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Abstract

The study of self-assembling robots represents a promising strand within the emerg-
ing field of modular robots research. Self-assembling robots have the potential to
autonomously adapt their bodies to new tasks and changing environments long after
their initial deployment by forming new or reorganizing existing physical connections
to peer robots. In previous research, many approaches have been presented to en-
able self-assembling robots to form composite morphologies. Recent technological
advances have also increased the number of robots able to form such morphologies
by at least two orders of magnitude. However, to date, composite robot morpholo-
gies have not been able to solve real-world tasks nor have they been able to adapt
to changing conditions entirely without human assistance or prior knowledge.

In this thesis, we identify three reasons why self-assembling robots may not have
been able to fully unleash their potential and propose appropriate solutions. First,
composite morphologies are not able to show sensorimotor coordination similar to
those seen in their monolithic counterparts. We propose “mergeable nervous sys-
tems” – a novel methodology that unifies independent robotic units into a single
holistic entity at the control level. Our experiments show that mergeable nervous
systems can enable self-assembling robots to demonstrate feats that go beyond those
seen in any engineered or biological system. Second, no proposal has been tabled to
enable a robot in a decentralized multirobot system select its communication part-
ners based on their location. We propose a new form of highly scalable mechanism
to enable “spatially targeted communication” in such systems. Third, the question
of when and how to trigger a self-assembly process has been ignored by researchers
to a large extent. We propose “supervised morphogenesis” – a control method-
ology that is based on spatially targeted communication and enables cooperation
between aerial and ground-based self-assembling robots. We show that allocating
self-assembly related decision-making to a robot with an aerial perspective of the
environment can allow robots on the ground to operate in entirely unknown envi-
ronments and to solve tasks that arise during mission time. For each of the three
propositions put forward in this thesis, we present results of extensive experiments
carried out on real robotic hardware. Our results confirm that we were able to sub-
stantially advance the state of the art in self-assembling robots by unleashing their
potential for morphological adaptation through enhanced sensorimotor coordination
and by improving their overall autonomy through cooperation with aerial robots.
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CHAPTER 1
Introduction

Self-assembling robots are mobile robots that can autonomously form reversible
physical connections with peer robots. By re-arranging these connections, they are
able to change their morphologies — i.e., their physical composition — at a group-
level. The primary research interest in self-assembling robots is driven by their
potential for morphological adaptation allowing an already deployed robotic system
to react to changing environments or tasks by forming different morphologies. The
long term vision of this research is a future in which robots are no longer built
for a particular task. Instead, application systems will manufacture and deploy
composable robotic units that build robot morphologies of required shapes and sizes
entirely by themselves.

To date, most of the research effort was directed towards the development of
control algorithms [2, 3, 4] that enable independent robots to form distinctive mor-
phologies (see Figure 1.1a for examples). By combining the technological advances
made in recent years, researchers have also demonstrated the formation of morpholo-
gies of previously unattainable scales [5]. In this particular work, the formation of
morphologies composed of up to a thousand independent units were shown. How-
ever, behavioral coordination in composite robots is either entirely absent or limited
to a predefined set of morphologies. As shown in Figure 1.1b, such coordination
is a prerequisite to successfully solve real-world tasks. Furthermore, to initiate the
formation, researchers often depend on environmental cues [6] or, alternatively, they
pre-program [7] the scale and precise shape of morphologies to be formed prior to
deployment. These measures render existing self-assembling robot systems semi-
autonomous in the best case and unapt to solve real-world tasks.

We identify three main reasons why application scenarios based on self-assembling
robots were not considered neither by the scientific community nor by commercial
applications. First, in existing systems, group-level sensorimotor coordination is
limited or absent. Robots remain individually autonomous even when physically
connected to each other. The behavioral control paradigm adopted for these sys-
tems is often distributed or based on self-organization showing a resemblance to
certain natural systems (such as unicellular slime molds [8, 9], ants [10, 11] or honey
bees [12]) that also form collective structures. Similar to their biological coun-
terparts, current self-assembling robot systems thus lack a nervous system with a
single decision-making unit enabling sophisticated sensorimotor coordination as seen
in higher order animals. Second, spatial positioning of communicating robots often
plays a crucial role in multirobot systems that require spatial coordination. In most
communication modalities used today, such as in wireless Ethernet, spatial infor-
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(a) (b)

Figure 1.1: Composite robots or morphologies formed by self-assembling robots.
(a) A series of example morphologies that can be formed by self-assembling robots.
(b) An illustration of an object-pushing task that requires behavioral coordination
among connected robots.

mation is largely unavailable to robots and needs to be acquired through additional
position determining technologies. To date, systems that allow robots to select
communication partners based on location either rely on centralized solutions or
consider robots that have a global view of the system – approaches not available to
most decentralized systems including self-assembling robot systems. Third, existing
self-assembling robot systems consider homogeneous robots groups that operate on
the same planar surface. Robots in such groups are equipped with an identical set
of actuators and sensors making their perception of the environment rather similar
to each other. No single robot in such a group may be able to gather significantly
different information about the task or the environment than that available to its
peer robots. Therefore, decisions regarding when to trigger self-assembly and which
morphology may be suited to solve the task at hand often cannot be made by a
single robot alone, unless pre-programmed or assisted otherwise.

In this thesis, we exploit the technological progress that fuels today’s self-assembl-
ing robots in terms of computation power, memory, sensing and communication ca-
pabilities and propose “mergeable nervous systems for robots” as a solution to the
sensorimotor coordination problem. This proposal transforms a composite multi-
robot system into a new unified robot with a single decision-making unit. We define
the robot nervous system as the signaling architecture of a robot together with the
processing unit (the “brain unit") that takes high-level decisions for the whole robot.
To form an holistic robot that is composed of initially independent units, one of the
robotic units needs to assume authority (and become the brain unit) while all others
cede authority. For this purpose, we apply a hierarchical tree structure that follows
the physical connections made within a morphology. We also divorce the control
logic in a merged nervous system from the morphology and its available sensors and
actuators such that a single control logic can take every physically possible mor-
phology into account. Constituent robotic units process sensor data in a distributed
fashion and transmit high-level representations of the perceived environment to the
brain unit. In turn, the brain unit issues high-level commands about actions the
body should take, and the merged nervous system takes responsibility for translating
those commands into instructions for individual actuators in each constituent unit.
We show that self-assembling robots that implement mergeable nervous systems be-
come a new class of robots with capabilities beyond those of any existing artificial
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(a) (b)

Figure 1.2: An illustration of spatially targeted communication in two different
multirobot systems. The overlays show established communication links. (a) An
homogeneous robot system composed of five ground-based robots in which one robot
on the bottom communicates with the robot on the top-left. (b) An heterogeneous
robot system composed of aerial and ground-based robots in which the aerial robots
use spatially targeted communication to issue commands to specific robots on the
ground located next to objects of interests. On the left, a one-to-one link and on
the right, a one-to-three link is shown.

or biological system. Such robots can merge into larger bodies with a single brain
unit, split into separate bodies with independent brains, and self-heal by removing
or replacing malfunctioning body parts, even a malfunctioning brain.

To solve the communication problem, we propose “spatially targeted commu-
nication”. Spatially targeted communication relies on situated communication [13]
– a communication modality in which messages also reveal the relative position
of the message sender. In a sense, spatially targeted communication provides de-
centralized multirobot systems with the inverse functionality offered by situated
communication. That is, messages do not have to be broadcast and processed by all
recipient robots to determine the addressees. Instead, a message sending robot can
select the recipient robots based on their spatial position in the environment and
establish dedicated communication links without requiring any prior information or
centralized solutions. We show how dedicated communication links can be estab-
lished to interestingly located robots using light-emitting diodes (LEDs) that then
can be detected using cameras mounted on the robots. The proposed method does
not require centralized control, environment maps, unique IDs, or external hardware
installation to localize the robots. It can also be applied in outdoor or indoor envi-
ronments by robots that are not able to share a common frame of reference (such as
GPS) or by robot that are deployed on missions that require higher precision than
that offered by civilian GPS systems. We present an iterative elimination process
that allows robots to narrow down the number of broadcast message recipients until
a dedicated communication link is established to a single peer robot in the commu-
nication range (see Figure 1.2a). An iterative growth process can be then executed
to expand the link to a coherent group of co-located robots. See Figure 1.2b for
an example one-to-one and one-to-three spatially targeted communication link. We
also show that these link establishment processes are highly scalable with respect
to the total number of robots in the communication range that participate in the
processes. Spatially targeted communication can be applied to both ground-based
homogeneous robot groups as well as to heterogeneous robot teams operating in
three-dimensional environments.
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(a) (b)

Figure 1.3: Supervised morphogenesis shown in two different scenarios. (a) An aerial
robot has recruited and guided four self-assembling robots to form a morphology ad-
equate to the object-pushing task. (b) Another aerial robot supervises the formation
of a sufficiently long chain-like morphology that helps the robots cross a ditch too
wide for a single robot to cross.

Finally, we integrate the work described so far and present “supervised morpho-
genesis” – a control methodology that allows self-assembling robots to rely on aerial
robots to act as an “eye-in-the-sky” with decision-making authority. In such hetero-
geneous groups, aerial robots exploit their elevated position and agility to survey the
ground on which self-assembling robots operate to determine when self-assembly is
required and what morphologies need to be formed as a function of the perceived task
or environment. For this purpose, the aerial robots first build a model of the environ-
ment and then execute on-board simulations based on the model. Depending on the
outcome of the simulations, aerial robots initiate and control (hence supervise) the
formation of morphologies on the ground. On-board simulations allow aerial robots
to assess the performance of different morphologies in a particular environment prior
to their costly and physical realization on the ground. A robot on the ground is then
selected by the aerial robot using spatially targeted communication that then can
seed (or initiate) the growth of a task-dependent morphology – see Figure 1.3 for
two example scenarios. In simulation-based experiments, we also quantify the ben-
efits of cooperation between an aerial robot and self-assembling robots in terms of
task completion times. Our experiments show that supervised morphogenesis al-
lows self-assembling robots to adapt to previously unknown tasks and environments
by cooperating with an aerial robot and thus significantly increases their level of
autonomy.

1.1 Thesis structure and original contributions

Here we present a structural overview of the thesis by describing the contents of its
chapters and by listing the scientific publications that resulted from each of them.

In Chapter 2, we present the robot platforms used for experimentation in this
thesis. We present details of two different self-assembling robot platforms, namely
the s-bot and its successor themarXbot. We also describe the aerial platforms eye-bot
and the commercially available AR.Drone we used in our experiments.
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In Chapter 3, we present a novel methodology to control composite robot mor-
phologies. We refer to it as “mergeable nervous systems for robots”. In Section 3.1,
we first detail the basic connection forming mechanism we developed to enable au-
tonomous self-assembly between two self-assembling robots. The underlying algo-
rithms and experimental results were published in the following international con-
ference:

• N. Mathews, A. L. Christensen, R. O’Grady, P. Rétornaz, M. Bonani, F.
Mondada, and M. Dorigo. Enhanced directional self-assembly based on active
recruitment and guidance. In Proceedings of the 2011 IEEE/RSJ International
Conference on Intelligent Robots and Systems (IROS 2011), pages 4762–4769.
San Francisco, USA. September 2011.

– Symposium on (self-)assembly from the nano to the macro scale: state
of the art and future directions

Second, in Section 3.2, we detail how a mechanism developed in previous research
can be combined with communication schemes developed in this thesis to control the
growth of pre-defined topology-aware, robot morphologies. Third, in Section 3.3, we
present the key contribution of this chapter by detailing the control and communi-
cation logic we developed for physically connected multirobot morphologies. This
logic enables composite morphologies demonstrate previously unseen features and
was published in the following journal article:

• N. Mathews, A. L. Christensen, R. O’Grady, F. Mondada, and M. Dorigo.
Mergeable nervous systems for robots. Nature Communications, 8(439), 2017.

– Journal impact factor at the time of publication: 12.124 (as of 2016)
– Reached an Altmetric score of 340 within 5 days after publication (top

5% of all research outputs scored by Altmetric)

In Section 3.4, we review existing modular robot systems with a focus on their
coordination mechanism before we summarize the contribution of the chapter in
Section 3.5 and discuss potential limitations.

In Chapter 4, we describe how “spatially targeted communication” links can be
established in decentralized multirobot systems. Preliminary results of this approach
were published in an international conference while the more comprehensive work
was published in a journal:

• N. Mathews, A. L. Christensen, E. Ferrante, R. O’Grady, and M. Dorigo. Es-
tablishing spatially targeted communication in a heterogeneous robot swarm.
In Proceedings of the 9th International Conference on Autonomous Agents and
Multiagent Systems (AAMAS 2010), pages 939–946. Toronto, Canada. May
2010.

– Nominated for the CoTeSys Best Robotics Paper Award

• N. Mathews, G. Valentini, A. L. Christensen, R. O’Grady, A. Brutschy,
and M. Dorigo. Spatially targeted communication in decentralized multirobot
systems. Autonomous Robots. 38(4): 439-457, 2015.
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In Section 4.3, we discuss potential shortcomings of the presented approach together
with solution proposals. In Section 4.4, we review communication modalities applied
in existing multirobot systems that enable spatial coordination. We summarize the
chapter in Section 4.5.

In Chapter 5, we integrate the work presented in Chapters 3 and 4 and present
“supervised morphogenesis” – an approach that enables aerial robots increase the
autonomy of self-assembling robots on the ground. Preliminary ideas and results
were published in the following video proceeding:

• N. Mathews, A. L. Christensen, R. O’Grady, and Marco Dorigo. Spa-
tially targeted communication and self-assembly. In Proceedings of the 2012
IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS
2012), pages 2678–2679. Vilamoura, Algarve, Portugal. October 2012.

– Best IROS 2012 Video Award Finalist

– More than 685 000 views on YouTube (as of February, 2018)

The main methodology is presented in Section 5.1 followed by two case studies
in Section 5.2 and Section 5.3, respectively. In simulation, we also quantify the
performance benefits attainable to self-assembling robots through cooperation with
aerial robots and present the results in Section 5.4. These efforts were published in
the following two international conferences:

• N. Mathews, A. Stranieri, A. Scheidler, and Marco Dorigo. Supervised mor-
phogenesis - morphology control of ground-based self-assembling robots by
aerial robots. In Proceedings of the 11th International Conference on Au-
tonomous Agents and Multiagent Systems (AAMAS 2012),pages 97–104. Va-
lencia, Spain. June 2012.

• N. Mathews, A. L. Christensen, R. O’Grady, and M. Dorigo. Cooperation
in a heterogeneous robot swarm through spatially targeted communication.
In Proceedings of the 7th International Conference on Ant Colony Optimiza-
tion and Swarm Intelligence (ANTS 2010), volume 6234 of Lecture Notes in
Computer Science, pages 400–407. Brussels, Belgium. September 2010.

A comprehensive work composed of the research presented in this chapter has also
been submitted to a journal for review:

• N. Mathews, A. L. Christensen, A. Stranieri, A. Scheidler, and M. Dorigo.
Supervised morphogenesis: exploiting morphological flexibility of self-assem-
bling multirobot systems through cooperation with aerial robots. Under re-
view.

We present a literature review of existing air-ground robot teams and detail the
kind of tasks they solve in Section 5.5 before presenting a summary of the chapter
in Section 5.6.

In Chapter 6, we conclude the findings presented in this thesis and discuss pos-
sible future work.
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1.2 Other contributions
The doctoral studies presented in this thesis have also made contributions to a
number of related research topics not reported here:

• G. Podevijn , R. O’Grady, N. Mathews„ A. Gilles, C. Fantini-Hauwel, M.
Dorigo. Investigating the effect of increasing robot group sizes on the human
psychophysiological state in the context of human-swarm interaction. Swarm
Intelligence. 10(3): 193-210, 2016.

• M. Dorigo, D. Floreano, L.M. Gambardella, F. Mondada, S. Nolfi, T. Baaboura,
M. Birattari, M. Bonani, M. Brambilla, A. Brutschy, D. Burnier, A. Campo,
A. L. Christensen, A. Decugnière, G. Di Caro, F. Ducatelle, E. Ferrante, A.
Forster, J. Martinez Gonzales, J. Guzzi, V. Longchamp, S. Magnenat, N.
Mathews, M. Montes de Oca, R. O’Grady, C. Pinciroli, G. Pini, P. Rétor-
naz, J. Roberts, V. Sperati, T. Stirling, A. Stranieri, T. Stützle, V.Trianni,
E. Tuci, A. E. Turgut, and F. Vaussard. Swarmanoid: a novel concept for
the study of heterogeneous robotic swarms. IEEE Robotics & Automation
Magazine. 20(4):60-71, 2013

– More than 240 citations according to Google Scholar (as of February,
2018)

• C. Pinciroli, V. Trianni, R. O’Grady, G. Pini, A. Brutschy, M. Brambilla,
N. Mathews, E. Ferrante, G. Di Caro, F. Ducatelle, M. Birattari, L. M.
Gambardella, M. Dorigo. ARGoS: a modular, parallel, multi-engine simulator
for multi-robot systems. Swarm Intelligence, 6(4):271-295, 2012.

– More than 160 citations according to Google Scholar (as of February,
2018)

• “Swarmanoid." Daily Planet. Prod. Cindy Bahadur. Discovery Channel
Canada, Toronto, Canada. 27th of March, 2012.

– Media coverage of the Swarmanoid project – includes visuals from the
research carried out on “Supervised Morphogenesis"

• M.Dorigo, M. Birattari, R. O’Grady, L. M. Gambardella, F. Mondada, D.
Floreano, S. Nolfi, T. Baaboura, M. Bonani, M. Brambilla, A. Brutschy,
D. Burnier, A. Campo, A. L. Christensen, A. Decugnière, G. Di Caro, F.
Ducatelle, E. Ferrante, J. Martinez Gonzales, J. Guzzi, V. Longchamp, S.
Magnenat, N. Mathews, M. Montes de Oca, C. Pinciroli, G. Pini, F. Rey,
P. Rétornaz, J. Roberts, F. Rochat, V. Sperati, T. Stirling, A. Stranieri, T.
Stützle, V. Trianni, E. Tuci, A. E. Turgut, and F. Vaussard. Swarmanoid,
The Movie.

– Best Video Award @ AAAI-11 Video Competition (AIVC 2011). San
Francisco, September 2011

– Botsker Award for the Most Innovative Technology @ 2nd Annual Robot
Film Festival. New York City, July 2012

– Prix Wernaers 2012, Brussels, August 2012
– More than 435 000 views on YouTube (as of February, 2018)
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• C. Pinciroli, V. Trianni, R. O’Grady, G. Pini, A. Brutschy, M. Brambilla, N.
Mathews, E. Ferrante, G. Di Caro, F. Ducatelle, T. Stirling, A. Gutiérrez, L.
M. Gambardella, and M. Dorigo. ARGoS: A modular, multi-engine simulator
for heterogeneous swarm robotics. In Proceedings of the 2011 IEEE/RSJ In-
ternational Conference on Intelligent Robots and Systems (IROS 2011), pages
5027–5034. San Francisco, USA. September 2011.

• – More than 100 citations according to Google Scholar (as of February,
2018)

• E. Ferrante, A. E. Turgut, N. Mathews, M. Birattari, and M. Dorigo. Flock-
ing in stationary and non-stationary environments: a novel communication
strategy for heading alignment. In Proceedings of 11th International Con-
ference on Parallel Problem Solving from Nature (PPSN XI), number 6239 in
Lecture Notes in Computer Science, pages 331–340. Krakow, Poland. Septem-
ber 2010.

• M. A. Montes de Oca, E. Ferrante,N. Mathews, M. Birattari, and M. Dorigo.
Opinion dynamics for decentralized decision-making in a robot swarm. In Pro-
ceedings of the 7th International Conference on Ant Colony Optimization and
Swarm Intelligence (ANTS 2010), volume 6234 of Lecture Notes in Computer
Science, pages 252–263. Brussels, Belgium. September 2010.

– Nominated for the Best Paper Award

• M. A. Montes de Oca, E. Ferrante, N. Mathews, M. Birattari, and M. Dorigo.
Optimal collective decision-making through social influence and different ac-
tion execution times. In Proceedings of the Workshop on Organisation, Coop-
eration and Emergence in Social Learning Agents of the European Conference
on Artificial Life (ECAL 2009). Budapest, Hungary. September 2009.

1.3 Publication summary

According to Google Scholar, my h-index (as of February, 2018) is 10. All original
scientific contributions that resulted from this doctoral thesis are summarized in the
following. First author contributions are indicated with (�).

6 Journal papers

Robotics and Autonomous Systems (under review), 2017 (�)
Nature Communications, 2017 (�)
Swarm Intelligence, 2016
Autonomous Robots, 2015 (�)
IEEE Robotics & Automation Magazine, 2013
Swarm Intelligence, 2012

8 Peer-reviewed conference papers

International Conference on Autonomous Agents and Multiagent Systems
(AAMAS), 2012 (�)
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IEEE/RSJ International Conference on Intelligent Robots and Systems
(IROS), 2012 (�)
IEEE/RSJ International Conference on Intelligent Robots and Systems
(IROS), 2011 (�)
IEEE/RSJ International Conference on Intelligent Robots and Systems
(IROS), 2011
International Conference on Parallel Problem Solving from Nature
(PPSN), 2010
International Conference on Ant Colony Optimization and Swarm Intelligence
(ANTS), 2010 (�)
International Conference on Ant Colony Optimization and Swarm Intelligence
(ANTS), 2010
International Conference on Autonomous Agents and Multiagent Systems
(AAMAS), 2010 (�)

2 Video proceedings

IEEE/RSJ International Conference on Intelligent Robots and Systems
(IROS), 2012 (�)
AAAI Conference on Artificial Intelligence, 2011

3 Visual media coverage

Discovery Channel, 2012
MSN News, 2017
The Wall Street Journal, 2017

1 Workshop proceeding

European Conference on Artificial Life (ECAL), 2009
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CHAPTER 2
Robot platforms

The experiments described in this thesis have been conducted using multiple robot
platforms. This is because, during the course of this thesis, technological progress
experienced an unprecedented upsurge making advanced robotic hardware cheaper
and rather easily available. Hence, we regularly adapted our studies to new hardware
to allow our algorithms and approaches take full advantage of this progress. We
present four robot platforms used for experimentation in this thesis: two ground-
based robot platforms named the s-bot and the marXbot and two aerial platforms
named the eye-bot and the Parrot AR.Drone (hereafter referred to as AR.Drone).
Control programs for the s-bots were developed using the TwoDee simulator [14]. For
the development of controllers of the marXbot and the eye-bot platforms, we used
a novel, physics-based simulation framework [15, 16]. This framework, developed
specifically for the study of large-scale heterogeneous robot systems, was also used
to conduct scalability experiments that required more than twelve robots. For the
AR.Drone, we used an adaptation [17] of the SDK provided by the manufacturer to
control the robot using a joystick or using a robot control program we developed for
autonomous control.

We conducted our initial experiments using ground-based, autonomous robots
called s-bots [18] (see Figure 2.1A). S-bots were developed as part of the Swarm-
bots project [19] and became first available in 2005. In this project, a particular
importance was given to the design and development of robots that can physically
interact with each other and self-assemble. The resulting s-bot is a mobile robot
with a circular chassis of 11.6 cm diameter powered by an XScale CPU running
at 400 MHz. The robot features a wide range of sensors and actuators: 3-axes
accelerometer, light sensors, 15 IR proximity sensors, ground sensors, microphones
and loudspeakers, WiFi communication, a temperature sensor, a traction sensor to
measure horizontal forces applied to the robot chassis, and a system for locomotion
composed of both tracks and wheels providing differential drive capabilities. A dis-
tinct feature of this robot is its 8 RGB colored controllable LEDs allowing the s-bot
to change the ambient color in its immediate vicinity. The LEDs are evenly placed
inside a transparent ring part of the circular chassis. The s-bot’s most innovative
and visible feature is its rigid gripper that enables self-assembly between multiple
s-bots. Each s-bot is also equipped with an omni-directional camera (0.3 MP) point-
ing upward at a hemi-spherical mirror. The mirror is mounted at the top end of a
transparent tube reflecting panoramic images of the s-bot’s vicinity up to a distance
of 70 cm, depending on light conditions. A rechargeable, fixed mount battery pro-
vides the s-bot with an autonomy of around 2 h after which it needs to be shutdown
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Figure 2.1: The two ground-based and the two aerial robot platforms used for
experimentation in this thesis. (A) An s-bot, (B) an exploded view of the modular
marXbot platform showing the modules considered in this thesis. (C) A foot-bot
and (D) a manipulator foot-bot with its magnetic gripper module mounted. (E) An
eye-bot and (F) an AR.Drone with its indoor hull (source: www.ifixit.com/).
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for charging. The s-bots have been used in several experiments in studies focusing
on topics such as self-assembly [20], group transport [21], morphology control [22],
and negotiation of goal direction [23]. In this thesis, the s-bots are used in the
experiments described in Chapter 4.

The marXbot [24] is the revised version of the s-bot platform and was first
introduced in 2010 (see Figure 2.1B). It was developed as part of the Swarmanoid
project [25] – the follow-up project of the Swarm-bots project. While there are
certain physical similarities between the marXbot and its predecessor, the marXbot
is a fundamentally different robotic platform designed with the idea of component
modularity as the key driver. As shown in Figure 2.1B, sensors and actuators are
built into modules that can be swapped in and out of robot configurations. This
feature essentially allows researchers to develop tools (such as simulation frameworks,
toolchains, etc.) targeting a single platform while being able to use those tools for
an array of different module configurations. Each such configuration is a robot on its
own right featuring distinct physical properties. At the time of writing, new modules
(with a maximum diameter of 17 cm) are still being produced for the marXbot
platform. For what concerns the experiments described in this thesis, however, we
considered two different module configurations resulting in two physically different
robots: a foot-bot (see Figure 2.1C) and a manipulator foot-bot (see Figure 2.1D).

With the exception of the microphones and loudspeakers, the foot-bot matches
all capabilities available to the s-bot. In the following, we list improvements of exist-
ing features or complete novelties solely available to the foot-bot: an ARM 11 pro-
cessor (i.MX31 clocked at 533 MHz and with 128 MB RAM) running a Linux-based
operating system, 12 RGB-colored LEDs, a 2D distance scanner, 24 IR proxim-
ity sensors, a 3-axis gyroscope, one omni-directional (3 MP) and one ceiling (3 MP)
camera. The foot-bot also has a hot-swappable battery system that provides a much
longer autonomy than that of the s-bot. That is, a battery running out of charge
can be replaced with a pre-charged one without requiring a complete shutdown of
the robot. A key novelty of the foot-bot is its communication device [26] that also
allows the simultaneous estimation relative positions (i.e., the range and bearing) of
peer robots. A detailed description of the functioning of this device is given in Sec-
tion 3.1.1. The self-assembly module enables multiple foot-bots to physically connect
to one another, that is, to self-assemble. This module includes a rotatable docking
module composed of an active docking unit with three fingers and a passive docking
ring. A physical connection is formed when a foot-bot inserts its docking unit into
the docking ring of another foot-bot and then opens its three fingers. The foot-bot
also supports rapid development and debugging of robot behaviors enabled by an
event-based control architecture [27] implemented at the micro-controller level. The
foot-bot module configuration has been successfully used for other studies includ-
ing robot flocking [28], self-organized decision making [29] and task-partitioning [30]
in robot swarms. In this thesis, the foot-bot has been used for experimentation
described in Chapters 3, 4, and 5. The manipulator foot-bot has a similar configu-
ration as that of a foot-bot with a magnetic gripper module [31] mounted instead of
the distance scanner module. The magnetic gripper module has 3-DoF and allows
the robot to manipulate its environment by retrieving, transporting and depositing
ferromagnetic objects. The manipulator foot-bot has been used in an experiment
presented in Chapter 3.

Figure 2.1E shows an eye-bot [32], the first aerial platform we used for experi-
mentation. The thrust and control of the eye-bot is provided by its 8 rotors mounted
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in a co-axial quadrotor configuration. The eye-bot chassis is made out of carbon-
fiber and weighs 270 g. At a height of 54 cm and with a chassis diameter of 50 cm,
the on-board battery provides the eye-bot with 10-20 minutes of autonomy. A novel
ceiling attachment system composed of active magnets allow the eye-bot to extend
this autonomy considerably in indoor environments by attaching to metal ceilings
or bars and by remaining static. Other features include a downward-pointing 2 MP
HD 360 ◦ pan-and-tilt camera that allows the eye-bot to survey the ground for other
robots and objects, a ring encompassing the robot chassis with 16 built-in RGB
LEDs, an altitude sensor, and a magnetometer to detect heading direction. The
eye-bot is also the first robot with a 3D relative positioning and communication de-
vice [33]. This on-board device has a maximum range of 12 m and allows an eye-bot
to communicate with other eye-bots in flight as well as with marXbot configurations
on the ground equipped with the range and bearing module, such as the foot-bot.
The eye-bot is one of the three robots developed as part of the Swarmanoid project.
We used the eye-bots in experiments described in Chapters 4 and 5.

The AR.Drone [34] is an electrically powered quadcopter (see Figure 2.1F) pro-
duced by a French manufacturer named Parrot SA. Introduced in January 2010,
it was the first commercially available aerial platform to gain widespread popular
attention in the European consumer electronics market. This is mainly because of
the fact that it can be piloted over WiFi with a smartphone or a tablet and also its
affordable pricing. We, however, considered the AR.Drone as a research platform
because of three reasons: i) its open API allowing third party developers to control
the AR.Drone via software, ii) its well documented SDK, and iii) its built-in aerial
stabilization behaviors and assisted maneuvers that allow the platform to be flown
by non-experts without a background in avionics or aeronautical engineering. The
AR.Drone has an autonomy of up to 12 minutes at a maximum flight weight of 420 g
while being able to fly at speeds up to 18 km/h. The platform’s main computational
unit is an ARM 9 processor running at 468 MHz with 128 MB of DDR RAM. The
AR.Drone is composed of a central plastic body housing a sensor and control board,
one front-facing and another downward-pointing camera, a carbon-fiber crossbar
connecting four brushless motors, and one removable indoor and another outdoor
hull. Further features include a 6-DoF inertial measurement unit and an ultrasound
altimeter. The manufacturer provides an API to access sensory information such as
the altitude, battery level, and images from the cameras, and allows communication
with the AR.Drone at 30 Hz via an ad-hoc wireless Ethernet network. Rather than
using the SDK provided by the manufacturer directly, we used an adaptation of
the SDK presented in [17] due to better usability. This adaptation software relies
on SDK version 1.6 and firmware version 1.3.3 installed on the robot. We used this
SDK adaptation to channel video streams from the AR.Drone to a remote PC where
vision algorithms were run. Position control data computed on the basis of these
streams were then transmitted from the PC back to the AR.Drone in real time using
the same channel. The AR.Drone has been used in experiments presented in Chap-
ters 4 and 5. Note that Parrot introduced the successor of the AR.Drone (named
AR.Drone 2.0) with updated hardware specifications and improved API in 2012.
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CHAPTER 3

Mergeable nervous systems for robots

The nervous system of a robot can be defined as the signaling architecture composed
of the robot’s main processing unit, the various subsystems including the sensors and
actuators, and the wires and cables (electrical or otherwise) that connect them both
to each other. In today’s autonomous robots, this signaling architecture is defined at
design time and is mapped to their morphologies even more strictly than in biological
systems [35, 36]. While some robots can reconfigure their morphologies [37], share
sensor and actuator capabilities [38, 39] or autonomously self-assemble [5, 40, 41] to
form entirely new morphologies, the underlying signaling architecture of the robotic
units put forward at design time is not subject to change. That is, even when
functioning at a group-level, the units remain individually autonomous depriving
the robot of a group-level sensorimotor coordination. To date, no two or more
robots have shown the ability to merge their nervous system providing the composite
robot structure with a sensorimotor coordination similar to that observed in most
monolithic robots.

In this chapter, we use both foot-bots and manipulator foot-bots to show how
robots – independent of their hardware makeup – can merge their nervous systems
together with their physical bodies. We refer to these robots as mergeable nervous
system (MNS) robots and show how they represent a new class of robots with
capabilities beyond those of any existing machine or biological organism. MNS
robots can merge into larger bodies with a single brain, split into separate bodies
with independent brains, and self-heal by removing or replacing malfunctioning body
parts, even a malfunctioning brain. Note that in Table 3.1, we define the terminology
used in this chapter.

This chapter is organized as follows. In Section 3.1, we present the basic mech-
anism we use to enable connections between two foot-bots (without merging their
nervous systems). In Section 3.2, we detail how we apply these connections to
control the formation of larger morphologies of which the shape and size can be
precisely defined. We also present the concept of a brain unit – a key feature in a
mergeable nervous system. We then provide details on how to program MNS robots
and address scalability properties in Section 3.3. We continue to demonstrate four
features unique to MNS robots. In Section 3.4, we review the state of the art in
existing modular robot systems with a focus on their coordination mechanisms. Fi-
nally, we summarize the contribution of this chapter in Section 3.5 and present our
conclusions.
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Table 3.1: Glossary of terminology used in this chapter.

Term Definition

morphology collective robot structure composed of two or
more independent robotic units physically con-
nected to each other

target morphology (task-dependent) morphology of a precise
shape and size

seed robot robot triggering the self-assembly process
free robot robot not pursuing any task and available for

connection forming
extension point an angle around the robot’s chassis at which a

connection is required
extending robot robot (independent or part of a morphology)

with an extension point
filled extension point an extension point that has already received a

connection from a free robot
brain unit decision-making robot in a morphology
robotic unit robots in a morphology that are not the brain

unit

3.1 Enhanced directional self-assembly (EDSA)

In previous research carried out using s-bots [42], the term “directional self-assembly”
was first introduced to refer to a basic connection forming mechanism between two
s-bots. In this work, s-bots were shown to form direction specific connections using
cameras and LEDs. Directional self-assembly enabled a connection extending s-bot
to have multiple extension points around its chassis to which another s-bot could
connect to. Since the mechanism was based on colors displayed on LEDs, it was
impossible for the extending s-bot to either select which neighboring s-bot reacted
to the lights first and finally connected to which extension point. The mechanism
was susceptible to density related inefficiencies as it relied on stochastic movement
of the s-bots. Also, due to perturbation caused in the displayed directionality, it
was impossible for an s-bot to have two open extension points open at the same
time. Hence, multiple extension points on a single s-bot had to be filled in a strictly
sequential manner prolonging the overall time required to form multiple connections.

Here we propose “enhanced directional self-assembly” (or EDSA for short) as
the basic mechanism that enables the formation of connections between two self-
assembling foot-bots. EDSA is based on the mxRAB device (presented in Sec-
tion 3.1.1) available to the foot-bots and avoids the inefficiencies caused by stochastic
robot movement and allows for parallel morphology growth from a single extending
foot-bot. A foot-bot seeking for an extension of its morphology can invite a physical
connection by actively recruiting the best located peer robot and by guiding it to the
location where the connection is required. Robots available for self-assembly broad-
cast their availability to be recruited. The extending robot recruits the best situated
robot for the connection that it wishes to receive. The extending robot subsequently
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(a) (b) (c) (d) (e)

Figure 3.1: In EDSA, a connection is formed between (a) an extending robot (shown
on center-left with the arrow indicating an expected extension point) and the best
situated free robot with respect to an extension point. The extending robot recruits
the best situated free robot and (b) guides this recruit by transmitting a series of
messages that allow (c) the recruit to maneuver and align itself with the exten-
sion point. (d) Once aligned, the recruit rotates to face the extending robot and
approaches the extension point. (e) The extending robot and the recruit form a
physical connection (hence merge their bodies) at the expected extension point.

guides the recruit to the point on its body at which the recruit should connect. Once
the recruit has successfully formed the connection, it sends an acknowledgement to
the extending robot. Figure 3.1 illustrates how a connection is formed between a
connection inviting foot-bot and the best situated free foot-bot with respect to the
extension point. The underlying recruitment and guidance mechanisms presented
in Section 3.1.2. We also present results of benchmark experiments we conducted
using the same setup and measures defined in [42]. The results of these experiments
presented in 3.1.3 show that EDSA goes beyond the state-of-the-art by achieving
higher speeds and precision to form connections. We go on to show that EDSA also
enables previously unattainable types of morphology growth.

3.1.1 The mxRAB device and messages communicated

The mxRAB (marXbot Range And Bearing) device is the main communication
device of the foot-bots. It is used for communication between foot-bots but can
also be used for communication with the eye-bots and with the climbing robots
presented in [43]. In addition to high-speed communication (1 Mbps), the mxRAB
device provides communicating robots with range and bearing estimates (with an
additional elevation estimate for robots not in the same plane) to other robots in the
line-of-sight at a refresh rate of 10 Hz. That is, the mxRAB device enables situated
communication – a form of communication in which a received message also reveals
the relative location of its sender in the environment [13].

The technology underlying the mxRAB device is a combination of 16 infra-red
transmitters, 8 infra-red receivers, and one radio transceiver. This transceiver oper-
ates at 2.4 GHz and is used to send and receive data can function any light condition.
Additionally, it is used to synchronize a turn-taking algorithm among all the mxRAB
devices (and therefore all foot-bots). The turn taking algorithm (with configurable
time division multiplexing) underlying the mxRAB device is implemented by pre-
defining a sequence of unique IDs assigned to each mxRAB device in the system.
Due to the 10 Hz refresh rate and the minimum time (ca. 4 ms) needed for a infra-
red signal to stabilize, read and then dissipated, the current version of the mxRAB
device allows the simultaneous deployment of up to 25 different devices. This means
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Figure 3.2: A schematic of the 14 byte data packet exchanged between the mxRAB
devices mounted on the foot-bots. The first 4 bytes (shown in shades) are reserved
for the operation of the device itself and are unavailable to robot control programs.
For the remaining 10 bytes, we define a message type (5th byte) and a message
payload (bytes 6 to 14).

that each mxRAB device can estimate relative positions and receive data from up
to 24 other robots in every control step – that is every 100 ms. When given its
turn, a foot-bot simultaneously sends data over the radio and emits a signal using
its 16 infra-red transmitters distributed around its chassis. When it is not its turn,
a foot-bot uses its radio transceiver to receive data and its 8 infra-red receivers to
detect the infra-red signal sent by a data sending foot-bot. A data receiving foot-bot
feeds the strongest signal strength detected into a series of cascaded amplifiers to
determine the range to the data sending foot-bot. The receiver with the strongest
signal strength and both its adjacent receivers are used to triangulate the bearing
to the data sending foot-bot. The maximum error amounts to 6.5% for range and
2.6% for bearing for the distance interval of 0 cm to 500 cm. These results were
presented in [26].

In every control step, the mxRAB device sends a data packet of 14 bytes (see
Figure 3.2) and it receives up to 24 packets from other robots. From the 14 bytes of
data sent, the first four bytes are the header and are used by the mxRAB device. The
first byte is the unique ID of the mxRAB device and the other three bytes are used to
ensure compatibility with the eye-bot. The remaining 10 bytes are what we refer to
as a message of which the first byte is the message type and the remaining 9 bytes
are the message payload. While most messages used in the thesis do not require
more payload, certain messages (such as bodyplans of entire topologies described in
Section 3.2.2) may require the transmission of more bytes at once. In these cases,
we create a temporary ad-hoc wireless Ethernet connection between two robots and
send the excess data over this connection. The foot-bot communication layer has
been extended to make the creation and reading of such data seamless to all robot
controllers using the device.

For application scenarios that seek for truly scalable solutions or require the
simultaneous deployment of more than 25 mxRAB devices, the current implemen-
tation needs to be improved. The 25 robot limit thus need to be raised by reducing
the refresh rate. Alternatively, the dynamic formation of local robots groups that
perform time division multiplexing independently could be considered. Each group
in this case may have a maximum size 25 robots, but the total number of groups,
and therefore the total number of robots in the system, could be potentially unlim-
ited. The operation of mxRAB devices at short distances is not reliable. Due to
infra-red saturation, range cannot be estimated for distances shorter than 30 cm.
At distances shorter than 15 cm, also the bearing estimation is noisy and becomes
unreliable. These shortcomings of the mxRAB device need to be considered when
designing behavioral control or communication algorithms that rely on the position-
ing information provided by the device.

18



Table 3.2: Messages exchanged when executing EDSA

Message type Message payload

AVAILABLE bodyplan
RECRUITED ID
GUIDANCE α, σi, ID

CONNECTED σi, ID

We have listed all messages exchanged between two connection forming foot-
bots in Tab. 3.2. The message AVAILABLE is used to announce availability by either
an unconnected foot-bot or by another brain robot that has already invited and
received previous connections. The message payload is the robot’s bodyplan con-
taining the location and orientation of all its sensors and actuators. The bodyplan
of a particular marXbot configuration (see Section 2) allows an extending robot,
for instance, to differentiate between a foot-bot and a manipulator foot-bot on the
basis of a received message. Alternatively, the message payload can also provide
the bodyplan of an entire robot topology as discussed in Section 3.2.2 where also
the format of the message payload is provided. For the sake of clarity, however,
we assume in this section that a foot-bot that can be invited to form a connection
has not invited and received any other connection. A recruit, i.e., a foot-bot that
has already been recruited by an extending robot, sends the message RECRUITED
while maneuvering towards the extension point. In order to be distinguishable to
multiple simultaneously extending robots, the mxRAB ID of the extending robot
is included in the RECRUITED message payload. The remaining two messages and
their semantics are explained in the following Section 3.1.2. In that section, we use
the set R = {r1, . . . , rn} to denote the output of the mxRAB device, where ri is
a neighboring foot-bot and n ≤ 24 is the number of foot-bots that are within the
range of 5 m. Each r ∈ R is a tuple of the form (ID, range, bearing, message).

3.1.2 Recruitment, guidance, and maneuvering algorithms

The recruitment and guidance algorithms are based on R – the set accessible to
each foot-bot with all recent messages transmitted by peer foot-bots including their
relative positions. The algorithms are sequentially executed by an extending robot
in each control step to recruit an unconnected foot-bot or a brain robot (with other
robots attached) and guide it precisely to the location on the chassis where a connec-
tion is required. The recruitment may be dictated by the actual task, that requires
a connection in order to acquire a certain capability from another particular robot
(for instance a foot-bot inviting connection from a manipulator foot-bot in order to
acquire the capabilities of the magnetic gripper) or to extend the current morphol-
ogy by an already connected structure such that the resulting morphology resembles
the one required by the task. Both decisions can be based on the bodyplan sent by
peer robot sending the AVAILABLE message. If a connection is required without
defining a particular bodyplan, the recruitment and guidance algorithms extend the
morphology by inviting the robot (independent of its capabilities and morphology)
with the shortest bearing to the extension point.

A connection can be formed at any given angle σ around the perimeter of a foot-
bot’s chassis, except between 340◦ and 20◦ where the docking unit is mounted. In the
remaining arc that corresponds to 320◦, up to six foot-bots can be simultaneously
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Algorithm 1: The extending robot’s recruitment logic.
Input: Output of the mxRAB device R, extension points P
Output: Map M : pi ∈ P 7→ ri ∈ R

1 foreach Extension point pi ∈ P do
2 rr ←GetCurrentRecruit(M,pi);
3 foreach ri ∈ R do
4 if ri is available || ri is recruited by myself then
5 if ri is not recruited for another extension point then
6 if GetBearing(ri) <= GetBearing(rr) then
7 β ←GetBodyPlan(ri);
8 γ ←GetBodyPlan(rr);
9 if β is more suitable than γ then

10 M ←Recruit(pi, ri);
11 end
12 end
13 end
14 end
15 end
16 end

connected assuming no two extension angles are closer than 53◦ to each other. For
each extension angle σi, the corresponding (x, y) coordinates (hereafter referred to
as an extension point pi) is computed in cm from the center of the robot to the edge
of the robot chassis where the connection is required. As described in Section 3.2.2,
this conversion allows brain robots of larger morphologies to reason in distances
encompassing multiple robotic units rather than in angles that can be associated with
a single robot only. Given a set P = {p1, . . . , pn} of extension points, the objective of
an extending robot is twofold. First, recruit the closest robot ri with the appropriate
bodyplan for each pi and update map M such that each pi maps to a ri, if available.
Second, guide each recruit ri inM to navigate and connect to pi by providing it with
sufficient information for the maneuver. The recruitment is continuously revised in
each control step allowing the extending robot to detect robots that become newly
available to react to a malfunctioning recruit. For instance, if a new robot with
a more appropriate bodyplan or location becomes available for a given extension
point, the current recruit is released (i.e., no more guidance information is sent) and
the new robot is recruited (i.e., it receives guidance information).

In Algorithm 1, we present a pseudocode of the recruitment algorithm. As
shown on line 4, an extending robot either recruits a robot sending the message
AVAILABLE, or re-recruits a robot that has already been recruited and is sending
the message RECRUITED with the unique ID of extending robot’s mxRAB device.
Bearing measurements of peer robots retrieved on line 4 are absolute values. The
comparison between two bodyplans shown on line 9 may depend on the task.

In case the recruitment has been executed a brain robot with child units attached
to it, the brain unit can assign the execution of the guidance algorithm to the
robotic unit where the connection is actually required. This assignment requires the
conversion of set M into N in which each extension point pi is converted into σi,
the angle of the robotic unit at which the connection is required. More details are
provided in Section 3.3, where communication between brain unit and its children
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Algorithm 2: The extending robot’s guidance logic.
Input: Output of the mxRAB device R, map N : σi ∈ Σ 7→ ri ∈ R
Output: Send tailored instructions to rσ

1 foreach Extension angle σi ∈ N do
2 σi ←GetBearing(pi);
3 rσ ←GetRecruit(σi, N);
4 if rσ was guided less often than another recruit ||

all recruits were guided equally often then
5 SendMessage(GUIDANCE, α, σi, ID);
6 break;
7 end
8 end

are discussed.
A recruit can only maneuver to the designated location where a connection is

expected if sufficient guidance information is provided by the extending robot. This
guidance information is sent using the GUIDANCE message which contains tailored
instructions applicable to the recruit. These instructions include the bearing α
at which the extending robot perceives the recruit, i.e., the inverse bearing of the
recruit, the target bearing σi (i.e., the bearing at which the connection is anticipated
by the extending robot), and the unique ID of the recruit’s mxRAB device. This
is because, by default only broadcast communication is supported by the mxRAB
device. The communication of unique IDs allows recipient foot-bots to determine
whether a message is addressed to it or not by comparing its own unique ID with
the unique ID in the received message. Therefore, the unique ID included in the
payload of the GUIDANCE messages allows the extending robot to address a single
recruit despite using a broadcast message. Further, the mxRAB hardware only
allows the transmission of a single message in each control step. Thus, if multiple
recruits are being simultaneously guided by the extending robot, it must take turns
sending the GUIDANCE message to each recruit. For example, in the extreme case in
which six recruits are being simultaneously guided, each recruit can only be guided
every seventh control step – that is every 700 ms. This logic is presented on line 4
in the pseudocode of the guidance algorithm shown in Algorithm 2. Although this
frequency is sufficient to let recruits maneuver at maximum speed to the connection
location, it could be a potential issue in a system that can support many more
extension points.

An extending robot executes both recruitment and guidance algorithms until all
extension points are filled. An extension point σi is filled when a recruit acknowl-
edges a successful docking with the message CONNECTED with σi and the unique ID
of extending robot’s mxRAB device in its message payload.

Recruits are initially selected from all robots sending the message AVAILABLE. A
robot acknowledges its recruitment when a GUIDANCE message is received with the
unique ID of its own mxRAB device in the message payload. Acknowledgement is
confirmed using the message RECRUITED with the unique ID of the extending robot’s
mxRAB device in the message payload. A recruit can be located within a radius of
5 m around the extending robot and maneuver to an extending robot’s target solely
based on the instructions received in the GUIDANCE message. The trajectory of a
recruit to the extension point is chosen such that the imprecisions of the mxRAB
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device at close distances are taken into account. Note that the range estimations
for distances shorter than 30 cm are unavailable and that the bearing estimations
for distances shorter than 15 cm are unreliable. We illustrate possible trajectories
that could be taken by recruits starting from different positions around an extending
robot in Figure 3.3a. From a control perspective, the trajectory taken by a recruit to
an extension point can be split into three different segments or states that are shown
using a finite state machine in Figure 3.3b: i) retreat or approach the extending robot
to a certain distance, ii) go around the extending robot until aligned to the extension
point, and iii) merge to the extension point.

A recruit’s initial state is retreat/approach. In this state, the recruit moves
away or towards the extending robot until within a ring shaped area around the
extending robot with an inner radius of 40 cm and an outer radius of 60 cm. We
refer to this ring as the go-around ring. This state permits the recruit to reposition
itself to a distance where the mxRAB device can accurately estimate the range to the
extending robot. Once inside the go-around ring, the recruit enters the go around
state. In this state, the recruit navigates around the extending robot whilst staying
in the go-around ring. The recruit can navigate either in clockwise or in counter-
clockwise direction, whichever gives the shortest radial distance between the inverse
bearing α and the target bearing σi received from the extending robot. Distance and
bearing to the extension point is continually provided by the guidance messages sent
by the recruiting constituent robot. If a recruit drives out of the go-around ring, it
switches back to the retreat/approach distance state. The transition to state merge
is triggered once the absolute difference between α and σi is less than 2. In the merge
state, the recruit rotates until it faces the extension point with its docking unit. It
then moves towards the extension point while updating its bearing estimation β to
the extending robot using the following filtering method:

βt = (1− c) · βt−1 + c · βt,

where t is the control step and c is 0 ≤ c ≤ 1 and is the confidence level of a bearing
estimation at close distance. This filtering method was implemented as the recruit is
entering an area in which bearing estimations to the extending robot become unreli-
able. Therefore, the filtering method is applied to make recruits less reactive to noisy
bearing estimations while still being able to react to major environmental changes
such as a moving of the extending robot. We empirically determined that c = 0.7 is
appropriate. The recruit uses β in the merge state when maneuvering towards the
extension point until until the force sensor in the gripper registers contact with the
extending robot’s docking ring. The recruit then stops and forms a physical con-
nection to the extending robot by opening the three fingers of its gripper inside the
docking ring. The success of a connection is tested by the recruit by trying to rotate
its docking module. If the rotation can be carried out, the connection has failed and
the recruit goes back to the keep distance state. If the docking module cannot be
rotated, the connection is firm. The message CONNECTED is sent to acknowledge the
successful connection to the extending robot. The message payload includes σi and
the unique ID of the extending robot’s mxRAB device.

If a recruit does not receive GUIDANCE messages for 10 consecutive control steps, it
comes to a halt assuming that the extended robot has released the recruitment. This
may occur when a better located robot (or a robot with a more suitable morphology)
becomes available after the initial recruitment. The halted robot announces its
availability to other extending robots by sending the message AVAILABLE.
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(a) The trajectories taken by potential recruits to maneuver to an extension point at the rear of the
extending robot (in the center). The three arrow types represent the three segments of a recruit’s
trajectory. The shaded, ring shaped area represents the go around zone.

(b) The finite state machine representation the recruit’s behavior. R/A = retreat/approach, GA =
go around, and M = merge.

Figure 3.3: An illustration of the recruit’s behavior: (a) the trajectories taken by
potential recruits, (b) the finite state machine that segments a trajectory into three.

3.1.3 Speed, precision and other features

We study the speed and precision with which connections can be formed using
EDSA. We compare the results to those achieved using “directional self-assembly”
presented in [42]. For this purpose, we replicated the experimental setup presented
in [42] by placing an extending robot with an open extension point to its rear (i.e.,
at 180◦) in the center of a circle of 80 cm radius. The radius is the only difference
compared to the setup used in [42] where it was 35 cm. We then placed a second
robot at 12 equally separated starting positions on the circle. We considered 8
starting orientations for each starting position. For each combination of starting
position and starting orientation, we let the robots execute EDSA. This resulted in
96 independent trials for which we recorded the elapsed time until a firm connection
was formed. We also took images of the robots after a connection had occurred
using an overhead camera placed above the center of the extending robot. We
measured the angular precision (or the misalignment between where the connection
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Figure 3.4: Box-plot showing the misalignment (in degrees) between the orientation
of the recruit and the orientation of the extending robot after forming a connection.

was expected and where the connection actually occurred) using an open source tool
named ImageJ: http://rsbweb.nih.gov/ij/.

The results of the angular precision are shown using a box-plot in Figure 3.4. It
shows the misalignment measured in the orientation of both robots after the connec-
tion occurred. Note that an entirely aligned connection would result in a misalign-
ment of 0◦. The measured median of the misalignment is 1◦ making it comparable
to the results reported in [42]. However, the distribution range of the measured mis-
alignment is with 10◦ (interval [-3◦,7◦]) approximately 7x smaller than the results
obtained in [42] (distribution 70◦, interval [-30◦,40◦]). The mean measured in our
experiments is 1.2◦) and the standard deviation is 0.77◦. The worst most extreme
misalignment measured in our experiments was with 7◦ approximately 5x better
than the 39◦ reported in [42]. Using the analysis conducted here, we conclude that
the angular precision that can be achieved using EDSA is on average more accurate
and reliable than that achieved using the mechanism reported in [42].

In terms of speed, a recruit spent on average 16.1 s maneuvering to the extension
point. The comparable value presented in [42] was 54.3 s making EDSA is 3.5x faster
than its predecessor mechanism. This result was achieved despite the fact that in our
experiments the second robot was placed more than twice as far from the extending
robot (i.e., 80 cm instead of 35 cm). We identified three factors that contribute to
these results. First, the foot-bots can drive at higher speeds to the extension point
than the s-bots in [42]. This is due to the fact that the mxRAB device provides the
foot-bots with faster and more precise estimates of relative positions to neighboring
robots than the camera and LEDs-based mechanism used by the s-bots. Second,
the active guidance information provided by the extending robot allowed the recruit
to chose the shortest orbiting direction around the extending robot whereas in [42],
by contrast, it was chosen randomly. The third factor is inherent in the design of
the robots. The foot-bots are able to form faster physical connections using the
innovative docking module (that includes the docking unit with the three fingers
and the docking ring) than s-bots using their gripper based mechanism.

In our experiments, all 96 trials resulted in successful connections between the
extending robot and the recruit. However, we repeated 5 trials that were corrupted
due to low battery voltage of the robot. In the following, we use Figure 3.5, in which
snapshots from experiments are shown, to present some features of EDSA that now
become available to a morphology growth system based on self-assembling foot-bots.
Video footage of these features can be seen online at http://iridia.ulb.ac.be/
supp/IridiaSupp2011-001/.

3.1.3.1 Adaptive recruitment

Self-assembling robots need to be able to adapt to changing mission conditions. The
recruitment algorithm at the core of EDSA is able to adapt to such conditions in-
cluding to malfunctioning recruits or to the availability of better suited robots. In
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(a)

(b)

(c)
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Figure 3.5: New features provided by EDSA. Robots attached to a morphology
display their red LEDs while unconnected robots display their green LEDs. Robot
illuminating blue LEDs has lost its recruitment. Extension points are indicated
using red arrows. (a) Adaptive recruitment. (b) Enhanced parallelism. (c) Resource
allocation without interference. (d) Morphology growth in motion.

Figure 3.5a, we show snapshots from an experiment in which an extending robot
is able to release an existing recruitment and recruit a robot that become avail-
able after the recruitment of a first robot. This is possible because the high-speed
communication provided by the mxRAB device allows the mapping from extension
points to recruited robots to be updated at every control. Hence, EDSA is able
to adapt to new conditions while maintaining an optimal resource allocation w.r.t.
the number of robots allocated per extension point. In the experiment shown in
Figure 3.5a, the extending robot placed in the center of the frame is shown to have
recruited the only available robot to connect to an extension point at 90◦. When a
new robot is introduced closer to the extension point, the extending robot adapts
to the new situation by releasing the initial recruitment and by recruiting the robot
that has new become available. The robot that was initially recruited leaves the
self-assembly process and becomes available for other tasks.
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3.1.3.2 Enhanced parallelism

In “directional self-assembly” – the mechanism used by the s-bots for connection
forming – an extending robot could only invite connections in a sequential manner.
This inhibited the s-bots from terminating sophisticated morphologies rather quickly.
EDSA, on the other hand, permits parallel connection formation and hence helps
extending foot-bots seeking to branch a morphology. A branching occurs when a
robot invites multiple free robots for connection. Figure 3.5a shows snapshots of
an experiment in which an extending robot seeks to fill four extension points by
inviting connections from four free robots located in the vicinity. The snapshots
shows how the extending robot recruits and guides four recruits in parallel, each one
to its closest extension point. The extension points are located 45◦, 135◦, 225◦, and
at 315◦ of the extending robot. All four connections are formed within 16 s to form
a star-like morphology.

Parallel connection formation provided by EDSA is not limited to connections
formed on a single extending robot. Extension points can be distributed among
separate morphologies and still be filled in parallel using EDSA. That is, extending
robots in each other’s communication range can recruit and guide nearby free robots
without interfering with each other. Figure 3.5c shows snapshots of an experiment
that demonstrates this feature. Two morphologies, a chain-like morphology shown
on the top-right and star-like morphology shown in the bottom-right, are shown
to be grown next to each other in parallel. Each extending robot executing EDSA
shares the available resources without hindering any other ongoing growth process.

3.1.3.3 Morphology growth in motion

The high-speed communication and precision inherent to the mxRAB device allows
EDSA to demonstrate morphology growth of a moving morphology for the first time.
This feature could play a crucial role in real-world systems as it may allow morphol-
ogy formation times to be reduced significantly. For instance, a transportation task
could already be started during an ongoing morphology growth process. Figure 3.5d
shows snapshots from an experiment in which a chain-like morphology is extended
during motion. The third link of the morphology opens an extension point at its
180◦ and recruits a free robot that is static. The recruit first aligns itself to the ex-
tension point, and then forms the connection by driving at a velocity that is higher
than that of the extending robot in motion.

3.2 From EDSA to topology-aware larger morphologies

A foot-bot is controlled by a program that processes the data returned by its sen-
sors and makes decisions based on the data about future actions to take. Essentially,
each foot-bot has a centralized decision-making entity – a brain – that also is aware
of the body (such as chassis dimensions and relative positions of sensors and actua-
tors) it controls. The collective robot structures formed using EDSA, on the other
hand, have as many brains as there are foot-bots in the respective structures and no
foot-bot is aware of the topology of the overall structure it is a member of. Addition-
ally, EDSA represents a basic connection forming mechanism between a connection
inviting and a connection seeking robot and is not sufficient to form larger mor-
phologies as the one shown in Figure 3.5d. These morphologies require connection
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Algorithm 3: An extended version of a SWARMORPH-script describing the
formation of a chain-morphology of size three.
1 if seed then
2 switchLeds(red)
3 // Toggle on extension points from the pre-defined
4 // set of angles (45, 90, 135, 180, 225, 270, 315)
5 extensionPoints(0 0 0 1 0 0 0)
6 // Send further branching/growth instructions for filled extension points
7 sendBranchingInstructions(0 0 0 1 0 0 0)
8 awaitAckOnTermination()
9 end

10 if not seed then
11 switchLeds(green);
12 searchForRecruitment();
13 maneuverToExtentionPoint();
14 ep[] ← receiveBranchingInstructions();
15 // Instructions for middle foot-bot:
16 if sum(ep[]) != 0 then
17 bi[] ← decrementReceivedBranchingInstructions(ep[])
18 extensionPoints(ep[]);
19 sendBranchingInstructions(bi[]);
20 propagateAckToParent();
21 end
22 // Instructions for the final foot-bot:
23 if sum(ep[]) == 0 then
24 sendAckToParent();
25 end
26 end

formation to be controlled within an entire group of self-assembling robots and re-
quire connections to be formed between robots that did not initiate the self-assembly
process.

In this section, we show how we rely on a mechanism previously developed at
our laboratory to control the formation of larger morphologies. We then present
further mechanisms we developed to ensure that a morphology is controlled by a
single brain unit that is aware of the body it controls at all times.

3.2.1 Controlled morphology formation

To enable the formation of larger morphologies in a controlled manner, we rely on
an extended version of a morphology control language presented in previous re-
search named SWARMORPH-script [3]. SWARMORPH-scripts contain pre-defined
sequences of instructions or atomic self-assembly related behaviors describing the
formation of a precise morphology. They can be executed by any number of au-
tonomous robots in parallel and enable the formation of arbitrary morphologies in
a distributed manner. Refer to Algorithm 3 for an example SWARMORPH-script
that describes the formation of a line or chain morphology of size three, that is, a
linear structure composed of three robots in which each robot besides the first one –
the seed – is connected to the rear of the preceding robot. Note that, the seed robot
needs to be pre-defined using other mechanisms such that different logic becomes
available to seed and non-seed robots.

A key feature underlying SWARMORPH-scripts is the serialization mechanism
that allows entire control logics to be translated into binary strings that then can
be exchanged between robots. A robot receiving the serialized string can, in turn,
de-serialize it in a way that it is immediately executable. This feature is particularly
useful when control logics describing morphologies crucial to a task needs to be sent
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from a robot with a better perception of the environment to another or when target
morphologies have been determined or learned by robots through costly methods
and need to be shared within a group of peer robots.

SWARMORPH-scripts were initially developed for the s-bot platform that pre-
ceded the foot-bots and was limited to LEDs and cameras-based communication
between robots. In our extended version, we replace this low-bandwidth commu-
nication modality to make full use of the higher bandwidth and speed provided by
the mxRAB device available to the foot-bots. Additionally, when required ad-hoc
WiFi connections can be created between foot-bots to transfer even higher payload
than the 10 bytes supported by the mxRAB device. We also integrated EDSA-
related behaviors such that the recruitment guidance algorithms are translated into
appropriate atomic behaviors. Contrary to is predecessor, the extended version of
SWARMORPH-scripts supports the formation of multiple connections in parallel,
coordinated motion, communication with multiple robot platforms (for instance a
control logic can be received either from another foot-bot or an aerial robot), and a
variety of merged nervous nervous system related behaviors – a comprehensive list
is provided in Table 3.3 presented in Section 3.3.

3.2.2 Topology and partial failure representation

To form a new unified robot with a single brain aware of the morphology it con-
trols, all but one of these units need to cede decision-making authority while only
a single unit assumes the role of the brain. To this end, we impose a hierarchi-
cal tree structure (i.e., a directed tree) on the physical connection topology of the
robotic units. In an MNS robot, the root unit of the tree structure can always be
unambiguously identified and hence assumes the role of the brain. The brain of any
further connecting robot will cede authority to this root unit. For the brain unit
to exert control over the morphology, it must be aware of the relative placement
of sensors, actuators, and other subsystems available to the robot. In practice, for
larger morphologies, the majority of the sensors and actuators a brain unit will be
in charge of will be found on the bodies of other robotic units.

In an MNS robot, each constituent unit maintains a recursive representation of its
and its descendants hardware configurations together with their relative positions.
Hardware configuration of a robotic unit is a set of geometric relationships that
includes the geometry of a robotic unit and the physical arrangement of sensors and
actuators in the robotic unit. Providing each robotic unit with the ability to store
and transmit internal representations is a key feature of MNS robots. It ensures that
a brain robot’s self-knowledge can be rapidly updated to reflect changes occurring
anywhere in the physical composition of the morphology.

A robotic unit can also represent failures of its particular sensors and actua-
tors in the internal representation such that they also become available to the brain
unit. This ability to represent failures at the sensor/actuator-level becomes more
prominent for larger MNS robots due to the increased likelihood of partial failures.
Providing brain units with information regarding malfunctioning sensors and actu-
ators also allow MNS robots to be fault tolerant and compensate for such failures.
Note that the method applied by each robotic unit to detect partial failures [44] is
not relevant to the brain unit. A detected partial failure is reported to the brain unit
using the same update mechanism used to inform the brain about physical changes
occurring to the morphology such a merge or a split. The mechanism, presented in
the following Section 3.2.3, allows all ancestor units (parent, parent’s parent, etc.)

28



Figure 3.6: Internal representations of two different three-unit MNS robots with
different morphologies. (a,b) The configuration of robotic units in the MNS robot
is shown in using the rendering at the top of each pane. The corresponding merged
nervous system topology is shown in the illustration underneath which also visualizes
how sensors and actuators on descendant robot unit become accessible to the brain
units. Each brain unit’s internal representation is given as serialized strings at
the bottom of each pane. For brevity, we use the letters ’S’ and ’G’ instead of
the detailed geometric descriptions of the foot-bot and the manipulator foot-bot,
respectively. Communication links between robotic units rely on ad-hoc wireless
Ethernet connections. (b) The arrows indicate partial failures (i.e., faulty sensors or
actuators) that also highlighted using the color red in the serialized string.

to update their internal representations with the knowledge of the partial failure.
The modular nature of the marXbot platform allows us to consider a variety of

different hardware configurations in our experiments. In this thesis, we consider the
standard foot-bot and the manipulator foot-bot as two different hardware configura-
tions. In Figure 3.6, MNS robots formed with robotic units of two different hardware
configurations are shown. In the figure, internal representations are also shown as
strings at the bottom of each pane. This string is also used to communicate internal
representations between robotic units. A recursive serialization method is used to
generate the string that has the following syntax:

MNS:=<[robot-type]-[connection-angle]-[malfunctioning-
sensors/actuators]>,[num-children],[MNS]
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3.2.3 Single message-based topology update mechanism

An internal representation that accurately maps the MNS robot morphology allows
the robot to react to radical morphological changes promptly. For instance, when
an MNS robot splits into multiple robots with separate bodies, each root unit of
the uncoupling body segments already has all the knowledge it needs to become the
brain of the new independent MNS robot. It is therefore crucial for merged nervous
systems to follow the physical connection topology at all times and by updating its
knowledge after changes such as splits or merges occur.

Updates are propagated in form of messages transmitted from robotic units to
the brain unit. For example, when a merge between two MNS robots occurs, a
single message is transmitted up the merged nervous system from the connecting
MNS robot ceding authority to the brain of the MNS robot to which it connects to.
The information contained in the message is the internal representation (serialized
string) of its own previously independent body and is incrementally updated by
each intermediate unit along the path to the brain until the brain unit has an up-
to-date representation of the new body. The newly formed MNS robot incorporates
all the sensing, actuation and computational capabilities of the units in the new
body. This instantaneous update mechanism discredits an MNS robot’s need for
time-consuming processes such as self-discovery [45], trial-and-error [46] or hormone-
based messaging [47] to discover changes occurring to its connection topology.

We present a visualization of the update mechanism in Figure 3.7 using two
MNS robots. In Figure 3.7b, an MNS robot composed of six independent units is
shown to merge into another MNS robot composed of four independent units. The
brain unit of the robot that is attaching (left robot) cedes authority to the brain
unit of the robot to which it is attaching (right robot). The brain unit of the new
merged robot still does not have an accurate internal representation of its new mor-
phology. However, its child unit has already updated its internal representation. In
Figure 3.7c, information about the morphology has propagated to the brain leaving
all independent units in the merged nervous systems with an accurate representation
of the morphology.

3.3 MNS robot control

In this section, we first describe the sensorimotor and spatio-temporal coordination
mechanism we developed to coordinate MNS robots. We then present scalability
properties of the proposed method and describe the heartbeat mechanism used to
detect failures (i.e., entire robotic units that stop functioning) within an MNS robot.

The high-level control of an MNS robot is the responsibility of its brain unit. The
approach taken by most robot control programs — to statically bind information
regarding the placement of sensors, actuators and other subsystems into the control
logic — is impractical to be adopted in the case of MNS robots as they are capable
of changing their body compositions during mission time. Our solution is to express
the control of an MNS robot using a high-level logic that is independent of the
morphology it controls and do not consider the number and location of sensors and
actuators available to the robot. That is, a merged nervous system divorces the
control logic from the physical properties of the robot. Taking inspiration from
nature [48], a merged nervous system allows the brain of an MNS robot to issue and
propagate high-level commands about actions the body should take which are then
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Figure 3.7: Propagation of internal representation triggered by the merging of two
MNS robots. The internal representations of robotic units are shown using insets
with shaded backgrounds. In each of the inset, the robot whose internal representa-
tion is indicated using corresponding letters. Note that units that are not the brain
unit only have knowledge of their descendant units.
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seamlessly translated into instructions for individual actuators in each constituent
unit. Data resulting from the sensors are processed by the many constituent robotic
units in a distributed fashion and then fused into an abstraction of the environment.
This description is propagated through the merged nervous system such that it is
immediately meaningful to the brain unit on arrival.

We detail how responsibility is delegated as part of the sensorimotor coordination
mechanism in an MNS robot using the example shown in Figure 3.8. The figure
shows a 5-unit MNS robot in the center that has detected and then responded to
a stimulus. The stimulus is a mobile light source shown in green and the response
requires the MNS robot to point at the stimulus by illuminating its three closest
LEDs. In Figure 3.8a, we show how a stimulus moves into the sensor range of the
MNS robot. More precisely, the stimulus moves into the sensor range of two robotic
units which separately detect the stimulus and its relative location by analyzing
their camera feeds. Computationally intensive tasks such as visual image processing
is executed in a distributed manner in an MNS robot and only an abstraction of this
information (e.g., existence and relative coordinates of the stimulus) is propagated
to parent units. A parent unit receiving such abstracted information from multiple
children fuses the information to form a more accurate estimate of the stimulus’
relative location. The underlying method used to fuse sensor is irrelevant to the
merged nervous system and may depend on the type of sensor and precision required
for the task. The single item of fused information is then propagated by the parent
unit (see Figure 3.8b) to its own parent, which in this case is the brain unit. Based on
abstract information describing environmental changes occurring within or beyond
its own sensor ranges, the brain unit makes decisions about what action to take, in
this case, to select the LEDs to illuminate in green. As shown in Figure 3.8c, the
actions are issued as high-level actuator commands that are then translated by the
merged nervous system (see Figure 3.8d) into actuator instructions relevant to each
robotic unit.

An addressing system integrated into the high-level commands allows the brain
unit to target particular robotic units, or groups of robotic units. Address informa-
tion is determined by the path along the tree-structure from the brain unit to the
recipient of a message and is encoded into the header of the message. The path is
composed of the sequence of relative connection angle between independent unit.
For instance, a command issued with the address header [180-90-180] describes a
path from the brain unit to the child unit connected at 180 degrees, to the next
child unit connected at the brain unit’s child at 90 degrees (the brain unit’s grand-
child), to finally reach the next child unit connected again at 180 degrees. The
command issued therefore is intended to address the robotic unit at the end of the
path in an L-shaped morphology. Multiple recipient robots can be addressed by re-
placing a connection angle using the wildcard ’*’ – requiring multiple-unit segments
in the MNS robot to execute an issued command. A list of messages (commands and
otherwise) available to MNS robot composed of foot-bots are shown in Table 3.3.

Although specific actuators and sensors in individual units can be independently
accessed when necessary, the brain unit of an MNS robot often issues high-level
commands to control the actions taken by the robot. Such commands define how the
constituent units of an MNS robot coordinate both temporally and spatially. Time-
based coordination is achieved by the brain unit always launching actuator actions
in the future. The length of the delay until the future action is chosen based on the
size of the morphology. Each unit maintains its own countdown to action execution.
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Table 3.3: List of messages propagated through a merged nervous system of foot-
bots. The header of each message includes an address that allows the brain unit to
target particular robotic units, or sets of robotic units. The format of the address
is sequence of angles corresponding to connections between physically connected
robotic units. The <request type> parameter consists of one of the following values:
[once|duration=x,frequency=y|conditional=if_changed].

Command Payload

Messages addressed to specific units or groups of units

Extend [address] <extension point>; <recruit
id>

Disconnect [address] <extension point>
SetLedColors [address] <led color 1>;...;<led color

12>
Lift [address] <object bearing>
GetCameraObjects [address] <request type>
GetBatteryLevel [address] <request type>
GetAccelerometerReading [address] <request type>
GetProximitySensorReadings [address] <request type>
GetGroundSensorReadings [address] <request type>

Messages addressed to all units

Heartbeat <emission frequency>;
<reaction failure
=[disconnect_retract|
become_brain]>

Move <speed>;<heading>
Rotate <center of rotation>;

<angular velocity>
Stop (none)

Update and status messages send to parent units

Update <topology representation>
Status <success|failed>

33



Figure 3.8: Responsibility delegation in a 5-unit MNS robot detecting and then
responding to a stimulus. The MNS robot in the center shows the response outcome
– highlighted using three concentric green lines shown on the ground – and the four
renderings (a–d) show prior steps that led to the response. The mobile stimulus is
shown in green and the merged nervous system and the messages propagated are
shown above the robot in each step.

The countdown to the future action is reduced as the command gets passed from unit
to unit, thus taking into account the message propagation delay. We achieve spatial
coordination by enforcing robotic units to translate location-related information
(such as coordinates of detected objects in the environment) every time a sensor or
actuator message is propagated between units. Individual units use their knowledge
of the relative locations of parent and child units to translate spatial references into
the frame of reference of the receiving unit before message transmission. Messages
therefore become immediately meaningful to a message recipient.

Figure 3.9 shows the spatio-temporal coordination mechanism in action. In the
figure, the brain unit of a 3-unit MNS robot is shown to high-level commands that
are then propagated through the merged nervous system. The MNS robot (on the
left) has detected a red brick (on the right) that needs to be lifted and transported.
Lifting capabilities are unique to the manipulator foot-bot requiring the MNS robot
to plan and execute a rotational movement that aligns the object gripper next to
the brick. To ensure temporal coordination, at timestep T0, the brain unit of the
MNS robot starts a countdown of 0.4 seconds until execution. For clarity, each
communication timestep is assumed to last 0.1 seconds. For example, T3 occurs
0.3 seconds after timestep T0. The countdown is chosen such that message propa-
gation delay to furthest child unit is shorter than the countdown. The brain unit
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also computes its wheel speeds and the center of rotation around which the MNS
robot should turn. These information are propagated to the child (the middle unit)
in the same timestep (T0). The merged nervous system takes the responsibility to
translate the rotation coordinates into the middle unit’s spatial frame of reference
and converts the brain unit’s wheel speeds into angular velocity. Subsequently, both
bits of information are encoded into the payload of a “rotate” command listed in
Table 3.3. At time T2, after a single timestep, the command reaches the middle
unit triggering a countdown starting at 0.3 seconds (i.e., received countdown re-
duced by the propagation delay). At timestep T1, the middle unit initiates a similar
communication process with its child unit as the brain unit in timestep T0. As a
result, in timestep T4, all countdowns in the MNS robot terminate at the same time
allowing the robot to execute the rotational movement in a coordinated manner.
Note that the high-level “rotate” command does not contain instructions related
to the wheel actuators of independent robotic units. Instead, the merged nervous
system manipulates the command and provides individual units with tailored infor-
mation sufficient to determine the appropriate wheel speeds (for example, the last
unit will set higher wheel speeds). The rotation is stopped by the brain unit using
a “stop” command as soon the brick is close enough to the manipulator foot-bot.
Subsequently, a “lift” command is issued at timestep T62 together with the address
of the unit that should execute the command. The address [270-180] part of the
command uniquely identifies the manipulator foot-bot capable of lifting the brick as
the recipient. Once arrived at the destination, the high-level command is translated
into a sequence of precise actions that can be executed by the robotic unit. The
final action in the sequence is to send a status message back to the brain unit to
inform about the outcome of the task.

Independent of other transmitted commands, the brain unit generates and issues
additional periodic commands at a fixed frequency to indicate normal operation of
the MNS robot using a heartbeat protocol [49]. The payload of the heartbeat pulse is
shown in Table 3.3 and includes information regarding the frequency at which further
pulses can be expected by recipient robots and actions a recipient robot should take
in case of an absent heartbeat pulse. A recipient of a heartbeat pulse acknowledges
its reception to the parent and then propagates the pulse to its immediate children.
In this manner, the heartbeat protocol allows an MNS robot to detect and react to
totally malfunctioning robotic units. That is, a missing pulse within a previously
received frequency indicates a faulty parent. On the other hand, the absence of an
acknowledgement warns the parent of a faulty child. The robotic unit that detects
a faulty parent refers to the reaction type pre-defined by the brain unit and acts
accordingly. A child that becomes the brain unit of a sub-morphology starts issuing
its own heartbeat pulses.

The frequency at which heartbeat pulses are issued can be altered by the brain
unit during an ongoing mission. The frequency is chosen based on the size and shape
of the MNS robot it controls and the level of reactivity required for the task at hand.
For instance, a morphology with a high branching factor and low heartbeat pulse
frequency can be just as reactive to faulty units as a long chain-like morphology
with a high heartbeat pulse frequency.

3.3.1 Scalability

We consider two scalability aspects of the MNS control mechanism: computational
scalability and scalability with respect to message propagation time (in either di-
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Figure 3.9: Spatial and temporal coordination in an MNS robot. A 3-unit MNS
robot composed of two foot-bots and one manipulator foot-bot is shown to execute
a rotational motion from left to right. The motion is coordinated by the brain unit
such that the manipulator foot-bot can be used to lift a brick. Black rectangles
show timesteps, red are commands planned by individual robotic units, and green
are high-level commands propagated through the merged nervous system.

rection). Both aspects depend on the number of constituent units in the robot
their connection topology (i.e., branching factor). In the following, we address both
aspects separately.

If all sensory data (such as unprocessed camera feeds) were collected in the brain
unit, scalability related to both bandwidth (transmitting sensory data from many
robots) and computation (processing sensory data from many robots) may become
an issue. Instead, in an MNS robot, the processing of sensor data is handled in a
distributed manner. That is, each individual unit processes the data returned by its
own sensors and sends only an abstraction of the date to its parent. However, as
described in Section 3.3 and Figure 3.8, each unit is also responsible for the fusion
of sensor data returned by all its children before they are propagated allowing the
MNS control to scale gracefully and with respect to body size. The computational
effort and the bandwidth (transmitting sensory data from many units to the brain
unit) required by each robotic unit including the brain unit, therefore, depends only
on the number of immediate descendants rather than the total number of units in an
MNS robot’s body. Sensor data extraction and processing thus becomes a constant
cost, proportional to the number of children a single unit can have. In the case of
the foot-bots and their circular chassis, this corresponds to a maximum of seven
child units.

Short message propagation times are important in an MNS robot so that they
maintain high reactivity to changing environmental conditions. For instance, a
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robotic unit sensing a change must propagate an abstracted message to the brain
unit, which in turn must make a decision based on this message and propagate a
high-level command through the body as a response. This reaction time depends
both on the number of constituent units k and the shape (i.e., the connection topol-
ogy) of the MNS robot. The worst case scenario for propagation times are chain-like
morphologies and is given by 2lp× τ , where lp is the length of the path (in robotic
units) from the brain unit to the final unit in the morphology. The communication
delay τ between two adjacent units may depend on the underlying communication
hardware – in case of the foot-bots, it corresponds to τ = 100 ms required to ex-
change and process a message between to adjacent units. In the 4-unit MNS robot
shown in Figure 3.8, the longest path lp = 2 and the reaction time is thus 2 ×
2 unit × 100 ms unit−1= 400 ms. Similarly, while the 6-unit MNS robot shown
in Figure 3.7a and Figure 3.7b has lp = 3 units and therefore a reaction time of
600 ms, the 10-unit MNS robot in Figure 3.7c has lp = 5 units and thus a worst case
reaction time of one second. In general, the reaction time of an MNS robot of size
k lies between the upper and lower bounds defined by two extreme morphologies:
the upper-bound is defined by a chain-like morphology of which the reaction time is
2k×τ while the lower-bound is defined by a hexagonal lattice pattern with the brain
unit in the center – the most compact morphology possible for the self-assembling
robots with circular chassis considered in this thesis. The longest path in such a
morphology is approximately lp = log2k units resulting in a best case reaction time
of 2log2k × τ .

3.3.2 Unprecedented features and self-healing properties

Self-assembled robot structures lack the equivalent of a nervous system that spans
the whole body – similar to the communication bus that connects the submodules to
the main controller in a monolithic robot. Instead, connected units in existing com-
posite robots remain individually autonomous and rely on distributed approaches
for coordination. Sensorimotor coordination in such robots is thus limited or absent
which prevents them from solving tasks with the precision and reactivity provided
by monolithic robots.

MNS robots constitute a new class of robots because they combine the mod-
ularity and morphological advantages of self-assembling robots with the level of
sensorimotor coordination that remained limited to monolithic robots. Further-
more, the MNS approach unlocks unprecedented features and provides self-healing
properties to self-assembling robot systems. Here, we present these features and
demonstrate them using a series of experiments we carried out using the marXbot
platform. Videos of the experiments can be found online at https://www.nature.
com/articles/s41467-017-00109-2#supplementary-information.

3.3.2.1 Borrowing hardware capabilities of peer robots

A key feature of the MNS approach is the ability to enable a robot to tap into
the signaling architecture of a peer robot and use it instantaneously and seamlessly.
Once physically connected, the sensors and actuators mounted on the peer robot
become visible to the robot that invited the connection. This is a direct consequence
of the recruitment algorithm (see Algorithm 1) during which hardware configurations
of neighboring robots are retrieved and then stored by each constituent unit as part
of the recursive representation of all connected descendants (see Section 3.2.2).
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In Figure 3.10, we present the results of an experiment we considered to study
this novel feature enabled by the MNS approach. We consider a task in which an
MNS robot is required to borrow physical (i.e, object lifting) capabilities exclusively
available to peer robot in order to solve a object transport task successfully. We
deploy two foot-bots and a manipulator foot-bot on a mission to find and retrieve
one of the two bricks placed in the environment and it at a pre-defined location. As
shown in Figure 3.10a, a foot-bot detects a brick suitable for transport by analyzing
its omni-directional camera feed. However, the foot-bot is physically not able to
neither lift nor transport the brick. The foot-bot opens an extension point and
recruits the manipulator foot-bot (after retrieving the hardware configuration from
both free robots) to extend its morphology and acquire new capabilities. Once the
connection is formed – see Figure 3.10b – the foot-bot recognizes the new hardware
that now became visible to its controller and issues the according “lift” command
to the manipulator foot-bot. The new composite MNS robot is able lift the brick
and is subsequently able to transport the brick to the required location, as shown
in Figure 3.10c.

3.3.2.2 Autonomous adaptation to varying scales and morphologies

Mergeable nervous systems are able to autonomously adapt to all physical changes
occurring to the connection topology regardless of shape and size of the MNS robot.
We study this feature by providing a foot-bot with four different morphologies of
varying shapes and sizes and then requiring the robot to assemble and disassemble
all of them in a sequence while maintaining accurate internal representations of the
morphology at all times.

Figure 3.11 shows an illustration composed of snapshots from the experiment
and schematics of the internal representations retrieved from the foot-bot at the end
of each morphology formation. In the center of the figure, we show the initial deploy-
ment of thirteen foot-bots from which one is pre-loaded with a SWARMOPRH-script
(presented in Section 3.2.1) describing four morphologies. These morphologies vary
in size (10, 7, 10, and 11 respectively) and shape (with a branching factor of 1, 2, 4,
and 4 respectively). Through a series of merging and splitting of independent robotic
units, the foot-bot is shown to adapt its body and nervous system (i.e., its signaling
architecture) 68 times during task execution that we illustrate using 8 steps. In step
1, the foot-bot with the pre-loaded SWARMOPRH-script initiates the formation of
a larger spiral-shaped MNS robot (upper left corner). In step 2, the MNS robot dis-
assembles into independent units in a controlled, sequential fashion demonstrating
the self-knowledge of the brain unit at all times and each of its robotic units becomes
a one-unit MNS robot. The process of autonomous self-assembly and disassembly
is repeated three times (steps 3-8) during which the MNS robots merge into three
further MNS robots with different shapes ans sizes. The overall experiment lasted
shortly under 16 minutes.

3.3.2.3 Morphology-independent sensorimotor coordination

The principle problem the MNS approach solves is the sensorimotor coordination
problem in a composite robot composed of individually autonomous (in terms of
communication, coordination, locomotion, and decision-making) units. To the best
of our knowledge, the MNS robots presented in this thesis are the first self-assembling
multirobot system able to solve tasks with the precision and reactivity equivalent to
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that observed in monolithic robots.
Figure 3.12 shows snapshots of an experiment we carried out to demonstrate the

novel coordination capability that become available to MNS robots. In the exper-
iment, we manually design the behavioral rules for ten robotic units so that they
form a series of MNS robots of different shapes and sizes. The different MNS robots
all display consistent sensorimotor reaction to a moving stimulus. This reaction
involves pointing at the stimulus using LEDs, and retreating from the stimulus if it
is sufficiently close (i.e., proximity to any part of the MNS robot’s body exceeds a
threshold). When a composite MNS robot points to the stimulus, only the LEDs
closest to the stimulus illuminate, independently of the robotic unit to which those
LEDs belong. When moving away from the stimulus, movements of all wheel ac-
tuators on all constituent robotic units are coordinated through the robot nervous
system of the MNS robot, allowing smooth motion of the composite body. In Fig-
ure 3.12a, ten independent robots are shown. We manually control the motion of
the stimulus which provokes a reaction in three of the robots. In Figure 3.12b, two
larger, composite MNS robots have been autonomously formed by the ten MNS
robots. The two MNS robots are independent robots in their own right – they each
have a single brain unit and nervous system. As part of the pointing behavior, the
brain units of both robots switch on the three closest LEDs of their respective bod-
ies green. In Figure 3.12c, the stimulus has exceed the proximity threshold to both
robots causing both MNS robots to retreat from it. In Figure 3.12d, both MNS
robots again merge autonomously to form a larger MNS robot consisting of all ten
units. The brain unit of the 6-unit MNS robot has ceded authority to the brain
unit of the 4-unit MNS robot. In Figure 3.12e, the brain unit of this newly formed
10-unit MNS robot demonstrates a previously unseen level of precision to composite
robot by pointing at the stimulus using integrated sensory data that result from
multiple, independent robotic. In Figure 3.12f, the MNS robot coordinates a retreat
behavior away from the stimulus has moved too close.

3.3.2.4 Fault-detection and self-healing properties

The probability of total failure of robotic units increases together with the size
of any composite robot. In general, the more independent software or hardware
components become part of a single robot, the more susceptible the robot becomes
to malfunctioning units. As opposed to partial failures described in Section 3.2.2,
total failures may not allow a robot to function at all and may put the successful
outcome of an ongoing mission at risk. To maintain robustness and autonomy, it is
therefore important for an MNS robot to detect such faults, and then, if necessary,
to self-heal in response.

We use the heartbeat mechanism integrated into the MNS control logic (see
Section 3.3) to detect a failing robotic unit. That is, the absence of a heartbeat
pulse from a parent unit tells a child that its parent is faulty, while the absence
of an acknowledgement from a child tells the parent that its child is faulty. The
heartbeat payload describes what actions should be taken as a response in the event
of a detected failure. The simplest response that can be pre-defined by the brain unit
is to require each unit to disconnect and retract while informing all its immediate
neighbors to do the same. This mechanism may not represent an optimal solution
for self-healing in terms of time and energy as it essentially disassembles the the
morphology completely – as shown in Figure 3.11 – before the brain unit (or any
other unit) can invite the disassembled units to reform an entirely new MNS robot
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Figure 3.10: MNS robot borrowing physical capabilities from a peer robot. (a) Two
foot-bots and a manipulator foot-bot are deployed on an object transport task. (b) A
foot-bot has detected a suitable brick to be transported and extends its morphology
to acquire new physical capabilities available exclusively to the manipulator foot-bot.
(c) The new composite MNS robot is able to successfully transport the brick.

Figure 3.11: Autonomous MNS adaptation. Snapshots from an experiment in which
independent robotic units autonomously form four MNS robots of different shapes
and sizes (visualized using 8 steps). The schematics show merged nervous systems
after the formation of each pre-defined MNS robot. The foot-bot with the pre-loaded
SWARMORPH-script (the brain unit in all four morphologies) is shown in red.

Figure 3.12: Morphology-independent sensorimotor coordination. Independently
of shape and size, ten MNS robots display consistent sensorimotor reactions to
a moving stimulus. For clarity, concentric green lines were added as overlays to
highlight the pointing direction. See text for details on the experiment.
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from scratch. Instead, as a partial disassembly may be sufficient in many cases, here
we describe an approach for self-healing that excises a failed unit – even a brain unit
– from the morphology and substitutes it with spare units when available.

Figure 3.13 shows a series snapshots from an experiment highlighting recovery of
a 9-unit MNS robot from a faulty robotic unit. To simulate a failure, we manually
disable all communication on one of the robotic units in the MNS robot. The missing
acknowledgements to heartbeat pulses immediately allows its parent unit to detect
the failing child. However, the physical connection created by the child to its parent
unit cannot be broken by any other robot other than the one that created it. Hence,
the parent unit needs to sacrifice itself by detaching itself from its own parent (faulty
unit’s grandparent) in order for the faulty unit to be excised from the MNS robot.
Conversely, the faulty unit’s potential children may also have detected the fault due
to missing heartbeat pulses and detached themselves. In this way, the faulty unit,
its parent or children no longer have any physical connection to the other units of
the MNS robot that they were previously part of. Note that the need to sacrifice the
parent robot is dictated by the current implementation of the marXbot platform,
rather than by any intrinsic property of the MNS control logic. Currently, the only
way to separate two connected marXbots is for the gripping robot to detach itself.
The gripped robot is passive, and has no active way to release itself. A self-assembly
platform that supports an active detachment mechanism by the gripped robot would
obviate the need to sacrifice the parent robot when a child robot experiences a fault.
The self-healing behavior of the MNS robot that has successfully excised the fault
unit (and its parent unit) then maneuvers the robot away from the immobilized
robotic units and recruits free robots to recreate the original morphology. In this
manner, the original morphology can be maintained free of faulty units as long as
there are spare/free units available.

Depending on the mission, specific reconfiguration sequences can be developed
for specific morphologies and specific failures. For instance, children of a faulty
unit can be required (by setting appropriate heartbeat payload) to detach only
from the faulty unit and remain as a sub-morphology (instead of disassembling into
individual units) that then can be immediately recruited to fill an extension point on
the original MNS robot. MNS robots use such a reconfiguration logic to self-heal if
its brain unit experiences a failure. To demonstrate the self-healing capability from
the loss of a brain unit, we design an experiment with behavioral rules for eight
robotic units so that they self-assemble into an MNS robot with an Y-shape. We
then simulate a fault in the brain unit by disabling all its functionalities. As shown in
Figure 3.14 using a series of snapshots, three child units react to a fault in the brain
unit by detaching and creating three new independent MNS robots of which one of
them becomes the brain unit. These three independent robots then merge again to
form another new robot with a morphology as close as possible to the original. In
this experiment, there is a natural re-arrangement of the three-child segments that
results in a similarly shaped body. An MNS robot can therefore recover even from
a faulty brain unit by reconfiguring its body to excise the faulty component even in
the absence of spare units.

The self-healing properties described in this section enables MNS robots to dis-
play high levels of fault tolerance and robustness by combining splitting and merging
capabilities once a fault has been detected in an unit. As opposed to, for example,
learning new behaviors to cope with faults [46, 50], we chose an approach observed
also in nature [51] to enable an MNS robot to self-heal by excising faulty body parts.
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Figure 3.13: An MNS robot executing a self-healing behavior to recover from a
failing robotic unit. (a) We manually program the formation of a 9-unit MNS robot
and (b) disable all communication of the robotic unit marked with the arrow. (c)
The parent of the faulty robotic unit detects the fault and responds by sacrificing
itself. The healthy part of the MNS robot executes the pre-programmed self-repair
behavior and moves to a new location. (d,e,f) Subsequently, free robots are invited
to join the morphology to recreate the original robot that had experienced a fault.

Figure 3.14: An MNS robot self-heals after its brain unit was induced with a fault.
(a) We pre-program the formation of an Y-shaped 8-unit MNS robot. (b) A failure is
induced in the brain unit (marked with the arrow). Using the heartbeat mechanism,
the three child units of the brain unit detect the fault and respond by detaching and
forming three new MNS robots each with a brain unit if its own. (c, d) The three
new MNS robots merge to recreate a single composite MNS robot with a morphology
close to the original.
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3.4 Related work

We review self-assembling and other modular robot systems that have been intro-
duced in the past decade. For systems that existed prior to the year of 2007, we
invite the reader to refer to the extended review presented in [52].

Although no physical connections are considered, in many ways, the break-
through work presented in [5] represents the state of the art in self-assembling robot
research. For the first time, a system was presented in which more than thou-
sand individual units were shown to cooperate and form pre-defined morphologies.
The scale of cooperation demonstrated exceeds current standards in multirobot re-
search [53] by an order of magnitude. The ability to design, manufacture and control
thousand robots represents multiple orders of magnitude improvement over today’s
existing – i.e., not conceptual or simulated – self-assembling robot systems that
consider 10 to 20 cooperating robots at most. Based on three basic behaviors (edge-
following, gradient formation, and localization) and four pre-selected seed robots
defining the origin and orientation of a coordinate system, individual units form
morphologies in experiments that can last several hours. However, the work pre-
sented in [5] focuses exclusively on morphology formation and does not propose
coordination or control mechanisms for already assembled robots.

A robot system able to coordinate motion in a self-assembled robot is Sam-
bot [54]. Individual units are shown to detect and estimate the height of a wall
placed in the environment. As a response, they assemble a snake-like or multi-
legged robotic structure and coordinate their motion over the wall by generating an
appropriate gait or leg movements using a central pattern generator model. The
system relies on an obstacle (wall height) to morphology mapping made available to
a pre-selected seed robot to initiate shape formation. A structural extension to the
widely known mobile robot platform e-puck is presented in [55]. The extension al-
lows mobile robots to form physical connections to four other robots through passive
magnetic docking interfaces. In this work, the shape of target morphology cannot
be pre-programmed or determined as a function of task. Instead, it rather emerges
from the interaction between extension design and the environment. A controller
is also presented that enables a connected 4-unit robot to coordinate motion while
avoiding obstacles placed in the environment.

An entirely novel approach to overcome terrestrial obstacles has been presented
by two separate research groups [56, 57]. Individual robots in both systems are
hexagonally shaped and are capable of autonomously moving on the ground and dock
with each other to take flight in a coordinated fashion while still being controlled in
a distributed fashion. In [56], target structures are pre-defined and self-assembly is
initiated by a randomly chosen seed robot. Hence, the system does not have control
over where a target structure will be formed. In [57], target structures are entirely
random and cannot be chosen as a function of task or environment. Certain (if not
most) parameters of the self-assembly process are defined by an environmental cue:
an overhead light source is used for pose-estimation and navigation towards assembly
location. Nevertheless, collective robot structures generated by both systems are
highly interesting because of their unique ability for vertical takeoff and stationary
flight that can be useful in acquiring a different perspective of the ground.

In the previous decade, the community has not only witnessed the development
of airborne self-assembling robots, but also those capable of operating in liquid
environments [58, 59]. Three different types of independent units are introduced
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in [58]: two capable of operating on the surface of water and one is designed to
operate when immersed in water. For one particular robot type, an interesting
energy supply mechanism is presented. Instead on depending on batteries for the
energy required for propulsion, it draws current from from a metal ceiling (or a
pantograph). In [59], robots in an experimental system were shown to form two pre-
defined target structures in a fluidic assembly system. A computationally efficient
simulator is also presented to model the stochastic fluidic assembly process. In a
separate paper [60], the authors also present an automated assembly-planning algo-
rithm without prior knowledge of the times or locations of component availability.
In both systems presented [58, 59], shape formation remains the primary research
focus while sensorimotor coordination for composite robots is entirely absent.

Evo-bots [61] demonstrate previously unseen forms of coordination among self-
assembling robots in by being able to search for, harvest (using solar panels) and
exchange energy. The square shaped modules in this work have a connector on each
side and do not have motion capability. They therefore depend on their environ-
ment (an air-hockey table) to provide them with the energy required for them to
undergo semi-random motion. Connections occur stochastically on collision and can
be actively reversed by modules after exchanging information between each other.
In its current state, the system is only able to produce chain-like, linear, struc-
tures. One important feature of this system is its ability to build replicas of existing
structures using free modules in the environment. Another novel approach to build
robots using existing modules is presented in [62]. In real-time, composite robots are
autonomously constructed using cube-shaped modules and their shapes are incre-
mentally improved without simulation or human intervention by a “mother robot”
– a robotic manipulator with 6 degrees of freedom. In this model-free approach,
candidate morphology fitness is evaluated using artificial evolution techniques based
on its ability to move in a pre-defined direction on the ground. However, compos-
ite robots constructed through this time-intensive process depend on uncoordinated
behaviors that result in rather rudimentary motion and unsteady trajectories.

Most impactful applications of engineered self-assembly may possibly result from
research carried out at the smallest scales [63]. Modular robot systems are being
designed to work at centi-, milli- and nanoscales and exploit the forces (such as capil-
lary, thermodynamic, chemical, gravitational, magnetic etc.) they encounter in the
environment to be functional. For instance, initial prototypes of centimeter-sized
swallowable modules that can self-assemble into medical devices inside the human
stomach and then move through the intestine have already been presented [64]. In
the future, such modules have the potential to facilitate minimally invasive medi-
cal procedures including diagnosis and complex surgical interventions. In [65], re-
searchers have proposed millimeter-sized robots that exploit the magnetic energy
of magnetic resonance imaging scanners for tissue penetration. They can navigate
through fluid-filled passageways of the human body and reach a target location
where they self-assemble to convert the magnetic energy into kinetic energy re-
quired to achieve penetration. These robots have the potential to provide minimally
invasive and highly localized therapies with minimal trauma. At the nanoscale,
particles have been designed to form self-assembled aggregates inside living cells
as a response to changing environment acidity levels [66]. Such aggregates shift
light absorption to far-red and near-infrared enabling efficient photothermal cancer
therapy. Self-assembly has also been applied to nanoparticles [67] to improve the
delivery of diagnostic (i.e., imaging or contrast) agents into tumor cells. Although
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today’s self-assembling systems capable of operating inside the human body are
mainly conceptual, in the near future, they are expected to revolutionize diagnostic
and therapeutic procedures entirely. Please refer to this review [68] for applications
of self-assembling nanoparticles outside of the human body.

3.5 Summary
The work presented in this chapter allows for the first time self-assembling robots to
demonstrate a level of sensorimotor coordination that previously remained limited
to monolithic robots only. We presented EDSA – enhanced directional self-assembly
– a fast and precise connection forming mechanism that relies on active recruitment
and guidance. We then showed how EDSA can be combined with previously existing
mechanisms to form topology-aware morphologies in a controlled manner. Based on
these results, we introduced mergeable nervous systems – a novel control concept
for the control of self-assembled robotic structures. We conducted experiments to
show that mergeable nervous systems enable self-assembling robots demonstrate
previously unseen features. However, the work presented so far has the following
limitations:

• The seed robot is pre-determined by a human operator in all experiments

• The shape and size of morphologies are pre-defined prior to deployment

• Formed morphologies are not task-dependent – they serve no purpose.

We address these limitations in the following chapters. To this end, in Chapter 4,
we present a protocol that allows a robot in a multirobot system (for instance an
aerial robot with a better perspective of the environment) to select an interestingly
located peer robot to trigger self-assembly. The selection is based on the peers
location and results in a dedicated communication link established to a specific
robot in the communication range. An extension of the protocol is also presented
such that further nearby robots can be added to the link. The number of selected
robots defines the size of the morphology to be formed. In Chapter 5, we then show
how aerial robots can use such links to control the size and shape of task-specific
morphologies on the ground.
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CHAPTER 4
Establishing spatially targeted communication links

In this chapter, we study spatially targeted communication in decentralized multi-
robot systems. We first detail a protocol that can be used to establish a one-to-
one spatially targeted communication (STC) link between an initiator and a target
robot (see Figure 4.1 for a graphical explanation of the terminology used in this
chapter). Then, we present another protocol that allows existing one-to-one STC
links to be expanded to one-to-many STC links between an initiator and a group
of co-located robots, the target group. Both protocols have been implemented and
thoroughly tested on multiple robot hardware. We present the results of experi-
ments we carried out using a homogeneous system (i.e., a system solely composed
of ground-based robots) and a heterogeneous system (i.e., a system composed of
both aerial and ground-based robots) together with a Markov chain model used to
describe and study the underlying process formally.

The proposed protocols have a number of advantages: (i) They can be imple-
mented using standard, low-cost components that can be mounted on most existing
robot platforms. In our experimentation, we used the camera and LEDs-based com-
munication for the experiments conducted using the homogeneous system composed
of multiple s-bots. In this form of communication, images returned by the cameras
are processed to detect RGB color blobs (where each color corresponds to a different
message transmitted by a neighboring robot using its LEDs) of which situational in-
formation such as the relative distance and the angle to each robot can be estimated.
For the heterogeneous system composed of an AR.Drone and multiple foot-bots, we
combined camera and LEDs-based communication with standard wireless Ethernet.
(ii) The protocols can be accurately modeled using Markov chains allowing us to
study the scalability of the protocols from a theoretical perspective. (iii) The re-
sults of the model-based analysis and real robot experimentation show that both
protocols are highly scalable.

This chapter is organized as follows. In Section 4.1, we present a protocol to es-
tablish one-to-one STC links followed by a Markov chain-based model and real robot
experiments that we used to analyze the properties of the protocol. In Section 4.2,
we present an extension of the protocol that shows how an existing one-to-one STC
link can be expanded to a one-to-many STC link. We also present another Markov
chain-based model that describes this protocol extension and its constituent parts.
In Section 4.3, we discuss potential shortcomings of the work presented in this chap-
ter and present possible solutions. In Section 4.4, we discuss the state of the art in
multirobot communication that provide spatial coordination. Finally, in Section 4.5,
we summarize the contributions of this chapter.
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Figure 4.1: Explanation of
the terminology used in this
chapter. Left: the initiator
robot and its signal trans-
mission range that include
the target robot and po-
tential recipient robots .
Right: the initiator robot
and a target group of size
five.

4.1 Establishing a one-to-one communication link

Given a set C := {c1, . . . , cs : s ≥ 3} of distinctive signals available to all robots,
we use an iterative elimination process to establish a one-to-one STC link between
an initiator and a target robot. We use the designated signal c1 initialize and
terminate the elimination process. The subset Cs := {c2, . . . , cs} is reserved for
the iterative component of the elimination process. In this thesis, RGB colors set
using LEDs or strings sent over wireless Ethernet are used to define the sets as
C := {red, blue, green} and Cs := {blue, green}. The initiator robot indicates its
intent to establish a one-to-one STC link to a preselected target robot by initializing
the elimination process by emitting c1. Robots within the reception area of the
c1 signal, that is the potential recipient robots, join the elimination process by
acknowledging with c2. As soon as the initiator robot emits a matching handshake
signal c2, both parties enter the iterative component of the elimination process. At
each iteration, potential recipient robots still in the process randomly choose and
emit a signal from the set Cs. The initiator robot matches the signal emitted by
the target robot. At the end of the iteration, only those potential recipient robots
whose signal match that of the initiator robot – and thereby that of the target
robot – remain in the process. The robots whose signals were not matched quit the
elimination process and stop emitting signals. This elimination process continues
until the target robot is the only robot remaining in the elimination process. At
this point, the initiator robot indicates the termination of the elimination process
by emitting the dedicated signal c1. The target robot acknowledges the termination
by also signaling c1. The initiator robot has now established a one-to-one STC link
to the target robot.

In what follows, we assume the initiator robot has already selected a target
robot based on task parameters such as the target robot’s relative position to the
initiator robot or to other objects of interest. We first describe the protocol at a
microscopic (i.e., at a robot controller) level using finite state machines (FSMs).
Based on this microscopic description, we then derive a macroscopic (i.e., a system
level) model using a time-homogeneous Markov chain. We also present results of the
protocol scalability analysis we conducted using data collected from physics-based
simulations, real-robots experiments, and predictions of the macroscopic model.

4.1.1 The iterative elimination process and preliminary trends

Figure 4.2a shows the FSM executed by the initiator robot. It consists of three states:
STA (start); EP (elimination process); and LE (link established). When the initiator
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robot needs to establish an STC link with a particular robot, it enters the STA state
and transmits the predefined signal red (c1) to initialize the iterative elimination
process. The transition ta1 is triggered and state EP is reached if at least the target
robot acknowledges the STA signal. This expedient guarantees that the target robot
is not busy with an ongoing task and is available to join the elimination process
and to be selected for communication. In state EP, the initiator robot continuously
matches the color displayed by the target robot by taking transition ta2. However,
if all other robots have been eliminated and the target robot is the only robot
displaying a color, the transition ta3 is taken to enter the state LE. The predefined
color red (c1) is displayed to confirm an established STC link to the target robot.

The FSM executed by the potential recipient robots, including the target robot,
is shown in Figure 4.2b. The FSM is composed of three states: ACK (acknowledge);
EP (elimination process); LE (link established). The transition tw1 is taken to enter
the ACK state as soon as the color is red (c1) is received from an initiator robot.
If available for communication with the initiator robot, the predefined color blue
(c2) is displayed to acknowledge the participation in the elimination process. The
transition tw2 is triggered as soon as the initiator robot matches the color blue. In
state EP, each potential recipient robot randomly selects and displays a color from
the set Cs. Simultaneously, it starts incrementing an internal timer t. Whenever t
exceeds a fixed threshold τ , the robot examines the latest color received from the
initiator robot to determine whether to remain in the elimination process by taking
tw3, or to terminate the behavior by taking tw5 as a result of mismatching colors.
The timer mechanism provides the initiator robot with sufficient time to perceive,
process and react to the colors displayed by the potential recipient robots. When a
potential recipient robot that has already entered the elimination process perceives
the predefined color red (c1) from the initiator robot, it can safely assume that it is
indeed the target of the initiator robot. In this case, the transition tw4 is triggered
and the potential recipient robot confirms the termination of the elimination process
by also displaying the color red (c1).

We carried out preliminary tests in simulation to study the impact |Cs| has on
the number of iterations required for the termination of the elimination process.
We also tested the scalability of our approach by varying the number of potential
recipient robots from which the initiator robot chooses the target robot from. We
used a heterogeneous system composed of an eye-bot and multiple foot-bots in which
the eye-bot always assumed the role of the initiator robot and the foot-bots that of
the potential recipient robots. We developed two autonomous robot controllers: one
for the eye-bots and one for the foot-bots. The controllers are completely distributed
and homogeneous, i.e., all foot-bots execute the same controller. Both controllers
are behavior-based and are based on the FSMs shown in Figure 4.2. As shown in
Figure 4.3a, each simulation run started with an eye-bot placed at a height of 2 m
in the center of an obstacle-free arena of dimensions 2 m x 2 m. The foot-bots are
randomly placed within the visual range of this eye-bot and is able to perceive all
foot-bots within the arena and vice versa. Initially, the foot-bots perform a random
walk while avoiding other robots. Their green LEDs are switched on so that they
remain visible to the eye-bot. Within the initial two seconds, i.e., before the foot-bots
start moving out of its vision range, the eye-bot randomly picks a target foot-bot
and starts the one-to-one STC link establishment process. All foot-bots respond to
the eye-bot and become static.

Figure 4.3b shows the results of our preliminary tests. The number of iterations
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(a)

(b)

Figure 4.2: Finite state machines running on (a) the initiator robot, and (b) the
potential recipient robots that enable the establishment of a one-to-one STC link.
The color shades represent the RGB color signals available in the respective states.
STA: start, ACK: acknowledge, EP: elimination process, LE: link established.
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Figure 4.3: Preliminary experiments of the iterative elimination process in simula-
tion. (a) A screenshot showing one eye-bot (the initiator robot) and thirty foot-bots.
(b) Results of the experiments with varying number of foot-bots and |Cs|, i.e., num-
ber of signals available to the iterative elimination process. Each data point is the
average of 1000 simulation runs.
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required to terminate the elimination process is plotted against the number of foot-
bots which we varied between 10 to 80 in steps of 5. Each curve in the graph
represents a value between 2 to 6 chosen for |Cs|, that is the number of RGB colors
available to the iterative component of the elimination process. We added new colors
to Cs to match the value considered. For instance, the redefined set for |Cs| = 6 was
Cs := {blue, green, orange, yellow,magenta, cyan}. Each data point on each curve
is the average value resulting from 1000 simulation runs. The results indicate three
tendencies. First, the number of iterations required for the eye-bot to establish an
STC link only experience a logarithmic growth as the number of foot-bots increases.
This observation is confirmed by the analysis carried out in Section 4.1.2. Second,
increasing the number of signals available to the iterative elimination process, that
is to |Cs|, have a significant impact on the speed of the elimination process by
requiring less iterations until termination. For instance, in the case of 2 colors and
20 foot-bots, the average number of iterations is 5.5 while in the case of 6 colors and
20 foot-bots, the average is 2.5 iterations. This is an immediate consequence of the
fact that the higher |Cs| is, the more robots get eliminated from each iteration on
average. Third, as separately listed in Table 4.1, an interesting trend is apparent
when considering the standard deviations: the higher the value of |Cs|, the lower is
the standard deviation. Hence, using more signals in the elimination process does
not only reduce the number of iterations required, but it also make the number of
iterations required more predictable. Also this observation is theoretically analysed
and confirmed in the following Section 4.1.2.

Table 4.1: Standard deviations for varying values of |Cs| and different numbers of
foot-bots. Simulation results from 1000 repetitions for each value of |Cs|.

|Cs| 10 20 30 40 50 60 70 80
2 1.82 1.90 1.80 1.88 1.84 1.78 1.96 1.91
3 1.16 1.17 1.18 1.24 1.18 1.16 1.20 1.21
4 0.94 0.90 0.95 0.92 0.98 0.93 0.99 0.97
5 0.85 0.81 0.84 0.90 0.81 0.90 0.85 0.84
6 0.74 0.79 0.77 0.80 0.76 0.77 0.79 0.74

Note that the data presented so far result from empirical studies we carried out
in simulation. In the following, we present a theoretical model that we use to confirm
the trends observed in simulation.

4.1.2 Markov chain model and model-based analysis

For a given number of potential recipient robots N that are located in the communi-
cation range of the initiator robot, we investigate the number of iterations necessary
for the iterative elimination process to terminate. That is, the time required for the
initiator robot to establish a one-to-one STC link with a target robot. We consider
time to be discrete due to (i) the behavioral nature of the robot controllers that
are discrete and defined using FSMs [69], and (ii) the clock time spent by actual
robots may depend heavily on the underlying robot platform and communication
modalities. The presented model aims at abstracting away from such hardware
specifications while focusing on the performance of the presented algorithm. In our
model, we define time using the concept of iterations: each time step n corresponds
to one iteration in the iterative elimination process. An iteration ends when all
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remaining robots in the elimination process have (i) selected and transmitted a ran-
dom signal from Cs and (ii) have assessed the match or mismatch of this signal with
that received from the initiator robot.

In Section 4.1.1, we presented a memory-less process. That is, at each iteration,
each potential recipient robot acts only on the basis of its current state and on the
current signal received from the initiator robot. The future state of the robot there-
fore fulfills the Markov assumption [70] as it is independent of its past. Additionally,
the threshold-based timer mechanism that is part of the FSM allows us to consider
all potential recipient robots from a macroscopic point of view in the model. We
use this synchronization property of the robots to abstract from individual robot
states and consider subsets of robots that are in identical states simultaneously. As
a result, we define a macroscopic model of the iterative elimination process using a
time-homogeneous Markov chain. We use an absorbing Markov chain that features
a set of transient states and a single absorbing state. The transient states represent
the intermediate states of the iterative elimination process. The absorbing state
guarantees the termination of the iterative elimination process in finite time.

Let N be the set of naturals. We define our process as a Markov chain {Xn, n ∈
N} with N+1 states. The state of the process is represented by the random variable
X = x ∈ Ω := {1, . . . , N + 1}. Each state is characterized by the number of robots
ηx = N + 1− x that still remain in the elimination process. All states of the chain
are transient states except for X = N + 1 which is an absorbing state. That is, once
the chain enters the state X = N + 1, it will remain in that state for an infinite
amount of time. Accordingly, in state X = N + 1 the number of robots involved
in the process is ηx = 0, which corresponds to the termination of the elimination
process. At time step n, the process will move from the current state Xn = i to
the next state Xn+1 = j with a probability πij . We define the stochastic transition
matrix Π := (πij : i, j ∈ Ω) of the Markov chain as

Π :=


πij = C

ηj−1
ηi−1 p

ηj−1(1− p)ηi−ηj , for i < N, i 6 j 6 N (4.1a)
πij = 1, for i > N, j = N + 1, (4.1b)
πij = 0, otherwise. (4.1c)

The transition probability between transient states are defined in Case (4.1a)
as the probability πij that ηi − ηj robots will leave the elimination process when
taking the transition i → j. This probability follows a binomial distribution where
parameter ηi−1 is the number of robots that are remaining in the elimination process
without the target robot and p = 1/|Cs| is the probability for one of these robots
to randomly select and emit the identical signal as the target robot. Case (4.1b)
defines two probabilities: (i) the transition from the state Xn = N to the absorbing
state Xn+1 = N + 1 occurs with probability πij = 1. This deterministic step models
the final handshake between the initiator and the target robot in the last iteration.
(ii) the state X = N + 1 is defined as an absorbing state. Finally, Case (4.1c) states
that other transitions not covered by the previous two cases will never occur.

The iterative elimination process is formally described by the stochastic transi-
tion matrix Π. Such formal descriptions are often used to predict the performance
of processes in conditions that go beyond what is possible using real world systems.
Model predictions can be used to detect faults [71] in a system during runtime – for
instance, when the iterative elimination process exceeds its termination time due
to errors in signal transmission or malfunctioning potential recipients robots. Be-
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fore the model can be used in such scenarios, it needs to be validated for accuracy.
We validate the accuracy of our model by comparing model predictions with data
acquired from physics-based simulations. After confirming it accuracy, we use the
model to analyze the scalability of the iterative elimination process. To this end, we
first define the random variable ϑ as the number of iterations required before process
termination. Second, we consider the matrices Γ and Σ of the canonical decompo-
sition of Π [70] to study the distribution of ϑ. Γ defines the transition probabilities
between transient states. The fundamental matrix Σ, given by (I − Γ)−1 where I
represents the identity matrix, gives the expected number of visits to each tran-
sient state. We validate the accuracy of the model predictions by comparing the
distribution of ϑ with the empirical data acquired from simulation. The cumulative
distribution function F (ϑ) = P (ϑ 6 n, x0) can be obtained for a given initial state
X0 = x0 as the infinite series

F (ϑ) = 1−
∑
j∈Ω

Γnx0,j . (4.2)

The probability of the process to be in a transient state at iteration n is given by
the subcomponent

∑
j∈Ω Γnx0,j of Equation 4.2. Followingly, the complement of this

value provides the probability of entering the absorbing state prior to iteration n.
Figure 4.4a shows the cumulative distribution function F (ϑ) provided by the

model plotted with the empirical distribution function F̂ (ϑ) obtained from 1000
simulation runs for three different values of |Cs|. The number of potential recipient
robots N was set to 50. The theoretical predictions of the model are shown to closely
match the the empirical observations for each value of |Cs|. Also the probability mass
function f(ϑ) = P (ϑ = n, x0) shows a high agreement between the two data sets (see
Figure 4.4b), indicating reliable model predictions. The probability mass function
is right-skewed, i.e., the probability mass is concentrated under the left side of the
curve. This implies the possibility of long executions of the process. However, with
increasing |Cs|, i.e., the number of signals available to the elimination process, the
variance of ϑ shrinks considerably reducing the probability mass under the right tail,
and thus, the occurrence of long executions. We compute the expected value E[ϑ]
and the variance V[ϑ] of the number of iterations necessary to establish a one-to-one
STC link. from the matrices Γ and Σ according to

E[ϑ] = ξΣ, (4.3)

and
V[ϑ] = (2Σ− I)E[ϑ]− Esq[ϑ]. (4.4)

The term ξ in Equation (4.3) represents a column vector of all 1s. That is, for every
(transient) initial states, the expectation value of ϑ is given by the row sum of the
fundamental matrix Σ. In Equation (4.4), I denotes the identity matrix and Esq[ϑ]
is E[ϑ] with squared entries.

We use Equations (4.3) and (4.4) to study how the distribution of the expected
value ϑ scales for increasing values of N and |Cs|. As the results presented in
Figure 4.4c show, E[ϑ] is characterized by a logarithmic growth indicating high
scalability for increasing values of N . The same trend applies to the variance of
ϑ: given a certain value for |Cs|, V[ϑ] grows logarithmically for increasing N . The
results also show that as |Cs| increases, the variance of ϑ decreases considerably
increasing the reliability of the expectation value as an aggregated indicator of the

53



n
0 5 10 15 20

0.0

0.2

0.4

0.6

0.8

1.0
F

(ϑ
), 

F
(ϑ

)

● ● ● ●
●

●

●

●

●

●
● ● ● ● ● ● ● ● ● ●

●● ● ● ● ●
●

●

●

●

●

●
● ● ● ● ● ● ● ● ● ● ●

Cs = 2
Cs = 3
Cs = 4

(a)
n

0 5 10 15 20
0.0

0.1

0.2

0.3

0.4

0.5

f(ϑ
), 

f(ϑ
)

● ● ● ● ●

●

●

●
●

●

●

●
● ● ● ● ● ● ● ● ●● ● ● ● ●

●

●

● ●

●

●

●
● ● ● ● ● ● ● ● ● ●

Cs = 2
Cs = 3
Cs = 4

(b)

N

𝔼
[ ϑ

] ±
𝕍

[ ϑ
]

0 20 40 60 80 100
0

2

4

6

8

10

|C s|=2

|C s|=3

|C s|=10

|C s|=1000

(c)

Figure 4.4: Model validation and scalability prediction. (a) Cumulative distribution
function F (ϑ) and (b) probability mass function f(ϑ) and their empirical counter-
parts F̂ (ϑ) and f̂(ϑ), respectively, plotted against the number of required iterations
n before termination. Full symbols represent model predictions, empty symbols
provide the outcome of 1000 physics-based simulation runs where the number of
potential recipient robots N was set to 50. (c) Plot showing the scalability of the
iterative elimination process as predicted by the model for large N and |Cs|. The
shaded areas represent the variance of the expected value: E[ϑ]±

√
V[ϑ].

performance of the process (e.g., compare the width of the shaded areas for N = 80
between |Cs| = 2 and |Cs| = 1000 in Figure 4.4c). Followingly, in the limit of
an infinite number of available signals, |Cs| → ∞, the probability for a potential
recipient robot to randomly choose the same color as the target robot tends to be
zero. The variance of ϑ disappears, and as a consequence, the iterative elimination
process approaches a deterministic behavior that has exactly 2 iterations: at the
first iteration all potential recipient robots except the target robot are eliminated,
while in the second iteration the target robot performs the final handshake with
the initiator robot. At the other end of the spectrum, in an application scenario
where the number of available signals is limited, the elimination process still ends in
finite time as guaranteed by the absorbing state of the Markov chain. The number
of iterations necessary to complete the process decreases as the number of available
signals increases.

The presented Markov chain model theoretically confirms all three tendencies
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we identified using the empirical data collected from preliminary experimentation
described in Section 4.1.1. The model suggests high, logarithmic scalability of the
studied process. Also, an initiator robot can detect faults in the process by com-
paring actual number of iterations occurred in a process to its probability value
returned by the model.

4.1.3 Experiments and results

We first ran a series of experiments on a homogeneous robot system composed of s-
bots only. Figure 4.5 shows snapshots from an experiment using 5 s-bots. We let the
s-bot in the bottom row assume the role of the initiator robot while keeping all robots
stationary during the experiments. We implemented two behavior-based controllers
based on the FSMs presented in Section 4.1.1, one for the initiator robot and another
one for the remaining robots. Each s-bot is placed such that each RGB-based color
signal emitted by an s-bot can be perceived by all other s-bots. The timer threshold
τ is set to 20 control steps, which is equivalent to 2 seconds. Note that the optimal
value of τ should be chosen such that it leaves the robots sufficient time to perceive,
process, and reply to the signals sent by other robots. Hence, the optimal value of τ
is dependent on the properties of the underlying communication hardware used by
the robots. In the experiment shown in Figure 4.5, the elimination process is iterated
four times before a one-to-one STC communication link is successfully established
between the initiator s-bot and another s-bot within 9 seconds. We replicated the
experiment 10 times using the same setup. On average, 3 iterations were required
for the termination of the elimination process. The video footage all experiments
can be found online at http://iridia.ulb.ac.be/supp/IridiaSupp2009-006/.

We also carried out extensive experiments on a heterogeneous robot system com-
posed of one AR.Drone and up to ten foot-bots. Due to hardware limitations (the
AR.Drone are not equipped with controllable LEDs) and the very agile nature of
the aerial robot, we augmented the communication speed and bandwidth between
the aerial and the ground-based robots by using wireless Ethernet for signal trans-
mission as illustrated in Figure 4.6a. For safety reasons, we used a colorless, trans-
parent plexiglass platform installed at 40 cm height from the ground to shield the
foot-bots from potential emergency landings of the AR.Drone (see Figure 4.6b). We
placed the AR.Drone on the plexiglass platform and varied the number for foot-bots
N ∈ {2, 4, 6, 8, 10} distributed in a 1 m x 1.5 m arena with |CS | = 2 colors. For
each value of N , we execute 30 experimental runs resulting in a total of 150runs.
In each run, the foot-bots were placed in the arena with random orientations and
positions together with a light source embodying the point-of-interest (hereafter
referred to as POI) to the AR.Drone. The AR.Drone uses the POI to determine
the target robot by identifying the closest foot-bot to the POI. While the foot-bots
execute the identical behavior-based controller as the s-bots and remain static, the
AR.Drone executes the following behavior: i) it elevates to a height of approximately
1.4 m above the plexiglass platform (i.e., ca. 1.8 m above ground level) such that
all foot-bots part of the experiment is in the field of view of its downward pointing
camera, ii) hovers above the POI by executing a manually tuned PID controller that
continuously minimizes the distance between the POI and the center of the image
received from the downward-pointing camera, and iii) establishes a one-to-one STC
link to the foot-bot closest to the POI before landing on the plexiglass platform.
While hovering, we occasionally observed lateral drifts of the AR.Drone caused by
impeded airflow in the arena. Therefore, we introduce an additional signal for our
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(a) (b)

(c) (d)

(e) (f)

(g) (h)

Figure 4.5: Snapshots of an experiment showing the establishment of a one-to-one
STC link in a homogeneous system composed of s-bots only. The s-bot in the bottom
row assumes the role of the initiator robot. This predesignated s-bot establishes a
link with the s-bot on the top-left. The letters next to the s-bots represent the
current color displayed: R=red, G=green and B=blue. (a) A STA signal is sent
by the initiator s-bot. (b) The STA signal is acknowledged by all other 4 s-bots.
(c) The initiator s-bot initiates the iterative elimination process EP. (d) All 4 s-
bots remaining in the EP, (e) EP includes 2 remaining s-bots, (f) EP includes 2
remaining s-bots, (g) only the desired s-bot is in the EP. The initiator s-bot confirm
the termination of the process using the color red and (h) the establishment is
confirmed by the selected s-bot. The video footage of this experiment can be found
online at http://iridia.ulb.ac.be/supp/IridiaSupp2009-006/.
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Figure 4.6: (a) Communication in the heterogeneous robot platform composed of
one AR.Drone and multiple foot-bots considered in this chapter. Foot-bots use RGB
colors to transmit signals that can be detected by the AR.Drone using its downward-
pointing camera. Signal transmission to the foot-bots occurs over wireless Ethernet.
(b) The experimental setup showing the airborne AR.Drone at around 1.8 m above
ground, six foot-bots, the plexiglass platform, and the light source representing the
point of interest (POI). (c) Empirical probability mass function f̂(ϑ) computed for
varying sizes of N and |Cs| = 2. Box-plots depict 30 runs, errorbars correspond to
predictions of the model (E[ϑ] ±

√
V[ϑ]). (d,e,f) Three frames extracted from an

application scenario where a one-to-one STC link is established by the AR.Drone to
the foot-bot closest to the POI. The STC link is used to send tailored messages to the
target foot-bot which uses instructions received to grow an arrow-like morphology.

real robot experiments. The AR.Drone issues a freeze signal if not all foot-bots in
the experiment are in its field of view due to drifting. The foot-bots respond to
this signal by pausing their internal timers as long as the freeze signal is perceiv-
able. Hence, the freeze signal avoids the fixed threshold τ (set to 200 ms) to be
reached when the AR.Drone is unfavorably positioned to continue the elimination
process. For each value of N , a video montage composed of 10 runs can be seen
online at http://iridia.ulb.ac.be/supp/IridiaSupp2013-005/.

Figure 4.6c shows the observed number of iterations plotted as box-plots together
with predictions of the model plotted as errorbars. They show the expected value
E[ϑ] and the variance V[ϑ] of the number of iterations necessary to establish the
one-to-one STC link. We compare the empirical distribution of the result with the
predictions of the Markov chain model defined above. As the results show, the agree-
ment between the empirical observations and the theoretical predictions is rather
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high. In particular, the median values obtained from the real robot experiments
(shown in box-plots) approximate well the theoretical expectation of ϑ. However, in
the case of N ∈ {6, 8, 10}, the empirical observations have a larger variance than the
theoretical predictions. This discrepancy can be explained by the limited number of
observations gathered from the experiments on the heterogeneous system, and thus
is negligible. While the size of N in this set of experiments was increased by a factor
of 5 (i.e., form 2 to 10 foot-bots), the average number of iterations only experienced
an increase by a factor of 1.6 (i.e., from 3.8 for 2 foot-bots to 6.1 iterations for
10 foot-bots). These results confirm the high scalability of the iterative elimination
process predicted by the Markov chain model.

4.2 Establishing a one-to-many communication link

Spatial coordination in multirobot systems often require messages to be transmitted
to co-located robots simultaneously. Here we present a protocol extension that allows
an already established one-to-one STC link to be expanded to become a one-to-many
STC link between an initiator robot and a group co-located robots. Our approach
works by iteratively growing a group of robots around a target robot with which a
one-to-one STC link has already been established. Note that we are not interested
in which individual robots are selected, but only in how many are selected in the
spatial cohesiveness of the target group.

An already established one-to-one STC link can be used to create a one-to-many
STC link through an iterative growth process using a set C := {c1, c2, c3} of situated
signals. Before the initiator robot initiates the iterative group process, the target
robot is the only initial member. Target group members signal their membership
using the predefined signal c1. At each iteration, the initiator robot may emit the
signal c3 to request a growth of the group. Only those robot that perceive this signal
and a target group member will process the request by responding with signal c2.
We refer to these robots as candidate robots. In a subsequent step, each candidate
robot executes an exclusion mechanism that allows only the closest candidate robots
to remain in the growth process and hence become a potential group member. As
visualized in Figure 4.7, this exclusion mechanism enables candidate robots ensure
spatial cohesiveness of the final target group by eliminating those candidate robots
from the growth process that have another robot located between itself and the
closest target group member. The remaining set of closest candidate robots com-
municate their candidacies to the initiator robot by emitting c3. If no signals from
candidate robots can be perceived, the initiator robot may finally grant group mem-
bership to the closest candidate robots by signaling c1. Alternatively, if the potential
target group size (i.e., the number of the closest candidate robots plus the number of
current group members) exceeds the required target group size, the initiator robot
may issue the signal c2 to request closest candidate robots to relinquish their candi-
dacies probabilistically. All closest candidate robots are granted group membership
if potential target group size is lower than or equal to the target group size desired
by the initiator robot. The iterative growth process is repeated until the desired
target group size is reached.
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(a) (b) (c)

Figure 4.7: The exclusion mechanism executed by candidate robots to achieve co-
hesive target groups. = target group member, = candidate robot, =
hibernating robot, and = closest candidate robot. (a) Candidate robots within
the communication range of the target robot. (b) Division of perception range into
eight equally sized sections visualized on a candidate robot. Three candidate robots
exclude themselves and do not become closest candidate robots, as they detect an-
other candidate robot that is in the same section as the closest group member and
closer. (c) The target robot and its remaining closest candidate robots from which
any robot can become a target group member without breaking the group cohesion.

4.2.1 The iterative growth process

We present details of the iterative growth process using two behavior-based robot
controllers we developed, one for the initiator robot and one for the candidate robots.
Both controllers are implemented using the FSMs shown in Figure 4.8 and operate
under the assumption that C := {red, blue, green}.

Figure 4.8a shows the FSM executed by the initiator robot. The FSM consists of
three states: HAL, to halt the growth process; GRO to request growth of target group
size; and LEA, to request closest candidate robots to leave the process probabilisti-
cally. Initially, the initiator robot enters the HAL state and signals the color red. If
the current target group size matches the desired size, transition ta1 is triggered
and the initiator robot quits the growth process and stops executing the controller.
By contrast, if the current target group size is smaller than the desired target group
size, transition ta2 is taken and the initiator robot enters the GRO state and sends
the signal green to request candidate robots to execute the exclusion mechanism
in order to grow a cohesive target group. From the state GRO, the initiator robot
can move to two states as needed as soon as all candidate robots have finished ex-
ecuting the exclusion mechanism (i.e., when only signals sent by closest candidate
robots are perceivable) . If the potential target group size is equal or less than
the required target group size, the initiator robot simultaneously grants all closest
candidate robot group membership and halts the growth process at an intermediate
group size by taking the transition ta2 and by returning to state HAL. Alternatively,
if the target group size may be exceeded if all closest candidate robots are granted
group membership, the initiator robot requests closest candidate robots to proba-
bilistically relinquish their candidacies by moving to state LEA through transition
ta3 and by signaling the color blue. The initiator robot iterates in the LEA state
by taking transition ta4 until the potential target group size is equal or less than
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the required target group size. Finally, when this condition is satisfied, the initiator
robot triggers the transition ta5 to the HAL state to grant group membership to
remaining closest candidate members.

Figure 4.8b shows the FSM executed by the candidate robots. The FSM is
composed of four states: HIB, hibernate; CAN, candidate robot; CCR, closest candidate
robot; and MEM, member of the target group. No signal is transmitted while in state
HIB, while the blue color is illuminated in state CAN, green when in state CCR, and
red when in state MEM. The controller is initiated in the HIB state. If the initiator
robot indicates an excess of closest candidate robots by signaling using color blue, the
transition tm5 is taken to leave the growth process permanently. The transition tm1
is taken to enter the CAN state if the signal green is received from the initiator robot
requesting target group growth. In this state, the following procedure is executed to
maintain the group’s spatial cohesion. As shown in the example in Figure 4.7b, each
candidate robot divides the 360 degree perception of the environment into 8 equally
sized sectors with an angular range of 45 degrees each. Subsequently, transition tm1
is taken to leave the growth process if another candidate robot is perceived closer
than the nearest target group member within a single sector. Or else, transition tm2
is triggered to enter state CCR. When in state CCR, each robot responds to a received
blue signal (indicating too many closest candidate robots) from the initiator robot by
considering the outcome of an independent Bernoulli trial with success probability
p = 0.5. In case of success, the robot stays in the state CCR, otherwise it takes the
transition tm3 to enter the HIB state. A single bit of memory is used in state HIB to
store a binary value that represents the state from which the state HIB was reached:
CAN or CCR. This allows closest candidate robots from previous iterations to re-enter
the state CCR by taking the transition tm3 while avoiding the CAN state entirely.1
Finally, transition tm4 is triggered when signal red is received from the initiator
robot granting membership to the target group.

In what follows, we detail three underlying concepts of the iterative growth
process essential to the modeling process that follows in Section 4.2.2: iterations,
interaction graph, and growth phases. We hereafter assume the robots to be dis-
tributed in a square lattice. For clarity, we refer to the exemplary growth process
illustrated in Figure 4.9 in which each robot is at least able to perceive the signals
from the robots in its Moore neighborhood. We later assess the impact of the robot
distribution assumption in Section 4.2.2 and discuss possible relaxations.

Iterations: we define an iteration such that it can be used to represent time n
required to expand a one-to-one STC link to a one-to-many STC link. An iteration
is an occurrence of one of the four following sequences of state transitions in the
initiator robot’s FSM:

(i) HAL→GRO→HAL: The initiator robot requests a target group size growth; the
potential target group size does not exceed the required target group size, and
thus, the initiator robot grants membership to all closest candidate robots
(e.g., at iteration I in Figure 4.9).

1When the intermediate group size is close to the target group size, the initiator robot may need
to repeatedly request the same set of robots to candidate and withdraw candidacies probabilistically
until the target group size is reached. Storing the prior state allows robots in state HIB that were
previously in state CCR to respond to such a request by avoiding the re-execution of the exclusion
mechanism and thus reduces the wall clock time of an iteration.
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(a) (b)

Figure 4.8: The FSMs executed by (a) the initiator and (b) the candidate robots
that enable the establishment of one-to-many STC links. The RGB color-based
signal emitted in each state is indicated by , , or . HAL: halt, GRO: grow,
LEA: leave, HIB: hibernate, CCR: closest candidate robot, CAN: candidate, MEM:
member.

Figure 4.9: A schematic of an iterative growth process around a target robot located
in the center of square lattice where the total number of robots N = 25 and the
target group size D = 12. The process requires six iterations (I–VI) before reaching
target group size. The sole iteration in the deterministic phase is indicated by a solid
arrow whereas the iterations in the stochastic phase are indicated by dashed arrows.
Intermediate group sizes (filled boxes) and potential target group sizes (empty boxes)
are shown in the bottom. The opposing arrows in the background depict how the
iterative growth process constantly pushes the intermediate group size and the total
number of participating robots in the growth process towards the target group size
after each iteration. = MEM, = CCN, = HIB.
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(ii) HAL→GRO→LEA: The initiator robot requests a target group size growth; the
potential group size exceeds the target group size and therefore the initiator
enters the LEA state (e.g., at iteration II in Figure 4.9) requesting closest
candidate robots to relinquish their candidacies probabilistically.

(iii) LEA→LEA: The number of closest candidate robots that relinquish candidacy
is too low; the initiator robot loops in LEA state and transmits a further signal
requesting a further reduction (e.g., at iteration III in Figure 4.9 at which the
potential target group size was reduced from 25 to 21).

(iv) LEA→HAL: Some closest candidate members relinquished their candidacies leav-
ing potential target group size equal to or lower than the target group size; the
initiator grants membership to all closest candidate robots (e.g., at iteration
IV in Figure 4.9, the number of closest candidates robots is reduced from 11 to
1 upon which the sole closest candidate robot was granted group membership
allowing the intermediate group size to be increased from 9 to 10).

We define this particular set of state transition sequences due to three important
properties. Firstly, because it is complete. That is, any possible run of the growth
process (i.e., for any N and D) can be decomposed into multiple iterations of which
each corresponds to either one of these state transition sequences. For instance, the
growth process shown in Figure 4.9 requires six iterations to reach target group size.
Secondly, when a LEDs and camera-based communication modality is in use, all
four state transition sequences have the same time and computation costs making
an analysis of iterations based on them meaningful. To see why the cost is constant,
note that each state transition sequence ends with a transition that is triggered
when the number of closest candidate robots changes in the system. Consequently,
the cost of detecting an iteration by an initiator robot can be kept constant by
applying a color-based similarity matching technique [72] of constant cost on two
subsequently retrieved images such that each change in the number of closest can-
didate robots can be detected. Thirdly, robots in state CAN, i.e., candidate robots,
are completely disregarded when defining iterations using this particular set of state
transition sequences. This leads to a much smaller state space in the model pre-
sented in Section 4.2.2 as candidate robots do not have to be considered at all.

Iteration graph: is an abstraction mechanism we consider to derive a non-spatial
characterization of the growth process. Two connected nodes in such an interaction
graph correspond to a target group member and one of its closest candidate robots.
Using such an interaction graph, we consider a sequence {a0, a1, . . . } of which each
element corresponds to the total number of closest candidate robots available at
each intermediate group size. For the intermediate group sizes 1, 9, and 10 shown
in Figure 4.9, the sequence corresponds to {8, 16, 15}. For instance, at intermediate
group size 1 the total number of closest candidate robots is 8. This is a result of
the exclusion mechanism shown in Figure 4.7 that limits a group member’s closest
candidate robots to its Moore neighborhood regardless of a robot’s communication
range if at least the robot’s Moore neighborhood is covered. At intermediate group
size 9, closest candidate robots are all 16 outmost robots.

Growth phases: in a square lattice distribution of robots, the iterative growth pro-
cess can be distinguished into two distinct phases: a deterministic and a stochastic
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phase. The deterministic phase is composed of a series of HAL→ GRO→HAL iterations
that occur repeatedly until the potential target group size is greater than or equal
to D. We refer to these iterations as deterministic, as at each iteration, the number
of new members entering the group is a priori predictable as a function of the rela-
tive positioning of the potential recipient robots in the lattice. For instance, in the
example shown in Figure 4.9, iteration I will always result in 8 newly added group
members. If the potential target group size equals D, the growth process terminates
without entering the stochastic phase. On the other hand, if the potential target
group size exceeds D as at iteration II of the growth process shown in Figure 4.9,
then the deterministic phase ends and the growth process enters the second stochas-
tic phase. Each iteration in this phase is an occurrence of one of the three remaining
iteration types (HAL→GRO→LEA, LEA→LEA, LEA→HAL). These iterations are stochas-
tic because each of them contains a probabilistic response to a leave request (LEA).
The stochastic phase continues until the target group size is reached (see iterations
II–VI in Figure 4.9). In the stochastic phase, each iteration of type (iii) and (iv)
allows the potential target group size to act as a monotonically decreasing upper
bound on the number of robots involved in the growth process. After each iteration
of type (i) and (ii), i.e., also during the deterministic phase, the intermediate group
size representing a lower bound increases monotonically. These two bounds meet
at the target group size as showing using the opposing arrows in the background of
Figure 4.9.

4.2.2 Square lattice distribution-based Markov chain model

Given a number of N potential recipient robots, we are interested in modeling the
time required for the initiator robot to grow a one-to-one link into a one-to-many
STC link to a target group of size D. In our model, each time step n corresponds
to one iteration as defined earlier. For the reasons presented in Section 4.1.2, we
consider time to be discrete. We assume the potential recipient robots to be dis-
tributed in a square lattice with each robot able to perceive at least the robots in its
Moore neighborhood. We then assess the impact of such an assumption on model
predictions and discuss possible relaxations.

The distinction of growth phases allows us to build a model of the iterative
growth process such that each phase can be modeled separately. In the following
section, we present separate models for each growth phase such that the estimation
of D = Ddet + Dsto, where Ddet is the number of robots added to the intermediate
group during the deterministic phase, and Dsto is the number of robots added to
the intermediate group during the stochastic phase.

4.2.2.1 Deterministic phase model

In the interaction graph we defined, any target robot that is not located at the
edges of a square lattice distribution can be represented using a node connected to
8 neighbors (i.e., the target robot has 8 closest candidate robots). The sequence of
closest candidate robots for intermediate group sizes of any iterative growth process
that starts in such a condition is thus given by {8k,∀k ∈ N > 0} in an infinite lattice
while the number of iterations required to exhaust the deterministic phase is

arg max
k>0

(
1 +

k∑
i=1

8i < D

)
. (4.5)
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The target group size at the end of a deterministic phase is defined by D = Ddet =
1 +

∑k
i=1 8i.

4.2.2.2 Stochastic phase model

We define a Markov chain {Yn, n ∈ N} with the random variable Y ∈ Ω := {1, . . . , w}
that represents the state of the growth process and Ω that represents the state space
with w = 2(N −D)(D −Ddet) + 1 states. Each state Y = y is characterized by:

• ηmy , current number of target group members;

• ηcy, current number of closest candidate robots;

• ηc
′
y , number of closest candidate robots at the previous iteration;

• ηhy , number of hibernating robots.

Although the growth process uses a single bit of memory, we apply the formal-
ism of time-homogeneous Markov chains using a chain of order 2. The memory
is modeled using the variable ηc′

y : when the memory is necessary, ηc′
y equals the

number of closest candidate robots at the previous step of the chain, when it is not
necessary, ηc′

y = −1. All states are transient with the exception of Y = y such that
ηmy = D, ηcy = 0, ηhy = N −D, ηc′

y = −1 which is the only absorbing state.
At step n, the process on the chain will move from the current state Yn = i to

the next state Yn+1 = j with probability πij . We define the stochastic transition
matrix ΠY := (πij : i, j ∈ Ω) of the chain {Yn, n ∈ N} as


πij = Cqrp

q(1− p)r, if c1.1 ∨ c1.2 ∨ c1.3, (4.6a)
πij = 1, if c2 ∨ c3, (4.6b)
πij = 0, otherwise, (4.6c)

where the adjacency conditions c1.1, c1.2, c1.3, c2, c3 between states i and j are sum-
marized in Table 4.2. Case 4.6a corresponds to a binomial distribution where r = ηci ,
i.e., the number of closest candidate robots withdrawing candidacies probabilistically
(in state Yn = i) with success probability p, and q = ηcj + ηmi − ηmj , i.e., the number
of closest candidate robots retaining candidacies (in state Yn+1 = j). The adjacency
conditions c1.1, c1.2, c1.3 define all possible states i and j such that the transition
i → j corresponds to an iteration LEA → LEA or LEA → HAL. Case 4.6b defines the
transition probability between adjacency conditions c2 and c3 to 1. The adjacency
condition c2 covers all possible pairs of states (i, j) such that the transition i → j
corresponds to an iteration HAL → GRO → LEA. The adjacency condition c3 defines
the absorbing state of the system. Finally, Case 4.6c defines that transitions not
covered by the adjacency conditions will never occur. Given the interaction graph,
note that this Markov chain model can be applied to any spatial distribution of the
robots by solely changing the adjacency conditions.

4.2.2.3 Analyzing model predictions and scalability

We first validate the reliability of the Markov chain model by comparing model
predictions against data collected from simulation-based studies. Second, we as-
sess how a square lattice distribution of robots assuming a Moore neighborhood-
based interaction graph compare to the model predictions using data acquired from
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Table 4.2: The adjacency conditions between states i and j of the stochastic tran-
sition matrix ΠY

ηmj ηcj ηhj ηc
′
j

c1.1 = ηmi = 0 = ηci + ηhi = ηci
c1.2 = ηmi 6 η

c
i = ηci + ηhi − ηcj = −1

c1.3 > ηmi = 0 — = (ηci + ηmi − ηmj ) ∨ −1
c2 = ηmi 6 η

c
i = ηhi − ηci = −1

c3 = D = 0 = N −D = −1

simulation-based experiments in which we vary the spatial distribution of the robots
from a square lattice to a random distribution. Third, we present the results of our
scalability studies of the growth process.

We perform a canonical decomposition of ΠY in the transition probability matrix
ΓY and the fundamental matrix ΣY . The number of iterations necessary to reach a
target group size D is defined as the random variable ϕ = ϕdet +ϕsto, where ϕdet is
the number of iterations during the deterministic phase and ϕsto is the number of
iterations during the stochastic phase. ϕdet is given by Equation (4.5), while ϕsto is
derived from the Markov chain model that provides the number of state transitions
before the process reaches its only absorbing state. The cumulative distribution
function F (ϕ) is then given by Equation (4.2) and the variance V[ϕ] is given by
Equation (4.4), while the expected value is given by

E[ϕ] = arg max
k>0

(
1 +

k∑
i=1

8i < D

)
+ ξΣY , (4.7)

where ξ is a column vector filled exclusively with the value 1.
The reliability of the Markov chain model is validated using multiple probability-

probability (P-P) plots. We use them to compare the cumulative distribution func-
tion F (ϕ) with the empirical distribution F̂ (ϕ) retrieved from simulation for varying
sizes of potential recipient robots N and target group size D. The results are pre-
sented in a 3 × 3 matrix from which each cell is a different P-P plot. Plots with
identical N values are in the same row. Plots in the same column have target group
size D = Ddet + d · (N −Ddet), where d is a constant fraction of robots remaining in
the stochastic phase (N −Ddet). For each combination of N and D, we run 1000 in-
dependent simulation runs and register the number of iterations required to reach D.
In a P-P plot, the distributions under examination agree when the points in the plot
lie on the diagonal of the square due to the confinement of P-P plots to unit squares.
As the results show in all nine plots shown in Figure 4.10, the function (F (ϕ), F̂ (ϕ))
returns data points in the close proximity of the diagonal of the respective cell. This
indicates a good agreement between theoretical and empirical distributions for each
combination of parameters considered. Based on this observation, we conclude our
model to be reliable.

We further compare model predictions with results acquired from simulation to
investigate the difference between the duration of the iterative growth process be-
tween a random distribution and a square lattice alignment of the potential recipient
robots. Figure 4.11 shows the results for increasing N ∈ {9, 25, 49, 81, 121} plotted
against target group size D = Ddet + 50% · (N −Ddet) set to a constant fraction of
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Figure 4.10: P-P plots
comparing theoret-
ical and empirical
cumulative distribu-
tion functions of ϕ
with N ∈ {9, 49, 121}
and D = Ddet +
d · (N − Ddet) with
d ∈ {25%, 50%, 75%}.
Each data point (plot-
ted as grey circles) is
an average of 1000 sim-
ulation runs.
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Figure 4.11: Empirical cu-
mulative distribution func-
tions computed for N ∈
{9, 25, 49, 81, 121} and D =
Ddet + 50% · (N − Ddet)
with 1000 simulation runs
each. F̂r(ϕ) represents ran-
domly distributed robots,
F̂l(ϕ) represents square lat-
tice distribution, and E[ϕ]±√
V[ϕ] is the theoretical ex-

pectation.
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the stochastic phase. For empirical values resulting from simulation runs, i.e., for
F̂r(ϕ) representing randomly distributed robots and for F̂l(ϕ) representing robots
distributed in a square lattice, box-plots are presented. Each of them represent
1000 simulation runs we executed to mitigate the effect of random fluctuations.
Model predictions E[ϕ] ±

√
V[ϕ] are plotted using error bars. As the results show,

the growth process for smaller N ∈ {9, 25, 49} terminates the fastest when robots
are randomly distributed. For larger N ∈ {81, 121}, the model predictions corre-
spond well with the results from simulation independent of the spatial distribution of
the potential recipient robots. The discrepancy between the model predictions and
empirical data can be explained by the increased probability of a robot to perceive
at least one neighbor in each of its eight sections of perception for larger N . The
average degree of connectivity in the resulting interaction graph (for larger N) may
hence resemble that of a square lattice with eight nodes – the spatial assumption
underlying the Markov chain model. The model therefore provides a reliable and
quantitative approximation of the duration of the growth process given the potential
recipient robots are situated in a densely packed group.

Once an initial one-to-one link has been established, two methods can be cho-
sen to expand the link to a target group: (i) by repeating the elimination process
presented in Section 4.1 multiple times such that one robot is added to the target
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Figure 4.12: Scalability of
target group selection. E[ϕ]
for N = 121 in a square
lattice distribution. Dashed
lines show results of repeat-
ing the elimination process
with varying |Cs|. Solid line
represents the growth pro-
cess. Inset shows the per-
formance of the growth pro-
cess for larger values of D.
Red dots are fitted values.

group after each repetition, or (ii) by following up the one-to-one link by the growth
process described in Section 4.2. We study the difference in the scalability properties
between both these approaches. For this purpose, we compute the expectation value
of ϕ for N = 121 using the Markov chain model and plot it against D ∈ {2, . . . , 100}.

The results of the scalability studies are plotted in Figure 4.12. We vary the
number of distinct signals Cs available to the iterative elimination process and plot
them using dashed lines while the results obtained from the iterative growth process
is plotted using a solid line. As the results show, the iterative growth process
clearly outperforms the iterative elimination process regardless of the size of |Cs|.
Even when the theoretical case is considered in which |Cs| tends to infinity, the
dominance of the iterative growth process over the iterative elimination process still
holds. We also observed that the iterative growth process scales approximately as
D · log(D) for larger values of D. We plot this result in the inset in Figure 4.12 in
which fitted values are shown in red circular markers. The spikes in the inset are
caused by faster termination of the iterative growth process for values of D that
can be reached exclusively through iterations in the deterministic phase only (e.g.,
D ∈ {9, 25, 49, . . . }). In summary, establishing an STC link to a target group is faster
through the iterative growth process in all cases considered. However, there may also
be advantages in repeating the iterative elimination process in particular application
scenarios. For instance, when communication links are required to particular robots
rather than to a cohesive group of a specific size.

4.2.3 Experiments and results

We first validate the establishment of one-to-many STC links using a homogeneous
robot team composed of 5 s-bots. Second, we use a heterogeneous team composed
of up to 9 foot-bots and one AR.Drone to assess how a square lattice distribution
of robots assuming a Moore neighborhood-based interaction graph effects the model
predictions contrasted against data acquired from real robots experiments in which
we vary the spatial distribution of the robots from a square lattice to a random
distribution (see Figure 4.13). The behavioral controller for the robots are imple-
mented based on the FSMs presented in Figure 4.8. In the case of the robots in the
homogeneous team, the behavioral controller is initiated with the logic of the FSMs
presented in Figure 4.2.

Figure 4.14 shows snapshots of an experiment we ran using s-bots, where N = 4
and D = 2. We placed 4 s-bots assuming the role of potential recipient robots in
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Figure 4.13: Snapshots
of experiments with
the heterogeneous team
where N = 9 and D = 4:
(left) random distribu-
tion and (right) square
lattice distribution.
The overlays illustrate
one-to-many STC links
established between
the AR.Drone and the
respective target groups.

the shape of an arch around a predesignated s-bot, which assumes the role of the
initiator robot. All robots are in the vision range and therefore in the communication
range of all other robots. The timer threshold τ is set to 20 control steps (equivalent
to 2 seconds). In the experiment, the elimination process is iterated 5 times and
lasted 10 seconds before a one-to-one STC link is established. The expansion to
one-to-many link to include one further s-bot lasted another 8 seconds and included
the iteration HAL→GRO→HAL. We replicated the experiment 30 times. 10 times for a
different each value of D ∈ {2, 3, 4}. On average, the STC links to the target groups
were established within 16, 20, and 22 seconds, respectively. The video footage of
the experiment presented in Figure 4.14 can be found online together with others
at http://iridia.ulb.ac.be/supp/IridiaSupp2009-006/.

Figure 4.13 shows snapshots from experiments we carried out using the hetero-
geneous team. We considered two spatial distributions of the potential recipient
robots: random (Figure 4.13 left) and a square lattice with a side length of 0.4 m
(Figure 4.13 right). We study how randomly distributed potential recipient robots
may affect the duration of the growth process with respect to the model predictions
that assume a square lattice distribution. To mitigate the stochasticity underlying
the iterative elimination process, we assume an already established one-to-one STC
link between the AR.Drone (i.e., the initiator robot) and one foot-bot. For each
value of D ∈ {2, 4, 8} and spatial distribution, we execute 30 runs resulting in a
total of 180 runs. The experimental setup considered is similar to that presented
for the heterogeneous team in Section 4.1.3. However, in the setup used here, no
light source is considered. Therefore, the AR.Drone hovers above the foot-bots by
relying on a PID controller that minimizes the distance between the center of the
bounding box that includes all nine foot-bots and the center of the image returned
by the camera. When all nine foot-bots are the in the field of view of the AR.Drone,
the control logic of the initiator robot shown in Figure 4.8 is executed. Otherwise,
when fewer than nine foot-bots are in its field of view, the AR.Drone issues the
freeze signal to stop the the timer running on the foot-bots. The fixed threshold τ
is set to 200 ms which corresponds to two control cycles of a foot-bot – sufficient to
receive multiple messages via wireless Ethernet from the AR.Drone.

Figure 4.15 shows results obtained using random distribution and square lattice
distribution together with the model predictions. It can be noted that the median
value of the square lattice distribution and the expectation value of the model pre-
dictions for D = 2 andD = 8 do not vary significantly. The amplitude of standard
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(a) (b)

(c) (d)

(e) (f)

(g) (h)

Figure 4.14: Snapshots of an experiment showing the establishment of a one-to-
many in a group of 5 s-bots. The initiator robot is the s-bot in the center and target
group size D = 2. The signals emitted are illustrated using the letters shown next
to the emitting robot: R=red, G=green and B=blue. (a) The initialization of the
experiment . (b) The one-to-one communication link is established to the robot on
the right. The selection of this particular robot is entirely random. (c) The initiator
robot requests for the growth of the group. (d) All three remaining s-bots candidate
by illuminating blue. (e) The closest candidate robot is determined. (f) The closest
candidate robot signals its candidacy by illuminating green. (g) The initiator robot
grants group membership by emitting the red signal. (h) The new target group
member confirms the membership by illuminating the LEDs in red.
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Figure 4.15: Empirical cumulative distribution functions of real robot experiments
with F̂r(ϕ) for randomly distributed foot-bots, F̂l(ϕ) for foot-bots distributed in a
square lattice plotted against theoretical expectation E[ϕ] ±

√
V[ϕ] for N = 9 and

D ∈ {2, 4, 8}. Each box-plot represents 30 runs. Empty boxes are for F̂r(ϕ) and
filled boxes are for F̂l(ϕ). The error bars represent the model predictions.

deviation is also well approximated. However, in the case of D = 4, the data col-
lected from our experiments do not correspond well to the model predictions. One
reason for this outcome could be limited sample of size of 30 runs causing random
fluctuations of the estimated distributions. In the case of randomly distributed
robots, we observe that the growth process terminates faster than the expectation
value of the model in all cases. We consider this as a direct consequence of the sizes
chosen for D that requires stochastic phase iterations in all cases. For instance, in
the square lattice distribution, all eight neighbors of the target robot are closest
candidate robots and hence no deterministic iteration of the type HAL→GRO→HAL
can occur for D ∈ {2, 4, 8}. On the other hand, when distributed randomly, some
foot-bots may occlude others and render intermediate group sizes such as 2,4, or 8
more probable. As a consequence, the AR.Drone may avoid stochastic phase itera-
tions entirely and reach the target group size D ∈ {2, 4, 8} with deterministic phase
iterations only. We confirm this observation by visually validating the video footage
of the experiment runs with random distribution of the foot-bots. In conclusion,
for small values of N , the model predictions based on square lattice-based interac-
tion graph overestimates the duration of the growth process as random distributions
often do not result in the dense, structured neighborhoods underlying the Markov
chain model.

4.3 Discussion
We address three potential issues with the approach described in this chapter to
enable spatially targeted communication in multirobot systems and present possible
solutions:

1. Asymmetrical communication between initiator and potential recipient robots

2. Parallelism in heterogeneous teams
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3. Noisy or wrongly detected signals

Both protocols described in this chapter assumes that all potential recipient
robots (i.e., robots in the communication range of the initiator robot) are able to
communicate with the initiator robot (i.e., the initiator robot is in the communica-
tion range of each potential recipient robot). If this assumption does not hold true in
a certain scenario, the issue of asymmetrical communication arises which causes the
initiator robot to be ignorant of response messages transmitted by potential recip-
ient robots. As a consequence, initiator robots may terminate iterative elimination
processes assuming that a one-to-one STC link can be established while multiple
robots still remaining the process. Similarly, excess potential recipient robots can
become members of a target group without the initiator’s knowledge. We avoided
the asymmetrical communication problem by positioning each robot in the commu-
nication range of all others in order to enable global communication. An alternative
to solving the symmetric communication problem by using global communication
would be for the initiator robot to calculate the probability of only one target robot
remaining in the elimination process by providing the number of iterations already
conducted and an estimate of potential recipient robots to the Markov chain model
presented in Section 4.1.2. To be on the safe side, the estimates can be rounded up
by an order of magnitude for a very low cost in terms of additional iterations. This
is ensured by the logarithmic relationship between the number of iterations and the
number of potential recipient robots (see Figure 4.4c). In the one-to-many case,
however, this solution is not suitable and therefore requires a behavioral solution
from initiator robots. The key is to prevent robots outside of the communication
range from becoming part of a target group. For instance, this can be achieved
by the AR.Drone by executing the iterative growth process in such a way that the
boundaries of the group never expand beyond its own field of vision.

In the heterogeneous team considered in this chapter, we use the AR.Drone robot
as the initiator robot. The fact that is uses non-situated broadcast communication
(wireless Ethernet) to communicate with the foot-bots make it impossible for mul-
tiple STC links to be established in parallel. This is because, foot-bots would not
be able to distinguish between signals from the different initiator robots. However,
this is no longer an issue as the initiator uses situated communication such as colors
displayed using LEDs. In the next chapter, we present heterogeneous teams com-
posed of multiple foot-bots and an eye-bot demonstrating this type of bidirectional
situated communication. In such a setup, multiple initiator robots can establish
STC links in parallel as potential recipient robots will be able to use the inherent
properties of situated communication to distinguish between signals from the differ-
ent initiator robots (e.g., based on distance) and therefore can choose which STC
process to participate in.

Most situated communication technologies (e.g., ultrasound, infrared, or LED
light) are subject to inherent noise that may lead to wrongly detected signals. The
protocols presented in this chapter can cope with such signals resulting from the
underlying hardware. A wrongly detected signal during the elimination process can
cause the target robot to eliminate itself. In this case, the initiator robot simply
needs to stop transmitting signals and restart the process. On the other hand,
if a signal is wrongly detected by any of the robots during the growth process,
the process still can be corrected by looping through a few additional iterations.
However, both these corrective behaviors have time costs we try to limit by using
filtering techniques that reduce the number of wrongly detected signals. Each signal
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receiving robot processes multiple camera frames before a decision is made about
what signal has been detected. This simple technique proved to be sufficient to
completely eliminate signal detection errors in our experiments.

4.4 Related work

Established spatially targeted communication links can enable spatial coordination
in a multirobot system as communication partners can be chosen based on their
location. Many robots systems consider specialized hardware to achieve this kind
of coordination. For instance, an infrared-based technology was presented in [73]
for simultaneous localization and communication (hence situated communication)
between neighboring robots. This pioneering work has led to the development of
multiple derivations [74, 33] targeting a variety of robot platforms. While these
devices are not explicitly been designed for spatially targeted communication, they
still can be used by robots for the same purpose by first broadcasting robot IDs
among peers to then follow up with communication data marked with IDs of the
targeted communication partners. In fact, this method is used by the extending
robot in the guidance algorithm (see Algorithm 2 presented in Section 3.1.2) to guide
the recruit to the desired extension point. Researchers have also presented devices
to enable relative localization based on ultrasound [75, 76] without the exchange of
message payload. Peer robots using these devices can be located but no messages can
be exchanged using the same device. In general, however, not many robot systems
have access to specialized hardware and the features they provide. Although less
precise, an alternative and more general method to enable relative localization in
multirobot systems could be the probabilistic framework presented in [77].

A more often used technology to achieve spatial coordination in multirobot sys-
tems is wireless Ethernet (IEEE 802.11). Systems that employ wireless Ethernet of-
ten employ a technique referred to as “tightly coupled” coordination [78, 79, 80, 81]
in the literature in which broadcast messages from message senders are channeled to
message receivers (either directly or via intermediate stations). In tightly coupled
systems, perceptual or computational capabilities are shared by a message sender
while also revealing its identity and its capabilities through the messages transmit-
ted. The internal state of each message receiving robot then determines whether
a received message should be processed. Alternatively, the information regarding
which robot to process what kind of message is predetermined. Wireless Ether-
net has been used [82, 83] in this manner to achieve coordination between aerial
and ground-based robots by also combining GPS and environment maps or geo-
referenced coordinates. The ZigBee wireless technology (IEEE 802.15.4) has been
applied in [84] to coordinate a team of micro quadrotors flying formations in 3D
space. In this work, an externally installed motion capture system delivers posi-
tional data about each micro quadrotor to a central base such that the station can
compute and control each team member’s position. Decentralized solutions based
on Bluetooth [85, 86] have also been proposed to enable simultaneous communica-
tion between pairs of robots. As localization information is absent when using this
technology, a priori knowledge is used by the robots as the are pre-programmed to
localize themselves based on landmarks distributed in the environment. While a
priori information and pre-determined communication channels may be feasible for
robot teams composed of few robots, these solutions tend not to scale in systems
that consider a large teams [25, 87].
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Another often used technique is to combine vision with unique IDs such as mark-
ers [80, 81] or barcodes [88] that reveal the identity of the robot on which they are
mounted. An aerial robot was presented in [89] in which an on-board camera is
used to locate and identify peer robots on the ground in order to compute and pro-
vide their relative location with respect to one another. While visual identification
may not always be feasible or reliable in air-ground teams due to occlusion, low
illumination, etc., teams that consider robot IDs and support simultaneous relative
localization (as it is mostly the case in vision-based systems) have the potential to
engage in spatially targeted communication. Robots in such systems can employ any
wireless communication technology to address interestingly located peers directly by
broadcasting messages marked with addressee ID. A further vision-based alternative
is to use a combination of cameras and LEDs to detect neighboring robots (without
detecting their identities) and their relative locations. Simultaneous communication
can then occur by displaying different LED colors by the message sender. Such low-
bandwidth, vision-based communication similar to the one used in this chapter has
been successfully applied to study a series of tasks that require spatial coordination
such as path formation [90], collective transport [23], and morphology control [22].

4.5 Summary
In this chapter, we identified spatially targeted communication as an essential form
of communication in multirobot systems and presented a novel approach to establish
STC links. We presented two protocols that enable robots in a decentralized system
to establish ad-hoc communication links to particular robots based on their location
in the environment. We have shown using extensive experiments that our approach
can be applied to both purely ground-based robot systems and to heterogeneous
robot teams composed of aerial and ground-based robots. Our approach is highly
portable as it can be implemented using standard hardware such as cameras and
LEDs found on many existing robotic platforms. Furthermore, we presented formal
descriptions of both protocols and showed that the protocol used to establish one-to-
one STC links scales logarithmically with respect to the number of potential recipient
robots while the establishment of one-to-many STC links scales logarithmically with
respect to the target group size. This is particularly important as multirobot sys-
tems are starting to consist of large numbers of individual robots requiring scalable
communication solutions.

In the next chapter, we combine the research work presented both in this chapter
and in previous Chapter 3 to present a cooperation methodology for coordination
between aerial robots and ground-based robots. We demonstrate application sce-
narios related to self-assembly and show how established STC links can be followed
up by aerial robots to send useful information to self-assembling robots such that
they can operate on the ground without requiring a priori knowledge of the task or
environment.
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CHAPTER 5
Supervised morphogenesis

In this chapter, we combine the work presented in the previous two chapters and
introduce supervised morphogenesis – a morphology control methodology enabling
cooperation between aerial and self-assembling robots. Supervised morphogenesis
exploits the perspective of the environment available to aerial robots from elevated
positions and assigns all decision-making authority to these robots regarding when to
trigger self-assembly and what target morphologies to form on the ground. That is,
self-assembling robots rely on aerial robots to monitor the environment and provide
the guidance required to form new morphologies as a function of task or environment.

Heterogeneous multirobot systems composed of aerial and ground-based robots
have been the focus of many studies [91]. The interest in such systems is mainly
motivated by the fact that such systems have the potential to solve tasks that require
capabilities that go beyond those of a single robot type. For instance, while aerial
robots can explore large areas rapidly, ground-based robot can carry higher payloads
and manipulate objects on the ground. In recent years, a surge in technology has
led to the development of aerial robots [92] able to maneuver through previously
unreachable environments, such as inside obstacle-filled buildings and densely loaded
warehouses [93, 94, 95]. Researchers have also proposed innovative designs [96, 97]
that allow aerial robots to operate in highly cluttered environments and even be
resilient towards potential collisions. Despite these advances, almost no research
effort has been dedicated to study how aerial robots may use their capabilities to
assist self-assembling robots overcome some of their inherent limitations. Here, for
the first time, we put aerial robots and self-assembling robots on a convergence path
and demonstrate how such a cooperation can increase overall system autonomy and
extend the range of tasks that can be solved by the robots on the ground.

Simultaneous deployment of cooperating robots with different sets of sensors
and actuators calls for the resolution of multiple challenges related to perception,
decision and action [98]. This is particularly true when robots cannot rely on the
availability of a common frame of reference (such as GPS) or when they do not have
access to global information such as maps of the environment to facilitate coopera-
tion. In Section 5.1, we present the underlying control methodology of supervised
morphogenesis and present a solution regarding perception, decision and action for
both aerial and self-assembling robots. We present a first case study in Section 5.2
in which we use a robot team composed of one AR.Drone and multiple foot-bots.
In Section 5.3, we present a second and more comprehensive case study in which
we consider a hill-crossing task using a team composed of an eye-bot and multiple
foot-bots. Then, we quantify the performance benefits (in terms of task completion
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Figure 5.1: Overview of supervised morphogenesis. Control states (shown in circles)
provide a solution related to perception, decision or action to both robot types. Basic
behaviors (such as phototaxis and obstacle avoidance) executed by self-assembling
robots are task-dependent and may include both perception and decision-related ac-
tivities. Interactions occurring between the two robot types and their directionalities
are shown using according arrows. ESTC: establish spatially targeted communica-
tion link, EDSA: enhanced directional self-assembly.

times) that can be achieved by a robot team implementing supervised morphogen-
esis in the context of a simulated gap-crossing task. The results are presented in
Section 5.4. In Section 5.5, we review existing air-ground robot teams and the tasks
they solve. We summarize the contributions of this chapter in Section 5.6.

5.1 Control methodology
We present the methodology underlying supervised morphogenesis. See Figure 5.1
for an overview. As shown in the figure, supervised morphogenesis is composed of
multiple control states (shown in circles) for each robot type. We assume that only
one aerial robot has been allocated [99] to provide assistance to a particular group
of ground-based robots. In the following, we describe each state starting with those
of the aerial robot.

5.1.1 Aerial robot

Aerial robot exploits its agility to follow the group of robots it is allocated to su-
pervise. Simultaneously, it uses a standard downward-pointing camera — a sensor
available on most aerial platforms — to build an internal model of the environment
underneath. Depending on the task, the dimensionality of the built model may vary
between 2D or 3D. This ability to choose the dimensionality of the model allows the

76



aerial robot to avoid unnecessary data collection and computation. For example,
the solution of certain tasks only require the relative positions of the robots and the
objects on the ground to be represented using a 2D model (see our first case study)
while other tasks depend on a detailed three-dimensional model of the environment
(see our second case study).

Subsequently, in a further control state, we let the aerial robot use this internal
model of the environment to perform on-board simulations to determine whether
self-assembly is required on the ground to maneuver through the environment or to
solve the task at hand. Such on-board simulations allow the aerial robot to assess the
adequacy of different target morphologies in a particular environment prior to their
costly (in terms of energy and time) and physical realization on the ground. The
aerial robot continues with the modeling of the environment if simulation outcome
requires no intervention.

On the other hand, if supervision is required, the action taken by the aerial
robot is a combination of different techniques. First, a one-to-one spatially targeted
communication link is established to a robot that can initiate self-assembly. The
selection (and therefore the location) of this robot may depend on the task and/or the
environment. I required, the established link is expanded using the iterative growth
process to allocate further robots to join the self-assembly process. In this manner,
resources are allocated optimally as non-selected robots become free to purse other
tasks. Second, the aerial robot follows up an established STC link in a separate
state in which it selects the target morphology and broadcasts its description using
a SWARMORPH-script. Before transmitting the SWARMORPH-script, it is first
translated into a binary string allowing it to be transmitted via wireless Ethernet
or via the low-bandwidth communication modality based on LEDs and cameras.
Once the transmission is complete, the control of the aerial robot returns to the
environment model building state.

5.1.2 Self-assembling robots

In most tasks, the control of a self-assembling robot is initiated with a behavior
that does not require immediate supervision from an aerial robot. We refer to these
behaviors as basic behaviors that may include both perceptual and decision-making
processes. For instance, in a basic obstacle avoidance behavior, data need to be
acquired from proximity sensors and processed before a decision can be made on
the robot’s direction of movement. Further examples of basic behaviors include
phototaxis and EDSA presented in Section 3.1. The total number of basic behaviors
executed, the parameters used to configure them, and the manner in which they are
combined may depend on the actual task at hand.

Basic behaviors are executed by self-assembling robots until a STA signal is per-
ceived from the aerial robot trying to establish an STC link (as described in Chap-
ter 4) and therefore highlighting the need for supervision. Self-assembling robots
able to perceive the signal come to a halt and acknowledge participation in the it-
erative elimination process by responding with the ACK signal. Messages from the
aerial robot can either be transmitted via wireless Ethernet or via LED colors that
can be detected using ceiling cameras. The robots on the ground are required to use
a situated communication modality to communicate with the aerial robots in order
to facilitate spatially targeted communication. In case no STC link has been estab-
lished, a self-assembling robot continues with the execution of basic behaviors under
the assumption that it is not required for the formation of the target morphology
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selected by the aerial robot.
Robots selected by the aerial robot wait for the reception of self-assembly in-

structions from the aerial robot. These instructions are expected in form of a
SWARMORPH-script that lead to the formation of a morphology most suited for
the task. Once received, the connections described in the SWARMORPH-script are
formed using EDSA — a basic behavior based on recruitment and guidance algo-
rithms that do not depend on further assistance from the aerial robot for execution.

5.2 Case study number 1
We present a preliminary case study of supervised morphogenesis. We show how
established STC links can be followed up with actual information relevant to the task
at hand. We demonstrate how different states in the control methodology function
seamlessly with each other and across robot platforms.

5.2.1 Task and experimental setup

In the task we consider, ground-based robots depend on aerial assistance to be suc-
cessful. A successfully solved task requires the formation of a target morphology
at a distance between 60 cm and 70 cm from a point-of-interest (POI) in the en-
vironment. The POI is a light source placed on the ground that can be detected
by an aerial robot while it remains undetectable to the ground-based robots due to
their vantage point and the intense ambient lighting. While the shape of the target
morphology can be freely chosen by the aerial robot from a pre-compiled morphol-
ogy library consisting of many morphologies of different shapes and sizes, its size
is task-dependent. That is, the task requires the formation of a morphology that
leaves at least three ground-based robot unconnected at all times and therefore free
to pursue other, more important, tasks. The total number of deployed robots is not
made available to the robot team. The ground-based robots are given no informa-
tion about the task. Therefore, in order for the robot team to be successful, the
aerial robot needs to acquire following three bits of information:

1. the location of the POI and all ground-based robots

2. the relative distances between the POI and the robots on the ground

3. the total number of ground-based robots deployed.

We set up an experiment in which we consider an heterogeneous team composed
of one AR.Drone and six foot-bots. We deploy the robots on a mission towards a
task represented by the POI. The AR.Drone flies in advance to the POI and hov-
ers until the foot-bots follow. Simultaneously, it builds a two-dimensional model
of the environment using its downward-pointing camera. For safety reasons, we
used a colorless, transparent plexiglass platform installed at 40 cm height from the
ground to shield the foot-bots from potential emergency landings of the AR.Drone
(see Figure 5.2a). The AR.Drone analyzes the images returned by its downward-
pointing camera to locate the POI by detecting the point with the highest light
intensity above the thresholds that can be reached by the foot-bot LEDs. To de-
tect the foot-bots, standard circle detection algorithms are executed. Using these
information, the AR.Drone builds a two-dimensional environment model containing
X/Y coordinates of the POI and the foot-bots in its field of view. Subsequently
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executed on-board simulations continuously compute the relative distances between
the POI and the foot-bots. All communication from the AR.Drone to the foot-bots
occurs over wireless Ethernet. Foot-bots, in turn, use their LEDs illuminated in
RGB colors to send different messages. Other parameters used during the STC link
establishment process are identical to those described in Section 4.1.3.

5.2.2 Results

We carried out 10 experimental runs using the heterogeneous team composed of one
AR.Drone and six foot-bots. In 7 of the 10 runs, the team managed to successfully
complete the task by forming target morphologies of the appropriate size in the dis-
tance range required. In the remaining three runs, however, task conditions were not
met as only fewer than three robots remained unconnected after self-assembly. This
is an immediate result of the low-resolution downward-pointing camera (176x144)
available to the AR.Drone that led to the incorrect detection of more than six de-
ployed ground-based robots. One solution to avoid the occurrence of such faulty runs
may be to fine tune the image analysis parameters prior to each run considering the
battery charge of the robot (we observed that a lower battery charge had a nega-
tive effect on the quality of the image processing routines). Alternatively, one could
consider replacing the AR.Drone camera with a camera capable of capturing images
with higher resolution or deploying another aerial robot that already comes with a
higher resolution camera (see Section 5.3). Video footage of one of the successful s
can be seen online at http://iridia.ulb.ac.be/supp/IridiaSupp2017-007/.

Here we describe a successful run and present snapshots from the experiment in
Figures 5.2b to 5.2e. Initially, the foot-bots are placed facing the POI with their
LEDs illuminating the color green. On deployment, the foot-bots are instructed to
drive forward while the AR.Drone flies over them at an altitude of approximately
1.8 m while modeling the environment underneath. Once the POI has entered its
field of view, the AR.Drone runs an hovering behavior (see Section 4.1.3) to remain
above the POI and starts running on-board simulations. As soon as the outcome of
the simulations confirm a relative distance between any one of the foot-bots and the
POI between 60 cm and 70 cm, the AR.Drone broadcasts a SWARMORPH-script
with a Stop command causing all foot-bots to come to a halt (see Figure 5.2b).
Then, to estimate the total number of foot-bots in the group, the AR.Drone scans
the vicinity around the already detected foot-bots. In this manner, the size of the
target morphology (i.e., total number of foot-bots minus three) can be determined.
In the control state that follows, the AR.Drone initiates the iterative elimination
process to establish an STC link to the closest foot-bot (indicated using a straight
line in Figure 5.2c) to the POI. Once the one-to-one STC link is established, as
shown in Figure 5.2d, a SWARMORPH-script of the correct size is (in this case
of size three) is chosen from the morphology library and then transmitted to the
selected foot-bot using wireless Ethernet broadcast. Although all foot-bots are able
to receive the SWARMORPH-script, only the selected foot-bot executes the self-
assembly instructions and form and arrow-like morphology of size three using the
recruitment and guidance algorithms introduced as part of EDSA (see Figure 5.2e).
In this manner, the foot-bots were able to build the target morphology of appropriate
size without any prior knowledge about the task.

Note that a SWARMORPH-script is first converted into a binary string be-
fore transmission. A robot that receives such a binary string can, in turn, trans-
late it back to a SWARMORPH-script and execute the received control logic. By
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(a)

(b) (c) (d)

(e)

Figure 5.2: Supervised morphogenesis case study number 1. (a) The experimental
setup showing the heterogeneous robot team composed of one AR.Drone and six foot-
bots. The light source is placed on the ground covered by a transparent plexiglass
platform. Figures (b-d) show images taken from the downward-pointing AR.Drone
camera after processing. The border colors represent the signals transmitted during
the iterative elimination process. The number in the center of each frame shows
the size of the target morphology determined using on-board simulations run by
the AR.Drone. Figure (e) shows the target morphology formed using EDSA. The
annotated time duration in Figures (b-e) corresponds to the clock time starting the
execution of ESTC.
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converting to binary strings, SWARMORPH-scripts can also be transmitted using
low-bandwidth communication modalities such as LEDs and cameras. The aerial
robot was flown manually in this preliminary case study. However, the control (en-
vironment modeling, on-board simulations) and communication algorithms (ESTC,
transmission of self-assembly instructions) were executed entirely autonomous by
the AR.Drone. The foot-bots remained autonomous throughout the course of all
experiments. Further examples of cooperation between an AR.Drone and foot-bots
are presented in [100].

5.3 Case study number 2

In the second case study, we consider a more challenging hill-crossing task in which
we test the adaptivity of supervised morphogenesis to changing environmental con-
ditions. Contrary to the task considered in Section 5.2, a successful task solution
requires the aerial robot to build a three-dimensional model to characterize the en-
vironment. Additionally, more sophisticated simulations are required to detect the
obstacle. The obstacle is an elevated surface, hereafter referred to as hill obstacle,
that needs to be crossed by a group of five foot-bots. We further test the feasibility
of our approach under minimal conditions by limiting the communication between
the robot types to low-bandwidth LEDs and camera-based communication. The
solution of the task also requires the formation of multiple target morphologies –
rather than a single one as in the previous case study – and the selection of separate
foot-bot groups for their formation. We use the eye-bot as our aerial robot.

5.3.1 Task and experimental setup

The heterogeneous robot team consisting of an eye-bot and five foot-bots is given
the task to maneuver towards a light source from a deployment area where they are
initially placed (see Figure 5.3a–c). The foot-bots use their light sensors to detect
the light source and drive in an almost straight path to reach their destination. As
shown in Figure 5.3d, we place a steep hill obstacle in their path of which we vary
the steepness between 0 ◦ (i.e., the obstacle is absent) and 30 ◦. A foot-bot can drive
over a hill obstacle of up to 25 ◦ inclination without toppling over. If the steepness
exceeds this limit, the foot-bot has to self-assemble into bigger morphologies that
provide the physical stability required to cross the hill without toppling over. Neither
the presence of the hill obstacle nor its steepness can be detected by the foot-bots.
They also do not know the total size of the group in order to determine the shape
and size of target morphologies. Therefore, the foot-bots depend on the eye-bot to
provide the supervision necessary to successfully solve the task. A successful task
completion in this scenario requires the eye-bot to detect the hazardous environment
and compute the total number of target morphologies and supervise their formation
such that the safe-crossing of all foot-bots is guaranteed. The foot-bots are pre-
loaded with a morphology library composed of several SWARMORPH-scripts from
which particular scripts (hence particular target morphologies) can be chosen by the
eye-bot using a pre-defined signal. The eye-bot is assumed to have flown in advance
and positioned itself (by attaching to the ceiling in indoor environments or otherwise
by hovering) above the hazardous area at a height of 2.96 m immediately over the
hill obstacle.
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Figure 5.3: The experimental setup of the hill-crossing task. Five foot-bots are
shown in the deployment area and one light source in the destination area. A hill
obstacle of 30 ◦ is shown between both areas. Visualized are also two positions above
the hill obstacle the eye-bot considers when using its monocular vision system to
build three-dimensional environment models.

5.3.2 3D environment modeling using heightmaps

The task considered in this case study requires the aerial robot to have a three-
dimensional model of the surface on which the foot-bots operate. The eye-bot is
given no maps or prior information about the environment. Therefore, it com-
putes heightmaps (sometimes referred to as depth maps) of the surface and the
objects underneath it during task execution. A heightmap is a three-dimensional
representation of the environment (in a sensor’s field of view) based on a matrix
data structure containing surface elevation data in cm. We considered two differ-
ent methods for the aerial robot to obtain heightmaps; one using a comparatively
lightweight method available to most aerial platforms, and another one based on a
dedicated sensing hardware for aerial robots not subject to limited payload capac-
ities. In Appendix A, we present details of how the eye-bot computes heightmaps
based on stereo images retrieved from two different positions (as shown in the ex-
perimental setup in Figure 5.3) using its downward-pointing monocular camera. We
also use Microsoft Kinect sensor to acquire precomputed heightmaps and provide a
quantitative and a qualitative comparison between the two methods.

5.3.3 Decision-making based on height profiles

Independent of the method used to compute heightmaps, we assume that the eye-
bot has access to a matrix of size 640×480 with the surface elevation in cm for
the surface underneath. This information about the environment is used by the
eye-bot to perform on-board simulations and determine whether individual foot-
bots will be able to drive towards the light source safely. If not, decision will be
made to initiate self-assembly on the ground and assist the formation of suitable
morphologies (depending on the size of the group) that offer the physical stability
and a safe passage to the foot-bots. Here we describe how this decision is made
based on height profiles retrieved from heightmaps.

A height profile represents the elevation along the estimated trajectory of a foot-
bot to the light source. For each newly acquired heightmap, the eye-bot extracts the
height profile for each foot-bot by reading out the cell values along the foot-bot’s
estimated trajectory in the heightmap. The estimated trajectory of each foot-bot is
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Figure 5.4: Visualization of an on-board simulation run of a foot-bot along its
estimated trajectory (from left to right). The height profile is extracted from a
heightmap computed using stereo images retrieved from the eye-bot camera. The
foot-bot is shown in eight different segments along its estimated trajectory. In two
segments, a too steep inclination is detected (marked in red) rendering the whole
trajectory too dangerous for individual foot-bots. Inclinations lower than 25 ◦ is
marked in green.

assumed to be a straight line connecting the foot-bot’s current position with the light
source. Note that while each foot-bot’s position is estimated using circle detection
algorithms executed on the image returned by its downward-pointing camera, the
light source is assumed to be in the center of the area in the image with the highest
light intensity.

Based on retrieved height profiles, the eye-bot simulates virtual navigation of
each foot-bot along its estimated trajectory. Each foot-bot is virtually driven to-
wards the light source by moving it pixel-by-pixel allowing the eye-bot to estimate
the stability a foot-bot may experience on its path. More precisely, the foot-bot is
placed at its currently detected position on the height profile and its inclination at
this particular trajectory segment is calculated before it is moved by a pixel. That
is, the inclination of the surface underneath the front and the rear of the simulated
foot-bot’s chassis is calculated. A simulation run ends when all foot-bot’s chassis
reach the light source or when a calculated inclination is higher than 25 ◦, the angle
an individual foot-bot can endure without toppling over. When a too dangerous
inclination is detected in simulation, the eye-bot stops running on-board simula-
tions and issues the STA signal using the color red displayed on its LEDs to warn
the foot-bots underneath and to supervise the formation of target morphologies.
Visualization of a simulation run is shown in Figure 5.4 including a height profile
extracted from a heightmap calculated using stereo images.

5.3.4 Results

We conducted three sets of experiments each with 10 experimental runs. First, we
considered no obstacle. Second, we considered a hill obstacle with a gentle slope of
12 ◦ that can be crossed by individual foot-bots without toppling over. Third, we
considered a steep hill obstacle too dangerous for individual foot-bots to cross. From
the resulting 30 experimental runs, the robot team successfully solved the task in
27 runs. That is, in the first and second sets up experiments, the eye-bot correctly
estimated the surface to be safe for foot-bots and did not intervene. As a result, all
foot-bots reached their destination. In the third set where self-assembly is required
to solve the task, only 7 out of 10 runs were successful. From the remaining 3 runs,

83



2 failed because of hardware damages in the docking mechanism caused by too high
torque when driving over the hill obstacle. These damages led to the breaking of
physical connections causing individual foot-bots to topple over. A third run failed
because of low battery charge of a foot-bot. Note that these failed runs did not result
from flaws in our presented approach but rather are related to hardware issues.

In Figure 5.5, we present screenshots of a successful experimental run from the
third set and describe details. We manually moved the eye-bot between two posi-
tions 30 cm away from each other above the hill obstacle. Ten images were taken
from each position. Resulting 20 images used to compute 10 different height maps
of the environment. All computed heightmaps are considered in the simulations
executed by the eye-bots, or as in this particular experimental run, simulations were
stopped when the eye-bot’s belief β of an hazardous environment is exceeds beyond
90%. After the virtual navigation of each foot-bot in its field of view, the eye-bot
updates β using the following filtering method: β = (1−c) ·βh−1 +c ·βh, where βh is
a binary value representing the outcome of the simulation (where 0=no danger and
1=danger) and c, 0 ≤ c ≤ 1, is the confidence level of the eye-bot in the precision
of the underlying heightmap. Based on empirical evidence, we determined c = 0.85
to be appropriate for heightmaps computed using stereo images and c = 0.9 for
heightmaps retrieved from the Kinect sensor. This filtering method makes simula-
tions less vulnerable to extreme outliers and has a smoothening effect of the ground
surface. In this experimental run, the average value for the maximum inclination
computed was 29.12 ◦ with a standard deviation of 2.88◦. The hazardous environ-
ment was detected on the basis of ten simulated drives in total (i.e., two for each
foot-bot).

While individual height profiles may contain incorrect height estimates for in-
dividual pixels, the results of our experiments show that, on average, environment
models based on heightmaps closely corresponds to reality (where the maximum
inclination was 30 ◦) and hence can be used for decision-making. The simulations
were able to reliably identify the too steep hill obstacle as hazardous for foot-bots,
as the low standard deviation indicates. However, the decision-making process may
need to assume a more defensive threshold inclination such as 20 ◦ (as opposed to the
25 ◦) an individual foot-bot can withstand without toppling over. Such a defensive
threshold may, on the one hand, allow the aerial robot to be more tolerant with the
spatial assumptions and, on the other hand, may help avoid undetected hazardous
environments. A drawback of this defensive approach,however, is the fact that self-
assembly may be unnecessarily initiated when they were not actually required in
reality.

The foot-bot controllers are initiated (see Figure 5.5a) with a phototaxis behavior
which uses the data retrieved from their light sensors to determine the movement
direction. Simultaneously, they process the images returned by the upward-pointing
camera to detect potential warning signals (i.e., the red color) issued by the eye-bot.
The eye-bot is stationary above the hill obstacle running on-board simulations. As
the foot-bot group reaches the hill obstacle (see Figure 5.5b) the eye-bot warns the
foot-bots using the STA signal (i.e., the red color. All foot-bots halt. This is either
because all foot-bots were able to perceive the signal sent by the eye-bot or because
at least one foot-bot has detected the signal and has relayed it to other foot-bots
using the mxRAB communication device. A static foot-bot responds to the eye-
bot using the color blue indicating availability to be supervised. Subsequently, an
STC link is established within 16 s to the foot-bot situated in the center (relative
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(a) (b)

(c) (d)

(e) (f)

(g) (h)

Figure 5.5: Snapshots of an hill-crossing experiment. For the sake of better visibility,
background clutter has been edited out. The signals transmitted by each robot
type during different mission phases is indicated as follows: R=RED, G=GREEN,
B=BLUE, RG=RED-GREEN, and RB=RED-BLUE. See text for details.
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to the hill) and is closest to the light source. By choosing this particular foot-
bot, the eye-bot makes sure that the morphology is formed away from the two
edges of the hill obstacle while also allowing completed target morphologies to drive
over the hill obstacle without having to avoid collisions with free foot-bots along
the way. The STC link is followed up by the eye-bot by sending the RED-BLUE
signal (see Figure 5.5c) to initiate the formation of a chain morphology of size two.
This target morphology was formed within 6 s (see Figure 5.5d) and managed to
cross the hill obstacle successfully with the next 12 s. In the meantime, the eye-
bot establishes another STC link to a second foot-bot (see Figure 5.5d and f) and
issues a RED-GREEN signal to invoke the formation of a chain morphology of size
three. The formation of this target morphology lasted 15 s (see Figure 5.5g) and
its successful crossing took another 11 s (see Figure 5.5h). The total duration of
the experiment was 70 s. Note that the target morphologies were autonomously
chosen by the eye-bot. An alternative solution would have been to form one chain
morphology of size five. This option was not considered by the eye-bot as long
structures cause hardware damages to the docking mechanism when different foot-
bots part of the same morphology simultaneously experience opposing inclinations
on the hill obstacle. The decision regarding how many target morphologies are
required to be formed depends on the total number of foot-bots that are deployed and
have acknowledged the issued warning. The eye-bot monitors morphology growth
progress by counting the number of foot-bots illuminating the color red (meaning
they are attached and part of a collective morphology). Target morphologies are
iteratively formed under the eye-bot’s supervision until no foot-bot is visible in
the eye-bot’s field of view. Hence, this control logic can be applied to foot-bot
groups of any size. Video footage of the experiment can be found online http:
//iridia.ulb.ac.be/supp/IridiaSupp2017-007/.

5.4 Quantifying performance benefits

We quantify the performance benefits (w.r.t task completion time) that can be
achieved by a group of self-assembling robots when cooperating with an aerial robot
through supervised morphogenesis. We define a task that can be solved by ground-
based robots with or without aerial supervision. Besides the control methodol-
ogy presented in Section 5.1, we developed two further control methodologies to
study both the benefits of aerial supervision compared to a solution without super-
vision and then isolate the benefits of location-based supervision – a core feature
of the approach presented in this thesis. We first present the task and experi-
mental setup followed by a description of all three control methodologies. Then,
we present the results we obtained from simulation-based studies [15]. We con-
sidered an heterogeneous team composed of an eye-bot and multiple foot-bots.
Videos of these experiments are available online at http://iridia.ulb.ac.be/
supp/IridiaSupp2017-007/.

5.4.1 Task and experimental setup

We consider a gap-crossing task (with variable gap widths) for foot-bots. The ex-
perimental setup shown in Figure 5.6. The heterogeneous robot team is deployed in
an environment consisting of a start zone, a target zone, a gap that separates the
two zones, and a light source placed in the target zone. At the beginning of each
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Figure 5.6: A snapshot from the simulation showing the heterogeneous team and
the environment it operates in. The gap separates the environment into a start zone
and a target zone with a light source. An eye-bot and ten foot-bots are visible in
the start zone.

experiment, 10 foot-bots are randomly placed in the start zone and are required to
perform a phototaxis behavior. They use their light sensors to determine the direc-
tion in which the need to drive and their ground sensors to detect possible gaps and
avoid falling into it. The foot-bots are deployed within a square area of 2 m × 2 m
– an area that can be entirely captured in the field of view of an eye-bot hovering
above the foot-bots at 2.2 m altitude. The eye-bot uses its pan-and-tilt camera and
the on-board image processing software to estimate the width of the gap. To reach
the target zone, the foot-bots may need to connect to each other to form a chain
morphology, depending on the width of the gap. Note that the minimal length of
such a chain morphology (i.e., the number of foot-bots in the chain) that guarantees
a safe crossing of the gap depends on the width of the gap (if a morphology with
an inappropriate size attempts to cross an overly wide gap, it will fall in and fail).
We use gaps of widths between 5 cm, 10 cm, 15 cm and 25 cm. In case of a 5 cm
wide gap, individual foot-bots are able to drive over without cooperating with the
eye-bot or other foot-bots. For all other widths, the foot-bots are required to form
a chain morphology of 2, 3 and 4 foot-bots respectively to be successful. The task
is considered to be completed when the final foot-bot of the first chain morphology
has crossed the gap and has successfully disconnected from the chain. Foot-bots
that do not get selected by the eye-bot continue with another basic behavior, in this
case an anti-phototaxis behavior.

5.4.2 Control methodologies

Figure 5.7 visualizes the main control states and the order in which they are executed
in the three control methodologies we developed to study the performance benefits of
supervised morphogenesis. Communication between the two robot types are handled
via the LEDs and cameras-based communication modality which provides the user
with a visual feedback of ongoing activities. Below, we provide a detailed description
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Figure 5.7: Decomposition of foot-bot control methodologies into control states.
States only involving foot-bots are marked ’F’, states involving foot-bot eye-bot
cooperation are marked ’F.E’. i) NCC: non-cooperative control, ii) LSM: location-
based supervised morphogenesis and iii) SRG: supervision based on random group.
NB “Indiv. phototaxis” = “individual phototaxis”, “Coll. phototaxis” = collective
phototaxis, “ESTC” = “establishing spatially targeted communication”, “EDSA” =
“enhanced directional self-assembly”. Both phototaxis behaviors are “basic behav-
iors” shown in Figure 5.1.

of each control methodology.

5.4.2.1 Non-cooperative control (NCC)

When executing this control methodology, the foot-bots do not seek for supervision
from the eye-bot to solve the task. This methodology is an implementation of the
work presented in [101]. The foot-bots are pre-loaded with a SWARMORPH-script
that they use to form a four foot-bot chain morphology when a gap (regardless of
its actual width) is encountered. They initially execute a phototaxis behavior to
drive towards the light source until one of the foot-bots detects the gap using its
ground sensors. This foot-bot retreats approximately 40 cm from the gap and warns
its peers via a message (Stop command) sent over the mxRAB device causing the
all other foot-bots to come a halt (while remaining available for recruitment). Note
that halted foot-bots still execute an obstacle behavior in order avoid collisions with
a retreating foot-bot. Subsequently, the foot-bot that had detected the gap initiates
self-assembly and forms a chain morphology composed of four foot-bots. Once the
chain of four foot-bots is formed, the morphology executes a collective phototaxis
behavior towards the light source to cross the gap. NCC allows us to isolate the
performance benefits of aerial supervision.

5.4.2.2 Location-based supervised morphogenesis (LSM)

LSM is the implementation of supervised morphogenesis as presented in this thesis.
The foot-bots execute a phototaxis behavior while looking for messages (and there-
fore supervision) from the eye-bot. They are given no knowledge of the environment
or the task. The eye-bot sends a STA message to establish a one-to-one STC link
if a gap wider than 5 cm is detected. The foot-bot to which the link is established
will be located approximately 40 cm away from the gap and is intended to initiate
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self-assembly. A foot-bot that detects a message from the eye-bot, warns its peers
via a message (Stop command) sent over the mxRAB device. Subsequently, the
one-to-one STC link is expanded to include a certain number of immediate neigh-
bors required for the formation of the target morphology. The selected foot-bots
receive self-assembly instructions in the form of a SWARMORPH-script (a binary
string thereof) from the eye-bot. The foot-bots follow the instructions in the script
to self-assemble into the target morphology most adequate to cross the gap. Once
the morphology is formed, the foot-bots execute a collective phototaxis behavior to
cross the gap. Non-selected foot-bots move away from the light source. LSM rep-
resents the baseline against which the performance of the other two methodologies
are measured.

5.4.2.3 Supervision based on random group (SRG)

This control methodology allows us to isolate the performance benefits of selecting
the robots based on their location and their mutual proximity to each other to form
the target morphology. SRG is identical to LSM, except for the selection of foot-
bots to form the target morphology. After establishing a one-to-one STC link to
a randomly located foot-bot, the eye-bot avoids the execution of iterative growth
process that would have selected immediate neighbors of the self-assembly initiating
foot-bots. Instead, the eye-bot repeats the iterative elimination process to select
further foot-bots from the group independent of their location in the environment.
This approach mirrors potential solutions that could be applied in systems that
consider unique IDs of the robots. In such systems, for instance, the aerial robots
may broadcast self-assembly instructions together with robots IDs that should form
the target morphology while ignoring their location in the environment entirely.

5.4.3 Experiments and results

We ran 100 simulation runs for each combination of gap width and control method-
ology (i.e., 4×3×100=1200 runs in total). We first study the benefits of supervision
by the eye-bot and then isolate the benefits of location-based foot-bot selection.

5.4.3.1 NCC vs. LSM

To analyze the performance benefits the foot-bots can achieve through cooperating
with an eye-bot, we compare the task execution times of NCC with those of LSM.
The results are shown in Figure 5.8a. We have only plotted the results of the
narrowest gap of 5 cm for NCC, as the task completion times between the various
gap widths did not prove to be significantly different. This is a direct consequence
of the fact the foot-bots executing this methodology formed chain morphologies of
the same size regardless of the gap width they encountered.

In all the experiments, the foot-bots solved the task. According to the results in
Figure 5.8a, the median task completion times of LSM are 51, 259 and 403 seconds
for the widths 5 cm, 10 cm and 15 cm, respectively. Compared to the median task
completion time of NCC (434 seconds), the mean completion times for LSM were
respectively 88%, 40% and 7% lower in environments with gaps that can be crossed
by an individual or chains composed of two or three foot-bots. This is due to the
fact that in LSM, the length of the chain is chosen based on the gap width. The
supervision provided by the eye-bot avoids the inclusion of excess foot-bots in the
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Figure 5.8: (a) Box-and-whisker plot showing task completion times (in seconds) of
LSM and NCC for four different gap widths. For the NCC methodology, results of
only 5 cm are plotted as the results do not differ significantly from other gap widths.
(b) Bar-plot showing a breakdown of the time spent by the foot-bots executing
different control states. Bars are decorated with the standard deviation, except
for the control state “transmitting instructions" that is bound to constant time
dependent only of the transmitted SWARMORPH-script (i.e., the gap width).

morphology requiring additional time for the formation of the target morphology.
In the case of the widest gap (i.e., 25 cm) that can only be crossed by four or more
physically connected foot-bots, NCC is, in general, faster than LSM. Intuitively,
this could have been expected given that both control methodologies (i.e., LSM
and NCC) form a chain of four foot-bots close to the gap, but in the case of LSM,
self-assembly instructions need to be first transmitted from the eye-bot to the foot-
bots before the self-assembly process can start. However, the NCC methodology
has several outlier runs that take very long to complete. This is because in NCC,
the foot-bots that become part of the target morphology are not pre-selected by
the eye-bot before they reach the gap. Hence, non-connected foot-bots can cause
(sometimes severe) physical interference with ongoing self-assembly processes or with
moving target morphologies. Both interferences delay task completion times.

In Figure 5.8b, we present a breakdown of how much time is spent by the foot-
bots executing each control state. As the results show, the wider the gap, the more
time is spent by the robots transmitting self-assembly instructions. This is due to
the fact that the length of the SWARMORPH-script describing the target morphol-
ogy is linearly proportional to the size of the target morphology. However, this
communication overhead part of LSM would become negligible if a communication
modality with higher bandwidth (such as wireless Ethernet) is used for communi-
cation. The results also show that when a target morphology composed of four
foot-bots is formed, the self-assembly process in LSM requires on average 39% more
time than that of NCC. This can be explained by the fact that in NCC all foot-bots
are available for forming a connection during the morphology growth process which
increases the chances of a foot-bot being located close to where a connection is re-
quired causing connections to be formed faster. On the other hand, LSM allocates
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resources optimally by selecting precisely the number of foot-bots needed for the
target morphology and freeing up the rest of the team for other tasks. The deci-
sion involving this trade-off between faster target morphology formation times and
optimal resource allocation may depend on the task and mission priorities.

5.4.3.2 SRG vs. LSM

We study the difference in target group selection time between both control method-
ologies by considering various values of N and D. For N , we considered N = 10
and three further values N := {20, 30, 40} to detect potential performance differ-
ences in larger groups. Furthermore, we considered four relative sizes for D :=
{20%, 40%, 60%, 80%}. For each combination of N and D, we executed 100 simula-
tions runs and recorded the average number of iterations that was required to select
the target group. The results are plotted using fixed grids in Figures 5.9a and 5.9b,
for SRG and LSM respectively. As the results show, the average number of iterations
increases in SRG by a factor of 5 as N increases from 10 to 40, independent of the D
value. Simultaneously, for increasing D, the average number of iterations increases
by a factor of 3.5. In the worst case, i.e., when comparing N = 10 and D = 20%
with N = 40 and D = 80%, the value increases by a factor of 19. By contrast, LSM
yields lower averages independent of the values considered for N and D indicating
a much faster and scalable target group selection process. In the worst case, the
average for LSM increases from 19 to 28, representing an increase by a factor of 1.5.
These empirical observations correspond closely to the model predictions analyzed
in Section 4.2.2.3 and plotted in Figure 4.12.

To further study performance differences in self-assembly, we discount the time
spent for target group selection and plot task completion times in Figure 5.9c. As the
results show, LSM is on average faster than SRG in all cases studied independent of
the width of the gap. The explanation for these results is that a target morphology
formed next to the gap by involving nearby foot-bots in most cases requires less
time to finish the formation, and then reaches and crosses the gap faster than a
morphology formed at a random place with peer foot-bots joining from random
places in the environment. We expect that this difference in terms of task completion
time would be even greater for larger start zones as the distances between randomly
selected foot-bots and the gap may be larger.

We further studied the difference in task completion times between LSM and
SRG by conducting additional experiments in a walled environment where we sur-
rounded the foot-bots in the start zone by walls on three sides to adjoin the gap on
the fourth side. We simulated an indoor environment similar to factory halls that
contain static objects, goods or static machinery. We observed that the presence
of the walls had no significant impact on the task completion time in LSM. For
SRG, on the other hand, the presence of walls had a significant negative impact on
performance. When the randomly selected self-assembly initiating robot happened
to be located close to one of the walls, it was difficult, and at times even impossi-
ble, for foot-bots to physically connect to connection seeking foot-bots. As a result,
successful task completion only occurred in 13% (chain size 2), 29% (chain size 3)
and 34% (chain size 4) of the experiments using the SRG methodology.
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Figure 5.9: Contrasting performance benefits of control methodologies SRG and
LSM. (a) Average number of iterations required for target group selection only based
on iterative elimination process as implemented in SRG. (b) Average number of iter-
ations required for target group selection based on iterative elimination and growth
process as implemented in LSM. (a,b) The values in the grids are average values
resulting from 100 simulation runs and are also visualized using colored circles. The
diameter of each circle is relative to other values within the particular grid and rep-
resents a visual comparison aid. (c) Task completion times (in seconds) of LSM and
SRG minus the time taken for target group selection. Bars are appended with the
standard deviation.

5.5 Related work

In this section, we review existing (i.e., not conceptual or simulated) heterogeneous
robotic systems with a focus on air-ground teams and the tasks they solve. We also
present control frameworks developed particularly for the control and coordination
of such heterogeneous teams. Robotic systems that use technologies or solve tasks
similar to those considered in this chapter are also presented.
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Air-ground teams are often limited to one terrestrial and one aerial robot. This
is mainly because they have relatively low overhead (in terms of coordination and
communication) due to the limited number of team members. Such two-robot teams
have nevertheless been successfully applied to solve various tasks including the build-
ing of indoor maps [102, 103], the mapping of obstacles in large areas [104], and
cooperative tracking of moving targets [105]. Aerial images have also been used
by ground-based robots for semantic mapping [106] and navigation among moving
obstacles [107]. In another system [108], the ground-based robot provides the aerial
robot with the visual aid and platform necessary for take off, following a moving
target, and landing. A localization method for ground-based robots based on el-
evation maps is presented in [109]. The method does not dependent on GPS or
on sensors. Instead, the terrestrial robot finds its relative position and orientation
within a reference map provided by the aerial robot.

Heterogeneous robot teams composed of more than two members have also been
applied to various application scenarios [25, 110, 111]. In [25], a heterogeneous
team is proposed that considers a climbing robot besides aerial and ground-based
robots. This team is therefore able to explore vertical surfaces and manipulate
objects unreachable for both terrestrial and aerial robots. Twenty robots are shown
to solve a search-and-retrieve task in which the team combines the capabilities of
three robotic platforms to explore an environment to locate and then retrieve a
book situated in book shelf. Further search-and-rescue tasks are presented in [110].
In [111], two aerial robots combine their video streams to provide stereo vision to a
robot situated on the ground. This robot then computes a heightmap of the ground
that also includes the obstacles situated in the environment. The heightmap is used
for path planning. This system, however, may not scale for systems that consider
more than one robot on the ground. While the teams presented in [25, 110, 111] do
not depend on GPS-based solutions and can be deployed in indoor environments,
the team presented in [112] relies on GPS for localization and operates in outdoor
environments. The team is composed of one car-sized robot and two quadrocopter
drones. The terrestrial robot is equipped with the Kinect sensor and relies on GPS
for localization. Through a control station that maintains communication contact
to all three vehicles at all times, a human operator can issue reconnaissance and
surveillance tasks at the team level.

In this chapter, we presented an aerial robot able to compute heightmaps based
on images retrieved from a standard monocular camera. Similar techniques have
already been used by flying platforms in previous research. For instance, in the
pioneering work presented in [113], a tethered blimp flying at an altitude between
10 and 40 m is deployed in an outdoor environment to retrieve stereo images. These
images are then used to compute the heightmap of an area covering several thousands
of square meters. In [108], an aerial robot is presented that uses two different
monocular vision streams to compute heightmaps at 1 Hz in both outdoor and
indoor environments. The heightmap is used by the robot to detect safe landing-
spots. Despite its high payload, we also showed in this chapter how a Kinect sensor
can be used by an aerial platform to directly retrieve heightmaps that can be included
in the decision-making relevant for the actions taken by the robots on the ground.
Another such platform is presented in [102] in which the heightmap is used for
navigation in indoor environments. Contrary to the work presented in this chapter,
note that the heightmaps available to aerial robots in [102, 108, 113] do not represent
the basis for decisions or actions made by terrestrial robots. Instead, the heightmaps
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are solely included in the decisional processes relevant to aerial robots.
Cross-platform control and coordination in heterogeneous air-ground robot teams

require solutions to a variety of problems. In recent years, multiple frameworks that
include such solutions have been presented. For instance, a customizable framework
is presented in [114] to enable collaboration between aerial drones and ground-based
vehicles and other smart-objects. A real-world search-and-find task is used to vali-
date the framework. During task execution, teams members are able to detect each
others presence, select leaders of a team, and assign tasks to particular members
in the team. Other researchers proposed a control scheme [115] that allows an air-
ground team to coordinate and control its members in a leader-follower scenario.
The followers are shown to be able to maintain a particular formation through the
course of a mission. Numerous search-and-rescue scenarios are used to validate
the scheme both in simulation and using real robots. A decentralized architecture
enabling interaction within air-ground teams in the context of an area-inspection
scenario is presented in [116]. The architecture is able to monitor an environment
by combining the “global” coverage provided by the aerial robot with the “local”
coverage provided by the ground-based robots. While these cooperation frameworks
have been validated in a variety of application scenarios, note that none of them
have been studied in the context of self-assembling robots.

For further examples on existing air-ground robot systems, we invite the reader
to refer to the following two reviews [91, 117]. Detailed discussions on the advantages
and disadvantages of heterogeneous systems are presented in [92, 98]. To the best
of our knowledge, the work presented in this thesis represents the first and only
implementation of a robotic system that enables self-assembling robots to cooperate
with aerial robots.

In terms of the tasks considered in this chapter, the study presented in [101]
represents the most related work. The study considers a homogeneous group of self-
assembling robots that solves a gap-crossing task by executing a pre-programmed
response behavior. The sensory equipment available to the robots do not permit
them to estimate the gap width. Therefore, when a gap is detected, the response
behavior forms chain morphologies of a pre-programmed size independent of the gap
width. This response behavior is similar to the NCC control methodology presented
in Section 5.4.2.1.

5.6 Summary

In this chapter, we demonstrated the first self-assembling robot system able to coop-
erate with aerial robots. We described supervised morphogenesis — a novel control
methodology that increases the autonomy of self-assembling robots by allowing them
to exploit the advantages provided by aerial robots. The presented approach does
not require global information, a priori information, or GPS information.

We presented results of two case studies in which we studied supervised mor-
phogenesis using two different air-ground robot teams. The case studies confirm
the applicability and high portability of the presented approach even when different
communication modalities and aerial platforms are considered for experimentation.
They also showed that aerial assistance can be used to dynamically form task or
environment dependent morphologies and increase the overall adaptivity of self-
assembling robots. We showed how input from standard monocular cameras can
be used to build three-dimensional models of environments such that aerial robots
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can perform on-board simulations to evaluate the adequacy of different morpholo-
gies prior to their physical realization. In simulation-based studies, we showed that
our approach can provide performance benefits by allocating resources optimally (in
terms of number and location) for self-assembly.

The research presented in this chapter combines the work presented in both pre-
vious chapters and introduces a self-assembling robot system that – in many ways
– goes beyond the state of the art. For instance, the robots do not depend on
environmental cues neither to trigger self-assembly nor to choose target morpholo-
gies. Also, by allocating all decision-making authority to the aerial robot with a
better view of the environment, self-assembling robots are able to operate in un-
known environments and solve previously unknown tasks by following the ad-hoc
guidance instructions provided by the aerial robot. However, supervised morphogen-
esis as presented so far has certain limitations that need to be overcome in further
research before the overall system reaches genuine autonomy. In particular, the task-
morphology mapping problem has not been entirely solved by the system as target
morphologies of different shapes and sizes have been pre-compiled into morphology
libraries and made available to the robots. The aerial robots were only required to
find a morphology of the right size from this library and trigger formation. Fur-
thermore, we only considered robot groups with a single aerial robot (i.e., either
an eye-bot or an AR.Drone) responsible for supervising morphology formation on
the ground. While this form of authority delegation may resemble the principles
underlying those of centralized systems, this chapter merely outlines the control
components of one specific robot in a multirobot system that, in general, could be
decentralized and composed of many air-ground robot teams operating in parallel.
However, more experimentation is required to identify potential challenges and con-
firm applicability in heterogeneous multirobot systems that consider multiple aerial
robots (with potentially distinct capabilities) simultaneously providing assistance to
robots on the ground. In the next chapter, we discuss potential directions that may
be considered in future research to overcome these limitations and to achieve fully
autonomous and scalable self-assembling robot systems able to function without any
prior information.
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CHAPTER 6
Conclusions

In this chapter, we conclude the research presented in this thesis by summarizing
our contributions. We then give a brief outlook to future research directions.

Our main contribution has been to advance the state of the art in self-assembling
robots through the development of novel control, communication, and cooperation
techniques. First, we proposed mergeable nervous systems as the foundation for
a paradigm shift in the sensorimotor coordination of physically connected robots.
We showed that our proposal can provide self-assembling robots with unprecedented
sensorimotor coordination capabilities. Second, we identified spatially targeted com-
munication as an essential communication methodology to achieve spatial coordina-
tion in multirobot systems. We presented a scalable mechanism to achieve this form
of communication in decentralized multirobot systems using standard hardware.
Third, we introduced supervised morphogenesis to increase the level of autonomy in
self-assembling robots by enabling cooperation with aerial robots.

The thesis presented here addresses some of the scientific challenges raised in the
Ph.D. theses presented by Roderich Groß and Rehan O’Grady. They, among others,
pioneered self-assembling robot research using the s-bots platform. More precisely,
we provide concrete answers to multiple future research suggestions made by both
researchers in their respective theses. For instance, in one of the final paragraphs
of his thesis [118], Roderich Groß suggests the following when designing future self-
assembling systems:

Innovative designs can also be observed in nature. . . . Certainly, many
more self-assembly processes can be found in nature, and might inspire
next generation designs. (page 176)

In Chapter 3, we presented MNS robots that are inspired by the unique self-
assembling mechanism found in certain slime molds species [9, 8] and the motor
control schemes observed in octopuses [48, 119]. Unicellular slime molds are aggre-
gation organisms with unusual bodies. They can function independently, but when
food resources are scarce, they are also able to aggregate and operate as a single
body. However, these bodies lack a central nervous system and are therefore limited
to (relatively) rudimentary behaviors. In an entirely different biological organism,
researchers have found indications [48] that the octopus brain is able to send high-
level commands to control arm movements. These commands were then shown to
activate motor control programs that seem to be embedded locally in the arm itself.
Researchers have also shown [119] that body parts of the octopus can sense and
respond to changing environmental conditions without exchanging signals with the
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brain – suggesting the existence of computational and decision-making faculties out-
side of the brain. By combining aspects of these phenomena observed in fundamen-
tally different natural systems, we were able to design and develop a self-assembling
robotic system that is able to exhibit capabilities that go beyond the state of the
art. We first presented a fast and precise basic connection forming mechanism for
individual robots. We then employed this mechanism in the autonomous formation
of larger, composite robot bodies with a brain unit each. Subsequently, a novel con-
trol paradigm was introduced to allow composite robot bodies to be controlled as a
single body independent of size and shape. A core idea we presented is the control of
composite robot bodies based on brain units issuing high-level commands that are
then translated by individual robotic units into (a sequence of) locally meaningful
actuator commands. Based on this form of control, we demonstrated previously
unseen features in any artificial or natural system including the ability to perform
self-healing as a reaction to faulty units.

In Chapter 3, we presented an approach to establish spatially targeted commu-
nication links between robots that operate in a decentralized multirobot system.
Spatially targeted communication allows robots in a multirobot system to choose
their communication partners based on location — an important feature that can
enable spatial coordination in a robot team. We first presented iterative elimination
process – a protocol used to establish one-to-one spatially targeted communication
links. Then, we presented iterative growth process that we developed to create one-
to-many spatially targeted communication links by expanding existing one-to-one
links. We presented formal descriptions of both protocols using Markov chain mod-
els and showed that the elimination process scales logarithmically with respect to
the number of robots in the communication range while the growth process scales
logarithmically with respect to the number of desired communication partners. This
scalability aspect is vital for application scenarios considered in today’s multirobot
systems that tend to consist of large numbers of robots. We showed that off-the-shelf
components such as LEDs and cameras available to most robotic platforms are suf-
ficient to establish spatially targeted communication links both in homogeneous and
heterogeneous robots teams (i.e., teams composed of robots that are fundamentally
different in terms of their physical capabilities and the environments in which they
operate).

In his pioneering thesis [120], Rehan O’Grady studied self-assembly as a response
mechanism to changing environmental conditions. In the future work section of his
thesis, he makes the following suggestion to increase the autonomy levels of future
self-assembling robot systems:

[In our experiments] . . . we were forced to place explicit cues in the arena
to allow the robots to distinguish between the two types of obstacle.

For future systems to overcome such limitations, one possibility would
be to give each agent in the system better sensing hardware. However,
the simplicity of individual agents is often cited as a key strength of
distributed self-assembling systems. An alternative might be to intro-
duce heterogeneity into the system, and have some robots specialized in
sensing that could then communicate relevant information to the other
robots. In such a heterogeneous swarm, supervisory robots with more so-
phisticated sensory equipment could direct the morphogenesis activities
of self-assembling robots. (page 137)
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In Chapter 5, we presented supervised morphogenesis as a control methodol-
ogy for heterogeneous teams composed of self-assembling robots and aerial robots.
Supervised morphogenesis is based on the control and communication techniques
presented in Chapters 3 and 4, respectively. We presented results of two case stud-
ies we carried out using a different heterogeneous team each. In both studies, the
aerial robots were able to exploit their elevated position in the environment to mon-
itor and control morphogenetic processes on the ground. Given this kind of ad-hoc
supervision, we showed that self-assembling robots can be deployed in a priori un-
known environments and solve previously unknown tasks. In simulation, we then
quantified the performance benefits attainable to a heterogeneous team by analyzing
the task completion times in a gap-crossing task.

In future work, one interesting line of research is to study how the advantages
provided by an aerial robot can be shared by different groups of robots such that a va-
riety of different morphologies can be formed on the ground in parallel. Alternatively,
it may also be interesting to study how multiple aerial robots with complementing
sensory capabilities may simultaneously provide different guidance instructions to
the same group of robots on the ground. A further idea is to augment the com-
puting capabilities available to the aerial robot by providing on-demand access to a
cloud-based infrastructure [121] that can allocate the compute power necessary to
run physics-based simulations. Physics-based simulations can be used to determine
target morphologies for tasks that require high-fidelity solutions or for tasks that
have low levels of fault tolerance. A further step is to couple such a cloud-based sim-
ulation framework with state-of-the-art machine-learning techniques [122] enabling
aerial robots to use monocular images to learn about task-morphology mappings
that then can be shared between aerial robots operating in distinct environments.
Such a system can feature the ability to instantly produce the most appropriate
morphology for potentially any type of physically plausible and previously unseen
task and environment.

Another promising direction for future work is to study how the principles un-
derlying mergeable nervous systems can be extended to modular systems that op-
erate in three-dimensional environments [46, 123, 124] or consider other – such as
legged – locomotion types [125]. The next frontier, however, may then be defined
by the investigation on how self-assembling robots can determine which morphology
is appropriate to which task or environment without any assistance from human
operators or aerial robots. This direction of research is becoming even more im-
portant as the state-space of possible morphologies is growing rapidly due to the
continuous miniaturization of individual robots allowing them to operate in new
environments such as inside animal [126] and human bodies [64, 65]. Nature solves
this problem of finding the appropriate morphology to a particular environment
through the rather lengthy process of evolution. Similarly, evolutionary computa-
tion techniques [127, 128, 129, 130] may hold the key in providing the solution to
the task-morphology mapping problem. The ever increasing computing power may
also be helpful in solving the problem in close to real-time. In the future, an MNS
robot able to run millions of evolutionary steps and explore large state-spaces within
a short period of time may be able to autonomously evolve and build the robots of
the required size and morphology. In such a future, when robots build other robots
of required sizes and shapes without any external assistance, the true potential of
self-assembling robots will be fulfilled as robots for particular tasks no longer need
to be designed and built by humans.
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APPENDIXA
3D environment modeling using heightmaps

We considered two different methods for the aerial robot to acquire three-dimensional
models of the surface underneath. First, we use stereo images retrieved from a
standard monocular camera to compute heightmaps. Second, we use a dedicated
sensor – the Microsoft Kinect – to have direct access to precomputed heightmap data.
In the following, we describe details of both methods and present a quantitative and
qualitative comparison between the two methods. We use an eye-bot as the aerial
robot for both methods.

A.1 Stereo images retrieved from a monocular camera

The eye-bot retrieves two images taken from two different positions (see Fig 5.3e–f)
using its downward-facing camera. Based on these two images, the eye-bot computes
the elevation of the surface and the objects in the scene. When acquiring the images,
we make the following spatial assumptions: (i) we assume that the aerial robot is
able to remain (by hovering or by attaching to a ceiling) at a fixed height and that
the image plane is parallel to the ground, (ii) we assume that an altitude sensor
can provide reliable altitude measurements to the aerial robot, (iii) we assume that
the relative distance between the two positions from which the images were taken is
known (for instance through the eye-bot’s 3D relative positioning sensor), and (iv)
we assume the focal length of the camera has been previously obtained through a
prior calibration step [131]. Through empirical experimentation, we have determined
that for the experimental setup considered in this thesis, images taken at a distance
of 30 cm from each other and from an altitude of 2.42 cm (measured from the
ground to the tip of the camera) yield the most precise data for the experimental
setup considered.

The eye-bot can retrieve images at a maximum resolution of 640×480 pixels –
see Figure A.1a for an example. From two such images each taken from different
positions, the eye-bot first computes a so-called disparity map. For a pair of stereo
image, a disparity map contains the distance (in pixel) by which each point in the
first image has moved in the second image. For instance, the displacement of points
closer to the camera is higher than that of the points further away from the camera.
See Figure A.1b for a representation of a disparity map. In a second step, the eye-
bot calculates the height of each point in real-world distances based on the disparity
of each point, the elevation (in cm) of the eye-bot, the displacement between the
two images, and the focal length properties of the camera.

We summarize the individual steps required to compute a heightmap based on a
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(c)

Figure A.1: Generation of heightmaps using stereo images. (a) A 640×480 image
acquired by the eye-bot. (b) A representation of the computed disparity map in
which brighter pixels denote greater motion and lesser distance to the camera. (c)
A flowchart showing the computation of heightmaps based on a pair of stereo image.
The result is a two-dimensional matrix with the elevation in cm for each pixel.

pair of stereo image using the flowchart shown in Figure A.1c. In an initial Undis-
tortion step, the tangential and radial distortion is compensated. The distortion
is introduced in the lens and modeled by the coefficients found by the calibration
step. In the next three steps, the images are transformed such that the search for a
point’s corresponding point in the second image can be reduced to a horizontal scan.
In this process called Rectification, first the Corner Detection step finds interesting
feature points in the first image as described in [132]. In the Corner Tracking step
that follows, these interesting feature points are tracked in the second image using
the iterative Lucas-Kanade method [133] which outputs a set of sparsely matched
points. This set of correspondences is then used in the Rectification step to find the
transformation matrix that can be used to rectify the second image and to vertically
align it to the first. A subsequent Dense Matching step is then applied to derive
the disparity of each point in the image. In a final Height Computation step, stereo
triangulation is applied to each disparity value in order to compute the heightmap
– a two-dimensional matrix of size 640×480 that contains the elevation in cm for
each point visible in both images. This method to extract three-dimensional infor-
mation based on stereo images has been thoroughly studied by the computer vision
community [134].

A.2 The Microsoft Kinect sensor

The eye-bot is able to take flight with a rather high payload of up to 2 kg. Hence,
we mounted an additional dedicated sensor for the retrieval of heightmaps – the
Microsoft Kinect sensor. The Kinect weighs ca. 1.4 kg and is a commercially avail-
able multi-purpose motion detection sensor that also features a depth sensor. The
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Figure A.2: A heightmap converted into a 3D point cloud showing five foot-bots
and the hill obstacle. The heightmap was acquired by a Microsoft Kinect sensor
mounted on an eye-bot hovering above the hill obstacle, as shown in Fig 5.3f.

depth sensor is based on an infrared laser projector used in combination with a
CMOS sensor. Many third-party tools have been developed to exploit the sensor’s
rich feature set. For example, the MATLAB Image Acquisition Toolbox allows real
time visualization of heightmaps using point clouds. A point cloud is a user-friendly
representation of a heightmap that can be used to visualize all points in the field
of view and is not limited to the particular viewpoint from which the heightmap
has been generated. See Figure A.2 for an example that provides a human op-
erator with a more intuitive representation of the data collected by the eye-bot.
Furthermore, Kinect is shipped with libraries that can detect human gestures in
real time. This feature has been also used by researchers in the robotics community
to design human-swarm-interaction (HSI) tools allowing human operators to com-
municate with and control robot teams using gestures [135]. This inherent feature
may become important as more robot teams (including aerial robots) are finding ap-
plications in warehouses and production lines and are required to be controlled by
human operators using as few intermediate devices as possible. Despite the obvious
advantages the Kinect sensor can provide, the sensor weight reduces flight autonomy
significantly for most application scenarios including aerial robots. Therefore, the
sensor has only been applied by limited number of aerial robots.

A.3 Quantitative and qualitative analysis

In Figure A.3, we present a quantitative analysis of the results obtained with the
two methods considered to acquire heightmaps. We have plotted in red the mean
elevations of each foot-bot’s (shown in Figure A.1a) estimated trajectory, i.e., its
height profile we acquired using stereo images. Mean elevations are based on values
we extracted from 10 different heightmaps. The eye-bot assumes a foot-bot trajec-
tory to be a straight line connecting the foot-bot’s location in the deployment area
and the light source. We have also plotted in blue the equivalent data acquired from
10 different heightmaps retrieved from the Kinect sensor. In this case, however, we
have only plotted the height profile of the longest foot-bot trajectory along with
error bars representing the standard deviation as the values are too close to each
other to be plotted in a clearly comprehensible manner. The standard deviation for
the elevation computed using stereo images is 2.91 cm (not shown in the figure) as
opposed to the 2.14 cm for the elevation retrieved from the Kinect sensor indicating
a slightly more reliable data source. However, as the figure shows, both methods
deliver relatively precise data. Although we have observed that in our setup the
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Figure A.3: Mean elevation of height profiles acquired by the eye-bot from 10 dif-
ferent heightmaps. Graphs in red result from computation based on stereo images
while data retrieved from the Kinect sensor is shown in blue.

Table A.1: A qualitative comparison between the two methods considered to com-
pute heightmaps. Thumbs up/down represent the desirability of a quality. An ideal
sensor would checkmark all desirable properties and x-mark others (i.e., checkmark
the first four and x-mark the later four).

Quality Monocular Camera Kinect

U Availability on aerial platforms 3 7

U Data precision 3 3

U 3rd party tools available 7 3

U HSI potential 7 3

d Extreme outliers 3 7

d Spatial assumptions 3 7

d Payload 7 3

d Ambient light dependency 3 7

absolute values of the surface elevation computed using stereo images constantly re-
sulted in real-world values above those acquired from the Kinect sensor, the relative
differences between any two points is almost identical for the two methods. That is,
we observed that the inclination computed between any two points in a height profile
resulted in almost identical values independent of the underlying method. However,
note that the absolute values returned by neither method matches the ground truth
(not presented) which remained between 3 and 4 cm under the values returned by
the Kinect sensor. This is clearly visible in Figure A.3 for the flat surface area to
the left of the hill obstacle. One explanation may be the fact that the eye-bot was
slightly tilt (and hence not parallel to the ground) when the data was retrieved.

Further, we have also observed that there are fundamental qualitative differences
between the methods. For instance, heightmaps computed from images retrieved
from the monocular camera are extremely dependent on ambient light conditions and
may also include extreme outliers caused by dust on the camera lens. In Table A.1,
we have identified and listed a number of qualities that need to be considered before
a decision can be made regarding which method to be adopted for the generation
of heightmaps by aerial robots. The decision may not only depend on the aerial
robot platform itself, but may also need to consider task/mission properties such
as required flight time and capabilities of the aerial robot. Also refer to [32] for
a detailed study on the trade-off between the autonomy of aerial robots and the
payload they can carry.
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