
lu

a
tio

n
s

Probability of solving the problem

1
0

2
1

0
3

1
0

4
1

0
5

1
0

6

0.0 0.2 0.4 0.6 0.8 1.0

A
C

O
m

v

C
E

S
−

R
o

u
n

d
C

C
E

S
m

v

C
E

S
−

R
e

la
y
C

E
llip

s
o

id
−

 c
a

te
g

o
ric

a
l v

a
ria

b
le

s
−

 (1
e

+
2

)

N
u

m
b

e
r o

f fu
n

c
tio

n
 e

va
lu

a
tio

n
s

Probability of solving the problem

1
0

2
1

0
3

1
0

4
1

0
5

1
0

6

0.0 0.2 0.4 0.6 0.8 1.0
A

C
O

m
v

C
E

S
−

R
o

u
n

d
C

C
E

S
m

v

C
E

S
−

R
e

la
y
C

R
o

s
e

n
b

ro
c
k

−
 c

a
te

g
o

ric
a

l v
a

ria
b

le
s

N
u

m
b

e
r o

f fu
n

c
tio

n
 e

va
lu

a
tio

n
s

Probability of solving the problem

1
0

2
1

0
3

1
0

4
1

0
5

1
0

6

0.0 0.2 0.4 0.6 0.8 1.0

A
C

O
m

v

C
E

S
−

R
o

u
n

d
C

C
E

S
m

v

C
E

S
−

R
e

la
y
C

A
c
k

le
y

−
 c

a
te

g
o

ric
a

l v
a

ria
b

le
s

N
u

m
b

e
r o

f fu
n

c
tio

n
 e

va
lu

a
tio

n
s

Probability of solving the problem

1
0

2
1

0
3

1
0

4
1

0
5

1
0

6

0.0 0.2 0.4 0.6 0.8 1.0

A
C

O
m

v

C
E

S
−

R
o

u
n

d
C

C
E

S
m

v

C
E

S
−

R
e

la
y
C

R
a

s
trig

in
−

 c
a

te
g

o
ric

a
l v

a
ria

b
le

s
 (2

e
+

1
)

N
u

m
b

e
r o

f fu
n

c
tio

n
 e

va
lu

a
tio

n
s

Probability of solving the problem

1
0

2
1

0
3

1
0

4
1

0
5

1
0

6

0.0 0.2 0.4 0.6 0.8 1.0

A
C

O
m

v

C
E

S
−

R
o

u
n

d
C

C
E

S
m

v

C
E

S
−

R
e

la
y
C

G
rie

w
a

n
k

−
 c

a
te

g
o

ric
a

l v
a

ria
b

le
s

N
u

m
b

e
r o

f fu
n

c
tio

n
 e

va
lu

a
tio

n
s

Probability of solving the problem

1
0

2
1

0
3

1
0

4
1

0
5

1
0

6

0.0 0.2 0.4 0.6 0.8 1.0

A
C

O
m

v

C
E

S
−

R
o

u
n

d
C

C
E

S
m

v

C
E

S
−

R
e

la
y
C

10
con

tin
u

ou
s

an
d

10
categorical

variab
les

S
p

h
e

re
−

 c
a

te
g

o
ric

a
l v

a
ria

b
le

s

N
u

m
b

e
r o

f fu
n

c
tio

n
 e

va
lu

a
tio

n
s

Probability of solving the problem

1
0

2
1

0
3

1
0

4
1

0
5

1
0

6

0.0 0.2 0.4 0.6 0.8 1.0

A
C

O
m

v

C
E

S
−

R
o

u
n

d
C

C
E

S
m

v

C
E

S
−

R
e

la
y
C

E
llip

s
o

id
−

 c
a

te
g

o
ric

a
l v

a
ria

b
le

s
−

 (1
e

+
3

)

N
u

m
b

e
r o

f fu
n

c
tio

n
 e

va
lu

a
tio

n
s

Probability of solving the problem

1
0

2
1

0
3

1
0

4
1

0
5

1
0

6

0.0 0.2 0.4 0.6 0.8 1.0

A
C

O
m

v

C
E

S
−

R
o

u
n

d
C

C
E

S
m

v

C
E

S
−

R
e

la
y
C

R
o

s
e

n
b

ro
c
k

−
 c

a
te

g
o

ric
a

l v
a

ria
b

le
s

N
u

m
b

e
r o

f fu
n

c
tio

n
 e

va
lu

a
tio

n
s

Probability of solving the problem

1
0

2
1

0
3

1
0

4
1

0
5

1
0

6

0.0 0.2 0.4 0.6 0.8 1.0

A
C

O
m

v

C
E

S
−

R
o

u
n

d
C

C
E

S
m

v

C
E

S
−

R
e

la
y
C

A
c
k

le
y

−
 c

a
te

g
o

ric
a

l v
a

ria
b

le
s

N
u

m
b

e
r o

f fu
n

c
tio

n
 e

va
lu

a
tio

n
s

Probability of solving the problem

1
0

2
1

0
3

1
0

4
1

0
5

1
0

6

0.0 0.2 0.4 0.6 0.8 1.0

A
C

O
m

v

C
E

S
−

R
o

u
n

d
C

C
E

S
m

v

C
E

S
−

R
e

la
y
C

R
a

s
trig

in
−

 c
a

te
g

o
ric

a
l v

a
ria

b
le

s
−

 (2
e

+
2

)

N
u

m
b

e
r o

f fu
n

c
tio

n
 e

va
lu

a
tio

n
s

Probability of solving the problem

1
0

1
1

0
2

1
0

3
1

0
4

0.0 0.2 0.4 0.6 0.8 1.0

A
C

O
m

v

C
E

S
−

R
o

u
n

d
C

C
E

S
m

v

C
E

S
−

R
e

la
y
C

G
rie

w
a

n
k

−
 c

a
te

g
o

ric
a

l v
a

ria
b

le
s

N
u

m
b

e
r o

f fu
n

c
tio

n
 e

va
lu

a
tio

n
s

Probability of solving the problem

1
0

2
1

0
3

1
0

4
1

0
5

1
0

6

0.0 0.2 0.4 0.6 0.8 1.0

A
C

O
m

v

C
E

S
−

R
o

u
n

d
C

C
E

S
m

v

C
E

S
−

R
e

la
y
C

F
igu

re
5.9:

T
h
e

q
u
alifi

ed
ru

n
-len

gth
d
istrib

u
tion

s
(R

L
D

s,
for

sh
ort)

over
50

in
d
ep

en
d
en

t
ru

n
s

ob
tain

ed
b
y

A
C

O
M

V
,

C
E

S
-

R
ou

n
d
C

,
C

E
S
M

V
an

d
C

E
S
-R

elay
C

.
T

h
e

solu
tion

q
u
ality

req
u
ired

is
1.00E−

10
(zero

th
resh

old
)

ex
cep

t
for

th
e

10
an

d
20

d
im

en
sion

al
f
E
llip

so
id
M
V

an
d
f
R
a
str
ig
in
M
V

,
for

w
h
ich

th
e

solu
tion

q
u
ality

req
u
ired

is
sh

ow
n

in
th

e
title

of
th

e
corresp

on
d
in

g
p
lot.

112

2
co

n
ti

n
u

ou
s

an
d

2
or

d
in

al
va

ri
ab

le
s

S
p

h
e

re
−

 o
rd

in
a

l
v
a

ri
a

b
le

s

N
u

m
b

e
r

o
f

fu
n

c
ti
o

n
 e

va
lu

a
ti
o

n
s

Probability of solving the problem

1
0

2
1

0
3

1
0

4
1

0
5

1
0

6

0.00.20.40.60.81.0

A
C

O
m

v

C
E

S
m

v

E
ll

ip
s

o
id

−
 o

rd
in

a
l

v
a

ri
a

b
le

s

N
u

m
b

e
r

o
f

fu
n

c
ti
o

n
 e

va
lu

a
ti
o

n
s

Probability of solving the problem
1

0
2

1
0

3
1

0
4

1
0

5
1

0
6

0.00.20.40.60.81.0

A
C

O
m

v

C
E

S
m

v

R
o

s
e

n
b

ro
c
k

−
 o

rd
in

a
l

v
a

r
ia

b
le

s

N
u

m
b

e
r

o
f

fu
n

c
ti
o

n
 e

va
lu

a
ti
o

n
s

Probability of solving the problem

1
0

2
1

0
3

1
0

4
1

0
5

1
0

6

0.00.20.40.60.81.0

A
C

O
m

v

C
E

S
m

v

A
c
k

le
y

−
 o

rd
in

a
l

v
a

ri
a

b
le

s

N
u

m
b

e
r

o
f

fu
n

c
ti
o

n
 e

va
lu

a
ti
o

n
s

Probability of solving the problem

1
0

2
1

0
3

1
0

4
1

0
5

1
0

6

0.00.20.40.60.81.0

A
C

O
m

v

C
E

S
m

v

R
a

s
tr

ig
in

−
 o

rd
in

a
l

v
a

ri
a

b
le

s

N
u

m
b

e
r

o
f

fu
n

c
ti
o

n
 e

va
lu

a
ti
o

n
s

Probability of solving the problem

1
0

2
1

0
3

1
0

4
1

0
5

1
0

6

0.00.20.40.60.81.0

A
C

O
m

v

C
E

S
m

v

G
r
ie

w
a

n
k

−
 o

rd
in

a
l

v
a

r
ia

b
le

s

N
u

m
b

e
r

o
f

fu
n

c
ti
o

n
 e

va
lu

a
ti
o

n
s

Probability of solving the problem

1
0

2
1

0
3

1
0

4
1

0
5

1
0

6

0.00.20.40.60.81.0

A
C

O
m

v

C
E

S
m

v

5
co

n
ti

n
u

ou
s

an
d

5
or

d
in

al
va

ri
ab

le
s

S
p

h
e

re
−

 o
rd

in
a

l
v
a

ri
a

b
le

s

N
u

m
b

e
r

o
f

fu
n

c
ti
o

n
 e

va
lu

a
ti
o

n
s

Probability of solving the problem

1
0

2
1

0
3

1
0

4
1

0
5

1
0

6

0.00.20.40.60.81.0

A
C

O
m

v

C
E

S
m

v

E
ll

ip
s

o
id

−
 o

rd
in

a
l

v
a

ri
a

b
le

s

N
u

m
b

e
r

o
f

fu
n

c
ti
o

n
 e

va
lu

a
ti
o

n
s

Probability of solving the problem

1
0

2
1

0
3

1
0

4
1

0
5

1
0

6

0.00.20.40.60.81.0

A
C

O
m

v

C
E

S
m

v

R
o

s
e

n
b

ro
c
k

−
 o

rd
in

a
l

v
a

r
ia

b
le

s

N
u

m
b

e
r

o
f

fu
n

c
ti
o

n
 e

va
lu

a
ti
o

n
s

Probability of solving the problem
1

0
2

1
0

3
1

0
4

1
0

5
1

0
6

0.00.20.40.60.81.0

A
C

O
m

v

C
E

S
m

v

A
c
k

le
y

−
 o

rd
in

a
l

v
a

ri
a

b
le

s

N
u

m
b

e
r

o
f

fu
n

c
ti
o

n
 e

va
lu

a
ti
o

n
s

Probability of solving the problem

1
0

2
1

0
3

1
0

4
1

0
5

1
0

6

0.00.20.40.60.81.0

A
C

O
m

v

C
E

S
m

v

R
a

s
tr

ig
in

−
 o

rd
in

a
l

v
a

ri
a

b
le

s

N
u

m
b

e
r

o
f

fu
n

c
ti
o

n
 e

va
lu

a
ti
o

n
s

Probability of solving the problem

1
0

2
1

0
3

1
0

4
1

0
5

1
0

6

0.00.20.40.60.81.0

A
C

O
m

v

C
E

S
m

v

G
r
ie

w
a

n
k

−
 o

rd
in

a
l

v
a

r
ia

b
le

s

N
u

m
b

e
r

o
f

fu
n

c
ti
o

n
 e

va
lu

a
ti
o

n
s

Probability of solving the problem

1
0

2
1

0
3

1
0

4
1

0
5

1
0

6

0.00.20.40.60.81.0

A
C

O
m

v

C
E

S
m

v

10
co

n
ti

n
u

ou
s

an
d

10
or

d
in

al
va

ri
ab

le
s

S
p

h
e

re
−

 o
rd

in
a

l
v
a

ri
a

b
le

s

N
u

m
b

e
r

o
f

fu
n

c
ti
o

n
 e

va
lu

a
ti
o

n
s

Probability of solving the problem

1
0

2
1

0
3

1
0

4
1

0
5

1
0

6

0.00.20.40.60.81.0

A
C

O
m

v

C
E

S
m

v

E
ll

ip
s

o
id

−
 o

rd
in

a
l

v
a

ri
a

b
le

s
−

 (
1

e
+

3
)

N
u

m
b

e
r

o
f

fu
n

c
ti
o

n
 e

va
lu

a
ti
o

n
s

Probability of solving the problem

1
0

2
1

0
3

1
0

4
1

0
5

1
0

6

0.00.20.40.60.81.0

A
C

O
m

v

C
E

S
m

v

R
o

s
e

n
b

ro
c
k

−
 o

rd
in

a
l

v
a

r
ia

b
le

s

N
u

m
b

e
r

o
f

fu
n

c
ti
o

n
 e

va
lu

a
ti
o

n
s

Probability of solving the problem

1
0

2
1

0
3

1
0

4
1

0
5

1
0

6

0.00.20.40.60.81.0

A
C

O
m

v

C
E

S
m

v

A
c
k

le
y

−
 o

rd
in

a
l

v
a

ri
a

b
le

s

N
u

m
b

e
r

o
f

fu
n

c
ti
o

n
 e

va
lu

a
ti
o

n
s

Probability of solving the problem

1
0

2
1

0
3

1
0

4
1

0
5

1
0

6

0.00.20.40.60.81.0

A
C

O
m

v

C
E

S
m

v

R
a

s
tr

ig
in

−
 o

rd
in

a
l

v
a

ri
a

b
le

s

N
u

m
b

e
r

o
f

fu
n

c
ti
o

n
 e

va
lu

a
ti
o

n
s

Probability of solving the problem

1
0

2
1

0
3

1
0

4
1

0
5

1
0

6

0.00.20.40.60.81.0

A
C

O
m

v

C
E

S
m

v

G
r
ie

w
a

n
k

−
 o

rd
in

a
l

v
a

r
ia

b
le

s

N
u

m
b

e
r

o
f

fu
n

c
ti
o

n
 e

va
lu

a
ti
o

n
s

Probability of solving the problem

1
0

2
1

0
3

1
0

4
1

0
5

1
0

6

0.00.20.40.60.81.0

A
C

O
m

v

C
E

S
m

v

F
ig

u
re

5.
10

:
T

h
e

q
u
al

ifi
ed

ru
n
-l

en
gt

h
d
is

tr
ib

u
ti

on
s

(R
L

D
s,

fo
r

sh
or

t)
ov

er
50

in
d
ep

en
d
en

t
ru

n
s

ob
ta

in
ed

b
y

A
C

O
M

V
an

d
C

E
S
M

V
.

T
h
e

so
lu

ti
on

q
u
al

it
y

re
q
u
ir

ed
is

1.
00

E
−

10
(z

er
o

th
re

sh
ol

d
)

ex
ce

p
t

fo
r

th
e

20
d
im

en
si

on
al
f E

ll
ip
so
id
M
V

fo
r

w
h
ic

h
th

e
so

lu
ti

on
q
u
al

it
y

re
q
u
ir

ed
is

sh
ow

n
in

th
e

ti
tl

e
of

th
e

co
rr

es
p

on
d
in

g
p
lo

t.

113

5. MIXED DISCRETE-CONTINUOUS OPTIMIZATION

5.5 Application to engineering optimization problems

In this section, we apply ACOMV and CESMV into mixed discrete-continuous

engineering benchmark problems and compare the results of ACOMV and CESMV

with those found in the literature. Note that our experiments comprise a larger

set of benchmark problems than in any of the papers found in the literature, since

these papers are often limited to a specific type of discrete variables (either ordinal

or categorical). First, we classify the available engineering optimization problems

in the literature into four groups according to the types of the decision variables

used (see Table 5.6).

Table 5.6: The classification of engineering optimization
problems.

Groups The type of decision variables
Group I Continuous variables†

Group II Continuous and ordinal variables
Group III Continuous and categorical variables
Group IV Continuous, ordinal and categorical variables
† Problems with only continuous variables are considered

as a particular class of mixed variables with an empty set
of discrete variables, since ACOMV and CESMV are also
capable to solve pure continuous optimization problems.

Group I includes the welded beam design problem case A [Coello Coello, 2000];

Group II the pressure vessel design problem [Sandgren, 1990] and the coil spring

design problem [Sandgren, 1990]; Group III the thermal insulation systems design

problem [Kokkolaras et al., 2001]; and Group IV the welded beam design problem

case B [Deb and Goyal, 1996]. The mathematical formulations of the problems are

given in Appendix B. In this section, we compare the results obtained by ACOMV

and CESMV to those reported in the literature for these problems. We also show

the run-time behavior of ACOMV and CESMV by using RLDs. It is important

to note that NM-PSO [Zahara and Kao, 2009] and PSOLVER [Kayhan et al.,

2010] report infeasible solutions that violate the problems’ constraints; C̆repins̆ek

et al. [C̆repins̆ek et al., 2012] pointed out that the authors of TLBO [Rao et al.,

2011] used an incorrect formula for computing the number of objective function

evaluations. Therefore, we did not include these three algorithms in our compar-

ison. For our experiments, the tuned parameter configurations from Tables 5.3

and 5.4 were used. For simplifying the algorithm and giving prominence to the

role of the ACOMV and CESMV heuristic itself, the most fundamental constraint

114

handling technique was used, which consists in rejecting all infeasible solutions in

the optimization process (also called “death penalty”). 100 independent runs were

performed for each engineering problem. In the comparisons, fBest, fMean and

fWorst are the abbreviations used to indicate the best, average and worst objective

function values obtained, respectively. SRB denotes the success rate of reaching

the best known solution value. Sd gives the standard deviation of the mean objec-

tive function value; a value of Sd lower than 1.00E−10 is reported as 0. FEs gives

the maximum number of objective function evaluations in each algorithm run.

Note that the value of FEs may vary from algorithm to algorithm. To define the

value of FEs for ACOMV and CESMV, we first checked which is the smallest value

of FEs used across all competing algorithms; let this value be denoted by FEsmin.

Then the value of FEs for ACOMV and CESMV is set to FEsmin. Often, however,

ACOMV and CESMV reached the best known solution values for the particular

problem under concern in all runs (that is, with a 100% success rate) much faster

than its competitors. In such cases, for ACOMV and CESMV we give, instead

of the value FEsmin, in parenthesis the maximum number of objective function

evaluations we observed across the 100 independent runs.

Group I : Welded beam design problem case A

Recently, many methods have been applied to the welded beam design problem

case A. Table 5.7 shows basic summary statistics of the results obtained by nine

other algorithms, ACOMV and CESMV. Most other algorithms do not reach a

success rate of 100% within a maximum number of objective function evaluations

ranging from 30 000 (for (µ + λ)ES [Mezura Montes and Coello Coello, 2005]) to

200 000 (for CPSO [He and Wang, 2007a]), while ACOMV and CESMV find the

best-known solution value in every run using at most 2 303 and 2 070 objective

function evaluations (measured across 100 independent trials). The only other

algorithm that reaches the best-known solution value in every run is DELC [Wang

and Li, 2010]; it does so using in every run at most 20 000 objective function

evaluations (measured across 30 independent trials). Hence, ACOMV and CESMV

are very efficient and robust algorithms for this problem. The run-time behavior

of ACOMV and CESMV on this problems is illustrated also in Fig. 5.11, where the

RLDs for this problem are given. The average and minimum number of objective

function evaluations for ACOMV are 2 122 and 1 888, respectively. The average

and minimum number of objective function evaluations for CESMV are 1 550 and

1 173, respectively.

115

5. MIXED DISCRETE-CONTINUOUS OPTIMIZATION

1000 1500 2000 2500 3000

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

wbdA

Function evaluations

P
ro

b
a

b
ili

ty
 o

f
s
o

lv
in

g
 t

h
e

 p
ro

b
le

m

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

ACOmv

CESmv

pvdA

Function evaluations

P
ro

b
a

b
ili

ty
 o

f
s
o

lv
in

g
 t

h
e

 p
ro

b
le

m

10
3

10
40

.0
0

.2
0

.4
0

.6
0

.8
1

.0

ACOmv

CESmv

pvdB

Function evaluations

P
ro

b
a

b
ili

ty
 o

f
s
o

lv
in

g
 t

h
e

 p
ro

b
le

m

10
3

10
40

.0
0

.2
0

.4
0

.6
0

.8
1

.0

ACOmv

CESmv

pvdC

Function evaluations

P
ro

b
a

b
ili

ty
 o

f
s
o

lv
in

g
 t

h
e

 p
ro

b
le

m

10
3

10
40

.0
0

.2
0

.4
0

.6
0

.8
1

.0

ACOmv

CESmv

Figure 5.11: The RLDs of ACOMV and CESMV for the welded beam design prob-
lem case A and the pressure vessel design problem case A, B and C (wbdA, pvdA,
pvdB and pvdC are the abbreviations of those problems, respectively).

116

Table 5.7: Basic summary statistics for the welded beam design problem case A.
The best-known solution value is 1.724852. fBest, fMean and fWorst denote the best,
mean and worst objective function values, respectively. Sd denotes the standard
deviation of the mean objective function value. FEs denotes the maximum number
of objective function evaluations in each algorithm run. For ACOMV and CESMV

we report in parenthesis the largest number of objective function evaluations it
required in any of the 100 independent runs (ACOMV and CESMV reached in
each run of at most 20 000 evaluations the best known solution value). “-” means
that the information is not available.

Methods fBest fMean fWorst Sd FEs
GA1 [Coello Coello, 2000] 1.748309 1.771973 1.785835 1.12E−02 -
GA2 [Coello Coello and Mezura Montes, 2002] 1.728226 1.792654 1.993408 7.47E−02 80 000
EP [Coello Coello and Becerra, 2004] 1.724852 1.971809 3.179709 4.43E−01 -
(µ+ λ)ES [Mezura Montes and Coello Coello, 2005] 1.724852 1.777692 - 8.80E−02 30 000
CPSO [He and Wang, 2007a] 1.728024 1.748831 1.782143 1.29E−02 200 000
HPSO [He and Wang, 2007b] 1.724852 1.749040 1.814295 4.01E−02 81 000
CLPSO [Gao and Hailu, 2010] 1.724852 1.728180 - 5.32E−03 60 000
DELC [Wang and Li, 2010] 1.724852 1.724852 1.724852 0 20 000
ABC [Akay and Karaboga] 1.724852 1.741913 - 3.10E−02 30 000
ACOMV 1.724852 1.724852 1.724852 0 (2 303)
CESMV 1.724852 1.724852 1.724852 0 (2 070)

Group II: Pressure vessel design problem case A, B, C and D

There are four distinct cases (A, B, C and D) of the pressure vessel design problem

defined in the literature. These cases differ by the constraints posed on the thick-

ness of the steel used for the heads and the main cylinder. In case A, B and C (see

Table 5.8), ACOMV reaches the best-known solution value with a 100% success

rate in a maximum of 1 737, 1 764 and 1 666 objective function evaluations, respec-

tively; the average number of objective function evaluations of the successful runs

are 1 500, 1 470 and 1 433 respectively. CESMV reaches the best-known solution

value with a 100% success rate in a maximum of 5 021, 4 612 and 4 568 objec-

tive function evaluations, respectively; the average number of objective function

evaluations of the successful runs are 1 381, 1 313 and 1 604 respectively. Other

algorithms do not reach a success rate of 100% with respect to the best-known

solution value even after many more objective function evaluations. The run-time

behavior of ACOMV and CESMV is illustrated in Fig. 5.11, where the RLDs for

these problems are given.

Case D is more difficult to solve due to the larger range of side constraints for

decision variables. Therefore, Case D was analyzed in more detail in the recent

literature. We limit ACOMV and CESMV to use a maximum number of 30 000

objective function evaluations, the same as done for several other approaches from

117

5. MIXED DISCRETE-CONTINUOUS OPTIMIZATION

T
ab

le
5.8:

R
esu

lts
for

case
A

,
B

an
d

C
of

th
e

p
ressu

re
vessel

d
esign

p
rob

lem
.
f
B
est

d
en

otes
th

e
b

est
ob

jective
fu

n
ction

valu
e.

S
R
B

d
en

otes
th

e
su

ccess
rate

of
reach

in
g

th
e

b
est

k
n
ow

n
solu

tion
valu

e.
F

E
s

d
en

otes
th

e
m

ax
im

u
m

n
u
m

b
er

of
ob

jective
fu

n
ction

evalu
ation

s
in

each
algorith

m
ru

n
.

F
or

A
C

O
M

V
an

d
C

E
S
M

V
w

e
rep

ort
in

p
aren

th
esis

th
e

largest
n
u
m

b
er

of
ob

jective
fu

n
ction

evalu
ation

s
it

req
u
ired

in
an

y
of

th
e

100
in

d
ep

en
d
en

t
ru

n
s

(A
C

O
M

V
an

d
C

E
S
M

V
reach

ed
in

each
ru

n
th

e
b

est
k
n
ow

n
solu

tion
valu

e).
G

iven
is

also
th

e
average

n
u
m

b
er

of
ob

jective
fu

n
ction

evalu
ation

s
of

th
e

su
ccessfu

l
ru

n
s.

“-”
m

ean
s

th
at

th
e

in
form

ation
is

n
ot

availab
le.

C
a
se

A
N

L
ID

P
M

ID
C

P
D

E
A

C
O

M
V

C
E

S
M

V
[S

a
n

d
g
ren

,
1
9
9
0
]

[F
u

et
a
l.,

1
9
9
1
]

[L
a
m

p
in

en
a
n

d
Z

elin
k
a
,

1
9
9
9
c]

f
B
e
s
t

7
8
6
7
.0

7
7
9
0
.5

8
8

7
0
1
9
.0

3
1

7
0
1
9
.0

3
1

7
0
1
9
.0

3
1

S
R
B

-
-

8
9
.2

%
1
0
0
%

1
0
0
%

F
E

s
-

-
1
0

0
0
0

(1
7
3
7
)

(1
50

0.0)
(5

0
2
1
)

(1
3
80.86

)

C
a
se

B
N

L
ID

P
S

L
A

G
A

D
E

H
S

IA
A

C
O

M
V

C
E

S
M

V
[S

a
n

d
g
ren

,
1
9
9
0
]

[L
o
h

a
n

d
P

a
p

a
la

m
b

ro
s,

1
9
9
1
]

[W
u

a
n

d
C

h
o
w

,
1
9
9
5
]

[L
a
m

p
in

en
a
n

d
Z

elin
k
a
,

1
9
9
9
c]

[G
u

o
et

a
l.,

2
0
0
4
]

f
B
e
s
t

7
9
8
2
.5

7
1
9
7
.7

3
4

7
2
0
7
.4

9
7

7
1
9
7
.7

2
9

7
1
9
7
.9

7
1
9
7
.7

2
9

7
1
9
7
.7

2
9

S
R
B

-
-

-
9
0
.2

%
-

1
0
0
%

1
0
0
%

F
E

s
-

-
-

1
0

0
0
0

-
(1

7
6
4
)

(1
470

.4
8)

(4
6
1
2
)

(1
3
13.34

)

C
a
se

C
N

L
M

D
P

E
P

E
S

D
E

C
H

O
P

A
A

C
O

M
V

C
E

S
M

V
[L

i
a
n

d
C

h
o
u

,
1
9
9
4
]

[C
a
o

a
n

d
W

u
,

1
9
9
7
]

[T
h

iera
u

f
a
n

d
C

a
i,

2
0
0
0
]

[L
a
m

p
in

en
a
n

d
Z

elin
k
a
,

1
9
9
9
c]

[S
ch

m
id

t
a
n

d
T

h
iera

u
f,

2
0
0
5
]

f
B
e
s
t

7
1
2
7
.3

7
1
0
8
.6

1
6

7
0
0
6
.9

7
0
0
6
.3

5
8

7
0
0
6
.5

1
7

0
0
6
.3

5
8

7
0
0
6
.3

5
8

S
R
B

-
-

-
9
8
.3

%
-

1
0
0
%

1
0
0
%

F
E

s
-

-
4

8
0
0

1
0

0
0
0

1
0

0
0
0

(1
6
6
6
)

(1
433

.4
2)

(4
5
6
8
)

(1
6
03.73

)

118

Table 5.9: Basic summary statistics for the pressure vessel design problem case
D. The best-known objective function value is 6059.7143. fBest, fMean and fWorst

denotes the best, mean and worst objective function values, respectively. Sd de-
notes the standard deviation of the mean objective function value. FEs denotes
the maximum number of objective function evaluations in each algorithm run.“-”
means that the information is not available.

Methods fBest fMean fWorst Sd FEs
GA1 [Coello Coello, 2000] 6 288.7445 6 293.8432 6 308.1497 7.413E+00 -
GA2 [Coello Coello and Mezura Montes, 2002] 6 059.9463 6 177.2533 6 469.3220 1.309E+02 80 000
(µ+ λ)ES [Mezura Montes and Coello Coello, 2005] 6 059.7143 6 379.9380 - 2.10E+02 30 000
CPSO [He and Wang, 2007a] 6 061.0777 6 147.1332 6 363.8041 8.645E+01 200 000
HPSO [He and Wang, 2007b] 6 059.7143 6 099.9323 6 288.6770 8.620E+01 81 000
RSPSO [Wang and Yin, 2008] 6 059.7143 6 066.2032 6 100.3196 1.33E+01 30 000
CLPSO [Gao and Hailu, 2010] 6 059.7143 6 066.0311 - 1.23E+01 60 000
DELC [Wang and Li, 2010] 6 059.7143 6 059.7143 6 059.7143 0 30 000
ABC [Akay and Karaboga] 6 059.7143 6 245.3081 - 2.05E+02 30 000
ACOMV 6 059.7143 6 059.7164 6 059.9143 1.94E−02 30 000
CESMV 6 059.7143 6 059.7480 6 089.9893 4.34E+00 30 000

the literature. Table 5.9 shows clearly the second and the third best performing

algorithms for what concerns the average and the worst objective function values.

In fact, ACOMV and CESMV reaches a 100% success rate (measured over 100

independent runs) at 30 717 and 43 739 objective function evaluations, while at

30 000 evaluations they reached a success rate of 98% and 76%, which are slightly

lower than the success rate of 100% reported by DELC [Wang and Li, 2010]. The

run-time behavior of ACOMV and CESMV are illustrated in Fig. 5.12, where the

RLD for this problem is given. The average and minimum number of objective

function evaluations of ACOMV is 9 448 and 1 726, respectively. The average and

minimum number of objective function evaluations of CESMV is 19 675 and 1 417,

respectively.

It is noteworthy that DELC [Wang and Li, 2010] reaches the aforementioned

performance using parameter settings that are specific for each test problem, while

we use a same parameter setting for all test problems. Using instance specific

parameter settings potentially biases the results in favor of the DELC algorithm.

In a practical setting, one would not know a priori which parameter setting to apply

before actually solving the problem. Thus, there are methodological problems in

the results presented for DELC [Wang and Li, 2010].

119

5. MIXED DISCRETE-CONTINUOUS OPTIMIZATION

Group II: Coil spring design problem

Most of the research reported in the literature considering the coil spring design

problem focused on reaching the best-known solution or improving the best-known

one. Only recent work [Datta and Figueira, 2010, Lampinen and Zelinka, 1999c]

gave some attention to the number of objective functions evaluations necessary to

reach the best-known solution. A comparison of the obtained results is presented

in Table 5.10. Only a differential evolution algorithm [Lampinen and Zelinka,

1999c], ACOMV and CESMV obtained the best-known objective function value,

2.65856. At 8 000 evaluations ACOMV and CESMV reached success rates of 74%

and 44%, which are lower than the success rate of 95% reported by the DE al-

gorithm of [Lampinen and Zelinka, 1999c]; however, ACOMV and CESMV reach

100% and 93% success rates with 19 588 and 47 792 objective function evaluations,

respectively. The run-time behavior of ACOMV is illustrated in Fig. 5.12, where

the RLD for this problem is given. The average and minimum number of objective

function evaluations of ACOMV are 9 948 and 1 726, respectively. The average and

minimum number of objective function evaluations of CESMV are 12 107 and 527,

respectively.

It is important to note that the DE algorithm of [Lampinen and Zelinka,

1999c] was not designed to handle categorical variables. Another DE algorithm

proposed in [Datta and Figueira, 2010] did not report a success rate, but the

corresponding objective function values were reported to be in the range of

[2.658565, 2.658790] and the number of objective function evaluations varied in the

range [539 960, 3 711 560], thus, showing a clearly worse performance than ACOMV

and CESMV.

Group III: Thermal insulation systems design problem

The thermal insulation systems design problem is one of the engineering problems

used in the literature that deals with categorical variables. In previous studies,

the categorical variables describing the type of insulators used in different layers

were not considered as optimization variables, but rather as parameters. Only the

more recent work of Kokkolaras et al. [Kokkolaras et al., 2001] and Abramson et

al. [Abramson, 2004], which are able to handle such categorical variables properly,

consider these variables for optimization. Research focuses on improving the best-

known solution value for this difficult engineering problem. ACOMV and CESMV

reaches a better solution than MVP [Kokkolaras et al., 2001] and FMGPS [Abram-

son, 2004]; Table 5.11 presents the best found solutions by the four algorithms we

120

0 10000 30000 50000

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

pvdD

Function evaluations

P
ro

b
a

b
ili

ty
 o

f
s
o

lv
in

g
 t

h
e

 p
ro

b
le

m

ACOmv

CESmv

csd

Function evaluations

P
ro

b
a

b
ili

ty
 o

f
s
o

lv
in

g
 t

h
e

 p
ro

b
le

m

500 10
3

10
4

5 × 10
40

.0
0

.2
0

.4
0

.6
0

.8
1

.0
ACOmv

CESmv

Figure 5.12: The RLDs of ACOMV and CESMV for the pressure vessel design prob-
lem case D and the coil spring design problem (pvdD and csd are the abbreviations
of those problems, respectively).

Table 5.10: Results for the coil spring design problem. fBest denotes the best ob-
jective function value. SRB denotes the success rate of reaching the best known
solution value. FEs denotes the maximum number of objective function evalua-
tions in each algorithm run. For ACOMV and CESMV we report in parenthesis the
largest number of objective function evaluations it required in any of the 100 inde-
pendent runs (ACOMV and CESMV reached in each run the best known solution
value). “-” means that the information is not available.

Algs
NLIDP GA GA DE

[Sandgren, 1990] [Chen and Tsao, 1993] [Wu and Chow, 1995] [Lampinen and Zelinka, 1999c]
N 10 9 9 9

D [inch] 1.180701 1.2287 1.227411 1.223041
d [inch] 0.283 0.283 0.283 0.283
fBest 2.7995 2.6709 2.6681 2.65856
SRB - - - 95.0%
FEs - - - 8 000

Algs
HSIA DE

ACOMV CESMV[Guo et al., 2004] [Datta and Figueira, 2010]
N 9 9 9 9

D [inch] 1.223 1.223044 1.223041 1.223041
d [inch] 0.283 0.283 0.283 0.283
fBest 2.659 2.658565 2.65856 2.65856
SRB - - 74% (100%) 44% (93%)
FEs - - 8 000 (19 588) 8 000 (47 792)

121

5. MIXED DISCRETE-CONTINUOUS OPTIMIZATION

Table 5.11: Comparison of the best fitness value for the thermal insulation systems
design problem

Objective function MVP [Kokkolaras et al., 2001] FMGPS [Abramson, 2004] ACOMV CESMV

Power(PL
A

(W
cm

)) 25.294 25.58 24.148 23.914

Function evaluations

B
e

s
t

fi
tn

e
s
s
 v

a
lu

e

0 10000 30000 50000

2
4

2
5

2
6

2
7

2
8

2
9

3
0

ACOmv

CESmv

Problem Tisdu

Figure 5.13: The best solution trail of ACOMV and CESMV for the thermal insu-
lation systems design problem

wbdB

Function evaluations

P
ro

b
a

b
ili

ty
 o

f
s
o

lv
in

g
 t

h
e

 p
ro

b
le

m

60010
3

10
4

10
50

.0
0

.2
0

.4
0

.6
0

.8
1

.0

ACOmv

CESmv

Figure 5.14: The RLDs of ACOMV and CESMV for the welded beam design prob-
lem case B (wbdB is its abbreviation).

compare here. Both, ACOMV and CESMV improve over the best solution found

by MVP and FMGPS.

The evolution of the best solution as a function of number of objective function

evaluations of ACOMV and CESMV are shown in Fig.5.13. In fact, as the number of

objective function evaluations increases, the solution quality continues to improve,

though ACOMV appears to show issues of early convergence.

122

Table 5.12: Basic summary statistics for welded beam design design problem case
B. fBest and fMean denotes the best and mean objective function values, respec-
tively. Sd denotes the standard deviation of the mean objective function value.
Mean-FEs-Success denotes the average number of evaluations of the successful
runs. “-” means that the information is not available.

Methods fBest fMean Sd Mean-FEs-Success
GeneAS [Deb and Goyal, 1996] 1.9422 - - -
RSPSO [Wang and Yin, 2008] 1.9421 - - -
PSOA[Dimopoulos, 2007] 1.7631 1.7631 0 6 570
CLPSO [Gao and Hailu, 2010] 1.5809 1.7405 2.11E−01 -
ACOMV 1.5029 1.5029 0 1 436
CESMV 1.5029 1.5029 0 4 188

Group IV: Welded beam design problem case B

The welded beam design problem case B is taken from Deb and Goyal [Deb and

Goyal, 1996] and Dimopoulos [Dimopoulos, 2007]. It is a variation of case A

and it includes ordinal and categorical variables. Table 5.12 shows that ACOMV

and CESMV reaches a new best-known solution value with a 100% success rate.

Additionally, the average number of objective function evaluations required by

ACOMV and CESMV are also fewer than that of PSOA [Dimopoulos, 2007]. The

run-time behavior of ACOMV and CESMV is illustrated in Fig. 5.14.

5.6 Summary

In this chapter, we have presented two algorithms for mixed discrete continuous

optimization problems. One of these algorithms is an ant colony optimization

algorithm, ACOMV, that extends the ACOR method to mixed discrete contin-

uous optimization. In particular, ACOMV integrates a continuous optimization

solver (ACOR), a continuous relaxation approach (ACOMV-o) and a categori-

cal optimization approach (ACOMV-c) to solve continuous and mixed discrete-

continuous optimization problems. As a second algorithm, we have introduced

CESMV, an covariance matrix adaptation evolution strategy algorithm for tack-

ling mixed discrete-continuous optimization problems. CESMV integrates a con-

tinuous optimization solver (CMA-ES), a continuous relaxation approach (Round,

same as ACOMV-o) and a categorical optimization approach (CESMV-c) to solve

continuous and mixed discrete-continuous optimization problems. The categori-

cal optimization part of CESMV is adapted in a rather straightforward way from

the way ACOMV handles categorical variables. We have also proposed and evalu-

ated other CMA-ES extensions we proposed for tackling mixed discrete-continuous

123

5. MIXED DISCRETE-CONTINUOUS OPTIMIZATION

optimization problems, and identify CESMV as the most performing variant.

We have also proposed a new set of artificial mixed discrete-continuous bench-

mark functions.

We evaluate ACOMV and CESMV on the artificial mixed discrete-continuous

benchmark functions and apply them into real-world engineering problems. The

experimental results for real-world engineering problems illustrate that ACOMV

and CESMV not only can tackle various classes of decision variables robustly, but

also that they are efficient in finding high-quality solutions when compared to

many other algorithms from the literature. In the welded beam design case A,

ACOMV and CESMV are the ones of the three available algorithms that reach

the best-known solution with a 100% success rate; in the pressure vessel design

problem case A, B and C, ACOMV and CESMV are the only two available al-

gorithms that reach the best-known solution with a 100% success rate. In these

four problems, ACOMV and CESMV do so using fewer objective function evalua-

tions than those used by the competing algorithms. In the pressure vessel design

problem case D, ACOMV and CESMV are two of the three available algorithms

that reach the best-known solution with a 100% success rate, and they do so using

only slightly more objective function evaluations than the other algorithm, which

uses problem specific parameter tuning to boost algorithm performance. In the

coil spring design problem, ACOMV is the only available algorithm that reaches

the best-known solution with a 100% success rate. In the thermal insulation sys-

tems design problem, ACOMV and CESMV obtains new best solutions, and in

the welded beam design problem case B, ACOMV and CESMV obtain new best

solutions with a 100% success rate in fewer evaluations than those used by the

other algorithms.

124

Chapter 6

Summary and future work

6.1 Summary

This thesis focuses on the design, engineering and configuration of high-performing

heuristic optimization algorithms for tackling continuous and mixed discrete-

continuous optimization problems. Continuous optimization problems have vari-

able domains that typically are a subset of the real numbers; mixed discrete-

continuous optimization problems have additionally discrete variables, so that

some variables are continuous and others are on an ordinal or categorical scale.

Continuous and mixed discrete-continuous problems have a wide range of appli-

cations in many disciplines and these problems are also often hard to solve due to

their inherent difficulties such as a large number of variables, many local optima

or other factors making problems hard.

We tackle continuous and mixed discrete-continuous optimization problems

with two types of population-based heuristic algorithms, ant colony optimization

(ACO) algorithms and evolution strategies. The main contributions of this thesis

are that (i) we advance the design and engineering of ACO algorithms; the resulting

algorithms are competitive or superior to recent state-of-the-art algorithms for

continuous and mixed discrete-continuous optimization problems, (ii) we propose a

new hybrid algorithm that improves upon a state-of-the-art evolution strategy, the

covariance matrix adaptation evolution strategy (CMA-ES), and (iii) we develop

effective algorithms based on the ACO framework and CMA-ES, respectively, to

tackle mixed discrete-continuous optimization problems.

More in detail, we propose a unified ant colony optimization (ACO) framework

for continuous optimization (UACOR). This framework synthesizes algorithmic

components of two ACO algorithms (ACOR and DACOR) that have been pro-

posed in the literature and an incremental ACO algorithm with local search for

continuous optimization (IACOR-LS). IACOR-LS is a variant of ACOR that uses

125

6. SUMMARY AND FUTURE WORK

local search and that features a growing solution archive. We proposed IACOR-LS

during my doctoral research and the paper describing IACOR-LS received the best

paper award of the ACO-SI track at the GECCO 2011 conference. The UACOR

framework is flexible and its design allows the usage of automatic algorithm con-

figuration techniques to automatically derive new ACO algorithms for continuous

optimization. The computational results showed that the automatically configured

ACO algorithms obtain better performance on the SOCO and CEC’05 benchmark

sets than the tuned variants of the three ACO algorithms that underly the UACOR

framework, namely ACOR, DACOR and IACOR-LS. When UACOR is automati-

cally configured for the SOCO benchmark set, it performs better or competitive

to all the recent 16 algorithms benchmarked on this benchmark set; when config-

ured for the CEC’05 benchmark set, it performs competitive to IPOP-CMA-ES, a

state-of-the-art algorithm on this benchmark set and also competitive or superior

to other five recent high-performance continuous optimizers that were evaluated

on this benchmark set. Finally, we proposed UACOR+, a re-designed and im-

proved UACOR that includes the option of using CMA-ES as a local search. This

helps the UACOR framework, as also shown experimentally, to improve results on

rotated functions, thus, mainly on the CEC benchmark set. For example, when

configured for the CEC’05 benchmark set, it performs superior to IPOP-CMA-

ES and statistically significantly better than other five recent high-performance

continuous optimizers that were evaluated on this benchmark set. In summary,

we have proven the high potential ACO algorithms have for continuous optimiza-

tion and that automatic algorithm configuration has a high potential also for the

development of continuous optimizers out of algorithm components.

In later work, summarized in Chapter 4, we proposed iCMAES-ILS, a hybrid

algorithm that loosely couples IPOP-CMA-ES and a new iterated local search

(ILS) algorithm for continuous optimization. The hybrid algorithm starts with

a competition phase, where IPOP-CMA-ES and the ILS algorithm compete for

deployment in a second phase. Some information exchange from IPOP-CMA-ES

to the ILS algorithm during the competition phase implements some cooperative

aspect. iCMAES-ILS reaches excellent performance on the CEC’05 benchmark

function set. The computational results with a default parameter settings and

further fine-tuned parameter settings establish iCMAES-ILS as a state-of-the-art

algorithm for continuous optimization. In fact, iCMAES-ILS improves statistically

significantly over IPOP-CMA-ES, the ILS algorithm, various other state-of-the-

art algorithms and it gives better results than other possible hybrid designs such

as iCMAES-ILS-portfolio, iCMAES-ILS-relay and iCMAES-LTH-ILS. As a final

126

step, we compare iCMAES-ILS to UACOR+, the UACOR version that included

CMA-ES as a local search, on the CEC’05 and SOCO benchmark functions set,

respectively. Each of iCMAES-ILS and UACOR+ shows own advantages with

respect to the two different benchmark function sets. iCMAES-ILS performs sta-

tistically significantly better than UACOR+ on the CEC’05 benchmark functions

set; UACOR+ performs statistically significantly better than iCMAES-ILS on the

SOCO benchmark functions set.

To tackle mixed discrete-continuous optimization problems, we extend ACOMV

and propose CESMV, an ant colony optimization algorithm and a covariance ma-

trix adaptation evolution strategy, respectively. In ACOMV and CESMV, the de-

cision variables of an optimization problem can be declared as continuous, ordinal,

or categorical, which allows the algorithm to treat them adequately. ACOMV and

CESMV include three solution generation mechanisms: a continuous optimization

mechanism, a continuous relaxation mechanism for ordinal variables, and a cate-

gorical optimization mechanism for categorical variables. Together, these mecha-

nisms allow ACOMV and CESMV to tackle mixed variable optimization problems.

We also have proposed and evaluated other CMA-ES extensions for mixed-variable

optimization problems, but we identify CESMV as the most performing variant.

We also propose a set of artificial, mixed-variable benchmark functions, which can

simulate discrete variables as ordered or categorical. These benchmark functions

provide a sufficiently controlled environment for the investigation of the perfor-

mance of mixed-variable optimization algorithms, and a training environment for

automatic parameter tuning. We use them to automatically tune ACOMV and

CESMV’s parameters and benchmark their performance. Finally, we test ACOMV

and CESMV on various real-world continuous and mixed-variable engineering op-

timization problems. The experimental results for real-world engineering problems

illustrate that ACOMV and CESMV not only can tackle various classes of decision

variables robustly, but also that it is efficient in finding high-quality solutions.

Apart from these main contributions, during my doctoral research I have ac-

complished a number of additional contributions, which concern (i) a note on the

bound constraints handling for the CEC’05 benchmark set, (ii) computational re-

sults for an automatically tuned IPOP-CMA-ES on the CEC’05 benchmark set and

(iii) a study of artificial bee colonies for continuous optimization. These additional

contributions are found in the appendix to this thesis.

127

6. SUMMARY AND FUTURE WORK

6.2 Future work

There are a number of relevant research directions to extend the work presented

in this thesis. One promising direction is to extend UACOR to synthesize other

probability density functions for the generation of candidate solutions, alternative

ways of handling the archive and other local search algorithms. Another possibil-

ity would be to design a more general algorithm framework from which different

types of continuous optimizers other than ACO algorithms can be automatically

configured.

Several directions appear promising in the future work of iCMAES-ILS. A first

direction is to further refine the design of the hybrid algorithm by integrating other

algorithms that are complementary in performance with respect to the already in-

cluded IPOP-CMA-ES and ILS. One possibility, for example would be to use an

algorithm based on UACOR. An interesting alternative is also to automatize the

design of the hybrid algorithm exploiting recent ideas underlying the automatic

design of algorithm portfolios and algorithm selection [Xu et al., 2010]. Recent

work on the definition of function features for continuous optimization problems

may prove useful in this respect [Bischl et al., 2012, Mersmann et al., 2011]. Fi-

nally, the ideas pursued in the design of our algorithms may be extended to address

large-scale, noisy or dynamic problems [Hansen et al., 2009b, Lozano et al., 2011,

Morrison and Jong, 1999] and to tackle constrained continuous optimization prob-

lems.

A promising application for ACOMV and CESMV are algorithm configuration

problems [Birattari et al., 2010], in which typically not only the setting of numerical

parameters but also that of categorical parameters needs to be determined. To

do so, we will integrate ACOMV and CESMV into the irace framework [López-

Ibáñez et al., 2011]. Another promising direction is use ACOMV and CESMV

to tackle constrained mixed discrete-continuous optimization problems in the real

world with an effective constraint-handling technique.

128

Appendices

129

Appendix A

The results obtained by UACOR+

In Appendix A, we give some more detailed results for the analysis of UACOR+

and a comparison of its performance to other algorithms from the literature.

• Table A.1 gives the parameter settings we obtained when tuning UACOR+

for the SOCO and the CEC’05 benchmark sets, respectively.

• Figures A.1 and A.2 give the algorithm flowchart for UACOR+ tuned on the

SOCO and CEC’05 benchmark sets.

• Figure A.3 compares UACOR+-s and the three ACO algorithms, ACOR-s,

DACOR-s and IACOR-Mtsls1-s; shows the benefit of the incremental archive

mechanism used by UACOR+-s when compared to a fixed archive size.

• Figure A.4 compares UACOR+-s with all 13 candidate algorithms published

in the SOCO special issue and to the three algorithms that were chosen as

reference algorithms.

• Table A.2 shows the average error values of UACOR+-s and the three ACO

algorithms, ACOR-s, DACOR-s and IACOR-Mtsls1-s, and MOS-DE on the

SOCO benchmark functions.

• Table A.3 shows the average error values of UACOR+-c and the three ACO

algorithms, ACOR-c, DACOR-c and IACOR-Mtsls1-c, and IPOP-CMA-ES

on the CEC’05 benchmark functions.

• Tables A.4 and A.5 compare UACOR+-c with five recent state-of-the-art

continuous optimization algorithms.

131

A. THE RESULTS OBTAINED BY UACOR+

.
Table A.1: The left part of the table gives the list of parameter settings and their domains.
Some settings are only significant for certain values of other settings. The parameter settings
of the automatically configured algorithms are given in the central part and the right part,
depending on which training set of benchmark functions was used for tuning.

Module Para Name Type Domain
Tuning on SOCO Tuning on CEC’05

UACOR+-s UACOR+-c

Mode
DefaultMode c {T, F} T T

EliteQbest r [0, 1] * *

DefNants

InitAS i [20, 100] 54 85

NaIsAS c {T, F} F T

Na i [2, 20] 14 *

SolConstr

Qbest r [0, 1] 0.2365 0.4582

WeightGsol c {T, F} T F

q r (0, 1) 0.3091 *

ξ r (0, 1) 0.6934 0.6753

SAUpdate
RmLocalWorse c {T, F} F T

SnewvsGsol c {T, F} * T

LS

LsType c {F,Powell,Mtsls1,CMA-ES} Mtsls1 CMA-ES

LsIter i [1, 100] 86 *

LsFailures i [1, 20] 6 3

IncArch
IsIncrement c {T, F} T T

GrowthIter i [1, 30] 5 11

RestartMech

RestartType c {F, 1st, 2nd} F 2nd

StagIter r [1, 1000] * 8

StagThresh r [-15, 0] * -3.189

Shakefactor r [-15, 0] * -0.03392

RestartAS i [2, 100] * 12
* denotes the value of the parameter is not relevant for the corresponding algorithm.

132

b

Qbest >rand

WeightGsol

Set a guiding solution

Sample Gaussian around the guiding solution

Initialize and evaluate solution archive

T

RmLocalWorse

DefaultMode

T

End

Select Sbest

T

While termination criterion not satisfied

For (l = 1 to Na)

NaIsAS

Generate a new solution

F

Local search

Incremental archive mechnism

Begin

Na <= k

F

Remove Na worse solutions

Sort Na+AS solutions

Generate a new solution archive

Select Mode

Set number of ants

Set Na <= k
T

Select S by weight

F

Mtsls1

T

Figure A.1: UACOR+-s is highlighted in the flowchart of UACOR+.

133

A. THE RESULTS OBTAINED BY UACOR+

b

Qbest >rand

WeightGsol

Set a guiding solution

Sample Gaussian around the guiding solution

Initialize and evaluate solution archive

RmLocalWorse

T

SnewvsGsol

DefaultMode

T

End

Select Sbest

T

While termination criterion not satisfied

For (l = 1 to Na)

NaIsAS

T

Generate a new solution

T

F

Local search

Incremental archive mechnism

Restart mechanism

Begin

F

Remove Na worse solutions

F

 Select lS

Generate a new solution archive

Select Mode

Set number of ants

 Na k

F

Snew vs. Gsol

CMA-ES

2nd

T

Figure A.2: UACOR+-c is highlighted in the flowchart of UACOR+.

134

A
C

O
r−

s

D
A

C
O

r−
s

IA
C

O
r−

m
ts

ls
1

−
s

U
A
C
O
R
+
−
s

1e−14

1e−09

1e−04

1e+01

1e+06

+ + +
Optima 0 1 8 14

A
ve

ra
g
e

 E
rr

o
rs

 o
f

F
it
n

e
s
s
 V

a
lu

e

A
rc

h
S

iz
e

=
1

A
rc

h
S

iz
e
=

5
0

A
rc

h
S

iz
e
=

1
0

0

A
rc
h
S
iz
e
=
in
c

1e−14

1e−09

1e−04

1e+01

1e+06

+ +
Optima 6 7 9 14

A
ve

ra
g
e

 E
rr

o
rs

 o
f

F
it
n

e
s
s
 V

a
lu

e

Figure A.3: The box-plots show the distribution of the average errors obtained on
the 19 SOCO benchmark functions of dimension 100. The left plot compares the
performance of UACOR+-s with ACOR-s, DACOR-s and IACOR-Mtsls1-s. The
right plot shows the benefit of the incremental archive size used in UACOR+-s. A
+ symbol on top of each box-plot denotes a statistically significant difference at
the 0.05 α-level between the results obtained by the indicated algorithm and those
obtained with UACOR+-s. The absence of a symbol means that the difference is
not statistically significant. The numbers on top of a box-plot denote the number of
the averages below the optimum threshold 10−14 found by the indicated algorithms.

135

A. THE RESULTS OBTAINED BY UACOR+

D
E

C
H

C

IP
O

P
−

C
M

A
−

E
S

S
O

U
P

D
E

D
E

−
D

4
0

−
M

m

G
O

D
E

G
a

D
E

jD
E

ls
c
o

p

S
a

D
E

−
M

M
T

S

M
O

S
−

D
E

M
A

−
S

S
W

R
P

S
O

−
v
m

IP
S

O
−

P
o
w

e
ll

E
vo

P
R

O
p

t

E
M

3
2

3

V
X

Q
R

1

U
A
C
O
R

+
−
s

1e−14

1e−09

1e−04

1e+01

1e+06

+ + + + + + + + + + + +
Optima 6 0 2 8 9 6 9 10 12 13 8 4 5 0 4 5 14

A
ve

ra
g

e
 E

rr
o

rs
 o

f
F

it
n

e
s
s
 V

a
lu

e

16 algorithms in SOCO

Figure A.4: The box-plot show the distribution of the average errors obtained on
the 19 SOCO benchmark functions of dimension 100. The results obtained by the
three reference algorithms (left), 13 algorithms (middle) published in SOCO and
UACOR+-s (right) are shown on the plot. The line at the bottom of the boxplot
represents the optimum threshold (10−14). A + symbol on top of the two box-
plot denotes a statistically significant difference at the 0.05 α-level between the
results obtained with the indicated algorithm and those obtained with UACOR+-
s detected with a Friedman test and its associated post test on the 17 algorithms.
The absence of a symbol means that the difference is not significant. The numbers
on top of a box-plot denote the number of averages below the optimum threshold
10−14 found by the indicated algorithms.

136

Table A.2: The average errors obtained by ACOR-s, DACOR-s, IACOR-Mtsls1-s,
MOS-DE and UACOR+-s for each SOCO function. The numbers in parenthesis at
the bottom of the table represent the number of times an algorithm is better, equal or
worse, respectively, than UACOR+-s. Error values lower than 10−14 are approximated
to 10−14. The average errors that correspond to a better result between MOS-DE
and UACOR+-c are highlighted.

Dim fsoco ACOR-s DACOR-s IACOR-Mtsls1-s MOS-DE UACOR+-s

100

fsoco1 5.32E−14 1.00E−14 1.00E−14 1.00E−14 1.00E−14
fsoco2 2.77E+01 3.82E+01 5.27E−12 2.94E−12 6.86E−11
fsoco3 1.96E+02 2.86E+03 4.77E+02 2.03E+01 3.02E+02
fsoco4 6.34E+02 3.89E+02 1.00E−14 1.00E−14 1.00E−14
fsoco5 2.96E−04 4.96E−01 1.00E−14 1.00E−14 1.00E−14
fsoco6 2.04E−08 3.49E+00 1.00E−14 1.00E−14 1.00E−14
fsoco7 9.94E−10 5.01E−01 1.00E−14 1.00E−14 1.00E−14
fsoco8 4.39E+04 2.28E+04 1.39E+00 9.17E−02 1.34E+00
fsoco9 4.78E+00 1.84E+02 1.62E−01 1.00E−14 1.00E−14
fsoco10 2.75E+00 2.09E+01 1.00E−14 1.00E−14 1.00E−14
fsoco11 3.96E+00 1.90E+02 1.67E−01 1.00E−14 1.00E−14
fsoco12 1.13E+01 2.39E+02 4.01E−02 1.00E−14 1.00E−14
fsoco13 1.47E+02 3.92E+02 4.19E+01 1.75E+01 3.12E+01
fsoco14 3.40E+02 2.40E+02 9.23E+00 1.68E−11 1.00E−14
fsoco15 5.89E−01 4.41E+00 1.00E−14 1.00E−14 1.00E−14
fsoco16 1.61E+00 4.18E+02 4.24E−01 1.00E−14 1.00E−14
fsoco17 6.27E+01 6.65E+02 8.40E+01 1.43E+01 4.08E+01
fsoco18 1.57E+01 1.17E+02 1.07E−01 1.00E−14 1.00E−14
fsoco19 1.48E+00 1.61E+01 1.00E−14 1.00E−14 1.00E−14

By fsoco (1, 0, 18)† (0, 1, 18)† (1, 8, 10)† (5, 13, 1)

† denotes a significant difference between the corresponding algorithm and UACOR+-s by a Fried-
man test at the 0,05 α-level over the distribution of average errors of ACOR-s, DACOR-s, IACOR-
Mtsls1-s and UACOR+-s.

137

A. THE RESULTS OBTAINED BY UACOR+

Table A.3: The average errors obtained by ACOR-c, DACOR-c, IACOR-Mtsls1-c, IPOP-
CMA-ES and UACOR+-c for each CEC’05 function. The numbers in parenthesis at the
bottom of the table represent the number of times an algorithm is better, equal or worse,
respectively, compared to UACOR+-c. Error values lower than 10−8 are approximated to
10−8. The average errors that correspond to a better result between IPOP-CMA-ES and
UACOR+-c are highlighted.

Dim fcec ACOR-c DACOR-c IACOR-Mtsls1-c IPOP-CMA-ES UACOR+-c

30

fcec1 1.00E−08 1.00E−08 1.00E−08 1.00E−08 1.00E−08
fcec2 1.00E−08 4.74E+00 1.00E−08 1.00E−08 1.00E−08
fcec3 3.88E+05 4.21E+06 2.19E+05 1.00E−08 1.00E−08
fcec4 2.75E−04 2.62E+02 9.45E+03 1.11E+04 1.14E+03
fcec5 1.00E−08 1.00E−08 6.79E−08 1.00E−08 1.00E−08
fcec6 8.99E+00 2.50E+01 1.64E+02 1.00E−08 1.00E−08
fcec7 1.80E−02 1.54E−02 1.00E−02 1.00E−08 1.00E−08
fcec8 2.00E+01 2.02E+01 2.00E+01 2.01E+01 2.00E+01
fcec9 2.50E+01 6.35E+01 1.00E−08 9.38E−01 2.95E+01
fcec10 4.51E+01 6.58E+01 1.19E+02 1.65E+00 2.91E+01
fcec11 3.75E+01 3.19E+01 2.36E+01 5.48E+00 3.82E+00
fcec12 3.59E+03 1.92E+04 7.89E+03 4.43E+04 2.21E+03
fcec13 3.67E+00 4.57E+00 1.28E+00 2.49E+00 2.26E+00
fcec14 1.25E+01 1.34E+01 1.32E+01 1.29E+01 1.32E+01
fcec15 3.40E+02 3.28E+02 2.48E+02 2.08E+02 1.92E+02
fcec16 1.33E+02 1.93E+02 2.49E+02 3.50E+01 6.14E+01
fcec17 1.49E+02 1.81E+02 3.35E+02 2.91E+02 2.87E+02
fcec18 9.12E+02 9.07E+02 9.02E+02 9.04E+02 8.73E+02
fcec19 9.11E+02 9.07E+02 8.92E+02 9.04E+02 8.83E+02
fcec20 9.12E+02 9.07E+02 8.97E+02 9.04E+02 8.78E+02
fcec21 5.38E+02 5.00E+02 5.12E+02 5.00E+02 5.00E+02
fcec22 9.08E+02 8.70E+02 9.90E+02 8.03E+02 8.57E+02
fcec23 5.75E+02 5.35E+02 5.66E+02 5.34E+02 5.34E+02
fcec24 2.27E+02 7.85E+02 1.26E+03 9.10E+02 3.41E+02
fcec25 2.19E+02 2.31E+02 5.60E+02 2.11E+02 2.63E+02

50

fcec1 1.00E−08 1.00E−08 1.00E−08 1.00E−08 1.00E−08
fcec2 1.80E−04 2.61E+03 4.08E−07 1.00E−08 1.00E−08
fcec3 6.68E+05 6.72E+06 5.60E+05 1.00E−08 1.00E−08
fcec4 8.36E+03 4.69E+04 5.33E+04 4.68E+05 1.69E+04
fcec5 2.23E−05 2.02E−01 7.95E−07 2.85E+00 1.00E−08
fcec6 2.92E+01 5.18E+01 1.73E+02 1.00E−08 1.00E−08
fcec7 9.93E−03 1.08E−02 4.53E−03 1.00E−08 1.00E−08
fcec8 2.00E+01 2.02E+01 2.00E+01 2.01E+01 2.01E+01
fcec9 4.82E+01 1.15E+02 1.00E−08 1.39E+00 8.18E+01
fcec10 9.77E+01 1.42E+02 2.83E+02 1.72E+00 7.45E+01
fcec11 7.30E+01 5.81E+01 4.63E+01 1.17E+01 1.07E+01
fcec12 2.74E+04 1.07E+05 1.47E+04 2.27E+05 1.27E+04
fcec13 7.24E+00 1.06E+01 2.13E+00 4.59E+00 4.76E+00
fcec14 2.24E+01 2.29E+01 2.26E+01 2.29E+01 2.31E+01
fcec15 3.26E+02 3.61E+02 2.64E+02 2.04E+02 1.74E+02
fcec16 1.10E+02 1.64E+02 2.89E+02 3.09E+01 7.01E+01
fcec17 1.62E+02 2.45E+02 5.65E+02 2.34E+02 3.17E+02
fcec18 9.33E+02 9.26E+02 9.31E+02 9.13E+02 9.08E+02
fcec19 9.34E+02 9.27E+02 9.18E+02 9.12E+02 8.76E+02
fcec20 9.36E+02 9.27E+02 9.19E+02 9.12E+02 8.64E+02
fcec21 5.39E+02 9.82E+02 5.12E+02 1.00E+03 5.00E+02
fcec22 9.48E+02 9.07E+02 1.06E+03 8.05E+02 8.92E+02
fcec23 5.56E+02 1.02E+03 5.53E+02 1.01E+03 5.41E+02
fcec24 2.94E+02 9.06E+02 1.40E+03 9.55E+02 8.26E+02
fcec25 2.63E+02 3.39E+02 9.52E+02 2.15E+02 3.53E+02

By fcec (13, 5, 32)† (6, 4, 40)† (6, 5, 39)† (14, 14, 22)

† denotes a significant difference between the corresponding algorithm and UACOR+-s by a Friedman
test at the 0,05 α-level over the distribution of average errors of ACOR-c, DACOR-c, IACOR-Mtsls1-c
and UACOR+-c.

138

Table A.4: The average errors obtained by HDDE, Pro-JADE, Pro-SaDE, Pro-DEGL, ABC-MR
and UACOR+-c for for each CEC’05 function. The numbers in parenthesis at the bottom of the
table represent the number of times an algorithm is better, equal or worse, respectively, compared
to UACOR+-c. Error values lower than 10−8 are approximated to 10−8. The lowest average errors
values are highlighted.

Dim fcec HDDE Pro-JADE Pro-SaDE Pro-DEGL ABC-MR UACOR+-c

30

fcec1 1.00E−08 1.00E−08 1.00E−08 1.00E−08 1.00E−08 1.00E−08
fcec2 8.13E+00 1.00E−08 1.00E−08 1.00E−08 1.00E−08 1.00E−08
fcec3 2.31E+06 1.85E+04 2.28E+06 4.20E+04 2.20E+05 1.00E−08
fcec4 1.33E+02 1.00E−08 2.00E−05 1.00E−08 1.00E−08 1.14E+03
fcec5 7.66E+02 5.90E+01 5.51E+01 1.91E+01 6.02E+03 1.00E−08
fcec6 3.19E+01 1.89E+01 1.36E+00 1.20E+00 1.38E+02 1.00E−08
fcec7 4.70E+03 4.70E+03 4.70E+03 4.69E+03 1.49E−02 1.00E−08
fcec8 2.09E+01 2.09E+01 2.10E+01 2.09E+01 2.09E+01 2.00E+01
fcec9 3.91E+00 1.00E−08 1.00E−08 3.58E+01 6.60E+01 2.95E+01
fcec10 6.01E+01 8.18E+01 1.01E+02 5.18E+01 2.01E+02 2.91E+01
fcec11 2.57E+01 3.01E+01 3.37E+01 2.01E+01 3.56E+01 3.82E+00
fcec12 7.86E+03 2.63E+04 1.48E+03 2.35E+04 9.55E+04 2.21E+03
fcec13 2.04E+00 3.32E+00 2.95E+00 3.40E+00 1.07E+01 2.26E+00
fcec14 1.27E+01 1.29E+01 1.31E+01 1.24E+01 1.88E−01 1.32E+01
fcec15 3.17E+02 3.71E+02 3.86E+02 3.53E+02 2.88E+02 1.92E+02
fcec16 8.58E+01 1.14E+02 6.97E+01 1.76E+02 3.06E+02 6.14E+01
fcec17 1.01E+02 1.45E+02 7.20E+01 1.60E+02 3.01E+02 2.87E+02
fcec18 9.03E+02 8.60E+02 8.56E+02 9.09E+02 8.12E+02 8.73E+02
fcec19 9.04E+02 8.90E+02 8.67E+02 9.10E+02 8.17E+02 8.83E+02
fcec20 9.04E+02 8.96E+02 8.52E+02 9.10E+02 8.23E+02 8.78E+02
fcec21 5.00E+02 5.06E+02 5.00E+02 6.79E+02 6.42E+02 5.00E+02
fcec22 8.76E+02 8.95E+02 9.09E+02 8.94E+02 9.04E+02 8.57E+02
fcec23 5.34E+02 5.00E+02 5.00E+02 6.77E+02 8.20E+02 5.34E+02
fcec24 2.00E+02 2.00E+02 2.00E+02 7.77E+02 2.01E+02 3.41E+02
fcec25 1.28E+03 1.67E+03 1.63E+03 1.64E+03 2.00E+02 2.63E+02

50

fcec1 1.00E−08 1.00E−08 1.00E−08 1.00E−08 1.00E−08 1.00E−08
fcec2 3.30E+02 1.00E−08 7.40E−04 1.00E−08 1.00E−08 1.00E−08
fcec3 4.44E+06 4.30E+04 7.82E+05 1.93E+05 1.13E+06 1.00E−08
fcec4 2.94E+03 3.19E−01 6.64E+01 1.08E−01 3.82E+02 1.69E+04
fcec5 3.22E+03 1.83E+03 1.95E+03 2.23E+03 1.03E+04 1.00E−08
fcec6 5.74E+01 1.04E+01 1.15E+01 8.77E−01 2.47E+03 1.00E−08
fcec7 6.20E+03 6.20E+03 6.20E+03 6.20E+03 8.10E−01 1.00E−08
fcec8 2.11E+01 2.10E+01 2.11E+01 2.11E+01 2.11E+01 2.01E+01
fcec9 1.87E+01 2.77E+01 6.61E−01 7.94E+01 2.59E+02 8.18E+01
fcec10 1.13E+02 1.99E+02 6.23E+01 9.24E+01 4.58E+02 7.45E+01
fcec11 5.19E+01 6.03E+01 6.61E+01 6.14E+01 7.03E+01 1.07E+01
fcec12 3.84E+04 9.45E+04 7.34E+03 6.32E+04 8.88E+05 1.27E+04
fcec13 4.36E+00 9.14E+00 6.90E+00 5.41E+00 3.50E+01 4.76E+00
fcec14 2.23E+01 2.26E+01 2.28E+01 2.26E+01 2.32E+01 2.31E+01
fcec15 2.62E+02 3.80E+02 3.96E+02 3.44E+02 2.52E+02 1.74E+02
fcec16 1.05E+02 1.44E+02 4.85E+01 1.63E+02 3.39E+02 7.01E+01
fcec17 1.15E+02 1.92E+02 9.36E+01 1.94E+02 3.08E+02 3.17E+02
fcec18 9.17E+02 9.26E+02 9.05E+02 9.28E+02 9.85E+02 9.08E+02
fcec19 9.16E+02 9.32E+02 8.97E+02 9.28E+02 9.70E+02 8.76E+02
fcec20 9.16E+02 9.33E+02 9.11E+02 9.29E+02 9.70E+02 8.64E+02
fcec21 7.37E+02 5.00E+02 5.00E+02 9.50E+02 8.34E+02 5.00E+02
fcec22 9.01E+02 9.49E+02 9.60E+02 9.28E+02 8.75E+02 8.92E+02
fcec23 7.85E+02 5.00E+02 5.06E+02 9.35E+02 5.71E+02 5.41E+02
fcec24 2.00E+02 2.00E+02 2.00E+02 6.81E+02 2.01E+02 8.26E+02
fcec25 1.37E+03 1.71E+03 1.69E+03 1.67E+03 2.01E+02 3.53E+02

By fcec (12, 4, 34)† (13, 5, 32)† (20, 5, 25)† (8, 4, 38)† (12, 4, 34)†

† denotes a significant difference between the corresponding algorithm and UACOR+-c by a Friedman test at
the 0,05 α-level over the distribution of average errors of HDDE, Pro-JADE, Pro-SaDE, Pro-DEGL, ABC-MR
and UACOR+-c.

139

A. THE RESULTS OBTAINED BY UACOR+

T
ab

le
A

.5:
G

iven
are

th
e

average
ran

k
,

th
e

n
u
m

b
er

of
op

tim
u
m

th
resh

old
s

reach
ed

,
an

d
th

e
n
u
m

b
er

of
tim

es
th

e
low

est
average

errors
reach

ed
b
y

each
algorith

m
p
resen

ted
in

T
ab

le
A

.4.
In

ad
d
ition

,
w

e
give

th
e

p
u
b
lication

sou
rce

for
each

referen
ce

algorith
m

.

A
lgorith

m
s

A
verag

e
R

an
k
in

g
N

u
m

o
f

O
p

tim
a

N
u

m
o
f

low
est

avera
g
e

error
valu

es
P

u
b

lication
S

ou
rces

U
A

C
O

R
+

-c
2
.5

2
1
2

2
5

P
ro-S

aD
E
†

3.22
4

1
7

IE
E

E
T

E
C

,
2011

P
ro-J

A
D

E
†

3.54
6

1
1

IE
E

E
T

E
C

,
2011

H
D

D
E
†

3.54
2

8
IE

E
E

T
E

C
,

2011
P

ro-D
E

G
L
†

3.89
5

6
IE

E
E

T
E

C
,

2011
A

B
C

-M
R
†

4.29
5

1
2

In
form

ation
S

cien
ces,

2012

†
d

en
otes

a
sign

ifi
can

t
d

iff
eren

ce
b

etw
een

th
e

co
rresp

o
n

d
in

g
a
lg

o
rith

m
a
n

d
U

A
C

O
R

+
-c

b
y

a
F

ried
m

an
test

at
th

e
0,05

α
-level

over
th

e
d

istrib
u

tion
of

av
era

g
e

erro
rs

o
f

H
D

D
E

,
P

ro
-J

A
D

E
,

P
ro

-S
a
D

E
,

P
ro-D

E
G

L
,

A
B

C
-M

R
an

d
U

A
C

O
R

+
-c.

140

Appendix B

Mathematical formulation of engineering problems

In Appendix B, we give an explicit definition of the engineering problems that we

used for benchmark the ACOMV and the CESMV algorithms in Chapter 5.

Welded beam design problem case A

The mathematical formulation of the welded beam design problem is given in

Table B.1. The schematic view of this problem is shown in Fig. B.1

Welded beam design problem case B

The welded beam design problem case B is a variation of case A. It is extended to

include two types of welded joint configuration and four possible beam materials.

The changed places are shown in Equation B.1 and Table B.2.

Figure B.1: Schematic view of welded beam design problem case A [Kayhan et al.,
2010].

141

B. MATHEMATICAL FORMULATION OF ENGINEERING PROBLEMS

Table B.1: The mathematical formulation of welded beam design problem case A.

min f(~x) = 1.10471x2
1x2 + 0.04811x3x4 (14 + x2)

g1 τ(~x)− τmax ≤ 0
g2 σ(~x)− σmax ≤ 0
g3 x1 − x4 ≤ 0
g4 0.10471x2

1 + 0.04811x3x4 (14 + x2)− 5 ≤ 0
g5 0.125− x1 ≤ 0
g6 δ(~x)− δmax ≤ 0
g7 P − Pc(~x) ≤ 0
g8 0.1 ≤ x1, x4 ≤ 2.0
g9 0.1 ≤ x2, x3 ≤ 10.0

where τ(~x) =
√

(τ ′)2 + 2τ ′τ ′′ x2
2R

+ (τ ′′)2

τ ′ = P√
2x1x2

, τ ′′ = MR
J
,M = P (L+ x2

2
)

R =

√
x22
4

+ (x1+x3
2

)2

J = 2

{√
2x1x2

[
x22
12

+
(
x1+x3

2

)2
]}

σ(~x) = 6PL
x4x

2
3
, δ(~x) = 4PL3

Ex33x4

Pc(~x) =
4.013E

√
x2
3x6

4
36

L2

(
1− x3

2L

√
E
4G

)
P = 6 000lb, L = 14in., E = 30× 106psi,G = 12× 106psi

τmax = 1 360psi, σmax = 30 000psi, δmax = 0.25in.

min f(~x) = (1 + c1)x21x2 + c2 x3x4 (14 + x2)

σ(~x)− S ≤ 0

J = 2
{√

2x1x2

[
x2
2

12 +
(
x1+x3

2

)2]}
, if x6 : twoside

J = 2
{√

2x1

[
(x1+x2+x3)

3

12

]}
, if x6 : fourside

τmax = 0.577 · S

(B.1)

Table B.2: Material properties for the welded beam design problem case B

Methods x5 S(103psi) E(106psi) G(106psi) c1 c2
Steel 30 30 12 0.1047 0.0481

Cast iron 8 14 6 0.0489 0.0224
Aluminum 5 10 4 0.5235 0.2405

Brass 8 16 6 0.5584 0.2566

Pressure vessel design problem

The pressure vessel design problem requires designing a pressure vessel consisting

of a cylindrical body and two hemispherical heads such that the manufacturing

cost is minimized subject to certain constraints. The schematic picture of the

vessel is presented in Fig. B.2. There are four variables for which values must be

chosen: the thickness of the main cylinder Ts, the thickness of the heads Th, the

142

Table B.3: The mathematical formulation the cases (A, B, C and D) of the pressure
vessel design problem.

No Case A Case B Case C Case D
min f = 0.6224TsRL+ 1.7781ThR

2 + 3.1611T 2
s L+ 19.84T 2

sR
g1 −Ts + 0.0193R ≤ 0
g2 −Th + 0.00954R ≤ 0

g3 −π R2L− 4
3
π R3 + 750 · 1728 ≤ 0

g4 L− 240 ≤ 0
g5 1.1 ≤ Ts ≤ 12.51.125 ≤ Ts ≤ 12.51 ≤ Ts ≤ 12.5 0 ≤ Ts ≤ 100
g6 0.6 ≤ Th ≤ 12.5 0.625 ≤ Th ≤ 12.5 0 ≤ Th ≤ 100
g7 0.0 ≤ R ≤ 240 10 ≤ R ≤ 200
g8 0.0 ≤ L ≤ 240 10 ≤ L ≤ 200

inner radius of the main cylinder R, and the length of the main cylinder L. While

variables R and L are continuous, the thickness for variables Ts and Th may be

chosen only from a set of allowed values, these being the integer multiples of 0.0625

inch. The mathematical formulation of the four cases A, B, C and D is given in

Table B.3.

Coil spring design problem

The problem consists in designing a helical compression spring that holds an axial

and constant load. The objective is to minimize the volume of the spring wire

used to manufacture the spring. A schematic of the coil spring to be designed is

shown in Fig. B.3. The decision variables are the number of spring coils N , the

outside diameter of the spring D, and the spring wire diameter d. The number of

coils N is an integer variable, the outside diameter of the spring D is a continuous

one, and finally, the spring wire diameter d is a discrete variable, whose possible

values are given in Table B.4. The mathematical formulation is in Table B.5.

Figure B.2: Schematic view of the pressure vessel to be designed.

143

B. MATHEMATICAL FORMULATION OF ENGINEERING PROBLEMS

Figure B.3: Schematic view of the coil spring to be designed.

Table B.4: Standard wire diameters available for the spring coil.

Allowed wire diameters [inch]
0.0090 0.0095 0.0104 0.0118 0.0128 0.0132
0.0140 0.0150 0.0162 0.0173 0.0180 0.0200
0.0230 0.0250 0.0280 0.0320 0.0350 0.0410
0.0470 0.0540 0.0630 0.0720 0.0800 0.0920
0.1050 0.1200 0.1350 0.1480 0.1620 0.1770
0.1920 0.2070 0.2250 0.2440 0.2630 0.2830
0.3070 0.3310 0.3620 0.3940 0.4375 0.5000

Table B.5: The mathematical formulation for the coil spring design problem.

min fc(N,D, d) =
π2Dd2(N+2)

4
Constraint

g1
8CfFmaxD

π d3
− S ≤ 0

g2 lf − lmax ≤ 0
g3 dmin − d ≤ 0
g4 D −Dmax ≤ 0

g5 3.0− D
d
≤ 0

g6 σp − σpm ≤ 0

g7 σp +
Fmax−Fp

K
+ 1.05(N + 2)d− lf ≤ 0

g8 σw −
Fmax−Fp

K
≤ 0

where Cf =
4 D

d
−1

4 D
d
−4

+ 0.615 d
D

K = Gd4

8ND3

σp =
Fp

K

lf = Fmax
K

+ 1.05(N + 2)d

Thermal insulation systems design problem

The schema of a thermal insulation system is shown in Fig. B.4. Such a thermal

insulation system is characterized by the number of intercepts, the locations and

temperatures of the intercepts, and the types of insulators allocated between each

pair of neighboring intercepts. In the thermal insulation system, heat intercepts

are used to minimize the heat flow from a hot to a cold surface. The heat is

intercepted by imposing a cooling temperature Ti at locations xi, i = 1, 2, ..., n.

144

Figure B.4: Schematic view of the thermal insulation system.

The basic mathematical formulation of the classic model of thermal insulation

systems is defined in Table B.6. The effective thermal conductivity k of all these

insulators varies with the temperature and does so differently for different materi-

als. Considering that the number of intercepts n is defined in advance, and based

on the model presented (n=10), we may define the following problem variables:

• Ii ∈M, i = 1, ..., n + 1 — the material used for the insulation between the

(i− 1)-th and the i-th intercepts (from a set of M materials).

• ∆xi ∈ R+, i = 1, ..., n + 1 — the thickness of the insulation between the

(i− 1)-th and the i-th intercepts.

• ∆Ti ∈ R+, i = 1, ..., n + 1 — the temperature difference of the insulation

between the (i− 1)-th and the i-th intercepts.

This way, there are n+ 1 categorical variables chosen from a set of M of available

materials. The remaining 2n+ 2 variables are continuous.

Table B.6: The mathematical formulation for the coil spring design problem.

f(x,T) =
∑n
i=1 Pi

=
∑n
i=1 ACi

(
Thot
Ti
− 1
)(∫ Ti+1

Ti
kdT

∆xi
−

∫ Ti

Ti−1
kdT

∆xi−1

)
Constraint

g1 ∆xi ≥ 0, i = 1, ..., n+ 1
g2 Tcold ≤ T1 ≤ T2 ≤ ... ≤ Tn−1 ≤ Tn ≤ Thot

g3
∑n+1
i=1 ∆xi = L

where C = 2.5 if T ≥ 71 K
C = 4 if 71 K > T > 4.2 K

C = 5 if T ≤ 4.2 K

145

B. MATHEMATICAL FORMULATION OF ENGINEERING PROBLEMS

146

Appendix C

A note on the bound constraints handling for the CEC’05
benchmark set

The benchmark functions and some of the algorithms proposed for the special

session on real parameter optimization of CEC’05 play an important role in the

assessment of the state of the art in the continuous optimization field. In this note

we first show that, if boundary constraints are not enforced, state-of-the-art algo-

rithms produce on a majority of the CEC’05 benchmark functions infeasible best

candidate solutions, even though the optima of 23 out of the 25 CEC’05 functions

are within the specified bounds. This observation has important implications on

algorithm comparisons. In fact, this note also draws the attention to the fact that

authors may have drawn wrong conclusions from experiments using the CEC’05

problems.

C.1 Introduction

The special session on real parameter optimization of CEC’05 has played an im-

portant role in evolutionary computation and other affine fields for two reasons.

First, it provided a set of 25 scalable benchmark functions that anyone can use to

evaluate the performance of new algorithms. Those 25 functions have become a

standard benchmark set that researchers use to compare algorithms. The central

role that this benchmark function set currently plays is also illustrated by the more

than 600 citations in google scholar (as of April 2013) to the original technical re-

port that introduced the benchmark function set [Suganthan et al., 2005]. Second,

it served to assess the state of the art in continuous optimization. In particular,

the best performing algorithm of the special session, IPOP-CMA-ES [Auger and

Hansen, 2005], is since then considered to be a representative of the state of the

art in continuous optimization. Consequently, it is nowadays standard practice to

147

C. A NOTE ON THE BOUND CONSTRAINTS HANDLING FOR THE
CEC’05 BENCHMARK SET

compare the results of a new algorithm to the published results of IPOP-CMA-ES.

In the definition of the CEC’05 benchmark functions it is stated that each com-

ponent of the solution S must be a value in the closed interval [A,B], with A < B.

There are two exceptions, which are functions f7 and f25, where the given interval

specifies only an initialization range, and not a boundary constraint. For the other

23 functions, their global optima are within the feasible search space area as defined

by the bound constraints; on functions f8 and f20, the global optima are known to

be on the bounds. We used the C implementation of IPOP-CMA-ES available from

Hansen’s website, http://www.lri.fr/~hansen/cmaes_inmatlab.html. This C

version of IPOP-CMA-ES does not use an explicit bound constraint handling

mechanism. When running this code (without bound constraint handling) on the

CEC’05 benchmark functions, we noticed that on a majority of the benchmark

functions the best solutions found do violate the bound constraints even though

their global optima are known to be inside the bounds for 23 of the 25 functions.

While it is known that this can happen on other functions, for example, Schwe-

fel’s sine root function [Schwefel, 1981] whose global optimum is outside the usual

feasible search space defined by bound constraints, we were surprised by the high

frequency with which this phenomenon occurs on the CEC’05 benchmark function

set.

This observation raises the more general and critical issue of validity of many

of the published results that rely on the CEC’05 benchmark set. In fact, most

articles do not explicitly report whether a bound constraint handling mechanism

was used, and if they do, many do not describe it. Perhaps more importantly,

claims about algorithms with a statistically significantly better performance than

IPOP-CMA-ES (e.g., [Molina et al., 2010a, Müller et al., 2009] may not be valid

because the comparison that supports those claims may include algorithms that

enforce bound constraints and algorithms that do not.

To show how misleading such a comparison can be, we report our experimental

evidence on the impact of the handling of bound constraints. We evaluate two

variants of the C version of IPOP-CMA-ES. The first is the version in which the

bound constraints are never enforced (ncb for “never clamp bounds”; we refer to

this version as IPOP-CMA-ES-ncb in what follows). The second is a version in

which we introduce a mechanism to enforce bound constraints in the C code from

Hansen’s webpage. In particular, we clamp dimension by dimension a variable’s

value that is outside the variable’s feasible domain to the closest boundary value;

that is, if xi < A we set xi = A and if xi > B we set xi = B before evaluat-

ing these solutions and continuing with the algorithm execution (acb for “always

148

http://www.lri.fr/~hansen/cmaes_inmatlab.html

clamp bounds”; this version is referred to as IPOP-CMA-ES-acb). The same two

variants where bound constraints are never enforced or always enforced by clamp-

ing infeasible solutions to the nearest solutions on the bounds are tested using

a memetic algorithm, MA-LSCh-CMA [Molina et al., 2010a], which is a recent

memetic algorithm that uses CMA-ES as a local search.

C.2 Experiments on enforcing bound constraints

In this first set of experiments, we examine the impact of bound handling on

the performance of the C version of IPOP-CMA-ES. For the experiments on the

CEC’05 benchmark functions, we followed the protocol described in [Suganthan

et al., 2005], that is, we ran IPOP-CMA-ES using its default parameter settings 25

times on each function and recorded the evolution of the objective function value

with respect to the number of function evaluations used. The maximum number

of function evaluations was 10000 ·D, where D ∈ {10, 30, 50} is the dimensionality

of a function. The algorithm stops when the maximum number of evaluations is

reached or the error obtained is lower than 10−8. Error values lower than this

optimum threshold are considered equal to 10−8, and these values therefore are

clamped to 10−8 for consistency.

We compare IPOP-CMA-ES-ncb and IPOP-CMA-ES-acb in Table C.1.1 The

two-sided Wilcoxon matched-pairs signed-rank test at the 0.05 level of the error

of first type was used to check for statistical differences on each function. On

the majority of the functions, that is in 14 to 17 functions depending on the

dimensionality, IPOP-CMA-ES-ncb obtains final solutions outside the bounds. In

most of the cases where infeasible solutions are found, all 25 runs return final

solutions outside the bounds. We have observed statistically significant differences

between IPOP-CMA-ES-ncb and IPOP-CMA-ES-acb when the final solutions of

IPOP-CMA-ES-ncb are outside the bounds. Surprisingly, while a priori we would

expect that IPOP-CMA-ES-ncb gives worse results than IPOP-CMA-ES-acb on

functions where the optima are known to be inside the bounds, IPOP-CMA-ES-

ncb in fact outperforms IPOP-CMA-ES-acb in six functions (f9, f12, f18, f19, f20

and f22 for dimensions 30 and 50). In all these functions, except f9, all solutions

obtained by IPOP-CMA-ES-ncb are outside the bounds.

Analogously, Table C.2 shows the performance of ncb and acb for MA-LSCh-

1The results in Table C.1 and in Tables C.2 and C.3 are based on average errors. In the
supplementary pages to this chapter at http://iridia.ulb.ac.be/supp/IridiaSupp2011-013
additional tables are given that show the median results and more detailed information such as
the best, 0.25 quartile, median, 0.75 quartile and worst error values for each function.

149

http://iridia.ulb.ac.be/supp/IridiaSupp2011-013

C. A NOTE ON THE BOUND CONSTRAINTS HANDLING FOR THE
CEC’05 BENCHMARK SET

CMA (MA-LSCh-CMA is run using default parameter settings). Again, version

ncb obtains many final solutions outside the bounds, for dimensions 30 and 50

this is the case on 18 and 19 functions, respectively.2 Taking the 50 dimensional

benchmark functions as an example, all functions for which MA-LSCh-CMA-ncb

outperforms MA-LSCh-CMA-acb are cases in which all solutions obtained by MA-

LSCh-CMA-ncb are outside the bounds (f5, f11, f12, f15, f18, f19, f20 and f22).

C.3 The impact of bound handling on algorithm compar-

isons

We now focus on the comparison of the average errors between PS-CMA-ES

[Müller et al., 2009], MA-LSCh-CMA [Molina et al., 2010a], IPOP-CMA-ES-ncb

and IPOP-CMA-ES-05 in Table C.3. IPOP-CMA-ES-05 uses the Matlab version

of CMA-ES and was used to generate the results for the CEC’05 benchmark func-

tions presented in [Auger and Hansen, 2005]; it handles bound constraints by an

approach based on penalty functions, which is described in [Hansen et al., 2009c].

PS-CMA-ES and MA-LSCh-CMA are examples of algorithms that have been re-

ported to outperform IPOP-CMA-ES-05; they use CMA-ES as a local search oper-

ator inside a particle swarm optimization algorithm and a real-coded steady state

genetic algorithm, respectively.

In fact, Table C.3 shows that PS-CMA-ES, MA-LSCh-CMA, but also IPOP-

CMA-ES-ncb, are superior to IPOP-CMA-ES-05 on 30 and 50 dimensions in the

sense that they find more often better average errors than IPOP-CMA-ES-05.

However, there is an interesting pattern related to the fact whether IPOP-CMA-

ES-ncb has the final solutions outside the bounds or not. Let us focus on the

cases where IPOP-CMA-ES-ncb obtains all solutions outside the bounds and sta-

tistically significantly improves over IPOP-CMA-ES-05 (as indicated by the “<”

symbol in Table C.3). In many such cases, PS-CMA-ES does obtain the same

average errors (see, for example, functions f18–f20 and f24 for both, 30 and 50

dimensions and function f22 for 50 dimensions), or very similar values (see, for

example, functions f22 and f23 for 50 dimensions); such cases are underlined in

Table C.3. A similar pattern also arises for the published results of the MA-LSCh-

CMA algorithm. Interestingly, MA-LSCh-CMA checks bound constraints only for

2Note that for both, IPOP-CMA-ES-ncb and MA-LSCh-CMA-ncb, the fraction of functions
for which at least once in 25 runs an infeasible solution is found, increases with the dimensionality
of the functions. The probable reason for this effect is that for a solution to be infeasible it suffices
that one single variable takes a value outside the boundary constraints—such an effect occurs
more likely for higher dimensional functions.

150

the solutions generated by the steady-state GA part but not for solutions returned

by the CMA-ES local search. After re-running the publicly available version of

MA-LSCh-CMA, we found that it returns on several functions infeasible final solu-

tions (as indicated by the symbols � and � in Table C.3). This knowledge together

with the similar pattern of the average errors puts at least serious doubts on the

fact whether the average errors reported in [Müller et al., 2009] correspond all to

solutions that are inside the bounds. This analysis shows that claims of superiority

of one algorithm over another may in fact not be valid if the algorithms involved

do not all enforce bound constraints.

C.4 Conclusions

In this note, we show that lack of enforcement of bound constraints greatly influ-

ences the feasibility of the solutions on the CEC’05 benchmark function suite, as

it is observed in IPOP-CMA-ES and MA-LSCh-CMA. Without explicit enforce-

ment of bound constrains, surprisingly often infeasible solutions are obtained on

the CEC’05 benchmark functions; in many cases, these infeasible solutions are

better than the best feasible solutions found if bound constraints are enforced

even though it is known that on most functions the optimal solutions are within

the bounds. This issue points toward a significant impact on CEC’05 benchmark

functions for what concerns algorithm comparison, but it certainly may apply also

to other benchmark sets [Hansen et al., 2009a, Herrera et al., 2010, Tang et al.,

2007]. In particular, claims about superior performance of one algorithm over

another may be erroneous due to the generation of infeasible solutions with re-

spect to bound constraints. To avoid possible doubts about the feasibility of the

solutions, we strongly recommend that in the future every paper that reports re-

sults on the CEC’05 benchmark function suite but also on other benchmark suites

should (i) explicitly describe the used bound handling mechanism, (ii) explicitly

check the feasibility of the final solutions3, and (iii) present the final solutions

at least in supplementary pages to the paper to avoid misinterpretations. All

the solutions generated by the algorithms discussed in this note are available at

http://iridia.ulb.ac.be/supp/IridiaSupp2011-013.

3We notice that many bound handling mechanisms use penalty approaches such as the one
also used by [Hansen et al., 2009c]. However, it still is possible to obtain infeasible solutions if
bound constraints are not explicitly enforced, no matter what penalty approach is used as the
bound handling mechanism.

151

http://iridia.ulb.ac.be/supp/IridiaSupp2011-013

C. A NOTE ON THE BOUND CONSTRAINTS HANDLING FOR THE
CEC’05 BENCHMARK SET

Table C.1: The comparison between IPOP-CMA-ES-ncb and IPOP-CMA-ES-acb over 25
independent runs for each of the 25 CEC’05 functions. 23 of these 25 functions actually have
bound constraints; for functions f7 and f25 only a bounded initialization range is specified.
“�” denotes that all 25 final solutions are outside the bounds. “�” denotes that some but
not all of the 25 solutions are outside the bounds. Symbols <, ≈, and > denote whether
the performance of IPOP-CMA-ES-ncb is statistically better, indifferent, or worse than that
of IPOP-CMA-ES-acb according to a two-sided Wilcoxon matched-pairs signed-rank test
at the 0.05 α-level. The average errors that correspond to a statistically better result are
highlighted. The numbers in parenthesis at the bottom of the table represent the frequency
of <, ≈, and >, respectively.

fcec

10 dimensions 30 dimensions 50 dimensions
ncb acb ncb acb ncb acb

f1 1.00E−08 ≈ 1.00E−08 1.00E−08 ≈ 1.00E−08 1.00E−08 ≈ 1.00E−08
f2 1.00E−08 ≈ 1.00E−08 1.00E−08 ≈ 1.00E−08 1.00E−08 ≈ 1.00E−08
f3 1.00E−08 ≈ 1.00E−08 1.00E−08 ≈ 1.00E−08 1.00E−08 ≈ 1.00E−08
f4 1.00E−08 ≈ 1.00E−08 2.44E+03 � ≈ 6.58E+02 1.32E+05 � > 1.43E+04
f5 1.00E−08 � ≈ 1.00E−08 2.30E+01 � > 1.00E−08 7.91E+02 � > 7.41E−02
f6 1.00E−08 ≈ 1.00E−08 1.00E−08 ≈ 1.00E−08 1.00E−08 ≈ 1.00E−08
f7
† 1.00E−08 ≈ 1.00E−08 1.00E−08 ≈ 1.00E−08 1.00E−08 ≈ 1.00E−08

f8 2.01E+01 � ≈ 2.00E+01 2.07E+01 � > 2.04E+01 2.11E+01 � > 2.09E+01
f9 1.59E−01 ≈ 1.59E−01 1.01E+00 < 1.87E+00 1.12E+00 � < 4.36E+00
f10 1.19E−01 ≈ 3.18E−01 1.37E+00 ≈ 1.44E+00 2.36E+00 ≈ 2.89E+00
f11 6.44E−01 � > 1.00E−08 6.36E+00 � > 7.17E−02 1.49E+01 � > 9.94E−02
f12 6.77E+01 � < 4.07E+03 1.38E+03 � < 1.19E+04 7.38E+03 � < 4.25E+04
f13 6.78E−01 ≈ 6.49E−01 2.47E+00 ≈ 2.63E+00 4.31E+00 ≈ 4.44E+00
f14 2.61E+00 � > 1.96E+00 1.28E+01 � ≈ 1.26E+01 2.34E+01 � > 2.28E+01
f15 2.00E+02 � ≈ 2.15E+02 2.01E+02 � > 2.00E+02 2.01E+02 � > 2.00E+02
f16 9.02E+01 ≈ 9.04E+01 7.95E+01 � > 1.48E+01 1.36E+02 � > 1.10E+01
f17 1.33E+02 � ≈ 1.17E+02 4.31E+02 � > 2.52E+02 7.69E+02 � > 1.91E+02
f18 7.48E+02 � > 3.16E+02 8.16E+02 � < 9.04E+02 8.36E+02 � < 9.13E+02
f19 7.75E+02 � > 3.20E+02 8.16E+02 � < 9.04E+02 8.36E+02 � < 9.13E+02
f20 7.62E+02 � > 3.20E+02 8.16E+02 � < 9.04E+02 8.36E+02 � < 9.15E+02
f21 1.06E+03 � > 5.00E+02 8.57E+02 � > 5.00E+02 7.15E+02 � ≈ 6.64E+02
f22 6.38E+02 � < 7.28E+02 5.98E+02 � < 8.10E+02 5.00E+02 � < 8.19E+02
f23 1.09E+03 � > 5.86E+02 8.69E+02 � > 5.34E+02 7.27E+02 � ≈ 6.97E+02
f24 4.05E+02 � > 2.33E+02 2.10E+02 � > 2.00E+02 2.14E+02 � > 2.00E+02
f25
† 4.34E+02 ≈ 4.34E+02 2.10E+02 ≈ 2.10E+02 2.14E+02 ≈ 2.14E+02
f1-f25 (<, ≈, >): (2, 15, 8) f1-f25(<, ≈, >): (6, 10, 9) f1-f25(<, ≈, >): (6, 10, 9)

f7 or f25 (<, ≈, >): (2, 13, 8) f7 or f25 (<, ≈, >): (6, 8, 9) f7 or f25 (<, ≈, >): (6, 8, 9)
< or > : 10/23 (43%) < or > : 15/23 (65%) < or > : 15/23 (65%)
functions � or �: 14/23 (61%) functions � or �: 16/23 (70%) functions � or �: 17/23 (74%)

† denotes that the specialized initialization ranges are applied instead of bound constraints according to
CEC’05’s protocol.

152

Table C.2: The comparison between MA-LSCh-CMA-ncb and MA-LSCh-CMA-acb over 25
independent runs for each of the 25 CEC’05 functions. For an explanation of the symbols
and their interpretation we refer to the caption of Table C.1 (replacing IPOP-CMA-ES by
MA-LSCh-CMA where relevant).

fcec

10 dimensions 30 dimensions 50 dimensions
ncb acb ncb acb ncb acb

f1 1.00E−08 ≈ 1.00E−08 1.00E−08 ≈ 1.00E−08 1.00E−08 ≈ 1.00E−08
f2 1.00E−08 ≈ 1.00E−08 2.51E−08 ≈ 1.00E−08 8.99E−01 ≈ 3.06E−02
f3 3.68E+02 > 1.00E−08 4.41E+03 � ≈ 2.75E+04 8.11E+04 � > 3.21E+04
f4 1.00E−08 ≈ 5.54E−03 1.28E+02 < 3.02E+02 5.38E+03 � > 3.23E+03
f5 7.78E+01 � > 6.75E−07 6.12E+02 � < 1.26E+03 2.08E+03 � < 2.69E+03
f6 1.00E−08 ≈ 3.19E−01 2.31E+02 � > 1.12E+00 5.58E+02 � > 4.10E+00
f7
† 1.65E−01 ≈ 1.43E−01 1.57E−02 ≈ 1.75E−02 4.23E−03 ≈ 5.40E−03

f8 2.00E+01 � ≈ 2.00E+01 2.00E+01 � ≈ 2.00E+01 2.00E+01 � ≈ 2.00E+01
f9 1.00E−08 ≈ 1.00E−08 1.00E−08 ≈ 1.00E−08 1.00E−08 ≈ 1.00E−08
f10 3.14E+00 ≈ 2.67E+00 2.00E+01 � ≈ 2.25E+01 4.80E+01 � ≈ 5.01E+01
f11 4.53E+00 � > 2.43E+00 2.20E+01 � ≈ 2.15E+01 3.95E+01 � < 4.13E+01
f12 2.95E+02 � ≈ 1.14E+02 7.52E+02 � < 1.67E+03 4.56E+03 � < 1.39E+04
f13 5.03E−01 ≈ 5.45E−01 2.04E+00 ≈ 2.03E+00 3.67E+00 > 3.15E+00
f14 2.87E+00 � > 2.25E+00 1.32E+01 � > 1.25E+01 2.30E+01 � > 2.22E+01
f15 2.27E+02 � ≈ 2.24E+02 2.59E+02 � < 3.00E+02 2.29E+02 � < 3.72E+02
f16 9.45E+01 � ≈ 9.18E+01 1.06E+02 � ≈ 1.26E+02 5.91E+01 � > 6.90E+01
f17 1.04E+02 ≈ 1.01E+02 1.66E+02 � ≈ 1.83E+02 1.41E+02 � ≈ 1.47E+02
f18 8.20E+02 � < 8.84E+02 8.22E+02 � < 8.98E+02 8.47E+02 � < 9.41E+02
f19 8.17E+02 � ≈ 8.78E+02 8.22E+02 � < 9.01E+02 8.48E+02 � < 9.38E+02
f20 7.69E+02 � ≈ 8.63E+02 8.23E+02 � < 8.96E+02 8.48E+02 � < 9.28E+02
f21 8.57E+02 � ≈ 7.94E+02 8.47E+02 � > 5.12E+02 7.23E+02 � > 5.00E+02
f22 7.63E+02 � > 7.53E+02 5.34E+02 � < 8.80E+02 5.00E+02 � < 9.14E+02
f23 8.74E+02 ≈ 8.88E+02 8.40E+02 � > 5.34E+02 7.26E+02 � > 5.39E+02
f24 3.94E+02 � > 2.28E+02 2.14E+02 � > 2.00E+02 2.21E+02 � > 2.00E+02
f25
† 4.88E+02 ≈ 4.55E+02 2.13E+02 ≈ 2.14E+02 2.21E+02 ≈ 2.21E+02
f1-f25 (<, ≈, >): (1, 18, 6) f1-f25(<, ≈, >): (8, 12, 5) f1-f25(<, ≈, >): (8, 8, 9)

f7 or f25 (<, ≈, >): (1, 16, 6) f7 or f25 (<, ≈, >): (8, 10, 5) f7 or f25 (<, ≈, >): (8, 6, 9)
< or > : 7/23 (30%) < or > : 13/23 (57%) < or > : 17/23 (74%)
functions � or �: 13/23 (57%) functions � or �: 18/23 (79%) functions � or �: 19/23 (83%)

† denotes that the specialized initialization ranges are applied instead of bound constraints according to
CEC’05’s protocal.

153

C. A NOTE ON THE BOUND CONSTRAINTS HANDLING FOR THE
CEC’05 BENCHMARK SET

Table C.3: The average errors obtained by PS-CMA-ES, MA-LSCh-CMA (MA), IPOP-CMA-ES-
ncb (IPOP-ncb) and IPOP-CMA-ES-05 (IPOP-05) over 25 independent runs for each CEC’05
function. The numbers in parenthesis represent the number of times an algorithm is better,
equal or worse, respectively, compared to IPOP-CMA-ES-05. Error values lower than 10−8 are
approximated to 10−8. The underlined values indicate that the corresponding average error values
of PS-CMA-ES (or MA-LSCh-CMA) are the same or very close to the infeasible average error
values obtained by IPOP-CMA-ES-ncb.

fcec

30 dimensions 50 dimensions
PS-CMA-ES MA IPOP-ncb IPOP-05 PS-CMA-ES MA IPOP-ncb IPOP-05

f1 1.00E−08 ——— 1.00E−08 1.00E−08 1.00E−08 ——— 1.00E−08 1.00E−08
f2 1.00E−08 ——— 1.00E−08 1.00E−08 9.79E−04 ——— 1.00E−08 1.00E−08
f3 8.00E+04 ——— 1.00E−08 1.00E−08 3.28E+05 ——— 1.00E−08 1.00E−08
f4 8.47E−04 ——— 2.44E+03 � < 1.11E+04 1.58E+03 ——— 1.32E+05 � < 4.68E+05
f5 3.98E+02 ——— 2.30E+01 � > 1.00E−08 1.18E+03 ——— 7.91E+02 � > 2.85E+00
f6 1.35E+01 1.19E+01 1.00E−08 1.00E−08 2.98E+01 6.58E+01 1.00E−08 1.00E−08
f7 1.00E−08 8.87E−04 1.00E−08 1.00E−08 1.00E−08 2.37E−03 1.00E−08 1.00E−08
f8 2.10E+01 2.03E+01 2.07E+01 � > 2.01E+01 2.11E+01 2.05E+01 2.11E+01 � > 2.01E+01
f9 1.00E−08 1.00E−08 1.01E+00 9.38E−01 1.00E−08 1.00E−08 1.12E+00 � < 1.39E+00
f10 1.00E−08 1.84E+01 1.37E+00 1.65E+00 1.00E−08 3.75E+01 2.36E+00 1.72E+00
f11 3.91E+00 4.35E+00 6.36E+00 � > 5.48E+00 1.22E+01 1.08E+01 1.49E+01 � > 1.17E+01
f12 7.89E+01 7.69E+02 � 1.38E+03 � < 4.43E+04 2.36E+03 2.76E+03 � 7.38E+03 � < 2.27E+05
f13 2.11E+00 2.34E+00 2.47E+00 2.49E+00 4.00E+00 3.51E+00 4.31E+00 4.59E+00
f14 1.29E+01 1.27E+01 1.28E+01 � < 1.29E+01 2.25E+01 2.23E+01 2.34E+01 � > 2.29E+01
f15 2.10E+02 3.08E+02 � 2.01E+02 � < 2.08E+02 2.64E+02 2.88E+02 � 2.01E+02 � < 2.04E+02
f16 2.61E+01 1.36E+02 � 7.95E+01 � > 3.50E+01 2.27E+01 6.40E+01 � 1.36E+02 � > 3.09E+01
f17 5.17E+01 1.35E+02 � 4.31E+02 � > 2.91E+02 6.16E+01 8.32E+01 � 7.69E+02 � > 2.34E+02
f18 8.16E+02 8.16E+02 � 8.16E+02 � < 9.04E+02 8.36E+02 8.45E+02 � 8.36E+02 � < 9.13E+02
f19 8.16E+02 8.16E+02 � 8.16E+02 � < 9.04E+02 8.36E+02 8.45E+02 � 8.36E+02 � < 9.12E+02
f20 8.16E+02 8.16E+02 � 8.16E+02 � < 9.04E+02 8.36E+02 8.41E+02 � 8.36E+02 � < 9.12E+02
f21 7.11E+02 5.12E+02 � 8.57E+02 � > 5.00E+02 7.18E+02 5.45E+02 � 7.15E+02 � < 1.00E+03
f22 5.00E+02 5.26E+02 � 5.98E+02 � < 8.03E+02 5.00E+02 5.00E+02 � 5.00E+02 � < 8.05E+02
f23 7.99E+02 5.34E+02 � 8.69E+02 � > 5.34E+02 7.24E+02 5.81E+02 � 7.27E+02 � < 1.01E+03
f24 2.10E+02 2.00E+02 � 2.10E+02 � < 9.10E+02 2.14E+02 2.00E+02 � 2.14E+02 � < 9.55E+02
f25 2.10E+02 2.11E+02 2.10E+02 2.11E+02 2.14E+02 5.81E+02 2.14E+02 2.15E+02

(14, 4, 7) (11, 2, 7) (12, 5, 8) (16, 2, 7)† (13, 0, 7)‡ (13, 5, 7)
� denotes that all 25 solutions of IPOP-CMA-ES-ncb are outside the bounds. � denotes some of the 25 solutions

of IPOP-CMA-ES-ncb are outside the bounds.
† (‡) denotes there is a significant difference over the distribution of average errors between PS-CMA-ES (MA-

LSCh-CMA) and IPOP-CMA-ES-05 according to a two-sided Wilcoxon matched-pairs signed-rank test at the
0,05 (0.1) α-level.

154

Appendix D

Computational results for an automatically tuned IPOP-
CMA-ES on the CEC’05 benchmark set

In this chapter, we apply an automatic algorithm configuration tool to improve

the performance of the CMA-ES algorithm with increasing population size (iCMA-

ES), the best performing algorithm on the CEC’05 benchmark set for continuous

function optimization. In particular, we consider a separation between tuning and

test sets and, thus, tune iCMA-ES on a different set of functions than the ones of

the CEC’05 benchmark set. Our experimental results show that the tuned iCMA-

ES improves significantly over the default version of iCMA-ES. Furthermore, we

provide some further analyses on the impact of the modified parameter settings

on iCMA-ES performance and a comparison to recent results of algorithms that

use CMA-ES as a subordinate local search.

D.1 Introduction

The special session on real parameter optimization of CEC’05 initiated a series of

research efforts on benchmarking continuous optimizers and the development of

new, improved continuous optimization algorithms. Two noteworthy results of this

session are the establishment of a benchmark set of 25 hard benchmark functions

and the establishment of CMA-ES with increasing population size (iCMA-ES)

[Auger and Hansen, 2005] as the state-of-the-art continuous optimizer at least for

what concerns the field of nature-inspired computation in the widest sense.

Here, we explore whether we can improve iCMA-ES’s performance on the

CEC’05 benchmark set by further fine-tuning iCMA-ES using automatic algorithm

configuration tools. In fact, iCMA-ES has a number of parameters and hidden con-

stants in its code that make it a parameterized algorithm. Although its designers

have spent a considerable effort in the design choices and certainly also in the

155

D. COMPUTATIONAL RESULTS FOR AN AUTOMATICALLY TUNED
IPOP-CMA-ES ON THE CEC’05 BENCHMARK SET

definition of its parameters, over the last few years evidence has arisen that many

algorithms’ performance can be improved by considering automatic algorithm con-

figuration and tuning tools [Adenso-Diaz and Laguna, 2006, Balaprakash et al.,

2007, Bartz-Beielstein, 2006, Birattari et al., 2002, Hutter et al., 2007, 2009a,b,

Nannen and Eiben, 2007]. It is therefore a natural question to ask whether and by

how much the performance of iCMA-ES could be further improved by such tools.

Note that the answer to this question has also implications on methodological as-

pects in algorithm development. When trying to improve over an algorithm such

as iCMA-ES, the design and tuning process of a new algorithm often starts by

some new idea that is then iteratively refined manually until better performance

on the considered benchmark set is obtained. One such idea is to embed CMA-ES

as a local search into other algorithms. In fact, various authors have followed this

path and have reported positive results, claiming better performance than iCMA-

ES on the CEC’05 benchmark set [Molina et al., 2010a, Müller et al., 2009]. As an

alternative approach, it is reasonable to simply try to improve directly iCMA-ES

by fine-tuning it further. Hence, the question arises as to how iCMA-ES would

perform against these “improved” algorithms if additional effort is put directly in

iCMA-ES instead of the design of “new” algorithms. In this chapter, we also try

to shed some light on this issue.

The present chapter is not the first to try to further tune CMA-ES using au-

tomatic algorithm configuration tools. CMA-ES was used by Hutter et al. [2009a]

as a benchmark algorithm to be tuned for evaluating SPO+, their improved vari-

ant of SPO [Bartz-Beielstein, 2006]. Following earlier work on SPO, they tuned

CMA-ES only on individual functions, thus, in this sense “overtuning” CMA-ES

on individual functions. (One has to remark, however, that the interest of Hutter

et al. [2009a] was to evaluate SPO and the improved variant SPO+ rather than

proposing a new, generally improved parameter setting for CMA-ES.) Another at-

tempt of tuning CMA-ES was made by Smit and Eiben in the paper “Beating the

World Champion Evolutionary Algorithm via REVAC Tuning” [Smit and Eiben,

2010]. However, rather than the full version of CMA-ES, which is this “world

champion evolutionary algorithm,” in their study they use a reduced version that

has limitations on rotated functions (for details, see Section 2). They reported sig-

nificant improvements of their tuned algorithm over the default settings across the

full range of functions of the CEC’05 benchmark set. From a tuning perspective,

it should be mentioned that they tuned their algorithm on the whole set of the

CEC’05 benchmark functions. For the tuning, they allowed the CMA-ES variant

they used on each 10 dimensional function a maximum of 100 000 function eval-

156

uations; then they were running the tests with the tuned algorithm on the same

functions for 1 000 000 function evaluations.

In this chapter, we tune iCMA-ES on a set of functions that has no overlap

with the functions of the CEC’05 benchmark set. In this sense, we try to avoid

a bias of the results obtained due to potentially overtuning [Birattari, 2009] the

algorithm on the same benchmark functions as those on which the algorithm is

tested. As such, this gives a better assessment of the potential for what concerns

the tuning of continuous optimizers as we have a separation between tuning and

test set. Note that such a separation is standard when studying tuning algorithms

for combinatorial problems [Birattari, 2009, Birattari et al., 2002, Hutter et al.,

2009b]. This separation of tuning and test sets for continuous functions is also

different from our own previous applications, where we have tuned algorithms on

small dimensional functions and later tested them on (much) larger dimensional

variants of the same functions [Liao et al., 2011c]. In this latter case, the training

and testing functions differ only in their dimensionality, which may potentially

lead to some biases in the tuning.

As the tuning set, we consider small dimensional benchmark functions from the

recent special issue of the Soft Computing journal [Herrera et al., 2010, Lozano

et al., 2011] on large-scale function optimization. This SOCO benchmark set

contains 19 functions whose dimension is freely choosable. Four of these functions

are the same as in the CEC’05 benchmark set, so we removed them from the

tuning set. As tuner, we apply the irace software [López-Ibáñez et al., 2011] to

automatically tune seven parameters of iCMA-ES on the 10 dimensional SOCO

benchmark functions (we refer to this tuned version of iCMA-ES as iCMA-ES-tsc).

Then, we benchmark iCMA-ES-tsc on the whole CEC’05 benchmark function suite

for 10, 30 and 50 dimensions. The experimental results show that iCMA-ES-tsc

improves over the default parameter setting of iCMA-ES (called iCMA-ES-dp),

and, maybe surprisingly, also is competitive or even improves over a version of

iCMA-ES that we have tuned on the 10 dimensional CEC’05 benchmark set (we

refer to this tuned version of iCMA-ES as iCMA-ES-tcec). We also compare iCMA-

ES-tsc with MA-LSch-CMA [Molina et al., 2010a] and PS-CMA-ES [Müller et al.,

2009], two state-of-the-art algorithms based on CMA-ES on CEC’05 benchmark

function suite. Finally, we explore different possible choices of the tuning setup

and, in particular, the choice of different sets of tuning functions.

157

D. COMPUTATIONAL RESULTS FOR AN AUTOMATICALLY TUNED
IPOP-CMA-ES ON THE CEC’05 BENCHMARK SET

Table D.1: Parameters that have been considered for tuning. Given are the de-
fault values of the parameters and the continuous range we considered for tuning.
The last two columns give for each set of tuning instances the found algorithm
configurations.

Parameters Formulas Factor Default Values Range
Tuned configurations
fcec∗ fsoco∗

Pop size (λ) 4 + ba ln(D)c a 3 [1, 10] 7.315 9.600
Parent size (µ) bλ/bc b 2 [1, 5] 3.776 1.452
Init step size (σ(0)) c(B − A) c 0.5 (0,1) 0.8297 0.6034
IPOP factor (d) d d 2 [1, 4] 2.030 3.292
stopTolFun 10e e -12 [-20, -6] -8.104 -8.854
stopTolFunHist 10f f -20 [-20, -6] -6.688 -9.683
stopTolX 10g g -12 [-20, -6] -13.85 -12.55

D.2 Parameterized iCMA-ES

iCMA-ES [Auger and Hansen, 2005] is a variant of the CMA-ES algorithm [Hansen

and Ostermeier, 1996, 2001, Hansen et al., 2003] that uses a restart schema coupled

with an increasing population size. The main details of the iCMA-ES algorithm

have already been described in Section 2.3.2 and we refer the reader to the details

described there. In particular, CMA-ES adapts the full covariance matrix of a

normal search distribution. Sep-CMA-ES [Ros, 2009, Ros and Hansen, 2008] is

a modification of CMA-ES with lower time complexity that instead of the full

covariance matrix uses a diagonal matrix (that is, the covariances are assumed

to be zero); in a sense, in Sep-CMA-ES the step size for each variable is adapted

independently of the other variables. Sep-CMA-ES is also the variant that was used

in the paper by Smit and Eiben [2010], which was mentioned in the introduction.

For tuning iCMA-ES, we considered seven parameters related to the above

mentioned default settings. The parameters are given in Table D.1. The first four

parameters are actually used in a formula to compute some internal parameters

of iCMA-ES and the remaining three are used to define the termination of CMA-

ES. Note that if a run of iCMA-ES is terminated, CMA-ES is restarted with

an increased population size λ. For the increase of the population size, we here

introduce a parameter d we call IPOP factor. The first five columns of Table D.1

give the parameters we use, the formula where they are used, their default values

and the range that we considered for tuning. The remaining two columns are

explained later.

158

D.3 Experimental setup and tuning

We used the C version of iCMA-ES (last modification date 10/16/10) from

Hansen’s webpage https://www.lri.fr/~hansen/cmaes_inmatlab.html. We

modified the code to handle bound constraints by clamping the variable values

outside the bounds on the nearest bound value. (The issues about the effects

of enforcing and ignoring bound constraints have been addressed by Liao et al.

[2011a]. Our test-suite consists of 25 CEC’05 benchmark functions (functions la-

beled as fcec∗) of dimensions n ∈ {10, 30, 50}. The training instances of iCMA-ES-

tsc and iCMA-ES-tcec involve the 10-dimensional SOCO and CEC’05 benchmark

functions, respectively. The SOCO and CEC’05 benchmark sets have four same

functions (identical except for the shift vectors for moving the known optimum

solution) and therefore we have removed these four functions from the SOCO

benchmark set that we used as training set for tuning. In particular, we elimi-

nated the four SOCO functions fsoco1, fsoco3, fsoco4 and fsoco8, which are the same

as the CEC’05 functions fcec1, fcec6, fcec9 and fcec2, respectively.

The CEC’05 and SOCO benchmark functions are listed in Table 2.1 and 2.2.

The two benchmark sets have common characteristics such as unimodality, multi-

modality, separability. Several of the functions in the two benchmark sets are also

defined as compositions of other two functions; we refer to these also as hybrid

functions in what follows. A major difference between the two benchmark sets is

that in the CEC’05 benchmark 16 of the 25 functions are rotated functions, while

all SOCO benchmark functions are unrotated.1 For a more detailed explanation of

the respective benchmark sets we refer to their original description [Herrera et al.,

2010, Suganthan et al., 2005]; for a more recent intent to develop specific, more low-

level function features for their classification, we refer to Mersmann et al. [2011].

We followed the protocol described in Suganthan et al. [2005] for the CEC’05 test-

suite, that is, the maximum number of function evaluations was 10 000×D where

D ∈ {10, 30, 50} is the dimensionality of a function when using them as test set

(or as training set in the case of iCMA-ES-tcec). The investigated algorithms were

run 25 times on each function. We report error values defined as f(S) − f(S∗),

where S is a candidate solution and S∗ is the optimal solution. Error values lower

1Recall that “rotational invariance” is an important feature of iCMA-ES. This feature of
iCMA-ES means that its performance is not negatively affected by a rotation of a function with
respect to the coordinate system. From the perspective of parameter tuning, this is an important
property since it implies that we should be able to tune iCMA-ES on unrotated functions of the
SOCO benchmark set. In fact, in the experimental part we consider as a control experiment also
tuning iCMA-ES directly on the CEC’05 benchmark set with the rotated functions.

159

https://www.lri.fr/~hansen/cmaes_inmatlab.html

D. COMPUTATIONAL RESULTS FOR AN AUTOMATICALLY TUNED
IPOP-CMA-ES ON THE CEC’05 BENCHMARK SET

than 10−8 are clamped to 10−8, which is the zero threshold defined in the CEC’05

protocol [Suganthan et al., 2005]. Our analysis considers the median errors, mean

errors and the solution quality distribution for each function.

For tuning the parameters of iCMA-ES, we employ Iterated F-Race [Birattari

et al., 2010], a racing algorithm for algorithm configuration that is included in the

irace package [López-Ibáñez et al., 2011]. The performance measure is the fitness

error value of each instance. In the automatic parameter tuning process, the

maximum budget is set to 5 000 runs of iCMA-ES. The setting of Iterated F-Race

we used is the default [López-Ibáñez et al., 2011]. The input to Iterated F-Race are

the ranges for each parameter, which are given in Table D.1, and a set of training

instances. When using the SOCO benchmark set of tuning, the 10 dimensional

versions of fsoco1-fsoco19 (except fsoco1, fsoco3, fsoco4 and fsoco8) were sampled as

training instances in a random order and the number of function evaluations of

each run is set equal to 5 000×D (D = 10). When using the CEC’05 benchmark

set of tuning in some control experiments, the 10 dimensional variants of fcec1-fcec25

were sampled as training instances in a random order and the number of function

evaluations of each run is equal to 10 000 × D (D = 10). The differences of the

lengths of iCMA-ES runs on the SOCO and CEC’05 benchmark sets are due to

the different termination criteria used in the definition of these benchmark sets.

The default and tuned settings of iCMA-ES’ parameters are presented in Table

D.1.

Comparing the tuned parameter settings to the default settings, maybe the

most noteworthy difference is that the tuned settings imply a more explorative

search behavior. This is true least for the initial phases of the iCMA-ES search at

the algorithm start and after each restart. This more explorative search behavior is

due to the larger initial population size (through parameter a), a larger initial step

size and a larger factor for the increase of the population size at restarts (at least

for configuration iCMA-ES-tsc, which, as we will see later, is the best performing

one). The performance of iCMA-ES-dp and iCMA-ES-tsc will be compared in

Section D.4.1.

The significance of the differences of the algorithmic variants is assessed us-

ing statistical tests in two ways. First, on an instance level, we use a two-sided

Wilcoxon signed-rank test at the 0.05 α-level to check whether the performance of

two algorithms is statistically significantly different. Recall that each algorithm is

run 25 independent times on each benchmark function. Second, across all bench-

mark functions, we apply a two-sided Wilcoxon matched-pairs signed-rank test at

the 0.05 α-level to check whether the differences in the mean or median results

160

Table D.2: Overview of the abbreviations used in the chapter
Iterated F-Race an algorithm for algorithm configuration that is included in the irace package [Bi-

rattari et al., 2010, López-Ibáñez et al., 2011]
CMA-ES Covariance Matrix Adaptation Evolution Strategy
iCMA-ES CMA-ES with increasing population size
iCMA-ES-dp iCMA-ES with default parameter setting
iCMA-ES-tcec iCMA-ES with parameters tuned on CEC’05 functions fcec1-fcec25

iCMA-ES-tsc iCMA-ES with parameters tuned on SOCO functions fsoco1-fsoco19 (except fsoco1,
fsoco3, fsoco4 and fsoco8)

iCMA-ES-⊕ iCMA-ES with parameters tuned on all hybrid functions of SOCO
iCMA-ES-uni iCMA-ES with parameters tuned on uni-modal functions of SOCO except fsoco1,

fsoco8
iCMA-ES-multi iCMA-ES with parameters tuned on all non-hybrid multi modal functions of SOCO

except fsoco3, fsoco4
iCMA-ES-uni+ adding uni-modal functions fsoco1 and fsoco8 to respective training set
iCMA-ES-multi+ adding multi modal functions fsoco3 and fsoco4 to respective training set
References
Sep-CMA-ES a modification of CMA-ES that uses a diagonal matrix instead of the full covariance

matrix [Ros and Hansen, 2008]
Sep-iCMA-ES Sep-CMA-ES with increasing population size [Ros, 2009, Smit and Eiben, 2010]
Sep-iCMA-ES-tsc results of a tuned Sep-iCMA-ES from [Liao et al., 2011c]
iCMA-ES-05 results of the Matlab version of iCMA-ES with a sophisticated bound handling

mechanism from the CEC’05 special session [Auger and Hansen, 2005]
MA-LSch-CMA a memetic algorithm integrating CMA-ES as a local search algorithm [Molina et al.,

2010a]
PS-CMA-ES a particle swarm optimization algorithm integrating CMA-ES as a local search al-

gorithm [Müller et al., 2009]
Benchmarks
CEC’05 special session on real parameter optimization of the 2005 IEEE Congress on Evo-

lutionary Computation [Suganthan et al., 2005]
SOCO benchmark set of a special issue of the Soft Computing journal on the scalabil-

ity of evolutionary algorithms and other metaheuristics for large scale continuous
optimization problems [Herrera et al., 2010]

obtained by two algorithms on each of the 25 CEC’05 benchmark functions is

statistically significant.

In Table D.2, we give an overview of the abbreviations that are used the ex-

perimental analysis section.

D.4 Experimental study

In this section, we compare the performance of iCMA-ES-tsc to the default

paramter settings, to iCMA-ES-dp, and to other algorithms that use CMA-ES

as a local search operator and that have been proposed with the aim of improving

over iCMA-ES.

161

D. COMPUTATIONAL RESULTS FOR AN AUTOMATICALLY TUNED
IPOP-CMA-ES ON THE CEC’05 BENCHMARK SET

D.4.1 iCMA-ES-tsc vs. iCMA-ES-dp

First, we focus on the improvement iCMA-ES-tsc obtains over iCMA-ES-dp. Table

D.3 shows the performance of iCMA-ES-dp (default parameters) and iCMA-ES-tsc

(tuned on SOCO benchmark functions) on the CEC’05 benchmark function suite.

Considering the differences on individual functions, we first observe that iCMA-ES-

dp and iCMA-ES-tsc reach on surprisingly many functions similar performance at

least from the perspective of the applied Wilcoxon test: on 19, 17, and 14 functions

for 10, 30, and 50 dimensions, respectively, no statistically significant differences

could be observed. On the one hand, this may be due to the relatively small

number of 25 independent runs of the algorithms; on the other hand, this is also

caused by the fact that several benchmark functions are very easy to solve and

therefore introduce floor effects. For example, functions fcec1, fcec2, fcec3, fcec6, and

fcec7 are solved by iCMA-ES-dp and iCMA-ES-tsc in all runs and in all dimensions

to the zero threshold. In the other functions, iCMA-ES-tsc performs better than

iCMA-ES-dp except in 2, 1, and 1 cases for dimensions 10, 30, and 50, respectively,

indicating superior performance of iCMA-ES-tsc over iCMA-ES-dp.

1e−08 1e−05 1e−02 1e+01 1e+04

1
e
−

0
8

1
e
−

0
5

1
e
−

0
2

1
e
+

0
1

1
e
+

0
4

iCMA−ES−tsc (opt 8)

iC
M

A
−

E
S

−
d

p
 (

o
p

t
 8

)

f_id_opt

8

910

12

13
14

15
1617

181920212223
2425

−Win 9

−Lose 7

−Draw 9

Average Errors−10D−100runs

100 500

1
0
0

2
0
0

16
17

24 15

310 330 360

2
9
0

3
3
0

18
19

20

300 600

4
0
0

5
0
0

6
0
0

7
0
0

21

22

23

25

1e−08 1e−05 1e−02 1e+01 1e+04

1
e
−

0
8

1
e
−

0
5

1
e
−

0
2

1
e
+

0
1

1
e
+

0
4

iCMA−ES−tsc (opt 7)

iC
M

A
−

E
S

−
d

p
 (

o
p

t
 6

)

f_id_opt

4

8

910

11

12

13
14

15

16

17
181920212223

2425

−Win 8

−Lose 4

−Draw 13

Average Errors−30D−100runs

1 2 4

1
2

4

9
10

13

10 20

1
0

2
0 8

14
16

150 250

1
8
0

2
4
0 17

25

15,24

600 1000

5
0
0

7
0
0

9
0
0

22

18,19,20

21
23

1e−08 1e−05 1e−02 1e+01 1e+04

1
e
−

0
8

1
e
−

0
5

1
e
−

0
2

1
e
+

0
1

1
e
+

0
4

iCMA−ES−tsc (opt 7)

iC
M

A
−

E
S

−
d

p
 (

o
p

t
 5

)

f_id_opt

4

5

8
910

11

12

13
14

15

16

17
181920212223

2425

−Win 13 +

−Lose 4

−Draw 8

Average Errors−50D−100runs

2 5 20

2
5

2
0 8

9

10

13

14

16

600 800 1100

6
0
0

9
0
0 18,19,20

21

22
23

50 100 250

1
6
0

2
2
0

17

15,24

25

Figure D.1: Correlation plots of iCMA-ES-dp and iCMA-ES-tsc on dimensions
10, 30 and 50 respectively. Each point represents the mean error value obtained
by either of the two algorithms. A point on the upper triangle delimited by the
diagonal indicates better performance for the algorithm on the x-axis; a point on
the lower right triangle indicates better performance for the algorithm on the y-
axis. The number labeled beside some outstanding points represent the index of
the corresponding function. The comparison is conducted based on mean error
values and the comparison results of the algorithm on the x-axis are presented in
form of -win, -draw, -lose, respectively. We marked with a + symbol those cases
in which there is a statistically significant difference at the 0.05 α-level between
the algorithms. The number of opt on the axes shows the number of means lower
than the zero threshold by the corresponding algorithm.

162

Function evaluations

A
ve

ra
g

e
 O

b
je

c
ti
ve

 S
o

lu
ti
o

n
 V

a
lu

e

10
0

10
1

10
2

10
3

10
4

10
5

10
6
5 × 10

61
e

−
0

8
1

e
−

0
4

1
e

+
0
0

1
e

+
0

4
1

e
+

0
8

iCMA−ES−dp

iCMA−ES−tsc

f4−50D

Function evaluations

A
ve

ra
g

e
 O

b
je

c
ti
ve

 S
o

lu
ti
o

n
 V

a
lu

e

10
0

10
1

10
2

10
3

10
4

10
5

10
6
5 × 10

61
e

−
0

8
1

e
−

0
2

1
e

+
0

4

iCMA−ES−dp

iCMA−ES−tsc

f5−50D

Function evaluations

A
ve

ra
g

e
 O

b
je

c
ti
ve

 S
o

lu
ti
o

n
 V

a
lu

e

10
0

10
1

10
2

10
3

10
4

10
5

10
6
5 × 10

61
e

−
0

8
1

e
−

0
5

1
e

−
0

2
1

e
+

0
1

iCMA−ES−dp

iCMA−ES−tsc

f11−50D

Function evaluations

A
ve

ra
g

e
 O

b
je

c
ti
ve

 S
o

lu
ti
o

n
 V

a
lu

e

10
0

10
1

10
2

10
3

10
4

10
5

10
6
5 × 10

6

5
e

+
0
3

5
e

+
0

4
5

e
+

0
5

5
e

+
0

6

iCMA−ES−dp

iCMA−ES−tsc

f12−50D

Function evaluations

A
ve

ra
g

e
 O

b
je

c
ti
ve

 S
o

lu
ti
o

n
 V

a
lu

e

10
0

10
1

10
2

10
3

10
4

10
5

10
6
5 × 10

6

1
e

−
0

1
1

e
+

0
1

1
e

+
0

3

iCMA−ES−dp

iCMA−ES−tsc

f16−50D

Function evaluations

A
ve

ra
g

e
 O

b
je

c
ti
ve

 S
o

lu
ti
o

n
 V

a
lu

e

10
0

10
1

10
2

10
3

10
4

10
5

10
6
5 × 10

6

2
0

5
0

1
0

0
5

0
0

2
0

0
0

iCMA−ES−dp

iCMA−ES−tsc

f17−50D

Figure D.2: The development of the mean error of the fitness values across 100
independent runs of iCMA-ES-dp and iCMA-ES-tsc over the number of function
evaluations on functions fcec4, fcec5, fcec11, fcec12, fcec16 and fcec17 of 50 dimensions.
The vertical, dotted line in each plot indicates 5.00E+05 function evaluations,
which is the termination criterion for the number of function evaluations in the
CEC’05 protocol.

When comparing the means and medians obtained across each of the bench-

mark functions, we can observe that iCMA-ES-tsc reaches statistically better re-

sults on dimension 50 according to the Wilcoxon test, while on dimensions 10

and 30 the observed differences are not statistically significant. However, on a

function-by-function basis iCMA-ES-tsc is statistically better than iCMA-ES-dp

on more functions than vice-versa.

On few functions, the differences in the solution qualities are very strong. As an

example, consider function fcec4, where iCMA-ES-dp stagnated at very high mean

error values of 6.58E+02 and 1.43E+04 for dimensions 30 and 50, respectively,

while iCMA-ES-tsc reached in each trial a solution better than the zero threshold.

On other functions of dimension 50, such as functions fcec12, fcec16, and fcec17,

iCMA-ES-tsc more than halved the error values that were reached by iCMA-ES-

dp.

Fig D.1 shows correlation plots where each point has as x and y coordinate the

mean error obtained with iCMA-ES-tsc and iCMA-ES-dp on a same function. The

plots of Fig D.1 show the mean errors for the 10, 30, and 50 dimensional problems,

respectively. Clearly, on some functions iCMA-ES-tsc reaches results that are of

163

D. COMPUTATIONAL RESULTS FOR AN AUTOMATICALLY TUNED
IPOP-CMA-ES ON THE CEC’05 BENCHMARK SET

much better solution quality than those of iCMA-ES-dp (indicated by the circles

that are above the diagonal). This is the case especially on functions fcec4, fcec5,

fcec11, fcec12, fcec16 and fcec17. fcec4 and fcec17 are the two noisy functions of the

CEC’05 benchmark. The other four are multi-modal functions; among these, fcec5

has the optimum on the bounds. Next, we focus on these six functions.

Fig D.2 shows the development of the mean error for iCMA-ES-dp and iCMA-

ES-tsc over the number of function evaluations on functions fcec4, fcec5, fcec11, fcec12,

fcec16 and fcec17 of dimension 50. We observe that iCMA-ES-tsc and iCMA-ES-

dp perform similar up to about 1.00E+04 function evaluations. As the number

of function evaluation increases, the advantage of iCMA-ES-tsc over iCMA-ES-

dp starts to become apparent. At the stopping criterion of 5.00E+05 function

evaluations from the CEC’05 competition rules (indicated by the dotted, vertical

lines in the plots), iCMA-ES-tsc shows generally much lower mean errors. Espe-

cially on fcec4 and fcec5, iCMA-ES-tsc converges fast to the zero threshold after

1.00E+04 function evaluations. Looking at what happens beyond the termination

criterion of 5.00E+06 function evaluations (right from the dotted vertical lines in

the plots), we can see that iCMA-ES-dp catches up with the lower mean errors

of iCMA-ES-tsc on functions fcec5, fcec11, and fcec16. Hence, on these functions

the tuned parameter settings appear to result in a faster convergence towards

near-optimal solutions. On functions fcec4 and fcec12 the advantage of iCMA-ES-

tsc with respect to the mean error remains substantial. These general conclu-

sions are also backed up by a more detailed analysis of the algorithms’ qualified

run-length distributions (RLDs) [Hoos and Stützle, 2005]. Qualified RLDs give

the distribution of the number of function evaluations to reach specific bounds

on the errors. For details on the qualified RLDs, which are measured across

100 independent algorithm trials, we refer to supplementary information pages

http://iridia.ulb.ac.be/supp/IridiaSupp2011-023.

Finally, we consider qualified RLDs for iCMA-ES-dp and iCMA-ES-tsc on func-

tions fcec1, fcec2, fcec3, fcec6 and fcec7 on dimension 50. On these functions each

trial of iCMA-ES-dp and iCMA-ES-tsc reaches the zero threshold within the ter-

mination criterion of the CEC’05 protocol. Fig D.3 shows the qualified RLDs

for reaching the zero threshold over 100 independent runs for iCMA-ES-dp and

iCMA-ES-tsc on these five functions. We observe that on fcec1, fcec2 and fcec3,

both iCMA-ES-dp and iCMA-ES-tsc converge very fast to the zero threshold in

each trial without recurring to restarts. For these three, relatively easy functions,

iCMA-ES-tsc converges slightly more slowly than iCMA-ES-dp mainly because

of its larger initial population size. On fcec6 and fcec7, in contrast, iCMA-ES-

164

http://iridia.ulb.ac.be/supp/IridiaSupp2011-023

0 10000 30000 50000

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

Number of function evaluations

P
ro

b
a

b
ili

ty
 o

f
s
o

lv
in

g
 t

h
e

 p
ro

b
le

m

iCMA−ES−dp

iCMA−ES−tsc

f1−50D

2e+04 4e+04 6e+04 8e+04 1e+05

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

Number of function evaluations

P
ro

b
a

b
ili

ty
 o

f
s
o

lv
in

g
 t

h
e

 p
ro

b
le

m

iCMA−ES−dp

iCMA−ES−tsc

f2−50D

100000 140000 180000

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

Number of function evaluations

P
ro

b
a

b
ili

ty
 o

f
s
o

lv
in

g
 t

h
e

 p
ro

b
le

m

iCMA−ES−dp

iCMA−ES−tsc

f3−50D

0e+00 2e+05 4e+05

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

Number of function evaluations

P
ro

b
a

b
ili

ty
 o

f
s
o

lv
in

g
 t

h
e

 p
ro

b
le

m

iCMA−ES−dp

iCMA−ES−tsc

f6−50D

10000 20000 30000 40000 50000

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

Number of function evaluations

P
ro

b
a

b
ili

ty
 o

f
s
o

lv
in

g
 t

h
e

 p
ro

b
le

m

iCMA−ES−dp

iCMA−ES−tsc

f7−50D

Figure D.3: The qualified run-length distributions (RLDs, for short) over 100
independent runs obtained by iCMA-ES-dp and iCMA-ES-tsc on the 50 dimen-
sional versions of functions fcec1, fcec2, fcec3, fcec6 and fcec7. The solution quality
demanded is 1.00E−08 for each function.

tsc reaches a 100% success rate faster than iCMA-ES-dp, although there is no

dominance relationship among the RLDs.

As said at the end of the previous section, the parameter settings of iCMA-

ES-tsc imply a larger exploration at the beginning of the search. For example,

for dimension 50, the population size is 15 for the default settings but 41 for the

tuned settings, that is, almost three times larger.2 The experimental results are

somehow in accordance with this interpretation of a higher exploration. In fact,

on the hard noisy functions, most multi-modal and especially the hybrid functions

the larger exploration apparently leads to better final performance. However, the

larger initial exploration also leads to a slightly slower convergence to the optimum

on several, relatively easily solved unimodal functions such as fcec1 , fcec2 and fcec3,

as we have shown through qualified RTDs in Figure D.3.

2Note that a different interpretation of the population size is that not the parameter setting
for factor a should be changed but possibly the scaling function with the problem dimension.
In fact, the scaling by a logarithmic function may be too weak and other scaling laws may be
examined leading to overall better behavior of iCMA-ES.

165

D. COMPUTATIONAL RESULTS FOR AN AUTOMATICALLY TUNED
IPOP-CMA-ES ON THE CEC’05 BENCHMARK SET

1e−08 1e−05 1e−02 1e+01 1e+04

1
e
−

0
8

1
e
−

0
5

1
e
−

0
2

1
e
+

0
1

1
e
+

0
4

iCMA−ES−tsc (opt 9)

S
e

p
−

iC
M

A
−

E
S

−
ts

c
 (

o
p

t
 4

)

f_id_opt

3

6

7

8

9

10

11

12

13
14

1516
17

181920212223
2425

−Win 16 +

−Lose 5

−Draw 4

Average Errors−10D

100 500

1
0
0

2
0
0

5
0
0

15

16

17 16

25

21
22

23
1819 20

1e−08 1e−05 1e−02 1e+01 1e+04

1
e
−

0
8

1
e
−

0
5

1
e
−

0
2

1
e
+

0
1

1
e
+

0
4

iCMA−ES−tsc (opt 7)
S

e
p

−
iC

M
A

−
E

S
−

ts
c
 (

o
p

t
 3

)

f_id_opt

3

45

6

8

9
10

11

12

13
14

15
16

17
181920212223

2425

−Win 16 +

−Lose 3

−Draw 6

Average Errors−30D

0.5 5.0 50.0

0
.5

1
0
.0

8

9
10

13

14

16

190 210 230

1
9
0

2
2
0 15

24

25

400 600 900

4
0
0

8
0
0

21 23
22

18,19,20

1e−08 1e−05 1e−02 1e+01 1e+04

1
e
−

0
8

1
e
−

0
5

1
e
−

0
2

1
e
+

0
1

1
e
+

0
4

iCMA−ES−tsc (opt 7)

S
e

p
−

iC
M

A
−

E
S

−
ts

c
 (

o
p

t
 3

)

f_id_opt

3

4
5

6

8

910
11

12

13
14

15
16

17
181920212223

2425

−Win 18 +

−Lose 3

−Draw 4

Average Errors−50D

1 5 20 100

1
1
0

2
0
0

910
13

8 14
16

17

190 210 230

1
9
0

2
2
0

15

24

25

650 800 950

8
6
0

9
4
0

21

22

23

18,19,20

Figure D.4: Correlation plots of iCMA-ES-tsc and Sep-iCMA-ES-tsc on dimen-
sions 10, 30 and 50 respectively. Each point represents the mean error value over 25
independent runs obtained by either of the two algorithms. A point on the upper
triangle delimited by the diagonal indicates better performance for the algorithm
on the x-axis; a point on the lower right triangle indicates better performance for
the algorithm on the y-axis. The number labeled beside some outstanding points
represent the index of the corresponding function. The comparison is conducted
based on mean error values and the comparison results of the algorithm on the
x-axis are presented in the form of -win, -draw, -lose, respectively, using iCMA-
ES-tsc as the reference. We marked with a + symbol those cases in which there
is a statistically significant difference at the 0.05 α-level between the algorithms.
The number of opt on the axes shows the number of means that is lower than the
zero threshold, obtained by the corresponding algorithm.

D.4.2 iCMA-ES-tsc vs. iCMA-ES-tcec

One may wonder whether tuning iCMA-ES on the CEC’05 benchmark suite di-

rectly incurs better final performance on this set of functions. To explore this ques-

tion, we compare in Table D.4 the performance of iCMA-ES-tcec and iCMA-ES-tsc

on the CEC’05 benchmark set. iCMA-ES-tcec and iCMA-ES-tsc are mutually sta-

tistically better than each other on four functions of dimension 10, respectively. On

the 10 dimensional functions, iCMA-ES-tsc is slightly worse than iCMA-ES-tcec

with respect to the distribution of mean or median errors. This may be due to the

fact that iCMA-ES-tcec is tuned on the 10 dimensional CEC’05 benchmark set, the

same functions on which it is tested. Interestingly, this slight superiority of iCMA-

ES-tcec on the 10 dimensional functions does not generalize to higher dimensions.

As an example, consider functions fcec18, fcec19, fcec20 of dimension 10. On these,

iCMA-ES-tcec obtains an error value of 3.00E+02 in all independent 25 runs which

is the lowest value reported in the literature for these functions as far as we aware.

However, on the 50 dimensional version of these functions, iCMA-ES-tcec is sig-

166

nificantly worse than iCMA-ES-tsc. Moreover, considering the differences on all

functions of dimension 50, iCMA-ES-tsc statistically significantly improves upon

iCMA-ES-tcec on 12 functions while it performs statistically significantly worse

than iCMA-ES-tcec on only 3 functions. Considering the distribution of the mean

or median error values of the 50 dimensional functions, iCMA-ES-tsc statistically

significantly improves upon iCMA-ES-tcec.

It should also be mentioned that tuning on the SOCO benchmark functions

is much faster than on the CEC’05 benchmark set. In fact, the difference in

computation time amounts to a factor of about 50. This difference is mainly due to

the fact that 16 of the 25 CEC’05 functions of each dimension are rotated functions,

which requires more costly computations in the evaluation such as multiplication

operations on a rotated matrix.

D.4.3 Comparison to state-of-the-art methods that exploit

CMA-ES

At least two recent, newly designed state-of-the-art algorithms exploit CMA-ES

as an underlying local search method; these are a memetic algorithm with local

search chains based on CMA-ES (MA-LSch-CMA) [Molina et al., 2010a] and a

hybridization of a PSO algorithm with CMA-ES (PS-CMA-ES) [Müller et al.,

2009]. We compare iCMA-ES-tsc to these following the experimental analysis used

in Molina et al. [2010a] and Müller et al. [2009], that is by (i) statistically analyzing

for the distribution of the mean errors as in Molina et al. [2010a] and, (ii) ranking

the mean errors as in Müller et al. [2009]. As the results of MA-LSch-CMA and PS-

CMA-ES we use those reported in Liao et al. [2011a]. Note that the original results

reported in Molina et al. [2010a], Müller et al. [2009] did not necessarily satisfy

the bound constraints of the CEC’05 benchmark functions, which is corrected in

the results reported in [Liao et al., 2011a]. Table D.5 shows that iCMA-ES-tsc

performs statistically significantly better than MA-LSch-CMA in all dimensions;

iCMA-ES-tsc performs statistically significantly better than PS-CMA-ES on the

50 dimensional functions and it reaches better performance than PS-CMA-ES on

more functions for dimensions 10 and 30. Table D.5 also shows that iCMA-ES-

tsc obtains the best average ranking in all dimensions and most often the zero

threshold in all dimensions. Clearly, it would be interesting to also automatically

tune MA-LSch-CMA and PS-CMA-ES to exploit possibly more their potential.

Nevertheless, this comparison indicates that a feasible way to go for improving

the performance of iCMA-ES-dp is to further fine-tune iCMA-ES parameters (or

167

D. COMPUTATIONAL RESULTS FOR AN AUTOMATICALLY TUNED
IPOP-CMA-ES ON THE CEC’05 BENCHMARK SET

maybe other design choices of iCMA-ES) instead of embedding CMA-ES into other

algorithms. Recall that this also justifies the effort in tuning iCMA-ES because

when designing new hybrid algorithms, often also a substantially large effort flows

into the further, often manual fine-tuning of algorithm parameters and algorithm

designs.

D.5 Additional experiments

D.5.1 Comparison to other results by iCMA-ES

We also compared iCMA-ES-tsc to Sep-iCMA-ES-tsc [Liao et al., 2011c], the

algorithm used by Smit and Eiben [2010], on the full CEC’05 benchmark set.

Fig. D.4 shows correlation plots that illustrate the relative performance for

Sep-iCMA-ES-tsc and iCMA-ES-tsc on dimensions 10, 30 and 50, respectively.

Each point represents the mean error value obtained by either of the two al-

gorithms. These plots indicate superior performance of iCMA-ES-tsc over Sep-

iCMA-ES-tsc, which is confirmed by the table of full results available at http:

//iridia.ulb.ac.be/supp/IridiaSupp2011-023. We verified that iCMA-ES-

tsc reaches statistically significantly better performance than Sep-iCMA-ES-tsc

on the distribution of mean error values on all dimensions. This comparison con-

firms our expectation of iCMA-ES-tsc’s superiority over Sep-iCMA-ES-tsc on the

CEC’05 benchmark set, where 16 of 25 functions are rotated functions. The most

significant example is fcec3, a unimodal rotated high conditional function, where

Sep-iCMA-ES-tsc stagnated at very high mean error values for all dimensions,

while iCMA-ES-tsc reached in each trial the zero threshold. However, Sep-iCMA-

ES-tsc obtains better performance than iCMA-ES-tsc on fcec10, a rotated Rastrigin

function, over all dimensions. This case gives an indication that we can only con-

clude that iCMA-ES’s rotational invariance plays a pivotal role to handle most

but not all rotated functions.

Next, we take the mean errors reported for iCMA-ES in the CEC’05 special

session as a reference and refer to these results as iCMA-ES-05. Note that the

results of iCMA-ES-05 were obtained with a different implementation (using the

Matlab and not the C code we use) and with a much more sophisticated bound

handling mechanism. We summarize the comparison with iCMA-ES-tsc in Table

D.6. iCMA-ES-tsc performs statistically significantly better than iCMA-ES-05 on

dimension 30 and it reaches on more functions statistically significantly better

results (on a per function basis). This confirms the high performance of iCMA-

168

http://iridia.ulb.ac.be/supp/IridiaSupp2011-023
http://iridia.ulb.ac.be/supp/IridiaSupp2011-023

ES-tsc.

D.5.2 Tuning setup

In this section, we examine different choices for the composition of the training set

to obtain an indication which types of functions are important for high performance

of the tuned iCMA-ES. We also explore alternative settings of the irace tool.

In what follows, we define training sets that are composed of different subsets of

the SOCO benchmark functions and evaluate the tuned performance of iCMA-ES

using the mean errors on the 50-dimensional CEC’05 benchmark functions. We

summarize here our main findings and for detailed numerical results we refer to

the supplementary page http://iridia.ulb.ac.be/supp/IridiaSupp2011-023.

The convention we use for labeling the training function sets is introduced first:

⊕ all hybrid functions of SOCO

uni uni-modal functions of SOCO except fsoco1, fsoco8

multi all non-hybrid multi modal functions of SOCO

except fsoco3, fsoco4

+ adds the uni-modal (fsoco1, fsoco8) or multi modal

(fsoco3,fsoco4) functions to respective training sets

For example, iCMA-ES-⊕ denotes iCMA-ES tuned using only the eight hybrid

functions, iCMA-ES-uni,multi denotes iCMA-ES tuned with the seven uni-modal

and (non-hybrid) multi-modal functions of SOCO, and iCMA-ES-uni+ denotes

iCMA-ES tuned with all seven uni-modal functions.

In Table D.7 we summarize the average ranking and the statistical analysis

of several parameter settings of iCMA-ES that were obtained with the various

training set compositions that we considered. In Table D.8 are given the parameter

setting obtained using these training set compositions; the parameter settings for

iCMA-ES-tsc and iCMA-ES-dp are given in Table D.1. The main conclusions we

can obtain are the following.

1. The usage of the hybrid functions in the training set is a key to high tuned

performance. iCMA-ES-⊕ obtains about the same performance as iCMA-

ES-tsc and if the hybrid functions are not part of the training set, the per-

formance of the tuned iCMA-ES degrades considerably. Interestingly, the

configuration iCMA-ES-⊕ obtains on all 50-dimensional hybrid functions of

CEC’05 significantly better results than iCMA-ES-tsc-uni,multi, indicating

169

http://iridia.ulb.ac.be/supp/IridiaSupp2011-023

D. COMPUTATIONAL RESULTS FOR AN AUTOMATICALLY TUNED
IPOP-CMA-ES ON THE CEC’05 BENCHMARK SET

that there are maybe some common aspects between the hybrid functions of

the SOCO and the CEC’05 benchmark set.

2. The usage of the multi-modal functions only, that is, configuration iCMA-

ES-multi, leads to significantly worse performance than iCMA-ES-⊕. One

may object that the set multi contains only two training functions; however,

adding the two multi-modal functions fsoco3 and fsoco4 to the training set does

not lead to much improved performance (configuration iCMA-ES-multi+, see

http://iridia.ulb.ac.be/supp/IridiaSupp2011-023).

3. Configuration iCMA-ES-uni leads to, at first sight, surprisingly high per-

formance on the CEC’05 functions, and it has only a slightly worse mean

rank than iCMA-ES-⊕. At a second glance, it is noteworthy that uni-modal

functions such as those in the set “uni” can actually be quite difficult to

optimize; for example, the default parameter setting of iCMA-ES has poor

performance on uni-modal functions fcec4 and fcec5 (see Table D.3). Config-

urations iCMA-ES-uni+, which uses also functions fsoco1 and fsoco8 in the

training set, is, however, worse than iCMA-ES-uni (and significantly worse

performing than iCMA-ES-⊕). This is possibly caused by floor effects ob-

tained due to adding functions that are easily solved by iCMA-ES.

A common pattern among the best performing parameter settings, which are

iCMA-ES-tsc, iCMA-ES-⊕, and iCMA-ES-uni, is that they tend to increase the

exploration performed by iCMA-ES. In fact, the commonalities of these parameter

settings are a higher population size, a (slightly) larger initial step size, and a faster

increase of the population size upon a restart than the default parameter settings.

Since these parameter settings improve performance, in particular, on the hardest

benchmark problems, it may be that the default settings were possibly biased by

experiments on too simple benchmark functions.

Considering the tuning setup, we also made tests (i) replacing the F-test with a

t-test (that is, using the Student t-test for the race) and (ii) increasing the tuning

budget to 25000 runs. Similar to the results reported previously by iCMA-ES-tsc,

the resulting configurations improved upon iCMA-ES-dp, being statistically sig-

nificantly better than iCMA-ES-dp on the distribution of the mean or the median

error values. These experiments also indicate that the observation of the superior

performance of iCMA-ES-tsc over iCMA-ES-dp is relatively stable with respect to

some (minor) changes in the tuning setup. The detailed data of these trials are

available at http://iridia.ulb.ac.be/supp/IridiaSupp2011-023.

170

http://iridia.ulb.ac.be/supp/IridiaSupp2011-023
http://iridia.ulb.ac.be/supp/IridiaSupp2011-023

D.6 Conclusions and future work

In this chapter, we tuned iCMA-ES to improve its performance on the CEC’05

benchmark set. We did so by using a separation between training and test set

to avoid the bias of the results due to potentially overtuning the algorithm. Our

experimental results showed that the tuned iCMA-ES improves significantly over

the default parameter settings of iCMA-ES-dp. While on some individual func-

tions the improvements observed from a solution quality perspective are rather

large, on many other functions only minor though often statistically significant

improvements are observed. iCMA-ES-tsc also performs competitive or superior to

methods, such as MA-LSch-CMA [Molina et al., 2010a] and PS-CMA-ES [Müller

et al., 2009], which were developed with the goal of improving over iCMA-ES

performance. This indicates that, instead of embedding CMA-ES into other algo-

rithms to improve over its performance, a viable, alternative approach is to further

fine-tune the parameter settings or maybe some design choices of iCMA-ES. This

direction would involve to further parameterize choices that are currently fixed in

the algorithm. Examples of such parameterizations are to treat further constants

as parameters that are to be tuned or to consider alternative choices for specific

functions. A concrete example could be the formula that is used to determine

the initial population size, which is 4 + ba ln(D)c (see also Table D.1). Here, the

constant 4 could be replaced by a real-valued parameter and different functions

(instead of + and ln may be considered.

It is also interesting to consider the impact the tuned parameter settings have

on the behavior of iCMA-ES. In fact, a common pattern among the best performing

tuned parameter settings we observed is that they lead to an increased exploration

of the search space at least in the initial search phases and upon a restart of

iCMA-ES. This more explorative behavior is implied by larger population sizes,

larger step sizes, and a higher factor for the increase of the population size upon

a restart of iCMA-ES. Interestingly, increasing search space exploration is also

often the goal of hybrid algorithms such as the above mentioned MA-LSch-CMA

and PS-CMA-ES where CMA-ES is used as a local search. In fact, it seems that

such increased exploration can directly provided inside the iCMA-ES framework

by modified parameter settings.

Our experimental results also indicate that using off-line automatic algorithm

configuration to further improve adaptive algorithms is a viable approach—recall

that iCMA-ES is such an adaptive algorithm where step sizes and search directions

are adapted to the particular continuous optimization function under concern.

171

D. COMPUTATIONAL RESULTS FOR AN AUTOMATICALLY TUNED
IPOP-CMA-ES ON THE CEC’05 BENCHMARK SET

We have also presented initial results examining the role of the specific com-

position of a training set on the performance of the tuned parameter settings.

On the one hand, these results indicated that the hybrid functions in the SOCO

benchmark set alone are enough to derive high-performing tuned parameter set-

tings. Maybe surprisingly, using only the uni-modal functions of the SOCO

benchmark set resulted in a same level of performance of the tuned iCMA-ES

on the CEC’05 benchmark set. Although it is known that uni-modal functions

can be difficult to optimize, in future research the importance of the training

set should be examined in much more detail. For this task, it is important to

consider interactions between algorithm properties and properties of the train-

ing set. For example, the fact that iCMA-ES is rotationally invariant made it

possible to use the SOCO benchmark set of functions which contains only unro-

tated functions—the rotational invariance implies that iCMA-ES’s performance

should be unaffected by rotations of the functions. For algorithms that are not

invariant with respect to rotations, the usage of the SOCO benchmark set as

training set may actually lead to poor performance. An interesting direction

here would be to consider other benchmark set such as the BBOB benchmark

function suite (see http://coco.gforge.inria.fr/doku.php?id=bbob-2012) or

newly designed benchmark suites containing functions with specific properties for

the tuning of continuous optimizers.

172

http://coco.gforge.inria.fr/doku.php?id=bbob-2012

T
ab

le
D

.3
:

R
es

u
lt

s
of

th
e

co
m

p
ar

is
on

b
et

w
ee

n
iC

M
A

-E
S
-d

p
an

d
iC

M
A

-E
S
-t

sc
ov

er
25

in
d
ep

en
d
en

t
ru

n
s

fo
r

C
E

C
’0

5
fu

n
ct

io
n
s.

S
y
m

b
ol

s
<

,
≈

,
an

d
>

d
en

ot
e

w
h
et

h
er

th
e

p
er

fo
rm

an
ce

of
iC

M
A

-E
S
-d

p
is

st
at

is
ti

ca
ll

y
b

et
te

r,
in

d
iff

er
en

t,
or

w
or

se
th

an
th

at
of

iC
M

A
-E

S
-t

sc
ac

co
rd

in
g

to
th

e
tw

o-
si

d
ed

W
il
co

x
on

m
at

ch
ed

-p
ai

rs
si

gn
ed

-r
an

k
te

st
at

th
e

0.
05

α
-l

ev
el

.
T

h
e

n
u
m

b
er

s
in

p
ar

en
th

es
is

re
p
re

se
n
t

th
e

ti
m

es
of
<

,
≈

,
an

d
>

,
re

sp
ec

ti
ve

ly
.

T
h
e

n
u
m

b
er

s
in

p
ar

en
th

es
is

fo
r

(<
,

=
,
>

)
re

p
re

se
n
t

th
e

ti
m

es
w

e
h
av

e
<

,
=

,
an

d
>

,
re

sp
ec

ti
ve

ly
,

w
h
en

iC
M

A
-E

S
-d

p
is

co
m

p
ar

ed
w

it
h

iC
M

A
-E

S
-t

sc
b
as

ed
on

th
e

m
ea

n
or

m
ed

ia
n

er
ro

rs
.

f c
e
c

1
0

d
im

en
si

o
n
s

30
d
im

en
si

on
s

5
0

d
im

en
si

o
n
s

iC
M

A
-E

S
-d

p
iC

M
A

-E
S
-t

sc
iC

M
A

-E
S
-d

p
iC

M
A

-E
S
-t

sc
iC

M
A

-E
S
-d

p
iC

M
A

-E
S
-t

sc
M

ea
n

a
n
d

M
ed

ia
n

M
ea

n
an

d
M

ed
ia

n
M

ea
n

an
d

M
ed

ia
n

M
ea

n
an

d
M

ed
ia

n
M

ea
n

a
n
d

M
ed

ia
n

M
ea

n
an

d
M

ed
ia

n
f 1

1
.0

0E
−

0
8

1.
00

E
−

08
≈

1.
00

E
−

0
8

1
.0

0
E
−

0
8

1
.0

0
E
−

0
8

1
.0

0E
−

08
≈

1
.0

0
E
−

0
8

1.
00

E
−

0
8

1.
0
0E
−

0
8

1
.0

0
E
−

08
≈

1
.0

0
E
−

08
1.

0
0E
−

0
8

f 2
1
.0

0E
−

0
8

1.
00

E
−

08
≈

1.
00

E
−

0
8

1
.0

0
E
−

0
8

1
.0

0
E
−

0
8

1
.0

0E
−

08
≈

1
.0

0
E
−

0
8

1.
00

E
−

0
8

1.
0
0E
−

0
8

1
.0

0
E
−

08
≈

1
.0

0
E
−

08
1.

0
0E
−

0
8

f 3
1
.0

0E
−

0
8

1.
00

E
−

08
≈

1.
00

E
−

0
8

1
.0

0
E
−

0
8

1
.0

0
E
−

0
8

1
.0

0E
−

08
≈

1
.0

0
E
−

0
8

1.
00

E
−

0
8

1.
0
0E
−

0
8

1
.0

0
E
−

08
≈

1
.0

0
E
−

08
1.

0
0E
−

0
8

f 4
1
.0

0E
−

0
8

1.
00

E
−

08
≈

1.
00

E
−

0
8

1
.0

0
E
−

0
8

6
.5

8
E

+
0
2

1
.7

5
E

+
00
>

1
.0

0
E
−

0
8

1.
00

E
−

0
8

1.
4
3E

+
0
4

1
.2

7
E

+
04
>

1
.0

0
E
−

08
1.

0
0E
−

0
8

f 5
1
.0

0E
−

0
8

1.
00

E
−

08
≈

1.
00

E
−

0
8

1
.0

0
E
−

0
8

1
.0

0
E
−

0
8

1
.0

0E
−

08
≈

1
.0

0
E
−

0
8

1.
00

E
−

0
8

7.
4
1E
−

0
2

8
.6

1
E
−

08
>

1
.0

0
E
−

08
1.

0
0E
−

0
8

f 6
1
.0

0E
−

0
8

1.
00

E
−

08
≈

1.
00

E
−

0
8

1
.0

0
E
−

0
8

1
.0

0
E
−

0
8

1
.0

0E
−

08
≈

1
.0

0
E
−

0
8

1.
00

E
−

0
8

1.
0
0E
−

0
8

1
.0

0
E
−

08
≈

1
.0

0
E
−

08
1.

0
0E
−

0
8

f 7
1
.0

0E
−

0
8

1.
00

E
−

08
≈

1.
00

E
−

0
8

1
.0

0
E
−

0
8

1
.0

0
E
−

0
8

1
.0

0E
−

08
≈

1
.0

0
E
−

0
8

1.
00

E
−

0
8

1.
0
0E
−

0
8

1
.0

0
E
−

08
≈

1
.0

0
E
−

08
1.

0
0E
−

0
8

f 8
2
.0

0E
+

01
2.

0
0E

+
01
≈

2.
02

E
+

0
1

2.
00

E
+

0
1

2
.0

4
E

+
0
1

2
.0

0
E

+
01
<

2
.0

8
E

+
01

2.
1
0E

+
0
1

2.
0
9E

+
0
1

2
.1

1
E

+
01
≈

2
.1

0
E

+
01

2.
1
1E

+
0
1

f 9
1
.5

9E
−

0
1

1.
00

E
−

08
≈

4.
81

E
−

0
2

1
.0

0
E
−

0
8

1
.8

7
E

+
0
0

1
.9

9
E

+
00
≈

1
.9

9
E

+
00

1.
9
9E

+
0
0

4.
3
6E

+
0
0

3
.9

8
E

+
00
≈

4
.1

8
E

+
00

3.
9
8E

+
0
0

f 1
0

3
.1

8E
−

0
1

1.
00

E
−

08
≈

3.
73

E
−

0
3

1
.0

0
E
−

0
8

1
.4

4
E

+
0
0

9
.9

5
E
−

01
≈

1
.5

9
E

+
00

9.
9
5E
−

0
1

2.
8
9E

+
0
0

1
.9

9
E

+
00
≈

2
.7

1
E

+
00

2.
9
8E

+
0
0

f 1
1

1
.0

0E
−

0
8

1.
00

E
−

08
≈

1.
00

E
−

0
8

1
.0

0
E
−

0
8

7
.1

7
E
−

0
2

1
.0

0E
−

08
>

5
.0

9
E
−

0
5

1.
00

E
−

0
8

9.
9
4E
−

0
2

1
.0

0
E
−

08
≈

6
.0

3
E
−

02
1.

0
0E
−

0
8

f 1
2

4
.0

7E
+

03
1.

0
0E
−

08
>

1.
00

E
−

0
8

1
.0

0
E
−

0
8

1
.1

9
E

+
0
4

4
.8

4
E

+
03
>

4
.2

2
E

+
02

5.
9
6E

+
0
1

4.
2
5E

+
0
4

2
.7

8
E

+
04
>

4
.6

9
E

+
03

3.
3
9E

+
0
3

f 1
3

6
.4

9E
−

0
1

6.
37

E
−

01
≈

7.
14

E
−

0
1

6
.9

4
E
−

0
1

2
.6

3
E

+
0
0

2
.7

1
E

+
00
≈

2
.5

3
E

+
00

2.
5
7E

+
0
0

4.
4
4E

+
0
0

4
.3

7
E

+
00
<

4
.7

0
E

+
00

4.
6
2E

+
0
0

f 1
4

1
.9

6E
+

00
1.

9
8E

+
00
≈

2.
03

E
+

0
0

2.
09

E
+

0
0

1
.2

6
E

+
0
1

1
.2

6
E

+
01
>

1
.1

0
E

+
01

1.
1
3E

+
0
1

2.
2
8E

+
0
1

2
.3

0
E

+
01
>

2
.0

9
E

+
01

2.
1
2E

+
0
1

f 1
5

2
.1

5E
+

02
2.

0
0E

+
02
<

3.
32

E
+

0
2

4.
00

E
+

0
2

2
.0

0
E

+
0
2

2
.0

0
E

+
02
≈

2
.0

0
E

+
02

2.
0
0E

+
0
2

2.
0
0E

+
0
2

2
.0

0
E

+
02
≈

2
.0

0
E

+
02

2.
0
0E

+
0
2

f 1
6

9
.0

4E
+

01
9.

1
1E

+
01
>

8.
86

E
+

0
1

9.
03

E
+

0
1

1
.4

8
E

+
0
1

1
.5

1
E

+
01
>

1
.1

1
E

+
01

1.
0
7E

+
0
1

1.
1
0E

+
0
1

1
.1

4
E

+
01
>

5
.3

4
E

+
00

5.
4
7E

+
0
0

f 1
7

1
.1

7E
+

02
1.

0
9E

+
02
>

9.
34

E
+

0
1

9.
43

E
+

0
1

2
.5

2
E

+
0
2

1
.8

0
E

+
02
>

2
.0

8
E

+
02

5.
6
0E

+
0
1

1.
9
1E

+
0
2

1
.6

2
E

+
02
>

6
.3

6
E

+
01

4.
9
9E

+
0
1

f 1
8

3
.1

6E
+

02
3.

0
0E

+
02
<

3.
60

E
+

0
2

3.
00

E
+

0
2

9
.0

4
E

+
0
2

9
.0

4
E

+
02
≈

9
.0

4
E

+
02

9.
0
4E

+
0
2

9.
1
3E

+
0
2

9
.1

6
E

+
02
>

9
.1

3
E

+
02

9.
1
3E

+
0
2

f 1
9

3
.2

0E
+

02
3.

0
0E

+
02
≈

3.
20

E
+

0
2

3.
00

E
+

0
2

9
.0

4
E

+
0
2

9
.0

4
E

+
02
≈

9
.0

4
E

+
02

9.
0
4E

+
0
2

9.
1
3E

+
0
2

9
.1

5
E

+
02
>

9
.1

3
E

+
02

9.
1
3E

+
0
2

f 2
0

3
.2

0E
+

02
3.

0
0E

+
02
≈

3.
40

E
+

0
2

3.
00

E
+

0
2

9
.0

4
E

+
0
2

9
.0

4
E

+
02
≈

9
.0

4
E

+
02

9.
0
4E

+
0
2

9.
1
5E

+
0
2

9
.1

5
E

+
02
>

9
.1

3
E

+
02

9.
1
3E

+
0
2

f 2
1

5
.0

0E
+

02
5.

0
0E

+
02
≈

5.
00

E
+

0
2

5.
00

E
+

0
2

5
.0

0
E

+
0
2

5
.0

0
E

+
02
≈

5
.0

0
E

+
02

5.
0
0E

+
0
2

6.
6
4E

+
0
2

5
.0

0
E

+
02
≈

7
.0

5
E

+
02

5.
0
0E

+
0
2

f 2
2

7
.2

8E
+

02
7.

2
8E

+
02
≈

7.
28

E
+

0
2

7.
28

E
+

0
2

8
.1

0
E

+
0
2

8
.1

1
E

+
02
≈

8
.1

7
E

+
02

8.
2
4E

+
0
2

8.
1
9E

+
0
2

8
.1

8
E

+
02
≈

8
.1

9
E

+
02

8.
2
1E

+
0
2

f 2
3

5
.8

6E
+

02
5.

5
9E

+
02
≈

5.
59

E
+

0
2

5.
59

E
+

0
2

5
.3

4
E

+
0
2

5
.3

4
E

+
02
≈

5
.3

4
E

+
02

5.
3
4E

+
0
2

6.
9
7E

+
0
2

5
.4

0
E

+
02
≈

7
.3

0
E

+
02

5.
4
0E

+
0
2

f 2
4

2
.3

3E
+

02
2.

0
0E

+
02
≈

2.
00

E
+

0
2

2.
00

E
+

0
2

2
.0

0
E

+
0
2

2
.0

0
E

+
02
≈

2
.0

0
E

+
02

2.
0
0E

+
0
2

2.
0
0E

+
0
2

2
.0

0
E

+
02
≈

2
.0

0
E

+
02

2.
0
0E

+
0
2

f 2
5

4
.3

4E
+

02
4.

0
4E

+
02
>

4.
03

E
+

0
2

4.
03

E
+

0
2

2
.1

0
E

+
0
2

2
.1

0
E

+
02
>

2
.0

9
E

+
02

2.
0
9E

+
0
2

2.
1
4E

+
0
2

2
.1

4
E

+
02
>

2
.1

3
E

+
02

2.
1
3E

+
0
2

M
ea

n
f 1

-f
2
5

(<
,

=
,
>

):
(6

,
11

,
8
)

f 1
-f

2
5
(<

,
=

,
>

):
(4

,
13

,
8)

f 1
-f

2
5
(<

,
=

,
>

):
(4

,
1
0,

1
1)
†

M
ed

ia
n

f 1
-f

2
5

(<
,

=
,
>

):
(3

,
19

,
3
)

f 1
-f

2
5
(<

,
=

,
>

):
(2

,
16

,
7)

f 1
-f

2
5
(<

,
=

,
>

):
(3

,
1
2,

1
0)
†

B
y

F
u
n
c

f 1
-f

2
5

(<
,
≈

,
>

):
(2

,
19

,
4
)

f 1
-f

2
5
(<

,
≈

,
>

):
(1

,
17

,
7)

f 1
-f

2
5
(<

,
≈

,
>

):
(1

,
1
4,

1
0)

1
0,

3
0

a
n
d

5
0

d
im

en
si

o
n
al
f 1

-f
2
5

(<
,
>

):
(5

%
,

28
%

)
†

d
en

o
te

s
th

er
e

is
a

si
gn

ifi
ca

n
t

d
iff

er
en

ce
ov

er
th

e
d
is

tr
ib

u
ti

o
n

o
f

m
ea

n
or

m
ed

ia
n

er
ro

rs
b

et
w

ee
n

iC
M

A
-E

S
-d

p
w

it
h

iC
M

A
-E

S
-t

sc
b
y

a
tw

o-
si

d
ed

W
il
co

x
o
n

m
at

ch
ed

-p
ai

rs
si

g
n
ed

-r
an

k
s

te
st

at
th

e
0
,0

5
α

-l
ev

el
.

173

D. COMPUTATIONAL RESULTS FOR AN AUTOMATICALLY TUNED
IPOP-CMA-ES ON THE CEC’05 BENCHMARK SET

T
ab

le
D

.4:
C

om
p

arison
b

etw
een

iC
M

A
-E

S
-tcec

an
d

iC
M

A
-E

S
-tsc

over
25

in
d
ep

en
d

en
t

ru
n
s

for
C

E
C

’05
fu

n
ction

s.
S
y
m

b
ols

<
,≈

,
an

d
>

d
en

ote
w

h
eth

er
th

e
p

erform
an

ce
of

iC
M

A
-E

S
-tcec

is
statistically

b
etter,

in
d
iff

eren
t,

or
w

orse
th

an
th

at
of

iC
M

A
-

E
S

-tsc
accord

in
g

to
th

e
tw

o-sid
ed

W
ilcox

on
m

atch
ed

-p
airs

sign
ed

-ran
k

test
at

th
e

0.05
α

-level.
T

h
e

n
u
m

b
ers

in
p
aren

th
esis

rep
resen

t
th

e
tim

es
of
<

,≈
,

an
d
>

,
resp

ectively.
T

h
e

n
u
m

b
ers

in
p
aren

th
esis

for
(<

,
=

,
>

)
rep

resen
t

th
e

tim
es

w
e

h
ave

<
,

=
,

an
d
>

,
resp

ectively,
w

h
en

iC
M

A
-E

S
-d

p
is

com
p
ared

w
ith

iC
M

A
-E

S
-tsc

b
ased

on
th

e
m

ean
or

m
ed

ian
errors.

f
c
e
c

10
d
im

en
sion

s
30

d
im

en
sion

s
50

d
im

en
sion

s
iC

M
A

-E
S
-tcec

iC
M

A
-E

S
-tsc

iC
M

A
-E

S
-tcec

iC
M

A
-E

S
-tsc

iC
M

A
-E

S
-tcec

iC
M

A
-E

S
-tsc

M
ean

a
n
d

M
ed

ian
M

ean
a
n
d

M
ed

ia
n

M
ean

a
n
d

M
ed

ia
n

M
ea

n
an

d
M

ed
ian

M
ean

a
n
d

M
ed

ia
n

M
ea

n
an

d
M

ed
ian

f
1

1.00
E−

08
1.0

0E−
08
≈

1.00E−
08

1
.0

0
E−

0
8

1.0
0E−

0
8

1
.00

E−
08
≈

1
.00

E−
08

1.0
0E−

0
8

1
.00

E−
08

1.0
0E−

0
8
≈

1
.00

E−
08

1.0
0E−

08
f
2

1.00
E−

08
1.0

0E−
08
≈

1.00E−
08

1
.0

0
E−

0
8

1.0
0E−

0
8

1
.00

E−
08
≈

1
.00

E−
08

1.0
0E−

0
8

1
.00

E−
08

1.0
0E−

0
8
≈

1
.00

E−
08

1.0
0E−

08
f
3

1.00
E−

08
1.0

0E−
08
≈

1.00E−
08

1
.0

0
E−

0
8

1.0
0E−

0
8

1
.00

E−
08
≈

1
.00

E−
08

1.0
0E−

0
8

1
.00

E−
08

1.0
0E−

0
8
≈

1
.00

E−
08

1.0
0E−

08
f
4

1.00
E−

08
1.0

0E−
08
≈

1.00E−
08

1
.0

0
E−

0
8

1.0
0E−

0
8

1
.00

E−
08
≈

1
.00

E−
08

1.0
0E−

0
8

2
.85

E
+

02
1.0

0E−
0
8
>

1
.00

E−
08

1.0
0E−

08
f
5

1.00
E−

08
1.0

0E−
08
≈

1.00E−
08

1
.0

0
E−

0
8

2.6
9E−

0
8

2
.72

E−
08
>

1
.00

E−
08

1.0
0E−

0
8

5
.02

E−
08

4.8
5E−

0
8
>

1
.00

E−
08

1.0
0E−

08
f
6

1.00
E−

08
1.0

0E−
08
≈

1.00E−
08

1
.0

0
E−

0
8

2.7
9E−

0
2

1
.00

E−
08
≈

1
.00

E−
08

1.0
0E−

0
8

1
.00

E−
08

1.0
0E−

0
8
≈

1
.00

E−
08

1.0
0E−

08
f
7

1.00
E−

08
1.0

0E−
08
≈

1.00E−
08

1
.0

0
E−

0
8

1.0
0E−

0
8

1
.00

E−
08
≈

1
.00

E−
08

1.0
0E−

0
8

1
.00

E−
08

1.0
0E−

0
8
≈

1
.00

E−
08

1.0
0E−

08
f
8

2.01
E

+
01

2
.00E

+
01
≈

2.02E
+

01
2
.0

0
E

+
0
1

2.0
8E

+
0
1

2
.09

E
+

0
1
≈

2
.08

E
+

01
2.1

0E
+

0
1

2
.08

E
+

01
2.1

1E
+

01
<

2
.10

E
+

01
2.1

1E
+

0
1

f
9

2.64
E−

01
1.0

0E−
08
>

4.81E−
02

1
.0

0
E−

0
8

2.1
5E

+
0
0

1
.99

E
+

0
0
≈

1
.99

E
+

00
1.9

9E
+

0
0

5
.49

E
+

00
5.9

7E
+

00
>

4
.18

E
+

00
3.9

8E
+

0
0

f
1
0

1.59
E−

01
1.0

0E−
08
>

3.73E−
03

1
.0

0
E−

0
8

1.6
7E

+
0
0

1
.99

E
+

0
0
>

1
.59

E
+

00
9.9

5E−
0
1

3
.54

E
+

00
3.9

8E
+

00
>

2
.71

E
+

00
2.9

8E
+

0
0

f
1
1

1.00
E−

08
1.0

0E−
08
≈

1.00E−
08

1
.0

0
E−

0
8

8.6
9E−

0
2

1
.00

E−
08
>

5
.09

E−
05

1.0
0E−

0
8

1
.83

E−
01

1.0
0E−

0
8
≈

6
.03

E−
02

1.0
0E−

08
f
1
2

1.00
E−

08
1.0

0E−
08
≈

1.00E−
08

1
.0

0
E−

0
8

4.8
8E

+
0
2

1
.92

E
+

0
2
≈

4
.22

E
+

02
5.9

6E
+

0
1

6
.41

E
+

03
4.5

9E
+

03
≈

4
.69

E
+

03
3.3

9E
+

0
3

f
1
3

6.14
E−

01
6.4

6E−
01
<

7.14E−
01

6
.9

4
E−

0
1

2.4
8E

+
0
0

2
.50

E
+

0
0
≈

2
.53

E
+

00
2.5

7E
+

0
0

4
.42

E
+

00
4.4

7E
+

00
<

4
.70

E
+

00
4.6

2E
+

0
0

f
1
4

8.07
E−

01
6.6

6E−
01
<

2.03E
+

00
2
.0

9
E

+
0
0

9.9
3E

+
0
0

9
.94

E
+

0
0
<

1
.10

E
+

01
1.1

3E
+

0
1

2
.02

E
+

01
1.9

8E
+

01
<

2
.09

E
+

01
2.1

2E
+

0
1

f
1
5

2.96
E

+
02

3
.00E

+
02
<

3.32E
+

02
4
.0

0
E

+
0
2

2.0
0E

+
0
2

2
.00

E
+

0
2
≈

2
.00

E
+

02
2.0

0E
+

0
2

2
.00

E
+

02
2.0

0E
+

02
≈

2
.00

E
+

02
2.0

0E
+

0
2

f
1
6

8.83
E

+
01

8
.94E

+
01
≈

8.86E
+

01
9
.0

3
E

+
0
1

1.0
6E

+
0
1

1
.04

E
+

0
1
≈

1
.11

E
+

01
1.0

7E
+

0
1

9
.46

E
+

00
9.0

9E
+

00
>

5
.34

E
+

00
5.4

7E
+

0
0

f
1
7

1.20
E

+
02

1
.17E

+
02
>

9.34E
+

01
9
.4

3
E

+
0
1

2.1
4E

+
0
2

1
.52

E
+

0
2
≈

2
.08

E
+

02
5.6

0E
+

0
1

9
.55

E
+

01
8.0

6E
+

01
>

6
.36

E
+

01
4.9

9E
+

0
1

f
1
8

3.00
E

+
02

3
.00E

+
02
<

3.60E
+

02
3
.0

0
E

+
0
2

9.0
4E

+
0
2

9
.04

E
+

0
2
≈

9
.04

E
+

02
9.0

4E
+

0
2

9
.15

E
+

02
9.1

6E
+

02
>

9
.13

E
+

02
9.1

3E
+

0
2

f
1
9

3.00
E

+
02

3
.00E

+
02
≈

3.20E
+

02
3
.0

0
E

+
0
2

9.0
4E

+
0
2

9
.04

E
+

0
2
≈

9
.04

E
+

02
9.0

4E
+

0
2

9
.16

E
+

02
9.1

6E
+

02
>

9
.13

E
+

02
9.1

3E
+

0
2

f
2
0

3.00
E

+
02

3
.00E

+
02
≈

3.40E
+

02
3
.0

0
E

+
0
2

9.0
4E

+
0
2

9
.04

E
+

0
2
≈

9
.04

E
+

02
9.0

4E
+

0
2

9
.15

E
+

02
9.1

4E
+

02
>

9
.13

E
+

02
9.1

3E
+

0
2

f
2
1

5.00
E

+
02

5
.00E

+
02
≈

5.00E
+

02
5
.0

0
E

+
0
2

5.0
0E

+
0
2

5
.00

E
+

0
2
≈

5
.00

E
+

02
5.0

0E
+

0
2

9
.68

E
+

02
1.0

1E
+

03
>

7
.05

E
+

02
5.0

0E
+

0
2

f
2
2

7.27
E

+
02

7
.26E

+
02
≈

7.28E
+

02
7
.2

8
E

+
0
2

8.1
0E

+
0
2

8
.07

E
+

0
2
≈

8
.17

E
+

02
8.2

4E
+

0
2

8
.15

E
+

02
8.1

4E
+

02
≈

8
.19

E
+

02
8.2

1E
+

0
2

f
2
3

5.59
E

+
02

5
.59E

+
02
≈

5.59E
+

02
5
.5

9
E

+
0
2

5.3
4E

+
0
2

5
.34

E
+

0
2
≈

5
.34

E
+

02
5.3

4E
+

0
2

9
.04

E
+

02
1.0

2E
+

03
>

7
.30

E
+

02
5.4

0E
+

0
2

f
2
4

2.00
E

+
02

2
.00E

+
02
≈

2.00E
+

02
2
.0

0
E

+
0
2

2.0
0E

+
0
2

2
.00

E
+

0
2
≈

2
.00

E
+

02
2.0

0E
+

0
2

2
.00

E
+

02
2.0

0E
+

02
≈

2
.00

E
+

02
2.0

0E
+

0
2

f
2
5

4.04
E

+
02

4
.04E

+
02
>

4.03E
+

02
4
.0

3
E

+
0
2

2.0
9E

+
0
2

2
.09

E
+

0
2
>

2
.09

E
+

02
2.0

9E
+

0
2

2
.13

E
+

02
2.1

3E
+

02
>

2
.13

E
+

02
2.1

3E
+

0
2

M
ean

f
1 -f

2
5

(<
,

=
,
>

):
(9,

1
2
,

4
)

f
1 -f

2
5 (<

,
=

,
>

):
(4,

1
4,

7)
f
1 -f

2
5 (<

,
=

,
>

):
(4

,
8
,

14
) †

M
ed

ian
f
1 -f

2
5

(<
,

=
,
>

):
(5,

1
8
,

2
)

f
1 -f

2
5 (<

,
=

,
>

):
(5,

1
6,

4)
f
1 -f

2
5 (<

,
=

,
>

):
(3

,
11

,
11

) †

B
y

F
u
n
c

f
1 -f

2
5

(<
,≈

,
>

):
(4,

1
7
,

4
)

f
1 -f

2
5 (<

,≈
,
>

):
(1,

20
,

4)
f
1 -f

2
5 (<

,≈
,
>

):
(3

,
1
0,

1
2)

1
0
,

3
0

a
n
d

50
d
im

en
sion

a
l
f
1 -f

2
5

(<
,
>

):(1
1%

,
27

%
)

†
d
en

o
tes

th
ere

is
a

sign
ifi

can
t

d
iff

eren
ce

over
th

e
d
istrib

u
tion

of
m

ean
o
r

m
ed

ia
n

erro
rs

b
etw

een
iC

M
A

-E
S
-tcec

w
ith

iC
M

A
-E

S
-tsc

b
y

a
tw

o
-sid

ed
W

ilcox
o
n

m
atch

ed
-p

airs
sign

ed
-ra

n
k
s

test
a
t

th
e

0
,0

5
α

-level.

174

T
ab

le
D

.5
:

T
h
e

m
ea

n
er

ro
rs

ob
ta

in
ed

b
y

M
A

-L
S
ch

-C
M

A
,

P
S
-C

M
A

-E
S

an
d

iC
M

A
-E

S
-t

sc
(M

A
,

P
S
,

iC
M

A
E

S
t

fo
r

th
ei

r
ab

b
re

v
ia

ti
on

s,
re

sp
ec

ti
ve

ly
,

in
th

is
ta

b
le

)
ov

er
25

in
d
ep

en
d
en

t
ru

n
s

fo
r

C
E

C
’0

5
fu

n
ct

io
n
s.

T
h
e

n
u
m

b
er

s
in

p
ar

en
th

es
is

re
p
re

se
n
t

th
e

ti
m

es
of
<

,
=

,
an

d
>

,
re

sp
ec

ti
ve

ly
,

w
h
en

th
e

co
rr

es
p

on
d
in

g
al

go
ri

th
m

s
ar

e
co

m
p
ar

ed
w

it
h

iC
M

A
-E

S
-t

sc
b
as

ed
on

th
e

m
ea

n
er

ro
rs

.
T

h
e

n
u
m

b
er

of
m

ea
n
s

b
el

ow
th

e
ze

ro
-t

h
re

sh
ol

d
fo

u
n
d

b
y

ea
ch

al
go

ri
th

m
(i

n
d
ic

at
ed

b
y

“O
p
ti

m
a”

an
d

th
e

av
er

ag
e

ra
n
k
in

g
of

ea
ch

al
go

ri
th

m
ar

e
al

so
gi

ve
n
.

f c
e
c

10
d

im
en

si
on

s
3
0

d
im

en
si

on
s

5
0

d
im

en
si

o
n

s
M

ea
n

E
rr

o
rs

M
ea

n
E

rr
or

s
M

ea
n

E
rr

o
rs

M
A

P
S

iC
M

A
E

S
t

M
A

P
S

iC
M

A
E

S
t

M
A

P
S

iC
M

A
E

S
t

f 1
1.

00
E
−

08
1.

0
0E
−

0
8

1
.0

0
E
−

0
8

1
.0

0E
−

08
1.

0
0E
−

08
1
.0

0E
−

0
8

1
.0

0E
−

08
1
.0

0E
−

08
1
.0

0E
−

0
8

f 2
1.

00
E
−

08
1.

0
0E
−

0
8

1
.0

0
E
−

0
8

1
.0

0E
−

08
1.

0
0E
−

08
1
.0

0E
−

0
8

3
.0

6E
−

02
7
.3

6E
−

06
1
.0

0E
−

0
8

f 3
1.

00
E
−

08
1.

4
5E
−

0
1

1
.0

0
E
−

0
8

2
.7

5E
+

04
2.

9
6E

+
0
4

1
.0

0
E
−

0
8

3
.2

1E
+

04
9
.1

0E
+

04
1
.0

0E
−

08
f 4

5.
54

E
−

03
1.

0
0E
−

0
8

1
.0

0
E
−

0
8

3
.0

2E
+

02
4.

5
6E

+
0
3

1
.0

0
E
−

0
8

3
.2

3E
+

03
2
.1

7E
+

04
1
.0

0E
−

08
f 5

6.
75

E
−

07
1.

0
0E
−

0
8

1
.0

0
E
−

0
8

1
.2

6E
+

03
2.

5
2E

+
0
1

1
.0

0
E
−

0
8

2
.6

9E
+

03
1
.7

9E
+

03
1
.0

0E
−

08
f 6

3.
19

E
−

01
1.

0
0E
−

0
8

1
.0

0
E
−

0
8

1
.1

2E
+

00
1.

1
5E

+
0
1

1
.0

0
E
−

0
8

4
.1

0E
+

00
2
.9

1E
+

01
1
.0

0E
−

08
f 7

1.
43

E
−

01
1.

0
0E
−

0
8

1
.0

0
E
−

0
8

1
.7

5E
−

02
1.

0
0E
−

08
1
.0

0E
−

0
8

5
.4

0E
−

03
1
.0

0E
−

08
1
.0

0E
−

0
8

f 8
2.

00
E

+
01

2.
00

E
+

01
2
.0

2E
+

01
2
.0

0E
+

01
2.

0
0E

+
0
1

2
.0

8
E

+
0
1

2
.0

0E
+

01
2
.0

0E
+

01
2
.1

0E
+

01
f 9

1.
00

E
−

08
3.

9
8E
−

0
2

4
.8

1
E
−

0
2

1
.0

0E
−

08
8.

7
6E
−

01
1
.9

9E
+

00
1
.0

0E
−

08
5
.4

5E
+

00
4
.1

8E
+

00
f 1

0
2.

67
E

+
00

1.
00

E
−

0
8

3
.7

3
E
−

0
3

2
.2

5E
+

01
5.

5
7E
−

01
1
.5

9E
+

00
5
.0

1E
+

01
5
.3

3E
+

00
2
.7

1E
+

00
f 1

1
2.

43
E

+
00

8.
51

E
−

0
1

1
.0

0
E
−

0
8

2
.1

5E
+

01
7.

1
0E

+
0
0

5
.0

9
E
−

0
5

4
.1

3E
+

01
1
.5

9E
+

01
6
.0

3E
−

02
f 1

2
1.

14
E

+
02

1.
10

E
+

00
1
.0

0E
−

0
8

1
.6

7E
+

03
8.

8
0E

+
0
2

4
.2

2
E

+
0
2

1
.3

9E
+

04
6
.9

0E
+

03
4
.6

9E
+

03
f 1

3
5.

45
E
−

01
3.

6
7E
−

0
1

7
.1

4
E
−

0
1

2
.0

3E
+

00
2.

0
5E

+
0
0

2
.5

3
E

+
0
0

3
.1

5E
+

00
4
.1

5E
+

00
4
.7

0E
+

00
f 1

4
2.

25
E

+
00

3.
40

E
+

00
2
.0

3E
+

00
1
.2

5E
+

01
1.

2
4E

+
0
1

1
.1

0
E

+
0
1

2
.2

2E
+

01
2
.1

5E
+

01
2
.0

9E
+

01
f 1

5
2.

24
E

+
02

8.
67

E
+

01
3
.3

2E
+

02
3
.0

0E
+

02
1.

3
7E

+
0
2

2
.0

0
E

+
0
2

3
.7

2E
+

02
1
.2

5E
+

02
2
.0

0E
+

02
f 1

6
9.

18
E

+
01

9.
28

E
+

01
8
.8

6E
+

01
1
.2

6E
+

02
1.

5
9E

+
0
1

1
.1

1
E

+
0
1

6
.9

0E
+

01
1
.6

2E
+

01
5
.3

4E
+

00
f 1

7
1.

01
E

+
02

1.
12

E
+

02
9
.3

4E
+

01
1
.8

3E
+

02
9.

1
5E

+
0
1

2
.0

8
E

+
0
2

1
.4

7E
+

02
9
.1

3E
+

01
6
.3

6E
+

01
f 1

8
8.

84
E

+
02

3.
60

E
+

02
3
.6

0E
+

02
8
.9

8E
+

02
9.

0
5E

+
0
2

9
.0

4
E

+
0
2

9
.4

1E
+

02
8
.7

0E
+

02
9
.1

3E
+

02
f 1

9
8.

78
E

+
02

3.
25

E
+

02
3
.2

0E
+

02
9
.0

1E
+

02
8.

8
5E

+
0
2

9
.0

4
E

+
0
2

9
.3

8E
+

02
9
.1

3E
+

02
9
.1

3E
+

02
f 2

0
8.

63
E

+
02

3.
43

E
+

02
3
.4

0E
+

02
8
.9

6E
+

02
9.

0
5E

+
0
2

9
.0

4
E

+
0
2

9
.2

8E
+

02
9
.0

9E
+

02
9
.1

3E
+

02
f 2

1
7.

94
E

+
02

4.
71

E
+

02
5
.0

0E
+

02
5
.1

2E
+

02
5.

0
0E

+
0
2

5
.0

0
E

+
0
2

5
.0

0E
+

02
6
.6

2E
+

02
7
.0

5E
+

02
f 2

2
7.

53
E

+
02

7.
46

E
+

02
7
.2

8E
+

02
8
.8

0E
+

02
8.

4
3E

+
0
2

8
.1

7
E

+
0
2

9
.1

4E
+

02
8
.6

3E
+

02
8
.1

9E
+

02
f 2

3
8.

88
E

+
02

5.
58

E
+

02
5
.5

9E
+

02
5
.3

4E
+

02
5.

3
4E

+
0
2

5
.3

4
E

+
0
2

5
.3

9E
+

02
8
.1

2E
+

02
7
.3

0E
+

02
f 2

4
2.

28
E

+
02

2.
00

E
+

02
2
.0

0E
+

02
2
.0

0E
+

02
2.

0
0E

+
0
2

2
.0

0
E

+
0
2

2
.0

0E
+

02
2
.0

0E
+

02
2
.0

0E
+

02
f 2

5
4.

55
E

+
02

4.
00

E
+

02
4
.0

3E
+

02
2
.1

4E
+

02
2.

1
0E

+
0
2

2
.0

9
E

+
0
2

2
.2

1E
+

02
2
.1

4E
+

02
2
.1

3E
+

02
V

.S
.

(3
,

4,
18

)†
(8

,
8
,

9
)

(7
,

4,
1
4
)†

(7
,

6,
1
2)

(5
,

2
,

1
8)
†

(6
,

4,
15

)†

O
p

ti
m

a
4

7
9

3
3

7
2

2
7

R
a
n

k
2.

52
1.

78
1
.7

2
.2

6
1
.9

8
1
.7

6
2.

42
2.

02
1
.5

6
†

d
en

ot
es

th
er

e
is

a
si

gn
ifi

ca
n
t

d
iff

er
en

ce
ov

er
th

e
d

is
tr

ib
u

ti
o
n

o
f
m

ea
n

er
ro

rs
b

et
w

ee
n

th
e

co
rr

es
p

on
d

in
g

al
go

ri
th

m
w

it
h

iC
M

A
-E

S
-t

sc
b
y

a
tw

o-
si

d
ed

W
il

co
x
on

m
a
tc

h
ed

-p
ai

rs
si

gn
ed

-r
a
n

k
s

te
st

at
th

e
0,

05
α

-l
ev

el
.

175

D. COMPUTATIONAL RESULTS FOR AN AUTOMATICALLY TUNED
IPOP-CMA-ES ON THE CEC’05 BENCHMARK SET

Table D.6: Summary of the comparison with
iCMA-ES-tsc on 10, 30 and 50 dimensions with re-
spect to mean error values: (better, equal, worse).
Error values lower than 10−8 are approximated to
10−8.

iCMA-ES-05 Sep-iCMA-ES-tsc
vs. iCMA-ES-tsc vs. iCMA-ES-tsc

10 Dim (6, 10, 9) (5, 4, 16)†

30 Dim (4, 11, 10)† (3, 6, 16)†

50 Dim (7, 6, 12) (3, 4, 18)†

† denotes there is a significant difference over the distribu-
tion of mean errors between the corresponding algorithm
and iCMA-ES-tsc according to a two-sided Wilcoxon
matched-pairs signed-rank test at the 0,05 α-level.

Table D.7: Given are for each algorithm the number of optima reached and the
average rank on the CEC’05 benchmark problems of dimension 50. We use the
Friedman test at significance level α = 0.05 is used. ∆Rα is the minimum signifi-
cant difference between the ranks of algorithms. The numbers in the last column
are the differences of the sum of ranks relative to the best algorithm; if a difference
is larger than ∆Rα, it is statistically significant.

∆Rα Algs OptNum Rank ∆R
19.75 iCMA-ES-tsc 7 2.9 0

iCMA-ES-⊕ 4 2.9 0
iCMA-ES-uni 7 3.2 7.5
iCMA-ES-dp 5 3.7 20.0
iCMA-ES-uni,multi 6 3.8 22.5
iCMA-ES-multi 4 4.5 40.0

Table D.8: Given are the tuned parameter settings for different subsets of the
training functions taken from the SOCO benchmark set.

Factor
iCMA-ES

-⊕ -uni,multi -uni -multi
a 8.349 5.977 8.419 3.235
b 1.647 3.749 2.324 4.537
c 0.5325 0.4666 0.5955 0.4582
d 3.809 2.571 2.499 1.618
e -13.01 -10.87 -8.583 -8.178
f -6.217 -8.703 -11.57 -14.83
g -8.37 -17.46 -19.91 -19.61

176

Appendix E

Artificial bee colonies for continuous optimization: Ex-
perimental analysis and improvements

E.1 Introduction

The artificial bee colony (ABC) algorithm is a recent swarm intelligence algorithm

that is loosely inspired by the foraging behavior of a honeybee swarm. It is one

representative of a number of algorithmic approaches that exploit some type of

behavior found in real bee colonies for tackling computational problems arising

in computer science and optimization [Diwold et al., 2011b, Karaboga and Akay,

2009]. ABC was introduced by Karaboga [2005] applying it to continuous op-

timization problems. The algorithm can be summarized as follows. There are

three types of (artificial) bees, namely employed bees, onlooker bees, and scout

bees. Each employed bee is associated to a different food source—a food source

corresponding to a solution of the optimization problem. At each iteration of the

algorithm, an employed bee explores the neighborhood of the food source (solu-

tion) to which it is associated. Onlooker bees also explore the neighborhood of

food sources; however, differently from employed bees, they are not associated to

one fixed food source, but they choose the food source they explore in each algo-

rithm iteration probabilistically based on its quality—corresponding to the quality

of a solution in the optimization problem. If the neighborhood of a food source

has been explored unsuccessfully for a given number of times (corresponding to a

depleted food source), a new food source is chosen by a scout bee, which in the

ABC algorithm corresponds to generating a random solution in the search space.

In a sense, the random choice of a solution by a scout bee implements a form of

partial restart, thus, adding an exploration feature to the algorithm.

The original ABC algorithm obtained encouraging results on some standard

benchmark problems, but, being an initial proposal, still a considerable perfor-

177

E. ARTIFICIAL BEE COLONIES FOR CONTINUOUS OPTIMIZATION:
EXPERIMENTAL ANALYSIS AND IMPROVEMENTS

mance gap with respect to state-of-the-art algorithms was observed. In particular,

it was found to be relatively poor performing on composite and non-separable

function as well as having a slow convergence rate towards high quality solutions

[Akay and Karaboga, 2012]. Therefore, it is not surprising that in the following

years, several modifications of the original ABC algorithm were introduced trying

to improve performance. Unfortunately, so far there is no comprehensive com-

parative evaluation of the performance of ABC variants on a significantly large

benchmark set available. Such a comparison would be useful for a number of

reasons. Firstly, the selected benchmark functions differ between the papers; sec-

ondly, some papers test their algorithms on only a small set of benchmark prob-

lems; thirdly, the experimental settings differ in part quite substantially among

the papers and several papers do not use optimum thresholds to avoid unreason-

ably low numbers; fourthly, some variants were tested with benchmark functions

that have their optimum point in zero and possibly use features that exploit this

fact; finally, no experiments are available that examine the scaling behavior of the

algorithms across different dimensionalities. In addition, observed differences in

few comparisons may be due to a different effort that has been spent on tuning

algorithm parameters.

In this chapter, we try to fill this perceived gap. We first review in detail

several variants of the original ABC algorithm. We have re-implemented these

ABC variants under a same framework to allow their experimental study under

same experimental conditions. For the evaluation of the ABC algorithms, we have

chosen a recent benchmark set of continuous optimization problems that has been

used as benchmark set for a special issue of the Soft Computing journal on the

scalability of evolutionary algorithms and metaheuristics to large-scael continuous

optimization problems [Lozano et al., 2011]. This benchmark set comprises 19

freely scalable functions that includes classical continuous optimization functions

as well as combined functions [Herrera et al., 2010]; subsets of this benchmark set

have also been used at earlier algorithm competitions for continuous optimization

problems.

We evaluate the various ABC algorithms under three experimental conditions.

First, we apply each of the algorithms using parameter settings that can be con-

sidered as default parameter settings from the literature. Second, we tune the

parameters of each ABC variants using an automatic algorithm configuration tool,

Iterated F-race [Balaprakash et al., 2007, Birattari et al., 2010] as implemented

in the irace package [López-Ibáñez et al., 2011]. The rationale for this step is to

examine the performance of the algorithms under a same tuning effort and, thus,

178

to eliminate the possible bias that is introduced by an uneven tuning effort for

the algorithm variants in the original papers. Third, we consider the integration

of local search algorithms into the ABC variants. In fact, many recent state-of-

the-art algorithms for continuous optimization combine an effective local search

mechanism with population-based search techniques [LaTorre et al., 2011, Molina

et al., 2010a] and, thus, it is natural to consider this possibility also here. In this

final step, we again use the help of automatic algorithm configuration tools to

avoid a manuel re-design of the hybrid algorithms and to ensure an even tuning of

the various ABC hybrid algorithms.

As maybe expected, the tuned ABC variants and the ABC variants that in-

tegrate local search significantly improve in several cases over the original ABC

variants. In particular, the usage of a local search diminishes the differences among

the various ABC algorithms. As a result, after the automatic tuning and the in-

tegration of the local search algorithms, the ranking of the ABC variants changes.

This illustrates the necessity of a thorough design and tuning of the ABC algo-

rithms before making conclusions about the relative performance of ABC variants

or before actually claiming superior performance of a new variant over a basic

variant.

The chapter is structured as follows. In Section E.2, we introduce the original

ABC algorithm, its variants, and summarize the type of modifications available

ABC variants introduce. Section E.3 describes the experimental setup and the

experimental results are discussed in Section E.4. We conclude in Section E.5.

E.2 Artificial bee colony algorithm

In this section, we first introduce the original ABC algorithm, present in some

detail the variants we study in the chapter, and give an overview of other ABC

variants.

E.2.1 Original ABC algorithm

In a bee colony, each bee has a specialized task and a main aim of a colony is

to maximize the amount of nectar in the hive. For this aim, bees use some form

of division of labor and self-organization. Inspired by the foraging behavior of

bee colonies, the artificial bee colony (ABC) algorithm was proposed by Karaboga

[2005], Karaboga and Basturk [2007]. ABC was tested using its application to con-

tinuous function optimization and it is one of several algorithmic techniques that

179

E. ARTIFICIAL BEE COLONIES FOR CONTINUOUS OPTIMIZATION:
EXPERIMENTAL ANALYSIS AND IMPROVEMENTS

Algorithm 6 The pseudo-code of the Artificial Bee Colony Algorithm

initialization
while termination condition is not met do

Employed Bees Step
Onlookers Step
Scout Bees Step

end while

have recently been proposed based on some inspiration from bee colony behavior

[Diwold et al., 2011b, Karaboga and Akay, 2009].

The ABC algorithm is a population-based optimization algorithm where three

types of bees are used: employed bees, onlooker bees and scout bees. These bees

try to find new, promising food sources or exploit already existing ones. In ABC,

an analogy is made between the location of food sources and solutions for the

problem to be solved and each food source corresponds to a solution of the problem.

Furthermore, the amount of nectar at a food source location corresponds to the

solution quality or fitness value of a solution to the problem. A particular choice

in ABC is that the number SN of employed bees is equal the number of onlooker

bees and that this number is the equal to the number of food sources (solutions)

currently being exploited; SN is a parameter that is also called the population size.

Employed bees and onlooker bees both exploit current food sources (solutions) by

visiting its neighborhood. Their role, however, is slightly different. While there

is a one-to-one correspondance between employed bees and food sources, that is,

each employed bee is assigned to a different food source, the onlooker bees select

randomly the food source to exploit, preferring better quality food sources. Scout

bees explore the area for new food sources (solutions) if current food sources are

deemed to be depleted. Algorithmically, this is implemented by associating to

each food source a limit value. If more than limit times an employed bee or an

onlooker bee has visited unsuccessfully a food source, a scout bee searches for a

new (randomly located) food source.

An ABC algorithm consists of four phases: the initialization step, the search

steps done by the employed bees, onlooker bees and scout bees in this sequence. In

the initialization step of the algorithm, the initial food source locations are gener-

ated and other parameters of the algorithm are initialized. After initialization, the

main loop is executed, which is comprised of the other three steps. Algorithm 6

gives a pseudo-code of these main steps. The details of these steps are explained

next.

For the remainder of the chapter, we use an optimization-based terminology

180

to describe the ABC algorithm. In this chapter, we are dealing with continuous

optimization problems, in which we are given a D-dimensional function f : X ⊆
RD → R, where X is the search space and D is the dimension of the search

space. We assume here box-constrained problems where for each solution vector

xi = (xi1 xi2 . . . xiD) we have that xij ∈ [xminj , xmaxj], where [xminj , xmaxj] is the

interval of feasible values in dimension j, 1 ≤ j ≤ D.

Initialization: In the algorithm initialization, SN solutions are chosen uniformly

at random in the search space. For each solution xi, 1 ≤ i ≤ SN, this is done by

generating each solution’s coordinate as

xi,j = xminj + ϕi,j(x
max
j − xminj) (E.1)

where ϕi,j is a random number generated uniformly at random in [0, 1]. This

generation of values is done for each dimension j ∈ {1, 2, . . . , D} independently.

Employed bees behavior: Each of the employed bees chooses deterministically

its corresponding reference solution xi and generates a solution in the vicinity of it.

A new candidate solution x′i is generated by modifying randomly one coordinate

of xi. To do so, another reference solution xk, k 6= i, k ∈ {1, 2, . . . , SN} is chosen

uniformly at random and x′ij is set to

x′i,j = xi,j + φi,j(xi,j − xk,j), i 6= k, (E.2)

where j, j ∈ {1, 2, . . . , D}, is a dimension selected uniformly at random and φi,j

is a random number chosen uniformly at random in [−1, 1]. If the new candidate

solution x′i is better than the reference solution xi, then x′i replaces xi. In the

original ABC algorithm the neighborhood search of an employed bee only changes

the value of one dimension of a reference solution, which is claimed to be responsi-

ble for a possibly slow convergence of the original algorithm [Akay and Karaboga,

2012].

Onlooker bees behavior: Onlooker bees probabilistically select a solution and

then explore its neighborhood using Equation E.2, that is, they search the neigh-

borhood of a chosen solution in the same way as employed bees. The probabilistic

choice of the solution to be explored depends on the solution quality, preferring

better quality solutions. The selection probability pi of a solution xi is calculated

as

181

E. ARTIFICIAL BEE COLONIES FOR CONTINUOUS OPTIMIZATION:
EXPERIMENTAL ANALYSIS AND IMPROVEMENTS

pi =
fitness i∑SN
n=1 fitnessn

, (E.3)

where fitness i is an evaluation function value assigned to xi, which for mini-

mization problems is defined as

fitnessi =

 1
1+f(xi)

, f(xi) > 0,

1 + abs(f(xi)), f(xi) < 0,
(E.4)

Since better quality solutions have a higher probability of being selected, this

step implements some type of intensification mechanism that prefers to examine

more carefully the neighborhood of better quality solutions.

Scout bees behavior: If employed and onlooker bees cannot improve a solution

for a given number of limit times, the solution reaches its visiting limit and they are

abandoned. In this case, scout bees try to find a new food source in replacement of

the abandoned food source. A new food source location is determined uniformly at

random in the search space, that is, a scout bee applies the solution initialization

as defined by Equation E.1. This abandoning and scouting mechanism increases

the exploration capabilities of the algorithm. In this chapter, the value of limit is

determined by the formula lf · SN ·D, where lf is a real-valued parameter to be

set.

E.2.2 Variants of the artificial bee colony algorithm

Starting from the original ABC algorithm, several variants of the algorithm have

been proposed with the goal of improving its performance. In this chapter, we

examine experimentally eight of these ABC variants. These were chosen among

a larger number of ABC variants since they either were published in scientific

journals or in the original papers they were shown to have experimental results

that may make them potentially competitive with state-of-the-art heuristics. In

what follows, we shortly describe the main features of the variants we tested.

Modified Artificial Bee Colony (MABC) Algorithm. Akay and Karaboga

[2012] motivate their modified ABC (MABC) algorithm by the rather slow con-

vergence speed of the original ABC algorithm, which they say is due to the fact

that at each step of the employed and the onlooker bees only one dimension of

a reference solution is changed. To overcome this problem, they introduced two

182

main modifications to the original ABC algorithm. First, they allow to modify a

larger number of variables at each employed and onlooker bee step referring to this

as increasing the perturbation frequency. To this aim, they introduce a parameter

MR (modification rate), which gives the probability with which each variable xij

of a reference solution xi is modified. This is implemented by the equation

xij =


xij + φij · (xij − xkj) if rij < MR

xij otherwise,

(E.5)

where rij is a random number that is drawn uniformly at random in [0, 1].

Hence, with a probability MR a variable undergoes variation and the particular

value of MR has a strong impact on the search behavior. In particular, low values

of MR favor exploitation, while large values of MR may lead to more exploration

since more dimensions of a solution are modified.

The second modification concerns the magnitude of a change in one variable.

In MABC, the modification of a variable is biased by a random number φij drawn

uniformly at random in the interval [−SF, SF], where SF is a parameter called

scaling factor. The original Equation E.2 is obtained by setting SF to one. Instead

of using a fixed value for SF, Akay and Karaboga [2012] propose to adapt the value

of SF at run-time using the Rechenberg’s 1/5 mutation rule [Rechenberg, 1973]. In

particular, every fixed number of iterations the ratio of solution modifications that

led to an improvement is computed. Depending on whether this ratio is smaller,

larger or equal to one fifth, the value of SF is multiplied (that is, decreased) by

0.85, divided (that is, increased) by 0.85, or it remains the same.

Gbest-guided Artificial Bee Colony (GbABC) Algorithm. The main idea

of the GbABC algorithm [Diwold et al., 2011a, Zhu and Kwong, 2010] is to bias

the modification of the reference solution by the best solution found so far, which

we call global-best in what follows. The information of this global-best solution is

incorporated into ABC by modifying Equation E.2 to

x′i,j = xi,j + φi,j(xi,j − xk,j) + ψi,j(xgbest,j − xi,j), i 6= k , (E.6)

where xgbest,j is the j-th element of the global-best solution, ψi,j is a random num-

ber drawn uniformly at random in [0, C] where C is a constant that is set to one by

Diwold et al. [2011a] or used as a parameter to be set by Zhu and Kwong [2010].

This modification is inspired by the usage of the global-best solution to influence

183

E. ARTIFICIAL BEE COLONIES FOR CONTINUOUS OPTIMIZATION:
EXPERIMENTAL ANALYSIS AND IMPROVEMENTS

particles in particle swarm optimization; it is a rather straightforward modifica-

tion that, as we will see later, is important to obtain a significantly improved

performance.

GbestDist-guided Artificial Bee Colony (GbdABC) Algorithm. Diwold

et al. [2011a] have also proposed a second modification to the ABC algorithm,

which uses the global-best solution as in the GbABC variant (with C = 1) but

which additionally changes the selection of the neighboring solution xk in Equa-

tion E.6. Let d(xi, xk) be the Euclidean distance between two solutions xi and xk.

Then, a solution xk, k 6= i, is chosen with a probability

pk =

1
d(xi,xk)∑SN

l=1,l 6=i
1

d(xi,xl)

(E.7)

for the update through Equation E.6 instead of being chosen uniformly at

random. Thus, the closer a solution xk is to xi, the higher is the probability of

choosing it. The intuition of this choice is that it is more probable to fine a better

solution by searching between two good solutions that are probably also close to

each other in the solutions space [Diwold et al., 2011a].

Best-so-far selection Artificial Bee Colony (BsfABC) algorithm. As

GbABC and GbdABC, BsfABC [Banharnsakun et al., 2011] exploits the global-

best solution (called best-so-far solution in Bsf-ABC) but uses it in a different way.

The global-best solution is only used to modify the onlooker bees step, thus the

employed bee step is unaffected. The update is defined by

x′i,d = xi,j + fitness(xbest)(φi,j(xi,j − xgbest,j)), i 6= k d = 1, 2, . . . , D , (E.8)

where j is a randomly selected dimension and fitness(xbest) is the fitness value

of the global-best solution. BsfABC applies the position update in the randomly

selected dimension j to each dimension. This has the effect that the variable

values in all dimensions of a candidate solution get closer to each other. Such an

approach works only well if the optimum point has the same variable values in all

dimensions but it breaks down if this is not the case.

BsfABC also modifies the scout bees step. Instead of choosing a random new

position, BsfABC introduces a random perturbation of the current food source by

using the equation

184

x′i,j = xi,j + xi,jφi,j(wmax −
itr

itrmax
(wmax − wmin)), j = 1, . . . , D (E.9)

where wmax and wmin are control parameters that define the strength of the

perturbation, itr is the number of algorithm iterations done so far and itrmax is

the maximum number of iterations. The effect of this equation is that the strength

of the perturbation decreases with an increasing number of iterations, making the

algorithm more exploitative in later algorithm iterations. The experiments with

the original BsfABC have been done on six benchmark functions, each of which has

the global optimum at the position (0, 0, . . . , 0) and for these problems BsfABC

was shown to be very effective [Banharnsakun et al., 2011].

Chaotic Artificial Bee Colony (CABC) Algorithm. Alataş [2010] intro-

duces two modifications to the original ABC algorithm. The first is to generate

the initial solutions by using a chaotic map instead of a standard random number

generator; this results in variant CABC1. Alataş made tests with seven different

chaotic maps for three chaotic ABC variants in his paper and here we consider

the same chaotic maps in the parameter tuning. The second modification is to

generate the solution of a scout bee by using a type of local search, resulting in

variant CABC2. In particular, if in CABC2 a solution cannot be improved for

limit/2 trials, the algorithm searches randomly for another limit/2 trials around

the current solution; in each of the limit/2 trials it modifies one dimension and

accepts a new solution if it improves over the current one. Finally, a third variant,

CABC3, combines the two modifications proposed for CABC1 and CABC2. Here,

we only use variant CABC3, also because variant CABC1 did not appear to lead

to improved results.

Improved Artificial Bee Colony (ImpABC) Algorithm. ImpABC [Gao

and Liu, 2011] introduces three modifications to ABC. The first modification con-

cerns the population initialization. The initial positions are generated using a

chaotic random generator (as does CABC), which uses a logistic map. Once SN

solutions are generated, for each solution the value of each variable is mirrored at

the center of the search range for this variable, resulting in SN new solutions; this

process is called opposition-based population initialization. From the resulting

2 · SN solutions the best SN solutions are kept.

The other new algorithm features with respect to the original ABC algorithm

185

E. ARTIFICIAL BEE COLONIES FOR CONTINUOUS OPTIMIZATION:
EXPERIMENTAL ANALYSIS AND IMPROVEMENTS

concern the solution modification. Similar to MABC, Gao and Liu [2011] propose

to modify more than one variable. They introduce a parameter M, which refers

to the number of variables that should be modified. In their paper, they explore

values of M from 1 to D. They observe that the best value of M depends on the

particular problem, but do not give a final indication how the parameter M should

be set. As default, we therefore set it analogous to the parameter MR of MABC as

a probability. This implies that for a same value of MR, the number of variables

modified increases with D. The third algorithm feature concerns the solution

modification to be applied. Their adaptation is inspired by the mechanisms that

are used in differential evolution (DE) [Stern and Price, 1997] algorithms. In

particular, the Imp-ABC algorithm proposes two new equations called ABC/best/1

and ABC/rand/1, which are inspired by the DE/best/1 and DE/rand/1 schemes

in DE, respectively. The equation for ABC/best/1 is

x′i,j = xbest,j + φi,j(xi,j − xr1,j) (E.10)

and the search equation for ABC/rand/1 is

x′i,j = xr1,j + φi,j(xi,j − xr2,j) (E.11)

where r1 and r2 are two random indices of solutions different from i, xbest,j is

the value of the variable j of the best solution found so far, and j is a randomly

chosen variable. Equation E.10 biases the search towards the global-best solution

while Equation E.11 is more explorative. To balance between the effects of the

two equations, the authors propose to apply Equation E.11 with a probability p

and Equation E.10 with a probability 1− p. Based on some limited experiments,

they propose to set p to 0.25.

In a more recent paper, Gao et al. [2012] propose essentially the same ideas but

use yet another modified search equation, where variable j of a chosen solution

xi is updated analogous to Equation E.10 but considering two or four random

positions for updating the variable’s position. Since they report that using four

random solutions does not lead to better performance, we do not consider this

variant here.

Rosenbrock Artificial Bee Colony (RABC). RABC [Kang et al., 2011] pro-

poses two main modifications to ABC. The first replaces Equation E.4 with the

rank-based fitness adaptation method defined as

186

fitnessi = 2− SP +
2(SP− 1)(ri − 1)

SN− 1
, (E.12)

where SP ∈ [1.0, 2.0] is the selection pressure and ri is the rank of solution xi

in the population.

The second modification is the integration of Rosenbrock’s rotational direction

method (RM) [Rosenbrock, 1960], a local search technique, into ABC. RM is

applied every nc iterations to the best-so-far solution. For integrating RM into

ABC, some adaptations have been done to RM. Maybe the most noteworthy from

an algorithmic side is the usage of an adaptive initial step size in RM. To do so,

the authors propose to use the best m ranked solutions and to compute

δj = 0.1 ·
∑m

i=1(x̄i,j − xgbest,j)
m

, (E.13)

where δj is the step size in dimension j and x̄i is the i-th best solution after

ranking. The solution returned by RM replaces the middle ranked solution in the

population, which, according to the authors, improves performance when com-

pared to replacing the worst solution on multi-modal problems. For a description

of the other modifications to RM, we refer to [Kang et al., 2011].

Incremental Artificial Bee Colony (IABC) with Local Search (IABCLS).

Aydın et al. [2012] have proposed an algorithm that integrates the incremental

social learning (ISL) framework [Montes de Oca, 2011] and local search procedures

to ABC. The basic idea of ISL when applied to population-based algorithms for

optimization problems is to start the algorithm with a small population size, and

to add new agents after each g iterations (implementing the population growth),

biased by members of the population (implementing the learning aspect). When

the population is extended, one new employed bee location is generated as

x′new,j = xnew,j + ϕi,j(xgbest,j − xnew,j) j = 1, . . . , D (E.14)

where xnew,j is a variable value generated according to Equation E.1, x′new,j is

the location of the new food source biased by the global-best solution, and ϕi,j is

a parameter. Apart from adapting ISL to ABC, IABC uses two other features.

The first is to use information on the best-so-far solution for a randomly chosen

dimension j, using

x′i,j = xi,j + φi,j(xgbest,j − xi,j). (E.15)

187

E. ARTIFICIAL BEE COLONIES FOR CONTINUOUS OPTIMIZATION:
EXPERIMENTAL ANALYSIS AND IMPROVEMENTS

The second biases the scout bees towards the best-so-far solution. This is done

by initializing the scout bee using

x′i,j = xgbest,j +Rfactor(xgbest,j − xnew,j) j = 1, . . . , D (E.16)

where x′i is the new food source location replacing an abandoned food source;

Rfactor is a parameter that determines the bias towards the best-so-far solution

xgbest; and xnew,j is a variable value generated according to Equation E.1. This

modification increases the exploitation behavior of the algorithm but it may in-

crease chances of early convergence. Aydın et al. [2012] considered the hybridiza-

tion of IABC with either Powell’s conjugate direction set method [Powell, 1964]

or Lin-Yu Tseng’s Mtsls1 [Tseng and Chen, 2008] local search procedure result-

ing into a hybrid IABCLS algorithm. This was done by invoking a local search

procedure in every algorithm iteration starting from the best-so-far solution.

Other Variants of Artificial Bee Colony. Since the initial proposal of ABC,

a large number of ABC variants for numerical optimization has been proposed.

One common theme has been the hybridization of ABC algorithms with proce-

dures taken from other techniques. Fister et al. [2012] proposed memetic ABC

algorithm, which is hybridized with two local search heuristics, the Nelder-Mead

algorithm (NMA) and the random walk with direction exploitation (RWDE). Ad-

ditionally, this algorithm takes inspiration from DE in the update equation. Yan

et al. [2011] and Ming et al. [2010] hybridized ABC with a genetic algorithm.

El-Abd [2011b] and Sharma et al. [2011] investigated the hybridization of ABC

and particle swarm optimization, which essentially is done by modifying the up-

date equations of ABC. Another hybrid approach was proposed by Zhong et al.

[2011]; they introduce, inspired by the chemotaxis behavior of bacterial foraging,

a stronger local search type behavior in the update of the employed and onlooker

bees. Tsai et al. [2011] proposed Interactive ABC which introduces the concept of

universal gravitation into the consideration of the affection between employed bees

and the onlooker bees. El-Abd [2011a] explored the use of opposition-based learn-

ing in ABC. Abraham et al. [2012] introduced as others a type of DE strategy into

the search equation of ABC. Some other variants emphasized on modifications in

search equations of ABC steps. Zou et al. [2010] have proposed cooperative ABC

algorithm which selects the global-best solution as the reference food source and

mutates it. As chaotic ABC, Wu and Fan [2011] use a chaotic random number

generator; however, they use it in the search equation instead of the initialization

or the scout step. Alam et al. [2010] introduced an ABC algorithm with exponen-

188

ABC original ABC Karaboga and Basturk [2007]
GbABC Gbest-guided ABC Zhu and Kwong [2010]

Diwold et al. [2011a]
BsfABC Best-so-far selection ABC Banharnsakun et al. [2011]
MABC Modified ABC Akay and Karaboga [2012]
ImpABC Improved ABC Gao and Liu [2011]
CABC Chaotic ABC, version 3 Alataş [2010]
GbdABC GbestDist-guided ABC Diwold et al. [2011a]
RABC Rosenbrock ABC Kang et al. [2011]
IABC Incremental ABC Aydın et al. [2012]

Table E.1: Abbreviation, name, and main reference for the nine ABC algorithms
compared in our study.

tially distributed mutation that uses exponential distributions to produce mutation

steps with varying lengths and they adjust the step length at run time. Sharma

and Pant [2012] proposed two new mechanisms for the movements of scout bees.

The first method is based on a non-linear interpolated path while in the second

one, scout bees follow a Gaussian movement. Rajasekhar et al. [2011] proposed

an improved version of ABC algorithm with mutation based on Levy probability

distributions. Global ABC algorihm, which was introduced by Guo et al. [2011],

proposed three modified search equation by using global and individual best posi-

tions. To balance between exploring and exploiting, a diversity stategy have used

by Lee and Cai [2011].

E.3 Experimental setup

We have re-implemented the original ABC algorithm and the eight variants we have

presented in detail in Section E.2.2. Thus, in our experimental analysis, we will

compare a total of nine algorithms. For convenience, we repeat the abbreviation,

the name and the main reference to the particular algorithms in Table E.1.

We compare these nine ABC algorithms in three settings. A first setting uses

the re-implementation of these algorithms using as much as possible the default

parameter settings that were proposed in the original publications. In few cases,

not all the default parameter settings have been specified unambigously in the

original publications or several values have been tested without giving a final rec-

ommendation. In these cases, we have made an educated guess of a reasonable

setting or used values that from the reported experimental results seemed to be

appropriate.

189

E. ARTIFICIAL BEE COLONIES FOR CONTINUOUS OPTIMIZATION:
EXPERIMENTAL ANALYSIS AND IMPROVEMENTS

A second setting considers the usage of an offline automatic algorithm configu-

ration tool. By using an offline tool for parameter tuning and a same tuning effort

for each ABC variant we intend (i) to make a fair comparison among the various

ABC algorithms that is independent of the tuning spent by the original authors

and (ii) to check whether and by how much the performance of ABC algorithms

can be improved without changing any detail of their algorithmic structure.

In a third setting, we hybridize the ABC algorithms with local search pro-

cedures that are used to refine some of the generated solutions. For defining

appropriate parameter settings, we directly tune the parameters of the resulting

hybrid ABC algorithms using again an automatic algorithm configuration tool for

deriving appropriate parameter settings. Note that we re-tune all the hybrid algo-

rithms since there may be an interaction between the algorithm parameters and

the fact that a local search is used and without re-tuning suboptimal performance

may result.

E.3.1 Benchmark set

All experiments were performed on the benchmark functions that were proposed

for a special issue of the Soft Computing journal on the scalability of evolutionary

algorithms and other metaheuristics for large-scale continuous optimization prob-

lems [Lozano et al., 2011]. This benchmark set, to which we refer as SOCO, con-

tains 19 benchmark functions comprising well-known, widely used functions such

as Rastrigin, Griewank, or Ackley as well as hybrid functions composed of two basic

functions [Herrera et al., 2010]. A detailed description of the benchmark function

set is given in the Table 2.2, page 26. All functions are freely scalable and here we

conducted our experiments using functions of dimension D ∈ {10, 50, 100, 500} to

examine the scaling behavior of ABC algorithms. All algorithms were run 25 inde-

pendent times on each SOCO function, each algorithm run being for a maximum

of 5000 ·D function evaluations, as proposed in the original protocol of the SOCO

benchmark set. As suggested by Herrera et al. [2010], error values lower than 10−14

are approximated to 10−14, where the error value is defined as f(x)− f(x∗) with x

being a candidate solution and x∗ being the optimal solution. (10−14 is therefore

also referred to as optimum threshold.) To analyze the results, were necessary we

used the non-parametric Wilcoxon test at a significance level α = 0.05 and Holm’s

multiple test corrections if more than two algorithms are compared.

190

E.3.2 Local search

Over the past years, it has become very popular to include local search techniques

into metaheuristics to improve their performance. It is also known that many

high performing state-of-the-art algorithms for continuous optimization rely on

the usage of effective local search algorithms. An example is the MOS-DE algo-

rithm, the algorithm that was identified in the special issue as the best performing

one on the SOCO benchmark functions [LaTorre et al., 2011]. Other examples

include memetic algortihms [Molina et al., 2010a] or hybrid ant colony optimiza-

tion algorithms [Liao et al., 2011b]. Also, few ABC algorithms such as IABC and

RABC have made use of additional local search procedures. Given our previous

experience, we believe that local search algorithms are useful to improve perfor-

mance of ABC algorithms and may make them competitive with state-of-the-art

algorithms. To support this idea, we have re-desinged the nine ABC variants by

hybridizing them with a local search procedure and we have automatically tuned

the parameters of the resulting hybrid algorithms.

For this hybridization, we have considered Powell’s conjugate direction set

method [Powell, 1964] and the Mtsls1 local search algorithm [Tseng and Chen,

2008]. The reason for selecting these methods is that they are relatively simple

to implement but still rather powerful local search algorithms. Additionally, in

some of our previous research, we were able to design with these two local searches

some very high performing continuous optimization algorithms [Aydın et al., 2012,

Liao et al., 2011b, Montes de Oca et al., 2011], making them also a natural choice

for this task here. In fact, from our work on IABC, we already knew that both

local search algorithms may contribute positively to performance. Because of the

effectiveness of the hybridization mechanisms we have used previously, we followed

the same design strategy which consists of the following design decisions.

• The local search procedure is applied to the global-best solution at each

iteration. If the local search improves the solution, the best-so-far solution

is updated. If Failuremax successive local search applications fail to improve

the global-best solution, local search is applied to a randomly chosen solution

different from the global-best one.

• There are two options for determining the step size parameter of the local

search: adaptive or fixed step size. In an adaptive step size, the maximum

norm of the difference vector between a randomly selected solution in the

population and the best-so-far solution is used. For the second option, half

191

E. ARTIFICIAL BEE COLONIES FOR CONTINUOUS OPTIMIZATION:
EXPERIMENTAL ANALYSIS AND IMPROVEMENTS

the length of the search range is selected as the step size, which is not changed

during progress.

• The number of iterations and other parameters related to the local search

procedures are determined by using an automatic parameter configuration

tool for each algorithm.

It is important to note that there is a trade-off between global and local search.

If the effect of the local search is too strong, the impact of the ABC search mech-

anism may be considered insignificant after hybridization. To check for this possi-

bility, we have implemented a random-restart local search algorithm (RLS), auto-

matically tuned the local search parameters using the same tuning effort as spent

for configuring the hybrid ABC algorithms, and then compared the resulting al-

gorithms.

E.3.3 Tuner setup and parameter settings

For tuning the parameters of the nine ABC algorithms we used the iterated F-

race procedure [Balaprakash et al., 2007, Birattari et al., 2010] implemented in the

irace package [López-Ibáñez et al., 2011]. Iterated F-race is an offline automatic

algorithm configuration tool. It iteratively applies F-race [Birattari et al., 2002]

to a set of configurations that are generated using a probabilistic model. F-race

is a racing method for selecting the best from a set of configurations. At each

step of F-race, all surviving configurations are evaluated on a new benchmark

function. The obtained error values are then ranked and the F-test checks after

each step whether a significant difference arises between the configurations. If

yes, the worst configurations are eleminated from the race using Friedman post-

tests. F-race stops once only a single (or very few) configurations remain in the

race. Then iterated F-race samples a new set of configurations; this sampling of

the configurations is biased iteration by iteration more strongly around the best

configurations found so far. The new configurations are the input for another F-

race and the overall iterated F-race procedure terminates once a maximum number

of algorithm runs, which corresponds to the tuning budget, has been executed.

Iterated F-race allows to tune real-valued, ordinal, and categorical parameters

and it has been widely used in a number of tuning tasks. As input, iterated F-

race requires the parameters to be tuned, their ranges and problem instances that

are used as a training set in the tuning. The set of the parameters of the ABC

algorithms, their ranges and types are listed in Table E.2. In the tuning, at most

192

Table E.2: Summary of ABC algorithm parameters, their type and the ranges that
are considered in the tuning. All parameters are either of type numerical (N) or
categorical (C); numerical parameters may be integers (int) or real numbers (real).
For each parameter is given the range that is considered in the tuning and it is
specified in which ABC algorithms the respective parameters occur.
General parameters

Para. Type Range algorithm Para. Type Range algorithm

SN N (int) [5, 100] all ABC lf N (real) [0, 3] all ABC

Local search related parameters

Para. Type Range algorithm Para. Type Range algorithm

LS C Powell, Mtsls1 all ABC lsitr N (int) [1, 100] all ABC
Failuremax N (int) [1, 20] all ABC SP N (real) [1, 2] RABC
RMitr N (int) [1, 100] RABC m N (int) [1, 100] RABC

ABC algorithm specific parameters

Para. Type Range algorithm Para. Type Range algorithm

MR N (real) [0, 1] MABC, ImpABC C N (real) [0, 4] GbABC,GBdABC
chaoticMap C 7 maps CABC, ImpABC p N (real) [0, 1] ImpABC
SF N (real) [0, 1] MABC adaptSF C Yes / No MABC
wmin N (real) [0, 0.5] BABC wmax N (real) [0.5, 1] BABC
SNmax N (int) [10, 100] IABC Rfactor N (real) [10−14, 0] IABC
g N (int) [1, 20] IABC

5 000 runs of an ABC algorithm are executed, that is, 5 000 is the tuning budget.

As training instances, we use the 19 SOCO benchmark functions of dimension

10. First, a random order of the benchmark functions is determined and then

at each step of F-race a benchmark function is used to evaluate the surviving

configurations. Once all 19 benchmark functions have been tested, we re-use the

benchmark functions in the same random order. The default parameter settings

and the parameter settings that are obtained by the tuning are summarized in

Table E.3.

The tuning method we use ranks the results of the different configurations.

Due to the ranking, the magnitude of the differences between the configurations is

not considered but only whether one configuration gives a better result as another

one. This is different from using the absolute obtained error values for considering

the significance of differences between configurations. The absolute errors values

would, for example, be taken into account when using t-race, a racing method

implemented in the irace package that makes use of Student’s t-test instead of

rank-based tests and that would tend to search for configurations with best mean

performance. In fact, the biases between using rank-based tests and tests consid-

ering absolute error values were examined by Smit and Eiben [2010], where it is

193

E. ARTIFICIAL BEE COLONIES FOR CONTINUOUS OPTIMIZATION:
EXPERIMENTAL ANALYSIS AND IMPROVEMENTS

shown that the evaluation method used in tuning (e.g. averages vs. ranks) has,

as expected, an impact on the finally tuned configurations. Knowing about the

possible biases, we opted here for the rank-based tests since a disadvantage of us-

ing averaging is that the computational results would have to be rescaled, as done

by Smit and Eiben [2010] to account for differences in the order of magnitude of

error values; otherwise the performance on very few functions would dominate the

tuning. Given the possible bias incurred by ranking, we evaluate here the ABC

variants according to their median performance; nevertheless, information on the

full distribution of the algorithms results will be given in the form of solution qual-

ity distributions and run-time distributions on the chapter’s supplementary pages

http://iridia.ulb.ac.be/supp/IridiaSupp2013-002.

E.4 Experimental results and analysis

In this section, we presented the results and analysis of our experiments and discuss

specific observations for the various ABC variants and we report on some additional

experiments.

E.4.1 Main comparison

As a first step, we present the overall results of our comparison of various ABC

variants. A main result of our experimental analysis is that the tuning and the

addition of a local search phase to ABC algorithms has a major impact on the

performance of the various ABC variants.

A summary of the overall results can be obtained from Figures E.1 to E.3.

Figures E.1 and E.2 give box-plots that indicate the distribution of the median

error values that each studied ABC variant obtained on the 19 benchmark func-

tions. The number on top of each box indicates for how many functions the

achieved median error value is below the optimum threshold. A “+” (“−”) sym-

bol on the top of a bar indicates that an ABC variant is performing significantly

better (worse) than the original ABC algorithm. The detailed numerical data

on which these box-plots are based are given in Tables E.4 to E.7; further data

are available on the chapter’s supplementary pages http://iridia.ulb.ac.be/

supp/IridiaSupp2013-002. Additionally, we give in Figure E.3 the ranking of

the variants across the various dimensions (from top to bottom, the results are

given for 10, 50, 100, and 500 dimensions) for default parameters (left column),

tuned parameter settings (middle column) and for the tuned ABC variants with

194

http://iridia.ulb.ac.be/supp/IridiaSupp2013-002
http://iridia.ulb.ac.be/supp/IridiaSupp2013-002
http://iridia.ulb.ac.be/supp/IridiaSupp2013-002

T
ab

le
E

.3
:

S
u
m

m
ar

y
of

th
e

A
B

C
al

go
ri

th
m

p
ar

am
et

er
se

tt
in

gs
.

G
iv

en
ar

e
fo

r
ea

ch
A

B
C

al
go

ri
th

m
an

d
it

s
d
ef

au
lt

,
tu

n
ed

,
an

d
tu

n
ed

-w
it

h
-l

o
ca

l
se

ar
ch

p
ar

am
et

er
se

tt
in

gs
in

a
th

re
e

fi
el

d
n
ot

at
io

n
as

de
fa

u
lt

/
tu

n
ed

/
tu

n
ed

+
L

S
.

T
h
e

p
ar

am
et

er
se

tt
in

gs
of

th
e

lo
ca

l
se

ar
ch

u
se

d
b
y

th
e

A
B

C
va

ri
an

ts
ar

e
gi

ve
n

b
el

ow
th

e
ot

h
er

p
ar

am
et

er
s.

A
lg

.
S
N

lf
O

th
er

s

A
B

C
62

/
8

/
37

1.
0

/
2.

73
4

/
2.

98
2

—
G

b
A

B
C

15
/

12
/

40
1.

0
/

1.
12

/
1.

17
1

C
1
.0

/
1
.5

0
7

/
2
.0

6
9

B
sf

A
B

C
10

0
/

6
/

64
0.

1
/

2.
16

4
/

1.
96

2
w
m
in

0
.2

/
0
.3

3
2
7

/
0
.2

4
5
4

w
m
in

1
.0

/
0
.7

2
5

/
0
.5

8
4
3

M
A

B
C

10
/

11
/

25
1.

0
/1

.9
78

/
0.

28
18

M
R

0
.4

/
0
.7

7
4

/
0
.2

7
4
3

S
F

1
.0

/
0
.9

7
0
7

/
0
.6

7
3
7

a
d
a
p
tS
F

N
o

/
N

o
/

N
o

Im
p

A
B

C
25

/
28

/
35

1.
0

/
1.

62
/

1.
58

M
R

1
.0

/
0
.4

1
0
8

/
0
.7

2
6
9

p
0
.2

5
/

0
.4

6
8
6
/

0
.3

8
3
7

C
A

B
C

10
/

17
/

54
1.

0
/

2.
81

9
/

0.
40

39
ch

ao
ti

cM
a
p

1
/

3
/

7
G

b
d

A
B

C
15

/
11

/
84

1.
0

/
2.

03
1

/
2.

03
C

1
.0

/
2
.1

7
6

/
1
.4

6
9

R
A

B
C

25
/

10
/

37
1.

0
/

2.
08

9
/

1.
02

3
S
P

1
.5

/
1
.8

6
4

/
1
.6

1
8

R
M
it
r

1
5

/
1
7

/
3
4

m
5

/
2

/
6
4

IA
B

C
5

/
6

/
6

1.
0

/
2.

27
2

/
0.

06
19

S
N
m
a
x

5
0

/
1
2

/
9
3

R
f
a
c
to
r

-1
/

-3
.4

7
/

-3
.8

6
8

g
1

/
1
2

/
5

L
o
ca

l
se

ar
ch

p
ar

am
et

er
s

P
ar

am
et

er
A

B
C

G
b

A
B

C
B

sf
A

B
C

M
A

B
C

Im
p

A
B

C
C

A
B

C
G

b
d

A
B

C
R

A
B

C
IA

B
C

R
L

S

L
o
ca

l
S

ea
rc

h
M

ts
ls

1
M

ts
ls

1
M

ts
ls

1
M

ts
ls

1
M

ts
ls

1
M

ts
ls

1
M

ts
ls

1
M

ts
ls

1
M

ts
ls

1
M

ts
ls

1
L
S
it
r

76
81

76
61

4
6
6

5
9

8
8

8
5

5
6

F
a
il
u
re
m
a
x

1
5

1
20

9
1
1

9
2

1
2

—

195

E. ARTIFICIAL BEE COLONIES FOR CONTINUOUS OPTIMIZATION:
EXPERIMENTAL ANALYSIS AND IMPROVEMENTS

local search (right column). To obtain these ranks, the results of all variants on a

same benchmark function were ranked from best (rank 1) to worst (rank 9) and

in Figure E.3 are given the so obtained average ranks for each algorithm.

Considering the box-plots for the default parameter settings in dimension 10

(top left plot in Figure E.1), we can observe that all variants except BsfABC

reach typically lower median errors that the original ABC algorithm, which is

confirmed by the average ranks (top left plot in Figure E.3). (The reasons for

the poor performance of BsfABC are given in the next Section.) The overall best

performing ABC variants in this setting and dimension are GbABC and GbdABC,

which indicates that a strong emphasis on the global-best solution is important on

the SOCO benchmark set.

The situation changes a bit when comparing the results obtained by the tuned

parameter settings for dimension 10 (middle plots on top in Figures E.1 and E.3).

In that case, the potential advantage of the ABC variants over the original ABC

diminishes, with the original ABC reaching a ranking similar to that of MABC,

BsfABC, and CABC. In addition, the gap to GbABC and GbdABC, which remain

among the best performers, is reduced. Nevertheless, several ABC variants still

reach statistically significantly better results than the original ABC algorithm, even

if according to the rank information the performance gap is reduced. Among the

tuned versions, ImpABC is the second best ranking, while for default settings it was

the fifth ranked. The introduction of an effective local search procedure reduces

further the gaps between the ABC variants and none of the variants emerges as

a clear winner. Particularly high performance reaches ImpABC, which obtains

on 15 of the 19 benchmark problems a median error value that is lower than

the optimum threshold. Nevertheless, once local search is added no ABC variant

reaches a statistically significanltly improved performance over the original ABC

hybridized with local search.

Considering the scaling behavior of the ABC variants from the ten dimensional

problems up to the 500 dimensional ones, the most noteworthy result is the poor

scaling behavior of MABC and ImpABC, which are for high dimensional problems

among the worst ranked ABC algorithms. In fact, considering default parameter

settings, ImpABC ranks worse than ABC for dimensions 50, 100, and 500 and

MABC ranks worse than ABC for dimension 500; often, the observed differences

are also statistically significant. BsfABC remains the worst ranking ABC algo-

rithm. Taking into account the differences in the absolute values as indicated by

the boxplots or the numerical results in Tables E.4 to E.7, the differences in solu-

tion quality are substantial. The same poor scaling behavior for ImpABC, MABC

196

ABC

GbABC

BsfABC

MABC

ImpABC

CABC

GbdABC

RABC

IABC

1
e
−

1
4

1
e
−

0
9

1
e
−

0
4

1
e
+

0
1

1
e
+

0
6

+
+

+
+

+
−

O
p
ti
m

a
0

1
1

0
1
1

1
0

5
1
2

6
3

Median Errors of Fitness Value

1
0
d
im

e
n
s
io

n
s
−

d
p

ABC

GbABC

BsfABC

MABC

ImpABC

CABC

GbdABC

RABC

IABC

1
e
−

1
4

1
e
−

0
9

1
e
−

0
4

1
e
+

0
1

1
e
+

0
6

+
+

+
+

+
O

p
ti
m

a
8

1
1

6
1
0

1
5

7
1
4

1
2

1
1

Median Errors of Fitness Value

1
0
d
im

e
n
s
io

n
s
−

ts

ABC

GbABC

BsfABC

MABC

ImpABC

CABC

GbdABC

RABC

IABC

1
e
−

1
4

1
e
−

0
9

1
e
−

0
4

1
e
+

0
1

1
e
+

0
6

O
p
ti
m

a
1
2

1
1

1
3

1
2

1
5

1
3

1
1

1
1

1
2

Median Errors of Fitness Value

1
0
d
im

e
n
s
io

n
s
−

ts
:
 +

L
S

ABC

GbABC

BsfABC

MABC

ImpABC

CABC

GbdABC

RABC

IABC

1
e
−

1
4

1
e
−

0
9

1
e
−

0
4

1
e
+

0
1

1
e
+

0
6

+
+

+
+

+
−

−
O

p
ti
m

a
0

1
4

0
7

0
6

1
4

4
3

Median Errors of Fitness Value

5
0
d
im

e
n
s
io

n
s
−

d
p

ABC

GbABC

BsfABC

MABC

ImpABC

CABC

GbdABC

RABC

IABC

1
e
−

1
4

1
e
−

0
9

1
e
−

0
4

1
e
+

0
1

1
e
+

0
6

+
−

−
−

O
p
ti
m

a
8

1
4

4
5

2
8

1
3

9
1
4

Median Errors of Fitness Value

5
0
d
im

e
n
s
io

n
s
−

ts

ABC

GbABC

BsfABC

MABC

ImpABC

CABC

GbdABC

RABC

IABC

1
e
−

1
4

1
e
−

0
9

1
e
−

0
4

1
e
+

0
1

1
e
+

0
6

O
p
ti
m

a
1
4

1
4

1
4

1
2

9
1
3

1
2

1
4

1
4

Median Errors of Fitness Value

5
0
d
im

e
n
s
io

n
s
−

ts
:
 +

L
S

F
ig

u
re

E
.1

:
B

ox
p
lo

ts
of

th
e

d
is

tr
ib

u
ti

on
of

th
e

m
ed

ia
n

so
lu

ti
on

q
u
al

it
y

re
ac

h
ed

b
y

ea
ch

of
th

e
st

u
d
ie

d
A

B
C

va
ri

an
ts

on
th

e
19

S
O

C
O

b
en

ch
m

ar
k

p
ro

b
le

m
s.

T
h
e

n
u
m

b
er

on
to

p
of

ea
ch

b
ox

gi
ve

s
th

e
n
u
m

b
er

of
fu

n
ct

io
n
s

on
w

h
ic

h
th

e
m

ed
ia

n
er

ro
r

fo
u
n
d

w
as

b
el

ow
th

e
op

ti
m

u
m

th
re

sh
ol

d
of

10
−

1
4
.

T
h
e

b
ox

p
lo

t
on

th
e

to
p

ro
w

ar
e

fo
r

fu
n
ct

io
n
s

of
d
im

en
si

on
10

;
th

e
b

ox
p
lo

ts
on

th
e

b
ot

to
m

ro
w

ar
e

fo
r

fu
n
ct

io
n
s

of
d
im

en
si

on
50

.
A

“+
”

or
“−

”
sy

m
b

ol
on

to
p

of
a

b
ox

-p
lo

t
d
en

ot
es

a
si

gn
ifi

ca
n
t

d
iff

er
en

ce
d
et

ec
te

d
b
y

a
W

il
co

x
on

’s
te

st
at

th
e

0.
05

le
ve

l
w

it
h

H
ol

m
’s

co
rr

ec
ti

on
fo

r
m

u
lt

ip
le

te
st

in
g

b
et

w
ee

n
th

e
re

su
lt

s
ob

ta
in

ed
w

it
h

in
d
ic

at
ed

al
go

ri
th

m
an

d
th

e
or

ig
in

al
A

B
C

al
go

ri
th

m
(fi

rs
t

b
ox

))
.

197

E. ARTIFICIAL BEE COLONIES FOR CONTINUOUS OPTIMIZATION:
EXPERIMENTAL ANALYSIS AND IMPROVEMENTS

and BsfABC is observed for the tuned parameter settings. In section E.4.2, we

identify the reason for this poor scaling behavior and indicate the remedy. GbABC

and GbdABC remain among the best performing ABC algorithms also for higher

dimensional problems, showing that the emphasis on the global-best solution is

important for a good scaling behavior. Interestingly, for higher dimensional prob-

lems, IABC algorithm becomes the best ranking one and it is one of the ABC

algorithms that profit most from tuning. Finally, considering the ABC variants

with local search, their performance levels remain comparable and no statistically

significant differences in favor of any of the ABC variants over the original ABC

with local search are detected.

The main results of our comparison of ABC variants can be summarized as

follows.

• Tuning has a major impact on the comparison results. In fact, especially on

the higher dimensional benchmark problems several of the proposed ABC

algorithm variants do not give a statistically significant improvement over

the original ABC algorithm, once one considers reasonably tuned parameter

settings.

• The introduction of a local search smoothes the differences between the dif-

ferent ABC variants and poor performing ones without local search become

very competitive to the best ABC variants.

• Some of the variants such as BsfABC perform surprisingly poor when com-

pared to the original papers. Some of the variants appear to have poor

scaling behavior.

In the following section, we revist some of the above made conclusions and

provide a more detailed analysis of several ABC variants.

E.4.2 Detailed analysis of ABC algorithms

Improvement over random restart local search

The best performing ABC algorithms typically include local search, as shown in the

previous section. Hence, a first question that arises is whether the ABC algorithms

contribute significantly to performance or whether the local search alone is enough

to reach a same performance level. We explore this question by comparing the

hybrid ABC algorithms to a random restart local search (RLS) algorithm, where

198

ABC

GbABC

BsfABC

MABC

ImpABC

CABC

GbdABC

RABC

IABC

1
e
−

1
4

1
e
−

0
9

1
e
−

0
4

1
e
+

0
1

1
e
+

0
6

+
+

+
+

+
−

−
O

p
ti
m

a
0

1
4

0
5

0
7

1
4

4
3

Median Errors of Fitness Value

1
0
0
d
im

e
n
s
io

n
s
−

d
p

ABC

GbABC

BsfABC

MABC

ImpABC

CABC

GbdABC

RABC

IABC

1
e
−

1
4

1
e
−

0
9

1
e
−

0
4

1
e
+

0
1

1
e
+

0
6

+
+

−
−

−
O

p
ti
m

a
7

1
4

3
2

0
8

1
3

9
1
2

Median Errors of Fitness Value

1
0
0
d
im

e
n
s
io

n
s
−

ts

ABC

GbABC

BsfABC

MABC

ImpABC

CABC

GbdABC

RABC

IABC

1
e
−

1
4

1
e
−

0
9

1
e
−

0
4

1
e
+

0
1

1
e
+

0
6

O
p
ti
m

a
1
3

1
4

1
3

1
2

6
1
2

1
2

1
4

1
4

Median Errors of Fitness Value

1
0
0
d
im

e
n
s
io

n
s
−

ts
:
 +

L
S

ABC

GbABC

BsfABC

MABC

ImpABC

CABC

GbdABC

RABC

IABC

1
e
−

1
4

1
e
−

0
9

1
e
−

0
4

1
e
+

0
1

1
e
+

0
6

+
+

+
+

+
−

−
−

O
p
ti
m

a
0

1
2

0
0

0
7

1
2

3
3

Median Errors of Fitness Value

5
0
0
d
im

e
n
s
io

n
s
−

d
p

ABC

GbABC

BsfABC

MABC

ImpABC

CABC

GbdABC

RABC

IABC

1
e
−

1
4

1
e
−

0
9

1
e
−

0
4

1
e
+

0
1

1
e
+

0
6

+
+

−
−

−
O

p
ti
m

a
7

1
2

2
0

0
7

8
7

1
2

Median Errors of Fitness Value

5
0
0
d
im

e
n
s
io

n
s
−

ts

ABC

GbABC

BsfABC

MABC

ImpABC

CABC

GbdABC

RABC

IABC

1
e
−

1
4

1
e
−

0
9

1
e
−

0
4

1
e
+

0
1

1
e
+

0
6

−
O

p
ti
m

a
1
2

1
2

1
2

1
1

7
1
2

1
0

1
2

1
2

Median Errors of Fitness Value

5
0
0
d
im

e
n
s
io

n
s
−

ts
:
 +

L
S

F
ig

u
re

E
.2

:
B

ox
p
lo

ts
of

th
e

d
is

tr
ib

u
ti

on
of

th
e

m
ed

ia
n

so
lu

ti
on

q
u
al

it
y

re
ac

h
ed

b
y

ea
ch

of
th

e
st

u
d
ie

d
A

B
C

va
ri

an
ts

on
th

e
19

S
O

C
O

b
en

ch
m

ar
k

p
ro

b
le

m
s.

T
h
e

n
u
m

b
er

on
to

p
of

ea
ch

b
ox

gi
ve

s
th

e
n
u
m

b
er

of
fu

n
ct

io
n
s

on
w

h
ic

h
th

e
m

ed
ia

n
er

ro
r

fo
u
n
d

w
as

b
el

ow
th

e
op

ti
m

u
m

th
re

sh
ol

d
of

10
−

1
4
.

T
h
e

b
ox

p
lo

t
on

th
e

to
p

ro
w

ar
e

fo
r

fu
n
ct

io
n
s

of
d
im

en
si

on
10

0;
th

e
b

ox
p
lo

ts
on

th
e

b
ot

to
m

ro
w

ar
e

fo
r

fu
n
ct

io
n
s

of
d
im

en
si

on
50

0.
A

“+
”

or
“−

”
sy

m
b

ol
on

to
p

of
a

b
ox

-p
lo

t
d
en

ot
es

a
si

gn
ifi

ca
n
t

d
iff

er
en

ce
d
et

ec
te

d
b
y

a
W

il
co

x
on

’s
te

st
at

th
e

0.
05

le
ve

l
w

it
h

H
ol

m
’s

co
rr

ec
ti

on
fo

r
m

u
lt

ip
le

te
st

in
g

b
et

w
ee

n
th

e
re

su
lt

s
ob

ta
in

ed
w

it
h

in
d
ic

at
ed

al
go

ri
th

m
an

d
th

e
or

ig
in

al
A

B
C

al
go

ri
th

m
(fi

rs
t

b
ox

))
.

199

E. ARTIFICIAL BEE COLONIES FOR CONTINUOUS OPTIMIZATION:
EXPERIMENTAL ANALYSIS AND IMPROVEMENTS

A
B

C

G
b

A
B

C

B
s
fA

B
C

M
A

B
C

Im
p

A
B

C

C
A

B
C

G
b

d
A

B
C

R
A

B
C

IA
B

C

10Dim−Median Errors−dp

R
a

n
k

2
4

6
8

1
0

7.1

3.4

8.9

4.1

4.8

5.9

2.4

3.6

4.9

optima 0 11 0 11 10 5 12 6 3

A
B

C

G
b

A
B

C

B
s
fA

B
C

M
A

B
C

Im
p

A
B

C

C
A

B
C

G
b

d
A

B
C

R
A

B
C

IA
B

C

10Dim−Median Errors−ts

R
a

n
k

2
4

6
8

1
0

6.3

4.1

6.8

5.5

3.8

5.9

3.4

4.8
4.4

optima 8 11 6 10 15 7 14 12 11

A
B

C

G
b

A
B

C

B
s
fA

B
C

M
A

B
C

Im
p

A
B

C

C
A

B
C

G
b

d
A

B
C

R
A

B
C

IA
B

C

10Dim−Median Errors−ts +LS

R
a

n
k

2
4

6
8

1
0

4.6

5.7

4.7
5.3

4.2 4.3

5.9
5.2 5

optima 12 11 13 12 15 13 11 11 12
A

B
C

G
b

A
B

C

B
s
fA

B
C

M
A

B
C

Im
p

A
B

C

C
A

B
C

G
b

d
A

B
C

R
A

B
C

IA
B

C
50Dim−Median Errors−dp

R
a

n
k

2
4

6
8

1
0

 7

2.7

8.3

5.1

7.6

3.7

2.4

3.4

4.8

optima 0 14 0 7 0 6 14 4 3

A
B

C

G
b

A
B

C

B
s
fA

B
C

M
A

B
C

Im
p

A
B

C

C
A

B
C

G
b

d
A

B
C

R
A

B
C

IA
B

C

50Dim−Median Errors−ts

R
a

n
k

2
4

6
8

1
0

4.4

3.5

6.6
 7

7.9

4.3

3.6

4.3

3.3

optima 8 14 4 5 2 8 13 9 14

A
B

C

G
b

A
B

C

B
s
fA

B
C

M
A

B
C

Im
p

A
B

C

C
A

B
C

G
b

d
A

B
C

R
A

B
C

IA
B

C

50Dim−Median Errors−ts +LS

R
a

n
k

2
4

6
8

1
0

4.5
4.2

4.7

5.5
6.1

5.3 5.6

4.3
4.8

optima 14 14 14 12 9 13 12 14 14

A
B

C

G
b

A
B

C

B
s
fA

B
C

M
A

B
C

Im
p

A
B

C

C
A

B
C

G
b

d
A

B
C

R
A

B
C

IA
B

C

100Dim−Median Errors−dp

R
a

n
k

2
4

6
8

1
0

6.7

2.6

8.3

5.7

7.7

3.6

2.6

3.2

4.6

optima 0 14 0 5 0 7 14 4 3

A
B

C

G
b

A
B

C

B
s
fA

B
C

M
A

B
C

Im
p

A
B

C

C
A

B
C

G
b

d
A

B
C

R
A

B
C

IA
B

C

100Dim−Median Errors−ts

R
a

n
k

2
4

6
8

1
0

4.5

3.3

6.6

7.7
8.2

4.1

3.3
3.9

3.4

optima 7 14 3 2 0 8 13 9 12

A
B

C

G
b

A
B

C

B
s
fA

B
C

M
A

B
C

Im
p

A
B

C

C
A

B
C

G
b

d
A

B
C

R
A

B
C

IA
B

C

100Dim−Median Errors−ts +LS

R
a

n
k

2
4

6
8

1
0

5.2

3.8

4.7
5.1

6.6

5.4 5.6

4.4 4.2

optima 13 14 13 12 6 12 12 14 14

A
B

C

G
b

A
B

C

B
s
fA

B
C

M
A

B
C

Im
p

A
B

C

C
A

B
C

G
b

d
A

B
C

R
A

B
C

IA
B

C

500Dim−Median Errors−dp

R
a

n
k

2
4

6
8

1
0

6.3

2.5

7.8
7.2

7.7

3.1
2.7

3.5

4.3

optima 0 12 0 0 0 7 12 3 3

A
B

C

G
b

A
B

C

B
s
fA

B
C

M
A

B
C

Im
p

A
B

C

C
A

B
C

G
b

d
A

B
C

R
A

B
C

IA
B

C

500Dim−Median Errors−ts

R
a

n
k

2
4

6
8

1
0

4.2

3.2

6.1

8.2 8.1

3.4

4.3 4.5

2.9

optima 7 12 2 0 0 7 8 7 12

A
B

C

G
b

A
B

C

B
s
fA

B
C

M
A

B
C

Im
p

A
B

C

C
A

B
C

G
b

d
A

B
C

R
A

B
C

IA
B

C

500Dim−Median Errors−ts +LS

R
a

n
k

2
4

6
8

1
0

4.8 4.6 4.5

5.4

6.3

4.8

5.5

4.6 4.4

optima 12 12 12 11 7 12 10 12 12

Figure E.3: Performance comparisons by the means of the average rank over 19
functions. The ranking was based on the median error value of obtained by each
algorithm on the 19 SOCO benchmark functions.

the starting points for the local search are generated uniformly at random in the

search space. To make the comparison fair, we tuned the parameters of the RLS

algorithm, which are the parameters of the Mtsls1 local search algorithm [Tseng

and Chen, 2008], using the same procedure and tuning budget as used when tuning

the ABC algorithms. The tuned parameter settings of RLS are given in Table E.3,

page 195.

Figure E.4 summarizes the results of this comparison across several dimensions

of the benchmark functions. A “−” symbol on top of a box denotes that RLS

performs statistically significantly worse than the respective ABC algorithm. As

200

we see in Figure E.4, RLS gives worse results in all dimensions. In fact, the

local search alone is able on only few functions (f1, f4, f5, and f10 of the SOCO

benchmark set) to find solutions better then the optimum threshold, while for the

ABC algorithms this is the case for often more than ten functions. Except for a few

ABC variants, the observed differences are statistically significant. Therefore, we

may conclude that there is an overall synergetic effect between the ABC algorithms

and the local search.

A
B

C

G
b

A
B

C

B
s
fA

B
C

M
A

B
C

Im
p

A
B

C

C
A

B
C

G
b

d
A

B
C

R
A

B
C

IA
B

C

R
L

S

1e−14

1e−09

1e−04

1e+01

1e+06

RLS − − − −

Optima 12 11 13 12 15 13 11 11 12 6

10dimensions−ts: +LS

M
e

d
ia

n
 E

rr
o

rs
 o

f
F

it
n

e
s
s
 V

a
lu

e

A
B

C

G
b

A
B

C

B
s
fA

B
C

M
A

B
C

Im
p

A
B

C

C
A

B
C

G
b

d
A

B
C

R
A

B
C

IA
B

C

R
L

S

1e−14

1e−09

1e−04

1e+01

1e+06

RLS − − − − − − − −

Optima 14 14 14 12 9 13 12 14 14 4

50dimensions−ts: +LS

M
e

d
ia

n
 E

rr
o

rs
 o

f
F

it
n

e
s
s
 V

a
lu

e

A
B

C

G
b

A
B

C

B
s
fA

B
C

M
A

B
C

Im
p

A
B

C

C
A

B
C

G
b

d
A

B
C

R
A

B
C

IA
B

C

R
L

S

1e−14

1e−09

1e−04

1e+01

1e+06

RLS − − − − − − − −

Optima 13 14 13 12 6 12 12 14 14 4

100dimensions−ts: +LS

M
e

d
ia

n
 E

rr
o

rs
 o

f
F

it
n

e
s
s
 V

a
lu

e

A
B

C

G
b

A
B

C

B
s
fA

B
C

M
A

B
C

Im
p

A
B

C

C
A

B
C

G
b

d
A

B
C

R
A

B
C

IA
B

C

R
L

S

1e−14

1e−09

1e−04

1e+01

1e+06

RLS − − − − − − − −

Optima 12 12 12 11 7 12 10 12 12 4

500dimensions−ts: +LS

M
e

d
ia

n
 E

rr
o

rs
 o

f
F

it
n

e
s
s
 V

a
lu

e

Figure E.4: Performance comparisons with RLS. A “−” symbol on top of a box-
plot denotes a significant difference detected by a Wilcoxon’s test at the 0.05
level (using Holm’s correction) between the results obtained with the indicated
algorithm and RLS.

Original ABC algorithm

As shown in the previous section, the original ABC algorithm can profit quite

strongly from parameter tuning and reach performance that is similar to various of

its extensions that have been proposed as improvements. This result also illustrates

the danger of comparing to a default version of ABC and we recommend that

201

E. ARTIFICIAL BEE COLONIES FOR CONTINUOUS OPTIMIZATION:
EXPERIMENTAL ANALYSIS AND IMPROVEMENTS

in future papers on potential improvements over ABC, the original version and

the modified version is automatically tuned to avoid biases by the designer of a

particular extension.

Already in earlier papers, the impact of parameter settings on the performance

of ABC was studied [Akay and Karaboga, 2009, Diwold et al., 2011a, Karaboga

and Basturk, 2008]. Conclusions were, for example, that a too low value of the

limit parameter leads to poor performance, that ABC’s performance is relatively

robust given the limit value as determined through parameter lf is large enough

[Akay and Karaboga, 2009, Diwold et al., 2011a], and that the population size

does not need to be fine-tuned in order to obtain satisfactorily good results [Akay

and Karaboga, 2009]. Our results indicate, however, that even the original ABC

algorithm can profit substantially from a further fine-tuning of its parameters.

Global-best and global-best distance ABC

The GbABC and GbdABC algorithms did not profit much or at all from the

additional parameter tuning. This can be seen in the bottom part of Tables E.4

to E.7 at the summary statistics on the number of functions that obtain better,

same or worse median quality after tuning or the additional introduction of local

search. This indicates that either their design makes them rather robust w.r.t.

modified parameter settings or that the original authors have already very well

fine-tuned the parameter settings. In fact, the tuned parameter settings at least

for GbABC are rather similar to the ones proposed as default settings, giving some

evidence for the latter. Interestingly, for GbABC and GbdABC the additional local

search phase does actually slightly (though not significantly) worsen performance.

This indicates that ABC algorithms that use appropriate algorithm features and

that are well parameterized do not necessarily require an additional local search

phase to reach very high performance on the SOCO benchmark set.

Best-so-far ABC

The poor performance of BsfABC we observed is in apparent contradiction to

the excellent results reported in the original paper by Banharnsakun et al. [2011].

However, these differences can be explained by particularities in the design of

BsfABC. As mentioned in Section E.2.2, BsfABC applies a position update to

each dimension in such a way that the variable values in all dimensions get closer

to each other. This induces a strong bias towards solving well problems where

the optimum has in all dimensions the same variable values. In particular, in

202

Function evaluations

M
e

d
ia

n
 e

rr
o

r
v
a

lu
e

10
0

10
1

10
2

10
3

10
4

5 × 10
41

e
−

1
4

1
e

−
0

6
1

e
+

0
2

shift

noshfit

BsfABC−f1−10D

Function evaluations

M
e

d
ia

n
 e

rr
o

r
v
a

lu
e

10
0

10
1

10
2

10
3

10
4

5 × 10
41

e
−

1
4

1
e

−
1

0
1

e
−

0
6

1
e

−
0

2
1

e
+

0
2

shift

noshfit

BsfABC−f4−10D

Figure E.5: Development of the median solution value over time for BsfABC on
the ten dimensional SOCO functions f1 (Sphere, left plot) and f4 (Rastrigin, right
plot) for the shifted and the unshifted versions. The unshifted version has the
optimum at the point (0, . . . , 0).

the experiments reported in Banharnsakun et al. [2011] the benchmark problems

have the optimum in the solution x = (0, . . . , 0), while the benchmark problems in

the SOCO benchmark set have their optimum randomly shifted within the search

range.

In Figure E.5 we show the development of the median error value over the

number of function evaluations for the shifted and the not-shifted version of two

SOCO benchmark functions (Sphere–f1–and Rastrigin–f4, respectively). As ex-

pected, the fact whether the optimum of a function is randomly shifted in the

search range (the shift is independently done for each dimension) or not, has a

huge impact in the performance of BsfABC, which is only effective for problems

where the optimum solutions have a same variable value in each dimension. The

same experiments with the other ABC variants did not show a significant influ-

ence of an optimum shift on performance. Finally, after tuning the performance

of BsfABC is strongly improved; this is probably due to the larger setting of lf

and the smaller population size.

Improved and Modified ABC

For functions of ten dimensions, MABC and, in particular, ImpABC show good

results; in fact, on ten dimensions, the tuned version of ImpABC and ImpABC with

local search are the best ranking ABC algorithms. However, the good performance

of ImpABC and also MABC decline quickly with increasing dimensionality of the

benchmark problems. For example, the tuned version of ImpABC is the worst

203

E. ARTIFICIAL BEE COLONIES FOR CONTINUOUS OPTIMIZATION:
EXPERIMENTAL ANALYSIS AND IMPROVEMENTS

ranking ABC algorithm for 50 and 100 dimensional problems and the only ABC

algorithms whose median is not below the optimum threshold of any function for

100 dimensional problems. Similary, the performance of ImpABC and MABC

with local search declines with high dimensional functions, though less due to

the mitigating effect of the local search. In other words, the scaling behavior of

ImpABC and MABC is poor. As the main reason for this poor scaling behavior

we identified the choice of increasing the number of variables that are modified

with the dimension of the functions. In fact, if only a small, constant number

of variables is modified, the scaling behavior of MABC and ImpABC improves

strongly to an extent to which ImpABC and MABC become competitive with the

other ABC algorithms (see also the supplementary pages http://iridia.ulb.

ac.be/supp/IridiaSupp2013-002).

The improvements incurred by keeping the number of variables modified to a

constant value is shown for MABC in Figure E.6 and for ImpABC in Figure E.7.

In each of these plots we compare the median error values of MABC and ImpABC

using default parameter settings except that the number of variables to be changed

is set to eight for MABC and four for ImpABC, as suggested by the tuning on

the ten dimensional problems. We refer to the latter variants as MABC-new and

ImpABC-new.

Another explanation for the poor scaling behavior resides in the fact that the

training set comprised only functions of a fixed dimensionality. Hence, the tuning

cannot detect whether it is better to set the parameter to a constant or to scale

it with the dimensionality of the problems. Thus, more advanced possibilities for

scaling parameters would have to be considered.

Chaotic ABC

After tuning, the performance of CABC is improved compared to the default

parameter settings. However, the original ABC benefits even more from tuning so

that once tuned, CABC does not show anymore a significant improvement over the

original ABC version, drawing some doubt about the real impact of the proposed

modifications.

Rosenbrock ABC

RABC is the only ABC algorithm we included in the comparison that in its origi-

nal form makes use of a local search procedure. While on dimension 10 it obtains

on several functions better median performance than the tuned original ABC algo-

204

http://iridia.ulb.ac.be/supp/IridiaSupp2013-002
http://iridia.ulb.ac.be/supp/IridiaSupp2013-002

rithm (better on nine and worse on two), for larger dimensions it is roughly on par

with the original ABC, despite making use of the Rosenbrock rotational direction

method (RM). One reason may be that RM is not a very effective local search

method for the benchmark problems tested here. In fact, after adding the Mtsls1

local search, the resulting hybrid RABC improves strongly its performance, giving

some indication that this conjecture is true.

We can also test the effect RM has in RABC by removing it. Interestingly, once

RM is removed from RABC, the only difference from the resulting ABC algorithm

to the original ABC algorithm is the usage of the rank-based probabilistic selection

of a solution by the onlooker bees instead of the usual fitness-based one through

Equation E.4. The impact of this choice on ABC performance can be observed

from the plots in Figure E.8, where the parameter settings correspond to the tuned

settings of the original ABC algorithm. In fact, replacing the fitness-based selection

by the rank-based probabilistic selection of solutions leads for all dimensions to

improved performance (being statistically significant in dimensions 10 and 100).

Incremental ABC

IABC performs generally better than the original ABC algorithm, reaching on 11

of the 19 functions of dimension 10 better median results. Similarly, on the higher

dimensional functions it improves on either 10 or 11 functions over the original

ABC and is only worse on one function (f2). The strong improvement through

the tuning is probably due to the lower limit on the maximum population size in

IABC and the slower increase of the population size when compared to the default

parameter settings. Overall, it belongs to the best ranking ABC variants.

Solution behavior of the ABC variants

Next, we examine the development of the solution quality over time by so called

SQT plots [Hoos and Stützle, 2005]. In particular, we give the development of

the median error over computation time measured by the number of function

evaluation as usual in continuous optimization. First we examine the impact of

parameter tuning and the usage of an additional local search on the behavior

of the ABC algorithms. In Figure E.9 are given representative SQT plots for

the original ABC algorithm, GbABC, and IABC on three functions of dimension

50 (functions f1, f3, and f13 from the SOCO benchmark set, that is, Sphere,

Rosenbrock, and a hybrid function). In these plots we can observe that the tuning

improves strongly the convergence behavior of the original ABC algorithm and

205

E. ARTIFICIAL BEE COLONIES FOR CONTINUOUS OPTIMIZATION:
EXPERIMENTAL ANALYSIS AND IMPROVEMENTS

IABC, while GbABC is almost not affected by the tuning, which can be noticed by

the, in part, overlapping curves for the default and the tuned version. Additional

local search may further speed up convergence towards high quality solutions as

noticed by the fact that these curves are typically left-most in the plots. However,

the additional local search does not always improve the final solution quality as

can be noticed, for example, on the plots for function f13.

In addition to SQT plots, we have generated run-time distributions (RTDs)

for reaching the optimum threshold (or other very high quality solutions) and

solution-quality distributions (SQDs) [Hoos and Stützle, 2005]. In Figure E.10 we

give few RTDs for the same three algorithms with tuned parameter settings and

hybridized with local search on benchmark functions f5 and f6. The RTDs on

benchmark function f5 indicate that the ABC variants suffer in part from severe

stagnation behavior. The most extreme is IABC with local search: after less than

2000 function evaluations it finds in almost 50% of the runs a solution better

than the optimum threshold but in the remaining, much longer runs it hardly

finds additional optima. The RTDs on benchmark function f5 are also interesting

because they show how the ranking of the variants changes depending on whether

local search is used or not: on f5 actually the original ABC with local search

performs better than the other two algorithms with local search, while without

local search IABC and GbABC are clearly better than original ABC. The RTDs

on f6 are more representative for RTDs on the majority of the functions: with local

search the various variants have rather similar performance, while without local

search differences are still more apparent. Typcial is also that for many functions

the ABC variants do not really show stagnation behavior (see also supplementary

pages http://iridia.ulb.ac.be/supp/IridiaSupp2013-002).

Finally, Figure E.11 gives two SQDs for benchmark function f5, which cor-

respond to the distribution of the solution quality at the maximum number of

function evaluations. These SQDs confirm the stagnation behavior showing that

some runs are trapped in strongly sub-optimal solutions, an effect that is most

visible in the SQDs for ABC variants with local search. In fact, we conjecture that

by either changing the scheme of local search application to more frequently choose

other than the global-best solution or some partial algorithm restart feature could

be useful to enhance algorithm performance in such cases.

206

http://iridia.ulb.ac.be/supp/IridiaSupp2013-002

E.4.3 Comparison with SOCO special issue contributors

As a final step, we compare one of the best performing ABC variants with lo-

cal search to all algorithms that have been contributed to the Soft Computing

special issue Lozano et al. [2011]. All along our experiments in this chapter, we

used actually the same experimental setup as proposed for this special issue and,

hence, such a comparison is fair in this respect. The results of 13 algorithms have

been published in the special issue. In addition, three benchmark algorithms had

been included as reference algorithms to which each entry to the special issue

had to be compared and which each competitor should have outperformed. These

three reference algorithms were a differential evolution algorithm [Stern and Price,

1997], the real-coded CHC algorithm [Eshelman and Schaffer, 1993], and G-CMA-

ES [Auger and Hansen, 2005]. In particular, G-CMA-ES was the best performing

algorithm in the special session on real parameter optimization of the 2005 IEEE

Congress on Evolutionary Computation (CEC’05) and the MA-SSW algorithm

Molina et al. [2011], one of the 13 algorithms published in the SOCO special issue,

was the best performing algorithm at the CEC 2010 special session on large scale

global optimization. Hence, the algorithms to which we compare can be considered

representatives of the state-of-the-art in real parameter optimization.

For this comparison we have chosen GbABC with local search as it is one of

the best ABC algorithms across various dimensions and it is still a rather straight-

forward variant. We have computed for all the algorithms the distribution of the

median error values found from the publicly available results tables and the box-

plots in Figure E.12 compare these distributions across several dimensions. In fact,

GbABC reaches a median performance that is competitive to the best continuous

optimizers from the competition; for example, it reaches for 50 and 100 dimensions

a median error that is below the optimum threshold for 14 functions, the same

as the overall best performing algorithm in the benchmark competition, MOS-DE

[LaTorre et al., 2011]. A further statistical analysis (using Wilcoxon’s test with

Holm’s correction for multiple comparisons) shows that GbABC is statistically

significantly better than reference algorithms DE, CHC and G-CMA-ES as well

as some contributors such as SOUPDE, GODE, MA-SSW, RPSO-vm, EvoPROpt

and EM323 for dimensions 100 and 500. Hence, when considering median perfor-

mance, GbABC (and actually also several other ABC algorithms, such as IABC,

which have very similar performance to GbABC) are competitive with state-of-

the-art algorithms for large-scale continuous optimization problems.

The good median performance is in part due to the fact that the tuning is

207

E. ARTIFICIAL BEE COLONIES FOR CONTINUOUS OPTIMIZATION:
EXPERIMENTAL ANALYSIS AND IMPROVEMENTS

done using F-race, a rank-based method. If the algorithms are compared based

on mean error values, GbABC is still among the best performing ones but com-

pares worse, for example, to MOS-DE than when using median error values.

(A comparison of GbABC to the other algorithms from the SOCO special is-

sue based on mean error values is available on the chapter’s supplementary pages

http://iridia.ulb.ac.be/supp/IridiaSupp2013-002.) The main reason for

the worse mean performance is due to the stagnation of the algorithm in some

runs on few functions. It would be interesting to re-tune the algorithms based on,

for example, t-race which implicitly will favor algorithms having better average

behavior.

E.5 Discussion and conclusions

In this chapter, we have reviewed artificial bee colony (ABC) optimization algo-

rithms for continuous optimization and we have examined various of the proposed

ABC experimentally using a recent benchmark function set for large-scale con-

tinuous optimization. Our experimental analysis is based on re-implementations

of nine ABC algorithms including the original one, which are compared under

same computational conditions. The ABC variants were compared using three

setups. First, using their default parameter settings; second, using an automatic

algorithm configuration tool to determine parameter settings; third, by combining

the ABC algorithms with local search and re-tuning their parameter settings by

an automatic algorithm configuration tool. The usage of an automatic algorithm

configuration tool in our context has essentially three main reasons. The first is

to potentially improve significantly the default algorithm parameter settings; this

was actually achieved for most of the ABC variants. The second reason is to avoid

the bias in results due to an uneven tuning of the different algorithm variants;

this was achieved by using a same tuning setup and effort for all algorithms. A

third reason is to help in the design of hybrid ABC algorithms that include an

effective local search for continuous optimization; this was necessary due to the

fact that nine hybrid algorithms had to be designed. The high performance of the

final hybrid algorithms justifies a posteriori this procedure.

Some of the main results of our experimental analysis and comparison are the

following. First, when considering default parameter settings and low dimensional

benchmark problems, most of the ABC variants actually improve over the original

ABC algorithm, as would be promised by the original papers where the variants

208

http://iridia.ulb.ac.be/supp/IridiaSupp2013-002

have been proposed.1

However, this conclusion changes as we move from to tuned parameter settings

and to the ABC variants with local search or as we move to higher-dimensional

problems. Considering tuned parameter settings, several of the proposed ABC

variants do not result anymore in significantly improved performance (especially

in higher dimensional problems). The situation gets even “worse” if we move to

the ABC variants that include an effective local search algorithm. In fact, no

statistically significant differences of the hybrid ABC variants to the original ABC

with local search are detected anymore when measuring performance by the median

error value. This result is due to the fact that an effective local search typically

smoothes the performance differences between algorithms without local search. In

fact, we could claim that as a side-product of our experimental analysis, we have

derived a number of new state-of-the-art ABC algorithms, as most of the high-

performing, hybrid ABC algorithms we examine have never been considered before.

However, the particular scheme we used of adding local search to ABC algorithms

has been examined before in other contexts [Aydın et al., 2012, Liao et al., 2011b,

Montes de Oca et al., 2011] and the resulting high performance actually is rather

an indication that this particular hybridization scheme is promising. A maybe

surprising result is that few of the ABC variants that we examined do not profit

really from the additional local search phase but reach very high performance

without. This is the case for GbABC and GbdABC and it suggests that ABC

algorithms, if appropriately configured and tuned have already a very strong local

search behavior.

If we move from the low-dimensional problems to higher-dimensional ones, we

observed that some of the proposed ABC variants have rather poor scaling behavior

and become the worst performing ABC algorithms for the highest dimensional

problems we considered. This poor scaling behavior affected mainly modified ABC

[Akay and Karaboga, 2012] and improved ABC [Gao and Liu, 2011]. However, we

could identify that the underlying reason was a particular choice in the setting

of a specific parameter that scaled with the dimensionality (see Section E.4.2);

by keeping the parameter simply to a constant, the scaling behavior of these two

variants was largely improved making them competitive to the other variants for

high dimensional functions.

In a final step, we compared the median error values obtained by one of the

1An exception is the best-so-far ABC algorithm [Banharnsakun et al., 2011] for which we
have observed poor performance. In Section E.4.2 we have shown that this poor behavior is due
to specific choices in the algorithm design.

209

E. ARTIFICIAL BEE COLONIES FOR CONTINUOUS OPTIMIZATION:
EXPERIMENTAL ANALYSIS AND IMPROVEMENTS

best performing ABC algorithms, the hybrid GbABC, to the results of a recent

benchmarking effort for high dimensional real function optimization. A result of

this comparison is that the best performing ABC variants we examined are well

competitive with state-of-the-art algorithms for continuous function optimization.

Finally, there is a large number of further work that could be done in the

direction followed here. A straightforward one is to extend the analysis of the

ABC algorithms on other benchmark sets, as, depending on the properties of the

benchmark functions, the relative performance of algorithms may change. In fact,

it would be also interesting to extend the study to other benchmark sets such as

those from the CEC 2005 special session or the Black-Box Optimization Bench-

marking (BBOB) suite. Another direction would be to re-consider the integration

of local search algorithms into ABC algorithms and try to elaborate a more refined

and potentially more performing scheme for integration. The fact that our hybrid

algorithms have shown on some functions stagnation behavior is an indication that

by a more refined design further improvements are possible. Given the existance

of a number of other ABC variants we did not include in our experimental com-

parison, yet another direction would be to extend our experimental study to these.

Nevertheless, we think that more interesting would be the elaboration of a flexible

algorithm framework for ABC algorithms, where the various proposed modifica-

tions to ABC are implemented as algorithm components that may be combined.

Automatic algorithm configuration could then be applied to such a framework to

possibly obtain even more performing algorithms. Such an approach has been ex-

plored for other problems [KhudaBukhsh et al., 2009, López-Ibáñez and Stützle,

2012] and the high performance of our initial effort on configuring hybrid ABC

algorithms with local search just confirm that such an approach is very promising.

210

1e−14 1e−09 1e−04 1e+01 1e+06

1
e
−

1
4

1
e
−

0
9

1
e
−

0
4

1
e
+

0
1

1
e
+

0
6

MABC−new (opt 11)

M
A

B
C

 (
o

p
t

 1
1

)

f_id_opt

2

3

4

5

8 13

14

17

−Win 4

−Lose 4

−Draw 11

Median Errors−10D

2 5 10 20 50

2
5

2
0

5
0

3

13

17

1e−14 1e−09 1e−04 1e+01 1e+06
1
e
−

1
4

1
e
−

0
9

1
e
−

0
4

1
e
+

0
1

1
e
+

0
6

MABC−new (opt 9)

M
A

B
C

 (
o

p
t

 7
)

f_id_opt

2
34

8

9

10

11

13
14

16

17

18

−Win 11 +

−Lose 1

−Draw 7

Median Errors−50D

0.2 1.0 5.0 50.0

2
5

2
0

1
0
0

2

4

18

13

14

17

1e−14 1e−09 1e−04 1e+01 1e+06

1
e
−

1
4

1
e
−

0
9

1
e
−

0
4

1
e
+

0
1

1
e
+

0
6

MABC−new (opt 8)

M
A

B
C

 (
o

p
t

 5
)

f_id_opt

2
34

8

9
10

11

12

1314
16

17
18

,19

−Win 14 +

−Lose 0

−Draw 5

Median Errors−100D

1e−02 1e+00 1e+02

2
1
0

5
0

5
0
0

2

3

9

11

4

18

13

14

17

1e−14 1e−09 1e−04 1e+01 1e+06

1
e
−

1
4

1
e
−

0
9

1
e
−

0
4

1
e
+

0
1

1
e
+

0
6

MABC−new (opt 8)

M
A

B
C

 (
o

p
t

 0
)

1

2

34

5

6

7

8

9

10

11
12

1314

15

16 17
18

19

−Win 19 +

−Lose 0

−Draw 0

Median Errors−500D

1e−02 1e+02

5
0
0

2
0
0
0

3911

16 4

18

13

14

17

Figure E.6: Correlation plots of MABC and MABC-new on dimensions 10, 50,
100 and 500, respectively. Each point represents the median error value obtained
by either of the two algorithms. A point on the upper triangle delimited by the
diagonal indicates better performance for the algorithm on the x-axis; a point on
the lower right triangle indicates better performance for the algorithm on the y-
axis. The number labeled beside some outstanding points represent the index of
the corresponding function. The comparison is conducted based on median error
values and the comparison results of the algorithm on the x-axis are presented in
form of -win, -draw, -lose, respectively. We marked with a + symbol those cases in
which there is a statistically significant difference at the 0.05 α-level between the
algorithms. The number of opt on the axes shows the number of medians lower
than the zero threshold by the corresponding algorithm. (with default parameter
settings)

211

E. ARTIFICIAL BEE COLONIES FOR CONTINUOUS OPTIMIZATION:
EXPERIMENTAL ANALYSIS AND IMPROVEMENTS

1e−14 1e−09 1e−04 1e+01 1e+06

1
e
−

1
4

1
e
−

0
9

1
e
−

0
4

1
e
+

0
1

1
e
+

0
6

ImpABC−new (opt 15)

Im
p

A
B

C
 (

o
p

t
 1

0
)

f_id_opt

34

5
9
11

13
14

17
18

−Win 8 +

−Lose 1

−Draw 10

Median Errors−10D

1e−14 1e−13

0
.2

0
.5

2
.0

5
.0

2
0
.0

18

14

4
11

9

1e−14 1e−09 1e−04 1e+01 1e+06

1
e
−

1
4

1
e
−

0
9

1
e
−

0
4

1
e
+

0
1

1
e
+

0
6

ImpABC−new (opt 10)

Im
p

A
B

C
 (

o
p

t
 0

)

1

2 3

4

5

6

7

8
9

10

1112 1314

15

16 17
18

19

−Win 17 +

−Lose 2

−Draw 0

Median Errors−50D

1e−14 1e−13

0
.2

1
.0

5
.0

5
0
.0

5
0
0
.0

916
12

610
19

15

5
1

1e−14 1e−09 1e−04 1e+01 1e+06

1
e
−

1
4

1
e
−

0
9

1
e
−

0
4

1
e
+

0
1

1
e
+

0
6

ImpABC−new (opt 9)

Im
p

A
B

C
 (

o
p

t
 0

) 1
2

3

4

5

6

7

8
9

10

1112 1314

15

16 1718
19

−Win 18 +

−Lose 1

−Draw 0

Median Errors−100D

1e−14 1e−13

5
e
−

0
1

5
e
+

0
0

5
e
+

0
1

5
e
+

0
2

16
12

6
10
19

15

5

1

1e−14 1e−09 1e−04 1e+01 1e+06

1
e
−

1
4

1
e
−

0
9

1
e
−

0
4

1
e
+

0
1

1
e
+

0
6

ImpABC−new (opt 7)

Im
p

A
B

C
 (

o
p

t
 0

)

1

2

4

56
7

8

9

10

1112 14

15

16

17

18
19

−Win 19 +

−Lose 0

−Draw 0

Median Errors−500D

1e−14

2
0

5
0

2
0
0

6

10
19
15

5

7

1e−02 1e+02

1
0
0
0

2
0
0
0

4
0
0
0

2

9 11

16
4

18

14

Figure E.7: Correlation plots of ImpABC and ImpABC-new on dimensions 10, 50,
100 and 500 respectively. For an explanation of the plots see caption of Figure E.6.

212

1e−14 1e−09 1e−04 1e+01 1e+06

1
e
−

1
4

1
e
−

0
9

1
e
−

0
4

1
e
+

0
1

1
e
+

0
6

ABC−rank (opt 9)

A
B

C
 (

o
p

t
 8

)

f_id_opt

2

3

5

8

11

12

13

14
16

17

18

−Win 11 +

−Lose 0

−Draw 8

Median Errors−10D

0.2 1.0 5.0 50.0

0
.2

2
.0

2
0
.0 3

13

17
8

1e−14 1e−09 1e−04 1e+01 1e+06

1
e
−

1
4

1
e
−

0
9

1
e
−

0
4

1
e
+

0
1

1
e
+

0
6

ABC−rank (opt 13)

A
B

C
 (

o
p

t
 8

)

f_id_opt

2 3
4

5

8

12

13
14

16

17

18

−Win 7

−Lose 3

−Draw 9

Median Errors−50D

0.2 1.0 5.0 50.0

0
.0

2
0
.5

0
2
0
.0

0

2 3

13

14

17

1e−14 1e−09 1e−04 1e+01 1e+06

1
e
−

1
4

1
e
−

0
9

1
e
−

0
4

1
e
+

0
1

1
e
+

0
6

ABC−rank (opt 10)

A
B

C
 (

o
p

t
 7

)

f_id_opt

23

4

8

9
11

12

1314

16

17

18

−Win 9 +

−Lose 2

−Draw 8

Median Errors−100D

0.5 2.0 10.0 50.0

0
.5

5
.0

5
0
.0 2 3

18
1314

17

1e−14 1e−09 1e−04 1e+01 1e+06

1
e
−

1
4

1
e
−

0
9

1
e
−

0
4

1
e
+

0
1

1
e
+

0
6

ABC−rank (opt 7)

A
B

C
 (

o
p

t
 7

)

f_id_opt

234

8

9

11

12

1314

16

17
18

−Win 7

−Lose 4

−Draw 8

Median Errors−500D

0.5 5.0 50.0 500.0

0
.5

5
.0

1
0
0
.0 2

3
4

18

13
14

17

Figure E.8: Correlation plots of ABC and ABC with a rank-based selection
of solutions by onlooker bees (ABC-rank) on dimensions 10, 50, 100 and 500,
respectively. The parameter settings used are the tuned settings for ABC. For an
explanation of the plots see caption of Figure E.6.

213

E. ARTIFICIAL BEE COLONIES FOR CONTINUOUS OPTIMIZATION:
EXPERIMENTAL ANALYSIS AND IMPROVEMENTS

Function evaluations

M
e
d
ia

n
 f
it
n
e
s
s
 E

rr
o
r

V
a
lu

e

10
0

10
1

10
2

10
3

10
4

10
51

e
−

1
4

1
e

−
0

9
1

e
−

0
4

1
e

+
0

1
1

e
+

0
6

ABC−dp

ABC−ts

ABC−LS−ts

f1−50D

Function evaluations

M
e
d
ia

n
 f
it
n
e
s
s
 E

rr
o
r

V
a
lu

e

10
0

10
1

10
2

10
3

10
4

10
51

e
−

1
4

1
e

−
0

9
1

e
−

0
4

1
e

+
0

1
1

e
+

0
6

GbABC−dp

GbABC−ts

GbABC−LS−ts

f1−50D

Function evaluations

M
e
d
ia

n
 f
it
n
e
s
s
 E

rr
o
r

V
a
lu

e

10
0

10
1

10
2

10
3

10
4

10
51

e
−

1
4

1
e

−
0

9
1

e
−

0
4

1
e

+
0

1
1

e
+

0
6

IABC−dp

IABC−ts

IABC−LS−ts

f1−50D

Function evaluations

M
e
d
ia

n
 f
it
n
e
s
s
 E

rr
o
r

V
a
lu

e

10
0

10
1

10
2

10
3

10
4

10
5

1
e

+
0

1
1

e
+

0
4

1
e

+
0

7
1

e
+

1
0

ABC−dp

ABC−ts

ABC−LS−ts

f3−50D

Function evaluations

M
e
d
ia

n
 f
it
n
e
s
s
 E

rr
o
r

V
a
lu

e

10
0

10
1

10
2

10
3

10
4

10
5

1
e

+
0

0
1

e
+

0
3

1
e

+
0

6
1

e
+

0
9

1
e

+
1

2

GbABC−dp

GbABC−ts

GbABC−LS−ts

f3−50D

Function evaluations

M
e
d
ia

n
 f
it
n
e
s
s
 E

rr
o
r

V
a
lu

e

10
0

10
1

10
2

10
3

10
4

10
51

e
+

0
0

1
e

+
0

3
1

e
+

0
6

1
e

+
0

9
1

e
+

1
2

IABC−dp

IABC−ts

IABC−LS−ts

f3−50D

Function evaluations

M
e
d
ia

n
 f
it
n
e
s
s
 E

rr
o
r

V
a
lu

e

10
0

10
1

10
2

10
3

10
4

10
5

1
e

−
0

1
1

e
+

0
2

1
e

+
0

5
1

e
+

0
8

1
e

+
1

1

ABC−dp

ABC−ts

ABC−LS−ts

f13−50D

Function evaluations

M
e
d
ia

n
 f
it
n
e
s
s
 E

rr
o
r

V
a
lu

e

10
0

10
1

10
2

10
3

10
4

10
5

1
e

+
0

0
1

e
+

0
3

1
e

+
0

6
1

e
+

0
9

GbABC−dp

GbABC−ts

GbABC−LS−ts

f13−50D

Function evaluations

M
e
d
ia

n
 f
it
n
e
s
s
 E

rr
o
r

V
a
lu

e

10
0

10
1

10
2

10
3

10
4

10
51

e
−

0
1

1
e

+
0

2
1

e
+

0
5

1
e

+
0

8
1

e
+

1
1

IABC−dp

IABC−ts

IABC−LS−ts

f13−50D

Figure E.9: SQD curves for the original ABC (left column), GbABC (middle
column), and IABC (right column) for functions f1 (Sphere, top), f3 (Rosenbrock,
middle) and f13 (a hybrid function, bottom).

214

f5−50D

Number of function evaluations

P
ro

b
a

b
ili

ty
 o

f
s
o

lv
in

g
 t

h
e

 p
ro

b
le

m

10
4

10
50

.0
0

.2
0

.4
0

.6
0

.8
1

.0

ABC

GbABC

IABC

f6−50D

Number of function evaluations

P
ro

b
a

b
ili

ty
 o

f
s
o

lv
in

g
 t

h
e

 p
ro

b
le

m

10
4

10
50

.0
0

.2
0

.4
0

.6
0

.8
1

.0

ABC

GbABC

IABC

tuned parameters

f5−50D

Number of function evaluations

P
ro

b
a

b
ili

ty
 o

f
s
o

lv
in

g
 t

h
e

 p
ro

b
le

m

10
4

10
50

.0
0

.2
0

.4
0

.6
0

.8
1

.0

ABC

GbABC

IABC

f6−50D

Number of function evaluations

P
ro

b
a

b
ili

ty
 o

f
s
o

lv
in

g
 t

h
e

 p
ro

b
le

m

10
4

10
50

.0
0

.2
0

.4
0

.6
0

.8
1

.0

ABC

GbABC

IABC

tuned with local search

Figure E.10: RLDs for the original ABC, GbABC and IABC for functions f5 (left
column) and f6 (right column) using tuned parameter settings (upper row) and in
combination with local search (bottom row).

f5−50D

Optimum bound

P
ro

b
a

b
ili

ty
 o

f
s
o

lv
in

g
 t

h
e

 p
ro

b
le

m

1
−14

1
−10

1
−5

1
0 1000

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

ABC

GbABC

IABC

f5−50D

Optimum bound

P
ro

b
a

b
ili

ty
 o

f
s
o

lv
in

g
 t

h
e

 p
ro

b
le

m

1
−14

1
−10

1
−5

1
0 1000

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

ABC

GbABC

IABC

tuned parameters tuned with local search

Figure E.11: SQDs for the original ABC, GbABC and IABC for function f5 using
tuned parameter settings (left) and in combination with local search (right).

215

E. ARTIFICIAL BEE COLONIES FOR CONTINUOUS OPTIMIZATION:
EXPERIMENTAL ANALYSIS AND IMPROVEMENTS

50 dimension

D
E

C
H

C

G
−

C
M

A
−

E
S

S
O

U
P

D
E

D
E

−
D

4
0

−
M

m

G
O

D
E

G
a

D
E

jD
E

ls
c
o

p

S
a

D
E

−
M

M
T

S

M
O

S
−

D
E

M
A

−
S

S
W

R
P

S
O

−
v
m

IP
S

O
−

P
o
w

e
ll

E
vo

P
R

O
p

t

E
M

3
2

3

V
X

Q
R

1

G
b

A
B

C
−

L
S

1e−14

1e−09

1e−04

1e+01

1e+06

+ + + + + + +

Optima 6 0 4 9 12 7 10 12 12 14 11 5 9 4 5 6 14

M
e
d
ia

n
 E

rr
o
rs

 o
f
F

it
n
e
s
s
 V

a
lu

e

100 dimension

D
E

C
H

C

G
−

C
M

A
−

E
S

S
O

U
P

D
E

D
E

−
D

4
0

−
M

m

G
O

D
E

G
a

D
E

jD
E

ls
c
o

p

S
a

D
E

−
M

M
T

S

M
O

S
−

D
E

M
A

−
S

S
W

R
P

S
O

−
v
m

IP
S

O
−

P
o
w

e
ll

E
vo

P
R

O
p

t

E
M

3
2

3

V
X

Q
R

1

G
b

A
B

C
−

L
S

1e−14

1e−09

1e−04

1e+01

1e+06

+ + + + + + + + + +

Optima 6 0 3 9 11 6 11 12 12 14 10 5 8 3 6 6 14

M
e
d
ia

n
 E

rr
o
rs

 o
f
F

it
n
e
s
s
 V

a
lu

e

500 dimension

D
E

C
H

C

G
−

C
M

A
−

E
S

S
O

U
P

D
E

D
E

−
D

4
0

−
M

m

G
O

D
E

G
a

D
E

jD
E

ls
c
o

p

S
a

D
E

−
M

M
T

S

M
O

S
−

D
E

M
A

−
S

S
W

R
P

S
O

−
v
m

IP
S

O
−

P
o
w

e
ll

E
vo

P
R

O
p

t

E
M

3
2

3

V
X

Q
R

1

G
b

A
B

C
−

L
S

1e−14

1e−09

1e−04

1e+01

1e+06

+ + + + + + − + + + + +

Optima 6 0 2 5 8 6 9 12 10 14 4 4 8 2 4 5 12

M
e
d
ia

n
 E

rr
o
rs

 o
f
F

it
n
e
s
s
 V

a
lu

e

Figure E.12: Comparison of tuned GbABC with local search to the algorithms
from the SOCO benchmark competition. A “+” symbol on top of a box-plot
denotes a significant difference detected by a Wilcoxon’s test at the 0.05 level
between the results obtained GbABC and the indicated 16 reference algorithm. If
an algorithm is significantly better than the indicated algorithm, a “−” symbol is
put on top of a box-plot for indicating this difference.

216

Table E.4: Given are the medians of the various ABC variants on the 10 dimen-
sional functions from the SOCO benchmark set for the default parameter settings
(upper part), the tuned parameter settings (middle part) and the tuned hybrid
ABC algorithms with local search (bottom part). At the bottom is indicated the
number of times the tuned parameter settings give lower, same or worse median
(win, draw, loss) than default parameter settings (ts vs dp) and the same infor-
mation for the comparisons between the hybrids with local search versus default
parameter settings (LS vs dp) and hybrids with local search versus tuned settings
(LS vs ts).

default parameter settings

Function ABC GbABC BsfABC MABC ImpABC CABC GbdABC RABC IABC

f1 8.31E−07 1.00E−14 2.33E+00 1.00E−14 1.00E−14 1.00E−14 1.00E−14 1.00E−14 1.00E−14
f2 1.58E+00 1.02E−08 1.93E+01 7.75E−03 1.00E−14 7.18E+00 1.59E−09 9.50E−04 6.67E−01
f3 7.16E+00 2.80E+00 1.23E+04 9.69E+00 1.77E+00 1.37E+01 2.07E+00 2.39E+00 2.71E+00
f4 7.06E−03 1.00E−14 7.88E+00 3.92E−04 1.99E+00 1.27E−09 1.00E−14 1.00E−14 2.03E−14
f5 3.29E−03 2.67E−08 8.38E−01 1.97E−02 5.41E−02 8.62E−03 6.71E−12 7.40E−03 2.34E−04
f6 7.53E−03 1.00E−14 3.72E+00 1.00E−14 1.00E−14 1.00E−14 1.00E−14 1.23E−13 7.85E−12
f7 5.14E−05 1.00E−14 1.65E−01 1.00E−14 1.00E−14 1.00E−14 1.00E−14 1.00E−14 1.12E−13
f8 4.55E+01 6.08E+00 2.99E+02 2.34E+00 1.00E−14 7.86E+01 6.00E−01 1.04E−02 2.61E+01
f9 2.37E+00 1.00E−14 1.64E+01 1.00E−14 2.11E−01 5.44E−01 1.00E−14 2.92E−03 2.77E−02
f10 1.51E−07 1.00E−14 1.14E+00 1.00E−14 1.00E−14 1.00E−14 1.00E−14 1.00E−14 1.00E−14
f11 1.97E+00 1.00E−14 1.50E+01 1.00E−14 1.56E+00 7.20E−01 1.00E−14 3.66E−03 3.37E−02
f12 2.57E−01 1.76E−03 6.14E+00 1.00E−14 1.00E−14 3.87E−02 1.00E−14 2.25E−04 1.07E−02
f13 3.35E+00 4.32E−01 3.10E+03 3.42E+00 1.36E+01 4.62E+00 1.59E−01 1.29E−01 4.07E−01
f14 1.69E−01 1.75E−03 7.12E+00 1.10E−03 3.46E+00 3.03E−02 3.90E−14 2.05E−04 6.45E−03
f15 3.15E−05 1.00E−14 1.90E−01 1.00E−14 1.00E−14 1.00E−14 1.00E−14 1.00E−14 6.60E−14
f16 7.75E−01 1.00E−14 7.67E+00 1.00E−14 1.00E−14 3.05E−02 1.00E−14 4.53E−04 5.95E−03
f17 1.80E+00 6.00E−01 3.39E+01 1.18E+01 4.26E+01 8.42E+00 2.44E−01 5.66E−01 4.83E−01
f18 4.30E−01 1.00E−14 3.62E+00 1.00E−14 5.68E+00 1.06E−02 1.00E−14 1.36E−04 2.11E−03
f19 2.03E−06 1.00E−14 4.94E−01 1.00E−14 1.00E−14 2.18E−14 1.00E−14 1.00E−14 1.00E−14

tuned parameter settings

Function ABC-ts GbABC-ts BsfABC-ts MABC-ts ImpABC-ts CABC-ts GbdABC-ts RABC-ts IABC-ts

f1 1.00E−14 1.00E−14 1.00E−14 1.00E−14 1.00E−14 1.00E−14 1.00E−14 1.00E−14 1.00E−14
f2 1.74E−01 4.21E−12 1.36E−01 9.50E−07 1.00E−14 2.52E−02 2.28E−13 4.26E−14 4.48E−05
f3 2.11E+01 2.54E+00 4.09E+01 5.00E+00 5.06E+00 4.68E+00 1.41E+00 1.82E+01 1.11E+01
f4 1.00E−14 1.00E−14 9.95E−01 2.00E+00 1.00E−14 1.00E−14 1.00E−14 1.00E−14 1.00E−14
f5 1.01E−02 6.86E−09 1.48E−02 3.94E−02 7.40E−03 9.86E−03 1.00E−14 2.22E−02 9.86E−03
f6 1.00E−14 1.00E−14 1.00E−14 1.00E−14 1.00E−14 1.00E−14 1.00E−14 1.00E−14 1.00E−14
f7 1.00E−14 1.00E−14 1.00E−14 1.00E−14 1.00E−14 1.00E−14 1.00E−14 1.00E−14 1.00E−14
f8 7.27E+00 4.62E+00 6.63E+00 9.62E−08 1.00E−14 1.48E+01 1.71E+00 1.00E−14 4.60E+00
f9 1.00E−14 1.00E−14 5.59E−06 1.00E−14 1.00E−14 4.74E−05 1.00E−14 1.00E−14 1.00E−14
f10 1.00E−14 1.00E−14 1.00E−14 1.00E−14 1.00E−14 1.00E−14 1.00E−14 1.00E−14 1.00E−14
f11 5.99E−08 1.00E−14 2.51E−04 1.00E−14 1.00E−14 2.20E−04 1.00E−14 1.00E−14 1.00E−14
f12 3.05E−02 1.32E−03 3.09E−02 1.00E−14 1.00E−14 1.15E−02 1.00E−14 1.07E−02 1.08E−07
f13 1.20E+00 3.31E−01 6.13E−01 3.44E+00 5.03E+00 7.43E−01 2.59E−01 3.99E+00 2.20E−01
f14 1.16E−02 1.61E−03 1.03E+00 1.99E+00 1.00E−14 9.62E−03 1.00E−14 5.30E−05 6.00E−08
f15 1.00E−14 1.00E−14 1.00E−14 1.00E−14 1.00E−14 1.00E−14 1.00E−14 1.00E−14 1.00E−14
f16 2.92E−03 1.00E−14 1.19E−02 1.00E−14 1.00E−14 7.82E−04 1.00E−14 1.00E−14 1.00E−14
f17 1.52E+01 2.73E−01 8.09E−01 2.57E+01 1.91E−11 7.71E−01 2.90E−01 6.86E+00 4.33E+00
f18 3.01E−09 1.00E−14 3.23E−05 1.49E−12 1.00E−14 5.36E−06 1.00E−14 1.00E−14 1.00E−14
f19 1.00E−14 1.00E−14 1.00E−14 1.00E−14 1.00E−14 1.00E−14 1.00E−14 1.00E−14 1.00E−14

hybrids with local search

Function ABC-LS GbABC-LS BsfABC-LS MABC-LS ImpABC-LS CABC-LS GbdABC-LS RABC-LS IABC-LS

f1 1.00E−14 1.00E−14 1.00E−14 1.00E−14 1.00E−14 1.00E−14 1.00E−14 1.00E−14 1.00E−14
f2 1.42E−14 1.42E−14 1.42E−14 1.42E−14 1.00E−14 1.42E−14 1.42E−14 1.42E−14 1.24E−14
f3 5.00E+00 3.04E+01 3.47E+01 3.82E+01 2.90E+00 1.15E+01 5.16E+01 4.23E+01 7.17E+01
f4 1.00E−14 1.00E−14 1.00E−14 1.00E−14 1.00E−14 1.00E−14 1.00E−14 1.00E−14 1.00E−14
f5 1.00E−14 7.40E−03 1.00E−14 1.00E−14 2.71E−02 1.00E−14 1.23E−02 7.40E−03 2.21E−02
f6 1.00E−14 1.00E−14 1.00E−14 1.00E−14 1.00E−14 1.00E−14 1.00E−14 1.00E−14 1.00E−14
f7 1.00E−14 1.00E−14 1.00E−14 1.00E−14 1.00E−14 1.00E−14 1.00E−14 1.00E−14 1.00E−14
f8 1.00E−14 1.00E−14 1.00E−14 1.00E−14 1.00E−14 1.00E−14 1.00E−14 1.00E−14 1.00E−14
f9 1.00E−14 1.00E−14 1.00E−14 1.00E−14 1.00E−14 1.00E−14 1.00E−14 1.00E−14 1.00E−14
f10 1.00E−14 1.00E−14 1.00E−14 1.00E−14 1.00E−14 1.00E−14 1.00E−14 1.00E−14 1.00E−14
f11 1.00E−14 1.00E−14 1.00E−14 1.00E−14 1.00E−14 1.00E−14 1.00E−14 1.00E−14 1.00E−14
f12 3.03E−02 6.27E−02 3.03E−02 6.27E−02 1.00E−14 3.03E−02 6.27E−02 3.03E−02 1.07E−02
f13 4.91E−01 1.06E+01 1.59E+00 3.35E+00 4.21E+00 4.90E−01 6.86E+00 1.23E+00 1.01E+01
f14 1.10E−01 6.27E−02 1.10E−01 6.27E−02 1.00E−14 1.10E−01 1.10E−01 1.10E−01 1.07E−02
f15 1.00E−14 1.00E−14 1.00E−14 1.00E−14 1.00E−14 1.00E−14 1.00E−14 1.00E−14 1.00E−14
f16 2.68E−02 2.68E−02 1.00E−14 2.68E−02 1.00E−14 2.68E−02 2.68E−02 2.68E−02 1.00E−14
f17 8.95E+00 3.35E+01 1.97E+01 2.35E+01 2.84E−06 3.42E−01 2.31E+01 2.18E+01 2.25E+01
f18 1.00E−14 1.00E−14 1.00E−14 1.00E−14 1.00E−14 1.21E−01 1.00E−14 1.00E−14 1.00E−14
f19 1.00E−14 1.00E−14 1.00E−14 1.00E−14 1.00E−14 1.00E−14 1.00E−14 1.00E−14 1.00E−14

(Win, Draw, Loss)

ts vs dp (16, 0, 3) (8, 11, 0) (19, 0, 0) (3, 10, 6) (8, 10, 1) (13, 5, 1) (4, 12, 3) (8, 6, 5) (13, 3, 3)
LS vs dp (18, 0, 1) (2, 10, 7) (19, 0, 0) (5, 9, 5) (8, 10, 1) (12, 5, 2) (2, 10, 7) (6, 7, 6) (10, 4, 5)
LS vs ts (9, 8, 2) (2, 10, 7) (11, 6, 2) (8, 8, 3) (2, 15, 2) (7, 7, 5) (2, 10, 7) (3, 11, 5) (2, 11, 6)

217

E. ARTIFICIAL BEE COLONIES FOR CONTINUOUS OPTIMIZATION:
EXPERIMENTAL ANALYSIS AND IMPROVEMENTS

Table E.5: Given are the medians of the various ABC variants on the 50 dimen-
sional functions from the SOCO benchmark set for the default parameter settings
(upper part), the tuned parameter settings (middle part) and the tuned hybrid
ABC algorithms with local search (bottom part). At the bottom is indicated the
number of times the tuned parameter settings give lower, same or worse median
(win, draw, loss) than default parameter settings (ts vs dp) and the same infor-
mation for the comparisons between the hybrids with local search versus default
parameter settings (LS vs dp) and hybrids with local search versus tuned settings
(LS vs ts).

default parameter settings

Function ABC GbABC BsfABC MABC ImpABC CABC GbdABC RABC IABC

f1 1.42E−05 1.00E−14 1.60E+03 1.00E−14 3.38E−01 1.00E−14 1.00E−14 1.00E−14 1.00E−14
f2 6.98E+01 1.93E+00 4.08E+01 9.22E+00 2.55E+01 6.20E+01 1.46E+00 3.30E+00 5.63E+01
f3 5.48E+01 6.58E+00 7.66E+07 7.49E+01 1.66E+01 2.75E+00 7.24E+00 1.56E+00 1.56E+00
f4 6.12E+00 1.00E−14 1.58E+02 2.59E+01 2.85E+02 2.32E−12 1.00E−14 4.33E−13 3.28E−02
f5 2.83E−04 1.00E−14 1.54E+01 1.00E−14 4.31E−01 5.03E−14 1.00E−14 1.00E−14 1.00E−14
f6 5.45E−02 1.00E−14 1.10E+01 1.00E−14 1.77E+01 1.00E−14 1.00E−14 3.01E−11 2.72E−09
f7 1.22E−03 1.00E−14 2.53E+00 1.00E−14 6.89E−14 1.00E−14 1.00E−14 2.50E−14 2.16E−11
f8 1.58E+04 8.40E+03 6.44E+03 1.93E+04 7.46E+01 9.15E+03 6.38E+03 1.55E+03 5.85E+03
f9 2.37E+01 1.00E−14 1.79E+02 2.57E−01 2.68E+02 2.04E−07 1.00E−14 4.86E−02 6.53E−01
f10 2.00E−05 1.00E−14 4.03E+01 9.79E−08 1.30E+01 1.00E−14 1.00E−14 1.00E−14 1.00E−14
f11 2.20E+01 1.00E−14 1.68E+02 1.47E−01 2.44E+02 4.46E−07 1.00E−14 6.00E−02 6.37E−01
f12 2.05E+00 1.00E−14 8.64E+02 1.00E−14 1.03E+02 7.98E−07 1.00E−14 4.10E−03 4.87E−02
f13 3.48E+01 4.53E−01 3.98E+07 7.89E+01 1.38E+02 2.98E−01 4.05E−01 2.43E−01 7.53E−01
f14 6.77E+00 1.00E−14 1.23E+02 2.00E+01 2.33E+02 1.25E−11 1.00E−14 3.83E−04 2.79E−02
f15 7.47E−04 1.00E−14 4.60E+00 1.00E−14 1.05E+00 1.00E−14 1.00E−14 1.76E−14 1.30E−11
f16 5.15E+00 1.00E−14 2.87E+02 1.48E+00 2.07E+02 3.46E−11 1.00E−14 1.55E−02 1.78E−01
f17 2.86E+01 5.22E+00 1.40E+05 4.40E+01 3.29E+02 1.66E+01 1.05E+00 2.68E+00 4.80E+00
f18 4.79E+00 1.00E−14 4.48E+01 2.91E+00 8.15E+01 2.66E−12 1.00E−14 3.73E−03 8.33E−02
f19 1.55E−04 1.00E−14 1.63E+01 1.00E−14 8.87E+00 1.00E−14 1.00E−14 1.00E−14 4.12E−13

tuned parameter settings

Function ABC-ts GbABC-ts BsfABC-ts MABC-ts ImpABC-ts CABC-ts GbdABC-ts RABC-ts IABC-ts

f1 1.00E−14 1.00E−14 1.00E−14 1.00E−14 1.00E−14 1.00E−14 1.00E−14 1.00E−14 1.00E−14
f2 5.79E+00 3.23E−01 3.45E+01 2.13E+01 8.24E+00 9.08E+00 1.67E−01 1.20E−03 2.43E+01
f3 4.08E+00 1.59E+01 5.70E+01 8.44E+01 7.82E+01 1.43E+00 1.87E+01 3.53E+01 2.80E+00
f4 8.78E−01 1.00E−14 4.58E+01 6.07E+01 1.09E+02 1.00E−14 1.00E−14 9.95E−01 1.00E−14
f5 6.23E−12 1.00E−14 2.70E−02 1.00E−14 6.86E−02 1.00E−14 1.00E−14 1.00E−14 1.00E−14
f6 1.00E−14 1.00E−14 1.00E−14 1.00E−14 2.48E+00 1.00E−14 1.00E−14 1.00E−14 1.00E−14
f7 1.00E−14 1.00E−14 1.00E−14 1.00E−14 1.00E−14 1.00E−14 1.00E−14 1.00E−14 1.00E−14
f8 7.51E+03 8.00E+03 1.26E+03 1.10E+04 1.38E+01 9.79E+03 6.30E+03 2.22E+00 4.72E+03
f9 1.00E−14 1.00E−14 3.03E−02 2.15E+00 4.90E+01 1.85E−04 1.00E−14 1.00E−14 1.00E−14
f10 1.00E−14 1.00E−14 1.05E+00 1.39E−07 6.30E+00 1.00E−14 1.00E−14 1.00E−14 1.00E−14
f11 1.00E−14 1.00E−14 3.07E−02 2.69E+00 4.13E+01 3.92E−04 1.00E−14 1.00E−14 1.00E−14
f12 2.75E−09 1.00E−14 6.23E−04 1.07E−02 5.12E+01 2.60E−05 1.00E−14 4.24E−14 1.00E−14
f13 2.59E−01 4.75E−01 5.60E+00 7.72E+01 1.25E+02 8.53E−02 3.36E+00 4.01E+00 1.08E−01
f14 9.95E−01 1.00E−14 3.48E+01 4.64E+01 7.93E+01 6.51E−07 5.45E−14 3.98E+00 1.00E−14
f15 1.00E−14 1.00E−14 1.00E−14 1.00E−14 4.13E−01 1.00E−14 1.00E−14 1.00E−14 1.00E−14
f16 1.12E−08 1.00E−14 2.92E−04 3.82E−01 9.70E+01 1.03E−04 1.00E−14 7.23E−11 1.00E−14
f17 6.50E+00 5.22E+00 4.10E+01 7.32E+01 2.27E+02 8.11E−01 5.40E+00 3.75E+01 3.33E+00
f18 1.05E−09 1.00E−14 9.95E−01 1.66E+01 3.40E+01 5.73E−06 1.00E−14 9.95E−01 1.00E−14
f19 1.00E−14 1.00E−14 1.52E+00 4.70E−01 3.15E+00 1.00E−14 1.00E−14 1.00E−14 1.00E−14

hybrids with local search

Function ABC-LS GbABC-LS BsfABC-LS MABC-LS ImpABC-LS CABC-LS GbdABC-LS RABC-LS IABC-LS

f1 1.00E−14 1.00E−14 1.00E−14 1.00E−14 1.00E−14 1.00E−14 1.00E−14 1.00E−14 1.00E−14
f2 4.12E−13 2.98E−13 3.13E−13 4.41E−13 1.56E−13 3.13E−13 4.69E−13 3.69E−13 4.41E−13
f3 1.47E+01 3.24E−01 1.20E+01 2.53E+01 7.05E+00 1.19E+01 3.27E+01 5.93E−01 1.87E+00
f4 1.00E−14 1.00E−14 1.00E−14 1.00E−14 9.95E−01 1.00E−14 1.00E−14 1.00E−14 1.00E−14
f5 1.00E−14 1.00E−14 1.00E−14 1.00E−14 1.00E−14 1.00E−14 1.00E−14 1.00E−14 1.00E−14
f6 1.00E−14 1.00E−14 1.00E−14 1.00E−14 1.00E−14 1.00E−14 1.00E−14 1.00E−14 1.00E−14
f7 1.00E−14 1.00E−14 1.00E−14 1.00E−14 1.00E−14 1.00E−14 1.00E−14 1.00E−14 1.00E−14
f8 6.92E−05 4.69E−05 5.64E−05 1.03E−04 2.40E+00 3.54E−05 1.28E−04 7.28E−05 2.27E−05
f9 1.00E−14 1.00E−14 1.00E−14 1.79E−07 2.15E−02 1.00E−14 7.44E−07 1.00E−14 1.00E−14
f10 1.00E−14 1.00E−14 1.00E−14 1.00E−14 1.00E−14 1.00E−14 1.00E−14 1.00E−14 1.00E−14
f11 1.00E−14 1.00E−14 1.00E−14 4.12E−07 2.16E−02 2.98E−08 1.02E−06 1.00E−14 1.00E−14
f12 1.00E−14 1.00E−14 1.00E−14 1.00E−14 1.00E−14 1.82E−01 1.00E−14 1.00E−14 1.00E−14
f13 5.88E−01 9.73E−01 7.89E−01 2.59E−01 1.46E+00 1.54E+00 2.10E−01 2.12E−01 1.02E+00
f14 1.00E−14 1.00E−14 1.00E−14 1.00E−14 7.28E−12 1.82E−01 1.00E−14 1.00E−14 1.00E−14
f15 1.00E−14 1.00E−14 1.00E−14 1.00E−14 1.00E−14 1.00E−14 1.00E−14 1.00E−14 1.00E−14
f16 1.00E−14 1.00E−14 1.00E−14 1.00E−14 3.79E−07 1.00E−14 1.00E−14 1.00E−14 1.00E−14
f17 1.39E+01 2.54E+01 3.08E+01 4.71E+01 6.92E+00 2.82E+01 2.71E+01 1.75E+01 4.90E+01
f18 1.00E−14 1.00E−14 1.00E−14 1.00E−14 9.95E−01 1.19E+00 1.00E−14 1.00E−14 1.00E−14
f19 1.00E−14 1.00E−14 1.00E−14 1.00E−14 1.00E−14 1.00E−14 1.00E−14 1.00E−14 1.00E−14

(Win, Draw, Loss)

ts vs dp (19, 0, 0) (2, 15, 2) (19, 0, 0) (3, 5, 11) (18, 0, 1) (6, 6, 7) (2, 13, 4) (9, 4, 6) (15, 3, 1)
LS vs dp (19, 0, 0) (3, 14, 2) (19, 0, 0) (11, 7, 1) (19, 0, 0) (7, 6, 6) (3, 12, 4) (14, 4, 1) (13, 3, 3)
LS vs ts (8, 8, 3) (3, 14, 2) (15, 4, 0) (15, 4, 0) (17, 2, 0) (5, 8, 6) (4, 11, 4) (10, 9, 0) (3, 14, 2)

218

Table E.6: Given are the medians of the various ABC variants on the 100 dimen-
sional functions from the SOCO benchmark set for the default parameter settings
(upper part), the tuned parameter settings (middle part) and the tuned hybrid
ABC algorithms with local search (bottom part). At the bottom is indicated the
number of times the tuned parameter settings give lower, same or worse median
(win, draw, loss) than default parameter settings (ts vs dp) and the same infor-
mation for the comparisons between the hybrids with local search versus default
parameter settings (LS vs dp) and hybrids with local search versus tuned settings
(LS vs ts).

default parameter settings

Function ABC GbABC BsfABC MABC ImpABC CABC GbdABC RABC IABC

f1 5.20E−05 1.00E−14 9.10E+03 1.00E−14 1.07E+01 1.00E−14 1.00E−14 1.00E−14 1.00E−14
f2 9.84E+01 1.80E+01 4.61E+01 4.09E+01 3.85E+01 9.24E+01 1.48E+01 1.59E+01 8.05E+01
f3 1.80E+02 2.27E+01 6.62E+08 2.01E+02 1.76E+04 2.85E+01 4.29E+01 1.22E+01 1.27E+01
f4 1.59E+01 1.00E−14 3.63E+02 1.07E+02 7.18E+02 1.70E−07 1.00E−14 2.88E−08 1.29E+00
f5 1.05E−04 1.00E−14 6.78E+01 1.00E−14 1.27E+00 1.00E−14 1.00E−14 1.00E−14 1.00E−14
f6 1.66E−01 1.00E−14 1.38E+01 1.00E−14 1.90E+01 1.00E−14 1.00E−14 6.24E−11 1.00E−08
f7 2.77E−03 1.00E−14 6.91E+00 1.00E−14 2.29E−07 1.00E−14 1.00E−14 1.30E−13 8.03E−11
f8 5.71E+04 3.36E+04 2.47E+04 9.54E+04 2.62E+03 4.07E+04 3.22E+04 1.21E+04 2.17E+04
f9 5.55E+01 1.00E−14 4.12E+02 8.81E+00 5.61E+02 1.20E−07 1.00E−14 1.81E−01 1.60E+00
f10 7.98E−05 1.00E−14 1.35E+02 1.05E+00 2.88E+01 1.00E−14 1.00E−14 1.00E−14 1.00E−14
f11 5.65E+01 1.00E−14 4.10E+02 5.05E+00 5.69E+02 3.79E−07 1.00E−14 1.61E−01 1.77E+00
f12 4.92E+00 1.00E−14 6.03E+03 1.64E−01 3.49E+02 7.58E−11 1.00E−14 1.54E−02 1.84E−01
f13 8.28E+01 2.07E+00 2.80E+08 2.26E+02 3.77E+02 3.81E+00 7.34E+00 1.91E−01 1.45E+00
f14 1.54E+01 1.00E−14 2.92E+02 9.01E+01 5.92E+02 7.70E−12 1.00E−14 5.02E−03 1.18E+00
f15 2.07E−03 1.00E−14 1.60E+01 1.00E−14 6.07E+00 1.00E−14 1.00E−14 5.94E−14 4.94E−11
f16 1.27E+01 1.00E−14 2.49E+03 2.01E+01 4.55E+02 1.94E−10 1.00E−14 5.00E−02 5.29E−01
f17 6.93E+01 4.02E+00 7.73E+06 2.42E+02 6.88E+02 6.04E+00 2.95E+00 1.25E+00 8.49E+00
f18 1.19E+01 1.00E−14 1.17E+02 2.63E+01 2.49E+02 6.72E−11 1.00E−14 1.49E−02 2.72E−01
f19 4.98E−04 1.00E−14 7.00E+01 1.05E+00 2.41E+01 1.00E−14 1.00E−14 1.00E−14 4.18E−12

tuned parameter settings

Function ABC-ts GbABC-ts BsfABC-ts MABC-ts ImpABC-ts CABC-ts GbdABC-ts RABC-ts IABC-ts

f1 1.00E−14 1.00E−14 1.00E−14 1.00E−14 1.08E+00 1.00E−14 1.00E−14 1.00E−14 1.00E−14
f2 3.67E+01 6.05E+00 4.56E+01 6.32E+01 2.73E+01 3.70E+01 3.92E+00 2.87E−01 5.33E+01
f3 4.60E+01 4.31E+01 1.92E+02 1.74E+02 1.68E+02 8.95E+00 1.04E+02 2.39E+01 2.04E+01
f4 2.13E+00 1.00E−14 8.16E+01 1.90E+02 4.36E+02 1.00E−14 1.00E−14 8.95E+00 9.95E−01
f5 1.00E−14 1.00E−14 5.57E−02 1.00E−14 9.31E−01 1.00E−14 1.00E−14 1.00E−14 1.00E−14
f6 1.00E−14 1.00E−14 1.07E−11 8.19E−08 8.96E+00 1.00E−14 1.00E−14 1.00E−14 1.00E−14
f7 1.00E−14 1.00E−14 1.00E−14 1.53E−14 1.24E−14 1.00E−14 1.00E−14 1.00E−14 1.00E−14
f8 3.39E+04 3.20E+04 4.98E+03 6.96E+04 1.18E+03 3.90E+04 2.82E+04 2.27E+02 1.90E+04
f9 4.18E−07 1.00E−14 1.39E+01 1.66E+02 3.43E+02 8.53E−04 1.00E−14 1.00E−14 1.00E−14
f10 1.00E−14 1.00E−14 4.20E+00 2.10E+00 2.10E+01 1.00E−14 1.00E−14 1.00E−14 1.00E−14
f11 6.91E−07 1.00E−14 2.29E−01 1.54E+02 3.51E+02 9.34E−04 1.00E−14 1.00E−14 1.00E−14
f12 1.30E−08 1.00E−14 3.29E−05 1.37E+00 1.90E+02 9.58E−05 1.00E−14 3.07E−11 1.00E−14
f13 2.05E+00 6.70E+00 6.96E+01 2.09E+02 3.48E+02 8.28E−01 2.34E+01 2.71E+01 9.38E−01
f14 1.99E+00 1.00E−14 9.45E+01 1.42E+02 3.23E+02 4.20E−06 3.14E−11 6.96E+00 9.95E−01
f15 1.00E−14 1.00E−14 1.00E−14 1.06E−14 3.15E+00 1.00E−14 1.00E−14 1.00E−14 1.00E−14
f16 1.35E−08 1.00E−14 1.08E−02 2.13E+01 3.44E+02 2.24E−04 1.00E−14 3.94E−09 1.00E−14
f17 1.48E+01 1.52E+01 2.97E+01 3.30E+02 5.93E+02 2.41E+00 1.39E+01 2.38E+01 6.30E+00
f18 9.95E−01 1.00E−14 5.18E+01 9.57E+01 1.18E+02 1.11E−05 1.00E−14 2.98E+00 1.00E−14
f19 1.00E−14 1.00E−14 7.35E+00 3.15E+00 1.78E+01 1.00E−14 1.00E−14 1.00E−14 1.00E−14

hybrids with local search

Function ABC-LS GbABC-LS BsfABC-LS MABC-LS ImpABC-LS CABC-LS GbdABC-LS RABC-LS IABC-LS

f1 1.00E−14 1.00E−14 1.00E−14 1.00E−14 1.00E−14 1.00E−14 1.00E−14 1.00E−14 1.00E−14
f2 6.45E−12 3.62E−12 5.05E−12 2.58E−11 2.59E−12 7.39E−12 4.09E−11 3.60E−12 2.98E−12
f3 5.63E+01 2.86E+01 4.25E+01 3.97E+01 5.38E+01 8.64E+01 1.46E+02 5.06E+01 3.83E+01
f4 1.00E−14 1.00E−14 1.00E−14 1.00E−14 1.00E−14 1.00E−14 1.00E−14 1.00E−14 1.00E−14
f5 1.00E−14 1.00E−14 1.00E−14 1.00E−14 1.00E−14 1.00E−14 1.00E−14 1.00E−14 1.00E−14
f6 1.00E−14 1.00E−14 1.00E−14 1.00E−14 1.00E−14 1.00E−14 1.00E−14 1.00E−14 1.00E−14
f7 1.00E−14 1.00E−14 1.00E−14 1.00E−14 1.00E−14 1.00E−14 1.00E−14 1.00E−14 1.00E−14
f8 1.79E+00 1.42E+00 1.53E+00 2.44E+00 4.88E+02 4.45E−01 2.56E+00 1.72E+00 1.22E+00
f9 1.00E−14 1.00E−14 1.00E−14 1.21E−06 2.72E−01 1.14E−07 2.94E−06 1.00E−14 1.00E−14
f10 1.00E−14 1.00E−14 1.00E−14 1.00E−14 1.00E−14 1.00E−14 1.00E−14 1.00E−14 1.00E−14
f11 4.48E−08 1.00E−14 2.11E−08 1.49E−06 1.09E+00 3.76E−07 2.38E−06 1.00E−14 1.00E−14
f12 1.00E−14 1.00E−14 1.00E−14 1.00E−14 8.10E−06 1.00E−14 1.00E−14 1.00E−14 1.00E−14
f13 1.17E+01 2.29E+00 1.15E+01 1.13E+01 8.91E+00 5.56E+00 7.38E+00 5.60E+00 2.00E+01
f14 1.00E−14 1.00E−14 1.00E−14 1.00E−14 5.55E−04 1.00E−14 1.00E−14 1.00E−14 1.00E−14
f15 1.00E−14 1.00E−14 1.00E−14 1.00E−14 1.00E−14 1.00E−14 1.00E−14 1.00E−14 1.00E−14
f16 1.00E−14 1.00E−14 1.00E−14 1.00E−14 2.74E−04 1.00E−14 1.00E−14 1.00E−14 1.00E−14
f17 2.56E+01 1.98E+01 3.01E+01 1.57E+01 2.81E+01 3.03E+01 2.01E+01 2.78E+01 2.23E+01
f18 1.00E−14 1.00E−14 1.00E−14 1.00E−14 7.69E−01 1.00E−14 1.00E−14 1.00E−14 1.00E−14
f19 1.00E−14 1.00E−14 1.00E−14 1.00E−14 1.00E−14 1.00E−14 1.00E−14 1.00E−14 1.00E−14

(Win, Draw, Loss)

ts vs dp (19, 0, 0) (2, 14, 3) (19, 0, 0) (3, 2, 14) (19, 0, 0) (6, 7, 6) (2, 13, 4) (9, 4, 6) (15, 3, 1)
LS vs dp (19, 0, 0) (2, 14, 3) (19, 0, 0) (14, 5, 0) (19, 0, 0) (9, 7, 3) (2, 12, 5) (12, 4, 3) (13, 3, 3)
LS vs ts (9, 7, 3) (4, 14, 1) (15, 3, 1) (17, 2, 0) (19, 0, 0) (8, 8, 3) (4, 11, 4) (8, 9, 2) (4, 12, 3)

219

E. ARTIFICIAL BEE COLONIES FOR CONTINUOUS OPTIMIZATION:
EXPERIMENTAL ANALYSIS AND IMPROVEMENTS

Table E.7: Given are the medians of the various ABC variants on the 500 dimen-
sional functions from the SOCO benchmark set for the default parameter settings
(upper part), the tuned parameter settings (middle part) and the tuned hybrid
ABC algorithms with local search (bottom part). At the bottom is indicated the
number of times the tuned parameter settings give lower, same or worse median
(win, draw, loss) than default parameter settings (ts vs dp) and the same infor-
mation for the comparisons between the hybrids with local search versus default
parameter settings (LS vs dp) and hybrids with local search versus tuned settings
(LS vs ts).

default parameter settings

Function ABC GbABC BsfABC MABC ImpABC CABC GbdABC RABC IABC

f1 4.68E−04 1.00E−14 1.49E+05 3.78E−02 4.19E+03 1.00E−14 1.00E−14 1.00E−14 1.00E−14
f2 1.49E+02 8.46E+01 4.95E+01 1.21E+02 4.87E+01 1.44E+02 8.28E+01 8.09E+01 1.12E+02
f3 5.72E+02 2.99E+01 3.26E+10 2.95E+03 4.14E+08 1.40E+01 7.94E+01 1.95E+01 1.64E+01
f4 1.19E+02 1.00E−14 2.38E+03 1.49E+03 4.10E+03 1.99E+00 1.00E−14 3.08E+00 1.74E+01
f5 3.17E−04 1.00E−14 1.20E+03 7.63E−03 2.26E+01 1.00E−14 1.00E−14 1.00E−14 1.00E−14
f6 7.38E−01 1.00E−14 1.74E+01 2.68E+00 1.93E+01 1.00E−14 1.00E−14 4.31E−10 9.15E−08
f7 1.74E−02 1.00E−14 5.25E+01 5.46E−06 1.02E+02 1.00E−14 1.00E−14 2.98E−12 2.35E−09
f8 8.66E+05 5.56E+05 3.63E+05 1.87E+06 1.57E+05 6.79E+05 5.25E+05 4.14E+05 2.89E+05
f9 3.84E+02 1.00E−14 2.49E+03 2.80E+03 3.13E+03 1.70E−07 1.00E−14 1.15E+00 1.29E+01
f10 1.40E−03 1.00E−14 1.79E+03 2.63E+01 1.18E+02 1.00E−14 1.00E−14 1.00E−14 1.00E−14
f11 3.94E+02 1.00E−14 2.48E+03 2.73E+03 3.16E+03 1.47E−07 1.00E−14 1.17E+00 1.33E+01
f12 4.68E+01 1.00E−14 1.12E+05 6.63E+02 3.68E+03 8.83E−10 1.00E−14 1.89E−01 1.73E+00
f13 5.34E+02 4.55E+01 2.03E+10 2.14E+03 2.16E+08 1.94E+01 1.13E+02 6.30E+00 2.34E+01
f14 1.08E+02 1.03E+00 1.89E+03 1.18E+03 3.13E+03 1.99E+00 9.95E−01 2.17E+00 1.32E+01
f15 9.30E−03 1.00E−14 1.77E+02 3.62E+00 1.79E+02 1.00E−14 1.00E−14 1.45E−12 1.31E−09
f16 1.07E+02 1.00E−14 6.45E+04 1.45E+03 3.35E+03 5.58E−09 1.00E−14 4.49E−01 4.12E+00
f17 2.17E+02 1.06E+00 3.07E+09 3.26E+03 2.79E+06 4.00E+00 1.42E+00 2.92E+00 1.80E+01
f18 8.43E+01 2.28E−03 8.62E+02 7.88E+02 1.37E+03 3.03E−02 9.95E−01 2.66E−01 6.01E+00
f19 2.95E−03 1.00E−14 2.51E+02 1.99E+01 1.70E+02 1.00E−14 1.00E−14 1.79E−13 1.63E−10

tuned parameter settings

Function ABC-ts GbABC-ts BsfABC-ts MABC-ts ImpABC-ts CABC-ts GbdABC-ts RABC-ts IABC-ts

f1 1.00E−14 1.00E−14 1.00E−14 4.57E+00 3.09E+03 1.00E−14 1.00E−14 1.00E−14 1.00E−14
f2 1.08E+02 6.72E+01 4.94E+01 1.35E+02 4.71E+01 1.02E+02 5.83E+01 2.21E+01 9.61E+01
f3 3.86E+01 2.57E+01 4.41E+02 4.58E+04 2.46E+08 2.46E+00 2.21E+02 5.07E+01 9.79E+00
f4 2.29E+01 1.00E−14 9.40E+02 2.08E+03 3.56E+03 3.43E−08 1.13E+00 7.56E+01 2.98E+00
f5 1.00E−14 1.00E−14 3.48E−10 7.43E−01 2.24E+01 1.00E−14 4.01E−04 1.00E−14 1.00E−14
f6 1.00E−14 1.00E−14 1.01E+00 1.98E+01 1.91E+01 1.00E−14 1.00E−14 1.00E−14 1.00E−14
f7 1.00E−14 1.00E−14 1.00E−14 1.26E−02 1.34E+01 1.00E−14 1.00E−14 1.00E−14 1.00E−14
f8 5.43E+05 5.27E+05 9.15E+04 1.23E+06 8.50E+04 5.06E+05 5.06E+05 1.12E+05 3.20E+05
f9 3.13E−06 1.00E−14 3.04E+02 3.48E+03 2.96E+03 6.63E−03 1.00E−14 7.72E+00 1.00E−14
f10 1.00E−14 1.00E−14 4.20E+01 4.20E+01 1.30E+02 1.00E−14 1.00E−14 1.00E−14 1.00E−14
f11 1.07E−02 1.00E−14 1.54E+02 3.47E+03 2.94E+03 6.29E−03 1.00E−14 8.96E+00 1.00E−14
f12 2.89E−07 1.00E−14 6.28E−02 9.64E+02 2.68E+03 7.45E−04 2.26E−01 1.10E−01 1.00E−14
f13 3.95E+01 6.83E+01 6.59E+02 2.75E+03 7.09E+07 7.86E+00 1.88E+02 5.48E+01 4.14E+00
f14 1.69E+01 9.95E−01 6.42E+02 1.66E+03 2.75E+03 8.86E−05 1.35E+00 4.88E+01 9.95E−01
f15 1.00E−14 1.00E−14 1.05E+00 7.54E+00 6.15E+01 1.00E−14 1.00E−14 1.00E−14 1.00E−14
f16 1.19E−06 1.00E−14 1.84E−01 1.97E+03 2.97E+03 3.01E−03 1.08E−01 3.03E−02 1.00E−14
f17 1.02E+00 1.29E+01 1.15E+02 3.60E+03 4.35E+03 5.99E−01 2.30E+01 3.20E+01 1.49E+00
f18 5.97E+00 7.02E−07 5.46E+02 9.39E+02 1.21E+03 1.98E−04 1.97E−06 1.79E+01 1.00E−14
f19 1.00E−14 1.00E−14 2.10E+00 2.52E+01 1.17E+02 1.00E−14 1.00E−14 1.00E−14 1.00E−14

hybrids with local search

Function ABC-LS GbABC-LS BsfABC-LS MABC-LS ImpABC-LS CABC-LS GbdABC-LS RABC-LS IABC-LS

f1 1.00E−14 1.00E−14 1.00E−14 1.00E−14 1.00E−14 1.00E−14 1.00E−14 1.00E−14 1.00E−14
f2 1.82E−02 1.18E−02 1.31E−02 1.69E−02 7.89E−03 1.04E−02 1.69E−02 1.80E−02 1.09E−02
f3 6.63E+00 2.21E+01 9.05E+00 1.22E+01 4.62E+00 9.84E+00 1.26E+01 2.12E+01 2.52E+01
f4 1.00E−14 1.00E−14 1.00E−14 1.00E−14 1.00E−14 1.00E−14 1.00E−14 1.00E−14 1.00E−14
f5 1.00E−14 1.00E−14 1.00E−14 1.00E−14 1.00E−14 1.00E−14 1.00E−14 1.00E−14 1.00E−14
f6 1.00E−14 1.00E−14 1.00E−14 1.00E−14 1.00E−14 1.00E−14 1.00E−14 1.00E−14 1.00E−14
f7 1.00E−14 1.00E−14 1.00E−14 3.57E−14 1.00E−14 1.00E−14 7.52E−14 1.00E−14 1.00E−14
f8 3.69E+04 3.23E+04 3.83E+04 3.78E+04 1.15E+05 1.06E+04 3.70E+04 3.59E+04 3.15E+04
f9 4.23E−05 2.73E−06 6.40E−06 1.49E−05 4.46E+00 4.10E−06 2.76E−05 1.72E−06 8.16E−06
f10 1.00E−14 1.00E−14 1.00E−14 1.00E−14 1.00E−14 1.00E−14 1.00E−14 1.00E−14 1.00E−14
f11 1.19E−05 2.38E−05 1.09E−05 1.57E−05 3.71E+00 6.77E−06 2.98E−05 1.86E−05 5.10E−06
f12 1.00E−14 1.00E−14 1.00E−14 1.00E−14 1.08E−01 1.00E−14 1.00E−14 1.00E−14 1.00E−14
f13 3.93E+01 4.05E+01 6.60E+01 6.62E+01 1.89E+01 4.63E+01 4.26E+01 5.60E+01 2.16E+01
f14 1.00E−14 1.00E−14 1.00E−14 1.00E−14 1.10E−01 6.60E−05 1.00E−14 1.00E−14 1.00E−14
f15 1.00E−14 1.00E−14 1.00E−14 1.00E−14 1.00E−14 1.00E−14 4.16E−14 1.00E−14 1.00E−14
f16 1.00E−14 1.00E−14 1.00E−14 1.00E−14 5.95E−01 1.34E+00 1.00E−14 1.00E−14 1.00E−14
f17 1.75E+01 1.32E+01 9.70E+00 2.00E+01 2.35E+01 1.87E+01 1.21E+01 8.51E+00 1.74E+01
f18 1.00E−14 1.00E−14 1.00E−14 1.00E−14 1.10E+01 1.27E+01 1.00E−14 1.00E−14 1.00E−14
f19 1.00E−14 1.00E−14 1.00E−14 1.00E−14 1.00E−14 1.00E−14 1.00E−14 1.00E−14 1.00E−14

(Win, Draw, Loss)

ts vs dp (19, 0, 0) (5, 12, 2) (19, 0, 0) (1, 0, 18) (18, 0, 1) (8, 7, 4) (3, 8, 8) (8, 3, 8) (15, 3, 1)
LS vs dp (19, 0, 0) (6, 10, 3) (19, 0, 0) (19, 0, 0) (19, 0, 0) (6, 7, 6) (6, 8, 5) (13, 3, 3) (15, 3, 1)
LS vs ts (10, 7, 2) (6, 10, 3) (17, 2, 0) (19, 0, 0) (18, 0, 1) (7, 7, 5) (11, 3, 4) (11, 7, 2) (4, 10, 5)

220

Bibliography

K. Abhishek, S. Leyffer, and J. T. Linderoth. Modeling without categorical vari-

ables: a mixed-integer nonlinear program for the optimization of thermal insu-

lation systems. Optimization and Engineering, 11(2):185–212, 2010.

A. Abraham, R. K. Jatoth, and A. Rajasekhar. Hybrid differential artificial bee

colony algorithm. Journal of Computational and Theoretical Nanoscience, 9(2):

249–257, 2012.

M. A. Abramson. Pattern search algorithms for mixed variable general constrained

optimization problems. PhD thesis, École Polytechnique de Montréal, Canada,

2002.

M. A. Abramson. Mixed variable optimization of a load-bearing thermal insulation

system using a filter pattern search algorithm. Optimization and Engineering,

5(2):157–177, 2004.

M. A. Abramson, C. Audet, J. W. Chrissis, and J. G. Walston. Mesh adaptive

direct search algorithms for mixed variable optimization. Optimization Letters,

3(1):35–47, 2009.

D. H. Ackley. A connectionist machine for genetic hillclimbing. Kluwer, Boston,

1987.

B. Adenso-Diaz and M. Laguna. Fine-tuning of algorithms using fractional exper-

imental designs and local search. Operations Research, 54:99–114, 2006.

B. Akay and D. Karaboga. Artificial bee colony algorithm for large-scale problems

and engineering design optimization. Journal of Intelligent Manufacturing. In

press.

B. Akay and D. Karaboga. Parameter tuning for the artificial bee colony algorithm.

In N. T. Nguyen, R. Kowalczyk, and S.-M. Chen, editors, Proceedings of the

1st International Conference on Computational Collective Intelligence. Semantic

221

BIBLIOGRAPHY

Web, Social Networks and Multiagent Systems, ICCCI’09., LNCS 5796, pages

608–619. Springer Verlag, Heidelberg, Germany, 2009.

B. Akay and D. Karaboga. A modified artificial bee colony algorithm for real-

parameter optimization. Information Sciences, 192:120–142, 2012.

M. S. Alam, M. W. Ul Kabir, and M. M. Islam. Self-adaptation of mutation step

size in artificial bee colony algorithm for continuous function optimization. In

Proceedings of International Conference on Computer and Information Technol-

ogy, ICCIT’10, pages 69–74. IEEE Press, Piscataway, NJ, 2010.

B. Alataş. Chaotic bee colony algorithms for global numerical optimization. Expert

Systems with Applications, 37(8):5682–5687, 2010.

N. Andréasson, A. Evggrafov, and M. Patriksson. An introduction to continuous

optimization. Lightning Source Incorporated, 2005.

C. Audet and J. E. Dennis, Jr. Pattern search algorithms for mixed variable

programming. SIAM Journal on Optimization, 11(3):573–594, 2001.

C. Audet and J. E. Dennis Jr. Mesh adaptive direct search algorithms for con-

strained optimization. SIAM Journal on optimization, 17(1):188–217, 2006.

A. Auger and N. Hansen. A restart CMA evolution strategy with increasing pop-

ulation size. In Proceeding of IEEE Congress on Evolutionary Computation,

CEC’05, pages 1769–1776, Piscataway, NJ, USA, 2005. IEEE Press.

D. Aydın, T. Liao, M. A. Montes de Oca, and T. Stützle. Improving performance

via population growth and local search: The case of the artificial bee colony

algorithm. In J.-K. Hao, P. Legrand, P. Collet, N. Monmarché, E. Lutton, and

M. Schoenauer, editors, Artificial Evolution, LNCS 7401, pages 85–96. Springer

Verlag, Heidelberg, Germany, 2012.

P. Balaprakash, M. Birattari, and T. Stützle. Improvement strategies for the F-

Race algorithm: sampling design and iterative refinement. In Bartz-Beielstein

et al., editors, Proceedings of Conference on Hybrid Metaheuristics, LNCS 4771,

pages 108–122. Springer, Heidelberg, Germany, 2007.

A. Banharnsakun, T. Achalakul, and B. Sirinaovakul. The best-so-far selection in

artificial bee colony algorithm. Applied Soft Computing, 11(2):2888–2901, 2011.

222

BIBLIOGRAPHY

T. Bartz-Beielstein. Experimental Research in Evolutionary Computation: the New

Experimentalism. Springer, 2006.

R. Battiti. First-and second-order methods for learning: between steepest descent

and newton’s method. Neural computation, 4(2):141–166, 1992.

H. Bersini, M. Dorigo, S. Langerman, G. Seront, and L. Gambardella. Results

of the first international contest on evolutionary optimisation (1st ICEO). In

Proceedings of IEEE International Conference on Evolutionary Computation,

ICEC’96, pages 611–615, Piscataway, NJ, 1996. IEEE Press.

H.-G. Beyer and H.-P. Schwefel. Evolution strategies - a comprehensive introduc-

tion. Natural Computing, 1:3–52, 2002.

G. Bilchev and I. Parmee. The Ant Colony Metaphor for Searching Continuous De-

sign Spaces. In T. Fogarty, editor, AISB Workshop on Evolutionary Computing,

pages 25–39. Springer-Verlag, 1995.

M. Birattari. Tuning Metaheuristics: A Machine Learning Perspective. Springer,

Berlin, Germany, 1st ed. 2005. 2nd printing edition, 2009.

M. Birattari, T. Stützle, L. Paquete, and K. Varrentrapp. A racing algorithm

for configuring metaheuristics. In Proceedings of the Genetic and Evolutionary

Computation Conference, GECCO’02, pages 11–18, San Francisco, CA, USA,

2002. Morgan Kaufmann.

M. Birattari, Z. Yuan, P. Balaprakash, and T. Stützle. F-Race and iterated F-

Race: An overview. In Bartz-Beielstein et al., editors, Experimental Methods

for the Analysis of Optimization Algorithms, pages 311–336. Springer, Berlin,

Germany, 2010.

B. Bischl, O. Mersmann, H. Trautmann, and M. Preuß. Algorithm selection based

on exploratory landscape analysis and cost-sensitive learning. In Proceedings of

Genetic and Evolutionary Computation Conference, GECCO’12, pages 313–320,

New York, NY, USA, 2012. ACM.

G. E. Box. Evolutionary operation: A method for increasing industrial productiv-

ity. Applied Statistics, pages 81–101, 1957.

D. Brockhoff, A. Auger, and N. Hansen. On the impact of active covariance

matrix adaptation in the CMA-ES with mirrored mutations and small initial

223

BIBLIOGRAPHY

population size on the noiseless BBOB testbed. In Proceedings of the Genetic and

Evolutionary Computation Conference, GECCO’12 (Companion), pages 291–

296, New York, NY, USA, 2012. ACM.

S. Brooks. A discussion of random methods for seeking maxima. Operations

Research, 6(2):244–251, 1958.

M. R. Bussieck and A. Pruessner. Mixed-integer nonlinear programming.

SIAG/OPT Newsletter: Views & News, 14(1):19–22, 2003.

Y. Cao and Q. Wu. Mechanical design optimization by mixed-variable evolu-

tionary programming. In Proceedings of the IEEE Conference on Evolutionary

Computation, pages 443–446. IEEE Press, Piscataway, NJ, 1997.

J. Chen and Y. Tsao. Optimal design of machine elements using genetic algorithms.

Journal of the Chinese Society of Mechanical Engineers, 14(2):193–199, 1993.

M. Clerc and J. Kennedy. The particle swarm-explosion, stability, and convergence

in a multidimensional complex space. IEEE Transactions on Evolutionary Com-

putation, 6(1):58–73, 2002.

C. A. Coello Coello. Use of a self-adaptive penalty approach for engineering opti-

mization problems. Computers in Industry, 41(2):113–127, 2000.

C. A. Coello Coello and R. L. Becerra. Efficient evolutionary optimization through

the use of a cultural algorithm. Engineering Optimization, 36(2):219–236, 2004.

C. A. Coello Coello and E. Mezura Montes. Constraint-handling in genetic al-

gorithms through the use of dominance-based tournament selection. Advanced

Engineering Informatics, 16(3):193–203, 2002.

A. R. Conn, N. I. Gould, and P. L. Toint. Trust region methods, volume 1. SIAM,

1987.

A. R. Conn, K. Scheinberg, and L. N. Vicente. Introduction to derivative-free

optimization. Society for Industrial and Applied Mathematics, 2009.

W. J. Conover. Practical Nonparametric Statistics. John Wiley & Sons, New York,

NY, USA, 1998.

G. B. Dantzig and M. N. Thapa. Linear Programming 1: Introduction. Springer,

1997.

224

BIBLIOGRAPHY

G. B. Dantzig and M. N. Thapa. Linear Programming 2: Theory and Extensions.

Springer, 2003.

S. Das, A. Abraham, U. K. Chakraborty, and A. Konar. Differential evolution using

a neighborhood-based mutation operator. IEEE Transactions on Evolutionary

Computation, 13(3):526–553, 2009.

S. Das, P. N. Suganthan, and C. A. Coello Coello. Guest editorial special issue on

differential evolution. IEEE Transactions on Evolutionary Computation, 15(1):

1–3, 2011.

D. Datta and J. Figueira. A real-integer-discrete-coded differential evolution algo-

rithm: A preliminary study. In P. Cowling and P. Merz, editors, Evolutionary

Computation in Combinatorial Optimization, LNCS 6022, pages 35–46. Springer

Verlag, Heidelberg, Germany, 2010.

W. C. Davidon. Variable metric method for minimization. SIAM Journal on

Optimization, 1(1):1–17, 1991.

C. De Boor and A. Ron. On multivariate polynomial interpolation. Constructive

Approximation, 6(3):287–302, 1990.

K. Deb and M. Goyal. A combined genetic adaptive search (GeneAS) for engi-

neering design. Computer Science and Informatics, 26:30–45, 1996.

K. Deb and M. Goyal. A flexible optimization procedure for mechanical component

design based on genetic adaptive search. Journal of Mechanical Design, 120(2):

162–164, 1998.

J. E. Dennis, Jr and V. Torczon. Direct search methods on parallel machines.

SIAM Journal on Optimization, 1(4):448–474, 1991.

G. G. Dimopoulos. Mixed-variable engineering optimization based on evolutionary

and social metaphors. Computer Methods in Applied Mechanics and Engineer-

ing, 196(4-6):803 – 817, 2007.

K. Diwold, A. Aderhold, A. Scheidler, and M. Middendorf. Performance evalua-

tion of artificial bee colony optimization and new selection schemes. Memetic

Computing, 3(3):149–162, 2011a.

K. Diwold, M. Beekman, and M. Middendorf. Honeybee optimisation-an overview

and a new bee inspired optimisation scheme. In B. K. Panigrahi, Y. Shi, and

225

BIBLIOGRAPHY

M.-H. Lim, editors, Handbook of Swarm Intelligence-Concepts, Principles and

Application, volume 8 of Adaptation, Learning, and Optimization, pages 295–

328. Springer Verlag, Berlin, Germany, 2011b.

M. Dorigo and G. Di Caro. The Ant Colony Optimization meta-heuristic. In

D. Corne, M. Dorigo, and F. Glover, editors, New Ideas in Optimization, pages

11–32. McGraw Hill, London, UK, 1999.

M. Dorigo and T. Stützle. Ant Colony Optimization. MIT Press, Cambridge, MA,

2004.

M. Dorigo, V. Maniezzo, and A. Colorni. Positive feedback as a search strategy.

Technical Report 91-016, Dipartimento di Elettronica, Politecnico di Milano,

Italy, 1991.

M. Dorigo, V. Maniezzo, and A. Colorni. Ant System: Optimization by a colony

of cooperating agents. IEEE Transactions on Systems, Man, and Cybernetics –

Part B, 26(1):29–41, 1996.

B. Dorronsoro and P. Bouvry. Improving classical and decentralized differential

evolution with new mutation operator and population topologies. IEEE Trans-

actions on Evolutionary Computation, 15(1):67–98, 2011.

J. Dréo and P. Siarry. Continuous interacting ant colony algorithm based on dense

heterarchy. Future Generation Computer Systems, 20(5):841–856, 2004.

J. Dubois-Lacoste, M. López-Ibáñez, and T. Stützle. Automatic configura-

tion of state-of-the-art multi-objective optimizers using the TP+PLS frame-

work. In Proceedings of the Genetic and Evolutionary Computation Conference,

GECCO’11, pages 2019–2026, New York, NY, USA, 2011. ACM.

A. Eiben and T. Bäck. Empirical investigation of multiparent recombination op-

erators in evolution strategies. Evolutionary Computation, 5(3):347–365, 1997.

M. El-Abd. Opposition-based artificial bee colony algorithm. In N. Krasnogor

and P. L. Lanzi, editors, Proceedings of Genetic and Evolutionary Computation

Conference, GECCO’11, pages 109–116. ACM, 2011a.

M. El-Abd. A hybrid ABC-SPSO algorithm for continuous function optimization.

In Proceedings of IEEE Symposium on Swarm Intelligence, pages 1–6. IEEE

Press, Piscataway, NJ, 2011b.

226

BIBLIOGRAPHY

M. Epitropakis, D. Tasoulis, N. Pavlidis, V. Plagianakos, and M. Vrahatis. Enhanc-

ing differential evolution utilizing proximity-based mutation operators. IEEE

Transactions on Evolutionary Computation, 15(1):99–119, 2011.

L. J. Eshelman and J. D. Schaffer. Real-coded genetic algorithms and interval-

schemata. In D. L. Whitley, editor, Foundation of Genetic Algorithms 2, pages

187–202, San Mateo, CA, 1993. Morgan Kaufmann.

I. Fister, I. Fister Jr., J. Brest, and V. Zumer. Memetic artificial bee colony

algorithm for large-scale global optimization. In IEEE Congress on Evolutionary

Computation, CEC’12, pages 1–8. IEEE Press, Piscataway, NJ, 2012.

J.-F. Fu, R. Fenton, and W. Cleghorn. A mixed integer-discrete-continuous pro-

gramming method and its application to engineering design optimization. En-

gineering Optimization, 17(4):263–280, 1991.

L. Gao and A. Hailu. Comprehensive learning particle swarm optimizer for con-

strained mixed-variable optimization problems. International Journal of Com-

putational Intelligence Systems, 3(6):832–842, 2010.

W. Gao and S. Liu. Improved artificial bee colony algorithm for global optimiza-

tion. Information Processing Letters, 111(17):871–882, 2011.

W. Gao, S. Liu, and L. Huang. A global best artificial bee colony algorithm for

global optimization. Journal of Computational and Applied Mathematics, 236

(11):2741–2753, 2012.

S. Ghosh, S. Das, S. Roy, S. K. Minhazul Islam, and P. N. Suganthan. A differ-

ential covariance matrix adaptation evolutionary algorithm for real parameter

optimization. Information Science, 182(1):199–219, 2012.

J. Gimmler. Metaheuristiken zur kontiuierlichen, globalen optimierung. Master’s

thesis, Computer Science Department, TU, Darmstadt, Germany, 2005.

J. Gimmler, T. Stützle, and T. E. Exner. Hybrid particle swarm optimization:

An examination of the influence of iterative improvement algorithms on perfor-

mance. In M. Dorigo et al., editors, Proceedings of International Conference on

Ant Colony Optimization and Swarm Intelligence, ANTS’06, LNCS 4150, pages

436–443. Springer, Heidelberg, Germany, 2006.

D. E. Goldberg. Genetic Algorithms in Search, Optimization and Machine Learn-

ing. Addison-Wesley, Boston, MA, USA, 1989.

227

BIBLIOGRAPHY

C. P. Gomes and B. Selman. Algorithm portfolios. Artificial Intelligence, 126(12):

4–62, 2001.

T. Gönen. Electric power distribution system engineering. McGraw-Hill, New

York, USA, 1986.

A. Griewank. Generalized descent for global optimization. Journal of optimization

theory and applications, 34(1):11–39, 1981.

I. Griva, S. G. Nash, and A. Sofer. Linear and nonlinear optimization. Society for

Industrial and Applied Mathematics, 2009.

M. Guntsch and M. Middendorf. A population based approach for ACO. In

S. Cagnoni et al., editors, Proceedings of EvoWorkshops 2002: EvoCOP,

EvoIASP, EvoSTim, volume 2279 of LNCS, pages 71–80. Springer, Berlin, Ger-

many, 2002.

C. Guo, J. Hu, B. Ye, and Y. Cao. Swarm intelligence for mixed-variable design

optimization. Journal of Zhejiang University Science, 5(7):851–860, 2004.

P. Guo, W. Cheng, and J. Liang. Global artificial bee colony search algorithm for

numerical function optimization. In Proceedings of International Conference on

Natural Computation, volume 3, pages 1280–1283. IEEE Press, Piscataway, NJ,

2011.

N. Hansen. Benchmarking a BI-population CMA-ES on the BBOB-2009 function

testbed. In Proceedings of the Genetic and Evolutionary Computation Confer-

ence, GECCO’12 (Companion), pages 2389–2396, New York, NY, USA, 2009.

ACM.

N. Hansen. The CMA evolution strategy: A tutorial, 2010. Online: http://www.

lri. fr/hansen/cmatutorial. pdf.

N. Hansen and A. Ostermeier. Adapting arbitrary normal mutation distributions

in evolution strategies: The covariance matrix adaptation. In Proceedings of

IEEE International Conference on Evolutionary Computation, CEC’96, pages

312–317, Piscataway, NJ, 1996. IEEE Press.

N. Hansen and A. Ostermeier. Completely derandomized self-adaptation in evo-

lution strategies. Evolutionary Computation, 9(2):159–195, 2001.

228

BIBLIOGRAPHY

N. Hansen, S. Muller, and P. Koumoutsakos. Reducing the time complexity of the

derandomized evolution strategy with covariance matrix adaptation (CMA-ES).

Evolutionary Computation, 11(1):1–18, 2003.

N. Hansen, S. Finck, R. Ros, and A. Auger. Real-parameter black-box optimization

benchmarking 2009: Noiseless functions definitions. 2009a. Technical Report

RR-6829, INRIA.

N. Hansen, S. Finck, R. Ros, and A. Auger. Real-parameter black-box optimization

benchmarking 2009: Noisy functions definitions. Technical Report Research

Report RR-6869, INRIA, 2009b.

N. Hansen, A. S. P. Niederberger, L. Guzzella, and P. Koumoutsakos. A method for

handling uncertainty in evolutionary optimization with an application to feed-

back control of combustion. IEEE Transactions on Evolutionary Computation,

13(1):180–197, 2009c.

Q. He and L. Wang. An effective co-evolutionary particle swarm optimization for

constrained engineering design problems. Engineering Applications of Artificial

Intelligence, 20(1):89–99, 2007a.

Q. He and L. Wang. A hybrid particle swarm optimization with a feasibility-based

rule for constrained optimization. Applied Mathematics and Computation, 186

(2):1407–1422, 2007b.

F. Herrera and M. Lozano. Two-loop real-coded genetic algorithms with adaptive

control of mutation step sizes. Applied Intelligence, 13(3):187–204, 2000.

F. Herrera, M. Lozano, and J. Verdegay. Tackling real-coded genetic algorithms:

Operators and tools for behavioural analysis. Artificial Intelligence Review, 12:

265–319, 1998.

F. Herrera, M. Lozano, and A. Sánchez. A taxonomy for the crossover operator for

real-coded genetic algorithms: An experimental study. International Journal of

Intelligent Systems, 18(3):309–338, 2003.

F. Herrera, M. Lozano, and A. Sánchez. Hybrid crossover operators for real-coded

genetic algorithms: an experimental study. Soft Computing, 9(4):280–298, 2005.

F. Herrera, M. Lozano, and D. Molina. Test suite for the special issue of

soft computing on scalability of evolutionary algorithms and other meta-

229

BIBLIOGRAPHY

heuristics for large scale continuous optimization problems, 2010. URL:

http://sci2s.ugr.es/eamhco/.

R. Hinterding. Gaussian mutation and self-adaption for numeric genetic algo-

rithms. In Proceeding of IEEE Congress on Evolutionary Computation, CEC’95,

page 384, Piscataway, NJ, 1995. IEEE Press.

J. H. Holland. Adaptation in natural and artificial systems: An introductory anal-

ysis with applications to biology, control, and artificial intelligence. University

of Michigan Press, 1975.

R. Hooke and T. A. Jeeves. “Direct Search” solution of numerical and statistical

problems. Journal of the ACM, 8(2):212–229, 1961.

H. H. Hoos. Programming by optimization. Communications of the ACM, 55(2):

70–80, 2012.

H. H. Hoos and T. Stützle. Stochastic Local Search: Foundations & Applications.

Morgan Kaufmann, San Francisco, CA, USA, 2005.

X.-M. Hu, J. Zhang, and Y. Li. Orthogonal methods based ant colony search for

solving continuous optimization problems. Journal of Computer Science and

Technology, 23:2–18, 2008.

X.-M. Hu, J. Zhang, H. S.-H. Chung, Y. Li, and O. Liu. SamACO: Variable

sampling ant colony optimization algorithm for continuous optimization. IEEE

Transactions on Systems, Man, and Cybernetics - Part B: Cybernetics, 40:1555–

1566, 2010.

B. A. Huberman, R. M. Lukose, and T. Hogg. An economics approach to hard

computational problems. Science, 275(5296):51–54, 1997.

F. Hutter, D. Babic, H. Hoos, and A. Hu. Boosting verification by automatic

tuning of decision procedures. In Proceedings of Formal Methods in Computer

Aided Design, FMCAD’07, pages 27–34, Piscataway, NJ, 2007. IEEE Press.

F. Hutter, H. Hoos, K. Leyton-Brown, and K. Murphy. An experimental investiga-

tion of model-based parameter optimisation: SPO and beyond. In Proceedings

of the Genetic and Evolutionary Computation Conference, GECCO’09, pages

271–278, New York, NY, USA, 2009a. ACM.

230

BIBLIOGRAPHY

F. Hutter, H. Hoos, K. Leyton-Brown, and T. Stützle. ParamILS: an automatic

algorithm configuration framework. Journal of Artificial Intelligence Research,

36:267–306, 2009b.

S. G. Johnson. The nlopt nonlinear-optimization package., 2008. URL: http://ab-

initio.mit.edu/nlopt.

N. C. Jones and P. Pevzner. An introduction to bioinformatics algorithms. MIT

Press, 2004.

K. D. Jong. An analysis of the behavior of a class of genetic adaptive systems.

PhD thesis, Department of Computer and Communication Sciences, University

of Michigan, 1975.

F. Kang, J. Li, and Z. Ma. Rosenbrock artificial bee colony algorithm for accurate

global optimization of numerical functions. Information Sciences, 181(16):3508–

3531, 2011.

D. Karaboga. An idea based on honey bee swarm for numerical optimization.

Technical Report TR06, Erciyes University, Engineering Faculty, Computer En-

gineering Departmen, 2005.

D. Karaboga and B. Akay. A survey: Algorithms simulating bee swarm intelli-

gence. Artificial Intelligence Review, 31(1–4):61–85, 2009.

D. Karaboga and B. Basturk. A powerful and efficient algorithm for numerical

function optimization: Artificial bee colony (ABC) algorithm. Journal of Global

Optimization, 39(3):459–471, 2007.

D. Karaboga and B. Basturk. On the performance of artificial bee colony (ABC)

algorithm. Applied Soft Computing, 8(1):687–697, 2008.

A. Kayhan, H. Ceylan, M. Ayvaz, and G. Gurarslan. PSOLVER: A new hy-

brid particle swarm optimization algorithm for solving continuous optimization

problems. Expert Systems with Applications, 37(10):6798–6808, 2010.

C. Kelley. Detection and remediation of stagnation in the nelder–mead algorithm

using a sufficient decrease condition. SIAM Journal on Optimization, 10(1):

43–55, 1999.

J. Kennedy and R. Eberhart. Particle swarm optimization. In Proceedings of

IEEE International Conference on Neural Networks, volume 4, pages 1942–1948,

Piscataway, NJ, USA, 1995. IEEE Press.

231

BIBLIOGRAPHY

J. Kennedy and R. C. Eberhart. Swarm intelligence. Morgan Kaufmann, San

Francisco, CA, USA, 2001.

J. Kennedy and R. Mendes. Population structure and particle swarm performance.

In Proceedings of IEEE Congress on Evolutionary Computation, CEC’02, vol-

ume 2, pages 1671–1676, Piscataway, NJ, 2002. IEEE Press.

A. R. KhudaBukhsh, L. Xu, H. H. Hoos, and K. Leyton-Brown. SATenstein: Au-

tomatically building local search SAT solvers from components. In Proceedings

of International Joint Conference on Artificial Intelligence, IJCAI’09, pages

517–524, 2009.

M. Kokkolaras, C. Audet, and J. Dennis Jr. Mixed variable optimization of the

number and composition of heat intercepts in a thermal insulation system. Op-

timization and Engineering, 2(1):5–29, 2001.

T. G. Kolda, R. M. Lewis, and V. Torczon. Optimization by direct search: New

perspectives on some classical and modern methods. SIAM review, 45(3):385–

482, 2003.

O. Kramer. Iterated local search with Powell’s method: a memetic algorithm for

continuous global optimization. Memetic Computing, 2:69–83, 2010.

J. Lampinen and I. Zelinka. Mixed integer-discrete-continuous optimization by

differential evolution - part 1: the optimization method. In P. Os̆mera, editor,

Proceedings of 5th International Mendel Conference of Soft Computing, pages

71–76. Brno University of Technology, Brno, Czech Republic, 1999a.

J. Lampinen and I. Zelinka. Mixed integer-discrete-continuous optimization by

differential evolution. Part 2: a practical example. In P. Os̆mera, editor, Pro-

ceedigns of 5th International Mendel Conference of Soft Computing, pages 77–81.

Brno University of Technology, Brno, Czech Republic, 1999b.

J. Lampinen and I. Zelinka. Mechanical engineering design optimization by differ-

ential evolution. In D. Corne, M. Dorigo, and F. Glover, editors, New Ideas in

Optimization, pages 127–146. McGraw-Hill, London, UK, 1999c.

P. Larrañaga and J. A. Lozano, editors. Estimation of distribution algorithms: A

new tool for evolutionary computation. Kluwer Academic Publishers, Boston,

MA, 2002.

232

BIBLIOGRAPHY

A. LaTorre, S. Muelas, and J.-M. Peña. A MOS-based dynamic memetic differ-

ential evolution algorithm for continuous optimization: a scalability test. Soft

Computing, 15(11):2187–2199, 2011.

W.-P. Lee and W.-T. Cai. A novel artificial bee colony algorithm with diversity

strategy. In Proceedings of International Conference on Natural Computation,

volume 3, pages 1441–1444. IEEE Press, Piscataway, NJ, 2011.

G. Leguizamón and C. Coello. An alternative ACOR algorithm for continuous

optimization problems. In M. Dorigo et al., editors, Proceedings of the Seventh

International Conference on Swarm Intelligence, ANTS’10, LNCS 6234, pages

48–59. Springer, Berlin, Germany, 2010.

H.-L. Li and C.-T. Chou. A global approach for nonlinear mixed discrete program-

ing in design optimization. Engineering Optimization, 22:109–122, 1994.

J. J. Liang, A. Qin, P. N. Suganthan, and S. Baskar. Comprehensive learning

particle swarm optimizer for global optimization of multimodal functions. IEEE

Transactions on Evolutionary Computation, 10(3):281–295, 2006.

T. Liao and T. Stützle. Bounding the population size of IPOP-CMA-ES on the

noiseless BBOB testbed. In Proceedings of Genetic and Evolutionary Computa-

tion Conference, GECCO’13(Companion), New York, NY, USA, 2013a. ACM.

Accepted.

T. Liao and T. Stützle. Testing the impact of parameter tuning on a variant

of IPOP-CMA-ES with a bounded maximum population size on the noiseless

BBOB testbed. In Proceedings of Genetic and Evolutionary Computation Con-

ference, GECCO’13(Companion), New York, NY, USA, 2013b. ACM. Accepted.

T. Liao and T. Stützle. Expensive optimization scenario: IPOP-CMA-ES with a

population bound mechanism for noiseless function testbed. In Proceedings of

Genetic and Evolutionary Computation Conference, GECCO’13(Companion),

New York, NY, USA, 2013c. ACM. Accepted.

T. Liao and T. Stützle. A simple and effective cooperative-competitive hybrid

algorithm for continuous optimization. IEEE Transactions on Systems, Man,

and Cybernetics, Part B, 2013. Submitted.

T. Liao, D. Molina, M. Montes de Oca, and T. Stützle. A note on the effects of

enforcing bound constraints on algorithm comparisons using the IEEE CEC’05

233

BIBLIOGRAPHY

benchmark function suite. Technical Report TR/IRIDIA/2011-010, IRIDIA,

Université Libre de Bruxelles, Belgium, 2011a.

T. Liao, M. A. Montes de Oca, D. Aydın, T. Stützle, and M. Dorigo. An incremen-

tal ant colony algorithm with local search for continuous optimization. In Pro-

ceedings of the Genetic and Evolutionary Computation Conference, GECCO’11,

pages 125–132, New York, NY, USA, 2011b. ACM.

T. Liao, M. A. Montes de Oca, and T. Stützle. Tuning parameters across mixed

dimensional instances: A performance scalability study of Sep-G-CMA-ES. In

Proceedings of the Workshop on Scaling Behaviours of Landscapes, Parame-

ters and Algorithms of the Genetic and Evolutionary Computation Conference,

GECCO’11, pages 703–706, New York, NY, USA, 2011c. ACM.

T. Liao, D. Molina, T. Stützle, M. A. Montes de Oca, and M. Dorigo. An

ACO algorithm benchmarked on the BBOB noiseless function testbed. In Pro-

ceedings of Conference on Genetic and Evolutionary Computation Conference,

GECCO’12(Companion), pages 159–166, New York, NY, USA, 2012. ACM.

T. Liao, M. A. Montes de Oca, and T. Stützle. Computational results for an

automatically tuned CMA-ES with increasing population size on the CEC’05

benchmark set. Soft Computing, 17(6), 2013a.

T. Liao, K. Socha, M. A. Montes de Oca, T. Stützle, and M. Dorigo. Ant colony

optimization for mixed-variable optimization problems. IEEE Transactions on

Evolutionary Computation, 2013b. Conditionally accepted.

H. Loh and P. Papalambros. Computation implementation and test of a sequential

linearization approach for solving mixed-discrete nonlinear design optimization.

Journal of Mechanical Design, 113(3):335–345, 1991.

M. López-Ibáñez and T. Stützle. Automatic configuration of multi-objective aco

algorithms. In M. Dorigo et al., editors, Proceedings of the Seventh International

Conference on Swarm Intelligence, ANTS’10, LNCS 6234, pages 95–106. IEEE

Press, Piscataway, NJ, 2010.

M. López-Ibáñez and T. Stützle. The automatic design of multi-objective ant

colony optimization algorithms. IEEE Transactions on Evolutionary Computa-

tion, 16(6):861–875, 2012.

234

BIBLIOGRAPHY

M. López-Ibáñez, J. Dubois-Lacoste, T. Stützle, and M. Birattari. The irace

package, iterated race for automatic algorithm configuration. Technical Report

TR/IRIDIA/2011-004, IRIDIA, Université Libre de Bruxelles, Belgium, 2011.

URL http://iridia.ulb.ac.be/IridiaTrSeries/IridiaTr2011-004.pdf.

M. López-Ibáñez, T. Liao, and T. Stützle. On the anytime behavior of IPOP-

CMA-ES. In C. A. Coello Coello et al., editors, PPSN 2012, Part I, volume

7491 of Lecture Notes in Computer Science, pages 357–366. Springer, Heidelberg,

Germany, 2012.

I. Loshchilov, M. Schoenauer, and M. Sebag. Alternative restart strategies for

CMA-ES. In C. A. C. Coello et al., editors, Proceedings of Parallel Problem

Solving from Nature, PPSN’12, LNCS 7491, pages 296–305, Heidelberg, Ger-

many, 2012a. Springer.

I. Loshchilov, M. Schoenauer, and M. Sebag. Black-box optimization benchmark-

ing of NIPOP-aCMA-ES and NBIPOP-aCMA-ES on the BBOB-2012 noiseless

testbed. In Proceedings of the Genetic and Evolutionary Computation Confer-

ence, GECCO’12 (Companion), pages 269–276, New York, NY, USA, 2012b.

ACM.

I. Loshchilov, M. Schoenauer, and M. Sebag. Black-box optimization benchmark-

ing of IPOP-saACM-ES and BIPOP-saACM-ES on the BBOB-2012 noiseless

testbed. In Proceedings of the Genetic and Evolutionary Computation Confer-

ence, GECCO’12 (Companion), pages 175–182, New York, NY, USA, 2012c.

ACM.

I. Loshchilov, M. Schoenauer, and M. Sebag. Self-adaptive surrogate-assisted co-

variance matrix adaptation evolution strategy. In Proceedings of the Genetic and

Evolutionary Computation Conference, GECCO’12, pages 321–328, New York,

NY, USA, 2012d. ACM.

I. Loshchilov, M. Schoenauer, and M. Sebag. Bi-population cma-es algorithms

with surrogate models and line searches. In Proceedings of the Genetic and

Evolutionary Computation Conference, GECCO’13 (Companion), New York,

NY, USA, 2013. ACM. Accepted.

H. R. Lourenço, O. Martin, and T. Stützle. Iterated local search: Framework and

applications. In M. Gendreau and J.-Y. Potvin, editors, Handbook of Metaheuris-

tics, volume 146 of International Series in Operations Research & Management

Science, chapter 9, pages 363–397. Springer, New York, NY, 2 edition, 2010.

235

http://iridia.ulb.ac.be/IridiaTrSeries/IridiaTr2011-004.pdf

BIBLIOGRAPHY

M. Lozano, F. Herrera, N. Krasnogor, and D. Molina. Real-coded memetic algo-

rithms with crossover hill-climbing. Evolutionary computation, 12(3):273–302,

2004.

M. Lozano, D. Molina, and F. Herrera. Editorial scalability of evolutionary algo-

rithms and other metaheuristics for large-scale continuous optimization prob-

lems. Soft Computing, 15(11):2085–2087, 2011.

C. B. Lucasius and G. Kateman. Application of genetic algorithms in chemomet-

rics. In Proceedings of the third international conference on Genetic algorithms,

pages 170–176. Morgan Kaufmann Publishers Inc., 1989.

S. Lucidi, V. Piccialli, and M. Sciandrone. An algorithm model for mixed variable

programming. SIAM Journal on Optimization, 15(4):1057–1084, 2005.

M. H. Mashinchi, M. A. Orgun, and W. Pedrycz. Hybrid optimization with im-

proved tabu search. Applied Soft Computing, 11(2):1993–2006, 2011.

R. Mendes, J. Kennedy, and J. Neves. The fully informed particle swarm: simpler,

maybe better. IEEE Transactions on Evolutionary Computation, 8(3):204–210,

2004.

O. Mersmann, B. Bischl, H. Trautmann, M. Preuß, C. Weihs, and G. Rudolph.

Exploratory landscape analysis. In Proceedings of Genetic and Evolutionary

Computation Conference, GECCO’11, pages 829–836, New York, NY, USA,

2011. ACM Press.

E. Mezura Montes and C. A. Coello Coello. Useful infeasible solutions in engineer-

ing optimization with evolutionary algorithms. In A. Gelbukh et al., editors,

Advances in Artificial Intelligence, LNCS 3789, pages 652–662. Springer, Berlin,

Germany, 2005.

Z. Michalewicz. Genetic algorithms + data structures = evolution programs.

Springer-Verlag New York, Inc., 1992.

H. Ming, J. Baohui, and L. Xu. An improved bee evolutionary genetic algorithm.

In IEEE International Conference on Intelligent Computing and Intelligent Sys-

tems, volume 1, pages 372–374. IEEE Press, Piscataway, NJ, 2010.

D. Molina, M. Lozano, C. Garćıa-Mart́ınez, and F. Herrera. Memetic algorithms

for continuous optimisation based on local search chains. Evolutionary Compu-

tation, 18(1):27–63, 2010a.

236

BIBLIOGRAPHY

D. Molina, M. Lozano, and F. Herrera. MA-SW-Chains: Memetic algorithm based

on local search chains for large scale continuous global optimization. In Proceed-

ing of IEEE Congress on Evolutionary Computation, CEC’10, pages 1–8. IEEE

Press, 2010b.

D. Molina, M. Lozano, A. Snchez, and F. Herrera. Memetic algorithms based

on local search chains for large scale continuous optimisation problems: MA-

SSW-Chains. Soft Computing - A Fusion of Foundations, Methodologies and

Applications, 15:2201–2220, 2011.

N. Monmarché, G. Venturini, and M. Slimane. On how Pachycondyla apicalis ants

suggest a new search algorithm. Future Generation Computer Systems, 16(9):

937–946, 2000.

M. A. Montes de Oca. Incremental Social Learning in Swarm Intelligence Systems.

PhD thesis, Université Libre de Bruxelles, Brussels, Belgium, 2011.

M. A. Montes de Oca, D. Aydın, and T. Stützle. An incremental particle swarm

for large-scale continuous optimization problems: An example of tuning-in-the-

loop (re)design of optimization algorithms. Soft Computing, 15(11):2233–2255,

2011.

M. A. Montes de Oca, T. Stützle, K. Van den Enden, and M. Dorigo. Incremental

social learning in particle swarms. IEEE Transactions on Systems, Man, and

Cybernetics - Part B: Cybernetics, 41(2):368–384, 2011.

R. W. Morrison and K. A. D. Jong. A test problem generator for non-stationary

environments. In Proceedings of the Congress on Evolutionary Computation,

CEC’99, pages 2047–2053, Piscataway, NJ, 1999. IEEE Press.

P. Moscato. Memetic algorithms: a short introduction. In New ideas in optimiza-

tion, pages 219–234. McGraw-Hill Ltd, UK, 1999.

C. Müller, B. Baumgartner, and I. Sbalzarini. Particle swarm CMA evolution

strategy for the optimization of multi-funnel landscapes. In Proceeding of IEEE

Congress on Evolutionary Computation, CEC’09, pages 2685–2692, Piscataway,

NJ, 2009. IEEE Press.

V. Nannen and A. E. Eiben. Relevance estimation and value calibration of evolu-

tionary algorithm parameters. In Proceedings of International Joint Conference

on Artifical Intelligence, IJCAI’07, pages 975–980, San Francisco, CA, USA,

2007. Morgan Kaufmann.

237

BIBLIOGRAPHY

J. A. Nelder and R. Mead. A simplex method for function minimization. The

computer journal, 7(4):308–313, 1965.

G. L. Nemhauser and L. A. Wolsey. Integer and combinatorial optimization, vol-

ume 18. Wiley New York, 1988.

J. Ocenasek and J. Schwarz. Estimation distribution algorithm for mixed

continuous-discrete optimization problems. In Proceedings of the 2nd Euro-

International Symposium on Computational Intelligence, pages 227–232. IOS

Press, Amsterdam, The Netherlands, 2002.

U.-M. O’Reilly and F. Oppacher. Hybridized crossover-based search techniques

for program discovery. In Proceeding of IEEE Congress on Evolutionary Com-

putation, CEC’95, volume 2, pages 573–578, Piscataway, NJ, 1995. IEEE Press.

H.-O. Peitgen. Newton’s method and dynamical systems. Kluwer Academic Pub,

1989.

F. Peng, K. Tang, G. Chen, and X. Yao. Population-based algorithm portfolios

for numerical optimization. IEEE Transactions on Evolutionary Computation,

14(5):782–800, 2010.

Y. Petalas, K. Parsopoulos, and M. Vrahatis. Memetic particle swarm optimiza-

tion. Annals of Operations Research, 156(1):99–127, 2007.

R. Poli, J. Kennedy, and T. Blackwell. Particle swarm optimization. Swarm

Intelligence, 1(1):33–57, 2007.

M. J. D. Powell. An efficient method for finding the minimum of a function of

several variables without calculating derivatives. The Computer Journal, 7(2):

155, 1964.

M. J. D. Powell. UOBYQA: unconstrained optimization by quadratic approxima-

tion. Mathematical Programming, 92(3):555–582, 2002.

M. J. D. Powell. The NEWUOA software for unconstrained optimization without

derivativesn. In G. Pillo and M. Roma, editors, Large-Scale Nonlinear Optimiza-

tion, volume 83 of Nonconvex Optimization and Its Applications, pages 255–297.

Springer, 2006.

M. J. D. Powell. The BOBYQA algorithm for bound constrained optimization

without derivatives. Cambridge NA Report NA2009/06, University of Cam-

bridge, Cambridge, 2009.

238

BIBLIOGRAPHY

S. Praharaj and S. Azarm. Two-level non-linear mixed discrete-continuous

optimization-based design: An application to printed circuit board assemblies.

Advances in Design Automation, 1(44):307–321, 1992.

W. Press, S. Teukolsky, W. Vetterling, and B. Flannery. Numerical Recipes in C:

The Art of Scientific Computing. Cambridge Univ. Press, 1992.

C. J. Price, I. Coope, and D. Byatt. A convergent variant of the nelder–mead

algorithm. Journal of Optimization Theory and Applications, 113(1):5–19, 2002.

A. Qin, V. Huang, and P. Suganthan. Differential evolution algorithm with strategy

adaptation for global numerical optimization. IEEE Transactions on Evolution-

ary Computation, 13(2):398–417, 2009.

A. Rajasekhar, A. Abraham, and M. Pant. Levy mutated artificial bee colony

algorithm for global optimization. In Proceedings of 2011 IEEE International

Conference on Systems, Man, and Cybernetics, pages 655–662. IEEE Press,

Piscataway, NJ, 2011.

R. V. Rao, V. J. Savsani, and D. P. Vakharia. Teaching-learning-based optimiza-

tion: A novel method for constrained mechanical design optimization problems.

Computer-Aided Design, 43(3):303–315, 2011.

S. S. Rao and Y. Xiong. A hybrid genetic algorithm for mixed-discrete design

optimization. Journal of Mechanical Design, 127(6):1100–1112, 2005.

I. Rechenberg. Evolutionsstrategie: Optimierung technischer Systeme nach

Prinzipien der biologischen Evolution. PhD thesis, Technical University of

Berlin, 1971.

I. Rechenberg. Evolutionsstrategie: Optimierung technischer Systeme nach

Prinzipien der biologischen Evolution. Frommann-Holzbook, Stuttgart, Ger-

many, 1973.

J. R. Rice. The algorithm selection problem. Advances in Computers, 15:65–118,

1976.

R. Ros. Benchmarking sep-CMA-ES on the BBOB-2009 noisy testbed.

In Proceedings of Genetic and Evolutionary Computation Conference,

GECCO’09(Companion), pages 2441–2446, New York, NY, USA, 2009. ACM.

239

BIBLIOGRAPHY

R. Ros and N. Hansen. A simple modification in CMA-ES achieving linear time

and space complexity. In G. Rudolph et al., editors, Parallel Problem Solving

from Nature, PPSN’08, LNCS 5199, pages 296–305, Heidelberg, Germany, 2008.

H. H. Rosenbrock. An automatic method for finding the greatest or least value of

a function. The Computer Journal, 3(3):175–184, 1960.

F. Sambo, M. A. Montes de Oca, B. Di Camillo, G. Toffolo, and T. Stützle. MORE:

Mixed optimization for reverse engineering: An application to modeling biolog-

ical networks response via sparse systems of nonlinear differential equations.

IEEE/ACM Transactions on Computational Biology and Bioinformatics, 9(5):

1459–1471, 2012.

E. Sandgren. Nonlinear integer and discrete programming in mechanical design

optimization. Journal of Mechanical Design, 112:223–229, 1990.

H. Schmidt and G. Thierauf. A combined heuristic optimization technique. Ad-

vances in Engineering Software, 36:11–19, 2005.

H.-P. Schwefel. Evolutionsstrategie und Numerische Optimierung. PhD thesis,

Technical University of Berlin, 1975.

H. P. Schwefel. Numerical optimization of computer models. Wiley & Sons, 1981.

T. Sharma and M. Pant. Enhancing scout bee movements in artificial bee colony

algorithm. In K. Deep, A. Nagar, M. Pant, and J. C. Bansal, editors, Proceedings

of the International Conference on Soft Computing for Problem Solving, volume

130 of Advances in Intelligent and Soft Computing, pages 601–610. Springer

India, 2012.

T. Sharma, M. Pant, and T. Bhardwaj. PSO ingrained artificial bee colony algo-

rithm for solving continuous optimization problems. In International Confer-

ence on Computer Applications and Industrial Electronics, pages 108–112. IEEE

Press, Piscataway, NJ, 2011.

Y. Shi and R. Eberhart. A modified particle swarm optimizer. In Proceedings

of IEEE Congress on Evolutionary Computation, CEC’98, pages 69–73, Piscat-

away, NJ, 1998. IEEE Press.

S. Smit and A. Eiben. Comparing parameter tuning methods for evolutionary

algorithms. In IEEE Congress on Evolutionary Computation, CEC’09, pages

399–406, Piscataway, NJ, 2009. IEEE Press.

240

BIBLIOGRAPHY

S. Smit and A. Eiben. Beating the world champion evolutionary algorithm via

REVAC tuning. In Proceeding of IEEE Congress on Evolutionary Computation,

CEC 2010, pages 1–8, Piscataway, NJ, 2010. IEEE Press.

J. E. Smith and T. C. Fogarty. Operator and parameter adaptation in genetic

algorithms. Soft Computing, 1(2):81–87, 1997.

K. Socha. Ant Colony Optimization for Continuous and Mixed-Variable Domains.

PhD thesis, Université Libre de Bruxelles, Belgium, May 2008.

K. Socha and M. Dorigo. Ant colony optimization for continuous domains. Euro-

pean Journal of Operational Research, 185(3):1155–1173, 2008.

M. Stelmack and S. Batill. Concurrent subspace optimization of mixed continu-

ous/discrete systems. In Proceedings of AIAA/ASME/ASCE/AHS/ASC 38th

Structures, Structural Dynamic and Materials Conference. AIAA, Kissimmee,

Florida, 1997.

R. Stern and K. Price. Differential evolution - a simple and efficient heuristic for

global optimization over continuous spaces. Journal of Global Optimization, 11

(4):341–359, 1997.

J. Stoer, R. Bulirsch, R. Bartels, W. Gautschi, and C. Witzgall. Introduction to

numerical analysis. Springer-Verlag New York, Inc., 1993.

R. Storn and K. Price. Differential evolution–a simple and efficient heuristic for

global optimization over continuous spaces. Journal of Global Optimization, 11

(4):341–359, 1997.

P. N. Suganthan, N. Hansen, J. Liang, K. Deb, Y. Chen, A. Auger, and S. Tiwari.

Problem definitions and evaluation criteria for the CEC 2005 special session on

real-parameter optimization. Technical Report 2005005, Nanyang Technological

University, 2005.

E.-G. Talbi. A taxonomy of hybrid metaheuristics. Journal of Heuristics, 8(5):

541–564, 2002.

K. Tang, X. Yao, P. N. Suganthan, C. MacNish, Y. Chen, C. Chen, and

Z. Yang. Benchmark functions for the CEC 2008 special session and com-

petition on large scale global optimization. Technical report, Nature In-

spired Computation and Applications Laboratory, USTC, China, 2007. URL:

http://nical.ustc.edu.cn/cec08ss.php.

241

BIBLIOGRAPHY

G. Thierauf and J. Cai. Evolution strategies—parallelization and application in en-

gineering optimization. In B. Topping, editor, Parallel and distributed processing

for computational mechanics: systems and tools, pages 329–349. Saxe-Coburg

Publications, Edinburgh, UK, 2000.

V. Torczon. On the convergence of pattern search algorithms. SIAM Journal on

Optimization, 7:1–25, 1997.

A. Törn and A. Zilinskas. Global Optimization. Springer-Verlag New York, Inc.,

1989.

P. Tsai, J. Pan, B. Liao, and S. Chu. Enhanced artificial bee colony optimization.

International Journal of Innovative Computing, Information and Control, 5(12):

1–12, 2011.

L. Tseng and C. Chen. Multiple trajectory search for large scale global optimiza-

tion. In Proceeding of the IEEE Congress on Evolutionary Computation,CEC’08,

pages 3052–3059, Piscataway, NJ, 2008. IEEE Press.

P. Tseng. Fortified-descent simplicial search method: A general approach. SIAM

Journal on Optimization, 10(1):269–288, 1999.

N. Turkkan. Discrete optimization of structures using a floating point genetic

algorithm. In Proceedings of the Annual Conference of the Canadian Society for

Civil Engineering, pages 4–7. Moncton, N.B., Canada, 2003.

M. C̆repins̆ek, S.-H. Liu, and L. Mernik. A note on teaching-learning-based opti-

mization algorithm. Information Sciences, 212(0):79–93, 2012.

F. Vanden Berghen and H. Bersini. CONDOR, a new parallel, constrained ex-

tension of Powell’s UOBYQA algorithm: Experimental results and comparison

with the DFO algorithm. Journal of computational and applied mathematics,

181(1):157–175, 2005.

M. Wagner, J. Day, D. Jordan, T. Kroeger, and F. Neumann. Evolving pacing

strategies for team pursuit track cycling. In Proceedings of Metaheuristics In-

ternational Conference, MIC 2011. MIC Conference Organization, 2011.

J. Wang and Z. Yin. A ranking selection-based particle swarm optimizer for en-

gineering design optimization problems. Structural and Multidisciplinary Opti-

mization, 37:131–147, 2008.

242

BIBLIOGRAPHY

L. Wang and L.-p. Li. An effective differential evolution with level comparison for

constrained engineering design. Structural and Multidisciplinary Optimization,

41(6):947–963, 2010.

D. Whitley, S. Rana, J. Dzubera, and K. E. Mathias. Evaluating evolutionary

algorithms. Artificial Intelligence, 85(12):245 – 276, 1996.

L. A. Wolsey. Integer programming. Wiley, New York, 1998.

A. H. Wright. Genetic algorithms for real parameter optimization. Foundations

of genetic algorithms, 1:205–218, 1991.

B. Wu and S.-h. Fan. Improved artificial bee colony algorithm with chaos. In

Y. Yu et al., editors, Computer Science for Environmental Engineering and

EcoInformatics, CCIS 158, pages 51–56. Springer Berlin Heidelberg, 2011.

S.-J. Wu and P.-T. Chow. Genetic algorithms for nonlinear mixed discrete-integer

optimization problems via meta-genetic parameter optimization. Engineering

Optimization, 24(2):137–159, 1995.

L. Xu, H. H. Hoos, and K. Leyton-Brown. Hydra: Automatically configuring algo-

rithms for portfolio-based selection. In M. Fox and D. Poole, editors, Proceedings

of the Twenty-Fourth AAAI Conference on Artificial Intelligence, AAAI 2010.

AAAI Press, 2010.

X. Yan, Y. Zhu, and W. Zou. A hybrid artificial bee colony algorithm for numerical

function optimization. In Proceedings of International Conference on Hybrid

Intelligent Systems, pages 127–132. IEEE Press, Piscataway, NJ, 2011.

Z. Yuan, M. Montes de Oca, M. Birattari, and T. Stützle. Modern continuous

optimization algorithms for tuning real and integer algorithm parameters. In

M. Dorigo et al., editors, Proceedings of the Seventh International Conference

on Swarm Intelligence, ANTS’10, LNCS 6234, pages 204–215. Springer, Berlin,

Germany, 2010.

E. Zahara and Y. Kao. Hybrid Nelder-Mead simplex search and particle swarm

optimization for constrained engineering design problems. Expert Systems with

Applications, 36(2):3880–3886, 2009.

S. A. Zenios. Financial optimization. Cambridge University Press, 1996.

243

BIBLIOGRAPHY

J. Zhang and A. C. Sanderson. Jade: adaptive differential evolution with optional

external archive. IEEE Transactions on Evolutionary Computation, 13(5):945–

958, 2009.

Y. Zhong, J. Lin, J. Ning, and X. Lin. Hybrid artificial bee colony algorithm with

chemotaxis behavior of bacterial foraging optimization algorithm. In Proceedings

of International Conference on Natural Computation, pages 1171–1174. IEEE

Press, Piscataway, NJ, 2011.

G. Zhu and S. Kwong. Gbest-guided artificial bee colony algorithm for numerical

function optimization. Applied Mathematics and Computation, 217(7):3166–

3173, 2010.

M. Zlochin, M. Birattari, N. Meuleau, and M. Dorigo. Model-based search for

combinatorial optimization: A critical survey. Annals of Operations Research,

131(1–4):373–395, 2004.

W. Zou, Y. Zhu, H. Chen, and Z. Zhu. Cooperative approaches to artificial bee

colony algorithm. In Proceedings of International Conference on Computer Ap-

plication and System Modeling, volume 9, pages 44–48. IEEE Press, Piscataway,

NJ, 2010.

244

	Introduction
	Goal and methodology
	Main contributions
	Additional contributions
	Publications
	International journal submissions
	International conferences and workshops (peer-reviewed)

	Structure of the thesis

	Background
	Continuous optimization
	Local search algorithms
	Metaheuristic based algorithms
	Benchmark functions sets

	Mixed discrete-continuous optimization
	Basic Algorithms
	ACOR
	CMA-ES

	Automatic algorithm configuration
	Iterated F-Race
	Tuning methodology

	Summary

	UACOR: A unified ACO algorithm for continuous optimization
	ACO algorithms for continuous optimization
	Algorithmic components

	UACOR
	Automatic algorithm configuration
	Algorithm evaluation
	UACOR+: Re-designed UACOR
	Summary

	iCMAES-ILS: A cooperative competitive hybrid algorithm for continuous optimization
	iCMAES-ILS algorithm
	ILS
	iCMAES-ILS

	Algorithm analysis and evaluation
	Algorithm analysis: the role of ILS
	Performance evaluation of iCMAES-ILS

	A tuned version of iCMAES-ILS
	Automatic algorithm configuration
	Performance evaluation of iCMAES-ILSt

	Comparisions of iCMAES-ILS and UACOR+
	Summary

	Mixed discrete-continuous optimization
	Artificial mixed discrete-continuous benchmark functions
	ACOMV: ACO for mixed discrete-continuous optimization problems
	Algorithm analysis

	CMA-ES extensions for mixed discrete-continuous optimization
	CES-RoundC
	CESMV
	CES-RelayC

	Automatic tuning and performance evaluation
	Automatic tuning
	Performance evaluation on benchmark functions

	Application to engineering optimization problems
	Summary

	Summary and future work
	Summary
	Future work

	Appendices
	The results obtained by UACOR+
	Mathematical formulation of engineering problems
	A note on the bound constraints handling for the CEC'05 benchmark set
	Introduction
	Experiments on enforcing bound constraints
	The impact of bound handling on algorithm comparisons
	Conclusions

	Computational results for an automatically tuned IPOP-CMA-ES on the CEC'05 benchmark set
	Introduction
	Parameterized iCMA-ES
	Experimental setup and tuning
	Experimental study
	iCMA-ES-tsc vs. iCMA-ES-dp
	iCMA-ES-tsc vs. iCMA-ES-tcec
	Comparison to state-of-the-art methods that exploit CMA-ES

	Additional experiments
	Comparison to other results by iCMA-ES
	Tuning setup

	Conclusions and future work

	Artificial bee colonies for continuous optimization: Experimental analysis and improvements
	Introduction
	Artificial bee colony algorithm
	Original ABC algorithm
	Variants of the artificial bee colony algorithm

	Experimental setup
	Benchmark set
	Local search
	Tuner setup and parameter settings

	Experimental results and analysis
	Main comparison
	Detailed analysis of ABC algorithms
	Comparison with SOCO special issue contributors

	Discussion and conclusions

