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Summary

Stochastic combinatorial optimization problems are combinatorial optimization prob-

lems where part of the problem data are probabilistic. The focus of this thesis is on

stochastic routing problems, a class of stochastic combinatorial optimization problems

that arise in distribution management. Stochastic routing problems involve finding the

best solution to distribute goods across a logistic network. In the problems we tackle,

we consider a setting in which the cost of a solution is described by a random vari-

able; the goal is to find the solution that minimizes the expected cost. Solving such

stochastic routing problems is a challenging task because of two main factors. First,

the number of possible solutions grows exponentially with the instance size. Second,

computing the expected cost of a solution is computationally very expensive.

To tackle stochastic routing problems, stochastic local search algorithms such as

iterative improvement algorithms and metaheuristics are quite promising because they

offer effective strategies to tackle the combinatorial nature of these problems. However,

a crucial factor that determines the success of these algorithms in stochastic settings is

the trade-off between the computation time needed to search for high quality solutions

in a large search space and the computation time spent in computing the expected cost

of solutions obtained during the search.

To compute the expected cost of solutions in stochastic routing problems, two classes

of approaches have been proposed in the literature: analytical computation and em-

pirical estimation. The former exactly computes the expected cost using closed-form

expressions; the latter estimates the expected cost through Monte Carlo simulation.

Many previously proposed metaheuristics for stochastic routing problems use the

analytical computation approach. However, in a large number of practical stochastic

routing problems, due to the presence of complex constraints, the use of the analytical

computation approach is difficult, time consuming or even impossible. Even for the

prototypical stochastic routing problems that we consider in this thesis, the adoption

of the analytical computation approach is computationally expensive. Notwithstanding
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the fact that the empirical estimation approach can address the issues posed by the

analytical computation approach, its adoption in metaheuristics to tackle stochastic

routing problems has never been thoroughly investigated.

In this thesis, we study two classical stochastic routing problems: the probabilistic

traveling salesman problem (PTSP) and the vehicle routing problem with stochastic

demands and customers (VRPSDC). The goal of the thesis is to design, implement, and

analyze effective metaheuristics that use the empirical estimation approach to tackle

these two problems.

The main results of this thesis are:

• The empirical estimation approach is a viable alternative to the widely-adopted

analytical computation approach for the PTSP and the VRPSDC.

• A principled adoption of the empirical estimation approach in metaheuristics re-

sults in high performing algorithms for tackling the PTSP and the VRPSDC. The

estimation-based metaheuristics developed in this thesis for these two problems

define the new state-of-the-art.
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Chapter 1

Introduction

Combinatorial optimization involves finding the best solution from a large number of

possible solutions to a given problem. Numerous problems arising in production plan-

ning, distribution management, internet routing, business administration, economic

systems, marketing strategies, and investment planning are combinatorial optimization

problems (Hoos and Stützle, 2005). Combinatorial optimization problems are concep-

tually easy to model but most of them are quite difficult to solve in practice. The

primary difficulty in solving combinatorial optimization problems arises from the fact

that the number of possible solutions from which the best needs to be selected grows

exponentially with the size of the problem instances. For example, consider a classi-

cal combinatorial optimization problem, the traveling salesman problem (TSP) that

involves finding a shortest Hamiltonian cycle1 in a given weighted graph. An instance

of the problem with 10 nodes has 1.81 × 105 possible solutions: enumerating all of

them and choosing the best one is feasible in a short computation time. However, an

instance of 100 nodes already has 4.66 × 10155 solutions: in this case, enumerating all

the possible solutions needs a prohibitively large computation time.

Algorithms available for solving combinatorial optimization problems fall into two

main classes: exact methods and approximate algorithms. Exact methods are guaran-

teed to find an optimal solution and prove that it is actually optimal or show that no

feasible solution exists. However, the computation time for these methods for many

problems increases exponentially with respect to the problem size, and often only small

or moderately sized problem instances can be practically solved. Approximate algo-

rithms sacrifice the guarantee of finding optimal solution for heuristically searching

1An Hamiltonian cycle is a path that visits each node exactly once and returns to the starting
node.

1



1. INTRODUCTION

high quality solutions in short computation times. Important classes of approximate

algorithms are constructive heuristics, iterative improvement algorithms, and meta-

heuristics. Heuristics are simple problem-specific algorithms based on an algorithm

designers’ intuition or some rules of thumb. Iterative improvement algorithms start

from some initial solution and repeatedly try to move from a current solution to a

lower cost neighboring one. Metaheuristics are high-level strategies which typically

guide problem-specific heuristics or iterative improvement algorithms, to increase their

performance. Many approximate algorithms rely on intelligently biased probabilistic

choices during the search and they are referred to as stochastic local search (SLS)

algorithms (Hoos and Stützle, 2005).

Metaheuristics are among the most powerful techniques for solving large scale com-

binatorial problems. They are currently established as state-of-the-art algorithms for

many real-world problems in which obtaining high quality solutions in relatively short

computation time is of primary importance. The effectiveness of the metaheuristics

can be illustrated with the following example. To solve a TSP instance with 15112

nodes, the state-of-the-art exact algorithm required 22.6 CPU years on a Compaq EV6

Alpha processor running at 500 MHz. On the same TSP instance, a high performing

metaheuristic needed only 7 CPU seconds to find a solution whose cost is 1% away

from the cost of the optimal solution (Hoos and Stützle, 2005). Due to the enormous

significance of combinatorial optimization problems for the academic as well as the in-

dustrial world, the field of the design, implementation, and study of metaheuristics is

a very active area of research.

In a large number of combinatorial optimization problems emerging from science,

business, and engineering, the parameters that define problem instances are affected

by uncertainty. Examples include investment decisions in portfolio management, vehi-

cle routing, resource allocation, job scheduling, and modeling and simulation of large

molecular systems in bioinformatics. In the presence of data uncertainty, combinatorial

optimization problems lead to stochastic combinatorial optimization problems. The fo-

cus of this thesis is on stochastic routing problems, a class of stochastic combinatorial

optimization problems that arise in distribution management. These problems involve

finding a cost-effective way to distribute or to collect goods across a logistic network.

Entities that distribute goods are referred to as vehicles or salesmen and entities that

demand goods are referred to as customers. In stochastic routing problems, customers

visits, theirs demands, or vehicle travel times are affected by uncertainty. This uncer-

tainty is characterized through a given probability distribution. The introduction of

probabilistic elements into the routing problem increases dramatically the difficulty of
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the problem and, as a result, solving them is an even more challenging task than for

their deterministic counterparts.

Designing efficient algorithms for solving stochastic routing problems is a hard task

and it is perhaps one of the most challenging tasks facing the computer science and

operations research communities. The difficulty is due to two factors:

• The number of possible solutions grows exponentially with instance size as in

combinatorial optimization problems.

• Evaluating the quality of solutions under uncertainty is notoriously difficult and

computationally more expensive than in the deterministic case.

Metaheuristics are quite attractive as solution techniques to tackle stochastic combina-

torial optimization problems because they provide well established strategies to tackle

the combinatorial nature of these problems. However, a crucial issue becomes the com-

putation time trade-off between the search and the solution quality evaluation under

uncertainty.

One of the most effective strategies to solve stochastic routing problems is a priori

optimization. In this strategy, an a priori solution is decided in advance and followed

by a salesman/vehicle every day. On a given day, the salesman/vehicle follows the a

priori solution. When the salesman/vehicle fails to meet the demand of a customer,

a recourse action is performed. This recourse action could be in the form of skipping

a customer who does not require being visited, going back to the depot to replenish,

or any other problem-specific recourse action. The solution obtained by performing

the recourse action on the a priori solution is the a posteriori solution. The goal then

becomes finding an a priori solution that minimizes the expected cost of the associated

a posteriori solution. To compute the expected cost in a priori optimization, two

approaches have been discussed in the literature: analytical computation and empirical

estimation. The former exactly computes the expected cost of the a posteriori solutions

using a complex analytical development. The latter estimates the expected cost through

Monte Carlo simulation.

Exact methods can solve small sized stochastic routing problems to optimality (Gen-

dreau et al., 1996a). Recent and pragmatic approaches to tackle stochastic routing prob-

lems mainly involve the application of SLS methods, in particular iterative improvement

algorithms and metaheuristics. In this thesis, we tackle two classical stochastic routing

problems namely, the probabilistic traveling salesman problem (PTSP) and the vehicle

routing problem with stochastic demands and customers (VRPSDC). These problems

are academic variants of many real world stochastic routing problems (Jaillet, 1985,

3



1. INTRODUCTION

1987; Bertsimas, 1988; Gendreau et al., 1996a). The core of this thesis is on the appli-

cation of iterative improvement algorithms and metaheuristics for the solution of the

PTSP and the VRPSDC.

The PTSP is a central problem in stochastic routing and has a number of practical

applications not only in transportation but also in strategic planning and scheduling.

In the PTSP, each customer has a probability of requiring being visited. The a priori

solution must be found prior to knowing which customers are to be visited; the associ-

ated a posteriori solution, which is computed after knowing which customers need to

be visited, is obtained by visiting them in the order prescribed by the a priori solution

but skipping the customers who do not require being visited.

The VRPSDC is concerned with minimizing the cost involved in routing a vehicle

with a limited capacity that collects goods from a number of customers, where each

customer has a probability of requiring being visited and a stochastic demand. This

problem models a number of practical problems in the areas of truckload operations

and package delivery systems. The a priori solution is a sequence of all customers,

which is decided before knowing customers presence and their demands; the associated

a posteriori solution, which is computed after knowing customers presence and their

demands, is obtained by following the a priori solution but with the following recourse

actions: a customer who does not require being visited is skipped; whenever the vehicle

fails to meet the demand of a customer, it has to go back to the depot for unloading.

Motivation and goal

Before the start of the work towards this thesis, the majority of iterative improvement

algorithms and metaheuristics designed for stochastic routing problems were based on

the analytical computation approach. In particular, for the PTSP and the VRPSDC,

all algorithms used the analytical computation approach. There are two crucial draw-

backs of this approach. Firstly, evaluating the cost of a solution using the analytical

computation approach is computationally expensive; thus, the full potential of the it-

erative improvement algorithms and metaheuristics cannot be obtained. Secondly, the

analytical computation approach is not general-purpose and it cannot be applied to

complex problems, in which the cost computation cannot be derived in an analytical

way. In spite of the fact that the empirical estimation approach has the potential to

overcome the difficulty posed by analytical computation, surprisingly, to the best of

our knowledge, its adoption in iterative improvement algorithms and metaheuristics

was still, at the time we started the work presented in this thesis, in an early stage and
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1.1 Original contributions

it had never been thoroughly investigated before.

The goal of the thesis is to design, implement, and analyze effective estimation-based

iterative improvement algorithms and metaheuristics to tackle the PTSP and the

VRPSDC.

1.1 Original contributions

The main contributions of the thesis are listed in the following.

Estimation-based algorithms for tackling stochastic routing problems

This thesis provides a thorough investigation of using the empirical estimation ap-

proach in iterative improvement algorithms and metaheuristics for the PTSP and the

VRPSDC. On the results side, the thesis presents extensive experimental evidence to

show that the empirical estimation approach is an effective alternative to the widely-

adopted analytical computation approach.

Estimation-based iterative improvement algorithm for the PTSP

For the PTSP, previous state-of-the-art iterative improvement algorithms used delta

evaluation based on the analytical computation approach: the cost difference between

two neighboring solutions was computed by considering the cost contribution of solution

components that are not common to them; this cost difference is given by recursive

closed-form expressions.

The thesis proposes an effective estimation-based iterative improvement algorithm

for the PTSP. The main novelty of the proposed algorithm consists of using an empir-

ical estimation approach and designing an effective data structure for the PTSP delta

evaluation. Inspired by iterative improvement algorithms proposed for the closely re-

lated TSP, particular attention is devoted to the adoption of neighborhood reduction

techniques. A systematic experimental analysis is carried out to assess the effectiveness

of each algorithmic component adopted in the estimation-based iterative improvement

algorithm.

Adaptive sample size and variance reduction techniques in delta evaluation

for the PTSP

The use of an adaptive sample size procedure offers computational benefit by prescrib-

ing the most appropriate number of realizations needed for cost estimation. Variance

5



1. INTRODUCTION

reduction techniques are used to reduce the number of realizations needed for obtain-

ing precise cost estimates. The thesis proposes a new way of combining two variance

reduction techniques, namely, the method of common random numbers, importance

sampling, and an adaptive sample size procedure for the PTSP delta evaluation.

Estimation-based metaheuristics for the PTSP

For the PTSP, the estimation-based metaheuristics proposed so far in the literature are

prototypical algorithms. The thesis discusses three high performing estimation-based

metaheuristics, namely, iterated local search, memetic algorithms, and ant colony opti-

mization to solve the PTSP. These algorithms use an estimation approach to evaluate

the solution cost and exploit the estimation-based iterative improvement algorithm as

subsidiary solution improvement procedure. A particularity of the estimation approach

is the adoption of the method of common random numbers and of an adaptive sample

size procedure. The parameters of all the estimation-based algorithms are rigorously

fine-tuned and tested on instances with different characteristics.

Estimation-based metaheuristics for VRPSDC

So far, the VRPSDC has been tackled by an analytical computation algorithm that

adopts a computationally expensive closed-form expression. However, for large in-

stances with several hundreds of nodes, high computational cost affects the perfor-

mance of the algorithm considerably. For the first time, an estimation-based approach

is adopted within the metaheuristics framework to tackle the VRPSDC and it is shown

to be more effective than the previously proposed analytical computation approach.

Advancement of the state-of-the-art for the PTSP and the VRPSDC

The estimation-based algorithms proposed in the thesis are compared to the previously

proposed algorithms using an accurately designed and statistically sound experimen-

tal methodology. Primary importance is given for assessing the performance of the

algorithms on large instances. Our estimation-based iterative improvement algorithm

proposed for the PTSP completely outperforms previous iterative improvement algo-

rithms. Our estimation-based metaheuristics for the PTSP are more effective than the

previous best performing metaheuristics. Our estimation-based metaheuristics devel-

oped for the VRPSDC define the new state-of-the-art.
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1.2 Scientific publications in connection with this thesis

Engineering algorithms for stochastic routing problems

The thesis follows a principled engineering approach to develop high performing algo-

rithms for stochastic routing problems. This approach is a bottom-up process. In order

to tackle the PTSP and the VRPSDC, the process is strongly focused on the devel-

opment and refinement of the PTSP iterative improvement algorithm. Although not

always necessary in other stochastic routing problems, the strong focus on the iterative

improvement algorithm played a crucial role in attaining high performing algorithms

for the PTSP and the VRPSDC.

Iterative F-race for parameter tuning

While typically parameters of iterative improvement algorithms and metaheuristics

are tuned by hand, recent studies have shown that automatic tuning procedures can

effectively handle this task and often find better parameter values than that of the

widely used ad-hoc tuning methods. F-Race is a successful automatic tuning procedure

that has proven to be very effective in a number of tuning tasks.

The thesis introduces the Iterative F-Race algorithm for tuning the configuration

of metaheuristics. Iterative F-Race is an improved variant of F-Race that on the one

hand makes it suitable for tuning tasks with a large number of initial parameter values

and, on the other hand allows a significant reduction of the computation time needed

for tuning tasks without any major loss in solution quality. This algorithm is used

to fine tune the parameter values of all estimation-based algorithms developed for the

PTSP and the VRPSDC.

1.2 Scientific publications in connection with this thesis

Several chapters presented in this thesis are based on articles that the author, together

with co-authors, has published or submitted for publication to journals, workshops,

and conferences.

The design and development of new iterative improvement algorithms that use an

estimation-based delta evaluation for the PTSP, described in Chapter 4, is based on

the following journal and conference articles:

M. Birattari, P. Balaprakash, T. Stützle, and M. Dorigo. Estimation-based

local search for stochastic combinatorial optimization using delta evalua-

tions: A case study in the probabilistic traveling salesman problem. IN-

FORMS Journal on Computing, 20(4):644–658, 2008.
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1. INTRODUCTION

M. Birattari, P. Balaprakash, T. Stützle, and M. Dorigo. Estimation-based

local search for the probabilistic traveling salesman problem. In M. Gen-

dreau et. al. (Eds.) MIC 2007: The Seventh Metaheuristics International

Conference. Montreal, Canada. June 25-29, 2007.

The integration of the adaptive sample size and the importance sampling proce-

dures in the estimation-based iterative improvement algorithm for the PTSP, given in

Chapter 5, is published in a journal article and has been disseminated in a workshop.

P. Balaprakash, M. Birattari, T. Stützle, and M. Dorigo. Adaptive sam-

ple size and importance sampling in estimation-based local search for the

probabilistic traveling salesman problem. European Journal of Operational

Research, 199(1):98–110, 2009.

P. Balaprakash, M. Birattari, T. Stützle, and M. Dorigo. Sampling strate-

gies and local search for stochastic combinatorial optimization. In E. Ridge

et. al. (Eds.) SLS-DS 2007: Doctoral Symposium on Engineering Stochas-

tic Local Search Algorithms, pp. 16-20, September 6-8, 2007, Brussels, Bel-

gium.

The bottom-up engineering methodology that we followed in Chapter 4 and Chapter

5 for deriving the estimation-based iterative improvement algorithm for the PTSP has

been published as the following book chapter:

P. Balaprakash, M. Birattari, and T. Stützle. Engineering stochastic local

search algorithms: A case study in estimation-based local search for the

probabilistic travelling salesman problem. In C. Cotta and J. van Hemert,

editors, Recent Advances in Evolutionary Computation for Combinatorial

Optimization, volume 153 of Studies in Computational Intelligence, pages

53–66, Berlin, Germany, 2008. Springer Verlag.

The systematic study of ant colony optimization algorithms for tackling the PTSP,

given in Appendix A, is contained in the following journal article. Moreover, the initial

experimental investigations are published as a book chapter and as conference article:

P. Balaprakash, M. Birattari, T. Stützle, Z. Yuan, and M. Dorigo. Estimation-

based ant colony optimization and local search for the probabilistic traveling

salesman problem. Swarm Intelligence, 3(3):223–242, 2009.

8



1.2 Scientific publications in connection with this thesis

M. Birattari, P. Balaprakash, and M. Dorigo. The ACO/F-RACE algo-

rithm for combinatorial optimization under uncertainty. In K. F. Doerner

et. al. (Eds.), Metaheuristics - Progress in Complex Systems Optimization,

Operations Research/Computer Science Interfaces Series, pages 189–203,

Berlin, Germany, 2006.

M. Birattari, P. Balaprakash, and M. Dorigo. ACO/F-Race: Ant colony

optimization and racing techniques for combinatorial optimization under

uncertainty, In R. F. Hartl et. al. (Eds.) MIC 2005: The sixth Metaheuris-

tics International Conference, August 22-26, 2005, Vienna, Austria.

An article on the estimation-based metaheuristics developed for the PTSP, de-

scribed in Chapter 6, is submitted to a journal. The preliminary work on this topic

has been the subject of three short conference articles.

P. Balaprakash, M. Birattari, T. Stützle, and M. Dorigo. Estimation-based

metaheuristics for the probabilistic traveling salesman problem. Computers

and Operations Research, (under review).

P. Balaprakash, M. Birattari, T. Stützle, and M. Dorigo. An experimen-

tal study of estimation-based metaheuristics for the probabilistic traveling

salesman problem. In V. Maniezzo et. al. (Eds.) LION 2007 II: Learning

and Intelligent Optimization, December 8-12, 2007, Trento, Italy.

P. Balaprakash, M. Birattari, T. Stützle, and M. Dorigo. Estimation-based

stochastic local search algorithms for the stochastic routing problems. In

E.-G. Talbi and K. Mellouli (Eds.) International Conference on Metaheuris-

tics and Nature Inspired Computing, META’08, October 29-31, 2008, Ham-

mamet, Tunisia.

P. Balaprakash, M. Birattari, T. Stützle, and M. Dorigo. Applications

of estimation-based SLS algorithms to stochastic routing problems. In P.

Hansen and S. Voss (Eds.) Metaheuristics 2008, Second International Work-

shop on Model Based Metaheuristics, June 16-18, 2008, Bertinoro, Italy.

The extension of the PTSP estimation-based metaheuristics to tackle the VRPSDC,

described in Chapter 7, forms the basis of a planned journal article:
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P. Balaprakash, M. Birattari, T. Stützle, and M. Dorigo. Estimation-based

metaheuristics for the vehicle routing problem with stochastic demands and

customers. (Completed as of October 2009 and to be submitted).

The design and analysis of Iterative F-race, which is used to fine-tune the param-

eter values of all the estimation-based algorithms described in Appendix B, has been

published as a workshop article, a book chapter, and a short conference article:

P. Balaprakash, M. Birattari, and T. Stützle. Improvement strategies

for the F-Race algorithm: Sampling design and iterative refinement. In

T. Bartz-Beielstein et. al. (Eds.), Hybrid Metaheuristics, volume 4771 of

LNCS, pages 113–127, Berlin, Germany, 2007. Springer Verlag.

M. Birattari, Z. Yuan, P. Balaprakash, and T. Stützle. F-Race and iterated

F-Race: An overview of racing algorithms for algorithm tuning and design.

In T. Bartz-Beielstein et. al. (Eds.), Empirical Methods for the Analysis

of Optimization Algorithms, Natural Computing Series, Germany, 2009.

Springer Verlag. (In press)

M. Birattari, Z. Yuan, P. Balaprakash, T. Stützle. Automated algorithm

tuning using F-races: Recent developments. In S. Voss and M. Caserta

(Eds.) MIC 2009: The eighth Metaheuristics International Conference,

July 13-16, 2009, Hamburg, Germany.

A feasibility study of adopting the estimation-based PTSP iterative improvement

algorithm to tackle the index tracking problem in portfolio selection has been presented

in the following workshop:

G. di Tollo and P. Balaprakash. Index tracking by estimation-based lo-

cal search. In A. Amendola et. al. (Eds.) 2nd International Workshop

on Computational and Financial Econometrics, CFE’08, June 19-21, 2008,

Neuchatel, Switzerland.

1.3 Organization of the thesis

The thesis continues in Chapter 2, which is divided into two parts. The first part

introduces combinatorial optimization and gives a brief summary of some widely used

SLS methods. The second part presents stochastic combinatorial optimization prob-

lems, their difficulty, followed by a comprehensive review of how metaheuristics tackle
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1.3 Organization of the thesis

stochastic combinatorial optimization problems. Several techniques described here

serve as a basis for designing effective algorithms for the PTSP and the VRPSDC.

Chapter 3 provides a survey of stochastic routing problems. A particular emphasis

is given to the PTSP and the VRPSDC. For each problem, we cover exact methods,

constructive heuristics, iterative improvement algorithms, and metaheuristics proposed

in the literature.

Chapter 4 introduces 2.5-opt-EEs, a new estimation-based iterative improvement

algorithm for the PTSP. We carry out a systematic experimental comparison to show

that the adoption of TSP-specific neighborhoods and an estimation-based approach for

evaluating solution costs allow the algorithm to find high quality solutions in a very

short computation time. We also compare the proposed 2.5-opt-EEs algorithm to

iterative improvement algorithms, which were previously proposed in the literature, on

large instances and on other new random instances.

Chapter 5 presents an improved variant of 2.5-opt-EEs called 2.5-opt-EEais.

This improvement is obtained by using the adaptive sample size and of importance

sampling procedures. An extensive experimental analysis to assess the contribution of

the adaptive sample size and of the importance sampling procedures on computation

time and solution quality is presented.

Chapter 6 focuses on metaheuristics to tackle the PTSP. We engineer three meta-

heuristics namely, iterated local search, memetic algorithms, and ant colony optimiza-

tion, which are known to have very good performance on the deterministic TSP. This

process consists in adopting the estimation approach to evaluate the solution cost, ex-

ploiting 2.5-opt-EEais as local search, and tuning the metaheuristics parameters. A

random restart local search is also used as a control algorithm. We present a rigorous

experimental comparison between the estimation-based algorithms on a wide range of

instances. We evaluate the effectiveness of the proposed algorithms against the so far

best performing metaheuristics for the PTSP.

Chapter 7 is concerned with the extension of the estimation-based metaheuristics

to the VRPSDC. The proposed extension comprises the customization of the PTSP

cost evaluation procedure to take into account the stochastic demands. The iterative

improvement algorithm 2.5-opt-EEais developed for the PTSP is used as a local

search inside all metaheuristics. The best performing metaheuristic for the VRPSDC

is re-implemented and used for an experimental comparison. We present a systematic

experimental analysis to study the effectiveness of adopting the analytical computation

approach and several variants of the empirical estimation approach to the VRPSDC.

Then, we study the effectiveness of the proposed algorithms on large instances.
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1. INTRODUCTION

Chapter 8 concludes the thesis with a summary of the main contributions followed

by directions for future research.

The thesis comprises two appendices (A and B), which are also part of the contri-

butions. Appendix A, a supplement to Chapter 6, presents a systematic experimental

study of several ant colony optimization algorithms for the PTSP. The estimation-based

ant colony optimization algorithm used in Chapter 6 is chosen based on the results of

appendix A. Appendix B describes the Iterative F-Race algorithm, which is used to

fine-tune the parameter values of the estimation-based iterative improvement algorithm

2.5-opt-EEais, given in Chapter 5, and all estimation-based metaheuristics developed

for the PTSP and the VRPSDC discussed in Chapters 6, 7, and Appendix A.
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Chapter 2

Background

In recent years, much attention has been devoted to the development of metaheuris-

tics for tackling stochastic combinatorial optimization problems. In this chapter, we

provide an overview of recent developments. As one may expect, many algorithms

developed for stochastic combinatorial optimization problems are extensions of those

designed for their deterministic counterparts. In Section 2.1, we provide some back-

ground knowledge about combinatorial optimization and we give a brief summary of

some widely used metaheuristics designed to solve such problems. Then, in Section 2.2,

we introduce stochastic combinatorial optimization problems and explain why design-

ing effective algorithms for these problems is more difficult than for their deterministic

counterparts. Finally, we discuss metaheuristics developed to tackle stochastic combi-

natorial optimization problems.

2.1 Combinatorial optimization and metaheuristics

According to Papadimitriou and Steiglitz (1982), a combinatorial optimization problem

C = (S, f) is an optimization problem that comprises a finite set S of solutions and a cost

function f : S → ℜ+ that assigns a positive cost value to each solution s ∈ S. The goal

is to find a solution x∗ with minimum cost1. A solution x∗ is called an optimal solution

or a global optimum of the given problem C. The solutions are typically permutations

of numbers, subsets of a set of items or a graph structure. Combinatorial optimization

problems are frequently encountered in areas such as planning, scheduling, time-tabling,

and resource allocation, where there are many possible solutions to consider and the

1Note that maximizing over a cost function f is the same as minimizing over −f . Therefore, it is
possible to describe every combinatorial optimization problem as a minimization problem.
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2. BACKGROUND

goal is to determine the best solution.

A paradigmatic example of a combinatorial optimization problem is the traveling

salesman problem (TSP). It is defined on a complete graph G = {V,A,C} with V =

{1, 2, ..., n} being a set of nodes, A = {〈i, j〉 : i, j ∈ V, i 6= j} being a set of edges, where

an edge 〈i, j〉 connects nodes i and j, and C = {cij : 〈i, j〉 ∈ A} being a set of costs,

where cij is the cost of traversing an edge 〈i, j〉. Typically, the costs are assumed to

be symmetric, that is, for all pairs of nodes i, j we have cij = cji. The goal is to find

the minimum cost Hamiltonian cycle (a complete tour) in G. The set S consists of all

possible Hamiltonian cycles in G.

A combinatorial optimization problem comprises a set of problem instances. The

terms problem and instance are distinguished as follows. The former refers to the

general question to be answered, typically without specifying the values for the problem

parameters—for the TSP, it refers to the general problem of finding a minimum cost

Hamiltonian cycle in G. The latter refers to a problem with specific values for all the

parameters of the problem—for the TSP, it refers to a specific problem, where the

number of nodes and all edge costs are defined.

A naive method to solve a combinatorial optimization problem is exhaustive search

that consists in enumerating all possible solutions to find the one with minimum cost.

This method becomes rapidly infeasible because the number of possible solutions grows

exponentially with instance size. For some combinatorial optimization problems, the

exploitation of problem-specific knowledge allows the definition of algorithms that find

an optimal solution much faster than exhaustive search. However, for many problems,

even the best algorithms of this kind cannot do much better than exhaustive search.

When solving combinatorial problems, it is important to assess the difficulty of

solving them. An important theory that describes this difficulty is the theory of NP-

completeness. Using this theory, the difficulty of combinatorial optimization problems

is investigated in two steps. In the first place, it deals with the computational complex-

ity of solving decision problems including decision variants of optimization problems.

The decision variants of an optimization problem generally ask the question (in the

minimization case) whether for a given problem instance there exists a solution, which

is better than some value. The decision problems are classified as P or NP according to

the time complexity function2 of the best available algorithm to solve it. The decision

2The time complexity function g(n) of an algorithm indicates for each possible input size n, the
maximum amount of time needed by the algorithm to solve an instance of that size. The function g(n)
is O(h(n)) if there exist integers c and N such that |g(n)| ≤ c · |h(n)| for all values of n ≥ N . If an
algorithm has time complexity function O(h(n)) for some polynomial function h, it is referred to as a
polynomial time algorithm. If the time complexity function of an algorithm cannot be bounded by a

14



2.1 Combinatorial optimization and metaheuristics

problems for which an algorithm exists that outputs in polynomial time the correct

answer (either yes or no) belong to the class P; the decision problems for which one

can verify the correctness of a given answer in polynomial time, belong to the class

NP. Although it is clear that P ⊆ NP, the question of whether P is equal to NP or not

remains unanswered so far. However, it is widely conjectured that P 6= NP (Fortnow,

2009). Note that proving P = NP implies that all problems in NP can be solved in

polynomial time.

A problem is NP-hard, if every other problem in NP can be transformed to it by

the so-called polynomial time reduction, a procedure that transforms a problem into

another one by a polynomial time algorithm. It should be noted that NP-hard problems

do not necessarily belong to the class NP themselves, since their time complexity may

actually be much higher or, simply, they may not be decision but optimization problems.

NP-hard problems that are also in NP are said to be NP-complete. Since solving the

original optimization problem is at least as hard as solving its decision version, proving

the intractability of the latter implies intractability of the former. Many combinatorial

optimization problems are NP-hard problems, which means that in the worst case the

computation time needed to find the optimal solution increases exponentially with

the size of the problem instance. We refer the reader to Garey and Johnson (1979),

Papadimitriou and Steiglitz (1982), Papadimitriou (1994) for a detailed explanation of

the computational complexity of combinatorial optimization problems.

The solution techniques developed to tackle combinatorial optimization problems

can be categorized into two groups: exact methods and approximate algorithms. Ex-

act methods are guaranteed to find the optimal solution for every finite size instance

of a combinatorial optimization problem within an instance-dependent computation

time. However, for NP-hard combinatorial optimization problems, this computation

time cannot be bounded by a polynomial time. In other words, exact methods have

an exponential worst case time complexity. More importantly, not only in theory, but

also in practice, exact methods often cannot solve instances of even moderate size. Ap-

proximate algorithms sacrifice the guarantee of finding the optimal solution for finding

good solutions in a reasonable amount of computation time. These algorithms, when

correctly used, are state-of-the-art for many combinatorial optimization problems.

From an algorithmic perspective, approximate algorithms can be classified as con-

structive heuristics, iterative improvement algorithms, and metaheuristics. Since most

of the approximate algorithms make use of randomized choices in generating or se-

lecting solutions for combinatorial optimization problems, they are also referred to as

polynomial, it is referred to as an exponential time algorithm.
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stochastic local search (SLS) methods (Hoos and Stützle, 2005). In the rest of this

section, we give an overview of SLS methods with a primary focus on metaheuristics.

For a comprehensive coverage of approximate algorithms, we refer the reader to Aarts

and Lenstra (1997), Glover and Kochenberger (2002), and Hoos and Stützle (2005).

Constructive heuristics

Constructive heuristics start from an initial empty solution and iteratively add solution

components to a partial solution until a complete solution is obtained. These algorithms

are usually fast but the quality of the solutions they obtain is typically worse than that

of iterative improvement algorithms and metaheuristics. Therefore, they are often not

used as standalone algorithms to tackle combinatorial optimization problems. Instead,

they are primarily used to generate good initial solutions for iterative improvement

algorithms and metaheuristics.

A popular constructive heuristic for the TSP is the nearest neighbor heuristic. It

is a greedy algorithm that starts from a randomly chosen initial node and iteratively

adds an edge connecting the current node to a closest neighboring node that has not

yet been added. Another heuristic that we use in this thesis is the farthest insertion

heuristic. It starts with the edge of maximal cost and iteratively adds the remaining

nodes in the following way. Among all nodes not in the partial solution, it chooses the

one that is farthest to a node in the partial solution; the chosen node is then inserted

between two consecutive nodes in the partial solution in such a way that the insertion

causes the smallest increase in the cost of the current partial solution.

Iterative improvement algorithms

Iterative improvement algorithms start from some initial solution and repeatedly try

to move from a current solution x to a lower cost neighbor solution x′. Which solu-

tions are neighbors is defined by a neighborhood structure N : S 7→ 2x that assigns

to every x ∈ S, a set of neighbor solutions N(x) ⊆ S. The choice of an appropriate

neighborhood structure is crucial for the effectiveness of an iterative improvement algo-

rithm. Typically, the choice is problem-specific. A well-known neighborhood structure

for combinatorial optimization problems is the k -exchange neighborhood, in which a

set of neighbor solutions of x are obtained by exchanging k solution components from

x. An iterative improvement algorithm terminates when the current solution x does

not have any lower cost neighbor solution, that is, ∀x′ ∈ N(x) : f(x) ≤ f(x′). Iterative

improvement algorithms are widely referred to as local search algorithms because they
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2.1 Combinatorial optimization and metaheuristics

Figure 2.1: A 2-exchange neighbor solution x′ that is obtained by deleting two edges 〈1, 2〉 and

〈6, 7〉 (indicated in dotted lines) of a solution x and by replacing them with 〈1, 6〉 and 〈2, 7〉.

search in a user-defined neighborhood structure. The final solution obtained by an

iterative improvement algorithm is called local optimum since it is only guaranteed to

be optimal with respect to its neighborhoods.

In iterative improvement algorithms, the cost of solutions can be evaluated by a full

evaluation that computes the cost of each solution from scratch or a partial evaluation

that computes only the cost difference between a particular solution and a neighboring

solution. The latter is known as delta evaluation, which is highly profitable in terms of

computation time whenever it is feasible.

Typically, iterative improvement algorithms are implemented using a first-improvem-

ent or a best-improvement rule. In the former case, an improving move is immediately

applied as soon as it is detected; in the latter case, the whole neighborhood is examined

and a move that gives the best improvement is chosen.

One of the most widely used iterative improvement algorithms for the TSP is 2-

opt local search. It uses a 2-exchange neighborhood structure, in which the neighbor

solutions are obtained from the current solution x by exchanging two edges with two

other edges. Note that to maintain feasibility of a solution, there is only one possible

way to exchange two edges. See Figure 2.1 for an example. The algorithm adopts delta

evaluation to compute the cost difference between a current solution x and a neighbor

solution x′ by considering the cost contribution of the solution components that are

not common between x and x′. The cost difference between the neighboring solutions

shown in Figure 2.1 is simply given by c1,6 + c2,7 − c1,2 − c6,7.

Metaheuristics

Metaheuristics are general algorithmic frameworks, which can be applied to different

optimization problems with relatively few modifications to make them adapted to a
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specific problem (Metaheuristics Network, 2003). Metaheuristics are among the most

effective approaches to tackle combinatorial optimization problems. These algorithms

have greatly increased our ability to find high quality solutions to difficult, large, and

practically relevant combinatorial optimization problems in a reasonable computation

time. For a comprehensive description of metaheuristics, we follow Stützle (1998):

Metaheuristics are typically high-level strategies which guide an underlying,

more problem specific heuristic, to increase their performance. The main

goal is to avoid the disadvantages of iterative improvement and, in par-

ticular, multiple descent by allowing the local search to escape from local

optima. This is achieved by either allowing worsening moves or generating

new starting solutions for the local search in a more intelligent way than just

providing random initial solutions. Many of the methods can be interpreted

as introducing a bias such that high quality solutions are produced quickly.

This bias can be of various forms and can be cast as descent bias (based on

objective function), memory bias (based on previously made decisions) or

experience bias (based on prior performance). Many of the metaheuristic

approaches rely on probabilistic decision made during the search. But, the

main difference to pure random search is that in metaheuristic algorithms

randomness is not used blindly but in an intelligent, biased form.

Blum and Roli (2003) characterize metaheuristics in the following way:

Metaheuristics are high level strategies for exploring search spaces by using

different methods. Of great importance hereby is that a dynamic balance is

given between diversification and intensification. The term diversification

generally refers to the exploration of the search space, whereas the term

intensification refers to the exploitation of the accumulated search experi-

ence. The balance between diversification and intensification is important,

on one side to quickly identify regions in the search space with high quality

solutions and on the other side not to waste too much time in regions of

the search space which are either already explored or which do not provide

high quality solutions.

Unlike constructive heuristics that end when a complete solution has been con-

structed or iterative improvement algorithms that end when a local optimum has been

reached, metaheuristics do not have a natural stopping criterion. They use arbitrary

stopping criteria such as maximum computation time or number of iterations.
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Examples of metaheuristics include simulated annealing (SA) (Černý, 1985; Kirk-

patrick et al., 1983), tabu search (TS) (Glover, 1989, 1990; Glover and Laguna, 1997),

iterated local search (ILS) (Martin et al., 1991; Lourenço et al., 2002), evolutionary com-

putation (EC) (Rechenberg, 1973; Fogel et al., 1966; Holland, 1975; Goldberg, 1989),

ant colony optimization (ACO) (Dorigo, 1992; Dorigo and Stützle, 2004), scatter search

(SS) (Glover, 1977), and greedy randomized adaptive search procedures (GRASP) (Feo

and Resende, 1989, 1995). These algorithms can be classified in several ways based on

a number of criteria (Stützle, 1998). In this section, we describe some of the most

widely used metaheuristics that are also most relevant for this thesis. We proceed from

those that work on single solutions, to more sophisticated algorithms that work on a

population of solutions.

Simulated annealing

SA (Černý, 1985; Kirkpatrick et al., 1983) is inspired by the physical process of anneal-

ing. A simple variant of simulated annealing is obtained from the iterative improve-

ment algorithm by adding a mechanism called probabilistic acceptance criterion that

can allow the algorithm to move to a worse neighboring solution. This probabilistic

acceptance criterion takes into account the cost of x and x′ and the value of a param-

eter T called temperature. Many simulated annealing algorithms adopt the so-called

Metropolis acceptance criterion (Metropolis et al., 1953): When x′ has a lower cost

than x, the algorithm moves to x′; otherwise, the algorithm moves to x′ with a prob-

ability e|f(x)−f(x′)|/T . An annealing schedule slowly reduces the value of T during the

search steps with the consequence that at the beginning of the search the probability of

accepting a worse solution is higher; as the search progresses, this probability decreases.

The mechanism of accepting worse solutions during the search helps the algorithm to

escape from the basin of attraction of bad quality local optima encountered in the early

stages of the search.

Tabu search

TS (Glover, 1989, 1990; Glover and Laguna, 1997) is one of most widely used meta-

heuristics. A simple tabu search can be obtained from the iterative improvement al-

gorithm with the best improvement rule by adding a short term memory called tabu

list. This list is a first-in first-out queue of previously visited solutions or solutions

attributes. Typically, the solution components modified in a search step are declared

tabu for a fixed number of subsequent search steps. These solution components cannot
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be added or removed from the current candidate solution. The tabu list tries to prevent

the search returning to a previously visited solution and to avoid (short) cycles. Nev-

ertheless, the tabu condition can be overridden using an aspiration criterion since the

forbidding of the solution components that are tabu also excludes previously unvisited

solutions from being visited. Often the simple tabu search is enhanced with a number

of intensification and diversification strategies to achieve high performance.

Random restart local search

The primary drawback of iterative improvement algorithms is that they often return

unsatisfactory solutions when they get trapped in low quality local optima. A straight-

forward way to address this problem is to restart the local search algorithm a number

of times from a new initial solution, which is generated independently of the previously

found local optima. The rationale behind this algorithm is that if high quality local

optima are uniformly distributed in the search space, by repeating the local search for

a sufficiently large number of times, the chance of obtaining one of those high quality

local optima will be high. Unfortunately, in many practical applications, high quality

local optima are not uniformly distributed in the search space. However, this simple

metaheuristic is often used as a baseline metaheuristic for comparing more sophisticated

ones.

Iterated local search

ILS (Martin et al., 1991; Lourenço et al., 2002) is based on the rationale that high

quality local optima are clustered in the search space. This algorithm consists in

a sequence of runs of a local search algorithm. Starting from an initial candidate

solution, a local search is applied until a local optimum is found. Each iteration of

the algorithm comprises three phases. First, a perturbation is applied to the current

locally optimal candidate solution s resulting in an intermediate candidate solution s′,

which is not locally optimal. Next, local search is applied starting from s′ resulting in a

locally optimal candidate solution s′′. Finally an acceptance criterion is used to decide

whether the search is continued from s or s′′. Crucial to the performance of iterated

local search is the strength of the perturbation: It should not be too strong because a

strong perturbation makes it closer to a random restart local search algorithm and it

should not be too weak because this could cause the search to return to the previously

found local optimum.
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Greedy randomized adaptive search procedures

Each iteration of GRASP (Feo and Resende, 1989, 1995) comprises two phases. In

the first phase, a constructive heuristic is used to generate a large number of different

high quality candidate solutions. At each step of the constructive heuristic, a greedy

function assigns values to the solution components and a number of the best-ranked

components are included in a restricted candidate list. From this list, a solution com-

ponent is then chosen randomly, according to a uniform distribution. In the second

phase, the generated solutions are improved by using a local search algorithm. Once

the termination criterion is met, the algorithm returns the best solution that it has

found during the search.

Evolutionary computation

EC (Rechenberg, 1973; Fogel et al., 1966; Holland, 1975; Goldberg, 1989) is inspired

by the ability shown by populations of living beings to evolve and adapt to changing

conditions under the mechanism of natural selection. They are iterative procedures

that start with an initial population of solutions, which is then repeatedly modified by

applying a series of evolutionary operators such as reproduction, recombination, and

mutation. The reproduction operator selects high quality solutions that will be part

of the population for the next iteration. The recombination operator combines solu-

tion components of two or more solutions to generate a new offspring solution. The

mutation operator injects diversity in the population of solutions by perturbing some

of them. Several high performing evolutionary algorithms designed for combinatorial

optimization use a subsidiary local search to refine the candidate solutions in the popu-

lation. They are seen as EC algorithms that search a space of locally optimal solutions

and are usually referred to as memetic algorithms (MAs) (Moscato, 1989, 1999).

Scatter search

SS (Glover, 1977) has several similarities with MAs. It operates on a population of

solutions called reference solutions and generates new solutions called trial solutions for

the next iteration using a recombination operator that is analogous to recombination

operators of EC algorithms. A local search algorithm is then applied on the trial

solutions. These improved solutions form the set of dispersed solutions. The new set of

reference solutions that will be used in the next iteration is selected from the current

set of reference solutions and the newly created set of dispersed solutions.
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Ant colony optimization

ACO (Dorigo, 1992; Dorigo and Stützle, 2004) is a metaheuristic inspired by the

pheromone trail laying and following behavior of some ant species. In ACO algorithms,

artificial ants are stochastic solution construction procedures that generate solutions

in each iteration guided by artificial pheromones trails and by the cost of the solu-

tion components; the ants’ solutions are then used to modify the artificial pheromone

trails. This mechanism shifts the stochastic solution construction procedure towards

the construction of solutions similar to the better ones seen in the previous iterations of

the algorithm. Usually, high performance ACO algorithms designed for tackling com-

binatorial optimization problems use a subsidiary local search algorithm. Once ants

complete their solution construction phase, the local search algorithm is used to refine

their solutions before using them for the pheromone update.

2.2 Metaheuristics for stochastic combinatorial optimiza-

tion

Stochastic combinatorial optimization problems are similar to combinatorial optimiza-

tion problems except that some of the problem parameters are not known exactly but

probability distributions governing them are known or can be estimated. Many im-

portant and interesting problems in strategic planning for collection and distribution

services, communication and transportation systems, job scheduling, and modeling and

simulation of large molecular systems in bio-informatics can be modeled as stochastic

combinatorial optimization problems (Fu, 2002). In fact, in these applications, stochas-

tic combinatorial optimization problems offer more realistic models than their deter-

ministic counterpart. In order to tackle these problems, it is customary that a setting is

considered in which the cost of each solution is a random variable, and the goal is to find

a solution that minimizes some statistics of the latter. For a number of practical and

theoretical reasons, the optimization is performed with respect to the expectation (Fu,

1994, 2002). In this thesis, we consider stochastic combinatorial optimization problems

that can be described as:

minimize F (x) = E
[

f(x,ω)
]

, (2.1)

where x is a solution from S, the finite set of feasible solutions, the operator E denotes

the mathematical expectation, and f is the cost function, which depends on x and on
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a multivariate random variable ω. The presence of the latter makes f(x,ω) a random

variable. The goal is to find a feasible solution that minimizes the expected cost.

A paradigmatic example of a stochastic combinatorial optimization problem is the

probabilistic traveling salesman problem (PTSP) (Jaillet, 1985), which is also one of

the two problems that we consider in this thesis. The PTSP is similar to the TSP with

the main difference being that each node has a probability of requiring a visit. The goal

is to find a TSP tour that minimizes the expected cost of a pruned tour; it is obtained

only after knowing the nodes that require being visited and by skipping the nodes that

do not require being visited according to some predefined rules.

Designing efficient algorithms for solving stochastic combinatorial optimization prob-

lems is a hard task. The difficulty is due to two factors. Firstly, these problems suffer

from the same combinatorial explosion of the number of potential solutions as com-

binatorial optimization problems do; secondly, the exact computation of the cost of a

solution is typically complicated and computationally expensive because of the added

element of uncertainty in the problem parameters. In fact, the second factor makes

stochastic combinatorial optimization problems much more difficult to solve when com-

pared to their deterministic counterparts. In contrast to deterministic problems, for

stochastic combinatorial optimization problems exact methods have achieved less suc-

cess and they can solve only small instances to proven optimality (Bianchi et al., 2009).

This motivated researchers and practitioners to focus on the development of SLS meth-

ods. The study of stochastic combinatorial optimization problems through the view-

glass of SLS methods and, in particular of metaheuristics, is a quite recent and fast

growing research area.

The central issue in applying metaheuristics to stochastic combinatorial optimiza-

tion problems is the computation of the expected cost and the consequent computation

time trade-off between the search time and the cost computation time. The cost com-

putation can be performed using two main approaches: analytical computation, that

uses closed form expressions for computing the expected cost, and empirical estimation,

that uses Monte Carlo methods for estimating the expected cost.

In the rest of this section, we discuss how this computation time trade-off has

been addressed in metaheuristics literature for stochastic combinatorial optimization

problems. Note that the overview provided in this chapter is in fact a bird’s eye view

of the literature. For an exhaustive coverage on metaheuristics applied to stochastic

combinatorial optimization problems, we refer the reader to the excellent survey by

Bianchi et al. (2009).
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2.2.1 Analytical computation algorithms

For a number of stochastic combinatorial optimization problems, it is possible to com-

pute the exact cost of a solution using closed-form expressions. When such an ex-

pression is available for a given problem, solving the given stochastic combinatorial

optimization problem is not essentially different from a deterministic problem. Thus,

a metaheuristic designed for a deterministic combinatorial optimization problem can

easily be extended to solve the stochastic problem by using the closed-form expression

to compute the solution cost. For the PTSP, the cost of a solution can be computed

with a O(n2) closed-form expression. Using this closed-form expression, several authors

extended TSP metaheuristics to the PTSP: Bianchi et al. (2002a,b); Bianchi (2006);

Bianchi and Gambardella (2007) proposed ACO and local search algorithms; Rosenow

(1997) studied an EC algorithm; Marinakis et al. (2008) applied GRASP and Marinakis

and Marinaki (2010) designed a particle swarm optimization algorithm. Other exam-

ples of analytical computation metaheuristics to stochastic combinatorial optimization

problems include an EC algorithm to tackle stochastic scheduling problems (Easton

and Mansour, 1999) and a vehicle routing problem with stochastic demand and soft

time windows (Mak and Guo, 2004).

The primary disadvantage of analytical computation algorithms is that they do not

take into account the central issue, that is, the trade-off between the time taken for

searching solutions and the time taken for evaluating their cost. For most stochastic

combinatorial optimization problems, including the PTSP, the closed-form expressions

are computationally expensive. The adoption of these expressions in optimization al-

gorithms negatively affects the time spent in exploring the search space and eventually

the final solution quality. This issue can be addressed by using less computationally

expensive closed-form expressions to approximate the cost of the solution. Often, this

expression is a truncated version of the original closed-form expression. This is the

central idea in analytical approximation algorithms3, a prominent subclass of analyt-

ical computation algorithms. For the PTSP, an analytical approximation technique

has been used in ACO algorithms by Bianchi et al. (2002a) and Branke and Guntsch

(2003, 2004) and in SS by Liu (2007, 2008). Similarly, for the vehicle routing problem

with stochastic demands, Bianchi et al. (2006) developed approximation schemes and

investigated them in SA, TS, ILS, ACO, and MA. Séguin (1994) and Gendreau et al.

3It should be noted that the usage of word “approximation” in analytical approximation algorithms
for stochastic combinatorial optimization problems refers to the approximation of the cost function,
and, hence, has a different meaning from the usage of this word in “approximation algorithms”, which
are guaranteed to find solutions within a specified factor of the optimal.
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(1996b) derived an approximation scheme for TS to tackle the vehicle routing problem

with stochastic demands and customers. Haugland et al. (2007) used an analytical

approximation TS to tackle a variant of the vehicle routing problem with stochastic

demands. Teodorović and Pavković (1992) addressed the vehicle routing problem with

stochastic demands with multiple vehicles using a SA that adopts analytical approxi-

mation. The main drawback of analytical approximation is that the design of a proxy

function is strongly problem-specific and there is no general rule for finding an efficient

proxy function (Bianchi et al., 2009).

2.2.2 Empirical estimation algorithms

In a vast majority of stochastic combinatorial optimization problems, it is very diffi-

cult, or even impossible to derive closed-form expressions and appropriate analytical

approximation schemes. In this case, the common approach is empirical estimation.

In this approach, the cost F (x) of a solution x is estimated on the basis of sam-

ple costs f(x, ω1), f(x, ω2), . . . , f(x, ωM ) obtained from M independent realizations

ω1, ω2, . . . , ωM of the random variable ω:

F̂M (x) =
1

M

M
∑

r=1

f(x, ωr). (2.2)

As it can easily be shown, F̂M (x) is an unbiased estimator of F (x).

Crucial to the effectiveness of using the estimation approach in metaheuristics is

the accuracy of the obtained cost estimate F̂M (x). More precisely, metaheuristics

compare two or more solutions at each iteration and they move to a solution having the

least cost estimate: the lower the accurateness of the cost estimates of the solutions,

the higher the uncertainty in determining whether one solution is better than the

other. For example, given two solutions x and x′, and their estimates F̂M (x) and

F̂M (x′), F̂M (x) < F̂M (x′) does not guarantee that F (x) < F (x′). The accuracy of the

cost estimate can be assessed by the variance associated with the cost estimate. The

convergence rate of estimation via Monte Carlo simulation suggests that the variance of

the estimator decreases with O(1/
√

M). This means that a large number of realizations

is required to estimate with a low variance the cost of each solution. Unfortunately,

this strategy results in a high computation time for estimating the cost of each solution.

As a consequence, the time spent in exploring the solution space will be significantly

reduced.

To address the aforementioned issue, several variants of the basic estimation ap-
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proach have been proposed. They can be classified as exterior sampling methods and

interior sampling methods (Verweij et al., 2003). In exterior sampling methods, the

cost of a solution is estimated as in Equation 2.2, but all the realizations are generated

at the beginning of the search and kept unchanged throughout the search. Since a fixed

set of realizations is used in all iterations, the cost estimate of a solution x remains

unchanged during the search. Similar to the analytical computation, this results in the

transformation of the given stochastic combinatorial optimization problem into a deter-

ministic problem, which is then solved by a deterministic optimization algorithm. This

procedure may be repeated by generating several fixed sets of realizations and solving

the deterministic optimization problem for each fixed set. The number of realizations

is crucial to the effectiveness of the exterior sampling methods and it is often difficult

to determine. A prominent exterior sampling method is sample average approximation

(Kleywegt et al., 2002; Verweij et al., 2003). Although this technique offers the flexi-

bility of using metaheuristics to solve the deterministic problem, only exact techniques

have been studied in the literature.

In interior sampling methods, the realizations are changed during the search. This is

performed by adding new realizations to the previously generated ones, by considering

a subset of previously generated realizations, or by generating new realizations at each

iteration. These methods are widely used within metaheuristics designed to tackle

stochastic combinatorial optimization problems. Several interior sampling methods

have been proposed for metaheuristics. Based on the pivotal idea behind the interior

sampling method used, we can group metaheuristics as follows: Static sample size

algorithms, progressional sample size algorithms, and adaptive sample size algorithms.

Static sample size algorithms: These algorithms, at each iteration, use a suffi-

ciently large number of realizations to obtain the cost estimate of each solution. The

number of realizations is determined a priori and it is kept constant throughout the al-

gorithm. Numerous metaheuristics have been proposed based on this method. Haddock

and Mittenthal (1992) applied an estimation-based SA to determine optimal parameter

levels of a stochastic system. They modify a typical SA algorithm by substituting an es-

timate of the solution cost in all places requiring a deterministic cost. Since computing

an accurate solution cost is computationally expensive, the authors use an annealing

schedule that decreases the temperature rapidly so that the algorithm does not accept

non-improving solutions after few iterations. Lutz et al. (1998), Finke et al. (2002),

Dengiz and Alabas (2000) adopt a standard TS algorithm that uses an external simula-

tor to estimate the solution cost. Aringhieri (2004) proposed an estimation-based TS for
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two stochastic combinatorial optimization problems that arise in the design of telecom-

munication networks. Cheung et al. (2007) tackled a stochastic delivery problem using

an estimation-based TS. Daniel and Rajendran (2005) applied an EC algorithm to the

inventory optimization problem. Jellouli and Châtelet (2001) used an EC algorithm

to address a supply-chain management problem in a stochastic environment.Wang and

Singh (2008) applied a particle swarm optimization to tackle resource portfolio plan-

ning optimization under demand uncertainty. Yoshitomi (2002) and Yoshitomi and

Yamaguchi (2003) used an EC algorithm for tackling the stochastic job-shop schedul-

ing problem. The algorithm keeps track of promising solutions obtained during the

search process. Finally, each promising solution is evaluated using a large number of

realizations and the one with the least cost is selected as the best solution. Watson

et al. (1999) tackled a stochastic warehouse scheduling problem using an EC algorithm.

A particularity of the cost estimation is that the simulator is run with a fast but less ac-

curate mode until the algorithm stops and the algorithm stores a number of promising

solutions during the search. These solutions are evaluated in a slow but more accurate

mode to determine the best solution. The algorithm also exploits knowledge from the

internal states of the simulator to construct solutions.

Progressional sample size algorithms: These are theoretically elegant, general-

purpose algorithms, which can be applied to any stochastic combinatorial optimization

problem. In these algorithms, the number of realizations is gradually increased with

respect to the iteration number. Often, a predefined sample size schedule is used to

increase the number of realizations at some rate in order to guarantee the asymptotic

convergence of the algorithm to the optimal value. The key idea behind the sample size

schedule is to save computation time during the initial search phase, when the quality

of the solutions is rather low. In this stage, the comparison is performed with less

accurate cost estimates using few realizations. As the search progresses, high quality

solutions are obtained, and a large number of realizations is used to obtain accurate

cost estimates.

Gutjahr and Pflug (1996) proposed an estimation-based SA. In this algorithm, the

sample size schedule increases the number of realizations more than quadratically with

respect to the iteration number. Later, Gutjahr et al. (2000a) used this algorithm to

tackle a discrete time/cost tradeoff problem in activity planning. Gutjahr (2004) also

used this algorithm as a yardstick in the context of the TSP with time windows and

stochastic service times. A restrictive variant of this algorithm has been studied earlier

by Gelfand and Mitter (1985). Alrefaei and Andradóttir (1999) proposed a general
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purpose SA, in which the temperature is kept constant. This algorithm uses a sample

size schedule that slowly increases the number of realizations at a particular rate with

respect to the iteration number. They discussed two schemes for comparing solutions.

The first scheme consists of counting the number of visits to promising solutions and

selecting the best solution based on the number of visits. In the second scheme, the

algorithm checks if the previous estimate of a given solution is already available from

earlier iterations. When available, instead of generating new realizations, only a few

realizations are generated for cost estimation. This cost estimate is then cumulated

with the previously available estimate. The second scheme has also been used in an

SA by Fox and Heine (1995). Bowler et al. (2003) proposed an SA algorithm for

the PTSP. In this algorithm, the temperature parameter is changed with respect to

the variance associated with the cost estimate. An increasing sample size schedule

is used to reduce the variance of the cost estimate so that in the beginning of the

search the algorithm accepts non improving solutions and, as the search progresses, it

starts to accept only improving solutions. Gutjahr (2003, 2004) proposed S-ACO, an

ACO algorithm for stochastic combinatorial optimization problems and later Gutjahr

et al. (2007) developed S-VNS, a variable neighborhood search algorithm for stochastic

combinatorial optimization problems. In both algorithms, the sample size schedule

increases the number of realizations linearly in dependence of the iteration counter.

S-ACO and S-VNS have been tested on the TSP with stochastic service time and on

the stochastic project portfolio selection problem, respectively.

Adaptive sample size algorithms: In this class of algorithms, the number of

realizations at each iteration is chosen adaptively in dependence of the variance associ-

ated with the cost estimates of solutions involved in the comparison. These algorithms

make use of inferential statistics to determine the appropriate number of realizations

needed for each estimation. In inferential statistics, the measure of accuracy of the

cost estimate is assessed by the standard error of the cost estimate, which is given by
√

s2
M/M , where s2

M is the variance associated with the cost estimate. The central idea

behind using an adaptive sample size can be explained as follows. Given two solutions,

the cost estimate of each solution is computed on a realization-by-realization basis.

Using the cost estimate of a solution and its standard error, a confidence interval is

constructed. The confidence interval is a range of values within which the true cost

falls with a given level of confidence. If the confidence interval of a solution x falls

outside the confidence interval of another solution x′, then the adaptive sample size

procedure infers that the cost estimates of the two solutions are different. As soon as
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the inference is obtained, the cost computation is stopped and the solution with the

least cost estimate is selected as the best. Otherwise the cost estimate computation is

continued. Often a statistical test is used to detect differences in the cost estimates of

two or more solutions.

Alkhamis et al. (1999) use a decreasing cooling schedule SA and used an adaptive

sample size procedure based on a statistical test to compare two neighbor solutions.

Homem-de-Mello (2000, 2003) proposed a general framework of interior sampling meth-

ods called variable sample methods to be used in metaheuristics. This framework com-

prises the use of different realizations along the search within the adaptive sample size

procedure. To guarantee the convergence of the algorithm, the sample size is increased

at some specific iterations regardless of the number of realizations prescribed by the

adaptive sample size. The author illustrated this framework using a SA. Alkhamis and

Ahmed (2004) proposed a constant temperature SA that adopts the adaptive sample

size procedure of Alkhamis et al. (1999) to stop the cost estimation; however, the best

solution is selected based on the number of times a particular solution has been visited.

Gutjahr (2003, 2004) proposed a variant of S-ACO called S-ACOa that uses a statistical

test for comparing solutions. ACO/F-Race (Birattari et al., 2005) is an improved vari-

ant of S-ACOa, in which the number of realizations for each comparison is determined

based on the F-Race procedure (Birattari et al., 2002; Birattari, 2009). Bulgak and

Sanders (1998) used a standard SA to tackle a stochastic buffer allocation problem in

the context of a complex manufacturing system. The authors use an adaptive sample

size procedure similar to the one proposed by Homem-de-Mello (2003).

There exist a number of sophisticated Monte Carlo methods that can substantially

reduce the variance of the cost estimate without requiring a large number of realiza-

tions. Examples include the method of common random numbers, control variates,

and importance sampling. Homem-de-Mello (2000, 2003) and Alkhamis et al. (1999)

discussed the possibility of using of the method of common random numbers and the

importance sampling procedures in a SA. Costa and Silver (1998) describe a TS al-

gorithm for a stochastic ordering problem with time constraints. In this algorithm,

the variance is reduced with a variance reduction procedure called descriptive sampling

(Jönsson and Silver, 1996). A statistical test is used to compare solutions. The algo-

rithm memorizes a number of promising solutions; at the end, each promising solution

is evaluated using a large number of realizations and the one with least cost is selected

as the best solution.
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2.2.3 Other algorithmic approaches

Here, we briefly mention some algorithms that we omitted because they are beyond the

scope of the thesis. Although less predominant in metaheuristics literature, these algo-

rithms are established as highly effective approaches to tackle stochastic combinatorial

optimization problems. Stochastic partitioning methods are algorithms that recursively

divide the search space into a number of subregions and allot the computational effort

to the subregions where high quality solutions have been obtained in previous itera-

tions. Examples of stochastic partitioning methods are beam search, stochastic branch

and bound, and nested partition methods. In these algorithms, metaheuristics are used

as a subsidiary algorithmic component. Beam search (Beraldi and Ruszczynski, 2005;

Erel et al., 2005) adopts the analytical approximation approach. Stochastic branch and

bound (Norkin et al., 1998a,b; Gutjahr et al., 1999, 2000a,b; Doerner et al., 2006) and

the nested partition methods (Shi and Ólafsson, 2000; Pichitlamken and Nelson, 2003)

use the empirical estimation approach; in particular, they belong to the class of interior

sampling methods.

Progressive hedging (Rockafellar and Wets, 1991) is a framework that consists in

using a number of realizations of the random variable and solving a deterministic op-

timization subproblem for each realization. A repairing procedure is used to obtain

a feasible combined solution that hedges against the future uncertainty. Similar to

stochastic partitioning methods, metaheuristics have been used as a component to

solve the deterministic subproblems (Løkketangen and Woodruff, 1996; Haugen et al.,

2001; Hvattum and Løkketangen, 2008).

Rollout algorithms (Bertsekas et al., 1997) were first proposed for the approximate

solution of discrete optimization problems. They are constructive heuristics that adopt

sophisticated heuristic function in the solution construction step. Bertsekas and Cas-

tanon (1999) and Secomandi (2000, 2001) and applied rollout algorithms to stochastic

combinatorial optimization problems.

A particular field that is extremely relevant to the estimation-based metaheuristics

for stochastic combinatorial optimization is simulation optimization, which is domi-

nated by provably convergent random search algorithms. Some prominent examples

include the stochastic ruler method (Yan and Mukai, 1992; Alrefaei and Andradóttir,

2001) and the random search algorithms of Andradóttir (1995, 1996). Moreover, there

exists a large amount of literature on applying EC algorithms to optimization problems

with noisy cost functions. We refer the reader to Jin and Branke (2005) for a survey. In

a number of settings, meta-modeling approaches such as the response surface methodol-
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ogy using regression techniques and neural networks have been used. When the number

of possible solutions is rather small, ranking and selection/ordinal optimization meth-

ods (Ho et al., 1992) have been applied. Although they lack the search functionality,

in principle, they could be easily used inside metaheuristics to select the best solution

at each iteration.

Finally, when a stochastic combinatorial optimization problem can be formulated

as a linear programming problem, then stochastic integer programming techniques can

be applied. We refer the reader to van der Vlerk (1996-2007) for a bibliography.

2.3 Summary

In this chapter, we reviewed the field of metaheuristics with a focus on their appli-

cations to stochastic combinatorial optimization problems. The primary difficulty in

solving stochastic combinatorial optimization problems is the combinatorial explosion

of potential solutions, which is further exacerbated by the added element of uncertainty

in the problem parameters. We introduced combinatorial optimization problems and

we provided a high level description of some common metaheuristics for solving them.

We discussed why stochastic combinatorial optimization problems are more difficult

than their deterministic counterparts and how metaheuristics take into account the

stochastic character of these problems.

To tackle stochastic combinatorial optimization problems, metaheuristics are quite

appealing because they offer several intelligent strategies to attack the combinatorial

nature of these problems. However, a crucial factor that determines the success of meta-

heuristics for stochastic combinatorial optimization problems is the way in which the

computational effort is allocated between the search and the solution cost computation.

Metaheuristics proposed for stochastic combinatorial optimization problems can be

grouped into two main classes: analytical computation algorithms and empirical es-

timation algorithms. In analytical computation algorithms, the cost computation is

performed using closed-form expressions. A prominent subclass of analytical compu-

tation algorithms is analytical approximation, where truncated versions of the original

closed-form expressions for the given problem are adopted for cost computation. The

main drawbacks of the analytical computation approach are that it is not general-

purpose and it cannot be applied to problems in which the cost difference cannot be

expressed in an analytical way. In empirical estimation algorithms, the cost of a so-

lution for a given problem is estimated by Monte Carlo simulation. These algorithms

can overcome the difficulties posed by analytical computation. However, since solution
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costs are estimated in the empirical estimation approach, the number of realizations

adopted is crucial to address the trade-off between the computation time used for the

search and the one used for the cost computation. Several Monte Carlo methods have

been proposed to control the number of realizations in estimation-based metaheuris-

tics. The widely used Monte Carlo methods belong to the so-called interior sampling

methods, where the realizations are generated afresh at each iteration. Three major

schemes are found in interior sampling methods to control the number of realizations.

In the first scheme, the number is determined a priori and kept constant throughout

all the iterations of the algorithm. In the second scheme, the algorithm starts with a

small number of realizations, which is then increased as the search progresses according

to a predefined scheme. In the third scheme, the number of realizations is determined

dynamically based on a statistical test. Moreover, in this scheme, several variance re-

duction techniques have been discussed to reduce the number of realizations needed for

the cost estimation.
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Chapter 3

Stochastic routing problems: A

review

Routing problems in distribution management, often referred to as vehicle routing

problems in the literature, are among the most intensively investigated combinatorial

optimization problems. Generally speaking, these problems involve finding a cost-

effective way to distribute or collect goods across a logistic network. Routing problems

are used to model a number of important problems such as mail delivery, school bus

routing, solid waste collection, heating oil distribution, parcel pick-up and delivery,

and dial-a-ride systems. Even a small improvement in the efficiency of the distribution

process can lead to a significant cost saving because the process is repeated on a regular

basis. Often, routing problems are defined on a graph G with the following elements:

• a set V = {1, 2, ..., n} of nodes that represent customers with node 1 being the

depot;

• a set A = {〈i, j〉 : i, j ∈ V, i 6= j} of edges, where an edge 〈i, j〉 connects two nodes

i and j;

• a set C = {cij : 〈i, j〉 ∈ A} of travel costs, where cij is the cost of using an

edge 〈i, j〉 ∈ E. Depending on a given setting, the travel cost cij may represent

distance, time, fuel consumption, etc.;

• a set D = {di : i ∈ V, i 6= 1} of demands, where di is the non-negative demand of

node (customer) i.

The customers are served by a fleet of m vehicles that distribute or collect goods from

customers, where m is either a constant or a decision variable. The goal is to find
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m vehicle routes that minimize the total cost involved in routing the vehicles subject

to given constraints. The most common constraints are that each customer should

be served once by exactly one vehicle and each vehicle route starts and ends at the

depot. In practical applications, the routing problems are solved with a number of side

constraints. Some classical side constraints used in the literature are:

• limited capacity: customers are served by m vehicles of same capacity and the

total demand that arises in each route may not exceed the vehicle’s capacity;

• time window constraint: each customer must be visited within a given time in-

terval;

• multiple depots: there are more than one depot to serve the customers and a

solution also includes the assignment of customers to depots;

• pickup and delivery: vehicles are allowed to collect and to deliver goods from

customers;

• split delivery: a customer is allowed to be served by more than one vehicle to

reduce costs.

There exists a vast literature on algorithms proposed for routing problems. For a

detailed overview, we refer the reader to Laporte (1992), Laporte et al. (2000), Toth

and Vigo (2001), and Cordeau et al. (2002).

Stochastic routing problems (SRPs) belong to the class of stochastic combinatorial

optimizations problems. SRPs have enormous practical importance not only in trans-

portation but also in strategic planning and scheduling (Bertsimas, 1988). They are

similar to deterministic routing problems except that customers visits, their demands,

or travel times are not known exactly but probability distributions governing them are

known or can be estimated. The introduction of probabilistic elements into the routing

problem increases the difficulty of tackling the problem and, as a result, solving them is

quite difficult. It has been shown that several fundamental properties of routing prob-

lems no longer hold in stochastic variants. For an Euclidean TSP instance, a property

of the optimal route is that edges in the optimal route do not cross each other but

for the PTSP, this property is not true (Gendreau et al., 1996a). Exact methods are

often limited to rather small instances. Therefore, in recent years, much attention has

been devoted to the development of stochastic local search (SLS) algorithms such as

iterative improvement algorithms and metaheuristics for tackling SRPs. In particular,
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a significant progress has been made towards exploiting problem-specific knowledge in

designing effective algorithms.

The most widely used approach to tackle the SRPs is a priori optimization (Jaillet,

1985; Bertsimas et al., 1990). It consists of two stages. In the first stage, a vehicle

route is determined before the actual realization of the random variables is available.

This is the so-called a priori solution. In the second stage, after the realizations of

the random variables are known, it may then be impossible to follow the a priori

solution because, for example, the total demand associated with the route may exceed

the capacity of the vehicle or some customers do not require being visited. In this

case, recourse actions are applied to the a priori solution such as going back to the

depot to empty the vehicle or skipping customers. The solution obtained from the a

priori solution by recourse actions is the a posteriori solution. Note that in problems

with m vehicles, m a priori solutions are determined. Typically, a priori optimization

is modeled as a stochastic program with recourse, in which the goal is to find an a

priori solution that minimizes the expected cost of the associated a posteriori solution.

As described in Chapter 2, the cost of the a priori solution can be evaluated in two

ways: analytical computation and empirical estimation. In this thesis, we follow an a

priori optimization approach via stochastic program with recourse model to tackle the

probabilistic traveling salesman problem (PTSP) and the vehicle routing problem with

stochastic demands and customers (VRPSDC).

Besides the aforementioned stochastic program with recourse, a priori optimization

can be modeled as a chance constrained program. Here, the goal is to find an a priori

solution such that the probability of performing recourse actions does not exceed a

certain threshold. Since this model does not take into account the cost associated

with recourse actions, it is less realistic than the stochastic program with recourse; for

the PTSP, this is not an applicable goal. As a consequence, although solving SRPs by

stochastic program with recourse is more difficult than the chance constrained program,

the former is widely adopted.

An alternative approach to a priori optimization is re-optimization. In this ap-

proach, the route followed by a vehicle is recomputed when realizations of the random

variables become available. The intensity of re-optimizing routes ranges from restricted

re-optimization, which is performed only when required, to greedy re-optimization,

which is performed as soon as new data is available (Psaraftis, 1995). For algorithms

that solve the SRPs using re-optimization, we refer the reader to Dror et al. (1989),

Dror (1993), Psaraftis (1995), and Secomandi (2000, 2001). Apart from a priori opti-

mization and re-optimization, the possibility of solving the SRPs using Markov decision
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processes is considered by Dror et al. (1989). However, in a later work, Dror (1993)

observed that instances with just few customers are computationally intractable.

The PTSP and the VRPSDC that we consider in the thesis are among the classical

SRPs in distribution management (Gendreau et al., 1996a). Other SRPs that belong

to this category are the vehicle routing problem with stochastic customers (VRPSC),

the vehicle routing problem with stochastic demands (VRPSD), and the vehicle routing

problem with stochastic travel and service times (VRPSTST). In the remainder of the

chapter, we summarize the literature on these problems and some other extensions that

are relevant to the thesis.

3.1 The probabilistic traveling salesman problem

The PTSP is a central problem in stochastic routing (Bertsimas, 1988). It is similar to

the TSP with the main difference being that each node has a probability of requiring a

visit. The a priori solution must be found before knowing the nodes that require being

visited; the associated a posteriori solution, which is computed once the nodes that

require being visited are known, is obtained by visiting them in the order prescribed

by the a priori solution and by skipping the ones that do not require being visited. A

PTSP instance is called homogeneous if all node probabilities are the same, and it is

called heterogeneous otherwise.

Theoretical studies

Jaillet (1985, 1988) introduced the PTSP and investigated several theoretical proper-

ties of the problem. The author derived a O(n2) closed-form expression to compute

the exact solution cost, bounds for the optimal solution, and the relationship between

the optimal solutions of the PTSP and of the TSP. Moreover, the author showed that

algorithms designed for the TSP could perform poorly on PTSP instances with very low

probability values. Berman and Simchi-Levi (1988) extended the theoretical research

of Jaillet (1985, 1988) to heterogeneous instances. Bertsimas (1988) and Bertsimas and

Howell (1993) investigated several other properties. This resulted in the attainment of

improved bounds on the optimal solution value. Bowler et al. (2003) studied the be-

havior of the optimal solution value on homogeneous instances as a function of instance

size and probability.
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Exact algorithms

An exact method that solves the PTSP to proven optimality has been proposed by

Laporte et al. (1994). It is a branch-and-cut algorithm that can solve instances of

size up to 50. Jaillet (1985, 1988), Bertsimas (1988), Berman and Simchi-Levi (1988)

considered the possibility of using a branch-and-bound algorithm. Nevertheless, the

authors speculated that this algorithm could be useful only for small instances and

therefore it has not been tested experimentally. Rosenow (1998) implemented this

branch-and-bound algorithm and showed that it can tackle instances of size up to 14.

Constructive heuristics

Jaillet (1985, 1988) and Jézéquel (1985) studied the adoption of two TSP heuristics

namely, the nearest neighbor and the Clarke-Wright savings algorithm, to the PTSP.

Rossi and Gavioli (1987) customized the two TSP heuristics in such a way that the

construction steps take into account the node probabilities. Experiments with homo-

geneous instances showed that the customized variants are particularly effective for

instances where the node probability is less than 0.6. Bertsimas (1988) and Bertsi-

mas and Howell (1993) investigated the use of the space filling curve heuristic and its

behavior. Bianchi (2006) compared the space filling curve heuristic with radial sort,

farthest insertion and nearest neighbor heuristics, observing that the farthest insertion

heuristic performs better than the others.

Iterative improvement algorithms

For the homogeneous PTSP, Bertsimas (1988) derived closed-form delta evaluation

expressions for the 2-exchange neighborhood and the node-insertion neighborhood.

Equipped with these expressions, the author proposed two iterative improvement algo-

rithms: 2-p-opt and 1-shift. For both algorithms, the total time complexity of the

neighborhood exploration and evaluation is O(n2). For the heterogeneous case, Chervi

(1988) proposed closed-form delta evaluation expressions for 2-p-opt and 1-shift,

where each algorithm explores and evaluates the neighborhood in O(n3). Bianchi et al.

(2005) and Bianchi and Campbell (2007) proved that the expressions derived by Bertsi-

mas (1988) and Chervi (1988) are incorrect, and corrected the errors. Furthermore, for

the heterogeneous PTSP, Bianchi and Campbell (2007) showed that the neighborhoods

in 2-p-opt and 1-shift can be explored and evaluated in O(n2) rather than O(n3).

Tang and Miller-Hooks (2004) investigated an approximation scheme for 2-p-opt. In

this scheme, the closed-form equation is truncated and the level of truncation decreases
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with an increase in the number of improvements. This scheme was tested on uniform

instances of size up to 100 and a speedup of two orders of magnitude has been reported

at the expense of a drop of solution quality of 0.5%. Campbell (2006) proposed the

idea of node aggregation, in which the size of an instance is reduced by grouping the

nodes that are close to each other. The author tested the idea in 2-p-opt and 1-shift

with instances of size ranging from 100 to 1000. The results showed that the idea of

aggregation is quite effective on clustered instances.

Metaheuristics

Much of the early research in the development of metaheuristics for the PTSP focused

on algorithms that use the closed-form expression of Jaillet (1985, 1988). Bianchi et al.

(2002a,b) applied ant colony system (ACS) (Dorigo and Gambardella, 1997), a high

performing ACO variant, to solve the PTSP. The authors considered two algorithms in

their study: the first algorithm is an ACS that computes the cost of the PTSP solutions

using the TSP cost function, in which probabilities associated with the nodes are simply

ignored; the second is pACS, an ACS that adopts the closed-form expression to compute

the cost of the solutions. They showed that on homogeneous instances pACS achieves

significantly better solutions when the probability value is less than 0.5. Rosenow

(1997) studied a genetic algorithm that uses a simple crossover operator (Grefenstette

et al., 1985) without any mutation. The effectiveness of the proposed algorithm has

been established by comparing it with the branch-and-bound algorithm proposed by

Jaillet (1985, 1988). However, we speculate that this algorithm requires very high

computation time because at each iteration the algorithm generates 100 individuals,

each of which is evaluated by the closed-form expression.

Branke and Guntsch (2003, 2004) investigated a truncated version of the closed-form

expression in pACS and showed that for homogeneous instances with a probability value

greater than 0.5, the computation time can be reduced significantly without significant

loss in solution quality. Liu (2007, 2008) used the truncated version within a scatter

search. The author experimented with a number of neighborhood relations for the

scatter search and found that a combination of the node-insertion and 2-exchange

neighborhood relations is very effective.

Bianchi (2006) and Bianchi and Gambardella (2007) integrated 1-shift into pACS

and showed that the resulting pACS+1-shift algorithm significantly outperforms the

farthest insertion heuristic, pACS, scatter search (Liu, 2007, 2008), and the pACS

variant that adopts the truncated version of the closed-form expression (Branke and
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Guntsch, 2003, 2004). Marinakis et al. (2008) investigated the usage of a greedy ran-

domized adaptive search variant, ENS-GRASP, which uses the closed-form expression.

For few homogeneous instances with a probability value greater than 0.5, the authors

showed that ENS-GRASP achieved solution costs that are slightly better than those of

pACS+1-shift. However, a main issue in this comparative study is that the two algo-

rithms use different stopping criteria. ENS-GRASP and pACS+1-shift are allowed to

run for 1000 iterations and n2/100 CPU seconds, respectively, and the computation time

needed by ENS-GRASP is not reported in Marinakis et al. (2008). Recently, Marinakis

and Marinaki (2010) proposed HybMSPSO, a particle swarm optimization algorithm

built on top of ENS-GRASP. HybMSPSO also adopts the closed-form expression to

compute the solution cost. The authors show that HybMSPSO obtains slightly better

solutions than pACS+1-shift on homogeneous instances with a probability value equal

to 0.5. However, there are again two main problems in this comparative study. Firstly,

it is not clear if the observed differences are significant in a statistical sense. Secondly,

the same set of instances is used to fine tune the parameters of HybMSPSO, to select

HybMSPSO as the best from a set of seven algorithms, and to compare HybMSPSO

with pACS and pACS+1-shift: this might possibly induce a bias in favor of HybM-

SPSO. Note that the second problem is known as over-tuning (Birattari et al., 2006b;

Birattari, 2009).

Concerning estimation-based algorithms, Bowler et al. (2003) proposed a proof-of-

concept stochastic simulated annealing for the PTSP, in which the annealing schedule

is controlled by the sampling error of the cost estimation. The proposed algorithm has

been compared to the re-optimization strategy; the results showed that the solutions

obtained by the former is not more than 14% worse than that of the latter. Gutjahr

(2003, 2004) proposed a general purpose, estimation-based ACO algorithm called S-

ACO and a variant S-ACOa. In S-ACO, the solutions produced at a given iteration are

compared on the basis of a single realization; then the iteration-best solution is com-

pared with the best-so-far solution on the basis of a number of realizations prescribed

by a sample size schedule. In S-ACOa, the number of realizations is determined based

on a statistical test. Gutjahr used the PTSP to calibrate the algorithm parameters of

S-ACO. Although, not directly tested on the PTSP, S-ACOa can be easily applied to it.

Birattari et al. (2006a) proposed ACO/F-Race that adopts the F-Race procedure (Bi-

rattari, 2004, 2009). It is an improved variant of S-ACOa, in which the solutions pro-

duced at a given iteration, together with the best-so-far solution, are compared using a

pairwise statistical test for multiple comparisons. The preliminary results showed that

for homogeneous uniform instances with probability values less than 0.5, ACO/F-Race
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achieved solution costs that are significantly better than those of S-ACO and S-ACOa.

However, S-ACO, S-ACOa, and ACO/F-Race are not expected to perform as well as

pACS+1-shift. This is due to the following facts: firstly, these algorithms are proposed

as proof-of-concepts; secondly, they are based on ant system, which is typically not

as well performing as ACS; thirdly, they do not use any local search as a subsidiary

solution improvement procedure. Note that the adoption of local search is crucial to

the performance of ACO algorithms (Dorigo and Stützle, 2004). Bianchi (2006) and

Bianchi and Gambardella (2007) also considered the sample size schedule of Gutjahr

(2003, 2004) in pACS+1-shift, but concluded that this variant is significantly worse

performing than the analytical computation variant of pACS+1-shift.

3.2 The vehicle routing problem with stochastic customers

In this problem, each customer has a probability of requiring being visited and has a

deterministic demand. A vehicle with finite capacity has to collect goods from cus-

tomers. The a priori solution is a sequence of all customers, which is decided before

realizing customers presence and their demands; the associated a posteriori solution

is obtained by following the a priori solution but by skipping customers who do not

require being visited; as soon as the capacity is exhausted, the vehicle goes back to the

depot for unloading and visits the next customer who requires being visited in the a

priori solution.

Jézéquel (1985), Bertsimas (1988), and Bertsimas et al. (1990) investigated the

properties, bounds, asymptotic behavior, and the adoption of heuristics for this prob-

lem. In all these studies, it is assumed that each customer has a unit demand. Waters

(1989) tackled this problem with integer demands in a real time problem. The author

compared the customary stochastic program with recourse model to re-optimization

and showed that the savings obtained through re-optimization is rather small. More-

over, the drivers of the vehicles disliked the idea of changing routes frequently on a

given day. Note that the author did not mention how the a priori solution is obtained.

3.3 The vehicle routing problem with stochastic demands

Undoubtedly, among all SRPs, the VRPSD is the one that has received most attention

in the literature. In this problem, all customers require being visited but their demands

are described by random variables. Tillman (1969) first introduced this problem in

the context of a multiple depot delivery problem. Bertsimas (1988, 1992), Laporte
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and Louveaux (1990), and Chepuri and Homem-de-Mello (2005) investigated bounds,

asymptotic results, and theoretical properties. The recourse policies investigated for

the VRPSD can be classified into two groups: reactive recourse and proactive recourse.

The reactive recourse is a widely used policy, in which a capacitated vehicle returns to

the depot to unload when a customer demand cannot be satisfied and then follows the

a priori solution—see Stewart Jr. and Golden (1983), Dror and Trudeau (1986), Dror

et al. (1989), Teodorović and Pavković (1992), Savelsbergh and Goetschalckx (1995),

and Laporte et al. (2002). The proactive recourse is one in which a vehicle is allowed to

return to the depot for unloading before its capacity is exhausted—see Bertsimas et al.

(1995), Yang et al. (2000), Chepuri and Homem-de-Mello (2005), and Bianchi et al.

(2006). For the chronological algorithmic developments for the VRPSD, we refer the

reader to Gendreau et al. (1996a). In the following of this section, we highlight some

important research efforts devoted exclusively to the VRPSD.

Laporte et al. (1989) proposed a branch-and-cut algorithm that solves the VRPSD

to optimality. The authors tackled the VRPSD within a broader context of stochastic

location-routing problems, where the location of the depot is also a decision variable.

The results showed that this algorithm can tackle instances of size up to 30. Hjorring

and Holt (1999) used the Integer L-Shaped method to solve the VRPSD with a single

vehicle. Laporte et al. (2002) used an improved variant of the Integer L-Shaped method

to solve the VRPSD with multiple vehicles. The results showed that this method can

solve instances with up to 4 vehicles and 25 customers.

Tillman (1969), Stewart Jr. and Golden (1983), and Dror and Trudeau (1986)

customized the Clark-Wright savings heuristic for the VRPSD. Bertsimas (1992) and

Bertsimas et al. (1995) customized the cyclic heuristic, which was originally proposed

for the deterministic vehicle routing problem by Haimovich and Rinnooy Kan (1985).

Yang et al. (2000) proposed a heuristic that uses the idea of clustering customers. This

algorithm comprises two phases: a phase that consists in clustering the customers in

such a way that each cluster is served by one vehicle; another phase consists in finding

the best a priori solution for each cluster. The authors implemented two variants:

route-first-cluster-next and cluster-first-route-next. The authors also customized the

iterative improvement algorithm OrOpt (Or, 1976) for the VRPSD. This algorithm

uses a problem-specific approximation scheme in delta evaluation. Within the same

algorithm, Bianchi et al. (2006) investigated the use of the TSP approximation to the

VRPSD in delta evaluation.

Teodorović and Pavković (1992) proposed a simulated annealing algorithm to the

VRPSD with multiple vehicles. Bianchi et al. (2006) investigated the effectiveness of
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simulated annealing, tabu search, iterated local search, ant colony optimization, and

memetic algorithms. The authors obtained new state-of-the-art algorithms by using

the TSP 3-opt local search in an iterated local search and in memetic algorithms.

Note that all these algorithms use closed-form expression to compute the solution cost.

Recently, Chepuri and Homem-de-Mello (2005) applied the cross entropy method that

adopts empirical estimation. The authors developed an adaptive sample size procedure

that allows the algorithm to select the appropriate number of realizations needed for

estimation.

3.4 The vehicle routing problem with stochastic demands

and customers

The VRPSDC is one of the most difficult stochastic vehicle routing problems (Gendreau

et al., 1996a). It combines the PTSP and the VRPSD: each customer has a probability

of requiring being visited and has a stochastic demand. The a priori solution is a

sequence of all customers; the associated a posteriori solution, which is computed after

the realization of the stochastic elements, is obtained by following the a priori solution

but with recourse actions such as skipping customers who do not require being visited

and going back to the depot for unloading if the vehicle capacity is exhausted.

Bertsimas (1988, 1992) derived a closed-form expression to compute the exact cost

of the VRPSDC solution. Séguin (1994) and Gendreau et al. (1995) extended this

expression to take into account split deliveries. Using these expressions, the authors

derived upper and lower bounds for the VRPSDC solution. They also studied sev-

eral theoretical properties such as asymptotic behavior of a priori optimization with

respect to the re-optimization strategy. Recently, FuCe et al. (2005) investigated the

effectiveness of tackling the problem using a priori optimization. However, the authors

did not report the results and their claim that this was the first study to use a priori

optimization for the VRPSDC is rather false. Benton and Rossetti (1992) tackled this

problem with re-optimization, where the solution is re-optimized whenever the demands

are revealed. The authors showed this model is more effective than the recourse model.

Séguin (1994) and Gendreau et al. (1995) proposed an exact method based on the

Integer L-shaped algorithm that has solved instances with number of nodes up to 46.

The authors also observed that the presence of stochastic customers makes the problem

more difficult to solve than the presence of stochastic demands. To study the impact

of the number of stochastic customers on the difficulty of solving the problem, the

proposed algorithm has been tested on instances with 1, (n−1)/2, and n−1 stochastic
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customers. The results showed that the performance of the exact method decreases

with an increase in the number of stochastic customers.

Jézéquel (1985) studied the possibility of using the Clark-Wright savings algorithm.

However, the usefulness of this heuristic is rather unclear because the numerical results

are not reported in this study. Bertsimas (1992) used the cyclic heuristic and analyzed

its worst and average case behavior.

Séguin (1994) and Gendreau et al. (1996b) tackled this problem using a tabu search

algorithm, TABUSTOCH. The algorithm adopts a randomized node-insertion neigh-

borhood and a random tabu tenure. The main novelty of this algorithm consists in using

a simple approximation scheme to identify promising neighboring solutions, which are

then evaluated by the closed-form expression. The authors demonstrated the effective-

ness of TABUSTOCH by comparing it with the exact algorithm on instances of size

up to 46; the results showed that TABUSTOCH is about 3 orders of magnitude faster

than the exact algorithm to reach an average solution cost that is not more than 5%

away from the optimum. To the best of our knowledge, TABUSTOCH is the only

metaheuristic that explicitly tackles the VRPSDC.

3.5 The vehicle routing problem with stochastic travel

and service times

The VRPSTST is introduced by Laporte et al. (1992). In this problem, travel times

between customers and service times at customers are described by random variables.

The vehicles do not have capacity constraints and each customer requires being ser-

viced. The authors proposed two formulations. A chance constrained program in

which the probability of completing the tour within a given deadline is maximized and

a stochastic program with recourse in which the expected cost is penalized according

to the excess time taken by the vehicles. The authors used the Integer L-Shaped algo-

rithm to solve optimally instances of size up to 20. Kenyon and Morton (2003) studied

several properties and derived bounds on the optimal solutions. The authors proposed

an estimation-based branch-and-cut algorithm and showed that on an instance of size

28, it can obtain solutions whose cost is less than 3% from the optimal solution value.

Early studies on the VRPSTST focused on a simple variant known as traveling

salesman problem with stochastic travel times (TSPST). The goal is to determine

an a priori solution that maximizes the probability of completing the tour within a

given deadline. Kao (1978) discussed two heuristics based on dynamic programming

and implicit enumeration. Sniedovich (1981) showed that the adoption of dynamic
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programming might result in sub-optimal solutions. This issue was later addressed by

Carraway et al. (1989) using generalized dynamic programming. Verweij et al. (2003)

proposed an algorithm that combines the empirical estimation and decomposition based

branch-and-cut method. The authors observed that this algorithm can achieve solutions

whose cost is less than 1% away from the optimum.

The m-TSPST is the m vehicle version of the TSPST, where m is a decision vari-

able. Lambert et al. (1993) studied the m-TSPST in the context of optimizing collection

routes through bank branches in a network. The authors proposed mathematical pro-

gramming formulations and designed a heuristic based on the Clarke-Wright savings

algorithm.

3.6 Other extensions

The PTSP with deadlines is proposed and extensively studied by Campbell and Thomas

(2008a, 2009). This is an extension of the PTSP, in which each probabilistic customer

requires being visited before a given deadline. The salesman is allowed to visit cus-

tomers after the deadline with a per-unit-time penalty. The authors studied two ver-

sions of a stochastic program with recourse and a chance constrained program for the

problem. They proposed three approximation schemes. First, expected arrival time

that approximates the closed-form expression by computing the deadline violations

with respect to the expected arrival time to a customer. Second, temporal aggregation

that considers large time units instead of the given time units. Third, truncation that

approximates penalty terms. The PTSP iterative improvement algorithm, 1-shift is

customized to solve this problem by using the three schemes. The results showed that

the three schemes significantly reduce the computation time, however, the best scheme

depends on problem-specific attributes such as deadline, penalty, and instance size.

The vehicle routing problem with stochastic service time is introduced by Hadjicon-

stantinou and Roberts (2002). In this problem, each customer requires being visited.

A number m of vehicles, each with a time limit, needs to serve the customers. The

travel time is deterministic but each customer has a service time which is described by a

random variable. Whenever a vehicle exceeds its time limit, it returns to the depot for

replenishment. The authors considered a stochastic program with recourse, in which

the goal is to find m a priori routes with minimal expected cost such that all service

time requirements are met. The authors proposed a paired tree search algorithm, which

is similar to the stochastic branch-and-bound algorithm, to obtain optimal solutions.

The TSP with time windows and stochastic service time is investigated by Gutjahr

44



3.7 Summary

(2004). It is a variant of the vehicle routing problem with stochastic service time, in

which a salesman has to visit a number of customers. If the salesman arrives before

the start of the time window or after the end time of the time window, a penalty

proportional to the waiting time or to the tardiness is imposed. The author followed

the typical stochastic program with recourse model, in which the goal is to find an a

priori solution that minimizes the travel time and expected penalty. The author tackled

this problem using an estimation-based ACO algorithm and a stochastic simulated

annealing algorithm. The results showed that the former outperforms the latter.

The time-constrained TSP with stochastic travel and service times is studied by

Teng et al. (2004). The problem consists of finding a partial a priori solution under

given time constraints. The authors formulated the problem as a stochastic program

with recourse and used the Integer L-shaped method for solving it.

3.7 Summary

In this chapter, we reviewed classical stochastic routing problems (SRPs) that arise in

the context of distribution management. For each problem, we discussed exact methods

and stochastic local search algorithms—in particular, constructive heuristics, iterative

improvement algorithms, and metaheuristics. Among all SRPs, the literature on the

VRPSD is the richest, followed by the PTSP. For other SRPs, the development of

metaheuristics is still in its early stages.

The review presented in this chapter illustrates that the majority of metaheuristics

proposed to tackle the SRPs use the analytical computation approach. However, in a

large number of practical SRPs, due to the presence of complex constraints, deriving

closed-form expressions to compute solution costs is difficult, time consuming or even

impossible. Even in the classical SRPs that we discussed, the adoption of the analyti-

cal computation approach is computationally expensive. Several research results from

the stochastic optimization literature suggest that the empirical estimation has the po-

tential to overcome the difficulties posed by analytical computation. Surprisingly, to

the best of our knowledge, the effectiveness of using the empirical estimation approach

over the analytical computation approach to tackle SRPs has not yet been thoroughly

investigated. In fact, the central theme of this thesis consists in addressing this issue.
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Chapter 4

Estimation-based Local Search

for the PTSP

As a first step to tackle the probabilistic traveling salesman problem (PTSP), we de-

velop an estimation-based iterative improvement algorithm. A particularity of the

proposed algorithm is that the cost difference between two neighbor solutions is esti-

mated by delta evaluation. Moreover, the proposed algorithm exploits the well known

TSP neighborhood reduction techniques to speedup the search. We empirically as-

sess the performance of the proposed iterative improvement algorithm and provide

in-depth analyses of each algorithmic component that we use. We compare the pro-

posed algorithm with previous state-of-the-art iterative improvement algorithms, which

use analytical computation for delta evaluation. We show that the estimation-based

approach is an effective alternative to the analytical computation approach and that

the proposed algorithm is more effective than the analytical computation iterative im-

provement algorithms.

This chapter is organized as follows. In Section 4.1, we give a formal definition of

the PTSP. In Section 4.2, we describe the iterative improvement algorithms proposed in

the literature for the PTSP. In Section 4.3, we introduce the estimation-based iterative

improvement algorithm for the PTSP. In Section 4.4, we study its performance. This

chapter ends with a summary of the results in Section 4.5.

4.1 The probabilistic traveling salesman problem

An instance of the PTSP is defined on a graph G with the following elements:

• a set V = {1, 2, . . . , n} of nodes;
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• a set A = {〈i, j〉 : i, j ∈ V, i 6= j} of edges, where an edge 〈i, j〉 connects nodes i

and j;

• a set C = {cij : 〈i, j〉 ∈ A} of travel costs, where cij is the cost of traversing an

edge 〈i, j〉; the costs are assumed to be symmetric, that is, for all pairs of nodes

i, j we have cij = cji;

• a set P = {pi : i ∈ V } of probabilities, where pi specifies the probability that a

node i requires being visited. The events that two distinct nodes i and j require

being visited are assumed to be independent.

The probabilistic data of the PTSP can be modeled using a random variable ω that

follows an n-variate Bernoulli distribution. A realization of ω is a vector of binary

values, where a value ‘1’ in position i indicates that node i requires being visited,

whereas a value ‘0’ means that it does not require being visited. Note that when P

= {pi = p : i ∈ V }, the PTSP instance is called homogeneous, otherwise, if for at least

two nodes i and j we have pi 6= pj, it is called heterogeneous. A solution to the PTSP

is a permutation of the nodes.

Usually, the PTSP is tackled by a priori optimization with recourse (Jaillet, 1985;

Bertsimas et al., 1990). It consists of two stages. In the first stage, a solution is

determined before the actual realization of the random variable ω is available. This is

the so-called a priori solution. In the second stage, after the realization of the random

variable is known, an a posteriori solution is obtained from the a priori solution by

visiting the nodes prescribed by the given realization in the order in which they appear

in the a priori solution. The nodes that do not require a visit are simply skipped.

Figure 4.1 shows an example. It should be noted that, since we assume travel cost

to be symmetric, the cost of the a posteriori solution is invariant with respect to the

orientation. For example, in Figure 4.1, the cost of the a posteriori solution does not

change by visiting the nodes in counter clockwise direction. The goal in the PTSP

is to find an a priori solution that minimizes the expected cost of the a posteriori

solution, where the expectation is computed with respect to a given n-variate Bernoulli

distribution.

The analytical computation approach computes the cost F (x) of an a priori solution

x = (π(1), π(2), . . . , π(n), π(n+1) = π(1)), where π is a permutation of the set V , using

the following closed-form expression (Jaillet, 1985):

F (x) =

n
∑

i=1

n
∑

j=i+1

cπ(i)π(j) pπ(i)pπ(j)

j−1
∏

k=i+1

(1 − pπ(k))
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Figure 4.1: An a priori solution for a PTSP instance with 8 nodes. The nodes in the a
priori solution are visited in the following order: 1, 2, 3, 4, 5, 6, 7, 8, and 1. Assume that
a realization of ω prescribes that nodes 1, 3, 4, 7, and 8 are to be visited. The resulting
a posteriori solution is obtained by visiting the nodes in the order in which they appear
in the a priori solution and by skipping the nodes 2, 5, and 6, which do not require being
visited.

+

n
∑

j=1

j−1
∑

i=1

cπ(j)π(i) pπ(i)pπ(j)

n
∏

k=j+1

(1 − pπ(k))

i−1
∏

k=1

(1 − pπ(k)). (4.1)

For the homogeneous PTSP, Equation 4.1 can be written as

F (x) =

n
∑

i=1

n−1
∑

j=1

p2(1 − p)j−1 cπ(i),π(1+((i+j−1) mod n)),

where p is the probability value, which is common to all nodes, and mod is the modulo

operator.

4.2 Local Search for the PTSP

Local search is a method for searching in a user-defined neighborhood structure. Many

local search methods exist and the one that has received the most attention in the

PTSP literature is iterative improvement. Iterative improvement algorithms start from

some initial solution and repeatedly try to move from a current solution x to a lower

cost neighboring solution x′. A solution that does not have any improving neighboring

solution is a local minimum and the iterative improvement search terminates with such

a solution. In the PTSP literature, mainly the following two neighborhood structures

were considered:
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(a) (b)

Figure 4.2: Plot 4.2(a) shows a 2-exchange move: two edges 〈1, 2〉 and 〈5, 6〉 are deleted
and replaced by 〈1, 5〉 and 〈2, 6〉. Plot 4.2(b) shows a node-insertion move: node 1 is moved
and inserted between nodes 5 and 6.

• 2-exchange neighborhood : The neighborhood of a solution is the set of solu-

tions obtained by deleting any two edges 〈a, b〉 and 〈c, d〉 and by replacing them

with 〈a, c〉 and 〈b, d〉. See Figure 4.2(a) for an example.

• Node-insertion neighborhood : The neighborhood of a solution is the set of so-

lutions obtained by deleting any node a and inserting it elsewhere in the solution.

See Figure 4.2(b) for an example.

Iterative improvement algorithms can be implemented using a first-improvement or a

best-improvement rule (Hoos and Stützle, 2005). Whereas in the former an improving

move is immediately applied as soon as it is detected, in the latter the whole neighbor-

hood is examined and a move that gives the best improvement is chosen.

Iterative improvement algorithms for the PTSP are similar to the usual iterative

improvement algorithms for the TSP: the cost difference between two TSP neighboring

solutions x and x′ is computed by considering the cost contribution of solution com-

ponents that are not common to x and x′. In the case of a 2-exchange move, the cost

difference between the neighboring solutions is simply given by ca,c + cb,d − ca,b − cc,d.

This technique is widely known as delta evaluation. The only difference between PTSP

and TSP versions is that, in the former, the random variable ω has to be taken into

account in the delta evaluation. In the rest of this section, we describe how delta evalu-

ation is performed in analytical computation iterative improvement algorithms for the

PTSP.
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4.2.1 2-p-opt and 1-shift

The 2-p-opt algorithm comprises two phases. A first phase consists of exploring a spe-

cial case of the 2-exchange neighborhood, the swap-neighborhood, where the neighbors

of the current solution are all those that can be obtained by swapping two consecutive

nodes. If the swap-neighborhood is fully explored and no improvement is found, a sec-

ond phase explores the 2-exchange neighborhood with the first-improvement rule. It

should be noted that the neighborhood is explored in a fixed lexicographic order by con-

sidering pairs of edges that are separated by a fixed number k of nodes. Starting with

k = 2, the lexicographic exploration proceeds by incrementing k, and, whenever an im-

provement is found, the search is restarted from the first phase: the swap-neighborhood

exploration. Note that the swap-neighborhood is explored with the first-improvement

rule. 1-shift differs from 2-p-opt only in the second phase: it uses the node-insertion

neighborhood with the best-improvement rule.

We refer the reader to Bianchi et al. (2005) and to Bianchi and Campbell (2007) for

the recursive delta evaluation expressions that are used in 2-p-opt and 1-shift. Even

though the time complexity is O(n2) for both 2-p-opt and 1-shift, the asymptotic

notation captures only the growth rates with respect to the number of neighboring solu-

tions and does not reflect the multiplicative constant of 2. Moreover, the computational

overhead due to the adoption of recursive delta evaluation expressions in 2-p-opt and

1-shift is typically high for large instances.

Before the development of the estimation-based iterative improvement algorithm

discussed in this chapter, the iterative improvement algorithms for the PTSP used

neighborhood-specific delta evaluation expressions that were based on analytical com-

putation. The advantage of the adopted analytical computation approach is that the

values of the computed cost differences are exact. However, from a practical perspec-

tive, this approach has some limitations.

4.2.2 Issues with the analytical computation iterative improvement

algorithms for the PTSP

Theoretically, the delta evaluation expressions proposed by Bianchi et al. (2005) can

be applied to solve PTSP instances of any size. However, in practice, these expressions

suffer from numerical problems when applied to large instances. In fact, to use the delta

evaluation expressions in 2-p-opt, the term (1−p)(k−n) has to be computed, where p is

the probability, k is the number of nodes between two considered edges, and n is the size

of the instance. For some values of p, k, and n, this term can result in an overflow. As

51



4. ESTIMATION-BASED LOCAL SEARCH FOR THE PTSP

Table 4.1: For a given probability p, the maximum size of the instance that can be handled
by 2-p-opt on a 32-bit system without resorting to arbitrary precision arithmetics.

p 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

ncritical 6733 3180 1990 1390 1025 775 591 442 309

an illustration, consider a typical 32-bit GNU system, where, according to the IEEE 754

standard (1985), double precision floating point variables can take a maximum value

of about 1e+308 (Griffith, 2002). Given a homogeneous PTSP instance of probability

p with n nodes, the condition for the numerical overflow is (1 − p)(k−n) > 1e+308.

From this condition, one can obtain, after basic transformations, a critical value for n,

above which the computation of the delta evaluation expression suffers from precision

problems: ncritical = 1 − 308
log10(1−p) . Table 4.1 shows the probability levels and the

corresponding maximum size of instances that can be tackled by 2-p-opt without any

numerical overflow on a 32-bit system. The very same problem occurs in 1-shift and

in the analytical computation algorithms for the heterogeneous PTSP. This issue has

to be addressed by resorting to methods for arbitrary precision arithmetics. As we

show in section 4.4.3, this might entail a major computational overhead.

A second issue with the analytical computation iterative improvement algorithms

for the PTSP is that the lexicographic neighborhood exploration does not allow the

adoption of the classical TSP neighborhood reduction techniques such as fixed-radius

search, candidate lists and don’t look bits (Martin et al., 1991; Bentley, 1992). Based

on results from the TSP literature (Johnson and McGeoch, 1997; Hoos and Stützle,

2005), we speculate that the usage of the neighborhood reduction techniques in the

PTSP iterative improvement algorithms might speed up the search significantly.

4.3 Estimation-based iterative improvement algorithms

The cost F (x) of a PTSP solution x can be empirically estimated on the basis of a

sample f(x, ω1), f(x, ω2), . . . , f(x, ωM ) of costs of a posteriori solutions obtained from

M independent realizations ω1, ω2, . . . , ωM of the random variable ω:

F̂M (x) =
1

M

M
∑

r=1

f(x, ωr). (4.2)

As it can be shown easily, F̂M (x) is an unbiased estimator of F (x).

In iterative improvement algorithms for the PTSP, we need to compare two neigh-
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boring solutions x and x′ to select the one of lower cost. This can be achieved by

determining the sign of the cost difference F (x′) − F (x). For x′, an unbiased estima-

tor F̂M ′(x′) of F (x′) can be obtained from a sample f(x′, ω′
1), f(x′, ω′

2), . . . , f(x′, ω′
M ′)

of costs of a posteriori solutions through M ′ independent realizations of ω. Also,

F̂M ′(x′) − F̂M (x) is an unbiased estimator of F (x′) − F (x).

In order to increase the accuracy of this estimator, the well-known variance-reduction

technique called the method of common random numbers can be adopted. In the con-

text of the PTSP, this technique consists of using the same set of realizations of ω

for estimating the costs F (x′) and F (x). Consequently, we have M ′ = M and the

estimator F̂M (x′) − F̂M (x) of the cost difference is given by:

F̂M (x′) − F̂M (x) =
1

M

M
∑

r=1

f(x′, ωr) −
1

M

M
∑

r=1

f(x, ωr)

=
1

M

M
∑

r=1

(

f(x′, ωr) − f(x, ωr)
)

. (4.3)

In this chapter, we use the same set of M realizations for all steps of the iterative

improvement algorithms. Other approaches could be adopted: for example, M realiza-

tions could be sampled anew for each step of the algorithm or even for each comparison.

A discussion about this issue is given in Section 4.4.4.

Using Equation 4.3, given two neighboring solutions x and x′ and a realization ω,

a straightforward approach to compute the cost difference between two a posteriori

solutions consists of computing first the complete cost of each a posteriori solution and

then the difference between them. However, a more efficient algorithm can be obtained

by adopting the idea of delta evaluation. Given the a priori solutions and a realization

ω, such an algorithm requires identifying the edges that are not common to the two a

posteriori solutions.

For example, consider the 2-exchange move shown in Figure 4.3. The edges that are

not common to the a priori solutions are 〈1, 2〉, 〈5, 6〉 and 〈1, 5〉, 〈2, 6〉. For a realization

prescribing that nodes 1, 3, 4, 7, and 8 are to be visited, the edges that are not common

to the a posteriori solutions are 〈1, 3〉, 〈4, 7〉 and 〈1, 4〉, 〈3, 7〉. Therefore, the cost

difference between the two a posteriori solutions is given by c1,4 + c3,7− c1,3− c4,7. The

delta evaluation procedure needs to identify these edges in the a posteriori solutions.

In general, for every edge 〈i, j〉 that is deleted from x, one needs to find the corre-

sponding edge 〈i∗, j∗〉 in the a posteriori solution. We call this edge the a-posteriori-

edge. It is obtained as follows. If node i has to be visited, then i∗ = i, otherwise, i∗
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Figure 4.3: In this example, a 2-exchange move is obtained by replacing 〈1, 2〉 and 〈5, 6〉
in the a priori solution with 〈1, 5〉 and 〈2, 6〉. Assume that a realization of ω prescribes
that nodes 1, 3, 4, 7, and 8 are to be visited. The edges that are not common to the a
posteriori solutions are 〈1, 3〉, 〈4, 7〉 and 〈1, 4〉, 〈3, 7〉. The delta evaluation procedure needs
to identify these edges without considering the complete a posteriori solutions.

is the first predecessor of i in x such that ω[i∗] = 1. If node j has to be visited, then

j∗ = j, otherwise, j∗ is the first successor of j such that ω[j∗] = 1. Recall that in a

2-exchange move, the edges 〈a, b〉 and 〈c, d〉 are replaced by 〈a, c〉 and 〈b, d〉. For the

a posteriori edges 〈a∗, b∗〉 and 〈c∗, d∗〉, the cost difference between the two a posteri-

ori solutions is ca∗,c∗ + cb∗,d∗ − ca∗,b∗ − cc∗,d∗ . Figure 4.4 shows the a posteriori edges

for the example given in Figure 4.3. This procedure can be directly extended to the

node-insertion move. See Figure 4.5 for an example.

It is worth discussing here some degenerate cases: in a 2-exchange move that deletes

edges 〈a, b〉 and 〈c, d〉, and where no node between the nodes b and c or between nodes

a and d requires being visited, the difference between the two a posteriori solutions is

zero—see Figure 4.6(a); in a node-insertion move, if the insertion node does not require

being visited, then the cost difference between the two a posteriori solutions is zero—see

Figure 4.6(b). In this second case, one can avoid unnecessary computations by checking

whether the insertion node requires being visited before finding the a posteriori edges.

The proposed approach has a number of advantages. First, the estimation-based

delta evaluation procedure, in particular, the procedure for finding a posteriori edges

can be applied to any neighborhood structure without requiring the complex mathemat-

ical derivations that have to be performed when adopting the analytical computation.
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Figure 4.4: The steps performed for finding the a posteriori edges. Assume that, the
nodes are visited in the order 1, 2, 3, 4, 5, 6, 7, 8, and 1. The edges 〈1, 2〉 and 〈5, 6〉 are
deleted and the gray nodes do not require being visited. The first successor of node 2 that
requires being visited is 3; the first predecessor of node 5 that requires being visited is 4;
the first successor of node 6 that requires being visited is 7. The a posteriori edges are
therefore 〈1, 3〉 and 〈4, 7〉.

In virtue of this versatility, rather than using the node-insertion neighborhood or the

2-exchange neighborhood structure, we can use a hybrid neighborhood structure that

includes the node-insertion neighborhood on top of the 2-exchange neighborhood struc-

ture. In the TSP literature (Bentley, 1992), this hybrid neighborhood is widely known

as the 2.5-exchange neighborhood: when checking for a 2-exchange move on any two

edges 〈a, b〉 and 〈c, d〉, it is also checked whether deleting any one of the nodes of an

edge, say for example a, and inserting it between nodes c and d results in an improved

solution (Bentley, 1992).

Second, unlike 2-p-opt and 1-shift, the proposed approach does not impose any

constraints on the order in which the neighborhood should be explored. This allows

for an easy integration of the classical TSP neighborhood reduction techniques such as

fixed-radius search, candidate lists, and don’t look bits (Martin et al., 1991; Bentley,

1992; Johnson and McGeoch, 1997). Note that the candidate list is a static data

structure that contains for each node, a number L of closest nodes, ordered by increasing

cost. The algorithm considers only the moves that involve a given node and one of its

closest nodes in the list.

We denote the proposed algorithm 2.5-opt-EEs where EE and s stand for em-

pirical estimation and speedup, respectively. Note that 2.5-opt-EEs uses the first-

improvement rule. In order to implement 2.5-opt-EEs effectively, a specific data

structure is needed. We use a structure in which data items can be accessed both
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Figure 4.5: In this example, the node-insertion move is obtained by inserting node 1
between nodes 5 and 6. Consequently, the edges 〈8, 1〉, 〈1, 2〉, and 〈5, 6〉 in the a priori
solution are replaced with 〈8, 2〉, 〈5, 1〉, and 〈1, 6〉. Assume that a realization of ω prescribes
that nodes 1, 3, 4, 7, and 8 are to be visited. The edges that are not common to the a
posteriori solutions are 〈1, 3〉, 〈4, 7〉, 〈8, 1〉 and 〈8, 3〉, 〈4, 1〉, 〈1, 7〉.

(a) Assume that a realization of ω prescribes
that nodes 1, 6, 7, and 8 are to be visited. The
2-exchange neighboring solutions shown in Fig-
ure 4.2(a) lead to the same a posteriori solution.
The cost difference is therefore zero.

(b) Assume that a realization of ω prescribes
that nodes 2, 3, 4, 5, 6, 7, and 8 are to be
visited. The node-insertion neighboring solu-
tions shown in Figure 4.2(b) lead to the same
a posteriori solution. Since the two a posteri-

ori solutions are the same, the cost difference
is zero.

Figure 4.6: Some degenerate cases that can occur in the evaluation of cost differences.
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Figure 4.7: Assume that we have an a priori solution in which the nodes are visited
in the order 1, 5, 4, 3, 2, 6, 7, 8, 1. This is encoded in the doubly circularly linked list
data structure as shown in the plot. Also note that the data items can be accessed as the
elements of the one dimensional array.

as elements of a doubly circularly linked list and as elements of a one dimensional ar-

ray, both of size n. Each data item comprises an integer variable to store a node of the

a priori solution. This structure is efficient for finding a posteriori edges: predecessor

and successor of a node are simply obtained by following the links pointing towards

the previous item and next item, respectively. To access data items as elements of

the array, a data item representing node i is stored at position i of the array and this

arrangement is kept unchanged throughout the search process. Consequently, given

a node i, its data can be accessed in O(1) time. Moreover, each data item stores an

array of size M—the realization array—which is indexed from 1 to M . Element r of

the realization array is either 1 or 0 indicating whether the node requires being visited

or not in realization ωr. Figure 4.7 shows the data structure. Whenever, an improved

solution is found, only the links of the particular data items whose nodes are involved

in the exchange move are modified. Furthermore, each data item comprises also two

auxiliary fields for the neighborhood reduction techniques: one integer variable for the

don’t look bit and one integer array of size L for the candidate list of each node.

Concerning the computational complexity of the estimation-based iterative improve-

ment algorithm, Bianchi (2006) reached the conclusion that the time complexity of a

complete neighborhood scan is O(Mpn3). Indeed, the number of solutions in the 2.5-

exchange neighborhood is O(n2); the maximum number of steps for finding the a poste-

riori edges for a given realization is n; and the number of realizations considered is M .

The author included in the complexity also the probability p that a node requires being
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visited, but the inclusion of this term is not completely justified and is not thoroughly

discussed in the authors’ work (Bianchi, 2006). The main result of the analysis is that

the time complexity grows with the cube of n. On the basis of this result, the author

decided that the estimation-based approach does not deserve any further attention.

However, the above analysis does not hold for 2.5-opt-EEs. The use of a candidate

list of size L reduces the neighborhood size from O(n2) to O(nL), which in turn re-

duces the worst-case time complexity of a neighborhood scan to O(n2LM). It should

be noted that in large TSP instances, the value of L is typically chosen independent of

the instance size and is usually set between 20 and 40 (Johnson and McGeoch, 1997).

We expect that these conclusions hold also for the PTSP. Furthermore, it should be

observed that, since we explicitly deal with a probabilistic model, a more informative

average-case analysis can be derived easily. Let Y be a random variable that describes

the number of steps required for finding the first successor in an a posteriori edge. Since

the probability of finding the first successor at each step is p, the probability that there

are k failures before finding the first successor is Pr(Y = k) = (1 − p)kp. From this,

we can obtain the expected value E(Y ) of Y as (1− p)/p. Thus, the expected number

of steps for finding the first successor is (1 − p)/p. This is same for finding the first

predecessor. As a result, the average-case time complexity of a complete neighborhood

scan is O(nLMp−1).

4.4 Experimental analysis

We base our analysis on homogeneous PTSP instances that we obtained from TSP

instances generated with the DIMACS instance generator (Johnson et al., 2001). We

carried out experiments with two classes of instances. In the first class, nodes are

uniformly distributed in a square; in the second, nodes are arranged in clusters. For each

instance class, we generated 100 TSP instances of 100, 200, 300, and 1000 nodes. Note

that 300 is the largest instance size that has been used by Bianchi (2006). From each

TSP instance, we obtain 9 PTSP instances by letting the probability range in [0.1, 0.9]

with a step size of 0.1. We report the results obtained on the clustered instances of 300

and 1000 nodes for certain probability levels. The general trends of the experimental

results obtained on instance with uniformly distributed nodes are similar; the complete

set of results is given as a supplementary page (Birattari et al., 2007) at the following

URL:

http://iridia.ulb.ac.be/supp/IridiaSupp2007-001/
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All algorithms are implemented in C and the source codes are compiled with gcc,

version 3.3. Experiments were carried out on AMD OpteronTM244 1.75GHz processors

with 1 MB L2-Cache and 2 GB RAM, running under Debian GNU/Linux.

The nearest-neighbor heuristic is used to generate initial solutions. The candi-

date list is set to size 40 and it is constructed with the quadrant nearest-neighbor

strategy (Penky and Miller, 1994; Johnson and McGeoch, 1997). For each node i, a

coordinate system is defined with origin in node i. The candidate list of node i then

contains for each quadrant the 10 cities that are connected to i by the 10 edges of least

cost. If fewer than 10 nodes are available in a quadrant, the list is filled with nodes

from other quadrants. Each iterative improvement algorithm is run until it reaches a

local optimum. The number of realizations in 2.5-opt-EEs is set to 100. In order to

highlight this fact, we denote the algorithm 2.5-opt-EEs-100. We use Equation 4.1

for the post-evaluation of the best-so-far solutions found by each algorithm according

to its evaluation procedure.

In addition to tables, we visualize the results using runtime development plots.

These plots show how the cost of solutions develops over computation time. In these

plots, the x-axis indicates computation time and the y-axis indicates the cost of the

solutions found, averaged over 100 instances. For comparing several algorithms, one of

them has been taken as a reference: for each instance, the computation time and the cost

of the solutions of the algorithms are normalized by the average computation time and

average cost of the local optima obtained by the reference algorithm. For convenience,

the x-axis is in logarithmic scale. We report one such plot for each probability level

under consideration.

4.4.1 Experiments on neighborhood reduction techniques

Before presenting the results of 2.5-opt-EEs, we first show that the adoption of the

2.5-exchange neighborhood structure and the classical TSP neighborhood reduction

techniques in the analytical computation framework leads to an effective analytical

computation iterative improvement algorithm for the PTSP. We denote this new it-

erative improvement algorithm as 2.5-opt-ACs where AC and s stand for analytical

computation and speedup, respectively. The motivation behind these experiments is

the following: if we compared 2.5-opt-EEs with 2-p-opt and 1-shift, it would be

difficult to clearly identify whether the observed differences are due to the estimation-

based delta evaluation procedure or rather to the adoption of the 2.5-exchange neigh-

borhood and the neighborhood reduction techniques. Therefore, we implemented an
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Figure 4.8: Experimental results on clustered homogeneous PTSP instances of size 300.
The plots represent the average cost of the solutions obtained by 2-p-opt and 1-shift

normalized by the one obtained by 2.5-opt-ACs. Each algorithm is stopped when it
reaches a local optimum. The normalization is done on an instance by instance basis for
100 instances; the normalized solution cost and the computation time are then aggregated.
Note that the x -axis shows the computation time in logarithmic scale.

iterative improvement algorithm based on analytical computation that uses the 2.5-

exchange neighborhood and the neighborhood reduction techniques, and compared its

performance to 2-p-opt and 1-shift.

A difficulty in the implementation of 2.5-opt-ACs is that, since the use of neighbor-

hood reduction techniques prevents lexicographic exploration, the previously computed

values cannot be reused. Therefore, the cost difference between two solutions is always

computed from scratch. In order to compute the cost difference between 2.5-exchange

neighboring solutions, we use the closed-form expressions proposed for the 2-exchange

and the node-insertion neighborhood structures (Bianchi, 2006).

The results given in Figure 4.8 show that 2.5-opt-ACs dominates 2-p-opt and

1-shift with the only exception being for the values of p ranging between 0.5 and 0.9:

in the early stages of the search and for a very short time range, the average cost of the

solutions obtained by 1-shift is slightly lower than that of 2.5-opt-ACs. Concerning

the time required to reach local optima, irrespective of the probability value, 2.5-opt-

-ACs is faster than 2-p-opt by approximately a factor of four. In the case of 1-shift,

the same tendency holds when p ≥ 0.5. However, for small values of p, the difference
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in speed between 2.5-opt-ACs and 1-shift is small. Concerning the average cost of

the local optima found, 2.5-opt-ACs is between 2% and 5% better than 2-p-opt. We

can observe the same trend also in 1-shift; an exception is for p ≤ 0.3, where the

difference between the average cost of the local optima obtained by 2.5-opt-ACs and

1-shift is very small. For details, see Table 4.2 on page 63

In order to test that the observed differences between the cost of local optima are

significant in a statistical sense, we use a t-test. The cost of the local optima obtained by

2.5-opt-ACs is significantly lower than that of 1-shift and 2-p-opt for all probability

values, the only exception being p ≤ 0.2, where the difference between the cost of the

local optima obtained by 2.5-opt-ACs and 1-shift is not significant.

The increased speed of 2.5-opt-ACs also shows that the amount of computational

time saved due to the use of neighborhood reduction techniques is much higher than

the time that is lost in computing the cost difference from scratch. Regardless the

values of p, with respect to the cost of the local optima and the computation time,

2.5-opt-ACs is better than—and in very few cases comparable with—1-shift and

2-p-opt. Therefore, in the following sections, we take 2.5-opt-ACs as a yardstick for

measuring the effectiveness of 2.5-opt-EEs.

4.4.2 Experiments to assess the estimation-based approach

In this section, we compare 2.5-opt-EEs-100 with 2.5-opt-ACs. The two algorithms

differ only in the delta evaluation procedure they adopt: empirical estimation versus

analytical computation. The experimental results are illustrated using runtime devel-

opment plots and are shown in Figure 4.9.

Concerning the average cost of local optima, the two algorithms are similar with

the only exception of p = 0.1, where the average cost of the local optima obtained by

2.5-opt-EEs-100 is approximately 2% higher than that of 2.5-opt-ACs. Concerning

the time required to reach local optima, irrespective of the probability value, 2.5-

-opt-EEs-100 is approximately 1.5 orders of magnitude faster than 2.5-opt-ACs. See

Table 4.2 for the absolute values. The poorer solution cost of 2.5-opt-EEs-100 for

p = 0.1 can be attributed to the fact that the number of realizations used to estimate

the cost difference between two solutions is too small. Intuitively, the variance of the

cost difference estimator with respect to the mean depends on p and M : the smaller

the value of p, the higher the variance with respect to the mean. For p = 0.1 and M =

100, the variance with respect to the mean is very high, which eventually results in a

misleading estimation of the cost difference between two solutions. As a consequence,
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Figure 4.9: Experimental results on clustered homogeneous PTSP instances of size 300.
The plots represent the average cost of the solutions obtained by 2.5-opt-EEs-100 nor-
malized by the one obtained by 2.5-opt-ACs. Each algorithm is stopped when it reaches
a local optimum. The normalization is done on an instance by instance basis for 100 in-
stances; the normalized solution cost and the computation time are then aggregated. Note
that the x -axis shows the computation time in logarithmic scale.

2.5-opt-EEs-100 stops prematurely.

In Table 4.3, we report the observed relative difference between the cost of the

local optima obtained by the two algorithms and a 95% confidence interval of the

relative difference (obtained from interval estimation through a t-test). For the sake

of completeness, we also present these data for what concerns the comparison of 2.5-

-opt-EEs-100 with 1-shift and 2-p-opt.

Table 4.3 confirms that, concerning the average cost of the local optima found,

2.5-opt-EEs-100 is either slightly worse (for p = 0.1) or essentially equivalent to

2.5-opt-ACs (for p > 0.1). To be more precise, for p = 0.1, 2.5-opt-EEs-100 has

obtained solutions, the average cost of which is higher than the one of those obtained

by 2.5-opt-ACs. The difference is significant in a statistical sense but it is nonetheless

relatively small: with a confidence of 95%, we can state that the expectation of the

costs of the solutions obtained by 2.5-opt-EEs-100, on the class of instances under

analysis, is at most 1.98% higher than the one of 2.5-opt-ACs.

For p = 0.2, the observed average cost obtained by 2.5-opt-EEs-100 is slightly

higher than the one of 2.5-opt-ACs but the difference is not significant in a statistical
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Table 4.2: Experimental results for 2.5-opt-EEs-100, 2.5-opt-ACs, 2-p-opt and
1-shift on clustered instances of size 300. Each algorithm is allowed to run until it
reaches a local optimum. The table gives mean and standard deviation (s.d.) of final
solution cost and computation time in seconds. The results are obtained on 100 instances
for each probability level.

Algorithm Solution Cost Computation Time

mean s.d. mean s.d.

p = 0.1

2.5-opt-EEs-100 2776865 456487 0.120 0.014
2.5-opt-ACs 2730221 454321 6.453 1.067
1-shift 2738026 450970 11.771 2.404
2-p-opt 2870013 462383 22.440 5.831

p = 0.2

2.5-opt-EEs-100 3595283 467721 0.086 0.011
2.5-opt-ACs 3585254 471967 3.413 0.540
1-shift 3606878 467069 10.103 1.773
2-p-opt 3775106 474269 13.848 3.254

p = 0.3

2.5-opt-EEs-100 4239788 499001 0.064 0.008
2.5-opt-ACs 4259032 501810 2.214 0.399
1-shift 4286461 481061 8.478 1.856
2-p-opt 4429328 497857 9.842 2.462

p = 0.5

2.5-opt-EEs-100 5190835 537186 0.046 0.005
2.5-opt-ACs 5201221 557895 1.421 0.230
1-shift 5336979 544328 5.933 1.355
2-p-opt 5352456 553028 5.978 1.616

p = 0.7

2.5-opt-EEs-100 5874044 579475 0.038 0.004
2.5-opt-ACs 5875100 579015 1.127 0.209
1-shift 6087249 597356 4.851 1.056
2-p-opt 5993481 589339 4.776 1.146

p = 0.9

2.5-opt-EEs-100 6412335 602907 0.036 0.004
2.5-opt-ACs 6428845 602878 1.020 0.220
1-shift 6683735 628833 4.112 0.937
2-p-opt 6491451 604388 4.093 0.954

sense: with 95% confidence, we can state that the expectation of the costs of the

solutions obtained by 2.5-opt-EEs-100 is not more than 0.61% higher than the one of

2.5-opt-ACs. For probabilities larger than 0.2, in our experiments, 2.5-opt-EEs-100

has obtained in average slightly better results, even if not in a statistically significant

way. Should ever the expectation of the costs obtained by 2.5-opt-EEs-100, on the

class of instances under analysis, be larger than the one of the costs obtained by 2.5-

-opt-ACs, their difference would be at most 0.31% for all values of probabilities larger

than 0.2.

Similar conclusions can be drawn for what concerns the comparison between 2.5-

-opt-EEs-100 and 1-shift. For p = 0.1, 1-shift obtains a lower average cost than

that of 2.5-opt-EEs-100. The difference is significant in a statistical sense but it is
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Table 4.3: Comparison of the average cost obtained by 2.5-opt-EEs-100 and by 2.5-

-opt-ACs, 1-shift, and 2-p-opt, on clustered instances of size 300. Each algorithm is
allowed to run until it reaches a local optimum. For a given comparison A vs. B, the table
reports the observed relative difference between the two algorithms A and B and a 95%
confidence interval (CI) obtained through the t-test. If the value is positive, algorithm A
obtained an average cost that is larger than the one obtained by algorithm B. In this case,
the value is typeset in italics if it is significantly different from zero according to the t-test
at a confidence level of 95%. If the value is negative, algorithm A obtained an average cost
that is smaller than the one obtained by algorithm B. In this case, the value is typeset in
boldface if it is significantly different from zero according to the t-test at a confidence level
of 95%.

2.5-opt-EEs-100
vs.

2.5-opt-ACs

2.5-opt-EEs-100
vs.

1-shift

2.5-opt-EEs-100
vs.

2-p-opt

p Difference 95% CI Difference 95% CI Difference 95% CI

0.1 +1.71% [+1.438, +1.98]% +1.42% [+1.00, +1.84]% −3.25% [−3.60,−2.90]%
0.2 +0.28% [−0.054, +0.61]% −0.32% [−0.84, +0.19]% −4.76% [−5.22,−4.31]%
0.3 −0.45% [−0.938, +0.03]% −1.09% [−1.65,−0.53]% −4.28% [−4.71,−3.86]%
0.5 −0.20% [−0.672, +0.28]% −2.74% [−3.25,−2.22]% −3.02% [−3.50,−2.52]%
0.7 −0.02% [−0.367, +0.31]% −3.50% [−4.05,−2.98]% −1.99% [−2.43,−1.58]%
0.9 −0.26% [−0.660, +0.05]% −4.06% [−4.58,−3.63]% −1.22% [−1.65,−0.88]%

relatively small: the expectation of the costs obtained by 2.5-opt-EEs-100 is within

a bound of 1.84% of the one of 1-shift. For p = 0.2, the difference between the two

algorithms is not significant and the expectation of the costs obtained by 2.5-opt-EEs-

-100 is not more than 0.19% higher than the one of 1-shift. For probabilities larger

than 0.2, 2.5-opt-EEs-100 performs significantly better than 1-shift; the expectation

of the costs of the solutions obtained by 2.5-opt-EEs-100 is between at least 0.53%

(for p = 0.3) and at least 3.63% (for p = 0.9) lower that the one of 2.5-opt-ACs.

Concerning the last comparison, 2.5-opt-EEs-100 is significantly better than 2-

-p-opt across the whole range of probabilities. The expected improvement obtained

by 2.5-opt-EEs-100 ranges roughly between 1% and 4%.

In order to highlight the impact of the speed factor of 2.5-opt-EEs-100 on the

cost of the solutions, we can analyze the cost of the solutions obtained by 2.5-opt-

-ACs in the time needed by 2.5-opt-EEs-100 to find the local optima: From the

results, irrespective of the value of p, we can observe that the average cost of the

solutions obtained by 2.5-opt-EEs-100 is between 16% and 18% lower than that of

2.5-opt-ACs. Clearly, the speed factor gives 2.5-opt-EEs-100 a significant advantage

over 2.5-opt-ACs. Even though 2.5-opt-ACs and 2.5-opt-EEs-100 adopt the same

neighborhood exploration and neighborhood reduction techniques, 2.5-opt-EEs-100
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Figure 4.10: Experimental results on clustered homogeneous PTSP instances of size 1000.
The plots represent the cost of the solutions obtained by 2.5-opt-EEs-10, 2.5-opt-EEs-
-100, 2.5-opt-EEs-1000, 1-shift, and 2-p-opt normalized by the one obtained by 2.5-

-opt-ACs. Each algorithm is stopped when it reaches a local optimum. The normalization
is done on an instance by instance basis for 100 instances; the normalized solution cost and
the computation time are then aggregated. Note that the x -axis shows the computation
time in logarithmic scale. For p > 0.5 the algorithms based on the analytical computation
use a library for arbitrary precision arithmetics. To emphasize this fact the background of
the last two plots is gray.

is faster, due to the simplicity of the estimation-based delta evaluation procedure.

4.4.3 Experiments on large instances

In this section, we study the performance of 2.5-opt-EEs-100 when applied to large

instances. For this purpose, we considered PTSP instances with 1000 nodes. In these

experiments, for p > 0.5, 2.5-opt-ACs, 1-shift, and 2-p-opt use MPFR (Fousse

et al., 2007), a state-of-the-art library for arbitrary precision arithmetics to handle the

numerical issue discussed in Section 4.2.2.

In the very same setting, we also study the impact on the performance of 2.5-opt-

-EEs of the number of realizations considered. For this purpose, we consider samples of

size 10, 100, and 1000 and we denote the algorithms 2.5-opt-EEs-10, 2.5-opt-EEs-

-100, and 2.5-opt-EEs-1000. The results are given in Figure 4.10 and Table 4.4.

Let us first focus on the performance of 2.5-opt-EEs-100. We discuss the results

of 2.5-opt-EEs-10 and 2.5-opt-EEs-1000 at the end of this section. The percentage
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difference between the average cost of the solutions obtained by 2.5-opt-EEs-100 and

2.5-opt-ACs exhibits a trend similar to the one observed on instances of size 300, but

the difference between the computation times of the two algorithms is much larger.

Concerning the average cost of local optima, 2.5-opt-EEs-100 achieves an average

cost similar to that of 2.5-opt-ACs with the exception of p = 0.1, where the average

cost of local optima obtained by 2.5-opt-EEs-100 is approximately 3% higher than

that of 2.5-opt-ACs. However, 2.5-opt-EEs-100 completely dominates 1-shift and

2-p-opt.

Regarding the time required to reach local optima, for p ≤ 0.5, 2.5-opt-EEs-

-100 is approximately 2.3, 2.5 and 3 orders of magnitude faster than 2.5-opt-ACs,

1-shift and 2-p-opt, respectively. For p > 0.5, 2.5-opt-EEs-100 is approximately

3.5, 4.5, and 4 orders of magnitude faster than 2.5-opt-ACs, 1-shift and 2-p-opt,

respectively. This very large speed difference—approximately 1.2, 2, and 1 order of

magnitude more than the difference in speed between the algorithms for p ≤ 0.5—can

be attributed to the computational overhead involved in the adoption of the arbitrary

precision arithmetics.

Concerning the impact of the sample size on the performance of 2.5-opt-EEs, we

can observe that the use of a large number of realizations, in our case M = 1000, is in-

deed very effective with respect to the cost of the local optima for low probability values.

Even though this improvement is achieved at the expense of computation time, the to-

tal search time is relatively short when compared to analytical computation algorithms.

On the other hand, the use of few realizations, in our case M = 10, is less effective

and does not significantly reduce the computation time. Concerning the average com-

putation time, 2.5-opt-EEs-10 is faster than 2.5-opt-EEs-100 approximately by a

factor of two, while 2.5-opt-EEs-1000 is slower than 2.5-opt-EEs-100 by a factor

of four. Nonetheless, an important observation is that for p ≤ 0.5, 2.5-opt-EEs-1000

is approximately 1.5 orders of magnitude faster than 2.5-opt-ACs. For p > 0.5, the

adoption of the arbitrary precision arithmetics entails a major computational overhead:

the former is approximately 3 orders of magnitude faster than the latter. Concerning

the average cost of local optima, 2.5-opt-EEs-10 is worse than the algorithms that

use 100 and 1000 realizations except for p = 0.9; 2.5-opt-EEs-1000 is similar to 2.5-

-opt-EEs-100 and 2.5-opt-ACs with the exception of p = 0.1, where the average cost

of the local optima obtained by 2.5-opt-EEs-1000 is approximately 3% lower than

that of 2.5-opt-EEs-100 and it is comparable with the one of 2.5-opt-ACs.
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Table 4.4: Experimental results for 2.5-opt-EEs-10, 2.5-opt-EEs-100,
2.5-opt-EEs-1000, 2.5-opt-ACs, 2-p-opt and 1-shift on clustered instances of
size 1000. Each algorithm is allowed to run until it reaches a local optimum. The table
gives mean and standard deviation (s.d.) of final solution cost and computation time in
seconds. The results are given for 100 instances at each probability level. Note that for
p > 0.5 the algorithms based on the analytical computation techniques use a library for
arbitrary precision arithmetics. To emphasize this fact the cells are colored in gray.

Algorithm Solution Cost Computation Time

mean s.d. mean s.d.

p = 0.1

2.5-opt-EEs-10 5909938 461029 0.462 0.030
2.5-opt-EEs-100 5158215 448385 1.839 0.190
2.5-opt-EEs-1000 5069560 424448 9.487 1.170
2.5-opt-ACs 5068223 450709 443.952 70.934
1-shift 5178144 469977 635.757 84.010
2-p-opt 5365486 449318 1464.535 341.993

p = 0.2

2.5-opt-EEs-10 7364518 513937 0.524 0.032
2.5-opt-EEs-100 6692459 486598 1.024 0.092
2.5-opt-EEs-1000 6681179 475423 3.981 0.447
2.5-opt-ACs 6697814 480609 229.288 33.165
1-shift 6744906 494658 547.263 71.878
2-p-opt 6978843 477590 859.276 159.102

p = 0.3

2.5-opt-EEs-10 8263425 554699 0.507 0.030
2.5-opt-EEs-100 7894854 547385 0.722 0.051
2.5-opt-EEs-1000 7875735 511413 2.658 0.306
2.5-opt-ACs 7901717 524412 149.881 22.702
1-shift 7982498 531787 451.773 58.575
2-p-opt 8175022 547812 552.554 95.447

p = 0.5

2.5-opt-EEs-10 9693061 630069 0.422 0.020
2.5-opt-EEs-100 9592605 623310 0.526 0.038
2.5-opt-EEs-1000 9591076 635788 1.689 0.149
2.5-opt-ACs 9597432 599270 89.272 14.155
1-shift 9856073 579796 316.049 44.883
2-p-opt 9799426 594452 338.203 63.679

p = 0.7

2.5-opt-EEs-10 10852736 686839 0.371 0.017
2.5-opt-EEs-100 10803761 623940 0.448 0.025
2.5-opt-EEs-1000 10776397 677248 1.281 0.112
2.5-opt-ACs 10805384 669183 2377.355 296.572
1-shift 11203988 666372 14909.760 1911.958
2-p-opt 10955608 634087 8012.715 1339.187

p = 0.9

2.5-opt-EEs-10 11752749 701937 0.347 0.012
2.5-opt-EEs-100 11764968 707582 0.407 0.018
2.5-opt-EEs-1000 11763689 716438 1.015 0.073
2.5-opt-ACs 11777782 716614 2062.499 192.265
1-shift 12241504 701184 12351.744 1610.433
2-p-opt 11792577 684387 7019.027 993.119
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Figure 4.11: Experimental results on clustered homogeneous PTSP instances of size
300. The plots represent the average cost of the solutions obtained by 2.5-opt-EEs-100,
2.5-opt-EEs-100-ri, and 2.5-opt-EEs-100-rc normalized by the one obtained by 2.5-

-opt-ACs. Each algorithm is stopped when it reaches a local optimum. The normalization
is done on an instance by instance basis for 100 instances; the normalized solution cost and
the computation time are then aggregated. Note that the x -axis shows the computation
time in logarithmic scale.

4.4.4 Experiments on sampling strategies

In this section, we present empirical results on several sampling strategies. For this

study, we considered the following two alternatives in addition to the one adopted

by 2.5-opt-EEs, which consists of using the same set of M realizations for all steps

of the iterative improvement algorithm: (i) a set of M realizations is sampled anew

each time an improved solution is found; (ii) a set of M realizations is sampled anew

for each comparison. We denote the former 2.5-opt-EEs-ri, where ri stands for

resampling for each improvement and the latter 2.5-opt-EEs-rc, where rc stands for

resampling for each comparison. Note that the sample size is set to 100. We compare

2.5-opt-EEs-100-ri and 2.5-opt-EEs-100-rc with 2.5-opt-EEs-100. Moreover,

2.5-opt-ACs is included in the analysis as a reference.

In 2.5-opt-EEs-100-ri and 2.5-opt-EEs-100-rc, for p = 0.1, the search cycles

between solutions due to the high variance of the cost difference estimator with respect

to the mean. To avoid this problem, we implemented a mechanism that for p = 0.1

memorizes moves in order to reject them in successive search steps. The results on
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clustered instances with 300 nodes are given in Figure 4.11.

The results clearly show that, in our experimental setting, the strategies in which

the set of realizations is changed for each improvement and for each comparison are

less effective: 2.5-opt-EEs-100-ri and 2.5-opt-EEs-100-rc are dominated by 2.5-

-opt-EEs-100. Concerning the time required to reach local optima, 2.5-opt-EEs-100

is by approximately 0.5 and 2 orders of magnitude faster than 2.5-opt-EEs-100-ri

and 2.5-opt-EEs-100-rc, respectively. Moreover, 2.5-opt-EEs-100-rc is slower than

2.5-opt-ACs by a factor of approximately five. Concerning the average cost of local op-

tima, 2.5-opt-EEs-100 is similar to 2.5-opt-EEs-100-rc and 2.5-opt-EEs-100-ri;

an exception is p = 0.1, where the poor solution cost of 2.5-opt-EEs-100-ri and

2.5-opt-EEs-100-rc is due to the cycling problem and to the operations performed

in order to avoid it.

4.5 Summary

In this chapter, we introduced 2.5-opt-EEs, a new estimation-based iterative improve-

ment algorithm for the PTSP. The main novelty of the proposed algorithm is the adop-

tion of empirical estimation in delta evaluation. The algorithm adopts the 2.5-exchange

neighborhood relation and it searches the neighborhood using a first-improvement rule.

The effectiveness of the algorithm is further enhanced by exploiting three classical TSP

neighborhood reduction techniques: fixed-radius search, candidate lists, and don’t look

bits.

Two sets of experiments were designed to evaluate the algorithmic components that

we adopted. In the first set of experiments, we implemented a new analytical computa-

tion algorithm 2.5-opt-ACs that uses the 2.5-exchange neighborhood relation and TSP

neighborhood reduction techniques. We demonstrated that 2.5-opt-ACs is more effec-

tive than the analytical computation algorithms 1-shift and 2-p-opt. Moreover, we

identified a numerical precision problem in applying analytical computation algorithms

to large instances. This issue needs to be addressed explicitly by resorting to arbitrary

precision arithmetics and it has a major impact on computation time in the consid-

ered implementations. In the second set of experiments, we assessed the effectiveness

of the estimation approach in delta evaluation. We compared the proposed algorithm

2.5-opt-EEs using 100 realizations and 2.5-opt-ACs, where the two algorithms dif-

fer only with respect to the evaluation procedure. The results showed that the main

advantage of using the estimation approach is speed: 2.5-opt-EEs is more than one

order of magnitude faster to reach an average cost similar to that of 2.5-opt-ACs.
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We then went on to investigate several aspects of 2.5-opt-EEs. We showed that

the proposed algorithm is particularly effective for large instance sizes where it finds

high quality solutions in a very short computation time. The results showed that on an

instance size 1000, 2.5-opt-EEs is more than two orders of magnitude faster than 2.5-

-opt-ACs. To assess the impact of the sample size on the performance of 2.5-opt-EEs,

in addition to the default 100 realizations, we tested the algorithm with 10 and 1000

realizations. From the results, we observed that the adoption of 10 realizations does

not produce a significant advantage over the adoption of 100 realizations. However, for

instances with low probability values, the use of 1000 realizations allowed the algorithm

to find high quality solutions. We observed that the use of 1000 realizations instead

of 100 increases the time to reach the local optima by a factor of four. Finally, we

illustrated that using a same set of realizations throughout the search in the proposed

algorithm is more effective than the other alternatives such as changing realizations for

each improvement and for each comparison.
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Chapter 5

Adaptive Sample Size and

Importance Sampling in

Estimation-based Local Search

for the PTSP

In Chapter 4, we discussed 2.5-opt-EEs, an estimation-based local search algorithm for

the PTSP. In this chapter, we improve the effectiveness of 2.5-opt-EEs for instances

with small node-probabilities by using two additional procedures. The first one is an

adaptive sample size procedure that selects the appropriate number of realizations to

be used in the estimation of the cost difference between two solutions; the second

is a variance reduction technique called importance sampling that, when applied for

the PTSP, artificially increases the probability values of the nodes such that they

appear more frequently in realizations. We investigate several possible strategies for

applying these procedures to the given problem and we identify the most effective

one. Experimental results show that a particular heuristic customization of the two

procedures increases significantly the effectiveness of 2.5-opt-EEs. This chapter is

organized as follows. In Section 5.1, we discuss the motivation behind the adoption of

the two procedures and in Section 5.2 we describe their customization for 2.5-opt-EEs;

in Section 5.3, we study the effectiveness of using the two procedures in 2.5-opt-EEs;

in Section 5.4, we summarize the results.
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5.1 Introduction

The adoption of the adaptive sample size procedure is motivated by the following obser-

vation: the variance of the estimator depends strongly on the probabilities associated

with the nodes: the smaller the probability values, the higher the variance with respect

to the mean. A high variance could be handled by increasing the sample size since

averaging over a large number of realizations reduces the variance of the estimator.

However, for instances with high node-probability values, using a large number of re-

alizations is a waste of time. To address this issue, we adopt an adaptive sample size

procedure that selects the appropriate number of realizations. The use of importance

sampling is motivated by the fact that for instances with low node-probability values,

the event that a node requires being visited in each realization is rare. The importance

sampling procedure can be used to bias the nodes with low probability values to ap-

pear more frequently in realizations, which will eventually reduce the variance of the

estimator with respect to the mean. The cost difference estimate obtained in this way

is then corrected for the artificial bias.

There exists a number of prior publications where adaptive sample size and impor-

tance sampling have been studied in the context of stochastic combinatorial optimiza-

tion. Alkhamis et al. (1999), Gutjahr (2004), Homem-de-Mello (2003), Pichitlamken

and Nelson (2003), and Birattari et al. (2006a) investigated adaptive sample size pro-

cedures that make use of statistical tests to determine the number of samples to be

chosen. The adoption of importance sampling to reduce the variance of the cost esti-

mator has been investigated in Gutjahr et al. (2000a) and Gutjahr et al. (2000b). In

all these works, the adaptive sample size and the importance sampling procedures have

been used together with full evaluation, that is, the cost of each solution is estimated

from scratch. The adoption of adaptive sample size and of importance sampling proce-

dures in delta evaluation has never been investigated. We expect that the adoption of

the two particular procedures will increase the effectiveness of 2.5-opt-EEs. However,

as we show in this chapter, the adoption is not trivial and a main contribution of the

chapter consists in customizing the adaptive sample size and the importance sampling

procedures for the delta evaluation applied to the PTSP. In particular, we investigate

several ways of applying these procedures for the PTSP delta evaluation and we use a

design of experiments approach to identify the most effective one.
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5.2 Improvement procedures for 2.5-opt-EEs

In this section, we focus on the customization of adaptive sample size and importance

sampling for the delta evaluation in 2.5-opt-EEs.

5.2.1 Adaptive sample size

The adaptive sample size procedure is realized using Student’s t-test in the following

way: given two neighboring a priori solutions, the cost difference between their corre-

sponding a posteriori solutions is sequentially computed on a number of realizations.

As soon as the t-test rejects the null hypothesis that the value of the estimated cost

difference is equal to zero, the computation is stopped. If no statistical evidence is gath-

ered, then the computation is continued until a maximum number M of realizations is

considered, where M is a parameter of the procedure. In this case, that is, after M

realizations are considered, the sign of the estimated difference determines the solution

of lower cost. Note that the significance level of Student’s t-test is also a parameter of

the procedure.

The estimation-based iterative improvement algorithm, that adds the adaptive sam-

ple size procedure to 2.5-opt-EEs, will be called 2.5-opt-EEas.

5.2.2 Importance sampling

A difficulty in the adoption of the t-test is that for low probability values often the test

statistic cannot be computed: since the nodes involved in the cost difference computa-

tion may not require being visited in the realizations considered, many cost differences

between two a posteriori solutions are zero; therefore, the sample mean and the sam-

ple variance of the cost difference estimator are zero. Some degenerate cases in which

this problem appears are the following. In a 2-exchange move that deletes the generic

edges 〈a, b〉 and 〈c, d〉, and where no node between the nodes b and c (or between a

and d) requires being visited, the difference between the two a posteriori solutions is

zero—see Figure 4.6(a) on page 56 for an illustration. In particular, this case is very

frequent when the number of nodes in the tour segment between b and c (or between

the tour segment a and d) is small. In a node-insertion move, if the insertion node

does not require being visited, the cost difference between the two a posteriori solu-

tions is zero—see Figure 4.6(b) on page 56. A näıve strategy to handle this problem

consists in postponing the t-test until non-zero sample mean and sample variance are

obtained. However, this might increase the number of realizations needed for the cost

73



5. IMPROVEMENT PROCEDURES FOR 2.5-OPT-EES

difference computation. The key idea to address this issue consists in forcing the nodes

involved in the cost difference computation to appear frequently in the realizations. For

this purpose, we use the variance reduction procedure known as importance sampling

(Rubinstein, 1981).

In order to compute the cost difference between two a posteriori solutions, impor-

tance sampling, instead of using realizations of the given variable ω parameterized by

P , considers realizations of another variable ω
∗ parameterized by P ∗; this so-called

biased distribution P ∗ biases the nodes involved in the cost difference computation to

occur more frequently. This is achieved by choosing probabilities in P ∗ larger than

the probabilities in P . The resulting biased cost difference between two a posteriori

solutions for the rth biased realization ω∗
r is then corrected for the adoption of the

biased distribution: the correction is given by the likelihood ratio LRr of the original

distribution with respect to the biased distribution and it is obtained as

LRr =

n
∏

i=1

(pi)
ω∗

r [i] · (1 − pi)
1−ω∗

r [i]

(p∗i )
ω∗

r [i] · (1 − p∗i )
1−ω∗

r [i]
, (5.1)

where pi and p∗i are the original and biased probabilities of a node i, respectively.

Finally, the unbiased cost difference is obtained as follows:

F̂M (x′) − F̂M (x) =
1

M

M
∑

r=1

LRr ·
(

f(x′, ω∗
r ) − f(x, ω∗

r)
)

. (5.2)

Recall that in delta evaluation, given a deleted edge 〈i, j〉, the algorithm needs

to identify the corresponding a posteriori edge 〈i∗, j∗〉. In order to apply importance

sampling in delta evaluation, only the nodes that are involved in finding the a posteriori

edge, 〈i∗, j∗〉 are biased. Now, we discuss several ways of realizing this procedure.

Uniform biasing: This is a simple variant in which all the nodes involved in

finding the a posteriori edge are biased with a probability p′, where p′ is a parameter.

This variant does not take into account any problem-specific knowledge.

Geometric biasing: In this variant, the nodes involved in finding the a posteriori

edge are biased with probabilities according to a geometric schedule, λh · p′: the node

i is biased with probability p′, its hth predecessor takes the biased probability value of

λh · p′. Similarly, the node j is biased with probability p′, and its hth successor takes

the biased probability value of λh · p′. Note that p′ and 0 < λ < 1 are parameters of

this variant and, similar to the previous variant, this variant does not use any problem-
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specific knowledge.

Strong greedy biasing: This variant uses k-exchange specific knowledge to bias

the nodes. In a 2-exchange move, the cost difference computation involves four distinct

nodes. If these four nodes require being visited in all the realizations, then there is

no need for finding the predecessor and the successor of the starting nodes i and j,

respectively. This variant is designed for biasing only those four nodes and their biased

probability values are set to a same value p′. In the same way, for a node-insertion move

only the five nodes that are involved in the cost difference computation are biased to

appear in a given realization. Out of the five nodes, the biased probability of the

insertion node is set to p′′ and the biased probability values of the other four nodes

are set to a same value p′. The reason for choosing a different value for the insertion

node is that the appearance of the insertion node is more crucial than that of the other

nodes, as illustrated in Figure 4.6(b) on page 56. Note that p′ and p′′ are parameters

of this variant.

Weak greedy biasing: This variant differs from the strong greedy biasing with

respect to the biasing scheme in the node-insertion move: the insertion node is biased

with a value p′′ and the other four nodes are not biased. This variant is designed for

the following purpose: By comparing this variant with the previous one, we can study

the necessity for biasing the four nodes with p′.

Heuristic biasing: This variant is similar to the weak greedy biasing except the

fact that in the 2-exchange move the nodes involved in finding the a posteriori edge

are biased. As illustrated in Figure 4.6(a) on page 56, in a 2-exchange move, the nodes

in the shorter tour segment (either between b and c or between a and d) are more

important than other nodes for the cost difference computation. Therefore, the nodes

in the shorter segment are biased with a probability p′, if the number of nodes in the

shorter segment is less than minis% of n, the number of nodes in the PTSP instance;

minis is a parameter of the procedure.

For PTSP instances with very low probability values, the computational results

of the analytical computation and iterative improvement algorithms and also 2.5-

-opt-EEs show that the 2-exchange neighborhood is not very effective: often the im-

provements obtained with a 2-exchange move are rather small and therefore the time

needed to reach a local optimum is high. The estimation-based local search might

suffer from the aforementioned problem when all the nodes in the shorter segment

are biased. In order to address this issue, the importance sampling in the 2-exchange

move is used only occasionally: instead of biasing all the nodes in the shorter segment,
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Figure 5.1: This figure illustrates heuristic biasing. In this example, a 2-exchange move
is obtained by deleting the two edges 〈1, 2〉 and 〈6, 7〉 and by replacing them with 〈1, 6〉
and 〈2, 7〉. Assume that the parameter minis is set to 50. Since the number of nodes in
the segment [2, . . . , 6] is less than 50% of 16, that is eight, importance sampling is used to
bias the nodes. However, instead of biasing all the nodes between 2 and 6, only a certain
number of nodes that are close to them are biased. We assume u to be 40; therefore 40%
of 5, that is, two nodes are biased on each side of the segment. The nodes that are biased
are 2, 3, 5, and 6.

only a certain number of nodes, determined by another parameter u, are biased in the

shorter segment. This parameter is used in the following way. Let us assume that

[b, b + 1, b + 2,. . . , c + 2, c + 1, c] is the shorter segment; let us denote the number of

nodes in this segment as seg; this variant biases u% of seg nodes, on each side of this

segment. To give a concrete example, let us assume that seg is 50. If u is set to 2,

then the nodes that are biased are b and c (2% of 50, that is, 1 node on each side of

the segment is biased); if u is set to 4, then the nodes that are biased are b, b + 1 and

c, c+1, (4% of 50, that is, 2 nodes on each side of the segment are biased). In the same

way, the nodes are biased if [a, a + 1, a + 2,. . . , d + 2, d + 1, d] is the shorter segment.

The usage of minis and u is illustrated in Figure 5.1. For the node-insertion move, only

the insertion node is biased with a value p′′. The parameters of this variant are p′, p′′,

minis and u.

General remarks on the importance sampling variants

The computation of the cost difference between two a posteriori solutions using any of

the importance sampling variants proceeds as follows: Given a deleted edge 〈i, j〉, the

nodes are biased with probabilities according to a selected variant. A biased realization

is sampled with respect to the biased probabilities, on which the a posteriori edge

〈i∗, j∗〉 and the biased cost difference between two a posteriori solutions are obtained.

The overall likelihood ratio for the biased realization is obtained by the product of the
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likelihood ratio of each biased node l, which is used in finding the a posteriori edge

〈i∗, j∗〉. Note that the likelihood ratio of each biased node l is given by:

LRl
r =

(pl)
ω∗

r [l] · (1 − pl)
1−ω∗

r [l]

(p∗l )
ω∗

r [l] · (1 − p∗l )
1−ω∗

r [l]
, (5.3)

where pl and p∗l are the original and the biased probability of node l and ω∗
r [l] is sampled

with the biased probability p∗l . The unbiased cost difference between two a posteriori

solutions is simply given by the product of the overall likelihood ratio and the biased

cost difference between two a posteriori solutions.

The values of the biased probabilities of the aforementioned importance sampling

variants are crucial for the variance reduction. In particular, if those values are inap-

propriate, then the adoption of importance sampling variants will increase the variance

of the cost estimator. We address this issue using a parameter tuning algorithm in

Section 5.3.

We denote 2.5-opt-EEais the algorithm that adds to 2.5-opt-EEas any of the

described importance sampling variants.

Implementation-specific details

In order to implement 2.5-opt-EEais efficiently, we use the same data structure as

that of 2.5-opt-EEs, which is composed of a doubly circularly linked list and some

auxiliary arrays as described in Chapter 4. In 2.5-opt-EEais with strong greedy, weak

greedy and heuristic biasing, for each node three realization arrays, ω, ω′, and ω′′ are

stored, each of size M , indexed from 1 to M . Element r of a realization array is either

1 or 0 indicating whether node i requires being visited or not in a realization and it

is obtained as follows: first a random number between 0 and 1 is generated; if this

number is less than or equal to pi, p′i, or p′′i , node i requires being visited in realization

ωr, ω′
r, or ω′′

r , respectively. In 2.5-opt-EEais with uniform biasing, each node has two

realization arrays, ω, ω′, each of size M . In 2.5-opt-EEais with geometric biasing,

given λ and p′, it is possible to compute the set of all possible biased probability values

that a node can take. Therefore, each node has a set of biased realizations, where each

of them is sampled with respect to a possible biased probability. In all the variants,

when the biased probability value of a node is less than the original probability, the

former is set to the latter. Given pi and the set of all biased probability values of a

node i, the likelihood ratio is pre-computed and stored when the algorithm starts.

2.5-opt-EEais uses a same set of realizations for all iterative improvement steps.
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However, for each 2-exchange and node-insertion move, the realizations are selected

randomly from this set until the t-test rejects the null hypothesis.

The following techniques are used to speed up the computations involved in the

t-test. The critical values of Student’s t-distribution are pre-computed and stored in

a lookup table and the sample mean and the sample variance of the cost difference

estimator are computed recursively.

The implementation of 2.5-opt-EEas is identical to 2.5-opt-EEais except for the

fact that the importance sampling procedure and the pre-computations required for

2.5-opt-EEais are excluded.

5.3 Experimental analysis

In this section, we present the experimental setting considered and the empirical results.

Our goal is to show that the integration of the adaptive sample size and the importance

sampling procedures into the estimation-based local search increases significantly its

effectiveness.

We generate PTSP instances with the DIMACS instance generator as described in

Chapter 4. We use two classes of instances: homogeneous and heterogeneous PTSP

instances. For the homogeneous instances, we consider probability values starting from

0.050 to 0.200 with an increment of 0.025 and from 0.3 to 0.9 with an increment of

0.1. The probability values in the heterogeneous instances are generated using a beta

distribution as described in Bianchi (2006). In this scheme, the probability values of

each instance are characterized by two parameters: the mean probability pm and the

percentage of maximum variance pv: when an instance is generated with pm and pv,

the expected value and the variance of the random variable ω parameterized by P are

pm and (pv/100) · pm(1 − pm), respectively. For the sake of convenience, we refer to

the probability level of an instance as p = pm(pv%). We considered the values for pm

from 0.050 to 0.200 with increments of 0.025 and from 0.3 to 0.5 with increments of

0.1; for each value of pm, we considered three values for pv: {16, 50, 83}. We generate

50 instances for each combination of pm and pv. We present results obtained for prob-

ability values up to 0.200. The trends of the results obtained for the higher probability

values are very similar to those presented here; we refer the reader to the following

supplementary page (Balaprakash et al., 2008b) for the complete set of results.

http://iridia.ulb.ac.be/supp/IridiaSupp2008-010/

In 2.5-opt-EEas and 2.5-opt-EEais, the minimum number of realizations used
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in the adaptive sample size procedure before applying the t-test is set to five. The

null hypothesis is rejected at a significance level of 0.05. If the test statistic cannot be

computed after five realizations, the cost difference computation is stopped and the al-

gorithm considers the next neighbor solution. The maximum number M of realizations

is set to one thousand. We use Equation 4.1 for the post-evaluation of the best-so-far

solutions found by each algorithm according to its evaluation procedure.

For the homogeneous PTSP with p ≥ 0.1, 2.5-opt-ACs has already been shown

to be more effective than 1-shift and 2-p-opt in Chapter 4. We carried out some

preliminary experiments to verify that the same tendency holds also for low probability

values, that is, for p < 0.1. In these experiments, 2.5-opt-ACs outperforms both

1-shift and 2-p-opt and, therefore, we take 2.5-opt-ACs as a yardstick for measuring

the effectiveness of the proposed algorithms. The computational results for p < 0.1 are

given in Balaprakash et al. (2007).

5.3.1 Parameter tuning

Finding appropriate values for the parameters—in particular the biased probability

values—of the importance sampling variants adopted in 2.5-opt-EEais is crucial for

the variance reduction. For this purpose, we use a parameter tuning algorithm, Iterative

F-Race, which we developed during our research, to identify suitable values for the

parameters of each importance sampling variant. For a description of this algorithm,

we refer the reader to Annex B. We tune each importance sampling variant separately

for the homogeneous and the heterogeneous clustered instances of size 1000. We use

210 instances (7 levels of probability × 30 instances) for the homogeneous case and 210

instances (7 levels of probability × 3 levels of percentage of maximum variance × 10

instances) for the heterogeneous case. Table 5.1 shows, for each importance sampling

variant, the range of each parameter given to the tuning algorithm and the selected

value.

From the parameter values of strong greedy biasing, weak greedy biasing, and

heuristic biasing, we can observe the following trend: low biased probability values

are appropriate for the nodes involved in the 2-exchange moves, whereas high biased

probability values are selected for the nodes involved in the node-insertion moves. In

particular, under our experimental setting, the appropriate ranges for the biased prob-

ability values, p′, in 2-exchange moves for homogeneous and heterogeneous PTSP in-

stances are [0.11, 0.2] and [0.07, 0.12], respectively. This low range of values is due to the

ineffectiveness of the 2-exchange neighborhood for low probability values as discussed in
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Table 5.1: Parameter values considered for tuning the importance sampling variants in
2.5-opt-EEais and the values selected by Iterative/F-Race.

variant parameter range selected value

homogeneous heterogeneous

uniform biasing p′ [0.0, 1.0] 0.23 0.08

geometric biasing
p′ [0.0, 1.0] 0.39 0.18
h [0.0, 1.0] 0.25 0.12

strong greedy biasing
p′ [0.0, 1.0] 0.20 0.12
p′′ [0.0, 1.0] 0.76 0.60

weak greedy biasing
p′ [0.0, 1.0] 0.24 0.08
p′′ [0.0, 1.0] 0.79 0.64

heuristic biasing

p′ [0.0, 1.0] 0.11 0.07
p′′ [0.0, 1.0] 0.60 0.57

minis [0.0, 20.0] 0.55 1.30
u [0, 100] 72.00 10.00

Section 5.2.2. The biased probability values for the nodes involved in the node-insertion

moves are relatively high. In the current experimental setting, the appropriate range

for the biased probability values, p′′, are [0.57, 0.79] for both homogeneous and hetero-

geneous PTSP instances. For what concerns uniform and geometric biasing, which do

not use a separate biased probability value for 2-exchange and node-insertion moves,

the tuning algorithm tries to find a good biased probability that is suitable for both

types of moves. Eventually, this results in values that are higher than those for the

2-exchange moves and lower than those for the node-insertion moves in the greedy and

heuristic biasing.

5.3.2 A study on the parameters of 2.5-opt-EEais

In this section, we study the impact of the parameters of 2.5-opt-EEais on solution

quality and computation time. The main aim of this analysis is to identify an appro-

priate significance level for the adaptive sample size procedure and to determine the

most promising importance sampling variant. Moreover, we also study the robustness

of 2.5-opt-EEais with respect to instance size and the way in which the nodes are

distributed in the instances. For this purpose, we use the analysis of variance (ANOVA)

technique. In ANOVA terminology, the parameters of 2.5-opt-EEais are called factors

and the solution quality and computation time are called response variables. In this

analysis, we use 2.5-opt-EEs-1000 (2.5-opt-EEs that uses 1000 realizations without

adaptive sample size and importance sampling) as a reference algorithm: we study

the solution quality of a given algorithm as the percentage deviation from the cost of
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2.5-opt-EEs-1000. The computation time of a given algorithm is normalized with re-

spect to the computation time of 2.5-opt-EEs-1000. We perform an ANOVA analysis

for each of the response variables. In order to apply ANOVA, it is necessary to check

three main assumptions on the distribution of the response variables, namely, normal-

ity, homogeneity of variance, and independence of residuals. Since grouping over all

probability levels results in violation of the assumptions, the ANOVA analysis is done

for each level. Even in this setting, there are a few probability levels for which the

ANOVA assumptions are violated. In such cases, we use the non parametric Wilcoxon

rank sum test to verify the results of the ANOVA analysis. For the complete ANOVA

results, we refer the reader to Balaprakash et al. (2008b); here, we highlight some main

results of the analysis.

5.3.2.1 Importance sampling variants

In this analysis, we study the effect of importance sampling variants in 2.5-opt-EE-

ais on solution quality and computation time. The results are shown as box plots in

Figure 5.2. Note that the significance level in the adaptive sample size procedure is set

to 0.05. For what concerns the homogeneous instances, the F-ratio and the p-values

from the ANOVA table show that importance sampling has a significant impact on the

solution quality for probability levels less than 0.150. The p-values from the pairwise

t-test indicate that strong greedy, weak greedy and heuristic biasing are significantly

better than the uniform and the geometric biasing. However, there is no significant

difference among strong greedy, weak greedy and heuristic biasing. For what concerns

the heterogeneous instances, the F-ratio and the p-values from the ANOVA table show

that there is no significant difference among the different importance sampling variants.

Nevertheless, the heuristic biasing obtains local optima whose average is slightly better

than that of the other variants.

Concerning the computation time, the F-ratio and the p-values from the ANOVA

table show the following general trend for the probability values less than 0.150: the

heuristic biasing and the weak greedy biasing are significantly faster than other vari-

ants for both homogeneous and heterogeneous instances. Also note that, although

there is no significant difference between heuristic biasing and weak greedy biasing, the

computation time of the former is slightly lower than that of the latter.

Taking into account both solution quality and computation time, we select the

heuristic biasing as the most promising variant and we use it as a basis for the following

analyses.
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Figure 5.2: Analysis of different importance sampling variants on clustered PTSP in-
stances of size 1000. Plots 5.2(a) and 5.2(b) show the cost of the solutions of 2.5-opt--
EEais with uniform biasing (ub), geometric biasing (gb), strong greedy biasing (sb), weak
greedy (wb), and heuristic biasing (hb) as the percentage deviation from the cost of
2.5-opt-EEs-1000 on homogeneous and heterogeneous PTSP instances. Plots 5.2(c) and
5.2(d) show the normalized computation time of 2.5-opt-EEaiswith different importance
sampling variants, where the normalization is done with respect to the computation time
of 2.5-opt-EEs-1000 for homogeneous and heterogeneous instances, respectively.

5.3.2.2 Significance level

In this analysis, we study the effect of the significance level used in the adaptive sample

size procedure on the solution quality and on the computation time. We use 2.5-opt--

EEais with heuristic biasing for the experimental analysis. We consider 4 significance

levels: [0.01, 0.02, 0.05, 0.10]. The F-ratio and the p-values from the ANOVA table

show that the significance level does not have a significant impact on the solution

quality; however, it has a significant impact on the computation time. The results

on the computation time are shown as box plots in Figure 5.3: at significance levels

0.01 and 0.02, the algorithm needs more realizations, thus more computation time, to

reject the null hypothesis at each step than for significance level 0.05. Nevertheless, the

computation time of 2.5-opt-EEais at significance level 0.10 is higher than for other

82

AdaptiveImportanceSampling/Results/ANOVA/Homo/homo-boxplot-istype-cost.eps
AdaptiveImportanceSampling/Results/ANOVA/Hetero/hetero-boxplot-istype-cost.eps
AdaptiveImportanceSampling/Results/ANOVA/Homo/homo-boxplot-istype-time.eps
AdaptiveImportanceSampling/Results/ANOVA/Hetero/hetero-boxplot-istype-time.eps


5.3 Experimental analysis

significance level

no
rm

al
iz

ed
 c

om
pu

ta
tio

n 
tim

e

0.2
0.4
0.6
0.8

p=0.050 p=0.100

0.01 0.02 0.05 0.10

p=0.150

0.01 0.02 0.05 0.10

0.2
0.4
0.6
0.8

p=0.200

(a)

significance level

no
rm

al
iz

ed
 c

om
pu

ta
tio

n 
tim

e

0.2
0.4
0.6
0.8

p=0.050(16) p=0.050(83)

0.01 0.02 0.05 0.10

p=0.200(16)

0.01 0.02 0.05 0.10

0.2
0.4
0.6
0.8

p=0.200(83)

(b)

Figure 5.3: Analysis of different significance levels on clustered PTSP instances of size
1000. Plots 5.3(a) and 5.3(b) show the normalized computation time of 2.5-opt-EE-

ais with different significance levels, where the normalization is done with respect to the
computation time of 2.5-opt-EEs-1000 for homogeneous and heterogeneous instances,
respectively.

significance levels for low probability values. This can be attributed to the fact that

the estimates of the cost differences are less precise for low probability values and as a

consequence the algorithm with significance level 0.10 incorrectly moves to a number

of non-improving neighbor solutions before reaching a local optimum. However, for

high probability levels, where the variance of the cost estimate is low, the computation

time of 2.5-opt-EEais at significance level 0.10 is lower than for other significance

levels. Taking into account both low and high probability values, we can see that the

significance level 0.05 is appropriate for 2.5-opt-EEais.

5.3.2.3 Instance size and distribution of nodes

In this analysis, we study the robustness of 2.5-opt-EEais that adopts heuristic bi-

asing with respect to instance size and nodes distribution. Note that the significance

level in the adaptive sample size procedure is set to 0.05. We consider three levels

[100, 300, 1000] for instance size and two levels for nodes distribution, namely, uniform

and clustered. The F-ratio and the p-values from the ANOVA table show that these

factors do not have any significant impact on the relative solution quality and compu-

tation time. Note that the instance size will always have a significant impact on the

absolute solution cost and computation time; however, recall that in this analysis, we

always study the relative solution quality with respect to 2.5-opt-EEs-1000.

Even though the parameter tuning for 2.5-opt-EEais with heuristic biasing is

performed only on the clustered instances of size 1000, it achieves good solutions also

for other levels of instance size. This is mainly attributed to the ineffectiveness of 2-

83

AdaptiveImportanceSampling/Results/ANOVA/Homo/homo-boxplot-alpha-time.eps
AdaptiveImportanceSampling/Results/ANOVA/Hetero/hetero-boxplot-alpha-time.eps


5. IMPROVEMENT PROCEDURES FOR 2.5-OPT-EES

exchange moves for small instances: minis and u are the two parameters of 2.5-opt--

EEais that depend on the instance size; under the given parameter setting, for instance

sizes 100 and 300, importance sampling is completely disabled for 2-exchange moves;

from the results it seems that the usage of importance sampling in 2-exchange moves

is not crucial for small instances.

5.3.3 Experiments to assess variance reduction

In this section, we study the magnitude of reduction in variance obtained using heuristic

biasing. For this purpose, we analyze the variance under two settings: 2.5-opt-EEs

that adopts a fixed sample size without importance sampling and 2.5-opt-EEs that

adopts a fixed sample size and heuristic biasing. We consider three sample sizes: 10, 100

and 1000. The two algorithms are then allowed to explore 1000 solutions. The variance

of the cost difference estimator for each estimation in 2-exchange and node-insertion

moves is recorded. The results for node-insertion moves are shown in Table 5.2. Since

the computational results for 2-exchange moves show that the reduction in variance is

rather small and less than 1%, we do not list the values in a table.

The magnitude of reduction in variance is very high for the node-insertion moves, in

particular for low probability values: on average, the variance of the cost estimator when

using heuristic biasing is between 14% and 97% less than when not using importance

sampling. Another important observation is that a reduction in variance is achieved

by increasing the size of the sample; however, the percentage reduction does not follow

a same trend. For example, consider the case at pm = 0.200 and pv = 0: the average

variance is reduced from 2.31e+ 07 to 3.35e+ 06 by increasing the realizations from 10

to 1000; however, the percentage reduction does not show a strictly decreasing trend

as it goes from 76.72 to 68.71, and finally 70.50.

5.3.4 Experiments on estimation-based algorithms

In this section, we study the performance of 2.5-opt-EEas and 2.5-opt-EEais by

comparing their solution cost and computation time to 2.5-opt-EEs. In the case of

2.5-opt-EEs, we consider samples of size 10, 100, and 1000; we denote these algorithms

by 2.5-opt-EEs-10, 2.5-opt-EEs-100, and 2.5-opt-EEs-1000, respectively. Note

that these algorithms do not use the adaptive sample size and the importance sampling

procedures. The results of the comparison of the five algorithms are given in Figure

5.4, where 2.5-opt-EEs-1000 is taken as a reference. Table 5.3 shows the absolute

values.
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(a) Homogeneous PTSP

(b) Heterogeneous PTSP

Figure 5.4: Experimental results on clustered PTSP instances of size 1000. The
plots represent the cost of the solutions obtained by 2.5-opt-EEas, 2.5-opt--

EEais, 2.5-opt-EEs-10, and 2.5-opt-EEs-100 normalized by those obtained by
2.5-opt-EEs-1000. Each algorithm is stopped when it reaches a local optimum. The
normalization is done on an instance by instance basis for 50 instances; the normalized
solution cost and the computation time are then aggregated.
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Table 5.2: Experimental results on variance reduction by heuristic biasing on clustered
instances of size 1000. The algorithm is allowed to explore 1000 solutions. The table gives,
for each probability level, the average of the variances computed for 1000 delta estimations
with and without importance sampling. The last column shows the percentage reduction
of the cost estimator variance when using heuristic biasing (hb).

pm pv sample size avg. of 1000 cost estimator variances reduction in %
without hb with hb

node-insertion move

0.050

00
10 5.24e+08 1.09e+07 97.92

100 9.51e+06 4.48e+05 95.29
1000 6.94e+05 3.82e+04 94.50

16
10 5.98e+08 6.71e+07 88.78

100 2.38e+07 3.54e+06 85.13
1000 3.86e+05 7.23e+04 81.25

50
10 2.29e+08 7.27e+07 68.22

100 2.89e+07 7.80e+06 72.99
1000 2.07e+06 4.86e+05 76.55

83
10 7.20e+07 4.13e+07 42.60

100 5.90e+06 3.90e+06 33.86
1000 1.57e+05 9.94e+04 36.81

0.200

00
10 9.90e+07 2.31e+07 76.72

100 1.24e+07 3.87e+06 68.71
1000 1.14e+06 3.35e+05 70.50

16
10 1.29e+08 6.43e+07 50.29

100 1.08e+07 6.36e+06 41.25
1000 1.05e+06 5.90e+05 44.08

50
10 1.02e+08 8.03e+07 21.04

100 2.78e+06 2.09e+06 24.87
1000 2.22e+05 1.46e+05 34.07

83
10 7.51e+07 6.47e+07 13.85

100 5.43e+06 4.48e+06 17.45
1000 3.83e+05 3.29e+05 14.15

The computational results show that 2.5-opt-EEais is more effective than the

other algorithms, in particular, for low probability levels. For what concerns the com-

parison of 2.5-opt-EEais and 2.5-opt-EEas, the results show that the adoption of

importance sampling allows the former to achieve high quality solutions for very low

probability levels, that is, for p and pm < 0.2: the average cost of the local optima

obtained by 2.5-opt-EEais is between 1% and 3% less than that of 2.5-opt-EEas.

The observed differences are significant in a statistical sense. The poor solution cost of

2.5-opt-EEas can be mainly attributed to the following reason: Since this algorithm

considers the next neighbor solution when the test statistic cannot be computed after

five realizations (see Section 5.2.2), it rejects moves which are likely to be accepted.
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Table 5.3: Experimental results for 2.5-opt-EEas, 2.5-opt-EEais, 2.5-opt-EEs-10,
2.5-opt-EEs-100, and 2.5-opt-EEs-1000 on clustered instances of size 1000. Each al-
gorithm is allowed to run until it reaches a local optimum. The table gives, for each
probability level, the mean and the standard deviation (s.d.) of the final solution cost and
of the computation time in seconds over 50 instances.

Algorithm Solution Cost Computation Time

mean s.d. mean s.d.

Homogeneous PTSP

p = 0.050

2.5-opt-EEais 4020433 437996 11.100 1.794
2.5-opt-EEas 4137855 430945 2.970 0.497
2.5-opt-EEs-1000 4014200 455410 41.104 6.821
2.5-opt-EEs-100 4168788 434760 4.309 0.713
2.5-opt-EEs-10 4713400 491452 0.482 0.035

p = 0.100

2.5-opt-EEais 5103869 508867 4.119 0.451
2.5-opt-EEas 5179648 486450 2.230 0.249
2.5-opt-EEs-1000 5108555 503921 14.096 1.972
2.5-opt-EEs-100 5183844 470288 2.629 0.306
2.5-opt-EEs-10 5922935 509627 0.591 0.053

p = 0.150

2.5-opt-EEais 5959120 496566 2.495 0.301
2.5-opt-EEas 6050183 505229 1.702 0.161
2.5-opt-EEs-1000 5966002 479174 8.104 1.172
2.5-opt-EEs-100 6007125 500754 1.827 0.187
2.5-opt-EEs-10 6808184 555047 0.648 0.045

p = 0.200

2.5-opt-EEais 6701562 545366 1.776 0.147
2.5-opt-EEas 6734587 558760 1.407 0.120
2.5-opt-EEs-1000 6720197 543464 5.596 0.574
2.5-opt-EEs-100 6758117 563812 1.349 0.114
2.5-opt-EEs-10 7416077 612763 0.661 0.053

Heterogeneous PTSP

p = 0.050(16)

2.5-opt-EEais 3949356 409824 13.494 3.379
2.5-opt-EEas 4119370 461810 1.473 0.207
2.5-opt-EEs-1000 3984725 441295 38.069 7.455
2.5-opt-EEs-100 4082128 435499 2.806 0.405
2.5-opt-EEs-10 4449540 447232 0.418 0.028

p = 0.050(83)

2.5-opt-EEais 3876139 483153 6.251 2.457
2.5-opt-EEas 4005424 550905 0.511 0.054
2.5-opt-EEs-1000 3914341 522037 19.476 3.409
2.5-opt-EEs-100 3990014 519289 1.033 0.163
2.5-opt-EEs-10 3996970 531437 0.305 0.011

p = 0.200(16)

2.5-opt-EEais 6589342 537399 1.910 0.203
2.5-opt-EEas 6641879 547318 1.283 0.118
2.5-opt-EEs-1000 6601665 537940 6.674 0.890
2.5-opt-EEs-100 6620425 553190 1.447 0.114
2.5-opt-EEs-10 7100032 569439 0.579 0.049

p = 0.200(83)

2.5-opt-EEais 6244761 605180 1.991 0.284
2.5-opt-EEas 6348075 607690 0.546 0.039
2.5-opt-EEs-1000 6230550 602679 7.217 1.128
2.5-opt-EEs-100 6306303 604002 0.811 0.090
2.5-opt-EEs-10 6375420 613433 0.367 0.020
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However, the adoption of importance sampling in 2.5-opt-EEais reduces the effect

of this problem. For high probability levels, the average cost of the solutions and the

computation time of 2.5-opt-EEais are comparable to those of 2.5-opt-EEas.

Concerning the comparison of 2.5-opt-EEais and 2.5-opt-EEs-1000, on average

they have very similar costs. However, the advantage of 2.5-opt-EEais is the com-

putation time: 2.5-opt-EEais is faster than 2.5-opt-EEs-1000 approximately by a

factor of four.

Regarding the comparison of 2.5-opt-EEais and 2.5-opt-EEs-100, for low prob-

ability levels the average cost of the solutions obtained by the former is between 1% and

3% lower than that of 2.5-opt-EEs-100. This clearly shows that the adoption of 100

realizations is not sufficient for these probability levels. Note that these differences are

significant according to the paired t-test. On the other hand, for high probability levels,

the two algorithms are comparable to one another with respect to solution quality and

computation time.

Although faster, 2.5-opt-EEs-10 achieves a very poor solution quality: the average

cost of the solutions obtained by 2.5-opt-EEs-10 is between 17% and 2% higher than

that of 2.5-opt-EEais.

The experimental results for p > 0.5 are reported in Balaprakash et al. (2007). These

results show that the algorithms achieve equivalent results with respect to solution qual-

ity. Moreover, the results of 2.5-opt-EEs-10 show that a sample size of 10 is sufficient

to tackle instances with p > 0.5. For what concerns computation time, 2.5-opt-EEais

and 2.5-opt-EEs-100 are comparable to 2.5-opt-EEs-10. However, 2.5-opt-EEais

is faster than 2.5-opt-EEs-1000 by a factor of three. Note that 2.5-opt-EEais and

2.5-opt-EEas are essentially the same for these probability levels.

Taking into account both the computation time and the cost of the solutions ob-

tained, we can see that 2.5-opt-EEais emerges as a clear winner among the considered

estimation-based algorithms.

5.3.5 Comparison with the analytical computation algorithm

In this section, we compare 2.5-opt-EEais with heuristic biasing to 2.5-opt-ACs. For

this purpose, we generate 50 new instances for each probability level. The rationale

behind the adoption of a new set of instances is the following: 2.5-opt-EEais and 2.5-

-opt-ACs are selected as winners from a set of 5 and 3 algorithms, respectively, where all

of them are evaluated on a same set of instances. Basing the comparison of 2.5-opt--

EEais and 2.5-opt-ACs on the same set of instances might possibly introduce a bias
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Table 5.4: Comparison of the average cost obtained by 2.5-opt-EEais and by 2.5-opt-

-ACs on clustered instances of size 1000. See Table 4.3 on page 64 for an explanation of
the contents and the typographic conventions adopted in the table.

Homogeneous PTSP

2.5-opt-EEais
vs.

2.5-opt-ACs

p Difference 95% CI

0.050 +0.546% [−0.157, +1.248]%
0.075 +0.232% [−0.675, +1.139]%
0.100 +0.284% [−0.645, +1.214]%
0.125 −0.333% [−1.122, +0.456]%
0.150 −0.327% [−1.132, +0.478]%
0.200 +0.422% [−0.386, +1.231]%

Heterogeneous PTSP

2.5-opt-EEais
vs.

2.5-opt-ACs

p Difference 95% CI

0.050(16) +0.472% [−0.243, +1.187]%
0.050(50) +0.812% [+0.147, +1.478]%
0.050(83) +0.390% [−0.648, +1.428]%
0.075(16) +0.998% [−0.081, +2.077]%
0.075(50) +0.191% [−0.372, +0.754]%
0.075(83) +0.780% [−0.128, +1.688]%
0.100(16) −0.037% [−0.868, +0.795]%
0.100(50) −0.199% [−1.091, +0.693]%
0.100(83) +0.352% [−0.494, +1.199]%
0.200(16) −0.514% [−1.394, +0.366]%
0.200(50) −1.052% [−1.781,−0.323]%
0.200(83) −0.086% [−0.800, +0.629]%

in favor of 2.5-opt-EEais. This issue is known as over-tuning; we refer the reader to

Birattari (2004) for further discussion.

The computational results given in Figure 5.5 show that 2.5-opt-EEais is very

competitive. Regarding the time required to reach local optima, irrespective of the

probability levels, 2.5-opt-EEais is approximately 2 orders and 3 orders of magnitude

faster than 2.5-opt-ACs, for homogeneous and heterogeneous instances, respectively.

This very large speed difference in the heterogeneous case—approximately 1 order of

magnitude more than the difference in speed between the algorithms for the homoge-

neous case—can be attributed to the computational overhead involved in the adoption

of the arbitrary precision arithmetics. We refer the reader to Balaprakash et al. (2007)

for the absolute values.

The average cost of local optima obtained by 2.5-opt-EEais is comparable to the

one of 2.5-opt-ACs. In Table 5.4, we report the observed relative difference between

the cost of the local optima obtained by the two algorithms and a 95% confidence

bound on this relative difference. This bound is obtained through a two sided paired

t-test. Table 5.4 confirms that, concerning the average cost of the local optima found,

2.5-opt-EEais is essentially equivalent to 2.5-opt-ACs. Nevertheless, with 95% con-

fidence, under the current experimental setting, we can state that, should ever the
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(a) Homogeneous PTSP

(b) Heterogeneous PTSP

Figure 5.5: Experimental results on clustered PTSP instances of size 1000. The plots
represent the cost of the solutions obtained by 2.5-opt-EEais normalized by those ob-
tained by 2.5-opt-ACs. Each algorithm is stopped when it reaches a local optimum. For
the heterogeneous case, 2.5-opt-ACs uses a library for arbitrary precision arithmetics. To
emphasize this fact, the background of plots is gray. The normalization is done on an in-
stance by instance basis for 50 instances; the normalized solution cost and the computation
time are then aggregated.
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average cost obtained by 2.5-opt-EEais be higher than the one obtained by 2.5-opt-

-ACs, the difference would be at most 1.2% and 2.1% for the homogeneous and the

heterogeneous instances, respectively.

5.3.6 Experiments with iterated local search

In this section, we study the behavior of 2.5-opt-EEais and 2.5-opt-EEs-100 in-

tegrated into iterated local search (ILS) (Lourenço et al., 2002), a metaheuristic on

which many high performing algorithms for the TSP are based (Hoos and Stützle,

2005). We denote the two algorithms ILS-2.5-opt-EEais and ILS-2.5-opt-EEs-100.

It is interesting to note that, for a given computation time, the two algorithms behave

differently. ILS-2.5-opt-EEais obtains, for low probability values, at each iteration

a high quality local optimum due to the adoption of 2.5-opt-EEais; however, this

high quality local optimum is obtained at the expense of higher computation time per

local search. Given the same computation time, ILS-2.5-opt-EEs-100 obtains at each

iteration lower quality local optima than that of ILS-2.5-opt-EEais. Nevertheless,

the former performs more iterations than that of the latter due to the adoption of the

faster but less effective 2.5-opt-EEs-100. The goal of this experiments is to determine

which of the two algorithms is better for the PTSP.

We implemented standard ILS algorithms, in which new starting solutions for the

subsequent local search are generated by perturbing the incumbent local optimum s∗.

For the perturbation, we adopt a hybrid scheme that consists in first performing two

random double-bridge moves and then changing the position of ps% of the nodes, where

ps is a parameter. A change of the position is done by picking uniformly at random

ps% of the nodes, removing them from the tour and then re-inserting them according

to the farthest insertion heuristic. In our experiments, the parameter ps is set to 10.

From the solution obtained after the perturbation, a new local search is started. If

the newly identified local optimum has a lower cost than s∗, it is accepted as the new

incumbent solution.

We include two more algorithms in the analysis: an ILS algorithm built on top

of 2.5-opt-EEs, which uses a sample size schedule proposed by Gutjahr (2004). In

this schedule, the number of realizations is increased on the basis of the iteration

counter. We denote this algorithm as ILS-2.5-opt-EEs-sss, where sss stands for

sample size schedule. The second algorithm is ILS-2.5-opt-EEs-1000, which adopts

2.5-opt-EEs-1000; this algorithm is used as a reference algorithm.

In ILS-2.5-opt-EEais, the acceptance criterion of ILS compares two local op-
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tima by using the t-test with a maximum of 1000 realizations, which are unchanged

throughout all the iterations. In ILS-2.5-opt-EEs-100 and ILS-2.5-opt-EEs-1000,

the acceptance criterion compares two local optima based on 100 and 1000 realiza-

tions, respectively. In ILS-2.5-opt-EEs-sss, the sample size schedule determines the

number of realizations for comparing the two local optima.

The stopping criterion for the considered algorithms is set to 100 seconds. We use

50 instances for each probability level. The results on clustered instances with 1000

nodes are given in Figure 5.6 and Table 5.5.

From the computational results, we can see that the ILS algorithm that uses

2.5-opt-EEais for each iteration is very effective. The average cost of the solutions

obtained by ILS-2.5-opt-EEais is between 4% and 0.7% (homogeneous case), 2% and

0.8% (heterogeneous case), lower than ILS-2.5-opt-EEs-100. Note that the observed

differences between the algorithms are statistically significant according to a t-test at

a significance level of 0.05. For what concerns the comparison of ILS-2.5-opt-EEais

with the reference algorithm ILS-2.5-opt-EEs-1000, the average solution cost of the

former is between 4% and 0.09% (homogeneous case), and 6% and 0.1% (heterogeneous

case), lower than 2.5-opt-EEs-1000. There is only one exception to this general trend:

for pm = 0.200 and pv = 16, 2.5-opt-EEs-100 and 2.5-opt-EEs-1000 obtain aver-

age solution costs which are 0.7% and 0.4% lower than that of ILS-2.5-opt-EEais,

respectively.

An interesting observation concerning the comparison of ILS-2.5-opt-EEs-100

and ILS-2.5-opt-EEs-1000 is that the average cost reached by the former is either

better than or comparable to the latter. This is due to the fact that the use of 100

realizations instead of 1000 allows ILS-2.5-opt-EEs-100 to perform more iterations

than ILS-2.5-opt-EEs-1000, which in turn results in solutions of higher quality.

For what concerns the performance of ILS-2.5-opt-EEs-sss, the average solution

cost is rather poor and significantly worse than that of all the other algorithms. This

can be attributed to the fact that the particular sample size schedule is designed for a

metaheuristic that is allowed to run for a relatively long computation time without an

effective local search.

For the instances with high probability values (p > 0.5), the average cost obtained

by ILS-2.5-opt-EEais is comparable to the one obtained by ILS-2.5-opt-EEs-100

and ILS-2.5-opt-EEs-1000.

Finally, we study the behavior of 2.5-opt-EEais with heuristic biasing and 2.5-

-opt-ACs integrated into ILS, namely, ILS-2.5-opt-EEais and ILS-2.5-opt-ACs.

Since 2.5-opt-ACs is rather slow when compared to 2.5-opt-EEais, we use the fol-
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(a) Homogeneous PTSP

(b) Heterogeneous PTSP

Figure 5.6: Experimental results on clustered PTSP instances of size 1000. The plots rep-
resent the cost of the solutions obtained by ILS-2.5-opt-EEais, ILS-2.5-opt-EEs-100,
and ILS-2.5-opt-EEs-sss normalized by the one obtained by ILS-2.5-opt-EEs-1000.
The normalization is done on an instance by instance basis for 50 instances; the normalized
solution cost and the computation time are then aggregated.
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Table 5.5: Experimental results for ILS-2.5-opt-EEais, ILS-2.5-opt-EEs-100, ILS-
-2.5-opt-EEs-1000, and ILS-2.5-opt-EEs-sss on clustered instances of size 1000. The
table gives mean and standard deviation (s.d.) of final solution cost and computation time
in seconds. The results are given for 50 instances at each probability level. Each algorithm
is allowed to run for 100 CPU seconds.

Algorithm Solution Cost

mean s.d.

Homogeneous PTSP

p = 0.050

ILS-2.5-opt-EEais 3929167 391155
ILS-2.5-opt-EEs-1000 4101042 525937
ILS-2.5-opt-EEs-100 4124123 402049
ILS-2.5-opt-EEs-sss 4591082 621302

p = 0.100

ILS-2.5-opt-EEais 4882334 416657
ILS-2.5-opt-EEs-1000 4919269 420385
ILS-2.5-opt-EEs-100 4983033 424849
ILS-2.5-opt-EEs-sss 5550812 776072

p = 0.150

ILS-2.5-opt-EEais 5645487 438838
ILS-2.5-opt-EEs-1000 5689150 446088
ILS-2.5-opt-EEs-100 5724625 450742
ILS-2.5-opt-EEs-sss 6148684 748337

p = 0.200

ILS-2.5-opt-EEais 6306761 461408
ILS-2.5-opt-EEs-1000 6365820 469658
ILS-2.5-opt-EEs-100 6356017 457958
ILS-2.5-opt-EEs-sss 6939857 997612

Heterogeneous PTSP

p = 0.050(16)

ILS-2.5-opt-EEais 3913474 356073
ILS-2.5-opt-EEs-1000 4177331 658040
ILS-2.5-opt-EEs-100 4026444 350354
ILS-2.5-opt-EEs-sss 4333535 531310

p = 0.050(83)

ILS-2.5-opt-EEais 3829801 404242
ILS-2.5-opt-EEs-1000 3962324 522985
ILS-2.5-opt-EEs-100 3892286 361572
ILS-2.5-opt-EEs-sss 4006539 452628

p = 0.200(16)

ILS-2.5-opt-EEais 6317297 404523
ILS-2.5-opt-EEs-1000 6290327 387254
ILS-2.5-opt-EEs-100 6270120 385406
ILS-2.5-opt-EEs-sss 6766163 784251

p = 0.200(83)

ILS-2.5-opt-EEais 5933131 375063
ILS-2.5-opt-EEs-1000 5999728 494003
ILS-2.5-opt-EEs-100 5980738 382930
ILS-2.5-opt-EEs-sss 6312369 709112
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Table 5.6: Experimental results for ILS-2.5-opt-EEais and ILS-2.5-opt-ACs on clus-
tered instances of size 1000. The table gives mean and standard deviation (s.d.) of final
solution cost and computation time in seconds. The results are given for 10 instances at
each probability level.

Algorithm Solution Cost Computation Time

mean s.d. mean s.d.

Homogeneous PTSP

p = 0.050
ILS-2.5-opt-EEais 3807580 461280 88.770 8.823
ILS-2.5-opt-ACs 3822518 485976 8877.042 882.311

p = 0.100
ILS-2.5-opt-EEais 4768619 504847 32.824 2.340
ILS-2.5-opt-ACs 4835552 538804 3282.372 233.997

p = 0.150
ILS-2.5-opt-EEais 5567761 516760 20.493 1.799
ILS-2.5-opt-ACs 5609656 516846 2049.330 179.894

p = 0.200
ILS-2.5-opt-EEais 6240723 580072 15.660 1.572
ILS-2.5-opt-ACs 6842928 751783 1566.023 157.196

Heterogeneous PTSP

p =0.050(16)
ILS-2.5-opt-EEais 3840549 339955 125.152 14.834
ILS-2.5-opt-ACs 4216734 357264 12515.188 1483.376

p =0.050(83)
ILS-2.5-opt-EEais 3806451 372408 51.436 14.696
ILS-2.5-opt-ACs 4911136 802057 5143.589 1469.553

p =0.200(16)
ILS-2.5-opt-EEais 6237114 386162 16.514 1.872
ILS-2.5-opt-ACs 7840650 806949 1651.370 187.190

p =0.200(83)
ILS-2.5-opt-EEais 5794719 372376 16.870 1.313
ILS-2.5-opt-ACs 7822102 652433 1687.035 131.296

lowing stopping criterion: ILS-2.5-opt-EEais is run until it performs 15 iterations

and the time needed for completion is recorded. The time limit for ILS-2.5-opt-ACs

is then set to 100 times the time taken by ILS-2.5-opt-EEais. We used 10 instances

for each probability level. The results on clustered instances with 1000 nodes are given

in Table 5.6. We refer the reader to Balaprakash et al. (2007) for the complete results.

The computational results obtained from the homogeneous and the heterogeneous

instances show that ILS-2.5-opt-EEais is very effective with respect to both solution

quality and computation time. In spite of the fact that ILS-2.5-opt-EEais is allowed

to run for a computation time, which is two orders of magnitude less than the one of

ILS-2.5-opt-ACs, the average cost of the solutions obtained by the former is between

0.4% to 8% and 0.8% to 26% lower than that of the latter, for the homogeneous and het-

erogeneous cases, respectively. For heterogeneous instances, ILS-2.5-opt-ACs could

not even finish one complete iteration due to adoption of arbitrary precision arithmetics

in 2.5-opt-ACs, which eventually resulted in a large difference (up to 26%) in the final

solution cost.
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5.4 Summary

In this chapter, we integrated an adaptive sample size and an importance sampling

procedure into the estimation-based local search to tackle the PTSP. The adaptive

sample size procedure for delta evaluation is based on the t-test and the implementation

is straightforward. The adoption of the importance sampling procedure is not a trivial

task. Indeed, the main novelty of this chapter consists in customizing the importance

sampling procedure for the delta evaluation.

We implemented five importance sampling variants, which mainly differ from each

other in the way they use the neighborhood and problem specific knowledge. We

followed a systematic methodology to assess these variants. First, we used an offline

parameter tuning algorithm to fine tune the parameters of these variants. Based on the

fine tuned parameter values, we provided some general hints on the range of probability

values of the biased probability distribution used in the importance sampling procedure.

Second, we used ANOVA to study the impact of using each importance sampling variant

in 2.5-opt-EEs. The results showed that a customized heuristic variant, which exploits

neighborhood and problem specific knowledge, is very effective. We also used ANOVA

to explore other important aspects of the heuristic variant: to identify an appropriate

significance level for the adaptive sample size procedure and to study the robustness

of the heuristic variant with respect to instance size and the distribution of nodes

within a given instance. We also assessed the magnitude of reduction in variance by

2.5-opt-EEais.

We carried out three sets of experiments. In the first set, we compared all the

estimation-based algorithms. The results from the comparison between 2.5-opt-EEais

and 2.5-opt-EEas suggested that the adoption of the importance sampling procedure

in delta evaluation is very effective. The comparison of 2.5-opt-EEais with three

variants of 2.5-opt-EEs (10, 100, and 1000 realizations) showed that the adoption of

adaptive sample size and importance sampling is worthwhile as it significantly increases

the solution quality especially for low node probability values and that it does so at

reduced computation times when compared to using a large fixed sample size. In the

second set, we compared 2.5-opt-EEais with 2.5-opt-ACs on instances with low

probability values. The results showed that 2.5-opt-EEais obtained a similar average

solution cost of 2.5-opt-ACs in two to three orders of magnitude less computation

time. Recall that in Chapter 4 2.5-opt-EEs with 100 realizations obtained poorer

solution cost than that of 2.5-opt-ACs for instances with low probability values. In

the third set, we performed some preliminary experiments with iterated local search,
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where various iterative improvement algorithms are used as underlying local search.

For a fixed computation time, the iterated local search variant that uses 2.5-opt-EE-

ais achieved average solution costs which are significantly less than that of the variants

that use 2.5-opt-EEs with 100 and 1000 realizations. These results further justified

the adoption of the adaptive sample size and the importance sampling procedures.
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Chapter 6

Estimation-based Metaheuristics

for the PTSP

In this chapter, we develop estimation-based metaheuristics to tackle the PTSP. Be-

fore the start of our research, the best performing PTSP metaheuristic was pACS+1-

shift (Bianchi, 2006; Bianchi and Gambardella, 2007), a tailor made ant colony opti-

mization algorithm that uses 1-shift as local search. Since 2.5-opt-EEais obtained

significant performance gains over 1-shift, our hypothesis is that 2.5-opt-EEais can

be used to devise highly effective metaheuristics for the PTSP. In particular, we focus

on three metaheuristics: iterated local search, memetic, and ant colony optimization

algorithms. While iterated local search and memetic algorithms are chosen because of

their high performance for the TSP, ant colony optimization is adopted due to its state-

of-the-art performance on the PTSP. We also consider a random restart local search for

providing a base-line reference for the three metaheuristics. The customization of these

metaheuristics for the PTSP consists in adopting an estimation approach to evaluate

the solution cost, 2.5-opt-EEais as the local search, and tuning the metaheuristics

parameters. We present an experimental study of the estimation-based metaheuristic

algorithms on a number of instance classes. The results show that the proposed algo-

rithms are highly effective and that they define a new state-of-the-art for the PTSP. The

chapter is organized as follows. In Section 6.1, we discuss the proposed estimation-based

metaheuristics. In Section 6.2, we evaluate their performances. Finally, in Section 6.3,

we summarize the obtained results.
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6.1 Estimation-based metaheuristics

A straightforward approach to make a metaheuristic estimation-based is to estimate

the cost of solutions using Equation 4.2 given in page 52. In particular, for each solu-

tion xi, an unbiased estimator F̂Mi
(xi) of F (xi) is obtained through Mi independent

realizations of ω. We use, as for 2.5-opt-EEais, two procedures to increase the effec-

tiveness of the estimation approach. First, the method of common random numbers

to reduce the variance of the cost estimate. Second, the adaptive sample size proce-

dure to select the most appropriate number of realizations needed for each estimation.

Recall that in 2.5-opt-EEais, the adaptive sample size procedure is implemented us-

ing the sequential application of a parametric statistical test, Student’s t-test. This

is also appropriate for comparing two solutions at each iteration in algorithms such

as iterated local search (ILS). However, since in memetic algorithms (MAs) and ant

colony optimization algorithms (ACOs) more than two solutions are compared at each

iteration, we use a parametric statistical test based on analysis of variance (ANOVA)

(Fisher, 1925) and Tukeys’ honestly significant differences (HSD) test (Tukey, 1949) for

multiple comparison. We implemented the adaptive sample size procedure as a racing

algorithm (Birattari, 2004, 2009): at each iteration, the a posteriori solution cost of

each a priori solution is computed sequentially on realizations. Once Mmin realizations

have been used, where Mmin is a parameter, ANOVA is applied on a realization-by-

realization basis to test the null hypothesis that the cost estimates of all solutions are

equal. The rejection of the null hypothesis indicates that there is at least one solution

whose cost estimate is significantly worse than the one with best cost estimate. This

particular worse solution is identified using Tukeys’ HSD and is eliminated from fur-

ther evaluation. The procedure terminates when a single solution remains or when a

maximum number M of realizations is used. If more than one solution survives at the

end, the solution with the best cost estimate is selected as the best solution. We denote

this procedure ANOVA-Race.

Random restart local search

RRLS consists in applying a local search algorithm a number of times, starting each

time from a new initial solution, which is generated independently of the previously

found local optima (see also Section 2.1 of Chapter 2). For the PTSP, we implemented

an RRLS algorithm that at each iteration generates a new starting solution by using

the nearest neighbor heuristic and then applies 2.5-opt-EEais. Once each of the

n possible nearest neighbor solutions has been generated, the algorithm considers a
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random solution as the starting point. In order to compare the current local optimum

to the best-so-far local optimum, the algorithm uses the adaptive sample size procedure

with the t-test. We denote this algorithm as RRLS-EE, where EE refers to empirical

estimation.

Iterated local search

ILS consists in a sequence of runs of a local search algorithm, where the initial solution

of each run is obtained by a perturbation of the incumbent local optimum (see also

Section 2.1 of Chapter 2). The implementation of ILS for the PTSP is a straightforward

extension of TSP-specific ILS algorithms. It starts from a nearest neighbor solution

and uses 2.5-opt-EEais as the underlying local search algorithm. The perturbation

consists of applying ndb random double-bridge moves and changing the position of ps%

of n nodes, where ps and ndb are parameters and n is the size of the instance. This

change of the position is done by picking uniformly at random ps% of n nodes, removing

them from the solution and then re-inserting them according to the farthest insertion

heuristic. The adoption of this hybrid perturbation is inspired by the observation

that node insertion moves used in 1-shift are very effective when probability values

associated with the nodes are small—see Chapters 4, 5, Bianchi et al. (2005), and

Bianchi and Campbell (2007). Hence, the proposed hybrid scheme is suitable for a

wide range of probability values. The acceptance criterion compares two local optima

using the adaptive sample size procedure with the t-test. The algorithm is restarted

from a new nearest neighbor solution when no improvement is obtained for rstit · n

iterations, where rstit ∈ [0, 1] is a parameter. We denote this algorithm ILS-EE.

Memetic algorithms

MAs are iterative procedures that start with an initial population of solutions, which

is then repeatedly improved by applying a series of genetic operators and local search

(see also Section 2.1 of Chapter 2). As a starting point, we choose MAGX (Merz

and Freisleben, 2001), one of the most effective memetic algorithms for the TSP. In

this algorithm, the initialization phase consists in generating a number of solutions

using a randomized variant of the greedy construction heuristic and applying a local

search to each of them. The number of solutions is given by a parameter pop size. At

each iteration, off frac × pop size offsprings are produced, where off frac ∈ (0, 1] is a

parameter. Each offspring is generated from two parent solutions using the following

three step greedy recombination operator: first, all edges that are common to the
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parents are copied to the offspring; second, a number (determined by a parameter pn)

of new short edges that are not common to the parents are added to the offspring; third,

a number (determined by a parameter pc) of low cost edges from the parents are copied

to the offspring. A random double bridge move is used for mutating the individuals and

the candidates for mutation are chosen at random. Local search is applied on any new

solution that is generated by mutation or recombination. The customization of this

algorithm to the PTSP consists in using the ILS composite perturbation mechanism

parameterized by ndb and ps (see Section 6.1) as the mutation operator, ANOVA-Race

at each iteration to compare the cost of the solutions, and 2.5-opt-EEais as the local

search. The mutation is performed when all solutions survive the race at a given

iteration. We denote this algorithm MAGX-EE.

Ant colony optimization

We studied several ACO algorithms namely, ant colony system, MAX–MIN ant sys-

tem, rank-based ant system, and best-worst ant system to solve the PTSP. All these

algorithms use 2.5-opt-EEais as the local search and ANOVA-Race to compare the

cost of the solutions. This study is reported in Appendix A. The results showed that

all of them can be used to effectively tackle the PTSP provided that their parameter

values are fine tuned. Given that the best analytical computation algorithm pACS+1-

shift is based on ant colony system (ACS) algorithm (Dorigo and Gambardella, 1997),

we also choose ACS. In this algorithm, at each iteration, m ants, where m is a pa-

rameter, construct solutions in the following way. Initially, each ant is placed at a

randomly selected node; the choice of the ant to move from the current node i to a

next node j depends on q, a random variable uniformly distributed over [0, 1], and a

parameter q0. If q ≤ q0, then the ant chooses a node j that maximizes the product

τijη
β
ij ; otherwise a node j is chosen with probability pk

ij = τijη
β
ij/

∑

l∈Nk
i

τilη
β
il as the

next node. The terms τij and ηij = 1/cij are the pheromone value and the heuristic

value associated with edge 〈i, j〉, respectively; β is a parameter that determines the

relative influence of the heuristic information; Nk
i is the set of feasible nodes to move

from node i. ACS updates pheromone in two phases. The first phase takes place when

an ant moves from node i to node j: the pheromone value associated with the edge

〈i, j〉 is updated to τij = (1−ϕ) ·τij +ϕ ·τ0. Typically, ϕ is set to 0.1, and τ0, the initial

value of the pheromone, is set to 1/(n × Cnn), where Cnn is the TSP cost of a near-

est neighbor solution. The second phase takes place at the end of each iteration: the

pheromone value associated with each edge 〈i, j〉 of the best-so-far solution is updated
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to τij = (1 − ρ) · τij + ρ · ∆τ best
ij , where ρ ∈ (0, 1] is a parameter and ∆τ best

ij = 1/Cbest.

The value of Cbest is set to the cost of the best-so-far solution. The PTSP-specific cus-

tomization consists of using ANOVA-Race to evaluate the cost of solutions produced

at each iteration and adopting 2.5-opt-EEais as the local search, which is applied to

all solutions constructed by the ants prior to the pheromone update.

6.2 Experimental analysis

In this section, we present the experimental setting and the empirical results. The goal

of the experiments is to assess the performance of the proposed metaheuristics and to

compare them to the state-of-the-art analytical computation algorithms for the PTSP.

6.2.1 Experimental setup

The PTSP instances used for the experiments are obtained as described in Section

5.3 on page 78 of Chapter 5. We considered the values for pm from 0.050 to 0.200

with increments of 0.025 and from 0.3 to 0.5 with increments of 0.1; for each value

of pm, we considered four values for pv: {0, 16, 50, 83}. We generated 50 instances for

each probability level, each with 1000 nodes arranged as a number of clusters in a

106 × 106 square. The generated instances are grouped into three classes according to

pm: {0.050, 0.075, 0.100} (Class I), {0.150, 0.175, 0.200} (Class II), {0.300, 0.400, 0.500}
(Class III). This resulted in 12 levels (3 levels of pm times 4 levels of pv) per instance

class. This grouping is based on the study on 2.5-opt-EEais in Chapter 5, where we

found that on our hardware setting, on clustered instances of size 1000, 2.5-opt-EE-

ais reaches local optima in approximately 6, 2, and 1 CPU second(s) on the instances

grouped under Class I, Class II, and Class III, respectively.

All algorithms are implemented in C and compiled with gcc, version 3.3. The

implementation of ACS-EE is based on ACOTSP (Stützle, 2002). Experiments are

carried out on AMD OpteronTM244 processors running at 1.75 GHz with 1 MB L2-

Cache and 2 GB RAM under Rocks Cluster GNU/Linux.

We use 100 and 1000 CPU seconds as stopping criteria for each algorithm. This

setup allows the algorithms to perform a relatively small and large number of iterations

and it enables us to test the relative performance of the algorithms under different

application scenarios, in particular, short and long computation time.

In RRLS-EE, ILS-EE, and MAGX-EE, the nearest-neighbor heuristic is used to gen-

erate initial solutions. In ACS-EE, the size of the candidate list for solution construction

is set to 40 and it is generated with the quadrant nearest-neighbor strategy (Penky and
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Miller, 1994; Johnson and McGeoch, 1997). The minimum number of realizations used

in the adaptive sampling procedure before applying the t-test/ANOVA-Race is set to

five. The null hypothesis is rejected at a significance level of 0.05. The maximum num-

ber M of realizations is set to 1000 in all algorithms. The critical values of the t-test,

ANOVA, and Tukey tests are pre-computed and stored in a lookup table. Each algo-

rithm uses a same set of realizations for all iterations. In the context of the PTSP, this

strategy is more effective than changing realizations for each iteration—see Chapter 4.

However, the realizations are selected randomly from the given set at each full iteration

of the estimation-based metaheuristics. This is done to avoid the bias due to the order

in which the realizations are generated—if the order of the realizations is the same in

all iterations, then a solution whose cost estimate is better than that of other solutions

only on the first few realizations will always be selected as the best due to the sequential

application of the t-test/ANOVA-Race. Equation 4.1 is used for the post-evaluation of

the best-so-far solutions found by all estimation-based metaheuristics.

We present only the results obtained on certain instance sets. The general trends

of the results on other instances are consistent with the results presented here. The

complete results are given in an online supplementary document (Balaprakash et al.,

2008a):

http://iridia.ulb.ac.be/supp/IridiaSupp2008-019/

We also conducted a comparison with the aggregation approach (Campbell, 2006)

and the progressive approximation approach (Tang and Miller-Hooks, 2004), proposed

for the PTSP. Although these two approaches do not belong to the class of meta-

heuristics, they are considered to be viable alternatives to tackle the PTSP (Campbell

and Thomas, 2008b). However, the results showed that our iterative improvement al-

gorithm 2.5-opt-EEais usually dominates the two methods. We report the detailed

results in a technical report (Balaprakash et al., 2009b).

6.2.2 Parameter tuning

A major PTSP-specific customization of the estimation-based metaheuristics consists

in finding appropriate values for their parameters. For this purpose, we used the pa-

rameter tuning algorithm, Iterative F-Race. For each of the three instance classes,

we generated 120 instances (12 probability levels times 10 instances). The parameter

tuning is done in two phases: in the first phase, the parameters of 2.5-opt-EEais are

fine tuned on each instance class. The obtained parameter values are reported in Table

6.1. Note that these values are different from those given in Table 5.1 of Chapter 5,
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Table 6.1: Fine tuned parameter values for 2.5-opt-EEais. This table gives the parameters

considered for tuning, the range of each parameter given to Iterative F-Race, and the chosen values

for each instance class.

algorithm parameters range selected value

Class-I Class-II Class-III

2.5-opt-EEais

minis [0.0, 50.0] 42.0 46.0 2.40
u [0.0, 20.0] 13.0 16.0 5.80
p′ [0.0, 1.0] 0.003 0.47 0.70
p′′ [0.0, 1.0] 0.92 0.67 0.95

where parameters of 2.5-opt-EEais were fine-tuned separately on homogeneous and

heterogeneous instances.

In the second phase, we tuned the parameters of the metaheuristics on each instance

class for two stopping criteria: 100 and 1000 CPU seconds. In total, Iterative F-Race

is run 18 times (3 metaheuristics times 3 instance classes times 2 stopping criteria),

each with a computational budget of 1000 metaheuristic runs. Note that RRLS-EE

is not included in the tuning because it does not have any parameters apart from the

ones of 2.5-opt-EEais. The tuning with Iterative F-Race was repeated 10 times.

This was done to ensure that the observed trends in the results are not an artifact

of the stochastic nature of Iterative F-Race, which is itself a stochastic algorithm.

Consequently, for each instance class and stopping criterion combination, we have a

set of 10 fine tuned parameter configurations for each metaheuristic. We report all the

obtained parameter configurations in Balaprakash et al. (2008a).

6.2.3 Comparison between estimation-based metaheuristics

In this section, we compare the cost of the solutions obtained by ILS-EE, MAGX-EE,

ACS-EE, and RRLS-EE in 100 and 1000 CPU seconds. To quantify the effectiveness

of each algorithm, we study the expected solution cost of a metaheuristic, where the

expectation is taken with respect to the set of 10 parameter configurations and the set of

all test instances. In order to group the results obtained on different instances on each

instance class, the cost of the solutions obtained by ILS-EE, MAGX-EE, and ACS-EE

are normalized by the final solution cost reached by RRLS-EE. The normalization is

done on an instance-by-instance basis for 50 instances for each probability level.

Figure 6.1 shows an exemplary run time development plot that characterizes the

development of the solution cost of the algorithms over time up to 100 CPU seconds.

The observed trends are very similar for all probability levels. From the plot, we can
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Figure 6.1: An exemplary run time development plot on clustered PTSP instances of 1000 nodes

for 100 CPU seconds. The plot represents the cost of the solutions obtained by ILS-EE, MAGX-

EE, ACS-EE, and RRLS-EE. The obtained solution costs of the algorithms are normalized by the

final solution cost reached by RRLS-EE. The normalization is done on an instance-by-instance

basis for 50 instances; the normalized solution cost is then aggregated.

observe the following general trend: the initial solution is improved by 30% to 40%

in a very short computation time of 10 CPU seconds. The traces of the algorithms

show that this large improvement is achieved in the very first iteration. The reason

for this behavior is that the first run of 2.5-opt-EEais on the initial solution allows

each algorithm to obtain a large improvement. Note that in the case of population-

based algorithms, the plots take into account the improvement incurred by the first

local search applied to an individual of the population. Further improvements in the

following iterations are considerably smaller than that in the first iteration. When going

from 100 to 1000 CPU seconds, all four algorithms achieved an average solution cost

that is less than that for 100 CPU seconds—see absolute values reported in Balaprakash

et al. (2008a). The improvements in solution quality for this one order of magnitude

increase in computation time are up to 3%. In particular, MAGX-EE and ACS-EE

highly profit from the longer computation time.

Figure 6.2 shows the box plots of the solution cost of the algorithms after 100 and

1000 CPU seconds. From the plots, we can observe that the solution cost obtained by

the baseline algorithm RRLS-EE is significantly worse than that of all other algorithms

across most probability levels. The poor relative performance of RRLS-EE is ascribed

to the fact that it does not exploit the solution components from the best-so-far local
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(a) (b)

Figure 6.2: Experimental results on clustered PTSP instances of 1000 nodes. The box plots

represent the cost of the solutions obtained by ILS-EE, MAGX-EE, and ACS-EE. The obtained

solution costs of the algorithms are normalized by the final solution cost reached by RRLS-EE. The

normalization is done on an instance-by-instance basis for 50 instances; the normalized solution

cost is then aggregated. The dotted horizontal line denotes therefore the final cost of RRLS-EE.

optimum. An interesting observation from the plot is that the relative difference in the

solution cost between RRLS-EE and the other algorithms increases with an increase of

the mean probability value pm. (Recall that pm increases from Class I to Class III). This

shows that for instances with small pm, it is feasible to find high quality solutions by

simply restarting 2.5-opt-EEais with different nearest neighbor solutions. However,

for instances with large values of pm, besides 2.5-opt-EEais, the use of sophisticated

metaheuristics is crucial to find high quality solutions.

Table 6.2 reports the observed relative difference between the solution costs obtained

by the algorithms for 100 CPU seconds with a 95% confidence bound obtained through

a t-test. The results show that ILS-EE is more effective than the other algorithms. The

average cost of the solutions obtained by ILS-EE is up to 0.87% and 1.27% less than

that of MAGX-EE and ACS-EE, respectively. The observed differences are significant

according to a t-test except for a few probability levels, where the observed differences

between the algorithms are not significant or ILS-EE obtains solution costs that are

slightly worse than those of ACS-EE.

The results for 1000 CPU seconds are given in Table 6.3. The results show that ILS-

EE and MAGX-EE are particularly effective on instances of Class I and Class II. On

Class I instances, ILS-EE and MAGX-EE obtain solutions whose averages are 0.04%
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less than that of ACS-EE, respectively. On Class II instances, ILS-EE is more effective

than MAGX-EE and ACS-EE: the average solution cost obtained by ILS-EE is 0.09%

and 0.16% less than that of ACS-EE and MAGX-EE, respectively. However, on Class

III instances, ACS-EE achieves an average solution cost which is between 0.22% and

0.05% less than that of ILS-EE and MAGX-EE, respectively.

The effectiveness of ILS-EE under short computation time can be explained as

follows: since 2.5-opt-EEais is applied on a single solution at each iteration, the

computation time per iteration is lower than that of MAGX-EE and ACS-EE. As a

consequence, ILS-EE can do more iterations and finds high quality solutions. However,

it seems that the high computation time per iteration due to the adoption of population

of solutions is not a major issue under long computation time. While ACS-EE has been

shown to be effective for the PTSP—see Annex A, the reason for high performance of

MAGX-EE can be ascribed to the fact that it operates exclusively on a population of

high quality local optima obtained by 2.5-opt-EEais. Also note that MAGX-EE is

derived from MAs of Merz and Freisleben (2001), which is one of the most effective

algorithm for the related TSP (Hoos and Stützle, 2005).

We also compared ILS-EE, MAGX-EE, and ACS-EE to previously proposed estima-

tion-based simulated annealing algorithms. We implemented two simulated annealing

algorithms built on top of 2.5-opt-EEais. The first algorithm uses an acceptance

criterion as in Bowler et al. (2003). The second algorithm adopts a sample size scheme

and the acceptance criterion as in a general purpose stochastic simulated annealing

algorithm of Gutjahr and Pflug (1996) and Gutjahr (2004). The results showed that

ILS-EE, MAGX-EE, and ACS-EE completely outperform the two estimation-based

simulated annealing algorithms. We refer the reader to Balaprakash et al. (2009b) for

the complete results.
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Table 6.2: Comparison of the average cost obtained by ILS-EE, MAGX-EE, and ACS-EE on

clustered instances with 1000 nodes for 100 CPU seconds. See Footnote 1 for an explanation of

the contents and the typographic conventions adopted in the table.

ILS-EE
vs.

MAGX-EE

ILS-EE
vs.

ACS-EE

MAGX-EE
vs.

ACS-EE

p d CI d CI d CI

C
la

ss
I

0.050(00%) −0.06 [−0.10,−0.03] −0.50 [−0.59,−0.40] −0.43 [−0.53,−0.33]
0.050(16%) −0.07 [−0.11,−0.02] −0.20 [−0.25,−0.15] −0.13 [−0.19,−0.08]
0.050(50%) −0.03 [−0.06, +0.00] −0.02 [−0.05, +0.01] +0.01 [−0.02, +0.04]
0.050(83%) −0.01 [−0.03, +0.01] −0.00 [−0.02, +0.02] +0.01 [−0.02, +0.03]
0.075(00%) −0.09 [−0.12,−0.06] −0.36 [−0.40,−0.33] −0.27 [−0.31,−0.24]
0.075(16%) −0.11 [−0.14,−0.08] −0.32 [−0.35,−0.29] −0.22 [−0.25,−0.18]
0.075(50%) −0.10 [−0.13,−0.07] −0.24 [−0.26,−0.21] −0.14 [−0.17,−0.10]
0.075(83%) −0.03 [−0.05,−0.01] −0.07 [−0.09,−0.05] −0.04 [−0.06,−0.02]
0.100(00%) −0.18 [−0.21,−0.14] −0.64 [−0.68,−0.60] −0.46 [−0.51,−0.42]
0.100(16%) −0.16 [−0.19,−0.13] −0.63 [−0.66,−0.59] −0.47 [−0.51,−0.43]
0.100(50%) −0.16 [−0.19,−0.12] −0.41 [−0.44,−0.37] −0.25 [−0.29,−0.21]
0.100(83%) −0.06 [−0.09,−0.03] −0.28 [−0.32,−0.24] −0.22 [−0.25,−0.19]

overall −0.09 [−0.10,−0.08] −0.31 [−0.32,−0.29] −0.22 [−0.23,−0.21]

C
la

ss
II

0.150(00%) −0.23 [−0.26,−0.20] −0.44 [−0.48,−0.40] −0.21 [−0.26,−0.17]
0.150(16%) −0.45 [−0.48,−0.41] −0.77 [−0.82,−0.72] −0.33 [−0.38,−0.27]
0.150(50%) −1.28 [−1.35,−1.21] −1.84 [−1.92,−1.75] −0.57 [−0.67,−0.46]
0.150(83%) −1.79 [−1.89,−1.69] −2.67 [−2.82,−2.52] −0.90 [−1.07,−0.72]
0.175(00%) −0.19 [−0.23,−0.15] −0.38 [−0.43,−0.33] −0.19 [−0.24,−0.15]
0.175(16%) −0.44 [−0.49,−0.40] −0.74 [−0.79,−0.69] −0.30 [−0.35,−0.24]
0.175(50%) −1.12 [−1.18,−1.06] −1.57 [−1.63,−1.50] −0.45 [−0.53,−0.37]
0.175(83%) −1.59 [−1.67,−1.51] −2.30 [−2.41,−2.19] −0.72 [−0.85,−0.59]
0.200(00%) −0.25 [−0.29,−0.21] −0.32 [−0.36,−0.27] −0.06 [−0.11,−0.02]
0.200(16%) −0.41 [−0.45,−0.36] −0.62 [−0.67,−0.56] −0.21 [−0.26,−0.15]
0.200(50%) −1.04 [−1.09,−0.98] −1.43 [−1.49,−1.37] −0.40 [−0.48,−0.32]
0.200(83%) −1.57 [−1.64,−1.50] −2.14 [−2.21,−2.06] −0.57 [−0.66,−0.48]

overall −0.86 [−0.89,−0.84] −1.27 [−1.30,−1.24] −0.41 [−0.44,−0.38]

C
la

ss
II

I

0.300(00%) −0.17 [−0.23,−0.11] +0.02 [−0.04, +0.07] +0 .19 [+0.14, +0.24]
0.300(16%) −0.17 [−0.23,−0.11] −0.03 [−0.09, +0.03] +0 .13 [+0.08, +0.19]
0.300(50%) −0.43 [−0.51,−0.36] −0.70 [−0.78,−0.63] −0.27 [−0.34,−0.20]
0.300(83%) −0.77 [−0.85,−0.69] −1.36 [−1.45,−1.27] −0.59 [−0.69,−0.50]
0.400(00%) −0.16 [−0.22,−0.10] +0 .16 [+0.09, +0.22] +0 .32 [+0.27, +0.37]
0.400(16%) −0.18 [−0.25,−0.10] +0 .15 [+0.08, +0.23] +0 .33 [+0.28, +0.38]
0.400(50%) −0.29 [−0.36,−0.21] −0.14 [−0.22,−0.07] +0 .15 [+0.09, +0.21]
0.400(83%) −0.48 [−0.56,−0.41] −0.65 [−0.74,−0.57] −0.17 [−0.25,−0.09]
0.500(00%) −0.18 [−0.25,−0.11] +0 .19 [+0.11, +0.26] +0 .37 [+0.32, +0.42]
0.500(16%) −0.20 [−0.28,−0.13] +0 .21 [+0.13, +0.28] +0 .41 [+0.36, +0.46]
0.500(50%) −0.14 [−0.22,−0.06] +0 .23 [+0.15, +0.31] +0 .37 [+0.31, +0.43]
0.500(83%) −0.54 [−0.62,−0.46] −0.28 [−0.36,−0.20] +0 .27 [+0.20, +0.33]

overall −0.31 [−0.33,−0.29] −0.19 [−0.21,−0.16] +0 .12 [+0.10, +0.14]

1 For a given comparison A vs. B, the table reports the observed relative difference d between the
two algorithms A and B and the 95% confidence interval CI obtained through the t-test. If the value is
positive, algorithm A obtained an average cost that is larger than the one obtained by algorithm B. In
this case, the value is typeset in italics if it is significantly different from zero according to the t-test at
a confidence level of 95%. If the value is negative, algorithm A obtained an average cost that is smaller
than the one obtained by algorithm B. In this case, the value is typeset in boldface if it is significantly
different from zero according to the t-test, at a confidence level of 95%.
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Table 6.3: Comparison of the average cost obtained by ILS-EE, MAGX-EE, and ACS-EE on

clustered instances with 1000 nodes for 1000 CPU seconds. Typographic conventions are the same

as in Table 6.2.

ILS-EE
vs.

MAGX-EE

ILS-EE
vs.

ACS-EE

MAGX-EE
vs.

ACS-EE

p d CI d CI d CI

C
la

ss
I

0.050(00%) +0.00 [−0.01,+0.01] −0.06 [−0.06,−0.05] −0.06 [−0.06,−0.05]
0.050(16%) +0 .01 [+0.00,+0.01] −0.02 [−0.03,−0.01] −0.03 [−0.03,−0.02]
0.050(50%) +0 .01 [+0.00,+0.01] −0.00 [−0.01, +0.00] −0.01 [−0.01,−0.01]
0.050(83%) +0 .01 [+0.00,+0.01] +0.00 [−0.00, +0.01] −0.01 [−0.01,−0.00]
0.075(00%) +0 .02 [+0.01,+0.03] −0.07 [−0.08,−0.06] −0.08 [−0.09,−0.08]
0.075(16%) +0.00 [−0.01,+0.01] −0.06 [−0.07,−0.06] −0.06 [−0.07,−0.06]
0.075(50%) +0.00 [−0.00,+0.01] −0.02 [−0.03,−0.02] −0.03 [−0.03,−0.02]
0.075(83%) +0 .01 [+0.00,+0.01] −0.00 [−0.01, +0.00] −0.01 [−0.01,−0.00]
0.100(00%) −0.02 [−0.03,−0.01] −0.08 [−0.10,−0.06] −0.06 [−0.07,−0.04]
0.100(16%) −0.02 [−0.02,−0.01] −0.11 [−0.12,−0.09] −0.09 [−0.10,−0.08]
0.100(50%) −0.01 [−0.01,−0.00] −0.05 [−0.06,−0.05] −0.05 [−0.06,−0.04]
0.100(83%) +0.00 [−0.00,+0.01] −0.02 [−0.02,−0.01] −0.02 [−0.02,−0.02]

overall +0.00 [−0.00,+0.00] −0.04 [−0.04,−0.04] −0.04 [−0.04,−0.04]

C
la

ss
II

0.150(00%) +0 .04 [+0.02,+0.06] +0 .05 [+0.03, +0.07] +0.01 [−0.01, +0.03]
0.150(16%) −0.02 [−0.04,+0.00] −0.06 [−0.08,−0.04] −0.04 [−0.06,−0.02]
0.150(50%) −0.17 [−0.19,−0.15] −0.33 [−0.35,−0.30] −0.16 [−0.18,−0.13]
0.150(83%) −0.22 [−0.25,−0.19] −0.40 [−0.43,−0.38] −0.18 [−0.22,−0.15]
0.175(00%) +0 .05 [+0.02,+0.08] +0 .06 [+0.03, +0.09] +0.01 [−0.02, +0.04]
0.175(16%) −0.04 [−0.07,−0.02] −0.05 [−0.07,−0.02] −0.00 [−0.03, +0.03]
0.175(50%) −0.18 [−0.20,−0.15] −0.22 [−0.24,−0.19] −0.04 [−0.07,−0.01]
0.175(83%) −0.22 [−0.24,−0.19] −0.38 [−0.41,−0.35] −0.16 [−0.19,−0.13]
0.200(00%) +0 .07 [+0.04,+0.10] +0 .06 [+0.03, +0.09] −0.01 [−0.03, +0.02]
0.200(16%) +0.00 [−0.03,+0.03] −0.01 [−0.04, +0.02] −0.01 [−0.03, +0.02]
0.200(50%) −0.17 [−0.19,−0.14] −0.20 [−0.23,−0.18] −0.04 [−0.06,−0.01]
0.200(83%) −0.24 [−0.26,−0.21] −0.41 [−0.44,−0.39] −0.18 [−0.21,−0.15]

overall −0.09 [−0.10,−0.08] −0.16 [−0.17,−0.15] −0.07 [−0.07,−0.06]

C
la

ss
II

I

0.300(00%) +0 .18 [+0.14,+0.23] +0 .28 [+0.23, +0.32] +0 .09 [+0.06, +0.12]
0.300(16%) +0 .14 [+0.10,+0.18] +0 .20 [+0.16, +0.24] +0 .06 [+0.03, +0.09]
0.300(50%) +0.03 [−0.01,+0.07] −0.07 [−0.11,−0.02] −0.10 [−0.13,−0.06]
0.300(83%) −0.09 [−0.13,−0.05] −0.50 [−0.55,−0.45] −0.41 [−0.46,−0.36]
0.400(00%) +0 .22 [+0.17,+0.27] +0 .43 [+0.38, +0.48] +0 .21 [+0.18, +0.24]
0.400(16%) +0 .23 [+0.18,+0.28] +0 .40 [+0.34, +0.45] +0 .17 [+0.13, +0.20]
0.400(50%) +0 .18 [+0.13,+0.22] +0 .23 [+0.18, +0.28] +0 .05 [+0.02, +0.08]
0.400(83%) +0 .10 [+0.05,+0.15] −0.02 [−0.08, +0.03] −0.12 [−0.16,−0.08]
0.500(00%) +0 .29 [+0.24,+0.35] +0 .53 [+0.47, +0.59] +0 .23 [+0.20, +0.27]
0.500(16%) +0 .27 [+0.21,+0.32] +0 .49 [+0.43, +0.55] +0 .22 [+0.19, +0.25]
0.500(50%) +0 .28 [+0.22,+0.33] +0 .47 [+0.41, +0.53] +0 .19 [+0.16, +0.22]
0.500(83%) +0 .14 [+0.09,+0.19] +0 .21 [+0.15, +0.26] +0 .07 [+0.03, +0.10]

overall +0 .16 [+0.15,+0.18] +0 .22 [+0.20, +0.23] +0 .05 [+0.04, +0.07]
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6.2 Experimental analysis

Table 6.4: Fine tuned parameter values for each algorithm in 1000 CPU seconds. This table

gives the parameters considered for tuning, the range of each parameter given to Iterative F-Race,

and the chosen values for each instance class. For an explanation of the parameters, see Section

6.1.

algorithm parameters range selected value

Class-I Class-II Class-III

ILS-EE
ps [1, 90] 1 1 1
ndb [1, 50] 1 1 1

rstitr [0, 1] 0.089 0.34 0.69

MAGX-EE

pop size [3, 15] 4 3 8
off frac [0.1, 1.0] 0.24 0.67 0.16

ps [1, 90] 9 2 1
ndb [1, 50] 1 1 1
pn [0.1, 1.0] 0.33 0.11 0.29
pc [0.1, 1.0] 0.92 0.97 0.72

ACS-EE

m [3, 15] 10 8 11
q0 [0.0, 1.0] 1.0 1.0 0.97
β [0.0, 5.0] 0.18 0.00 0.83
ρ [0.001, 1.0] 0.31 0.30 0.61

6.2.4 Comparison with analytical computation algorithms

Currently, the best performing analytical computation algorithms are pACS+1-shift

(Bianchi and Gambardella, 2007) and HybMSPSO (Marinakis and Marinaki, 2010). In

this section, we compare ILS-EE, MAGX-EE and ACS-EE to these two algorithms.

First, we focus on the comparison with pACS+1-shift. The algorithms are evaluated

on the instances adopted by Bianchi (2006) to show the effectiveness of pACS+1-

shift. These instances are generated from the well-known TSPLIB instances, kroA100,

eil101, ch150, d198, lin318, att532, and rat783; probabilities associated with the

nodes are generated by the beta distribution using the same parameters as described for

the previous set of experiments. We used the stopping criterion suggested by Bianchi

and Gambardella (2007) and Bianchi (2006): each algorithm is allowed to run for a

computation time of n2/100 CPU seconds. This stopping criterion allows the algorithms

to run for a very long computation time. Concerning the parameter configuration for

pACS+1-shift, we use the one given in Bianchi and Gambardella (2007) and Bianchi

(2006). For ILS-EE, MAGX-EE, and ACS-EE, we choose the parameter values that

produced the lowest average cost across the 10 tuning runs for 1000 CPU seconds in

Section 6.2.3. They are listed in Table 6.4.

A problem in pACS+1-shift is that the underlying local search, 1-shift, as dis-

cussed in Chapter 4, suffers from numerical precision problems for large instances.
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Figure 6.3: Experimental results on the instance rat783. The plots represent the development

of the solution cost over time for MAGX-EE and pACS+1-shift. The obtained solution costs

of the two algorithms are normalized by the final solution cost reached by pACS+1-shift. The

normalization is performed on a run-by-run basis for 10 runs; the normalized solution cost is then

aggregated.

This problem can been addressed by resorting to computationally expensive arbitrary

precision arithmetics. However, for the given stopping criterion, the usage of the ar-

bitrary precision arithmetics in pACS+1-shift does not even allow the algorithm to

complete the first iteration. Therefore, we compared the solution costs obtained for the

probability levels at which the numerical problems do not occur.

Figure 6.3 shows exemplary run time development plots on PTSP instances gener-

ated from rat783. Since there is no recognizable visual difference among the estimation-

based algorithms, only MAGX-EE is chosen for the plots. We can see that MAGX-EE

(and also ILS-EE and ACS-EE) obtains high quality solutions in a very short time.

More precisely, the estimation-based algorithms reached the average solution cost of

pACS+1-shift in approximately two to three orders of magnitude less CPU time. The

trend is quite similar for other instances; the plots are shown in Balaprakash et al.

(2008a).

Table 6.5 reports the average difference between the final solution costs obtained by

MAGX-EE and pACS+1-shift on instances generated from rat783, d198, and kroA100.

The results of ILS-EE and ACS-EE are quite similar—see Balaprakash et al. (2008a).

On all probability levels for rat783, the estimation-based algorithms achieve average

solution costs that are significantly less than that of pACS+1-shift. The average im-
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provements are up to 4.90% (MAGX-EE), 7.35% (MAGX-EE), and 12.39% (ACS-EE)

on Class I, II, III instances, respectively. We can observe a similar trend but smaller

improvements for d198 and kroA100 instances. There are a few exceptions at some

probability levels. These results also show a general trend in which the differences be-

tween the average solution costs of the estimation-based algorithms and pACS+1-shift

increase with an increase in the instance size and also with an increase in the probability

level (the only exception is on Class II instances of kroA100).

The high performance of the estimation-based algorithms is mainly due to the

adoption of the effective iterative improvement algorithm as local search: since, for the

given computation time, 2.5-opt-EEais is much faster than 1-shift, the estimation-

based algorithms perform a much larger number of local searches than pACS+1-shift.

The average number of local searches performed by each algorithm is shown in Table 6.6.

For the comparison between the estimation-based algorithms and HybMSPSO, we

adopt the instances used by Marinakis and Marinaki (2010), on which the authors

showed that HybMSPSO is more effective than pACS+1-shift for high probability

values. These are homogeneous PTSP instances generated from the TSP instances

kroA100, eil101, ch150, d198, and rat783 with some probability values between 0.1

and 0.9. On these instances, we made a direct comparison of the cost of the solu-

tions obtained by the estimation-based algorithms to the ones of HybMSPSO reported

in Marinakis and Marinaki (2010). Note that we compare the average cost of the

estimation-based algorithms to the reported best solution cost of HybMSPSO. This

might possibly introduce a bias in favor of HybMSPSO. Table 6.7 highlights the results

from the comparison on instances kroA100, d198, and rat783. The trend is similar for

all other instances. Absolute values are reported in Balaprakash et al. (2008a).

The results show that the estimation-based algorithms are more effective than

HybMSPSO and that they obtain average solution costs which are significantly less

than the cost of the best solution obtained by HybMSPSO on a wide range of instance

sizes and probability levels. On the largest instance rat783, the observed average dif-

ference ranges between 0.32% and 10.23%. On the instance d198 and kroA100, for

most probability levels, the observed differences are significant and the improvements

are up to 1.03% and 2.58%, respectively.
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Table 6.5: Comparison of the average cost obtained by MAGX-EE and pACS+1-shift on rat783,

d198, and kroA100. The results are obtained over 10 independent runs. For certain probability

levels in large instances, pACS+1-shift suffers from numerical problems, where the comparison is

not meaningful. Those cases are marked as −. Typographic conventions are the same as in Table

6.2.

rat783 d198 kroA100

p d CI d CI d CI

C
la

ss
I

0.050(00%) +0.04 [−0.08,+0.16] +0 .07 [+0.05, +0.08] +0 .08 [+0.06, +0.11]
0.050(16%) −7.57 [−9.91,−5.23] −0.16 [−0.23,−0.09] −0.29 [−0.42,−0.16]
0.050(50%) - - −0.62 [−1.09,−0.15] −0.99 [−1.52,−0.46]
0.050(83%) - - −1.84 [−2.87,−0.81] −1.34 [−2.84, +0.17]
0.075(00%) −2.33 [−3.47,−1.19] +0 .06 [+0.05, +0.07] +0 .08 [+0.05, +0.10]
0.075(16%) −6.81 [−9.98,−3.64] −0.02 [−0.03,−0.01] −0.03 [−0.06,−0.01]
0.075(50%) - - −0.27 [−0.41,−0.12] −0.36 [−0.48,−0.24]
0.075(83%) - - −1.92 [−2.65,−1.19] −0.42 [−0.60,−0.24]
0.100(00%) −2.82 [−3.49,−2.14] +0 .08 [+0.07, +0.10] +0 .08 [+0.06, +0.10]
0.100(16%) −9.91 [−12.98,−6.85] +0 .03 [+0.02, +0.04] +0.00 [−0.01, +0.02]
0.100(50%) - - −0.16 [−0.23,−0.09] −0.23 [−0.31,−0.15]
0.100(83%) - - −3.85 [−5.03,−2.66] −0.32 [−0.41,−0.23]

overall −4.90 [−6.06,−3.74] −0.72 [−0.96,−0.47] −0.31 [−0.45,−0.17]

C
la

ss
II

0.150(00%) −4.89 [−6.13,−3.64] +0 .05 [+0.04, +0.07] +0 .03 [+0.02, +0.05]
0.150(16%) −8.82 [−10.17,−7.47] +0 .04 [+0.02, +0.07] +0 .02 [+0.01, +0.03]
0.150(50%) - - −0.06 [−0.08,−0.04] −0.09 [−0.11,−0.06]
0.150(83%) - - −4.85 [−6.11,−3.59] −0.23 [−0.31,−0.15]
0.175(00%) −5.34 [−6.21,−4.46] +0 .05 [+0.03, +0.07] +0 .03 [+0.01, +0.04]
0.175(16%) −8.96 [−10.61,−7.31] +0.02 [−0.02, +0.06] +0 .02 [+0.00, +0.04]
0.175(50%) - - −0.06 [−0.10,−0.01] −0.05 [−0.07,−0.02]
0.175(83%) - - −6.33 [−8.05,−4.62] −0.18 [−0.23,−0.13]
0.200(00%) −5.64 [−6.24,−5.04] +0 .06 [+0.03, +0.09] +0 .02 [+0.01, +0.04]
0.200(16%) −10.46 [−11.92,−8.99] +0.02 [−0.00, +0.04] +0 .02 [+0.01, +0.03]
0.200(50%) - - −1.29 [−3.22, +0.64] −0.04 [−0.07,−0.00]
0.200(83%) - - −6.53 [−8.16,−4.90] −0.52 [−0.89,−0.15]

overall −7.35 [−8.05,−6.65] −1.57 [−2.09,−1.06] −0.08 [−0.12,−0.04]

C
la

ss
II

I

0.300(00%) −9.69 [−10.63,−8.74] +0.04 [−0.00, +0.09] +0 .05 [+0.02, +0.07]
0.300(16%) −12.32 [−13.54,−11.09] −0.08 [−0.19, +0.03] +0 .01 [+0.00, +0.02]
0.300(50%) - - −1.14 [−2.78, +0.50] −0.02 [−0.02,−0.01]
0.300(83%) - - −7.57 [−9.07,−6.07] −1.26 [−2.14,−0.38]
0.400(00%) −10.28 [−11.60,−8.95] −0.23 [−0.43,−0.02] +0.00 [−0.00, +0.01]
0.400(16%) −13.44 [−14.35,−12.52] −0.69 [−1.21,−0.18] +0.01 [−0.00, +0.02]
0.400(50%) - - −4.95 [−7.27,−2.63] −0.36 [−0.82, +0.09]
0.400(83%) - - −8.37 [−9.69,−7.05] −2.40 [−3.78,−1.02]
0.500(00%) −12.09 [−13.19,−11.00] −0.34 [−0.61,−0.07] +0.00 [−0.00, +0.00]
0.500(16%) −15.91 [−16.88,−14.93] −1.23 [−1.75,−0.71] +0.00 [−0.00, +0.01]
0.500(50%) - - −6.18 [−7.72,−4.63] −1.12 [−1.81,−0.42]
0.500(83%) - - −8.64 [−10.42,−6.86] −4.82 [−7.03,−2.61]

overall −12.29 [−12.94,−11.63] −3.28 [−3.97,−2.60] −0.83 [−1.15,−0.50]
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6.2 Experimental analysis

Table 6.6: The average number of local searches performed by the estimation-based
algorithms and pACS+1-shift over 10 independent runs on instance rat783.

p ILS-EE MAGX-EE ACS-EE pACS+1-shift
0.050(00%) 576 521 468 14
0.050(16%) 553 573 613 5
0.075(00%) 2302 1903 2323 15
0.075(16%) 929 928 896 5
0.100(00%) 4714 3827 6286 16
0.100(16%) 1505 1530 1457 6
0.150(00%) 7790 7709 13914 24
0.150(16%) 2712 2712 3347 10
0.175(00%) 11191 11353 21458 26
0.175(16%) 4378 4376 6441 10
0.200(00%) 15692 15878 27183 26
0.200(16%) 6310 6435 10232 10
0.300(00%) 24777 23924 34864 25
0.300(16%) 12831 12958 15803 12
0.400(00%) 41546 35626 49138 29
0.400(16%) 27886 26479 33784 15
0.500(00%) 77195 53900 81400 34
0.500(16%) 50423 41128 58192 16

Table 6.7: Comparison of the average cost obtained by ILS-EE, MAGX-EE, ACS-EE, and

HybMSPSO on instances kroA100, d198, and rat783. For ILS-EE, MAGX-EE, and ACS-EE the

results are obtained over 10 independent runs. For HybMSPSO, the values are taken directly from

Marinakis and Marinaki (2010). Typographic conventions are the same as in Table 6.2.

ILS-EE
vs.

HybMSPSO

MAGX-EE
vs.

HybMSPSO

ACS-EE
vs.

HybMSPSO

p d [95% CI] d [95% CI] d [95% CI]

k
ro

A
1
0
0

0.100(00%) −0.36 [−0.39,−0.32] −0.37 [−0.40,−0.35] −0.40 [−0.42,−0.38]
0.200(00%) −0.07 [−0.10,−0.05] −0.08 [−0.10,−0.07] +0.04 [−0.11, +0.20]
0.300(00%) +0 .06 [+0.03, +0.10] +0.01 [−0.01, +0.04] −0.01 [−0.03, +0.02]
0.400(00%) −0.92 [−0.99,−0.85] −1.00 [−1.00,−0.99] −1.00 [−1.00,−0.99]
0.500(00%) −0.03 [−0.10, +0.04] −0.08 [−0.08,−0.07] −0.08 [−0.08,−0.07]
0.600(00%) −1.91 [−1.92,−1.90] −1.91 [−1.92,−1.91] −1.91 [−1.92,−1.91]
0.800(00%) −2.57 [−2.58,−2.56] −2.58 [−2.59,−2.57] −2.57 [−2.59,−2.56]
0.900(00%) 0.00 [0.00, 0.00] 0.00 [0.00, 0.00] 0.00 [0.00, 0.00]

d
1
9
8

0.100(00%) −0.82 [−0.85,−0.79] −0.82 [−0.84,−0.81] −0.85 [−0.86,−0.84]
0.200(00%) −0.97 [−1.01,−0.94] −1.03 [−1.06,−1.01] −1.00 [−1.05,−0.95]
0.500(00%) −0.83 [−0.86,−0.79] −0.85 [−0.87,−0.82] −0.84 [−0.86,−0.82]
0.900(00%) −0.02 [−0.05, +0.01] −0.07 [−0.09,−0.04] −0.03 [−0.05,−0.01]

ra
t7

8
3 0.100(00%) −10.14 [−10.24,−10.05] −10.23 [−10.32,−10.15] −10.20 [−10.26,−10.14]

0.200(00%) −4.60 [−4.77,−4.42] −4.64 [−4.75,−4.54] −4.31 [−4.57,−4.05]
0.500(00%) −3.35 [−3.47,−3.23] −3.51 [−3.61,−3.42] −3.35 [−3.53,−3.17]
0.900(00%) −0.32 [−0.38,−0.26] −0.32 [−0.52,−0.12] −0.49 [−0.62,−0.36]
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6.2.5 TSP approximation and the aggregation approach in estimation-

based algorithms

A very different approach to the PTSP is to completely forget about its stochastic

component and to tackle a PTSP instance as if it were a TSP instance. This approach

makes it possible to exploit the state-of-the-art in TSP solving for generating a priori

solutions for the PTSP. In fact, this approach is, according to the PTSP literature sur-

prisingly effective: Bianchi (2006) and Bianchi and Gambardella (2007) benchmarked

pACS+1-shift against the state-of-the-art exact TSP solver, Concorde (Applegate et al.,

2001) and they established a critical mean probability of 0.5, above which the latter is

more effective than the former. Note that Concorde is an exact algorithm that finds

the optimal solution for a given TSP instance. In this section, we repeat the same ex-

periments but now using ILS-EE, ACS-EE, and MAGX-EE as the PTSP solver (using

the version that is tuned for 1000 CPU seconds). We use the same instances and a

n2/100 CPU seconds stopping criterion as described by Bianchi (2006), Bianchi and

Gambardella (2007).

The results on PTSP instances derived from the TSP instances kroA100, d198, and

rat783 are shown in Table 6.8. The estimation-based algorithms ILS-EE, ACS-EE, and

MAGX-EE obtain solution costs that are significantly lower than those of Concorde up

to probability 0.9. The advantage of the estimation-based algorithms is quite strong

on instances with low probability values and the observed average difference increases

with instance size reaching more than 10% for the largest instance rat783.

We also investigated whether the effectiveness of estimation-based algorithms can be

improved by using optimal tours for the TSP or the tours returned by the aggregation

approach as initial solutions under short computation time. However, we could not

observe a significant improvement in obtained solution cost with the two approaches.

We refer the reader to Balaprakash et al. (2009b) for complete results.

6.3 Summary

In this chapter, we customized iterated local search, memetic, and ant colony optimiza-

tion algorithms to tackle the PTSP. The proposed customization consists in adopting

an estimation-based approach to evaluate the solution cost and the state-of-the-art

iterative improvement algorithm, 2.5-opt-EEais, as local search. We presented an

experimental comparison of the estimation-based algorithms using short and long com-

putation times as stopping criteria. First, we performed a rigorous parameter tuning
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Table 6.8: Comparison of the average cost obtained by ILS-EE, MAGX-EE, ACS-EE, and Con-

corde over 10 independent runs on instance kroA100, d198, and rat783. Typographic conventions

are the same as in Table 6.2.

ILS-EE
vs.

Concorde

MAGX-EE
vs.

Concorde

ACS-EE
vs.

Concorde

p d [95% CI] d [95% CI] d [95% CI]

k
ro

A
1
0
0

0.100(00%) −0.41 [−0.44,−0.38] −0.43 [−0.45,−0.40] −0.45 [−0.47,−0.43]
0.200(00%) −0.41 [−0.43,−0.38] −0.41 [−0.43,−0.40] −0.29 [−0.44,−0.14]
0.300(00%) −0.22 [−0.26,−0.18] −0.27 [−0.30,−0.24] −0.29 [−0.32,−0.26]
0.400(00%) −0.08 [−0.15,−0.01] −0.16 [−0.16,−0.15] −0.16 [−0.16,−0.15]
0.500(00%) −0.05 [−0.12, +0.02] −0.09 [−0.09,−0.09] −0.09 [−0.09,−0.09]
0.600(00%) −0.07 [−0.08,−0.06] −0.07 [−0.08,−0.07] −0.07 [−0.08,−0.07]
0.700(00%) −0.16 [−0.17,−0.14] −0.16 [+0.00, +0.00] −0.16 [+0.00, +0.00]
0.800(00%) −0.03 [−0.04,−0.02] −0.04 [−0.05,−0.03] −0.03 [−0.05,−0.02]
0.900(00%) −0.00 [+0.00, +0.00] −0.00 [+0.00, +0.00] −0.00 [−0.01, +0.00]
1.000(00%) 0.00 [0.00, 0.00] 0.00 [0.00, 0.00] 0.00 [0.00, 0.00]

d
1
9
8

0.100(00%) −1.08 [−1.11,−1.05] −1.09 [−1.10,−1.07] −1.12 [−1.13,−1.11]
0.200(00%) −1.22 [−1.26,−1.19] −1.28 [−1.31,−1.26] −1.25 [−1.30,−1.21]
0.300(00%) −1.44 [−1.47,−1.40] −1.48 [−1.51,−1.45] −1.49 [−1.53,−1.44]
0.400(00%) −1.25 [−1.28,−1.21] −1.28 [−1.30,−1.25] −1.32 [−1.33,−1.31]
0.500(00%) −0.92 [−0.95,−0.88] −0.94 [−0.96,−0.91] −0.93 [−0.95,−0.91]
0.600(00%) −0.51 [−0.57,−0.44] −0.54 [−0.59,−0.50] −0.55 [−0.59,−0.50]
0.700(00%) −0.41 [−0.45,−0.38] −0.47 [−0.47,−0.47] −0.47 [−0.47,−0.47]
0.800(00%) −0.22 [−0.27,−0.18] −0.27 [−0.27,−0.27] −0.27 [−0.27,−0.27]
0.900(00%) −0.08 [−0.11,−0.05] −0.12 [−0.14,−0.10] −0.09 [−0.11,−0.06]
1.000(00%) +0 .05 [+0.03, +0.07] +0 .03 [+0.01, +0.05] +0.02 [−0.00, +0.04]

ra
t7

8
3

0.100(00%) −10.18 [−10.27,−10.09] −10.27 [−10.36,−10.19] −10.24 [−10.29,−10.18]
0.200(00%) −8.39 [−8.57,−8.22] −8.44 [−8.54,−8.34] −8.12 [−8.37,−7.87]
0.300(00%) −6.25 [−6.34,−6.15] −6.32 [−6.46,−6.17] −6.43 [−6.59,−6.28]
0.400(00%) −4.72 [−4.85,−4.58] −4.64 [−4.78,−4.49] −4.79 [−4.90,−4.67]
0.500(00%) −3.39 [−3.51,−3.27] −3.56 [−3.65,−3.46] −3.39 [−3.57,−3.21]
0.600(00%) −2.10 [−2.21,−1.99] −2.26 [−2.38,−2.13] −2.28 [−2.45,−2.12]
0.700(00%) −1.17 [−1.32,−1.03] −1.45 [−1.59,−1.32] −1.39 [−1.47,−1.31]
0.800(00%) −0.81 [−0.90,−0.72] −0.82 [−0.93,−0.71] −0.92 [−1.08,−0.75]
0.900(00%) −0.56 [−0.62,−0.50] −0.56 [−0.76,−0.37] −0.73 [−0.86,−0.61]
1.000(00%) +0 .81 [+0.71, +0.91] +0 .76 [+0.61, +0.91] +0 .49 [+0.34, +0.63]
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of all the estimation-based algorithms to avoid any bias due to the tuning procedure.

Using the fine tuned parameter values, we evaluated the solution cost obtained by

the estimation-based algorithms on three instance classes. For the short computation

time, the iterated local search is most effective. For long computation time, both the

iterated local search and the memetic algorithms outperform ant colony system on in-

stances with low average probability values (up to 0.2). Nevertheless, ant colony system

emerges as the best algorithm on instances with average probability values between 0.3

and 0.5.

The main contribution of the chapter is the development of new state-of-the-art

metaheuristic algorithms for the PTSP. Compared to the previously proposed ana-

lytical computation algorithms, the estimation-based metaheuristic algorithms obtain

high quality solutions in a very short computation time. The advantage in speed and

solution quality is primarily due to the adoption of 2.5-opt-EEais as the local search.

Moreover, in the literature, it has been shown that the PTSP instances with average

probability value greater than 0.5 can be solved more effectively by an exact TSP al-

gorithm than the analytical computation PTSP algorithm. Here, we showed that the

estimation-based algorithms can push this probability limit to much larger values up

to 0.9. In a nutshell, we showed that the estimation-based approach is an effective

replacement for analytical computation in metaheuristics for the PTSP.
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Chapter 7

Estimation-based Metaheuristics

for the VRPSDC

In this chapter, we customize the estimation-based metaheuristics developed for the

PTSP to tackle the vehicle routing problem with stochastic demands and customers

(VRPSDC). The VRPSDC is an extension of the PTSP: a capacitated vehicle has to

serve a set of customers where each customer has a probability of requiring being visited

and a stochastic demand. Besides the usual difficulty of finding an optimal solution

in a large search space, the VRPSDC has a computationally expensive cost function.

For large instances, the adoption of this cost function in metaheuristics is a primary

bottleneck for finding high quality solutions in a reasonable computation time. We

tackle this issue by using an empirical estimation approach to evaluate the VRPSDC

solution cost. We also exploit the effectiveness of 2.5-opt-EEais for the VRPSDC by

using it as an underlying local search algorithm inside metaheuristics. We present an

experimental study of several estimation-based metaheuristics on a number of problem

instances. We show that the proposed estimation-based algorithms outperform the

current best algorithm tailored to solve the given problem. Among the estimation-

based algorithms, we show that an ant colony optimization algorithm is particularly

effective.

This chapter is organized as follows. In Section 7.1, we describe the VRPSDC and

its solutions approaches. In Section 7.2, we describe estimation-based metaheuristics

for the VRPSDC. In Section 7.3, we present an experimental study of the proposed

algorithms to show their effectiveness. We summarize the results in Section 7.4.
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7.1 The VRPSDC

The VRPSDC (Bertsimas, 1988) is concerned with minimizing the cost involved in

routing a capacitated vehicle that collects goods from a set of customers. Each customer

has a probability of requiring being visited and a stochastic demand. This problem

combines two classical stochastic routing problems: the probabilistic traveling salesman

problem (PTSP) and the well-known vehicle routing problem with stochastic demands

(VRPSD). The VRPSDC is an NP-hard problem that models a number of practical

problems in the areas of less-than-truckload operations and package delivery systems

(Bertsimas, 1988, 1992).

Formally, an instance of the VRPSDC can be defined on a graph G with the fol-

lowing elements:

• a set V = {1, 2, ..., n} of nodes that represent customers with node 1 being the

depot;

• a set A = {〈i, j〉 : i, j ∈ V, i 6= j} of edges, where an edge 〈i, j〉 connects nodes i

and j;

• a set C = {cij : 〈i, j〉 ∈ A} of travel costs, where cij is the cost of using edge

〈i, j〉 ∈ A;

• a set P = {pi : i ∈ V, i 6= 1, 0 ≤ pi ≤ 1} of probabilities, where pi is the probability

that a node i requires being visited;

• a set ξ = {ξi : i ∈ V, i 6= 1} of random variables, where ξi describes the stochastic

demand of node i;

• a vehicle of capacity Q.

It is assumed that (i) the travel costs are symmetric, that is, for all pairs of nodes i, j

we have cij = cji; (ii) the events that two distinct nodes i and j require being visited

and their demands are assumed to be independent; (iii) node demands are discrete;

(iv) the information that a node i does not require being visited is revealed before the

vehicle leaves the predecessor of node i; (v) the exact demand of a node i is revealed

only when the vehicle reaches node i; and (vi) the maximum demand of any node does

not exceed the vehicle capacity Q.

The VRPSDC is usually tackled using a priori optimization, which consists in

finding an a priori solution that minimizes the expected cost of the a posteriori solution.

The a priori solution is a Hamiltonian tour, which is found before knowing which nodes
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(a) (b)

(c) (d)

Figure 7.1: Plot 7.1(a) shows an a priori solution for a VRPSDC instance with 8 nodes,
where node 1 is the depot and the nodes are visited in the following order: 1, 2, 3, 4, 5,
6, 7, 8, and 1. Plot 7.1(b) shows a recourse action for skipping nodes 2 and 7 that do not
require being visited assuming that the vehicle capacity is not exceeded and recourse action
due to the vehicle capacity is not performed. Plot 7.1(c) shows a recourse action at node
4, where the capacity of the vehicle is exactly attained after collecting goods. The vehicle
goes back to the depot 1 and it resumes the collection from the next node 5 that requires
being visited. Plot 7.1(d) shows a recourse action at node 6, where the space available
in the vehicle is not enough to collect all goods. The vehicle accommodates a part of the
goods up to its capacity, returns to the depot 1 to unload, and goes back to the same node
6 to collect the remaining goods.
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require being visited and their respective demands; the a posteriori solution is obtained

by following the nodes in the order of the a priori solution with the following recourse

actions.

• Similar to the PTSP, nodes that do not require being visited are skipped.

• If the capacity of the vehicle is exactly attained after collecting goods at a node,

the vehicle goes back to the depot and resumes the collection from the next node

that requires being visited.

• If the space available in the vehicle is not enough to collect all goods from a node,

the vehicle accommodates a part of the goods up to its capacity, returns to the

depot to unload, and goes back to the same node to collect the remaining goods.

See Figure 7.1 for an illustration of the three recourse actions.

Bertsimas (1988), Séguin (1994), and Gendreau et al. (1995) derived closed-form ex-

pressions to compute the exact cost of a VRPSDC solution. Let x = (π(1), π(2), . . . , π(n),

π(n + 1) = π(1)) be an a priori solution for the VRPSDC, where π is a permutation

of the set V . The cost F (x) of the a priori solution x can be obtained as follows:

F (x) =

n
∑

i=1

n+1
∑

j=i+1

cπ(i)π(j)pπ(i)π(j) + γ2

(

Q
)

, (7.1)

where

pπ(i)π(j) =







pπ(i)pπ(j), j = i + 1,

pπ(i)pπ(j)

∏j−1
h=i+1(1 − pπ(h)), j > i + 1,

γn

(

g) = pπ(n)(cπ(n)π(1) + cπ(1)π(n))
∑

l|ξl
π(n)

>g

pl
π(n)

(1 ≤ g ≤ Q).

γi

(

g) = (1 − pπ(i))γi+1(g)

+ pπ(i)

[

∑

l|ξπ(i)>g

pl
π(i)(γi+1(Q − ξl

π(i)) + cπ(i)π(1) + cπ(1)π(i))

+
∑

l|ξπ(i)<g

pl
π(i)γi+1(g − ξl

π(i))
]

+ P (ξπ(i) = g|π(i) is present)

[

pπ(i)γi+1(Q) +

n
∑

j=i+1

pπ(i)π(j)(cπ(i)π(1) + cπ(1)π(j) − cπ(i)π(j))
]
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(i = 2, . . . , n − 1; 1 ≤ g ≤ Q),

where pl
π(i) is the probability of the lth discrete demand level ξl

π(i) of ξπ(i). The time

complexity of this expression is O(n2 + nlQ), where l is the maximum number of

different demand levels for any node (Gendreau et al., 1995). It should be noted that

in Equation 7.1, an undirected solution must be evaluated twice—once in the clockwise

direction and once in the anti-clockwise direction. This is due to the fact that a vehicle

with a finite capacity Q might have different recourse actions depending on whether it

visits the nodes in the clockwise or the anti-clockwise direction.

The VRPSDC has received less attention than other stochastic routing problems

and, in particular, than the PTSP. Séguin (1994) and Gendreau et al. (1995) first

proposed an exact algorithm based on the Integer L-shaped method. This algorithm

is tested on instances with up to 70 nodes. The authors showed that instances with a

large number of probabilistic nodes cannot be solved in a reasonable computation time.

For example, to solve an instance with 10 probabilistic nodes and 1 depot, the Integer

L-shaped method needed up to 53903 CPU seconds on a Silicon Graphics computer

with a 33 Mhz processor.

Séguin (1994) and Gendreau et al. (1996b) tackled this problem using a tabu search

algorithm, TABUSTOCH. This algorithm uses a randomized node-insertion neighbor-

hood, where the neighborhood of the incumbent solution is a set of solutions obtained

by deleting q nodes and inserting each of them before or after its nn nearest neighbors,

where q and nn are parameters. Concerning the tabu length, if the incumbent solu-

tion at iteration v is obtained by deleting a node i between two nodes, its reinsertion

between the same two nodes is tabu until iteration v + θ, where θ is a random value

in the interval [n − 5, n]. At each iteration, the algorithm explores all neighboring so-

lutions of the incumbent solution. Since computing the exact cost of all neighboring

solutions with Equation 7.1 is computationally expensive, the cost differences between

neighboring solutions are computed using a delta evaluation that is based on an analyt-

ical approximation approach. A list is constructed in which the neighboring solutions

are sorted in ascending order with respect to the approximate costs obtained from the

proxy expression. Using this sorted list, the exact cost of solutions are computed with

Equation 7.1 in a batch-by-batch fashion, where a batch comprises five solutions. As

soon as the algorithm finds a non-tabu neighboring solution that has a lower cost than

the incumbent solution, the exact cost computation is stopped and the lower cost neigh-

boring solution is accepted as the incumbent solution. However, if the algorithm finds

a lower cost neighboring solution in the first batch of the sorted list, then the solution
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is accepted immediately even if it is obtained by a tabu move. Note that this algorithm

can also handle multiple vehicles. For a complete description of the algorithm, we refer

the reader to Gendreau et al. (1996b). To the best of our knowledge, TABUSTOCH is

the only metaheuristic explicitly designed to tackle the VRPSDC.

The main novelty in TABUSTOCH is the adoption of the analytical approxima-

tion approach in delta evaluation. Gendreau et al. (1996b) systematically tested four

analytical approximation schemes: a TSP delta evaluation scheme that considers edge

costs but completely ignores node probabilities and demands; a PTSP delta evaluation

that adopts edge costs weighted by node probabilities; two VRPSDC delta evaluation

schemes that consider edge costs, node probabilities, and demands. After some prelim-

inary experiments, the authors adopted the PTSP delta evaluation scheme, which they

found to be more effective than the TSP and VRPSDC schemes.

It is worthwhile to focus on some implementation details of TABUSTOCH. Séguin

(1994) and Gendreau et al. (1996b) developed TABUSTOCH to tackle the VRPSDC

with K vehicles, where K is a parameter. A penalized cost function is used to force

the algorithm to achieve K a priori routes. The approximation scheme is more so-

phisticated when a node from one a priori route is moved to another a priori route

during randomized node-insertion moves. In the experimental analysis, TABUSTOCH

is applied to solve the VRPSDC instances of size up to 46 with 2 vehicles. On the

instance of size 11 with 10 probabilistic nodes, where the Integer L-shaped method

needed up to 53903 CPU seconds, TABUSTOCH required only 15.46 CPU seconds

to find the optimal solution on the same hardware. In this chapter, we focus on a

single vehicle VRPSDC because the adoption of multiple vehicles might not allow us

to exactly assess the computational overhead involved in using Equation 7.1. This is

ascribed to the fact that, for a given instance with n nodes, the depth of recursion and

the associated function-call overhead while using two vehicles will be much more than

that of one vehicle—in particular for large instances.

There are two main shortcomings in the literature that motivated us to develop

estimation-based algorithms for the VRPSDC. First, the currently available meta-

heuristic, TABUSTOCH, uses a computationally expensive analytical computation ap-

proach, which affects the performance of the algorithm for large instances. The effec-

tiveness of using the alternative empirical estimation approach has never been studied

within metaheuristics to tackle the VRPSDC. Second, there is only one tailor-made

metaheuristic for the VRPSDC; the possibility of using other metaheuristics to tackle

the VRPSDC has not been studied.
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7.2 Estimation-based metaheuristics

As in the PTSP, the empirical estimation approach consists in estimating the cost F (x)

on the basis of sample costs f(x, ω1), f(x, ω2), . . . , f(x, ωM ) of a posteriori solutions

obtained from M independent realizations ω1, ω2, . . . , ωM of probabilities and stochastic

demands of nodes. A realization comprises two components for each node i: the first

component takes a value ‘1’ with a probability pi and a value ‘0’ with a probability

1−pi; the second component is a demand value sampled from the demand distribution

ξi when the first component is ‘1’. The time complexity involved in evaluating the

cost of a solution by the empirical estimation is O(nM). Unlike Equation 7.1, the time

complexity of this approach does not increase with the vehicle capacity, Q or with the

maximum number of different demand levels for any node, l. However, as discussed in

previous chapters, the number M of realizations is crucial to the effectiveness of this

approach.

We extend the estimation-based PTSP metaheuristics to tackle the VRPSDC. This

is done in three steps.

• The VRPSDC-specific realizations are generated and used for cost estimation.

• The cost of an a posteriori solution is computed by considering the VRPSDC-

specific recourse actions.

• As in TABUSTOCH, we consider solutions obtained by estimation-based meta-

heuristics to be undirected. Thus, given a number of solutions that need to be

compared, each solution needs to be evaluated twice, once in clockwise direction

and once in anti-clockwise direction. Consequently, in random restart local search

and iterated local search, there are four solutions that need to be compared in

each iteration. Hence, in all algorithms, at each iteration, we use ANOVA-Race

with VRPSDC-specific realizations to decide which solution is better.

Concerning 2.5-opt-EEais, a straightforward extension of the PTSP delta evalu-

ation to the VRPSDC delta evaluation is not feasible because local modifications in a

solution entail a global change in the cost of a solution. Therefore, we use 2.5-opt--

EEais as developed for the PTSP without any modification as a local search algorithm

in all metaheuristics. Thus, in the local search phase, a PTSP approximation is used

for the VRPSDC by ignoring the nodes demand and the vehicle capacity. This par-

ticular usage is aimed to exploit the speed advantage of 2.5-opt-EEais during the

local search phase. We expect that 2.5-opt-EEais will be effective for the VRPSDC
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because it has been shown that the stochasticity due to probabilistic nodes has more

influence than the one due to the stochastic demands for solving the VRPSDC and that

the PTSP approximation in TABUSTOCH is more effective than the problem-specific

approximation (Séguin, 1994; Gendreau et al., 1995).

7.3 Experimental analysis

In this section, we present the experimental setting and the results from the empirical

study. The goal of the experiments is to assess the effectiveness of the estimation-based

metaheuristics on large instances.

7.3.1 Experimental setup

The VRPSDC instances used for the experiments are obtained as follows. First TSP

instances are generated with the DIMACS instance generator (Johnson et al., 2001),

where the nodes are arranged as a number of clusters in a 106 ×106 square. Four levels

of instance size are considered: 30, 100, 300, and 1000. For each TSP instance, a same

probability value p is assigned to all nodes except the first node, which is the depot.

The considered values for p are from 0.050 to 0.200 with an increment of 0.025 and 0.3,

0.5, 0.8, and 1.0. The demand distributions for the nodes and the vehicle capacity are

then assigned as described in Gendreau et al. (1996a): each node takes at random one

of the three discrete uniform distributions in {1, . . . , 9}, {5, . . . , 15}, {10, . . . , 20}. In

this way, for a given instance, the expected demand of each node that requires being

visited is equal to 10. The vehicle capacity Q is set to 10 ×
∑n

i=2(p/fc), where fc is

the so-called filling coefficient. We consider values fc ∈ {1.0, 2.0, 4.0, 8.0}. Note that

the values of fc affect Q in the following way: when fc is set to 1.0, Q is equal to the

total expected demand of the nodes; when fc is set to 8.0, Q is equal to the one eighth

of the total expected demand of the nodes. The generated instances are grouped into

three classes according to p: {0.050, 0.075, 0.100} (Class I), {0.150, 0.175, 0.200} (Class

II), {0.300, 0.500, 0.800, 1.000} (Class III).

The aforementioned instance generation scheme differs from the one described in

Gendreau et al. (1996a) in the following way: in Gendreau et al. (1996a), each instance

contained 1, n − 1/2, or n − 1 probabilistic nodes and the probability values of the

nodes are randomly generated between 0 and 1. Although the authors showed that

instances with n − 1 probabilistic nodes are difficult to solve, the impact of the values

of node probabilities on the effectiveness of the algorithms has not been investigated.

To address this issue, we use instances with homogeneous node probability. The values
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of fc chosen by Gendreau et al. (1996a) are 0.25, 0.50, 0.75. The adoption of these

values in our setting leads to a vehicle capacity which is always greater than the total

expected nodes demands. In this case, recourse actions, in which the vehicle goes back

to the depot, are unlikely to occur.

For the experimental analysis, we implemented TABUSTOCH as described in Gen-

dreau et al. (1996a) but applied to VRPSDC instances with only one vehicle: we did

not use the penalized cost function. In the approximation scheme, we did not use the

auxiliary computations needed when a node from one a priori route is moved to another

a priori route during randomized node-insertion moves. We use the same parameter

values as suggested in Gendreau et al. (1996a).

The nearest-neighbor heuristic is used to generate the initial solution in TABUS-

TOCH, RRLS-EE, ILS-EE, and MAGX-EE. The minimum number of realizations used

in the ANOVA-Race before applying ANOVA is set to five; the null hypothesis is re-

jected at a significance level of 0.05. All algorithms use a same set of M realizations for

all iterations, however, realizations are selected randomly from this set for each itera-

tion. The maximum number M of realizations is set to one thousand in all algorithms.

The critical values of the F-distribution and Tukey HSD test are pre-computed and

stored as a look up table. Equation 7.1 is used for the post-evaluation of the best-so-

far solutions found by all algorithms. For 2.5-opt-EEais, we use the same parameter

values obtained for the PTSP–see Table 6.1 on page 105.

We present the exemplary results obtained from several instances. The trend of

the results obtained on all other instances is similar. The complete results and the

numerical values are given in an online supplementary document (Balaprakash et al.,

2009a):

http://iridia.ulb.ac.be/supp/IridiaSupp2009-008/

7.3.2 Effectiveness of 2.5-opt-EEais

In this section, we show that a simple random restart local search that uses 2.5-opt--

EEais is more effective than TABUSTOCH. Since RRLS-EE uses 2.5-opt-EEais and

ANOVA-Race, it will be difficult for us to attribute the effectiveness only to the adop-

tion of 2.5-opt-EEais. Therefore, we use RRLS-AC, a random restart local search

similar to RRLS-EE with the exception that local optima are compared using Equa-

tion 7.1. We evaluate the two algorithms on instances with 30, 100, and 300 nodes.

The stopping criterion for the comparison for each instance is chosen as follows: TA-

BUSTOCH is run until it performs 1000 iterations and the time needed for completion is
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Table 7.1: The computation time (in CPU seconds) needed by TABUSTOCH to com-
plete 1000 iterations. For each level of p and fc combination, the mean and the standard
deviations (s.d.) are computed over 10 instances of size 30, 100, and 300.

n = 30
p(fc) mean s.d.

0.100(1.00) 38 1
0.100(2.00) 40 1
0.100(4.00) 40 1
0.100(8.00) 40 1
0.200(1.00) 37 1
0.200(2.00) 38 1
0.200(4.00) 39 1
0.200(8.00) 40 1
0.300(1.00) 37 0
0.300(2.00) 37 0
0.300(4.00) 39 0
0.300(8.00) 40 1
0.500(1.00) 36 0
0.500(2.00) 37 1
0.500(4.00) 38 1
0.500(8.00) 40 0
0.800(1.00) 36 1
0.800(2.00) 36 1
0.800(4.00) 37 0
0.800(8.00) 38 0
1.000(1.00) 36 1
1.000(2.00) 36 1
1.000(4.00) 37 1
1.000(8.00) 37 0

n = 100
mean s.d.
502 10
509 9
522 13
526 13
487 11
484 9
499 11
521 8
473 8
476 8
483 11
494 11
464 10
465 4
467 6
477 8
457 6
460 6
463 4
466 5
456 5
458 6
460 4
464 5

n = 300

mean s.d.
5457 114
5527 124
5655 119
5727 99
5268 130
5279 113
5289 91
5347 149
4999 91
5055 115
5134 128
5035 135
4842 78
4831 82
4895 150
4917 122
4738 55
4725 51
4748 68
4781 78
4638 60
4688 53
4691 77
4749 78

recorded. The time limit for RRLS-AC is then set to the time taken by TABUSTOCH.

Table 7.1 shows the average computation time needed by TABUSTOCH to complete

1000 iterations. From the results, we can observe that the instance size has a strong

impact on the computation time of TABUSTOCH. In particular, the computation time

increases quite drastically (more than 2 orders of magnitude) by increasing the instance

size from 30 to 300. However, there is no considerable difference in computation time

for different values of fc. The observed trends are ascribed to the fact that the term n2

in O(n2 + nlQ) time complexity of Equation 7.1 clearly dominates over other terms.

Figure 7.2 shows exemplary run time development plots on instances of size 100.

From these plots, we can observe that RRLS-AC completely outperforms TABUS-

TOCH. The poor performance of TABUSTOCH is due to the heavy usage of Equa-

tion 7.1: the algorithm moves from a solution x to a lower cost neighbor solution,

where each move is obtained at an expense of high computation time because at least

five neighbor solutions are evaluated with Equation 7.1. We can also observe from the

plots that the improvement in TABUSTOCH by moving from a incumbent solution
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to a neighbor solution is rather small. This is typical when an algorithm moves in

the space of neighbor solutions. However, it should be noted that, for a fixed value

of fc, the relative difference in the average solution cost between TABUSTOCH and

RRLS-AC increases with an increase of p. This is due to the adoption of randomized

node-insertion neighborhood, which becomes less effective for large values of p. Note

that we observed a similar behavior in PTSP iterative improvement algorithms.

The high performance of RRLS-AC is due to the adoption of 2.5-opt-EEais. This

can be inferred from Figure 7.2, which shows that for RRLS-AC there is a large im-

provement within a short computation time (less than 5 to 6 seconds). The traces of

RRLS-AC show that this large improvement is achieved in the very first iteration after

the first run of 2.5-opt-EEais on the initial solution.

For a given value of p, the relative difference in the average solution cost between

the two algorithms decreases with an increase in the value of fc. This can be explained

as follows. The number of recourse actions in which the vehicle has to return back

to the depot for unloading increases with an increase in the value of fc. Since this

recourse action is ignored by 2.5-opt-EEais, the quality of the local optima found by

2.5-opt-EEais decreases with an increase of fc.

Table 7.2 reports the observed relative difference between the final solution cost

achieved by the two algorithms with a 95% confidence bound obtained through a t-

test. For the absolute values, we refer the reader to Balaprakash et al. (2009a). The

results show a general trend that RRLS-AC is better than TABUSTOCH across a wide

range of instance sizes, node probabilities, and the vehicle capacity. For the instance

size 300, the average cost of the solutions obtained by RRLS-AC is between 15.92%

and 1.78% less than that of TABUSTOCH. The observed differences are significant

according to the t-test. This trend is similar for instances of size 100, where RRLS-

AC achieves an average solution cost that is between 15.04% to 1.85% less than that of

TABUSTOCH. For the smallest instance, n = 30, the observed difference in the solution

cost is between 12.63% to 1.93%. There are few exceptions where TABUSTOCH obtains

solutions whose cost is slightly lower than that of RRLS-AC.
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Figure 7.2: Experimental results on the clustered VRPSDC instances of size 100. The plots

represent the cost of the solutions obtained by RRLS-AC normalized by those obtained by TA-

BUSTOCH. The normalization is done on an instance-by-instance basis for 10 instances; the

normalized solution cost is then aggregated.
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Table 7.2: Comparison of the average cost obtained by RRLS-AC and TABUSTOCH over
10 instances of size 30, 100, and 300. See Footnote 1 for an explanation of the contents
and the typographic conventions adopted in the table.

RRLS-AC vs. TABUSTOCH

n = 30
p Difference 95% CI

0.100(1.00) +0.04 [−1.53,+1.62]
0.100(2.00) +1 .85 [+0.58,+3.13]
0.100(4.00) +1 .85 [+0.58,+3.13]
0.100(8.00) +1 .85 [+0.58,+3.13]
0.200(1.00) −2.94 [−5.34,−0.53]
0.200(2.00) −0.78 [−2.24,+0.67]
0.200(4.00) −0.21 [−2.38,+1.97]
0.200(8.00) −0.21 [−2.38,+1.97]
0.300(1.00) −5.78 [−10.31,−1.24]
0.300(2.00) −4.57 [−7.29,−1.85]
0.300(4.00) −1.94 [−3.68,−0.20]
0.300(8.00) −2.08 [−3.46,−0.70]
0.500(1.00) −8.02 [−13.34,−2.70]
0.500(2.00) −8.52 [−12.17,−4.87]
0.500(4.00) −4.97 [−6.99,−2.95]
0.500(8.00) −2.63 [−3.70,−1.56]
0.800(1.00) −12.46 [−18.41,−6.50]
0.800(2.00) −9.16 [−14.19,−4.13]
0.800(4.00) −6.72 [−9.60,−3.83]
0.800(8.00) −3.15 [−4.58,−1.72]
1.000(1.00) −11.98 [−16.36,−7.59]
1.000(2.00) −11.43 [−17.35,−5.52]
1.000(4.00) −7.17 [−10.55,−3.80]
1.000(8.00) −3.85 [−5.38,−2.31]

n = 100
Difference 95% CI
−10.32 [−15.37,−5.27]
−6.14 [−8.84,−3.43]
−3.56 [−5.57,−1.55]
−2.86 [−4.61,−1.11]
−12.67 [−18.44,−6.91]
−10.84 [−14.17,−7.51]
−5.30 [−7.28,−3.32]
−2.80 [−3.84,−1.77]
−14.89 [−18.73,−11.05]
−11.50 [−13.03,−9.97]
−7.36 [−8.94,−5.77]
−4.68 [−5.83,−3.53]
−13.90 [−17.28,−10.51]
−13.14 [−16.05,−10.23]
−8.67 [−10.45,−6.90]
−5.07 [−6.55,−3.59]
−13.74 [−17.25,−10.23]
−13.30 [−16.02,−10.57]
−8.96 [−10.87,−7.05]
−5.95 [−7.74,−4.15]
−14.08 [−17.46,−10.70]
−14.06 [−16.53,−11.58]
−11.41 [−12.94,−9.89]
−6.99 [−9.18,−4.81]

n = 300

Difference 95% CI
−12.58 [−14.37,−10.78]
−10.00 [−12.88,−7.11]
−4.94 [−6.66,−3.22]
−3.40 [−4.39,−2.41]
−14.32 [−17.21,−11.44]
−13.76 [−17.23,−10.29]
−8.36 [−9.44,−7.28]
−5.36 [−6.35,−4.36]
−15.76 [−18.48,−13.05]
−14.39 [−17.82,−10.95]
−9.86 [−11.39,−8.33]
−6.74 [−7.53,−5.94]
−14.69 [−18.57,−10.81]
−16.27 [−20.41,−12.14]
−10.09 [−11.53,−8.65]
−6.55 [−7.76,−5.34]
−12.56 [−15.64,−9.48]
−15.39 [−18.91,−11.86]
−11.47 [−12.93,−10.00]
−7.17 [−8.51,−5.82]
−14.49 [−17.41,−11.57]
−16.17 [−18.72,−13.61]
−13.49 [−16.33,−10.66]
−8.92 [−11.06,−6.79]

1 For a given comparison A vs. B, the table reports the observed relative difference d between the
two algorithms A and B and the 95% confidence interval CI obtained through the t-test. If the value is
positive, algorithm A obtained an average cost that is larger than the one obtained by algorithm B. In
this case, the value is typeset in italics if it is significantly different from zero according to the t-test at
a confidence level of 95%. If the value is negative, algorithm A obtained an average cost that is smaller
than the one obtained by algorithm B. In this case, the value is typeset in boldface if it is significantly
different from zero according to the t-test, at a confidence level of 95%.
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7.3.3 Effectiveness of the estimation-based evaluation

In this section, we assess the effectiveness of the estimation-based evaluation procedure,

ANOVA-Race, by comparing RRLS-EE to RRLS-AC. The two algorithms differ only

with respect to the evaluation procedure. Given that the PTSP-specific 2.5-opt-EE-

ais obtained high quality solutions, we include in our analysis the RRLS-EE algorithm

developed for the PTSP. We denote this algorithm RRLS-EE(PTSP). Note that RRLS-

EE(PTSP) ignores node demands and thus uses an adaptive sample size procedure

based on t-test to compare two local optima.

The three algorithms are compared on three levels of instance size: 100, 300, and

1000. For each level of instance size and for each p and fc combination, we use 10

instances for the comparison. Since the time limit used in Section 7.3.2 is rather high,

we allow the three algorithms to run for n CPU seconds, where n is the size of the

instance.

Figure 7.3 shows the run time development plots obtained on instances of size 1000.

Note that in the plots the computation time is taken in log scale to highlight the speed of

RRLS-EE. From the plots, we can observe that RRLS-EE obtains the average solution

cost of RRLS-AC in approximately 0.5 to 2 orders of magnitude less CPU time. From

the run time development plots reported in Balaprakash et al. (2009a) we can observe

the following: RRLS-EE is faster than RRLS-AC by a factor of 1 to 2 on instances of

size 300; we could not observe considerable speedup for instance size 100. Concerning

RRLS-EE(PTSP), as expected, the algorithm behaves quite similar to RRLS-EE for

fc = 1.0. However, as the value of fc increases, the algorithm accepts worse solutions

during the search due to the adoption of the PTSP-specific evaluation procedure.

Table 7.3 shows the average number of iterations performed by the two algorithms

for the given computation time. On instance size 1000, the average number of iterations

increases with an increase in the value of p: It increases from 34 to 43 in RRLS-AC

but in RRLS-EE, it increases from 330 to 3006. This is due to the effectiveness of

ANOVA-Race, which needs only few realizations to select the best solution for large p

values. Although the average number of iterations performed by RRLS-EE(PTSP) is

higher than that of RRLS-EE, the observed differences are rather small. This shows

that the VRPSDC-specific evaluation does not involve a large computational overhead

for taking into account the stochastic demands. We can observe a similar trend for

instance sizes 100 and 300.

Table 7.4 shows the difference in the average cost between the three algorithms

on an instance size of 1000. The results confirm that the VRPSDC-specific estimation
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approach is more effective than that of the PTSP-specific estimation approach and that

of analytical computation. RRLS-EE obtains average solution costs which are between

0.23% and 1.90% less than that of RRLS-AC. Although the difference in the number

of iterations between RRLS-EE and RRLS-AC is quite large, the difference in the final

solution cost is rather small. This is due to the adoption of 2.5-opt-EEais, which, as

shown in Section 7.3.2, produces a large improvement at the first iteration. Concerning

the comparison between RRLS-EE and RRLS-EE(PTSP), we can observe that the two

algorithms achieve similar average costs for fc = 1.0, where the instances are similar to

the PTSP instances. However, as fc increases, the PTSP-specific estimation approach

becomes less effective. Note that for a given value of p, the difference in the average

cost between RRLS-EE and RRLS-EE(PTSP) increases up to fc = 4.0; the observed

difference for fc = 8.0 is less than that of fc = 4.0. This is because RRLS-EE becomes

less effective on instances with fc = 8.0. The results on instances of size 100 and 300,

which are given in Balaprakash et al. (2009a), exhibit a similar trend except that the

difference in the average cost decreases with a decrease in instance size.

133



7. ESTIMATION-BASED METAHEURISTICS FOR THE VRPSDC

Figure 7.3: Experimental results on clustered VRPSDC instances of size 1000 for 1000 CPU

seconds. The plots represent the cost of the solutions obtained by RRLS-EE normalized by the

one obtained by RRLS-AC. The normalization is done on an instance-by-instance basis for 10

instances; the normalized solution cost is then aggregated.
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Table 7.3: The average number of iterations performed by RRLS-EE and RRLS-AC. Each algorithm is allowed to run for n CPU
seconds, where n is the size of the instance.

n = 100
p(fc) RRLS-EE RRLS-AC RRLS-EE

(PTSP)
0.100(1.00) 269 220 278
0.100(2.00) 269 219 278
0.100(4.00) 268 217 277
0.100(8.00) 268 216 278
0.200(1.00) 529 364 556
0.200(2.00) 530 363 554
0.200(4.00) 522 359 552
0.200(8.00) 514 353 554
0.300(1.00) 797 464 825
0.300(2.00) 809 461 831
0.300(4.00) 789 458 828
0.300(8.00) 759 452 832
0.500(1.00) 1364 594 1408
0.500(2.00) 1391 592 1398
0.500(4.00) 1363 589 1399
0.500(8.00) 1302 581 1402
0.800(1.00) 2394 715 2445
0.800(2.00) 2422 716 2440
0.800(4.00) 2412 713 2452
0.800(8.00) 2383 705 2435
1.000(1.00) 3938 800 3976
1.000(2.00) 3942 800 3967
1.000(4.00) 3927 796 3962
1.000(8.00) 3940 791 3975

n = 300
RRLS-EE RRLS-AC RRLS-EE

(PTSP)
322 150 334
328 153 332
321 150 332
320 147 334
559 223 568
561 221 570
559 220 568
539 218 569
774 251 789
777 250 783
777 249 784
748 246 786
1208 271 1216
1202 271 1216
1201 269 1218
1182 268 1211
1956 280 1966
1944 280 1966
1966 280 1974
1959 280 1968
3025 283 3052
3034 283 3033
3025 282 3052
3021 282 3030

n = 1000
RRLS-EE RRLS-AC RRLS-EE

(PTSP)
330 34 340
329 36 337
330 34 340
326 30 336
973 45 995
983 44 998
969 43 998
962 41 999
1245 43 1260
1245 43 1259
1243 43 1254
1238 48 1248
1638 42 1643
1637 46 1657
1645 44 1662
1650 46 1662
2221 41 2255
2226 41 2252
2244 41 2239
2249 41 2259
3000 42 3027
2994 44 3048
2985 43 3038
3006 43 3014

135



7. ESTIMATION-BASED METAHEURISTICS FOR THE VRPSDC

7.3.4 Comparison between estimation-based metaheuristics

In this section, we assess the effectiveness of using the three estimation-based meta-

heuristics ILS-EE, MAGX-EE, and ACS-EE to tackle the VRPSDC. We compare the

three algorithms to RRLS-EE on a new set of instances with 100, 300, and 1000 nodes.

We allow each algorithm to run for n CPU seconds, where n is the size of the instance.

First, we tuned the parameters of ILS-EE, MAGX-EE, and ACS-EE using Iterative

F-Race. For the tuning task, we used a new set of clustered instances with 1000: we

generated 120 instances (ten instances times three values of p times four values of fc) for

instance Class I and Class II, respectively, and 160 instances (ten instances times four

values of p times four values of fc ) for instance Class III. Iterative F-Race is run nine

times (three metaheuristics times three instance classes), each with a computational

budget of 1000 metaheuristic runs. Each metaheuristic run is given a stopping criterion

of n (=1000) CPU seconds. Similar to the parameter tuning of PTSP algorithms,

the parameter tuning for the VRPSDC algorithms with Iterative F-Race is repeated

10 times. For each metaheuristic and each instance class, we have a set of 10 fine

tuned parameter configurations. The obtained parameter configurations are reported

in Balaprakash et al. (2009a).

To study the cost of the solutions obtained by each algorithm, we use the expected

solution cost of a metaheuristic, where the expectation is taken with respect to the set

of 10 parameter configurations and the set of all test instances. The cost of the solutions

obtained by ILS-EE, MAGX-EE, and ACS-EE are normalized by the final solution cost

reached by RRLS-EE. The normalization is done on an instance-by-instance basis for

10 instances for each p and fc combination.

Figure 7.4 shows exemplary run time development plots of the four estimation-based

algorithms over time up to 1000 CPU seconds on instance size 1000. For MAGX-EE

and ACS-EE, the plots take into account the improvement incurred by the first local

search applied to an individual of the population. Due to the adoption of 2.5-opt-EE-

ais, in all the algorithms the initial solution is improved by 10% to 40% in a very short

computation time. Further improvements in the following iterations are considerably

smaller than that in the first iteration.

Figure 7.5 shows the box plot of the solution cost of the algorithms on instance size

100, 300, and 1000. We can observe that ILS-EE, MAGX-EE, and ACS-EE outperform

RRLS-EE across most probability levels. The difference in the solution cost between

RRLS-EE and the other algorithms increases with an increase in instance size. For

a given instance size, the observed differences in the solution cost between the four
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7.3 Experimental analysis

Table 7.4: Comparison of the average cost obtained by RRLS-EE and RRLS-AC over 10
instances of size 1000. Typographic conventions are the same as in Table 7.2.

n = 1000

RRLS-EE
vs.

RRLS-AC

RRLS-EE
vs.

RRLS-EE(PTSP)

RRLS-AC
vs.

RRLS-EE(PTSP)

p(fc) d [95% CI] d [95% CI] d [95% CI]
0.100(1.00) −0.23 [−0.40,−0.06] −0.45 [−0.94, +0.04] −0.22 [−0.65, +0.21]
0.100(2.00) −0.33 [−0.52,−0.15] −3.83 [−6.56,−1.10] −3.51 [−6.24,−0.77]
0.100(4.00) −0.36 [−0.67,−0.06] −1.68 [−2.79,−0.57] −1.32 [−2.43,−0.21]
0.100(8.00) −0.26 [−0.43,−0.09] −1.14 [−1.73,−0.55] −0.88 [−1.46,−0.30]
0.200(1.00) −0.94 [−1.29,−0.58] −0.24 [−0.49, +0.01] +0 .70 [+0.23, +1.17]
0.200(2.00) −0.90 [−1.26,−0.54] −3.89 [−6.47,−1.32] −3.02 [−5.50,−0.55]
0.200(4.00) −0.87 [−1.45,−0.30] −2.17 [−3.30,−1.05] −1.31 [−2.44,−0.18]
0.200(8.00) −0.58 [−0.81,−0.35] −1.21 [−1.97,−0.46] −0.64 [−1.47, +0.19]
0.300(1.00) −0.73 [−1.16,−0.31] −0.24 [−0.47,−0.01] +0 .50 [+0.02, +0.97]
0.300(2.00) −1.05 [−2.18, +0.07] −3.69 [−5.68,−1.69] −2.66 [−4.62,−0.70]
0.300(4.00) −0.84 [−1.29,−0.39] −2.40 [−3.46,−1.35] −1.58 [−2.83,−0.32]
0.300(8.00) −0.32 [−0.48,−0.17] −1.22 [−2.02,−0.41] −0.90 [−1.73,−0.06]
0.500(1.00) −0.83 [−1.18,−0.48] −0.10 [−0.26, +0.06] +0 .73 [+0.28, +1.19]
0.500(2.00) −1.23 [−1.97,−0.48] −3.61 [−5.67,−1.55] −2.41 [−4.24,−0.59]
0.500(4.00) −1.15 [−1.94,−0.36] −3.56 [−4.65,−2.46] −2.44 [−3.52,−1.35]
0.500(8.00) −0.85 [−1.20,−0.51] −1.78 [−2.72,−0.84] −0.94 [−1.95, +0.08]
0.800(1.00) −0.76 [−1.11,−0.40] −0.03 [−0.08, +0.02] +0 .73 [+0.36, +1.10]
0.800(2.00) −1.13 [−1.75,−0.51] −2.53 [−4.06,−0.99] −1.41 [−2.99, +0.17]
0.800(4.00) −1.10 [−1.74,−0.47] −2.91 [−4.33,−1.49] −1.83 [−2.93,−0.73]
0.800(8.00) −0.57 [−1.05,−0.09] −2.19 [−3.30,−1.09] −1.63 [−2.75,−0.51]
1.000(1.00) −0.79 [−1.18,−0.39] 0.00 [0.00, 0.00] +0 .79 [+0.40, +1.19]
1.000(2.00) −1.10 [−1.97,−0.22] −3.60 [−5.40,−1.80] −2.53 [−4.46,−0.60]
1.000(4.00) −1.90 [−3.10,−0.70] −4.40 [−5.78,−3.01] −2.54 [−3.90,−1.19]
1.000(8.00) −1.42 [−2.04,−0.80] −3.06 [−4.51,−1.61] −1.66 [−3.36, +0.03]

estimation algorithms increases with an increase in the node probability p. This shows

that for instances with small p values, it is rather easy to find high quality solutions by

restarting 2.5-opt-EEais a number of times. Nevertheless, for instances with large p

values, in addition to 2.5-opt-EEais, the use of sophisticated metaheuristics is crucial

to find high quality solutions.
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7. ESTIMATION-BASED METAHEURISTICS FOR THE VRPSDC

Figure 7.4: Experimental results on clustered VRPSDC instances of size 1000 for 1000 CPU

seconds. The plots represent the cost of the solutions obtained by ILS-EE, MAGX-EE, and

ACS-EE normalized by the one obtained by RRLS-EE. The normalization is done on an instance-

by-instance basis for 10 instances; the normalized solution cost is then aggregated.
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7.3 Experimental analysis

(a)

(b)

(c)

Figure 7.5: Experimental results on clustered VRPSDC instances. The box plots represent the

cost of the solutions obtained by ILS-EE, MAGX-EE, and ACS-EE. The obtained solution costs of

the algorithms are normalized by the final solution cost reached by RRLS-EE. The normalization

is done on an instance-by-instance basis for 10 instances; the normalized solution cost is then

aggregated. The dotted horizontal line denotes therefore the final cost of RRLS-EE.
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Table 7.5: Comparison of the average cost obtained by ILS-EE, MAGX-EE, ACS-EE and RRLS-EE, on clustered instances of size
1000 for 1000 CPU seconds. Typographic conventions are the same as in Table 7.2.

ILS-EE
vs.

MAGX-EE

ILS-EE
vs.

ACS-EE

ILS-EE
vs.

RRLS-EE

MAGX-EE
vs.

ACS-EE

MAGX-EE
vs.

RRLS-EE

ACS-EE
vs.

RRLS-EE

p(fc) d CI d CI d CI d CI d CI d CI

C
la

ss
I

0.050(1.00) −0.05 [−0.08, −0.03] −0.11 [−0.13, −0.08] −0.20 [−0.23, −0.16] −0.05 [−0.08, −0.03] −0.14 [−0.19, −0.10] −0.09 [−0.13, −0.05]
0.050(2.00) −0.03 [−0.23, +0.18] −0.11 [−0.31, +0.09] +0.01 [−0.21, +0.23] −0.08 [−0.30, +0.13] +0.04 [−0.18, +0.25] +0.12 [−0.10, +0.35]
0.050(4.00) −0.22 [−0.30, −0.14] −0.13 [−0.21, −0.05] −0.20 [−0.27, −0.12] +0 .09 [+0.01, +0.18] +0.03 [−0.05, +0.10] −0.07 [−0.13, −0.01]
0.050(8.00) −0.04 [−0.08, −0.01] −0.01 [−0.05, +0.04] +0.05 [−0.00, +0.11] +0.03 [−0.01, +0.08] +0 .09 [+0.04, +0.15] +0 .06 [+0.02, +0.11]
0.075(1.00) −0.04 [−0.08, −0.01] −0.09 [−0.14, −0.05] −0.47 [−0.52, −0.43] −0.05 [−0.08, −0.02] −0.43 [−0.47, −0.39] −0.38 [−0.42, −0.34]
0.075(2.00) −0.12 [−0.24, +0.00] −0.12 [−0.27, +0.03] −0.99 [−1.18, −0.80] −0.00 [−0.15, +0.15] −0.87 [−1.05, −0.70] −0.87 [−1.05, −0.69]
0.075(4.00) −0.13 [−0.22, −0.04] −0.11 [−0.26, +0.04] −0.44 [−0.54, −0.33] +0.02 [−0.11, +0.14] −0.31 [−0.41, −0.21] −0.33 [−0.43, −0.22]
0.075(8.00) −0.08 [−0.15, −0.00] −0.03 [−0.10, +0.03] −0.29 [−0.37, −0.21] +0.04 [−0.03, +0.12] −0.21 [−0.29, −0.13] −0.25 [−0.31, −0.20]
0.100(1.00) −0.10 [−0.14, −0.05] −0.15 [−0.20, −0.10] −1.02 [−1.07, −0.97] −0.05 [−0.11, +0.01] −0.92 [−0.99, −0.86] −0.87 [−0.93, −0.81]
0.100(2.00) −0.11 [−0.25, +0.02] −0.07 [−0.23, +0.08] −1.15 [−1.24, −1.06] +0.04 [−0.14, +0.22] −1.04 [−1.18, −0.90] −1.08 [−1.22, −0.93]
0.100(4.00) −0.07 [−0.16, +0.03] −0.06 [−0.18, +0.06] −0.67 [−0.76, −0.58] +0.00 [−0.11, +0.12] −0.61 [−0.70, −0.51] −0.61 [−0.72, −0.49]
0.100(8.00) −0.05 [−0.11, +0.01] +0 .11 [+0.01, +0.21] −0.36 [−0.48, −0.24] +0 .16 [+0.05, +0.27] −0.31 [−0.41, −0.20] −0.47 [−0.60, −0.34]

overall −0.09 [−0.11, −0.06] −0.07 [−0.11, −0.04] −0.48 [−0.51, −0.44] +0.01 [−0.02, +0.05] −0.39 [−0.43, −0.35] −0.40 [−0.44, −0.36]

C
la

ss
II

0.150(1.00) −0.10 [−0.16, −0.05] +0.04 [−0.04, +0.12] −1.62 [−1.70, −1.54] +0 .14 [+0.06, +0.22] −1.52 [−1.60, −1.44] −1.66 [−1.75, −1.57]
0.150(2.00) −0.22 [−0.32, −0.11] −0.11 [−0.28, +0.06] −2.50 [−2.75, −2.25] +0.11 [−0.04, +0.25] −2.29 [−2.54, −2.04] −2.39 [−2.61, −2.16]
0.150(4.00) −0.04 [−0.17, +0.10] +0.08 [−0.05, +0.21] −1.54 [−1.74, −1.34] +0 .11 [+0.00, +0.23] −1.51 [−1.69, −1.32] −1.62 [−1.79, −1.45]
0.150(8.00) −0.10 [−0.18, −0.02] +0.07 [−0.03, +0.18] −1.16 [−1.27, −1.05] +0 .17 [+0.07, +0.28] −1.06 [−1.17, −0.95] −1.23 [−1.38, −1.09]
0.175(1.00) −0.02 [−0.09, +0.06] +0.07 [−0.01, +0.14] −1.99 [−2.08, −1.91] +0 .08 [+0.03, +0.14] −1.98 [−2.06, −1.89] −2.06 [−2.15, −1.97]
0.175(2.00) −0.18 [−0.28, −0.08] +0.04 [−0.10, +0.19] −2.62 [−2.87, −2.36] +0 .22 [+0.07, +0.38] −2.44 [−2.69, −2.19] −2.66 [−2.92, −2.40]
0.175(4.00) −0.09 [−0.22, +0.04] +0.12 [−0.02, +0.26] −2.02 [−2.15, −1.90] +0 .22 [+0.07, +0.36] −1.93 [−2.04, −1.83] −2.14 [−2.29, (2.00)]
0.175(8.00) −0.06 [−0.14, +0.03] +0 .15 [+0.05, +0.24] −1.22 [−1.29, −1.14] +0 .20 [+0.10, +0.31] −1.16 [−1.24, −1.08] −1.36 [−1.47, −1.25]
0.200(1.00) −0.08 [−0.16, −0.01] +0.02 [−0.06, +0.10] −2.30 [−2.38, −2.21] +0 .10 [+0.02, +0.18] −2.22 [−2.31, −2.12] −2.32 [−2.40, −2.23]
0.200(2.00) −0.23 [−0.41, −0.04] +0.11 [−0.06, +0.28] −2.90 [−3.10, −2.69] +0 .34 [+0.20, +0.48] −2.67 [−2.83, −2.52] −3.00 [−3.17, −2.84]
0.200(4.00) −0.05 [−0.19, +0.10] +0 .19 [+0.04, +0.35] −2.50 [−2.67, −2.34] +0 .24 [+0.07, +0.41] −2.46 [−2.62, −2.30] −2.69 [−2.87, −2.51]
0.200(8.00) −0.13 [−0.23, −0.03] +0 .18 [+0.10, +0.27] −1.44 [−1.53, −1.35] +0 .31 [+0.22, +0.41] −1.31 [−1.39, −1.23] −1.62 [−1.72, −1.51]

overall −0.11 [−0.14, −0.08] +0 .08 [+0.05, +0.12] −1.98 [−2.04, −1.93] +0 .19 [+0.15, +0.22] −1.88 [−1.93, −1.83] −2.06 [−2.12, −2.01]

C
la

ss
II

I

0.300(1.00) −0.08 [−0.22, +0.06] +0.01 [−0.13, +0.14] −3.38 [−3.53, −3.24] +0 .09 [+0.01, +0.16] −3.30 [−3.40, −3.21] −3.39 [−3.47, −3.31]
0.300(2.00) −0.12 [−0.32, +0.09] +0 .20 [+0.01, +0.40] −3.79 [−3.99, −3.58] +0 .32 [+0.16, +0.48] −3.67 [−3.83, −3.52] −3.98 [−4.18, −3.78]
0.300(4.00) −0.28 [−0.48, −0.08] +0.04 [−0.16, +0.24] −3.43 [−3.65, −3.21] +0 .32 [+0.12, +0.52] −3.16 [−3.38, −2.94] −3.47 [−3.63, −3.31]
0.300(8.00) −0.27 [−0.39, −0.15] −0.07 [−0.17, +0.03] −2.10 [−2.20, (2.00)] +0 .20 [+0.07, +0.33] −1.84 [−1.94, −1.73] −2.03 [−2.11, −1.95]
0.500(1.00) +0.13 [−0.06, +0.31] +0 .48 [+0.29, +0.67] −3.67 [−3.84, −3.50] +0 .35 [+0.27, +0.42] −3.80 [−3.86, −3.74] −4.13 [−4.19, −4.07]
0.500(2.00) −0.11 [−0.37, +0.15] +0 .77 [+0.52, +1.02] −4.54 [−4.86, −4.23] +0 .88 [+0.69, +1.07] −4.44 [−4.69, −4.19] −5.27 [−5.53, −5.01]
0.500(4.00) −0.09 [−0.37, +0.19] +0 .68 [+0.39, +0.97] −3.98 [−4.26, −3.69] +0 .77 [+0.60, +0.94] −3.90 [−4.11, −3.68] −4.63 [−4.82, −4.44]
0.500(8.00) +0.00 [−0.14, +0.14] +0 .30 [+0.14, +0.45] −2.98 [−3.09, −2.86] +0 .29 [+0.15, +0.44] −2.98 [−3.09, −2.87] −3.26 [−3.39, −3.14]
0.800(1.00) −0.32 [−0.45, −0.18] +0 .68 [+0.54, +0.81] −3.60 [−3.76, −3.45] +1 .00 [+0.88, +1.12] −3.30 [−3.45, −3.15] −4.25 [−4.36, −4.15]
0.800(2.00) −0.93 [−1.22, −0.64] +0 .66 [+0.43, +0.89] −5.10 [−5.35, −4.84] +1 .61 [+1.35, +1.86] −4.21 [−4.45, −3.96] −5.72 [−5.94, −5.50]
0.800(4.00) −0.64 [−0.91, −0.37] +1 .01 [+0.80, +1.22] −4.50 [−4.77, −4.24] +1 .66 [+1.40, +1.92] −3.89 [−4.17, −3.60] −5.46 [−5.70, −5.22]
0.800(8.00) −0.43 [−0.64, −0.21] +0 .83 [+0.63, +1.03] −3.79 [−3.99, −3.59] +1 .27 [+1.10, +1.43] −3.38 [−3.54, −3.22] −4.59 [−4.73, −4.44]
1.000(1.00) +0 .29 [+0.16, +0.43] +0 .85 [+0.71, +0.98] −3.63 [−3.77, −3.49] +0 .55 [+0.46, +0.64] −3.91 [−4.02, −3.81] −4.44 [−4.53, −4.35]
1.000(2.00) −0.08 [−0.34, +0.17] +1 .10 [+0.84, +1.36] −5.28 [−5.55, −5.00] +1 .18 [+0.94, +1.43] −5.20 [−5.42, −4.97] −6.30 [−6.52, −6.09]
1.000(4.00) −0.14 [−0.42, +0.15] +1 .17 [+0.90, +1.45] −4.82 [−5.16, −4.47] +1 .31 [+1.09, +1.53] −4.69 [−5.02, −4.35] −5.92 [−6.22, −5.62]
1.000(8.00) −0.07 [−0.35, +0.20] +0 .89 [+0.60, +1.18] −4.70 [−4.97, −4.44] +0 .97 [+0.74, +1.19] −4.63 [−4.84, −4.43] −5.55 [−5.77, −5.33]

overall −0.20 [−0.25, −0.14] +0 .60 [+0.54, +0.65] −3.96 [−4.02, −3.89] +0 .79 [+0.74, +0.84] −3.77 [−3.83, −3.71] −4.52 [−4.60, −4.45]

overall −0.14 [−0.16, −0.11] +0 .23 [+0.21, +0.26] −2.32 [−2.38, −2.26] +0 .37 [+0.34, +0.40] −2.19 [−2.24, −2.13] −2.55 [−2.61, −2.49]
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7.4 Summary

Table 7.5 reports the observed relative difference between the solution costs ob-

tained by the algorithms with a 95% confidence bound obtained through a t-test on

instances of size 1000. The results confirm that the three sophisticated estimation-

based metaheuristics are more effective than RRLS-EE and that they obtain average

solution costs, which are significantly less than the cost of the best solution obtained by

RRLS-EE on a wide range of instance sizes and probability levels: ILS-EE, MAGX-EE,

and ACS-EE obtains average solution cost that are 2.32%, 2.19%, and 2.55% less than

that of RRLS-EE, respectively. The differences in the average solution costs between

ILS-EE, MAGX-EE, and ACS-EE are rather small and the observed differences are

less than 1%. On Class I instances, the average solution cost obtained by ILS-EE is

0.09% and 0.07% less than that of MAGX-EE and ACS-EE, respectively. On Class

II instances, the average solution cost obtained by ACS-EE is 0.08% and 0.19% less

than that of ILS-EE and MAGX-EE, respectively. On Class III instances, the ob-

served differences are 0.60% and 0.79%. The aggregated results over all instances show

that ACS-EE is more effective than ILS-EE and MAGX-EE: the average solution cost

obtained by ACS-EE is 0.23% and 0.37% less than that of ILS-EE and MAGX-EE,

respectively. The general trends of the results on instances of size 100 and 300, which

are reported in Balaprakash et al. (2009a), are consistent with the results presented

here except that the observed differences decrease as instance size gets smaller.

7.4 Summary

In this chapter, we extended the estimation-based PTSP algorithms to tackle the

VRPSDC. The proposed extension primarily consists in using a VRPSDC-specific cost

evaluation procedure and in tuning the parameters of the algorithms for the VRPSDC.

All estimation-based metaheuristics use the PTSP iterative improvement algorithm

2.5-opt-EEais as the local search.

We carried out three sets of experiments. In the first set, we investigated the ef-

fectiveness of using 2.5-opt-EEais to tackle the VRPSDC. We showed that a simple

random restart local search that adopts 2.5-opt-EEais as the local search outperforms

the existing tailor-made tabu search algorithm. In the second set, we assessed the

VRPSDC cost estimation procedure by comparing it with the currently used VRPSDC

analytical computation procedure. We studied the two cost evaluation procedures

within a random restart local search algorithm. We demonstrated that the proposed

VRPSDC cost estimation procedure is highly effective as it substantially reduces the

computation time needed to compare the cost of the solutions. Motivated by the ef-
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fectiveness of 2.5-opt-EEais, we also used a random restart local search algorithm

developed for the PTSP to tackle the VRPSDC. The poor performance of this algo-

rithm showed that it is important to take into account the stochastic demands and

the resulting recourse actions when deciding between solutions. Finally, in the third

set, we studied the proposed estimation-based iterated local search, memetic, and ant

colony optimization algorithms. All three algorithms found high quality solutions that

are better than that of random restart local search. The difference in the solution cost

between iterated local search, memetic, and ant colony optimization algorithms are

rather small. Besides the adoption of the highly effective PTSP iterative improvement

algorithm 2.5-opt-EEais as local search, the high performance of iterated local search,

memetic, and ant colony optimization algorithms is ascribed to the rigorous parameter

tuning, which is performed by grouping the instances into a number of classes and by

tuning each algorithm on each instance class. Although the observed differences are

small, the estimation-based ant colony optimization algorithm is slightly more effective

than the iterated local search and memetic algorithms.

The two main contributions of the chapter are the following. From a methodological

perspective, for the first time the VRPSDC is tackled using the empirical estimation

approach and it is shown to be more effective than the previously proposed analytical

computation approach, particularly for large instances. From an algorithmic point-of-

view, we showed that the proposed estimation-based algorithms are more effective than

the existing analytical computation tabu search algorithm with respect to computation

time and solution quality. This allowed us to obtain new state-of-the-art algorithms

for the VRPSDC.
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Chapter 8

Conclusions

Stochastic combinatorial optimization problems are optimization problems in which

problem parameters are affected by uncertainty; however, probability distributions de-

scribing the uncertainty are known or can be estimated. In this thesis, we focused on

stochastic routing problems, a prominent class of stochastic combinatorial optimization

problems. Stochastic routing problems involve finding an efficient way to distribute or

collect goods across a logistic network. In order to tackle these problems, a setting is

considered in which the cost of each solution is a random variable, and the customary

goal is to find the solution that minimizes the expectation of the latter. It has been

shown that, for some problems and for known probability distributions, the expectation

can be computed analytically. Unfortunately, this typically involves complex analyti-

cal developments and computationally expensive procedures. Moreover, computing the

expectation through the analytical computation approach is a highly problem-specific

issue and it requires a deep understanding of the underlying probabilistic model. An

alternative approach is empirical estimation that estimates the expectation through

Monte Carlo simulation. The main advantage of the empirical estimation approach over

the analytical computation approach is generality: a sample estimate of the expected

cost of a given solution can be obtained by simply averaging sample cost estimates over

a number of realizations of the random variable.

To tackle stochastic routing problems, stochastic local search algorithms such as

iterative improvement algorithms and metaheuristics are quite promising because they

offer effective strategies to tackle the combinatorial nature of these problems. However,

a crucial factor that determines the success of these algorithms in stochastic settings is

the trade-off between the computation time needed to search high quality solutions and

the computation time needed for computing the cost of the solutions obtained during
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the search.

In previous research on stochastic routing problems, most commonly the analyt-

ical computation approach was used to design iterative improvement algorithms and

metaheuristics. This is particularly the case for the prototypical examples of stochastic

routing problems, such as the probabilistic traveling salesman problem (PTSP) and

the vehicle routing problem with stochastic demands and customers (VRPSDC). It

was even conjectured that for the PTSP an estimation-based approach is less effective

(Bianchi, 2006). The main contribution of this thesis is to show that the estimation-

based approach is actually a viable approach even for the simple, prototypical stochastic

routing problems, outperforming by quite a strong margin previously proposed algo-

rithms. In particular, this was shown for the PTSP and the VRPSDC. More in detail,

the contributions of this thesis can be summarized as follows.

Estimation-based iterative improvement algorithm for the PTSP

The thesis proposes an effective estimation-based iterative improvement algorithm for

the PTSP. The main novelty of the proposed algorithm consists of using the empirical

estimation approach and an effective data structure for the PTSP delta evaluation.

Inspired by iterative improvement algorithms proposed for the closely related traveling

salesman problem, a particular attention is given to the adoption of neighborhood

reduction techniques. A systematic experimental analysis is carried out to assess the

effectiveness of each algorithmic component adopted in the estimation-based iterative

improvement algorithm.

Adaptive sample size and variance reduction techniques in delta evaluation

for the PTSP

Adaptive sample size procedures offer a computational benefit by prescribing the most

appropriate number of realizations need for cost estimation. Variance reduction tech-

niques are used to reduce the number of realizations needed for obtaining precise cost

estimates. The thesis proposes a new way of using two variance reduction techniques,

namely, method of common random numbers and importance sampling. The result-

ing algorithm that combines these two techniques together with the adaptive sample

size procedure is our final, new state-of-the-art iterative improvement algorithm called

2.5-opt-EEais.
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Estimation-based metaheuristics for the PTSP

For the PTSP, the estimation-based metaheuristics proposed so far in the literature are

proof-of-concept algorithms because they do not use any local search as a subsidiary

solution improvement procedure.

The thesis discusses three high performing estimation-based metaheuristics, namely,

iterated local search, memetic, and ant colony optimization algorithms, to solve the

PTSP. These algorithms use the empirical estimation approach to evaluate the solution

cost and exploit the estimation-based iterative improvement algorithm as subsidiary

solution improvement procedure. A particularity of the estimation approach is the

adoption of the method of common random numbers and the adaptive sample size

procedure that uses statistical tests. The parameters of all estimation-based algorithms

are rigorously fine-tuned and tested on instances with different characteristics.

Estimation-based metaheuristics for VRPSDC

So far, the VRPSDC has been tackled by an analytical computation algorithm that

adopts a computationally expensive closed-form expression. However, for large in-

stances with several hundreds of nodes, the high computational overhead, due to the

adoption of the analytical computation approach, affects the performance of the algo-

rithm considerably. For the first time, the estimation-based approach is adopted within

metaheuristics to tackle the VRPSDC and it is shown to be more effective than the

currently used analytical computation approach.

Advancement of the state-of-the-art for the PTSP and the VRPSDC

The estimation-based algorithms proposed in the thesis are compared to the previously

proposed algorithms using an accurately designed and statistically sound experimental

methodology. Primary importance is given to assess the performance of the algo-

rithms on large instances. The estimation-based iterative improvement algorithm for

the PTSP discussed in this thesis is up to two orders of magnitude faster to reach an av-

erage solution quality similar to that of the previously proposed iterative improvement

algorithms. The estimation-based metaheuristics for the PTSP proposed in this the-

sis are more effective than the best available metaheuristic algorithms with respect to

solution quality and computation time. Similarly, the estimation-based metaheuristics

developed for the VRPSDC define the new state-of-the-art.
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Engineering algorithms for stochastic routing problems

The thesis applies a principled approach to develop high performing algorithms for

stochastic routing problems. The adopted approach is a bottom-up engineering pro-

cess that starts from basic algorithms and adds complexity step-by-step. In order to

tackle the PTSP and the VRPSDC, the engineering process is strongly focused on

the development and refinement of the PTSP iterative improvement algorithm. This

process is supported by an efficient implementation of algorithm data structures, com-

prehensive experimental analysis, and the usage of the automatic tuning of algorithm

parameters. Although not always necessary in other stochastic combinatorial optimiza-

tion problems, the strong focus on the iterative improvement algorithm played a central

role in attaining state-of-the-art metaheuristics for the PTSP and the VRPSDC.

Iterative F-Race for parameter tuning

The thesis introduces Iterative F-Race for tuning the parameter values of algorithms.

While typically parameters are tuned by hand, recent studies have shown that auto-

matic tuning procedures can effectively handle this task and they often find better

parameter values. F-race has been proposed specifically for this purpose and it has

proven to be very effective in a number of cases. Iterative F-Race is an improved vari-

ant of F-Race that, on the one hand, is suitable for tuning tasks with a large number

of initial parameter values and, on the other hand, allows a significant reduction of

the computation time needed for tuning tasks without any major loss in solution qual-

ity. This algorithm is used to fine tune the parameter values of all estimation-based

algorithms developed for the PTSP and the VRPSDC.

146



Open issues

The extensive empirical evidence on the effectiveness of the estimation-based algorithms

puts forward a number of open issues and avenues for further research.

Investigations for the VRPSDC

Further work will be devoted to extend the proposed estimation-based algorithms for

the VRPSDC with multiple vehicles. Given the observed superior performance of our

PTSP-specific iterative improvement algorithm for the VRPSDC and the previously

proposed analytical approximation scheme that ignores stochastic demands, it seems

that the element of stochastic demands, which makes delta evaluation difficult, is not

crucial. Also, for the related VRPSD, Bianchi et al. (2006) showed that the TSP ap-

proximation is better than the problem-specific delta evaluation. In this context, the

impact of stochastic demands in the VRPSD and the VRPSDC needs further investi-

gation.

Improving estimation-based comparison

In all the proposed estimation-based algorithms, evaluation procedures are based on

inferential statistics. There are several other methodologies proposed in the simula-

tion optimization literature such as ordinal optimization that decides which solution is

better by ranking the solution costs. Branke et al. (2007) already made an extensive

experimental investigation of several comparison procedures and proposed a framework

to compare them. Using this framework to identify the best comparison procedure for

the proposed estimation-based algorithms will eventually increase their performance.

Variance reduction techniques

Given that the adoption of variance reduction techniques in the proposed estimation-

based algorithms is quite effective, further research effort will be devoted to the adoption

of other variance reduction techniques. In particular, the possibility of using antithetic

variates and control variates within the proposed estimation-based algorithms will be

explored.

Extension to other stochastic routing problems

The generality of the empirical estimation approach offers a lot of flexibility to extend

the proposed estimation-based algorithms to other stochastic routing problems, in par-
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ticular, problems that include stochastic travel times. A possible future work is to

develop general-purpose algorithms that can tackle routing problems with stochastic

customers, stochastic demands, and stochastic travel times.

Stochastic constraints

In numerous practical settings, combinatorial optimization problems have stochastic

constraints. However, the design and development of algorithms for these problems has

received relatively little attention. The estimation-based approach puts forward a lot

of versatility to handle stochastic constraints. Developing estimation-based iterative

improvement algorithms and metaheuristics for these problems is an open area that

needs to be pursued.

Multi-objective stochastic optimization

In the stochastic combinatorial optimization problem literature, little work is done on

the development of algorithms to tackle problems that have several (often conflicting)

cost functions to evaluate a solution. A promising research direction is to investigate the

application of estimation-based algorithms to multi-objective stochastic combinatorial

optimization problems.

Comparison with other algorithmic approaches and hybridization

Algorithms that are exclusively developed for stochastic combinatorial optimization

such as stochastic partition methods will be considered for an empirical comparison

with the proposed estimation-based algorithms. Hybridization of stochastic partition

methods with the proposed estimation-based algorithms is a promising area of research

that needs to be investigated.

Comparison with the re-optimization approach

Another interesting topic to investigate is the extension of the PTSP model to allow

full or limited re-optimizations of a posteriori solutions; in other words, different re-

course actions could be used, for example, by applying local search to the resulting a

posteriori solutions. This would be particularly attractive for the PTSP instances with

low probability values, where the a posteriori solutions contain only a small number

of nodes. In these settings, depending on the application context, the a priori opti-

mization might be less useful given that the a posteriori solutions will be very different

from the a priori ones.
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Stochastic local search engineering

Stochastic local search engineering is relatively a new area of research and it has received

increased attention in recent years. In fact, the bottom-up engineering process that we

followed in the thesis played a crucial role in the development of effective iterative im-

provement and metaheuristic algorithms. We believe that this bottom-up engineering

process is potentially a successful way of deriving high performing algorithms for other

complex stochastic routing problems. In this context, there are a number of avenues

open for further research. One main focus of current research in stochastic local search

engineering is to develop a framework of principled procedures for algorithm design, im-

plementation, analysis, and in-depth experimental studies. In this context, there is an

indispensable need for the development of tools that support the algorithm engineering

such as efficient data structures, software frameworks, statistical analysis, experimental

design, automated tuning, and search space analysis.

Improving Iterative F-Race

Further research is currently being carried out to extend the parameter tuning algo-

rithm Iterative F-Race to include categorical variables. We will also investigate the

adoption of distributions like Cauchy and some advanced techniques for updating the

distribution. Finally, based on the case studies that were made with Iterative F-Race,

we speculate that the difficulty of the tuning task depends on a number of factors such

as the sensitivity of the parameters that need to be tuned and problem instances that

need to be tackled. In this context, search space analysis on the parameter values of

algorithms is an important area to investigate further. The adoption of the response

surface methodology and of prediction algorithms within Iterative F-Race is also a

future line of research.
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Concluding statement

Designing effective algorithms for stochastic routing problems is a difficult task. The

difficulty is due to the element of uncertainty in the problem parameters, which in-

creases the difficulty of finding an optimal solution in a large search space. Although

iterative improvement and metaheuristic algorithms are promising and practical tech-

niques to tackle these problems, their full potential for tackling stochastic combinatorial

optimization problems has not yet been fully explored. This is primarily due to the

adoption of the computationally expensive analytical computation approach. The use

of the alternative approach, the empirical estimation approach, has received relatively

little consideration from the research community.

In this thesis, a principled adoption of the empirical estimation approach in itera-

tive improvement and metaheuristic algorithms is shown to be extremely effective for

tackling stochastic routing problems. The proposed estimation-based iterative improve-

ment algorithms and metaheuristics for the two case study problems, the probabilistic

traveling salesman problem and the vehicle routing problem with stochastic demands

and customers, define the new state-of-the-art.
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Appendix A

Estimation-based Ant Colony

Optimization and Local Search

for the PTSP

In Section 6.1 of Chapter 6, we mentioned that we studied several ACO algorithms

to solve the PTSP. In this appendix, we present this study. Given that the best

analytical computation algorithm for the PTSP is pACS+1-shift (see Chapter 3 for

an explanation), we use it as a starting point; in Section A.1, we replace 1-shift

with our estimation-based iterative improvement algorithm, 2.5-opt-EEais in pACS

and we show that pACS+2.5-opt-EEais outperforms pACS+1-shift; in Section A.2, we

bring the estimation-based solution evaluation into pACS+2.5-opt-EEais and we show

that the cost evaluation performed by the estimation-based approach is comparable

to that of the analytical computation approach; in Section A.3, we customize three

high performing ACO variants, MAX–MIN ant system, rank-based ant system, and

best-worst ant system. We compare the three variants to ACS and we show that

the differences in solution costs among the four ACO variants are minor, once their

parameters are fine tuned.

A.1 Effectiveness of 2.5-opt-EEais in pACS

In this section, we show that the adoption of 2.5-opt-EEais instead of 1-shift as a

subsidiary solution improvement procedure significantly improves the effectiveness of

pACS. For a detailed explanation of 2.5-opt-EEais, we refer the reader to Chapter

5. We denote pACS+2.5-opt-EEais the algorithm obtained by combining pACS with
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Table A.1: Comparison of the average cost obtained by pACS+2.5-opt-EEais and
pACS+1-shift over 30 independent runs on instance rat783 for each probability value
p. Typographic conventions are the same as in Table 6.2.

p Difference [95% CI]

0.050 +0 .24 [+0.01, +0.46]
0.075 −2.02 [−2.51,−1.53]
0.100 −3.03 [−3.43,−2.63]
0.150 −5.21 [−5.78,−4.64]
0.175 −5.80 [−6.27,−5.33]
0.200 −6.21 [−6.66,−5.77]
0.300 −9.40 [−9.92,−8.88]
0.400 −10.76 [−11.45,−10.07]
0.500 −12.18 [−12.76,−11.59]

2.5-opt-EEais. Concerning parameter values, 2.5-opt-EEais uses the values given

in Table 6.1 on page 105 and pACS adopts the parameter values suggested by Bianchi

(2006) and Bianchi and Gambardella (2007).

pACS+1-shift and pACS+2.5-opt-EEais are evaluated on the homogeneous PTSP

instances used by Bianchi (2006), which are obtained by assigning a same probability

value to each node for TSPLIB instances, ch150, d198, lin318, att532, and rat783.

The algorithms were implemented in C and compiled with gcc, version 3.3. Experiments

were carried out on AMD OpteronTM244 1.75 GHz processors with 1 MB L2-Cache

and 2 GB RAM, running under Rocks Cluster GNU/Linux. We used the stopping

criterion suggested by Bianchi and Gambardella (2007) and by Bianchi (2006), where

each algorithm is allowed to run for a computation time of n2/100 CPU seconds. The

computational results obtained on the instance rat783 are shown in Table A.1 and

Figure A.1.

The results show that the adoption of 2.5-opt-EEais in pACS is indeed very ef-

fective. The average cost of the solutions found by pACS+2.5-opt-EEais is between

2.02% to 12.18% less than those of pACS+1-shift and the observed difference is signifi-

cant according to Student’s t-test. An exception is for p = 0.050, where pACS+1-shift

obtains an average solution cost that is 0.24% less than that of pACS+2.5-opt-EEais.

The general trends of the experimental results obtained on the other instance sizes are

similar. For the complete set of results and for the absolute values, we refer the reader

to the following supplementary page (Balaprakash et al., 2008c):

http://iridia.ulb.ac.be/supp/IridiaSupp2008-018/
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A.2 Estimation-based ant colony system

Figure A.1: Experimental results on the instance rat783. The plots represent the development

of the solution cost over time for pACS+2.5-opt-EEais and pACS+1-shift. The obtained solution

costs of the two algorithms are normalized by the final solution cost reached by pACS+1-shift.

The normalization is done on a run-by-run basis for 30 runs; the normalized solution cost is then

aggregated.

A.2 Estimation-based ant colony system

In order to design a complete estimation-based ACS, that is, to make the solution

evaluation approach of ACS coherent with that of the underlying iterative improvement

algorithm, we modified pACS+2.5-opt-EEais in such a way that the solution costs are

evaluated using Equation 4.2 instead of Equation 4.1. As discussed in Section 6.1 of

Chapter 6, for each solution xi, an unbiased estimator F̂Mi
(xi) of F (xi) is obtained

through Mi independent realizations of ω. Moreover, we use the method of common

random numbers and the adaptive sample size procedure, ANOVA-Race discussed in

Section 6.1 of Chapter 6. We denote the complete estimation-based algorithm ACS-EE,

where EE stands for empirical estimation.

We evaluate ACS-EE and pACS+2.5-opt-EEais on three groups of homogeneous

PTSP instances: (i) instances derived from TSPLIB instances (ch150, d198, lin318,

att532, and rat783); (ii) clustered instances of size 1000; (iii) uniform instances of
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size 1000. The second and third groups of instances are generated afresh using the

DIMACS instance generators. All these instances use probability values as detailed

in Section A.1. For an instance size n, Bianchi (2006) and Bianchi and Gambardella

(2007) used n2/100 CPU seconds as a stopping criterion, which allowed pACS+1-shift

to perform more than five iterations. Such a high computation time is needed because

the computational complexity of 1-shift is very high. Since 2.5-opt-EEais is between

two and three orders of magnitude faster than 1-shift—see Chapter 4, we study the

algorithms under n2/10000 and n2/1000 CPU seconds. The adoption of n2/100000

CPU seconds is not insightful because it does not allow the algorithms to perform

more than five iterations. Note that Equation 4.1 is used for the post-evaluation of the

best-so-far solutions found by ACS-EE. We present the results obtained on clustered

instances of size 1000. The trend of the results obtained on TSPLIB and uniform

instances is similar to that of clustered instances. A detailed presentation of these

results is available in Balaprakash et al. (2008c).

The parameters of the adaptive sampling procedure are fixed a priori : Mmin is

set to 5 and M is set to 1000. The null hypothesis is rejected at a significance level

of 0.05. ACS-EE adopts the same parameter values as pACS+2.5-opt-EEais. ACS-

EE uses a same set of realizations for all iterations. However, the realizations are

selected randomly from the given set for each iteration. Note that the implementation

of ACS-EE and pACS+2.5-opt-EEais is based on ACOTSP (Stützle, 2002) and the two

algorithms differ only in the solution evaluation procedure.

The computational results in Table A.2 show that for both stopping criteria the

two algorithms provide similar results. With 95% confidence, under the current exper-

imental settings, we can state that should ever the expected cost of solutions found by

ACS-EE be higher than the one of those found by pACS+2.5-opt-EEais, the difference

between the expected costs would be at most 0.74% and 0.49% under 100 CPU seconds

and 1000 CPU seconds, respectively.

We also tested the algorithms on instances with p>0.5, where we found that ACS-

EE is significantly better than pACS+2.5-opt-EEais. This can be explained as follows:

instances with high probability values have low variance with respect to the mean. In

this case, ANOVA-Race needs only few realizations to select the best solution. This

allows ACS-EE to perform more iterations when compared to pACS+2.5-opt-EEais.

Consequently, ACS-EE obtains higher quality solutions.

Note that the results presented in this section and in Section A.1 suggest differ-

ent conclusions from those presented in Bianchi (2006) and Bianchi and Gambardella

(2007), where it was shown that in pACS+1-shift the adoption of an estimation-based
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Table A.2: Comparison of the average cost obtained by ACS-EE and pACS+2.5-opt-
EEais over 30 clustered instances of size 1000 for 100 and 1000 CPU seconds. Typographic
conventions are the same as in Table 6.2.

100 CPU seconds

ACS-EE
vs.

pACS+2.5-opt-EEais

p Difference [95% CI]

0.050 −0.54 [−1.25, +0.17]
0.075 +0.14 [−0.46, +0.74]
0.100 +0.04 [−0.27, +0.36]
0.125 +0.03 [−0.22, +0.28]
0.150 −0.06 [−0.39, +0.27]
0.175 +0.13 [−0.12, +0.37]
0.200 −0.08 [−0.39, +0.23]
0.300 −0.19 [−0.44, +0.05]
0.400 −0.00 [−0.21, +0.21]
0.500 −0.16 [−0.41, +0.10]

0.600 −0.32 [−0.56,−0.09]
0.700 −0.49 [−0.76,−0.21]
0.800 −0.62 [−0.81,−0.43]
0.900 −0.99 [−1.22,−0.77]

1000 CPU seconds

ACS-EE
vs.

pACS+2.5-opt-EEais

p Difference [95% CI]

0.050 +0.12 [−0.25, +0.49]
0.075 +0.02 [−0.05, +0.10]
0.100 +0.02 [−0.04, +0.08]
0.125 +0.04 [−0.05, +0.13]
0.150 +0.04 [−0.06, +0.15]
0.175 +0.11 [−0.03, +0.26]
0.200 +0.04 [−0.11, +0.20]
0.300 −0.03 [−0.14, +0.08]
0.400 −0.07 [−0.15, +0.02]
0.500 −0.05 [−0.15, +0.05]

0.600 −0.02 [−0.12, +0.08]
0.700 −0.09 [−0.26, +0.08]
0.800 −0.21 [−0.31,−0.10]
0.900 −0.15 [−0.29,−0.02]

approach is less effective than the analytical computation approach. This difference in

results can be put down to our more advanced estimation approach and our effective

estimation-based local search algorithm.

A.3 Comparison between estimation-based ACO algorith-

ms

So far ACS is widely adopted to tackle the PTSP (Bianchi et al., 2002a,b; Branke and

Guntsch, 2004; Bianchi, 2006; Bianchi and Gambardella, 2007). Although ACS is a

high performing ACO algorithm, we cannot rule out other existing ACO algorithms

as promising ones for the PTSP. This is due to the fact that there is no theoretical

justification or empirical evidence in the PTSP literature suggesting that ACS is the

best choice. We address this issue by comparing ACS with the following three ACO

algorithms: MAX–MIN ant system (MMAS) (Stützle and Hoos, 2000), rank-based ant

system (RAS) (Bullnheimer et al., 1999), and best-worst ant system (BWAS) (Cordón

et al., 2002).
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In all three algorithms, m ants construct solutions using only the random propor-

tional rule and they differ from ACS with respect to the pheromone update procedure.

In MMAS, only the iteration-best or best-so-far ant updates the pheromone trail τij

associated with edge 〈i, j〉; the update rule used is: τij = (1− ρ) · τij + ∆τ best
ij , where ρ

is a parameter and ∆τ best
ij is set to either 1/Cbest—only when the edge 〈i, j〉 belongs to

the chosen best solution—or 0. The value of Cbest is equal to the cost of the iteration-

best or best-so-far solution depending on which of the two is chosen. The pheromone

values are limited within a maximum and a minimum value in order to reduce the

risk of search stagnation; in case of search stagnation, the search is restarted by re-

initializing the pheromone values. In RAS, at each iteration, from m solutions only the

(w − 1) best ranked solutions and the best-so-far solution are allowed to update the

pheromone values using the following equation: τij = τij +
∑w−1

r=1 (w−r)∆τ r
ij +w∆τ best

ij ,

where r is the rank of the solution obtained by sorting m solutions by increasing cost,

∆τ r
ij = 1/Cr, and ∆τ best

ij = 1/Cbest if edge 〈i, j〉 belongs to the best-so-far solution;

Cr and Cbest are the cost of the solution with rank r and the cost of the best-so-far

solution, respectively. In BWAS, only the best-so-far solution is allowed to update the

pheromone values; the pheromone values of the edges that belong to the worst ant but

not to the best-so-far solution are reduced. To avoid premature convergence, BWAS

uses pheromone re-initialization and pheromone mutation.

All the aforementioned algorithms are extended to solve the PTSP by using ANOVA-

Race to evaluate the solution costs and by using 2.5-opt-EEais as the underlying so-

lution improvement procedure. We denote them MMAS-EE, RAS-EE, and BWAS-EE.

Similar to ACS-EE, the implementations of MMAS-EE, RAS-EE, and BWAS-EE

were based on ACOTSP (Stützle, 2002). We evaluate all the algorithms on TSPLIB

instances (ch150, d198, lin318, att532, and rat783), uniform and clustered instances

of size 1000. We allowed each algorithm to run for n2/10000 and n2/1000 CPU seconds.

Concerning the parameter values of each algorithm, we use two sets of values: default

parameter values and tuned parameter values. We present the empirical results in the

following three sections.

A.3.1 Experiments with default parameter values

The default parameter values for each algorithm are chosen reasonably close to the val-

ues proposed in the ACO literature for the TSP (Dorigo and Stützle, 2004; Bullnheimer

et al., 1999; Cordón et al., 2002): in all the algorithms m, α, and β are set to 10, 1.0,

and 2.0, respectively; in ACS-EE, ρ and q0 are set to 0.1 and 0.98, respectively; in
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MMAS-EE, ρ is set to 0.2; in RAS-EE, ρ and w are set to 0.5 and 6, respectively; in

BWAS-EE, ρ is set to 0.2. In all algorithms the initial value τ0 of the pheromone is

set to a value inversely proportional to Cnn, where Cnn is the TSP cost of the near-

est neighbor solution: in ACS-EE τ0 is set to 1/(n × Cnn), while in the other three

algorithms τ0 is set to 1/(ρ × Cnn). We denote the algorithms that adopt the default

parameter values as ACS-EE(d) MMAS-EE(d), RAS-EE(d), and BWAS-EE(d).

The results obtained on clustered instances of size 1000 are shown in Table A.3.

For most probability levels, ACS-EE(d) is better than other algorithms: the average

cost of ACS-EE(d) is between 0.42% and 3.91% and between 0.14% and 3.90% less

than that of other algorithms for 100 and 1000 CPU seconds, respectively. Most of the

differences that have been observed are statistically significant according to the t-test.

The results obtained on TSPLIB and uniform instances of size 1000 exhibit a similar

trend. The complete results can be inspected in Balaprakash et al. (2008c).

A.3.2 Comparison between the algorithms with tuned and default

values

The parameter values of each algorithm are tuned on clustered instances of size 1000 for

100 and 1000 CPU seconds in the same way as described in Section A.1 using Iterative

F-Race. The selected values are shown in Table A.4. Note that we use the same

parameter values for each algorithm on TSPLIB and uniform instances. We denote

the algorithms that use the fine tuned parameter values as ACS-EE(t), MMAS-EE(t),

RAS-EE(t), and BWAS-EE(t).

The results from Table A.5 show that, as expected, the adoption of tuned parameter

values allows each algorithm to achieve much better results. MMAS-EE(t), RAS-EE(t),

and BWAS-EE(t) profit much more from tuning than ACS-EE(t) does. For 100 CPU

seconds, the observed improvements are very large and are up to 8.63%. For 1000 CPU

seconds, the improvement is up to 3.53%.
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Table A.3: Comparison of the average cost obtained by ACS-EE(d), MMAS-EE(d), RAS-
EE(d), and BWAS-EE(d) over 50 clustered instances of size 1000 for 100 and 1000 CPU
seconds. Typographic conventions are the same as in Table 6.2.

100 CPU seconds

ACS-EE(d)
vs.

MMAS-EE(d)

ACS-EE(d)
vs.

RAS-EE(d)

ACS-EE(d)
vs.

BWAS-EE(d)

p Difference [95% CI] Difference [95% CI] Difference [95% CI]

0.050 +2 .67 [+0.61, +4.73] +1.43 [−0.58, +3.45] +0.75 [−1.39, +2.88]
0.075 −2.84 [−3.42,−2.26] −3.42 [−4.03,−2.80] −3.14 [−3.65,−2.64]
0.100 −3.91 [−4.36,−3.45] −1.64 [−2.05,−1.23] −1.06 [−1.73,−0.38]
0.150 −0.70 [−0.88,−0.51] −0.61 [−0.84,−0.37] −0.12 [−0.29, +0.05]
0.175 −1.03 [−1.24,−0.83] −0.99 [−1.18,−0.80] −0.42 [−0.62,−0.21]
0.200 −1.16 [−1.36,−0.97] −1.08 [−1.26,−0.90] −0.52 [−0.69,−0.36]
0.300 −2.25 [−2.45,−2.04] −2.02 [−2.16,−1.87] −1.17 [−1.37,−0.98]
0.400 −3.11 [−3.32,−2.90] −2.88 [−3.07,−2.70] −1.59 [−1.77,−1.40]
0.500 −3.32 [−3.53,−3.11] −3.29 [−3.48,−3.11] −1.73 [−1.92,−1.53]

1000 CPU seconds

ACS-EE(d)
vs.

MMAS-EE(d)

ACS-EE(d)
vs.

RAS-EE(d)

ACS-EE(d)
vs.

BWAS-EE(d)

p Difference [95% CI] Difference [95% CI] Difference [95% CI]

0.050 −1.89 [−2.22,−1.56] −1.08 [−1.43,−0.73] −0.91 [−1.18,−0.63]
0.075 −1.80 [−2.01,−1.60] −1.37 [−1.52,−1.22] −0.83 [−1.01,−0.64]
0.100 −0.75 [−0.85,−0.65] −0.70 [−0.79,−0.61] −0.38 [−0.46,−0.29]
0.150 −0.79 [−0.87,−0.71] −1.26 [−1.36,−1.16] −0.57 [−0.66,−0.48]
0.175 −0.92 [−1.03,−0.82] −1.74 [−1.83,−1.64] −0.55 [−0.64,−0.47]
0.200 −0.96 [−1.06,−0.86] −2.12 [−2.24,−2.00] −0.45 [−0.54,−0.36]
0.300 −0.62 [−0.73,−0.51] −3.19 [−3.31,−3.07] −0.28 [−0.38,−0.17]
0.400 −0.23 [−0.33,−0.13] −3.61 [−3.77,−3.45] −0.29 [−0.40,−0.18]
0.500 −0.14 [−0.25,−0.03] −3.90 [−4.03,−3.77] −0.41 [−0.50,−0.31]
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Table A.4: Fine tuned parameters values

100 CPU seconds

algorithm parameters range selected value

Class-I Class-II Class-III

ACS-EE

m [3, 15] 5 4 11
β [0.0, 5.0] 3.3 0.16 1.0
ρ [0.001, 1.0] 0.75 0.84 1.0
q0 [0.0, 1.0] 0.84 1.0 0.99

MMAS-EE

m [3, 15] 5 4 15
α [0.001, 1.5] 1.4 1.3 0.99
β [0.0, 5.0] 3.2 0.97 2.1
ρ [0.001, 1.0] 1.0 1.0 0.97

RAS-EE

m [3, 15] 3 3 6
α [0.001, 1.5] 0.33 1.1 0.71
β [0.0, 5.0] 5.0 2.6 2.1
ρ [0.001, 1.0] 1.0 0.94 0.83
w [1, 10] 1 1 1

BWAS-EE

m [3, 15] 3 4 4
α [0.001, 1.5] 0.99 1.4 0.89
β [0.0, 5.0] 3.1 2.9 2.3
ρ [0.001, 1.0] 0.95 0.97 0.66

1000 CPU seconds

algorithm parameters range selected value

Class-I Class-II Class-III

ACS-EE

m [3, 15] 4 3 5
β [0.0, 5.0] 0.05 0.85 3.7
ρ [0.001, 1.0] 0.67 0.079 0.82
q0 [0.0, 1.0] 0.99 0.99 0.96

MMAS-EE

m [3, 15] 8 15 6
α [0.001, 1.5] 1.5 1.2 1.1
β [0.0, 5.0] 1.6 1.9 0.95
ρ [0.001, 1.0] 0.99 0.98 0.62

RAS-EE

m [3, 15] 10 6 11
α [0.001, 1.5] 1.2 1.5 1.4
β [0.0, 5.0] 0.85 2.1 2.7
ρ [0.001, 1.0] 1.0 0.57 0.37
w [1, 10] 1 1 1

BWAS-EE

m [3, 15] 5 10 6
α [0.001, 1.5] 0.6 1.1 0.9
β [0.0, 5.0] 2.7 0.09 2.4
ρ [0.001, 1.0] 0.99 0.85 0.27
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Table A.5: Comparison of the average cost obtained by the algorithms with tuned values and by the algorithms with default values
over 50 clustered instances of size 1000 for 100 and 1000 CPU seconds. Typographic conventions are the same as in Table 6.2.

100 CPU seconds

ACS-EE(t)
vs.

ACS-EE(d)

MMAS-EE(t)
vs.

MMAS-EE(d)

RAS-EE(t)
vs.

RAS-EE(d)

BWAS-EE(t)
vs.

BWAS-EE(d)

p Difference [95% CI] Difference [95% CI] Difference [95% CI] Difference [95% CI]

0.050 −8.05 [−9.71,−6.39] −5.03 [−6.24,−3.82] −8.63 [−10.09,−7.17] −7.87 [−9.47,−6.28]
0.075 −2.18 [−2.73,−1.63] −5.84 [−6.37,−5.30] −7.00 [−7.58,−6.41] −5.71 [−6.13,−5.28]
0.100 −0.21 [−0.49, +0.07] −4.81 [−5.25,−4.38] −2.80 [−3.14,−2.45] −1.74 [−2.48,−1.00]
0.150 −1.06 [−1.28,−0.84] −1.75 [−1.92,−1.58] −1.75 [−1.95,−1.56] −1.13 [−1.29,−0.98]
0.175 −0.97 [−1.17,−0.77] −2.06 [−2.24,−1.88] −2.05 [−2.17,−1.92] −1.26 [−1.41,−1.12]
0.200 −1.14 [−1.29,−0.99] −2.27 [−2.47,−2.07] −2.23 [−2.42,−2.03] −1.48 [−1.64,−1.32]
0.300 −0.66 [−0.82,−0.50] −2.78 [−2.97,−2.59] −2.65 [−2.83,−2.48] −1.58 [−1.77,−1.39]
0.400 −0.44 [−0.61,−0.27] −3.28 [−3.49,−3.08] −3.24 [−3.43,−3.05] −1.60 [−1.80,−1.40]
0.500 −0.05 [−0.18, +0.07] −3.19 [−3.39,−2.99] −3.10 [−3.30,−2.90] −1.16 [−1.36,−0.95]

1000 CPU seconds

ACS-EE(t)
vs.

ACS-EE(d)

MMAS-EE(t)
vs.

MMAS-EE(d)

RAS-EE(t)
vs.

RAS-EE(d)

BWAS-EE(t)
vs.

BWAS-EE(d)

p Difference [95% CI] Difference [95% CI] Difference [95% CI] Difference [95% CI]

0.050 −1.14 [−1.42,−0.85] −2.64 [−2.94,−2.34] −2.82 [−3.06,−2.58] −1.65 [−1.90,−1.41]
0.075 −0.30 [−0.36,−0.23] −2.08 [−2.28,−1.87] −1.67 [−1.81,−1.53] −1.09 [−1.30,−0.89]
0.100 −0.22 [−0.26,−0.17] −0.95 [−1.05,−0.84] −0.92 [−1.02,−0.82] −0.58 [−0.67,−0.49]
0.150 −0.16 [−0.22,−0.09] −0.94 [−1.04,−0.84] −1.44 [−1.53,−1.34] −0.68 [−0.78,−0.58]
0.175 −0.04 [−0.11, +0.04] −1.06 [−1.16,−0.95] −1.83 [−1.92,−1.75] −0.61 [−0.69,−0.53]
0.200 −0.09 [−0.17,−0.00] −1.07 [−1.15,−0.98] −2.13 [−2.26,−2.01] −0.44 [−0.54,−0.34]
0.300 +0 .19 [+0.08, +0.30] −0.72 [−0.82,−0.62] −3.19 [−3.29,−3.08] −0.11 [−0.21,−0.00]
0.400 +0.07 [−0.02, +0.16] −0.23 [−0.32,−0.14] −3.39 [−3.57,−3.22] −0.07 [−0.17, +0.04]
0.500 +0.10 [−0.00, +0.21] −0.09 [−0.18, +0.01] −3.53 [−3.66,−3.40] −0.10 [−0.22, +0.02]
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A.3.3 Comparison between the algorithms with tuned parameter val-

ues

The computational results of the four algorithms that adopt the tuned parameter values

on clustered instances of size 1000 are given in Table A.6. For the absolute values, we

refer the reader to Balaprakash et al. (2008c). From the results, we cannot identify a

clear winner among the considered algorithms. For 100 CPU seconds, with a confidence

level of 95%, under the current experimental setting, we can state that should ever

the expected cost of the solutions found by MMAS-EE(t), RAS-EE(t), and BWAS-

EE(t) be larger than those found by ACS-EE(t), the difference would be at most

1.46%, 2.76% and 1.26%, respectively. For 1000 CPU seconds, the aforementioned

differences would be at most 0.37%, 0.83% and 0.11%, respectively. There are a few

exceptions, where the differences are significant but rather small: for 100 CPU seconds,

the maximum observed difference is less than 1% (except for p = 0.050 and p = 0.075,

where the average cost of RAS-EE(t) is 2.08% and 1.59% less than that of ACS-EE(t),

respectively) and for 1000 CPU seconds it is less than 0.7%.

From the absolute values reported in Balaprakash et al. (2008c), we observed that

for 1000 CPU seconds all the algorithms obtain average solution costs that are smaller

than that of 100 CPU seconds; the improvements for an order of magnitude increase

in the computation time are in the range of 0.4% to 2.1% except for p = 0.050, where

the improvements are between 2.9% to 4.5%.

In Tables A.7 and A.8, we report some exemplary results obtained on uniform in-

stances of size 1000 and on TSPLIB instance rat783. The conclusions of the comparison

are similar to the one of clustered instances of size 1000.

In order to further assess the solution costs achieved by the algorithms for a very

long computation time, we allowed the algorithms to run for 10000 CPU seconds, as

suggested by Bianchi (2006), Bianchi and Gambardella (2007), on clustered and uniform

instances of size 1000. The parameter values of each algorithm are the same as that of

1000 CPU seconds. The results are shown in Tables A.6 and A.7. The general trend

is similar to that of shorter computation times: there is no clear winner among the

considered algorithms.

A.4 Summary

The main contribution of this appendix is the development and the empirical analysis of

estimation-based ACO algorithms for the PTSP. We used the best performing analyti-
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Table A.6: Comparison of the average cost obtained by ACS-EE(t), MMAS-EE(t), RAS-
EE(t), and BWAS-EE(t) over 50 clustered instances of size 1000 for 100, 1000, and 10000
CPU seconds. Typographic conventions are the same as in Table 6.2.

100 CPU seconds

ACS-EE(t)
vs.

MMAS-EE(t)

ACS-EE(t)
vs.

RAS-EE(t)

ACS-EE(t)
vs.

BWAS-EE(t)

p Difference [95% CI] Difference [95% CI] Difference [95% CI]
0.050 −0.60 [−1.50, +0.30] +2 .08 [+1.39, +2.76] +0.55 [−0.15, +1.26]
0.075 +0 .94 [+0.43, +1.46] +1 .59 [+1.18, +2.00] +0.48 [−0.02, +0.99]
0.100 +0 .74 [+0.52, +0.97] +0 .98 [+0.81, +1.14] +0 .49 [+0.30, +0.68]
0.125 +0.03 [−0.10, +0.16] −0.15 [−0.28,−0.02] −0.17 [−0.30,−0.03]
0.150 +0.00 [−0.16, +0.16] +0.10 [−0.05, +0.24] −0.04 [−0.21, +0.13]
0.175 +0.07 [−0.06, +0.20] +0.10 [−0.02, +0.22] −0.12 [−0.26, +0.01]
0.200 −0.02 [−0.18, +0.15] +0.02 [−0.13, +0.18] −0.18 [−0.31,−0.05]
0.300 −0.12 [−0.26, +0.02] −0.01 [−0.17, +0.14] −0.26 [−0.42,−0.10]
0.400 −0.27 [−0.41,−0.12] −0.07 [−0.23, +0.08] −0.43 [−0.57,−0.28]
0.500 −0.18 [−0.33,−0.04] −0.25 [−0.41,−0.10] −0.63 [−0.76,−0.50]

1000 CPU seconds

ACS-EE(t)
vs.

MMAS-EE(t)

ACS-EE(t)
vs.

RAS-EE(t)

ACS-EE(t)
vs.

BWAS-EE(t)

p Difference [95% CI] Difference [95% CI] Difference [95% CI]
0.050 −0.38 [−0.59,−0.16] +0 .64 [+0.44, +0.83] −0.38 [−0.60,−0.17]
0.075 −0.02 [−0.04, +0.00] +0.01 [−0.05, +0.06] −0.03 [−0.06,−0.00]
0.100 −0.01 [−0.04, +0.02] +0.00 [−0.04, +0.05] −0.01 [−0.04, +0.02]
0.150 −0.00 [−0.06, +0.05] +0.02 [−0.04, +0.08] −0.04 [−0.09, +0.01]
0.175 +0 .10 [+0.02, +0.17] +0.06 [−0.02, +0.14] +0.02 [−0.05, +0.09]
0.200 +0.02 [−0.05, +0.10] −0.07 [−0.16, +0.02] −0.10 [−0.17,−0.02]
0.300 +0 .29 [+0.21, +0.37] +0 .19 [+0.11, +0.27] +0.02 [−0.08, +0.11]
0.400 +0.07 [−0.02, +0.16] −0.15 [−0.25,−0.05] −0.15 [−0.23,−0.07]
0.500 +0.05 [−0.05, +0.15] −0.28 [−0.38,−0.18] −0.20 [−0.29,−0.10]

10000 CPU seconds

ACS-EE(t)
vs.

MMAS-EE(t)

ACS-EE(t)
vs.

RAS-EE(t)

ACS-EE(t)
vs.

BWAS-EE(t)

p Difference [95% CI] Difference [95% CI] Difference [95% CI]
0.050 −0.16 [−0.26,−0.07] +0 .15 [+0.10, +0.21] +0 .09 [+0.05, +0.13]
0.075 −0.01 [−0.03,−0.00] +0.02 [−0.00, +0.03] +0 .02 [+0.01, +0.03]
0.100 −0.03 [−0.05,−0.01] −0.04 [−0.11, +0.03] −0.02 [−0.04, +0.01]
0.150 −0.04 [−0.08, +0.01] +0.02 [−0.01, +0.05] −0.05 [−0.11, +0.01]
0.175 −0.07 [−0.15, +0.01] −0.00 [−0.07, +0.07] −0.04 [−0.12, +0.04]
0.200 +0.00 [−0.08, +0.09] −0.05 [−0.14, +0.03] −0.01 [−0.12, +0.10]
0.300 +0.00 [−0.07, +0.07] −0.15 [−0.24,−0.06] −0.09 [−0.17,−0.02]
0.400 +0 .09 [+0.01, +0.17] −0.33 [−0.47,−0.20] −0.03 [−0.13, +0.06]
0.500 +0.02 [−0.09, +0.12] −0.48 [−0.62,−0.35] −0.06 [−0.13, +0.02]
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Table A.7: Comparison of the average cost obtained by ACS-EE(t), MMAS-EE(t), RAS-
EE(t), and BWAS-EE(t) over 50 uniform instances of size 1000 for 100, 1000, and 10000
CPU seconds. Typographic conventions are the same as in Table 6.2.

100 CPU seconds

ACS-EE(t)
vs.

MMAS-EE(t)

ACS-EE(t)
vs.

RAS-EE(t)

ACS-EE(t)
vs.

BWAS-EE(t)

p Difference [95% CI] Difference [95% CI] Difference [95% CI]
0.050 −0.18 [−0.68, +0.31] +1 .39 [+0.99, +1.80] +0.34 [−0.03, +0.70]
0.075 +0 .44 [+0.28, +0.60] +0 .81 [+0.66, +0.96] +0 .27 [+0.12, +0.42]
0.100 +0 .81 [+0.66, +0.96] +0 .93 [+0.74, +1.13] +0 .66 [+0.50, +0.82]
0.150 +0.09 [−0.06, +0.25] +0.13 [−0.04, +0.30] −0.06 [−0.24, +0.13]
0.175 +0.00 [−0.19, +0.19] −0.03 [−0.20, +0.13] −0.16 [−0.35, +0.02]
0.200 +0.15 [−0.02, +0.32] +0.14 [−0.06, +0.34] −0.35 [−0.60,−0.11]
0.300 +0.03 [−0.15, +0.20] +0.04 [−0.11, +0.19] −0.41 [−0.64,−0.19]
0.400 −0.08 [−0.26, +0.09] −0.23 [−0.41,−0.05] −0.64 [−0.81,−0.47]
0.500 +0.04 [−0.13, +0.21] −0.53 [−0.70,−0.37] −0.75 [−0.92,−0.58]

1000 CPU seconds

ACS-EE(t)
vs.

MMAS-EE(t)

ACS-EE(t)
vs.

RAS-EE(t)

ACS-EE(t)
vs.

BWAS-EE(t)

p Difference [95% CI] Difference [95% CI] Difference [95% CI]
0.050 −0.12 [−0.29, +0.04] +0 .28 [+0.11, +0.45] −0.07 [−0.28, +0.14]
0.075 −0.04 [−0.13, +0.05] −0.01 [−0.10, +0.08] +0 .06 [+0.00, +0.12]
0.100 +0.04 [−0.03, +0.11] −0.03 [−0.15, +0.09] +0 .12 [+0.03, +0.21]
0.150 +0.09 [−0.01, +0.20] +0.00 [−0.12, +0.12] −0.08 [−0.20, +0.04]
0.175 +0.03 [−0.05, +0.11] −0.06 [−0.19, +0.08] −0.07 [−0.19, +0.05]
0.200 +0.04 [−0.09, +0.18] −0.12 [−0.24,−0.01] −0.10 [−0.22, +0.02]
0.300 +0.11 [−0.01, +0.23] −0.08 [−0.22, +0.06] −0.23 [−0.34,−0.13]
0.400 +0.01 [−0.11, +0.13] −0.45 [−0.58,−0.32] −0.35 [−0.46,−0.24]
0.500 +0.05 [−0.06, +0.17] −0.60 [−0.74,−0.46] −0.33 [−0.46,−0.20]

10000 CPU seconds

ACS-EE(t)
vs.

MMAS-EE(t)

ACS-EE(t)
vs.

RAS-EE(t)

ACS-EE(t)
vs.

BWAS-EE(t)

p Difference [95% CI] Difference [95% CI] Difference [95% CI]
0.050 −0.21 [−0.34,−0.08] +0.09 [−0.01, +0.18] +0.05 [−0.08, +0.18]
0.075 +0.02 [−0.07, +0.11] +0.06 [−0.05, +0.17] +0.06 [−0.03, +0.16]
0.100 +0.04 [−0.10, +0.19] −0.08 [−0.27, +0.12] +0.02 [−0.16, +0.19]
0.150 −0.03 [−0.24, +0.19] −0.10 [−0.23, +0.04] +0.00 [−0.15, +0.16]
0.175 +0 .20 [+0.06, +0.33] −0.04 [−0.22, +0.14] +0.13 [−0.01, +0.28]
0.200 +0.13 [−0.07, +0.32] −0.04 [−0.25, +0.17] +0.02 [−0.17, +0.21]
0.300 +0.08 [−0.08, +0.25] −0.37 [−0.57,−0.16] −0.16 [−0.31,−0.01]
0.400 +0 .23 [+0.10, +0.37] −0.39 [−0.59,−0.20] +0.03 [−0.12, +0.18]
0.500 +0.08 [−0.09, +0.24] −0.81 [−1.01,−0.60] −0.05 [−0.20, +0.09]
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Table A.8: Comparison of the average cost obtained by ACS-EE(t), MMAS-EE(t), RAS-
EE(t), and BWAS-EE(t) over 30 independent runs on instance rat783 for n2/10000 = 61
and n2/1000 = 613 CPU seconds. Typographic conventions are the same as in Table 6.2.

61 CPU seconds

ACS-EE(t)
vs.

MMAS-EE(t)

ACS-EE(t)
vs.

RAS-EE(t)

ACS-EE(t)
vs.

BWAS-EE(t)

p Difference [95% CI] Difference [95% CI] Difference [95% CI]
0.050 −0.06 [−0.24, +0.13] −0.13 [−0.36, +0.11] −0.20 [−0.44, +0.03]
0.075 +0.05 [−0.10, +0.20] +0.03 [−0.14, +0.21] −0.07 [−0.22, +0.08]
0.100 +0.00 [−0.16, +0.16] −0.12 [−0.36, +0.11] −0.11 [−0.27, +0.05]
0.150 −0.09 [−0.28, +0.10] −0.02 [−0.18, +0.14] −0.08 [−0.25, +0.09]
0.175 −0.03 [−0.17, +0.11] +0.09 [−0.04, +0.22] −0.05 [−0.21, +0.11]
0.200 −0.05 [−0.21, +0.12] −0.07 [−0.22, +0.09] −0.18 [−0.36, +0.01]
0.300 +0.17 [−0.03, +0.36] +0 .18 [+0.05, +0.30] −0.03 [−0.18, +0.12]
0.400 −0.10 [−0.26, +0.06] −0.31 [−0.47,−0.15] −0.31 [−0.45,−0.16]
0.500 +0.03 [−0.13, +0.19] −0.40 [−0.59,−0.21] −0.25 [−0.40,−0.09]

613 CPU seconds

ACS-EE(t)
vs.

MMAS-EE(t)

ACS-EE(t)
vs.

RAS-EE(t)

ACS-EE(t)
vs.

BWAS-EE(t)

p Difference [95% CI] Difference [95% CI] Difference [95% CI]
0.050 +0.21 [−0.18, +0.59] −0.07 [−0.52, +0.38] −0.57 [−1.09,−0.04]
0.075 −0.10 [−0.30, +0.10] −0.49 [−0.73,−0.24] −0.34 [−0.62,−0.07]
0.100 +0 .29 [+0.03, +0.56] −0.24 [−0.57, +0.08] −0.09 [−0.43, +0.26]
0.150 +1 .09 [+0.70, +1.47] +0 .88 [+0.54, +1.22] +0 .88 [+0.52, +1.23]
0.175 +1 .57 [+1.21, +1.94] +1 .32 [+0.88, +1.76] +1 .24 [+0.88, +1.60]
0.200 +1 .65 [+1.33, +1.96] +1 .09 [+0.69, +1.49] +1 .33 [+1.01, +1.64]
0.300 +0 .96 [+0.73, +1.20] +0 .62 [+0.37, +0.87] +0 .31 [+0.01, +0.62]
0.400 +0.06 [−0.27, +0.39] −0.40 [−0.68,−0.11] −0.69 [−1.00,−0.38]
0.500 −0.86 [−1.19,−0.53] −1.41 [−1.64,−1.18] −1.66 [−1.93,−1.40]
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A.4 Summary

cal computation ACO algorithm pACS+1-shift as a starting point. We showed that the

adoption of the iterative improvement algorithm 2.5-opt-EEais allows pACS to obtain

a significant improvement in the solution cost. To develop a complete estimation-based

ACS, we adopted an estimation-based approach to evaluate the solution costs. Finally,

we customized MAX–MIN ant system, rank-based ant system, and best-worst ant sys-

tem to solve the PTSP. We showed that all of them can be used to effectively tackle

the PTSP provided that their parameter values are fine tuned. The major advantage

of the estimation-based approach is that algorithm designers do not require a priori

knowledge on how to compute the expected cost analytically. This is particularly use-

ful when applying ACO algorithms to complex stochastic combinatorial optimization

problems, where it might be very difficult, or even impossible, to derive closed-form

expressions.
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Appendix B

The Iterative F-Race algorithm

Finding appropriate values for the parameters of an algorithm is a challenging, impor-

tant, and time consuming task. While typically parameters are tuned by hand, recent

studies have shown that automatic tuning procedures can effectively handle this task

and often find better parameter settings. F-Race has been proposed specifically for

this purpose and it has proven to be very effective in a number of cases. F-Race is a

racing algorithm that starts by considering a number of candidate parameter settings

and eliminates inferior ones as soon as enough statistical evidence arises against them.

In this appendix, we propose two modifications to the usual way of applying F-Race

that, on the one hand, make it suitable for tuning tasks with a very large number of ini-

tial candidate parameter settings and, on the other hand, allow a significant reduction

in the number of function evaluations without any major loss in solution quality. We

evaluate the proposed modifications on a number of stochastic local search algorithms

and we show their effectiveness.

B.1 Introduction

The full potential of a parameterized algorithm cannot be achieved unless its parameters

are fine tuned. Often, practitioners tune the parameters using their personal experience

guided by some rules of thumb. Usually, such a procedure is tedious and time consuming

and, hence, it is not surprising that some authors say that 90% of the total time needed

for developing an algorithm is dedicated to find the right parameter values (Adenso-

Diaz and Laguna, 2006). Therefore, an effective automatic tuning procedure is an

absolute must by which the computational time and the human intervention required

for tuning can be significantly reduced. In fact, the selection of parameter values
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that drive heuristics is itself a scientific endeavor and deserves more attention than it

has received in the operations research literature (Barr et al., 1995). In this context,

few procedures have been proposed in the literature. F-Race (Birattari et al., 2002;

Birattari, 2004) is one among them and has proven to be successful and useful in a

number of tuning tasks (Birattari, 2004; Becker et al., 2005; Chiarandini et al., 2006;

Pellegrini and Birattari, 2006).

Inspired by a class of racing algorithms proposed in the machine learning literature,

F-Race evaluates a given set of parameter configurations sequentially on a number of

problem instances. As soon as statistical evidence is obtained that a candidate config-

uration is worse than at least another one, the inferior candidate is discarded and not

considered for further evaluation. In all previously published works using F-Race, the

initial candidate configurations were obtained through a full factorial design. This de-

sign is primarily used to select the best parameter configuration from a relatively small

set of promising configurations that the practitioner has already established. Never-

theless, the main difficulty of this design is that, if the practitioner is confronted with

a large number of parameters and a wide range of possible values for each parameter,

the number of initial configurations becomes quite large. In such cases, the adoption

of the full factorial design within F-Race can become impractical and computationally

prohibitive. In order to tackle this problem, we propose two supplementary procedures

to the original F-Race approach. The first procedure consists in generating configura-

tions by random sampling. Notwithstanding the simplicity, the empirical results show

that this approach can be more effective—in the context of tuning tasks—than the

adoption of a full factorial design. However, if the number of parameters is large, this

methodology might need a large number of configurations to achieve good results. We

alleviate this problem taking inspiration from model-based search techniques (Zlochin

et al., 2004) in the second procedure. This procedure uses a probabilistic model defined

on the set of all possible parameter configurations and at each iteration, a small set of

parameter configurations is generated according to the model. Elite configurations se-

lected by F-Race are then used to update the model in order to bias the search around

the high quality parameter configurations.

The appendix is organized as follows. In Section B.2, we introduce the proposed

supplementary procedures. In Section B.3, we present some empirical results. We

discuss some related work in Section B.4, and summarize the appendix in Section B.5.
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B.2 Sampling F-Race and Iterative F-Race

For a formal definition of the problem of tuning SLS algorithms, we follow Birattari

et al. (2002). The problem is defined as a 6 tuple 〈Θ, I, t, PI , Pc,C〉, where Θ is the

finite set of candidate configurations, I is the possibly infinite set of problem instances,

t is a function associating to every instance the computation time that is allocated to

it, PI is a probability measure over the set I, PC is a probability measure over the set

of all possible values for the cost of the best solution found in a run of a configuration

θ ∈ Θ on an instance i, C(θ) is the criterion that needs to be optimized with respect to

θ: the solution of the tuning problem consists in finding a configuration θ∗ such that

θ∗ = arg min
θ

C(θ). (B.1)

Typically, C(θ) is an expected value where the expectation is considered with respect to

both PI and PC . The main advantage of using expectation is that it can be effectively

and reliably estimated using Monte Carlo procedures. In this appendix, we focus on

the minimization of the expected value of the solution cost and the criterion is given

by:

C(θ) = EI,C

[

c(θ, i)
]

=

∫

I

∫

C
ct(θ, i) dPC(ct|θ, i) dPI(i), (B.2)

where, ct(θ, i) is a random variable that represents the cost of the best solution found

by running configuration θ on instance i for t seconds. The integration is taken in

the Lebesgue sense and the integrals are estimated in a Monte Carlo fashion on the

basis of a so-called tuning set of instances. It is straightforward to use criteria other

than the expected value such as inter-quartile range of the solution cost. In the case of

decision problems, the practitioner might be interested in minimizing the run-time of

an algorithm, a task that can be handled in a straightforward way by F-Race.

F-Race is inspired by a class of racing algorithms proposed in the machine learning

literature for tackling the model selection problem (Maron and Moore, 1994; Moore and

Lee, 1994). In F-Race, as in other racing algorithms, a set of given candidate configura-

tions are sequentially evaluated on a number of tuning instances. As soon as sufficient

evidence is gathered that a candidate configuration is worse than at least another one,

the former is discarded from the race and is not further evaluated. The race termi-

nates when either one single candidate configuration remains, or the available budget

of computation time is used. The peculiarity of F-Race compared to other racing algo-

rithms is the adoption of the Friedman two-way analysis of variance by ranks (Conover,

1999), a nonparametric statistical test that appears particularly suitable in the context
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Figure B.1: Visual representation of a typical trace of F-Race giving the number of sur-
viving configurations in dependence of the number of instances seen. The x-axis represents
the number of candidate configurations that are still in the race and the y-axis represents
the number of instances that has been used for evaluating the configurations. As the
evaluation proceeds, F-Race focuses more and more on the promising configurations.

of racing algorithms for the tuning task. The progress of the F-Race procedure can be

graphically illustrated as shown in Figure 1.

The main focus of this appendix is the method by which the initial set of con-

figurations is obtained in F-Race: while F-Race does not specify how Θ is defined,

in most of the studies on F-Race, the configurations are defined using a full factorial

design (FFD). In the simplest case, this is done as follows. Let M = {M1, . . . ,Md} be

the set of parameters that need to be tuned whose ranges are given by (mink,maxk),

for k = 1, . . . , d, where mink and maxk are the minimum and maximum values of the

parameter Mk, respectively. For each element in M, the practitioner has to choose a

certain number of values; each possible combination of these parameter values leads to

one unique configuration and the set of all possible combinations forms the initial set of

configurations. If lk values are chosen for Mk, then the number of initial configurations

is
∏d

k=1 lk. When each parameter takes l values, then
∏d

k=1 l = ld; that is, the number

of configurations grows exponentially with respect to the number of parameters. As

a consequence, even a reasonable number of possible values for each parameter makes

the adoption of a full factorial design impractical and computationally prohibitive.

B.2.1 Sampling F-Race

A simple way to overcome the shortcomings of FFD is sampling. This means that the

elements of Θ are sampled according to a given probability measure PX defined on the

space X of parameter values. If a priori knowledge is available on the effect of the pa-

rameters and on their interactions, this knowledge can be used to shape the probability

measure PX and therefore to suitably bias the sampling of the initial configurations.
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On the other hand, if no a priori knowledge on the parameter values is available, ex-

cept the boundary constraints, then each possible value in the available range for each

parameter should be given equal probability of being selected in sampling. In this case,

PX is a d-variate uniform distribution, which is factorized by a product of d univariate

independent uniform distributions. A sample from the d-variate uniform distribution is

a vector corresponding to a configuration θ such that a value xk in the vector is sampled

from the univariate independent uniform distribution parameterized by (mink,maxk).

We call this strategy random sampling design (RSD). The F-Race procedure is then

applied to the set of sampled configurations. We denote this procedure as RSD/F-Race.

It should be noted that the performance of the winning configuration is greatly deter-

mined by the number of sampled configurations, Nmax.

B.2.2 Iterative F-Race

RSD/F-Race can identify promising configurations in the search space. However, finding

the best configuration from the promising regions is often a difficult task. In order

to address this issue, we propose iterative F-Race (I/F-Race), a supplementary

mechanism to the original F-Race approach. It is an iterative procedure in which

each iteration consists in first defining a probability measure over the parameter space

using promising configurations obtained from the previous iteration, then generating

configurations that are distributed according to the newly defined probability measure,

and finally applying F-Race on the generated configurations. This approach falls under

the general framework of model-based search (Zlochin et al., 2004).

The way in which the probability measure is defined at each iteration plays a cru-

cial role in biasing the search towards regions containing high quality configurations.

The main issues in the search bias are the choice of the distribution and search inten-

sification. For what concerns the distribution, there exist a number of choices. Here,

we adopt a d-variate normal distribution parameterized by mean vector and covari-

ance matrix. In order to intensify the search around the promising configurations, a

d-variate normal distribution is defined on each surviving configuration from the pre-

vious iteration such that the distribution is centered at the values of the corresponding

configuration. Moreover, the spread of the normal densities given by the covariance

matrix is gradually reduced at each iteration.

This appendix focuses on a scenario in which the practitioner does not have any a

priori knowledge on the parameter values. Hence, we assume that the values taken by

the parameters are independent, that is, knowing a value for a particular parameter does
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not give any information on the values taken by the other parameters. Consequently,

the d-variate normal distribution is factorized by a product of d univariate independent

normal densities parameterized by µ = (µ1, . . . , µd) and σ = (σ1, . . . , σd). At each

iteration, the standard deviation vector σ of the normal densities is reduced heuristically

using the idea of volume reduction. Suppose that Ns configurations survive after a given

iteration; we denote the surviving configurations as θs = (xs
1, . . . , x

s
d), for s = 1, . . . ,Ns.

At a given iteration r, let Vr be the total volume of the d-dimensional sampling region

bounded by (µsr

k ± σsr

k ), for k = 1, . . . , d; for iteration r + 1, in order to intensify the

search, we reduce the volume of the sampling region by a factor equal to the number

of sample configurations allowed for each iteration, Nmax; therefore Vr+1 = Vr/Nmax,

from which after some basic mathematical transformation, we have:

σs
k = R

sprev

k ·
(

1

Nmax

)1/d

for k = 1, . . . , d, (B.3)

where R
sprev

k is set to standard deviation of the normal distribution component from

which xs
k has been sampled from the previous iteration. In simple terms, the adoption

of Equation B.3 allows I/F-Race to reduce the range of each parameter that falls

around one standard deviation from the mean at a constant rate of (1/Nmax)1/d for

each iteration—the larger the value of Nmax, the higher the rate of volume reduction.

Though one could use more advanced techniques to update the distribution as suggested

by the model-based search framework (Zlochin et al., 2004), we have adopted the above

described heuristic way of intensifying search due to its simplicity.

Note that in the first iteration, a d-variate uniform distribution is used as the prob-

ability measure, thus for the following iteration, R
sprev

k is set to the half of range, that

is, (maxk−mink)/2, where maxk and mink are parameters of the uniform distribution

component from which xs
k has been sampled, respectively.

The proposed approach adopts a strategy in which the number of configurations

drawn from a d-variate normal distribution defined on a surviving configuration is in-

versely proportional to the configurations’ expected solution cost. Recall that we are

faced with the minimization of the expected solution cost. To do so, a selection prob-

ability is defined: the surviving configurations are ranked according to their expected

solution costs and the probability of selecting a d-variate normal distribution defined

on a configuration with rank z is given by

pz =
Ns − z + 1

Ns · (Ns + 1)/2
. (B.4)
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A configuration is obtained by first choosing a d-variate normal distribution according

to Equation B.4, and then sampling from the chosen distribution. This is repeated

until Nmax configurations are sampled.

B.2.2.1 Implementation specific details

In order to guarantee that I/F-Race does a specific minimum number of iterations and

that it has a minimum number of survivors, we have modified F-Race slightly to stop

it prematurely. At each iteration, the race is stopped if one of the following conditions

is true:

• when Nmin configurations remain;

• when a certain amount of computational budget, CBmin, is used;

• when the configurations in the race are evaluated on at least Imax instances.

Though these modifications introduce 3 parameters, they are set in a reasonable and

straightforward way with respect to the total computational budget CB when the

algorithm starts: (i) CBmin is set to CB/5: this setting allows I/F-Race to perform

at least five iterations; (ii) Nmin is set to d: this setting enables I/F-Race to search

in a number of promising regions rather than just concentrating on a single region;

(iii) Imax is set to 2 · (CBmin/Nmax): if none of the configurations is eliminated from

the race then each configuration has been evaluated on CBmin/Nmax instances; hence,

twice this value seems to be a reasonable upper bound.

The maximum number Nmax of configurations allowed for each race is kept constant

throughout the procedure. Moreover, the Ns configurations that have survived the race

are allowed to compete with the newly sampled configurations. Therefore, Nmax − Ns

configurations are sampled anew at each iteration.

The order in which the instances are given to the race is randomly shuffled for

each iteration. Since the surviving configurations of each race are allowed to enter

into the next race, their results could be reused if the configuration has already been

evaluated on a particular instance. However, since we do not want to bias I/F-Race in

the empirical study, we did not use this possibility here.

The boundary constraints are handled in an explicit way. We adopt a method that

consists in assigning the boundary value if the sampled value is outside the boundary.

The rationale behind this adoption is to allow the exploration of values that lay at the

boundary. In the case of parameters that take integer values, the value assigned to

each integer parameter in the entire procedure is rounded off to the nearest integer.
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B.3 Experiments

In this section, we study the proposed RSD/F-Race and I/F-Race using three exam-

ples. Though any parameterized algorithm may be tuned, all three examples concern

the tuning of stochastic local search algorithms (Hoos and Stützle, 2005): (i) tuning

MAX − MIN ant system (MMAS) (Stützle and Hoos, 2000), a particular ant colony

optimization algorithm, for a class of instances of the TSP, (ii) tuning a variant of

the estimation-based iterative improvement algorithm 2.5-opt-EEais for a class of in-

stances of the PTSP, and (iii) tuning a simulated annealing algorithm for a class of in-

stances of the VRPSD. The primary goal of these examples is to show that RSD/F-Race

and I/F-Race can significantly reduce the computational budget required for tuning.

We compare RSD/F-Race and I/F-Racewith an implementation of F-Race that uses

a full factorial design (FFD). For RSD/F-Race and I/F-Race we make the assumption

that the a priori knowledge on the parameter values is not available. In the case of

FFD, we consider two variants:

1. FFD that uses a priori knowledge; a parameter Mk is allowed to take lk values,

for k = 1, . . . , d, where lk values are chosen according to the a priori knowledge

available on the parameter values; we denote this variant by FFDA/F-Race.

2. FFD that uses random values: a parameter Mk is allowed to take lk values, for

k = 1, . . . , d, where lk values are chosen randomly; we denote this variant by

FFDR/F-Race. Note that the number of configurations in this variant is the same

as that of FFDA/F-Race. This serves as a yardstick to analyze the usefulness

of the a priori knowledge. The rationale behind the adoption of this yardstick

is that if one just takes random values for FFD and achieves better results then

FFDA/F-Race, then we can conjecture that the available a priori knowledge is

either not accurate or simply not useful, at least in the examples that we consider

here.

The minimum number of steps allowed in F-Race for all algorithms before applying the

Friedman test is set to 5 as proposed in Birattari (2004).

The maximum computational budget of FFDA/F-Race and FFDR/F-Race are set to

10 times the number of initial configurations. The rationale behind this choice is that,

if none of the configurations is eliminated, FFDA/F-Race and FFDR/F-Race evaluate all

the configurations on at least 10 instances. This budget is also given for RSD/F-Race

and I/F-Race. In order to force RSD/F-Race to use the entire computational budget,

the number of configurations is set to one-sixth of the computational budget. Since
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I/F-Race needs to perform at least five F-races with the same budget as that of

RSD/F-Race, the number of initial configurations in each F-Race run by I/F-Race is

set to one-fifth of the number of configurations given to RSD/F-Race. Moreover, in

order to study the effectiveness of RSD/F-Race and I/F-Race under strong budget

constraints, the computational budget is reduced by a factor of two, four, and eight.

Note that, in these cases, the number of configurations in RSD/F-Race and I/F-Race

is set according to the allowed budget using the same rule as described before.

Each tuning algorithm is allowed to perform 10 trials and the order in which the

instances are given to an algorithm is randomly shuffled for each trial.

All tuning algorithms were implemented and run under R version 2.41 and we used a

public domain implementation of F-Race in R which is freely available for download (Bi-

rattari, 2003). MMAS2 and the estimation-based iterative improvement algorithm were

implemented in C and compiled with gcc, version 3.4. Simulated annealing for the

VRPSD is implemented in C++. Experiments were carried out on AMD OpteronTM244

1.75 GHz processors with 1 MB L2-Cache and 2 GB RAM, running under the Rocks

Cluster Distribution 4.2 GNU/Linux.

In order to quantify the effectiveness of each algorithm, we study the expected

solution cost of the winning configuration C(θ∗), where the expectation is taken with

respect to the set of all trials and the set of all test instances. We report the expected

solution cost of each algorithm, measured as the percentage deviation from a reference

cost, which is given by the average over C(θ∗) obtained by each algorithm. The adoption

of reference cost allows us to compare the expected solution cost of different algorithms

more directly.

In order to test whether the observed differences between the expected solution costs

of different tuning algorithms are significant in a statistical sense, a random permutation

test is adopted. The level of significance at which we reject the null hypothesis is 0.05;

two sided p-value is computed for each comparison.

B.3.1 Tuning MMAS for TSP

In this study, we tune 6 parameters of MMAS:

1. relative influence of pheromone trails, α;

1R is a language and environment for statistical computing that is freely available under the GNU

GPL license at http://www.r-project.org/
2We used the ACOTSP package, which is a public domain software that provides an implementation

of various ant colony optimization algorithms applied to the symmetric TSP. The package available at:
http://www.aco-metaheuristic.org/aco-code/
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Table B.1: Ranges of the parameter values considered for tuning MMAS for TSP with
RSD/F-Race and I/F-Race

parameter range

α [0.0, 1.5]
β [0.0, 5.0]
ρ [0.0, 1.0]
γ [0.01, 5.00]
m [1, 1200]
nn [5, 50]

2. relative influence of heuristic information, β;

3. pheromone evaporation rate, ρ;

4. parameter used in computing the minimum pheromone trail value τmin, γ, which

is given by τmax/(γ ∗ instance size);

5. number of ants, m;

6. number of neighbors used in the solution construction phase, nn.

In FFDA/F-Race and FFDR/F-Race, each parameter is allowed to take 3 values. The

parameter values in FFDA/F-Race are set as follows: α ∈ {0.75, 1.00, 1.50}, β ∈ {1.00,
3.00, 5.00}, ρ ∈ {0.01, 0.02, 0.03}, γ ∈ {1.00, 2.00, 3.00}, m ∈ {500, 750, 1000}, and

nn ∈ {20, 30, 40}. These values are chosen reasonably close to the values proposed

in Dorigo and Stützle (2004). Note that the values are chosen from the version with-

out the local search. Table B.1 shows the ranges of the parameters considered for

RSD/F-Race and I/F-Race. The computational time allowed for evaluating a configu-

ration on an instance is set to 20 seconds. Instances are generated with the DIMACS

instance generator (Johnson et al., 2001). We used uniformly distributed Euclidean

instances of size 750; 1000 instances were generated for tuning; 300 other instances

were generated for evaluating the winning configuration. Table B.2 shows the percent-

age deviation of each algorithms’ expected solution cost from the reference cost, the

maximum budget allowed for each algorithm and the average number of evaluations

used by each algorithm.

From the results, we can see that I/F-Race is very competitive: under equal com-

putational budget, the expected solution cost of I/F-Race is approximately 17% and

15% less than that of FFDR/F-Race and FFDA/F-Race, respectively (the observed dif-

ferences are significant according to the random permutation test). On the other hand,
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Table B.2: Computational results for tuning MMAS for TSP. The column entries with
the label per.dev shows the percentage deviation of each algorithms’ expected solution cost
from the reference cost : +x means that the expected solution cost of the algorithm is x%
more than the reference cost and −x means that the expected solution cost of the algorithm
is x% less than the reference cost. The column entries with the label with max.bud shows
the maximum number of evaluations given to each algorithm and the column with the label
usd.bud shows the average number of evaluations used by each algorithm.

algo per.dev max.bud usd.bud

FFDR/F-Race +13.45 7290 5954
FFDA/F-Race +11.13 7290 5233
RSD/F-Race −2.69 7290 7232
I/F-Race −3.92 7290 7181

RSD/F-Race −2.55 3645 3275
I/F-Race −3.84 3645 3564

RSD/F-Race −2.51 1822 1699
I/F-Race −3.66 1822 1793

RSD/F-Race −2.17 911 823
I/F-Race −3.23 911 894

the expected solution cost of RSD/F-Race is also very low. However, I/F-Race reaches

an expected cost that is about 1% less than that of RSD/F-Race. Indeed, the observed

difference is significant in a statistical sense. Regarding the budget, FFDR/F-Race and

FFDA/F-Race use only 80% and 70% of the maximum budget. This early termination

of the F-Race is attributed to the adoption of FFD: since, there are rather few possible

values for each parameter, the inferior configurations are identified and discarded within

few steps. However, the poor performance of FFDR/F-Race and FFDA/F-Race is not

only attributable to the fact that they do not use the budget effectively. Given only half

of the computational budget (a maximum budget of 3645), RSD/F-Race and I/F-Race

achieve expected solution costs that are still 17% and 15% lower than FFDR/F-Race

and FFDA/F-Race, respectively (the observed differences are significant according to

the random permutation test). Another important observation is that, in the case of

I/F-Race and RSD/F-Race, reducing the budget does not degrade the effectiveness to

a large extent. Furthermore, in all these reduced budget cases, I/F-Race achieves an

expected solution cost which is approximately 1% less than that of RSD/F-Race (the

observed differences are significant according to the random permutation test).
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Table B.3: Ranges of the parameter values considered for tuning the estimation-based
iterative improvement for the PTSP with RSD/F-Race and I/F-Race

parameter range

p1 [0.0, 1.0]
w [0, 100]
p2 [0.0, 1.0]

B.3.2 Tuning estimation-based iterative improvement algorithm for

the PTSP

In this section, we consider a simple variant of 2.5-opt-EEais. The adopted variant

differs from 2.5-opt-EEais presented in Chapter 5 only with respect to way in which

the shorter segment parameter minis is used. In the simple variant, minis is the the

number of nodes of the shorter segment and all the nodes in the shorter segment are

biased.

1. importance sampling probability for 2-exchange moves, p′;

2. number of nodes to determine the shorter segment in 2-exchange moves, minis;

3. importance sampling probability for node-insertion moves p′′.

In FFDA/F-Race, the values are assigned by discretization: for each parameter, the

range is discretized as follows: p′ = p′′ ∈ {0.16, 0.33, 0.50, 0.66, 0.83}, and minis = {8,
17, 25, 33, 42}. Table B.3 shows the ranges of the parameters considered for RSD/F-Race

and I/F-Race. The algorithm is allowed to run until it reaches a local optimum. We

used clustered Euclidean instances of size 1000; 800 instances were generated for tuning;

800 more instances were generated for evaluating the winning configuration.

The computational results show that the difference between the expected cost of the

solutions obtained by different algorithms exhibits a trend similar to the one observed

in the TSP experiments. However, the percentage deviations from the reference cost

are relatively small: under equal computational budget, the expected solution cost

of I/F-Race and RSD/F-Race are approximately 2% less than that of FFDR/F-Race

and FFDA/F-Race, respectively. Note that this difference is significant according to a

random permutation test. Though RSD/F-Race obtains an expected solution cost which

is 0.01% less than that of I/F-Race, the random permutation test does not reject the

null hypothesis. The overall low percentage deviation between algorithms is attributed

to the fact that the estimation-based iterative improvement algorithm is not extremely
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Table B.4: Computational results for tuning the estimation-based iterative improvement
algorithm for PTSP. The column entries with the label per.dev shows the percentage
deviation of each algorithms’ expected solution cost from the reference cost : +x means
that the expected solution cost of the algorithm is x% more than the reference cost and −x
means that the expected solution cost of the algorithm is x% less than the reference cost.
The column entries with the label with max.bud shows the maximum number of evaluations
given to each algorithm and the column with the label usd.bud shows the average number
of evaluations used by each algorithm.

algo per.dev max.bud usd.bud

FFDR/F-Race +1.45 1250 1196
FFDA/F-Race +1.52 1250 1247
RSD/F-Race −0.62 1250 1140
I/F-Race −0.53 1250 1232

RSD/F-Race −0.17 625 615
I/F-Race −0.52 625 618

RSD/F-Race −0.06 312 307
I/F-Race −0.58 312 278

RSD/F-Race −0.37 156 154
I/F-Race −0.11 156 150

sensitive to the parameter values: there are only 3 parameters and interactions among

them are quite low. As a consequence, the tuning task becomes relatively easy (as in

the case of the previous task of tuning of MMAS). This can be easily seen with the

used budget of FFDR/F-Race: if the task of finding good configurations were difficult,

the race would have terminated early. Yet, this is not the case and almost the entire

computational budget has been used.

The numerical results on the budget constraints show that both RSD/F-Race and

I/F-Race are indeed effective. Given only one-eighth of the computational budget (a

maximum budget of 156 evaluations), RSD/F-Race and I/F-Race achieve expected solu-

tion costs which are approximately 1.4% less than that of FFDR/F-Race and FFDA/F-Ra-

ce. This observed difference is significant according to the random permutation test.

However, in this case, the random permutation test cannot reject the null hypothesis

that RSD/F-Race and I/F-Race achieve expected solution costs that are equivalent. On

the other hand, given one-half and one-fourth of the computational budget, I/F-Race

achieves an expected solution cost that is approximately 0.4% less that of RSD/F-Race

(observed differences are significant according to the random permutation test).

B.3.3 Tuning a simulated annealing algorithm for the VRPSD

In this study, 4 parameters of a simulated annealing algorithm have been tuned:
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Table B.5: Ranges of the parameter values considered for tuning a simulated annealing
algorithm for VRPSD with RSD/F-Race and I/F-Race

parameter range

α [0.0, 1.0]
q [1, 100]
r [1, 100]
f [0.01, 1.00]

1. cooling rate, α;

2. a parameter used to compute the number of iterations after which the process of

reheating can be applied, q;

3. another parameter used to compute the number of iterations after which the

process of reheating can be applied, r;

4. parameter used in computing the starting temperature value, f ;

In FFDA/F-Race and FFDR/F-Race, each parameter is allowed to take 3 values and in

the former, the values are chosen close to the values adopted in Pellegrini and Birattari

(2006): α ∈ {0.25, 0.50, 0.75}, q ∈ {1, 5, 10}, r ∈ {20, 30, 40}, f ∈ {0.01, 0.03, 0.05}.
Table B.5 shows the ranges of the parameters considered for RSD/F-Race and I/F-Race.

In all algorithms, the computational time allowed for evaluating a configuration on an

instance is set to 10 seconds. Instances are generated as described in Pellegrini and

Birattari (2006); 400 instances were generated for tuning; 200 more instances were

generated for evaluating the winning configuration.

The computational results show that, similar to the previous example, the tuning

task is rather easy. Concerning the expected solution cost, the randomized permuta-

tion test cannot reject the null hypothesis that the different algorithms produce equiv-

alent results. However, it should be noted that the main advantage of RSD/F-Race

and I/F-Race is their effectiveness under strong budget constraints: RSD/F-Race and

I/F-Race, given only one-eighth of the computational budget, achieve expected solution

costs that are not significantly different from FFDR/F-Race and FFDA/F-Race.

B.4 Related work

The problem of tuning SLS algorithms is essentially a mixed variable stochastic op-

timization problem. Even though a number of algorithms exist for mixed variable
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Table B.6: Computational results for tuning a simulated annealing algorithm for the
VRPSD. The column entries with the label per.dev shows the percentage deviation of each
algorithms’ expected solution cost from the reference cost : +x means that the expected
solution cost of the algorithm is x% more than the reference cost and −x means that the
expected solution cost of the algorithm is x% less than the reference cost. The column
entries with the label with max.bud shows the maximum number of evaluations given
to each algorithm and the column with the label usd.bud shows the average number of
evaluations used by each algorithm.

algo per.dev max.bud usd.bud

FFDR/F-Race +0.02 810 775
FFDA/F-Race +0.11 810 807
RSD/F-Race −0.05 810 804
I/F-Race −0.03 810 797

RSD/F-Race −0.03 405 399
I/F-Race −0.05 405 399

RSD/F-Race +0.02 202 200
I/F-Race −0.01 202 200

RSD/F-Race +0.02 101 101
I/F-Race +0.02 101 100

stochastic optimization, it is quite difficult to adopt them for tuning. The primary

obstacle is that, since these algorithms have parameters, tuning them is indeed para-

doxical. Few procedures have been developed specifically for tuning algorithms: Kohavi

and John (1995) proposed an algorithm that makes use of best-first search and cross-

validation for automatic parameter selection. Boyan and Moore (1997) introduced a

tuning algorithm based on machine learning techniques. The main emphasis of these

two works is given only to the parameter value selection; there is no empirical anal-

ysis of these algorithms when applied to large number of parameters that have wide

range of possible values. Audet and Orban (2006) proposed a pattern search tech-

nique called mesh adaptive direct search that uses surrogate models for algorithmic

tuning. In this approach, a conceptual mesh is constructed around a solution and the

search for better solutions is done around this mesh. The surrogates are used to reduce

the computation time by providing an approximation to the original response surface.

Nevertheless, this approach has certain number of parameters and it has never been

used for tuning SLS algorithms. Adenso-Diaz and Laguna (2006) designed an algo-

rithm called CALIBRA specifically for fine tuning SLS algorithms. It uses Taguchi’s

fractional factorial experimental designs coupled with local search. In this work, the

authors explicitly mention that tuning a wide range of possible values for parameters

is feasible with their algorithm. However, a major limitation of this algorithm is that
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one cannot use it for tuning SLS algorithms with more than five parameters. Beielstein

et al. (2002) proposed an approach to reduce the difficulty of the tuning task. This ap-

proach consists in first identifying the parameters that have a significant impact on the

algorithms’ performance through sensitivity analysis and then tuning them. Recently,

Hutter et al. (2007) proposed an iterated local search algorithm for parameter tuning

called paramILS. This algorithm is shown to be very effective and most importantly, it

can be used to tune algorithms with a large number of parameters.

B.5 Summary

We proposed two supplementary procedures for F-Race that are based on random sam-

pling, RSD/F-Race, and model-based search techniques, I/F-Race. While the adoption

of full factorial design in the F-Race framework is impractical and computationally

prohibitive when used to identify the best from a large number of parameter config-

urations, RSD/F-Race and I/F-Race are useful in such cases. We also showed that

RSD/F-Race and I/F-Race can be deployed to reduce the computational time required

for tuning.
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M. Alrefaei and S. Andradóttir. A modification of the stochastic ruler method for

discrete stochastic optimization. European Journal of Operational Research, 133(1):

160–182, 2001.
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