
UNIVERSITÉ LIBRE DE BRUXELLES

École Polytechnique de Bruxelles

IRIDIA - Institut de Recherches Interdisciplinaires

et de Développements en Intelligence Artificielle

On the Design and Implementation of an
Accurate, Efficient, and Flexible Simulator for

Heterogeneous Swarm Robotics Systems

Carlo PINCIROLI

Promoteur de Thèse:
Prof. Marco DORIGO

Co-Promoteur de Thèse:
Prof. Mauro BIRATTARI

Thèse présentée en vue de l’obtention du titre de
Docteur en Sciences de l’Ingénieur

Année académique 2013-2014

Abstract

Swarm robotics is a young multidisciplinary research field at the in-
tersection of disciplines such as distributed systems, robotics, artifi-
cial intelligence, and complex systems. Considerable research effort has
been dedicated to the study of algorithms targeted to specific problems.
Nonetheless, implementation and comparison remain difficult due to the
lack of shared tools and benchmarks. Among the tools necessary to en-
able experimentation, the most fundamental is a simulator that offers
an adequate level of accuracy and flexibility to suit the diverse needs of
the swarm robotics community. The very nature of swarm robotics, in
which systems may comprise large numbers of robots, forces the design
to provide runtimes that increase gracefully with increasing swarm sizes.

In this thesis, I argue that none of the existing simulators offers satis-
factory levels of accuracy, flexibility, and efficiency, due to fundamental
limitations of their design. To overcome these limitations, I present
ARGoS—a general, multi-robot simulator that currently benchmarks as
the fastest in the literature.

In the design of ARGoS, I faced a number of unsolved issues. First,
in existing simulators, accuracy is an intrinsic feature of the design. For
single-robot applications this choice is reasonable, but for the large num-
ber of robots typically involved in a swarm, it results in an unacceptable
trade-off between accuracy and efficiency. Second, the prospect of swarm
robotics spans diverse potential applications, such as space exploration,
ocean restoration, deep-underground mining, and construction of large
structures. These applications differ in terms of physics (e.g., motion
dynamics) and available communication means. The existing general-
purpose simulators are not suitable to simulate such diverse environ-
ments accurately and efficiently.

To design ARGoS I introduced novel concepts. First, in ARGoS ac-
curacy is framed as a property of the experimental setup, and is tunable
to the requirements of the experiment. To achieve this, I designed the
architecture of ARGoS to offer unprecedented levels of modularity. The
user can provide customized versions of individual modules, thus as-
signing computational resources to the relevant aspects. This feature
enhances efficiency, since the user can lower the computational cost of

i

unnecessary aspects of a simulation.
To further decrease runtimes, the architecture of ARGoS exploits the

computational resources of modern multi-core systems. In contrast to
existing designs with comparable features, ARGoS allows the user to
define both the granularity and the scheduling strategy of the parallel
tasks, attaining unmatched levels of scalability and efficiency in resource
usage.

A further unique feature of ARGoS is the possibility to partition the
simulated space in regions managed by dedicated physics engines run-
ning in parallel. This feature, besides enhancing parallelism, enables
experiments in which multiple regions with different features are simu-
lated. For instance, ARGoS can perform accurate and efficient simula-
tions of scenarios in which amphibian robots act both underwater and
on sandy shores.

ARGoS is listed among the major results of the Swarmanoid project.1

It is currently the official simulator of 4 European projects (ASCENS,2

H2SWARM,3 E-SWARM,4 Swarmix5) and is used by 15 universities
worldwide. While the core architecture of ARGoS is complete, exten-
sions are continually added by a community of contributors. In particu-
lar, ARGoS was the first robot simulator to be integrated with the ns3
network simulator,6 yielding a software able to simulate both the physics
and the network aspects of a swarm. Further extensions under devel-
opment include support for large-scale modular robots, construction of
3D structures with deformable material, and integration with advanced
statistical analysis tools such as MultiVeStA.7

1http://www.swarmanoid.org/
2http://ascens-ist.eu/
3http://www.esf.org/activities/eurocores/running-programmes/eurobiosas/

collaborative-research-projects-crps/h2swarm.html
4http://www.e-swarm.org/
5http://www.swarmix.org/
6http://www.nsnam.org/
7http://code.google.com/p/multivesta/

ii

http://www.swarmanoid.org/
http://ascens-ist.eu/
http://www.esf.org/activities/eurocores/running-programmes/eurobiosas/collaborative-research-projects-crps/h2swarm.html
http://www.esf.org/activities/eurocores/running-programmes/eurobiosas/collaborative-research-projects-crps/h2swarm.html
http://www.e-swarm.org/
http://www.swarmix.org/
http://www.nsnam.org/
http://code.google.com/p/multivesta/

To my family

iii

Acknowledgements

I would like to express my deep gratitude to Prof. Marco Dorigo for giv-
ing me the opportunity to work at IRIDIA, a laboratory with a lively
and stimulating environment. Marco’s constant support in the devel-
opment of my work has been a precious source of motivation. During
my years at IRIDIA, Marco’s advice and criticism have been crucial to
shape me as a researcher and as a person. I look up to Marco for his
ability to lead, and for his sharp vision of future research directions.

I would also like to thank Dr. Mauro Birattari. The interactions
I had with Mauro during my doctoral studies exceeded his role as a
supervisor. While teaching me how to be a good researcher, Mauro has
also helped me to accept my limits and strengthen my abilities. I am
proud to call Mauro a friend.

I also wish to thank Prof. Andrea Roli for the interesting and pleasant
discussions we had. I cherish our collaborations, and I consider them a
precious occasion to learn and grow as a researcher.

I wish to thank the people who helped me design and develop AR-
GoS: Frederick Ducatelle, Gianni Di Caro, István Fehérvári, Michael
Allwright, and Vito Trianni. Without their feedback, criticism, and
contributions, ARGoS probably would not exist.

IRIDIA is a fantastic working environment populated by a variegated
gang of remarkable characters. My doctoral period has spanned three
‘generations’ of iridians. While people joined and left, IRIDIA’s unique
mixture of professionalism, creativity, and fun remained intact. Thanks
to Hughes Bersini and Thomas Stützle for contributing to the creation
of the IRIDIA gang and for constantly nurturing it.

Among those of the ‘old’ (pre-Swarmanoid) generation, I wish to
thank Anders Lyhne Christensen, Bruno Marchal, Christos Ampatzis,
and Elio Tuci for the interesting discussions and the beers we shared.

Among those of the Swarmanoid generation, I first wish to thank
Rehan O’Grady. His excellent vision and communication skills have
been an invaluable source of inspiration for me.

I would also like to thank Manuele Brambilla, Giovanni Pini, Eliseo
Ferrante, Marco Montes de Oca, and Arne Brutschy. You are a pleasure
to work with and great friends.

v

I also wish to thank Alexandre Campo, Alessandro Stranieri, An-
tal Decugnière, Francesco Sambo, Matteo Borrotti, Navneet Bhalla,
Nithin Mathews, Prasanna Balaprakash, and Yara Khaluf for having
contributed to making IRIDIA the unique place it is.

I want to thank the ‘new’ generation of iridians, who is taking good
care of IRIDIA’s traditions of great research and epic fun: Anthony An-
toun, Dhananjay Ipparthi, Gaëtan Podevijn, Gabriele Valentini, Gian-
piero Francesca, Giovanni Reina, Leonardo Bezerra, Leslie Pérez Cáceres,
Lorenzo Garattoni, Roman Miletitch, Tarik Roukny, and Touraj Soley-
mani.

Special thanks to my officemates: Ali Turgut and Kiyohiko Hattori.
It was great fun to chat and share the office with you.

I am grateful to Muriel Decreton, for her kindness and our chats, and
to Carlotta Piscopo, for always finding a way to make me smile.

During my doctoral studies, I had the luck to participate to the AS-
CENS project. This project gave me the opportunity to interact with
extraordinary researchers whose interests and backgrounds are differ-
ent from mine, motivating me to widen my knowledge and follow new
paths. I wish to thank in particular Prof. Martin Wirsing for his con-
stant support and encouragement. I would also like to thank Prof. Ugo
Montanari, Prof. Franco Zambonelli, Michele Loreti, Rosario Pugliese,
Francesco Tiezzi, Nora Koch, Matthias Hölzl, Mariachiara Puviani, and
Annabelle Klarl for the stimulating and pleasant discussions we had.

I would also like to thank Prof. Francesco Mondada, Michael Bonani,
and their group at EPFL for their essential role in providing the robots
we use at IRIDIA, and for keeping them in working condition.

I would like to thank Rachael for having dedicated time and patience
to reading and correcting my English, both written and oral, on a daily
basis. Your love and encouragement make my life complete.

My final thought is to thank my family, to which I dedicate this work.
You gave me the freedom and the means to choose my own path, and
supported my choices unconditionally and lovingly.

vi

Contents

Abstract i

Acknowledgements v

Contents vii

List of Figures ix

1 Introduction 1
1.1 Problem Statement . 4
1.2 Thesis Structure and Research Contributions 5
1.3 Other Scientific Contributions 7

2 Context and State of the Art 9
2.1 Context: Swarm Robotics Systems 10
2.2 Simulation of Swarm Robotics Systems 27

3 The ARGoS Architecture 43
3.1 Requirements . 43
3.2 Modularity . 44
3.3 Entity Indexing . 52
3.4 Multiple Physics Engines 53
3.5 Multiple Threads . 55

4 Achieving Flexibility 61
4.1 Requirements . 61
4.2 Modules as Plug-ins . 63
4.3 Arbitrary Interactions among Modules 69

5 Efficiency Assessment 77
5.1 Experimental Setup . 78
5.2 2D-Dynamics Physics Engine 80
5.3 Results with Other Physics Engines 83

vii

6 Validation 87
6.1 Flocking . 88
6.2 Cooperative Navigation . 92
6.3 Task Partitioning in Cooperative Foraging 94
6.4 Discussion . 98

7 Team Recruitment and Delivery in a Heterogeneous
Swarm 101
7.1 Introduction . 101
7.2 Related Work . 103
7.3 Methodology . 104
7.4 Hardware . 105
7.5 Active Shelters . 107
7.6 Scalability Assessment . 115

8 Conclusions and Future Work 125

A Other Scientific Contributions 129
A.1 Swarm Robotics . 129
A.2 Boolean Network Robotics 137
A.3 Other Publications . 138

B Compiling and Installing ARGoS 141
B.1 Licensing . 141
B.2 Downloading ARGoS . 141
B.3 Compiling ARGoS . 142
B.4 Using ARGoS from the source tree 145
B.5 Installing ARGoS from the compiled binaries 146

C An Example of ARGoS in Use 149
C.1 The Robot Control Code 149
C.2 The Experiment Configuration File 153

Bibliography 159

viii

List of Figures

3.1 The architecture of ARGoS. The white boxes correspond to
user-definable plug-ins. 44

3.2 Screen-shots from different visualizations. (a) Qt-OpenGL;
(b) POV-Ray. 48

3.3 (a) The foot-bot; (b) The eye-bot. 50

3.4 Simplified pseudo-code of the main simulation loop of AR-
GoS. Each ‘for all’ loop corresponds to a phase of the main
simulation loop. Each phase is parallelized as shown in Fig-
ure 3.5. 55

3.5 The multi-threading schema of ARGoS is scatter-gather. The
master thread (denoted by ‘m’) coordinates the activity of
the slave threads (denoted by ‘s’). The sense+control, act
and physics phases are performed by P parallel threads. P
is defined by the user. 56

3.6 Information flow in the various phases of the main simulation
loop of ARGoS. The robot entities live in the global space.
A controller and a set of sensors and actuators are associated
to each robot. (a) In the initial phase, robot sensors collect
information from the global space. Subsequently, robot con-
trollers query the sensors and update the actuators with the
chosen actions to perform. (b) The chosen actions stored in
the actuators are executed, that is, the robot state is updated.
At this point, positions and orientations have not been up-
dated yet. (c) The physics engines calculate new positions
and orientations for the mobile entities under their responsi-
bility. Collisions are solved where necessary. 57

4.1 A high-level diagram representing the required interactions
among developers, users, and the ARGoS core. 62

4.2 A UML class diagram of the basic plug-in hierarchy in ARGoS. 64

ix

4.3 A UML class diagram of the ARGoS plug-in manager. In this
diagram, I use the notation A ## B to express the string con-
catenation operator of the C++ pre-processor. In the C++
pre-processor, the expansion of a symbol X corresponds to its
definition, if the symbol was previously defined; otherwise its
expansion corresponds to the symbol itself. Thus, A ## B is
the string resulting from the concatenation of the expansions
of A and B. 67

4.4 A UML class diagram for an example problem of inter-module
communication. In this diagram, two entities must be added
to a physics engine. The entities and the physics engine are
implemented by three different developers, out of the ARGoS
core. 70

5.1 A screen-shot from ARGoS showing the simulated arena cre-
ated for experimental evaluation. 77

5.2 The different space partitionings (A1 to A16) of the environ-
ment used to evaluate ARGoS’ performance (a screen-shot is
reported in Figure 5.1). The thin lines denote the walls. The
bold dashed lines indicate the borders of each region. Each
region is updated by a dedicated instance of a physics engine. 79

5.3 Average wall clock time and speedup for a single physics
engine (A1). Each point corresponds to a set of 40 experi-
ments with a specific configuration 〈N,P, A1〉. Each exper-
iment simulates T = 60 s. In the upper plot, points under
the dashed line signify that the simulations were faster than
the corresponding real-world experiment time; above it, they
were slower. Standard deviation is omitted because its value
is so small that it would not be visible on the graph. 80

5.4 Average wall clock time and speedup for partitionings A2 to
A16. Each point corresponds to a set of 40 experiments with a
specific configuration 〈N,P, AE〉. Each experiment simulates
T = 60 s. In the upper plots, points under the dashed line
signify that the simulations were faster than the correspond-
ing real-world experiment time; above it, they were slower.
Standard deviation is omitted because its value is so small
that it would not be visible on the graph. 82

x

5.5 Average wall clock time and speedup for experiments with
2D-kinematics engines and 3D-dynamics engines. Each point
corresponds to a set of 40 experiments with a specific con-
figuration 〈N,P, A16〉. Each experiment simulates T = 60 s.
In the upper plots, points under the dashed line signify that
the simulations were faster than the corresponding real-world
experiment time; above it, they were slower. Standard devia-
tion is omitted because its value is so small that it would not
be visible on the graph. 84

6.1 A screen-shot from the flocking validation experiments of Sec-
tion 6.1. The robot with the yellow LEDs lit is the only one
aware of the target direction. 88

6.2 Results of the flocking validation experiments of Section 6.1.
The plots on the left show the result obtained in simulation,
while those on the right report the results in reality. The
colored areas span the result distribution from the first to
the third quartile. Each plots reports the data obtained with
three different motion control strategies: HCS, ICS, and SCS.
Refer to Section 6.1.2 for more details on the motion control
strategies. 89

6.3 Results of the validation experiments of Section 6.1. The
plots on the left show a comparison of the flocking order ob-
tained in simulation and with real robots. The plot on the
left show a comparison of flocking accuracy. Each plot is com-
posed of two stacked elements: the top element reports the
data, the second element reports the results of a Wilcoxon
signed-ranked test on the difference between simulated and
real-world data. 90

6.4 Setup of the validation experiments of Section 6.2. The pic-
ture on the left shows the real arena in which the experiments
were conducted. The target locations the robots must visit
are marked by dedicated robots. The diagram on the right
depicts the equivalent simulated arena. The empty and filled
circles represent the target positions, and the camera marks
the location in which the picture on the left was taken. 93

6.5 Results of the validation experiments of Section 6.2. The
navigation delay is the time necessary for a robot to reach
the target location. Here, the graph shows its average. 93

6.6 When the same speed is applied to the foot-bot treels, the
robot does not cover a straight line, due to an asymmetry in
the construction of the treel motors. 95

xi

6.7 The throughput of object transportation in simulation with
and without noise and on real robots. The top plot shows the
interquartile range (Q25–Q75) of the raw data; the bottom
plot reports the results of a Wilcoxon signed-rank test on the
difference between simulation without noise and real robots,
and simulation with noise and real robots. 96

6.8 Positioning error of the foot-bots with respect to their target
location. I report both the data sampled from real robot
experiments and from the dead-reckoning model described in
Section 6.3.3. 97

7.1 The robot platforms I simulated for the experiments in this
study. (a) The foot-bot; (b) the eye-bot. 106

7.2 A schematic representation of the mathematical model de-
scribed in Section 7.5.1 with three active shelters. 107

7.3 Length of phase 2 in the simulations of the mathematical
model for different values of the decay period δ. 108

7.4 Results with the mathematical model presented in Section 7.5.1.
The experiments are composed of three phases. In phase 1,
two shelters are active. In phase 2 (starting at time T1), a
third shelter is activated. In phase 3 (starting at time T3),
shelter 2 is deactivated. The experiment ends at time T3.
The length of each phase depends on the dynamics of the
system. P1 and P2 account for the desired group size of each
shelter. Parameter δ corresponds to the decay period for the
probability to leave a shelter. 109

7.5 State transition logic for robots at each time step. InRange()
and JustInRange() are functions returning true when the
robot is within the communication range of a shelter, and has
just entered it, respectively. Rand() is a function returning a
random number in U(0, 1). ji is the join probability for shelter
i, li is the leave probability. State transition conditions are
represented be the symbol C and a subscript. For example,
Cin group→in group represents the conditions under which an
aggregated robot will stay aggregated in its group in a single
time step. 112

xii

7.6 Results with physically simulated robots following the behav-
ior explained in Section 7.5.2. The experiments are composed
of three phases. In phase 1, two shelters are active. In phase
2 (starting at time T1), a third shelter is activated. In phase
3 (starting at time T2), shelter 2 is deactivated. The experi-
ment ends at time T3. The top plots shows a representative
experimental sample in the pool of the 100 repetitions I ran.
The middle plot reports the average system behavior. The
bottom plot shows the ratio between the current and the de-
sired group size. 113

7.7 Snapshot from scalability experiments with physically simu-
lated robots. Left: Simulation snapshot. Right: Abstracted
representation of this simulation snapshot—the gray intensity
level of each square is proportional to the recruited group size
of the correspondingly positioned shelter (i.e., to the number
of robots recruited by that shelter). 116

7.8 Scalability experiments testing the convergence and spread-
ing properties of the system. Results are shown for two sets
of experiments with 16 shelters (a) and 25 shelters (b). 80
experimental runs per set of experiments. The top plots show
the behavior of the system in a single sample experiment that
I have selected. The grids of squares represent snapshots of
the state of the system at given moments in time during this
sample experiment. The gray intensity of each individual
square corresponds to the number of mobile robots recruited
at that time by a single shelter. The min-max lines show the
size of the largest recruited group of mobile robots and the
size of the smallest recruited group of foot-bots at any given
moment. The 1Q and 3Q lines show the inter-quartile range
of the distribution of recruited group sizes among the shelters.
The 1Q is the first quartile and shows the minimum recruited
group size once I discard the lowest 25% of groups. The 3Q
line is the third quartile, and shows the maximum recruited
group size once I discard the highest 25% of the data. The
bottom plot shows the same data averaged over all 80 runs. . 118

7.9 Set of experiments testing the spreading property of the sys-
tem. All experiments run with 9 shelters and 180 mobile
robots in a recruitment area consisting of a 3x3 shelter for-
mation. Results are shown for two sets of experiments. Each
experimental run lasts for 1,500 s. 20 experimental runs were
conducted for each set of experiments. Top plots in each set
represent selected sample runs, while bottom plots represent
data averaged over all 20 runs. For a more detailed explana-
tion of the plots see previous caption from Figure 7.8. 119

xiii

7.10 Set of experiments testing the spreading property of the sys-
tem. All experiments run with 9 shelters and 180 mobile
robots in a recruitment area consisting of a 3x3 shelter for-
mation. Results are shown for two sets of experiments. Each
experimental run lasts for 1,500 s. 20 experimental runs were
conducted for each set of experiments. Top plots in each set
represent selected sample runs, while bottom plots represent
data averaged over all 20 runs. For a more detailed explana-
tion of the plots see previous caption from Figure 7.8. 120

7.11 Set of experiments on local perturbation. In these experi-
ments, the propagation of the reset signal is limited to the
direct neighbors. Results are shown for two sets of experi-
ments (a,b). 20 experimental runs were conducted for each
set of experiments. Each experimental run lasts 1,500 s. Top
plots in each set represent selected sample runs, while bot-
tom plots represent data averaged over all 20 runs. For a
more detailed explanation of the plots see previous caption
from Figure 7.8. 122

7.12 Set of experiments on local perturbation. In these experi-
ments, the propagation of the reset signal is limited to the
second-level neighbors (i.e., the direct neighbors of the direct
neighbors of the signal originator). Results are shown for two
sets of experiments (a,b). 20 experimental runs were con-
ducted for each set of experiments. Each experimental run
lasts 1,500 s. Top plots in each set represent selected sam-
ple runs, while bottom plots represent data averaged over all
20 runs. For a more detailed explanation of the plots see
previous caption from Figure 7.8. 123

xiv

Chapter 1

Introduction

Swarm robotics (Beni, 2005) is a scientific field that originated from col-
lective robotics and swarm intelligence (Bonabeau et al., 1999; Dorigo
et al., 2000; Dorigo and Birattari, 2007). With respect to collective
robotics, swarm robotics shares the fundamental challenges, i.e., design-
ing effective control strategies for large groups of autonomous robots
to perform complex tasks. With respect to swarm intelligence, swarm
robotics shares principles and methods to achieve coordination (Beni,
2005): fully distributed control, local communication and sensing, and
self-organization (Camazine et al., 2003).

The observation of natural swarm systems offers the primary motiva-
tions to pursuing this line of research. Natural swarm systems display a
number of desirable properties, such as robustness to environmental per-
turbations, individuals mistakes, and/or death of a part of the swarm;
adaptability to new operational and environmental conditions; and scal-
ability, that is, the ability to maintain the overall performance within
acceptable bounds for wide ranges of the swarm size (Şahin, 2005).

Since its origin in the 90’s, swarm robotics has been linked to re-
search in natural swarm intelligence systems. Researchers have applied
models of natural swarm systems to robotic scenarios, either to pro-
pose new algorithms based on the original model (Balch et al., 2006;
Schmickl, 2011), or to validate the model itself (Balch et al., 2006; Gar-
nier, 2011; Mitri et al., 2013). In the first case, natural swarm systems
serve as a basis to understand how an artificial swarm system of com-
parable characteristics can be realized. Experiments typically assess the
performance of the artificial system, and do not consider the degree of
similarity of the behavior of the artificial system and its natural coun-
terpart. Conversely, in the second case, swarm robotics systems are
used as fully controllable models of their natural counterpart, and ex-
periments are designed to confirm or negate a hypothesis on the natural
swarm system under study. As an example of the former case, Garnier
et al. (2008) proposed an aggregation algorithm inspired by Jeanson

1

et al. (2005)’s study on cockroaches. Example works for the latter case
are Beckers et al. (1994)’s robot implementation of Deneubourg et al.
(1990) ant clustering model, and Garnier et al. (2013)’s work on ant
route construction.

In the last decade, the research scope has widened considerably. Be-
sides the original scientific trend, a new trend has emerged that em-
phasizes the engineering aspects of the design of swarm robotics sys-
tems (Brambilla et al., 2013; Dorigo et al., 2014). The engineering
trend finds its raison d’être in the development of new approaches to
tackle problems whose current solution is either impractical, danger-
ous, or non-existent (Hinchey et al., 2007). A few examples of long-
term applications are power-line maintenance, unexploded ordnance re-
moval, search-and-rescue in disaster areas, space exploration, construc-
tion, deep-underground mining, underwater environment restoration,
and nanosurgery.

Research in swarm robotics is still at an early stage. The path to
realize artificial systems that match the performance of natural swarms
remains long and presents many open problems. To date, the major
achievements in this field consist of algorithms that tackle specific prob-
lem instances. The performance of these algorithms strongly depends
upon the context in which they are developed (i.e., hardware capabilities
and assumptions on the environment). Given this state of affairs, repro-
ducing results and comparing algorithms is difficult, and this hinders
the development of the research field as a whole. Despite the impor-
tance of this issue, little work has been devoted to a standardization
of the robot capabilities, and to the creation of common platforms for
experimentation.

In this thesis, I deal with the problem of simulating swarm robotics
systems. Simulation is a fundamental tool for experimentation in this
field, and its importance often surpasses that of the robots themselves.
Over the last decade, a wealth of different robots suitable for swarm
robotics has appeared. In addition to the classical two-wheeled robots
such as the Jasmine1, the Alice (Caprari et al., 1998), and the e-puck
(Mondada et al., 2006), new concepts for ground robots (e.g., the Kilobot
(Rubenstein et al., 2012)), flying robots (e.g., the AR-Drone (Krajńık
et al., 2011)), and self-assembling robots (e.g., the s-bot (Mondada et al.,
2004)) have been introduced to study algorithms for several applications,
such as distributed exploration, monitoring, and morphogenesis. How-
ever, today’s main challenge remains the prohibitive cost of building and
maintaining dozens or hundreds of robots in working condition (Cao
et al., 1997; Carlson et al., 2004). For this reason, swarm algorithms
are more easily prototyped and analyzed in simulation. Simulated ex-

1http://www.swarmrobot.org/

2

http://www.swarmrobot.org/

periments do not risk harming humans and robots. A simulator offers
controllable and repeatable experimental conditions, which are vital to
assess the performance of an algorithm. Additionally, simulations can
be repeated hundreds of times, thus enabling the fast and inexpensive
collection of large amounts of data for analysis. The very nature of
swarm systems pushes for experiments involving thousands of individ-
uals, which are simply impossible with current hardware. Simulation
can also enable experiments with yet-to-be-built robots, thus providing
information (i) to support the design of sensors and actuators, and (ii)
to assess the CPU and memory requirements of the behaviors under
study. For all these reasons, in the typical development cycle of swarm
algorithms, experimentation with real robots is performed solely as a
final step to validate the simulated experiments.

Despite the central role that simulation plays in the design of swarm
algorithms, in the current state of the art no significant effort has been
devoted to the creation of a genuinely general-purpose simulator for
swarm robotics. This is in striking contrast with other branches of
robotics, such as humanoid, in which practical knowledge of established
simulators such as Gazebo (Koenig and Howard, 2004) is considered an
asset to obtain a job.

The lack of a general simulator for swarm robotics is due to the fact
that creating a dedicated tool is often considered an uninteresting, yet
unavoidable, technical chore of the experimental activities. Differently
from the case of humanoid robotics, the models involved in a swarm sim-
ulation tend to be extremely simple. While the simulation of a humanoid
robot requires extensive knowledge of mechanics, the agents involved in
a swarm are often represented as collections of interacting mass-less par-
ticles. Thus, in the case of humanoid robotics, the effort required to cre-
ate a personal, single-use simulator is significant; conversely, in the case
of swarm robotics, the effort is typically negligible. Consequently, the
design challenges posed by a truly general-purpose simulator for swarm
robotics are considered too complex and time-consuming to motivate
attention.

In this thesis, I argue that the creation of a general-purpose simulator
is a necessary step to support the development of swarm robotics. In
addition to the mentioned necessity regarding reproducibility and com-
parability of swarm algorithms, a general-purpose simulator acts as a
common ground to enable cooperation and sharing of code. This as-
pect is key to create the premises to identify best practices—the basic
building block of any engineering approach. Moreover, the prospective
applications of swarm systems target complex scenarios, thus requiring
advanced tools that support the design, implementation, and analysis of
complex swarm behaviors. These requirements exceed the capabilities
of any single-use simulator, and necessitate innovative, general-purpose

3

platforms.

1.1 Problem Statement

The main focus of this thesis is the design and implementation of a
simulator for large-scale, heterogeneous swarm robotics systems. To be
useful, a simulator must provide four main features.

The first feature is support for a natural development cycle, to allow
the user to prototype solutions, measure their performance, and seam-
lessly validate them onto real robots. In other words, a simulator must
integrate a set of tools, thus forming a coordinated software ecosystem
that constitutes a productive development framework.

The second required feature is simulating accurately the dynamics of
the robots and of the environment, as well as the interactions among
robots and between the robots and the environment. The simulation
must consider the space-network nature of swarm robotics systems: The
agents composing these systems possess a body and move in the physi-
cal space; while, at the same time, the agents communicate, forming a
network. At any moment, the state of a swarm is the composition of
both spatial and network aspects. Spatial aspects include linear/rota-
tional momentum and applied forces; network aspects include topology
and exchanged messages. Spatial aspects are inherently continuous, and
their dynamics over time are typically modeled by classical mechanics.
Network aspects, on the other hand, are discrete and proceed in an
event-based fashion.

The third feature necessary for the simulation of a swarm derives
from the large-scale and distributed nature of swarm robotics systems.
This requires efficient simulation techniques. In this thesis, efficiency
corresponds to a wise usage of computational resources that aims to
minimize the duration of a simulation.

The fourth required feature is flexibility. In the context of this work,
flexibility refers to the possibility for the user to add new features, such
as new robots, sensors, and actuators. A truly flexible simulator can
execute any kind of experiment, provided the right set of models.

Accuracy, efficiency, and flexibility are generally viewed as diverging
requirements. Reaching a satisfactory degree of accuracy often entails
employing models with high computational costs, which negatively af-
fects run-times and, thus, efficiency. Flexibility entails very abstract
and general designs, often imposing constraints on the data structures
used to store the state of the simulated world. As a result, the benefits
derived from a flexible design might limit the type of allowed models
(hindering accuracy) and offer little opportunity for optimization (lim-
iting efficiency). A design that offers satisfactory levels of accuracy, ef-

4

ficiency, and flexibility is a challenging problem whose solution requires
novel concepts.

1.2 Thesis Structure and Research Contributions

In the past 15 years, development tools for robotics have increased expo-
nentially. In particular, simulators that target fairly general use cases,
such as Gazebo (Koenig and Howard, 2004), Webots (Michel, 2004),
and USARSim (Balakirsky and Messina, 2006), have been introduced.
These simulators, while covering a wide range of requirements for single
robot systems, fail to provide the necessary features when increasingly
larger-scale multi-robot systems are involved.

This thesis is situated in this gap, providing solutions to realize an
accurate, efficient, and flexible simulator for large-scale swarm robotics
systems. The result of my work is a multi-robot simulator called ARGoS
(Autonomous Robots Go Swarming). ARGoS was the official robot sim-
ulator of the EU-funded project Swarmanoid,2 and it is currently used
in four European projects: ASCENS,3 H2SWARM,4 E-SWARM,5 and
Swarmix.6 ARGoS is open source (under the terms of the MIT license)
and is being continually updated.7

In the rest of this section, I present an overview of this thesis structure
and list the publications I produced during my Ph.D.

In Chapter 2, I frame this work within the related literature. The
chapter is divided into two sections. The first provides context, by
(i) presenting long-term applications of swarm robotics and existing
hardware platforms, and (ii) sketching approaches to design, modeling,
analysis, and implementation. The second section in this chapter is a
review of existing simulation approaches and tools.

In Chapter 3, I provide a high-level overview of the design of ARGoS.
In Section 3.1, I discuss the main design requirements. In Section 3.2,
I describe the structure of the ARGoS architecture. In Section 3.3 I
explain how ARGoS organizes spatial data. In Section 3.4, I present
one of the most distinctive features of ARGoS: how the simulated space
can be partitioned into multiple physics engines executed in parallel.
In Section 3.5, I illustrate the parallelization of execution into multiple
threads. The work in this chapter was published in:

• C. Pinciroli, V. Trianni, R. O’Grady, G. Pini, A. Brutschy, M. Bram-
billa, N. Mathews, E. Ferrante, G. Di Caro, F. Ducatelle, T. Stir-

2http://www.swarmanoid.org/
3http://ascens-ist.eu/
4http://www.esf.org/activities/eurocores/running-programmes/eurobiosas/

collaborative-research-projects-crps/h2swarm.html
5http://www.e-swarm.org/
6http://www.swarmix.org/
7ARGoS can be downloaded at http://iridia.ulb.ac.be/argos/.

5

http://www.swarmanoid.org/
http://ascens-ist.eu/
http://www.esf.org/activities/eurocores/running-programmes/eurobiosas/collaborative-research-projects-crps/h2swarm.html
http://www.esf.org/activities/eurocores/running-programmes/eurobiosas/collaborative-research-projects-crps/h2swarm.html
http://www.e-swarm.org/
http://www.swarmix.org/
http://iridia.ulb.ac.be/argos/

ling, Á. Gutiérrez, L. M. Gambardella, M. Dorigo. ARGoS: a
Modular, Multi-Engine Simulator for Heterogeneous Swarm
Robotics. Proceedings of the IEEE/RSJ International Conference
on Intelligent Robots and Systems (IROS 2011), pages 5027–5034.
IEEE Computer Society Press, Los Alamitos, CA, 2011.

In Chapter 4, I detail the low-level aspects of the ARGoS implemen-
tation. More specifically, I show how the high-level principles and ideas
presented in Chapter 3 are realized in practice.

In Chapter 5, I report the experimental activities I conducted to
assess the efficiency of ARGoS. In Section 5.1, I introduce the experi-
mental setup. In Section 5.2, I show the results obtained by partitioning
the simulated space with multiple instances of the default 2D-dynamics
engine. In Section 5.3, I report the results of analogous experiments per-
formed with the default 3D-dynamics engine and 2D-kinematics engine.
The work in this chapter was published in:

• C. Pinciroli, V. Trianni, R. O’Grady, G. Pini, A. Brutschy, M. Bram-
billa, N. Mathews, E. Ferrante, G. Di Caro, F. Ducatelle, M. Birat-
tari, L. M. Gambardella, M. Dorigo. ARGoS: a Modular, Par-
allel, Multi-Engine Simulator for Multi-Robot Systems.
Swarm Intelligence, 6(4):271–295, 2012.

In Chapter 6, I present three complex research experiments that
showcase the features of ARGoS, and validate the simulated results
through real experiments. In Section 6.1, I present an experiment in
which a large swarm of mobile robots performs flocking according to
three different strategies. This work shows the validity of the sensor/ac-
tuator models provided by ARGoS by default. This work was published
in:

• E. Ferrante, A. E. Turgut, C. Huepe, A. Stranieri, C. Pinciroli,
M. Dorigo. Self-Organized Flocking with a Mobile Robot
Swarm: a Novel Motion Control Method. Adaptive Behav-
ior, 20(6):460–477, 2012.

In Section 6.2, I illustrate the results of an experiment in which an
emergent swarm behavior observed in simulation is confirmed by real-
robot experiments. This work was published in:

• F. Ducatelle, G. Di Caro, A. Förster, M. Bonani, M. Dorigo,
S. Magnenat, F. Mondada, R. O’Grady, C. Pinciroli, P. Rétornaz,
V. Trianni, L. M. Gambardella. Cooperative Navigation in
Robotic Swarms. Swarm Intelligence, available online at http:
//link.springer.com/article/10.1007%2Fs11721-013-0089-4#
page-1, 2013.

In Section 6.3.1, I focus on an experiment in which the standard models
provided by ARGoS were not able to capture the dynamics of the real

6

http://link.springer.com/article/10.1007%2Fs11721-013-0089-4#page-1
http://link.springer.com/article/10.1007%2Fs11721-013-0089-4#page-1
http://link.springer.com/article/10.1007%2Fs11721-013-0089-4#page-1

robot swarm. I show how the problem was identified, and how ARGoS
was extended to deal with the issue. This work was published in:

• G. Pini, A. Brutschy, C. Pinciroli, M. Dorigo, M. Birattari. Au-
tonomous Task Partitioning in Robot Foraging: an Ap-
proach Based on Cost Estimation. Adaptive Behavior, 21(2):118–
136, 2013.

In Chapter 7, I report a set of experiments that involve two types of
robots—the foot-bot and the eye-bot. In these experiments, the eye-bot
coordinate the formation of multiple groups of foot-bots, which must
perform several tasks in parallel. This work was published in:

• C. Pinciroli, R. O’Grady, A. L. Christensen, M. Birattari, M. Dorigo.
Parallel Formation of Differently Sized Groups in a Robotic
Swarm. SICE Journal of the Society of Instrument and Control
Engineers, 52(3):213–226, 2013.

• R. O’Grady, C. Pinciroli, A. L. Christensen, M. Dorigo. Super-
vised Group Size Regulation in a Heterogeneous Robotic
Swarm. 9th Conference on Autonomous Robot Systems and Com-
petitions (Robótica 2009). IPCB, Castelo Branco, Portugal, pages
113-119, 2009.

• C. Pinciroli, R. O’Grady, A. L. Christensen, M. Dorigo. Self-
Organised Recruitment in a Heterogeneous Swarm. 14th
International Conference on Advanced Robotics (ICAR 2009). Pro-
ceedings on CD-ROM, paper ID 176, 8 pages, 2009.

In Chapter 8, I conclude the thesis and discuss directions for future
work.

1.3 Other Scientific Contributions

Over the course of my doctorate, I have conducted a number of studies
not directly related to the main topic of this thesis. These works touch
several topics, and can be divided into two categories: swarm robotics
and Boolean network robotics. For a detailed list, refer to Appendix A.

7

Chapter 2

Context and State of the Art

The objective of this chapter is to provide a definition of the phrase
‘general-purpose simulator’. The content is divided in two parts.

In Section 2.1, I focus on defining the scope of the expression ‘general-
purpose,’ by providing a broad sketch of the most significant research in
swarm robotics. The presentation is tailored to highlight those aspects
that impact the design of a simulator and its role in the development
process of artificial swarm systems.

The meaning of ‘general-purpose’ is partially linked to the longevity
of a simulator design. To be successful, a design must overcome the
challenge of time accommodating the increasing complexity of future
use cases. In Section 2.1.1 I list a number of long-term applications in
which swarm-based solutions are envisioned. These applications exceed
the current capability of swarm algorithms. As such, they provide vision
for the challenges that are yet to be tackled, and establish a reference
for the requirements of simulator design.

A truly ‘general-purpose’ simulator is capable of supporting any kind
of robot. In swarm robotics, the number of available robot types has
increased considerably over the last ten years, currently comprising a
very heterogeneous family of platforms. For the foreseeable future, this
trend is set to continue. However, it is possible to identify a number
of common capabilities any robot must offer to be suitable for swarm
applications. In Section 2.1.2, I briefly illustrate the current state-of-the-
art in robot hardware, and encode the capabilities these robots share into
a reference robot architecture.

Integration is another aspect that contributes to the meaning of
‘general-purpose’. A simulator constitutes the center of an ecosystem
of software with diverse purposes, namely design, implementation, and
modeling.

In Section 2.1.3, I discuss the current approaches in the design of
swarm robotics systems, and emphasize the impact of these approaches
on the primitive operations a simulator must offer.

9

In Section 2.1.4, I concentrate on the implementation of swarm algo-
rithms. Enabling this phase of the development process is arguably the
most important requirement a simulator must meet. The complexity of
swarm systems, however, poses peculiar implementation challenges that
fostered the advent of several programming languages based on diverse
concepts. In this section, I present the most significant advancements in
programming languages for swarm robotics, and discuss the issues for
supporting them in a simulator.

The second part of this chapter, Section 2.2, deals with the current
state of the art in the simulation of swarm systems.

Section 2.2.1 is dedicated to modeling techniques for swarm sys-
tems. Because it is located at the intersection of many disciplines,
swarm robotics lends itself to a multitude of modeling approaches. In
this section, I argue that despite the wealth of modeling approaches,
physics-based simulation remains an unavoidable technique, due to the
generality of the approach, and the minimal assumptions upon which it
relies.

In Section 2.2.2, I present a number of traditional techniques to model
the physics of individual robots, and provide an overview of the most
widely used software packages for physics simulation.

Finally, in Section 2.2.3, I discuss the current state of the art in robot
simulation. I critically analyze the design of a number of simulators that
either enjoy wide acceptance, or provide innovative features that relate
to the problem of simulating swarm systems.

2.1 Context: Swarm Robotics Systems

2.1.1 Long-Term Applications

Swarm robotics systems are envisioned for large-scale application sce-
narios that require reliable, scalable, and autonomous behaviors. In this
section, I present a number of such scenarios in which swarm robotics
might provide key solutions.

Power-line Maintenance

Power grids are arguably among the fundamental systems upon which
most of our technology relies. Maintaining such systems in working
condition is critical. Power grids are massively distributed systems scat-
tered across large areas. Currently, maintenance and reparation require
substantial human intervention, and these tasks prove dangerous and
expensive (Elizondo et al., 2010).

In the last decade, the concept of smart grid has started to gain mo-
mentum. Smart grids are envisioned as power distribution systems capa-
ble of intelligent monitoring, control, and communication, in which hu-

10

man intervention is minimal (Allan, 2012). Solutions based on robotics
are essential to the realization of this vision. The large-scale nature of
power grids naturally involves solutions that limit centralization and,
instead, rely on swarm-based algorithms.

Swarms are envisioned to perform tasks such as monitoring, mapping,
fault detection, and reparation (Elizondo et al., 2010; Allan, 2012). For
elevated power-lines, UAVs are beginning to be employed for monitoring
and mapping activities, while specialized line rovers have performed mi-
nor maintenance tasks (Elizondo et al., 2010). Advancements in robotics
for underground power-lines have been limited to cable inspection (Al-
lan, 2012).

Unexploded Ordnance Removal

Unexploded ordnance removal is a dangerous but necessary task to im-
prove life conditions in post-conflict zones, and to facilitate the reuse of
land for living and cultivation (Habib, 2007).

The current approach to this task involves human specialists, who de-
tect and remove the explosive material manually. While this approach
is thorough and accurate, the process is very slow and highly danger-
ous (Habib, 2007). To mitigate these issues, robots have been introduced
to help human operators (Carpenter, 2013). This can be seen as a step
towards replacing humans with autonomous robots.

In the near future, robots could be employed to explore large areas,
detect landmines, and report on their position. This task is made diffi-
cult by the fact that reliably detecting landmines is currently an unsolved
challenge, and that navigation on the uneven terrains where landmines
are hidden is a slow and dangerous operation for robots (Habib, 2007).

Search-and-Rescue

Search-and-rescue is a scenario in which victims of an accident must
be located and brought to safety. Dangers are present both for the
rescuers and the victims. The rescuers are exposed to hazardous and
often unknown environments, and must perform activities that might
endanger their lives as well as those of the victims.

To solve these problems researchers have started to study robotics-
based solutions. The most typical incarnation of the search-and-rescue
scenario involves a collapsed building whose topology is unknown. The
robots must spread, build a map, locate the victims, and bring them to
safety.

Countless variants of this scenario have since been introduced. These
variants differ in various aspects, such as the type of robots employed
(flying, wheeled, insect-like), the type of environment (2D/3D), the na-
ture of the interactions between the robot and the environment (e.g.,

11

whether the robots can modify the environment to remove obstacles, or
not). An international competition1 is held every year to showcase and
compare research advances.

Space Exploration

Future scenarios of space exploration involve activities such as coordi-
nated observation, planet monitoring, and on-orbit self-assembly (Izzo
et al., 2005). The size and complexity of the spacecraft involved in
these activities is limited by the cost of building and launching them
into space. Additionally, space environments are harsh, and our ability
to maneuver a spacecraft promptly to avoid damage decreases with its
distance from us (Goldsmith, 1999).

The distributed nature of these scenarios, coupled with the technolog-
ical limitations in the construction of the spacecraft are compelling space
agencies to consider missions in which large groups of small-scale satel-
lites cooperate. To realize this vision, NASA and ESA have launched
pioneering programs such as APIES (D’Arrigo and Santandrea, 2006)
and ANTS (Curtis et al., 2000) to study methods for distributed au-
tonomous coordination in space.

Collective Construction

The construction of large structures is an activity that currently requires
human intervention and involves no automation. Statistics on fatal or
serious accidents expose the high risk that construction entails (Li and
Poon, 2013).

Autonomous robotics has the potential to offer solutions that could
decrease accidents, increase efficiency, and enable construction projects
in locations that today would be considered too dangerous for humans.

Research in this field is exploring several multi-robot approaches
such as collective block deposition (Petersen et al., 2011), smart mate-
rials (Fernandez and Khademhosseini, 2010), and self-assembling struc-
tures (Werfel et al., 2006).

Deep-Underground Mining

Deep-underground mining is a problem whose importance is quickly ris-
ing, due to the increasing scarcity of near-surface raw materials (Rubio,
2012).

Direct human intervention is generally considered impossible due to
the extreme conditions of deep-underground environments—lack of oxy-
gen, absence of light, need for complex supply mechanisms (Donoghue,
2004).

1http://www.robocuprescue.org/

12

http://www.robocuprescue.org/

Autonomous robotics system have been proposed as a possible so-
lution to perform this task (Green and Plumb, 2011; Huh et al., 2011;
Green, 2012). The large environments in which the robots are expected
to act require highly parallel and distributed solutions, in which large-
scale robot swarms act in a coordinated fashion.

Underwater Environment Exploration and Restoration

Underwater environment exploration (Aro, 2012) and restoration (Rinke-
vich, 2005) are necessary tasks to cope with the large-scale and poten-
tially catastrophic damages caused by bottom fishing, marine pollution,
and climate change (Jackson et al., 2001; Knowlton and Jackson, 2008;
C. Hongo, 2012). Restoration is currently performed by human divers,
but this activity is both slow and dangerous.

The use of swarms of Autonomous Underwater Vehicles (AUV) is
expected to provide viable solutions to improve both the efficiency and
the safety of the restoration process.

Nanotechnologies

Nanorobotics is a futuristic branch of robotics that deals with machines
operating at scales in the order of 10−6 m. The cost-effective production
of this kind of robots is an ambitious goal that requires major break-
throughs in molecular manufacturing (Sivasankar and Durairaj, 2012).

Nanorobotics finds potential applications in medicine, to permit treat-
ment of diseases that are currently incurable. Future applications of this
technology include cancer treatment, gene therapy, treatment of brain
aneurysm, and dentistry.

The limits imposed by the small scale of these robots and the pecu-
liar characteristics of the environment in which they will operate (the
human body) create novel and unexplored challenges for robot con-
trol (Mavroidis and Ferreira, 2013). The low-resource and simplistic
nature of swarm behaviors is likely to play an important role in the
development of this technology.

Discussion

These application scenarios can be characterized according to several
aspects. For the design of a simulator, the most prominent are scale,
heterogeneity, physical properties, and communication means.

Scale. Regarding scale, I refer to the fact that the size of the agents
involved (more precisely, their sensor and actuation range) is minuscule
with respect to the size of the overall scenario. Effective solutions are
likely to require systems that involve large numbers of agents acting in
parallel and in a coordinated fashion.

13

Heterogeneity. The complexity of the above application scenarios re-
quires robots with specific abilities. To maintain a high level of per-
formance while keeping the production cost of the swarm low, a viable
approach is to employ heterogeneous robot swarms, i.e., swarms com-
posed of individuals specialized in a subset of the necessary tasks. At
the simplest level, robots could be divided in two classes—sensing and
acting. Sensing robots would be equipped with high-quality sensory de-
vices, and their task would be primarily exploration, map-building, and
monitoring. Conversely, acting robots would feature effective devices
to modify the environment, e.g., defusing the explosives in unexploded
ordnance removal.

Physical Properties. The third distinguishing feature of the aforemen-
tioned application scenarios is the physical properties of the environ-
ment and of the robots. For example, one could consider the way in
which robots navigate in the environment. In power-line maintenance, in
first approximation, the motion along the power network can be consid-
ered one-dimensional. In unexploded ordnance removal, motion is two-
dimensional, and can be modeled through kinematics equations. Space
exploration is inherently three-dimensional, and in first approximation
the agents can be modeled as point-masses. Motion in an underwater
environment is similarly three-dimensional, but fluid dynamics plays a
fundamental role. In construction tasks, navigating a three-dimensional
structure requires mechanical models. Deep-underground mining occurs
in muddy and/or heavily littered 3D environments, which can be cap-
tured by voxel-based models. Finally, the motion physics of nanosystems
is dominated by colloidal effects.

Communication Means. Finally, effective coordination in these sce-
narios depends dramatically on the available communication means.
For instance, WiFi is a possible solution in some variants of search-
and-rescue scenarios, but is unusable in underwater environments; stig-
mergy could be employed by the robots to mark already explored areas
in unexploded ordnance removal, but it is not available in deep space
exploration.

2.1.2 Swarm Robotics Hardware

Several robotics platforms have been used to study swarm robotics ap-
plications. However, to date, no platform can be considered a standard
in the field, due to heterogeneity of interests and requirements across
the research community.

In this section, I identify a number of basic capabilities that a robot
must offer to be eligible for swarm robotics applications. These capabil-

14

ities constitute a robot reference architecture that identifies the type of
models and architectures that best suit a simulator for swarm robotics.

Locomotion

The simplest approach to locomotion is a differential drive system that
employs two wheels, each powered by an electric gear motor. This de-
sign is employed by a large number of robots, such as the Jasmine2,
the s-bot (Mondada et al., 2004), the e-puck (Mondada et al., 2006),
the Alice (Caprari et al., 1998), the marXbot (Bonani et al., 2010), and
the r-one (McLurkin et al., 2013). The main advantages of wheel-based
differential-drive locomotion are (i) the simplicity of motion modeling
and control, and (ii) the fact that motor encoders provide odometry in-
formation without the need for additional devices. The major drawback
of wheel-based motion is its relatively high cost in terms of components
and manufacturing. For this reason, in the design of the Kilobot, Ruben-
stein et al. (2012) substituted wheels with vibration motors, which offer
the same differential-drive motion control at a much lower cost. How-
ever, vibration motors do not provide odometry information, and pose
strict constraints on the type of surfaces on which the robot can move.

Recent years have seen the introduction of a large number of afford-
able flying robots. To date, the most successful design approach is the
quad-rotor configuration. Quad-rotors are inexpensive to build, and easy
to model and control (Mellinger and Kumar, 2011). Notable examples in
this category are Parrot’s low-cost commercial robot AR.Drone (Krajńık
et al., 2011), and the open-source designs AeroQuad and ArduCopter.

Communication

The ability to communicate is a fundamental requirement in swarm
robotics, because it enables the interactions upon which self-organization
is built. The most common communication modality in swarm robotics
is one-to-many, in the sense that the data originating from a robot
reaches multiple robots within a limited range. Frequently, upon receiv-
ing data, a robot is able to detect the relative positioning of its origin.
This modality goes under the name of situated communication (Støy,
2001).

One way to implement one-to-many situated communication is through
vision, by using robots equipped RGB LEDs and cameras. Vision has
been used to convey the internal state of the robots (Christensen et al.,
2008), their role in the swarm (Nouyan et al., 2008), and to indicate
docking slots in self-assembly (Christensen et al., 2007). Vision-based
communication is possible on many robotic platforms, such as the s-bot,

2http://www.swarmrobot.org/

15

http://www.swarmrobot.org/

the marXbot, and the e-puck.3 The primary advantage of vision is the
simplicity of its implementation, since colored-blob detection algorithms
are freely available in the open-source library OpenCV.4 The fundamen-
tal weaknesses of vision are (i) the limited number of bits that can be
exchanged per control step, (ii) the high computational cost of vision
algorithms, and (iii) the fact that the communication quality is heavily
dependent on proper parameter calibration, which in turn depends on
environmental light conditions.

The disadvantages of vision can be partially overcome through short-
range wireless communication. Gutierrez et al. (2009) proposed an ex-
tension board for the e-puck in which data is exchanged through infrared
signals. The board is equipped with 12 modules composed of infrared
emitters and receivers. The modules can be controlled individually to
simultaneously send different messages. Through this board, robots can
achieve a maximum bandwidth of 160 b/s for each module. The com-
munication board of the marXbot, designed by Roberts et al. (2009),
uses two different methods to exchange data and detect the sender. To
transmit data, a radio signal is used; the detection of the sender relies
on the exchange of infrared signals. The maximum bandwidth of this
board is 800 b/s. The principal flaw of these boards is the added cost per
unit they entail. A simpler, low-cost, yet limited solution to this prob-
lem has been used in the design of the Kilobot. This robot is equipped
with a single infrared transmitter/receiver module pointed downwards
at the floor. This system works under the assumption that the floor is
reflective, and offers a theoretical maximum bandwidth of 9.6 kb/s.

Sensing

Sensing allows the robot to collect information about the environment
in which it operates, and about other robots.

Among the many devices mounted on swarm robots, one ubiquitous
device is the proximity sensor. This type of sensor provides the robot
with spatial data concerning nearby obstacles and robots. In its sim-
plest form, the proximity sensor can be used to avoid obstacles; more
complex devices that provide long-range data can permit Simultaneous
Localization and Mapping (SLAM).

Proximity sensors can be implemented in several ways. An infrared
proximity sensor is a combination of two devices: an infrared light emit-
ter and an infrared light receiver. The sensor works exploiting the fact
that the emitted infrared light is reflected back upon hitting an object.
The sensor is capable of estimating the distance between the emitter and
the object by measuring the difference in voltage between the emitted

3Through a third party extension board.
4http://opencv.org/

16

http://opencv.org/

light beam (which is known to the device) and the received one (which is
measured). These sensors are cheap and easy to integrate on any robot,
but their measures typically display high levels of noise. Many robots
are equipped with infrared proximity sensors: the Alice, the e-puck, the
s-bot, and the marXbot, to name a few. Ultrasound sensors work on a
similar principle, i.e., listening to the echo of an emitted sound wave.
Ultrasound sensors have a longer range than infrared proximity sensors,
but they are more expensive and their measures depend on the composi-
tion of the objects upon which the sound waves bounce. Laser scanners
are an option that ensures precise measurements, but their high cost
renders them unattractive for swarm applications.

Cameras are another widespread sensing device. Camera sensors
are relatively inexpensive to include on a robot, and their versatility
justifies the extra cost. As discussed, camera sensors enable color-based
communication. In addition, they can be used to detect objects and
landmarks, and to reconstruct geometric environmental features.

Robot swarms are often equipped with a diverse set of other sensors.
Ground sensors allow robots to detect the features of the ground. In-
frared sensors, such as those mounted on the e-puck and the marXbot,
allow the robot to detect differences in the color of the ground. RFID
cards are also employed to achieve stigmergy5, by storing data on RFID
tags scattered through the environment (Johansson and Saffiotti, 2009).
Light sensors are employed to provide the robots with a global gradient,
marking in this way the position of an important location in the envi-
ronment (O’Grady et al., 2005), and smoke sensors are used to estimate
the origin of a fire (Marjovi et al., 2009).

Assembly and Manipulation

While motion and communication are ubiquitous features in robotics
platforms, the capability to assemble with kin robots or manipulate
objects is only present in a minority. However, these capabilities are
often mentioned among the most interesting a robotic swarm can offer,
because they enable self-assembly (Groß and Dorigo, 2008; Patil et al.,
2013), and collective construction (Petersen et al., 2011).

Self-assembling robots can be categorized in three families: lattice-
based, chain-based, and mobile robot architectures (Yim et al., 2002).

In lattice-based architecture, the robots connect into regular pat-
terns, such as cubic or hexagonal. Some examples of robots in this cat-
egory are I-Cube (Ünsal et al., 2001), Proteo (Yim et al., 2001), mole-

5Stigmergy is a form of indirect communication among members of a swarm. Typically,
stigmergy occurs as a byproduct of the modifications individuals perform on the environment.
These modifications affect the behavior of other individuals working on the same area. The
concept of stigmergy was introduced by Grassé (1959) to explain the fundamental interactions
that occur among ants during nest building.

17

cube (Mytilinaios et al., 2004), and ATRON (Jørgensen et al., 2004).
These robots are equipped with multiple docking devices that form rigid
structures.

Chain-based architectures are capable of connecting into chain-like or
tree-like structures. Differently from lattice-based architectures, chain-
based architectures display articulation, allowing them to change the po-
sition and orientation of each module dynamically. Prominent examples
of this family of robots are PolyBot (Yim et al., 2000), CONRO (Cas-
tano et al., 2002), and M-TRAIN (Murata et al., 2002).

Mobile robot architectures are capable of locomotion and self-assembly.
The robots falling into this category are able to form different types of
structures. Two prominent examples exist: CEBOT (Fukuda, 1991),
a heterogeneous collection of robotic modules with sensing and dock-
ing capabilities; and the s-bot (Mondada et al., 2004), the first fully
autonomous robot platform capable of locomotion and reconfigurable
self-assembly into arbitrary shapes.

Robotic hardware for collective construction is still at a very early
stage. The essential concerns that complicate the design of fully func-
tional robots are the manipulation/deposition of construction material,
and the navigation of partially assembled structures.

Early attempts to tackle these issues target the construction of 2D
structures. Everist et al. (2004) have proposed a construction system
using specially-designed blocks, and Werfel et al. (2006) achieved com-
parable results using struts.

Research on 3D structures includes cooperative assembly by com-
plex robots (Sellner et al., 2006; Stroupe et al., 2006), manipulating and
maneuvering over specialized blocks (Terada and Murata, 2008), and
strut-climbing robots that become part of the structure they build (De-
tweiler et al., 2006). The first fully autonomous robotic architecture to
achieve complex construction of three-dimensional structures is TER-
MES (Petersen et al., 2011), which is based on an integrated design of a
passive block and a robot capable of manipulating/depositing the block
and navigating the assembled structure.

Discussion

Robotic hardware for swarm applications is very diverse. A general-
purpose simulator that encompasses this wide variety of hardware ar-
chitectures must prove extremely flexible.

The main source of heterogeneity is the dynamics of these devices.
Motion, as well as assembling and manipulation, are obtained in different
ways depending on the hardware platform. The primary shared aspect
among all these platforms is the fact that swarms are formed by large
numbers of identical robots. Heterogeneity and large quantities of robots

18

are intertwined aspects. A large number of specialized robots is less
expensive to build, and easier to study and control.

In addition, it is possible to model these systems in an optimized
way with tailored approaches. As it will be discussed in Section 2.2.3,
this fact has promoted the creation of domain-specific simulators that
combine accuracy and efficiency, at the cost of flexibility.

2.1.3 Swarm Robotics System Design

Designing effective swarm robotics systems is a complex task. This com-
plexity is rooted in the fact that swarm robotics systems are located at
the intersection between several domains, with which swarm robotics
systems share requirements and open problems. First, swarm robotics
systems can be seen as an instance of distributed systems. In this per-
spective, the design of swarm robotics systems aims to achieve effective
parallelism, while dealing with asynchronous dynamics and stochastic-
ity. Second, swarm robotics systems are expected to be autonomous, to
adapt to changing environmental conditions, and to display robustness
to failure. All these requirements are typical of artificial intelligence.
Third, the fundamental role of local interactions among the compo-
nents of a swarm can be modeled as a complex network. Finally, swarm
robotics systems share the typical complications of classical robotics sys-
tems (cost, energy efficiency, robustness, . . .), with the added challenge
of enabling mass production of large numbers of robots.

In all these domains individually, sound design approaches and en-
gineering methodologies are currently under study. As a consequence,
a general and universally accepted theory of swarm systems remains
undefined (Schweitzer, 2003). Such theory is expected to provide an
analytical framework to design and predict the behavior of a swarm
robotics system prior to its implementation. In particular, this theory
should offer a solution to the problem of translating a swarm-level be-
havior into individual-level behaviors.

Because of the lack of general-purpose methodologies, the design of
swarm robotics systems currently focuses on small-scale, specific appli-
cation scenarios within a limited, well-defined scope. The result of this
activity depends strongly on the experience and ingenuity of the de-
signer, and success stories are difficult to generalize. The approaches
to designing swarm behaviors can be categorized along many dimen-
sions. Regarding the design of a simulator, three dimensions are partic-
ularly important: who realizes the design, where the design abstraction
is placed, and how the behaviors are structured.

19

Who is the Designer?

With regard to the first dimension, design approaches can be divided
into manual and automatic.

In manual methods, the human designer works on the system directly.
The designer studies ways to achieve self-organization by factorizing the
problem into simpler instances and identifying recurring patterns. Most
works that take inspiration from natural swarms fall into this category.

Conversely, in automatic methods, the self-organizing behavior is
the result of an algorithm configured by the human designer to search
for the solution that best fits the requirements. Thus, the designer
works on the system indirectly. Methods in the fields of reinforcement
learning (Sutton and Barto, 1998) and evolutionary robotics (Nolfi and
Floreano, 2004) are typical examples of this category.

Manual and automatic methods have two important differences. First,
in manual methods, the experience on the problem domain and the in-
genuity of the designer strongly affect the quality of the final result; in
automatic methods, the quality of the result depends on the algorithm
used—the experience of the designer is required more for configuring
the algorithm properly, rather than for the problem domain. Second,
manual methods tend to yield solutions whose structure is easier to un-
derstand, maintain, and modify with respect to those solutions found
with automatic methods. On the other hand, automatic methods are
usually better at finding unexpectedly good solutions, which would be
erroneously discarded by a human designer.

Where is the Design Abstraction Placed?

With respect to the second dimension, i.e., where the design abstrac-
tion is placed, design approaches can be categorized into top-down and
bottom-up.

The top-down abstraction views the swarm as a unique entity. At
this level, the designer assumes that the mechanisms for coordination
are given, and works directly on swarm-level mechanisms.

The bottom-up abstraction considers the swarm as a collection of
separate components. The designer develops mechanisms to achieve
cooperation among the components in order to perform a task. In swarm
robotics, this means that the level of abstraction is placed at the level
of the individual robots.

The bottom-up approach is currently the most widespread and suc-
cessful abstraction. This is due to the fact that a fundamental pre-
requisite of the top-down abstraction is currently missing—a widely es-
tablished formalism that describes the behavior of a large-scale swarm
system. Until this issue is solved, effective modeling approaches to pre-
dict swarm behaviors and tools/programming languages to implement

20

swarm-level behaviors will not be fully achievable. However, research
on implementing the top-down abstraction is active and a number of
interesting results exist. These results are presented in Section 2.1.4.

How is the Behavior Structured?

With respect to the third dimension, design approaches can be cate-
gorized into monolithic approaches, modular approaches, and virtual
physics.

Monolithic behaviors are self-contained and typically single-task-oriented.
It is not possible to readily identify simpler components in this type of
behaviors. Most swarm behaviors from the field of evolutionary robotics
fall into this category, as neural networks, the typical structure targeted
in evolutionary robotics works, are difficult to analyze.

Modular systems, on the other hand, are explicitly factorized into
intercommunicating components, organized in various ways. The most
widespread approach to connect sub-behaviors is to consider them as
nodes in a graph, in which arcs encode the condition under which a robot
switches from the current sub-behavior to another. In the literature, this
approach goes under the name of Finite State Machine (FSM) (Minsky,
1967). The type of condition associated to the arcs further qualifies the
type of FSM—for instance, if each arc is associated with a probabilistic
condition, it is called a probabilistic FSMs. A hierarchical organization
of the behavior, such as the subsumption architecture (Brooks, 1986),
has also been proposed in the literature.

In virtual physics, the robots are imagined to be immersed in a virtual
potential field. This field is ‘virtual’ because it is derived by a robot from
sensor data. The robots move according to the forces that result from
the potential field. This approach was introduced by Khatib (1986), and
later refined and extended by Reif and Wang (1999), and Spears et al.
(2004).

The main difference between the modular and virtual physics meth-
ods is that, in the former, the current swarm state is discrete, because
it corresponds to the set of the behaviors of the robots; conversely, in
virtual physics methods, the state of the system is continuous, as it corre-
sponds to the state of the virtual potential. Thus, in a modular behavior,
a state change corresponds to a behavior switch, by one or more robots;
whereas, in a virtual physics behavior, a state change corresponds to the
(dis)appearance of a ‘fold’ in the potential field. Furthermore, in mod-
ular behaviors, self-organization is the result of the interaction among
the current behaviors of each individual. Hence, the design process must
consider the possible combinations of individual behaviors explicitly. In
contrast, the virtual potential metaphor expresses self-organization as
the implicit process of relaxation of the swarm system towards a state

21

of minimum virtual energy.
For this reason, modular methods are a natural choice to structure

behaviors in which it is easy to identify discrete phases and/or events.
Classical examples in the literature are foraging (Liu et al., 2007), chain-
ing (Nouyan et al., 2008), and self-assembly (Christensen et al., 2007).
Swarm behaviors such as task allocation (Gerkey and Matarić, 2004),
pattern formation (Pinciroli et al., 2008) and flocking (Ferrante et al.,
2013), characterized by a continuous swarm state, are more suitably
tackled by virtual physics methods.

Discussion

A development framework for swarm robotics must support all of the
above design methods. The proposed categorization maps directly to
requirements on the desired architecture of the framework.

To enable manual design methods, a framework must offer suitable
functionality to inspect and analyze swarm behaviors. This functionality
can be interactive or non-interactive. Interactive functionality is usually
offered by a Graphical User Interface (GUI), and allows for (i) inspection
of the robot states (e.g., current sensor readings), and (ii) modification of
the course of an experiment, such as adding/removing/moving an object.
Non-interactive functionality includes the possibility to run hundreds of
experiments and collect statistics.

To enable automatic methods, the framework must be designed to
be integrated within other tools. For instance, in evolutionary robotics,
the framework must allow the user to employ a neural network library
as behavioral code, and give control of when an experiment must be
started to the genetic algorithm.

The bottom-up abstraction requires the development framework to
provide primitives to control the devices of the individual robots. The
top-down approach, on the other hand, requires functionality such as
communication mechanisms that are transparent to the developer.

Regarding behavior structuring, the framework must offer (i) the
correct primitives to interact with the robots, and (ii) the means to
integrate the behavior with external tools such as an FSM library.

2.1.4 Swarm Robotics System Implementation

One of the most difficult challenges for the implementation of swarm
behaviors for real applications is programming. The faceted nature of
swarm robotics systems admits multiple approaches to behavior pro-
gramming.

Analogously to design approaches, one possible categorization of pro-
gramming approaches is bottom-up and top-down. Bottom-up approaches

22

correspond to programming the behavior of each robot individually; top-
down approaches allow the developer to program the swarm as a single
entity, translating the swarm-level program into instructions for each
individual automatically.

Bottom-up Programming Approaches

To date, the bottom-up approach is the most widespread. The lack
of general, top-down design methodologies often forces the developer to
think at the individual level. Thus, it is natural to translate a bottom-up
design into a bottom-up implementation.

Additionally, a large number of programming languages can be used
to implement robot behaviors in a bottom-up fashion. Virtually all
robots are natively programmed in C and offer a C API, making this
language a natural choice. On the downside, C forces the programmer
to focus on low-level aspects such as memory management and cre-
ation of basic data structures (e.g., linked lists and trees). Thus, many
practitioners prefer object-oriented languages such as C++ and (occa-
sionally) Java, for the higher-level abstraction they offer and their large
library collection. Following the recent increase in computational power
available on robotic platforms, scripting languages have also started
to become a viable alternative. Among the many, Lua6 and Python7

are the most successful. Lua is a very simple and extensible script-
ing language designed for low-memory embedded systems. Lua is ideal
as a low-resource extension language. Python, on the other hand, is
a feature-rich, general-purpose scripting language employed for an ex-
tensive variety of applications, including artificial intelligence and data
analysis.

The bottom-up approach also includes popular middleware for robotics,
such as ROS,8 OROCOS,9 and YARP.10 The purpose of this kind of mid-
dleware is twofold: (i) providing high-level functions for procedures of
general use, such as image analysis, pattern recognition, and mapping;
and (ii) offering primitives to structure and compose complex behav-
ioral code. Despite its advantages, this type of middleware has found
little success in the swarm robotics community, due to the relatively
high computational resources it requires, and the lack of primitives for
real-time and multi-robot coordination.

6http://www.lua.org/
7http://www.python.org/
8http://www.ros.org/
9http://www.orocos.org/

10http://wiki.icub.org/yarp/

23

http://www.lua.org/
http://www.python.org/
http://www.ros.org/
http://www.orocos.org/
http://wiki.icub.org/yarp/

Top-down Programming Approaches

In the last ten years, the research community has started to study top-
down approaches. This effort is motivated by the observation that most
of the development time in the bottom-up approach is spent implement-
ing low-level, ad hoc communication and coordination procedures. For
the success of the aggregate behavior, these procedures must prove ro-
bust to failure and performance degradation in presence of a high num-
ber of interactions per second. The top-down approach, on the other
hand, assumes the presence of dedicated mechanisms of coordination
and communication, thus allowing the developer to reason at the swarm
level.

The first research efforts towards the top-down approach occurred
in the sensor network community. An ample set of abstractions and
programming languages has been proposed (Mottola and Picco, 2011),
some of which have evolved into languages that target robotics applica-
tions. To date, two languages offer the most interesting features: Proto
and Meld.

Proto (Beal and Bachrach, 2006) is a language that emphasizes the
spatial aspects of a computing network. In other words, Proto is a
language that programs ‘spatial computers,’ that is, a collection of con-
nected computing devices scattered in a physical space. The spatial
computer is modeled as a continuous medium in which each point is
associated to a value, i.e., a field. The primitive operations of Proto
act on this field. There are four types of operations: (i) point-wise
operations, which are applied to each point in a field; (ii) restriction op-
erations, which allow for the selection of a sub-field upon which a certain
operation is performed (a form of spatial if construct); (iii) feedback
operations, which encode the notion of evolution over time, allowing
the developer to store state; and (iv) neighborhood operations, which
express the flow of information across the medium. Originally, Proto
was designed for non-mobile networks. Bachrach et al. (2010) extended
the language to include motion by adding the notion of density at any
position in the medium. In this perspective, motion is implemented as
a mass flow across the medium.

Meld (Ashley-Rollman et al., 2007, 2009) works from a top-down ap-
proach by allowing the developer to specify a high-level, logic description
of what the swarm as a whole should achieve. The low-level (commu-
nication/coordination) mechanisms that reify the high-level goals (i.e.,
the how) are left to the language implementation and are transparent
to the developer. For this reason, the syntax of Meld follows the declar-
ative paradigm. The core concepts of the language are facts and rules.
A fact encodes a piece of information that the system considers true
at a given time. A special kind of fact is an action, that encodes an

24

operation that a robot must perform on the environment. Rules have
the role of producing new facts, and are triggered as soon as their asso-
ciated condition is met. Rules can entail side effects, such as falsifying
facts in the knowledge base. The language automatically deletes facts
that have become false. A computation in Meld consists of applying the
specified rules progressively to produce all true facts, until no further
production is possible. A powerful feature of the language is the pos-
sibility to specify rules that work on a subset of the entire knowledge
base. In Meld parlance, these rules are called aggregates. Two types of
aggregates exist: (i) selection rules, that allow to single out an element
in the input fact set (e.g., the fact with the maximum value), and (ii)
computation rules, that perform a computation over the input fact set
(e.g., the sum of all the fact values).

Proto and Meld are two very different solutions for the top-down
development approach.

One important point on which these languages differ is in the man-
agement of the underlying network topology. The continuous medium
abstraction of Proto does not allow for explicit representation of the
network topology, nor to refer to individual robots in the swarm. In
contrast, in Meld, the topology of the network is represented explicitly,
and the language can express rules involving specific robots. In fact, the
implementation of Meld imposes the distribution of facts across robots,
and, by design, each true fact is stored in a single robot. If a rule requires
facts known by different robots, the robot executing the rule requests the
fact base of the robot that owns the necessary fact. To make communi-
cation possible, every robot R stores a fact neighbor(R,N) for each robot
N in its neighborhood. This feature is desirable in applications such as
modular robotics and self-assembly, in which the relative positioning of
robots often affects the overall behavior.

Another important difference between Meld and Proto is their syntax
and semantics. Meld follows the declarative programming paradigm.
Meld rules are expressed as logic statements, and computation occurs
by iteratively applying rules, producing new facts. Thus, in a non-trivial
Meld program, it is difficult to predict the possible effects of a certain
rule solely from the program source. Debugging a Meld program requires
carefully following the chain of productions. This issue is exacerbated by
the fact that facts might be deleted as a result of robot motion, making
it difficult to reproduce erroneous executions. In contrast, Proto is a
functional language, with a syntax similar to LISP. Proto statements
represent the computation as a composition of mathematical functions.
For a human developer, Proto statements are readable and the execution
of the program is usually predictable from the source code.

A desirable feature in any programming language is compositionality,
i.e., the possibility to organize instructions into functions and libraries.

25

Compositionality allows developers to factorize large problems into sim-
pler ones, and to combine individual solutions intuitively. The LISP-like
syntax of Proto is compositional by design. The Meld syntax, in con-
trast, offer no such feature.

A final important difference between Proto and Meld is the effect
of sensor noise and failures on the execution of a program. In Meld,
uncertainty deriving from these phenomena is automatically managed
by the fact that the derived facts in the knowledge base are deleted at
the beginning of each cycle of the control step. Proto, on the other hand,
does not explicitly consider noise and failures.

Discussion

Behavior programming is arguably the most important activity a sim-
ulator for robotics must engender. As discussed, many languages are
available to implement swarm behaviors.

In terms of the interface with a simulator, the fact that a language
follows the bottom-up or the top-down approach is negligible. As ex-
plained in Section 2.2.3, a simulator is based on a microscopic model
of the system, and naturally exposes robot-level control primitives. A
bottom-up programming language encodes behaviors using these prim-
itives directly; the infrastructure of a top-down programming language
is constructed upon the same primitives.

The choice of the programming language mainly affects the perfor-
mance of the simulation. Languages such as C and C++ are compiled
into the native binary format of the machine on which the simulation
is running. Consequently, their performance depends only on the speed
of the machine. High-level programming languages, such as Java, Lua,
and Python, are compiled into a binary format (called byte-code) meant
to be executed by a virtual machine. The advantage of this feature is
compatibility—the same compiled script can be run, without any mod-
ification, on any platform on which the virtual machine is installed. On
the downside, executing a program on a virtual machine entails higher
memory usage and longer run-times, due to the inability to optimize the
binary format for the host machine. The latter issue is usually tackled
through the use of just-in-time compilers (Aycock, 2003), typically at
the cost of increased memory usage.

Top-down programming languages are essentially scripting languages
executed on networked virtual machines. Thus, they share the challenges
discussed above. Additionally, the networked nature of these virtual
machines forces the simulator to either include a complete model of
the virtual machines that also simulates network communication, or to
employ the original virtual machines accepting the performance penalty
introduced by socket-based communication.

26

2.2 Simulation of Swarm Robotics Systems

Real-robot experimentation is difficult due to the unreliability of today’s
robotic hardware (Cao et al., 1997). As the number of robots involved in
an experiment grows, maintaining the swarm in working condition be-
comes prohibitive (Carlson et al., 2004). Thus, to date, the only method
to design and test for scalability is to employ modeling techniques, and
validate the results with targeted real-robot experiments.

In this section, I present an overview of the techniques to model
robot swarms. In Section 2.2.1, I provide a general view of the modeling
techniques. In Section 2.2.2, I focus on physics-based approaches.

2.2.1 Modeling Robot Swarms

The literature abounds in modeling approaches that differ widely in
purpose and level of abstraction.

Regarding their purpose, modeling techniques can be qualified with
respect to their role in the development life cycle. A non-executable
model typically describes the required properties of the system prior to
its implementation. Executable models, on the other hand, reproduce
the dynamics of the running system. To date, due to the difficulty of
predicting swarm behaviors, non-executable models have received lit-
tle attention in the literature. Two notable exceptions exist: Winfield
et al. (2005), who apply temporal logic to model self-organization; and
Brambilla et al. (2012), who propose a multi-level approach to swarm
design based on formal methods. The vast majority of work in swarm
modeling, however, focuses on executable models.

Furthermore, based on the level of abstraction, we can divide models
in three families: macroscopic, microscopic, and mesoscopic.

Macroscopic models represent the system from the global point of
view, as a single entity. Many modeling techniques in this family are
inspired by chemistry or physics (e.g., thermodynamics and synerget-
ics). These models best capture behaviors such as flocking, aggregation,
and diffusion, in which individuals can be represented as gas particles.
However, these techniques are not suitable for describing behaviors in
which individuals are more complex than randomly walking particles.
In most complex swarm behaviors, aspects such as the robot body, its
capabilities, and the logic of its decision-making play a fundamental
role (Hamann and Schmickl, 2012).

Microscopic models lay at the opposite end of the spectrum, as they
consider the properties of each robot individually. Agent-based models
inspired from biology fall in this category. However, the applicability of
these models to swarm robotics is limited because natural and artificial
systems differ in two critical aspects. First, a given swarm behavior
can be the result of a variety of individual behaviors (Edelstein-Keshet,

27

2001); second, robots and animals differ widely in terms of capabili-
ties (e.g., sensing, locomotion) and communication means. As a con-
sequence, models that explain natural behaviors might be extremely
suboptimal, or even not applicable to swarm robotics applications. An
alternative approach to microscopic modeling based on control theory
has been proposed by Gazi and Passino (2003). This approach, while
allowing one to prove the stability of a swarm behavior, assumes full
synchronization, global communication, and absence of uncertainty.

Mesoscopic models place their focus between the two previous cate-
gories by including both micro- and macroscopic elements, thus linking
macroscopic phenomena to microscopic events. In the works of Marti-
noli et al. (2004); Lerman et al. (2005); Correll and Martinoli (2006),
the swarm is modeled considering the fraction of robots in a certain
state. The time evolution of these fractions is expressed through rate
equations. While this method is relatively general and mathematically
tractable, it neglects the spatial aspects of a swarm. To overcome this
issue, Hamann and Wörn (2008) proposed a modeling approach based
on Brownian motion.

2.2.2 Physics-Based Robot Modeling

The ultimate goal of a swarm model is to shed light on the relationship
between the macroscopic properties of the swarm and the microscopic
interactions of the individuals. To achieve this, the model must be
expressed at the suitable abstraction level, and allow for analytical in-
vestigations. Despite the effort of the research community in the last
decade, and the relatively large number of different approaches avail-
able, to date, a commonly accepted ‘theory’ of swarm systems remains
unarticulated (Schweitzer, 2003). Moreover, the heterogeneity of the
available approaches is an obstacle to the adoption of diverse methods,
due to the steep learning curve of each.

To date, physics-based simulation remains the main technique to de-
sign, prototype, and test swarm robotics systems. Physics-based models
rely on minimal assumptions about the system, which can be summa-
rized as ‘the robots possess a body.’ Additionally, physics-based model-
ing is very general, as it targets a necessary feature of swarm systems—
motion.

Modeling Motion

There exist several ways to model the motion of a robot (Gazi and Fidan,
2007). In this section, I present four of the most employed models.

Kinematic Model. The simplest possible model to capture the motion
of a robot in space is the kinematic model. In this model, the position

28

p of a robot follows the law
ṗ = u,

where u is the control parameter. A robot modeled according to this law
behaves like a mass-less particle capable of changing direction instanta-
neously. Because of its low computational cost, this model is employed
for motion planning and for proof-of-concept navigation experiments.
Additionally, this model is frequently used to study approaches to pat-
tern formation and flocking inspired by virtual physics.

Point-Mass Model. The point-mass model is an extension of the kine-
matic model in which the robot is represented as a geometrical point of
mass m. The motion of the robot follows the law:{

ṗ = v
mv̇ = u + f ,

where p is the position of robot, v its speed, u is the control parameter,
and f represents the effect of external forces, such as gravity. This model
is used for higher-precision simulations in the same situations in which
the kinematic model proves useful.

Differential Steering Model. The differential steering model captures
the motion dynamics of a two-wheeled robot. The robot state is [px, py, θ],
where px, py indicate the position and θ the orientation of the robot.
Denoting with ur and ul the right and left linear wheel speeds set by
the control system, and with b the inter-wheel distance, the model is:

ṗx =
ur + ul

2
cos θ,

ṗy =
ur + ul

2
sin θ,

θ̇ =
ur − ul

b
.

This model is widely used to capture the motion of non-holonomic
robots. In addition, a robot can use it to perform dead reckoning from
odometry information.

Fully Actuated Model. The most complete model of robot motion is
the fully actuated model. This model captures the complete dynamics
of a robot composed of connected rigid bodies under the effect of various
forces. The model is:

M(q)q̈ + f(q, q̇) = u,

where q ∈ Rn is the robot state (e.g., q = [p,v]), u is the control param-
eter, M(q) is the inertia matrix, and f(q, q̇) is a function that accounts

29

for various effects such as: centripetal and Coriolis forces deriving from
robot motion, external forces due to gravity and collisions, and random
disturbances. This model captures the dynamics of mechanically com-
plex and modular robots, in which multiple bodies are connected by
joints. Often, the term f(q, q̇) is expressed as a sum of two terms:

f(q, q̇) = fk(q, q̇) + fu(q, q̇),

in which fk(q, q̇) represents known forces, and fu(q, q̇) represents un-
known disturbance. The inclusion of the unknown disturbance is em-
ployed to develop algorithms that provide robustness to noise and/or
perturbations.

Software for Physics Simulation

Several software packages for physics simulation (i.e., physics engines)
are available. In their simplest form, these packages enable the simula-
tion of the motion of a body in the space. Additionally, many physics en-
gines include functionality such as collision detection and management,
and provide means to interact with the internal spatial data structure
and implement custom space-aware algorithms. Often, these software
packages constitute the core component around which robot simulators
are built. In this section, I present the most significant physics engines
currently available. All of these physics engines are based on the fully
actuated model.

Chipmunk Physics. Chipmunk Physics11 is a fast 2D physics engine
written in C. It is designed to offer high performance for gaming and sci-
entific applications. Chipmunk supports rigid bodies, and spatial data
is organized into a space hash (Teschner et al., 2003). For this rea-
son, Chipmunk excels at simulating hundreds of objects of similar size.
To maintain high performance, Chipmunk internally uses an Euler in-
tegrator. The basic version of Chipmunk is free and open source, and
an enhanced version is available for a fee. In addition to the C inter-
face, Chipmunk offers an API in Objective C and can be employed as a
plug-in for the Unity Game Engine12.

Box2D. Box2D13 is a free and open source physics engine designed to
perform fast simulations of rigid bodies. Similar to Chipmunk, Box2D
employs an Euler integrator. However, differently from Chipmunk, in
Box2D objects are stored into a dynamic AABB tree (Zachmann, 2002).
This structure is essentially a binary tree optimized to provide best

11http://chipmunk-physics.net/
12http://unity3d.com/
13http://box2d.org/

30

http://chipmunk-physics.net/
http://unity3d.com/
http://box2d.org/

performance when the size of the simulated objects is heterogeneous.
Box2D is written in C++, and offers an API in Objective C.

Open Dynamics Engine. Open Dynamics Engine (ODE)14 is a 3D
physics engine that targets the simulation of rigid bodies. Over the last
decade, ODE has been used for both gaming and scientific applications.
In comparison to modern physics engines, the scalability of ODE for
increasing numbers of connected objects is known to be poor. ODE
offers two integration methods, a fast but unstable Euler integrator, and
a slower but more stable fourth-order Runge-Kutta integrator. ODE was
originally written in C, but recently a C++ API has been added by the
developer community.

Bullet. Bullet15 is a state-of-the-art 3D physics engine capable of sim-
ulating both rigid and soft bodies (cloth, ropes, deformable objects).
Internally, spatial data is organized into a dynamic AABB tree (Zach-
mann, 2002). Bullet can handle a large number of objects through CPU
multi-threading and its experimental GPU interface. Bullet offers both
Euler and Runge-Kutta integrators. Since its inception, Bullet has en-
joyed increasing success and is now employed in a wide variety of soft-
ware for gaming, visual effects for cinema, and scientific simulations.
It is free and open source software, written in C++. Bullet can inter-
operate with a large number of software packages such as Unity Game
Engine16, Autodesk Maya16, and Blender17.

NVIDIA PhysX. NVIDIA PhysX18 is another state-of-the-art 3D physics
engine capable of a wide variety of simulations, including rigid and soft
body dynamics, vehicle dynamics, volumetric fluid simulation, and cloth
simulation. PhysX can handle a very large number of objects through its
native support for multi-threading both on CPU and GPU, and integra-
tion with NVIDIA Physics Processing Unit (PPU). PhysX is proprietary
software distributed with a free-to-use license for educational purposes.
NVIDIA PhysX finds applications in gaming, CAD, visual effects for
cinema, and scientific simulations. It offers a C++ interface and it is
included in software packages such as Unity Game Engine8, Autodesk
Maya20, Unreal Engine19, and Microsoft Robotics Studio20.

14http://ode-wiki.org/wiki/index.php?title=Main Page
15http://www.bulletphysics.org/
16http://www.autodesk.com/maya
17http://www.blender.org/
18https://developer.nvidia.com/physx
19Since version 3, http://www.unrealengine.com/
20http://www.microsoft.com/robotics/

31

http://ode-wiki.org/wiki/index.php?title=Main_Page
http://www.bulletphysics.org/
http://www.autodesk.com/maya
http://www.blender.org/
https://developer.nvidia.com/physx
http://www.unrealengine.com/
http://www.microsoft.com/robotics/

Vortex. Vortex21 is a commercial 3D physics engine designed to sim-
ulate complex multi-body simulations and robotics manipulation with
high fidelity. It includes rigid body dynamics and a particle engine. Vor-
tex is written in C++ and offers a wide variety of plug-ins to simulate
sensing, grasping, and vehicle dynamics. Vortex has been employed in a
large number of applications in the military sector, as well as in gaming
and scientific simulations.

Newton Game Dynamics. Newton Game Dynamics22 is a 3D physics
engine that simulates rigid body dynamics. Newton Game Dynamics
sets itself apart from its competitors due to its deterministic collision
solver, that yields truly reproducible simulations. On the downside, the
performance of this engine is inferior to Bullet’s and PhysX’. A multi-
threaded version of Newton Game Dynamics (for both CPU and GPU
computation) is currently under development, and it promises signif-
icantly higher performance. Newton Game Dynamics is open source
software written in C++. It has been used for gaming and scientific
simulations.

Physics Abstraction Layer. Physics Abstraction Layer23 (PAL) is a
unified interface for the most widespread physics engines. Rather than
directly providing low-level functionality to perform physics simulations,
PAL allows developers to construct physics-based software abstracting
the details of the underlying engine. In this way, the underlying physics
engine can be changed without affecting the rest of the application.
Currently, PAL supports the following physics engines: Box2D, Bullet,
Newton Game Dynamics, Open Dynamics Engine, and NVIDIA PhysX.

2.2.3 Simulators for Robotics

In this section, I review a number of important multi-robot simulators
and discuss their features with respect to flexibility and scalability. I
restrict my focus to mainstream simulators, i.e., those widely used by the
research community, and to less known simulators whose designs relate
to ARGoS’. For a broader, although dated, discussion of development
tools for robotics applications, including but not limited to simulators,
I suggest the survey of Kramer and Scheutz (2006).

Simulators Targeting Flexibility

The design of general and flexible simulators is a relatively recent achieve-
ment. Before the 2000s, CPU speed and RAM size on an average per-

21http://www.vxsim.com/en/software/why vortex/index.php
22http://newtondynamics.com/forum/newton.php
23http://pal.sf.net/

32

http://www.vxsim.com/en/software/why_vortex/index.php
http://newtondynamics.com/forum/newton.php
http://pal.sf.net/

sonal computer were insufficient to support extensible designs while en-
suring acceptable simulation performance. In the last decade, a few
simulators able to support different types of robots were developed.

Gazebo. Gazebo24 (Koenig and Howard, 2004) is currently one of the
most successful simulators in robotics. It is designed as a general tool
for a wide spectrum of applications. Gazebo allows users to define virtu-
ally any kind of robot or environment through an XML-based simulation
description format. This description is subsequently translated into low-
level configuration for the physics engines and the other modules. At
the time of writing, Gazebo offers two physics engines, ODE and Bul-
let. The architecture of Gazebo is a publish-subscribe system formed by
four main processes, each dedicated to a specific task: physics simula-
tion, sensor simulation, graphical visualization, and coordination of the
simulation loop. As a multi-process system, simulations in Gazebo pro-
ceed in a parallel fashion. The primary benefits of a publish-subscribe
architecture lay in its high level of abstraction and generality, which
render Gazebo very flexible. The physics process, for instance, exports
a message interface that can interoperate with the rest of the system
independently of the specific choice of physics engine. Additionally, the
message-centric nature of this architecture lends itself to the creation
of powerful analysis tools that act as consumers of the information ex-
changed between the processes. The benefits of Gazebo’s architecture
come at the expense of efficiency, for two reasons. First, inter-process
communication occurs through files and sockets, which are slow me-
dia when the number of robots in a simulation increases. Second, the
abstract message interface of Gazebo prevents the optimization of the
access to the data structures that store the state of the simulated work.
Gazebo is open source software written in C++. It is developed by the
Open Source Robotics Foundation25, which also maintains ROS. The
publish-subscribe architecture of Gazebo is inspired by ROS and shares
part of the code-base. As a result, robot behaviors developed with ROS
can be executed in Gazebo seamlessly.

Webots. Webots26 (Michel, 2004) is a commercial 3D simulator that
targets a wide variety of robotics applications. The Webots architecture
is designed around the ODE physics engine. The environment and the
robots are described in VRML, and are represented internally through a
tree structure. It is possible to interface directly to the underlying ODE
state, thus retrieving data useful for sensing, actuation, and creation
of user extensions. However, this interface is available only for licensed

24http://gazebosim.org
25http://osrfoundation.org/
26http://www.cyberbotics.com/

33

http://gazebosim.org
http://osrfoundation.org/
http://www.cyberbotics.com/

copies of the software, and its use requires knowledge of both ODE and
Webots internals. The scalability of ODE is known to be poor when
compared to state-of-the-art physics engines such as Bullet and NVIDIA
PhysX. The main limitation of ODE is the lack of multi-threading, which
severely limits its performance. For this reason, Webots is not suitable
for large-scale simulations involving thousands of robots. Webots is
commercial software written in C++. It offers models for a large variety
of common robotic platforms. Robot behavior can be written in C,
C++, Java, Python, Matlab, and URBI.

USARSim. USARSim27 (Carpin et al., 2007a) is a 3D simulator de-
signed for generic robotics scenarios. Since its inception, USARSim has
enjoyed increasing usage, and it is now the chief simulation framework
for the RoboCup Urban Search-and-Rescue League.1 With respect to
other simulators, the community supporting USARSim has devoted sig-
nificant effort to the validation of the robot models (Carpin et al., 2007b;
Balakirsky et al., 2009). USARSim is built on top of Unreal Engine28,
a commercial game engine released by Epic Games29. Unreal Engine
provides state-of-the-art technology for both physics simulation and re-
alistic rendering. The models for robots, sensors, and other simulated
objects, as well as the map of the environment, are specified in the pro-
prietary format of Unreal Engine. At run-time, USARSim interacts with
the Unreal Engine through a socket-based interface. This interface al-
lows users to specify control code for the robots. USARSim also provides
advanced debugging and monitoring tools implemented as ‘Unreal spec-
tators’. The network-based architecture of USARSim imposes limits on
the number of robots that can take part in a simulation. Consequently,
USARSim is unfit for large-scale experiments involving thousands of
robots. Additionally, the dependency on a commercial game engine ren-
ders adopting and extending USARSim problematic. USARSim is open
source software written in C++. It supports a wide variety of robots,
and offers mechanisms to simulate wireless communication. USARSim
allows the user to specify robot behaviors through Gamebot (Kaminka
et al., 2002), MOAST (Balakirsky and Messina, 2006; Balakirsky et al.,
2008), and Player (Gerkey et al., 2003).

MuroSimF. MuroSimF30 (Friedmann et al., 2008) is a general-purpose
simulator for multi-robot scenarios involving any kind of robot. The
main novelty of MuroSimF is the possibility to model any aspect of a
robot with adjustable levels of accuracy. To obtain this feature, physics

27http://usarsim.sourceforge.net/
28http://www.unrealengine.com/
29http://www.epicgames.com/
30http://www.dribblers.de/research/simulator.en.php?language=en

34

http://usarsim.sourceforge.net/
http://www.unrealengine.com/
http://www.epicgames.com/
http://www.dribblers.de/research/simulator.en.php?language=en

simulation in MuroSimF is not based on any mainstream physics en-
gine. Instead, simulated objects are structured into tree-like compounds.
Each object is assigned a dedicated model for simulation. Objects can
also be linked to simulate arms and grippers. Objects can also be as-
sociated to a dedicate controller, thus realizing behaviors whose logic is
distributed across the subsystems of a robot. Parallelism in MuroSimF
is achieved by submitting computation tasks (e.g., the update of an
object) to a scheduler, which distributes tasks across a pre-configured
thread pool. The architecture of MuroSimF allows the user to assign
computational resources to those aspects of the simulation that are most
important for the current experiment. This feature is important, because
it allows the user to avoid wasting computational resources on unimpor-
tant aspects of the simulation. As a consequence, the performance of
MuroSimF is remarkable—experiments show that MuroSimF can sim-
ulate dozens of robots in real-time with a simulation step as short as
1/1000th of a second. The performance of MuroSimF is currently lim-
ited by the fact that only part of the computation can be parallelized.
In particular, collision detection and handling in MuroSimF are still ex-
ecuted in a single thread. MuroSimF is open source software written in
C++.

OpenRave. OpenRave31 (Diankov, 2010) is a simulator designed to
support prototyping of motion planning and manipulation behaviors in
industrial applications. The architecture of OpenRave is organized in
four components, internally called layers: (i) the ‘core’ layer acts as a
coordinator of the activities of the other layers; (ii) the ‘plug-in’ layer
defines the basic interfaces for the modules executed in a simulation;
(iii) the ‘scripting’ layer offers the means to specify the robot behaviors;
and (iv) the ‘robot database’ layer provides a set of functions for the
analysis of robot behaviors based on metrics collected at run-time. The
execution of a simulation is distributed across multiple threads. One
thread is dedicated to managing the environment, including physics and
sensor calculations. The other threads execute the control logic. This
design choice presents both advantages and disadvantages. The main
advantage is the clear separation between environment simulation and
control logic. As mentioned, the target use case of OpenRave is motion
planning and manipulation for complex industrial applications. Thus,
the control logic is likely to entail calculations whose computational cost
might be comparable with the simulation of the environment. On the
downside, in this design the environment is a shared resource among
multiple threads. Consequently, to prevent race conditions and ensure
exclusive access to each thread, the entire environment must be locked

31http://www.openrave.org/

35

http://www.openrave.org/

through a mutex. The assumptions upon which OpenRave’s design is
constructed are not true for swarm robotics. In swarm robotics, the
control logic typically has a negligible computational cost with respect
to the simulation of the environment. In addition, it is not acceptable
for each access to the environment to be exclusive, as this prevents the
computation to exploit parallelism efficiently. OpenRave is open source
software written in C++. It is integrated with Player, and allows devel-
opers to specify robot behaviors in ROS, Python, and Octave/Matlab.

Morse. Morse32 (Echeverria et al., 2011) is a simulator designed for
general robotics scenarios. It is constructed around the Blender game
engine33, an extension of the Blender 3D rendering software that en-
ables the creation of interactive animations with high-quality graphics.
To simulate physics, the Blender game engine uses Bullet. The archi-
tecture of Morse is multi-process. Morse allows the user to factorize the
computation across processes, assigning a subset of the robots to each
of them. In this way, a complex simulation can be executed on a com-
puting cluster, accelerating its execution. The processes are organized
into a centralized system, in which a server node coordinates the work
of the clients. The performance limitations of a multi-process architec-
ture discussed for Gazebo also apply in the case of Morse. Additionally,
the simulator is extended through Python scripts, imposing an abstrac-
tion layer over C++ that further affects performance. Consequently,
this design is not suitable for large-scale multi-robot scenarios. Simi-
larly to its competitors, Morse is open source software written in C++.
Additionally to the Python scripting interface, Morse allows the user
to specify behaviors through popular middleware for robotics such as
ROS and YARP, and exposes a socket-based interface to enable further
third-party bindings.

SwarmSimX. SwarmSimX34 (Lächele et al., 2012) is a 3D simula-
tor designed for real-time robotics applications, such as hardware- and
human-in-the-loop scenarios. The main distinctive trait of SwarmSimX
is the fact that the simulation loop is synchronized with wall-clock-time
to enable a realistic interactive simulation. SwarmSimX is built around
NVIDIA PhysX, although the architecture permits the addition of new
physics engines. The architecture of SwarmSimX is extremely generic,
as it revolves around three high-level concepts: visual representation,
physical representation, and behavioral logic. The visual and physi-
cal representations are independently specified. Both representations
are structured as trees. The visual representation has the purpose of

32http://www.openrobots.org/wiki/morse/
33http://wiki.blender.org/index.php/Doc:2.6/Manual/Game Engine
34https://svn.kyb.mpg.de/kyb-robotics

36

http://www.openrobots.org/wiki/morse/
http://wiki.blender.org/index.php/Doc:2.6/Manual/Game_Engine
https://svn.kyb.mpg.de/kyb-robotics

rendering a simulated object; the physical representation simulates its
dynamics. The behavioral logic is divided into ‘drivers’ and ‘sensors’.
Drivers represent the behavior of a simulated object, while sensors pro-
vide drivers with information on the simulated environment. A simu-
lated object is represented through the concept of ‘artifact’, which is a
composition of visual/physical representation and behavioral logic. The
architecture of SwarmSimX achieves parallelism by assigning a dedi-
cated thread to each artifact. Among the general-purpose simulators,
SwarmSimX offers the best performance for multi-robot scenarios. Ex-
periments in (Lächele et al., 2012) show that SwarmSimX is capable of
reaching real-time performance in a simulation with hundreds of quad-
rotors. SwarmSimX is open source software written in C++. Behaviors
can be specified through ROS. In addition, SwarmSimX is integrated
with the TeleKyb framework (Lächele et al., 2013) for quad-rotor con-
trol.

ReMod3D. ReMod3D35 (Collins et al., 2013) is a 3D simulator con-
ceived for self-reconfigurable robotics. The main purpose of this software
is to support the design of both physical and behavioral aspects of mod-
ular robots. The architecture of ReMod3D is composed of a core module
that manages a set of working modules. The working modules are ca-
pable of connecting to each other in arbitrary topologies that can be
modified at run-time. A notable aspect of the design of ReMod3D is the
presence of explicit mechanisms for inter-module communication. The
flexibility of this design mainly revolves around the use of the generic
C++ container Boost::any36. This container is used to handle modules,
and to envelope exchanged messages across modules. The performance
of ReMod3D is remarkable. Experiments show that ReMod3D is capa-
ble of simulating hundreds of modules in real-time. This performance
is primarily due to the GPU acceleration of the NVIDIA PhysX engine
employed to simulate the physics of the modules. However, reaching
thousands of simulated modules in real time under the same experimen-
tal conditions seems problematic with this design, due to the central role
of Boost::any. In fact, the generality of this container comes at the
cost of forcing the system to perform a large number time-consuming
type conversions. ReMod3D is open source software written in C++.
To the best of my knowledge, the authors do not provide any integration
with third-party software.

V-Rep. V-REP37 (Rohmer et al., 2013) is among the most flexible
and feature-rich simulators available. V-REP targets a wide variety of

35http://www.isi.edu/robots/remod3d/
36http://www.boost.org/doc/libs/1 55 0/doc/html/any.html
37http://www.coppeliarobotics.com/

37

http://www.isi.edu/robots/remod3d/
http://www.boost.org/doc/libs/1_55_0/doc/html/any.html
http://www.coppeliarobotics.com/

robotics applications, including navigation, motion planning, and ma-
nipulation. The architecture of V-REP is complex and very general.
Essentially, the architecture is a composition of modules with specific
purposes. Modules perform activities such as physics simulation (cur-
rently through Bullet, ODE, or Vortex), sensor data retrieval, and robot
control. Modules can be freely added by the user. With respect to the
process executing the main simulation loop, a module can be executed
in three ways: (i) as a different process; (ii) in a dedicated thread; or
(iii) on the same machine and thread. The core of the architecture ex-
ports a Lua scripting interface, which is the primary mean to implement
modules in V-REP. Modules can be implemented also in C, C++, Java,
Python, and URBI. The main strength of V-REP is its large collection
of extension libraries. V-REP is equipped with libraries for inverse/-
forward kinematics, particle simulation, vision, and path planning. The
main limitation of V-REP is its high level of abstraction, which, similarly
to other designs analyzed in this section, prevents low-level optimization.
V-REP is capable of executing multi-robot simulations, but to the best
of my knowledge performance evaluation has not been released. V-REP
is written in C++ and it has been recently open sourced for academic
use. Its general architecture enables integration with any third-party
framework for robot control. Among the many, V-REP offers a ROS
node that interfaces with the ROS publish/subscribe network.

Simulators Targeting Efficiency

Stage. Stage38 (Vaughan, 2008) is a simulator designed to execute nav-
igation experiments involving large groups of robots. The architecture
of Stage revolves around a custom-made, 2D physics engine that mod-
els robots through the kinematic and the differential steering models.
The physics engine is capable of detecting collisions and perform basic
ray-cast queries. The shape of the simulated objects is represented as
a collection of convex polygons, spatially indexed in a grid to improve
performance. Multi-threading is implemented by spawning one worker
thread per CPU core. A master thread maintains a list of computa-
tional tasks to perform and distributes the tasks to the worker threads.
Stage’s performance is excellent in navigation-based experiments. Ex-
perimental evaluation shows that Stage can simulate thousands of robots
in real-time. The underlying disadvantage of Stage is the simplicity of
its architecture, which renders it impossible to extend the simulator to
perform more complex experiments. For instance, the kinematic nature
of the models employed in Stage excludes the possibility to simulate
self-assembly and foraging experiments. Another limitation of Stage is
the lack of noise in sensors and actuators. Stage is open source software

38https://github.com/rtv/Stage

38

https://github.com/rtv/Stage

written in C++. It is part of the Player project, and behaviors can be
written both through Player and ROS.

Roborobo! Roborobo!39 (Bredeche et al., 2013) is a simple 2D simula-
tor conceived for evolutionary experiments involving robot navigation.
Similarly to Stage, Roborobo! is built around a custom-made physics en-
gine. However, Roborobo!’s engine is simpler than Stage’s. The robots
are represented as particles, and motion simulation is limited to the kine-
matic model. Collision detection exploits a slow pixel-based method,
based on SDL’s getPixel32() function40. Roborobo!’s architecture is
single-threaded, and this severely limits its performance. Roborobo! is
open source software written in C++.

DPRSim and DPRSim2. The Claytronics project (Goldstein et al.,
2009) aims to create a new kind of programmable matter formed by mil-
lions of sub-millimeter robots. The technological difficulties to face in
order to reach this goal force the researchers in this project to prototype
their solutions in simulation. However, the massively large-scale nature
of the systems under study exceeds the capability of any known robot
simulator to offer acceptable performance. For these reasons, Ashley-
Rollman et al. (2011) designed DPRSim, a software that simulates large-
scale robot ensembles. DPRSim is based on a modified version of ODE,
that is capable of multi-threaded computation with a reduced memory
footprint with respect to the original implementation. These modifica-
tions allowed Ashley-Rollman et al. (2011) to simulate ∼ 105 spherical
nanorobots in real time. To further improve performance and reach the
objective of ∼ 106 simulated robots in real time, Ashley-Rollman et al.
(2011) designed DPRSim2, an improved version of DPRSim executed on
a computing cluster. In DPRSim2, the simulated objects are distributed
across the computing nodes. The work of these nodes is coordinated by
a dedicated master node, which maintains synchronization by issuing a
‘tick’ signal that triggers an update across the other nodes. To improve
performance, the motion of the objects is not simulated; rather, objects
are ‘magically’ transported to their final destination at the due time.
The impressive performance of DPRSim and DPRSim2 stems from de-
sign choices tailored for a specific use case. As such, the design of these
simulators is instructive but not generalizable. DPRSim and DPRSim2
are open source software written in C++.

39https://code.google.com/p/roborobo/
40http://www.libsdl.org/

39

https://code.google.com/p/roborobo/
http://www.libsdl.org/

2.2.4 Discussion

Marrying flexibility and efficiency while ensuring satisfactory levels of
accuracy is a difficult problem.

The simulators designed for flexibility fulfill their purpose through
modularity and abstraction. Modularity is an obvious design choice to
achieve flexibility, and its combination with high-level abstraction gen-
erates designs that can suit a wide set of robotics applications. However,
an abstract and modular architecture forces the developers to work far
from key low-level aspects, such as data structures and the related al-
gorithms to handle them. In other words, in an abstract and modular
architecture, the presence of layers of abstraction imposes static choices
exactly where users would want to make modifications.

Conversely, the simulators designed for speed avoid abstraction and
modularity, in favor of an approach that targets a limited set of use
cases.

In addition to this trade-off between efficiency and flexibility, the ar-
chitectures of the analyzed simulators are ultimately wrappers around
a physics engine. When the number of robots taking part in an exper-
iment rises, the physics engine becomes an increasingly larger factor in
the performance of the simulation. Beyond a certain level of perfor-
mance degradation, these designs offer no solution to restore acceptable
levels of performance in physics simulation.

Summary

The design of a general-purpose simulator for swarm robotics is influ-
enced by several factors.

First, swarm robotics is a research field with a wide range of long-
term applications. These applications, despite their diversity, share com-
mon aspects: (i) the robots have a minuscule scale with respect to the
size of the environment; (ii) the swarms are likely to be heterogeneous
in terms of capabilities and assigned roles; both (iii) the physical prop-
erties of environments and robots, and (iv) the communication means
vary considerably across applications.

Second, a simulator must be able to capture the capabilities of the
robots composing the swarm in terms of locomotion, communication,
self-assembling, and sensing. The wealth of long-term applications is
reflected by the abundance in robotic platforms targeted to specific sce-
narios, pushing for general and flexible simulator designs. At the same
time, the large numbers involved in swarm systems necessitate efficient
and minimal (i.e., robot-specific) models.

Third, a simulator must act as a platform that enables both the de-
sign and the implementation of artificial swarm systems. Currently, the

40

most widespread approach is bottom-up, whereby the designer conceives
the system as a collection of intercommunicating individuals. Physics-
based simulation is a precious tool to make this approach possible, due
to the minimal and general assumptions upon which it is founded.

A large number of physics-based simulators exist in the literature.
Those simulators that concentrate on flexibility typically offer modular
and general architecture capable of simulating any kind of robot. How-
ever, such generality and flexibility are obtained at the cost of efficiency,
due to the high level of abstraction of the architectural structure and
the mechanisms involved. Other simulators concentrate on efficiency,
thus enabling experiments with hundreds, thousands, or even millions
of robots. These simulators obtain these remarkable results by sacrific-
ing flexibility and accuracy, in favor of simpler and faster robot models.

41

Chapter 3

The ARGoS Architecture

In this chapter, I present the architecture of ARGoS. In Section 3.1 I
discuss the requirements a simulator for swarm robotics must satisfy.
Subsequently, I dedicate one section to each design choice: modularity
(Section 3.2), customizable indexing (Section 3.3), execution of multiple
physics engines (Section 3.4), and multi-threading (Section 3.5).

3.1 Requirements

The main requirement a simulator must meet is accuracy. Accuracy is a
function of the fidelity of the individual models used in an experiment.
It is a measurable property, whose threshold of acceptability depends
on the application. For this reason, it is not uncommon to consider the
creation of an application-specific simulator as an integral part of the
experimental activities. Ideally, a simulator should display perfect ac-
curacy. However, this is an unrealistic expectation, either for practical
limitations in the computational aspects of the employed models (e.g.,
memory limitations, insufficient precision in floating-point operations,
etc.), or for the lack of suitable models (e.g., sensor noise). The limit-
edness of accuracy with respect to the real phenomena under study is
often called reality gap. In robotics, the reality gap is a serious issue
that hinders the transfer of behaviors developed in simulation onto the
real platforms (Meeden, 1998).

The second requirement a simulator must satisfy is efficiency. Anal-
ogously to accuracy, efficiency cannot be considered an inherent feature
of a simulator. Rather, it is a measurable property whose acceptance
threshold is set by the user considering the available resources (e.g., time,
computation power). It is possible to identify two types of efficiency:
static efficiency and dynamic efficiency. Static efficiency corresponds to
the wise use of computational resources (e.g., time, memory, CPU cores)
in a specific experimental setup. Dynamic efficiency refers to the degra-
dation of performance due to progressive changes in the parameters of

43

L
oo

p
fu

n
ct

io
n
s

Controller

Sensors Actuators

Entities

Simulated 3D Space

Physics
Engines

Media Visualizations

Control Interface

Figure 3.1: The architecture of ARGoS. The white boxes correspond to user-
definable plug-ins.

the experimental setup. In swarm robotics, the main parameter of inter-
est in an experimental setup is the swarm size, and dynamic efficiency
coincides with the concept of scalability.

The third requirement considered in this thesis is flexibility. Differ-
ently from accuracy and efficiency, flexibility is an inherent property of
a simulator design. Flexibility can be generally defined as the capability
of a simulator design to encompass a wide set of use cases. In this thesis,
a design is considered flexible if it is capable of supporting any kind of
robot swarm (see Section 2.1.2) and it allows researchers to perform any
kind of experiment of relevance in the field (see Section 2.1.1).

These three requirements are interdependent. Increasing accuracy of-
ten forces researchers to employ models with higher computational cost,
thus lowering efficiency. A highly flexible design, as discussed in Sec-
tion 2.2.4, is based on abstractions that prevent the user from optimizing
low-level aspects such as data structures and associated algorithms. As
a result, efficiency is lowered. In addition, the impossibility to imple-
ment algorithms might result in a limitation of the models a simulator
can execute, leading to lower accuracy.

3.2 Modularity

In software design, it is common practice to decouple a complex archi-
tecture into several interacting modules. As discussed in Section 2.2.3,
flexible simulators typically allow the user to modify modules or add new
implementations of modules to customize and enhance the functionality
of the program. The advantage of modularizing the robot model lies in
the possibility to choose which modules to employ for an experiment.
Different modules are characterized by different accuracy and computa-

44

tional costs. Thus, the choice of which modules to employ corresponds
to the allocation of accuracy where the user deems it necessary. I refer
to the possibility to allocate accuracy as tunable accuracy.

Tunable accuracy is one of the cornerstones of ARGoS design, as it
enhances both flexibility and efficiency. Regarding flexibility the user
can define which modules to use for each aspect of the simulation. Effi-
ciency is boosted by the fact that computational resources are allocated
only where necessary.

In Figure 3.1, I report a diagram of the ARGoS architecture. The
white boxes in the figure correspond to user-definable plug-ins. As il-
lustrated, not only controllers, robot and device models can be selected,
but also physics engines and visualizations. In the rest of this section, I
describe the features of each plug-in type in depth.

3.2.1 The Simulated 3D Space

The simulated 3D space, depicted at the center of Figure 3.1, is a collec-
tion of data structures that contains the complete state of the simulation.
This state information includes the position and the orientation of each
object such as obstacles or robots. The state of objects composed of
different parts or equipped with special devices, such as sets of colored
LEDs, is also stored in this space.

The data is organized into basic items referred to as entities. ARGoS
natively offers several entity types, and the user can customize them or
add new ones if necessary. Each type of entity stores information about
a specific aspect of the simulation.

For instance, to store the complete state of a wheeled robot, a com-
posable entity is used. Composable entities are logical containers that
are used to group other entities. Composable entities can be nested to
form trees of arbitrary complexity. The controllable entity is a compo-
nent that stores a reference to the user-defined control code and to the
robot’s sensors and actuators. The embodied entity component stores
the position, orientation and 3D bounding box of the robot. The current
wheel speed is stored into the wheeled entity component. If the robot is
equipped with colored LEDs, their state is stored in a component called
LED-equipped entity.

Entity types are organized in hierarchies. For instance, the embodied
entity is an extension of the simpler positional entity, which contains
just the position and orientation of an object, but not its bounding
box. These design choices (entity composition and extension) ensure
flexibility, enhance code reuse and diminish information redundancy.

Entity types are indexed in efficient data structures optimized for
access speed. In this way, the performance of the plug-ins that access
the simulated 3D space is enhanced (see Section 3.3).

45

3.2.2 Sensors and Actuators

Sensors and actuators are plug-ins that access the state of the simulated
3D space. Sensors are granted read-only access to the simulated 3D
space, while actuators are allowed to modify it. As explained in Sec-
tion 3.2.1, information about the simulation state is stored in a number
of specialized entities. Sensors and actuators are designed to only access
the necessary entities. For instance, the calculations of a distance sensor
only need to access information about the embodied entities around a
robot, and can ignore other entities. In the same way, a robot’s LED
actuator needs only to update the state of that robot’s LED-equipped
entity.

Tightly linking sensors and actuators to entity components has three
benefits: (i) these plug-ins can be implemented targeting specific com-
ponents instead of the complete robot, often resulting in general (rather
than robot-specific) models; (ii) the robot components associated with
sensors and actuators that are not used in an experiment do not need to
be updated, avoiding waste of computational resources; (iii) new robots
can be created faster and more reliably by incorporating existing com-
ponents, ensuring that all the sensors/actuators depending on them will
work without modification. Effects (i) and (iii) improve flexibility, while
effect (ii) enhances efficiency.

3.2.3 Physics Engines

As illustrated in Section 3.2.1, an embodied entity is a component that
stores the position and orientation of a physical object in the 3D space.
The state of the embodied entities is updated by the physics engines.

As it is explained in Section 3.4, physics engines are assigned non-
overlapping portions of the 3D space. At each time step, each physics
engine is responsible for the update of the embodied entities that occupy
its assigned portion of space. This design choice makes it possible to run
multiple engines of different types in parallel during an experiment.

Physics engines operate on a custom representation of their assigned
portion of the 3D space. For instance, the position (x, y, z) of an object
in the 3D space could be stored as (x′, y′) in a 2D engine. At each
time step, the 2D physics engine performs calculations to update its
internal representation (x′, y′) and then transforms it into the common
3D space representation. This design choice enables one to optimize
each physics engine’s internal representation of space for speed, memory
usage and/or accuracy. Currently, ARGoS is equipped with four kinds
of physics engines, designed to accommodate the most general use cases:
(i) a 3D-dynamics engine based on ODE, (ii) a 3D particle engine, (iii)
a 2D-dynamics engine based on the open source physics engine library

46

Chipmunk,1 and (iv) a 2D-kinematics engine.

3.2.4 Media

Communication is a fundamental aspect in the simulation of swarm sys-
tems. It is only through communication that a swarm can achieve coor-
dination. In Section 2.1.2, I have listed the many forms communication
can take within a swarm. Essentially, communication occurs as a spa-
tially localized phenomenon, in that robots can exchange messages only
within a limited range. In addition, devices such as cameras and the
range-and-bearing system introduce the requirement that information
exchange can occur only if the involved robots are in direct line-of-sight.
In other words, communication in swarms does not only involve data
exchange, but it also includes spatial aspects such as positioning and
occlusions.

For this reason, simulating localized communication efficiently is dif-
ficult. To allow third-party extension developers to select the best option
for each type of communication mean, ARGoS offers two main methods
to simulate communication.

The first method simply consists in realizing pairs of dedicated sen-
sors/actuators associated with communication-specific entity types. Ev-
ery time a robot emits data, the actuator sets the data in the associ-
ated communication entity, and the sensors of other robots receive these
data by scanning the space for nearby communication entities. While
this method is simple to implement, it is often inefficient. The main
causes of inefficiency are two. First, if robot R1 can communicate with
robot R2, it is often the case that the inverse is true as well — R2 can
communicate with R1. This is the case, for instance, of the range-and-
bearing system. The second cause of inefficiency is the low locality of
the data structures involved in the simulation of communication (see
also Section 3.3). In fact, every time a robot scans its neighborhood for
communication entities, the data structures that store the wanted enti-
ties must be loaded in cache, used once, and discarded to make room for
the next scan. Optimizing memory access in this context is difficult, and
it is likely to entail a significant increase in the architecture complexity.

To cope with these issues, the ARGoS architecture offers a specialized
module type called medium. A medium can be considered as a ‘physics
engine’ for communication. A medium stores the information about
communicating entities in optimized data structures, and, analogously
to a physics engine, upon update it executes the necessary data transfer
among communication-specific entities. Media are very general module
types, and they can be used to simulate any kind of communication
exchange. Currently, ARGoS offers two types of media: (i) the range-

1http://code.google.com/p/chipmunk-physics/

47

http://code.google.com/p/chipmunk-physics/

(a) (b)

Figure 3.2: Screen-shots from different visualizations. (a) Qt-OpenGL; (b)
POV-Ray.

and-bearing medium, and (ii) the LED medium. At the time of writing,
further types of media are under development: the RFID-tag medium,
to simulate RFID-based communication, and the pheromone medium,
to enable simulations of insect-like stigmergic behaviors.

3.2.5 Visualizations

Visualizations are plug-ins that read the state of the simulated 3D space
and output a representation of it. Three types of visualization are cur-
rently available in ARGoS: (i) an interactive graphical user interface
based on Qt42 and OpenGL,3 (ii) a high-quality rendering engine based
on the ray-tracing software POV-Ray,4 and (iii) a text-based visual-
ization designed for interaction with data analysis programs such as
Matlab.5

3.2.6 Controllers

Robot controllers are plug-ins that contain the control logic of the robot
behavior for an experiment. An important requirement in the design of a
simulator is the possibility to develop code in simulation and then trans-
fer it to the real robots without modification. To meet this requirement,
ARGoS provides an abstract control interface that controllers must use
to access sensors and actuators. The same control interface is also im-
plemented on the real robots. In this way, the user code developed in
simulation can be transferred to the real robots without modifications.

Currently, robot controllers are written in C++. In swarm robotics,
robots are typically systems with low-end processors such as ARM.6

2http://qt.nokia.com/
3http://www.opengl.org/
4http://www.povray.org/
5http://www.mathworks.com/products/matlab/
6http://www.arm.com/

48

http://qt.nokia.com/
http://www.opengl.org/
http://www.povray.org/
http://www.mathworks.com/products/matlab/
http://www.arm.com/

Thus, transferring code from a personal computer to a real robot requires
recompilation. Aside from the recompilation step, however, simulated
code is directly usable on real robots.

I intend to integrate other programming languages that would not
require recompilation to transfer code from simulation to real platforms.
At the moment of writing, the ASEBA (Magnenat et al., 2010) and Lua
scripting languages have already been integrated in ARGoS, and further
language bindings (e.g., Python, PROTO) are under study.

3.2.7 Beyond Modularity: Loop Functions

It is very difficult to identify a set of features that can cover all the possi-
ble use cases of multi-robot systems. Even though some features, such as
robot motion, are almost always necessary, many other features depend
on the type of experiment considered. For instance, the metrics against
which statistics must be calculated depend on the experiment. Also, if
the environment presents custom dynamics, such as objects being added
or removed as a result of the actions of the robots, these mechanisms
need to be implemented in the simulator. The need for specific and
often divergent features renders the design of a generic simulator ex-
tremely complex. Furthermore, the approach of trying to add a myriad
of features in the attempt to cover every possible use case usually ren-
ders the learning curve of a tool much steeper, hindering usability and
maintainability.

To cope with these issues, I followed the common approach of pro-
viding user-defined function hooks in strategic points of the simulation
loop. In ARGoS, these hooks are called loop functions. The user can
customize the initialization and the end of an experiment, and add cus-
tom functionality executed before and/or after each simulation step. It
is also possible to define custom end conditions for an experiment.

Loop functions allow one to access and modify the entire simulation.
In this way, the user can collect figures and statistics, and store complex
data for later analysis. It is also possible to interact with the simula-
tion by moving, adding or removing entities in the environment, or by
changing their internal state.

Finally, loop functions can be used to prototype new features before
they are promoted to the core ARGoS code.

3.2.8 Case Study: The Foot-bot and the Eye-bot

To discuss ARGoS modularity, I describe how two extremely different
robots are modeled in ARGoS. The two robots I chose for this case
study are the foot-bot (Bonani et al., 2010) and the eye-bot (Roberts
et al., 2007). The foot-bot is a ground-based robot that moves with a

49

Omnidirectional
camera

Beacon

Range-and-bearing
system

RGB-LED ring

Proximity + Light
sensor ring

RFID read/write

Ceiling/frontal
camera

Distance
scanner

Gripper

Treels

Ground
sensor

(a)

Ceiling attachment

Propellers

Range-and-bearing
system

RGB-LED rings

Pan-and-tilt camera

(b)

Figure 3.3: (a) The foot-bot; (b) The eye-bot.

50

combination of wheels and tracks (called treels). The eye-bot is a quad-
rotor aerial robot. Both robots are equipped with various sensors and
actuators that allow them to interact with the surrounding environment.
The robots and their devices are depicted in Figure 3.3.

Sensors and Actuators. Both robots are equipped with numerous sen-
sors and actuators, and a few of them present similar features. In the
following discussion, I focus on the sensors and the actuators of the two
robots that share common aspects. It is important to note that some
robot devices may function both as a sensor and an actuator. In these
cases, in ARGoS two plug-ins are necessary—one for the sensor and one
for the actuator. One of the simplest devices present on both robots is
the on-board clock. The state of the clock is read by the clock sensor.
Given its simplicity, ARGoS natively offers a single implementation of
the clock sensor suitable for all the robots. Both the foot-bot and the
eye-bot are equipped with LEDs. However, the specifics of the control
interface of the LEDs are different, because the LEDs are distributed
differently on the two robots. On the foot-bot, there are two kinds of
LEDs: a ring that surrounds the body, composed of 12 RGB LEDs,
and a beacon positioned at the center of the robot body. The eye-bot is
equipped with two rings of 16 LEDs each: an upper ring and a lower ring.
The upper ring is primarily visible from the side, while the lower ring is
visible from beneath the robot. Although the control interface for the
LEDs is different, the plug-ins share the same code base, thanks to the
LED-equipped entity. Both the foot-bot and the eye-bot are equipped
with cameras. The foot-bot has two: an omnidirectional camera and a
camera that can be mounted looking upwards or frontally. The eye-bot
has a pan-and-tilt camera, that is, a camera mounted on a rotating de-
vice. The implementation of the cameras is specific to each robot. The
cameras of the foot-bots are pure sensors, while the eye-bot’s pan-and-
tilt camera has an associated actuator that controls the attitude of the
camera. Notwithstanding these differences, the implementations of the
camera sensors are based on a common definition that is extended to
suit the specific needs of each camera type, thus ensuring code reuse.

The foot-bot and the eye-bot can communicate with each other through
the range-and-bearing communication device (Roberts et al., 2009), which
allows the robots in line-of-sight to exchange messages within a limited
range. The particularity of this communication device is that a robot,
upon receipt of a message, can calculate the relative position (distance
and angle) of the sender. The implementation of this device is divided
into two parts: the range-and-bearing sensor and the range-and-bearing
actuator. The role of the former is to manage the receipt of messages
from other robots. The role of the latter is to set the message to send.
The implementation of this device is shared between the foot-bot and

51

the eye-bot.

Composing Entities. Both the foot-bot and the eye-bot are imple-
mented as composable entities. They share most components. Both
are composed by an embodied entity, a controllable entity, and an LED-
equipped entity. In addition, the state of the distance scanner is stored
in a distance-scanner-equipped entity, while the state of the range-and-
bearing communication system is stored into a range-and-bearing equipped
entity. Both the LED-equipped entity and the range-and-bearing equipped
entity are associated to their respective media, enabling communication
among the robots. The cameras of the robots are represented by ded-
icated camera-equipped entities. In particular, the foot-bot contains
an omnidirectional-camera-equipped entity, while the eye-bot contains a
pan-and-tilt-camera-equipped entity. The foot-bot possesses a number of
entities that are not in common with the eye-bot, such as the ground-
sensor-equipped entity, the light-sensor-equipped entity, the proximity-
sensor-equipped entity, and the gripper-equipped entity. Data on motion
actuation is stored into a wheeled entity for the foot-bot, and into a
propeller-equipped entity for the eye-bot.

3.3 Entity Indexing

An important component of any physics-based robot simulation is how
spatial data is handled. Spatial data structures are employed for all the
most computationally intensive chores, such as collision detection, sens-
ing, and communication. The choice of data structure heavily impacts
the performance of a simulator.

The main operations that must be performed over the spatial data
structure are insertion, deletion, update, and query. Insertion and dele-
tion typically occur during the initialization and destruction phases of
a simulation, and affect performance only marginally. Update is usually
executed once per loop. Query is the most frequent operation, being the
basis of the vast majority of the calculations for sensing and collision
detection.

For this reason, in the choice of a data structure, priority is usually
given to the time complexity of the query operation. However, in all
but the most trivial cases, the time performance of a query depends on
the memory storage characteristics of the data structure. The memory
of a modern computer is organized into a multi-level hierarchy. The
top-level memory, called L1 cache, is physically connected to the CPU
and ensures the fastest access performance. This type of memory is
expensive and limited in size. Ideally, the necessary data to perform
a computation should not exceed the size of the L1 cache, and all the
necessary data should be present in this cache when needed. In practice,

52

however, maintaining the contents of this cache in optimal conditions
is a difficult problem. Whenever data is missing, (i.e., a cache miss
occurs), the processor must wait for the data to be loaded from the
lower-level cache, L2, losing precious time. Cache misses can occur at
any level of the memory hierarchy, generating a cascade of load requests
that eventually reach the main RAM storage. The time taken by a
load request increases with the depth of such request in the hierarchy.
Consequently, the time performance of a query operation on a spatial
data structure depends on the way the data is organized in memory. In
this respect, an important desired property for a spatial data structure
is locality, i.e., the capability to pack data in such a way to minimize
the number of cache misses.

The spatial data of a physics-based simulation is of two types: point-
based data and object-based data (Samet, 2006). Point-based data con-
sists of a vector x ∈ Rn, with n = 2 for two-dimensional simulations
and n = 3 of three-dimensional ones. This kind of data typically rep-
resents the position of an object in the space. For simulations based
on the kinematic or point-mass models, point-based data is a common
representation. Object-based data, on the other hand, is represented
by an area or a volume in space. For instance, in collision detection,
it is common to query the space to discover whether the body of an
object is intersecting another body. A common solution to this problem
is wrapping every body of arbitrary shape with an axis-aligned bound-
ing box, and calculate intersections among bounding boxes. For each
detected bounding box intersection, the bodies therein are checked for
intersection.

In ARGoS, spatial indexing is implemented as a policy (Alexan-
drescu, 2001), and it can be used by any plug-in to index entities. The
ability to specify the spatial indexing as part of the simulation setup
is a unique feature of ARGoS with respect to existing designs. This
feature allows the user to fine-tune the performance of the simulation,
thus increasing efficiency without affecting accuracy.

3.4 Multiple Physics Engines

The most distinctive feature of ARGoS is the possibility to partition the
simulated 3D space into non-overlapping portions of arbitrary size, and
assign each portion to a different physics engine. For instance, in an
environment formed by several rooms connected by corridors, the differ-
ent rooms and the corridor could each be assigned a dedicated physics
engine. The volumes assigned to 3D engines are specified as right prisms
whose size is user-defined, while the areas assigned to 2D engines are
specified as polygons in the 3D space. The user must define the effect of
a robot crossing the face of a prism (or the side of a polygon). There are

53

two kinds of faces (sides): walls and gates. Walls cannot be traversed—
when a robot tries to cross a wall, the physics engine does not allow the
action. Conversely, when a robot traverses a gate, the robot is trans-
ferred to another physics engine defined by the user in the experiment
configuration file. This migration is performed automatically by ARGoS
as robots navigate in the environment.

In practice, this partitioning is obtained by dividing the set of embod-
ied entities in multiple subsets, and assigning each subset to a different
physics engine. To avoid conflicts of responsibility among the physics
engines, I distinguish between mobile and non-mobile embodied entities.
Mobile embodied entities are such that their state (position, orientation,
3D bounding box) changes over time. Robots, as well as passive objects
that can be pulled or pushed, fall into this category. Non-mobile embod-
ied entities, on the other hand, never change state. Typical examples of
this category are the structural elements of the experimental arena, such
as walls and columns. To ensure the correctness of the state of the sim-
ulated space, I impose the condition that mobile embodied entities can
be managed by only one physics engine at a time. Non-mobile entities,
instead, can be associated to as many engines as necessary. In this way,
the structural elements of the arena are shared among all the engines,
resulting in a consistent representation of the simulated 3D space.

When two robots are managed by different physics engines, they can
not interact physically (i.e., collide or grip each other). However, com-
munication and sensing work across the physics engines. For example,
ray casting is a typical method to simulate point-to-point communica-
tion, occlusion checking and sensing. To check for ray intersections, a
sensor queries the simulated 3D space. The simulated 3D space con-
structs a list of candidate embodied entities whose 3D bounding boxes
intersect the ray. This step is very efficient because embodied entities
are indexed in a space index (see Section 3.3). Next, each candidate
embodied entity queries the physics engine in charge of its update to
perform the actual ray-body intersection. The result is then returned to
the sensor that issued the check. Thus, even if the check is performed
by a physics engine, the sensor does not need to interact directly with
the physics engine. This renders sensor development easy, because there
is no dependency between sensors and physics engines.

Because robots updated by different physics engines do not interact
physically, compenetrations are possible at the border between two en-
gines. It is the user’s task to partition the space in such a way as to avoid
this phenomenon or to limit its impact on accuracy. A typical method,
used, for example, in the experiments of Chapter 5, is to exploit the fact
that robots can sense each other across physics engines and implement
efficient obstacle avoidance strategies. Another solution is partitioning
the space appropriately. For example, in an experiment with flying and

54

1: Initialize
2: Visualize the simulated 3D space
3: while experiment is not finished do
4: for all robots do
5: Update sensor readings
6: Execute control step
7: end for
8: for all robots do
9: Update robot status

10: end for
11: for all physics engines do
12: Update physics
13: end for
14: Visualize the simulated 3D space
15: end while
16: Cleanup

} sense+control

} act

} physics

Figure 3.4: Simplified pseudo-code of the main simulation loop of ARGoS.
Each ‘for all’ loop corresponds to a phase of the main simulation loop. Each
phase is parallelized as shown in Figure 3.5.

wheeled robots, flying robots could be assigned to one physics engine and
wheeled robots to another. As long as the flying robots stay sufficiently
high, collisions with wheeled robots are not possible.

In Chapter 5 I empirically demonstrate that the use of multiple
physics engines results in a significant decrease in simulation time.

3.5 Multiple Threads

To maximize simulation speed, the ARGoS architecture is designed to
exploit modern CPU architectures. In practice, this is obtained by paral-
lelizing the main simulation loop reported in Figure 3.4. During the ex-
ecution of the loop, sensors and visualizations read simulated 3D space,
while actuators and physics engines modify it. Thus, simulated 3D
space is a shared resource. In multi-threaded applications, simultaneous
read/write access on shared resources requires careful design, as access
conflicts (race conditions) could potentially occur. A typical solution to
prevent race conditions is to employ mutexes or semaphores. However,
these solutions typically entail significant performance costs (Tanen-
baum, 2001). Therefore, to improve performance, I designed the main
loop and the simulated 3D space in such a way as to avoid race condi-
tions altogether. These design choices benefit not only performance: the
lack of race conditions means that plug-ins do not need to synchronize
or manage resource access explicitly, thus simplifying their development.

55

s1

s2

..

.

sP

s1

s2

..

.

sP

s1

s2

..

.

sP

m m m m

main main main main

sense+control act physics

Figure 3.5: The multi-threading schema of ARGoS is scatter-gather. The
master thread (denoted by ‘m’) coordinates the activity of the slave threads
(denoted by ‘s’). The sense+control, act and physics phases are performed by
P parallel threads. P is defined by the user.

The main simulation loop is composed of three phases executed in se-
quence: sense+control, act and physics. In the first phase (sense+control,
lines 4–7 of the algorithm in Figure 3.4), the robot sensors read the state
of the simulated 3D space. The robot controllers use such information
to execute the control step. At the end of this phase, the actions chosen
by the robot controllers are stored into the actuators, but the actions
have not yet been executed. Therefore, this phase is read-only, and race
conditions are not possible. In the second phase, act (lines 8–10 of the
algorithm in Figure 3.4), the actions stored in the actuators are exe-
cuted. All the component entities of each robot in the simulated 3D
space are updated, with the exception of the embodied entities. Race
conditions cannot occur because, as explained in Section 3.2, each actu-
ator is linked to a single robot component, and two actuators cannot be
linked to the same component of a specific robot. In the third and final
phase, physics (lines 11–13 of the algorithm in Figure 3.4), the physics
engines update the state of the embodied entities. Race conditions are
not possible because, as explained in Section 3.4, in each simulation step,
mobile embodied entities are associated to one and only one physics en-
gine, and embodied entities in different physics engines do not interact.
Furthermore, physics engines do not need synchronization, because the
duration of the simulation step is set as a parameter in the experiment
configuration file and is common to all the physics engines.

Each phase is executed by a set of P slave threads. This parameter
is chosen by the user in the experiment configuration file. Experimental
evaluation demonstrates that maximum performance is reached when
P matches the number of available processor cores (see Chapter 5). A
master thread coordinates the beginning and the end of each phase. In
Figure 3.5 the master thread is indicated by ‘m’ and the slave threads
are indicated by ‘s’. Execution proceeds in a scatter-gather fashion.
At the beginning of each phase, the slave threads are idle. When the

56

Robot
1

Sensors

Actuators

Controller . . . Robot
N

Sensors

Actuators

Controller

Global Space

(a) Sensor update and control step.

Robot
1

Sensors

Actuators

Controller . . . Robot
N

Sensors

Actuators

Controller

Global Space

(b) Robot state update, excluding physics-related information.

Entity
1

Entity
2

. . . Entity
L− 1

Entity
L

Global Space

Physics
Engine 1

Physics
Engine

M

(c) Update of the physics-related entity information.

Figure 3.6: Information flow in the various phases of the main simulation loop
of ARGoS. The robot entities live in the global space. A controller and a set
of sensors and actuators are associated to each robot. (a) In the initial phase,
robot sensors collect information from the global space. Subsequently, robot
controllers query the sensors and update the actuators with the chosen actions
to perform. (b) The chosen actions stored in the actuators are executed, that
is, the robot state is updated. At this point, positions and orientations have
not been updated yet. (c) The physics engines calculate new positions and
orientations for the mobile entities under their responsibility. Collisions are
solved where necessary.

57

master thread sends the ‘start’ signal, the slave threads execute their
work. Upon completion, the slave threads send the ‘finish’ signal to the
master thread and switch back to idle state. When all the slave threads
are done, the master thread sends the ‘start’ signal for the next phase.

The computation to be executed in each phase is decoupled in tasks
assigned to the P slave threads. In the sense+control phase, a task is
to update a robot’s sensors and then execute its controller. In the act
phase, a task is to update a robot’s actuators. In the physics phase,
a task is to update one physics engine. Two methods are available in
ARGoS to assign tasks to threads. The first method is to pre-compute
task assignment at the beginning of the experiment, distributing the
tasks evenly among the threads. The assignment is kept constant unless
robots are added or removed during the experiment. This method gives
the best performance when the tasks performed by each thread have
similar computational costs. This occurs, for instance, when all of the
robots execute the same controller and the robots are evenly distributed
across the physics engines. Otherwise, the duration of each phase of the
loop corresponds to the time spent by the slowest thread to perform its
part of the work. To solve this problem, a second method, called h-
dispatch (Holmes et al., 2010), is available in ARGoS to assign tasks to
threads. In this method, an additional thread called dispatcher is used.
The dispatcher manages the list of tasks to perform at each phase. To
perform a task, a thread receives it from the dispatcher. When the task
is completed, the thread requests a new task until all the tasks have been
performed. Then, the master thread sends a signal to the dispatcher to
manage the tasks of the next phase, and the slave threads are awaken
and resume fetching tasks. This method gives best performance when
the tasks are very diverse. For example, if a slave thread happens to
receive a long task from the dispatcher, the other slave threads can
perform multiple shorter tasks in the meantime. However, if the tasks
are very similar to each other, this method proves to be slower than
pre-assignment, as the slave threads tend to finish at the same time and
spend most of the time waiting for the dispatcher thread to assign new
tasks to them. The choice of the thread assignment method is left to
the user as a parameter in the experiment configuration file.

The scheduling strategy in ARGoS is implemented as a policy, anal-
ogously to spatial indexing. This design choice makes it possible to add
new scheduling strategies to ARGoS. This choice is conceived to enable
future research in optimal task scheduling, possibly including strategies
capable of self-configuring depending on the type of experiment at hand.

58

Summary

In this chapter, I presented the ideas that underlie the design of ARGoS.
From the discussion in Chapter 2, I derived a number of requirements
that a successful design must respect: (i) accuracy, which is the degree of
correspondence between results obtained in simulation and in real-world
experiments; (ii) efficiency, in the form of static efficiency (i.e., the wise
use of computational resources) and dynamic efficiency (i.e., the capa-
bility to maintain the simulation performance within acceptable bounds
for the parameter range in which experimentation is performed); and
(iii) flexibility, cast as the possibility to execute any kind of experiment,
given the appropriate models. While flexibility is an intrinsic property
of a simulator design, accuracy and efficiency are extrinsic, because they
depend on the needs of the experimenter.

The first design choice to achieve the above requirements is modu-
larity. Differently from the abstract, high-level nature of the simulator
architectures discussed in Chapter 2, the architecture of ARGoS is de-
composed into modules that map directly to the aspects a user might
want to override, namely entities, sensors, actuators, physics engines,
media, controllers, and even visualizations. For added flexibility, AR-
GoS offers a special kind of module, called ‘loop functions,’ that allows
the user to interact with the simulation by injecting experiment-specific
logic to derive statistics, modify the course of an experiment, or insert
new functionality. Through the wise choice of modules, the user can
tune the accuracy of the simulation, and at the same time enhance effi-
ciency by assigning less computational resources to the aspects that do
not influence its dynamics.

The second design choice of ARGoS stems from the fact that a large
part of the computational resources is dedicated to managing spatial
data. Many algorithms for spatial indexing exist, and their performance
varies depending on the characteristics of the objects to handle. For in-
stance, array-based methods offer best performance when a large number
of similar objects is simulated; however, when the objects vary in size,
tree-based methods tend to perform better. To ensure maximum per-
formance, in ARGoS spatial indexes are cast as policies, and the user
can select the most appropriate in a case-by-case fashion.

The third design choice is the possibility to partition the physical
space into multiple regions, assigning each region to a dedicated physics
engine. This feature of ARGoS distinguishes it among the existing sim-
ulators. By employing multiple physics engines, the simulation is exe-
cuted faster, because each engine must handle a lower number of entities.
Additionally, each engine can be specialized for a scenario, such as un-
derwater experiments or navigation on a shore. In this way, complex
experiments can be executed while, at the same time, maintaining the

59

right level of accuracy for each aspect and ensuring efficiency.
The fourth design choice is multi-threading. In ARGoS, multi-threading

is realized by considering the update of each part of a robot as a sep-
arate task. In this way, the granularity of the tasks is very thin, and
parallelism is enhanced. The time taken by different tasks is typically
very diverse, creating the problem of properly scheduling the execution
of the tasks. ARGoS currently offers two scheduling algorithms: the
first is designed to efficiently schedule tasks whose duration is similar;
the second is designed to provide best results when the task duration is
heterogeneous. Task scheduling is implemented as a policy, thus making
room for future improvements.

60

Chapter 4

Achieving Flexibility

In Chapter 3, I presented an abstract view of the structure of ARGoS.
I highlighted the fact that the ARGoS architecture is organized into a
number of modules, each of which fulfills a specific purpose. From the
architectural point of view, a user extension is essentially an instance of
a specific module. The extremely flexible nature of ARGoS primarily
derives from this design choice.

In this chapter, I present the approach adopted in ARGoS to realize
the architectural view of Chapter 3. In Section 4.1, I illustrate require-
ments and desired features, arguing that realizing the ARGoS architec-
ture is challenging. In Section 4.2, I focus on the basic aspects of the
design of the ARGoS architecture. By “basic”, I mean those aspects
that do not constitute a challenge. In Section 4.3, I move my atten-
tion to the real design challenges, by (i) highlighting the shortcomings
of a number of common approaches, and (ii) presenting the approach I
followed in the design of the ARGoS architecture.

4.1 Requirements

Figure 4.1 reports a high-level representation of the required interactions
among the ARGoS core, the developers of new modules, and the users
that run simulations. As it can be inferred from the figure, realizing the
architectural vision of Chapter 3 translates into designing mechanisms
to achieve two purposes: (i) managing the available modules effectively,
and (ii) separating the work of extension developers and end users. The
design of these mechanisms are challenging because they must meet a
number of diverse requirements that involve several aspects.

From the point of view of the design of the ARGoS core itself, two
requirements are paramount: independence and efficiency. Independence
means that the addition of new modules must avoid any modification of
the ARGoS core. In other words, the ARGoS core must not depend on
any specific module—although the implementation of a module depends

61

developer 1

developer 2

module 1

module 2

develops

develops

operates on ARGoS
core

register

into

register
into

user

requests

list/help to

behavior
/ loop

functions

register

into

.argos

file

develops

writes

configures

Figure 4.1: A high-level diagram representing the required interactions among
developers, users, and the ARGoS core.

on the current version of the ARGoS core. Efficiency refers to the
ability of the core to manage the life cycle of the different modules with
minimum computational overhead.

From the point of view of the developer of extensions, flexibility and
type safety are the main concerns. The different types of modules that
compose the ARGoS architecture categorize the possible types of exten-
sions ARGoS accepts. However, the actual logic contained in a module
implementation is completely unforeseeable by ARGoS. To respect the
requirements of efficiency and tunable accuracy, the ARGoS architec-
ture must prove flexible enough to allow for highly optimized imple-
mentations of a certain module. In addition, often a certain module
implementation involves direct interactions with other modules. It is
important to notice that also the type of interaction between modules
is unforeseeable by ARGoS, thus the core must provide a mechanism
to enable arbitrary module-to-module interactions. For this kind of in-
teractions to occur, besides flexibility ARGoS must ensure type safety,
i.e., ARGoS must prevent incorrect interactions from happening. For
instance, consider the interaction between entities and visualizations.
Entities are added to the space, and the visualization has the task of
representing the state of the space to the user, usually through graph-
ics. To this aim, the visualization module must possess a specialized
model for each type of entity, and display the right model accordingly
to the state of each actual entity. To obtain its state, the visualization
must interface directly with the entity—for independence, the ARGoS
core cannot possess specific information on an entity. In this example,
type safety is ensured if ARGoS prevents a visualization from rendering
an entity with the wrong model. Also, in case a model for a certain
entity type is missing, ARGoS must provide mechanisms to inform the
user that the corresponding entities cannot be visualized. Without type

62

safety, extension development would be cumbersome and error-prone,
forcing the developer to include error-checking routines that are likely
to lower the performance of an experiment run.

From the point of view of the user, simplicity is the key requirement.
Operations such as choosing and loading a module should be performed
with minimal effort. To ease the choice of the most suitable modules, the
system must construct, manage, and present a list of available modules,
along with a detailed usage guide. In addition, it is desirable that the
mechanism to load experiment-specific logic (e.g., robot control code and
loop functions) is analogous (or, preferably, identical) to the mechanism
to load other modules, such as sensors and actuators.

Satisfying all of the above requirements is challenging. In the sub-
sequent discussion, I divide the presentation of the final design in two
parts. In Section 4.2, I illustrate the basic mechanisms to store modules
and load them at the beginning of an experimental run. In Section 4.3,
I criticize a number of classical techniques to enable arbitrary interac-
tions among modules, highlighting their limitations with respect to the
requirements above mentioned; subsequently, I explain the solution I
employed to satisfy all the requirements.

4.2 Modules as Plug-ins

To satisfy the independence requirement, i.e., new extensions must not
force a change into the ARGoS core, modules are implemented as plug-
ins. Plug-ins are the classical approach to enable third-party additions
to a software without modifying its architecture nor requiring recompi-
lation (independence). Plug-ins are software libraries that can be linked
(and unlinked) at any moment during the life-time of the target soft-
ware. In modern computing, plug-ins constitute the backbone of many
programs of widespread use. For instance, modern web browsers use
plug-ins to visualize special content such as Flash videos; media play-
ers encapsulate audio/video codecs into plug-ins; software development
environments support additional programming languages through ex-
tensions implemented as plug-ins.

In this section, I will sketch the design of the plug-in manager of
ARGoS. In Section 4.2.1, I explain how the various plug-in types are
organized. In Section 4.2.2, I describe the actual plug-in manager.

4.2.1 The Plug-in Hierarchy

Regardless of its intended task, the life-time of a plug-in is usually com-
posed of at least three phases: initialization, execution, and destruc-
tion. Initialization consists in performing the necessary duties for the
execution to occur. Typically, configuration and memory allocation are

63

CBaseConfigurableResource

+Init(TConfigurationNode&):void

+Reset():void

+Destroy():void

CCI Controller

+Init(TConfigurationNode&):void

+ControlStep():void

+Reset():void

+Destroy():void

CLoopFunctions

+Init(TConfigurationNode&):void

+PreStep():void

+PostStep():void

+Reset():void

+Destroy():void

CCI Actuator

+Init(TConfigurationNode&):void

+Reset():void

+Destroy():void

CPhysicsEngine

+Init(TConfigurationNode&):void

+Update():void

+Reset():void

+Destroy():void

CCI Sensor

+Init(TConfigurationNode&):void

+Reset():void

+Destroy():void

CMedium

+Init(TConfigurationNode&):void

+PostSpaceInit():void

+Update():void

+Reset():void

+Destroy():void

CVisualization

+Init(TConfigurationNode&):void

+Execute():void

+Reset():void

+Destroy():void

CEntity

+Init(TConfigurationNode&):void

+Update():void

+Reset():void

+Destroy():void

Control Interface
Simulator

Figure 4.2: A UML class diagram of the basic plug-in hierarchy in ARGoS.

64

performed during this phase. The execution phase contains the actual
logic of the plug-in. Destruction reverts the actions performed during
initialization, such as disposing of memory and closing open files. In
ARGoS, beyond these phases, a fourth one is present—reset. The reset
phase has the task of reverting the state of the simulation to what it
was right after initialization.

Figure 4.2 depicts a class diagram of the plug-in hierarchy of the
ARGoS core. The basic plug-in type is CBaseConfigurableResource,
which contains three methods—Init(), Destroy(), and Reset(). These
methods execute the corresponding three phases in the plug-in life cycle.
The fourth phase, execution, is not present in the base class. I made
this choice for two reasons.

First, because the execution logic of a plug-in is not always contained
in one method. For instance, the execution logic of the CLoopFunctions
class is split in two methods, PreStep() and PostStep(), executed right
before and right after a complete simulation update step has occurred.
Also the CCI Sensor and CCI Actuator classes require special treat-
ment. As depicted in Figure 3.1, the purpose of the control interface is
to abstract away the fact that the underlying robot is simulated or real.
The control interface, in fact, is composed of a set of interfaces that in-
herit from the CCI Sensor and CCI Actuator classes. The “real” work
is performed by suitable implementations of these classes. On the real
robot, a sensor’s job is to collect data from the robot; in a simulation, a
sensor’s job is to calculate the same data. Similarly, on the real robot,
an actuator must use the platform primitives to execute the actions dic-
tated by the control logic; in a simulation, an actuator must modify the
robot state. On the real robot, the implementation of these classes de-
pends on the internals of the robotic platform. Often, data between the
control interface and the robot subsystems is exchanged asynchronously,
either through interrupts (e.g. the e-puck) or message passing (e.g., the
foot-bot). In this case, a single update method is useless. In the sim-
ulator, on the other hand, data is managed synchronously, which calls
for an explicit update method.

The second reason for not having an explicit execution method in the
base plug-in class is that it is desirable, for readability purposes, that
the name corresponding to the execution method is somehow related to
the kind of logic it is supposed to contain. For instance, ControlStep()
is a good choice for the CCI Controller class, and Update() fits well
the purposes of the CPhysicsEngine and CEntity classes.

4.2.2 Plug-in Management

In general, the plug-in manager is a software component that performs
two basic tasks: (i) allowing the system to create new instances of a

65

given plug-in when necessary; and (ii) registering new plug-in imple-
mentations.

Regarding the creation of new plug-in instances, the classical ap-
proach is to employ the Factory Method pattern (Gamma et al., 1994).
This design pattern tackles the problem of creating an instance of a class
without knowing its interface. The main idea is to provide an interface
to create an object, and defer the actual operations to perform this task
to a type-specific implementation. Since in ARGoS many plug-in types
exist, I slightly generalized this pattern (see Section 4.2.3). As an added
benefit in terms of independence and flexibility, the resulting system
can be exploited by an extension developer or by the end user to create
further plug-in types with only a couple of lines of code.

In order to register a new plug-in, the plug-in manager requires not
only its implementation, but also a certain quantity of metadata. In the
Eclipse IDE,1 for example, each plug-in is bundled with an XML file
called manifest that contains the human-readable name of the plug-in,
its version, details about the functionality it implements, as well as a link
to the actual plug-in binary. Upon initialization, the Eclipse core spans
the plug-in directories, opens each bundle, and retrieves the information
on every available plug-in. This system is effective and widespread in
plug-in-based software. However, its main drawback is forcing the core
to open and parse a large number of text files upon initialization, which
results in long start-up times when many plug-ins must be scanned. To
avoid this issue, for ARGoS I chose to include the metadata directly into
the plug-in binary. This approach, explained in Section 4.2.3, has the
benefit that the metadata is pre-parsed and automatically loaded into
the ARGoS core, making initialization and help queries extremely fast.

4.2.3 The Plug-in Factory

The class diagram of the plug-in manager is reported in Figure 4.3.
The CFactory template is the core of the plug-in manager. Its in-

terface offers three methods—GetTypeMap(), Register(), and New(),
to query the available plug-ins, register a new plug-in, and create an
instance of a specific plug-in, respectively. Internally, CFactory uses a
hash map of STypeInfo structs to store the plug-in metadata and a
function pointer to the plug-in creator. In the hash map, each struct is
associated to a string label that identifies a specific plug-in implementa-
tion. CFactory is a static class because, besides the hash map, it does
not need to maintain any state information.

CFactory is a template whose parameter T corresponds to the base
of the plug-in hierarchy (e.g., CCI Controller, CPhysicsEngine, etc.),

1http://www.eclipse.org/

66

http://www.eclipse.org/

CFactory

+GetTypeMap():TTypeMap&

+Register(...):void

+New(string& label):void

T=PluginBase

<<struct>>

CFactory::STypeInfo

+Creator:TCreator*

+Author:string

+Version:string

+BriefDescription:string

+LongDescription:string

+Status:string

T=PluginBase

string

1

<<function pointer>>

TCreator:(T*)(*)()

T* U ## Creator {
return new U;

}

T=PluginBase

U=MyPlugin

1

Maps the plug-in label
to its metadata

PluginBase

C ## U ## Proxy

+C ## U ## Proxy() {
CFactory<T>::

Register(..., U ## Creator);

}

T=PluginBase

U=MyPlugin

calls

uses

MyPlugin

+MyPlugin()

uses

Figure 4.3: A UML class diagram of the ARGoS plug-in manager. In this
diagram, I use the notation A ## B to express the string concatenation operator
of the C++ pre-processor. In the C++ pre-processor, the expansion of a
symbol X corresponds to its definition, if the symbol was previously defined;
otherwise its expansion corresponds to the symbol itself. Thus, A ## B is the
string resulting from the concatenation of the expansions of A and B.

indicated in the diagram as PluginBase . The choice of using a tem-
plate class is a generalization of the classical Factory Method pattern.
In the latter, CFactory is a class rather than a template, because the
Factory Method pattern is designed to create plug-ins from a single hi-
erarchy whose base is known in advance. However, in ARGoS, several
plug-in types exist (see also Figure 4.2). If one were to follow the clas-
sical pattern strictly, the interface of the CFactory class would have to
include dedicated methods GetTypeMap(), Register(), and New() for
each plug-in type. Thus, whenever a new plug-in type is added to AR-
GoS, the interface of CFactory would require modifications. By making
CFactory a template whose parameter is the base of the plug-in hier-
archy, these modifications are not necessary, and CFactory can be used
to create plug-ins from multiple hierarchies whose bases are not known
in advance. The benefits in terms of independence and flexibility are
significant—the plug-in manager can even be used by extension devel-

67

opers and end-users to add custom plug-in types independently from the
ARGoS core.

Plug-in Creation

The creation of a plug-in instance occurs through the CFactory<T>::New()
method.

This method accepts as a parameter the identifying label of the
wanted plug-in implementation. Using this label, the method searches
in the hash map for the corresponding CFactory::STypeInfo struct.

The latter contains a function pointer (TCreator*) to the plug-in
creator function. As its name suggests, the role of the creator function
is to return a new instance of the wanted plug-in. For each type of plug-
in, there exists a dedicated creator function, registered in the system as
explained in Section 4.2.3.

Plug-in Registration

The registration of a plug-in in ARGoS occurs through a mechanism
called auto-registration. This mechanism exploits the way Unix-compatible
systems link the global symbols of a library into an executable to piggy-
back a call to CFactory<T>::Register().

The operation of linking a library into an executable is composed
of a few phases. One of the earliest phases is the so-called static ini-
tialization. During this phase, the linker collects information about the
global symbols and, in particular, creates the global variables present
in the library. Normally, the creation of a global variable only implies
allocating memory. However, if the global variable is a class, it is also
possible to include arbitrary code in its constructor.

The auto-registration mechanism consists in including a call to CFactory::
Register() within the constructor of a suitably defined class declared
as global variable. The class is defined specifically for the plug-in im-
plementation to register. In the class diagram of Figure 4.3, the plug-in
implementation class is MyPlugin. Thus, the registration class is named
CMyPluginProxy, which is the result of applying the ## operator to C
U ## Proxy when U is set to MyPlugin (see the figure caption for an
explanation on the ## operator).

In addition to the registration class, one must also define a plug-in-
specific creator function. In Figure 4.3, the function is called MyPluginCreator,
result of the operation U ## Creator.

The above actions are encapsulated into a macro called REGISTER SYMBOL.
For the extension developer and the end user, registering a new plug-in
implementation is merely a matter of calling this macro.

68

Discussion

The registration of plug-in implementations and the creation of new
instances is a well-understood problem.

A slight generalization of the classical Factory Method pattern solves
the problem of creating new plug-in instances, when multiple plug-in
hierarchies exist whose base classes are not known in advance. From
the point of view of an extension developer, this solution guarantees
extreme flexibility; from the point of view of the ARGoS core design,
the independence requirement is fully respected.

Registering new plug-in implementations is an equally simple prob-
lem to solve, provided some knowledge of the internals of the Unix oper-
ating system. The final result is a system that can register any plug-in
using the same underlying machinery. In addition, from the point of
view of the end user, the simplicity requirement is respected, because
the internals of the registration logic are completely encapsulated in a
single macro definition.

4.3 Arbitrary Interactions among Modules

The requirement of allowing for arbitrary interactions among modules
mainly stems from the particular role that entities play with respect to
the other modules. In fact, entities store part of the state of a simulated
object. Other modules, such as physics engines and visualizations, access
the entities to perform their work—modifying the entity state or reading
it. In other words, entities act as a mediator between other module
types. As discussed in Chapter 3, this design choice results in a clear
factorization of responsibilities among different modules, which, in turn,
makes it possible to achieve multi-threading without introducing race
conditions.

4.3.1 Issues

A General View

The main issue in the realization of this design choice is that entities are
modules themselves, because developers must be given the possibility to
add new ones (e.g., robots or other objects) at will.

To better understand this issue, refer to Figure 4.1. In the figure, I
schematize the case in which two developers work separately. Developer
1 implements module 1, and developer 2 implements a different module,
module 2, which interacts with module 1. A third independent party,
the user, downloads both modules and employs them in an experiment.
For the sake of explanation, module 1 corresponds to a new robot, and
module 2 corresponds to a new physics engine. Since I assume that the
two developers work separately, developer 2 does not know in advance

69

CEntity CPhysicsEngine

+AddEntity(CEntity&):void

CMyEntity1

CMyPhysicsEngine

+AddEntity(CEntity&):void

CMyEntity2

add?

ARGoS core

Figure 4.4: A UML class diagram for an example problem of inter-module
communication. In this diagram, two entities must be added to a physics
engine. The entities and the physics engine are implemented by three different
developers, out of the ARGoS core.

the features of the robot implemented by developer 1. Thus, the easiest
solution for developer 2 is to provide an API to create physics models for
robots, and leave the task of providing the models to other people. Con-
versely, since an entity is supposed to be a mediator between modules
coded by several people, developer 1 must be able to define the features
of the robot entity without having a specific module in mind. In other
words, in this example, the problem is how to associate a physics model
for a specific physics engine to a generic robot entity, when the two par-
ties have been developed by different people. To make the picture ever
more ambitious, the simplicity requirement dictates that these imple-
mentation details are hidden from the user, who just wants to use the
modules without knowledge of their internals; and the efficiency require-
ment pushes towards a solution with minimal computational overhead.

It is easy to imagine that the machinery to realize arbitrary interac-
tions between entities and other modules could be useful to enable other
inter-module interactions, too. A visualization, for instance, could in-
terface directly with a specific sensor implementation to visualize extra
data for debugging purposes.

Common Implementation Approaches

For the sake of explanation, in this section I will consider the interactions
between entities and physics engines, but the discussion is applicable to
any kind of module. Figure 4.4 reports a UML diagram of the example.

70

In terms of classes, the problem of inter-module communication can
be expressed as follows. The ARGoS core maintains a number of data
structures, each dedicated to a specific module type. In particular, AR-
GoS maintains a list of pointers to CEntity objects and a list of point-
ers to CPhysicsEngine objects. Among the many interactions between
these two kinds of modules, consider the addition of an entity to a
physics engine. To achieve this, the physics engine must create an in-
ternal representation of the entity body. Thus, the physics engine must
know the exact type of the entity being added. However, the types of
both the physics engine and the entity are defined outside the ARGoS
core and known only at run-time. Consequently, the logic that adds
a specific entity to a specific physics engine must be selected at run-
time. In computer science, this problem is often referred to as dynamic
dispatch (Lippman, 1996).

ARGoS is written in C++, because this language offers a good bal-
ance between abstraction and performance. However, C++ has only
partial support for dynamic dispatching—single dispatching.2 Single
dispatching refers to the capability of the language to select the right
implementation of a method based on the type of the class to which the
method belongs. This mechanism is one of the cornerstones of polymor-
phism in C++. For the problem at hand, polymorphism (and, thus,
single dispatching) is not sufficient. In essence, polymorphism refers to
the possibility to use a single interface for different objects, and to call
the right method implementations depending on the run-time type of
the objects. In the example of Figure 4.4, this means that if the inter-
face CPhysicsEngine exposes a public method AddEntity(CEntity&),
and CMyPhysicsEngine implements AddEntity(CEntity&), then C++
can select CMyPhysicsEngine::AddEntity(CEntity&) from a pointer
to CPhysicsEngine. This mechanism does not achieve the complete
result because it is necessary to also dispatch over the argument of
the CMyPhysicsEngine::AddEntity() method to select the right en-
tity type. To work around this limitation of C++, several techniques
exist.

The Observer Pattern. In the Observer pattern (Gamma et al., 1994),
an object, called the subject, maintains a list of other objects, called the
observers. Whenever its state changes, the subject notifies the observers
of the fact. This pattern is often employed to implement event handling
mechanism, such as signal/slot. For the problem at hand, this pat-
tern can be applied in two alternative ways. First, by equipping the
CEntity class with a method for each possible operation a module can
perform on it. This solution is not acceptable, because this would cre-

2Although an extension to support multiple dispatching has been proposed by Pirkelbauer
et al. (2007)

71

ate a dependency between the ARGoS core (the CEntity class) and the
user-defined modules. The second way would consist in equipping the
CPhysicsEngine class with a method for each operation it can perform
on entities. The problem with this solution is that, in the Observer pat-
tern, the subject notifies all of its observers. Thus, a further mechanism
should be added to identify which entities must be set as observers—
a mechanism that would be dependent on the entity type, once more
breaking independence.

The Mediator Pattern. The Mediator Pattern aims to simplify the
management of the interactions among multiple classes (Gamma et al.,
1994). In this pattern, the designer defines a dedicated class type that
encapsulates the necessary interactions. The Mediator pattern, rather
than tackling a dispatching problem, captures the situation in which a
relatively large number of classes interact in complex ways. In other
words, the mediator decouples the design of the interacting classes. To
be able to perform its work, however, the mediator must know the exact
interface of the interacting classes at compile time—which is precisely
the missing information for the problem at hand.

The Visitor Pattern. The aim of the visitor pattern is to separate the
definition of the operations from the object structure on which they
are applied (Gamma et al., 1994). In particular, the visitor pattern
allows developers to add new operations to an existing object struc-
ture, without modifying it. In the example at hand, the visitor pat-
tern is realized adding a function Accept(CAbstractOperation& o) to
the CEntity class. CAbstractOperation is the base class of an hi-
erarchy of user-defined operations, and it consists of a list of meth-
ods Visit(CMyEntity1&) . . . Visit(CMyEntityN&). Each entity im-
plements Accept(CAbstractOperation& o) with a single line of code:
o.Visit(*this). In essence, this technique is a way to achieve double
dispatching: the first dynamic dispatch occurs when CEntity::Accept()
is called, and the second occurs when o.Visit(*this) is executed.
This method works best when the object structure on which the op-
erations are applied is (i) known a priori, because the object structure
is necessary to define the class CAbstractOperation, and (ii) stable,
because any modification to the object structure entails a modification
of CAbstractOperation and each of its descendants. For the problem
at hand, none of these conditions is satisfied.

4.3.2 Solution: The Cooperative Visitor

The core of the problem of generic inter-module communication is that
the selection of a specific operation depends on the run-time properties

72

of both modules involved. As mentioned, this problem can be solved
through multiple dispatching. In particular, since dispatching occurs
over two module types, what is necessary is a technique that achieves
double dispatching.

The Visitor pattern, as discussed, offers a way to achieve double dis-
patching, but it creates a dependency between the ARGoS core and
the modules. For the design of ARGoS, I chose to pursue an approach
that generalizes the Visitor pattern, respects the independence require-
ment, and even allows for further extensions. This approach is called
Cooperative Visitor (Krishnamoorthi, 2007).

The combination of the Cooperative Visitor with the plug-in man-
agement mechanisms explained in Section 4.2 is rather complex. In this
section, I will focus only on the most important aspects of the design. I
encourage the interested reader to refer to (Krishnamoorthi, 2007) for an
introduction to the Cooperative Visitor, and to inspect the commented
code in the following files:

• argos3/src/core/simulator/entity.h, which contains the defi-
nition of the basic entity operation, its management, and its regis-
tration logic;

• argos3/src/core/utility/vtable.h, which contains the defini-
tion of the tagging engine and the virtual table (see below);

• argos3/src/plugins/simulator/physics engines/dynamics 2d/
dynamics 2d.h, which contains an example of use of the Cooper-
ative visitor to manage the addition of entities into ARGoS’ 2D
dynamics engine.

4.3.3 Operations

An operation is represented as a class that contains a single method,
ApplyTo(), with two arguments: a pointer to the context and a pointer
to the operand. The context, in our example, is CMyPhysicsEngine, and
the operand is either CMyEntity1 or CMyEntity2.

Analogously to plug-ins, operations are registered into ARGoS through
a dedicated macro. Upon registration, an operation is stored in a data
structure. This data structure enables the ARGoS core to call the oper-
ation without knowing the run-time properties of the modules involved.

To hide the types of the context and of the operand, an operation is
wrapped into an adapter (Gamma et al., 1994). The adapter is a class
that exposes an interface based on information known to ARGoS (e.g.,
CEntity and CPhysicsEngine) and that internally performs the neces-
sary transformations to execute the wanted operation. In other words,
the adapter internally performs the double dispatch.3 In the example,

3In the jargon of compiler design, an adapter with this behavior is referred to as thunk.

73

the first dispatch is the transformation of the pointer to CPhysicsEngine
into CMyPhysicsEngine; the second dispatch is the transformation of the
pointer to CEntity into CEntity1 or CEntity2 (depending on which
is the operand). Typically, these transformations must be performed
through the type-safe (but slow) dynamic cast C++ command. How-
ever, due to the guarantees offered by the data structure that man-
ages the operations (described below), it is possible to spare the cost of
dynamic cast, and use the faster static cast command instead, thus
enhancing efficiency sensibly.

The adapter is implemented as a class template that takes as param-
eters the context, the operand, and the return type of the ApplyTo()
method. This ensures flexibility, because not only the adapter can be
used with any kind of module, but it also allows the developer to define
operations that return arbitrary types.

Storing and Retrieving an Operation

The Cooperative Visitor is based on the idea that operations are stored
into a structure that associates each operation to a unique tag. Kr-
ishnamoorthi (2007), following the jargon of compiler design, refers to
this structure as virtual table. Since ARGoS cannot know the run-time
type of the operations, the virtual table actually associates a tag to the
adapter of an operation.

At any moment during the execution of ARGoS, multiple virtual ta-
bles exist. Each virtual table refers to a particular type of operation.
For instance, a virtual table exists to store all the operations that add
an entity to CMyPhysicsEngine. The creation of a virtual table occurs
at run-time as soon as ARGoS registers a new operation for a module.
If the table does not already exist, it is created on-the-fly and the op-
eration is added. Subsequent operations of the same type are stored in
this virtual table. To identify a certain type of operation (not an actual
operation), the developer is required to provide any valid C++ symbol
upon registering an operation. The symbol is internally used as a la-
bel for the table. In practice, since operations in ARGoS are typically
structured into a hierarchy, the base class of such hierarchy is employed
to label a virtual table.

As explained, each virtual table associates a tag to an operation.
Since a virtual table collects all the operations of the same type (e.g.,
adding CMyEntity1 or CMyEntity2 to CMyPhysicsEngine), a tag must
identify the operand (e.g., CMyEntity1 and CMyEntity2). To this aim,
the Cooperative Visitor employs a template-based tag engine that as-
signs a unique integer to all classes in a hierarchy. The base class (e.g.,
CEntity) is assigned the value 0, and subsequent entities, upon regis-
tration, are automatically assigned increasing (an unique) values. Using

74

integers as tags is a convenient design choice because the virtual table
can be implemented as an array of adapters. Besides its simplicity, this
approach is also efficient both in terms of time complexity (O(1)) and
space complexity (O(N), where N is the number of registered entity
classes).

Executing an Operation

The selection and execution of an operation follows a number of phases.
For instance, when a robot is added into the ARGoS space, its em-

bodied entity component is also added. Upon adding the embodied
entity, ARGoS identifies which physics engine is in charge of manag-
ing it. Subsequently, ARGoS calls the AddEntity(CEntity&) method
of the physics engine. At this stage, ARGoS has used a pointer to
CPhysicsEngine to call AddEntity(), and the argument passed to this
method is a reference to a CEntity.

Through polymorphism, C++ can dispatch the call to AddEntity()
to CMyPhysicsEngine::AddEntity(). The implementation of this func-
tion, upon receiving as argument a reference to CEntity, cannot rely on
any information on the specific type of entity received. Thus, it must
employ the cooperative visitor.

To this aim, the physics engine calls a convenience macro offered by
ARGoS. This macro retrieves the virtual table corresponding to the type
of operation to execute, e.g., adding an entity to CMyPhysicsEngine.
Next, it retrieves the tag of the entity, and uses it to obtain a pointer to
the adapter of the wanted operation. With the adapter, the macro can
execute the operation passing as arguments a pointer to itself (context)
and a pointer to the entity (operand). The adapter performs the double
dispatch and calls the operation. Finally, the operation performs the
necessary activities to insert the right model into the wanted physics
engine.

Discussion

The Cooperative Visitor satisfies all of the requirements. It ensures

• independence, through the adapter;

• efficiency, through the use of static cast for type conversion and
integer tags to identify the entities;

• type safety, through the use of unique identifiers for entities and
labels to categorize operations into virtual tables; and

• simplicity, because this mechanism is completely hidden to the
user, and exported to the developer as a set of easy-to-use macros.

In addition, with the Cooperative Visitor it is simple to handle cases
such as missing operations for a certain entity type. It is enough to

75

associate a default operation for the CEntity class that provides the
wanted logic.

Finally, the implementation of the virtual table and of the tagging
engine is completely generic. It is not designed to work specifically with
entities. Consequently, it possible to reuse the same mechanisms to
enable arbitrary interactions among modules. In this way, for instance, a
visualization can display debugging information on the data of a sensor.

Summary

This chapter was devoted to the low-level implementation aspects of
the ARGoS architecture. In order to realize the high-level description
in Chapter 3, a number of requirements must be satisfied. From the
point of view of the ARGoS core, the mechanisms to handle the mod-
ules must ensure independence (i.e., the core does not depend on any
specific module implementation) and efficiency (i.e., the computational
cost of handling modules must be as low as possible). From the point
of view of a third-party developer extending ARGoS, the architecture
must prove flexible: It must allow for any kind of extension, and it must
enable generic and type-safe inter-module communication. This is par-
ticularly important because entities, in ARGoS, act as mediators among
the other modules. Finally, from the point of view of the user, config-
uring an experiment, selecting modules, and executing the code must
prove simple. To meet these requirements, I made two design choices.

First, modules are implemented as plug-ins, i.e., software modules
loaded at run-time. Plug-ins are organized into a simple hierarchy struc-
tured to offer both abstraction and flexibility. Abstraction is achieved by
fixing a shared life-cycle for any module type (i.e., init/update/reset/de-
stroy); flexibility is ensured by leaving the specification of the update
phase of the life-cycle to the specific module type. The creation and de-
struction of plug-ins is performed by ARGoS through a general-purpose
factory, available to the user for further extensions.

Second, to enable arbitrary interactions among modules in a type-
safe manner, I employed the Cooperative Visitor. This design pattern is
a generalization of the well-known Visitor Pattern that offers the same
guarantees of the latter in terms of type-safety, efficiency, and generality.
In addition, the Cooperative Visitor removes the primary defect of the
Visitor Pattern—the dependency between the module implementation
and the ARGoS core. The resulting system is flexible, efficient, and easy
to use.

76

Chapter 5

Efficiency Assessment

In this chapter, I discuss the experimental evaluation I conducted to
assess the efficiency of ARGoS. To ease the analysis of the results, the
experiments do not involve multiple types of robots, but rather employ
a single type. I point the reader interested in experiments with ARGoS
that employ different types of robots to Chapter 7 and to the following
papers: (Ducatelle et al., 2010, 2011; Mathews et al., 2010; Montes de
Oca et al., 2010; Pinciroli et al., 2009).

The chapter is organized as follows. In Section 5.1, I present the
experimental setup. In Section 5.2, I discuss the results obtained with
the 2D-dynamics physics engine. In Section 5.3, I analyze the results
obtained with the other two physics engines available in ARGoS, the
2D-kinematic and 3D-dynamics engines.

Figure 5.1: A screen-shot from ARGoS showing the simulated arena created
for experimental evaluation.

77

5.1 Experimental Setup

So far, little work has been devoted to characterize the performance
of simulators for more than a few dozens of robots. The only remark-
able exception is offered by Stage’s performance evaluation by Vaughan
(2008). Vaughan proposes a benchmark experiment in which thousands
of wheeled robots diffuse in a large environment while avoiding obstacles.
Despite its simplicity, this benchmark is appropriate because it tests the
core functionality of a simulator (mostly ray casting and collision-related
calculations). In addition, the robots perform a meaningful task for the
swarm robotics community.

To test ARGoS against this benchmark, I setup an arena that mimics
an indoor environment (see Figure 5.1). The arena is a square whose
sides are 40 m long. Similarly to Stage’s benchmark, I employed the
simplest wheeled robot available in ARGoS, the e-puck (Mondada et al.,
2006). Each robot executes a simplified version of the diffusion algorithm
proposed by Howard et al. (2002).

I assess performance with two standard measures: wall clock time
and speedup. Wall clock time, hereinafter denoted by w, is a measure
of the time elapsed between an experiment’s start and its completion.
Wall clock time is typically affected by the quantity and the type of
other applications running simultaneously on the same machine. For
the purposes of this analysis, I conducted the experiments on dedicated
machines, in which I limited the running processes to those necessary for
the normal execution of the operating system and ARGoS. The second
performance measure I employ is the speedup, denoted by u. To obtain
this measure, I first consider the total CPU time (denoted by c) of the
process running ARGoS. Such time differs from the wall clock time in
that the CPU time increases only when the process is actively using the
CPU. On multi-core CPUs, I obtain a measure ci for each core. Thus, the
total CPU time c is given by the sum of the ci: c =

∑
i ci. The speedup

is then calculated as the ratio between the total CPU time and the
wall clock time: u = c/w. Intuitively, the speedup measures the extent
to which parallelism was exploited by the process during its execution.
Therefore, in single-core CPUs or in single-threaded applications, u ≤ 1.
In contrast, in multi-threaded applications running on multi-core CPUs,
the objective is to obtain speedup measures significantly greater than 1.

In the analysis, I focus on three factors that strongly influence per-
formance: (i) the number of robots N , (ii) the number of parallel slave
threads P , and (iii) the way the environment is partitioned into regions,
each assigned to a different physics engine. Concerning the number of
robots, I conducted experiments with N = 10i, where i ∈ {0, 1, 2, 3, 4, 5}.
To test the effect of the number of threads P , I run the experiments on

78

(a) A1 (b) A2 (c) A4

(d) A8 (e) A16

Figure 5.2: The different space partitionings (A1 to A16) of the environment
used to evaluate ARGoS’ performance (a screen-shot is reported in Figure 5.1).
The thin lines denote the walls. The bold dashed lines indicate the borders
of each region. Each region is updated by a dedicated instance of a physics
engine.

four machines with 16 cores each,1 and let P ∈ {0, 2, 4, 8, 16}. When
P = 0, the master thread executes all tasks without spawning the slave
threads. Finally, I define five ways to partition the environment among
multiple physics engines, differing from each other in how many engines
are used and how they are distributed. I refer to a partitioning with the
symbol AE , where E ∈ {1, 2, 4, 8, 16} is the number of physics engines
employed. E also corresponds to the number of regions in which the
space is partitioned. The partitionings are depicted in Figure 5.2. For
each experimental setting 〈N,P, AE〉, I ran 40 experiments. The simu-
lation time step is 100 ms long. Each experiment simulates T = 60 s of
virtual time, for a total of 600 time steps. In order to avoid artifacts in
the measures of w and u due to initialization and cleanup of the exper-
iments, the measures of wall clock time and speedup include only the
main simulation loop. For the same reason, I conducted the experiments
without graphical visualizations.

In the rest of this chapter, I discuss the results I obtained using
different types of physics engines. In Section 5.2, I focus on the re-

1Each machine has two AMD Opteron Magny-Cours processors type 6128, each processor
with 8 cores. The total size of the RAM is 16 GB.

79

100

101

102

103

104

A
vg

W
al

l
C

lo
ck

T
im

e
w

[lo
g

se
c] P=0 threads

P=2 threads
P=4 threads
P=8 threads
P=16 threads

T

100 101 102 103 104 105

1

2

3

4

Number of Robots N [log]

A
vg

Sp
ee

du
p

u

Figure 5.3: Average wall clock time and speedup for a single physics engine
(A1). Each point corresponds to a set of 40 experiments with a specific con-
figuration 〈N,P, A1〉. Each experiment simulates T = 60 s. In the upper plot,
points under the dashed line signify that the simulations were faster than the
corresponding real-world experiment time; above it, they were slower. Stan-
dard deviation is omitted because its value is so small that it would not be
visible on the graph.

sults obtained with ARGoS’ 2D-dynamics engine. In Section 5.3, I dis-
cuss the result obtained with other two engines: 2D-kinematics and
3D-dynamics.

5.2 2D-Dynamics Physics Engine

In the first set of experiments, I employ ARGoS’ 2D-dynamics engine.
This engine is based on the scalable, state-of-the-art library Chipmunk
Physics, which is widely used in both scientific applications and games.
For more information on Chipmunk Physics, refer to Section 2.2.2.

5.2.1 Single Engine

In this section, I discuss the results of the experiments in which one
physics engine updates all embodied entities in the arena (partitioning
A1).

The results are reported in Figure 5.3. I plot the average over 40
experiments of the wall clock time and the speedup for different values

80

of N and P . The graphs show that multi-threading has beneficial effects
on performance when the number of robots is greater than 102. Perfor-
mance improves as the number of threads is increased, and the lowest
wall clock time is measured when P = 16. In particular, let us focus
on N = 105 and take as baseline the wall clock time measured when no
threads are employed. Comparatively, with 16 threads ARGoS is twice
as fast.

Moreover, when threads are used, speedup is always greater than 1.
Its maximum, whose value is approximately 3.04, corresponds to P = 16
and N = 103. The observation that speedup decreases after hitting the
maximum can be explained by the fact that only one physics engine
is responsible for all embodied entities. Thus, in the physics phase,
only one thread runs the physics engine, while the others are idle, not
contributing to the measure of the CPU time c.2 The more robots are
employed in the simulation, the longer the thread updating the physics
engine must work, while the others remain idle. Thus, the one thread
in charge of physics increasingly dominates the measure of the speedup,
worsening it as the number of robots grows.

As the plots illustrate, the threads negatively impact performance
when N < 102. Profiling data revealed that, with few robots, the time
spent on updating the robots and physics engine is comparable to the
time taken by the master threads to manage the slave threads. There-
fore, with few robots, it is better to avoid such overhead and let the
master thread perform all the work. Supporting evidence for this ex-
planation is offered by the very low values measured for speedup. With
N = 1 and P = 2, the speedup is approximately 1 and with P = 16 it
is 1.39.

5.2.2 Multiple Engines

In this section, I discuss the results of experiments in which the arena is
partitioned into multiple regions managed by different physics engines.
The results are showed in Figure 5.4.

A first important result is that the use of two physics engines, cor-
responding to space partitioning A2, is already sufficient to perform a
simulation of 104 robots that runs at the same rate as the corresponding
real-world swarm. This result is reached when the maximum number
of threads is utilized, P = 16. The trends of w and u with respect to
the number of threads are qualitatively identical to those of partitioning
A1. Employing more threads results in increasingly better performance
when N > 102 and the speedup is best for P = 16. Comparing wall
clock times with N = 104 and P = 16 for partitioning A2 and A1, I
obtain that w(A2)/w(A1) is about 0.6.

2However, the sense+control and act phases are still executed in parallel.

81

100

101

102

103

104

A
vg

E
la

ps
ed

T
im

e
w

[lo
g

se
c]

P=0 threads
P=2 threads
P=4 threads
P=8 threads
P=16 threads

100 101 102 103 104 105

1
2

4

8

12

Number of Robots N [log]

A
vg

Sp
ee

du
p

u

100 101 102 103 104 105

Number of Robots N [log]

A2 A4

100

101

102

103

104

A
vg

E
la

ps
ed

T
im

e
w

[lo
g

se
c]

100 101 102 103 104 105

1
2

4

8

12

Number of Robots N [log]

A
vg

Sp
ee

du
p

u

T

100 101 102 103 104 105

Number of Robots N [log]

A8 A16

Figure 5.4: Average wall clock time and speedup for partitionings A2 to A16.
Each point corresponds to a set of 40 experiments with a specific configuration
〈N,P, AE〉. Each experiment simulates T = 60 s. In the upper plots, points
under the dashed line signify that the simulations were faster than the cor-
responding real-world experiment time; above it, they were slower. Standard
deviation is omitted because its value is so small that it would not be visible
on the graph.

82

Performance constantly improves with the number of engines and
of threads. The most remarkable result in Figure 5.4 is obtained for
A16, N = 104 and P = 16. In this configuration, the measured wall
clock time is about 0.6T , which means that ARGoS can simulate 104

robots in 60% of the corresponding real-world experiment time. For
numbers of robots from N = 103 to N = 105 wall clock time grows
roughly linearly. Moreover, for N = 105, wall clock time is about 10T .
Regarding speedup, the more robots are employed, the more parallelism
is efficient. In the experiments, the largest speedup was observed with
P = 16, A16 and N = 105.

5.2.3 Comparison with Stage

Vaughan (2008) conducted Stage’s performance evaluation on an Apple
MacBook Pro, with a 2.33 GHz Intel Core 2 Duo processor and 2 GB
RAM. For the evaluation, each core in the machines I utilized offers
comparable features: 2 GHz speed, 1 GB RAM per thread when P =
16.3

Stage can simulate approximately 103 robots in real-time, according
to the results of experiments run without graphics, in a large environ-
ment with obstacles and with simple wheeled robots (Vaughan, 2008).
These results were obtained with Stage version 3, whose architecture is
single-threaded and physics is limited to 2D-kinematics equations. Un-
der similar circumstances, when ARGoS is executed without threads
and with a single 2D-dynamics physics engine, 103 robots are simulated
in 24% of the corresponding real-world experiment time.

5.3 Results with Other Physics Engines

5.3.1 2D-Kinematics Engine

One of the engines available in ARGoS is a custom-made 2D-kinematics
engine. This engine is designed to support simple navigation-based ex-
periments involving a low number of robots (up to a few hundred).
No effort was made to optimize the code for scalability. For instance, in
this engine the computational complexity of collision checking is O(N2).
Due to its extreme simplicity, the 2D-kinematics engine is a good test
to prove the advantages of running multiple engines in parallel.

The left side of Figure 5.5 shows the average wall clock time and
speedup of the benchmark experiment when a custom 2D-kinematics
engine is employed. All the experiments summarized in the plot were
performed with P = 16 threads, and with space partitioning A1 to A16.
Results indicate that, when the space is partitioned among 16 kinematics

3With N = 105 robots, ARGoS used about 800MB of RAM.

83

100

101

102

103

104

A
vg

E
la

ps
ed

T
im

e
w

[lo
g

se
c]

partitioning A1

partitioning A2

partitioning A4

partitioning A8

partitioning A16

100 101 102 103 104

1
2

4

8

12

Number of Robots N [log]

A
vg

Sp
ee

du
p

u

100 101 102 103 104

Number of Robots N [log]

2D-kinematics engine 3D-dynamics engine

Figure 5.5: Average wall clock time and speedup for experiments with 2D-
kinematics engines and 3D-dynamics engines. Each point corresponds to a set
of 40 experiments with a specific configuration 〈N,P, A16〉. Each experiment
simulates T = 60 s. In the upper plots, points under the dashed line signify
that the simulations were faster than the corresponding real-world experiment
time; above it, they were slower. Standard deviation is omitted because its
value is so small that it would not be visible on the graph.

84

engines, ARGoS is able to simulate N = 104 robots in approximately
real-experiment time. Thus, even though the kinematics engine was not
designed to scale, by using multiple instances of this engine it is possible
to enhance performance to simulate thousands of robots.

5.3.2 3D-Dynamics Engine

The most capable physics engine in ARGoS is a 3D-dynamics engine
based on the ODE library. As explained in Section 2.2.2, this engine is
used by Webots and Gazebo, two very successful robot simulators.

In the right side of Figure 5.5, I report the results of the benchmark
experiments conducted with this engine. Analogously to the experi-
ments with the 2D-kinematics engine, these experiments were run with
P = 16 threads and with space partitionings A1 to A16. In the wall clock
time graph, the measured timings are very close to each other, although
the best result is obtained when E = 16 engines are used. The lowest
wall clock time obtained for N = 104 is approximately T , so, once more,
ARGoS can simulate N = 104 robots in real-experiment time even with
an accurate 3D-dynamics engine.

Summary

In this chapter, I reported the experimental activities I conducted to
assess the efficiency of ARGoS. The analysis is based on a benchmark
experiment derived from the performance assessment of the Stage sim-
ulator (Vaughan, 2008). The benchmark consists of a swarm of robots
that diffuse in a large structured environment. I identified three main
factors in the run-time performance of ARGoS: the number of robots
involved, the number of threads employed, and the number of regions in
which the physical space is partitioned. I constructed each experimental
setup selecting a specific value for each factor.

I performed a first set of experiments using the 2D-dynamics engine
of ARGoS. The experiments show that the benefit of using more threads
and partitioning the space into more engines increases with the number
of robots. Thus, for little swarms, it is advisable to employ one physics
engine and configure ARGoS to work with one thread; for large swarms,
however, parallelism and space partitioning are paramount to increase
efficiency. The most remarkable result obtained in this set of experi-
ments is that ARGoS is capable of simulating 10,000 robots in 60% of
real-time.

I ran further sets of experiments with the other two physics engines
available in ARGoS, the 3D-dynamics and the 2D-kinematics, under the
same experimental conditions. The results confirm the findings of the
first experiment set. Additionally, even when a physics engine has not

85

been designed for efficiency, the results show that ARGoS is capable of
ensuring high levels of efficiency.

86

Chapter 6

Validation

In this chapter, I present three experiments that showcase the correspon-
dence of the results obtained in simulation with respect to those obtained
in real-world experiments. These experiments have been conducted as
part of research projects in which I cooperated. My contribution to
these projects was designing and implementing the software infrastruc-
ture, both for the simulations and for the real robots. Participating to
these experiments provided me with precious feedback on the design of
ARGoS, allowing me to refine and improve it.

The ultimate aim of validation is to confirm that predictions made by
simulation are matched by real-world experiments in comparable con-
ditions. For this reason, in the experiments presented in this chapter,
I concentrate on the correspondence between simulated and real-world
swarm behaviors, rather than on the accuracy of each individual model
employed in ARGoS. In other words, I consider the models accurate
enough if the swarm behavior they predict matches the findings in the
real world.

The first experiment, described in Section 6.1, involves a swarm of
robots performing flocking in different situations. These experiments
suggest that the standard models of ARGoS are capable of capturing the
essential motion and communication features of the robots employed.

The second experiment, illustrated in Section 6.2, consists in a sce-
nario in which the robots must navigate an unknown environment ex-
changing information. The behavior of the robots in simulation displays
an interesting emergent property that is confirmed by real-world exper-
imentation.

The third experiment, discussed in Section 6.3.1, shows a case in
which the available models are not accurate enough to ensure an ac-
ceptable correspondence between simulation and real robots. Thus, I
describe how ARGoS was extended with new device models that pro-
vide the necessary level of accuracy.

87

Figure 6.1: A screen-shot from the flocking validation experiments of Sec-
tion 6.1. The robot with the yellow LEDs lit is the only one aware of the
target direction.

6.1 Flocking

Often, in swarm robotics scenarios, groups of robots are required to
navigate in cohesive groups towards a target location. In the literature,
this behavior is called flocking. In this section, I describe and compare
three flocking algorithms (Ferrante et al., 2013). As it will be illustrated,
results indicate that the standard device models available in ARGoS are
sufficiently accurate to characterize the behavior of these algorithms.

6.1.1 Experimental Setup

The experiments take place in three scenarios. All involve a group of 8
foot-bots deployed in an arena in which a light source is placed far from
the robots. This light is used by the robots as common environmental
cue to build a shared reference frame.

In scenario 1, hereinafter single-target stationary, a target location is
placed at one end of the arena, far from the light and the robots. One
robot, chosen at random before the beginning of the experiment, can
sense the position of the target location. This is the informed robot.
The other robots are non-informed, i.e., they have no direct information
about the position of the target location (see also Figure 6.1).

Scenario 2, hereinafter single-target non-stationary, begins like sce-
nario 1. However, midway through the experiment, the target location
is moved to the opposite end of the arena with respect to its current
position. In addition, the currently informed robot is demoted to non-
informed and a different robot is selected at random to replace it.

88

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 20 40 60 80 100 120 140 160 180 200

Fl
oc

ki
ng

 A
cc

ur
ac

y

Time [s]

HCS
ICS
SCS 0

 0.2

 0.4

 0.6

 0.8

 1

 0 20 40 60 80 100 120 140 160 180 200

Fl
oc

ki
ng

 A
cc

ur
ac

y

Time [s]

HCS
ICS
SCS

(a) Single-target non-stationary. Flocking accuracy.

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 20 40 60 80 100 120 140 160 180 200

Fl
oc

ki
ng

 O
rd

er

Time [s]

HCS
ICS
SCS 0

 0.2

 0.4

 0.6

 0.8

 1

 0 20 40 60 80 100 120 140 160 180 200

Fl
oc

ki
ng

 O
rd

er

Time [s]

HCS
ICS
SCS

(b) Double-target non-stationary. Flocking order.

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 20 40 60 80 100 120 140 160 180 200

Fl
oc

ki
ng

 A
cc

ur
ac

y

Time [s]

HCS
ICS
SCS 0

 0.2

 0.4

 0.6

 0.8

 1

 0 20 40 60 80 100 120 140 160 180 200

Fl
oc

ki
ng

 A
cc

ur
ac

y

Time [s]

HCS
ICS
SCS

(c) Double-target non-stationary. Flocking accuracy.

Figure 6.2: Results of the flocking validation experiments of Section 6.1. The
plots on the left show the result obtained in simulation, while those on the right
report the results in reality. The colored areas span the result distribution from
the first to the third quartile. Each plots reports the data obtained with three
different motion control strategies: HCS, ICS, and SCS. Refer to Section 6.1.2
for more details on the motion control strategies.

Scenario 3, double-target non-stationary, proceeds like scenario 2.
Initially, a single target location is present and a single robot (R1) is
informed. Midway through the experiment a new target location is
added, and a new robot (R2) is promoted to the informed state. How-
ever, differently from scenario 2, the first target location is not removed.
Thus, two informed robots with opposite target locations coexist in the
swarm. The new target location is assigned the highest priority, so the
swarm must abandon the path to the first target location and switch
to the new one as quickly as possible. Finally, after a certain period

89

 0

 0.2

 0.4

 0.6

 0.8

 1

Fl
oc

ki
ng

 O
rd

er

Real robots
Simulation

-1

-0.5

 0

 0.5

 1

 0 25 50 75 100 125 150 175 200

D
iff

 in
 O

rd
er

Time [s]

 0

 0.2

 0.4

 0.6

 0.8

 1

Fl
oc

ki
ng

 A
cc

ur
ac

y

Real robots
Simulation

-1

-0.5

 0

 0.5

 1

 0 25 50 75 100 125 150 175 200

D
iff

 in
 A

cc
ur

ac
y

Time [s]

(a) Single-target non-stationary, ICS motion control.

 0

 0.2

 0.4

 0.6

 0.8

 1

Fl
oc

ki
ng

 O
rd

er

Real robots
Simulation

-1

-0.5

 0

 0.5

 1

 0 25 50 75 100 125 150 175 200

D
iff

 in
 O

rd
er

Time [s]

 0

 0.2

 0.4

 0.6

 0.8

 1

F
lo

ck
in

g
A

cc
ur

ac
y Real robots

Simulation

-1

-0.5

 0

 0.5

 1

 0 25 50 75 100 125 150 175 200

D
if

f
in

 A
cc

ur
ac

y

Time [s]

(b) Double-target non-stationary, SCS motion control.

Figure 6.3: Results of the validation experiments of Section 6.1. The plots on
the left show a comparison of the flocking order obtained in simulation and
with real robots. The plot on the left show a comparison of flocking accuracy.
Each plot is composed of two stacked elements: the top element reports the
data, the second element reports the results of a Wilcoxon signed-ranked test
on the difference between simulated and real-world data.

of time, the new location is removed and R2 is reset to non-informed
state. Thus, the swarm is required to resume navigation towards the
first target location.

6.1.2 The Robot Behaviors

The aim of these experiments is to compare the correspondence of the
dynamics of three algorithms in simulation and in the real world. The al-
gorithms share the same communication modalities and the same struc-
ture. The robots communicate locally and wirelessly through the range
and bearing system, and move according to vector f = αp + βgj + γh.
Vector p accounts for attraction and repulsion to nearby robots. It is
calculated as described by Hettiarachchi and Spears (2009). Vector gj

encodes the goal direction, i.e., the direction to the target location. The
value of j indicates the information available to a robot. When j = 0,

90

the robot is non-informed, thus g0 = 0. When j > 0, the robot is in-
formed about the j-th target location. Vector h is used to let the robot
swarm align towards a common direction. The calculation of this vector
assumes that (i) the robots can measure their attitude with respect to
the common reference frame defined by the light and that (ii) the robots
communicate attitude information to each other. It is important to note
that sensor noise strongly affects the attitude measurement of a robot,
and, thus, the behavior of the algorithms. In fact, the attitude is derived
from the position of the light in the environment, which is perceived by
the robots through noisy light sensors. Each robot calculates vector h
as the average of the attitude information received by nearby robots.
The three algorithms being compared differ in the data communicated
among the robots.

In the first algorithm, Heading Communication Strategy (HCS) (Tur-
gut et al., 2008), the robots communicate their current attitude with
respect to the common reference frame.

In the second, Information-Aware Communication Strategy (ICS)
(Ferrante et al., 2010), the informed robots broadcast the angle of the
goal direction and the non-informed robots broadcast the angle of the
average attitude direction received at the previous control step.

In the third algorithm, Self-Adaptive Communication Strategy (SCS)
(Ferrante et al., 2013), the data sent by a robot R depends on (i) whether
R is informed or not, and (ii) on the level of confidence in the information
to be sent. In brief, if R is informed and its confidence is high, it
broadcasts the direction to the target area. On the other hand, if R is
non-informed and its confidence is low, R broadcasts the average of the
directions received from the other robots at the previous control step.
For medium levels of confidence, R sends a linear combination of the
goal direction (if R is informed) and the average of the other directions
received. An important aspect to note for validation purposes is that,
in all three algorithms, sensor noise strongly affects the calculation of h.

6.1.3 Performance Measures

To compare the results obtained in simulation and in reality, we em-
ployed two performance measures: flocking order and flocking accuracy.

Flocking order is calculated as the sum of the attitude vectors of the
robots in the swarm. The length of each robot’s attitude vector is set
to 1, so the length of the resulting vector sum is in the range [0 : 1].
When flocking order is close to 1, the robots are aligned. Lower values
correspond to robots pointing in different directions.

Flocking accuracy measures the difference between the sum of the
attitude vectors and the target direction. Values close to 1 correspond
to high accuracy. Exceptionally, in the second phase of the double-

91

target non-stationary scenario, since the target direction is opposite to
the direction of the other phases, values close to 0 correspond to high
accuracy.

6.1.4 Results

We ran 100 experiments in simulation and 10 in reality for each sce-
nario. Figure 6.2 shows a selection of results obtained in simulation and
reality in scenario 2 and 3 with the three algorithms. Qualitatively, the
performance of the algorithms in simulation and with real robots is very
similar.

To further analyze the correspondence of results in simulation and in
reality on a quantitative level, we performed a set of Wilcoxon signed-
rank tests on the difference between them. More precisely, for each time
step of an experiment (in a specific scenario and with a specific algo-
rithm), we have 100 measures in simulation and 10 measures in reality
for flocking order, and the same for flocking accuracy. We executed a
Wilcoxon signed-rank test on the difference between the two data sets
for each performance measure. The result is illustrated in Figure 6.3.
The top plot of each block reports the raw measure, while the bottom
plot shows the minimum and maximum bounds on their difference. As
it can be seen from these results, the correspondence of the behavior of
the algorithms is very high. These results support the statement that
predictions based on simulations in ARGoS about the algorithms under
study hold true for experiments with real robots.

It is common for algorithms developed in simulation to require mod-
ifications to work on real robots. Modifications typically span from
parameter tuning to code rewriting. Remarkably, in the presented ex-
periments, such high level of accuracy was achieved without any modi-
fication.

6.2 Cooperative Navigation

In this section, I discuss the results obtained with an algorithm for co-
operative navigation in an unknown environment. The algorithm allows
a robot to reach a target location in the arena under the guidance of
other kin robots. The experimental scenario is reported in Figure 6.4.
The left side of the figure shows the real robot arena, while the right
side depicts the equivalent simulated arena.

6.2.1 The Robot Behavior

The navigation algorithm is based on line-of-sight wireless communica-
tion — two robots can communicate only if there is no obstacle between
them. In addition, upon receipt of a message, a robot receives not only

92

Figure 6.4: Setup of the validation experiments of Section 6.2. The picture on
the left shows the real arena in which the experiments were conducted. The
target locations the robots must visit are marked by dedicated robots. The
diagram on the right depicts the equivalent simulated arena. The empty and
filled circles represent the target positions, and the camera marks the location
in which the picture on the left was taken.

 0

 50

 100

 150

 200

 250

 1 4 6 8 10

N
a
v
ig

a
ti
o
n
 d

e
la

y
 (

s
)

Number of robots

Single robot, simulation
Single robot, real

Collective, simulation
Collective, real

Figure 6.5: Results of the validation experiments of Section 6.2. The navigation
delay is the time necessary for a robot to reach the target location. Here, the
graph shows its average.

the payload of the message, but also the location (angle and distance)
from which the message was sent. On the foot-bot, the range-and-
bearing communication device provides these communication features.

The robots exchange navigation information through the wireless net-
work, in order to guide the searching robot to the location of the target.
In practice, each robot maintains a table containing information about
known target robots, including estimated distance and age of each piece

93

of information. Each robot periodically broadcasts the content of its
table to the neighbors. Upon receipt of information from a neighbor, a
robot updates its table accordingly. In addition, the distances are up-
dated using odometry information. The searching robot traverses the
network, monitoring at the same time the information broadcast by the
guiding robots. The searching robot follows the highest quality informa-
tion (with respect to age and distance to the target). For more details
about this algorithm see (Ducatelle et al., 2013).

6.2.2 Results

The algorithm was tested in two scenarios. In both scenarios, two target
locations are marked by static robots. In the first, a single robot must
go back and forth between the two locations, while the other robots
perform random walk and provide guidance. In the second scenario, the
entire swarm is engaged in navigation between the two locations. This
algorithm is a good validation test because, despite the simplicity of its
implementation, it shows rich dynamics.

In the first scenario, the searching robot follows navigation informa-
tion to reach the target, following paths that become shorter when the
number of guiding robots increases. In the second scenario, the entire
swarm spontaneously self-organizes into a spinning loop structure that
includes the two target locations. Also in this case, navigation efficiency
improves as the number of moving robots increases. Both simulated
and real experiments showed the same qualitative dynamics in the two
scenarios.

To better quantify the correspondence between simulated and real
experiment, as performance measure we defined the time needed by a
robot to go from its initial location to the target area (called navigation
delay). We tested the algorithms in both scenarios with numbers of
moving robots ranging from 1 to 10. In the experiments with real robots,
we ran one 30-minute-long experiment for each number of robot, to allow
the robots to visit the two target locations several times. The graph in
Figure 6.5 reports the average navigation delay for each experimental
setup. Results confirm a satisfactory correspondence between simulated
and real experiment for both scenarios.

6.3 Task Partitioning in Cooperative Foraging

In this section, I describe an experiment in which the standard foot-
bot model provided by ARGoS proves to be not sufficiently accurate. I
discuss how ARGoS can be extended to include a better robot model,
thus providing the necessary accuracy.

94

Figure 6.6: When the same speed is applied to the foot-bot treels, the robot
does not cover a straight line, due to an asymmetry in the construction of the
treel motors.

The experiment involves cooperative foraging by a swarm of foot-
bots. The robots’ behavior is designed to face non-trivial, real-world
issues that significantly impact both the exploration of the environment
and the transportation of target objects.

6.3.1 Experimental Setup

A swarm of 6 foot-bots is deployed in an area of the environment, called
the nest. The robots must bring some objects to the nest. These ob-
jects are placed 4 m far from the nest, in a location, the source, which is
unknown to the robots. Thus, the robots must first explore the environ-
ment to discover the source, and then proceed with object transporta-
tion. At any moment, each robot is capable of transporting one object
at most. The robots continue the exploration/transportation routine
until a certain time limit is reached.

The primary issue in this scenario is navigation from the nest to the
source and vice-versa. The literature abounds with methods to navigate
between two locations. To maintain minimal requirements on the robots,
in this scenario, we assume that a robot can only use dead-reckoning,
that is, it can estimate its position with respect to a certain location from
the integration of odometry information. This method, however, is very
sensitive to sensor noise. In fact, as a robot navigates, the integration
of noisy odometry information causes an accumulation of the estimation
error on the position of the target location. On the real foot-bot, over
time the amount of error becomes so high that the robot must discard
odometry information and return to exploration. This error is mainly
caused by an asymmetry in the construction of the wheel motors. As
shown in Figure 6.6, if both wheels of a foot-bot are set at the same
forward speed, the robot’s trajectory slants to the left. Analogously,
when moving backwards, the trajectory is slanted to the right. Thus,
a robot that moves back and forth between two points draws an S-
shaped trajectory instead of a straight one. The magnitude of the slant

95

 0
 1
 2
 3
 4
 5
 6
 7
 8

Th
ro

ug
hp

ut
Sim. without noise
Sim. with noise
Real robots

-4
-2
 0
 2
 4
 6

 0 5 10 15 20 25 30

Th
ro

ug
hp

ut
 D

iff

Time [min]

Real robots - Sim. without noise
Real robots - Sim. with noise

Figure 6.7: The throughput of object transportation in simulation with and
without noise and on real robots. The top plot shows the interquartile range
(Q25–Q75) of the raw data; the bottom plot reports the results of a Wilcoxon
signed-rank test on the difference between simulation without noise and real
robots, and simulation with noise and real robots.

is different across each trip and it is undetectable by the on-board motor
sensors.

6.3.2 The Robot Behavior

The behavior of the robots is based on the idea that the estimation error
increases with the distance covered by a robot. Thus, to limit the error,
it is enough to limit the range of motion of the robots. In practice, the
task of moving an object from the source to the nest is partitioned into
several sub-tasks consisting of moving the object for a short distance.
Each step of this process is performed by a different robot. For more
details about this behavior, see (Pini et al., 2013).

6.3.3 Dead-reckoning Model

The standard implementation of the wheel motors in ARGoS does not
include noise. This is a common choice in many simulators (e.g., Stage,
Gazebo, Webots) because, as demonstrated by the experiments in Sec-

96

 0

 1

 2

 3

 4

-3 -2 -1 0 1 2 3

Er
ro

r a
lo

ng
 Y

 [m
]

Error along X [m]

Real robots
Sim. with noise

Figure 6.8: Positioning error of the foot-bots with respect to their target lo-
cation. I report both the data sampled from real robot experiments and from
the dead-reckoning model described in Section 6.3.3.

tions 6.1 and 6.2, in the vast majority of experiments the impact of this
kind of noise is negligible.

However, in the experiment under study, such noise plays a funda-
mental role. In Figure 6.7 I report the throughput of objects brought
to the nest. The throughput is calculated as the number of objects that
reached the nest in the previous fifteen minutes. Throughput samples
are collected every two minutes. At the top of Figure 6.7 I report the
raw throughput data in three cases: simulation without noise, simu-
lation with noise and real robots. As shown, when no noise is added
to the actuators, the results in simulation do not reflect the data col-
lected with real robots. A quantitative measure of the correspondence,
or lack thereof, between the two data sets is reported at the bottom of
the same figure. The bottom plot shows the 95% confidence interval
on the difference between the data sets computed through a Wilcoxon
signed-rank test. The result of this test on the difference between the
data in simulation without noise and on real robot demonstrates that,
for this experiment, the predictions of the standard ARGoS model is
too optimistic. Thus, we constructed a noise model and added a new

97

actuator with such model into ARGoS.
To construct the noise model, we analyzed a set of videos of the

motion of real foot-bots during navigation to the source. We collected
a set of 61 positions, derived the noise model, and implemented a new
ARGoS module for the actuator. To reproduce the slanted motion, the
actuated wheel speed is obtained by summing a random term to the
desired wheel speed set by the robot. If the motion is forwards (positive
speed value), the random term is summed to the desired right wheel
speed; if the motion is backward (negative speed value), the random
term is subtracted from the desired left wheel speed. The random term is
obtained by multiplying the desired speed by a term µ, taken at random
from a Rayleigh distribution (σ = 0.00134). The value of µ is chosen at
random at the beginning of the experiment, and subsequently changed
every time a robot grips an object. Figure 6.8 reports the samples from
real robot experiments and the data obtained with the described model.

This model is very simple and does not include an explicit represen-
tation of the wheel motors. Despite its simplicity, the results illustrated
in Figure 6.7 confirm that the throughput of the robots in simulation
matches the throughput in real robot experiments.

6.3.4 Implementation in ARGoS

As discussed in Section 3.2, ARGoS offers two approaches to include
new features or better models.

The first approach involves creating a new module implementation.
For instance, in the experiment under consideration, the improved dead-
reckoning model can be included in a new implementation of the wheel
encoder sensor of the foot-bot. Alternatively, the experimenter can code
a suitable loop function hook (see Section 3.2.7).

For sensors and actuators, the first approach is usually preferable
when the added features cover relatively general use cases. In contrast,
if the added feature is considered experiment-specific or of little general
interest, a loop function hook is a wiser choice.

For the implementation of the noise model above discussed, we se-
lected the first approach. On the other hand, the loop functions proved
to be necessary to implement two aspects of the experiment: (i) the logic
whereby a target object dropped in the nest is moved back to the source
area, and (ii) the collection of data reported in Figure 6.7 and 6.8.

6.4 Discussion

The experiments presented in this chapter confirm that the basic mod-
els in ARGoS cover a wide range of applications, and are capable of
predicting swarm-level behaviors. In addition, when the models offered

98

by ARGoS do not provide satisfactory accuracy, it is easy to define and
utilize a new model that provides the desired accuracy.

An interesting aspect about the models employed in the experiments
in Sections 6.1 and 6.2 is that capturing complex real-world behavior
does not require the use of computationally expensive models. In other
words, the dynamics of swarm behavior appears to be sufficiently robust
to cope with low accuracy in the basic models, provided that the latter
at least capture the essential features of the system. This aspect is
not completely surprising, because it is well-known that swarm robotics
systems are capable of providing reasonable levels of performance even
in presence of significant noise (Hoff et al., 2011). Low model accuracy
could be considered as a form of noise over the dynamics of the swarm
system. In any case, I believe that the question of ‘minimal’ modeling
of swarm systems is open and worthy of further investigation.

Summary

In this chapter, I presented three sets of experiments meant to validate
the results obtained with ARGoS in simulation against results obtained
in real-world experiments.

The first set of experiments involved a problem of coordinated mo-
tion (often referred to as ‘flocking’). The experiments confirmed that
the default motion and communication models in ARGoS are sufficient
to predict the behavior of a swarm of flocking robots under various con-
ditions.

The second set of experiments consisted in a scenario of cooperative
navigation in an unknown environment. In a preliminary experiment, a
swarm of robots guides a robot between two points in the environment.
In a second experiment, the entire swarm is engaged in mutual guidance.
For both scenarios the predictions of ARGoS were matched by real-
world experimentation. In particular, in the swarm-wide experiment,
simulations correctly predicted an emergent behavior whereby robots
form a spinning loop between the two target points in the environment.

The third set of experiments showed a case in which the default
models of ARGoS were not sufficient to capture the essential features
of the robot dynamics. I discussed the limits of the models and showed
how new models have been derived and inserted into ARGoS, resulting
in a simulation that matched the real-world dynamics.

99

Chapter 7

Team Recruitment and Delivery
in a Heterogeneous Swarm

In this chapter, I present a scientific work that demonstrates the capa-
bilities of ARGoS. The work consists in a novel, distributed approach to
form multiple groups of mobile robots with precise control on the group
size. This approach takes inspiration from the aggregation behavior of
cockroaches under shelters.

In nature, shelters are passive landmarks beneath which cockroaches
stop. In this system, mobile robots play the roles of cockroaches. By
making shelters into active components with basic communication and
sensing capabilities, I obtained a system that achieves the formation of
multiple groups of robots in parallel.

I assessed the properties of the system through mathematical models
and experiments based on physical simulations. In particular, I show-
case the performance of the system in a challenging scenario, in which
hundreds of robots must be organized into dozens of groups.

7.1 Introduction

One of the main benefits of swarm robotics systems is their potential
for parallelism. To achieve parallelism in real-world scenarios, it is im-
portant to be able to split the swarm into appropriately sized groups for
different concurrent tasks.

Imagine a swarm of robots that must be deployed to monitor the
spread of an environmental hazard. Different hazard areas of various
sizes will need correspondingly sized groups of robots, and the hazard
sites may be spread far apart. As in any such real-world scenario, it is
likely that there will not be enough robots to allocate the ideal number
to each hazard site. In this chapter, I propose a distributed mechanism
to solve this type of group formation problem, whereby large numbers
of robots must be divided into multiple groups in parallel. When the
number of available robots is sufficient, this system is capable of forming

101

groups of different, pre-defined sizes. When the available robots are less
than the sum of the desired sizes, the system distributes robots fairly
across groups, ensuring that each group grows at the same rate.

Existing approaches to parallel group formation in multi-robot sys-
tems have limitations that render them inappropriate for this type of
scenario. Decentralized task allocation and task partitioning approaches
scale well, but they only work when the tasks are located close to each
other and the density of robots is sufficiently high (Gerkey and Matarić,
2004). Centralized approaches, on the other hand, can efficiently divide
a population of robots into specific group sizes matching different tasks,
but do not scale to large swarms of robots due to high communication
overheads (Dias et al., 2006). The only decentralized approaches that
have tackled the formation of specific group sizes in swarms of robots
have restricted themselves to forming or counting a single group of robots
at a time (Melhuish et al., 1999; Brambilla et al., 2009).

This work is inspired by the aggregation behavior of cockroaches
under shelters. The dynamics of this behavior are well understood,
and predict different aggregated group sizes in an environment with
different sized shelters. In (Amé et al., 2006) cockroaches are modeled as
simple agents that walk randomly in an environment, and have a certain
probability of stopping that increases with the presence of a shelter and
with proximity to other stopped cockroaches. This model is a good
fit for the parallel group size selection problem in robotics, as there is
no communication required between agents. This approach does not,
therefore, suffer from the scalability limits of centralized approaches. I
use ‘active shelters,’ that can affect the probability of robots stopping
underneath them within a certain communication range. By varying
the stopping probabilities associated with different shelters, I reproduce
the effect of different shelter sizes and create robotic groups of different
required sizes.

In Section 7.2, I contextualize the work with respect to other related
studies. In Section 7.3, I sketch the methodology by showing how I ap-
ply the cockroach model, and by introducing the properties the system
must display. In Section 7.4, I illustrate the hardware necessary for the
implementation of the system, and present the actual devices I used for
this study. In Section 7.5, I introduce a basic version of the system. I
model the system mathematically and analyze it compliance to the de-
sired properties. Subsequently, I show how the system can be improved
to satisfy better the desired properties. In Section 7.6, I show that the
system displays scalability for increasing numbers of robots and shelters.

102

7.2 Related Work

In swarm robotics, existing approaches to the problem of splitting up a
swarm of robots into groups revolve around distributed forms of task al-
location (Gerkey and Matarić, 2004)—scalable, decentralized approaches
with low or zero communication overheads. In these approaches, indi-
vidual robots have a mechanism for testing the task and allocating them-
selves to different tasks or sub-tasks. Testing by robots can, for example,
take the form of determining whether an object is moving in a group
transport scenario (O’Grady et al., 2011), or testing the time taken to
perform a task or sub-task (Pini et al., 2011). The performance (and/or
convergence time) of these methods typically depends on the number
of interactions among robots per time unit, which, in turn, depends on
the density of robots in the environment. An ideal density range exists,
in which these methods perform best. Below a certain density thresh-
old, the robots interact too rarely for these methods to be practically
applicable. Above a certain threshold, the robots spend significant time
avoiding each other rather than performing their assigned tasks. In
real-world scenarios, the available robots are often scarce, tasks may be
located far apart from one another, and explicit group sizes may need
to be allocated based on some external (human) assessment of the prob-
lem. Under these circumstances, task-allocation-based approaches may
not be feasible.

Explicit group size formation has been demonstrated as feasible in
the swarm robotics context, but only for a single group at a time. Mel-
huish et al. (1999) controlled group sizes in a swarm of abstract agents
using a firefly-like synchronization mechanism. However, only one group
was formed at a time and the physics of the agents was not taken into
account. Brambilla et al. (2009) used physically embodied robots, but
their system could only passively count the number of robots in a single
existing group (rather than generating a group of a priori determined
target size). Hsieh et al. (2008) have studied an abstraction of the prob-
lem I study, whereby robots must distribute across multiple sites in
predefined ratios. Hsieh et al.’s work is based on statistical models of
house hunting ants.

In multi-robot systems formed by a low number of individuals, market-
based approaches provide a good solution to the problem of parallel
group formation of explicit group sizes (Dias et al., 2006). Market-
based approaches, however, have intrinsic scalability problems that ren-
der them less applicable to swarm robotics systems. In market-based
approaches, all robots participate in an auction, and market forces deter-
mine the most appropriate allocation of robots to groups corresponding
to particular tasks. However, the fact that every robot must partic-
ipate in the auction process means that bandwidth and computation

103

requirements increase quickly with the number of robots.
Our approach is inspired by the aggregation behavior of cockroaches

(Rust et al., 1995). Cockroach behavior is accurately mimicked by Jean-
son et al. (2004) model in which cockroaches stochastically switch from
stopping to performing a random walk and back. The probability of
stopping rather than random walking increases with the number of other
nearby stopped cockroaches. A positive feedback mechanism then re-
sults in aggregation into groups. When multiple shelters of different
sizes are available in the environment, cockroaches may form groups
of different sizes that correspond to the sizes of shelter available (Amé
et al., 2006).

Previous robotics studies have shown how cockroach behavior can
be faithfully mimicked by a group of robots. Existing robotic imple-
mentations share key features of the cockroach model. In particular,
the equilibrium distribution of agents depends passively on the initial
configuration of the environment and on the static mapping of environ-
mental conditions to stop/go probabilities (Garnier et al., 2005). None
of the existing studies, however, have used the model to generate a priori
desired group sizes, or explored how many such groups could be formed
in parallel.

7.3 Methodology

The approach is inspired by the behavior of cockroaches under shel-
ters. This behavior has been modeled using decentralized agent-based
models, whereby each cockroach agent is attracted to the shelters and
to other cockroaches (Amé et al., 2006; Jeanson et al., 2004). In these
models, cockroaches wander randomly in the environment, and decide
probabilistically when to stop under a given shelter, and when to leave
a shelter based on the stopping probability parameters of the model.
Amé et al. (2006)’s cockroach model predicts different aggregated group
sizes in an environment with different sized shelters.

I mimic some of the basic dynamics of these cockroach models to
achieve parallel group formation. In the system, mobile ground-based
robots play the role of cockroaches, and simple ceiling-based devices play
the role of shelters. Instead of using shelters of different sizes, however, I
make the shelters active, in the sense that they can calculate the robots’
stop/go probabilities and communicate them to the mobile robots. In
practice, each active shelter continuously transmits stop/go probabilities
to mobile robots in a limited radius. I refer to this local communication
radius as the communication range of an active shelter.

Analogously to cockroaches, robots wander randomly in the environ-
ment. Occasionally, a robot encounters a shelter and decides proba-
bilistically whether to stop underneath it or not. The decision is based

104

on the stop/go probabilities transmitted by that particular shelter. If
a robot decides to stop, it becomes part of the group associated with
that shelter. Robots under a shelter may also probabilistically decide to
leave the shelter (thereby leaving the associated group). By assigning
different probabilities to different shelters, the system can form groups
of different a priori determined sizes in parallel.

The system has a stochastic nature. The two main sources of random-
ness are robot motion, and the probabilistic decisions on joining/leaving
a group. Robot motion influences the discovery of shelters by robots, as
well as the formation and disbandment of the groups. The probabilis-
tic group joining/leaving mechanism impacts the stability of the groups
over time. To say meaningfully that it has formed groups of a particu-
lar size, therefore, the system must settle at some point into a state in
which the size of individual groups can be recognized as stable. I refer
to this property as convergence. I give a formal definition of convergence
in Section 7.5.2.

For the system to display parallelism, the group formation mecha-
nism must ensure that all shelters receive a fair share of robots. I refer
to this property as fair spreading. In the approach, fair spreading oc-
curs when the rate of growth of all group sizes is proportional to the
desired sizes. In a system that displays fair spreading, convergence time
does not depend on the number of groups to form. In addition, with
fair spreading, a system offers equal treatment for all shelters when the
number of robots available for group formation is lower than the number
of robots desired in total.

In (O’Grady et al., 2009), I introduced and analyzed a first imple-
mentation of this system. The results indicate that the join and leave
probabilities impact differently the dynamics of the system. The join
probability mainly accounts for the rate of addition of robots into groups.
The leaving probability accounts for the rate of robot loss of a group,
and has dramatic effects on the dynamics of the system. Experimental
results showed that setting the leave probability to a high value greatly
improves spreading at the expense of group stability, thus making con-
vergence detection by the active shelters difficult or impossible. A low
value for the leave probability, on the other hand, results in high sta-
bility and unfair or non-existent spreading. The system, presented in
Section 7.5, offers a solution to this trade-off, so as to ensure both easy
convergence detection and fair spreading.

7.4 Hardware

I first discuss the minimum capabilities necessary for a hardware plat-
form to use active shelters as a means of group formation. I then describe
the actual devices employed in this work.

105

(a) (b)

Figure 7.1: The robot platforms I simulated for the experiments in this study.
(a) The foot-bot; (b) the eye-bot.

7.4.1 Minimum Generic Requirements

An active shelter is capable of monitoring the number of grouped robots
over time, with coarse periodicity. In addition, it must be capable of
broadcasting the join/leave probabilities to the robots in range. Finally,
active shelters must be able to broadcast a 1-bit signal to nearby shelters.

A mobile robot must be capable of navigating the environment avoid-
ing other robots. To coordinate the motion of robots joining/leaving
a group as described in Section 7.5.2, each robot must convey 2-bit
state information (joined-group/leaving-group/free) to nearby robots
and shelters. A robot must detect the state of nearby robots and re-
ceive the join/leave probabilities from the closest shelter. Finally, a
robot must be able to perceive nearby robots.

7.4.2 Devices Used in This Study

In the experiments, I employed the foot-bot (Bonani et al., 2010) as
mobile robot (Figure 7.1 (a)). The foot-bot navigates the environment
through a set of wheels and tracks called treels. It can convey its state
(joined-group/leaving-group/free) through a colored LED ring that sur-
rounds its body, and detect other robots’ state and relative location
through an omnidirectional camera.

To realize active shelters I used the eye-bot robot (Figure 7.1 (b)).
The eye-bot (Roberts et al., 2007) is a quad-rotor robot able to attach
to the ceiling. To detect mobile robots, the eye-bot is equipped with a
pan-and-tilt camera.

106

Group formation area

x0

x1 x2 x3

p1x0 l1x1 p2x0 l2x2 p3x0 l3x3

Figure 7.2: A schematic representation of the mathematical model described
in Section 7.5.1 with three active shelters.

Eye-bot–to–foot-bot and eye-bot–to–eye-bot communication occurs
through the range-and-bearing communication system (Roberts et al.,
2009) present on all robots. This device allows the eye-bot to broadcast
a message containing a 8-byte payload. The message can be received by
nearby eye-bots and by foot-bots on the floor in a limited range.

The robots, as well as the range-and-bearing communication system,
were developed in the Swarmanoid project (Dorigo et al., 2013).

7.5 Active Shelters

In this section, I present the system to achieve group formation control
through active shelters. I analyze its properties and identify its limita-
tions. In Section 7.5.1, I present a mathematical model that captures
the most important aspects of the system. In Section 7.5.2, I present the
complete implementation of the system and analyze it through targeted
physics-based simulations.

7.5.1 Mathematical Model

The model.

In Figure 7.2, I illustrate the abstraction of the system upon which I base
the mathematical model. The shelters are distributed in a rectangular
area. The communication range of the shelters is displayed as a circular
gray area. I assume that the communication ranges of a shelter do not
overlap with those of the other shelters. For the purposes of this model,
I neglect the actual motion of the robots across the environment. I
assume that the robots perform a diffusion algorithm such as (Howard
et al., 2002), so as to uniformly distribute in the environment. Thus,
the probability c for a robot to be located within the communication
range of a shelter is given by

c =
Area(shelter)

Area(group formation area)
.

A robot joins the group of shelter i with probability ji. This probability
is set by the active shelter depending on the desired group size. The

107

100

101

102

103

104

105

106

107

100 101 102 103 104 105

L
en

gt
h

of
 p

ha
se

 2
 [

lo
g]

Decay period [log]

[0.75,0.5,0.25]
[0.25,0.5,0.75]

Figure 7.3: Length of phase 2 in the simulations of the mathematical model
for different values of the decay period δ.

probability pi for a robot to discover that shelter and join its group is
given by pi = cji. The probabilities pi are assumed constant throughout
the duration of a run.

A robot that is part of group i has a probability to leave it, denoted
by li. As discussed in Section 7.3, setting li to a fixed value causes a
trade-off between fair spreading with difficult convergence on one side,
and stable convergence with unfair spreading on the other (O’Grady
et al., 2009). Thus, to reconcile convergence and spreading, the leave
probability li must vary between a value that promotes fair spread-
ing (hereinafter denoted by lhi), and a value that ensures convergence
(hereinafter denoted by llow). At the beginning of the experiments, each
shelter i is configured with a probability li = lhi = 10−2. I thus ensure
a good spread of robots early on in the group formation process. Over
a period of time, each shelter exponentially decreases the value of its li,
until it reaches llow = 10−5, thus allowing the system to gradually settle
into a stable state. More specifically, the values of the li’s are set as
follows:

li(t) = (lhi − llow)e−γt + llow, (7.1)

in which γ is the decay constant. I define γ as a function of a parameter
δ that represents the number of time steps required by the exponential
to drop by 90%:

γ =
ln 10

δ
⇒ e−γδ = 0.1.

I denote the fraction of robots engaged in group i > 0 at time t as

108

 0

 0.2

 0.4

 0.6

 0.8

 1

T1=226

R
ob

ot
 fr

ac
tio

n

Time steps [log]

T2=7808

Shelt. 1
Shelt. 2
Shelt. 3

Free

T3=8124

(a) P1 = {0.75, 0.5, 0.25}; δshort = 102

 0

 0.2

 0.4

 0.6

 0.8

 1

T1=1265

R
ob

ot
 fr

ac
tio

n

Time steps [log]

T2=2712

Shelt. 1
Shelt. 2
Shelt. 3

Free

T3=4074

(b) P1 = {0.75, 0.5, 0.25}; δlong = 103

 0

 0.2

 0.4

 0.6

 0.8

 1

T1=249

R
ob

ot
 fr

ac
tio

n

Time steps [log]

T2=117692

Shelt. 1
Shelt. 2
Shelt. 3

Free

T3=117977

(c) P2 = {0.25, 0.5, 0.75}; δshort = 102

 0

 0.2

 0.4

 0.6

 0.8

 1

T1=1487

R
ob

ot
 fr

ac
tio

n

Time steps [log]

T2=3388

Shelt. 1
Shelt. 2
Shelt. 3

Free

T3=4750

(d) P2 = {0.25, 0.5, 0.75}; δlong = 103

Figure 7.4: Results with the mathematical model presented in Section 7.5.1.
The experiments are composed of three phases. In phase 1, two shelters are
active. In phase 2 (starting at time T1), a third shelter is activated. In phase
3 (starting at time T3), shelter 2 is deactivated. The experiment ends at time
T3. The length of each phase depends on the dynamics of the system. P1 and
P2 account for the desired group size of each shelter. Parameter δ corresponds
to the decay period for the probability to leave a shelter.

xi(t), and the free robots (i.e., not part of any group) as x0(t). Consid-
ering the probabilities pi and li as rates of group joining and leaving,
respectively, and denoting with n the number of shelters in the group
formation area, yields the following model:


x0(t + 1) = x0(t)−

(
n∑

i=1

pi

)
x0(t) +

n∑
i=1

li(t)xi(t)

xi(t + 1) = xi(t) + pix0(t)− li(t)xi(t) (with i ∈ [1, n])

109

Model Behavior

To study the behavior of the model with respect to convergence and
spreading, I set up a three-phase experiment. Initially, two shelters
form groups of different sizes for a certain period T1. At time t = T1, a
third shelter is activated and it starts recruiting robots. Subsequently,
at time t = T2, shelter 2 is disabled, thus freeing all the robots within
its group. The simulation ends at time t = T3.

The length of these three phases is not fixed, but depends on the
dynamics of the system. To study convergence at each phase, I record
the times T1, T2, and T3 in which the system reaches convergence at
each phase. Convergence is reached when all fractions (grouped and
free robots) change by a sufficiently little quantity. More precisely, I
declare convergence at time t∗ if ∀k ∈ [0, n] |xk(t∗)− xk(t∗− 1)| < 10−6.

Whenever a new shelter is activated or deactivated spreading is im-
portant to ensure fair resource distribution. The newly activated or de-
activated shelter thus sends a signal to nearby shelters to notify them of
the change to the system. The shelters react by forwarding this signal
to their neighbors and resetting their leave probability value back to lhi.

To study spreading, I ran simulations with two different settings for
the values of the join probabilities: P1 = {0.75, 0.5, 0.25} and P2 =
{0.25, 0.5, 0.75}. With P1, shelters 1 and 2 initially must recruit most
of the robots. Shelter 3 is the least demanding, so, upon its activation
at time T1, the system must redistribute only a few robots to shelter 3.
Conversely, with P2, shelter 3 is the most demanding. Its activation at
t = T1 forces the system to redistribute most of the robots.

I ran several experiments with different values for parameter δ. The
experiments revealed that the most problematic event in the setting is
the addition of shelter 3 at the beginning of phase 2. As reported in
Figure 7.3, the length of this phase decreases with the increase of the
decay period in the range [101, 103]. For δ = 104, the length of phase 2
slightly increases with respect to δ = 103.

A sample of the dynamics of the system for different values of δ is
reported in Figure 7.4. In these experiments, I tested δ = δshort = 102

and δ = δlong = 103 time steps. As the plots show, the length of
the decay period of the leave probability has a strong impact on the
behavior of the system and the values of T1, T2 and T3. If the decay
period is short (δ = δshort), the value of the leaving probability drops
quickly and the system behavior results in unfair spreading and very
long convergence times. A long decay period (δ = δlong), on the other
hand, has a positive effect on both properties, because the robots have
sufficient time to spread across the shelters.

110

7.5.2 Physically Simulated Robot

Implementation

I performed experiments using ARGoS to validate the predictions of the
model in a physically realistic robotic system. A prominent aspect that
affects the system performance is interference among mobile robots. In
the system, interference occurs mainly under the active shelters. The
mobile robots must organize in tight aggregates under the shelters, while
permitting the flow of leaving and joining robots.

In the physics-based simulations, I assume that the robots are ran-
domly distributed in a group formation area in which shelters are dis-
tributed. At any moment, a robot performing random walk across the
environment can either be under a specific shelter or in a shelter-free
area. The robot behavior is described by the simple state machine re-
ported in Figure 7.5. The meaning of the states are as follows:

• state free: A robot does not belong to any group. The robot per-
forms random walk with obstacle avoidance. This state is conveyed
with LEDs lit up in green.

• state in group: A robot is part of a group. This state is conveyed
with LEDs lit up in red.

• state leaving: A robot is leaving a group to which it previously
belonged. This state is conveyed with LEDs lit up in blue.

Join probability

When a robot in state free enters the communication range of shelter
i, it transitions to state in group with probability ji. This probability
is related to the target group size qi associated to the shelter. I aim to
find a simple relationship between ji and qi. The communication range
of a shelter is limited in size and, thus, can house a maximum number
of robots, which I denote with f . I assume that all the shelters have
identical communication ranges, so f is a constant across the shelters
known a priori. In addition, I assume that the target group sizes qi

cannot exceed f . Each shelter constantly monitors the number of robots
currently engaged in its group. If the group size exceeds the target size,
the shelter must stop recruiting robots. From these considerations, I
derive the following simple definition for ji:

ji =

{
qi/f if current size of group i < qi,

0 otherwise.

111

Cfree−>free Cin_group−>in_group

leaving−>freeC

Cleaving−>leaving

Cin_group−>leaving

Cin_group−>free

Cfree−>in_group

LEAVING

IN_GROUPFREE

State transition conditions
Cfree→in group JustInRange() = true and Rand() ≤ ji

Cfree→free InRange() = false or (JustInRange() = true
and Rand() > ji)

Cin group→free InRange() = false
Cin group→leaving InRange() = true and Rand() ≤ li
Cin group→in group InRange() = true and Rand() > li
Cleaving→free InRange() = false
Cleaving→leaving InRange() = true

Figure 7.5: State transition logic for robots at each time step. InRange()
and JustInRange() are functions returning true when the robot is within the
communication range of a shelter, and has just entered it, respectively. Rand()
is a function returning a random number in U(0, 1). ji is the join probability for
shelter i, li is the leave probability. State transition conditions are represented
be the symbol C and a subscript. For example, Cin group→in group represents
the conditions under which an aggregated robot will stay aggregated in its
group in a single time step.

Leave Probability

A robot in state in group beneath shelter i transitions to state free
with probability li. The probability li decays exponentially follow-
ing (7.1).

Robots Joining and Leaving a Group

Physical interference among grouped robots may have severe effects on
the system, especially when the density of robots under a shelter be-
comes high. Upon deciding to leave, a robot located in the center of
a group needs a clean path out of it. However, if the area beneath a
shelter is crowded, the formation of the exit path is likely to push some
robots located at the border of the group out of the communication area,
thus losing contact with the shelter. Thus, interference reduces stability,
especially in large groups.

112

C1

C2 C3 C1 C3

Shelter 1 Shelter 2 Shelter 3

0

5

10

15

20

0

5

10

15

20

0

0.25

0.5

0.75

1

G
ro

up
 S

iz
e

G
ro

up
 S

iz
e

A
vg

A
vg

 /
D

es
ire

d
G

ro
up

 S
iz

e

0 T1 1000 2000 T2 3000 4000 5000

Time [sec]

D1

D2

D3

D1

D2

D3

(a) Target sizes: [15, 10, 20]

Shelter 1 Shelter 2 Shelter 3

0

5

10

15

20

0

5

10

15

20

0

0.25

0.5

0.75

1

G
ro

up
 S

iz
e

G
ro

up
 S

iz
e

A
vg

A
vg

 /
D

es
ire

d
G

ro
up

 S
iz

e

C1

C2
C3

C1
C3

0 T1 1000 2000 T2 3000 4000 5000

Time [sec]

D1,D2,D3

D1,D2,D3

(b) Target sizes: [12, 12, 12]

Figure 7.6: Results with physically simulated robots following the behavior
explained in Section 7.5.2. The experiments are composed of three phases. In
phase 1, two shelters are active. In phase 2 (starting at time T1), a third shelter
is activated. In phase 3 (starting at time T2), shelter 2 is deactivated. The
experiment ends at time T3. The top plots shows a representative experimental
sample in the pool of the 100 repetitions I ran. The middle plot reports the
average system behavior. The bottom plot shows the ratio between the current
and the desired group size. 113

To solve these issues, I consider each robot to be immersed in two
virtual potential fields (Spears et al., 2004). The first field attracts
robots that decide to be part of a group towards the center of such
group, or repels those who decide to leave the group. The second field
allows a robot that decides to leave the group to push its way out without
disrupting the integrity of the group.

Convergence Detection

It is important for a shelter to be able to detect convergence. However,
due to the probabilistic nature of the system, the group size displays
continuous fluctuations. Thus, the notion of convergence to a target
group size must be linked to these fluctuations. Intuitively, a shelter can
declare convergence when the magnitude of the fluctuations remains for
a certain period of time within a specific range.

In practice, each shelter monitors the fluctuations of the number of
its aggregated robots over a period of time TC . If the magnitude of the
fluctuations stays within some tolerance boundaries for the entire pe-
riod, the shelter considers the system to have converged. The tolerance
boundary B is defined as a function of the leave probability llow, the
length of the monitoring period TC and the size of the aggregate gi at
the beginning of the monitoring period:

B =
√

TCgillow(1− llow)

B is derived by considering the changing number of aggregated robots
under a shelter as a time series produced by a binomial distribution in
which p = llow. B is calculated as the standard deviation of such a time
series over the monitoring period TC .

7.5.3 Experimental Evaluation

Experimental Setup

I ran experiments with a 3-phase setup analogous to what I presented for
the mathematical model. The values of T1 = 50 s, T2 = 250 s, and T3 =
500 s were chosen to give the system sufficient time to reach convergence
at each stage.

I distributed 30 robots in the group formation area. In the first phase,
the target sizes of shelter 1 and 2 are always set so that their sum is less
than 30. This first phase therefore allows us to test whether the system
is capable of converging to the correct group sizes in the simple case
where there are enough robots to satisfy all target sizes. The second
phase, in which also shelter 3 is activated, tests the spreading property
of the system in response to the activation of new shelters. In particular,
I set shelter 3’s target size to make the sum of the target sizes greater

114

than the total number of robots in the group formation area. The third
and final phase tests the spreading property of the system, this time in
response to the release of robots by shelter 2. The convergence property
of the system is tested in all three phases of the experiments.

For the experiments in this section, I tested two target size configu-
rations: [15, 10, 20] and [12, 12, 12]. In the first configuration, shelter 3’s
target size is greater than those of shelter 1 and shelter 2, thus requiring
the system to redistribute robots. This corresponds to setting P2 of the
experiments with the mathematical model. The second configuration
was chosen to specifically assess the spreading property. For the decay
period, I selected the value δ = δlong = 103.

Results

The results are reported in Figure 7.6. The plots show that convergence
is reached in both experimental settings, regardless of desired group
sizes. The detection of convergence in phase 2, which is the most critical
phase in the experiment, is achieved by all robots within slightly less
than 10 simulated minutes from the beginning of the phase.

Regarding spreading, the bottom plots of Figures 7.6(a)-(b) show
the average fulfilling percentage of the groups. In both experimental
settings, regardless of the desired group size, these percentages stabilize
on the same value in all phases.

7.6 Scalability Assessment

One of the key motivations to create a new group formation mechanism
is to achieve scalability (see Section 7.2). This motivation is the driving
force behind the choice of a decentralized cockroach-inspired model. In
this section, I test the scalability properties of the approach. I conduct
experiments with hundreds of mobile robots that must be divided in
dozens of groups. Parallel group formation with these numbers would
be difficult to achieve with existing group formation approaches.

7.6.1 Experimental Setup

The shelters are distributed in a N×N grid. I set the desired group size
to 25 for all the shelters. The experimental setup is shown in Figure 7.7.
Figure 7.7 (a) is a snapshot of the simulated group formation area.
Figure 7.7 (b) is an abstract representation of the same group formation
area in which the gray intensity of each square is proportional to the
number of grouped robots. This representation allows for visual analysis
of the sizes of the groups and their spatial distribution in the group
formation area over time.

115

Figure 7.7: Snapshot from scalability experiments with physically simulated
robots. Left: Simulation snapshot. Right: Abstracted representation of this
simulation snapshot—the gray intensity level of each square is proportional to
the recruited group size of the correspondingly positioned shelter (i.e., to the
number of robots recruited by that shelter).

In all the experiments, I set the number of available mobile robots
to 20N2. In this way, if fair spreading occurs, at convergence, a group
of 20 robots should have been formed under each shelter.

7.6.2 Convergence

In this section, I present a set of experiments designed to test the con-
vergence property of the system. I ran experiments with 16 and 25
shelters (320 and 500 mobile robots, respectively). The duration of each
experiment was set to 750 s.

The results are reported in Figure 7.8. The top plots shows the
dynamics of a sample run taken at random from the 80 experiment rep-
etitions. I also display three snapshots at 250 s, 500 s and 750 s. After
an initial period of instability, in which the group sizes grow with large
fluctuations, the system converges in both experimental settings. The
length of the decay period δ in these experiments was set to 350 s, which
explains the duration of the fluctuating phase, about 400 s. At conver-
gence, for both experimental settings, the distribution of the group sizes
is centered around the target value of 20. In particular, the median of
the group size distribution is 21. With 16 shelters, the first quartile of
group size is 14 and the third quartile is 23, while with 25 shelters the
inter-quartile extrema are 15 and 25.

The average behavior of the system over 80 runs, showed by the
bottom plots of Figure 7.8, confirms these observations. The median of
the formed groups grows to 22, and the extrema of the inter-quartile
range of the final sizes I observed are 15 and 25.

The plots also show that the time to reach convergence is very similar
with 16 and 25 shelters. The convergence time of the system appears to
be practically independent of the number of robots, thus confirming that
the proposed group formation mechanism displays the spreading prop-

116

erty. This result is expected because the system is completely parallel
and based on local interactions among mobile robots and shelters.

7.6.3 Spreading

To test spreading, I devised a two-phase experimental setting. In the
first phase, the system is given 750 s to reach convergence. At the be-
ginning of the second phase, I activate or deactivate a shelter. These
events force the system to redistribute the mobile robots and reach a
new convergence state, thus providing a good test of how capable the
system is of spreading robots between shelters. The length of the second
phase is set to 750 s.

As I explained in Section 7.5, upon activation and deactivation, a
shelter broadcasts a signal to its neighbors. The neighbors of a shelter
are those shelters in direct line of sight. The signal forces the recipients
to reset the leaving probability to lhi and to restart the decay process.

An important aspect in the system is the transmission range of the
reset signal. In Section 7.6.3, I analyze the results I obtained in ex-
periments in which the reset signal is broadcast globally throughout
the system. In Section 7.6.3, I discuss the results I obtained when the
transmission range of the signal is limited.

Global Reset Signal

In this section, I analyze the results I obtained with a global broadcast of
the reset signal across the shelters. In these experiments I use 9 shelters
and 180 robots.

To study whether the starting point of the (de)activation event affects
the system behavior, I explore the cases in which the event occurs at
the corner and at the center of the shelter grid.

The results are reported in Figures 7.9 and 7.10. In all the experi-
mental settings, at the end of phase 1 the system reaches convergence to
a state in which the group size distribution is tightly packed around the
target value 20. The event causes the shelters to release the grouped
robots. The subsequent dynamics, in the average plots, shows that,
regardless of the location of the event and its type (activation/deacti-
vation), the system is able to reach a new convergence state. The final
distribution of the group sizes is tightly packed around 20 robots.

The snapshots in Figures 7.9 and 7.10 of the sample experiments
show that the initial location of the event does not affect the final dis-
tribution of the robots. The gray levels in the snapshot do not display
any visible bias towards a specific region of the group formation area,
thus indicating that spreading is fair.

117

 0
 5
 10
 15
 20
 25
 30

250 500 750
 0
 5
 10
 15
 20
 25
 30

G
ro

u
p
 s

iz
e

Time [sec]

Min - Max
1Q - 3Q

250 500 750
 0
 5
 10
 15
 20
 25
 30

G
ro

u
p
 s

iz
e

Time [sec]

T = 250 T = 500 T = 750

Min - Max
1Q - 3Q

(a) 16 shelters, 320 mobile robots.

 0
 5
 10
 15
 20
 25
 30

250 500 750
 0
 5
 10
 15
 20
 25
 30

G
ro

u
p
 s

iz
e

Time [sec]

Min - Max
1Q - 3Q

250 500 750
 0
 5
 10
 15
 20
 25
 30

G
ro

u
p
 s

iz
e

Time [sec]

T = 250 T = 500 T = 750

Min - Max
1Q - 3Q

(b) 25 shelters, 500 mobile robots.

Figure 7.8: Scalability experiments testing the convergence and spreading prop-
erties of the system. Results are shown for two sets of experiments with 16
shelters (a) and 25 shelters (b). 80 experimental runs per set of experiments.
The top plots show the behavior of the system in a single sample experiment
that I have selected. The grids of squares represent snapshots of the state of
the system at given moments in time during this sample experiment. The gray
intensity of each individual square corresponds to the number of mobile robots
recruited at that time by a single shelter. The min-max lines show the size
of the largest recruited group of mobile robots and the size of the smallest
recruited group of foot-bots at any given moment. The 1Q and 3Q lines show
the inter-quartile range of the distribution of recruited group sizes among the
shelters. The 1Q is the first quartile and shows the minimum recruited group
size once I discard the lowest 25% of groups. The 3Q line is the third quartile,
and shows the maximum recruited group size once I discard the highest 25%
of the data. The bottom plot shows the same data averaged over all 80 runs.

118

 0
 5
 10
 15
 20
 25
 30

250 500 750 1000 1250 1500
 0
 5
 10
 15
 20
 25
 30

G
ro

u
p
 s

iz
e

Time [sec]

Min - Max
1Q - 3Q

250 500 750 1000 1250 1500
 0
 5
 10
 15
 20
 25
 30

G
ro

u
p
 s

iz
e

Time [sec]

T = 250 T = 500 T = 750 T = 1000 T = 1250 T = 1500

Min - Max
1Q - 3Q

(a) Corner robot activates at time 750 s

 0
 5
 10
 15
 20
 25
 30

250 500 750 1000 1250 1500
 0
 5
 10
 15
 20
 25
 30

G
ro

u
p
 s

iz
e

Time [sec]

Min - Max
1Q - 3Q

250 500 750 1000 1250 1500
 0
 5
 10
 15
 20
 25
 30

G
ro

u
p
 s

iz
e

Time [sec]

T = 250 T = 500 T = 750 T = 1000 T = 1250 T = 1500

Min - Max
1Q - 3Q

(b) Center robot activates at time 750 s

Figure 7.9: Set of experiments testing the spreading property of the system.
All experiments run with 9 shelters and 180 mobile robots in a recruitment
area consisting of a 3x3 shelter formation. Results are shown for two sets of
experiments. Each experimental run lasts for 1,500 s. 20 experimental runs
were conducted for each set of experiments. Top plots in each set represent
selected sample runs, while bottom plots represent data averaged over all 20
runs. For a more detailed explanation of the plots see previous caption from
Figure 7.8.

119

 0
 5
 10
 15
 20
 25
 30

250 500 750 1000 1250 1500
 0
 5
 10
 15
 20
 25
 30

G
ro

u
p
 s

iz
e

Time [sec]

Min - Max
1Q - 3Q

250 500 750 1000 1250 1500
 0
 5
 10
 15
 20
 25
 30

G
ro

u
p
 s

iz
e

Time [sec]

T = 250 T = 500 T = 750 T = 1000 T = 1250 T = 1500

Min - Max
1Q - 3Q

(a) Center robot deactivates at time 750 s

 0
 5
 10
 15
 20
 25
 30

250 500 750 1000 1250 1500
 0
 5
 10
 15
 20
 25
 30

G
ro

u
p
 s

iz
e

Time [sec]

Min - Max
1Q - 3Q

250 500 750 1000 1250 1500
 0
 5
 10
 15
 20
 25
 30

G
ro

u
p
 s

iz
e

Time [sec]

T = 250 T = 500 T = 750 T = 1000 T = 1250 T = 1500

Min - Max
1Q - 3Q

(b) Corner robot deactivates at time 750 s

Figure 7.10: Set of experiments testing the spreading property of the system.
All experiments run with 9 shelters and 180 mobile robots in a recruitment
area consisting of a 3x3 shelter formation. Results are shown for two sets of
experiments. Each experimental run lasts for 1,500 s. 20 experimental runs
were conducted for each set of experiments. Top plots in each set represent
selected sample runs, while bottom plots represent data averaged over all 20
runs. For a more detailed explanation of the plots see previous caption from
Figure 7.8.

120

Local Reset Signal

Although a global reset signal allows for fair spreading after the ac-
tivation and deactivation of shelters, its application to real scenarios
is problematic. In fact, if the frequency of these events is too high,
the system may have insufficient time to reach convergence, resulting
in constantly fluctuating group sizes. To prevent constant fluctuations,
the convergence results of Section 7.6.2 suggest that the time between
activation/deactivation events must be greater than the decay period
δ. As the size of the scenario grows, and with it the number of group
formation requests per time unit, the frequency of the events is likely to
exceed δ−1, thus causing constant fluctuations. A possible solution to
this problem is to limit the range of transmission of the reset signal.

In this series of experiments, I test the impact on the spreading ability
of the system when the reset signal is not globally broadcast. I use
16 and 25 shelters (to which correspond 320 and 500 mobile robots,
respectively) and deactivate only one corner shelter.

Short range. Figure 7.11 shows the results of experiments in which
the reset signal was transmitted only to the closest neighbors of a per-
turbed shelter (i.e., the shelters in the Moore neighborhood). The final
state reached by the system presents two regions, one affected by the
perturbation and one not affected by it. In the region affected by the
perturbation, the final group sizes are visibly lower than in the other
region. Thus, spreading is not fair. This phenomenon can be explained
by observing that, upon leaving a group, the direction chosen by a robot
is random and uniformly distributed. Thus, part of the robots leaked
from the perturbed region to the unperturbed one.

Medium range. Figure 7.12 shows the results of experiments in which
the reset signal was transmitted in a medium range. The reset signal
reaches the neighbors of the neighbors of the originally perturbed shel-
ter. Analogously to the previous case, the final state of the system is
characterized by two regions, one affected by perturbation and one not
affected. Since a larger part of the system takes part into the redistri-
bution process, the distribution of the final group size is more even than
the non-propagated signal case, but still spreading is not very fair.

Discussion

The communication range of the reset signal characterizes the ability
of the system to redistribute the robots. The experiments show that,
when the frequency of the perturbations exceeds δ−1, limiting the range
of the reset signal is not enough, by itself, to ensure fair redistribution.
This problem is due to the fact that the robots that leave the perturbed

121

 0
 5
 10
 15
 20
 25
 30

250 500 750 1000 1250 1500
 0
 5
 10
 15
 20
 25
 30

G
ro

u
p
 s

iz
e

Time [sec]

Min - Max
1Q - 3Q

250 500 750 1000 1250 1500
 0
 5
 10
 15
 20
 25
 30

G
ro

u
p
 s

iz
e

Time [sec]

T = 250 T = 500 T = 750 T = 1000 T = 1250 T = 1500

Min - Max
1Q - 3Q

(a) 16 shelters, 320 mobile robots.

 0
 5
 10
 15
 20
 25
 30

250 500 750 1000 1250 1500
 0
 5
 10
 15
 20
 25
 30

G
ro

u
p
 s

iz
e

Time [sec]

Min - Max
1Q - 3Q

250 500 750 1000 1250 1500
 0
 5
 10
 15
 20
 25
 30

G
ro

u
p
 s

iz
e

Time [sec]

T = 250 T = 500 T = 750 T = 1000 T = 1250 T = 1500

Min - Max
1Q - 3Q

(b) 25 shelters, 500 mobile robots.

Figure 7.11: Set of experiments on local perturbation. In these experiments,
the propagation of the reset signal is limited to the direct neighbors. Results are
shown for two sets of experiments (a,b). 20 experimental runs were conducted
for each set of experiments. Each experimental run lasts 1,500 s. Top plots
in each set represent selected sample runs, while bottom plots represent data
averaged over all 20 runs. For a more detailed explanation of the plots see
previous caption from Figure 7.8.

122

 0
 5
 10
 15
 20
 25
 30

250 500 750 1000 1250 1500
 0
 5
 10
 15
 20
 25
 30

G
ro

u
p
 s

iz
e

Time [sec]

Min - Max
1Q - 3Q

250 500 750 1000 1250 1500
 0
 5
 10
 15
 20
 25
 30

G
ro

u
p
 s

iz
e

Time [sec]

T = 250 T = 500 T = 750 T = 1000 T = 1250 T = 1500

Min - Max
1Q - 3Q

(a)

 0
 5
 10
 15
 20
 25
 30

250 500 750 1000 1250 1500
 0
 5
 10
 15
 20
 25
 30

G
ro

u
p
 s

iz
e

Time [sec]

Min - Max
1Q - 3Q

250 500 750 1000 1250 1500
 0
 5
 10
 15
 20
 25
 30

G
ro

u
p
 s

iz
e

Time [sec]

T = 250 T = 500 T = 750 T = 1000 T = 1250 T = 1500

Min - Max
1Q - 3Q

(b)

Figure 7.12: Set of experiments on local perturbation. In these experiments,
the propagation of the reset signal is limited to the second-level neighbors (i.e.,
the direct neighbors of the direct neighbors of the signal originator). Results are
shown for two sets of experiments (a,b). 20 experimental runs were conducted
for each set of experiments. Each experimental run lasts 1,500 s. Top plots
in each set represent selected sample runs, while bottom plots represent data
averaged over all 20 runs. For a more detailed explanation of the plots see
previous caption from Figure 7.8.

123

shelters tend to leave the group in all the directions. As a consequence,
only a part of the leaving robots are directed towards other perturbed
shelters. The other robots join already stable groups. In this way, two
regions are formed in the system—one region with a surplus of robots,
and a region with a deficit of robots. A possible solution for this problem,
currently under study, is to prevent the robots from navigating towards
the unperturbed regions of the system.

Summary

In this chapter I presented a novel, distributed approach to the formation
of multiple groups of mobile robots. The main feature of the algorithm
is the ability to fairly distribute robots across group of different target
sizes even in presence of scarce resources. The method takes inspiration
from the behavior of cockroach aggregation under shelters. In the sys-
tem, shelters are simple, active devices able to monitor the number of
aggregated robots, and calculate and locally broadcast probabilities for
the robots to join and leave the aggregate.

I showed that the stability of the groups is mainly dependent on the
leaving probability, and presented a system in which shelters vary this
probability over time to control group size. I demonstrated that, to
achieve group size convergence and fair robot spreading, it is sufficient
to let the leaving probability decay gradually from a high value to a low
value.

I assessed the performance of the system in a large, challenging sce-
nario in which hundreds of robots must be aggregated into dozens of
groups. The results suggest that, due to its parallelism, the convergence
time of the system is basically independent of the size of the scenario.
Regarding spreading, the system is able to distribute the robots evenly
among the shelters. In presence of perturbations, such as activation/de-
activation of a shelter, spreading is fair if the time between two of these
events is longer than the decay period of the leaving probabilities.

Future work involves studying methods to modify the system to en-
hance spreading with a high frequency of perturbations. A possible way
to improve the system is to keep the propagation of the perturbations
local, and prevent the robots that are temporarily freed from leaking to
the non-perturbed region.

124

Chapter 8

Conclusions and Future Work

The long-term vision for swarm robotics applications is extremely di-
verse. Construction, search-and-rescue, space exploration, and surgery
are but a few of the many applications foreseen in the distant future.
At present, however, developing effective swarm robotics systems is a
difficult endeavor due to the lack of general methodologies. Successful
attempts to design these systems concentrate on specific scenarios, with
little opportunity for generalization.

One of the most crucial hurdles to develop a general methodology
for the design of swarm robotics systems is the lack of dedicated de-
velopment tools. Development tools, such as simulators, programming
languages, and robot platforms, constitute the backbone around which
methodologies are conceived and validated.

This thesis deals with ARGoS, the first physics-based robot simula-
tor specifically designed for swarm robotics applications. The faceted
nature of swarm systems entails three main requirements: (i) accuracy,
to ensure satisfactory correspondence between the results predicted by
the simulation and the results obtained through real-world experiments;
(ii) flexibility, to support any kind of robot and experiment; and (iii)
efficiency, to minimize the time necessary to complete a simulation.

In the design of ARGoS, I have considered accuracy not as an intrinsic
property of the simulator, but as a measurable quantity whose threshold
of acceptance is decided by the experimenter. Consequently, in ARGoS
accuracy is tunable. Accuracy tuning consists in choosing the models
involved in a simulation. Models are encapsulated into modules, that
the user selects as part of the configuration of the experiment. To this
end, the architecture of ARGoS offers unprecedented levels of modular-
ity, allowing the user to override any aspect of the simulation: sensors,
actuators, physics engine, communication media, and visualizations.

Flexibility is a direct consequence of ARGoS’ modularity. A unique
feature of ARGoS is the possibility to execute the simulation using mul-
tiple physics engines, dedicating each engine to a portion of the physical

125

space. In addition, ARGoS is implemented as a library with a power-
ful API, which renders embedding it into larger applications easy and
fast. For instance, ARGoS has been interfaced to genetic algorithms to
perform evolutionary robotics experiments.

Efficiency in ARGoS is obtained through a wide set of techniques and
design choices that span multiple levels of the architecture. Tunable ac-
curacy allows the user to assign computational resources to the relevant
aspects of a simulation, and to employ less accurate (and, thus, faster)
models for unimportant aspects. Differently from any existing simula-
tor, in ARGoS, spatial indexing is implemented as a policy. This allows
the user to select the best spatial index for the experiment at hand.
Additionally, multi-threading ensures a good use of modern, multi-core
architectures. A unique feature of ARGoS in this respect is the possi-
bility to choose the scheduling strategy for assigning tasks to threads.

Experimental evaluation demonstrates that ARGoS is capable of sim-
ulating thousands of robots in a fraction of real time. In particular,
experiments on an average computer show that ARGoS can complete a
navigation experiment involving 10,000 robots in 60% of real-time —an
unmatched result in the literature so far.

ARGoS is open source software released under the terms of the MIT
license. Over the years, it has been employed for a large number of
research works in swarm robotics including navigation, pattern forma-
tion, self-assembly, foraging, task allocation, and construction. At the
moment of writing, ARGoS is used in 15 laboratories worldwide, and
it is the official robot simulator of the projects Swarmanoid, ASCENS,
E-SWARM, H2SWARM, and Swarmix. A little community of contrib-
utors is providing support in the form of bug reports and third-party
extensions. For instance, ARGoS has been integrated by Kudelski et al.
(2013) with the well-known network simulator ns3,1 producing the first
software capable of both simulating the physics and the WiFi commu-
nication capabilities of a robot swarm accurately.

Future work on ARGoS will follow several directions. One direction
is to further improve its performance, possibly reaching hundreds of
thousands of robots in real time. One possible way to achieve this result
is integrating ARGoS with data structures that exploit the graphical
processing unit (GPU) onboard any modern personal computer. Ad-
ditionally, the architecture of ARGoS could be redesigned to be multi-
process as well as multi-threaded. Multi-process architectures are al-
ready employed by several simulators, such as Gazebo and Morse. How-
ever, multi-processing in these simulators is implemented as a central-
ized system in which a special node coordinates the operations of the
other nodes. To improve performance, a possible alternative could be a

1https://www.nsnam.org/

126

https://www.nsnam.org/

peer-to-peer architecture, in which nodes exchange information directly,
without the need for a centralized coordinator.

Another direction for future work is integrating ARGoS with other
tools, such as programming languages and analysis tools. Regarding lan-
guages, users can now program robot control code in C++, ASEBA, and
Lua, and integration with languages such as Proto and ROS is planned.
Furthermore, ARGoS will soon be integrated with the advanced statis-
tical analyzer MultiVeStA (Sebastio and Vandin, 2013).

Last but not least, effort will be put in the integration of more robots
and more experimental modalities. For instance, realistic models for
underwater experiments, and voxel-based physics engines to simulate
shores and construction with deformable materials are currently under
study. Additionally, improved support for modular robots, magnetism,
and articulated robots is currently being developed.

Looking forward, my hope is that ARGoS will play an increasingly
important role in the development of swarm robotics. In particular, by
its very nature, ARGoS is suitable to tackle research questions that have
received little attention so far. Among these questions, I believe that
three are paramount: (i) how to realize effective human-swarm interac-
tion, that allows an operator to influence the behavior of an autonomous
swarm in tasks such as search-and-rescue, exploration, and construction;
(ii) how to develop, debug, and maintain large-scale swarm behaviors;
and (iii) how to establish general benchmarks to characterize and com-
pare existing approaches, thus fostering the emergence of best practices
and solid methodologies.

127

Appendix A

Other Scientific Contributions

Over the course of my doctorate, I have conducted a number of studies
not directly related to the main topic of this thesis. These works touch
several topics, and can be divided into two categories: swarm robotics
and Boolean network robotics.

A.1 Swarm Robotics

A.1.1 Pattern Formation and Flocking

• C. Pinciroli, M. Birattari, E. Tuci, M. Dorigo, M. Del Rey Zapa-
tero, T. Vinko, D. Izzo. Self-Organizing and Scalable Shape
Formation for a Swarm of Pico Satellites. Proceedings of the
NASA/ESA Conference on Adaptive Hardware and Systems (AHS-
2008). IEEE-CS Press, Washington, DC, USA, pages 57–61, 2008.

• C. Pinciroli, M. Birattari, E. Tuci, M. Dorigo, M. Del Rey Za-
patero, T. Vinko, D. Izzo. Lattice Formation in Space for
a Swarm of Pico Satellites. The Sixth International Confer-
ence on Ant Colony Optimization and Swarm Intelligence (ANTS-
2008). Springer LNCS 5217, Berlin, Germany, pages 347–354,
2008.

Pattern formation is an activity whereby mobile robots displace them-
selves autonomously so as to form a predefined shape. In these works,
we have explored the problem of forming patterns with small satellites
orbiting a planet.

• A. Stranieri, E. Ferrante, A. E. Turgut, V. Trianni, C. Pinciroli,
M. Birattari, M. Dorigo. Self-Organized Flocking with a Het-
erogeneous Mobile Robot Swarm. Advances in Artificial Life
(ECAL 2011). MIT press, Cambridge, MA, pages 789–796, 2011.

• E. Ferrante, A. E. Turgut, C. Huepe, A. Stranieri, C. Pinciroli,
M. Dorigo. Self-Organized Flocking with a Mobile Robot

129

Swarm: a Novel Motion Control Method. Adaptive Behav-
ior, 20(6):460–477, 2012.

While pattern formation aims to create a static shape, the purpose of
flocking is to coordinate the motion of a group of mobile robots towards
a target location. As a result of coordination, the robot swarm moves
as a unique entity.

An important research question is whether explicit alignment nego-
tiation among the robots is required to achieve flocking. To shed light
on this question, I have cooperated to two works. In the first, the
robot swarm is divided in two groups, aligning and non-aligning. Align-
ing robots exchange information to negotiate a direction; non-aligning
robots lack this capability. Results show that indeed flocking is possi-
ble even in presence of non-aligning robots, but flocking performance
increases with the fraction of aligning ones. In the second work, we
moved our attention to an overlooked aspect of the flocking mechanism—
motion control. Motion control is the component that translates the
proximal and alignment components into actual movement. We pro-
posed a novel motion control rule, which increases flocking performance
sensibly with non-aligning robots.

• E. Ferrante, A. E. Turgut, A. Stranieri, C. Pinciroli, M. Birattari,
M. Dorigo. A Self-Adaptive Communication Strategy for
Flocking in Stationary and Non-Stationary Environments.
Natural Computing, 2014. In press.

In another work, we explored the case in which a small group of
robots in a swarm possesses information regarding the target location,
and must guide the rest of the swarm. We proposed an algorithm that
allows the robots to flock in the following conditions: (i) the target
location is constant over time; (ii) the target location changes over time;
(iii) two groups of robots have information about contrasting target
locations.

The experiments on flocking have been conducted with ARGoS, both
in simulation and with real robots.

A.1.2 Cooperative Navigation

• F. Ducatelle, G. Di Caro, C. Pinciroli, F. Mondada, L. M. Gam-
bardella. Communication Assisted Navigation in Robotic
Swarms: Self-Organization and Cooperation. Proceedings
of the IEEE/RSJ International Conference on Intelligent Robots
and Systems (IROS 2011). IEEE Computer Society Press, Los
Alamitos, CA, pages 4981–4988, 2011.

In this set of works, we investigated distributed methods to route in-
dividual robots towards a destination. All these method revolve around

130

the idea that robots form a network. Depending on the position of
the robots with respect to the target locations, these methods dictate
how information flows in the network, in order to guide a robot to its
destination.

We investigated the idea of guiding wheeled robots using a swarm
of flying robots. The wheeled robots are unaware of the structure of
the environment and must navigate between two locations. To optimize
the path followed by the wheeled robots, the flying robots adapt their
position over time to the motion of the wheeled robots. To the best of our
knowledge, this method is the first example of self-organized cooperation
in a physically heterogeneous swarm.

• F. Ducatelle, G. Di Caro, C. Pinciroli, L. M. Gambardella. Self-
Organised Cooperation between Robotic Swarms. Swarm
Intelligence, 5(2):73–96, 2011.

• F. Ducatelle, G. Di Caro, A. Förster, M. Bonani, M. Dorigo,
S. Magnenat, F. Mondada, R. O’Grady, C. Pinciroli, P. Rétornaz,
V. Trianni, L. M. Gambardella. Cooperative Navigation in
Robotic Swarms. Swarm Intelligence, available at http://link.
springer.com/article/10.1007%2Fs11721-013-0089-4#page-1,
2013.

In the above method, the wheeled robots use information from the
flying robots to navigate. The fact that the flying robots adapt their
position to the motion of the wheeled robots can be interpreted as a way,
for the wheeled robots, to achieve a form of stigmergic communication.

In subsequent works, we studied methods based on other forms of
communication to produce behaviors that achieve cooperative naviga-
tion. In particular, we concentrated on the problem of routing a homo-
geneous swarm of wheeled robots between two locations, maintaining
the assumption that the robots do not possess nor construct an explicit
representation of the environment.

We proposed a method inspired by routing algorithms in mobile ad
hoc networks. Each robot maintains a routing table containing the
shortest path to each known target location. The target locations are
first discovered by the robots that can perceive it directly. The informa-
tion on a target location is broadcast periodically and propagated by all
robots throughout the network. This algorithm allows a single robot to
be routed to a specific destination. In addition, when the entire swarm is
required to navigate between two points, this algorithm autonomously
converges to a chain-like formation between the two locations. This
swarm behavior occurs also in presence of obstacles.

• Á. Gutiérrez, A. Campo, F. C. Santos, C. Pinciroli, M. Dorigo. So-
cial Odometry in Populations of Autonomous Robots. The
Sixth International Conference on Ant Colony Optimization and

131

http://link.springer.com/article/10.1007%2Fs11721-013-0089-4#page-1
http://link.springer.com/article/10.1007%2Fs11721-013-0089-4#page-1

Swarm Intelligence (ANTS-2008). Springer LNCS 5217, Berlin,
Germany, pages 371–378, 2008.

In a further paper, we show that a similar chaining behavior can be
obtained if robots exchange distance information estimated from odom-
etry data. Since the error of this estimate increases with the distance
from the target, the robots communicate the level of confidence along
with the information on the distance. This paper shows that this sim-
ple mechanism is sufficient to achieve a stable chain between two target
locations.

All the above experiments have been conducted with ARGoS, both
in simulation and with real robots.

A.1.3 Self-Assembly

• R. O’Grady, C. Pinciroli, R. Groß, A. L. Christensen, F. Mondada,
M. Bonani, M. Dorigo. Swarm-bots to the Rescue. European
Conference on Artificial Life (ECAL 2009). Springer LNCS 5777,
Berlin, Germany, pages 165–172, 2009.

In self-assembly, groups of robots connect to each other to perform
tasks that would not be feasible individually.

One of today’s open problems in self-assembly is when to trigger the
self-assembling process. In this paper, we propose an algorithm that
allows robots to decide between performing a task individually and co-
operating by forming physical connections to other robots. We test our
algorithm in rescue scenario in which broken robots must be transported
to safety by rescuer robots. Each broken robot requires a different num-
ber of rescuers to be transported. The algorithm assumes that rescuers
are not aware a priori of the required number of robots to complete a
transport.

• R. O’Grady, A. L. Christensen, C. Pinciroli, M. Dorigo. Robots
Autonomously Self-Assemble into Dedicated Morpholo-
gies to Solve Different Tasks. Proceedings of the 9th Interna-
tional Conference on Autonomous Agents and Multiagent Systems
(AAMAS 2010). International Foundation for Autonomous Agents
and Multiagent Systems, Richland, SC, pages 1517–1518, 2010.

In this work, we investigated another important open problem in self-
assembly: Which morphology must be selected for a given task? The
result of our work is a distributed algorithm that can autonomously
select between three possible morphologies capable of solving tasks that
appear to the robots in an unknown order.

132

A.1.4 Design of Artificial Swarm Systems

• M. Brambilla, C. Pinciroli, M. Birattari, M. Dorigo. Property-
driven Design for Swarm Robotics. Proceedings of the 11th
International Conference on Autonomous Agents and Multiagent
Systems (AAMAS 2012). International Foundation for Autonomous
Agents and Multiagent Systems, pages 139–146, 2012.

In this paper, we present a novel approach to the design of swarm
robotics systems that tackles the problem of linking macroscopic prop-
erties to microscopic behaviors. The typical design process consists in a
code-and-fix loop that revolves around the concept that the design must
specify how a swarm behavior is achieved. In contrast, the idea behind
our approach is to start from a specification of what the system must
achieve—its properties. The resulting design process is factorized in four
phases. The result of each subsequent phase is an increasingly detailed
model of the system. The final result is a complete, executable specifi-
cation of the system. At each phase, the model is expressed through a
formalism that allows the designer to verify the dynamics of the model
against the target properties of the system. The experiments in this
paper have been conducted with ARGoS, both in simulation and with
real robots.

• E. Gjondrekaj, M. Loreti, R. Pugliese, F. Tiezzi, C. Pinciroli,
M. Brambilla, M. Birattari, M. Dorigo. Towards a Formal Veri-
fication Methodology for Collective Robotic Systems. Pro-
ceedings of the 14th International Conference on Formal Engineer-
ing Methods (ICFEM 2012). Springer, Berlin, Germany, 7635:54–
70, 2012.

To apply the property-driven design approach, it is required to iden-
tify suitable formalisms to express the properties of the system that
enable verification. In this paper, we propose an approach to formal
verification that captures the main features of a distributed foraging be-
havior. The experiments in this paper have been conducted with ARGoS
in simulation.

• M. Puviani, C. Pinciroli, G. Cabri, L. Leonardi, F. Zambonelli.
Is Self-Expression Useful? Evaluation by a Case Study.
IEEE 22nd International Workshop on Enabling Technologies: In-
frastructure for Collaborative Enterprises (WETICE 2013), IEEE
Press, Piscataway, NJ, pages 62–67, 2013.

Designing distributed systems that are able to adapt is one of the
grand challenges of our field. A current trend in the research in dis-
tributed systems is the identification of adaptation patterns, i.e., recur-
rent behavioral schema that display a form of adaptivity. Self-expression

133

is the ability of a system to (i) detect the need for a change in adapta-
tion pattern, and (ii) switch to a different adaptation pattern that suits
the new operational conditions. In this paper, we explore the impact of
self-expression on the performance of a swarm of robots that performs a
foraging task. The experiments in this paper have been conducted with
ARGoS in simulation.

A.1.5 Task Allocation and Task Partitioning

One of the basic research topics in swarm robotics involves the relation-
ship between the tasks to perform and the available robots. The study
of this topic can be conducted along two complementary paths.

• A. Brutschy, G. Pini, C. Pinciroli, M. Birattari, M. Dorigo. Self-
organized Task Allocation to Sequentially Interdependent
Tasks in Swarm Robotics. Autonomous Agents and Multi-
Agent Systems, 28(1):101–125, 2014.

The first path concerns the mechanisms to assign robots to a set
of given tasks. In the vast majority of the papers on this subject, the
tasks are assumed independent and always active. In this paper, we
explore a scenario that has so far been overlooked in the literature:
assigning robots to non-independent tasks. More specifically, in our
work the tasks are sequentially interdependent. In practice, the robots
must transport objects from a source location to a target destination.
Every object, in order to reach its destination, must first be deposited
in an area located in the middle of the arena. The purpose of this
area is to parallelize the transportation task, potentially improving the
throughput. During the experiment, a robot must choose whether to
transport objects between the source and the middle of the arena, of
between the middle and the destination. The proposed method does not
require explicit communication among the robots; rather, it is based on
the individual perception of delay experienced every time a robot waits
for an object to be deposited in the middle area. Results show that our
algorithm is able to reach a state in which throughput is near-optimal.

• G. Pini, A. Brutschy, C. Pinciroli, M. Dorigo, M. Birattari. Au-
tonomous Task Partitioning in Robot Foraging: an Ap-
proach Based on Cost Estimation. Adaptive Behavior, 21(2):118–
136, 2013.

The second research path deals with the dual problem, i.e., how
to partition a task into parts that can be executed by the robots in
parallel. In this paper, we propose a method to achieve efficient task
partitioning in which the robots estimate the cost of performing a task.
The experimental scenario consists in transporting objects from a source
location to a target destination. The robots do not possess nor construct

134

a map of the environment, and rely on odometry information to estimate
their position with respect to the two locations. Thus, in this scenario,
the cost of performing the transportation corresponds to the time spent
navigating between the two locations. With the increase of the distance
between source and target, the information based on odometry becomes
noisier, the likelihood that a robot gets lost augments, and the cost
associated with the task grows. As a consequence, the robots prefer
to perform the task partially, leaving its completion to other robots.
Results show that this method has beneficial effects on the throughput
of objects reaching the destination.

All the above experiments have been conducted with ARGoS, both
in simulation and with real robots.

A.1.6 Swarm Size Estimation

• M. Brambilla, C. Pinciroli, M. Birattari, M. Dorigo. A Reliable
Distributed Algorithm for Group Size Estimation with
Minimal Communication Requirements. 14th International
Conference on Advanced Robotics (ICAR 2009). Proceedings on
CD-ROM, paper ID 137, 6 pages, 2009.

In this paper, we propose an algorithm that allows robots in a swarm
to estimate the size of the swarm in a distributed fashion. The algorithm
is loosely inspired by the signaling behavior of fireflies and crickets. The
experiments in this paper have been conducted with ARGoS in simula-
tion.

A.1.7 Collective Decision Making

Collective decision-making is a process whereby the members of a group
decide on a course of action by consensus.

• M. A. Montes de Oca, E. Ferrante, A. Scheidler, C. Pinciroli, M. Bi-
rattari, M. Dorigo. Majority-Rule Opinion Dynamics with
Differential Latency: A Mechanism for Self-Organized Col-
lective Decision-Making. Swarm Intelligence, 5(3-4):305–327,
2011.

In this paper, we introduce an algorithm that allows a swarm of
robots to make a collective choice between two actions that have the
same effect, but different execution time. The algorithm assumes that
the robots do not possess a priori information on the execution time of
either action. The experimental setup involves an asymmetric loop-like
arena in which a location is marked as source, and another is marked
as destination. The task consists in transporting an object from source
to destination. The object is too heavy for a single robot to transport,
so teams of three robots are employed. The robots must negotiate the

135

direction to follow to complete the transportation task. Both directions
eventually lead to the destination, but one direction is much shorter than
the other. Results show that the algorithm converges to the optimal
choice for all the teams involved. The experiments in this paper have
been conducted with ARGoS, both in simulation and with real robots.

• A. Campo, Á. Gutiérrez, S. Nouyan, C. Pinciroli, V. Longchamps,
S. Garnier, M. Dorigo. Artificial Pheromone for Path Selec-
tion by a Foraging Swarm of Robots. Biological Cybernetics,
103(5):339–352, 2010.

In this paper, we studied the problem of path selection from insights
inspired by ant pheromone trails. The robots communicate in a network
and exchange messages that behave as virtual ants. The objective of
the work is to route the messages so as to create paths between various
locations in the environment marked by nearby robots. The proposed
method converges to the creation of optimal paths. Experimentation is
conducted with mathematical models and real robots.

A.1.8 Heterogeneous Swarm Robotics

• M. Dorigo, D. Floreano, L.M. Gambardella, F. Mondada, S. Nolfi,
T. Baaboura, M. Birattari, M. Bonani, M. Brambilla, A. Brutschy,
D. Burnier, A. Campo, A. L. Christensen, A. Decugnière, G. Di
Caro, F. Ducatelle, E. Ferrante, A. Förster, J. Guzzi, V. Longchamp,
S. Magnenat, J. Martinez Gonzalez, N. Mathews, M. Montes de
Oca, R. O’Grady, C. Pinciroli, G. Pini, P. Rétornaz, J. Roberts,
V. Sperati, T. Stirling, A. Stranieri, T. Stützle, V. Trianni, E. Tuci,
A.E. Turgut, F. Vaussard. Swarmanoid: a Novel Concept
for the Study of Heterogeneous Robotic Swarms. IEEE
Robotics & Automation Magazine, 20(4):60–71, 2013.

In this paper, we present the main findings in the FET project Swar-
manoid (2006-2010). This project dealt with the design and implemen-
tation of the first heterogeneous swarm of robots capable of operating
in 3D. Among the main results of the project, we list three novel robot
platforms—the foot-bot, a ground-based robot; the eye-bot, a fully au-
tonomous flying robot; and the hand-bot, a robot capable of climbing a
bookshelf—, ARGoS, and a number of novel coordination algorithms.

A.1.9 Collective Transport

• A. Decugnière, B. Poulain, A. Campo, C. Pinciroli, B. Tartini,
M. Osée, M. Dorigo, M. Birattari. Enhancing the Coopera-
tive Transport of Multiple Robots. The Sixth International
Conference on Ant Colony Optimization and Swarm Intelligence

136

(ANTS-2008). Springer LNCS 5217, Berlin, Germany, pages 307–
314, 2008.

Object transport is often used as a testbed to assess the performance
of many swarm algorithms. Often, the experimental scenarios involve
an object whose weight exceeds the transport capabilities of a single
robot. Thus, transport is performed by a team of cooperating robots.
In this paper, we introduce a concept design for a robotic cart capable
of collecting and storing multiple objects. The cart is conceived to be
transported by a team of robots. Using the cart, mobile robots can
transport a higher number of objects, thus improving the performance
of the system.

A.2 Boolean Network Robotics

Boolean networks were introduced by Stuart Kauffmann as a simple
model of gene regulatory networks. The study of this kind of networks
revealed that, despite the simplicity of their implementation, Boolean
networks exhibit complex dynamics. Depending on their configuration,
the dynamics of these networks display very diverse features. Three
regimes of behavior have been identified: (i) stationary, which occurs
when the network dynamics converges to a small number of stable at-
tractors, each robust to external perturbations; (ii) chaotic, in which
the dynamics present a large number of attractors, and perturbations
cause dramatic changes in the network behavior; and (iii) critical, in
which the dynamics are formed by a small number of diverse attractors
that allow the network to be both robust to small perturbations, and
adaptive to large ones.

The richness of the dynamics, joined with the simplicity of imple-
menting them, convinced us that Boolean networks could be fruitfully
employed as robot control systems, similarly to the evolutionary robotics
approach.

• A. Roli, M. Manfroni, C. Pinciroli, M. Birattari. On the Design
of Boolean Network Robots. Proceedings of EVOApplications
2011. Springer LNCS 6624, Berlin, Germany, pages 43–52, 2011.

• A. Roli, S. Benedettini, M. Birattari, C. Pinciroli, R. Serra, M. Vil-
lani. Robustness, Evolvability and Complexity in Boolean
Network Robots. European Conference on Complex Systems
(ECCS 2011). Poster.

In a series of preliminary studies, we investigated the feasibility of this
approach in simple phototaxis experiments involving an e-puck robot.
Results demonstrated that indeed Boolean networks are capable of act-
ing as a control system that reacts to basic external stimuli.

137

• A. Roli, S. Benedettini, M. Birattari, C. Pinciroli, R. Serra, M. Vil-
lani. A Preliminary Study on BN-Robots’ Dynamics. Pro-
ceedings of the Italian Workshop on Artificial Life and Evolution-
ary Computation (WIVACE 2012). Published on CD, ISBN 978-
88-903581-2-8, 2012.

• A. Roli, S. Benedettini, M. Birattari, C. Pinciroli, R. Serra, M. Vil-
lani. State Space Properties of Boolean Networks Trained
for Sequence Tasks. European Conference on Complex Systems
(ECCS 2012). Extended abstract and poster, 2012.

• A. Roli, M. Villani, R. Serra, L. Garattoni, C. Pinciroli, M. Bi-
rattari. Identification of Dynamical Structures in Artifi-
cial Brains: An Analysis of Boolean Network Controlled
Robots. AI*IA 2013. Springer, Berlin, Germany, LNAI 8249,
pages 324–335, 2013.

• S. Benedettini, M. Villani, A. Roli, R. Serra, M. Manfroni, A. Gagliardi,
C. Pinciroli, M. Birattari. Dynamical Regimes and Learning
Properties of Evolved Boolean Networks. Neurocomputing,
99:111–123, 2013.

In three subsequent studies, we analyzed the structure of the state
space in which successfully trained Boolean networks operate. Our find-
ings show that (i) attractors encode basic behaviors, (ii) Boolean net-
works are capable of solving tasks in which memory is required, and (iii)
Boolean networks display effective learning capabilities.

• L. Garattoni, A. Roli, M. Amaducci, C. Pinciroli, M. Birattari.
Boolean Network Robotics as an Intermediate Step in
the Synthesis of Finite State Machines for Robot Con-
trol. ECAL 2013, MIT Press, Cambridge, MA, pages 783–790,
2013.

In a further paper, we demonstrated that the structure of the state
space of non-trivial Boolean networks can be represented as a finite state
machine. As a consequence, we argue that Boolean networks could be
employed as a low-cost intermediate step towards the synthesis of finite
state machines for robot control.

A.3 Other Publications

• M. A. Montes de Oca, J. Peña, T. Stützle, C. Pinciroli, M. Dorigo.
Heterogeneous Particle Swarm Optimizers. IEEE Congress
on Evolutionary Computation (CEC 2009). IEEE Press, Piscat-
away, NJ, pages 698–705, 2009.

This paper deals with particle swarm optimization, a class of meta-
heuristic algorithms inspired by Boyd’s model of bird flocking. In these

138

algorithms, the position of each particle in the space represents a candi-
date solution to the optimization problem. The classical implementation
of this class of algorithms assumes a homogeneous set of particles. In
this paper, we show that using different kinds of particles diversifies
the exploration of the solution space, resulting in a lower number of
iterations necessary to find good solutions.

139

Appendix B

Compiling and Installing ARGoS

B.1 Licensing

ARGoS is released under the terms of the MIT license:

The MIT License (MIT)
Copyright (c) 2014 Carlo Pinciroli
Permission is hereby granted, free of charge, to any person
obtaining a copy of this software and associated documen-
tation files (the ”Software”), to deal in the Software with-
out restriction, including without limitation the rights to use,
copy, modify, merge, publish, distribute, sublicense, and/or
sell copies of the Software, and to permit persons to whom
the Software is furnished to do so, subject to the following
conditions:
The above copyright notice and this permission notice shall be
included in all copies or substantial portions of the Software.
THE SOFTWARE IS PROVIDED ”AS IS”, WITHOUT WAR-
RANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUD-
ING BUT NOT LIMITED TO THE WARRANTIES OF
MERCHANTABILITY, FITNESS FOR A PARTICULAR PUR-
POSE AND NONINFRINGEMENT. IN NO EVENT SHALL
THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE
FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY,
WHETHER IN AN ACTION OF CONTRACT, TORT OR
OTHERWISE, ARISING FROM, OUT OF OR IN CON-
NECTION WITH THE SOFTWARE OR THE USE OR OTHER
DEALINGS IN THE SOFTWARE.

B.2 Downloading ARGoS

You can download a binary package of ARGoS from http://iridia.
ulb.ac.be/argos/download.php. Alternatively, you can download the

141

http://iridia.ulb.ac.be/argos/download.php
http://iridia.ulb.ac.be/argos/download.php

development sources through git:

$ git clone https://github.com/ilpincy/argos3.git argos3

B.3 Compiling ARGoS

B.3.1 Requirements

If you downloaded the sources of ARGoS and want to compile its code,
you need:

• A UNIX system (Linux or MacOSX; Microsoft Windows is not
supported)

• g++ ≥ 4.3 (on Linux)

• clang ≥ 3.1 (on MacOSX)

• cmake ≥ 2.6

If you want to compile the simulator, you need:

• gsl ≥ 1.15

• FreeImage ≥ 3.15

The OpenGL-based graphical visualization is compiled only if the fol-
lowing libraries are found:

• Qt ≥ 4.6

• freeglut ≥ 2.6.0

• libxi-dev (on Ubuntu and other Debian-based systems)

• libxmu-dev (on Ubuntu and other Debian-based systems)

If you want to create the Lua wrapper you need:

• lua == 5.1

If you want to create the documentation you need:

• To create the API:

– Doxygen ≥ 1.7.3

– Graphviz/dot ≥ 2.28

• To create the HTML version of the README:

– asciidoc ≥ 8.6.2

Debian

On Debian, you can install all of the necessary requirements with the
following command:

$ sudo apt-get install libgsl0-dev libfreeimage-dev libqt4-dev \
freeglut3-dev libxi-dev libxmu-dev liblua5.1-dev lua5.1 \
doxygen graphviz-dev asciidoc

142

OpenSuse

On openSUSE 12.3, you can install all of the necessary requirements
with the following commands:

$ sudo zypper ar -n openSUSE-12.3-Graphics \
http://download.opensuse.org/repositories/graphics/openSUSE_12.3/ \
graphics

$ sudo zypper refresh

$ sudo zypper install git cmake gcc gcc-c++ gsl-devel freeimage-devel \
doxygen graphviz asciidoc lua51-devel libqt4-devel freeglut-devel \
rpmbuild

Mac OSX

On Mac, you can install all of the necessary requirements using Home-
Brew.1 On the command line, type the following command:

$ brew install pkg-config cmake gsl libpng freeimage lua qt \
docbook asciidoc graphviz doxygen

B.3.2 Compiling the code

The compilation of ARGoS is configured through CMake.2

Fast compilation instructions

Compiling the ARGoS simulator:

$ cd argos3
$ mkdir build_simulator
$ cd build_simulator
$ cmake ../src
$ make

Compiling ARGoS for a robot:

$ cd argos3
$ mkdir build_myrobot
$ cd build_myrobot
$ cmake -DARGOS_BUILD_FOR=myrobot ../src
$ make

Compiling the documentation:

1http://http://brew.sh/
2http://www.cmake.org/

143

http://http://brew.sh/
http://www.cmake.org/

$ cd argos3
$ cd build_simulator # or ’cd build_myrobot’
$ make doc

ARGoS sources under Eclipse

To use Eclipse with the ARGoS sources, you must have the CDT3

installed. Optionally, you can also install CMakeEd4 to modify the
CMakeLists.txt files comfortably within Eclipse.

To configure the ARGoS sources for Eclipse, it is better to avoid com-
piling the code in a separate build directory (for more details, see http:
//www.vtk.org/Wiki/Eclipse CDT4 Generator#Out-Of-Source Builds).
Thus, execute CMake as follows:

$ cd argos3
$ cmake -G "Eclipse CDT4 - Unix Makefiles" src/

Now open Eclipse. Click on File→ Import..., select Existing project
into workspace, and click on Next. Set the base argos3 directory as
the root directory in the dialog that appears. Click on Next and you’re
ready to go.

B.3.3 Advanced compilation configuration

The compilation of ARGoS can be configured through a set of CMake
options:

Variable Type Meaning [default value]

CMAKE BUILD TYPE STRING Build type (Debug, Release, etc.) [empty]
CMAKE INSTALL PREFIX STRING Install prefix (/usr, /usr/local, etc.)

[/usr/local]
ARGOS BUILD FOR STRING Target of compilation (simulator or robot

name) [simulator]
ARGOS BUILD NATIVE BOOLEAN Whether to use platform-specific instruc-

tions [OFF]
ARGOS THREADSAFE LOG BOOLEAN Use or not the thread-safe version of

LOG/LOGERR. [ON]
ARGOS DYNAMIC LOADING BOOLEAN Compile (and use) dynamic loading facili-

ties [ON]
ARGOS USE DOUBLE BOOLEAN Use double (ON) or float (OFF) [ON]
ARGOS DOCUMENTATION BOOLEAN Create documentation (API, manpage,

etc.) [ON]

You can pass the wanted values from the command line. For instance,
if you wanted to set explictly all the default values, you would write:

$ cd argos3/build_simulator
$ cmake -DCMAKE_BUILD_TYPE=Debug \

3http://www.eclipse.org/cdt/
4http://cmakeed.sourceforge.net/

144

http://www.vtk.org/Wiki/Eclipse_CDT4_Generator#Out-Of-Source_Builds
http://www.vtk.org/Wiki/Eclipse_CDT4_Generator#Out-Of-Source_Builds
http://www.eclipse.org/cdt/
http://cmakeed.sourceforge.net/

-DCMAKE_INSTALL_PREFIX=/usr/local \
-DARGOS_BUILD_FOR=simulator \
-DARGOS_BUILD_NATIVE=OFF \
-DARGOS_THREADSAFE_LOG=ON \
-DARGOS_DYNAMIC_LOADING=ON \
-DARGOS_USE_DOUBLE=ON \
-DARGOS_DOCUMENTATION=ON \
../src

IMPORTANT. When ARGOS BUILD FOR is set to simulator, ARGOS THREADSAFE LOG
and ARGOS DYNAMIC LOADING must be ON.

TIP. For production environments, it is recommended to compile AR-
GoS with CMAKE BUILD TYPE set to Release. If you want to debug
ARGoS, it is recommended to set CMAKE BUILD TYPE to Debug. The
other standard settings (empty and RelWithDebInfo) are supported but
should be avoided.

TIP. If you want to squeeze maximum performance from ARGoS, along
with compiling with CMAKE BUILD TYPE set to Release, you can also set
ARGOS BUILD NATIVE to ON. This setting instructs the compiler to use
the compiler flags -march=native and -mtune=native. The code will
run faster because you use the entire instruction set of your processor,
but the generated binaries won’t be portable to computers with different
processors.

B.4 Using ARGoS from the source tree

IMPORTANT. You can’t install ARGoS system-wide and run the
source version at the same time. If you intend to run ARGoS from
the sources, you must uninstall it from the system.

B.4.1 Running the ARGoS simulator

If you don’t want to install ARGoS on your system, you can run it from
the sources tree. In the directory build simulator/ you’ll find a bash
script called setup env.sh. Executing this script, you configure the
current environment to run ARGoS:

$ cd argos3
$ cd build_simulator
$. setup_env.sh # or ’source setup_env.sh’
$ cd core
$./argos3 -q all # this shows all the plugins recognized by

\argos

145

If you execute ARGoS with the graphical visualization, you’ll notice that
icons and textures are missing. This is normal, as ARGoS by default
looks for them in the default install location. To fix this, you need to
edit the file $HOME/.config/Iridia-ULB/ARGoS.conf as follows:

[MainWindow]
#
other stuff
#
icon_dir=/path/to/argos3/src/plugins/simulator/visualizations/\
qt-opengl/icons/
texture_dir=/path/to/argos3/src/plugins/simulator/visualizations/\
qt-opengl/textures/
#
more stuff
#

B.4.2 Debugging the ARGoS simulator

You can debug the ARGoS code using gdb. Since the code in scat-
tered across multiple directories, you need a .gdbinit file. Luckily for
you, this file is created automatically when you compile ARGoS. To use
it, you just need to remember to run the ARGoS simulator from the
build simulator/core/ directory:

$ cd argos3/build_simulator/core
$ gdb ./argos3

B.5 Installing ARGoS from the compiled binaries

To install ARGoS after having compiled the sources, it is enough to
write:

$ cd argos3
$ cd build_simulator # or ’cd build_myrobot’
$ make doc # documentation is required!
$ sudo make install

Alternatively, one can create a package. To build all the packages sup-
ported by your system, run these commands:

$ cd argos3
$ git tag -a X.Y.Z-release # give the package a unique version

the format must be as shown
X = version major
Y = version minor
Z = version patch

146

release = a textual label
$ cd build_simulator # or ’cd build_myrobot’
$ cmake . # let CMake read the newly set tag
$ make doc # documentation is required!
$ make # compile the code
$ sudo make package # make the package

This typically creates a self-extracting .tar.gz archive, a .tar.bz2
archive, a .zip archive, and a platform-specific archive (.deb, .rpm, or
a MacOSX package). You can determine which packages to create by set-
ting the variables CPACK BINARY DEB, CPACK BINARY RPM, CPACK BINARY STGZ,
CPACK BINARY TBZ2, CPACK BINARY TGZ, CPACK BINARY TZ.

IMPORTANT. The creation of source packages through the command
make package source is not supported. An easier option is to in-
stall ARGoS from a package distributed at http://iridia.ulb.ac.
be/argos/download.php.

147

http://iridia.ulb.ac.be/argos/download.php
http://iridia.ulb.ac.be/argos/download.php

Appendix C

An Example of ARGoS in Use

C.1 The Robot Control Code

C.1.1 Header File

1 /*

2 * AUTHOR: Carlo Pinciroli <cpinciro@ulb .ac.be >

3 *

4 * An example diffusion controller for the foot -bot.

5 *

6 * This controller makes the robots behave as gas particles . The

7 * robots go straight until they get close enough to another

8 * robot , in which case they turn , loosely simulating an elastic

9 * collision . The net effect is that over time the robots diffuse

10 * in the environment .

11 *

12 * The controller uses the proximity sensor to detect obstacles

13 * and the wheels to move the robot around.

14 *

15 * This controller is meant to be used with the XML files:

16 * experiments / diffusion_1 .argos

17 * experiments / diffusion_10 .argos

18 */

19
20 #ifndef FOOTBOT_DIFFUSION_H

21 #define FOOTBOT_DIFFUSION_H

22
23 /*

24 * Include some necessary headers.

25 */

26 /* Definition of the CCI_Controller class. */

27 #include <argos3/core/control_interface/ci_controller.h>

28 /* Definition of the differential steering actuator */

29 #include <argos3/plugins/robots/generic/control_interface/

ci_differential_steering_actuator.h>

30 /* Definition of the foot -bot proximity sensor */

31 #include <argos3/plugins/robots/foot -bot/control_interface/

ci_footbot_proximity_sensor.h>

32
33 /*

34 * All the ARGoS stuff in the ’argos ’ namespace .

35 * With this statement , you save typing argos :: every time.

36 */

37 using namespace argos;

38

149

39 /*

40 * A controller is simply an implementation of the CCI_Controller

41 * class.

42 */

43 class CFootBotDiffusion : public CCI_Controller {

44
45 public:

46
47 /* Class constructor . */

48 CFootBotDiffusion ();

49
50 /* Class destructor . */

51 virtual ~CFootBotDiffusion () {}

52
53 /*

54 * This function initializes the controller .

55 * The ’t_node ’ variable points to the <parameters > section in

56 * the XML file in the <controllers >

57 * <footbot_diffusion_controller > section.

58 */

59 virtual void Init(TConfigurationNode& t_node);

60
61 /*

62 * This function is called once every time step.

63 * The length of the time step is set in the XML file.

64 */

65 virtual void ControlStep ();

66
67 /*

68 * This function resets the controller to its state right after

69 * the Init ().

70 * It is called when you press the reset button in the GUI.

71 * In this example controller there is no need for resetting

72 * anything , so the function could have been omitted. It’s here

73 * just for completeness .

74 */

75 virtual void Reset () {}

76
77 /*

78 * Called to cleanup what done by Init () when the experiment

79 * finishes.

80 * In this example controller there is no need for clean

81 * anything up , so the function could have been omitted. It’s

82 * here just for completeness .

83 */

84 virtual void Destroy () {}

85
86 private:

87
88 /* Pointer to the differential steering actuator */

89 CCI_DifferentialSteeringActuator* m_pcWheels;

90 /* Pointer to the foot -bot proximity sensor */

91 CCI_FootBotProximitySensor* m_pcProximity;

92
93 /*

94 * The following variables are used as parameters for the

95 * algorithm . You can set their value in the <parameters >

96 * section of the XML configuration file , under the

97 * <controllers >< footbot_diffusion_controller > section.

98 */

99
100 /* Maximum tolerance for the angle between

150

101 * the robot heading direction and

102 * the closest obstacle detected. */

103 CDegrees m_cAlpha;

104 /* Maximum tolerance for the proximity reading between

105 * the robot and the closest obstacle.

106 * The proximity reading is 0 when nothing is detected

107 * and grows exponentially to 1 when the obstacle is

108 * touching the robot.

109 */

110 Real m_fDelta;

111 /* Wheel speed. */

112 Real m_fWheelVelocity;

113 /* Angle tolerance range to go straight.

114 * It is set to [-alpha ,alpha]. */

115 CRange <CRadians > m_cGoStraightAngleRange;

116
117 };

118
119 #endif

C.1.2 Implementation File

1 /* Include the controller definition */

2 #include "footbot_diffusion.h"

3 /* Function definitions for XML parsing */

4 #include <argos3/core/utility/configuration/argos_configuration.h>

5 /* 2D vector definition */

6 #include <argos3/core/utility/math/vector2.h>

7
8 /* ************************************** */

9 /* ************************************** */

10
11 CFootBotDiffusion :: CFootBotDiffusion () :

12 m_pcWheels(NULL),

13 m_pcProximity(NULL),

14 m_cAlpha (10.0f),

15 m_fDelta (0.5f),

16 m_fWheelVelocity (2.5f),

17 m_cGoStraightAngleRange(-ToRadians(m_cAlpha),

18 ToRadians(m_cAlpha)) {}

19
20 /* ************************************** */

21 /* ************************************** */

22
23 void CFootBotDiffusion ::Init(TConfigurationNode& t_node) {

24 /*

25 * Get sensor/actuator handles

26 *

27 * The passed string (ex. " differential_steering ") corresponds

28 * to the XML tag of the device whose handle we want to have.

29 * For a list of allowed values , type at the command prompt:

30 *

31 * $ argos3 -q actuators

32 *

33 * to have a list of all the possible actuators , or

34 *

35 * $ argos3 -q sensors

36 *

37 * to have a list of all the possible sensors.

38 *

151

39 * NOTE: ARGoS creates and initializes actuators and sensors

40 * internally , on the basis of the lists provided the

41 * configuration file at the <controllers ><footbot_diffusion >

42 * <actuators > and <controllers ><footbot_diffusion ><sensors >

43 * sections. If you forgot to list a device in the XML and then

44 * you request it here , an error occurs.

45 */

46 m_pcWheels = GetActuator <CCI_DifferentialSteeringActuator >("

differential_steering");

47 m_pcProximity = GetSensor <CCI_FootBotProximitySensor >("

footbot_proximity");

48 /*

49 * Parse the configuration file

50 *

51 * The user defines this part. Here , the algorithm accepts

52 * three parameters and it’s nice to put them in the config

53 * file so we don ’t have to recompile if we want to try other

54 * settings.

55 */

56 GetNodeAttributeOrDefault(t_node , "alpha", m_cAlpha , m_cAlpha);

57 m_cGoStraightAngleRange.Set(-ToRadians(m_cAlpha), ToRadians(

m_cAlpha));

58 GetNodeAttributeOrDefault(t_node , "delta", m_fDelta , m_fDelta);

59 GetNodeAttributeOrDefault(t_node , "velocity", m_fWheelVelocity ,

m_fWheelVelocity);

60 }

61
62 /* ************************************** */

63 /* ************************************** */

64
65 void CFootBotDiffusion :: ControlStep () {

66 /* Get readings from proximity sensor */

67 const CCI_FootBotProximitySensor :: TReadings& tProxReads =

m_pcProximity ->GetReadings ();

68 /* Sum them together */

69 CVector2 cAccumulator;

70 for(size_t i = 0; i < tProxReads.size(); ++i) {

71 cAccumulator += CVector2(tProxReads[i].Value , tProxReads[i].

Angle);

72 }

73 cAccumulator /= tProxReads.size();

74 /* If the angle of the vector is small enough and the closest

75 * obstacle is far enough , continue going straight , otherwise

76 * curve a little.

77 */

78 CRadians cAngle = cAccumulator.Angle ();

79 if(m_cGoStraightAngleRange.

WithinMinBoundIncludedMaxBoundIncluded(cAngle) &&

80 cAccumulator.Length () < m_fDelta) {

81 /* Go straight */

82 m_pcWheels ->SetLinearVelocity(m_fWheelVelocity ,

m_fWheelVelocity);

83 }

84 else {

85 /* Turn , depending on the sign of the angle */

86 if(cAngle.GetValue () > 0.0f) {

87 m_pcWheels ->SetLinearVelocity(m_fWheelVelocity , 0.0f);

88 }

89 else {

90 m_pcWheels ->SetLinearVelocity (0.0f, m_fWheelVelocity);

91 }

92 }

152

93 }

94
95 /* ************************************** */

96 /* ************************************** */

97
98 /*

99 * This statement notifies ARGoS of the existence of the

100 * controller .

101 * It binds the class passed as first argument to the string

102 * passed as second argument.

103 * The string is then usable in the configuration file to refer

104 * to this controller .

105 * When ARGoS reads that string in the configuration file , it

106 * knows which controller class to instantiate .

107 * See also the configuration files for an example of how this

108 * is used.

109 */

110 REGISTER_CONTROLLER(CFootBotDiffusion , "

footbot_diffusion_controller")

C.2 The Experiment Configuration File

C.2.1 Single-Robot Experiment

1 <?xml version="1.0" ?>

2 <argos -configuration >

3
4 <!-- ************************* -->

5 <!-- * General configuration * -->

6 <!-- ************************* -->

7 <framework >

8 <!--

9 System configuration:

10 - threads: the number of slave threads to parallelize the

11 computation . For less than 100 robots thread management

12 is not beneficial , so here we set it to 0. When set to

13 0, it means that the computation is not parallelized:

14 the main thread does everything .

15 -->

16 <system threads="0" />

17 <!--

18 Experiment configuration:

19 - length: total experiment time in seconds (0 means

20 the experiment has no time limit)

21 - ticks_per_second: number of ticks per second

22 (int value)

23 - random_seed: seed of the main random number

24 generator . If unset or set to zero , this value is

25 taken from the clock and a warning message is

26 displayed .

27 -->

28 <experiment length="0"

29 ticks_per_second="10"

30 random_seed="124" />

31 </framework >

32
33 <!-- *************** -->

34 <!-- * Controllers * -->

35 <!-- *************** -->

36 <controllers >

153

37
38 <!--

39 Here you list the controllers to be used in the

40 experiment .

41 The XML tag is set by the

42
43 REGISTER_CONTROLLER (class , "tag") macro.

44
45 You find it in the .cpp file of your controller .

46 For this example , the macro is called in

47 controllers / footbot_diffusion .cpp:100.

48 -->

49
50 <!--

51 The attributes are:

52 - id: a unique a identifier for this controller , to be

53 used in the subsequent <arena > section to say which

54 robots use which controller

55 - library: the path to the compiled library containing

56 your controller .

57 -->

58 <footbot_diffusion_controller id="fdc"

59 library="build/controllers/

footbot_diffusion/

libfootbot_diffusion.so">

60 <!--

61 The <actuators > section contains a list of the actuators

62 used by this controller .

63 If you forget a to mention an actuator here and then

64 request it in the controller , an error occurs.

65 For a list of the possible actuators , type at the

66 command prompt:

67
68 $ launch_argos -q actuators

69
70 Multiple implementations of an actuator are possible. To

71 identify which one you want to use , pass it in the

72 ’implementation ’ attribute below. When you type the

73 ’argos3 -q’ command , the implementation is in the square

74 brackets following the name of the device:

75
76 $ argos3 -q actuators

77 ...

78 footbot_wheels [default]

79 ...

80 -->

81 <actuators >

82 <differential_steering implementation="default" />

83 </actuators >

84 <!--

85 The <sensors > section contains a list of the sensors

86 used by this controller .

87 If you forget a to mention a sensor here and then

88 request it in the controller , an error occurs.

89 For a list of the possible sensors , type at the command

90 prompt:

91
92 $ argos3 -q sensors

93 -->

94 <sensors >

95 <footbot_proximity implementation="default" show_rays="

true" />

154

96 </sensors >

97 <!--

98 The <params > section is passed as -is to the controller

99 Init () function.

100 The user , writing the controller , defines how it is

101 organized .

102 To understand what these parameters are for , check the

103 controller header file in

104 controllers / footbot_diffusion / footbot_diffusion .h.

105 -->

106 <params alpha="7.5" delta="0.1" velocity="5" />

107 </footbot_diffusion_controller >

108
109 </controllers >

110
111 <!-- *********************** -->

112 <!-- * Arena configuration * -->

113 <!-- *********************** -->

114 <!--

115 Here you place all the objects in the arena.

116 All linear measures are expressed in meters.

117 Angles are expressed in degrees.

118 The ’size’ attribute contains the size of the arena around

119 the origin.

120 To get help about which entities are available , type at the

121 command prompt:

122
123 $ argos3 -q entities

124
125 and to get help about a specific entity (for instance ,

126 the box)

127
128 $ argos3 -q box

129 -->

130 <arena size="3, 3, 1" center="0,0,0.5">

131
132 <!-- Place four boxes in a square to delimit the arena -->

133 <box id="wall_north" size="2 ,0.1 ,0.5" movable="false">

134 <body position="0,1,0" orientation="0,0,0" />

135 </box>

136 <box id="wall_south" size="2 ,0.1 ,0.5" movable="false">

137 <body position="0,-1,0" orientation="0,0,0" />

138 </box>

139 <box id="wall_east" size="0.1 ,2 ,0.5" movable="false">

140 <body position="1,0,0" orientation="0,0,0" />

141 </box>

142 <box id="wall_west" size="0.1 ,2 ,0.5" movable="false">

143 <body position=" -1,0,0" orientation="0,0,0" />

144 </box>

145
146 <!-- Place a foot -bot in the origin and bind it to the

147 controller -->

148 <foot -bot id="fb_0">

149 <body position="0,0,0" orientation="0,0,0" />

150 <controller config="fdc"/>

151 </foot -bot>

152
153 </arena >

154
155 <!-- ******************* -->

156 <!-- * Physics engines * -->

157 <!-- ******************* -->

155

158 <!--

159 In ARGoS , multiple physics engines can run at the same time.

160 In this section you say which engines to use for the

161 experiment .

162 To know which engines are available , type at the command

163 prompt:

164
165 $ argos3 -q physics_engines

166 -->

167 <physics_engines >

168 <!--

169 Use a 2D dynamics engine.

170 -->

171 <dynamics2d id="dyn2d" />

172 </physics_engines >

173
174 <!-- ********* -->

175 <!-- * Media * -->

176 <!-- ********* -->

177 <!--

178 Here you specify the media in use. Media allow robots to

179 communicate .

180 In this experiment , robots do not communicate , so no media

181 are specified .

182 To know which media are available , type at the command

183 prompt:

184
185 $ argos3 -q media

186 -->

187 <media />

188
189 <!-- ****************** -->

190 <!-- * Visualization * -->

191 <!-- ****************** -->

192 <!--

193 Here you specify which visualization to use.

194 You can also not specify a visualization at all , in which

195 case ARGoS will run without showing anything.

196 Having no visualization is useful when you run ARGoS in a

197 batch of experiments to collect statistics .

198 To know which visualizations are available , type at the

199 command prompt:

200
201 $ argos3 -q visualizations

202 -->

203 <visualization >

204 <qt -opengl />

205 </visualization >

206
207 </argos -configuration >

C.2.2 Multi-Robot Experiment

1 <?xml version="1.0" ?>

2 <argos -configuration >

3
4 <!-- ************************* -->

5 <!-- * General configuration * -->

6 <!-- ************************* -->

7 <framework >

156

8 <system threads="0" />

9 <experiment length="0"

10 ticks_per_second="10"

11 random_seed="124" />

12 </framework >

13
14 <!-- *************** -->

15 <!-- * Controllers * -->

16 <!-- *************** -->

17 <controllers >

18
19 <footbot_diffusion_controller id="fdc"

20 library="build/controllers/

footbot_diffusion/

libfootbot_diffusion.so">

21 <actuators >

22 <differential_steering implementation="default" />

23 </actuators >

24 <sensors >

25 <footbot_proximity implementation="default"

26 show_rays="true" />

27 </sensors >

28 <params alpha="7.5" delta="0.1" velocity="5" />

29 </footbot_diffusion_controller >

30
31 </controllers >

32
33 <!-- *********************** -->

34 <!-- * Arena configuration * -->

35 <!-- *********************** -->

36 <arena size="5, 5, 1" center="0,0,0.5">

37
38 <box id="wall_north" size="4 ,0.1 ,0.5" movable="false">

39 <body position="0,2,0" orientation="0,0,0" />

40 </box>

41 <box id="wall_south" size="4 ,0.1 ,0.5" movable="false">

42 <body position="0,-2,0" orientation="0,0,0" />

43 </box>

44 <box id="wall_east" size="0.1 ,4 ,0.5" movable="false">

45 <body position="2,0,0" orientation="0,0,0" />

46 </box>

47 <box id="wall_west" size="0.1 ,4 ,0.5" movable="false">

48 <body position=" -2,0,0" orientation="0,0,0" />

49 </box>

50
51 <!--

52 You can distribute entities randomly. Here , we distribute

53 10 foot -bots in this way:

54 - the position is uniformly distributed

55 on the ground , in the square whose corners are

56 (-2,-2) and (2 ,2)

57 - the orientations are non -zero only when rotating around

58 Z and chosen from a gaussian distribution , whose mean is

59 zero degrees and standard deviation is 360 degrees.

60 -->

61 <distribute >

62 <position method="uniform" min=" -2,-2,0" max="2,2,0" />

63 <orientation method="gaussian"

64 mean="0,0,0" std_dev="360,0,0" />

65 <entity quantity="10" max_trials="100">

66 <foot -bot id="fb">

67 <controller config="fdc" />

157

68 </foot -bot>

69 </entity >

70 </distribute >

71
72 <!--

73 We distribute 5 boxes uniformly in position and rotation

74 around Z.

75 -->

76 <distribute >

77 <position method="uniform" min=" -2,-2,0" max="2,2,0" />

78 <orientation method="uniform" min="0,0,0" max="360,0,0" />

79 <entity quantity="5" max_trials="100">

80 <box id="b" size="0.3 ,0.3 ,0.5" movable="false" />

81 </entity >

82 </distribute >

83
84 <!--

85 We distribute cylinders uniformly in position and with

86 constant rotation (rotating a cylinder around Z does not

87 matter)

88 -->

89 <distribute >

90 <position method="uniform" min=" -2,-2,0" max="2,2,0" />

91 <orientation method="constant" values="0,0,0" />

92 <entity quantity="5" max_trials="100">

93 <cylinder id="c"

94 height="0.5"

95 radius="0.15"

96 movable="false" />

97 </entity >

98 </distribute >

99
100 </arena >

101
102 <!-- ******************* -->

103 <!-- * Physics engines * -->

104 <!-- ******************* -->

105 <physics_engines >

106 <dynamics2d id="dyn2d" />

107 </physics_engines >

108
109 <!-- ********* -->

110 <!-- * Media * -->

111 <!-- ********* -->

112 <media />

113
114 <!-- ****************** -->

115 <!-- * Visualization * -->

116 <!-- ****************** -->

117 <visualization >

118 <qt -opengl />

119 </visualization >

120
121 </argos -configuration >

158

Bibliography

A. Alexandrescu. Modern C++ Design: Generic Programming and De-
sign Patterns Applied, chapter Policy-Based Class Design. C++ In
Depth Series. Addison-Wesley, 2001.

J.-F. Allan. Robotics for distribution power lines: Overview of the
last decade. In 2nd International Conference on Applied Robotics for
the Power Industry (CARPI), pages 96–101. IEEE Press, Piscataway,
NJ, Sept. 2012. ISBN 978-1-4673-4587-3. doi: 10.1109/CARPI.2012.
6473344.

J.-M. Amé, J. Halloy, C. Rivault, C. Detrain, and J.-L. Deneubourg.
Collegial decision making based on social amplification leads to op-
timal group formation. Proceedings of the National Academy of
Sciences of the United States of America, 103(15):5835–5840, Apr.
2006. ISSN 0027-8424. doi: 10.1073/pnas.0507877103. URL http:
//dx.doi.org/10.1073/pnas.0507877103.

E. Aro. The utility of an autonomous multi-robot system of underwater
floats. In 2nd IFAC Workshop on Multivehicle Systems, pages 55–59.
IFAC, 2012.

M. P. Ashley-Rollman, S. C. Goldstein, P. Lee, T. C. Mowry, and P. Pil-
lai. Meld: A declarative approach to programming ensembles. In
2007 IEEE/RSJ International Conference on Intelligent Robots and
Systems, pages 2794–2800. IEEE Press, Piscataway, NJ, Oct. 2007.
ISBN 978-1-4244-0911-2. doi: 10.1109/IROS.2007.4399480.

M. P. Ashley-Rollman, P. Lee, S. C. Goldstein, P. Pillai, and J. D. Camp-
bell. A language for large ensembles of independently executing nodes.
In P. M. Hill and D. S. Warren, editors, Proceedings of the Interna-
tional Conference on Logic Programming (ICLP ’09), pages 265–280.
Springer Berlin Heidelberg, 2009. doi: 10.1007/978-3-642-02846-5\
24.

M. P. Ashley-Rollman, P. Pillai, and M. L. Goodstein. Simulating multi-
million-robot ensembles. In 2011 IEEE International Conference on
Robotics and Automation, pages 1006–1013, Shanghai, China, May

159

http://dx.doi.org/10.1073/pnas.0507877103
http://dx.doi.org/10.1073/pnas.0507877103

2011. IEEE Press, Piscataway, NJ. ISBN 978-1-61284-386-5. doi:
10.1109/ICRA.2011.5979807.

J. Aycock. A brief history of just-in-time. ACM Computing Surveys, 35
(2):97–113, 2003. doi: 10.1145/857076.857077.

J. Bachrach, J. Beal, and J. McLurkin. Composable continuous-
space programs for robotic swarms. Neural Computing and Appli-
cations, 19(6):825–847, May 2010. ISSN 0941-0643. doi: 10.1007/
s00521-010-0382-8.

S. Balakirsky and E. Messina. MOAST and USARSim - A Combined
Framework for the Development and Testing of Autonomous Systems.
In Proceedings of the 2006 SPIE Defense and Security Symposium,
2006.

S. Balakirsky, F. Proctor, C. Scrapper, and T. Kramer. A Mobile
Robot Control Framework: From Simulation to Reality. In S. Carpin,
I. Noda, E. Pagello, M. Reggiani, and O. Stryk, editors, Simulation,
Modeling, and Programming for Autonomous Robots, volume 5325 of
Lecture Notes in Computer Science, pages 111–122, Berlin, Heidel-
berg, 2008. Springer Berlin Heidelberg. ISBN 978-3-540-89075-1. doi:
10.1007/978-3-540-89076-8.

S. Balakirsky, S. Carpin, G. Dimitoglou, and B. Balaguer. From Sim-
ulation to Real Robots with Predictable Results: Methods and Ex-
amples. In R. Madhavan, E. Tunstel, and E. Messina, editors, Per-
formance Evaluation and Benchmarking of Intelligent Systems, chap-
ter 6, pages 113–137. Springer New York Dordrecht Heidelberg Lon-
don, 2009. ISBN 978-1-4419-0491-1. doi: 10.1007/978-1-4419-0492-8.

T. Balch, F. Dellaert, A. Feldman, A. Guillory, C. Isbell, Z. Khan,
A. Stein, and H. Wilde. How Multirobot Systems Research will Ac-
celerate our Understanding of Social Animal Behavior. Proceedings of
the IEEE, 94(7):1445–1463, 2006. doi: 10.1109/JPROC.2006.876969.

J. Beal and J. Bachrach. Infrastructure for on Sensor / Actua-
tor Networks. IEEE Intelligent Systems, 21(2):10–19, 2006. doi:
10.1109/MIS.2006.29.

R. Beckers, O. E. Holland, and J.-L. Deneubourg. From Local Actions
to Global Tasks: Stigmergy and Collective Robotics. In R. A. Brooks
and P. Maes, editors, Artificial Life IV: Proceedings of the Fourth
International Workshop on the Synthesis and Simulation of Living
Systems, pages 181—-189. MIT Press Cambridge, MA, 1994.

G. Beni. From Swarm Intelligence to Swarm Robotics. Swarm Robotics,
3342:1–9, 2005.

160

E. Bonabeau, M. Dorigo, and G. Theraulaz. Swarm Intelligence: From
Natural to Artificial Systems. Santa Fe Institute Studies in the Sci-
ences of Complexity. Oxford University Press, New York, NY, 1999.

M. Bonani, V. Longchamp, S. Magnenat, P. Rétornaz, D. Burnier,
G. Roulet, F. Vaussard, H. Bleuler, and F. Mondada. The marXbot,
a miniature mobile robot opening new perspectives for the collective-
robotic research. In Proceedings of the IEEE/RSJ International Con-
ference on Intelligent Robots and Systems (IROS), pages 4187–4193.
IEEE Press, Piscataway, NJ, 2010.

M. Brambilla, C. Pinciroli, M. Birattari, and M. Dorigo. A reliable
distributed algorithm for group size estimation with minimal com-
munication requirements. In Fourteenth International Conference on
Advanced Robotics (ICAR 2009), pages 1–6, 2009. Proceedings on
CD-ROM, paper ID 137.

M. Brambilla, C. Pinciroli, M. Birattari, and M. Dorigo. Property-
driven design for swarm robotics. In AAMAS’12 - Proceedings of the
11th International Conference on Autonomous Agents and Multiagent
Systems, volume 1, pages 139–146. International Foundation for Au-
tonomous Agents and Multiagent Systems Richland, SC, 2012.

M. Brambilla, E. Ferrante, M. Birattari, and M. Dorigo. Swarm
robotics: a review from the swarm engineering perspective. Swarm
Intelligence, 7(1):1–41, Jan. 2013. ISSN 1935-3812. doi: 10.1007/
s11721-012-0075-2.

N. Bredeche, J.-M. Montanier, B. Weel, and E. Haasdijk. Roborobo! a
Fast Robot Simulator for Swarm and Collective Robotics. Technical
Report Ppsn, arXiv.org, 2013.

R. Brooks. A robust layered control system for a mobile robot. IEEE
Journal of Robotics and Automation, 2(1):14–23, 1986. doi: 10.1109/
JRA.1986.1087032.

K. G. C. Hongo, H. Kawamata. Catastrophic impact of typhoon waves
on coral communities in the ryukyu islands under global warming.
Journal of Geophysical Research, 117:2005–2012, 2012.

S. Camazine, J.-L. Deneubourg, N. R. Franks, J. Sneyd, G. Theraulaz,
and E. Bonabeau. Self-Organization in Biological Systems. Princeton
University Press, 2003.

Y. U. Cao, A. S. Fukunaga, and A. B. Kahng. Cooperative Mobile
Robotics : Antecedents and Directions. Autonomous Robots, 4:1–23,
1997.

161

G. Caprari, P. Balmer, R. Piguet, and R. Siegwart. The autonomous
micro robot ”Alice”: a platform for scientific and commercial ap-
plications. In MHA’98. Proceedings of the 1998 International Sym-
posium on Micromechatronics and Human Science, pages 231–235.
IEEE Press, Piscataway, NJ, 1998. ISBN 0-7803-5130-4. doi:
10.1109/MHS.1998.745787.

J. Carlson, R. Murphy, and A. Nelson. Follow-up analysis of mobile
robot failures. In Proceedings of the IEEE International Conference
on Robotics and Automation ICRA ’04, volume 5, pages 4987–4994.
IEEE Press, Piscataway, NJ, 2004.

J. Carpenter. The Quiet Professional: An investigation of U.S. mili-
tary Explosive Ordnance Disposal personnel interactions with every-
day field robots. PhD dissertation, University of Washington, 2013.

S. Carpin, M. Lewis, J. Wang, and S. Balakirsky. USARSim : a robot
simulator for research and education. In Proceedings of the 2007 IEEE
International Conference on Robotics and Automation, pages 1400–
1405. IEEE Press, Piscataway, NJ, 2007a. ISBN 1424406021. doi:
10.1109/ROBOT.2007.363180.

S. Carpin, M. Lewis, J. Wang, S. Balakirsky, and C. Scrapper. Bridging
the Gap Between Simulation and Reality in Urban Search and Rescue.
In G. Lakemeyer, E. Sklar, D. G. Sorrenti, and T. Takahashi, editors,
RoboCup 2006: Robot Soccer World Cup X, volume 4434 of Lecture
Notes in Computer Science, pages 1–12, Berlin, Heidelberg, 2007b.
Springer Berlin Heidelberg. ISBN 978-3-540-74023-0. doi: 10.1007/
978-3-540-74024-7.

A. Castano, A. Behar, and P. M. Will. The CONRO modules for recon-
figurable robots. IEEE/ASME Transactions on Mechatronics, 7(4):
403–409, 2002.

A. L. Christensen, R. O’Grady, and M. Dorigo. Morphology control in
multirobot system. IEEE Robotics and Automation Magazine, 14(4):
18–25, 2007.

A. L. Christensen, R. O’Grady, M. Birattari, and M. Dorigo. Fault
detection in autonomous robots based on fault injection and learning.
Autonomous Robots, 24(1):49–67, 2008.

T. Collins, N. O. Ranasinghe, and W.-M. Shen. ReMod3D: A High-
Performance Simulator for Autonomous, Self-Reconfigurable Robots.
Technical Report Section I, University of South California, 2013.

162

N. Correll and A. Martinoli. System Identification of Self-Organizing
Robotic Swarms. In M. Gini and R. Voyles, editors, Distributed Au-
tonomous Robotic Systems 7, chapter 4, pages 31–40. Springer Japan,
2006. ISBN 978-4-431-35881-7. doi: 10.1007/4-431-35881-1\ 4.

E. Şahin. Swarm Robotics: From Sources of Inspiration to Domains
of Application. In E. Şahin and W. M. Spears, editors, Proceedings
of the 2004 international conference on Swarm Robotics (SAB 2004),
volume 3342, pages 10–20. Springer Berlin Heidelberg, 2005.

S. Curtis, J. Mica, J. Nuth, G. Marr, M. Rilee, and M. Bhat. ANTS (au-
tonomous nano-technology swarm): An artificial intelligence approach
to asteroid belt resource exploration. In International Astronautical
Federation, 2000.

P. D’Arrigo and S. Santandrea. The APIES mission to explore the
asteroid belt. Advances in Space Research, 38(9):2060–2067, 2006.

J.-L. Deneubourg, S. Goss, N. R. Franks, A. B. Sendova-Franks, C. De-
train, and L. Chrétien. The Dynamics of Collective Sorting Robot-
Like Ants and Ant-Like Robots. In S. Wilson and J. A. Meyer, edi-
tors, Proceedings of the First International Conference on Simulation
of Adaptive Behavior on From Animals to Animats, pages 356–363.
MIT Press Cambridge, MA, 1990.

C. Detweiler, M. Vona, K. Kotay, and D. Rus. Hierarchical control
for self-assembling mobile trusses with passive and active links. In
Proceedings of the IEEE International Conference on Robotics and
Automation ICRA ’06, pages 1483–1490. IEEE Press, Piscatway, NJ,
2006.

R. Diankov. Automated construction of robotic manipulation programs.
PhD thesis, Carnegie Mellon University, Aug. 2010.

M. B. Dias, R. Zlot, N. Kalra, and A. Stentz. Market-based multirobot
coordination: A survey and analysis. Proceedings of the IEEE, 94(7):
1257–1270, 2006.

A. M. Donoghue. Occupational health hazards in mining: an overview.
Occupational Medicine, 54(5):283–289, 2004.

M. Dorigo and M. Birattari. Swarm intelligence. Scholarpedia, 2(9):
1462, Jan. 2007. ISSN 0002-7979.

M. Dorigo, E. Bonabeau, and G. Theraulaz. Ant algorithms and stig-
mergy. Future Generation Computer Systems, 16(8):851–871, 2000.

M. Dorigo, D. Floreano, L. Gambardella, F. Mondada, S. Nolfi,
T. Baaboura, M. Birattari, M. Bonani, M. Brambilla, A. Brutschy,

163

D. Burnier, A. Campo, A. Christensen, A. Decugnière, G. Di Caro,
F. Ducatelle, E. Ferrante, A. Förster, J. Guzzi, V. Longchamp,
S. Magnenat, J. Martinez Gonzales, N. Mathews, M. Montes de Oca,
R. O’Grady, C. Pinciroli, G. Pini, P. Rétornaz, J. Roberts, V. Sperati,
T. Stirling, A. Stranieri, T. Stützle, V. Trianni, E. Tuci, A. Turgut,
and F. Vaussard. Swarmanoid: a novel concept for the study of het-
erogeneous robotic swarms. IEEE Robotics & Automation Magazine,
20(4):60–71, 2013.

M. Dorigo, M. Birattari, and M. Brambilla. Swarm robotics. Scholar-
pedia, 9(1):1463, 2014.

F. Ducatelle, G. Di Caro, and L. Gambardella. Cooperative self-
organization in a heterogeneous swarm robotic system. In Proceedings
of the Genetic and Evolutionary Computation Conference (GECCO).
ACM, New York, NY, 2010. Proceedings on CD-ROM.

F. Ducatelle, G. Di Caro, C. Pinciroli, and L. M. Gambardella. Self-
organised cooperation between robotic swarms. Swarm Intelligence, 5
(2):73–96, 2011.

F. Ducatelle, G. Di Caro, A. Förster, M. Bonani, M. Dorigo, S. Magne-
nat, F. Mondada, R. O’Grady, C. Pinciroli, P. Rétornaz, V. Trianni,
and L. M. Gambardella. Cooperative navigation in robotic swarms.
Swarm Intelligence, 2013. http://link.springer.com/article/10.
1007%2Fs11721-013-0089-4#page-1.

G. Echeverria, N. Lassabe, A. Degroote, and S. Lemaignan. Modular
open robots simulation engine: MORSE. In 2011 IEEE International
Conference on Robotics and Automation, pages 46–51. Ieee, May 2011.
ISBN 978-1-61284-386-5. doi: 10.1109/ICRA.2011.5980252.

L. Edelstein-Keshet. Mathematical models of swarming and social ag-
gregation. In Proceedings of the 2001 International Symposium on
Nonlinear Theory and its Applications, pages 1–7, 2001.

D. Elizondo, T. Gentile, H. Candia, and G. Bell. Overview of robotic
applications for energized transmission line work Technologies, field
projects and future developments. In 1st International Conference on
Applied Robotics for the Power Industry (CARPI 2010), pages 1–7.
IEEE Press, Piscataway, NJ, Oct. 2010. ISBN 978-1-4244-6633-7. doi:
10.1109/CARPI.2010.5624478.

J. Everist, K. Mogharei, S. Harshit, N. Ranasinghe, B. Khoshnevis,
P. Will, and W.-m. Shen. A system for in-space assembly. In 2004
IEEE/RSJ International Conference on Intelligent Robots and Sys-
tems (IROS 2004), volume 3, pages 2356–2361. IEEE Press, Piscat-
away, NJ, 2004. doi: 10.1109/IROS.2004.1389761.

164

http://link.springer.com/article/10.1007%2Fs11721-013-0089-4#page-1
http://link.springer.com/article/10.1007%2Fs11721-013-0089-4#page-1

J. G. Fernandez and A. Khademhosseini. Micro-masonry: Construction
of 3d structures by microscale self-assembly. Advanced Materials, 22
(23):2538–2541, 2010.

E. Ferrante, A. E. Turgut, N. Mathews, M. Birattari, and M. Dorigo.
Flocking in stationary and non-stationary environments: A novel com-
munication strategy for heading alignment. In R. Schaefer, C. Cotta,
J. Ko lodziej, and G. Rudolph, editors, Parallel Problem Solving from
Nature – PPSN XI, volume 6239 of Lecture Notes in Computer Sci-
ence, pages 331–340, Berlin, Germany, 2010. Springer Verlag.

E. Ferrante, A. E. Turgut, A. Stranieri, C. Pinciroli, M. Birattari, and
M. Dorigo. A self-adaptive communication strategy for flocking in sta-
tionary and non-stationary environments. Natural Computing, 2013.
In press.

M. Friedmann, K. Petersen, and O. von Stryk. Simulation of Multi-
Robot Teams with Flexible Level of Detail. In S. Carpin, I. Noda,
E. Pagello, M. Reggiani, and O. Stryk, editors, Simulation, Modeling,
and Programming for Autonomous Robots, volume 5325 of Lecture
Notes in Computer Science, pages 29–40, Berlin, Heidelberg, 2008.
Springer Berlin Heidelberg. ISBN 978-3-540-89075-1. doi: 10.1007/
978-3-540-89076-8.

T. Fukuda. Cell structured robotic system CEBOT: Control, planning
and communication methods. Robotics and Autonomous Systems, 7
(2–3):239–248, 1991.

E. Gamma, R. Helm, R. Johnson, and J. Vlissides. Design Patterns: El-
ements of Reusable Object-Oriented Software. Addison-Wesley, 1994.
ISBN 0-201-63361-2.

S. Garnier. From Ants to Robots and Back : How Robotics Can Con-
tribute to the Study of Collective Animal Behavior. In Y. Meng and
Y. Jin, editors, Bio-Inspired Self-Organizing Robotic Systems, Stud-
ies in Computational Intelligence, chapter 5, pages 105–120. Springer
Berlin Heidelberg, 2011. doi: 10.1007/978-3-642-20760-0.

S. Garnier, C. Jost, R. Jeanson, J. Gautrais, M. Asadpour, G. Caprari,
and G. Theraulaz. Aggregation behaviour as a source of collective
decision in a group of cockroach-like robots. Advances in Artificial
Life, 3630:169–178, 2005.

S. Garnier, C. Jost, J. Gautrais, M. Asadpour, G. Caprari, R. Jeanson,
A. Grimal, and G. Theraulaz. The embodiment of cockroach aggrega-
tion behavior in a group of micro-robots. Artificial life, 14(4):387–408,
Jan. 2008. ISSN 1064-5462. doi: 10.1162/artl.2008.14.4.14400.

165

S. Garnier, M. Combe, C. Jost, and G. Theraulaz. Do ants need
to estimate the geometrical properties of trail bifurcations to find
an efficient route? A swarm robotics test bed. PLoS computa-
tional biology, 9(3):e1002903, Mar. 2013. ISSN 1553-7358. doi:
10.1371/journal.pcbi.1002903.

V. Gazi and B. Fidan. Coordination and control of multi-agent dynamic
systems: Models and approaches. In E. Şahin, W. M. Spears, and
A. F. T. Winfield, editors, Swarm Robotics, Lecture Notes in Com-
puter Science, pages 71–102. Springer Berlin Heidelberg, 2007. ISBN
978-3-540-71541-2. doi: 10.1007/978-3-540-71541-2\ 6.

V. Gazi and K. M. Passino. Stability analysis of swarms. IEEE Trans-
actions on Automatic Control, 48(4):692–697, 2003.

B. P. Gerkey and M. Matarić. A formal analysis and taxonomy of task
allocation in multi-robot systems. International Journal of Robotics
Research, 23(9):939–954, 2004.

B. P. Gerkey, R. T. Vaughan, and A. Howard. The Player/Stage Project:
Tools for Multi-Robot and Distributed Sensor Systems. In Proceedings
of the International Conference on Advanced Robotics (ICAR 2003),
pages 317–323. IEEE Press, Piscataway, NJ, 2003.

D. Goldsmith. Voyage to the Milky Way: The Future of Space Explo-
ration. TV Books, NY, 1999. ISBN 978-1575000466.

S. C. Goldstein, T. C. Mowry, J. D. Campbell, M. P. Ashley-Rollman,
M. De Rosa, S. Funiak, J. F. Hoburg, M. E. Karagozler, B. Kirby,
P. Lee, P. Pillai, J. R. Reid, D. D. Stancil, and M. P. Weller. Beyond
Audio and Video: Using Claytronics to Enable Pario. AI Magazine,
30(2):29–45, 2009. doi: 10.1609/aimag.v30i2.2241.

P. Grassé. La reconstruction du nid et les coordinations inter-
individuelles chez bellicositermes natalensis et cubitermes sp. la
théorie de la stigmergie: Essai d’interprétation des termites construc-
teurs. Insects Sociaux, 6:41–83, 1959.

J. Green. Underground mining robot: A csir project. In 2012 IEEE
International Symposium on Safety, Security, and Rescue Robotics
(SSRR), pages 1–6. IEEE, Piscataway, NJ, 2012.

J. Green and S. Plumb. Mobile robot competition. underground mining:
A challenging application in mobile robotics. In IEEE Africon 2011,
pages 1–6. IEEE, Piscataway, NJ, 2011.

R. Groß and M. Dorigo. Self-assembly at the macroscopic scale. Pro-
ceedings of the IEEE, 96(9):1490–1508, 2008.

166

a. Gutierrez, A. Campo, M. Dorigo, J. Donate, F. Monasterio-Huelin,
and L. Magdalena. Open E-puck Range & Bearing miniaturized board
for local communication in swarm robotics. In 2009 IEEE Interna-
tional Conference on Robotics and Automation (ICRA 2009), pages
3111–3116. IEEE Press, Piscataway, NJ, May 2009. ISBN 978-1-4244-
2788-8. doi: 10.1109/ROBOT.2009.5152456.

M. K. Habib. Humanitarian Demining: Reality and the Challenge of
Technology - The State of the Arts. International Journal of Advanced
Robotics Systems, 4(2):151–172, 2007.

H. Hamann and T. Schmickl. Modelling the swarm: Analysing bio-
logical and engineered swarm systems. Mathematical and Computer
Modelling of Dynamical Systems, 18(1):1–12, Feb. 2012. ISSN 1387-
3954. doi: 10.1080/13873954.2011.601426.

H. Hamann and H. Wörn. A Framework of Space-Time Continuous
Models for Algorithm Design in Swarm Robotics. Swarm Intelligence,
2(2-4):209–239, 2008. doi: 10.1007/s11721-008-0015-3.

S. Hettiarachchi and W. Spears. Distributed adaptive swarm for ob-
stacle avoidance. International Journal of Intelligent Computing and
Cybernetics, 2(4):644–671, 2009.

M. G. Hinchey, R. Sterritt, and C. Rouff. Swarms and Swarm Intelli-
gence. Computer, 40(4):111–113, 2007. doi: 10.1109/MC.2007.144.

N. Hoff, R. Wood, and R. Nagpal. Effect of sensor and actuator qual-
ity on robot swarm algorithm performance. 2011 IEEE/RSJ Interna-
tional Conference on Intelligent Robots and Systems, pages 4989–4994,
Sept. 2011. doi: 10.1109/IROS.2011.6094529.

D. W. Holmes, J. R. Williams, and P. Tilke. An events based algo-
rithm for distributing concurrent tasks on multi-core architectures.
Computer Physics Communications, 181(2):341–354, Feb. 2010. ISSN
00104655. doi: 10.1016/j.cpc.2009.10.009.

A. Howard, M. Matarić, and G. Sukhatme. Mobile sensor network de-
ployment using potential fields: A distributed, scalable solution to the
area coverage problem. In Proceedings of the International Symposium
on Distributed Autonomous Robotic Systems (DARS), pages 299–308.
Springer, New York, 2002.

M. A. Hsieh, A. Halász, S. Berman, and V. Kumar. Biologically
inspired redistribution of a swarm of robots among multiple sites.
Swarm Intelligence, 2(2-4):121–141, Sept. 2008. ISSN 1935-3812. doi:
10.1007/s11721-008-0019-z.

167

S. Huh, U. Lee, H. Shim, J.-B. Park, and J.-H. Noh. Development of
an unmanned coal mining robot and a tele-operation system. In 2011
11th International Conference on Control, Automation and Systems
(ICCAS), pages 31–35. IEEE, Piscataway, NJ, 2011.

D. Izzo, L. Pettazzi, and M. Ayre. Mission Concept for Autonomous on
Orbit Assembly of a Large Reflector in Space. In 56th International
Astronautical Congress, pages IAC–05–D1.4.03, 2005.

J. B. C. Jackson, M. X. Kirby, W. H. Berger, K. A. Bjorndal, L. W.
Botsford, B. J. Bourque, R. H. Bradbury, R. Cooke, J. Erlandson,
J. A. Estes, T. P. Hughes, S. Kidwell, C. B. Lange, H. S. Lenihan,
J. M. Pandolfi, C. H. Peterson, R. S. Steneck, M. J. Tegner, and
R. R. Warner. Historical overfishing and the recent collapse of coastal
ecosystems. Science, 293:629–637, 2001.

R. Jeanson, C. Rivault, J.-L. Denebourg, S. Blanco, R. Fournier, C. Jost,
and G. Theraulaz. Self-organized aggregation in cockroaches. Animal
Behavior, 69:169–180, 2004.

R. Jeanson, C. Rivault, J.-L. Deneubourg, S. Blanco, R. Fournier,
C. Jost, and G. Theraulaz. Self-organized aggregation in cockroaches.
Animal Behaviour, 69(1):169–180, Jan. 2005. ISSN 00033472. doi:
10.1016/j.anbehav.2004.02.009.

R. Johansson and A. Saffiotti. Navigating by stigmergy: A realization on
an rfid floor for minimalistic robots. In IEEE International Conference
on Robotics and Automation (ICRA’09), pages 245–252. IEEE Press,
Piscataway, NJ, 2009. doi: 10.1109/ROBOT.2009.5152737.

M. Jørgensen, E. H. Østergaard, and H. H. Lund. Modular ATRON:
modules for a self-reconfigurable robot. In Proceedings of the
IEEE/RSJ International Conference on Intelligent Robots and Sys-
tems (IROS ’04), pages 2068–2073. IEEE, Piscatway, NJ, 2004.

G. A. Kaminka, M. M. Veloso, S. Schaffer, C. Sollitto, R. Adobbati,
A. N. Marshall, A. Scholer, and S. Tejada. GameBots: A Flexible Test
Bedfor Multiagent Team Research. Communications of the ACM, 45
(1):43–45, 2002.

O. Khatib. Real-time obstacle avoidance for manipulators and mobile
robots. The International Journal of Robotics Research, 5(1):90–98,
1986.

N. Knowlton and J. Jackson. Shifting baselines, local impacts, and
global change on coral reefs. PLoS One, 6:e54, 2008.

168

N. Koenig and A. Howard. Design and use paradigms for gazebo,
an open-source multi-robot simulator. In 2004 IEEE/RSJ Interna-
tional Conference on Intelligent Robots and Systems (IROS), vol-
ume 3, pages 2149–2154. Ieee, 2004. ISBN 0-7803-8463-6. doi:
10.1109/IROS.2004.1389727.

T. Krajńık, V. Vonásek, D. Fǐser, and J. Faigl. AR-drone as a plat-
form for robotic research and education. In D. Obdržálek and
A. Gottscheber, editors, Research and Education in Robotics - EU-
ROBOT 2011, pages 172–186. Springer-Verlag GmbH Berlin Heidel-
berg, 2011. doi: 10.1007/978-3-642-21975-7\ 16.

J. Kramer and M. Scheutz. Development environments for autonomous
mobile robots: A survey. Autonomous Robots, 22(2):101–132, Dec.
2006. ISSN 0929-5593. doi: 10.1007/s10514-006-9013-8.

A. S. Krishnamoorthi. Cooperative visitor: A template technique for
visitor creation. http://www.artima.com/cppsource/cooperative
visitor.html, July 11th 2007. Accessed: 2014-02-09.

M. Kudelski, L. M. Gambardella, and G. a. Di Caro. RoboNetSim:
An integrated framework for multi-robot and network simulation.
Robotics and Autonomous Systems, 61(5):483–496, Feb. 2013. ISSN
09218890. doi: 10.1016/j.robot.2013.01.003.

J. Lächele, A. Franchi, H. Bülthoff, and P. Robuffo Giordano. Swarm-
SimX: Real-Time Simulation Environment for Multi-robot Systems.
In I. Noda, N. Ando, D. Brugali, and J. J. Kuffner, editors, Sim-
ulation, Modeling, and Programming for Autonomous Robots, vol-
ume 7628, pages 375–387. Springer Berlin Heidelberg, 2012. doi:
10.1007/978-3-642-34327-8\ 34.

J. Lächele, M. Riedel, P. Robuffo Giordano, and A. Franchi. Swarm-
SimX and TeleKyb : Two ROS-integrated Software Frameworks for
Single- and Multi-Robot Applications. In Proceedings of the 2013
IEEE Conference on Robotics and Automation (ICRA 2013). IEEE
Press, Piscataway, NJ, 2013.

K. Lerman, A. Martinoli, and A. Galstyan. A Review of Probabilistic
Macroscopic Models. In E. Şahin and W. M. Spears, editors, SAB 2004
International Workshop, pages 143–152. Springer Berlin Heidelberg,
2005. doi: 10.1007/978-3-540-30552-1\ 12.

R. Y. M. Li and S. W. Poon. Construction Safety. Risk Engineering.
Springer, Berlin Heidelberg, 2013.

S. B. Lippman. Inside the C++ Object Model. Addison-Wesley, 1996.
ISBN 0-201-83454-5.

169

http://www.artima.com/cppsource/cooperative_visitor.html
http://www.artima.com/cppsource/cooperative_visitor.html

W. Liu, A. F. T. Winfield, J. Sa, J. Chen, and L. Dou. Towards En-
ergy Optimization: Emergent Task Allocation in a Swarm of Foraging
Robots. Adaptive Behavior, 15(3):289–305, Sept. 2007. ISSN 1059-
7123. doi: 10.1177/1059712307082088.

S. Magnenat, P. Rétornaz, M. Bonani, V. Longchamp, and F. Mon-
dada. ASEBA: A modular architecture for event-based control of
complex robots. IEEE/ASME Transactions on Mechatronics, PP(99):
1–9, 2010.

A. Marjovi, J. Nunes, L. Marques, and A. de Almeida. Multi-robot
exploration and fire searching. In IEEE/RSJ International Conference
on Intelligent Robots and Systems (IROS 2009), pages 1929–1934.
IEEE Press, Piscataway, NJ, 2009. doi: 10.1109/IROS.2009.5354598.

A. Martinoli, K. Easton, and W. Agassounon. Modeling Swarm Robotic
Systems: a Case Study in Collaborative Distributed Manipulation.
The International Journal of Robotics Research, 23(4):415–436, Apr.
2004. ISSN 02783649. doi: 10.1177/0278364904042197.

N. Mathews, A. Christensen, E. Ferrante, R. O’Grady, and M. Dorigo.
Establishing spatially targeted communication in a heterogeneous
robot swarm. In Proceedings of 9th International Conference on Au-
tonomous Agents and Multiagent Systems (AAMAS 2010), pages 939–
946. IFAAMAS, Toronto, Canada, 2010.

C. Mavroidis and A. Ferreira. Nanorobotics: Past, Present, and Future.
In C. Mavroidis and A. Ferreira, editors, Nanorobotics, pages 3–27.
Springer New York, New York, NY, 2013. ISBN 978-1-4614-2118-4.
doi: 10.1007/978-1-4614-2119-1.

J. McLurkin, A. J. Lynch, S. Rixner, T. W. Barr, A. Chou, K. Fos-
ter, and S. Bilstein. A Low-Cost Multi-robot System for Research,
Teaching, and Outreach. In A. Martinoli, F. Mondada, N. Correll,
G. Mermoud, M. Egerstedt, M. A. Hsieh, L. E. Parker, and K. Stø y,
editors, Distributed Autonomous Robotic Systems: The 10th Interna-
tional Symposium, pages 597–609. Springer Berlin Heidelberg, 2013.
doi: 10.1007/978-3-642-32723-0\ 43.

L. Meeden. Bridging the gap between robot simulations and reality with
improved models of sensor noise. In J. Koza, editor, Proceedings of
the Third Annual Genetic Programming Conference, pages 824–831.
Morgan Kauffmann Publishers, San Francisco, CA, 1998.

C. Melhuish, O. Holland, and S. Hoddell. Convoying: Using chorusing to
form travelling groups of minimal agents. Robotics and Autonomous
Systems, 28:207–216, 1999.

170

D. Mellinger and V. Kumar. Minimum snap trajectory generation and
control for quadrotors. In Proc. of the International Conference on
Robotics and Automation (ICRA 11), Shanghai, China, May 2011.

O. Michel. Webots: Professional Mobile Robot Simulation. Journal of
Advanced Robotics Systems, 1(1):39–42, Dec. 2004.

M. Minsky. Computation: Finite and Infinite Machines. Prentice-Hall,
Upper Saddle River, NJ, 1967.

S. Mitri, S. Wischmann, D. Floreano, and L. Keller. Using robots to
understand social behaviour. Biological reviews of the Cambridge
Philosophical Society, 88(1):31–9, Feb. 2013. ISSN 1469-185X. doi:
10.1111/j.1469-185X.2012.00236.x.

F. Mondada, G. Pettinaro, A. Guignard, I. Kwee, D. Floreano, J.-L.
Deneubourg, S. Nolfi, L. Gambardella, and M. Dorigo. SWARM-
BOT: a new distributed robotic concept. Autonomous Robots, special
Issue on Swarm Robotics, 17(2-3):193–221, 2004.

F. Mondada, M. Bonani, X. Raemy, J. Pugh, C. Cianci, A. Klaptocz,
J.-C. Zufferey, D. Floreano, and A. Martinoli. The e-puck , a Robot
Designed for Education in Engineering. In P. J. S. Gonçalves, P. J. D.
Torres, and C. M. O. Alves, editors, Proceedings of Robotica 2009
– 9th Conference on Autonomous Robot Systems and Competitions,
volume 1, pages 59–65. IPCB, Castelo Branco, Portugal, 2006.

M. A. Montes de Oca, E. Ferrante, N. Mathews, M. Birattari, and
M. Dorigo. Opinion dynamics for decentralized decision-making in
a robot swarm. In M. Dorigo et al., editors, Proceedings of the Sev-
enth International Conference on Swarm Intelligence (ANTS 2010),
LNCS 6234, pages 251–262. Springer, Berlin, Germany, 2010.

L. Mottola and G. P. Picco. Programming wireless sensor networks:
Fundamental concepts and state of the art. ACM Computing Surveys
(CSUR), 43(3):Paper ID 19, 2011. doi: 10.1145/1922649.1922656.

S. Murata, E. Yoshida, A. Kamimura, H. Kurokawa, K. Tomita, and
S. Kokaji. M-TRAN: self-reconfigurable modular robotic system.
IEEE/ASME Transactions on Mechatronics, 7(4):431–441, 2002.

E. Mytilinaios, M. Desnoyer, D. Marcus, and H. Lipson. Designed and
evolved blueprints for physical self-replicating machines. In Proceed-
ings of the 9th International Conference on the Simulation and Syn-
thesis of Living Systems (Artificial Life IX), pages 15–20. MIT Press,
Cambridge, MA, 2004.

171

S. Nolfi and D. Floreano. Evolutionary Robotics: The Biology, Intelli-
gence, and Technology of Self-Organizing Machines. A Bradford Book,
MIT Press, Cambridge, MA, 2004. ISBN 978-0262640565.

S. Nouyan, A. Campo, and M. Dorigo. Path formation in a robot swarm:
Self-organized strategies to find your way home. Swarm Intelligence,
2(1):1–23, 2008.

R. O’Grady, R. Groß, F. Mondada, M. Bonani, and M. Dorigo. Self-
assembly on demand in a group of physical autonomous mobile robots
navigating rough terrain. In Advances in Artificial Life, volume 3630
of Lecture Notes in Computer Science, pages 272–281. Springer, Berlin
Heideleberg, 2005.

R. O’Grady, C. Pinciroli, A. L. Christensen, and M. Dorigo. Super-
vised group size regulation in a heterogeneous robotic swarm. In
Proceedings of ROBOTICA 2009 - 9th International Conference on
Autonomous Robot Systems and Competitions, pages 113–119. IPCB,
Castelo Branco, Portugal, 2009. ISBN 978-972-99143-7-9.

R. O’Grady, C. Pinciroli, R. Groß, A. L. Christensen, F. Mondada,
M. Bonani, and M. Dorigo. Swarm-bots to the rescue. In G. Kampis,
I. Karsai, and E. Szathmry, editors, Advances in Artificial Life: 10th
European Conference (ECAL 2009), volume 5777 of Lecture Notes
in Artificial Intelligence, pages 165–172. Springer, Berlin, Germany,
2011. doi: http://dx.doi.org/10.1007/978-3-642-21283-3 21.

M. Patil, T. Abukhalil, and T. Sobh. Hardware Architecture Review of
Swarm Robotics System: Self-Reconfigurability, Self-Reassembly, and
Self-Replication. ISRN Robotics, 2013:1–11, 2013. ISSN 2090-8806.
doi: 10.5402/2013/849606.

K. Petersen, R. Nagpal, and J. Werfel. TERMES: An autonomous
robotic system for three-dimensional collective construction. In
H. Durrant-Whyte, N. Roy, and P. Abbeel, editors, Robotics: Sci-
ence and Systems Conference VII, pages Paper ID 35, Proceedings on
CD–ROM. MIT Press, Cambridge, MA, 2011.

C. Pinciroli, M. Birattari, E. Tuci, M. Dorigo, M. D. R. Zapatero,
T. Vinko, and D. Izzo. Lattice formation in space for a swarm of
pico satellites. In Proceedings of the Sixth International Conference
on Ant Colony Optimization and Swarm Intelligence (ANTS-2008),
number 5217 in Lecture Notes in Computer Science, pages 347–354.
Springer, Berlin, Germany, September 2008.

C. Pinciroli, R. O’Grady, A. Christensen, and M. Dorigo. Self-organised
recruitment in a heterogeneous swarm. In The 14th International Con-

172

ference on Advanced Robotics (ICAR 2009), page 8, 2009. Proceedings
on CD-ROM, paper ID 176.

G. Pini, A. Brutschy, M. Frison, A. Roli, M. Dorigo, and M. Birat-
tari. Task partitioning in swarms of robots: An adaptive method
for strategy selection. Swarm Intelligence, 5(3–4):283–304, 2011. doi:
http://dx.doi.org/10.1007/s11721-011-0060-1.

G. Pini, A. Brutschy, C. Pinciroli, M. Dorigo, and M. Birattari. Au-
tonomous task partitioning in robot foraging: an approach based on
cost estimation. Adaptive Behavior, 21(2):118–136, 2013.

P. Pirkelbauer, Y. Solodkyy, and B. Stroustrup. Open multi-methods
for c++. In Proceedings of the ACM 6th International Conference on
Generative Programming and Component Engineering (GPCE), pages
123–134. ACM New York, NY, 2007.

J. Reif and J. Wang. Social potential fields: a distributed behavioral
control for autonomous robots. Robotics and Autonomous Systems,
27(3):171–194, 1999.

B. Rinkevich. Conservation of coral reefs through active restoration
measures: recent approaches and last decade progress. Environmental
Science and Technology, 39:4333–4342, 2005.

J. Roberts, T. Stirling, J. Zufferey, and D. Floreano. Quadrotor using
minimal sensing for autonomous indoor flight. In European Micro Air
Vehicle Conference and Flight Competition (EMAV), 2007. Proceed-
ings on CD-ROM.

J. Roberts, T. Stirling, J.-C. Zufferey, and D. Floreano. 2.5d infrared
range and bearing system for collective robotics. In IEEE/RSJ Inter-
national Conference on Intelligent Robots and Systems (IROS 2009).
IEEE Press, Piscataway, NJ, 2009.

E. Rohmer, S. P. N. Singh, and M. Freese. V-REP : a Versatile and
Scalable Robot Simulation Framework. In 2013 IEEE/RSJ Interna-
tional Conference on Intelligent Robots and Systems (IROS), pages
1321–1326. IEEE Press, Piscataway, NJ, 2013. doi: 10.1109/IROS.
2013.6696520.

M. Rubenstein, C. Ahler, and R. Nagpal. Kilobot: A low cost scalable
robot system for collective behaviors. 2012 IEEE International Con-
ference on Robotics and Automation, pages 3293–3298, May 2012. doi:
10.1109/ICRA.2012.6224638.

R. F. Rubio. Mining: The challenge knocks on our door. Mine Water
and the Environment, 31(1):69–73, 2012.

173

M. Rust, J. Owens, and D. Reierson. Understanding and controlling the
german cockroach. Oxford University Press, UK, 1995.

H. Samet. Foundations of Multidimensional and Metric Data Struc-
tures. Data Management Series. Morgan Kaufmann, San Francisco,
CA, 2006. ISBN 978-0-12-369446-1.

T. Schmickl. How to Engineer Robotic Organisms and Swarms? In
Y. Meng and Y. Jin, editors, Bio-Inspired Self-Organizing Robotic
Systems, number 216342 in Studies in Computational Intelligence,
pages 25–52. Springer Berlin Heidelberg, 2011. doi: 10.1007/
978-3-642-20760-0\ 2.

F. Schweitzer. Brownian Agents and Active Particles. On the Emergence
of Complex Behavior in the Natural and Social Sciences. Springer-
Verlag, Berlin, Germany, 2003.

S. Sebastio and A. Vandin. MultiVeStA: Statistical model checking for
discrete event simulators. Technical report, IMT Lucca, Italy, 2013.

B. Sellner, F. Heger, L. Hiatt, R. Simmons, and S. Singh. Coordinated
multi-agent teams and sliding autonomy for large-scale assembly. Pro-
ceedings of the IEEE, 94:1425–1444, 2006.

M. Sivasankar and R. Durairaj. Brief Review on Nano Robots in Bio
Medical Applications. Advances in Robotics and Automation, 1(1):
1–4, 2012. doi: 10.4172/ara.1000101.

W. M. Spears, D. F. Spears, J. C. Hamann, and R. Heil. Distributed,
Physics-Based Control of Swarms of Vehicles. Autonomous Robots, 17
(2/3):137–162, Sept. 2004. ISSN 0929-5593. doi: 10.1023/B:AURO.
0000033970.96785.f2.

K. Støy. Using situated communication in distributed autonomous mo-
bile robots. In Proceedings of the 7th Scandinavian Conference on
Artificial Intelligence, pages 44–52. IOS Press, 2001.

A. Stroupe, A. Okon, M. Robinson, T. Huntsberger, H. Aghazarian,
and E. Baumgartner. Sustainable cooperative robotic technologies for
human and robotic outpost infrastructure construction and mainte-
nance. Autonomous Robots, 20:113–123, 2006.

R. S. Sutton and A. G. Barto. Reinforcement Learning: An Introduction.
MIT Press, Cambridge, MA, 1998. ISBN 978-0262193986.

A. S. Tanenbaum. Modern Operating Systems. Prentice-Hall, New Jer-
sey, NJ, second edition, 2001.

174

Y. Terada and S. Murata. Automatic modular assembly system and
its distributed control. International Journal of Robotics Research, 27
(3–4):445–462, 2008.

M. Teschner, B. Heidelberger, M. Mueller, D. Pomeranets, and
M. Gross. Optimized spatial hashing for collision detection of de-
formable objects. In Proceedings of the Vision, Modeling, and Visu-
alization Conference, pages 47–54. Aka, Heidelberg, Germany, 2003.

A. E. Turgut, H. Çelikkanat, F. Gökçe, and E. Şahin. Self-organized
flocking in mobile robot swarms. Swarm Intelligence, 2(2-4):97–120,
Aug. 2008. ISSN 1935-3812. doi: 10.1007/s11721-008-0016-2.

C. Ünsal, c. H. Kili c and P. K. Khosla. Modular self-reconfigurable
bipartite robotic system: implementation and motion planning. Au-
tonomous Robots, 10(1):23–40, 2001.

R. Vaughan. Massively multi-robot simulation in stage. Swarm Intel-
ligence, 2(2-4):189–208, Aug. 2008. ISSN 1935-3812. doi: 10.1007/
s11721-008-0014-4.

J. Werfel, Y. Bar-Yam, D. Rus, and R. Nagpal. Distributed construction
by mobile robots with enhanced building blocks. In Proceedings of
the 2006 IEEE International Conference on Robotics and Automation
(ICRA 2006), pages 2787–2794. IEEE, Piscataway, NJ, 2006. doi:
10.1109/ROBOT.2006.1642123.

A. F. T. Winfield, J. Sa, M.-C. Fernández-Gago, and C. Dixon. On
Formal Specification of Emergent Behaviours in Swarm Robotic Sys-
tems. International Journal of Advanced Robotics Systems, 2(4):363–
370, 2005.

M. Yim, D. G. Duff, and K. D. Roufas. PolyBot: a modular reconfig-
urable robot. In Proceedings of the IEEE International Conference
on Robotics and Automation, pages 514–520. IEEE Computer Society
Press, Washington, DC, 2000.

M. Yim, Y. Zhang, J. Lamping, and E. Mao. Distributed control for 3d
metamorphosis. Autonomous Robots, 10(1):41–56, 2001.

M. Yim, Y. Zhang, and D. Duff. Modular robots. IEEE Spectrum, 39
(2):30–34, 2002.

G. Zachmann. Minimal hierarchical collision detection. In Proceedings
of the ACM symposium on Virtual reality software and technology
(VRST ’02), pages 121–128. ACM New York, NY, 2002. doi: 10.
1145/585740.585761.

175

	Abstract
	Acknowledgements
	Contents
	List of Figures
	to1Introduction
	Problem Statement
	Thesis Structure and Research Contributions
	Other Scientific Contributions

	to2Context and State of the Art
	Context: Swarm Robotics Systems
	Simulation of Swarm Robotics Systems

	to3The ARGoS Architecture
	Requirements
	Modularity
	Entity Indexing
	Multiple Physics Engines
	Multiple Threads

	to4Achieving Flexibility
	Requirements
	Modules as Plug-ins
	Arbitrary Interactions among Modules

	to5Efficiency Assessment
	Experimental Setup
	2D-Dynamics Physics Engine
	Results with Other Physics Engines

	to6Validation
	Flocking
	Cooperative Navigation
	Task Partitioning in Cooperative Foraging
	Discussion

	to7Team Recruitment and Delivery in a Heterogeneous Swarm
	Introduction
	Related Work
	Methodology
	Hardware
	Active Shelters
	Scalability Assessment

	to8Conclusions and Future Work
	toAOther Scientific Contributions
	Swarm Robotics
	Boolean Network Robotics
	Other Publications

	toBCompiling and Installing ARGoS
	Licensing
	Downloading ARGoS
	Compiling ARGoS
	Using ARGoS from the source tree
	Installing ARGoS from the compiled binaries

	toCAn Example of ARGoS in Use
	The Robot Control Code
	The Experiment Configuration File

	Bibliography

