
UNIVERSITÉ LIBRE DE BRUXELLES

Ecole Polytechnique de Bruxelles

IRIDIA - Institut de Recherches Interdisciplinaires

et de Développements en Intelligence Artificielle

Towards Autonomous Task Partitioning

in Swarm Robotics

Experiments with Foraging Robots

Giovanni PINI

Promoteur de Thèse:
Prof. Marco DORIGO

Co-Promoteur de Thèse:
Prof. Mauro BIRATTARI

Thèse présentée en vue de l’obtention du titre de
Docteur en Sciences de l’Ingénieur

Année académique 2012-2013

Giovanni Pini

Towards Autonomous Task Partitioning

in Swarm Robotics

Experiments with Foraging Robots

Université Libre de Bruxelles

This dissertation has been submitted in partial fulfillment of the re-
quirements to obtain the doctoral degree at Université Libre de Brux-
elles. This dissertation has not been previously submitted to Univer-
sité Libre de Bruxelles nor any other university or organization. The
work that is presented in this dissertation is based upon a number of
publications of the author. Short quotations from the dissertation are
permitted, provided that the original source is acknowledged.

Copyright c© 2013 by Giovanni Pini

To my family.

Acknowledgements

I joined IRIDIA in 2006, and since then I met people of what I consider
to be three different generations of IRIDIANs. In time, people joined
and left the lab, but IRIDIA never really changed: it is a big family
where everyone is welcome since the first day. I am glad to be part of
this family and in the future I will remember with pleasure the time I
spent and the people I met at IRIDIA.

I would like to thank Prof. Marco Dorigo first. He is the one who
gave me the opportunity to join IRIDIA and to make such an experi-
ence. I also thank him for his supervision and for being always available
to give his help and advice. Thanks to Mauro, who supervised me in
my everyday research and taught me a lot. I had several discussions
with Mauro, many times my mood deteriorated after the discussion
since they meant more work to be done, but often his suggestions were
very helpful. I also thank Elio for his supervision during the first year
I spent at IRIDIA. Together with Marco, Elio was the one who made
possible my experience at IRIDIA.

Special thanks to Arne, since it was him who freed me from the
hand-bot’s grip. In a word, Arne is simply amazing; the work presented
in this thesis could not have been carried out without his precious help.
I want to thank Carlo for always being available to help people and for
letting me complete the Ph.D. before him. Thanks to my office-mates
Manu, Franco, and Tarik, for rendering my everyday work so funny.
Thanks to “Kardesh” Ali and Eliseo, two of the nicest guys I have
ever met. Thanks to Nithin for being always ready to listen and for
his always-positive attitude. Thanks to Alessandro for his humor and
for sharing his passion for Swiss ornithology with all of us. Thanks
to Jeremie for keeping the cluster (almost) always up and running,
which allowed me to run the many experiments presented in the thesis.
Thanks to Prasanna for the great fun we always had together.

Thanks to the new IRIDIANs: Gabriele, Touraj, Lorenzo, Leslie,
Giovanni, Dhananjay, Gianpiero, Anthony, Leonardo, Gaëtan, Roman.
Us “oldies” are leaving IRIDIA in good hands.

I

Special (re-)mention for the heroes of Lausanne: Manu, Arne, Ali’s
evil twin, Alessandro, Eliseo, and Nithin. We managed to do an amaz-
ing job and to have some (sort of) fun despite the far-from-optimal
conditions. Also thanks to Mr. O. and Mr. P. Faislosli for their logistic
support during the aforementioned work.

Thanks to those who “volunteered” to proof read this thesis and (I
hope) found all the remaining little errors: Arne, Dhananjay, Lorenzo,
Manuele, Eliseo, Carlo, Giovanni, Gabriele, Gianpiero, Touraj, and
Nithin. I hope I will soon return the favor to each of you. Thanks to
Rachael for her tips on English grammar.

For reasons of space I cannot mention everybody, but I have fond
memories of each person I met during my stay at IRIDIA (few excep-
tions); many many thanks to everybody.

Among the non-IRIDIANs I thank Lluis and Soschanne for being
such nice friends and for the good time we always spend together.

Many thanks to my family for their love, help, and support. With-
out them I would never have come this far in my life.

Thanks to Silvia for her love and for always encouraging me when
I most need it.

To conclude I also thank my friends back in Italy: Luca, Della, Teo,
Mauri, Cippi, Davids, Dagno, Rudy. Each time I come back for a visit
you make me feel as if I never left.

II

Abstract

In this thesis, we propose an approach to achieve autonomous task par-
titioning in swarms of robots. Task partitioning is the process by which
tasks are decomposed into sub-tasks and it is often an advantageous
way of organizing work in groups of individuals. Therefore, it is inter-
esting to study its application to swarm robotics, in which groups of
robots are deployed to collectively carry out a mission. The capability
of partitioning tasks autonomously can enhance the flexibility of swarm
robotics systems because the robots can adapt the way they decompose
and perform their work depending on specific environmental conditions
and goals. So far, few studies have been presented on the topic of task
partitioning in the context of swarm robotics. Additionally, in all the
existing studies, there is no separation between the task partitioning
methods and the behavior of the robots and often task partitioning re-
lies on characteristics of the environments in which the robots operate.
This limits the applicability of these methods to the specific contexts
for which they have been built. The work presented in this thesis
represents the first steps towards a general framework for autonomous
task partitioning in swarms of robots. We study task partitioning in
foraging, since foraging abstracts practical real-world problems. The
approach we propose in this thesis is therefore studied in experiments
in which the goal is to achieve autonomous task partitioning in forag-
ing. However, in the proposed approach, the task partitioning process
relies upon general, task-independent concepts and we are therefore
confident that it is applicable in other contexts. We identify two main
capabilities that the robots should have: i) being capable of selecting
whether to employ task partitioning and ii) defining the sub-tasks of a
given task. We propose and study algorithms that endow a swarm of
robots with these capabilities.

III

Contents

1 Introduction 1
1.1 Contributions and Related Publications 3
1.2 Other Scientific Contributions 5
1.3 Structure of the Dissertation 8

2 Context and Related Work 11
2.1 Swarm Intelligence and Swarm Robotics 11

2.1.1 Swarm Intelligence and Self-organization 12
2.1.2 Swarm Robotics 15

2.2 Task Partitioning . 17
2.2.1 The Benefits of Task Partitioning 17
2.2.2 Task Partitioning in Artificial Systems 20

2.3 Task Allocation . 23
2.4 Foraging . 24

3 The Approach 27
3.1 Tasks, Sub-tasks, and Task Partitioning 28
3.2 Sub-tasks, Amount of Work, and Interfaces 31
3.3 Strategy . 36
3.4 Autonomous Task Partitioning in Swarms of Robots . . 39
3.5 Application to Other Domains 42

3.5.1 A Construction Scenario 42
3.5.2 A Tasty Scenario 43

3.6 Summary . 44

4 Tools 47
4.1 The e-puck and the TAM 47
4.2 The MarXbot . 49
4.3 ARGoS . 53

5 Deciding Whether to Use a Fixed Interface 57
5.1 Description of the Problem 58
5.2 Experimental Setup . 61

V

5.3 Application of the Proposed Approach 65
5.4 The Ad Hoc Algorithm 68

5.4.1 The Algorithm 68
5.4.2 Experiments and Results 69

Performance Evaluation 70
Adaptivity to Changes 74
Scalability . 77

5.5 Task Partitioning as a Bandit Problem 81
5.5.1 Studied Algorithms 82
5.5.2 Experiments and Results 85

Stationary Environmental Conditions 87
Non-stationary Environmental Conditions . . . 88

5.6 The Use of Communication 91
5.6.1 The Communication Protocol 92
5.6.2 Experiments and Results 92

The Effect of Communication 93
Algorithms with ε-exploration 95

5.7 Summary . 96

6 Amount of Work Contributed by a Sub-task 99
6.1 Localization . 100
6.2 Problem Description 102
6.3 Application of the Proposed Approach 105

The Model of the Cost Function 106
Estimation of the Costs 109

6.3.1 Task Partitioning Algorithms 112
The Cost-based Partitioning Algorithm 112
The Fixed Algorithms 112
The Random Initialization Algorithm 112

6.4 Experimental Setup . 113
6.4.1 Experimental Environment 113
6.4.2 Behavior and Characteristics of the MarXbot . 115
6.4.3 Simulation of the System Using ARGoS 117

6.5 Validation of the System 121
6.6 Simulation Experiments and Results 126

6.6.1 Basic Properties 127
6.6.2 Size of the Environment 135
6.6.3 Distance to the Source 136
6.6.4 Heterogeneity in the Robot Swarm 138
6.6.5 Adaptivity to Variable Conditions 140

6.7 Summary . 145

VI

7 Conclusions 147
7.1 Contributions . 147
7.2 Future Work . 148

Annexes 151

A ARGoS 1 Versus ARGoS 2 153
A.1 Implementation Differences 153
A.2 Published Experiments and Results 155

A.2.1 Performance Evaluation 156
A.2.2 Adaptivity to Changes 159
A.2.3 Scalability . 160

B Supplementary Material 163

Bibliography 165

VII

Chapter 1

Introduction

Robots are machines built to replace human work in a variety of sit-
uations. There exist several types of robots; in this dissertation, we
focus on systems composed of a large number of autonomous mobile
robots. As the name suggests, mobile robots are robots that can freely
navigate in the environment.

The nature of the work to be performed and of the environment in
which it must be performed defines which type of robotic system should
be employed and what its properties should be. For example, assem-
bling a car requires a well-defined series of operations to be executed
in a structured environment. In this situation, industrial manipulators
are an optimal choice. These robots are not required to cope with un-
certainty nor to be particularly flexible in their behavior, but rather to
be fast and accurate in their movements.

Mobile robots, on the other hand, are suited for other types of
tasks, such as exploration, search and rescue, cleaning, mine clearance,
and collection of materials. In these contexts, using a multitude of
robots is usually preferable to using a unique robot that performs all
the work, since parallelism and fault tolerance increase. Additionally,
the tasks mentioned are typically carried out in non-structured and
potentially unknown environments which may change in time. This
usually requires the robots to be (at least partially) autonomous, so
that their behavior is flexible and it can dynamically adapt to a variety
of environmental conditions.

Designing and implementing a robotic system composed of a large
number of autonomous robots is a complex problem. Typically, in
non-trivial situations, the designer of the system decomposes the work
that the robots have to accomplish into a set of separate units. He
implements solutions so that the robots can execute these units. The
designer then composes these solutions to obtain a system capable of

2 1. Introduction

performing the overall work. Isolating units of work that must be per-
formed by the robots eases the job of the designer, since he can devise
solutions for smaller and more manageable problems. Moreover, in the
case of multi-robot systems, the separation into units of work usually
results in a better exploitation of the parallel nature of such systems.
However, there is a disadvantage associated with this approach: the
way the overall work is decomposed, and consequently executed by the
robots, is a choice made at design time and the system lacks flexibility
with respect to this choice.

The research presented in this dissertation is motivated by the pur-
suit of flexibility and autonomy at the level of the definition of the
units of work performed by the robots. Our vision is that the role of
the designer of a robotic system should be to equip the robots with
a set of minimal capabilities, while the decomposition of the overall
work into smaller units should be a process carried out by the robots
autonomously. The process by which work is decomposed into smaller
units to be tackled separately is called task partitioning. Robotics sys-
tems capable of performing task partitioning autonomously would be
extremely flexible with respect to unforeseen situations and dynami-
cally changing environments: not only their behavior, but also the way
the work is organized could be adapted to specific conditions. The re-
search presented in this dissertation represents a step towards robotics
systems with such a capability. We propose an approach that can be
applied in the context of swarm robotics to let the robots of the swarm
autonomously partition tasks into sequences of sub-tasks.

Other research work exists on the topic of task partitioning in swarm
robotics. The task partitioning mechanisms and algorithms proposed
so far have two characteristics in common. First, the task partition-
ing decisions are implemented upon specific behavioral traits of the
robots and rely on known characteristics of the environment in which
the robots operate. Second, task partitioning explicitly aims to reduce
physical interference between the robots. We believe these charac-
teristics limit the reusability of the proposed task partitioning mech-
anisms and result in a poor flexibility of the robots behavior. The
approach presented in this dissertation aims to overcome these limi-
tations. Within our approach, the task partitioning decisions do not
depend on specific behaviors of the robots nor characteristics of the
environment. In addition, task partitioning does not explicitly aim to
reduce physical interference. These aspects render our approach more
general with respect to what proposed so far.

We design our approach to obtain task partitioning in the specific
context of foraging, since it is an abstraction of many practical prob-

1.1. Contributions and Related Publications 3

lems, such as, for example, search and rescue, mine clearance, and
cleaning. However, in our approach, task partitioning is built upon
general, context-independent concepts and we are therefore confident
that the approach can be directly applied to contexts other than for-
aging.

The contents of this dissertation are based upon a number of re-
search articles that we published. In Section 1.1, we list these articles
and highlight their contributions to the contents of this dissertation.
In Section 1.2, we present other scientific contributions of ours that are
not strictly related to the topic of task partitioning and therefore do
not directly contribute to this dissertation.

1.1 Contributions and Related Publications

In our study of task partitioning, we identified two situations the robots
may encounter. In one situation, due to constraints of the environment
or the task, the robots are free to decide whether or not to partition
the given task, but they are not free to autonomously decide what
these sub-tasks consist in. In the other situation, the robots are free
to define the sub-tasks of the given task. In our research, we study the
two situations and propose algorithms and methods that enable the
robots to tackle them.

In Chapter 5 of the dissertation, we concentrate on the first situ-
ation. We propose algorithms that swarms of robots can use to au-
tonomously decide whether to partition a given task into sub-tasks.
The contents of Chapter 5 are based upon four articles, listed in the
following. The first algorithm that we developed has been published
in:

• Frison M., Tran N.-L., Baiboun N., Brutschy A., Pini G., Roli A.,
Dorigo M., and Birattari M. Self-organized task partitioning in a
swarm of robots. Proceedings of the 7th International Conference
on Swarm Intelligence (ANTS 2010). Volume 6234 of LNCS,
pages 287-298. Springer, Berlin, Germany, 2010.

The same experimental setup was used to design an extended version
of the algorithm so that decisions are made by the robots on the basis
of cost estimates. We performed experiments to assess the capability
of the algorithm to properly select whether to employ task partitioning
and to adapt the choice to variations occurring in the environment.
The results of the research work have been published in:

• Pini G., Brutschy A., Frison M., Roli A., Dorigo M., and
Birattari M. Task partitioning in swarms of robots: An adaptive

4 1. Introduction

method for strategy selection. Swarm Intelligence, 5(3-4):283-
304, 2011.

In a follow-up work, we have shown that the problem of deciding
whether to employ task partitioning can be seen as a multi-armed ban-
dit problem. This is advantageous since one can select among the many
algorithms that have been proposed to tackle this problem. We com-
pare two of such algorithms to the ad-hoc algorithm we proposed in our
previous work and show that these algorithms can be successfully em-
ployed in the context of task partitioning. The results of the research
have been published in:

• Pini G., Brutschy A., Francesca G., Dorigo M., and Birattari M.
Multi-armed bandit formulation of the task partitioning problem
in swarm robotics. Proceedings of the 8th International Confer-
ence on Swarm Intelligence (ANTS 2012). Volume 7461 of LNCS,
pages 109-120. Springer, Berlin, Germany, 2012.

The work was further extended to study the effect of communication
on the system. An article, presenting the results of the study, has been
accepted for publication in an international journal:

• Pini G., Gagliolo M., Brutschy A., Dorigo M., and Birattari M.
Task partitioning in a robot swarm: A study on the effect of
communication. Swarm Intelligence, 2013. In press.1

In Chapter 6 of the dissertation, we study the case in which the robots
are free to autonomously define the sub-tasks of a given task. The
contents of the chapter are based upon two research articles.

In a first research work, we study the cost of performing object
transportation as a partitioned task, with the robots directly handing
over objects one to another. The work has been submitted for publi-
cation to an international journal:

• Pini G., Brutschy A., Scheidler A., Dorigo M., and Birattari M.
Task partitioning in a robot swarm: Object retrieval as a sequence
of sub-tasks with direct object transfer.2

A similar case-study was used to develop and test a method that en-
ables a swarm of robots to autonomously partition the transportation
of objects on the basis of the perceived costs. An article presenting
this research work has been published in:

1An Online First version of the article is available. DOI: 10.1007/s11721-013-0078-7.
2The work is currently available as a technical report (Pini et al., 2012b).

1.2. Other Scientific Contributions 5

• Pini G., Brutschy A., Pinciroli C., Dorigo M., and Birattari M.
Autonomous task partitioning in robot foraging: An approach
based on cost estimation. Adaptive Behavior, 21(2):117-135, 2013.

In addition to the works mentioned so far, we performed further re-
search on the topic of task partitioning whose results are not included
in this dissertation. The goal of this research was to study the use of
task partitioning to reduce physical interference between robots. This
research has been published in:

• Pini G., Brutschy A., Birattari M., and Dorigo M. Interference
reduction through task partitioning in a robotic swarm. Proceed-
ings of the 6th International Conference on Informatics in Con-
trol, Automation and Robotics (ICINCO 2009), CD-ROM, 2009.

and, as an extended version, in:

• Pini G., Brutschy A., Birattari M., and Dorigo M. Task par-
titioning in swarms of robots: Reducing performance losses due
to interference at shared resources. Lecture Notes in Electrical
Engineering (LNEE), 85, 217-228, 2011.

1.2 Other Scientific Contributions

In this section, we present scientific contributions of ours that are not
related to task partitioning. A first set of published contributions is
within the topic of task allocation. Task allocation is the problem of
assigning a number of tasks to individuals of a group. Task allocation
complements task partitioning: after a task has been partitioned into
sub-tasks, individuals must be assigned to the sub-tasks.

A first subject that we studied within the context of task alloca-
tion is behavioral specialization. Behavioral specialization occurs when
“individuals adapt their behavior so that they predominantly work on a
subset of the available task types” (Brutschy et al., 2012c). Behavioral
specialization entails benefits, for example due to learning, but it may
also be costly, since individuals may have to spend time searching for
tasks in which they are specialized. Our research work on specializa-
tion studied its costs and benefits in the case in which the robots are
subject to learning. The research work has been published in:

• Brutschy A., Tran N.-L., Baiboun N., Frison M., Pini G., Roli A.,
Dorigo M., and Birattari M. Costs and benefits of behavioral
specialization. Proceedings of the 12th Conference Towards Au-
tonomous Robotic Systems (TAROS 2011), 90-101. Springer,
Berlin, Germany, 2011.

6 1. Introduction

• Brutschy A., Tran N.-L., Baiboun N., Frison M., Pini G., Roli A.,
Dorigo M., and Birattari M. Costs and benefits of behavioral spe-
cialization. Robotics and Autonomous Systems, 60(11):1408-1420,
2012.

In the context of task allocation, we also proposed a self-organized
method for allocating robots to tasks that exhibit a sequential interde-
pendency, that is, tasks that must be executed in a given order. This
type of dependency is often found in sub-tasks resulting from partition-
ing a task. The method is decentralized and it is based on measures
of the delay that each robot experiences when waiting for the input
needed to execute a task. We performed experiments that demon-
strate that the method allocates the robots in a near-optimal fashion
and that it is able to adapt the allocation to changes occurring in the
environment. The research work has been accepted for publication in
an international journal:

• Brutschy A., Pini G., Pinciroli C., Birattari M., and Dorigo M.
Self-organized task allocation to sequentially interdependent tasks
in swarm robotics. Autonomous Agents and Multi-Agent Systems,
2012. 3

Another research topic that we studied is evolutionary robotics. Evo-
lutionary robotics is an automated approach to the implementation
of robotic systems. The approach consists in controlling the robots
with neural networks that are automatically selected through an evo-
lutionary process by a genetic algorithm. For more information about
evolutionary robotics refer to Nolfi and Floreano (2000).

Our research on this topic focused on the evolution of social learn-
ing. Social learning is the form of learning that occurs in an individual
due to interactions with other individuals, for example via imitation.
We studied a setup in which the goal of the robots is to learn whether
to approach a light source or move away from a it (i.e., phototaxis or
antiphototaxis). We synthesized a controller that enables a robot to
learn both from environmental cues and socially, from the interaction
with another robot. The results of the research have been published
in:

• Pini G., Tuci, E, and Dorigo, M. Evolution of social and individ-
ual learning in autonomous robots. Proceedings of the 1st Work-
shop on Social Learning in Embodied Agents (SLEA), CD-ROM,
2007.

3An Online First version of the article is available. DOI: 10.1007/s10458-012-9212-y.

1.2. Other Scientific Contributions 7

• Pini G., and Tuci, E. On the design of neuro-controllers for in-
dividual and social learning behaviour in autonomous robots: An
evolutionary approach. Connection Science Journal, 20(2-3):211-
230, 2008.

In addition to the research work on the topics of task allocation and
evolutionary robotics, we published a series of contributions within the
Swarmanoid project.4 Swarmanoid was a Future and Emerging Tech-
nologies (FET) project funded by the European Union. The scientific
goal of the project was “the design, implementation and control of a
novel distributed robotic system [...] made up of heterogeneous, dynam-
ically connected, small autonomous robots.” The project successfully
ended in 2010.

The scientific goals of the project, the implementation of the Swar-
manoid robots and simulation software, and the results of a search and
retrieval demonstration scenario have been presented in:

• Dorigo M., Floreano D., Gambardella L. M., Mondada F., Nolfi S.,
Baaboura T., Birattari M., Bonani M., Brambilla M., Brutschy A.,
Burnier D., Campo A., Christensen A. L., Decugnière A., Di
Caro G., Ducatelle F., Ferrante E., Fröster A., Martinez Gon-
zales J., Guzzi J., Longchamp V., Magnenat S., Mathews N.,
Montes de Oca M., O’Grady R., Pinciroli C., Pini G., Rétornaz P.,
Roberts J., Sperati V., Stirling T., Stranieri A., Stützle T., Tri-
anni V., Tuci E., Turgut A. E., and Vaussard F. Swarmanoid:
A novel concept for the Study of heterogeneous robotic swarms.
IEEE Robotics & Automation Magazine. In press.

Additionally, a video illustrating the search and retrieval scenario has
been published in the AAAI 25th Conference on Artificial Intelligence,
winning the best video award of the AI video competition 2011:

• Dorigo M., Birattari M., O’Grady R., Gambardella L. M., Mon-
dada F., Floreano D., Nolfi S., Baaboura T., Bonani M., Bram-
billa M., Brutschy A., Burnier D., Campo A., Christensen A. L.,
Decugnière A., Di Caro G., Ducatelle F., Ferrante E., Martinez
Gonzales J., Guzzi J., Longchamp V., Magnenat S., Mathews N.,
Montes de Oca M., Pinciroli C., Pini G., Rétornaz P., Rey F.,
Roberts J., Rochat F., Sperati V., Stirling T., Stranieri A., Stützle
T., Trianni V., Tuci E., Turgut A. E., and Vaussard F. Swar-
manoid, the movie. 25th Conference on Artificial Intelligence
(AAAI-11), AI video competition 2011. San Francisco, CA. Win-
ner of the best video award.

4http://www.swarmanoid.org

http://www.swarmanoid.org

8 1. Introduction

The project also led to the development of ARGoS , a simulation soft-
ware that we utilized to perform the simulation-based experiments pre-
sented in this dissertation. Two articles, describing ARGoS and its
features, have been published in:

• Pinciroli C., Trianni V., O’Grady R., Pini G., Brutschy A.,
Brambilla M., Mathews N., Ferrante E., Di Caro G., Ducatelle F.,
Birattari M., Gambardella L. M., and Dorigo M. ARGoS: A mod-
ular, multi-engine simulator for heterogeneous swarm robotics.
Swarm Intelligence, 6(4):271-295, 2012.

• Pinciroli C., Trianni V., O’Grady R., Pini G., Brutschy A.,
Brambilla M., Mathews N., Ferrante E., Di Caro G., Ducatelle F.,
Stirling T., Gutiérrez A., Gambardella L. M., and Dorigo M. AR-
GoS: A modular, multi-engine simulator for heterogeneous swarm
robotics. Proceedings of the IEEE/RSJ International Conference
on Intelligent Robots and Systems (IROS 2011), 5027-5034. IEEE
Computer Society Press, Los Alamitos, CA, 2011.

1.3 Structure of the Dissertation

The contents of this dissertation are organized as follows. In Chapter 2,
we describe the principles and properties at the basis of swarm intel-
ligence and swarm robotics. We introduce task partitioning, illustrate
its benefits through examples taken from nature, and review related
work on the topic, focusing on artificial systems.

In Chapter 3, we illustrate task partitioning as studied in this dis-
sertation and present our approach for autonomous task partitioning.
We provide general definitions and concepts that are used throughout
this dissertation and we describe the core principles at the basis of our
approach.

In Chapter 4, we give an overview of the hardware and software
tools we used to perform the research work presented in this disserta-
tion. The chapter is not meant to provide an exhaustive description of
these tools, but rather to introduce the features of these tools that are
relevant to our experiments.

In Chapter 5, we present a scenario in which the robots must decide
whether to employ task partitioning or not. In the studied setup, the
given task is pre-partitioned into a sequence of two sub-tasks, defined
a priori, and the robots decide whether or not to perform the two sub-
tasks separately. We propose and test a set of algorithms that can be
employed by the robots to make the decision.

1.3. Structure of the Dissertation 9

In Chapter 6, we illustrate a different scenario, in which the robots
are free to autonomously define sub-tasks of the given task (i.e., the
sub-tasks are not defined a priori). We present a method that the
robots can use to autonomously partition tasks into sub-tasks and we
show that the partitioning solution adopted by the robots suits the
environmental conditions.

In Chapter 7, we summarize the contents and the contributions of
this dissertation and we discuss possible directions for future research.

In Annex A, we report the original results that were published
in Pini et al. (2011) and compare them to the results presented in
Section 5.4.2. The results presented in Pini et al. (2011) were obtained
with an older version of the simulator. For a matter of coherence of
the dissertation, we repeated the same experiments with the simulator
version that we used for the rest of the experiments presented in this
dissertation.

A CD-ROM, containing supplementary material not included in this
dissertation for reasons of space, is included as an annex. The same
material is available online at the address http://iridia.ulb.ac.be/
supp/IridiaSupp2013-001.

http://iridia.ulb.ac.be/supp/IridiaSupp2013-001
http://iridia.ulb.ac.be/supp/IridiaSupp2013-001

Chapter 2

Context and Related Work

In this chapter, we describe the research context of the work pre-
sented in this dissertation and discuss related studies. In Section 2.1
we present swarm intelligence and swarm robotics. We illustrate the
principles and the properties that are the basis of both studies. In
Section 2.2, we focus on task partitioning, the main subject of this
dissertation: we highlight its benefits and review the state of the art
on the topic. Task partitioning is strongly related to task allocation;
in Section 2.3, we discuss differences and relations between the two
topics and we provide pointers to relevant swarm robotics studies on
task allocation. Finally, Section 2.4 is dedicated to foraging, since we
developed and tested our approach for autonomous task partitioning
in the context of foraging in swarms of robots.

2.1 Swarm Intelligence and Swarm Robotics

Progress in mechatronics over the last few decades, has led to an in-
crease in applications of robotic systems. Robots replace humans in
activities that are dangerous, repetitive, or that require high precision,
strength, or a high execution speed. While there are many types of
robots, our research focuses on autonomous mobile robots, which are
machines that can move and perform actions in an environment with-
out the need of direct human control. Recently, there has been a grow-
ing interest in multi-robot systems, in which a number of robots per-
form tasks cooperatively. In multi-robot systems, centralized control
paradigms often hit some limits, typically computational or communi-
cational and therefore other approaches must be employed. To tackle
this issue, roboticists often resorted to swarm intelligence, giving birth
to the field known as swarm robotics.

The rest of this section is organized as follows. Section 2.1.1 is

12 2. Context and Related Work

dedicated to swarm intelligence and self-organization. With the help of
examples, we illustrate what swarm intelligence is and describe its core
principles. In Section 2.1.2, we introduce swarm robotics. We also focus
on the properties that make it appealing for the implementation and
control of multi-robot systems and we discuss its potential applications.

2.1.1 Swarm Intelligence and Self-organization

The term “swarm intelligence” was first introduced in Beni and Wang
(1989) to refer to

“systems of non-intelligent robots exhibiting collectively in-
telligent behaviour”.

The initial definition was specific to robotic systems, but it was later
generalized to systems composed of other types of artificial agents or
living beings. Each of the individuals is depicted as “non-intelligent”,
but, as mentioned later on, swarm intelligence can be observed also in
intelligent individuals, such as human beings (see examples in Helbing
et al. (2001)). The core characteristic of swarm intelligence is that the
intelligence of the collectivity exceeds the one of the individuals, pro-
ducing “results that are “improbable” so are in some way surprising or
unexpected” (Beni and Wang, 1989) considered the (relative) simplicity
of each individual.

In nature, swarm intelligence can be observed in a variety of systems
(see Figure 2.1).1 The coordinated motion of flocks of birds or schools
of fishes, for example, is a form of swarm intelligence. Each individual
bird or fish acts on its own and, most importantly, has no control over
the others nor is aware of what the group as a whole is doing. Despite
this, the motion of the group and its cohesion are such that one might
think of it as a single entity, controlled by a unique brain.

The most astonishing examples of swarm intelligence systems are
found in social insects, such as ants, termites, bees, and wasps. A ter-
mite nest, for instance, is one of the most complex structures built by
an animal. A single nest can be taller than a man and house millions of
individuals. The nest is composed of several compartments, that serve
as food storage areas, fungus gardens, queen chambers, and nurseries.
In addition, ventilation shafts maintain the internal temperature con-
stant regardless the climatic conditions. Termites build such complex

1Sources: (Top-left) CC BY-NC-ND 2.0 - monkeywithastungun (flickr username) -
http://www.flickr.com/photos/23645016@N00/4363399006 (Top-right) CC BY-NC-SA
2.0 - Lance McCord - http://www.flickr.com/photos/mccord/41614967 (Bottom-left)
CC BY-NC-SA 2.0 - Stephen Lowe - http://www.flickr.com/photos/stephenlowe/

289197489 (Bottom-right) CC BY - James Cridland (flickr username) - http://www.

flickr.com/photos/jamescridland/613445810

http://www.flickr.com/photos/23645016@N00/4363399006
http://www.flickr.com/photos/mccord/41614967
http://www.flickr.com/photos/stephenlowe/289197489
http://www.flickr.com/photos/stephenlowe/289197489
http://www.flickr.com/photos/jamescridland/613445810
http://www.flickr.com/photos/jamescridland/613445810

2.1. Swarm Intelligence and Swarm Robotics 13

Figure 2.1: Examples of swarm intelligence systems. Top-left: A flock of
birds. Top-right: A school of fishes. Bottom-left: A termite nest. Bottom-
right: A crowd.

structures without following a specific plan nor having an architect
leading the work. Each worker makes decisions on its own and yet the
colony is able to create a structure that is functional to its survival.

Crowds can also exhibit swarm intelligence behaviors. Examples
can be observed in the movements of pedestrians. Normally, each indi-
vidual moves freely towards its destination, but in conditions of high-
density, movements are constrained and patterns often emerge. For
example, when pedestrians in a crowd move in opposing directions,
different lanes of people walking in a common direction form spon-
taneously (Helbing et al., 2001). This happens without the need of
explicit negotiation or coordination and without predefined rules. This
example highlights that not only non-intelligent individuals, but also
individuals with high cognitive skills, such as humans, may resort to
swarm intelligence.

What these examples have in common is that none of the individu-
als is aware of the overall behavior of the group, nor there is a leader or
supervisor that decides for the whole group. Instead, each individual
decides autonomously and acts to pursue its own goals. The actions of
locally interacting individuals lead to collective behaviors that seem to

14 2. Context and Related Work

be driven by a unique will and controlled by a single entity. This form
of collective behaviors are called self-organized behaviors. Bonabeau
et al. (1999) define self-organization as a “set of dynamical mechanisms
whereby structures appear at the global level of a system from interac-
tions among its lower-level components”. These interactions are “exe-
cuted on the basis of purely local information, without reference to the
global pattern, which is an emergent property of the system rather than
a property imposed upon the system”. Garnier et al. (2007) identify
four basic elements of self-organization:

1. Positive feedback: results from the application of simple rules
and promotes the creation of structures;

2. Negative feedback: balances positive feedback and contributes
to the stabilization of the system;

3. Fluctuations: random behaviors and errors that allow the cre-
ation of structures and render the system more flexible;

4. Multiple interactions: lead to the appearance of global pat-
terns.

These four elements can be observed, for instance, in the foraging ac-
tivity of ants. Ants are capable of collectively selecting the shortest
path that leads to a food source (Goss et al., 1989). When presented
with different paths to reach a destination, the ants prefer those with
higher concentrations of pheromone. While it is following a path, an
ant may lay pheromone and reinforce an existing pheromone trail on
the same path. This has a positive feedback effect: the pheromone
trail is strengthened and more ants will follow it, resulting in an am-
plification effect. Negative feedback occurs in terms of evaporation of
the pheromone, interference, and exhaustion of the food source. Fluc-
tuations are due to ants deviating from a selected path. These ants
may discover a better food source and establish a pheromone trail that
leads to it. In ant foraging, interactions are mediated by the environ-
ment: the ants can influence the behavior of each other through the
pheromone-laying mechanism. The mix of the four components results
in a self-organized foraging behavior that allows the ants to exploit
efficiently the available food sources and to discover new ones.

The interest in swarm intelligence is not only towards the study of
its theoretical properties, but also towards its application to real-world
problems (Dorigo and Birattari, 2007). Usually, systems built following
swarm intelligence principles provide suboptimal but acceptable solu-
tions for problems in which optimal solutions are not known or cannot

2.1. Swarm Intelligence and Swarm Robotics 15

be applied, for example due to limited resources such as computational
time.

Implementing artificial swam intelligence systems is a challenging
task, since the designer has to focus on the implementation and con-
trol of individual agents2 with the ultimate goal of obtaining a certain
behavior at the collective level. This collective behavior is the result
of many local and often stochastic interactions between the agents and
between the agents and their environment. These interactions and their
effects are difficult to predict, specially if the environment is not fully
known.

Typically, swarm intelligence systems are built by trial and error
or by taking inspiration from natural systems. Examples of the latter
approach are the ant colony optimization technique, inspired by the
foraging behavior of ant colonies (Dorigo and Stützle, 2004), clustering
algorithms inspired by the cemetery construction and brood sorting in
species of ants (Handl et al., 2006; Lumer and Faieta, 1994), the PSO3

optimization technique inspired by bird flocking and fish schooling be-
haviors (Kennedy and Eberhart, 1995), and task allocation methods
based on models of division of labor in social insects (Campos et al.,
2000).

2.1.2 Swarm Robotics

In many situations, a system composed of a multitude of cooperating
robots is preferable to one in which a single robot performs all the tasks.
This is the case, for example, when the tasks are too complex for a single
robot to accomplish, or when producing a number of simple robots is
cheaper than producing a single robot capable of performing all the
tasks (Cao et al., 1997). However, as the number of robots increases,
also the complexity of the system does. Relying on centralized control
and global communication becomes unfeasible and one has to resort to
other approaches.

An approach that has been applied is to implement and control
robotic systems by taking inspiration from natural swarm intelligence
systems. The application of swarm intelligence principles to collective
robotics gave birth to swarm robotics. There is no precise definition to
identify a swarm robotics system in the more general context of collec-
tive robotics systems. Dorigo and Şahin (2004) propose four criteria to
measure “the degree to which the term swarm robotics might apply”:

2The term “agent” refers in this context to any entity (physical or virtual) that can
perform actions in an environment.

3Particle swarm optimization.

16 2. Context and Related Work

1. The implemented system should allow the coordination of a large
number of robots;

2. The system should be composed of relatively few homogeneous
groups of robots (i.e., heterogeneous systems are less “swarm
robotics”);

3. The robots of the system have difficulties in carrying out tasks on
their own, collaboration is needed to improve performance;

4. The robots should have limited sensing and communication capa-
bilities.

Therefore, a swarm robotics system is one in which a large number of
relatively simple robots cooperate to solve tasks that cannot be tackled
efficiently by single individuals. Each robot acts autonomously on the
basis of its local perception of the surrounding environment. Interac-
tions and communication between robots are also local and are often
mediated by the environment.

Swarm robotics systems have many desirable properties. The large
number of robots provides redundancy, which protects the robotic sys-
tem against faults: if some robots fail to perform their tasks or get
damaged, the rest of the swarm can continue to perform the tasks.
Decentralization also contributes to enhance fault tolerance: contrary
to a centralized system, in a swarm there is no single element that, in
case of failure, would compromise the entire system. The use of local
information, interactions and communication usually renders swarm
robotics systems scalable: robots can be added to the swarm without
the need of redesigning the control and communication strategies. Fi-
nally, since the robots are relatively simple, the production costs are
lower compared to the production costs of complex robots and this
renders the robots more expendable.

To date, swarm robotics systems have been implemented only in
research laboratories and no real-world application is based on swarm
robotics. However, the field of autonomous robotics is growing and
technological progress is making robots pervade our lives; examples are
vacuum cleaning robots (Rooks, 2001), lawn mowers (Hicks and Hall,
2000), and the Kiva robotics warehouse system.4 Due to their proper-
ties, swarm robotics systems are suited for applications that require re-
dundancy and/or scalability, that entail danger, and that are performed
in unstructured and dynamical environments or in large spaces (Şahin,
2005; Brambilla et al., 2013). When the technology matures, swarm

4http://www.kivasystems.com

http://www.kivasystems.com

2.2. Task Partitioning 17

robotics will eventually be applied to domains with these characteris-
tics, such as exploration, surveillance, mine clearance, cleaning, search
and rescue, and military applications (Brambilla et al., 2013).

2.2 Task Partitioning

Task partitioning is a technique for organizing the work of groups of
individuals that consists in decomposing a task into a number of sub-
tasks (Jeanne, 1986). Decomposition allows tackling different sub-tasks
in parallel, or in different moments in time. Task partitioning is a
technique that can be applied to a multitude of tasks and in differ-
ent contexts. There are several potential benefits and therefore task
partitioning is an option to consider when organizing the execution of
tasks.

Task partitioning has been studied mainly by entomologists and the
biology literature is rich with research articles describing task partition-
ing in social insects. In Section 2.2.1 we refer to some of these studies
and use them to illustrate the benefits of task partitioning. A complete
review of the biology literature is beyond the scope of this dissertation.
Comprehensive reviews can be found in the works of Ratnieks and An-
derson (1999) and Hart et al. (2002). In the rest of this dissertation
however, we sometimes borrow from biology to provide examples and to
illustrate general principles and concepts related to task partitioning.
Contrary to biology, there are few works in the literature describing
task partitioning applied to artificial domains. In Section 2.2.2 we re-
view such works, focusing on studies in swarm robotics.

2.2.1 The Benefits of Task Partitioning

Several examples of task partitioning can be observed in nature. The
most evident example are humans, that exploit the advantages of task
partitioning both at the individual and at the societal level. At the level
of the individual, a natural way of tackling a non-trivial and lengthy
task is to decompose it into less complex sub-tasks. At the level of the
society, many activities and interactions are so complex that in order
to be manageable, they must be simplified by partitioning them. For
example, large companies are organized in divisions that are managed
separately.

Task partitioning can also be observed in simpler forms of life, such
as social insects. Examples of task partitioning are reported in the for-
aging activity of species of wasps (Jeanne, 1991), bees (Seeley, 1995),
and ants (Hubbell et al., 1980). Other activities in which task parti-

18 2. Context and Related Work

tioning is observed are hunting, waste removal, and nest excavation (see
Ratnieks and Anderson, 1999, for details). Swarms of robots are very
similar to colonies of social insects. Often swarm robotics systems are
built drawing inspiration from the behavior and the morphology of so-
cial insects. This is largely due to the fact that the tasks performed by
swarms of robots frequently have a counterpart in the world of social
insects. Examples are: transportation of objects, exploration, forma-
tion of structures, construction. Since, in many cases, insects bene-
fit from task partitioning when performing their activities, it is likely
that swarms of robots performing similar activities can draw the very
same benefits. These benefits are several and they are best illustrated
through examples.

Reduction of physical interference. In many cases, task partitioning
is beneficial to reduce physical interference between workers. Physical
interference results from the competition for space when two or more
individuals are at the same place at the same time (Goldberg, 2001). As
the density of workers grows, the per-individual performance decreases
due to physical interference (Lerman and Galstyan, 2002). Often parti-
tioning a task generates a number of sub-tasks developing in physically
separated areas. When this happens, workers can be separated as well,
thus reducing physical interference.

For example, some species of Atta ants employ task partitioning
when foraging for leaves as a response to an increased physical inter-
ference. Hart and Ratnieks (2000) observe that when the leaves are
not processed fast enough at the nest, a blockage of leaves and foragers
form at the entrance of the nest. Foragers react to this blockage de-
positing their leaves in piles outside the nest. Other ants fetch leaves
from the piles and store them inside the nest. Task partitioning allows
the foragers to return to their activity, while the bottleneck at the nest
is relieved by other ants.

Physical interference is an issue also in swarm robotics, since it
negatively affects the performance and the scalability of a system. With
the exception of our contributions, all the research works on the topic
of task partitioning in swarm robotics study its application as a mean
to reduce physical interference (see Section 2.2.2).

Efficiency gains. There are situations in which partitioning a task
into sub-tasks increases efficiency. For example, Fowler and Robinson
(1979) describe how the Atta sexdens ant forages leaves on trees. This
species partitions the foraging task into sub-tasks. Some individuals
work at the top of the tree, cutting leaves and dropping them to the

2.2. Task Partitioning 19

ground. Other individuals collect the leaves from the ground and cut
them into pieces that are transported to the nest. Here, the advantage
of task partitioning stems from the fact that the ants do not need to
repeatedly climb the tree. As a result, the energy efficiency of the
swarm is increased.

Other examples in which task partitioning enhances efficiency are
reported in the works of Hubbell et al. (1980) and Lopes et al. (2003),
both studying foraging in ants. The authors report that the ants dis-
covering new food sources do not transport food all the way back to the
nest, but transfer it to other workers along the way and return to the
food source. In this way, the ants can quickly establish a pheromone
trail that leads to the food source and that can be followed by other
ants. This results in a fast and efficient exploitation of the food source.

Task partitioning can result in efficiency gains also in swarms of
robots. In Chapter 6 we describe an actual example of swarm robotics
system in which the swarm efficiency is increased by the usage of task
partitioning.

Exploitation of specialization. Task partitioning may also enhance
the exploitation of specialization. This happens when different parts
of a task require specific skills in order to be performed optimally.
In some cases it is possible to isolate these parts into separate sub-
tasks. Workers can then be allocated to sub-tasks on the basis of their
capabilities. The workers can be more or less suited for certain sub-
tasks because of innate differences (e.g., morphological) or because of
learning.

For example in the leaf-cutting ant Atta laevigata large ants climb
the plant stems, cut leaves at their petioles, and drop them to the
ground. Smaller ants cut the lamina of the dropped leaves and trans-
port leaf fragments to the nest. Partitioning the leaf foraging task into
sub-tasks allows this ant species to allocate individuals to sub-tasks on
the basis of their size. The size-dependent task allocation reflects the
fact that petioles are tougher than lamina and can be more easily cut
by larger individuals (Vasconcelos and Cherrett, 1996).

An analogous example, reported by Arnan et al. (2011), describes
the behavior of the seed-harvesting ant Messor bouvieri : small indi-
viduals transfer harvested seeds to larger ones, that transport them to
the nest. The authors show that smaller individuals are better (i.e.,
faster) at finding seeds, while larger individuals are better at transport-
ing them. Partitioning the seeds foraging task allows each category of
ant to perform the activity for which it is best suited.

One can easily imagine the very same situation occurring in a swarm

20 2. Context and Related Work

of heterogeneous robots, in which large robots with high load capacities
are dedicated to the transport of items collected by smaller and more
agile robots.

The benefits of task partitioning do not come for free: task parti-
tioning requires additional coordination between individuals and there-
fore overheads are an inevitable cost to pay. The nature of these over-
heads is discussed in Chapter 3. However, the fact that many examples
of task partitioning can be observed in nature suggests that the benefits
of using task partitioning often overcome its costs.

2.2.2 Task Partitioning in Artificial Systems

In the previous section, we highlighted the benefits of task partitioning,
providing examples mainly taken from the world of social insects. Task
partitioning can also be beneficial if applied in artificial contexts. In
this section, we describe artificial systems that utilize task partitioning
and provide a complete review of the state of the art in the field of
swarm robotics.

Perhaps the most evident example of task partitioning applied in an
artificial context is an assembly line. In an assembly line the production
of a good is executed as a sequence of separate steps often performed
by different workers or machines. Here, benefits of task partitioning
such as efficiency and exploitation of specialization are pushed to the
extreme.5

The task partitioning principle is also applied in computer science.
In computer systems with multiple processors, programs to be executed
can be divided into separate units that are subsequently executed in
parallel by different processors (Ennals et al., 2005). In a similar way,
an operating system executes processes by allocating each process to a
CPU for a limited time (Bovet and Cesati, 2005). The result is that
processes are executed concurrently, each as a sequence of separate
steps. Task partitioning is also the idea at the basis of recursive algo-
rithms that implement the divide and conquer paradigm: a problem
is recursively decomposed into smaller instances, whose solutions are
then recombined (Cormen et al., 2001).

To date, in the context of swarm robotics, task partitioning has
been exclusively applied in foraging. Foraging involves searching and
collecting items in an environment. Many studies consider central place
foraging (Orians and Pearson, 1979), in which the items to be collected
must be delivered to a unique location, usually called nest. Physical

5Usually, the boredom of the workers is pushed to the extreme as well.

2.2. Task Partitioning 21

interference is a common problem in foraging: the robots share the
same space and must avoid each other while moving in the environment.
All the existing studies of task partitioning applied to swarm robotics
systems use it as a means for reducing physical interference.

Drogoul and Ferber (1992) were the first to propose a solution based
on task partitioning to deal with “traffic jams” forming in certain loca-
tions of the environment. In their study, the robots are allowed to pick
up objects carried by other robots. The result is that chains of robots
form in the environment and objects are transferred along these chains
till they reach the nest. The goal of the work is to highlight how the
global behavior of the swarm can be affected by variations in the rules
governing the behavior of each individual. The role of task partitioning
is only marginal and the authors ignore some important aspects of the
problem, in particular how object transfer is actually implemented and
what are the costs involved.

Fontan and Matarić (1996) tackle physical interference using an ap-
proach based on territoriality: the space is divided into exclusive areas
(territories) each assigned a priori to a robot. Each area is associ-
ated to a sub-task to be performed: transporting the objects located
in that area towards the nest. When a robot moving towards the nest
exits its working area, it releases the object and it returns within its
area boundaries. Proceeding in this way, the objects are progressively
transported from area to area till they eventually reach the nest.

Goldberg and Matarić (2002) use a modified version of the same
robotics system to study the design of behavior-based controllers that
are robust with respect to failures and easy to modify. The authors
propose different control strategies to deal with physical interference
at the nest. One of these strategies uses task partitioning: one of the
robots works in an exclusive area in proximity of the nest and is in
charge of storing objects delivered nearby by the other robots.

The studies of Fontan and Matarić (1996) and of Goldberg and
Matarić (2002), together with the work presented in Chapter 6, are the
only works on task partitioning that include experiments performed
with real robotic platforms.

Shell and Matarić (2006) introduce a novelty with respect to the
work of Fontan and Matarić (1996). In the work of Fontan and Matarić
(1996), the position of the working areas are given with respect to a
global coordinate system and are fixed in time. On the other hand, in
the work of Shell and Matarić (2006), the position of the working areas
are given in the local coordinate system of the associated robot and
drift in time. Indeed, given that the robots estimate the position of
the working areas using odometry, the working areas drift in time due

22 2. Context and Related Work

to estimation errors. Each robot transports the objects that it finds
in its working area towards the nest, without leaving its working area.
The robot releases objects at the boundary of its working area, where
they are eventually collected by another robot. The authors show that
the higher the density of robots, the smaller the optimal size of the
working area.

Lein and Vaughan (2008) extend the system of Shell and Matarić
(2006) with a mechanism that dynamically adapts the size of the work-
ing areas. Each robot constantly increases the size of its working area
and decreases it when another robot is perceived nearby. This simple
behavior improves performance over a method with static working area
sizes, since it is adaptive with respect to the density of robots in the
environment.

In a follow-up work, the same authors point out that the forag-
ing method based on task partitioning is sensitive to the distribution
of objects in the environment (Lein and Vaughan, 2009). In particu-
lar, if the objects are grouped into clusters, the method based on task
partitioning performs worse than a non-partitioning method. There-
fore, the authors further extended the algorithm proposed in Lein and
Vaughan (2008) with a mechanism that relocates the working areas
towards clusters of objects.

In the work of Østergaard et al. (2001), a group of robots forages
in a maze-like environment. The authors compare an algorithm that
uses task partitioning to a non-partitioning algorithm, in environments
that differ in the width of the corridors. The authors conclude that task
partitioning performs better in spatially constrained environments. It
is worth pointing out that the authors mention that the driving factor
that motivates the use of the task partitioning algorithm is not physi-
cal interference, but the type of environment. However, the results of
their study confirm the findings of other studies: for an increasing robot
density, task partitioning becomes preferable. This indicates that phys-
ical interference among the robots plays an important role in selecting
whether or not to use task partitioning. The different environments
simply determine the level of physical interference experienced by the
robots.

Parker and Zhang (2010) study the case in which a group of robots
must perform a sequence of mutually exclusive tasks: a task should
begin only when the preceding one in the sequence is completed and
no robot is working on it anymore. Analogous situations may occur
when a task is partitioned into a sequence of sub-tasks. The focus of
the study is on the decision making process that allows the robots to
collectively estimate whether a sub-task is complete and the group can

2.3. Task Allocation 23

start working on the following one.

2.3 Task Allocation

In this section, we illustrate relations and differences between task par-
titioning and task allocation. Additionally, we provide pointers to re-
search work on task allocation that allow us to illustrate the main
approaches to task allocation in swarm robotics.

Task allocation and task partitioning are both mechanisms that can
be utilized for the organization of work, but they answer different needs
and act at different levels in organizing work. On the one hand, task
partitioning defines the work itself: by decomposing a task into sub-
tasks it determines which actions contribute to which sub-task. Task
allocation, on the other hand, is used to decide which individuals per-
form which task. Therefore, task allocation organizes the workforce and
has no impact on what actions are part of the work to be performed.
The relation between the two mechanisms stems from the fact that,
once a task has been partitioned into sub-tasks, a task allocation prob-
lem arises: the sub-tasks must be executed and therefore the decision
about which individuals execute which sub-task must be taken.

In the context of collective robotics, task allocation methods can be
divided into explicit and implicit. In explicit methods, the allocation
of robots to tasks is obtained through coordination and explicit com-
munication. Implicit task allocation methods, on the other hand, are
based on swarm intelligence principles and offer decentralized and often
stochastic solutions to the task allocation problem. Implicit methods
are more suited to swarm robotics, where the capabilities of the indi-
viduals are limited and information is local and often noisy. Kalra and
Martinoli (2006) point out that explicit methods are computationally
and communicationally expensive and when information is inaccurate,
similar performance can be obtained, at a lower cost, with implicit
methods.

Most task allocation methods proposed in the swarm robotics lit-
erature are based on the response threshold model, first introduced
by Bonabeau et al. (1996) to model the division of labor observed in
Pheidole ants. In these methods, a robot is “stimulated” by the per-
ception of a task to be performed: the longer the task is perceived,
the more the stimulus grows. The robot engages in the task depend-
ing on the current value of the stimulus and a threshold associated to
that task. In simple cases, the thresholds are static, as in the work of
Krieger and Billeter (2000); in other cases, the thresholds are modified
in time, as in the works of Labella et al. (2006) and Campo and Dorigo

24 2. Context and Related Work

(2007).
Dahl et al. (2009) propose a different approach to implicit task

allocation, inspired by vacancy chains, a mechanism by which resources
are distributed to consumers. Task allocation is obtained through a
distributed reinforcement learning mechanism: each robot estimates
“utilities” associated to a task, computed on the basis of rewards and
punishments. The utilities are used by the robots to select which task
to perform. In a recent work, we propose an implicit method to allocate
robots to tasks that have a sequential dependency (see Brutschy et al.,
2012b). The method is based on the delays experienced by robots
waiting for input to perform their task.

As mentioned, partitioning a task into sub-tasks introduces a task
allocation problem: the individuals must be assigned to each sub-task.
In general, there is a way of allocating individuals to sub-tasks that
maximizes the overall performance. In the work presented in this dis-
sertation, we do not explicitly tackle the task allocation problem as-
sociated to task partitioning. In our experiments, the allocation of
robots to sub-task is implicitly defined within the mechanisms that
implement task partitioning. This is likely to result in a suboptimal
performance, which could be improved by explicitly tackling the task
allocation problem with dedicated algorithms. Among the others, the
task allocation method proposed in Brutschy et al. (2012b) is particu-
larly relevant since it allocates individuals to tasks exhibiting a sequen-
tial dependency, which is the type of dependency that we consider in
this dissertation.

2.4 Foraging

In this dissertation, we focus our study on the application of task par-
titioning in the context of foraging. Foraging is an activity consisting
in searching and collecting items in an environment. There exist many
typologies of foraging problems, that vary in relation to factors such
as the characteristics of the robots, the number of source areas and
collection points, and the type of items to be collected. In this dis-
sertation, we consider cases in which the items must be delivered to a
unique location, referred to as nest. This form of foraging is usually
referred to as central place foraging (Orians and Pearson, 1979). For
simplicity, in this dissertation we use the more general term foraging
implying central place foraging. We study situations in which the items
to be collected can be found by the robots in a unique location of the
environment, referred to as source. Therefore, in the studied foraging
problems, there is a unique collection point (the source) and unique

2.4. Foraging 25

destination point (the nest).
Foraging has been widely studied in collective robotics mainly be-

cause it is an abstraction of real-world applications such as search and
rescue, harvesting, exploration, cleaning, and mine clearance (Win-
field, 2009). Indeed one of the reasons for which we study foraging is
its relevance for such applications. Additionally, our interest in forag-
ing is also motivated by the characteristics of the robots available in
our laboratory. Among the types of robots available, three are mo-
bile platforms: the e-puck (Mondada et al., 2009), the s-bot (Mondada
et al., 2004), and the marXbot (Bonani et al., 2010). The s-bot and the
marXbot additionally have the capability of grasping and transporting
objects. The three platforms are suited for the real-world applications
mentioned and therefore foraging scenarios are natural testbeds for our
robots.

Given the fact that we focus on foraging, we developed our ap-
proach with such a context in mind. However, task partitioning entails
general benefits, such as reduction of physical interference, increased
parallelism, efficiency gains, and enhanced exploitation of specializa-
tion (see Section 2.2.1); these benefits do not depend on specific ap-
plications. Moreover, foraging shares a number of aspects with other
swarm robotics applications; for example, the need of coordinating
large groups of individuals and the use of robots with limited sensing,
actuation, and computation capabilities. Due to these reasons, we built
our task partitioning approach on general concepts so that it can be
applied to other problem instances without radical modifications.

Chapter 3

The Approach

In this chapter, we present the approach towards achieving autonomous
task partitioning in foraging. Definitions and concepts used in the rest
of this dissertation are introduced and the general principles at the
basis of our approach are stated.

In the existing work on foraging in swarm robotics, task partition-
ing is used to reduce physical interference. The mechanisms that im-
plement task partitioning are often blended with the behavior of the
robots and explicitly aim to reduce physical interference.

In the existing approaches we see two limitations. The first limita-
tion is that there is no separation between the task partitioning process
and the behavior of the robots. The task partitioning mechanisms are
built within the behavior of the robots and they heavily depend upon
characteristics of the environment and the tasks to be tackled. If any of
these elements changes, the mechanisms upon which task partitioning
is based are likely to require modifications.

The second limitation is that the task partitioning mechanisms are
built with the explicit purpose of reducing physical interference among
the robots. In Section 2.2.1 we point out that there are also other
factors that motivate the use of task partitioning (e.g., the desire to
increase the exploitation of specialization or efficiency). Additionally,
task partitioning entails overhead costs. Therefore, using a task par-
titioning mechanism built to reduce interference in contexts in which
interference is not the key issue, is likely to introduce costs without en-
tailing benefits. This has a negative impact on performance, as indeed
observed in many studies (see, for example Østergaard et al., 2001;
Shell and Matarić, 2006).

We aim to overcome these limitations. Our goals are: i) decoupling
the task partitioning process from the behavior of the robots, ii) imple-
menting task partitioning mechanisms that are not explicitly built to

28 3. The Approach

obtain a specific effect (i.e., reducing interference), and iii) proposing
an approach that can be applied to tasks other than foraging.

To achieve these goals, we base our approach upon the two general
concepts of amount of work and cost. The amount of work is used to
express the size of a task or a sub-task. The costs express the quantity
of resources that are utilized to perform a certain task or sub-task.
In a nutshell, our approach to autonomous task partitioning consists
in the robots deciding the amount of work they contribute to a task
on the basis of cost estimates. We designed our approach to obtain
autonomous task partitioning in foraging and therefore we only applied
it to this context. However, we are confident that the same approach
can also be applied to other contexts, once the definition of amount of
work and cost have been redefined to suit the specific situation (see
examples in Section 3.5). The decisional mechanisms that use costs
and amount of work to implement task partitioning do not need to
be modified and they can be directly used on top of the behavioral
repertoire of the robots.

The rest of this chapter is organized as follows. In Section 3.1, we
introduce the task partitioning problem as studied in this dissertation.
In Section 3.2, we illustrate the relation between the amount of work
and the size of a sub-task and we discuss the possible ways in which
sub-tasks may interface with one another. In Section 3.3, we explain
the concept of cost and we discuss the effects of task partitioning on
costs. In Section 3.4, we describe the role of all these elements within
our approach to autonomous task partitioning. Finally, in Section 3.5,
we briefly consider two examples that illustrate that the concepts at
the basis of our approach can be identified also in contexts different
than foraging.

3.1 Tasks, Sub-tasks, and Task Partitioning

In Chapter 2 we defined task partitioning as a way to organize work that
consists in dividing tasks into smaller sub-tasks. In this dissertation,
we use the terms “task” and “sub-task” as they have been defined by
Anderson and Franks (2001): a task is

“an item of work that contributes potentially to fitness.”
(Anderson and Franks (2001))

This definition comes from biology and refers to animal societies (e.g.,
colonies of social insects) but it applies to swarms of robots and single
individuals.

3.1. Tasks, Sub-tasks, and Task Partitioning 29

The core aspect of the definition of task is that, once the work is
completed, there is a benefit for the swarm (or the individual). This
distinguishes a task from a sub-task, that instead

“makes a potential fitness contribution only if other sub-
tasks are completed” (Anderson and Franks (2001))

which implies a dependency between sub-tasks.
In foraging, the sub-tasks exhibit a sequential dependency: all the

sub-tasks must be executed in a certain order to complete the overall
task. In other cases, not considered in this dissertation, a task may be
partitioned into sub-tasks that do not have a sequential dependency.
For example the task of cleaning a building can be partitioned in sub-
tasks, each consisting in cleaning a different room. Usually the rooms
can be cleaned in any order, therefore the sub-tasks do not have a
sequential dependency.

The problem of partitioning a task into a sequence of sub-tasks
shares similarities with planning, a problem studied in classical artifi-
cial intelligence. Planning consists in identifying a sequence of actions
to be executed that lead from a start to a goal state. Analogously, in
task partitioning, the execution of a sequence of sub-tasks leads to the
completion of the overall task. In planning algorithms, the sequence
of actions is built by reasoning on the effects of an action executed in
a given system state (Russel and Norvig, 2009). The effectiveness of
these algorithms therefore depends on whether the action effects can be
predicted accurately. In swarm robotics applications, the environment
in which the robots operate is often not completely known. More-
over, several robots act at the same time and modify the environment.
Therefore, the uncertainty about the effects of the actions is very high
and consequently existing planning algorithms cannot be applied to
task partitioning in swarm robotics.

In general, task partitioning can be applied to a sub-task to further
divide it into smaller units. Therefore, in the context of this disserta-
tion, task partitioning is defined as:

a mechanism to organize work that consists in di-
viding a task or a sub-task into a sequence of sub-
tasks

Figure 3.1 illustrates task partitioning in the context of foraging, as
studied in this dissertation. In the figure, we represent both the robots
performing foraging and the schematic notation that we use through-
out the dissertation. The goal of the robots (Figure 3.1a) is to collect
objects from the source (position X) and deliver them to the nest (po-
sition Y). In this context, the task is object transportation: collecting

30 3. The Approach

X Ya)

c) Z

Sxz Szy

X Y

Txy

X Yb)

Z

Sxw

X Y

Swz Szy

Wd)

Figure 3.1: Representation of task partitioning in foraging. (a) Foraging is
the repetition of the transportation task: transport an object from X to Y .
(b) Execution of transportation as an unpartitioned task Txy. (c) The task
Txy is partitioned into two sub-tasks Sxz and Szy. (d) The sub-task Sxz is
further partitioned into two sub-tasks Sxw and Swz.

one object from the source and delivering it to the nest (i.e., transport
an object from X to Y). Foraging consists in the repetition of different
instances of the transportation task. Note that, since the swarm is
composed of many robots, at a given moment multiple instances of the
transportation task may be in execution. Using our notation, a task
to be performed is represented with a line. The beginning of the task
is represented with a black dot (left-hand side of Figure 3.1a); its end
with a dot within a circle (right-hand side of Figure 3.1a). The curved
arrow underneath the robots indicates the direction of motion: the

3.2. Sub-tasks, Amount of Work, and Interfaces 31

robots carrying objects move from left to right (i.e., towards the des-
tination point Y), the ones not carrying objects move in the opposite
direction.

Figure 3.1b illustrates the case in which the robots perform trans-
portation as an unpartitioned task: each robot transports objects from
X to Y . Using the schematic notation, we represent the execution of
work with a rectangle, on top of the line representing the task. The
rectangle is labeled with a name that can be used to refer to the cor-
responding task (Txy). Figure 3.1c represents the case in which the
robots partition the transportation task into the sequence of two sub-
tasks Sxz and Szy. In foraging, a sub-task consists in transporting one
object for a limited distance towards the nest. In the example, Sxz

consists in transporting an object from X to Z and Szy in transport-
ing an object from Z to Y . The sequential dependency between the
sub-tasks resides in the fact that the robot executing Szy can trans-
port an object from Z to Y only if an object is first delivered in Z by
another robot (i.e., an instance of Sxz must be performed before an in-
stance of Szy). In this case, the rectangles that represent the execution
of work (Figure 3.1c, bottom part) are separated, indicating that the
work is performed within different sub-tasks. Figure 3.1d shows that,
in general, a sub-task can be further partitioned: the robots partition
the sub-task Sxz into a sequence of two sub-tasks, Sxw and Swz. In
all the cases represented in Figure 3.1, the transportation of an object
is completed (i.e., the swarm obtains a benefit) only when that object
reaches the nest. This requires, in the cases in which transportation is
partitioned into sub-tasks, that all the sub-tasks are executed once in
the correct order.

3.2 Sub-tasks, Amount of Work, and Interfaces

When a task or a sub-task must be performed, one can measure the
amount of work required for its execution. The concept of amount of
work is a cornerstone of our approach to autonomous task partitioning.
The amount of work relates to the actions that must be performed in
order to complete a task or a sub-task and it expresses the dimension
of a task or sub-task.

The specific way in which the amount of work is measured depends
on the context. For example, if the task is executing a program on
a computer, the amount of work can be measured as the number of
instructions executed by the computer to run the program. In foraging,
tasks and sub-tasks involve object transportation; therefore the amount
of work can be directly associated to the distance traveled by the robots.

32 3. The Approach

For this reason, in this dissertation we sometimes refer to the length of
a task (or a sub-task) to indicate the amount of work required for its
execution.

Interfaces. Another important concept for our approach is the one of
interface. When a task is partitioned into a sequence of N sub-tasks,
N − 1 interfaces can be identified. An interface is an abstract notion,
that indicates the linking point between two sub-tasks in the sequence:
at the interface, the output of the first sub-task is used as input for
the second. In the specific case of foraging, the interface between two
sub-tasks is associated to a spatial location between source and nest.

X YZR1

Sxz Iz Szy

R2

Figure 3.2: Illustration of an interface Iz between two sub-tasks Sxz and
Szy. At the interface, the output of Sxz becomes the input for Szy. The
interface therefore defines where the sub-task Sxz finishes and Szy begins.

Figure 3.2 illustrates the object transportation task partitioned into
two sub-tasks, Sxz and Szy. In this example, an interface Iz links the
two sub-tasks Sxz and Szy. At the interface, the objects transported by
the robot R1, performing Sxz, are deposited on the ground. There, the
robot R2, performing Szy, picks them up and completes transportation.
In other words, at the interface Z the output of Sxz becomes the input
for Szy. We represent interfaces as colored areas between the two rect-
angles representing the sub-tasks. Analogously to tasks and sub-tasks,
interfaces are labeled with a name.

Interfaces are important because of their relation with the amount
of work: a certain amount of work defines the size of a sub-task which,
in turn, identifies the location of the interface where that sub-task ends.
In the example of Figure 3.2, the amount of work contributed by the
robot R1 defines the length of Sxz and the location of Iz. Notice that
the same concept can be expressed also in the following terms: the
robot R1 decides the location Z where it deposits objects (i.e., the

3.2. Sub-tasks, Amount of Work, and Interfaces 33

location of the interface Iz) and this determines the amount of work
the robot contributes to transportation (i.e., the length of Sxz). Due
to the relations between the size of sub-tasks, amount of work, and
interfaces, the two formulations are equivalent.

Interface type. In our study, we identify two types of interfaces: fixed
and movable interfaces. As the name suggests, a fixed interface is
characterized by the fact that its location is defined a priori. This
has a profound implication on the task partitioning process. Since the
position of an interface defines where a sub-task finishes and another
begins, the fact that the location of the interface cannot be changed
imposes a constraint on the amount of work contributed by the sub-
tasks. The presence of fixed interfaces is typically due to a discontinuity
in the space in which the task must be performed. The result is that
the interface is implicitly defined within the task and its presence is
imposed a priori. In foraging, fixed interfaces are typically due to
obstacles that the robots cannot overcome.

a) R1

R3

b) R1

R3

R2

S1 I S3 IIS1 S2 S3'

Figure 3.3: Illustration of a fixed interface.

For example, in Figure 3.3 a step is located between the source
(left-hand side, not represented) and the nest (right-hand side, not
represented). The step imposes a constraint on the amount of work
that can be performed by the robot R1. More specifically, the step
limits the maximum amount of work the robot can contribute: an ob-
ject cannot be directly transported by R1 beyond the step. Therefore,
the step limits the maximum size of the sub-task S1 performed by R1.
Notice that, as represented in Figure 3.3b, R1 may decide to contribute
with a lesser amount of work. However this decision does not change
the nature of the fixed interface I represented by the step: eventually
another robot (R2) will encounter the step on its way to the nest and
its work will be constrained. In the schematic notation, we distinguish

34 3. The Approach

between a fixed and a movable interface using the contour of the col-
ored area: dashed for a movable interface and continuous for a fixed
interface.

Differently from a fixed interface, a movable interface is not implic-
itly defined within the task. On the contrary, its presence is due to a
decision made by the robots. For example, in Figure 3.3b, the presence
of the interface I

′
is due to robot R1 decision to deposit objects on the

ground. The robot can select the position of the interface I
′
(hence the

name movable) and therefore the amount of work it contributes with
its sub-task – i.e., the size of the sub-task S1 it performs.

Type of transfer at the interfaces. Besides its type, a second prop-
erty characterizes an interface: the input-output relation between the
interfacing sub-tasks. This relation defines the way the output of a sub-
task becomes the input for the sub-task that follows. There are two
modalities by which this input-output relation can be implemented:
direct and indirect. In biology, these terms refer to the way material is
transferred between workers when a transportation task is partitioned
into sub-tasks (see Ratnieks and Anderson, 1999). We use the same
terminology, since we study similar contexts. For simplicity, we refer to
the interface to be either “direct” or “indirect”, even if this is somehow
an abuse of language: it is the way the output of a sub-task becomes
input for the following one that is direct or indirect, not the interface
itself.

When the interface is direct, an individual completing a sub-task
directly hands over the output of its sub-task to a second individual
working on the sub-task that follows. In foraging, this entails directly
handing over an object from a robot to another. The interface is syn-
chronous since it requires two individuals to be present at the same
time. An indirect interface allows an individual completing a sub-task
to store the output of the sub-task at the interface, where it can subse-
quently be fetched and utilized as input for the following sub-task. In
foraging, this consists in one robot depositing an object at the interface
(e.g., on the ground or in a container) where another robot can pick it
up at a later time. The interface is therefore asynchronous: it does not
impose the presence of both individuals at the same time to perform
the transfer.

Interface examples. Figure 3.4 illustrates the four possible combi-
nations in relation to the type of interface and input-output relation
between the sub-tasks linked by the interface. The first row represents
fixed interfaces, the second row movable interfaces. The left-hand side

3.2. Sub-tasks, Amount of Work, and Interfaces 35

Direct Indirect
Fi

xe
d

M
o
v
a
b

le

a) b)

c) d)

Transfer type

In
te

rf
a
ce

 t
y
p

e

IS1 S2 IS1 S2

IS1 S2 IS1 S2

Figure 3.4: Types of interfaces (rows) and type of transfer at the interface
(columns). If the interface is fixed (first row), the robots cannot choose its
location autonomously. The position of a movable interface (second row)
can be decided by the robots. Direct transfer (first column) requires two
robots to be present at the same time at the interface, while indirect transfer
(second column) does not.

column shows cases in which the interface is direct; the right-hand side
column illustrates cases in which it is indirect.

As mentioned, in foraging the presence of a fixed interface is due
to characteristics of the environment in which the robots perform for-
aging, such as the the gap illustrated in Figure 3.4a and the step in
Figure 3.4b. The presence of a movable interface, on the other hand,
depends on the decision of the robots to limit the amount of work they
contribute to the overall task, as in the examples of Figure 3.4c and
Figure 3.4d.

The input-output relation between the sub-tasks is determined by
the characteristics of both the environment and the tasks. Analogously
to the interface type, a discontinuity may impose what the input-output
relation between sub-tasks must be. For example, the gap of Fig-
ure 3.4a imposes the interface to be direct. An object can cross the
gap only if handed over from a robot to another. Analogously, the step

36 3. The Approach

represented in Figure 3.4b forces the robots to drop objects and the
interface is therefore indirect.

Characteristics of the task can also define the type of input-output
relation between the sub-tasks. For example, bees utilize task parti-
tioning in nectar foraging (Seeley, 1995). Since nectar is a liquid, it
must be transfered directly from a bee to another. Robots transporting
hazardous waste or precious items could do the same (see Figure 3.4c),
to avoid that their load is left unattended in the environment. In other
situations, it may be acceptable to release items in the environment (see
Figure 3.4d).

Notice that, in principle, there may be cases in which the interface
is both direct and indirect. For example, in situations such as the ones
represented in Figure 3.4c and Figure 3.4d, the robots could in some
occasions deposit objects to the ground and in others perform a direct
transfer. In this dissertation however, we do not consider such cases:
interfaces are either direct or indirect.

As explained in the following, the type of interface (fixed or mov-
able) determines which decision a robot can make in terms of amount
of work it contributes to the overall task. The type of transfer (direct
or indirect), determines instead the overhead costs of task partitioning.
The two properties of the interfaces therefore play an important role
in the task partitioning process performed by the swarm.

3.3 Strategy

Given a task to be performed, there are different options to organize
its execution. We define partitioning strategy (or more simply strategy)
the way a task is performed in relation to i) the number of sub-tasks
and ii) their size. Since, in general, there are several ways to partition
a given task into sub-tasks, a strategy allows an external observer to
describe how task partitioning has been applied to a task. Note that
an individual robot merely executes an individual task or sub-task. A
strategy expresses what can be observed at the level of execution of
the overall task. Except for the case in which the task is executed as
an unpartitioned task, the strategy that is used to tackle a task results
from the combined actions of several robots involved in the execution
of that task.

Figure 3.5 represents four possible strategies that a group of robots
can utilize to perform the transportation task. A strategy may differ
from another because either the number or the size of the sub-tasks are
different. For example, the strategies represented in Figure 3.5a and
Figure 3.5b are different because the former entails partitioning the

3.3. Strategy 37

d)

a)

I1

b)

I1 I2

c)

I1

Figure 3.5: Different partitioning strategies applied to object transporta-
tion. (a) Object transportation is partitioned into two sub-tasks of differ-
ent length. (b) Object transportation is partitioned into three sub-tasks of
equal length. (c) Object transportation is partitioned into two sub-tasks of
equal length. (d) Object transportation is performed as one unpartitioned
task.

transportation task into two sub-tasks, the latter into three. On the
other hand, the strategies represented in Figure 3.5a and Figure 3.5c
both partition the transportation task in two sub-tasks. However the
sub-tasks differ across the two in terms of amount of work contributed
by the robots (i.e., the sizes of the sub-tasks are different). Conse-
quently also the way the object transportation task is executed differs
across the two examples. In general, the given task can be executed
without employing task partitioning, as represented in Figure 3.5d.
We refer to the strategy that consists in executing the overall task as

38 3. The Approach

a single piece of work as the non-partition strategy .

Cost of a strategy. Our approach to autonomous task partitioning
is based upon the idea of associating a cost to the execution of tasks.
The cost measures the amount of resources that are spent to perform
a task. The way costs are expressed depends on the specific context
and application. For example, if the objective is to perform tasks as
quickly as possible, costs can be expressed as time. Further examples
of costs are energy and other resources, such as materials. Together
with the concept of amount of work, the concept of cost is one of the
foundations of our approach. The importance of costs is that they
provide information about a strategy that can be used to evaluate how
suited that strategy is to perform a task.

In general, the cost of performing a task varies with the strategy
being employed. Consider, for example, the leaf foraging activity of the
leaf-cutting ant Atta sexdens, described in Section 2.2.1. The task is
the collection of a leaf piece and its delivery to the nest. Atta ants are
known to employ task partitioning. Some individuals work on a tree,
cutting and dropping leaves to the ground. Other ants cut pieces from
the leaves found on the ground beneath the tree and transport them to
the nest (Fowler and Robinson, 1979). In this case, the strategy consists
in performing the task as a sequence of two sub-tasks (harvesting from
the tree and transporting on the ground). An alternative strategy
would be not to partition the task. In the latter case, an ant would
climb the tree, cut a piece of leaf and transport it to the nest. The
result, upon the completion of the task, would be the same as in the
previous case: a leaf piece is transported to the nest (i.e., a task is
completed). However, this strategy would be more costly in terms of
energy spent, since each ant would be obliged to repeatedly climb up
and down the tree.

Under a different definition of cost, the strategy that employs task
partitioning could be disadvantageous. For example, if the goal were
to maximize the exploitation efficiency of leaves on a tree, the par-
titioning strategy would not be advantageous. In fact, many of the
leaves dropped to the ground are not found by any ant and therefore
they cannot be utilized by the swarm (Hubbell et al., 1980). If each
ant harvested leaf pieces directly on the tree, the amount of lost leaves
would be reduced. However, the Atta ants employ task partitioning
and this suggests that energy efficiency is their main concern.

In general, the costs of task partitioning are not only due to the
execution of the sub-tasks: task partitioning requires additional coor-
dination which results in overhead costs that concentrate at the inter-

3.4. Autonomous Task Partitioning in Swarms of Robots 39

faces. These overheads largely depend upon the input-output relation
between interfacing sub-tasks. If the interface is direct, the overheads
are due to the coordination required to find a transfer partner and to
perform the transfer itself (Anderson and Ratnieks, 1999; Arnan et al.,
2011). If the interface is indirect, overheads may occur in the form
of losses at the task interface, such as in the leaf foraging example
mentioned above.

3.4 Autonomous Task Partitioning in Swarms of
Robots

We define autonomous task partitioning in a robot swarm as:

the process by which the robots of the swarm au-
tonomously define sub-tasks of a given task in terms
of amount of work.

There are two possible situations that the robots may face (see Sec-
tion 3.2):

1. there are no constraints on the amount of work;

2. there are constraints on the amount of work, due to a fixed inter-
face;

Concerning the latter situation, we only consider the cases in which
the interface can be bypassed. Cases in which the use of the interface
is the only possibility available to the robots are uninteresting since
they do not require the robot to make any decision and therefore they
are not studied in this dissertation. In the case of foraging, in which
the task is transportation, bypassing a fixed interface means that the
objects can be transported along a different path.

To achieve autonomous task partitioning in a swarm, the robots
must be able to tackle both the case in which the amount of work is
constrained and the case in which it is not. Therefore, they have to be
able to make the following decisions:

1. decide the amount of work they contribute with their sub-task;

2. decide whether to use a fixed interface or to bypass it.

These two decisions are the fundamental building blocks upon which
autonomous task partitioning is built and that allow the definition of
complex partitioning strategies.

Within our approach, the robots make decisions individually: the
overall partitioning strategy results in a self-organized manner from the

40 3. The Approach

composition of individual decisions. More specifically, neither negotia-
tion nor collective choice processes are involved in the definition of the
strategy of the swarm.

Figure 3.6 illustrates, with the use of examples, how the individual
decisions define the overall strategy. In the figure, the robots must
collect objects located on top of a step, and deliver them to the nest
(not represented), located on the right-hand side of the figure. The step
is a fixed interface, that the robots can bypass using a ramp, located
on the left-hand side of the figure.

In Figure 3.6a, the robot R1 decides to employ the fixed interface:
the robot drops objects from the step. The robots R2 and R3 collect
these objects at the bottom of the step and complete the transporta-
tion –i.e., they decide to contribute an amount of work that completes
transportation. The strategy that results from these individual deci-
sions entails partitioning the transportation task into two sub-tasks,
linked by a fixed interface located at the bottom of the step.

Figure 3.6b represents a situation where none of the robots employ
the fixed interface. Each robot contributes with a different amount of
work and the transportation task is partitioned into three sub-tasks.
In this case the two interfaces are movable: the robot R1 could modify
the amount of work it contributes and change the location where its
sub-task interfaces with the one performed by R2. Analogously the
decisions of R2 have an effect on the work of R3.

Figure 3.6c, illustrates that “hybrid” strategies may result from the
individual decisions of the robots. In the example, R1 uses the fixed in-
terface, R2 decides to perform transportation as an unpartitioned task,
and R3 collects the objects at the bottom of the step. The strategy is
hybrid in the sense that, at the global level, there is no unique strategy
being employed. In the example, certain instances of the transporta-
tion task are performed as sequences of two sub-tasks, while others
are performed as unpartitioned tasks. When robots in a swarm make
decisions independently, analogous situations are frequent.

In general, there is no single strategy that is always preferable to the
others: depending on the goals, one strategy may be a good choice or it
may not. For example, the strategy represented in Figure 3.6a is a good
choice if the goal were maximizing the foraging speed. The strategy
represented in Figure 3.6b, on the other hand, is a better option if the
objects are fragile and the goal were maximizing the number of (intact)
objects delivered to the nest.

Contribution of the dissertation. The task partitioning mechanisms
that have been proposed so far are built with the sole purpose of reduc-

3.4. Autonomous Task Partitioning in Swarms of Robots 41

a)

R2

R3

R1

b)
R1

R2

R3

c)

R2 R3

R1

Figure 3.6: Examples of collective strategies resulting from the individual
decisions of the robots. (a) The robot R1 decides to drop objects from
the step. At the bottom, the two robots R2 and R3 collect the objects
and complete transportation. The resulting strategy entails partitioning
transportation into two sub-tasks, linked by a fixed interface. (b) None of
the robots decides to drop objects from the step. Each robot transports
objects for a certain distance and transportation is partitioned into three
sub-tasks, linked by movable interfaces. (c) R1 drops objects from the step.
At the bottom R3 collects the objects and completes transportation. R2

performs transportation as an unpartitioned task. The strategy employed
by the robots is “hybrid”: certain instances of the transportation task are
performed as sequences of two sub-tasks, others as unpartitioned tasks.

ing physical interference. Such mechanisms are suitable in situations
in which interference is indeed the dominant factor. However, there
are also other phenomena that play a role in foraging. Using mecha-

42 3. The Approach

nisms built to reduce interference in contexts where interference is not
the key problem may bias the partitioning strategy towards a solution
that is not appropriate for the situation. Moreover, in all the existing
works, the task partitioning process is blended with the behavior of
the robots and it therefore depends on the specific tasks and contexts
in which these tasks are executed. This limits the applicability of the
same mechanisms to other tasks and contexts.

The approach presented in this dissertation is different from what
proposed so far in two aspects: i) the task partitioning process is built
upon general concepts and ii) it is decoupled from the behavior of the
robots. Even though the concepts of cost and of amount of work may
need to be adapted to specific tasks, contexts, and applications, the
process that implements task partitioning does not require modifica-
tions. This broadens the applicability of our approach, compared to
existing approaches. Additionally, we do not make any a priori assump-
tions about the factors that determine the best partitioning strategy.
In fact, each robot has the goal of reducing the task execution costs,
and this results in a swarm-level partitioning strategy which implicitly
takes into account the factors that have an impact on these costs.

3.5 Application to Other Domains

We developed the approach to autonomous task partitioning described
in this chapter with the goal of using it in foraging. However, the ap-
proach is based upon generic concepts and therefore it can potentially
be applied to other contexts. In this section, we provide two exam-
ples illustrating that the concepts at the basis of our approach can be
identified also in other contexts: in Section 3.5.1 we discuss a construc-
tion scenario and in Section 3.5.2 the case of a baker preparing cakes.
The latter case highlights that the elements that are relevant to our
approach are general and can be found in contexts other than robotics.

3.5.1 A Construction Scenario

A swarm of robots has to build a structure composed of walls. Here,
we can identify a task in the construction of one of the walls of the
structure. A sub-task consists in building part of a wall. The sub-tasks
exhibit a sequential dependency: walls are constructed stacking bricks
or other materials starting from the ground and building upwards. This
imposes an execution order between sub-tasks.

A natural way to express the amount of work is through a measure
related to the actions performed by the robots, for example the energy

3.5. Application to Other Domains 43

spent. The cost can be measured in different ways. One could measure
time if the goal were completing the structure as fast as possible. Con-
versely, if the goal were minimizing the waste of resources, cost could
be related to the quantity of construction material used.

In the example considered here, the input-output relation between
sub-tasks consists in resuming the construction of an unfinished wall.
The location of an interface can therefore be identified in the height of
a partially constructed wall. The interfaces are indirect since they do
not impose tight synchronization: a robot can continue at any moment
in time the construction of a wall that was left unfinished by another
robot. Therefore in this context the amount of work contributed by a
robot defines the height of the wall it is constructing.

Each robot has a limited reach and therefore it can only build a
wall up to a certain height. The amount of work a robot can contribute
to the construction of a wall is therefore constrained. The maximum
height of a wall identifies the location of a fixed interface. Differently
from the case of foraging, in which characteristics of the environment
impose the presence of the interface, in this case its presence is due
to characteristics of the task and the robots. The interface can be
bypassed with the aid of an external structure or a tool that allows
the robot to extend its reach (e.g., a scaffold). The structure or tool
require other actions to be performed by the robot and therefore its
usage entails additional amount of work.

In the context described here, autonomous task partitioning is the
process by which the robots define a strategy that they utilize to build
the structure. One can imagine, for example, a strategy that entails
each robot remaining on a certain level of a scaffold and build the part
of the wall within reach. In this case the construction of walls would
be implemented as a sequence of sub-tasks. An alternative possibility
is the use of the non-partition strategy: the robots climb scaffolds and
directly build complete walls.

3.5.2 A Tasty Scenario

In this example, instead of a group of individuals performing tasks, we
consider a single worker: a baker that prepares cakes to sell in his shop.
In this case, we identify a task in the preparation of one cake, while a
sub-task consists in executing part of the recipe for preparing the cake.

As in the previous example, the amount of work can be related to
the operations the baker must perform in order to bake a cake. An
interface can be identified in the stage of an unfinished cake. The
presence of a fixed interface may be due to operations that cannot
be interrupted, such as beating egg whites. Once the cook initiates

44 3. The Approach

the operation, he must complete it or the process will fail. Therefore
beating egg whites constrains the work of the baker. In some situations,
the interface can be bypassed. For example, imagine that an alternative
recipe allows the cook to use a different ingredient than egg white, for
example cream. Using other ingredients entails different operations to
be performed and therefore a different amount of work.

Depending on the way costs are measured by the baker, the use of
cream over egg whites could be an advantage. If costs are expressed as
time, using cream may be preferable as it saves the cook some time that
he can use to prepare more cakes. On the other hand, it might be that
the customers prefer cakes made with egg white, therefore the eggs are
a better option if the baker measured costs as customer dissatisfaction.

The example described allows us to illustrate an aspect of task par-
titioning that is neglected in foraging or construction: task partitioning
can be used to delay the execution of certain operations (i.e., sub-tasks)
in time, allowing a single worker to concurrently progress in many tasks.
This is analogous to what happens in an operating system: the pro-
cesses are executed as sequences of operations performed at different
moments. The result is that several processes are active at a given
moment in time. In the case of the baker, partitioning the preparation
of cakes allows him to prepare many cakes in parallel and to optimize
certain operations. For example he can first prepare a number of cakes
and put them all together in the oven to be baked at once, thus saving
energy. Analogously he can work on a cake while the dough of another
cake becomes leaven, thus saving time.

3.6 Summary

In this chapter, we framed task partitioning within the context of for-
aging and described our approach to autonomous task partitioning in
such a context. We concentrate our study on foraging because it rep-
resents an important benchmark in swarm robotics and because it is
an abstraction of relevant real-world applications. Additionally, the
robotic platforms available in our laboratory have characteristics that
render them suited for applications similar to foraging (e.g., object col-
lection, search and retrieval, transportation, exploration). Therefore
foraging is a topic of general interest within our research group.

Despite the fact that we focus on obtaining autonomous task parti-
tioning in a specific context, we base our approach on generic concepts.
This has two main advantages, with respect to the task partitioning al-
gorithms proposed in the literature. First, the use of generic concepts
allows us to reason in an abstract way and to decouple the process

3.6. Summary 45

implementing task partitioning from the specific tasks, actions, and
behaviors of the robots. We propose a decisional layer that can be
used on top of the behavioral repertoire of the robots to implement
task partitioning. The second advantage is that we do not make a pri-
ori assumptions about the specific factors determining the partitioning
strategy that should be used to tackle a given task. Instead, the strat-
egy is determined by the way costs are measured and therefore takes
into account implicitly all the factors that have an impact on costs.

We are confident about the fact that our approach can be applied to
tackle other problems than foraging without requiring major modifica-
tions. We provided examples illustrating that the very same concepts
at the basis of our approach can be identified in other contexts.

As a final remark, we restrict our study to cases in which tasks are
partitioned into sequences of sub-tasks. However, tasks can sometimes
be partitioned into sub-tasks that do not impose any execution order.
The study of an approach to tackle such situations is still an open
problem and it is discussed in the final chapter of this dissertation.

Chapter 4

Tools

In this chapter, we describe the hardware and software tools that we
utilized to carry out the experiments presented in this dissertation.
The goal of the chapter is not to provide an exhaustive description of
these tools, but to illustrate their main characteristics. In Section 4.1,
we describe the tools that we utilize in the experiments presented in
Chapter 5: the e-puck and the TAM. The e-puck is a small wheeled
robot developed at EPFL.1 The TAM is a device that we developed in
our laboratory and that can be used to abstract tasks for an e-puck.
In Section 4.2, we present the marXbot, a robotic platform developed
within the Swarmanoid project and we describe its characteristics. The
marXbot has been utilized in the foraging experiments presented in
Chapter 6. In Section 4.3, we describe ARGoS, the simulator software
that we utilized for the simulation-based experiments of both Chapter 5
and Chapter 6.

4.1 The e-puck and the TAM

The e-puck2 is a mobile robot developed as an open-hardware project at
École Polytechnique Fédérale de Lausanne (Switzerland). The e-puck
has a cylindrical shape, with a diameter of 70 mm, and it is powered by
a removable Li-ion battery. The main processor controlling the robot is
a dsPIC3 microcontroller. Extension boards, such as the ground-color
sensors, the omnidirectional camera, and the infrared range and bearing
communication device can be added to enhance the basic capabilities
of the robot.

1École Polytechnique Fédérale de Lausanne.
2http://www.e-puck.org
3http://www.microchip.com

http://www.e-puck.org
http://www.microchip.com

48 4. Tools

Color camera

Wheel

Proximity sensors

Ground-color
sensors

Range and bearing
communication
board

Figure 4.1: Robot e-puck, simulated in the experiments presented in Chap-
ter 5. The figure highlights the sensors and actuators used in the experi-
ments.

Figure 4.1 depicts an e-puck and highlights the sensors and actu-
ators that are used in the simulation-based experiments described in
Chapter 5. The e-puck can navigate the environment at a maximum
speed of 0.12 m/s by means of a differential drive system. Eight infrared
proximity sensors are used to implement obstacle avoidance. The sen-
sors can perceive obstacles up to a distance of 0.05 m. The same sensors
measure the intensity of the ambient light and they are used in the ex-
periments to implement phototaxis behaviors. Three infrared sensors,
mounted in front of the robot and pointing downwards, identify the
color of the ground. A 640 × 480 pixels color camera, pointing for-
wards, provides the e-puck with basic vision capabilities. The camera
allows the e-puck to perceive LEDs and reliably distinguish between
3 different colors in controlled lighting conditions. The infrared range
and bearing extension board (Gutiérrez et al., 2009) allows line of sight
communication between the e-pucks (details are given in Section 5.6.1).
For more information about the e-puck, we refer the reader to the work
of Mondada et al. (2009), and to the website http://www.e-puck.org.

The only actuators available on the e-puck are the wheels, the LEDs,
and the speaker. The types of experiment that can be performed with
the robot are therefore limited. To overcome this limitation, we de-
signed and prototyped a device, the TAM 4 (Brutschy et al., 2010).
Figure 4.2 reports an actual picture (left) and a schematic representa-
tion (right) of an e-puck entering a TAM. Each TAM features a light
barrier, an infrared sensor, and 3 RGB LEDs. The e-puck enters in
the TAM, approaching the LEDs that it can perceive using the RGB
camera. The TAM detects the presence of a robot by means of the
light barrier. The user can program the TAM and define its behavior,
that is, the way LEDs are actuated on the basis of the events detected
(i.e., a robot entering or exiting the TAM). The infrared sensor allows

4Acronym for task abstraction module.

http://www.e-puck.org

4.2. The MarXbot 49

E-puck

RGB LED

Light barrier

Infrared sensor

LED diffuser

Figure 4.2: An e-puck entering a TAM: picture (left) and schematic repre-
sentation (right)

the TAM to exchange information with the e-pucks.
The TAM can abstract tasks that the e-pucks perform. For exam-

ple, in the experiments described in Chapter 5, the TAMs are used to
abstract object handling. By entering a TAM, an e-puck picks up or
drops a (virtual) object, depending on the color of the TAM and the
state of the robot. For additional details about the TAM and its usage
to abstract tasks, we refer the reader to the work of Brutschy et al.
(2010).

4.2 The MarXbot

The marXbot is a mobile robotic platform that was developed within
the Swarmanoid project.5 The marXbot architecture is distributed: the
robot is composed of a set of separate modules, each hosting part of the
sensors and actuators available on the robot. Each module hosts a ded-
icated dsPIC microcontroller, that controls the sensors and actuators
located on that module. The modules communicate via asynchronous
events, which are sent on a bus. The main processor board is a 533 MHz
ARM 11 i.MX31, running Linux. The distributed architecture allows
sensor data preprocessing and low-level control to be performed directly
on the modules. This reduces the computational load of the main pro-
cessor and the communication load of the bus (Magnenat et al., 2011).

Figure 4.3 represents the marXbot, and highlights the sensors and
actuators that are used in the experiments presented in Chapter 6. The
marXbot is roughly cylindrical-shaped, it has a diameter of 170 mm,
an height of 290 mm, and it weighs 1.8 kg. A hot-swappable Lithium-
Polymer battery powers the robot. The marXbot can navigate in the
environment using a differential drive system composed of two treels, a
combination of tracks and wheels. The tracks allow the robot to move

5Within Swarmanoid, the marXbot is also called “foot-bot”.

50 4. Tools

Treels (track + wheels)

Gripper

IR sensors (24)

Rotating turret with
RGB LEDs (12)

Camera and mirror for
omnidirectional vision

Ground color sensors (4)

Figure 4.3: Photography of a marXbot. The figure highlights the sensors
and actuators utilized in the experiments.

Figure 4.4: From left to right: the gripper of a marXbot opens inside the
ring of another marXbot. The mechanism allows the marXbots to connect
to each other and form multi-robot structures.

on moderately rough terrains, the wheels enhance dexterity while turn-
ing. A plastic ring hosts 12 RGB LEDs and a gripper. The ring can
rotate around the vertical axis of the robot. The ring is used both to
diffuse the light emitted by the LEDs and to allow the physical connec-
tion of another marXbot. When opened, the gripper of a marXbot fits
the plastic ring, as illustrated by the sequence of pictures in Figure 4.4.
This allows the marXbots to self-assemble and form multi-robot struc-
tures (see examples in Mathews et al., 2011).

The marXbot is equipped with 24 infrared proximity sensors, evenly
distributed around the body of the robot. The infrared sensors are
used as bumpers to perceive obstacles up to a distance of 0.05 m. The
same sensors measure the intensity of the ambient light and they are
used to detect light sources and perform phototaxis. Four infrared
sensors, located underneath the robot between the two tracks, are used
to recognize the color of the ground.

A 2 MP color camera, pointing to a spherical mirror on top of a

4.2. The MarXbot 51

raw image

filter: colors

green

blue

red

filter: blobs

GREEN

RED

BLUE

Figure 4.5: Representation of image processing on a marXbot. Left-hand
side: a marXbot is surrounded by other 3 robots, each has its LEDs turned
on in a different color. The omnidirectional camera of the central marXbot
perceives the raw image reported in the center. A first filter is applied to
this image. The filter extracts colors from the raw image and produces an
additional image for each filtered color (first column of images). Each image
is further filtered, to cluster pixels of the same color into blobs (last column).
The information about blobs (distance, color, and angle) can be used in the
controller of the robot.

transparent tube provides omnidirectional vision. Figure 4.5 illustrates
how the vision system of the marXbot works. The camera perceives
objects in the surrounding, up to a distance of around 1 m. In the
figure, the marXbot in the center is surrounded by other 3 robots, each
with the LEDs turned on in a different color. The raw camera image,
shown in the center of Figure 4.5, is filtered to extract color information
(first column of dark images). A second filter is applied to the resulting
images to detect blobs of the corresponding color (see last column of
images). Blobs represent areas of interest in the image: for example
an object to be gripped, or the LEDs of a robot to be avoided. The
filtering mechanism is based on the open source software opencv. 6 The
filters to be applied to an image are specified and tuned via an XML
configuration file.

In addition to the sensors and actuators described, that are used
in our experiments, the marXbot is also equipped with a second color
camera, a rotating scanner to measure distances, an infrared range and
bearing communication board, 8 ground-color sensors for hole detec-

6http://opencv.org

http://opencv.org

52 4. Tools

Figure 4.6: Components of the the plastic ring of the object (left) and the
plastic ring assembled (right).

tion,7 gyroscopes, and accelerometers. A comprehensive description of
the marXbot can be found in the work of Bonani et al. (2010).

To carry out the foraging experiments with the real marXbots, we
use objects that we designed in our lab. Figure 4.7 depicts one of these
objects; the schematic representation on the right-hand side reports
its dimensions. Each object is composed of a 90 mm plastic ring (see
Figure 4.6) that can host the gripper of a marXbot. The ring is fitted
on top of a 60 mm tall PVC pipe with a diameter of 80 mm (bottom
part). In the experiments we carried out with the real marXbots, a red
cardboard disk is glued on top of the plastic ring.

The marXbots can perceive the colored cardboard disk on top of the
object with their omnidirectional camera, up to a distance of roughly
0.5 m.8 The marXbot gripper allows the robot to grasp the plastic ring
of the object for transportation. Figure 4.8 depicts a marXbot carrying
an object. Details about the design of the objects and the way they
can be utilized in the experiments are available in the work of Brutschy
et al. (2012a).

7The marXbot has two sets of ground-color sensors: a set is used for ground-color
recognition, the other for hole detection.

8The actual range of the camera is wider, but the objects can be perceived reliably
only from a shorter distance.

4.3. ARGoS 53

90

3
8

6
0

80

1
3

Figure 4.7: Objects utilized to perform foraging experiments with the
marXbots. On the left-hand side an actual picture of an object; on the
right-hand side a schematic representation reporting the dimensions in mm.

4.3 ARGoS

We perform all the simulation-based experiments described in this dis-
sertation using ARGoS, acronym for autonomous robots go swarm-
ing (Pinciroli et al., 2012). ARGoS is a simulation software written
in C++, that was developed within the Swarmanoid project. The
software is open source and it is available online.9 ARGoS allows the
real-time simulation of swarms composed of thousands of robots.

The main characteristic of ARGoS is that it allows multiple physics
engines to run in parallel. Different groups of robots can be assigned to
separate physics engines, each of which models the physics of that sub-
set of robots. Alternatively, different portions of the simulated space
can be assigned to separate engines, simulating the physics in the por-
tion of space assigned. Each engine can be executed in a dedicated
thread to achieve parallel execution on multi-core computers and re-
duce the simulation time (Pinciroli et al., 2012).

Besides efficiency and speed, ARGoS was designed with the goal of
being highly customizable by the end user. Since ARGoS is utilized by
many researchers, it must answer different needs and it must allow new
features to be easily added. The architecture of ARGoS, represented
in Figure 4.9, renders this possible by allowing easy customization and
extension of the software.

The core of ARGoS is the space, which contains information about
the state of every simulated entity. The remaining elements (enti-

9http://iridia.ulb.ac.be/argos

http://iridia.ulb.ac.be/argos

54 4. Tools

Figure 4.8: A marXbot carrying an object. The top part of the figure shows
a closeup of the marXbot gripper inside the plastic ring of the object.

ties, sensors, actuators, visualizations, and physics engines) are imple-
mented as plugins. Thanks to this design choice, each simulated entity
(e.g., a sensor, or an actuator) can have multiple plugins that imple-
ment it. The user can customize the simulation by specifying via an
XML configuration file which specific implementation of a given entity
(i.e., which plugin) is instantiated at run-time. Implementations dif-
fer in the level of detail at which an entity is simulated and therefore
the user can allocate computational resources where desired: he can
select a fast and approximate simulation of some entities and a more

4.3. ARGoS 55

Controller

Sensors Actuators

Space

Entities

2D Kin 2D Dyn 3D Dyn

Physics

Text

Open-GL

POV-Ray

Visualizations

Control Interface

Figure 4.9: Architecture of ARGoS. The space is the core of ARGoS, all the
other elements are implemented as plugins. The control interface is used by
the controller to interact with sensors and actuators and it allows the same
code to be used on real and simulated robots. The image has been taken
from the work of Pinciroli et al. (2012) with permission of the author.

detailed and computationally expensive one for others. The fact that
everything is implemented as a plugin also makes it possible to extend
the software easily, without the need of modifying its core.

ARGoS allows easy porting of controller code to the real robots.
This is possible thanks to the control interface (see top part of Fig-
ure 4.9). The control interface is an abstraction layer, used by the con-
troller of a robot to access sensors and actuators. The control interface
is shared across the simulated sensors and actuators and the real ones.
In this way, to the controller it is transparent whether it is interact-
ing with simulated or real devices. Cross-compilation allows the very
same code developed in ARGoS to be used on the real robots. At the
time of writing this dissertation, ARGoS supports cross-compilation
for the Swarmanoid robots, the s-bots (Mondada et al., 2004), and the
e-pucks.

Chapter 5

Deciding Whether to Use a
Fixed Interface

In this chapter, we study the case in which a fixed interface constrains
the amount of work that the robots can contribute with their sub-tasks.
In general, the presence of fixed interfaces is due to a discontinuity
either in the environment or in the task itself (see example described
in Section 3.5.1). In foraging, fixed interfaces are typically due to an
obstacle on the path to the nest, for example a gap in the ground or a
step, that cannot be overcome by the robots.

In such cases, the robots can only decide whether to transfer objects
at the interface or to bypass the interface using an alternative path
leading to the nest. The two options entail, in general, a different
amount of work to be performed by the robots and involve different
costs. For example one of the two paths might be significantly longer
than the other, or interference along one of the two paths might be
higher.

As mentioned in Chapter 3, the capability of deciding whether to use
a fixed interface is one of the two building blocks to define more complex
partitioning strategies. In this chapter, we study a scenario in which
such a decision must be made by the swarm and we propose algorithms
based on our approach that can be used by the robots to make this
decision. The case in which there is no fixed interface constraining the
work of the robots is the focus of Chapter 6.

The rest of this chapter is organized as follows. In Section 5.1, we
describe the foraging scenario that we use as a testbed and we frame
the problem of selecting whether to use an interface in such a scenario.
In Section 5.2, we describe the actual implementation of the scenario
using ARGoS to simulate the TAM and the e-puck. In Section 5.3, we
illustrate the application of our approach to autonomous task parti-

58 5. Deciding Whether to Use a Fixed Interface

tioning in the studied scenario. In Section 5.4, we present an ad-hoc
algorithm that we designed to tackle the studied problem. We report
results of experiments in which we test the performance of the algo-
rithm, its adaptivity to changes of the environmental conditions, and
its scalability. In Section 5.5, we show that the problem of selecting
whether to use an interface can be seen as a multi-armed bandit prob-
lem and tackled with existing algorithms. In Section 5.6, we study the
implications of using explicit communication within the swarm. Fi-
nally, in Section 5.7, we summarize the contents and contributions of
this chapter.

5.1 Description of the Problem

The studied problem. In this chapter we study the problem repre-
sented in Figure 5.1. The robots must perform transportation, and the
amount of work a robot can contribute with a sub-task is constrained
by the presence of a fixed interface. The interface can be bypassed
using an alternative path to the nest.

If the robots decide to bypass the interface I, transportation is per-
formed as an unpartitioned task T (Figure 5.1a). In this case we say
that transportation is performed using the non-partition strategy . Con-
versely, if the robots use the interface I, the object transportation task
is partitioned into a sequence of two sub-tasks S1 and S2, as represented
in Figure 5.1b. The sub-task S1 consists in transporting an object from
the source to the interface, while the sub-task S2 consists in transport-
ing an object from the interface to the nest. In case the robots employ
the interface I, we say that object transportation is performed using
the partition strategy .

For simplicity, we consider here the case in which T corresponds to
the overall transportation task. Since the interface is fixed, robots em-
ploying task partitioning are not free to define sub-tasks autonomously.
Instead, the sub-tasks are determined a priori by the presence of the
interface. In other words, the robots can only choose between two pre-
determined strategies that can be employed to perform transportation.
Notice however that this is not a strict requirement: what presented
in this chapter can also be applied to cases in which T is a sub-task of
another task. In this latter case, the robots would have more freedom
at the level of the definition of the overall partitioning strategy.

The goal of the robots is to maximize the number of objects deliv-
ered to the nest. This goal can be achieved by maximizing the object
throughput and therefore we express costs in terms of time. Under this
definition, the cost of the non-partition strategy is the time needed to

5.1. Description of the Problem 59

b) Partition strategy

a) Non-partition strategy

IS1 S2

T

Transportation task

?

SOURCE NEST

Figure 5.1: Representation of the task partitioning problem studied in this
chapter using the schematic notation presented in Chapter 3. We study the
case in which a fixed interface imposes a constraint on the amount of work
a robot can contribute with a sub-task. The robots must decide whether to
use the interface or bypass it. (a) The robots decide to bypass the interface:
the given task is tackled as an unpartitioned task T . (b) The robots use the
interface: the task is partitioned into a sequence of two sub-tasks S1 and
S2, linked by the fixed interface I.

perform the object transportation task as an unpartitioned task T .
The cost of the partition strategy is the sum of the times required to
perform the two sub-tasks S1 and S2. The two strategies entail in gen-
eral a different total cost due to a different amount of work required
to perform transportation and, in the case of the partition strategy, to
overhead interfacing costs. The costs of the two strategies determine
which of the two is more advantageous to perform transportation.

Foraging scenario. The robots perform foraging in the environment
represented in Figure 5.2. The environment is composed of two areas,
one containing the source and the other containing the nest, separated
by the fixed interface. We consider the case in which the source never
depletes and it is situated in a known location.1 The nest has unlim-

1Typically, foraging involves exploration of the environment with the goal of finding
objects. Since the robots know the location of the source in advance, they are not, strictly
speaking, performing foraging, but rather transportation. However, we use in this chapter

60 5. Deciding Whether to Use a Fixed Interface

C
A

C
H

E

S
O

U
R

C
E

N
E
S
T

CORRIDOR

? DROP

STORE

PICK UP

HARVEST

?

T

I S2S1

Figure 5.2: Representation of the studied foraging problem. The object
transportation task consists in taking an object from the source and deliv-
ering it to the nest. The cache separates two ares of the environment, one
containing the source and one containing the nest. The cache allows objects
to be transferred from one area to the other. The corridor can be used by
the robots to reach an area from the other. Robots choose between using
the interface (i.e., the cache) or not (i.e., navigate through the corridor) in
two cases, marked with “?” in the figure: after taking an object from the
source, a robot chooses between storing it at the nest or dropping it at
the cache; after delivering an object in the nest, a robot chooses between
picking up the next at the cache or harvest one from the source.

ited storage capacity, while the capacity of the interface is limited. The
interface allows objects to be transferred from one area to the other.
We consider the case in which the interface is indirect (refer to Sec-
tion 3.2). This means that an object can be dropped at the interface
by a robot and subsequently picked up by another robot working on
the opposite side without requiring that the first robot remains at the
interface. In the rest of the chapter, we refer to the interface as the
cache. Entomologists use the term cache to refer to locations in which
insects temporarily store materials during transportation (Hart and
Ratnieks, 2000). The cache can be bypassed using a corridor, which

the term foraging to refer to the overall swarm activity, composed of several instances of
the object transportation task.

5.2. Experimental Setup 61

links the area containing the source and the one containing the nest
and therefore allows the robots to reach an area from the other.

In the setup described, the use of the cache allows the robots to
perform transportation using the partition strategy, as represented in
the top part of Figure 5.2: the first sub-task (S1) consists in taking an
object from the source and drop it in the cache; the second sub-task
(S2) consists in picking up an object from the cache and delivering it
to the nest. The corridor allows the robots to bypass the interface and
perform transportation using the non-partition strategy (see bottom
part of Figure 5.2): a robot directly reaches the source from the nest
and the other way around, harvesting and storing objects. Which of
the two strategies is more advantageous depends on the length and
width of the corridor and on the cost of using the cache.

In the experiments we impose an interfacing time Π that the robots
must spend to use the cache for either picking up or dropping an object.
Π allows us to abstract the overhead costs of task partitioning and
conveniently regulate the relative benefits of using the cache over the
corridor.

The robots choose whether to use the cache in two situations, rep-
resented with a question mark in Figure 5.2. After taking an object
from the source, a robot decides whether to use the cache to drop the
object, or to use the corridor and store the object at the nest. After
delivering an object in the nest, a robot decides whether to pick up an
object from the cache, or to use the corridor and harvest an object
from the source. Notice that a robot can decide to use the cache in
some cases and not to use it in others. Therefore, at the level of the
swarm, the choice is not uniform: some robots may be using the cache
while others may not.

5.2 Experimental Setup

In this section, we describe the experimental implementation of the for-
aging scenario presented in Section 5.1. All the experiments presented
in this chapter are performed simulating e-pucks with ARGoS. Since
the e-puck does not have the capability of grasping objects, we abstract
object handling using the TAM. For more information about ARGoS,
the e-puck, and the TAM, refer to Chapter 4.

Environment and simulation of the system. The environment in
which the robots perform foraging, shown in Figure 5.3, is an actual
implementation of the environment represented in Figure 5.2. The
source, the cache, and the nest are implemented using TAMs organized

62 5. Deciding Whether to Use a Fixed Interface

Figure 5.3: Representation of
the experimental environment.
Source, cache, and nest are im-
plemented using TAMs. The
different ground colors are used
by the robots to localize them-
selves in the environment. Three
lights, marked with “L”, provide
directional information.

L

s
o
u
rc
e

c
a
c
h
e

n
e
s
t

LL

into arrays of four. The source and the nest TAMs are located in
opposite corners of a rectangular environment surrounded by walls.2

The cache TAMs are located between source and nest. Different areas
of the environment are marked with a specific ground color, which can
be perceived by the robots and used to determine their location in the
environment and to navigate through the corridor. Three light sources,
located in proximity of one of the walls, provide directional information
used for navigation.

In ARGoS, we simulate the robots and the environment in two di-
mensions, using a dynamics physics engine. The camera allows an
e-puck to perceive the LEDs of the TAM up to a distance of 1.3 m.
A random value is added to the perceived distance, between -5% and
5% of the actual value, and a random value between −2◦ and 2◦ is
added to the perceived angle. At each simulation step, a uniformly
distributed random value between -5% and 5% of the reading is added
to the ambient-light, proximity, and ground-color sensor readings. The
maximum communication distance of the simulated range and bear-
ing device, used in the experiments presented in Section 5.6, is set

2The size of the environment varies in the specific experiments.

5.2. Experimental Setup 63

to 0.75 m. Each robot has a 30% probability per simulation step3 of
not receiving any message, even if other robots were sending messages
within communication range.

Object abstraction using the TAM. Each TAM abstracts either a
spot where an object can be deposited, or an object that can be taken
by a robot. A TAM whose LEDs are lit up in green represents an object
available at the TAM. A TAM whose LEDs are lit up in blue represents
a free spot where an object can be deposited. Using this representation,
when a robot enters a TAM whose LEDs are lit up in green, we assume
that the robot takes an object from that TAM. Analogously, when a
robot transporting an object enters a TAM whose LEDs are lit up in
blue, we assume that the object being carried is deposited in that TAM.
In both cases the TAM acknowledges the robot presence by temporarily
turning the LEDs to red. The robots themselves keep track of whether
they are carrying an object or not. A robot without an object assumes
it has picked up one from a TAM if it perceives the TAM LEDs turning
red and the LEDs were green before. Conversely, a robot carrying an
object assumes it has dropped it inside a TAM if it perceives the TAM
LEDs turning red and the LEDs were blue before.

The behavior of the TAMs changes with their location in the en-
vironment. The nest TAMs are always blue, representing unlimited
space where objects can be stored. The source TAMs are always green,
representing the fact that objects can always be found at the source.

Implementation of the cache. The behavior of the TAMs imple-
menting the cache is more complex. Figure 5.4 depicts the behavior of
two paired TAMs that implement a slot of the cache. At the beginning,
the cache TAM oriented towards the source is lit up in blue, and the
one oriented towards the nest have its LEDs off (Figure 5.4a). In this
configuration the cache slot is empty. Once a robot has dropped an
object in the cache, by subsequently entering and exiting a free (i.e.,
blue) TAM oriented towards the source, the TAM turns off so that it
is no longer available to accept an object, and the corresponding TAM
oriented towards the nest turns to green (Figure 5.4b). This represents
an object deposited in the cache that becomes available on the nest
side. A robot on the other side can pick up this object by subsequently
entering and exiting the TAM oriented towards the nest (Figure 5.4c).
Once the object has been picked up, the TAM oriented towards the
nest turns off and the one oriented towards the source turns to blue,

3A step simulates a time of 0.1 seconds.

64 5. Deciding Whether to Use a Fixed Interface

d)

B
LU

E

O
FF

a)

O
FF

B
LU

E

b)

O
FF

G
R
E
E
N

c)
G
R
E
E
N

O
FF

Figure 5.4: Implementation of a cache slot using two paired TAMs. The
source (not represented) is located on the left-hand side, the nest (not rep-
resented) on the right-hand side. Robots carrying an object are marked with
a black arrow, robots not carrying an object with a white arrow. (a) Initial
configuration: the cache slot is empty, a robot can enter the TAM oriented
towards the source (lit up in blue) to drop an object. (b) An object has been
deposited by a robot; the TAM oriented towards the source switches off the
LEDs and the paired TAM oriented towards the nest turns on the LEDs in
green. (c) The object is available at the TAM oriented towards the nest and
another robot enters the TAM to pick up the object. (d) When the robot
leaves with the object, the two TAMs return to their initial configuration.

to signal that the TAM is available again for dropping an object (Fig-
ure 5.4d). A video illustrating the described behavior is available with
the supplementary material (see Annex B).

The interfacing time. The TAM allows us to regulate the relative
benefits of utilizing the cache over the corridor in an easy way. We do so
by defining the value of the interfacing time Π: the lower the value, the
more the cache is preferable to the corridor. In other words, the TAMs
allow us to tune the degree at which using the interface is advantageous
over bypassing it. In this way we can verify that, using the algorithms
we propose, the swarm makes a good decision pertaining the usage of
the interface. The interfacing time Π is implemented as a delay between
the two phases represented in Figure 5.4a and Figure 5.4b. After the
robot entered the TAM oriented towards the nest, the TAM turns its
LEDs to red (not shown in figure) to acknowledge the robot presence.

5.3. Application of the Proposed Approach 65

The LEDs do not turn off (i.e., the robot does not leave the TAM) until
a time equal to Π has passed. Analogously, the transition between the
phases represented in Figure 5.4c and Figure 5.4d, requires a time Π.

5.3 Application of the Proposed Approach

In this section, we describe the application of the approach presented
in Chapter 3 to the foraging scenario.

Estimation of costs. Each robot keeps a cost estimate for each of
the possible four actions: i) harvest an object from the source (i.e.,
using the corridor), ii) pick up an object from the cache, iii) drop an
object in the cache, and iv) store an object in the nest (i.e., using the
corridor). Each estimate t̂i is computed as a recency-weighted average
of the measured costs:

t̂i = (1− α) t̂
′
i + α tM , (5.1)

where α ∈ (0, 1] is the weight factor, t̂
′
i is the value of the estimate

before the update, and tM is the measured time required to perform
the corresponding action i. The way tM is measured depends on the
estimate being updated (refer to Figure 5.5).

In all the cases, tM measures the time taken between two subsequent
decisions, made by the robot (see question marks in Figure 5.2). When
the robot estimates the time t̂H required to harvest an object from
the source (Figure 5.5a), tM measures the time from the moment an
object was deposited in the nest to the moment the following object
is harvested from the source, after navigating through the corridor. In
case the estimate being updated is the time t̂S required to store an
object in the nest (Figure 5.5b), tM measures the time from the moment
the robot takes an object from the source to the moment it deposits it
in the nest, after navigating through the corridor. The estimate t̂P of
the time required to pick up an object from the cache (Figure 5.5c)
is updated with the time tM measured from the moment an object
is deposited in the nest, to the moment the next object, picked up
from the cache, is deposited in the nest. Analogously, a robot updates
its estimate t̂D of the time required to drop an object in the cache
(Figure 5.5d) with the time tM measured from the moment an object
is taken from the source to the moment the following object is taken
from the source, after the first has been dropped in the cache.

Behavior of the robots. Figure 5.6 illustrates the behavior of each
robot. Upon taking an object from the source, a robot decides whether

66 5. Deciding Whether to Use a Fixed Interface

The robot took an
object from the source

S
O

U
R

C
E
 T

A
M

Initialize tM

C
A

C
H

E
 T

A
M

The robot dropped the
object in the cache

The robot took a second
object from the source

S
O

U
R

C
E
 T

A
M

Initialize tM

Update tD
^

d) Update of the DROP time estimate

The robot deposited
an object in the nest

Initialize tM

c) Update of the PICK UP time estimate

N
E
S
T
 T

A
M

The robot picked up a second
object from the cache

C
A

C
H

E
 T

A
M

The robot deposited the
second object in the nest

Initialize tM

Update tP
^

The robot took an
object from the source

S
O

U
R

C
E
 T

A
M

Initialize tM

b) Update of the STORE time estimate

The robot travels along the
corridor towards the nest

The robot deposited the
object in the nest

Initialize tM

Update tS
^

The robot deposited
an object in the nest

Initialize tM

a) Update of the HARVEST time estimate

N
E
S
T
 T

A
M

The robot travels along the
corridor towards the source

The robot took an
object from the source

S
O

U
R

C
E
 T

A
M

Initialize tM

Update tH
^

N
E
S
T
 T

A
M

N
E
S
T
 T

A
M

Figure 5.5: Update of the time estimates t̂i. (a) Harvest time estimate t̂H .
(b) Store time estimate t̂S . (c) Pick up time estimate t̂P . (d) Drop time
estimate t̂D. Robots carrying an object are marked with a black arrow,
robots not carrying an object with a white arrow.

to drop the object in the cache or to take the corridor and store the
object in the nest. Analogously, upon depositing an object at the nest,
a robot decides whether to pick up an object from the cache or to

5.3. Application of the Proposed Approach 67

Object
taken

Drop in
cache

Go to nest
store

drop
? Object

deposited
Pick up

from cache

Go to source
harvest

pick up

abandon

?

abandon

Figure 5.6: Finite state machine describing the high-level behavior of each
robot. The small squares represent decision points, in which the robots are
free to choose the action to perform. The corresponding choice is represented
with a black continuous arrow marked with a label. Dashed gray arrows
represent state transitions when the robot does not make a choice. The
two squares labeled with a question mark represent the decision points at
which the robot decides whether to use the interface or not. After taking an
object from the source, the robot decides whether to drop it in the cache,
or store it at the nest. After depositing an object in the nest, the robot
decides whether to pick up the following one at the cache, or harvest it
from the source. The robot can abandon a previous decision of using the
cache.

take the corridor and harvest an object in the source. These decisions
are made on the basis of the perceived cost of each action, computed
using Equation (5.1). Algorithms that the robots can use to make such
decisions are presented in Section 5.4 and 5.5.

Besides selecting whether to use the cache or the corridor, the robots
can also quit the decision of using the cache. An abandoning mecha-
nism governs this choice and prevents two deadlock situations from
happening. The first situation happens if all the robots are trying to
drop objects in the cache and the cache is full. The second, dual situ-
ation happens if all the robots are trying to pick up objects from the
cache, and the cache is empty. The abandoning mechanism is part
of the algorithm employed by the robots to make decisions. Specific
implementations of the mechanism are presented in Section 5.4.1 and
Section 5.5.1, together with the corresponding algorithms.

68 5. Deciding Whether to Use a Fixed Interface

5.4 The AdHoc Algorithm

In this section, we present an ad-hoc algorithm that the robots can use
to select whether to employ or bypass the fixed interface. The algorithm
was first proposed in Pini et al. (2011), but the results presented in
this section are not the ones that were published in the article. This is
due to the fact that the results published were obtained with an older
version of ARGoS. We decided to reimplement the experiments with
the version of ARGoS available at the moment of writing. With minor
differences due to reimplementation, the results presented here confirm
the original results of Pini et al. (2011) (reported in Annex A).

The rest of this section is organized as follows. In Section 5.4.1 we
describe in detail the algorithm proposed in Pini et al. (2011), which
we refer to as the AdHoc algorithm. In Section 5.4.2 we present exper-
iments in which we test the performance, adaptiveness, and scalability
of the algorithm.

5.4.1 The Algorithm

Robots employing the AdHoc algorithm stochastically choose between
using the interface or not. Each robot has a probability P of using the
cache (i.e., dropping or picking up an object) computed as:

P =

[
1 + e−S((t̂H+t̂S)/(t̂P + t̂D)−1)

]−1

, if t̂H + t̂S > (t̂P + t̂D)[
1 + e−S(1−(t̂P + t̂D)/(t̂H+t̂S))

]−1

, if t̂H + t̂S ≤ (t̂P + t̂D)
(5.2)

The probability of employing the cache is the same both for picking
up and for dropping objects. Equation (5.2) defines the probability P
of employing the cache on the basis of the ratio between the estimated
time required to use the corridor (t̂H + t̂S) and the cache (t̂P + t̂D): the
higher the ratio, the higher the probability. P grows with the value of
the ratio following an “S” shaped curve, whose slope is determined by
the value of the parameter S. The lower the value of S, the smaller
the inclination of the curve, and the higher the exploration of the algo-
rithm. Exploration consists in sampling the less-advantageous solution
in order to detect variations in the environment that possibly made
this solution more advantageous.

The cache abandoning mechanism employed in the AdHoc algo-
rithm is also based on a stochastic decision. If a robot is trying to use
the cache to drop an object, it can decide to abandon with a probability
defined as:

PaD (wt) =
[
1 + eΘ(wt,t̂D)

]−1

, (5.3)

5.4. The Ad Hoc Algorithm 69

Table 5.1: Default values of the experimental parameters.

Parameter Default value

Duration of an experimental run 60000 s
Experimental runs per setting 25
Swarm size 14 robots

Initialization of t̂P and t̂D uniform sampling in [20 s, 40 s]

Initialization of t̂H and t̂S uniform sampling in [40 s, 80 s]
Environment size 1.8 m by 3.0 m

where wt is the current waiting time. Θ
(
wt, t̂D

)
is computed as:

Θ
(
wt, t̂D

)
= K

(
wt − t̂D
t̂D + t̂P

+O

)
. (5.4)

The function Θ compares the difference between the current waiting
time wt and the average drop time t̂D to the total (estimated) time
required to use the cache (t̂D + t̂P). The higher the ratio of the two,
the higher the probability of abandoning the decision of using the cache.
The parameter K defines the steepness of the probability curve defined
by Equation (5.3), while O shifts the curve. If a robot abandons the
choice of using the cache and its current value of wt is greater than t̂D,
the value of t̂D is updated using Equation (5.1) (wt replaces tM in the
formula). The probability PaP defining whether a robot abandons the
choice of using the cache for picking up an object is computed using
the same Equation (5.3) and replacing t̂D with t̂P .4

5.4.2 Experiments and Results

In the following, we describe the experiments we run to test the AdHoc
algorithm. The experiments are grouped into three sets. In the first
set of experiments, we evaluate the performance of the algorithm and
compare it to the performance of two reference algorithms. In the
second set of experiments, we test the adaptivity of the algorithm with
respect to changes in the environment. Finally, in the third set of
experiments, we study the scalability of the algorithm.

All the experiments are carried out using ARGoS. Unless stated ex-
plicitly in the corresponding section, the parameters of the experiments
are set as described below (also refer to Table 5.1).

Each experimental run lasts 60000 s; which amounts to a simulated
time of 16 hours and 40 minutes. The simulation proceeds at steps

4In Equation (5.4), the denominator is still computed as t̂D + t̂P .

70 5. Deciding Whether to Use a Fixed Interface

Table 5.2: Selected parameter values for the AdHoc algorithm.

Parameter Selected value

Parameter S 2
Weight factor α 0.5
Parameter O -2
Parameter K -2

of 0.1 s. For each experimental setting we run 25 randomly seeded
simulations. The size of the environment is 1.8 m by 3.0 m (horizontal
and vertical dimensions, with respect to Figure 5.3). The swarm is
composed of 14 simulated e-puck.

At the beginning of each experimental run, half of the swarm is
positioned in the area containing the nest, the rest of the swarm in the
area containing the source. The initial position and orientation of each
robot are selected randomly. To avoid biases in the behavior of the
robots, the estimates t̂H , t̂S, t̂P , and t̂D are randomly initialized: t̂H
and t̂S are uniformly sampled in [40 s, 80 s]; t̂P and t̂D in [20 s, 40 s].

We select the values for the parameters of the algorithm using ad-
hoc experiments. Details about the experiments and the complete re-
sults are available with the supplementary material (see Annex B).
Table 5.2 reports the selected parameter values, which are utilized in
all the experiments presented in the following.

Performance Evaluation

To assess the performance of the AdHoc algorithm, we compare it
with the performance of two reference algorithms, referred to as never-
partition and always-partition algorithms. The never-partition algo-
rithm always uses the corridor, while the always-partition algorithm
always uses the cache without abandoning. We test 7 different set-
tings, each corresponding to a value of the interfacing time Π: 0, 5,
10, 20, 40, 80, and 160 seconds. The upper bound for the value of Π
is selected so that the resulting cost of using the cache is considerably
higher than the one of using the corridor.

The graph in Figure 5.7 shows the results of the experiments. The
graph plots the average performance of the three algorithms for the
different values of the interfacing time Π. The performance of an algo-
rithm is given by the average number of objects delivered to the nest
per robot. Each reference algorithm performs well only for a subset of
values of Π. The always-partition algorithm performs better when Π is

5.4. The Ad Hoc Algorithm 71

0 5 10 20 40 80 160

Interfacing time Π (seconds)

0
10

0
20

0
30

0
40

0
50

0
60

0
70

0
80

0
90

0

O
bj

ec
ts

 c
ol

le
ct

ed
 p

er
 r

ob
ot

●

Algorithm

Never−partition
Always−partition
AdHoc

● ● ● ● ● ● ●

Figure 5.7: Average number of objects delivered to the nest per robot for
different values of the interfacing time Π.

low. In this case, the time needed to travel along the corridor is much
higher than the one to use the cache, therefore the corridor should
be avoided and the object transportation task should be partitioned
into sub-tasks. On the other hand, the never-partition algorithm per-
forms better when the interfacing time is high. The AdHoc algorithm
performs well across the whole spectrum of the parameter Π.

Figure 5.8 summarizes the strategy employed by the robots of the
swarm when using the AdHoc algorithm, for the different values of Π.
Each bar reports the percentage of times each action was performed
by the robots; the reported values are averages computed over 25 runs.
The graph confirms that the robots select the corridor with a higher
frequency for increasing values of Π. For small values of Π, the preferred
choice is the cache.

Figure 5.9 reports the time taken by the robots to use the corridor
(tH + tS) and the cache (tP and tD) employing the three different
algorithms, for interfacing times of 5 s (top), 20 s (center), and 40 s
(bottom). For Π = 5 s the always-partition algorithm performs better
than the never-partition algorithm (see Figure 5.7). Figure 5.9 (top)
shows that the time required to pick up an object from the cache (tP)
is considerably lower than the one required to store an object at the
nest via the corridor (which can reasonably estimated to be roughly
the half of the value reported in Figure 5.9). Therefore the objects are
delivered to the nest faster using the cache. Despite the fact that fewer

72 5. Deciding Whether to Use a Fixed Interface

0 5 10 20 40 80 160

Interfacing time Π (seconds)

0
25

50
75

10
0

A
ct

io
n

fr
eq

ue
nc

y
(%

)

Robot action

use cache
abandon cache
use corridor

Figure 5.8: Actions performed by the robots employing the AdHoc algo-
rithm, for different values of the interfacing time Π. Each bar reports, for a
given value of Π, the percentage of times an action was performed. The ac-
tions reported are: selection and actual usage of the cache (white), selection
of the cache and abandon (light gray), and selection of the corridor (dark
gray). The percentage of times the robots chose to employ the cache is the
sum of the values reported by the white and the light gray bars. The values
reported are the averages, computed over 25 experimental runs.

robots are contributing to depositing objects in the nest (half of the
swarm works in the area containing the source), the increased speed
due to the usage of the cache makes the always-partition algorithm
preferable to the never-partition algorithm. For increasing values of
Π, the relative speed gain progressively decreases (Figure 5.9, center
and bottom), and for Π = 40 s always using the corridor becomes more
advantageous than never using it (see performance in Figure 5.7).

Figure 5.9 shows that, using the AdHoc algorithm, the times needed
to access the cache (tP and tD), for Π = 20 s and Π = 40 s, are lower
than the corresponding ones required by the always-partition algo-
rithm. In fact, the robots employing the always-partition algorithm,
all try to access the cache. This results in an increased competition
for the cache, and therefore it is likely that a robot finds the cache
busy when trying to use it. For large values of Π, a robot that finds
the cache busy must wait a long time for a TAM to become available,
since the robots using the cache spend more time inside the TAMs (as
result of the high Π). This effect on the always-partition algorithm is
highlighted in Figure 5.9 by an increasing variance of the pick up and
drop times for an increasing value of Π.

5.4. The Ad Hoc Algorithm 73

Never
 partition

Always
 partition

AdHoc

0
10

0
20

0
30

0
40

0
50

0
T

im
e

(s
ec

on
ds

)

Corridor
Cache, pick up
Cache, drop

Π = 5 s

Never
 partition

Always
 partition

AdHoc

0
10

0
20

0
30

0
40

0
50

0
T

im
e

(s
ec

on
ds

)

Corridor
Cache, pick up
Cache, drop

Π = 20 s

Never
 partition

Always
 partition

AdHoc

0
10

0
20

0
30

0
40

0
50

0
T

im
e

(s
ec

on
ds

)

Corridor
Cache, pick up
Cache, drop

Π = 40 s

Figure 5.9: Time required to use the corridor (tH + tS) and the cache (tP
and tD) for the three studied algorithms. The graphs report the data for
Π = 5 s (top), Π = 20 s (center), and Π = 40 s (bottom).

The AdHoc algorithm can reduce the competition for the cache
TAMs when the cache is not advantageous by increasing the frequency
at which the robots use the corridor (see actions reported in Figure 5.8).
Additionally, the robots employing the AdHoc algorithm can benefit
from the abandoning mechanism which prevents them from waiting

74 5. Deciding Whether to Use a Fixed Interface

too long when the cache is not immediately available. Note that the
fact that the AdHoc algorithm balances the usage of the cache and
the corridor also reduces the time required to navigate through the
corridor.

Figure 5.10 shows the evolution in time of the average number of
robots dropping objects in the cache (left-hand side column) and pick-
ing up objects from the cache (right-hand side column) when the Ad-
Hoc algorithm is employed. The first row of plots reports the data
collected for Π = 5 s, the second for Π = 20 s, and the third row for
Π = 40 s. The gray area around the value of the mean reports the
95% confidence interval on the value of the mean. In each plot, the
gray horizontal line marks the optimal number of robots that should
work on each side of the cache (i.e., that maximize the total number
of objects delivered to the nest). This number depends on the value
of Π: in general, the lower the value, the higher the number of robots
that should use the cache. The slanted gray lines indicate values of
the number of robots working on each side of the cache that lead to a
swarm performance that is at least 95% of the optimal.

To determine the optimal way of using the cache (i.e., the optimal
number of robots working on each side), we performed experiments in
which some of the robots were forced to always use the cache. For each
value of Π, we exhaustively tested all the possible values of the number
of robots that were forced to use the cache and recorded the corre-
sponding performance. Figure 5.10 shows that the swarm employing
the AdHoc algorithm is able to regulate the number of robots working
on each side of the cache. In fact, in each moment in time, this num-
ber is close to the optimal value and therefore the cache is exploited
efficiently.

Adaptivity to Changes

We test the adaptiveness of the AdHoc algorithm in response to a sud-
den variation of the environmental conditions. The variation consists
in a change of the relative costs of the two strategies. In the experi-
ments, we periodically switch the value of the interfacing time Π from
10 s to 80 s and back. The value changes every quarter of experiment
(at the times t1 = 15000 s, t2 = 30000 s, and t3 = 45000 s). We test
two cases: one in which the starting value of Π is 10 s and another in
which it is 80 s. The swarm is expected to adapt the partition strategy
to the value of Π.

Figure 5.11 reports the results of the experiments. The graph on
top shows the data for the case in which the initial value of Π is 10 s; the
graph at the bottom for the case in which the initial value of Π is 80 s.

5.4. The Ad Hoc Algorithm 75
0

1
2

3
4

5
6

7
8

N
um

be
r

of
 r

ob
ot

s

0 2 4 6 8 10 12 14 16
Time (hours)

Robots using the cache − Drop
Π = 5 s

0
1

2
3

4
5

6
7

8
N

um
be

r
of

 r
ob

ot
s

0 2 4 6 8 10 12 14 16
Time (hours)

Robots using the cache − Pick up
Π = 5 s

0
1

2
3

4
5

6
7

8
N

um
be

r
of

 r
ob

ot
s

0 2 4 6 8 10 12 14 16
Time (hours)

Robots using the cache − Drop
Π = 20 s

0
1

2
3

4
5

6
7

8
N

um
be

r
of

 r
ob

ot
s

0 2 4 6 8 10 12 14 16
Time (hours)

Robots using the cache − Pick up
Π = 20 s

0
1

2
3

4
5

6
7

8
N

um
be

r
of

 r
ob

ot
s

0 2 4 6 8 10 12 14 16
Time (hours)

Robots using the cache − Drop
Π = 40 s

0
1

2
3

4
5

6
7

8
N

um
be

r
of

 r
ob

ot
s

0 2 4 6 8 10 12 14 16
Time (hours)

Robots using the cache − Pick up
Π = 40 s

Figure 5.10: Average number of robots using the cache in time to drop (left-
hand side plots) and pick up objects (right-hand side plots). The graphs
report the data for Π = 5 s (first row), Π = 20 s (second row), and Π = 40 s
(third row). The gray area around the value of the mean reports the 95%
confidence interval on the value of the mean. The gray horizontal line marks
the number of robots that should work on each side of the cache in order to
maximize performance. The gray slanted lines indicate values of the number
of robots working on each side of the cache that result in a performance of
at least 95% of the maximum.

In the graphs of Figure 5.11, the total time frame of the experiment
is divided into windows of 60 minutes. Each box in the plot reports
the percentage of usage of the cache in the time window preceding the

76 5. Deciding Whether to Use a Fixed Interface

0
20

40
60

80
10

0

C
ac

he
 u

sa
ge

 (
%

)

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
Time (hours)

Π = 10 s Π = 80 s Π = 10 s Π = 80 s

0
20

40
60

80
10

0

C
ac

he
 u

sa
ge

 (
%

)

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
Time (hours)

Π = 80 s Π = 10 s Π = 80 s Π = 10 s

Figure 5.11: Percentage of usage of the cache in time. The cache interfacing
time Π switches between the values of 10 and 80 seconds every quarter of
experiment. Vertical dashed lines mark the instants at which the value of
Π changes. The graph on top reports the case in which the initial value
of Π is 10 s, the one at the bottom the case in which the initial value of Π
is 80 s. Each box reports the percentage of usage of the cache in the hour
preceding the time reported on the X axis. The gray horizontal line reports
the optimal cache usage. The gray slanted lines report percentages of cache
usage that lead to a number of objects delivered to the nest that is at least
95% of the maximum.

value indicated on the X axis. The gray horizontal segments in the
figure report the optimal cache usage (i.e., the one that maximizes the
number of objects delivered to the nest), which varies with the value of
Π. The gray slanted lines report percentages of cache usage that lead
to a performance that is at least 95% of the maximum.

The plots in Figure 5.11 show that the strategy employed by the
robots changes in time, depending on the value of the interfacing time
Π. Each time Π changes, the swarm converges to a new strategy more

5.4. The Ad Hoc Algorithm 77

suited to the new value of Π. In most of the cases, the new strategy
employed by the swarm is close to the optimal. The results indicate
that the AdHoc algorithm is not only able to utilize a near-optimal
strategy, but it is also flexible with respect to changes occurring in the
environmental conditions. Therefore it can be employed in situations
where the benefits of using the interface vary in time.

Scalability

We test the scalability of the AdHoc algorithm and the two reference
algorithms, for three different values of Π. The values chosen for Π are:
5, 20, and 40 seconds. The values correspond to a low, an intermediate,
and a high value of the interfacing time, respectively. The swarm size
is taken from the set {4, 6, 8, 10, 14, 18, 22, 26, 30}.

Figure 5.12 reports the results of the scalability experiments for
Π = 5 s (a), Π = 20 s (b), and Π = 40 s (c). The graphs report, for
each algorithm, the total number of objects collected by swarms of
different size.

The graphs highlight the negative effect of physical interference,
that grows with the swarm size. In general, the benefits of adding
robots to the swarm gradually decrease. The always-partition algo-
rithm is affected the most by interference, since all the robots use the
cache at the same time. The AdHoc and the never-partition algorithms
are more scalable. For an increasing swarm size, the performance of
the AdHoc algorithm is higher than the performance of both the refer-
ence algorithms, for the tested values of Π. The fact that the always-
partition algorithm is less scalable than the other algorithms indicates
that, in the studied setup, the competition to access the cache has an
higher negative impact than the competition for space along the cor-
ridor. Indeed the area of the corridor is sufficiently large to allow the
robots to navigate relatively easily, also in the cases in which the swarm
is large.

Figure 5.13 summarizes the strategy employed by a swarm of 30
robots employing the AdHoc algorithm, for the different values of Π.
Each bar reports the percentage of times that each action was per-
formed by the robots, computed across 25 experimental runs. The
data reported in figure suggests that the the performance of the Ad-
Hoc algorithm is higher than the one of the reference algorithms (refer
to Figure 5.12) because the AdHoc algorithm balances the number of
robots using the cache and the corridor. This reduces the competition
to access the cache (thus the expected waiting time) and increases the
navigability in the corridor with respect to the never-partition algo-
rithm.

78 5. Deciding Whether to Use a Fixed Interface

4 6 8 10 14 18 22 26 30

Number of robots

0
25

00
50

00
75

00
10

00
0

12
50

0

O
bj

ec
ts

 c
ol

le
ct

ed

Π = 5 s

a)

b)

c)

●

Algorithm

Never−partition
Always−partition
AdHoc

●
●

●
●

●

●

●
●

●

4 6 8 10 14 18 22 26 30

Number of robots

0
25

00
50

00
75

00
10

00
0

12
50

0

O
bj

ec
ts

 c
ol

le
ct

ed

Π = 20 s

a)

b)

c)

●

Algorithm

Never−partition
Always−partition
AdHoc

●
●

●
●

●

●

●
●

●

4 6 8 10 14 18 22 26 30

Number of robots

0
25

00
50

00
75

00
10

00
0

12
50

0

O
bj

ec
ts

 c
ol

le
ct

ed

Π = 40 s

a)

b)

c)
●

Algorithm

Never−partition
Always−partition
AdHoc

●
●

●
●

●

●

●
●

●

Figure 5.12: Results of the scalability experiment for (a) Π = 5 s, (b)
Π = 20 s, and (c) Π = 40 s. The plots report, for each algorithm, the
number of objects collected by swarms of different size.

However, the AdHoc algorithm does not perform better than the
reference algorithms in all the tested conditions. In particular, the plot
in Figure 5.12a shows that, for Π = 5 s and in small swarms, the AdHoc
algorithm does not perform well. As explained in the following, this is
due to the fact that the AdHoc algorithm does not exploit the cache
efficiently when the robots are too few.

5.4. The Ad Hoc Algorithm 79

5 20 40
Interfacing time Π (seconds)

0
25

50
75

10
0

A
ct

io
n

fr
eq

ue
nc

y
(%

)

Robot action

use cache
abandon cache
use corridor

Figure 5.13: Actions performed by a swarm of 30 robots using the AdHoc
algorithm, for different values of the interfacing time Π. Each bar reports,
for each value of Π, the percentage of times an action was performed. The
actions reported are: selection and actual usage of the cache (white), se-
lection of the cache and abandon (light gray), and selection of the corridor
(dark gray). The percentage of times the robots chose to employ the cache
is the sum of the values reported by the white and the light gray bars. The
values reported are averages computed over 25 experimental runs.

The plots in Figure 5.14 summarize the situation of the system at
the moments at which one of the robots abandoned picking up an object
from the cache. The data reported in the figure has been collected
across the 25 experimental runs with a swarm of 4 robots employing
the AdHoc algorithm. Each time a robot abandoned the choice of
using the cache to pick up an object we recorded the number of objects
available in the cache and the number of robots that were dropping
objects (i.e., that were working on the other side of the cache). The
main plot in Figure 5.14 is the histogram of the number of objects
available at the cache when the robot abandoned. The smaller plots at
the bottom are histograms of the number of robots that were on the
other side of the cache. Each of these histograms reports a subset of the
data, corresponding to a given number of objects available at the cache.
Thus, the first plot on the left indicates the number of robots that were
dropping objects in the cache when a robot abandoned picking up and
the cache contained no objects. The second plot indicates analogous
data, but for the cases in which there was one object available in the
cache. The third plot for the cases in which there were two objects in

80 5. Deciding Whether to Use a Fixed Interface

0 1 2 3 4

Objects in cache

0
20

40
60

80
10

0

F
re

qu
en

cy
 (

%
)

Abandon pick up

Swarm size: 4
93.72 %

5.12 %
0.99 % 0.14 % 0.03 %

0 1 2 3

Robots dropping

0
20

40
60

80
10

0
F

re
qu

en
cy

 (
%

)

Objects in cache: 0

0 1 2 3

Robots dropping

0
20

40
60

80
10

0
F

re
qu

en
cy

 (
%

)
Objects in cache: 1

0 1 2 3

Robots dropping

0
20

40
60

80
10

0
F

re
qu

en
cy

 (
%

)

Objects in cache: 2

Figure 5.14: Robots abandoning the decision of picking up an object from
the cache. The plots report the overall data collected in 25 runs with swarms
of 4 robots employing the AdHoc algorithm. Main plot: frequency at which
a given number of objects were in the cache when a robot abandoned. Small
plots: frequency at which a certain number of robots were on the other side
of the cache at the moment the robot gave up.

the cache. Analogous plots are reported in the Figure 5.15, for swarms
of 6 robots, in Figure 5.16, for swarms of 8 robots, and in Figure 5.17,
for swarms of 10 robots. Similar plots, reporting the data collected
when the robots abandon dropping an object in the cache are available
with the supplementary material (see Annex B). The results reported
in the supplementary material are analogous to the ones presented here.

The AdHoc algorithm does not exploit efficiently the cache, in case
the swarm is composed of few robots (less than 10). In the majority
of the cases, the robots abandon picking up objects from the cache
because the cache is empty (see main histograms). The cache empties
because on the other side, few robots are dropping objects (see smaller
histograms). The dual situation happens in the cases in which the
robots abandon the decision of dropping objects in the cache: the cache
gets full and few robots are on the other side picking up objects and
freeing slots in the cache. Figure 5.17 shows that increasing the number
of robots allows the swarm to exploit the cache more efficiently: the
cache is less likely to get empty and the swarm performs better, as

5.5. Task Partitioning as a Bandit Problem 81

0 1 2 3 4

Objects in cache

0
20

40
60

80
10

0

F
re

qu
en

cy
 (

%
)

Abandon pick up

Swarm size: 6
83.21 %

13.16 %

2.9 % 0.63 % 0.1 %

0 1 2 3 4 5

Robots dropping

0
20

40
60

80
10

0
F

re
qu

en
cy

 (
%

)

Objects in cache: 0

0 1 2 3 4 5

Robots dropping

0
20

40
60

80
10

0
F

re
qu

en
cy

 (
%

)

Objects in cache: 1

0 1 2 3 4 5

Robots dropping

0
20

40
60

80
10

0
F

re
qu

en
cy

 (
%

)

Objects in cache: 2

Figure 5.15: Robots abandoning the decision of picking up an object from
the cache. The plots report the overall data collected in 25 runs with swarms
of 6 robots employing the AdHoc algorithm. Main plot: frequency at which
a given number of objects were in the cache when a robot abandoned. Small
plots: frequency at which a certain number of robots were on the other side
of the cache at the moment the robot gave up.

reported in Figure 5.12.

5.5 Task Partitioning as a Bandit Problem

In this section we show that the problem of selecting whether to uti-
lize an interface, and therefore whether to partition a given task or
sub-task, can be seen as a multi-armed bandit problem (Sutton and
Barto, 1998; Cesa-Bianchi and Lugosi, 2006). In the multi-armed ban-
dit problem, a player chooses in a sequence of trials one of the arms of
a multi-armed bandit and receives a certain reward associated with the
chosen arm. The goal of the player is to maximize the reward obtained
in the sequence of trials. Within the approach presented in this disser-
tation, deciding whether to utilize an interface induces an analogous
problem. The robots must perform transportation and they have to
decide whether to employ the interface or an alternative route. The
goal of the robots, in this case, is minimizing the costs associated to
performing tasks, instead of maximizing rewards.

82 5. Deciding Whether to Use a Fixed Interface

0 1 2 3 4

Objects in cache

0
20

40
60

80
10

0

F
re

qu
en

cy
 (

%
)

Abandon pick up

Swarm size: 8

56.02 %

29.72 %

11.12 %

2.8 % 0.34 %

0 1 2 3 4 5 6 7

Robots dropping

0
20

40
60

80
10

0
F

re
qu

en
cy

 (
%

)

Objects in cache: 0

0 1 2 3 4 5 6 7

Robots dropping

0
20

40
60

80
10

0
F

re
qu

en
cy

 (
%

)
Objects in cache: 1

0 1 2 3 4 5 6 7

Robots dropping

0
20

40
60

80
10

0
F

re
qu

en
cy

 (
%

)

Objects in cache: 2

Figure 5.16: Robots abandoning the decision of picking up an object from
the cache. The plots report the overall data collected in 25 runs with swarms
of 8 robots employing the AdHoc algorithm. Main plot: frequency at which
a given number of objects were in the cache when a robot abandoned. Small
plots: frequency at which a certain number of robots were on the other side
of the cache at the moment the robot gave up.

The advantage of seeing task partitioning as a multi-armed bandit
problem stems from the fact that the latter is a widely studied problem.
Consequently, its theoretical properties are well understood and, most
importantly, one can use already existing algorithms, without the need
of implementing ad-hoc solutions.

In this section, we test the applicability of existing algorithms, that
have been proposed for the multi-armed bandit problem, to the prob-
lem of selecting whether to utilize an interface. In Section 5.5.1, we
illustrate the algorithms considered in our study. In Section 5.5.2, we
present the experiments that we carried out to test the algorithms.

5.5.1 Studied Algorithms

The algorithms. We test two algorithms, the ε-Greedy and the UCB ,
which have been proposed in the reinforcement learning literature and

5.5. Task Partitioning as a Bandit Problem 83

0 1 2 3 4

Objects in cache

0
20

40
60

80
10

0

F
re

qu
en

cy
 (

%
)

Abandon pick up

Swarm size: 10

28.73 %

39.43 %

24.09 %

6.93 %
0.83 %

0 1 2 3 4 5 6 7 8 9

Robots dropping

0
20

40
60

80
10

0
F

re
qu

en
cy

 (
%

)

Objects in cache: 0

0 1 2 3 4 5 6 7 8 9

Robots dropping

0
20

40
60

80
10

0
F

re
qu

en
cy

 (
%

)

Objects in cache: 1

0 1 2 3 4 5 6 7 8 9

Robots dropping

0
20

40
60

80
10

0
F

re
qu

en
cy

 (
%

)

Objects in cache: 2

Figure 5.17: Robots abandoning the decision of picking up an object from
the cache. The plots report the overall data collected in 25 runs with swarms
of 10 robots employing the AdHoc algorithm. Main plot: frequency at which
a given number of objects were in the cache when a robot abandoned. Small
plots: frequency at which a certain number of robots were on the other side
of the cache at the moment the robot gave up.

have been employed to tackle the multi-armed bandit problem.5

The ε-Greedy (Sutton and Barto, 1998) is a simple stochastic algo-
rithm that has been applied in many contexts. The robots employing
the ε-Greedy select with a probability 1−ε the action i with the lowest
associated cost estimate t̂i and with a probability ε a random action.
ε is the only parameter of the algorithm and it defines the degree of
exploration: the higher the value of ε, the higher the exploration.

The UCB is a heuristic adaptation of the UCB1 policy presented
in the work of Auer et al. (2002), that in turn was derived from the
index-based policy proposed by Agrawal (1995). UCB1 was originally
designed for stationary problems and it is characterized by a rapid con-
vergence (Auer et al., 2002). The robots employing the UCB algorithm
deterministically select the action to perform. For example, after de-

5The contents of this section are based upon the work described in Pini et al. (2013b).
In Pini et al. (2013b), we also tested the state-of-the-art algorithm Exp3 (see Cesa-Bianchi
and Lugosi (2006))). Since the algorithm does not perform well in any of the tested
conditions, we decided not to report its results here.

84 5. Deciding Whether to Use a Fixed Interface

positing an object in the nest, a robot picks up the following one from
the cache if:

t̂P − γ

√
2 ln(nP + nH)

nP

< t̂H − γ

√
2 ln(nP + nH)

nH

, (5.5)

otherwise the robot uses the corridor to harvest an object from the
source. nP and nH are, respectively, the number of times the robot
used the cache to pick up an object and the number of times the
robot harvested an object from the source (i.e., using the corridor).
γ is a parameter that defines the degree of exploration: higher values
of γ correspond to a higher exploration. The robots use a formula
analogous to Equation (5.5) to decide whether to drop and object
in the cache or store it in the nest. Each of the two expressions of
Equation (5.5) can be interpreted as an upper bound of a confidence
interval (refer to Auer and Ortner (2010) for more details).

In addition to the two algorithms described, in the experiments
we also test the AdHoc algorithm proposed in Pini et al. (2011) and
presented in Section 5.4.1. Notice that there is a difference between
the ε-Greedy and UCB algorithms and the AdHoc algorithm. In the
AdHoc algorithm, no distinction is made between the two decision
points: both at the nest and at the source there is the same probability
of using the interface, defined by Equation (5.2). Using the UCB and
the ε-Greedy algorithms, the robots discriminate between the two cases
when making their choice.

We also test four reference algorithms, in which the decisions do
not depend on cost estimates. These algorithms are used as a yard-
stick to evaluate the performance of the other algorithms. The first
reference algorithm is the never-partition algorithm, which consists in
always using the corridor to harvest and store objects. Analogously,
the always-partition algorithm consists in always using the cache, to
pick up and drop objects. In case the robots use the always-partition
algorithm, they are prevented from abandoning. The third reference
algorithm is the random algorithm. Using this algorithm, the robots
select the actions to perform stochastically, with equal probability. Fi-
nally, the informed algorithm consists in always selecting the cache or
the corridor on the basis of an external oracle information provided to
the robots. The performance of the informed algorithm is an upper
bound for the performance of the studied algorithms. Notice that both
the random and the informed algorithms allow the robots to abandon
the decision of using the cache.

5.5. Task Partitioning as a Bandit Problem 85

The abandoning mechanism. The abandoning mechanism that al-
lows a robot to quit the decision of using the interface is implemented
with a timeout. The robot measures the time it has been trying to
access the interface and abandons its choice when this time exceeds
a given threshold. Compared to the abandoning mechanism governed
by Equation (5.3), originally proposed in Pini et al. (2011), using a
timeout-based mechanism reduces the number of parameters of the
algorithms. To allow for a fair comparison of the algorithms, in the
experiments presented in Section 5.5.2, we employ a timeout-based
abandoning mechanism also for the AdHoc algorithm.

We utilize two methods to compute the value of the timeout thresh-
old. The specific method utilized to compute the threshold depends on
the algorithm being employed (details are given in Section 5.5.2). The
first method consists in computing two timeout thresholds, τP and τD.
The first is used when a robot is trying to pick up an object from the
cache, the second when a robot is trying to drop an object in the cache.
The two thresholds are computed as follows:

τP = 3t̂P , τD = 3t̂D . (5.6)

The second method uses a single threshold τ , derived using a formula
analogous to the one used to compute the estimates t̂i (Equation (5.1)).
Each time a robot utilizes the cache to pick up or to drop an object,
the measured time tM required to use the cache updates a value t̃:

t̃ = (1− α) t̃+ α tM , (5.7)

α is the same weight factor used in Equation (5.1) to compute the
estimates t̂i. t̃ is initialized to the average of t̂P and t̂D. The timeout
threshold τ is then computed as:

τ = 3t̃ . (5.8)

5.5.2 Experiments and Results

We carry out all the experiments in the environment represented in
Figure 5.3. The size of the environment is 1.8 m (horizontal) by 4.4 m
(vertical). We perform simulation-based experiments with swarms of
20 e-pucks. At the beginning of each experimental run, 10 robots are
placed in the area containing the source and 10 in the area containing
the nest. The initial position and orientation of each robot are selected
randomly. The cost estimates are initialized stochastically: we uni-
formly sample t̂P and t̂D from the interval [20 s, 40 s] and t̂H and t̂S
from the interval [40 s, 80 s]. Each experimental run lasts 10 simulated
hours. For each experimental setting we perform 100 runs, varying the

86 5. Deciding Whether to Use a Fixed Interface

Table 5.3: Values of the experimental parameters.

Parameter Default value

Duration of an experimental run 10 simulated hours
Experimental runs per setting 100
Swarm size 20 robots

Initialization of t̂P and t̂D uniform sampling in [20 s, 40 s]

Initialization of t̂H and t̂S uniform sampling in [40 s, 80 s]
Environment size 1.8 m by 4.4 m

Table 5.4: Selected parameters for the exploiting and exploring versions of
the studied algorithms.

Algorithm Version Parameter Abandoning

AdHoc
exploiting S = 6.0 Equation (5.8)
exploring S = 1.0 Equation (5.8)

UCB
exploiting γ = 100 Equation (5.8)
exploring γ = 1000 Equation (5.6)

ε-Greedy
exploiting ε = 0.01 Equation (5.6)
exploring ε = 0.11 Equation (5.6)

seed of the pseudo-random number generator. Table 5.3 reports the
values of the experimental parameters.

We select the values for the parameters of the algorithms and the
formula used to calculate the timeout threshold on the basis of ad-hoc
experiments. Details about these experiments and their complete re-
sults are available with the supplementary material (see Annex B). On
the basis of the results of these experiments, we select two parameter
settings for each algorithm, one corresponding to an exploring version
and one to an exploiting version of the algorithm. Table 5.4 summa-
rizes the parameter settings of each algorithm, which are utilized in the
experiments described in the following.

We perform two set of experiments. In the first set of experiments,
we test the algorithms in a setup where the environmental conditions
do not change in time. In the second set of experiments, we study
the behavior of the algorithms in the case in which the environmental
conditions vary over time.

5.5. Task Partitioning as a Bandit Problem 87

●

●

●●

●
●●

●●

Π = 0 s Reference AdHoc ε−Greedy UCB

Alw
ay

s
p.

Nev
er

 p
.

Ran
do

m

Exp
lo

itin
g

Exp
lo

rin
g

Exp
lo

itin
g

Exp
lo

rin
g

Exp
lo

itin
g

Exp
lo

rin
g

0
20

00
40

00
60

00
80

00

To
ta

l o
bj

ec
ts

 c
ol

le
ct

ed

●

●

●●●●

●

Π = 160 s Reference AdHoc ε−Greedy UCB

Alw
ay

s
p.

Nev
er

 p
.

Ran
do

m

Exp
lo

itin
g

Exp
lo

rin
g

Exp
lo

itin
g

Exp
lo

rin
g

Exp
lo

itin
g

Exp
lo

rin
g

0
10

00
20

00

To
ta

l o
bj

ec
ts

 c
ol

le
ct

ed

Figure 5.18: Performance of the studied algorithms, measured as objects
delivered to the nest by the swarm. The top plot reports the results obtained
for Π = 0 s, the bottom plot for Π = 160 s.

Stationary Environmental Conditions

In the experiments described in this section, we test the capability of
the swarm to decide whether to use the cache or the corridor for two
values of the interfacing time. In one case, we set Π to 0 s, value that
renders the cache preferable over the corridor; in the other, we set Π
to 160 s, which renders the corridor preferable.

Figure 5.18 reports the performance of the studied algorithms, for
Π = 0 s (top) and Π = 160 s (bottom). We measure the performance of
an algorithm as the total number of objects delivered to the nest by the
swarm, when that algorithm is employed. The results confirm that, for
Π = 0 s, the cache is advantageous and the best performing algorithm
is the always-partition algorithm. Dually, for Π = 160 s, the corridor is
advantageous and the never-partition algorithm is the best performing.
The studied algorithms perform well in both environments. The results
obtained by the ε-Greedy and UCB algorithms confirm that existing
algorithms that are used in the literature to tackle the multi-armed
bandit problem can be successfully applied to the problem of selecting

88 5. Deciding Whether to Use a Fixed Interface

whether to utilize an interface and partition a given task.
Since the problem is stationary (i.e., Π does not vary in time), the

exploiting version of each algorithm performs better than the corre-
sponding exploring version.6 In fact, once the robots have determined
whether the cache is advantageous over the corridor or not, they do
not need to explore the less-advantageous option anymore and the ex-
ploiting version of the algorithms is more efficient.

Non-stationary Environmental Conditions

In the experiments described in this section, we study a non-stationary
environment in which we vary Π during the course of the experimental
run. We test two cases; in one case the interfacing time is initialized
to Π = 0 s and, at time t = 2.5 hours (i.e., one quarter of experiment),
we set it to 160 s. Therefore, the cache is initially preferable (for t <
2.5 hours). After Π changes, the cache becomes costly and the robots
should utilize the corridor. In the other, dual case, we initialize Π to
160 s and we set its value to 0 s at t = 2.5 hours. When the robots
use the informed algorithm their behavior is hard-coded. While Π is
low, the robots always use the cache. Conversely, when Π is high, they
always take the corridor. The informed algorithm is used as an upper
bound for the other algorithms.

Figure 5.19 reports the performance of the two versions of each
algorithm and the four reference algorithms, for the case in which Π
varies from 0 s to 160 s. The results reported in the figure show that

●

●

Reference AdHoc ε−Greedy UCB

Alw
ay

s
 p

.

Nev
er

 p
.

Ran
do

m

In
fo

rm
ed

Exp
lo

itin
g

Exp
lo

rin
g

Exp
lo

itin
g

Exp
lo

rin
g

Exp
lo

itin
g

Exp
lo

rin
g

0
10

00
20

00
30

00
40

00

To
ta

l o
bj

ec
ts

 c
ol

le
ct

ed ●●
●●●

●●

Reference AdHoc ε−Greedy UCB

Alw
ay

s
 p

.

Nev
er

 p
.

Ran
do

m

In
fo

rm
ed

Exp
lo

itin
g

Exp
lo

rin
g

Exp
lo

itin
g

Exp
lo

rin
g

Exp
lo

itin
g

Exp
lo

rin
g

0
10

00
20

00
30

00
40

00

To
ta

l o
bj

ec
ts

 c
ol

le
ct

ed ●
●

Reference AdHoc ε−Greedy UCB

Alw
ay

s
 p

.

Nev
er

 p
.

Ran
do

m

In
fo

rm
ed

Exp
lo

itin
g

Exp
lo

rin
g

Exp
lo

itin
g

Exp
lo

rin
g

Exp
lo

itin
g

Exp
lo

rin
g

0
10

00
20

00
30

00
40

00

To
ta

l o
bj

ec
ts

 c
ol

le
ct

ed

Figure 5.19: Performance, measured as objects delivered to the nest by the
swarm. The figure reports the results obtained for the experiments in which
Π is initialized to 0 s and set to 160 s when the experimental run reaches a
quarter of its duration.

6With the exception of UCB, in which the difference between the two versions is min-
imal.

5.5. Task Partitioning as a Bandit Problem 89

the exploiting version of each algorithm performs better than the cor-
responding exploring version and reaches a performance close to the
one of the informed algorithm.

Π = 0 s Π = 160 s

1 2 3 4 5 6 7 8 9 10
Time (hours)

0
20

40
60

80
10

0 Π = 0 s Π = 160 s

1 2 3 4 5 6 7 8 9 10
Time (hours)

0
20

40
60

80
10

0
C

ac
he

us
ag

e
(%

)

Π = 0 s Π = 160 s

1 2 3 4 5 6 7 8 9 10
Time (hours)

0
20

40
60

80
10

0 Π = 0 s Π = 160 s

1 2 3 4 5 6 7 8 9 10
Time (hours)

0
20

40
60

80
10

0
C

ac
he

us
ag

e
(%

)

Π = 0 s Π = 160 s

1 2 3 4 5 6 7 8 9 10
Time (hours)

0
20

40
60

80
10

0 Π = 0 s Π = 160 s

1 2 3 4 5 6 7 8 9 10
Time (hours)

0
20

40
60

80
10

0
C

ac
he

us
ag

e
(%

)

ε-
G
re
e
d
y

Exploiting Exploring

U
C
B

A
d
H
o
c

Figure 5.20: Percentage of usage of the cache in time, for the different
versions of the algorithms. The plots report the results of the experiments
in which Π is initialized to 0 s. Each box reports the data collected over
100 experimental runs, for the period of 30 minutes that precedes the value
reported on the X axis. The vertical dashed line marks the instant in which
the value of Π is changed.

Figure 5.20 reports the percentage of use of the cache in time for
the three studied algorithms. The plots in the same row refer to the
same algorithm, from top to bottom: AdHoc, ε-Greedy, and UCB. The
left-hand side column of plots reports the results of the exploiting ver-
sion of the algorithms, the right-hand side column of plots the results
obtained with the exploring version of the algorithms. Each box re-
ports the percentage of usage of the cache in the 30 minutes preceding
the time reported on the X axis. The plots show that, in all the cases,
the robots initially identify the cache as the best choice and utilize it
most of the time. When Π changes from 0 s to 160 s, the robots switch
to the corridor, which becomes advantageous over the cache. Since in

90 5. Deciding Whether to Use a Fixed Interface

the first part of the experiment the robots mostly use the cache, they
directly perceive the variation of Π and react to the change. The dif-
ference between the exploring and exploiting version of the algorithms
is that the exploring version samples the (perceived) less advantageous
option with a higher frequency. This results in a loss of performance,
as observable in Figure 5.19. Therefore, in case Π varies from a low to
a high value, the swarm does not benefit from exploration: the vari-
ation directly impacts the cost of the choice selected the most by the
robots (i.e., using the cache) and therefore the change can be perceived
directly by the swarm. The dual case in which Π varies from a high to
a low value presents a different challenge to the robots.

Π = 160 s Π = 0 s

1 2 3 4 5 6 7 8 9 10
Time (hours)

0
20

40
60

80
10

0 Π = 160 s Π = 0 s

1 2 3 4 5 6 7 8 9 10
Time (hours)

0
20

40
60

80
10

0
C

ac
he

us
ag

e
(%

)

Π = 160 s Π = 0 s

1 2 3 4 5 6 7 8 9 10
Time (hours)

0
20

40
60

80
10

0 Π = 160 s Π = 0 s

1 2 3 4 5 6 7 8 9 10
Time (hours)

0
20

40
60

80
10

0
C

ac
he

us
ag

e
(%

)
Π = 160 s Π = 0 s

1 2 3 4 5 6 7 8 9 10
Time (hours)

0
20

40
60

80
10

0 Π = 160 s Π = 0 s

1 2 3 4 5 6 7 8 9 10
Time (hours)

0
20

40
60

80
10

0
C

ac
he

us
ag

e
(%

)

ε-
G
re
e
d
y

Exploiting Exploring

U
C
B

A
d
H
o
c

Figure 5.21: Percentage of usage of the cache in time, for the different
versions of the algorithms. The plots report the results of the experiments
in which Π is initialized to 160 s. Each box reports the data collected over
100 experimental runs, for the period of 30 minutes that precedes the value
reported on the X axis. The vertical dashed line marks the instant in which
the value of Π is changed.

Figure 5.21 reports, analogously to Figure 5.20, the percentage of
use of the cache in time, for the two versions of the studied algorithms.
In this case, the initial value of Π is high and the robots initially se-

5.6. The Use of Communication 91

lect the corridor more frequently than the cache. This implies that,
differently from the previous case, the variation occurring at the cache
cannot be detected directly by all the robots in the swarm. The first
column of plots in Figure 5.21 show that the exploiting versions of the
algorithms struggle to detect the variation of Π. The exploring ver-
sions of the algorithms, on the other hand, allow the swarm to adapt
their choice to the new value of Π. This indicates that, in this case,
exploration is beneficial.

●●●

●

●

●

●●

●

Reference AdHoc ε−Greedy UCB

Alw
ay

s
 p

.

Nev
er

 p
.

Ran
do

m

In
fo

rm
ed

Exp
lo

itin
g

Exp
lo

rin
g

Exp
lo

itin
g

Exp
lo

rin
g

Exp
lo

itin
g

Exp
lo

rin
g

0
20

00
40

00
60

00

To
ta

l o
bj

ec
ts

 c
ol

le
ct

ed

●
●

●●●

Reference AdHoc ε−Greedy UCB

Alw
ay

s
 p

.

Nev
er

 p
.

Ran
do

m

In
fo

rm
ed

Exp
lo

itin
g

Exp
lo

rin
g

Exp
lo

itin
g

Exp
lo

rin
g

Exp
lo

itin
g

Exp
lo

rin
g

0
20

00
40

00
60

00

To
ta

l o
bj

ec
ts

 c
ol

le
ct

ed

●
●●●●●

Reference AdHoc ε−Greedy UCB

Alw
ay

s
 p

.

Nev
er

 p
.

Ran
do

m

In
fo

rm
ed

Exp
lo

itin
g

Exp
lo

rin
g

Exp
lo

itin
g

Exp
lo

rin
g

Exp
lo

itin
g

Exp
lo

rin
g

0
20

00
40

00
60

00

To
ta

l o
bj

ec
ts

 c
ol

le
ct

ed

Figure 5.22: Performance of the algorithms for the case in which Π is ini-
tialized to 160 s and set to 0 s when the experimental run reaches a quarter
of its duration.

Figure 5.22 reports the performance of the algorithms and confirms
that indeed exploration entails benefits. In this case, the performance
of the exploring version of the algorithms is higher than the perfor-
mance of the corresponding exploiting versions. The results highlight
that, as in the multi-armed bandit problem, also in the problem of
selecting whether to use an interface it exists a tradeoff between ex-
ploiting the cumulated knowledge and exploring options perceived as
less advantageous to detect changes and react to them.

5.6 The Use of Communication

In this section we extend the work presented in Section 5.5, by adding
explicit communication to the system. The robots exchange informa-
tion about the environment and utilize the information they receive to
integrate their knowledge. In Section 5.6.1, we describe how commu-
nication is implemented in the studied system. In Section 5.6.2, we
present the experiments that we perform to test the effects of commu-
nication.

92 5. Deciding Whether to Use a Fixed Interface

5.6.1 The Communication Protocol

In the experiments, each robot communicates the time tA associated
to the last action A performed. The robots integrate their own cost
estimates with the information received. Each robot uses received in-
formation as if it were its own observation—i.e., as if the robot itself
performed the action A and measured the time tA. Equation (5.1)
is utilized to update the estimate using the information received (A
identifies the index i and tA replaces tM).

In our experiments, the e-pucks communicate using the infrared
range and bearing board. This communication device imposes a num-
ber of limitations. First, the communication range is limited to roughly
0.75 m, and robots can only exchange messages when they are in line
of sight. Second, a robot can receive at most one message per control
step. Third, each message has a payload limited to 16 bits.

As mentioned, a robot communicates the measured time tA asso-
ciated to the last performed action A. This information is encoded
in the 16 bits payload in the following way. The first 2 bits are used
to identify the action A: harvest, store, drop, or pick up. The
remaining 14 bits directly express the value tA, measured in control
cycles.7 Each robot broadcasts a message every control cycle.

At most one message per control cycle can be received by a robot.
To avoid using the same piece of information more than once, each
robot memorizes the last 10 received messages (i.e., 16-bits numbers).
Each time a robot receives a new message, it checks it against the con-
tents of the buffer. If the same message is already present, the robot
discards it; otherwise, the received information integrates the cost es-
timates of the robot, and the message is inserted in the buffer. The
message buffer is managed using a FIFO8 policy: if a new message
must be added and the buffer is full, the oldest message in the buffer
is discarded. Notice that, in principle, it is possible that two different
robots send the same message (i.e., they performed the same action A
and measured the same time tA). A robot receiving a message from
both robots would therefore discard the second message received, as-
suming that the two messages came from the same sender.

5.6.2 Experiments and Results

In the experiments presented in this section, we use the same experi-
mental setup and algorithm settings presented in Section 5.5. We com-
pare each algorithm along an additional dimension, which is whether

7Each control cycle lasts 0.1 seconds.
8Acronym for first in, first out.

5.6. The Use of Communication 93

the algorithm uses communication or not. We refer to the first case
as the social version of an algorithm and to the second case as the
non-social version.

In the following two sections we illustrate experiments in which we
compare the social and the non-social versions of the algorithms and
we propose a modification to the AdHoc and UCB algorithms. This
modification has been introduced to tackle an issue that emerged in the
experiments performed with the social version of the two algorithms.

The Effect of Communication

We focus here on the case in which the cache interfacing time is initial-
ized to 160 s and set to 0 s at t = 2.5 hours. We study the behavior of
the social and non-social versions of the AdHoc, ε-Greedy, and UCB
algorithms.

●
●●

●

●

●

●●

●

●●

●
●

●●●

●

●●●●●●●●
●●●
●

●

●
●

●

●●●●● ●

●
●

●

Reference ε−Greedy AdHoc UCB

Alw
ay

s
p.

Nev

er
 p

.
Ran

do
m

In

fo
rm

ed

Exp
lo

itin
g

Exp
lo

rin
g

Exp
lo

itin
g

Exp
lo

rin
g

Exp
lo

itin
g

Exp
lo

rin
g

0
10

00
30

00
50

00
70

00

To
ta

l o
bj

ec
ts

 c
ol

le
ct

ed

Non−social
Social

Figure 5.23: Performance of the studied algorithms for the case in which Π is
initialized to 160 s and set to 0 s when the experimental run reaches a quarter
of its duration. For each algorithm (excluding the reference algorithms)
we report the results obtained with the non-social (gray boxes) and social
version (white boxes).

Figure 5.23, reports the performance of the algorithms. Each plot
reports the performance of the four reference algorithms and the four
different versions of the studied algorithm (exploring/exploiting and
social/non-social). In the plot, the gray and white boxes report the
results of the non-social and social versions of the algorithms, respec-
tively. The data reported in the figure shows that communication af-
fects the swarm differently, depending on the algorithm being utilized
by the robots. Communication affects positively the ε-Greedy algo-
rithm: the performance increases independently of the setting of the
parameter ε. Conversely, communication has a strong negative effect
on the UCB algorithm, independently of the value of γ. The effect of

94 5. Deciding Whether to Use a Fixed Interface

communication on the AdHoc algorithm depends on its version. The
performance of the exploring version increases slightly, while there is
an increase in the variability of the results obtained with the exploiting
version.

Π = 160 s Π = 0 s

● ●

● ●

●

●

●

●

●

● ●
●

●
● ● ● ● ● ● ●

1 2 3 4 5 6 7 8 9 10

Time (hours)

0
20

40
60

80
10

0

C
ac

he
 u

sa
ge

 (
%

)

a) AdHoc (exploiting) non−social version, sample run 1 b) AdHoc (exploiting) non−social version, sample run 2

c) AdHoc (exploiting) social version, sample run 1 d) AdHoc (exploiting) social version, sample run 2

Π = 160 s Π = 0 s

●

●

● ● ●
●

● ●

●

●

●
●

● ●
●

●
● ● ●

●

1 2 3 4 5 6 7 8 9 10

Time (hours)

0
20

40
60

80
10

0

C
ac

he
 u

sa
ge

 (
%

)

a) AdHoc (exploiting) non−social version, sample run 1 b) AdHoc (exploiting) non−social version, sample run 2

c) AdHoc (exploiting) social version, sample run 1 d) AdHoc (exploiting) social version, sample run 2

Π = 160 s Π = 0 s

●

●
● ●

●

●
● ● ● ● ● ● ● ● ● ● ● ● ● ●

1 2 3 4 5 6 7 8 9 10

Time (hours)

0
20

40
60

80
10

0

C
ac

he
 u

sa
ge

 (
%

)

a) AdHoc (exploiting) non−social version, sample run 1 b) AdHoc (exploiting) non−social version, sample run 2

c) AdHoc (exploiting) social version, sample run 1 d) AdHoc (exploiting) social version, sample run 2

Π = 160 s Π = 0 s

●
●

●

● ● ● ● ● ● ● ● ● ● ● ● ●

●

● ● ●

1 2 3 4 5 6 7 8 9 10

Time (hours)

0
20

40
60

80
10

0

C
ac

he
 u

sa
ge

 (
%

)

a) AdHoc (exploiting) non−social version, sample run 1 b) AdHoc (exploiting) non−social version, sample run 2

c) AdHoc (exploiting) social version, sample run 1 d) AdHoc (exploiting) social version, sample run 2

Figure 5.24: Cache usage in time, as observed in 4 selected experimental
runs. Top: non-social version of the AdHoc algorithm (exploiting). Bottom:
social version of the AdHoc algorithm (exploiting).

To understand the effect of communication on the exploiting version
of the AdHoc algorithm, we study the behavior of the robots across
single experimental runs. In the plots of Figure 5.24, we report the
percentage of use of the cache in time, for four experimental runs. The
plots in the first row report the results obtained with the non-social
version of the AdHoc algorithm, while the plots in the second row
report the ones obtained with the social version.

5.6. The Use of Communication 95

The runs reported here are examples that allow us to illustrate
general trends that we observe in the experiments. Analogous plots,
reporting the data of each experimental run, are available with the sup-
plementary material (see Annex B). In general, communication renders
the choice made by the robots of the swarm more uniform. This affects
the system in two ways. On the one hand, as shown in Figure 5.24c
and Figure 5.24d, the transitions are sharper. If a few robots detect
that the cache became advantageous, information spreads within the
swarm and the robots rapidly switch to using the cache. The sooner
this happens, the more the robots can exploit the benefits of using the
cache. In case the robots do not communicate (Figure 5.24a and Fig-
ure 5.24b), the transition is slower, because every robot has to detect
by itself that the cache became advantageous.

Besides rendering the transitions quicker, the fact that the choice
made by the robots is strongly biased towards one of the two options
also entails the risk that the change occurring at the cache goes unde-
tected, as in the case reported in Figure 5.24d, where the robots detect
the variation of Π only at the end of the experiment.

In the case of UCB, the situation is pushed to the extreme: in all
the runs, the robots converge to the usage of the corridor and the cache
is never sampled again. Therefore, the robots are not able to detect
that the cache became advantageous and the resulting performance of
the swarm is low (see Figure 5.23). This is likely due to the fact that, as
mentioned in Section 5.5.1, the algorithm on which our UCB heuristic
is based was originally designed for stationary problems (Auer et al.,
2002) and it is therefore characterized by a rapid convergence, which
is here further accelerated by communication.

Differently from the other algorithms, the ε-Greedy does not suffer
the mentioned problem. This is due to the fact that the probability of
selecting the action perceived as the less advantageous does not change
with the estimated action cost, being always ε. Therefore, the ε-Greedy
draws only benefits from the increased flow of information.

Algorithms with ε-exploration

In order to face the problems we encountered with the AdHoc and UCB
algorithms, we modify the two to include a term of ε-exploration, as in
ε-Greedy: with probability 1−ε, the robots make a choice according to
the corresponding algorithm and with probability ε the robots choose
randomly. We refer to the modified versions of the AdHoc and UCB
algorithms as the ε-AdHoc and ε-UCB algorithms, respectively. We
select the value ε = 0.01, which is the same utilized in the exploiting
version of the ε-Greedy algorithm.

96 5. Deciding Whether to Use a Fixed Interface

●

●

●●●

●

●
●
●

●

●

●
●

●
●

●

●●
●●
●

AdHoc ε−AdHoc

Exploiting Exploring Exploiting Exploring

10
00

20
00

30
00

40
00

50
00

60
00

To
ta

l o
bj

ec
ts

 c
ol

le
ct

ed

Non−social
Social

●●●
●●●●●
●●●

●

●

●
●

●

●
●
●●● ●

●
●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

UCB ε−UCB

Exploiting Exploring Exploiting Exploring

10
00

20
00

30
00

40
00

50
00

60
00

To
ta

l o
bj

ec
ts

 c
ol

le
ct

ed

Non−social
Social

Figure 5.25: Performance of the UCB (top) and AdHoc (bottom) algorithms,
without (left) and with ε-exploration (right). The gray boxes report the data
for the case in which communication is not used, the white boxes for the
case in which communication is used.

Figure 5.25 highlights the effect of ε-exploration on the performance
of the different versions of the UCB (top) and AdHoc (bottom) algo-
rithms. The top plot shows that, in general, the UCB benefits from
the ε-exploration, the only exception being the exploiting version that
uses communication.

The social version of the AdHoc algorithm also benefits from the
added ε-exploration. The performance of the ε-AdHoc (in its exploiting
version) is higher than the one of the AdHoc and the variability in the
results is reduced. The ε-exploration, together with communication,
allows the AdHoc algorithm to exploit knowledge, which allows the
swarm to use efficiently the cache (or the corridor) and, at the same
time, to remain flexible with respect to changes.

5.7 Summary

In this chapter we focused on the case in which a fixed interface limits
the amount of work that a robot can contribute to a task. In this
case, the choices available to a robot are either use the interface or

5.7. Summary 97

bypass it. As mentioned in Chapter 3, the capability of autonomously
deciding for one of the two options is a fundamental building block for
the implementation of complex partitioning strategies.

We studied a foraging scenario in which the robots must decide
whether to employ an interface and partition the transportation task,
or to bypass the interface and perform transportation as an unparti-
tioned task. We used simulation-based experiments to study algorithms
that the robots can employ to make the decision on the basis of cost
estimates. We concentrated our study on the case in which the trans-
fer at the interface is indirect. However, the same algorithms can be
applied also to the case of direct transfer.

We proposed an ad-hoc algorithm that the robots can use to make
the decision and we tested it in situations that vary for what concerns
the cost of employing the fixed interface. The results of the experiments
show that the use of the algorithm leads to good performance in all
the tested conditions. The algorithm is also adaptive with respect
to changes occurring in the environment that impact the costs and it
scales with the size of the swarm.

We have also shown that the studied problem can be seen as a multi-
armed bandit problem. We performed experiments to assess whether
algorithms proposed in the reinforcement learning literature to tackle
multi-armed bandit problems can be employed in the studied task par-
titioning problem. The results of the experiments confirm that these
algorithms can indeed be applied. This is an important result, since
many algorithms have been proposed to tackle the multi-armed bandit
problem and they can potentially be applied to task partitioning.

Finally, we studied the effect of explicit communication within the
swarm. Contrary to what one might expect, communication is not al-
ways beneficial. Communication causes a fast spread of information
within the swarm. On the one hand, this renders the swarm faster in
converging to a particular partitioning solution, which may be benefi-
cial in terms of performance. On the other hand, the capability of the
swarm to adapt to varying environmental conditions may be harmed.

Chapter 6

Deciding the Amount of
Work Contributed by a
Sub-task

In the previous chapter, we studied the case in which a fixed interface
limits the amount of work a robot can contribute to transportation.
With such a limitation, the choice available to the robots is binary:
either utilize or bypass the interface. In this chapter, we consider the
case in which the amount of work is not subject to such a constraint.
As mentioned in Chapter 3, deciding the amount of work to contribute
with a sub-task is equivalent to defining the size of that sub-task. The
capability of making this decision autonomously is one of the building
blocks to define complex partitioning strategies.

Compared to the problem presented in the previous chapter, the
one considered here is more complex as the choice available to each
robot is not binary. In the foraging scenario studied in this chapter,
the robots are free to select the distance traveled with an object and
therefore each robot has an infinite number of options to select from.

A further complication resides in the fact that the interfaces between
sub-tasks are movable and thus there is a tighter dependency between
the work of different robots. In fact, the position of an interface is
defined by the robot transporting objects to that interface. A second
robot collecting objects from the interface can do so only if the first
robot indeed transports objects there. The work of the second robot
therefore depends on the decisions made by the first. As, in general,
transportation involves several steps (i.e., sub-tasks), the decision of a
single robot can disrupt the work of many other robots downstream.

In the foraging scenario studied in this chapter, the robots must
tackle a localization problem. Differently from the problem studied

100 6. Amount of Work Contributed by a Sub-task

in the previous chapter, the robots do not know a priori the loca-
tion of the source nor the interfaces. For this reason, upon collecting
an object from the environment, a robot maintains an estimate of its
position relatively to the location where the object was found. This
estimate is used by the robot to return to that location with the goal
of collecting other objects. Several localization techniques have been
proposed in the robotics literature; in Section 6.1, we discuss research
work on localization that is relevant to what presented in this chapter.
In Section 6.2, we present the foraging problem studied in this chap-
ter. In Section 6.3, we illustrate the application of our approach for
autonomous task partitioning to the foraging scenario. In Section 6.4,
we describe the experimental tools that we utilize to implement the
scenario. Even though we perform the experiments in simulation, we
built the simulation models on the basis of data collected in real-robot
experiments. In Section 6.5, we present these experiments and we com-
pare their results with the results obtained in equivalent simulations.
This comparison serves as a validation of the models employed in sim-
ulation. In Section 6.6 we report experiments in which we test the
properties of the studied robotic system and we verify the applicability
of our approach to achieve autonomous task partitioning in foraging.
Finally, in Section 6.7, we summarize the contents and contributions
of this chapter.

6.1 Localization

As mentioned above, in the scenario studied in this chapter each robot
faces a localization problem, that is how to estimate its position with
respect to the location where an object was found (details are given
in Section 6.2). Localization consists in determining the position of
a moving object in an environment and it is a common problem in
robotics. Several techniques to tackle the localization problem have
been proposed in the literature (see Feng et al., 1994, for a review).
Most of the existing techniques are not suited to swarm robotics, either
because they require complex sensing and computational capabilities
(e.g., using maps) or because they depend on external infrastructures
that are not always available (e.g., GPS).

In swarm robotics, different approaches have been proposed to per-
form localization. A common approach is to use robots of the swarm
as landmarks. This is done by letting some of the robots move, while
others stand still and serve as reference points for the moving robots.1

1Therefore while acting as a landmark, a robot does not contribute to the execution of
tasks.

6.1. Localization 101

Examples of application of this approach can be found in the works
of Kurazume and Hirose (2000), Grabowski et al. (2000), and Rekleitis
et al. (2001). A similar approach is to form chains of robots that link
points of interest in the environment. The chains can be followed by
other robots to navigate in the environment. Examples of this ap-
proach are the works of Werger and Matarić (1996), Nouyan et al.
(2009), and Dorigo et al. (2013). Finally, approaches inspired by the
pheromone trails used by ants have also been proposed in the litera-
ture. In such approaches, the robots have the capability of marking
the environment with information (representing pheromone), which is
used for navigational purposes. Examples of this approach are, among
others, the works of Johansson and Saffiotti (2009), and Mayet et al.
(2010).

Differently from the research works mentioned, the work presented
here combines the use of odometry with task partitioning. Odometry2

is the computation of the position of a robot (or a vehicle in general)
by the integration over time of measures coming from motion sensors.
Odometry is appealing because it is simple, it requires low computa-
tional and sensing capabilities, it does not require any robot of the
swarm to stand still and serve as a landmark, and it does not require
the robots to be able to mark the environment with pheromone. The
main problem with odometry is that the integration of noisy infor-
mation over time leads to errors that can grow unbounded. Different
solutions have been proposed to deal with this problem. In some cases,
dedicated hardware systems are installed with the sole purpose of re-
ducing the magnitude of odometry errors (see, for example, Hongo
et al., 1987), or measuring and correcting it, as in the work of Boren-
stein (1994). Calibration procedures can also be utilized to measure
and correct systematic components of the odometry error (Borenstein
and Liqiang, 1996). However, calibration must be performed on a per-
robot basis and therefore it might be prohibitive when the number of
robots is large, as in swarm robotics applications. A widely used ap-
proach to improve odometry in robots (and vehicles in general) is the
use of Kalman filters, initially proposed by Kalman (1960). Kalman
filters are based upon models of the system in which they are applied,
thus their effectiveness depends on the accuracy of these models.

The foraging problem studied in this chapter shares many simi-
larities with the ones tackled in the works of Vaughan et al. (2002),
Gutiérrez et al. (2010), and Ducatelle et al. (2011). In these works,
localization is also based upon odometry, which is complemented with
the use of explicit communication between the robots. In the system

2Odometry is also referred to as “dead-reckoning” in the literature.

102 6. Amount of Work Contributed by a Sub-task

proposed by Vaughan et al. (2002), the robots create trails of way-
points between locations of interest in the environment. The trails
are virtual: the waypoints, computed through odometry, are broad-
cast via radio and internally stored by the receiving robots. Ducatelle
et al. (2011) propose a very similar approach: the robots exchange posi-
tional information that is used to reach target locations. However, the
robots themselves are the waypoints that must be followed in order to
reach a target. Gutiérrez et al. (2010) describe a localization strategy
based on “social odometry”: the robots use the information communi-
cated by peers to correct their estimated target locations. Compared
to the three works mentioned, our solution requires the robots neither
to communicate nor to share knowledge. This removes many of the re-
quirements and renders the implementation of the system feasible also
with minimalistic robotic platforms.

6.2 Problem Description

In the foraging scenario studied in this chapter, the objects to be col-
lected are clustered in the source, that we assume never depletes. The
robots have no a priori knowledge about the location of the source and
they must explore the environment in order to find it. On the con-
trary, the direction of the nest can be perceived by the robots from
every position in the environment.

The behavior of the robots. Figure 6.1 illustrates a finite state ma-
chine that describes how the robots perform foraging. Initially, each
robot performs a random walk in order to explore the environment
and find objects. Upon finding and collecting an object, the robot
navigates towards the nest. While navigating, the robot keeps an es-
timate of its own position, relatively to the location where the object
was collected. Each robot faces a localization problem: when moving,
the robot must update its position estimate so that it can subsequently
return to the location where it found the object. As mentioned in the
previous section, the robots use odometry to tackle this problem: the
positional information is derived from the integration of the measures
of the motor encoders of the wheels.

Due to noise, the estimate a robot has of its own position relatively
to the location where the object was collected can deviate from the real
one. The quality of this estimate depends on the distance traveled by
the robot: the longer the distance traveled, the less accurate the esti-
mate becomes. This is mainly due to three factors. First, errors on the
bearing have a stronger impact at longer distances. Second, the longer

6.2. Problem Description 103

Random
walk

Navigate
to nest

Search
neighborhood

Navigate to
estimated

object position

Deposit
object

Has
object

Estimated
position
reached

Fail
Has

object

Object
deposited

Distance
traveled > L

Nest
reached

Start

Figure 6.1: Finite state machine describing the high level behavior of each
robot.

a robot travels, the more it accumulates errors due to sensor and actu-
ator noise. Third, traveling for a longer time increases the probability
that the estimate is distorted by non-systematic components such as
collisions, uneven terrain, and wheel slipping.

Upon reaching the nest, the robot releases the object and uses the
position estimate to return to the location where the object was col-
lected. When the robot reaches the position it estimated the objects to
be, it performs a neighborhood search, which consists in searching for
objects within a limited area centered around the estimate. Neighbor-
hood search can compensate relatively small estimation errors. In case
the estimation error is big, the neighborhood search is likely to fail.
If this happens, the robot resumes performing random walk to locate
again objects. We say that the robot got lost when the neighborhood
search fails and the robot must return to random walk. Random walk
is a time consuming operation due to its stochastic nature, therefore
its cost is high and it is desirable to minimize the frequency with which
robots get lost.

The use of task partitioning. Task partitioning can be used to re-
duce the negative effect of odometry errors and to improve the localiza-
tion capabilities of the robots. Instead of performing the whole trans-
portation task, each robot only contributes with a lesser amount of
work, traveling a limited distance L̄ from the location where an object
was collected (i.e., performing a sub-task of length L̄). Upon travel-
ing such a distance, referred to as partition length, the robot deposits
the object on the ground and, using its odometry estimate, it returns
to the location where that object was collected. Since the odometry
error grows with the distance traveled, the expected estimation error

104 6. Amount of Work Contributed by a Sub-task

I3

I1 I2

N
E
S
T

S1 S2 S3

S4 S5

R1

R2

R3

R4 R5

L = L1 L = L1 L = L1

L = L1L = L2

Figure 6.2: Representation of the foraging scenario and contribution of the
robots to object transportation. Each robot contributes a certain amount of
work to transportation, which corresponds to the partition length L̄ traveled
by that robot (in general the value varies from robot to robot). The strategy
employed to perform object transportation depends on the amount of work
contributed by the each robot. In this case, the interfaces between sub-
tasks are movable, since the robots are free to select the amount of work
they contribute.

is smaller compared to the case in which the robot performs trans-
portation as an unpartitioned task. The result is that the probability
that a robot gets lost diminishes, therefore reducing the total expected
random walk time of the swarm.

As objects can be deposited everywhere in the environment, the
robots can find them not only at the source, but also in other locations
along the way from source to nest. The result is that the transportation
of an object is carried out as a sequence of sub-tasks performed by
different robots, as represented in Figure 6.2.

Each robot faces the problem of deciding the amount of work it
contributes to transportation. In the context described, this problem
corresponds to selecting the distance L̄ traveled towards the nest with
an object (i.e., the length of the sub-task to perform). As mentioned in

6.3. Application of the Proposed Approach 105

Chapter 3, each robot makes decisions independently from the others
and therefore the overall strategy employed to perform transportation
results from a combination of individual decisions. For example in Fig-
ure 6.2, the robots R1, R2, and R3 all select the same partition length
value. The result is that transportation is partitioned into three sub-
tasks of equal length. The robots R4 and R5 employ a partitioning
strategy such that the task is partitioned into two sub-tasks, each con-
tributing a different amount of work to transportation. Since the robots
deposit objects on the ground, the interfaces between the sub-tasks are
indirect.

Notice that a robot cannot discriminate between the source and a
location where objects are deposited by another robot. Therefore, the
odometry estimate of a robot might be relative to a location of the
environment which is not the source. For example, robot R2 in Fig-
ure 6.2 would estimate its position relatively to the location where R1

is depositing objects and it would try to return there upon depositing
an object on the ground.

The use of movable interfaces renders the dependency between the
work of different robots tighter. In the example of Figure 6.2, the
decisions of R1 impact the work of R2 which, in turn, has an impact
on R3. For example if R1 decided to transport objects all the way to
the nest, R2 would not find objects deposited on the ground.

The robots must decide their contribution in terms of amount of
work based on a trade-off between costs of different nature. On the one
hand, contributing with a large amount of work is desirable: the robots
travel further while carrying objects and the number of times objects
are deposited on the ground is reduced. Depositing an object on the
ground entails overhead costs because the same object must be found
and picked up by different robots. On the other hand, traveling further
increases the magnitude of the odometry error and the likelihood that
the robot gets lost; consequently the expected search costs are higher.

6.3 Application of the Proposed Approach

In this section, we describe the application of our approach for au-
tonomous task partitioning to the foraging problem presented in Sec-
tion 6.2. The robots decide the length of the sub-task they perform on
the basis of a mapping between the amount of work and the resulting
costs to perform the transportation task. This mapping is defined by a
cost function. In general, the cost function cannot be defined a priori
since it depends on properties of the environment and of the tasks that
may be unknown. As a consequence, the cost function must be deter-

106 6. Amount of Work Contributed by a Sub-task

Amount
of work

Tr
a
n
sp

o
rt

a
ti

o
n

ta
sk

 c
o
st

Amount
of work

Tr
a
n
sp

o
rt

a
ti

o
n

ta
sk

 c
o
st

C1
^

C2
^

C3
^

L 1 L 2 L 3 L np

Cnp
^

Δ

d1 d2 d3 D

Figure 6.3: Cost function (left) and its model as identified by a robot (right).
The cost function maps the amount of work contributed by a robot perform-
ing a sub-task to the resulting cost to perform the overall transportation
task. The robot builds a discrete model of the cost function. This model
consists of a finite set of cost estimates Ĉi, each associated to an element Li

which identifies a certain distance value di that the robot can travel.

mined with an online process performed by the robots. Additionally,
the cost function may change in time, since the costs associated to the
execution of tasks are likely to vary as a result of the actions performed
by the robots. Each robot is merely able to build a model of the real
cost function, based on sensory input. In the following, we describe
how this model is built by each robot and we present algorithms that
can be utilized to decide the amount of work contributed by the robot.

The Model of the Cost Function

As mentioned, in the foraging scenario presented in this chapter, the
amount of work corresponds to the distance traveled by a robot towards
the source. Since the goal is transporting as many objects as possible,
we express the costs in terms of time. Therefore, the cost function
maps the distance traveled by a robot to the time required to perform
the object transportation task (see Figure 6.3 left).

The robots build a discrete model of the cost function, as repre-
sented in Figure 6.3 (right). This model consists of a finite set of cost

estimates Ĉi, each associated to an element Li which identifies a cer-
tain amount of work that the robot can contribute to transportation
(i.e., a certain distance di traveled by the robot). Selecting the length
of a sub-task therefore corresponds to selecting an element Li on the
basis of the estimates Ĉi. Note that the domain of the cost function
is bounded: a robot can contribute with a maximum amount of work
that corresponds to performing the whole task (see thick vertical bar

6.3. Application of the Proposed Approach 107

Random
Walk

Deposit
object

Has
object

Estimated
position
reached

Fail

Object
deposited

Distance
traveled > L

Nest
reached

Deposit
object

Navigate to
estimated

object position

Navigate
to nest

Search
neighborhood

Grip
object

Object
deposited

Object perceived

Object
perceived

Update C^i

Select L using
cost function

Update D, N^

Recompute i

θgθrwθn

Figure 6.4: High level representation of the behavior of the robots. The finite
state machine also indicates when information is updated by the robot (gray
rectangles).

in Figures 6.3 left and right).
Figure 6.4 illustrates the high level behavior of each robot and can

be used as a reference to better understand the concepts explained
throughout the rest of this section. In the figure, the white rectangles
indicate actions performed by the robot. The gray rectangles indicate
moments in which the robot updates internal information.

Each robot individually builds the set L, containing the elements
Li. Upon gripping an object, a robot selects an element in L and uses
the associated value di as the partition length L̄ to be traveled with
that particular object. In this section, we illustrate how robots build
the set L; possible algorithms to select the partition length value are
presented in Section 6.3.1.

Number of elements in L. The set L is composed ofN elements, each
associated to a possible value of partition length. Each robot builds
the set L by discretizing the transportation task length D, which cor-
responds to the distance between source and nest, with a discretization
step ∆. The value of N is computed by a robot as:

N =

⌈
D̂

∆

⌉
. (6.1)

We fixed the discretization step ∆ to 0.5 m which corresponds (roughly)
to the visual perception range of the robots (refer to Section 4.2). Dis-

cretization is performed by a robot on the basis of D̂, which is its esti-
mate of the real distance D between source and nest (i.e., an estimate
of the task length). Notice that the robot can find objects deposited
by other robots along the way between source and nest (i.e., closer to

the nest than the source actually is) and therefore D̂ can be an un-

108 6. Amount of Work Contributed by a Sub-task

D^

Δ Δ Δ

L1

L2

L3

Lnp

d1 = Δ

d2 = 2Δ

d3 = 3Δ

Figure 6.5: Example representing the set L from which a robot selects the
value of the partition length. The robot builds the set by discretizing the
estimated task length D̂ with a step ∆, obtaining N − 1 values Li. The
figure reports the case in which N = 4. The special value Lnp is also an
element of L and corresponds to performing the task without employing task
partitioning.

derestimate of D. For this reason, the robot must keep D̂ and the set
L up to date. Details about the way the robots update D̂ and L are
given in the following.

Elements of L. The elements Li that compose the set L are associated
each with a certain amount of work (distance di), that the robot con-
tributes to the transportation task. Among the others, L contains the
special element Lnp, which corresponds to performing the transporta-
tion task as an unpartitioned task (represented with a thick vertical
bar in Figure 6.3, left and right). A robot selecting Lnp transports the
carried object all the way to the nest. Note that the distance dnp asso-
ciated to Lnp is D. As the robots cannot determine an exact value of
D, in the actual implementation the condition “Distance traveled > L̄”
(Figure 6.4 top left) always evaluate to false (i.e., the robot travels all
the way to the nest).

The remaining N − 1 elements that compose the set L are each
associated to a distance value di computed as follows:

Li ↔ di = ∆ · i with i ∈ {1, 2, . . . , N − 1} . (6.2)

Figure 6.5 represents the set L and illustrates the relationship between

6.3. Application of the Proposed Approach 109

the number of elements N (in figure N = 4), the estimated length of

the task D̂, the discretization step ∆, and the elements Li.
Each time a robot grips an object, it selects an element Li (see

Figure 6.4, left-hand side) and therefore the associated distance di to
travel with that object. Different task instances can therefore be par-
titioned in different ways, depending on the Li selected by the robots
involved in the transportation (see, for example, Figure 6.2). Recall
that, as mentioned in Chapter 3, the decisions of the robots are inde-
pendent and each robot is not aware of the choice of Li made by the
other robots. The global process by which the transportation of an
object is partitioned into sub-tasks results from independent choices in
a self-organized manner.

Estimation of D. Each time a robot reaches the nest (label nest

reached in Figure 6.4), it checks if D̂ underestimates the current dis-

tance to the source. In this case, the robot sets D̂ to the current
(estimated) distance to the source and, if needed, it updates the set L
using Equations (6.1) and (6.2). Note that odometry errors can cause
a robot to overestimate D. However, the robots can only determine
whether D̂ underestimates D (by measuring a value greater than D̂),
but not whether it overestimates D. Initially, robots have no informa-
tion about the source-to-nest distance. The value of D̂ is initialized to
zero and the set L only contains Lnp. Consequently, the robots travel
all the way to the nest in their first trip, thus calculating a first estimate
of the value of D.

Estimation of the Costs

The model of the cost function built by a robot (Figure 6.3, right) con-

sists of a set of values Ĉi, each associated with an element of L. Each
value Ĉi is the robot’s estimate of the time required to perform the
overall transportation task, when the robot transports an object for a
distance di. Notice that the overall transportation time depends on the
decisions of all the robots involved in transportation. A robot estimat-
ing such a time does not have any information about the decisions of
the others and therefore it builds its estimate on the basis of the cost
experienced when performing its own sub-task (details are given later
on in this section).

A robot updates the estimate Ĉi at the moment at which an object
is gripped. At that moment, the robot has the information it needs
to update the estimate: the measured time it took to travel with the
object, deposit it in the environment, return to the location where the

110 6. Amount of Work Contributed by a Sub-task

object was initially found, and grip another one. Gripping an object
marks the completion of a sub-task for a robot (i.e., the transportation
of the previous object) and the beginning of a new one. Therefore, at
that moment, the robot must update its model of the cost function and
use the updated model to select a new element Li.

The cost estimates Ĉi are updated as a recency-weighted average of
the observed costs:

Ĉi = (1− α) Ĉ
′
i + α C̄ , (6.3)

where α ∈ (0, 1] is a memory factor, Ĉ
′
i is the value of the cost estimate

before the update, and C̄ is the observed cost associated to the last
trip towards the nest (i.e., the last sub-task performed). The use of
a recency-weighted average gives more weight to recent observations,
resulting in a more reactive behavior in non-stationary environments
compared to a simple average (Sutton and Barto, 1998). The observed
cost C̄ is computed as:

C̄ =
D̂

di
(Θn + Θg) + Θrw , (6.4)

where Θn + Θg is the measured cost of the last sub-task performed
(see Figure 6.4, top). This cost is composed of two parts. Θn accounts
for the navigational costs (i.e., transporting and depositing an object,
returning to the source, and performing neighborhood search). Θg is
the cost of gripping another object, an action that must be performed
before the following sub-task can be started. Θrw measures the time
spent performing random walk in case the robot got lost.

Note that Θn + Θg measures the cost of the actions needed to per-
form sub-tasks, while Θrw is a penalty due to a robot getting lost. As
mentioned, the overall transportation time depends on the decisions of
all the robots involved. Since robots are not aware of the decisions of
each other, they estimate the overall transportation time on the basis
of their own measures. For this reason, Θn + Θg is scaled using the

ratio D̂/di. This ratio expresses the contribution of the sub-task to the
overall transportation task. Again, since the robots cannot determine
an exact value for dnp, the ratio D̂/dnp evaluates to 1 in the actual
implementation.

The cost estimate Ĉi updated by a robot depends on whether or
not that robot reached the nest during the last sub-task execution.
Consider, for example, the two cases reported in Figure 6.6. In the sit-
uation represented in the figure, R1 and R2 just gripped an object and
selected an element Li. The element L1 selected by R1 is such that the
corresponding distance value d1 does not exceed the current distance

6.3. Application of the Proposed Approach 111

N
E
S
T

R1

R2

L3

Δ 2Δ 3Δ

L1

Figure 6.6: Possible situations happening upon gripping an object. The
robot R1 selects the element L1 such that the corresponding distance value
does not exceed the distance between the robot and the nest. On the con-
trary, the element L3 selected by R2 is such that the robot will reach the
nest in its subsequent trip. Upon reaching the nest, R2 will recompute the
index i corresponding to the distance actually traveled (in this example i
becomes 2).

between R1 and the nest. The same does not hold for the element
L3 selected by R2. R2 will encounter the nest before traveling a dis-
tance d3 and therefore the actual contribution of R2 to transportation
is smaller.

To take into account this event, upon reaching the nest (transition
labeled nest reached in Figure 6.4) R2 recomputes the index i on the
basis of the distance that was actually traveled (i = 2 for the case re-
ported in figure). Upon gripping the following object, R2 will therefore

update the estimate Ĉ2 instead of the estimate Ĉ3 that was the one
associated to the value L3 initially selected by the robot. R1, on the
other hand, will not reach the nest and it will actually travel a distance
d1. Therefore the cost estimate that will subsequently by updated by
the robot is Ĉ1, associated to the selected element L1.

The cost estimates are initialized randomly: when a robot reaches
the nest and, according to Equation (6.2), adds new values Li to the

set L, it initializes the associated costs Ĉi with a random value.

112 6. Amount of Work Contributed by a Sub-task

6.3.1 Task Partitioning Algorithms

In the experiments presented in Section 6.6, we compare different task
partitioning algorithms that can be utilized to select the value of the
partition length from the set L. We compare an algorithm based on
our approach with a set of reference algorithms. All the reference
algorithms select an element Li from the set L. However, in none of
them the selection is based upon the cost estimates Ĉi that model the
cost function. In the rest of this section we describe in detail each
algorithm.

The Cost-based Partitioning Algorithm

To apply our approach to autonomous task partitioning, we need a
mechanism that selects an element Li among the possible elements in L,
on the basis of the cost estimates Ĉi. Here, we use the ε-Greedy (Sutton
and Barto, 1998) algorithm to perform the selection. ε-Greedy selects
with a probability 1−ε the element Li with the minimal associated cost
and with a probability ε a random value. We call cost-based partitioning
algorithm the task partitioning algorithm that utilizes ε-Greedy and
the cost estimates to select an element Li and the associated partition
length value.

Notice that our approach does not require any specific algorithm
to select an element in L. Other algorithms, such as reinforcement
learning techniques (see Sutton and Barto (1998)), could be used in
place of ε-Greedy. We decided to use ε-Greedy because of its simplic-
ity and because its only parameter ε directly expresses the degree of
exploration of the algorithm.

The Fixed Algorithms

A first family of reference algorithms are the fixed algorithms: the
element Li is fixed a priori. This element is the same for all the robots
and remains constant over time. Therefore, the partition length value
is also the same for all the robots and it never changes. We refer to a
fixed algorithm with the label fixed X, where X identifies the element
Li that is used by the algorithm. A special case of fixed algorithm is
the never-partition algorithm: in this case, the robots do not employ
task partitioning and transport objects from the source to the nest.

The Random Initialization Algorithm

The random initialization algorithm consists in stochastically selecting
the element Li from L at the beginning of the experiment. Each robot

6.4. Experimental Setup 113

selects its own element Li and never changes it during the course of
the experiment.

The algorithm requires to initialize the set L. To this aim, the first
time a robot grips an object, it transports it directly to the nest, so that
D̂ can be estimated. 10% of the value is then added to the estimate, to
partially compensate for underestimation errors. The resulting value is
used to initialize the set L as described by Equations (6.1) and (6.2).
The robot then stochastically selects an element Li from the set L and
the selected element is used by that robot throughout the rest of the
experiment. We also tested a variation of this algorithm, whereby the
robots stochastically select an element Li from L each time an object
is gripped. The algorithm performed badly across all the experiments
and we decided not to include its results in this dissertation.

6.4 Experimental Setup

In this section, we present the implementation of the system described
in the Section 6.2. We perform the experiments using ARGoS to sim-
ulate the marXbot robotic platform. In Section 6.4.1, we illustrate the
environment used for the foraging experiments presented in this chap-
ter. In Section 6.4.2, we mention characteristics of the real marXbots
and of their behavior that are relevant to what presented in this chap-
ter. In Section 6.4.3, we describe simulation models that were proposed
in Pini et al. (2012b) and that are used in all the simulation-based ex-
periments presented in this chapter.

6.4.1 Experimental Environment

The robots perform foraging in the environment represented in Fig-
ure 6.7. The width W and the length L of the environment depend on
the specific experiment. The nest is located close to one of the borders
and it is marked by a black patch on the floor, which is 1.4 m wide and
0.45 m long. The robots can determine whether they are inside the nest
by the color of this patch. Three lights (crossed circles in the figure)
mark the nest and are used by the robots to determine its direction.

The source is located in front of the nest, at a distance D, measured
from the center of the nest to the center of the source. The source is
composed of 5 objects (see Section 4.2) positioned as shown in Fig-
ure 6.7 at a distance of 0.17 m from the object in the center. Each
time a robot removes an object from the source, a new one is added
in the same location. Thus, the source never depletes. When a robot
releases an object within the boundaries of the nest, transportation is

114 6. Amount of Work Contributed by a Sub-task

D

Nest

Source

W

L

Lights

Figure 6.7: Representation of the environment in which the robots per-
form foraging. The nest (black rectangle on top) is marked by three light
sources (crossed circles) located nearby, that can be perceived by the robots.
The source, located in front of the nest, is composed of 5 objects (gray cir-
cles), positioned as shown. The size of the environment (W , L) and the
distance of the source from the nest (D) depend on the specific experiment.

completed and the object is removed from the environment.

The parameters of the environment (D, W , and L) influence the
effectiveness of the partitioning strategy used to perform foraging. As
mentioned in Section 6.2, the longer a robot travels, the lower the
accuracy of its odometry estimate becomes (i.e., the higher the prob-
ability that the robot gets lost). The relative improvement of using
task partitioning over not using it depends on the value of D: when
D is small, the accuracy in locating the source may be good also if
the robots travel all the way from source to nest. Conversely, for high
values of D, task partitioning can lead to significant improvements. In
general, the higher the value of D (i.e., the longer the task), the more
advantageous task partitioning becomes.

The parameters W and L define the difficulty of finding the source
when searching the environment: the larger the surface of the envi-
ronment, the longer it takes (on average) to find the source. In other
words, the two parameters determine the expected cost of getting lost
and therefore they also have an influence on which strategy is prefer-
able to tackle transportation. For example, in a large environment,
performing transportation as an unpartitioned task may be disadvan-
tageous even if D is small. In fact, even if the robots get lost rarely
due to the short distance traveled, when they get lost they might need

6.4. Experimental Setup 115

to perform random walk for a long time before they find an object.
Conversely, for high values of D, task partitioning may not be ad-

vantageous if the environment is small. In fact, a small environment
requires only a short period of time to be explored. Therefore, the cost
of getting lost may be lower than the overhead costs of task partition-
ing, rendering preferable to perform transportation as an unpartitioned
task.

6.4.2 Behavior and Characteristics of the MarXbot

In this section, we provide implementation details about the behavior
of the robots and describe the odometry error that characterizes the
real marXbots. In the simulation-based experiments, we utilize the
same behaviors and implement a model of the odometry error, based
on what observed in reality.

Random walk. The robots search for objects in the environment us-
ing a random walk implemented as follows. By default, the robots move
straight, at a maximum velocity of 0.1 m/s, avoiding obstacles. The
stochastic component consists in randomly generating a new direction
of motion, uniformly sampled in [−115◦, 115◦]. The random direction is
generated with a 5% probability per control-step3 (i.e., the robot keeps
moving straight with a 95% probability). The neighborhood search is
also performed using random walk, but the robot remains in a circular
area of radius 0.5 m, centered around the position at which the robot
expected to find objects. If a robot is about to leave the search area,
it generates a new random direction biased towards the center of the
area. As mentioned, a robot may abandon the search of a neighbor-
hood when unsuccessful. A timeout mechanism governs abandoning.
The robot abandons in case it has been performing the neighborhood
search for 60 s without detecting any object. In this case, in fact, it is
likely that the robot reached a position far away from the location of
the objects.

Object gripping. Object gripping is based on vision; the marXbot
uses information from the omnidirectional camera to perceive objects
in the surroundings and approach them. Once the robot is close to
an object to be gripped, it uses the front proximity sensors to refine
its alignment. A repulsion mechanism is also part of object gripping:
the robots ignore any red blob (i.e., an object) which is perceived in
proximity of a blue blob. This prevents that more robots grip the same

3A control-step lasts 0.1 s.

116 6. Amount of Work Contributed by a Sub-task

Figure 6.8: Trajectory followed by a real marXbot when the speed of both
wheels is set to −0.1 m/s (left-hand side) and 0.1 m/s (right-hand side).
The white arrows on top indicate the direction of motion of the robot. The
continuous curved line indicates the trajectory followed by the robot and
the dashed line a straight reference trajectory.

object at the same time. While approaching an object with the intent
of gripping it, a robot lights up its LEDs in blue, to repel other robots
from the same object. For the same reason, the LEDs are lit up in blue
also during the transportation of an object towards the nest.

Check for unreachable destination. Due to odometry errors, the
robot may try to reach a position that lies outside the perimeter of
the environment while navigating to the source. To determine whether
it is trying to reach a position that is not within the boundaries of
the environment, each robot periodically checks its estimated distance
to the source. If the distance does not decrease in time, the robot
assumes that it is trying to reach a position outside the perimeter and
it returns performing random walk (i.e., it gets lost). In fact, if the
estimated distance to the target position is not decreasing, it means
that an obstacle blocks the movements of the robot. If this happens
for a long period of time (30 seconds in the experiments), it is likely
that the obstacle is a wall marking the perimeter of the environment,
rather than another robot. Notice that the mechanism is prone to
errors: if the density of robots is high, the movements are harder and
the mechanism described here can be triggered by the presence of other
robots.

Odometry error. While carrying out experiments with the real
marXbots, we noticed that they suffer from a systematic drift towards
the left-hand side with respect to the direction of motion. Figure 6.8
shows the shape of the trajectory followed by a marXbot when the
speed of both wheels is set to −0.1 m/s (left-hand side) and 0.1 m/s
(right-hand side). The figure is built using snapshots taken from a
video that is available with the supplementary material (see Annex B).
The figure reports the direction of motion of the robot (white arrows on

6.4. Experimental Setup 117

top), the trajectory followed by the robot (white continuous line) and a
reference straight trajectory (white dashed line). The drift towards the
left-hand side is not constant: the amount by which the same marXbot
drifts varies from trip to trip. The marXbot cannot measure such a
drift: using odometry, the robot would estimate its trajectory to be
(roughly) straight.

Solutions such as the calibration procedures described by Borenstein
and Liqiang (1996) or Kalman filtering (Kalman, 1960) could improve
odometry. However, as mentioned in Section 6.1, their applicability
and effectiveness is not granted. Calibration and filtering could po-
tentially reduce, but never eliminate errors and therefore the problems
due to imprecise localization would eventually arise and the idea that
task partitioning can improve localization would still be valid. Recall
that our main goal here is not to maximize the foraging efficiency of
the robots, but to test the proposed approach for autonomous task
partitioning in a realistic setup. Therefore, for simplicity, we do not
try to correct or reduce the odometry errors in any way. In real-world
applications, techniques to enhance odometry can be coupled with task
partitioning to further improve the system.

6.4.3 Simulation of the System Using ARGoS

In the foraging experiments presented in this chapter, we employ the
2D-dynamics physics engine offered by ARGoS. The simulation pro-
ceeds at discrete time-steps of 0.1 simulated seconds. All the simulated
sensors and actuators are subject to noise. Gaussian noise with 0.02 m
standard deviation is added to the distance readings of the omnidi-
rectional camera. At each simulation step, a uniform random value
between -5% and 5% of the reading is added to the measures of the
ground-color, ambient-light, and proximity sensors.

Object gripping. In simulation we model object gripping using 80
time samples collected in the real-robot experiments presented in Sec-
tion 6.5, with six marXbots performing foraging in a W = 6.7 m by
L = 4.5 m environment. Each sample records the time spent by a
robot to grip an object (i.e., the time from the moment the object was
perceived to the moment it was gripped). Figure 6.9 reports the em-
pirical distribution of the grip time samples. The samples are utilized
in simulation to model the time spent by a robot to grip an object.
Each time a robot grips an object, a random value is selected from the
set of samples. The robot waits in place for a time corresponding to
the selected value, before it can undertake the following action. The

118 6. Amount of Work Contributed by a Sub-task

0 10 20 30 40 50 60

Grip time (seconds)

0.0

0.2

0.4

0.6

0.8

1.0

P

Figure 6.9: Empirical distribution function (P) of the 80 samples utilized to
simulate the object gripping time. The samples have been collected with a
group of six marXbots performing foraging.

amount of time the robot waits is discounted by the time already spent
to reach and grip the object. This solution allows us to model in a
simple but realistic way the variability that can be observed with the
real marXbots in the time needed for gripping objects.

Model of the odometry error. The odometry error plays an impor-
tant role in our experimental setup since it defines how successful the
robots are in finding objects when returning to the source. The model
that we use in simulation is built on the basis of odometry error sam-
ples collected with real marXbots performing the foraging experiments
described in Section 6.5.

The setup of the experiments is as described in the following. A
group of six robots performs foraging in the 6.7 m by 4.5 m rectangular
environment represented in Figure 6.7. The source is located at a
distance of D = 4 m from the nest. Upon gripping an object from the
source, a robot travels all the way to the nest (i.e., task partitioning is
not utilized). When the robot reaches the nest, it releases the object
and it returns to the source using odometry.

The data upon which the odometry error model is built was sampled
from video recordings of such experiments. A total of 61 error samples
were collected from the recordings of a subset of the experimental runs,
using the tiles on the floor as a reference to calculate the odometry
error. These measures include effects such as collisions, wheel slippage,
and avoidance as they are in the experiment at hand.

Figure 6.10 reports the 61 error samples collected from the videos.
The origin of the axes in the plot represents the position in which an
object was gripped by a robot. A point in the plot reports the X,Y

6.4. Experimental Setup 119

−1 −0.5 0.5 1 1.5 2 2.5 3 3.5 4 4.5

Error X (m)
−1

−0.5

0.5

1

1.5

2

2.5

3

3.5

4

4.5Error Y (m)

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

Figure 6.10: Odometry error samples collected in experiments performed
with the marXbots (61 samples). Each sample reports the X,Y estimation
error at the end of a trip from source to nest and back (D = 4 m). The light
gray rectangle marks the position of the nest.

error between the position at which the object was gripped, and the
final position reached by the robot when returning to the source using
the odometry estimate.

Algorithm 1 Pseudo-code for the odometry error model

1: actuatedWheelSpeedR, actuatedWheelSpeedL← ControllerStep()
2: if actuatedWheelSpeedR > 0 then
3: wheelSpeedR = actuatedWheelSpeedR + µerror ∗ actuatedWheelSpeedR
4: end if
5: if actuatedWheelSpeedL < 0 then
6: wheelSpeedL = actuatedWheelSpeedL− µerror ∗ actuatedWheelSpeedL
7: end if
8: if Object gripped then
9: µerror = RAYLEIGH (σ)

10: end if

Algorithm 1 reports the pseudo-code that describes how the odome-
try error is implemented in simulation. The drift towards the left-hand
side is obtained by modifying the actuated values of the two wheel
speeds (lines 2 to 7): the speed of the right wheel is incremented when
the actuated value is positive, the speed of the left wheel is decremented
when the actuated value is negative.4 The robot is not aware of the

4Note that decreasing a negative wheel speed increases the absolute value of the speed.

120 6. Amount of Work Contributed by a Sub-task

drift: odometry is performed on the basis of actuatedWheelSpeedR and
actuatedWheelSpeedL. The parameter µerror represents the percentage
by which the wheel speed is increased or decreased. The value of µerror

changes each time a robot grips an object. The new value is sampled
from a Rayleigh distribution with parameter σ (lines 8 to 10). The
same distribution is used to randomly initialize µerror. We selected this
distribution on the basis of the error points observed in Figure 6.10.
The majority of the points are clustered in a certain area (values of X
between 0.5 m and 2.0 m and Y between 0.0 m and 1.0 m); the remain-
ing values are scattered around this area in a certain direction (i.e., left
hand side with respect to the direction of motion of the robot). Due
to its asymmetry, the Rayleigh distribution allows us to represent the
pattern observable in Figure 6.10.

The value of the parameter σ characterizes the error of the robots:
the higher its value, the higher the expected value of µerror, and the
larger the odometry error. The value of the parameter σ was fitted
through a set of ad-hoc experiments. The default value of σ, indicated
as σ̄, is set to 0.0134. σ̄ allows us to replicate in simulation a pattern
similar to the one reported in Figure 6.10. To evaluate the impact
of the odometry error on our system, in the experiments presented in
Section 6.6 we test different values of the parameter σ. We express the
value of σ used in an experiment as a fraction of σ̄. Figure 6.11 reports
error points (70 in each plot) collected in simulation for the different
conditions tested in the experiments (excluding σ = 0, which generates
no error).

Notice that the presented model does not represent explicitly real
world phenomena (e.g. slippage, uneven terrain) or properties of the
real marXbots (e.g. wheel misalignment, encoder resolution) that im-
pact odometry. For our simulation this is acceptable, because our goal
is to reproduce the observable behavior of the marXbot with a sufficient
degree of accuracy.

6.5. Validation of the System 121

−1 0.5 1 1.5 2 2.5 3 3.5 4 4.5

Error X (m)Error X (m)

Error X (m)Error X (m)−1

−0.5

0.5

1

1.5

2

2.5

3

3.5

4

4.5
Error Y (m) Error Y (m)

Error Y (m) Error Y (m)

σ = 0.2 σ

−1 0.5 1 1.5 2 2.5 3 3.5 4 4.5

Error X (m)Error X (m)

Error X (m)Error X (m) −1

−0.5

0.5

1

1.5

2

2.5

3

3.5

4

4.5
Error Y (m) Error Y (m)

Error Y (m) Error Y (m)

σ = 0.5 σ

−1 0.5 1 1.5 2 2.5 3 3.5 4 4.5

Error X (m)Error X (m)

Error X (m)Error X (m)

−1

−0.5

0.5

1

1.5

2

2.5

3

3.5

4

4.5

Error Y (m) Error Y (m)

Error Y (m) Error Y (m)σ = σ

−1 0.5 1 1.5 2 2.5 3 3.5 4 4.5

Error X (m)Error X (m)

Error X (m)Error X (m)

−1

−0.5

0.5

1

1.5

2

2.5

3

3.5

4

4.5

Error Y (m) Error Y (m)

Error Y (m) Error Y (m) σ = 1.2 σ

Figure 6.11: Odometry error samples collected in simulation for different
values of σ.

6.5 Validation of the System

In this section, we present the experiments that we performed with
the real robots and we compare their results to the ones obtained in
equivalent simulations. At the moment of writing, there exist a num-
ber of multi-robot simulation softwares (see, for example, (Koenig and
Howard, 2004; Michel, 2004; Carpin et al., 2007)). Despite this fact,
a well-defined and universally accepted methodology for the validation
of simulation models has not yet been developed.

Our goal here, is to perform a qualitative analysis and evaluate how
closely the simulator reproduces trends and results observed in reality.
We replicate in simulation the settings of the real-robot experiments.
We compare the results obtained in simulation with the ones obtained
in reality and we verify qualitatively that the simulation closely repli-
cates the trends observable in real-world settings.

The experiments described in this section were originally proposed

122 6. Amount of Work Contributed by a Sub-task

in Pini et al. (2012b). In Pini et al. (2012b), the goal is to study the
costs of task partitioning with direct sub-task interfacing. Therefore,
the behavior of the robots is different for what concerns the way objects
are transferred between sub-tasks. Once a robot has traveled a distance
L from the point where it collected an object, it does not deposit the
object on the ground, but it waits in place for another robot to which
it can directly hand over the object. Apart from this difference in
the behavior of the robots, the remaining experimental settings and
behavioral characteristics of the robots are as described in this chapter.

Experimental Setup. The experiments are carried out in a 6.7 m by
4.5 m environment; the source is positioned at a distance D = 4.0 m
from the nest. The swarm is composed of 6 robots; each experimental
run lasts 30 minutes. Figure 6.12 reports two snapshots taken from a
video recording of an experiment. The snapshot on top shows the ini-
tial configuration used in the experiments presented here: 3 marXbots
are located in close proximity of the source and 3 marXbots in the
center of the environment, at a distance D/2 = 2.0 m from the nest.
Figure 6.12(bottom) reports the situation after 90 seconds.

We test two cases, for each we perform 6 real-robot experiments and
200 simulations. In one case, the robots perform foraging using task
partitioning. In the rest of this section, we refer to this case by saying
that the robots perform transportation using the partition strategy . In
this case, the 3 robots starting at the center of the environment initially
perform neighborhood search, centered around their starting position.
The value of the partition length is fixed a priori to 2.0 m. A robot that
receives an object from another robot delivers it to the nest (i.e., an
object can be transferred only once). As a result, the transportation
task is partitioned into two sub-tasks of (approximately) equal length.
We compare the case in which the robots use the partition strategy to
the case in which the robots perform transportation as an unpartitioned
task. We refer to this second case saying that the robots perform
transportation using the non-partition strategy . Differently from the
previous case, the 3 robots in the center start by performing random
walk. In case an object is deposited by mistake outside the nest by a
robot, it is removed from the experimental area.5 The complete data
collected in the twelve experimental runs with real-robots and video
recordings of two of such runs are available with the supplementary
material (see Annex B).

5This situation can only happen in the real-robot experiments.

6.5. Validation of the System 123

Figure 6.12: Snapshots of a real-robot experimental run in which the robots
employ task partitioning. Top: initial configuration. 3 robots are positioned
in proximity of the source, the rest at half the distance between source and
nest. Bottom: situation after 90 seconds. Two robots transferred their
object: one is returning to the source, the other is harvesting another ob-
ject. The two robots that received an object are heading to the nest. The
remaining two robots are in the process of transferring an object.

Results of the experiments. Figure 6.13 (left) reports the total num-
ber of objects transported to the nest by the robots using the two strate-
gies for both the real-robots and the simulation-based experiments.
Figure 6.13 (right) provides a summary of the actions performed by
the robots. Each pair of bars reports the percentage of time, computed
over all the experimental runs, that the robots spent performing each
action for the non-partition strategy (white bars) and the partition

124 6. Amount of Work Contributed by a Sub-task

REAL ROBOTS SIMULATION

0
10

20
30

40
50

O
bj

ec
ts

 c
ol

le
ct

ed

Strategy

Non−partition
Partition

Sea
rc

h

Han
dle

Obje
cts

Nav
iga

te

Sea
rc

h

Han
dle

Obje
cts

Nav
iga

te

0
20

40
60

80
10

0

T
im

e
pe

rf
or

m
in

g
ac

tio
n

(%
)

Strategy

Non−partition
Partition

REAL ROBOTS SIMULATION

Figure 6.13: Total number of objects collected using the two strategies (left)
and actions performed by the robots (right). In the right-hand side plot, each
bar reports the percentage of time, computed across all the runs, the robots
spent performing the corresponding action. The actions are grouped into
three sets. Search accounts for the time spent performing random walk and
neighborhood search. Handle Objects accounts for the time spent gripping
objects and includes the time spent waiting and transferring objects in case
the robots employ the partition strategy. Navigate accounts for the time
spent going towards the nest with an object or trying to reach a position of
the environment using the odometry estimate.

strategy (gray bars). The actions of the robots are sampled every sec-
ond during the course of each run. The actions are grouped into three
sets. Search includes the time the robots spent performing random
walk and neighborhood search. Handle Objects includes the time the
robots spent approaching and gripping objects. In case the robots em-
ploy the partition strategy, object handling also includes the time spent
waiting for the robot that received the object and the time required to
perform the transfer. Navigate accounts for the time the robots spent
going to the nest while carrying an object, or trying to reach a position
of the environment using the odometry estimate.

The results reported in Figure 6.13 indicate that there are numer-
ical differences between the results obtained in simulation and real-
ity. However, the simulation replicates the trends observed in reality
for what concerns the performance of the swarm and the actions per-
formed by the robots. In both cases, the swarm collects more objects
when employing the partition strategy. Additionally, the robots spend
more time handling objects when they use the partition strategy and
searching in the environment when they use the non-partition strategy.

6.5. Validation of the System 125

Table 6.1: Frequency at which the robots get lost in the real-robot and
simulation experiments. For the robots employing the partition strategy,
the frequency at which the robots get lost is reported also for the cases in
which the robots estimated position is relative to the locations where objects
are transferred. The table reports, for each measure, the 95% confidence
interval on the value of the mean. The number of significant digits used to
express frequencies depend on the total number of runs used to compute
such frequencies (6 real-robot and 200 simulation runs for each strategy).

Measure Real robots Simulation

Non-partition strategy
Get lost frequency - source 0.7 - 0.8 0.76 - 0.79

Partition Strategy
Get lost frequency - source 0.0 - 0.2 0.13 - 0.15
Get lost frequency - transfer location 0.1 - 0.2 0.11 - 0.12

Therefore, task partitioning is costly because of its overheads due to
object transfer, while performing transportation as an unpartitioned
task is costly due to searching.

Table 6.1 reports, for both strategies, the frequency at which the
robots get lost measured in simulation and in the real-robot experi-
ments. The table reports, for each entry, the 95% confidence interval
on the value of the mean. As for the foraging performance and the
actions performed by the robots, we observe a numerical difference in
the results comparing simulation and reality. However, we deem the
difference to be sufficiently small for our purposes. A similar table,
reporting additional measures not presented here, is available with the
supplementary material (see Annex B).

Figure 6.14 reports the empirical distribution of the time a robot
takes to find the source after getting lost, for the non-partition strategy
(left) and the partition strategy (right). The black line plots the data
collected in simulation, the light-gray line the data collected in the real-
robot experiments. The graphs show that, on average, in simulation
the robots take more time to find the source after getting lost. This
can explain the discrepancy between simulation and reality observed in
Figure 6.13, in relation to the number of objects collected and actions
performed by the robots. However, the trends followed by the curves in
simulation and reality are very similar and once again we are satisfied
by the behavior of the simulator. Note that the robots using the par-
tition strategy take less time, on average, to find the source after they

126 6. Amount of Work Contributed by a Sub-task

0 5 10 15 20 25 30
Time to find the source randomly (minutes)

0.0

0.2

0.4

0.6

0.8

1.0

P

Simulation
Real robots

NON−PARTITION STRATEGY

0 5 10 15 20 25 30
Time to find the source randomly (minutes)

0.0

0.2

0.4

0.6

0.8

1.0

P

Simulation
Real robots

PARTITION STRATEGY

Figure 6.14: Empirical distribution (P) of the time required to find the
source when searching randomly. The plotted data only includes the time
needed to find the source after a neighborhood search failed (i.e., it does
not include the time required to find the source for the first time). The left-
hand side plot reports the data collected when the non-partition strategy is
employed by the robots, the right-hand side plot the data collected when
the partition strategy is employed.

got lost than the robots employing the non-partition strategy. This
indicates that when the partition strategy is used, the robots get lost
in locations that are closer to the source compared to the non-partition
strategy.

To summarize, we observed some discrepancies between the numer-
ical results obtained in simulation and real-world experiments. For
the purpose of the work presented in this chapter, we consider the
differences to be acceptable. The trends we observe in the real-robot
experiments are reproduced in simulation and we are therefore confi-
dent that the simulation indeed captures the properties of the studied
system.

6.6 Simulation Experiments and Results

In this section, we describe the simulation-based experiments that we
carried out to test our approach for autonomous task partitioning in
the system described. The experiments are divided into five sets, each
aiming to test different aspects of the studied system. When not dif-
ferently specified, the experimental parameters are set as follows (refer
to Table 6.2). The experimental environment measures 6.7 m in width
and 4.5 m in length (see Figure 6.7). Source and nest are positioned at

6.6. Simulation Experiments and Results 127

Table 6.2: Default experimental settings.

Parameter Value

Environment size W = 6.7 m by L = 4.5 m
Source-to-nest distance D = 4 m
Duration of an experimental run 20 hours
Swarm size 4, 10, 20
Experimental runs per setting 20
Default error parameter σ σ̄ = 0.0134

a distance D = 4 m from each other. Each experimental run lasts a to-
tal of 20 simulated hours. At the beginning of each run, the robots are
positioned inside the nest, with a random orientation. We test three
different swarm sizes: 4, 10, and 20 robots. For each experimental
condition we run 20 randomly seeded simulations.

The rest of this section is organized as follows. In Section 6.6.1,
we present a set of experiments that have the goal of evaluating the
basic properties of the system, and of selecting the values of the pa-
rameters α and ε, used in the cost-based partitioning algorithm. In
Section 6.6.2, we test the effect of the size of the environment on the
studied system. In Section 6.6.3, we describe experiments in which
we study different values of the source-to-nest distance D, correspond-
ing to different lengths of the transportation task. In Section 6.6.4,
we present experiments in which we study the effect of heterogeneity
among the robots of the swarm. Finally, in Section 6.6.5, we evalu-
ate a case in which the environmental conditions vary in time, and we
discuss the trade-off between exploitation and exploration.

6.6.1 Basic Properties

The experiments described here have two main goals. The first goal is
to assess the best way of partitioning the transportation task in rela-
tion to the size of the swarm and the accuracy of the odometry system.
We perform experiments in which we test the reference algorithms with
swarms of different sizes (4, 6, 8, 10, 15, and 20 robots) and for dif-
ferent values of σ (0.0, 0.2σ̄, 0.5σ̄, σ̄, 1.2σ̄). The second goal of the
experiments is to select a value for the parameters of the cost-based
partitioning algorithm, and to compare the algorithm to the reference
algorithms. We test different versions of the cost-based partitioning
algorithm, that vary for what concerns the value of the parameter α,
used to compute the cost estimates according to Equation (6.3), and ε

128 6. Amount of Work Contributed by a Sub-task

Table 6.3: Partition distance of the best performing fixed algorithm for
different values of the odometry error parameter σ and different swarm sizes.
NP indicates that the never-partition algorithm is the best performing.

σ = 0.0σ̄ σ = 0.2σ̄ σ = 0.5σ̄ σ = σ̄ σ = 1.2σ̄

4 robots NP NP 2.0 m 1.5 m 1.5 m
6 robots NP 2.5 m 2.0 m 1.5 m 1.5 m
8 robots NP 2.5 m 2.0 m 1.5 m 1.5 m
10 robots NP 2.5 m 2.0 m 1.5 m 1.5 m
15 robots 2.0 m 2.0 m 1.5 m 1.5 m 1.5 m
20 robots 1.5 m 1.5 m 1.5 m 1.5 m 1.0 m

of the ε-Greedy algorithm. The parameter α is selected from the set
{0.001, 0.1, 0.25, 0.9, 1.0}, while ε from the set {0.0, 0.05, 0.15, 0.25,
0.5}. The remaining experimental settings are as reported in Table 6.2.

The effect of the odmetry error and swarm size. The performance
of the fixed algorithms in relation to the size of the swarm and the
odometry error provides insights about the basic properties of the sys-
tem. We refer to the performance of an algorithm as the total number
of objects transported to the nest by the robots when that algorithm
is employed.

Table 6.3 reports, for the different values of σ and the different
swarm sizes, the partition length value of the best performing fixed
algorithm in the corresponding setting. In the table, NP indicates
that the never-partition algorithm is the best performing. The com-
plete results of these experiments are available with the supplementary
material (see Annex B). The results reported in Table 6.3 highlight
two aspects. First, they confirm that the larger the odometry error,
the more task partitioning becomes advantageous. In fact, for a given
swarm size (i.e., a given table row), which fixed algorithm performs best
varies in relation to the value of σ: the higher the value, the smaller the
partition length value of the best performing fixed algorithm. In other
words, if odometry is not accurate, the number of sub-tasks should
be increased and their length decreased. Conversely, for small values
of σ it is preferable to use few, long sub-tasks. These results confirm
that task partitioning is beneficial to reduce the negative impact of the
odometry error.

The second aspect highlighted by the experiments is that, given
certain odometry error conditions (i.e., a given column in Table 6.3),
in large swarms it is preferable to partition the given task into many,

6.6. Simulation Experiments and Results 129

●

●●

●

●

●
●

●

●

σ = σ

0.01 0.1 0.25 0.9 1
Parameter α

0.
7

0.
9

1.
1

1.
3

1.
5

N
or

m
al

iz
ed

 p
er

fo
rm

an
ce

●

●
●●
●

●

●●
●
●
●
●

●

●

●●
●

●
●●
●●●●●●●

●

●
●

●

●

●

●

●
●

●

●
●
●

●

●

●

●

●●

●

●

●

●

●●●●
●●
●
●
●

●
●
●

●

●

●

●●

●

●
●
●
●

●

●●

●

●●
●

●
●
●●
●
●●
●
●
●●
●
●●●
●●

●

●
●
●●
●
●

●

●
●

●

●●●

●

●
●

●

●

●

●

●
●

●

●

●
●●

●
●

●
●●
●●

●

●

●

●
●
●
●
●
●●●

●

●●

●

●
●
●

●
●
●

●

●

●
●●●
●●●
●●
●

●

●

●
●●

●●

●

●

●

●●
●
●
●●●
●
●
●●●

●●●
●
●●

σ = σ

0 0.05 0.15 0.25 0.5
Parameter ε

0.
7

0.
9

1.
1

1.
3

1.
5

N
or

m
al

iz
ed

 p
er

fo
rm

an
ce

Figure 6.15: Effect of the parameter α (left) and ε (right), for σ = σ̄. The
data reported in the plots is computed as follows. We calculate the average
performance PN , computed over all the values of ε and α, for each swarm
size N . The value PN is used to normalize the performance values recorded
for swarms of size N . Each box in the left-hand side plot aggregates the
normalized performance for different swarm sizes and values of ε, for a given
value of α. Analogously, in the right-hand side plot each box aggregates the
normalized performance for different swarm sizes and values of α, for a given
value of ε.

short sub-tasks. This is due to the fact that physical interference is
higher in large swarms than in small ones. Task partitioning distributes
the robots along the path between source and nest, thus diminishing
interference among robots.

Parameter selection. As mentioned, in addition to evaluate the effect
of the odometry error and of the swarm size, the experiments of the
first set are also used to select the values of the parameters ε and α.
Figure 6.15 summarizes the effect of the parameters ε and α on the
performance of the cost-based partitioning algorithm, for the case in
which σ = σ̄. The complete results of the experiments are reported
with the supplementary material (see Annex B).

The data reported in Figure 6.15 is computed as follows. First, we
calculate the average performance PN , computed over all the values of
ε and α, for each swarm size N . Each box in the plots of Figure 6.15
aggregates the performance of swarms of different size, normalized us-
ing the corresponding value PN .6 The left-hand side plot of Figure 6.15
reports the normalized data for different values of α (i.e., each bar ag-
gregates all the values of ε and swarm size N). Analogously, the plot

6PN divides the performance.

130 6. Amount of Work Contributed by a Sub-task

on the right-hand side of Figure 6.15 reports the data for different val-
ues of ε. The plot on the left-hand side shows the overall effect of α,
the one on the right-hand side the overall effect of ε. The plots show
that the highest levels of performance are obtained for α = 0.25 and
ε = 0. We select these values and utilize them in all the experiments
presented in this chapter, with the exception of the ones presented in
Section 6.6.5.

The value 0 for the parameter ε corresponds to a purely exploiting
version of the ε-Greedy algorithm: the algorithm always selects the
element Li associated to the minimal cost estimate Ĉi. This is not sur-
prising given the nature of the experiments. In fact, the only variations
occurring in the system are those introduced by the robots depositing
objects along the path from source to nest. The remaining conditions,
such as the number of robots, the accuracy of the odometry system,
the size of the environment, etc. do not vary in time. Consequently,
no exploration is needed and a pure exploiting version of the ε-Greedy
algorithm performs well. This result confirm what observed in the pre-
vious chapter, in which we pointed out that non-exploring versions of
the algorithms lead to a higher performance in stationary conditions
(see Section 5.5.2). Further considerations about the trade-off between
exploration and exploitation are presented in Section 6.6.5.

Performance of the cost-based partitioning algorithm. Figure 6.16
reports the performance of the cost-based partitioning algorithm and
of three reference algorithms for swarms of 4, 10, and 20 robots. The
top plot reports the results for low error values (σ = 0.2σ̄), the bottom
plot for σ = σ̄. For clarity, we did not report the performance of all the
reference algorithms. For a given experimental setting (i.e., odometry
error and swarm size), the fixed algorithm reported in the figure is the
one performing the best in that setting. The performance of the fixed
algorithm is an upper bound for the performance of a swarm that uses
task partitioning. In general to reach such a performance the swarm
needs prior knowledge about the environment. If the robots do not
have such knowledge, they have to utilize other partitioning algorithms
which, in general, perform worse than the fixed algorithm.

The results reported in Figure 6.16 highlight several aspects. The
performance of all the algorithms increases with a decreasing odometry
error. The smaller σ, the smaller the odometry error and the higher
the frequency at which the robots find the source when performing
neighborhood search. As the error increases, the performance of each
algorithm decreases. The never-partition algorithm performs well when
odometry is accurate and the swarm is composed of few robots. For

6.6. Simulation Experiments and Results 131

●
●
●

●

●

4 10 20
Number of robots

Cos
t−

ba
se

d

No
pa

rti
tio

n

Rnd
 in

itia
liz

at
io

n

Fi
xe

d
2.

5
m

Cos

t−
ba

se
d

No

pa
rti

tio
n

Rnd

 in
itia

liz
at

io
n

Fi

xe
d

2.
5

m

Cos
t−

ba
se

d

No
pa

rti
tio

n

Rnd
 in

itia
liz

at
io

n

Fi
xe

d
1.

5
m

0
10

00
20

00
30

00
40

00
50

00

To
ta

l o
bj

ec
ts

 c
ol

le
ct

ed

σ = 0.2 σ

●

●

●

●

●●
●

4 10 20
Number of robots

Cos
t−

ba
se

d

No
pa

rti
tio

n

Rnd
 in

itia
liz

at
io

n

Fi
xe

d
2.

5
m

Cos

t−
ba

se
d

No

pa
rti

tio
n

Rnd

 in
itia

liz
at

io
n

Fi

xe
d

2.
5

m

Cos
t−

ba
se

d

No
pa

rti
tio

n

Rnd
 in

itia
liz

at
io

n

Fi
xe

d
1.

5
m

0
10

00
20

00
30

00
40

00
50

00

To
ta

l o
bj

ec
ts

 c
ol

le
ct

ed

σ = σ

Figure 6.16: Objects collected by the swarm when different partitioning
algorithms are employed. Each group of boxes reports data collected with
a swarm of a given size (see top axis). The plot on top reports the data for
σ = 0.2σ̄, the plot at the bottom for σ = σ̄. The fixed algorithms reported
in figure are the ones performing the best in the corresponding setting. The
performance of the fixed algorithm is an upper bound for the performance
of a swarm that uses task partitioning.

increasing swarm sizes, the algorithms that utilize task partitioning
become more advantageous. As already pointed out, this is due to in-
terference: the robots employing the never-partition algorithm travel
all the way from source to nest and interfere with each other’s paths.
The negative effect of interference on the algorithms increases for a
decreasing odometry error: the robots get lost few times and the traf-
fic along the path between source and nest is high. The cost-based
partitioning algorithm performs well in the majority of the tested con-

132 6. Amount of Work Contributed by a Sub-task

0 < t < 5 hours 5 < t < 10 hours 10 < t < 15 hours 15 < t < 20 hours

0.5 1.0 1.5 2.0 2.5 3.0 3.5 NP

4
 R

O
B

O
T
S

1
0

 R
O

B
O

T
S

2
0

 R
O

B
O

T
S

Selected partition length

Pe
rc

e
n

ta
g

e
 o

f
se

le
ct

io
n 10

20

30

40

50

0.5 1.0 1.5 2.0 2.5 3.0 3.5 NP 0.5 1.0 1.5 2.0 2.5 3.0 3.5 NP 0.5 1.0 1.5 2.0 2.5 3.0 3.5 NP

10

20

30

40

50

10

20

30

40

50

Figure 6.17: Partition length values selected in time by robots employing
the cost-based partitioning algorithm, for the case σ = σ̄. Each plot reports
the percentage of selection of each value in a time window of 5 hours (see
labels on top).

ditions, which indicates that the partitioning strategy utilized by the
swarm suits the specific conditions in which the robots operate.

Partitioning strategy employed by the robots. Figure 6.17 reports
the partition length values selected in time by robots employing the
cost-based partitioning algorithm, for σ = σ̄. The plot reports the
percentage of times each value was selected by the robots. The per-
centages are computed across the 20 experimental runs. The sequence
of plots in each row reports the data collected with swarms of a certain
size, from top to bottom: 4, 10, and 20 robots. Each column reports
the data relative to a time period of 5 hours, corresponding to a quarter
of the duration of each experimental run.

Each sequence of plots shows that there is an initial phase (see plots
in the first column) during which the robots sample the different val-
ues. In time (plots from left to right), the robots converge towards
certain values of the partition length. The values selected the most
by the robots in the final part of the experiment depend on the size
of the swarm: the larger the swarm, the lower the partition length
values selected by the robots (compare the plots in the last column).
Therefore, the cost-based partitioning algorithm responds to a growing
swarm size by reducing the length of the sub-tasks. The results ob-
tained by the fixed algorithms demonstrate that this is advantageous

6.6. Simulation Experiments and Results 133

to diminish physical interference.
Analogously, Figure 6.18 reports the partition length values selected

in time by robots employing cost-based partitioning algorithm, for
σ = 0.5σ̄. The plots confirm the trends observed in Figure 6.17: in
large swarms the robots select lower values of the partition length.
Comparing to the case reported in Figure 6.17 however, the overall
choice of the robots is oriented towards higher values of the partition
length. This is due to the lower error in the odometry system, com-
pared to the previous case.

These results confirm that the robots employing the cost-based par-
titioning algorithm decide how to partition the transportation task au-
tonomously, on the basis of the environmental conditions (odometry
error and physical interference). This is an important result since the
task partitioning mechanisms we propose are not explicitly built to
take into account such conditions. Recall that the robots do not take
direct measures of the frequency at which they get lost, the odome-
try error, or the perceived interference. Instead, they only estimate
costs of performing tasks and sub-tasks. The strategy employed by
the robots to partition the transportation task varies with the environ-
mental conditions in a self-organized manner, due to the impact of such
conditions on the cost estimates. In other systems, in which the fac-
tors impacting costs might be others, the very same task partitioning
methods proposed here can be employed without modifications and,
most importantly, without the need to know what these factors are.

Objects throughput. The plots reported in Figure 6.19 show the
evolution of the throughput in time for swarms composed of 4 (Fig-
ure 6.19a), 10 (Figure 6.19b), and 20 (Figure 6.19c) robots. The
throughput is measured as the number of objects delivered to the nest
in one hour. The values reported in each plot are the medians com-
puted over 20 experimental runs, for σ = σ̄. The throughput of the
cost-based partitioning algorithm and of three reference algorithms is
reported in each plot.

The results reported in Figure 6.19 show that the throughput of
the reference algorithms rapidly stabilizes around a given value. The
throughput obtained by the robots employing the cost-based partition-
ing algorithm, on the other hand, grows slowly in time as an effect of
the convergence of the robots to a certain value of partition length
(refer to the results reported in Figure 6.17).

We speculate that the low growth speed is due to the fact that the
actions performed by each robot influence the cost estimation process
of the other robots. For example, a robot R that finds objects on the

134 6. Amount of Work Contributed by a Sub-task

0 < t < 5 hours 5 < t < 10 hours 10 < t < 15 hours 15 < t < 20 hours

0.5 1.0 1.5 2.0 2.5 3.0 3.5 NP

4
 R

O
B

O
T
S

1
0

 R
O

B
O

T
S

2
0

 R
O

B
O

T
S

Selected partition length

Pe
rc

e
n

ta
g

e
 o

f
se

le
ct

io
n 10

20

30

40

50

0.5 1.0 1.5 2.0 2.5 3.0 3.5 NP 0.5 1.0 1.5 2.0 2.5 3.0 3.5 NP 0.5 1.0 1.5 2.0 2.5 3.0 3.5 NP

10

20

30

40

50

10

20

30

40

50

Figure 6.18: Partition length values selected in time by robots employing the
cost-based partitioning algorithm, for the case σ = 0.5σ̄. Each plot reports
the percentage of selection of each value in a time window of 5 hours (see
labels on top).

q

q

q q

q q
q

q
q q q

q

q q q q
q

q
q

q

2 4 6 8 10 12 14 16 18 20

0
50

10
0

15
0

20
0

q

Algorithm
Cost−based
No partition
Rnd initialization
Best performing fixed

4 robots

q

q

q

q q

q
q q

q

q
q

q q
q

q
q

q

q
q

q

2 4 6 8 10 12 14 16 18 20

0
50

10
0

15
0

20
0

10 robots

q

q

q
q

q

q q q
q

q
q

q

q

q

q

q q q q q

2 4 6 8 10 12 14 16 18 20

0
50

10
0

15
0

20
0

20 robots

a) b) c)

Time (hours)

O
bj
ec
ts
co
lle
ct
ed
pe
rh
ou
r

Figure 6.19: Evolution in time of the throughput obtained with different
algorithms. The throughput is computed as objects delivered to the nest
in an hour of experiment. Each curve reports the median value, computed
over 20 experimental runs.

way between source and nest (i.e., not at the source location) needs
another robot R′ constantly delivering objects there. If the robot R′

gets lost or selects a different partition length value, the robot R may
not be able to find objects anymore. As a consequence, the robot R is

6.6. Simulation Experiments and Results 135

likely to assign a high cost to the selected value of the partition length,
therefore penalizing its selection for the future. This influence on each
other’s selection process requires the robots to sample the environment
for a longer time in order to rule out the side effect of cost estimation
errors and to coordinate their actions. On the contrary, the selection of
the partition length done by the reference algorithms is not based upon
cost estimates. Therefore, the robots do not interfere with each other’s
selection process and the swarm rapidly reaches a steady throughput.

6.6.2 Size of the Environment

The goal of the experiments described here is to test the behavior of the
system in environments of different size. In a large environment, the
robots take longer, on average, to locate the source at the beginning of
the experiment and in case they get lost (i.e., random walk is costly).
We test two environments: a W = 4.5 m by L = 4.5 m environment
(small environment) and a W = 6.7 m by L = 10.0 m environment
(large environment). In both cases, the source-to-nest distance D is
4.0 m and σ = σ̄. The remaining experimental parameters are as re-
ported in Table 6.2.

Figure 6.20 reports the performance of the cost-based partitioning
algorithm and of three reference algorithms for different swarm sizes.
The top plot in Figure 6.20 reports the results of the experiments per-
formed in the small environment, the bottom plot in Figure 6.20 reports
the results obtained in the large environment. The results of the ex-
periments indicate that the cost-based partitioning algorithm performs
well across environments of different sizes.

Figure 6.21 reports, for different swarm sizes and environments, the
values of partition length selected by the robots in the final quarter of
the experiment (last 5 hours). Plots in the same row refer to the same
environment: small environment on top and large environment at the
bottom. Plots in the same column report data for the same swarm size,
from left to right: 4, 10, and 20 robots. The plots highlight a trend in
the partition length values selected by the robots. For a given swarm
size, the selected values are influenced by the size of the environment:
the larger the environment, the lower the partition length values se-
lected by the robots. This indicates that the cost-based partitioning
algorithm identifies the high cost that derives from getting lost in larger
environments and adapts the way the task is partitioned accordingly,
by reducing the distance traveled by the robots and consequently the
frequency at which they get lost. Analogously to what pointed out in
the previous section, this is a significant result since the robots have
no notion of the size of the environment in which they operate and yet

136 6. Amount of Work Contributed by a Sub-task

●

●

●

●

●

4 10 20
Number of robots

Cos
t−

ba
se

d

No
pa

rti
tio

n

Rnd
 in

itia
liz

at
io

n

Fi
xe

d
1.

5
m

Cos

t−
ba

se
d

No

pa
rti

tio
n

Rnd

 in
itia

liz
at

io
n

Fi

xe
d

1.
5

m

Cos
t−

ba
se

d

No
pa

rti
tio

n

Rnd
 in

itia
liz

at
io

n

Fi
xe

d
1.

5
m

0
10

00
20

00
30

00
40

00

To
ta

l o
bj

ec
ts

 c
ol

le
ct

ed
Small environment

●
●

4 10 20
Number of robots

Cos
t−

ba
se

d

No
pa

rti
tio

n

Rnd
 in

itia
liz

at
io

n

Fi
xe

d
1.

5
m

Cos

t−
ba

se
d

No

pa
rti

tio
n

Rnd

 in
itia

liz
at

io
n

Fi

xe
d

1.
5

m

Cos
t−

ba
se

d

No
pa

rti
tio

n

Rnd
 in

itia
liz

at
io

n

Fi
xe

d
1.

5
m

0
10

00
20

00
30

00
40

00

To
ta

l o
bj

ec
ts

 c
ol

le
ct

ed

Large environment

Figure 6.20: Objects collected by the swarm when different partitioning
algorithms are employed. Each group of boxes reports data collected with
a swarm of a given size (see top axis). The plot on top reports the data
collected in the small environment, the plot at the bottom the data collected
in the large environment.

the partitioning strategy employed by the swarm varies in relation to
the environment in which foraging is performed.

6.6.3 Distance to the Source

The goal of the set of experiments presented in this section is to study
the effect of a different source-to-nest distance D (i.e., a different length
of the overall task). The experiments are performed in the large envi-
ronment (W = 6.7 m by L = 10.0 m), with σ = σ̄. The value of the
source-to-nest distance D is set to 3.0 m and 6.0 m. The values of the
remaining experimental parameters are as reported in Table 6.2.

Figure 6.22 reports the performance of the cost-based partitioning

6.6. Simulation Experiments and Results 137

4 ROBOTS

0.5 1.0 1.5 2.0 2.5 3.0 3.5 NP

10

20

30

40

50

Selected partition length

Pe
rc

e
n
ta

g
e
 o

f
se

le
ct

io
n

10 ROBOTS 20 ROBOTS

S
M

A
LL

 E
N

V.
LA

R
G

E
 E

N
V.

0.5 1.0 1.5 2.0 2.5 3.0 3.5 NP 0.5 1.0 1.5 2.0 2.5 3.0 3.5 NP

10

20

30

40

50

Figure 6.21: Partition length values selected in time by robots employing
the cost-based partitioning algorithm. The plots report data collected for
σ = σ̄. Each plot reports the percentage of selection of each value in the
final quarter of the experiments (last 5 hours), for a given swarm size and
environment.

algorithm and three reference algorithms for different swarm sizes. The
top plot displays the results for the case in whichD = 3.0 m, the bottom
plot for the case in which D = 6.0 m.

The performance obtained with a given algorithm for D = 3.0 m
is higher than the corresponding performance for D = 6.0 m. In the
latter case, the objects must be transported for a longer distance and
the throughput of the swarm is inferior. Additionally, in the case of the
never-partition algorithm, the longer distance between source and nest
increases the probability that a robot gets lost, thus lowering further
the throughput. For the remaining algorithms, which utilize task parti-
tioning, a longer distance corresponds to a higher number of sub-tasks
and therefore higher overheads due to object transfer.

Figure 6.22 shows that, for D = 3.0 m, the robots that use the
cost-based partitioning algorithm perform well for all the tested swarm
sizes. This is not the case for D = 6.0 m: the performance of the
cost-based partitioning algorithm is often close, or even inferior, to the
performance of the random initialization algorithm.

Figure 6.23 reports the evolution of the throughput in time for
swarms composed of 4 (Figure 6.23a), 10 (Figure 6.23b), and 20 (Fig-
ure 6.23c) robots. The figure reports the data for D = 6.0 m. The
plots show that in the final part of the experiment the throughput of
the cost-based partitioning algorithm is higher than the throughput of
the random initialization algorithm. However, the throughput grows

138 6. Amount of Work Contributed by a Sub-task

4 10 20
Number of robots

Cos
t−

ba
se

d

No
pa

rti
tio

n

Rnd
 in

itia
liz

at
io

n

Fi
xe

d
1.

5
m

Cos
t−

ba
se

d

No
pa

rti
tio

n

Rnd
 in

itia
liz

at
io

n

Fi
xe

d
1.

5
m

Cos
t−

ba
se

d

No
pa

rti
tio

n

Rnd
 in

itia
liz

at
io

n

Fi
xe

d
1.

0
m

Algorithm

0
10

00
20

00
30

00
40

00
50

00

To
ta

l o
bj

ec
ts

 c
ol

le
ct

ed

D = 3.0 m

●

●

4 10 20
Number of robots

Cos
t−

ba
se

d

No
pa

rti
tio

n

Rnd
 in

itia
liz

at
io

n

Fi
xe

d
1.

5
m

Cos
t−

ba
se

d

No
pa

rti
tio

n

Rnd
 in

itia
liz

at
io

n

Fi
xe

d
1.

5
m

Cos
t−

ba
se

d

No
pa

rti
tio

n

Rnd
 in

itia
liz

at
io

n

Fi
xe

d
1.

5
m

Algorithm

0
10

00
20

00
30

00
40

00
50

00

To
ta

l o
bj

ec
ts

 c
ol

le
ct

ed

D = 6.0 m

Figure 6.22: Objects collected by the swarm when different partitioning
algorithms are employed. Each group of boxes reports data collected with
a swarm of a given size (see top axis). The plot on top reports the data for
D = 3.0 m, the plot at the bottom for D = 6.0 m.

very slowly in time and this motivates the relatively low performance
observed in Figure 6.22.

6.6.4 Heterogeneity in the Robot Swarm

The goal of the experiments described in this section is to assess the
impact of heterogeneity on the cost-based partitioning algorithm. Our
focus is on heterogeneity impacting the efficiency in performing a task.
To this end, we act upon the odometry system of the robots: the
accuracy of the odometry system varies from robot to robot. Therefore,
different robots might be more or less successful in reaching a position

6.6. Simulation Experiments and Results 139

Time (hours)

O
bj
ec
ts
co
lle
ct
ed
pe
rh
ou
r

q

q
q

q q
q

q q

q

q q
q

q

q
q q

q
q q

q

2 4 6 8 10 12 14 16 18 20

0
50

10
0

15
0 q

Algorithm

Cost−based
No partition
Rnd initialization

4 robots

q

q q
q

q

q
q

q

q q q
q

q
q q

q

q
q

q
q

2 4 6 8 10 12 14 16 18 20

0
50

10
0

15
0

10 robots

q

q

q

q q

q

q

q

q q

q q q
q

q

q
q

q

q

q

2 4 6 8 10 12 14 16 18 20

0
50

10
0

15
0

20 robots

a) b) c)

q

Algorithm

Cost−based
No partition
Rnd initialization
Fixed 1.5 m

Figure 6.23: Evolution in time of the throughput obtained with different
algorithms, for D = 6.0 m. The throughput is computed as objects delivered
to the nest in an hour of experiment. Each curve reports the median value,
computed over 20 experimental runs.

of the environment using odometry. Heterogeneity in the odometry
system of the robots is a realistic assumption. Indeed, in the real-robot
experiments presented in Section 6.5, we observed that the success rate
at finding the objects source varies from robot to robot.

Here, we simulate heterogeneity in the odometry system using dif-
ferent values of σ in the swarm. We divide the swarm into two groups,
one in which σ = 0.2σ̄ (we refer to robots of this group as low-error),
the other in which σ = σ̄ (default-error robots). We perform exper-
iments using 10 robots, varying the percentage of low-error robots in
the swarm. We test two conditions: one in which there are 2 low-
error robots in the swarm and one in which the low-error robots are
8. The remaining experimental parameters take the values reported in
Table 6.2.

Figure 6.24 reports the performance of the cost-based partitioning
algorithm and of four reference algorithms. The plot on the left-hand
side reports the case in which the low-error robots are 2, the plot on
the right-hand side the case in which the low-error robots are 8. The
results reported in Figure 6.24 indicate that the cost-based partitioning
algorithm performs well in the tested conditions, showing that it is
robust with respect to heterogeneity within the swarm.

Figure 6.25 reports the partition length values selected by the robots
employing the cost-based partitioning algorithm in the final quarter of
experiment (last 5 hours). Each plot reports the percentage of times,

140 6. Amount of Work Contributed by a Sub-task

Fi
xe

d
1.

5
m

Fi

xe
d

2.
0

m

Cos
t−

ba
se

d

No
pa

rti
tio

n

Rnd
 in

itia
liz

at
io

n

0
10

00
20

00
30

00
40

00

To
ta

l o
bj

ec
ts

 c
ol

le
ct

ed

2 low−error robots

Fi
xe

d
1.

5
m

Fi

xe
d

2.
0

m

Cos
t−

ba
se

d

No
pa

rti
tio

n

Rnd
 in

itia
liz

at
io

n

0
10

00
20

00
30

00
40

00

To
ta

l o
bj

ec
ts

 c
ol

le
ct

ed

8 low−error robots

Figure 6.24: Experiments on heterogeneity: objects collected by the swarm
for different partitioning algorithms. The plot on the left-hand side reports
the data for the case in which the low-error robots are two, the plot on the
right-hand side for the case in which their number is eight.

computed over 20 experimental runs, each value was selected by the
robots. In the figure, plots in the same column refer to the same number
of low-error robots in the swarm: 2 robots in the plots on the left-hand
side and 8 robots in the plots on the right-hand side. The top plots
report the partition length values selected by the low-error robots, the
bottom plots the values selected by the default-error robots.

The results reported in Figure 6.25 show that the partition length
values selected by the robots vary in relation to their odometry accu-
racy. The low-error robots select higher partition length values com-
pared to the values selected by the default-error robots. In other words,
the way a robot partitions each task depends on the characteristics of
the robot itself. Once more this result is not obtained through an ex-
plicit mechanism that, for example, relates the selected partition length
to the odometry accuracy of a robot. All the robots are homogeneous
for what concerns the mechanism implemeting task partitioning. Dif-
ferent partitioning strategies for different robots result from the depen-
dency of the costs on the odometry accuracy of a given robot.

6.6.5 Adaptivity to Variable Conditions

In all the experiments presented so far, the cost-based partitioning
algorithm obtains its best performance with a purely exploiting version
of the ε-Greedy algorithm (i.e., for ε = 0). This is due to the fact that,
in all the experiments, we test static conditions. The only variations
occurring in the environment are introduced by the robots depositing
objects. However, exploration may result useful when properties of

6.6. Simulation Experiments and Results 141

0.5 1.0 1.5 2.0 2.5 3.0 3.5 NP

10

20

30

40

50

Selected partition length

Pe
rc

e
n
ta

g
e

o
f

se
le

ct
io

n

0.5 1.0 1.5 2.0 2.5 3.0 3.5 NP

10

20

30

40

50

d
e
fa

u
lt

-e
rr

o
r

ro
b
o
ts

lo
w

-e
rr

o
r

ro
b
o
ts

2 low-error robots 8 low-error robots

Figure 6.25: Experiments on heterogeneity: partition length values selected
by the robots over time, when the cost-based partitioning algorithm is em-
ployed. Each plot reports the percentage of selection of each value in the
final quarter of experiment (last 5 hours). The plots in the first row report
the values selected by the low-error robots, the plots in the second row the
values selected by the default-error robots. The plots in the first column
report the data for the case in which the number of low-error robots is two,
the plots in the second column report the data for the case in which their
number is eight.

the environment vary in time. Given the way the ε-Greedy works,
exploration may be beneficial only if one of the costs Ĉi decreases
and renders the associated element Li advantageous over the one that
previously had the lowest cost associated.

Suppose, for example, that the environmental conditions initially
favor low values of the partition length and that the robots identified
low values as a good choice. Suppose that a change occurs in the envi-
ronment, that renders favorable higher values of the partition length.
If the effect of the change is to reduce the cost associated to high val-
ues of partition length, without increasing the cost associated to low
values, a purely exploiting version of the ε-Greedy algorithm is unable
to detect the change. In fact, as the robots constantly select low val-
ues of the partition length, initially identified as the best option, they
never sample again high values and cannot detect that these values are
now preferable. This is analogous to what observed in the experiments
presented in the previous chapter (Section 5.5.2) in which we vary the
interfacing time at the cache. A variation of the interfacing time from
a low to a high value is detected by the robots, since they initially

142 6. Amount of Work Contributed by a Sub-task

use the interface and therefore they can directly perceive the variation.
Conversely, the robots have problems detecting a variation from a high
to a low value: the interface is initially not used and the robots cannot
directly perceive the variation of the interfacing time.

To test an analogous situation, we perform an experiment in which
we introduce a variation in the environmental conditions. The variation
consists in incrementing the distance at which the robots perceive the
objects. A broader perception diminishes the probability that a robot
gets lost: objects can be perceived from farther away and therefore
odometry errors have a smaller impact.

We perform the experiments with swarms of 10 and 20 robots. We
vary the perception range of the robots from the default value 0.5 m
to 1.2 m, when the experimental run reaches half-time. The duration
of a run is extended to 40 simulated hours, to allow the cost-based
partitioning algorithm to identify good partition length values before
the perception change is introduced. We test different versions of the
cost-based partitioning algorithm, that vary with respect to the value
of the parameter ε. The tested values for the parameter ε are {0, 0.3,
0.6}, corresponding to progressively increasing degrees of exploration
in the algorithm. The odometry error parameter is set to σ = 0.5σ̄. We
selected this value as it is the one that highlights the most the effects of
exploration and exploitation on the cost-based partitioning algorithm.

Figure 6.26 reports the performance of the cost-based partitioning
algorithm and of three reference algorithms for swarms composed of
10 (top) and 20 robots (bottom). In each plot, the group of boxes
on the left-hand side reports the data collected in the first half of the
experiment, before the perception range is modified. The group of
boxes on the right-hand side of each plot reports the data collected in
the second half of the experiment, after the perception range has been
modified.

The results show that initially the best performing algorithm is the
fixed algorithm with a partition length of 2.0 m. Among the different
versions of the cost-based partitioning algorithm, the best performing
one is the non-exploring (ε = 0). The other versions, which include
some exploration, perform worse.

In the second half of experiment, the situation is different: the
change in the perception range of the robots makes the never-partition
algorithm preferable to the fixed algorithm. Notice however that, for
a swarm composed of 20 robots, the relative performance gain of the
never-partition algorithm over the fixed algorithm is limited, compared
to the case of a swarm of 10 robots. This is again an effect of interfer-
ence, which is the dominant factor in large swarms.

6.6. Simulation Experiments and Results 143

● ●

● ●
●

●

10 robots

0 < t < 20 hours 20 < t < 40 hours

Epsil
on = 0.0

Epsil
on = 0.3

Epsil
on = 0.6

Rnd in
itia

liz
atio

n

Fixe
d 2.0 m

No partit
ion

Epsil
on = 0.0

Epsil
on = 0.3

Epsil
on = 0.6

Rnd in
itia

liz
atio

n

Fixe
d 2.0 m

No partit
ion 10

00
20

00
30

00
40

00
50

00
60

00
To

ta
l o

bj
ec

ts
 c

ol
le

ct
ed

●

●
●

●

●

20 robots

0 < t < 20 hours 20 < t < 40 hours

Epsil
on = 0.0

Epsil
on = 0.3

Epsil
on = 0.6

Rnd in
itia

liz
atio

n

Fixe
d 2.0 m

No partit
ion

Epsil
on = 0.0

Epsil
on = 0.3

Epsil
on = 0.6

Rnd in
itia

liz
atio

n

Fixe
d 2.0 m

No partit
ion 10

00
20

00
30

00
40

00
50

00
60

00
To

ta
l o

bj
ec

ts
 c

ol
le

ct
ed

Figure 6.26: Objects collected by the swarm when different partitioning
algorithms are employed. In each plot, the first group of boxes refers to the
first half of experiment, the second group to the second half. The plot on
top reports the results for a swarm of 10 robots, the plot at the bottom for
a swarm of 20 robots.

The results obtained by the different versions of the cost-based par-
titioning algorithm indicate that exploration is beneficial. In the case
of a swarm composed of 10 robots, the cost-based partitioning algo-
rithm with ε = 0.3 performs better that the non-exploring version.
In the case of a swarm of 20 robots, the performance reached by the
two versions is comparable. Exploration is beneficial up to a certain
point: for ε = 0.6, performance is always inferior than for ε = 0.3, and
therefore exploration and exploitation should be balanced carefully.

Figure 6.27 reports the partition length values selected in time by a
swarm of 10 robots. Each row of plots corresponds to a value of ε. The
plots in the first column report the frequency at which each partition
length value was selected in the second quarter of the experiment (from
t = 10 to t = 20 hours). The plots in the second column reports

144 6. Amount of Work Contributed by a Sub-task

ε = 0 ε = 0

ε = 0.3 ε = 0.3

ε = 0.6 ε = 0.6

10 < t < 20 hours 30 < t < 40 hours

0.5 1.0 1.5 2.0 2.5 3.0 3.5 NP

10

20

30

40

50

Selected partition length

Pe
rc

e
n
ta

g
e
 o

f
se

le
ct

io
n

10

20

30

40

50

10

20

30

40

50

0.5 1.0 1.5 2.0 2.5 3.0 3.5 NP

Figure 6.27: Partition length values selected by robots employing different
versions of the cost-based partitioning algorithm. The plots in the first col-
umn report the percentage of selection of each value in the second quarter
of experiment. The plots in the second column report analogous data col-
lected in the final quarter. Each row of plots refers to a different version
of the cost-based partitioning algorithm (increasing exploration from top to
bottom).

analogous data, collected in the last quarter of the experiment (from
t = 30 to t = 40 hours). The plots highlight different behaviors of the
cost-based partitioning algorithm, depending on the value of ε.

The plots in the first column show that all the versions the cost-
based partitioning algorithm mostly select values around 2.0 m. The
effect of an increased exploration can be observed in the plots (from
top to bottom): the peaks flatten and the selected values distribute
more evenly. This behavior affects performance negatively, as shown
in the left part of Figure 6.26.

The effect of exploration is also visible in the second column of
plots reported in Figure 6.27. In case of ε = 0.3 and ε = 0.6, the
peak moves from the value of 2.0 m to the value of 3.5 m. This in-
dicates that the cost-based partitioning algorithm detects the change
occurring in the environment and reacts selecting a new partitioning

6.7. Summary 145

strategy. The non-exploring version of the cost-based partitioning al-
gorithm, on the other hand, continues to select values around 2.0 m.
However, the value 3.5 m is selected more often compared to the sec-
ond quarter of experiment (Figure 6.27 top-left). This indicates that
a form of exploration is present in the studied system independently
of the value of ε, most likely due to stochasticity in the exploration
time when the robots get lost, which introduces variations in the cost
estimates. This stochasticity may not be present in other contexts
and therefore explicit exploration is an option to consider, in general.
The degree of exploration must be selected carefully, since exploration
may hinder the performance of the system. For example, the plots
for ε = 0.6 (Figure 6.27 last row) show that when exploration is too
high, the behavior of the cost-based partitioning algorithm approaches
a random behavior. A dominant choice can still be observed, but the
cost-based partitioning algorithm does not exploit it efficiently and the
performance is affected negatively.

6.7 Summary

In this chapter, we studied the second fundamental building block for
implementing complex partitioning strategies: the capability of decid-
ing the amount of work to contribute with a sub-task, which is equiv-
alent to deciding the size of the sub-task. As a testbed, we considered
a foraging scenario in which the robots use odometry to estimate their
position relatively to the source.

We studied the system and an algorithm based on our approach in
simulation-based experiments, under different conditions in terms of
magnitude of the odometry error, size of the environment, and length
of the transportation task. The results of the experiments confirm the
viability of our approach to tackle the studied problem. A remarkable
result is that the partitioning strategy employed by the swarm varies
across the tested conditions, resulting appropriate in relation to aspects
such as physical interference, odometry accuracy, and the size of the
environment. None of these aspects is taken into account explicitly by
the robots at the time of making decisions, which are instead based on
the generic concept of cost.

We presented experiments carried out with real robots that demon-
strate that task partitioning can be utilized to contrast the negative
effect of odometry errors and to enhance the localization capabilities
of the robots. Together with the ones presented in Fontan and Matarić
(1996) and Goldberg and Matarić (2002), these experiments are the
only ones in which task partitioning is applied to a real-robot scenario.

146 6. Amount of Work Contributed by a Sub-task

As a final remark, we pointed out that in certain situations the
swarm is slow in converging towards a certain partitioning strategy
and this hinders the performance. As we pointed out, this is due to the
fact that the interfaces are movable and therefore the choices made by
a robot have a strong impact on the work of other robots. In the final
chapter of this dissertation we discuss the issue and propose explicit
coordination through communication as a possible solution. However,
the experiments show that, even without explicit coordination among
the robots, the swarm converges with time to an appropriate parti-
tion strategy. This indicates that our approach can also be applied in
swarms of minimalistic robots, in which communication might not be
an option.

Chapter 7

Conclusions

In this final chapter we summarize the main contributions of the re-
search work presented in this dissertation and discuss possible direc-
tions for future research.

7.1 Contributions

Swarm robotics is a promising approach for the implementation and
control of robotic systems. Swarm robotics systems are best suited for
applications that require miniaturization, redundancy and scalability,
and that entail danger or risk of failure of individual robots. Examples
of applications with such characteristics are space and underwater ex-
ploration, mine clearance, surveillance, and military applications. In
these contexts, often humans cannot intervene and therefore the robots
are required to be robust and flexible in their behavior, in order to
autonomously adapt to unforeseen situations and cope with dynamic
environments.

The research work presented in this dissertation is driven by the
pursuit of flexibility also at the level of the definition of tasks. We
envision swarms in which the robots autonomously define how to par-
tition the mission to be accomplished into a set of separate units of
work. In this way, not only the behavior of the robots, but also the
way a mission is carried out can be adapted to unforeseen situations
and changing environments.

In this dissertation, we present research work that makes the first
steps in this direction by proposing an approach for autonomous task
partitioning in swarms of robots. We focus our study on foraging, which
is an abstraction of real-world applications such as the ones mentioned
above. However, task partitioning entails benefits that are desirable in
many contexts and therefore its application is not limited to foraging.

148 7. Conclusions

With this in mind, we based our approach upon the generic concepts
of amount of work and cost. Building the task partitioning methods
upon these concepts allowed us to:

1. Decouple the task partitioning process and the behavior of the
robots;

2. Drive this process towards a generic goal (i.e., reducing costs)
and not a specific one (e.g., reducing physical interference among
robots);

3. Implement a framework that has the potential to be applied to
other contexts.

In our study we identified two decisions that the robots must be able to
make. The first consists in deciding whether to use a fixed interface or
to bypass it; the second in deciding the amount of work to contribute
with a sub-task. These two decisions are the fundamental building
blocks for implementing arbitrarily complex partitioning solutions. We
thoroughly studied these decisions and we proposed algorithms, based
upon our approach, that robots can use to make the decisions au-
tonomously. We performed experiments to test our algorithms and
their properties. The results of the experiments demonstrate that our
approach is a viable solution to obtain task partitioning in swarms of
autonomous robots.

7.2 Future Work

The work presented in this dissertation contributes significantly to the
study of task partitioning in swarm robotics. However, our vision of
swarms of robots capable of autonomously partitioning any task is still
far from being a reality. Many questions remain unanswered and several
research directions are still to be explored.

As mentioned in Section 3.1, we focus our study on a subset of pos-
sible task partitioning problems. In particular, we study the case in
which tasks are partitioned into sequences of interdependent sub-tasks.
In general, tasks can also be partitioned into sub-tasks that are not
sequentially dependent: the overall task still requires that all the sub-
tasks are completed, however, the completion order is not important.
To be applied to such contexts, our approach would require modifica-
tions. Costs would still be at the basis of the decisions made by the
robots, however the different relation between the sub-tasks would im-
pact the role of the interfaces. The methods and algorithms presented
in this dissertation largely rely on an implicit information exchange

7.2. Future Work 149

between sub-tasks, which takes place at the interfaces. If the coupling
between sub-tasks is loose, such as in the cases in which there is no
sequential dependency, the interfaces do not favor such an exchange of
information and the decision process of the robots that leads to the
definition of the partitioning strategy is likely to be compromised.

We believe that explicit communication is a solution to tackle this
issue. The robots could use communication to compensate for the
lack of information at the interfaces. The robots would estimate the
cost of performing sub-tasks exactly as they do in the approach we
propose and communicate this information to the other robots. The
information gathered by different robots would therefore spread within
the swarm and it would be used to obtain the overall coordination
required to perform the sub-tasks efficiently.

Another dimension that remains unexplored is the study of task
partitioning in contexts in which tasks and sub-tasks require group ex-
ecution. In this dissertation we focus on foraging and the tasks consist
in transporting objects. Each robot is capable of transporting an object
by itself and therefore tasks and sub-tasks are performed individually.
Other situations in swarm robotics require the robots to cooperate ac-
tively in order to perform a task. For example, foraging for objects that
are too heavy for a single robot to carry requires transportation to be
performed collectively by a group of robots. Our approach entails that
the robots make decisions individually; the partitioning strategy is the
result of the combination of individual decisions. Therefore, in cases in
which the tasks and sub-tasks require a group of individuals to work
together, the decision process must involve all the robots of the group.
One option is that one of the robots makes decisions and imposes its
choice to the other robots of the group. The alternative would be to
resort to a collective decision process, such as the mechanisms proposed
in Campo (2011). In addition to the decision process, the way costs
are estimated would require a modification as well. The estimation
should be done collectively to exploit the information gathered by the
different members of the group. Also in this case, the use of explicit
communication is a suitable solution to extend our approach.

Annexes

Annex A

ARGoS 1 Versus ARGoS 2

In this annex, we compare the results of the experiments presented in
Section 5.4 with the results published in Pini et al. (2011). The contents
of Section 5.4, are largely based on our published article. However, the
results presented in the section are obtained with a newer version of
ARGoS (henceforth ARGoS 2) with respect to the results presented in
the published article (obtained with ARGoS 1).

We decided to replicate the experiments for a matter of coherence:
all the results of the simulation-based experiments presented in this
dissertation are obtained with ARGoS 2. Repeating the experiments
gave us the opportunity to collect more data and to study properties
of the system that were neglected in Pini et al. (2011). Additionally,
we improved the implementation of the controllers of the robots, in
particular for what concerns navigation. The results obtained with
ARGoS 2, presented in Section 5.4, confirm the ones published in the
article.

In Section A.1, we point out the implementation differences between
the environments in which the robots perform foraging. In Section A.2,
we highlight minor differences in the experiments (i.e., in their param-
eters) and include the results originally published in Pini et al. (2011).

A.1 Implementation Differences

The main implementation difference between the experiments reported
in Section 5.4 and the ones presented in Pini et al. (2011) concerns the
environment in which the robots perform foraging.

Figure A.1 depicts the environment utilized in the two versions of
the experiments: on the left-hand side the environment utilized in the
experiments presented in Section 5.4; on the right-hand side the en-
vironment utilized in Pini et al. (2011). A first difference is that the

153

154 A. ARGoS 1 Versus ARGoS 2

so
u
rc
e

ca
ch

e

n
e
st

n
e
st

ca
ch

e

so
u
rc
e

L

LLL

3
.0

 m

2
.1

 m

1.8 m1.8 m

Figure A.1: Comparison of the environments in which the robots perform
foraging. Left: environment used in the experiments described in Sec-
tion 5.4. Right: environment used in the experiments presented in Pini
et al. (2011).

floor of the corridor is painted differently. In the environment repre-
sented on the right-hand side of Figure A.1, a path marks the floor
and it is followed by the robots to navigate through the corridor. In
the new version of the experiments, we substitute the path with three
areas of different color (see Figure A.1 left). The robots can navigate
in the corridor by maintaining a certain heading with respect to the
direction of the lights depending on the perceived color of the ground.
This solution renders the navigation of the corridor more efficient. In
fact, the previous implementation forced the robots to remain on the
narrow strip marked by the colored path. The new implementation, on
the other hand, allows the robots to use the whole width of the cor-
ridor. The result is that, while navigating in the corridor, the robots
can move faster and avoid each other more easily.

In addition to the color of the ground, the number and the posi-
tion of the lights is different across the implementations. In the new
implementation of the experiments, there are three lights (instead of
one) and they have been positioned outside the perimeter of the envi-
ronment. This improves the navigability of the corridor, in this case in

A.2. Published Experiments and Results 155

Table A.1: Implementation differences between the environment used in the
experiments presented in Section 5.4 and the one used in Pini et al. (2011).

Parameter Section 5.4 Pini et al. (2011)

Corridor floor 3 colored areas 2 colors path
Lights 3, outside the perimeter 1, inside the perimeter
Cache 4 TAMs per side 3 TAMs per side
Default swarm size 14 robots 10 robots
Environment size 1.8 m by 3.0 m 1.8 m by 2.1 m

its curved portion (bottom part in Figure A.1).
The size of the cache is also different across the implementations. In

the new version of the experiments, the cache is composed of 4 TAMs
on each side, to match the number of TAMs at the source and the nest.
In the previous version of the experiments, the cache was implemented
using 3 TAMs on each side. Given that we increased the number of
slots available in the cache, we also increased the default swarm size
from 10 to 14 robots, to maintain a similar ratio between the number
of robots and the number of slots in the cache.

Finally, the size of the environments is different: the previous ver-
sion consists of a 1.8 m by 2.1 m environment, while the new version
is 1.8 m by 3.0 m. Therefore, we increased the length of the corridor.
The reason is that, due to the improvements in navigation, the robots
navigate through the corridor faster and therefore we had to increase
its length so that the cache remains preferable to the corridor for low
values of the interfacing time Π. Table A.1 summarizes the differences
across the two versions of the experiments.

A.2 Published Experiments and Results

In this section, we focus on the experiments performed with ARGoS 1
and presented in Pini et al. (2011) and we discuss the differences with
respect to the corresponding ones described in Section 5.4. The ex-
periments differ in two aspects. The main difference is the location
of the robots at the beginning of the experiment. In the experiments
described in Pini et al. (2011), the robots are initially positioned in
the area containing the nest. An exception are the cases in which
the robots use the always-partition algorithm: in this case, half of the
swarm is initially positioned on each side of the cache. In the exper-
iments described in Section 5.4, the initialization of the positions of
the robots is the same independently of the algorithm utilized: half of

156 A. ARGoS 1 Versus ARGoS 2

the swarm is positioned on each side of the cache at the beginning of
each experiment. In this way, all the algorithms are compared using
the same initial conditions and therefore we removed a potential bias.

The second difference between the experiments is in the number of
repetitions executed for each experimental setting. In the experiments
presented in Section 5.4, we perform 25 repetitions for each condition,
while the published results are obtained with 50 repetitions for each
condition.

As mentioned in Section 5.4, the experiments are divided into three
sets: evaluation of the performance, test of adaptivity, and study of
scalability. In the following we report for each set of experiments the
main differences in the experimental setup (if any) and the correspond-
ing results that have been published in Pini et al. (2011).

A.2.1 Performance Evaluation

The goal of the experiments presented in this section is to compare
the AdHoc algorithm with the two reference algorithms: the never-
partition and the always-partition algorithms. We compare the algo-
rithms for different values of the cache interfacing time Π. The values
of Π do not match the ones utilized in the experiments presented in
Section 5.4.2. Due to different implementations of the environments
and the controllers of the robots, the relative benefit of using the cache
over the corridor for a given value of Π is different. The values of Π
utilized in Pini et al. (2011) are 0, 25, 50, 75, 100, 150, and 200 seconds.

Figure A.2 reports the average number of objects delivered to the
nest per robot for different values of Π and for each algorithm. The
results agree with the corresponding ones reported in Figure 5.7 (see
page 71): for small values of Π the always-partition algorithm performs
better than the others, for high values of Π the never-partition algo-
rithm is preferable. The AdHoc algorithm performs well across the
spectrum of the values of Π.

Figure A.3 provides a summary of the strategy employed by the
robots of the swarm when using the AdHoc algorithm, for the differ-
ent values of Π. Each bar reports the percentage of times that each
action was performed by the robots; the reported values are averages
computed across 50 runs. Also in this case, the results agree with the
corresponding ones reported in Section 5.4.2 (see Figure 5.8, page 72):
the robots select the corridor with a higher frequency for increasing
values of Π.

A difference between the results is in the frequency at which the
robots abandon using the cache. In the experiments carried out with
ARGoS 2, the robots abandon less often. This is a consequence of

A.2. Published Experiments and Results 157

0 25 50 75 100 150 200

Interfacing time Π (seconds)

0
50

10
0

15
0

20
0

25
0

O
bj

ec
ts

 c
ol

le
ct

ed
 p

er
 r

ob
ot

●

Algorithm

Never−partition
Always−partition
AdHoc

● ● ● ● ● ● ●

Figure A.2: Average number of objects delivered to the nest per robot at
the end of the experiment for different values of the interfacing time Π.

improvements made to the controller of the robots, that render the
robots faster in entering the TAMs. The first version of the controller
was very sensitive to obstacles and in many cases the robots were taking
a long time to enter a TAM, perceived as an obstacle. Consequently,
in those cases there was a high probability that the usage of the cache
was abandoned by the robot. When we reimplemented the system, we
identified the sensitiveness to obstacles and the poor navigability of the
corridor as two weaknesses and decided to intervene and remove them.

Figure A.4 reports the time taken by the robots to use the corridor
(tH + tS) and the cache (tP and tD) employing the different algorithms,
when the interfacing time is 0 s (left), 25 s (center), and 50 s (right).
Also in this case, the results published in Pini et al. (2011) agree with
the results reported in Section 5.4 (see Figure 5.9, page 73). The plots
in Figure 5.9 confirm the improvement of the navigation capabilities of
the robots: the time taken to enter the cache TAMs is lower compared
to Figure A.4.

To summarize we can conclude that there is agreement between the
results presented in Section 5.4.2 and the corresponding ones published
in Pini et al. (2011). The changes we made to the implementations of
the controllers and of the environment render the results numerically
different, but the conclusions that can be drawn remain the same.

158 A. ARGoS 1 Versus ARGoS 2

0 25 50 75 100 150 200

Interfacing time Π (seconds)

0
25

50
75

10
0

A
ct

io
n

fr
eq

ue
nc

y
(%

)

Robot action

use cache
abandon cache
use corridor

Figure A.3: Actions performed by the robots employing the AdHoc algo-
rithm, for different values of the interfacing time Π. Each bar reports, for a
given value of Π, the percentage of times an action was performed. The ac-
tions reported are: selection and actual usage of the cache (white), selection
of the cache and abandon (light gray), and selection of the corridor (dark
gray). The percentage of times the robots chose to employ the cache is the
sum of the values reported by the white and the light gray bars. The values
reported are the averages, computed across 50 experimental runs.

Never
 partition

Always
 partition

AdHoc

0
25

0
50

0
75

0

T
im

e
(s

ec
on

ds
)

Π = 0 s Corridor
Cache, pick up
Cache, drop

Never
 partition

Always
 partition

AdHoc

0
25

0
50

0
75

0

T
im

e
(s

ec
on

ds
)

Π = 25 s Corridor
Cache, pick up
Cache, drop

Never
 partition

Always
 partition

AdHoc

0
25

0
50

0
75

0

T
im

e
(s

ec
on

ds
)

Π = 50 s Corridor
Cache, pick up
Cache, drop

Figure A.4: Time taken to use the corridor and the cache for the three
algorithms. The graphs report the data for Π = 0 s (left), Π = 25 s (center),
and Π = 50 s (right).

A.2. Published Experiments and Results 159

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Time (hours)

0
20

40
60

80
10

0

C
ac

he
 u

sa
ge

 (
%

)

Π = 200 s Π = 0 s

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Time (hours)

0
20

40
60

80
10

0

C
ac

he
 u

sa
ge

 (
%

)

Π = 0 s Π = 200 s

Figure A.5: Percentage of usage of the cache in time when the interfacing
time Π changes from 200 s to 0 s (top) and from 0 s to 200 s (bottom). The
vertical dashed line marks the instant at which the value of Π changes. Each
box reports the percentage of usage of the cache in the hour preceding the
time reported on the X axis.

A.2.2 Adaptivity to Changes

The goal of the experiments presented in this section is to test the
adaptiveness of the AdHoc algorithm in response to variations of the
environmental conditions. Differently from the experiments presented
in Section 5.4.2 of this dissertation (page 74), we change the value
of the interfacing time only once (instead of three times) during the
course of the experiment. We change the interfacing time Π when the
experiment reaches its half. We consider two cases: one in which we
change Π from 200 s to 0 s and another in which we change it from 0 s
to 200 s.

Figure A.5 reports the results of the two experiments. The graph
on top plots the data for the case in which the initial value of Π is
200 s; the graph at the bottom for the case in which its initial value

160 A. ARGoS 1 Versus ARGoS 2

is 0 s. Each graph reports the data collected in the corresponding 50
experimental runs. In the graphs of Figure A.5, the total time frame
of the experiment has been divided into windows of 60 minutes. Each
box in the plot reports the percentage of usage of the cache in the time
window preceding the value indicated on the X axis. Analogously
to what is reported in Figure 5.11 (page 76), the strategy employed
by the swarm varies in relation to the value of Π. In both cases, at
half the experiment time, one of the two strategies is employed more
frequently than the other, indicating that the swarm identifies it as the
best strategy. The results at the end of both experiments show that
the swarm reacts to the change in the environmental conditions. In
fact, the strategy of the swarm changes after the value of Π has been
modified. The swarm converges to a new strategy more suited to the
new value of Π.

A.2.3 Scalability

In this section, we report on the results of experiments testing the
scalability of the three algorithms, for two values of the interfacing
time: Π = 0 s and Π = 25 s. Figure A.6 reports the results of the
experiments for Π = 0 s (top) and Π = 25 s (bottom). Notice that
Figure 5.12 (page 78) reports on the Y axis the average total number of
objects delivered to the nest by the swarm, while Figure A.6 (published
in Pini et al. (2011)) reports the average number of objects delivered
per robot. For comparison, we report in Figure A.7 the data plotted in
Figure 5.12a (obtained with ARGoS 2), but expressed on a per-robot
basis, as in Figure A.6. Among the plots in Figure 5.12, we selected the
one that reports data for Π = 5 s, since it can be considered a “low”
value of the interfacing time in the new implementation of the system.
Analogously, the values Π = 0 s and Π = 25 s were low values in the
original implementation of the experiments.

A comparison between Figure A.6 and Figure A.7 highlights a dif-
ferent behavior of the always-partition algorithm across the two im-
plementations of the experiments. In the experiments performed with
ARGoS 2, the number of objects delivered to the nest per robot mono-
tonically decreases for an increasing swarm size. In the experiments
performed with ARGoS 1, the number of objects delivered to the nest
per robot initially increases with the swarm size and it has a peak for
a swarm of 8 robots. We believe this discrepancy is also a consequence
of the different behavior of the robots when entering the TAMs. As
mentioned in Section A.2.1, the previous implementation of the con-
troller was very sensitive to the presence of obstacles, and the robots
were sometimes taking a long time to enter a TAM. A robot taking a

A.2. Published Experiments and Results 161

4 6 8 10 14 18 22 26 30

Number of robots

0
50

10
0

15
0

20
0

25
0

O
bj

ec
ts

 c
ol

le
ct

ed
 p

er
 r

ob
ot

Π = 0 s

● ● ● ●
●

●

●
●

●

●

Algorithm

Never−partition
Always−partition
AdHoc

4 6 8 10 14 18 22 26 30

Number of robots

0
50

10
0

15
0

20
0

25
0

O
bj

ec
ts

 c
ol

le
ct

ed
 p

er
 r

ob
ot

Π = 25 s

● ● ● ●
●

●

●
●

●

●

Algorithm

Never−partition
Always−partition
AdHoc

Figure A.6: Results of the scalability experiment for Π = 0 s (top) and
Π = 25 s (bottom). The plots report, for each algorithm, the number of
objects collected by swarms of different size.

4 6 8 10 14 18 22 26 30

Number of robots

0
25

0
50

0
75

0
10

00

O
bj

ec
ts

 c
ol

le
ct

ed
 p

er
 r

ob
ot

Π = 5 s

●

Algorithm

Never−partition
Always−partition
AdHoc

● ● ● ● ● ● ● ● ●

Figure A.7: Results of the scalability experiment performed with ARGoS 2.
The plot reports, for different swarm sizes, the average number of objects
delivered to the nest per robot. The plot reports the data for Π = 5 s.

162 A. ARGoS 1 Versus ARGoS 2

long time to enter a cache TAM has a stronger negative impact in small
swarms than it has in large ones. Consider, for example, the extreme
case in which there are two robots only (one on each side of the cache).
If the robot that drops objects in the cache takes a long time to enter
a TAM, the robot on the other side is prevented from using the cache
since it is likely to be empty. This behavior impacts the performance
negatively. Analogous situations are less frequent if the the swarm is
composed of more robots. In fact, even if one of the robots takes a long
time to enter a TAM, the remaining robots can still utilize the cache
and it is less likely that the cache gets full or empty.

The behavior of the never-partition and of the AdHoc algorithms
is instead the same across the two implementations. The per-robot
performance of the never-partition algorithm monotonically decreases
for an increasing swarm size, due to growing physical interference. The
individual performance of the robots employing the AdHoc algorithm
initially increases with the swarm size, it reaches a peak, and then
progressively decreases for an increasing swarm size.

Annex B

Supplementary Material

This thesis includes supplementary material that is available in a CD-
ROM, provided as an annex (see final page). The same material is
available online.1 This material can be cited as:

Pini, G. (2013). Towards autonomous task partitioning in
swarm robotics: Experiments with foraging robots, supple-
mentary material. http://iridia.ulb.ac.be/supp/IridiaSupp2013-001

The CD-ROM contains the following material:

Supplementary material for Chapter 5

• Video: Implementation of the cache using TAMs

• Experiments: AdHoc algorithm, parameters selection

• Experiments: Drop objects abandoning statistics

• Experiments: Tested algorithms, parameters selection

• Experiments: Cache usage in time, single runs

Supplementary material for Chapter 6

• Video: Trajectory of a marXbot

• Experiments: Real-robot experimental runs results

• Video: Real-robot run without task partitioning

• Video: Real-robot run with task partitioning

• Experiments: Real-robot and simulation comparison

• Experiments: Effect of odometry noise and swarm size

• Experiments: Cost-based partitioning algorithm, parameters

1http://iridia.ulb.ac.be/supp/IridiaSupp2013-001

163

http://iridia.ulb.ac.be/supp/IridiaSupp2013-001

Bibliography

Agrawal, R. (1995). Sample mean based index policies with O(log n)
regret for the multi-armed bandit problem. Advances in Applied
Probability, 27:1054–1078.

Anderson, C. and Franks, N. R. (2001). Teams in animal societies.
Behavioral Ecology, 12(5):534–540.

Anderson, C. and Ratnieks, F. L. W. (1999). Task partitioning in insect
societies ii: Use of queueing delay information in recruitment. The
American Naturalist, 154(5):536–548.

Arnan, X., Ferrandiz-Rovira, M., Pladevall, C., and Rodrigo, A. (2011).
Worker size-related task partitioning in the foraging strategy of a
seed-harvesting ant species. Behavioral Ecology and Sociobiology,
65(10):1881–1890.

Auer, P., Cesa-Bianchi, N., and Fischer, P. (2002). Finite-time analysis
of the multiarmed bandit problem. Machine Learning, 47(2):235–256.

Auer, P. and Ortner, R. (2010). UCB revisited: improved regret bounds
for the stochastic multi-armed bandit problem. Periodica Mathemat-
ica Hungarica, 61(1–2):55–65.

Beni, G. and Wang, J. (1989). Swarm intelligence in cellular robotic
systems. In NATO Advanced Workshop on Robotics and Biological
Systems, volume 102, Tuscany, Italy.

Bonabeau, E., Dorigo, M., and Theraulaz, G. (1999). Swarm Intelli-
gence: From Natural to Artificial Systems. Santa Fe Institute Studies
in the Science of Complexity. Oxford University Press, New York,
NY.

Bonabeau, E., Theraulaz, G., and Deneubourg, J.-L. (1996). Quantita-
tive study of the fixed threshold model for the regulation of division of
labour in insect societies. Proc. Roy. Soc. London B, 263(1376):1565–
1569.

165

166 Bibliography

Bonani, M., Longchamp, V., Magnenat, S., Rétornaz, P., Burnier, D.,
Roulet, G., Vaussard, F., Bleuler, H., and Mondada, F. (2010). The
marXbot, a miniature mobile robot opening new perspectives for the
collective-robotic research. In Proceedings of the 2010 IEEE/RSJ
International Conference on Intelligent Robots and Systems (IROS
2010), pages 4187–4193. IEEE Press.

Borenstein, J. (1994). The CLAPPER: A dual-drive mobile robot with
internal correction of dead-reckoning errors. In Proceedings of the
1994 IEEE International Conference on Robotics and Automation
(ICRA 1994), volume 4, pages 3085–3090. IEEE Computer Society
Press, Los Alamitos, CA.

Borenstein, J. and Liqiang, F. (1996). Measurement and correction of
systematic odometry errors in mobile robots. IEEE Transactions on
Robotics and Automation, 12(6):869–880.

Bovet, D. P. and Cesati, M. (2005). Understanding the Linux Kernel.
O’Reilly Media.

Brambilla, M., Ferrante, E., Birattari, M., and Dorigo, M. (2013).
Swarm robotics: A review from the swarm engineering perspective.
Swarm Intelligence, 7(1):1–41.

Brutschy, A., Pini, G., Baiboun, N., Decugnière, A., and Birattari, M.
(2010). The IRIDIA-TAM: A device for task abstraction for the e-
puck robot. Technical Report TR/IRIDIA/2010-015, IRIDIA, ULB.

Brutschy, A., Pini, G., and Decugnière, A. (2012a). Grippable objects
for the foot-bot. Technical Report TR/IRIDIA/2012-001, IRIDIA,
ULB.

Brutschy, A., Pini, G., Pinciroli, C., Birattari, M., and Dorigo, M.
(2012b). Self-organized task allocation to sequentially interdepen-
dent tasks in swarm robotics. Autonomous Agents and Multi-Agent
Systems.

Brutschy, A., Tran, N.-L., Baiboun, N., Frison, M., Pini, G., Roli, A.,
Dorigo, M., and Birattari, M. (2011). Costs and benefits of behav-
ioral specialization. In Towards Autonomous Robotic Systems - 12th
Annual Conference (TAROS 2011), volume 6856 of Lecture Notes in
Computer Science, pages 90–101. Springer, Berlin, Germany.

Brutschy, A., Tran, N.-L., Baiboun, N., Frison, M., Pini, G., Roli, A.,
Dorigo, M., and Birattari, M. (2012c). Costs and benefits of behav-
ioral specialization. Robotics and Autonomous Systems, 60(11):1408–
1420.

Bibliography 167

Campo, A. (2011). On the Design of Self-Organized Decision Making in
Robot Swarms. PhD thesis, Université Libre de Bruxelles, Brussels,
Belgium.

Campo, A. and Dorigo, M. (2007). Efficient multi-foraging in swarm
robotics. In Capcarrere, M., Freitas, A. A., Bentley, P. J., Johnson,
C. G., and Timmis, J., editors, Advances in Artificial Life: Pro-
ceedings of the 8th European Conference on Artificial Life (ECAL
2005), volume 4648 of Lecture Notes in Artificial Intelligence, pages
696–705. Springer, Berlin, Germany.

Campos, M., Bonabeu, E., Theraulaz, G., and Deneubourg, J.-L.
(2000). Dynamic scheduling and division of labor in social insects.
Adaptive Behavior, 8(2):83–95.

Cao, Y. U., Fukunaga, A. S., and Kahng, A. B. (1997). Cooperative
mobile robotics: Antecedents and directions. Autonomous Robots,
4(1):1–23.

Carpin, S., Lewis, M., Wang, J., Balakirsky, S., and Scrapper, C.
(2007). USARSim: a robot simulator for research and education. In
Proceedings of the IEEE International Conference on Robotics and
Automation (ICRA 2007), pages 1400–1405, Piscataway, NJ. IEEE
Press.

Cesa-Bianchi, N. and Lugosi, G. (2006). Prediction, Learning, and
Games. Cambridge University Press, Cambridge, UK.

Cormen, T. H., Leiserson, C. E., Rivest, R. L., and Stein, C. (2001).
Introduction to Algorithms, Second Edition. MIT Press, Cambridge,
MA.

Dahl, T. S., Matarić, M. J., and Sukhatme, G. S. (2009). Multi-robot
task allocation through vacancy chain scheduling. Robotics and Au-
tonomous Systems, 57:674–687.

Dorigo, M. and Birattari, M. (2007). Swarm intelligence. Scholarpedia,
2(9):1462.

Dorigo, M., Birattari, M., O’Grady, R., Gambardella, L. M., Mon-
dada, F., Floreano, D., Nolfi, S., Baaboura, T., Bonani, M., Bram-
billa, M., Brutschy, A., Burnier, D., Campo, A., Christensen, A. L.,
Decugnière, A., Di Caro, G., Ducatelle, F., Ferrante, E., Martinez
Gonzales, J., Guzzi, J., Longchamp, V., Magnenat, S., Mathews,
N., Montes de Oca, M., Pinciroli, C., Pini, G., Rétornaz, P., Rey,
F., Roberts, J., Rochat, F., Sperati, V., Stirling, T., Stranieri, A.,

168 Bibliography

Stützle, T., Trianni, V., Tuci, E., Turgut, A. E., and Vaussard, F.
(2011). Swarmanoid, the movie. In Aha, D. and Jhala, A., edi-
tors, AAAI-11, AI Video Competition. AAAI Press. Winner of the
“AAAI-2011 Best AI Video Award”.

Dorigo, M. and Şahin, E. (2004). Guest editorial. Special issue: Swarm
robotics. Autonomous Robots, 17(2–3):111–113.

Dorigo, M., Floreano, D., Gambardella, L. M., Mondada, F., Nolfi, S.,
Baaboura, T., Birattari, M., Bonani, M., Brambilla, M., Brutschy,
A., Burnier, D., Campo, A., Christensen, A. L., Decugnière, A., Di
Caro, G., Ducatelle, F., Ferrante, E., Förster, A., Gonzales, J. M.,
Guzzi, J., Longchamp, V., Magnenat, S., Mathews, N., Montes de
Oca, M., O’Grady, R., Pinciroli, C., Pini, G., Rétornaz, P., Roberts,
J., Sperati, V., Stirling, T., Stranieri, A., Stützle, T., Trianni, V.,
Tuci, E., Turgut, A. E., and Vaussard, F. (2013). Swarmanoid: a
novel concept for the study of heterogeneous robotic swarms. IEEE
Robotics & Automation Magazine. In press.

Dorigo, M. and Stützle, T. (2004). Ant Colony Optimization. MIT
Press, Cambridge, MA.

Drogoul, A. and Ferber, J. (1992). From Tom Thumb to the Dockers:
Some experiments with foraging robots. In Meyer, J.-A., Herbert,
L. R., and Stewart, W. W., editors, Proceedings of the 2nd Interna-
tional Conference on Simulation of Adaptive Behaviour: From Ani-
mals to Animats 2, pages 451–459. MIT Press, Cambridge, MA.

Ducatelle, F., Di Caro, G., Pinciroli, C., Mondada, F., and Gam-
bardella, L. M. (2011). Communication assisted navigation in robotic
swarms: Self-organization and cooperation. In Proceedings of the
2011 IEEE/RSJ International Conference on Intelligent Robots and
Systems (IROS 2011), pages 4981–4988. IEEE Computer Society
Press, Los Alamitos, CA.

Ennals, R., Sharp, R., and Mycroft, A. (2005). Task partitioning
for multi-core network processors. In Compiler Construction, vol-
ume 3443/2005 of Lecture Notes in Computer Science, pages 76–90.
Springer, Berlin,Germany.

Feng, L., Borenstein, J., and Everett, H. R. (1994). “Where am I” Sen-
sors and Methods for Autonomous Mobile Robot Positioning. Uni-
versity of Michigan Press, Ann Arbor, MI.

Fontan, M. S. and Matarić, M. J. (1996). A study of territoriality: The
role of critical mass in adaptive task division. In Maes, P., Matarić,

Bibliography 169

M. J., Meyer, J.-A., Pollack, J., and Wilson, S., editors, Proceedings
of the 4th International Conference on Simulation of Adaptive Be-
haviour: From Animals to Animats 4, pages 553–561. MIT Press,
Cambridge, MA.

Fowler, H. G. and Robinson, S. W. (1979). Foraging by Atta sexdens
(formicidae: Attini): seasonal patterns, caste and efficiency. Ecolog-
ical Entomology, 4(3):239–247.

Frison, M., Tran, N.-L., Baiboun, N., Brutschy, A., Pini, G., Roli, A.,
Dorigo, M., and Birattari, M. (2010). Self-organized task partitioning
in a swarm of robots. In Dorigo, M., Birattari, M., Di Caro, G.,
Doursat, R., Engelbrecht, A. P., Floreano, D., Gambardella, L. M.,
Groß, R. Şahin, E., Stützle, T., and Sayama, H., editors, Proceedings
of the 7th International Conference on Swarm Intelligence (ANTS
2010), volume 6234 of Lecture Notes in Computer Science, pages
287–298. Springer, Berlin, Germany.

Garnier, S., Gautrais, J., and Theraulaz, G. (2007). The biological
principles of swarm intelligence. Swarm Intelligence, 1(1):3–31.

Goldberg, D. (2001). Evaluating the Dynamics of Agent-Environment
Interaction. PhD thesis, University of Southern California, Los An-
geles, CA.

Goldberg, D. and Matarić, M. J. (2002). Design and evaluation of ro-
bust behavior-based controllers for distributed multi-robot collection
tasks. In Balch, T. and Parker, L. E., editors, Robot Teams: From
Diversity to Polymorphism, pages 315–344. A K Peters/CRC Press.

Goss, S., Aron, S., Deneubourg, J.-L., and Pasteels, J. M. (1989).
Self-organized shortcuts in the argentine ant. Naturwissenschaften,
76(12):579–581.

Grabowski, R., Navarro-Serment, L. E., Paredis, C. J. J., and Khosla,
P. K. (2000). Heterogeneous teams of modular robots for mapping
and exploration. Autonomous Robots, (8):293–308.

Gutiérrez, Á., Campo, A., Dorigo, M., Donate, J., Monasterio-Huelin,
F., and Magdalena, L. (2009). Open e-puck range & bearing minia-
turized board for local communication in swarm robotics. In Pro-
ceedings of the 2009 IEEE International Conference on Robotics and
Automation (ICRA 2009), pages 3111–3116, Piscataway, NJ. IEEE
Press.

170 Bibliography

Gutiérrez, A., Campo, A., Monasterio-Huelin, F., Magdalena, L., and
Dorigo, M. (2010). Collective decision-making based on social odom-
etry. Neural Computing & Applications, 19(6):807–823.

Handl, J., Knowles, J., and Dorigo, M. (2006). Ant-based clustering
and topographic mapping. Artificial Life, 12(1):35–61.

Hart, A., Anderson, C., and Ratnieks, F. L. W. (2002). Task parti-
tioning in leafcutting ants. Acta Ethologica, 5:1–11.

Hart, A. G. and Ratnieks, F. L. W. (2000). Leaf caching in Atta
leafcutting ants: Discrete cache formation through positive feedback.
Animal Behaviour, 59(3):587–591.

Helbing, D., Molnár, P., Farkas, I. J., and Bolay, K. (2001). Self-
organizing pedestrian movement. Environment and Planning B:
Planning and Design, 28:361–383.

Hicks, R. W. I. and Hall, E. L. (2000). Survey of robot lawn mow-
ers. In Proceedings of SPIE 4197, Intelligent Robots and Computer
Vision XIX: Algorithms, Techniques, and Active Vision, pages 262–
269. SPIE, Bellingham, WA.

Hongo, T., Arakawa, H., Sugimoto, G., Tange, K., and Yamamoto, Y.
(1987). An automatic guidance system of a self-controlled vehicle.
IEEE Transactions on Industrial Electronics, IE-34(1):5–10.

Hubbell, S. P., Johnson, L. K., Stanislav, E., Wilson, B., and Fowler,
H. (1980). Foraging by bucket-brigade in leaf-cutter ants. Biotropica,
12(3):210–213.

Jeanne, R. L. (1986). The evolution of the organization of work in
social insects. Monitore Zoologico Italiano, 20:119–133.

Jeanne, R. L. (1991). The Social Biology of Wasps, chapter 11, pages
389–425. Cornell University Press, Ithaca, NY.

Johansson, R. and Saffiotti, A. (2009). Navigating by stigmergy: A
realization on an RFID floor for minimalistic robots. In Proceedings
of the 2009 IEEE International Conference on Robotics and Automa-
tion (ICRA 2009), pages 245–252. IEEE Press, Piscataway, NJ.

Kalman, R. E. (1960). A new approach to linear filtering and predic-
tion problems. Transactions of the ASME, ser. D, Journal Of Basic
Engineering, 82(1):35–45.

Bibliography 171

Kalra, N. and Martinoli, A. (2006). A comparative study of market-
based and threshold-based task allocation. In Distributed Au-
tonomous Robotic Systems 7, pages 91–102. Springer, Berlin, Ger-
many.

Kennedy, J. and Eberhart, R. C. (1995). Particle swarm optimization.
In IEEE International Conference on Neural Networks, pages 1942–
1948. IEEE Service Center, Piscataway, NJ.

Koenig, N. and Howard, A. (2004). Design and use paradigms for
Gazebo, an open-source multi-robot simulator. In Proceedings of the
2004 IEEE/RSJ International Conference on Intelligent Robots and
Systems (IROS 2004), pages 2149–2154. IEEE Press.

Krieger, M. J. B. and Billeter, J.-B. (2000). The call of duty: Self-
organized task allocation in a population of up to twelve mobile
robots. Robotics and Autonomous Systems, 30(1–2):65–84.

Kurazume, R. and Hirose, S. (2000). An experimental study of a co-
operative positioning system. Autonomous Robots, 1(8):43–52.

Labella, T. H., Dorigo, M., and Deneubourg, J.-L. (2006). Division of
labor in a group of robots inspired by ants’ foraging behavior. ACM
Transactions on Autonomous and Adaptive Systems, 1(1):4–25.

Lein, A. and Vaughan, R. T. (2008). Adaptive multi-robot bucket
brigade foraging. In Bullock, S., Noble, J., Watson, R., and Bedau,
M. A., editors, Artificial Life XI: Proceedings of the 11th Interna-
tional Conference on the Simulation and Synthesis of Living Systems,
pages 337–342. MIT Press, Cambridge, MA.

Lein, A. and Vaughan, R. T. (2009). Adapting to non-uniform resource
distributions in robotic swarm foraging through work-site relocation.
In Proceedings of the 2009 IEEE/RSJ International Conference on
Intelligent Robots and Systems (IROS 2009), pages 601–606, Piscat-
away, NJ. IEEE Press.

Lerman, K. and Galstyan, A. (2002). Mathematical model of foraging
in a group of robots: effect of interference. Autonomous Robots,
13:127–141.

Lopes, J. F., Forti, L. C., Camargo, R. S., Matos, C. A. O., and
Verza, S. S. (2003). The effect of trail length on task partitioning in
three Acromyrmex species (Hymenoptera: Formicidae). Sociobiology,
42(1):87–91.

172 Bibliography

Lumer, E. and Faieta, B. (1994). Diversity and adaptation in popu-
lations of clustering ants. In Meyer, J.-A. and Wilson, S. W., edi-
tors, Proceedings of the 3rd International Conference on Simulation
of Adaptive Behaviour: From Animals to Animats 3, pages 501–508.
MIT Press, Cambridge, MA.

Magnenat, S., Rétornaz, P., Bonani, M., Longchamp, V., and Mon-
dada, F. (2011). ASEBA: A modular architecture for event-based
control of complex robots. IEEE/ASME Transactions on Mecha-
tronics, 16(2):321–329.

Mathews, N., Christensen, A. L., O’Grady, R., Rétornaz, P., Bonani,
M., Mondada, F., and Dorigo, M. (2011). Enhanced directional self-
assembly based on active recruitment and guidance. In Proceedings of
the 2011 IEEE/RSJ International Conference on Intelligent Robots
and Systems (IROS 2011), pages 4762–4769. IEEE Computer Society
Press, Los Alamitos, CA.

Mayet, R., Roberz, J., Schmickl, T., and Crailsheim, K. (2010).
Antbots: A feasible visual emulation of pheromone trails for swarm
robots. In Dorigo, M., Birattari, M., Di Caro, G., Doursat, R., En-
gelbrecht, A. P., Floreano, D., Gambardella, L., Groß, R. Şahin, E.,
Stützle, T., and Sayama, H., editors, Proceedings of the 7th Interna-
tional Conference on Swarm Intelligence (ANTS 2010), volume 6234
of Lecture Notes in Computer Science, pages 84–94. Springer, Berlin,
Germany.

Michel, O. (2004). Cyberbotics Ltd.—Webots: professional mobile
robot simulation. International Journal of Advanced Robotic Sys-
tems, 1(1):39–42.

Mondada, F., Bonani, M., Raemy, X., Pugh, J., Cianci, C., Klaptocz,
A., Magnenat, S., Zufferey, J.-C., Floreano, D., and Martinoli, A.
(2009). The e-puck, a robot designed for education in engineering.
In In Proceedings of the 9th Conference on Autonomous Robot Sys-
tems and Competitions, pages 59–65. IPCB-Instituto Politécnico de
Castelo Branco.

Mondada, F., Pettinaro, C. G., Guignard, A., Keww, I., Floreano, D.,
Deneubourg, J.-L., Nolfi, S., Gambardella, L. M., and Dorigo, M.
(2004). Swarm-Bot: A new distributed robotic concept. Autonomous
Robots, 17:193–221.

Nolfi, S. and Floreano, D. (2000). Evolutionary Robotics: The Biol-
ogy, Intelligence, and Technology of Self-Organizing Machines. MIT
Press/Bradford Books, Cambridge, MA.

Bibliography 173

Nouyan, S., Groß, R., Bonani, M., Mondada, F., and Dorigo, M. (2009).
Teamwork in self-organized robot colonies. IEEE Transactions on
Evolutionary Computation, 13(4):695–711.

Orians, G. H. and Pearson, N. E. (1979). On the theory of central place
foraging, pages 155–177. Ohio State University Press, Columbus,
OH.

Østergaard, E. H., Sukhatme, G. S., and Matarić, M. J. (2001). Emer-
gent bucket brigading: A simple mechanisms for improving perfor-
mance in multi-robot constrained-space foraging tasks. In Andre, E.,
Sen, S., Frasson, C., and Jörg, P. M., editors, Proceedings of the 5th
International Conference on Autonomous Agents, pages 29–30. ACM
Press, New York.

Parker, C. A. C. and Zhang, H. (2010). Collective unary decision-
making by decentralized multiple-robot systems applied to the task-
sequencing problem. Swarm Intelligence, 4(3):199–220.

Pinciroli, C., Trianni, V., O’Grady, R., Pini, G., Brutschy, A., Bram-
billa, M., Mathews, N., Ferrante, E., Di Caro, G., Ducatelle, F.,
Birattari, M., Gambardella, L. M., and Dorigo, M. (2012). ARGoS:
A modular, parallel, multi-engine simulator for multi-robot systems.
Swarm Intelligence, 6(4):271–295.

Pinciroli, C., Trianni, V., O’Grady, R., Pini, G., Brutschy, A., Bram-
billa, M., Mathews, N., Ferrante, E., Di Caro, G., Ducatelle, F., Stir-
ling, T., Gutiérrez, A., Gambardella, L. M., and Dorigo, M. (2011).
ARGoS: A modular, multi-engine simulator for heterogeneous swarm
robotics. In Proceedings of the 2011 IEEE/RSJ International Con-
ference on Intelligent Robots and Systems (IROS 2011), pages 5027–
5034. IEEE Computer Society Press, Los Alamitos, CA.

Pini, G., Brutschy, A., Birattari, M., and Dorigo, M. (2009a). Inter-
ference reduction through task partitioning in a robotic swarm. In
Filipe, J., Andrade-Cetto, J., and Ferrier, J.-L., editors, Proceed-
ings of the 6th International Conference on Informatics in Control,
Automation and Robotics (ICINCO 2009), pages 52–59. INSTICC
Press, Setùbal, Portugal.

Pini, G., Brutschy, A., Birattari, M., and Dorigo, M. (2009b). Task
partitioning in swarms of robots: Reducing performance losses due to
interference at shared resources. In Cetto, J. A., Filipe, J., and Fer-
rier, J.-L., editors, Informatics in Control, Automation and Robotics,
volume 85 of Lecture Notes in Electrical Engineering, pages 217–228.
Springer, Berlin, Germany.

174 Bibliography

Pini, G., Brutschy, A., Francesca, G., Dorigo, M., and Birattari, M.
(2012a). Multi-armed bandit formulation of the task partitioning
problem in swarm robotics. In Dorigo, M., Birattari, M., Blum, C.,
Christensen, A. L., Engelbrecht, A. P., Groß, R., and Stützle, T.,
editors, Proceedings of the 8th International Conference on Swarm
Intelligence (ANTS 2012), volume 7461 of Lecture Notes in Com-
puter Science, pages 109–120. Springer, Berlin, Germany.

Pini, G., Brutschy, A., Frison, M., Roli, A., Dorigo, M., and Birat-
tari, M. (2011). Task partitioning in swarms of robots: An adaptive
method for strategy selection. Swarm Intelligence, 5(3–4):283–304.

Pini, G., Brutschy, A., Pinciroli, C., Dorigo, M., and Birattari, M.
(2013a). Autonomous task partitioning in robot foraging: An ap-
proach based on cost estimation. Adaptive Behavior, 21(2):117–135.

Pini, G., Brutschy, A., Scheidler, A., Dorigo, M., and Birattari, M.
(2012b). Task partitioning in a robot swarm: Retrieving objects by
transferring them directly between sequential sub-tasks. Technical
Report TR/IRIDIA/2012-010, IRIDIA, Université Libre de Brux-
elles, Brussels, Belgium.

Pini, G., Gagliolo, M., Brutschy, A., Dorigo, M., and Birattari, M.
(2013b). Task partitioning in a robot swarm: A study on the effect
of communication. Swarm Intelligence.

Pini, G. and Tuci, E. (2008). On the design of neuro-controllers for
individual and social learning behaviour in autonomous robots: An
evolutionary approach. Connection Science Journal, 20(2–3):211–
230.

Pini, G., Tuci, E., and Dorigo, M. (2007). Evolution of social and
individual learning in autonomous robots. In Proceedings of the
1st Workshop on Social Learning in Embodied Agents (SLEA), CD-
ROM.

Ratnieks, F. L. W. and Anderson, C. (1999). Task partitioning in insect
societies. Insectes Sociaux, 46(2):95–108.

Rekleitis, I., Dudek, G., and Milios, E. (2001). Multi-robot collabo-
ration for robust exploration. Annals of Mathematics and Artificial
Intelligence, (31):7–40.

Rooks, B. (2001). Robots reach the home floor. Industrial robot: An
international Journal, (28):27–28.

Bibliography 175

Russel, S. J. and Norvig, P. (2009). Artificial Intelligence: a Modern
Approach. Prentice Hall, Englewood Cliffs, NJ.

Şahin, E. (2005). Swarm robotics: From sources of inspiration to do-
mains of application. In Proceedings of the SAB 2004 Workshop on
Swarm Robotics, volume 3342 of Lecture Notes in Computer Science,
pages 10–20. Springer, Berlin, Germany.

Seeley, T. D. (1995). The Wisdom of the Hive. Harvard University
Press, Cambridge, MA.

Shell, D. A. and Matarić, M. J. (2006). On foraging strategies for large-
scale multi-robot systems. In Proceedings of the 2006 IEEE/RSJ
International Conference on Intelligent Robots and Systems (IROS
2006), pages 2717–2723, Pitscataway, NJ. IEEE Press.

Sutton, R. and Barto, A. (1998). Reinforcement Learning, an Intro-
duction. MIT Press, Cambridge, MA.

Vasconcelos, H. L. and Cherrett, J. M. (1996). The effect of wilting on
the selection of leaves by the leaf-cutting ant Atta laevigata. Ento-
mologia Experimentalis et Applicata, 78(2):215–220.

Vaughan, R. T., Stoy, K., Sukhatme, G. S., and Matarić, M. J. (2002).
LOST: Localization-space trails for robot teams. IEEE Transactions
on Robotics and Automation, 18(5):796–812.

Werger, B. B. and Matarić, M. J. (1996). Robotic “food” chains: Exter-
nalization of state and program for minimal-agent foraging. In Maes,
P., Matarić, M. J., Meyer, J. A., Pollack, J., and Wilson, S. W., ed-
itors, Proceedings of the 4th International Conference on Simulation
of Adaptive Behaviour: From Animals to Animats 4, pages 625–634,
Cambridge, MA. MIT Press.

Winfield, A. F. T. (2009). Foraging robots. In Meyers, R. A., editor,
Encyclopedia of Complexity and System Science, pages 3682–3700.
Springer, Berlin, Germany.

	Introduction
	Contributions and Related Publications
	Other Scientific Contributions
	Structure of the Dissertation

	Context and Related Work
	Swarm Intelligence and Swarm Robotics
	Swarm Intelligence and Self-organization
	Swarm Robotics

	Task Partitioning
	The Benefits of Task Partitioning
	Task Partitioning in Artificial Systems

	Task Allocation
	Foraging

	The Approach
	Tasks, Sub-tasks, and Task Partitioning
	Sub-tasks, Amount of Work, and Interfaces
	Strategy
	Autonomous Task Partitioning in Swarms of Robots
	Application to Other Domains
	A Construction Scenario
	A Tasty Scenario

	Summary

	Tools
	The e-puck and the TAM
	The MarXbot
	ARGoS

	Deciding Whether to Use a Fixed Interface
	Description of the Problem
	Experimental Setup
	Application of the Proposed Approach
	The Ad Hoc Algorithm
	The Algorithm
	Experiments and Results
	Performance Evaluation
	Adaptivity to Changes
	Scalability

	Task Partitioning as a Bandit Problem
	Studied Algorithms
	Experiments and Results
	Stationary Environmental Conditions
	Non-stationary Environmental Conditions

	The Use of Communication
	The Communication Protocol
	Experiments and Results
	The Effect of Communication
	Algorithms with epsilon-exploration

	Summary

	Amount of Work Contributed by a Sub-task
	Localization
	Problem Description
	Application of the Proposed Approach
	The Model of the Cost Function
	Estimation of the Costs

	Task Partitioning Algorithms
	The Cost-based Partitioning Algorithm
	The Fixed Algorithms
	The Random Initialization Algorithm

	Experimental Setup
	Experimental Environment
	Behavior and Characteristics of the MarXbot
	Simulation of the System Using ARGoS

	Validation of the System
	Simulation Experiments and Results
	Basic Properties
	Size of the Environment
	Distance to the Source
	Heterogeneity in the Robot Swarm
	Adaptivity to Variable Conditions

	Summary

	Conclusions
	Contributions
	Future Work

	Annexes
	ARGoS 1 Versus ARGoS 2
	Implementation Differences
	Published Experiments and Results
	Performance Evaluation
	Adaptivity to Changes
	Scalability

	Supplementary Material
	Bibliography

