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Abstract

Human-swarm interaction studies how human beings can interact with a
robot swarm—a large number of robots cooperating with each other without
any form of centralized control. In today’s human-swarm interaction litera-
ture, the large majority of the works investigate how human beings can issue
commands to and receive feedback from a robot swarm. However, only a
few of these works study the effect of the interaction with a robot swarm on
human psychology (e.g., on the human stress or on the human workload).
Understanding human psychology in human-swarm interaction is important
because the human psychological state can have significant impact on the
way humans interact with robot swarms (e.g., a high level of stress can cause
a human operator to freeze in the middle of a critical task, such as a search-
and-rescue task).

Most existing works that study human psychology in human-swarm in-
teraction conduct their experiments using robot swarms simulated on a com-
puter screen. The use of simulation is convenient because experimental con-
ditions can be repeated perfectly in different experimental runs and because
experimentation using real robots is expensive both in money and time.
However, simulation suffers from the so-called reality gap: the inherent dis-
crepancy between simulation and reality. It is therefore important to study
whether this inherent discrepancy can affect human psychology—human op-
erators interacting with a simulated robot swarm can react differently than
when interacting with a real robot swarm.

A large literature in human-robot interaction has studied the psycho-
logical impact of the interaction between human beings and single robots.
This literature could in principle be highly relevant to human-swarm inter-
action. However, an inherent difference between human-robot interaction
and human-swarm interaction is that in the latter, human operators interact
with a large number of robots. This large number of robots can affect human
psychology—human operators interacting with a large number of robots can
react differently than when interacting with a single robot or with a small
number of robots. It is therefore important to understand whether the large
number of robots that composes a robot swarm affects human psychology. In
fact, if this is the case, it would not be possible to directly apply the results
of human-robot interaction research to human-swarm interaction.

We conducted several experiments in order to understand the effect of
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the reality gap and the effect of the group size (i.e., the number of robots
that composes a robot swarm) on the human psychological state. In these
experiments our participants are exposed to swarms of robots and are purely
passive—they do not issue commands nor receive feedback from the robots.
Making the interaction passive allowed us to study the effects of the reality
gap and of the group size on the human psychological state without the risk
that an interaction interface (such as a joystick) influences the psychological
responses of the participants (and thus limiting the visibility of both the re-
ality gap and group size effects). In the reality gap experiments, participants
are exposed to simulated robot swarms displayed either on a computer screen
or in a virtual reality environment, and to real robot swarms. In the group
size experiments, participants are exposed to an increasing number of real
robots.

In this thesis, we show that the reality gap and the group size affect the
human psychological state by collecting psychophysiological measures (heart
rate and skin conductance), self-reported (via questionnaires) affective state
measures (arousal and valence), self-reported workload (the amount of men-
tal resource needed to carry out a task) and reaction time (the time needed
to respond to a stimulus). Firstly, we show with our results that our partici-
pants’ psychophysiological measures, affective state measures, workload and
reaction time are significantly higher when they interact with a real robot
swarm compared to when they interact with a robot swarm simulated on
a computer screen, confirming that the reality gap significantly affects the
human psychological state. Moreover, we show that it is possible to mitigate
the effect of the reality gap using virtual reality—our participants’ arousal,
workload and reaction time are significantly higher when they interact with
a simulated robot swarm displayed in a virtual reality environment as op-
posed to when it is displayed on a computer screen. Secondly, we show that
our participants’ psychophysiological measures and affective state measures
increase when the number of robots they are exposed to increases.

Our results have important implications for research in human-swarm in-
teraction. Firstly, for the first time, we show that experiments in simulation
change the human psychological state compared to experiments with real
robots. Secondly, we show that a characteristic that is inherent to the defi-
nition of swarm robotics—the large number of robots that composes a robot
swarm—significantly affects the human psychological state. Finally, our re-
sults show that psychophysiological measures, such as heart rate and skin
conductance, provide researchers with more information on human psychol-
ogy than the information provided by using traditional self-reported measures
(collected via psychological questionnaires).
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Thank you to the generation of IRIDIAns who were there when I ar-
rived and who left during the course of my Ph.D.—it was inspiring seeing
you succeed in your scientific career: Carlo, Eliseo, Giovanni, Arne, Vito,
Manuele, Jérémie. Thanks to the IRIDIAns of “my” generation—I will keep
great memories of all of you: Dj, Gabri, Leslie, Anthony, Lorenzo, Alberto,
Federico, Joe. And thanks to the new generation: Marcolino, Ken, Volker,
Anthoine; IRIDIA is in good hands with you guys.
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Merci à Steph, Nico, Amé, Arnaud et François (dit Bus) pour tous les
moments “off” qui m’ont permis de déconnecter.
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1
Introduction

A swarm robotics system comprises a large number of relatively simple robots
that rely on decentralized control to carry out complex tasks by interacting
and cooperating with each other. Swarm robotics systems have three main
desirable properties: i) robustness to individual failures, ii) scalability in
the number of robots, and iii) flexibility to the environment in which they
operate.

To date, swarm robotics has been an active cutting edge research field
on which millions of euros are spent annually. For example, the Euro-
pean Union has funded numerous projects such as Swarm-Bots (Dorigo,
2001–2005), I-SWARM (Seyfried, 2004–2008), Swarmanoid (Dorigo, 2006–
2010), GUARDIANS (Penders, 2006–2010), SYMBRION (Winfield, 2008–
2013), sFly (Scaramuzza, 2009–2012), ASCENS (Wirsing, 2010–2015), E-
Swarm (Dorigo, 2010–2015), CoCoRo (Schmickl, 2011–2014), DiODE (Mar-
shall, 2015–2020), Flora Robotica (Hamann, 2015–2019) and DEMIURGE (Bi-
rattari, 2016–2021).
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CHAPTER 1. INTRODUCTION

Swarm robotics systems are well suited for real world applications such
as search-and-rescue, demining, harvesting, grass mowing or even construc-
tion. However, swarm robotics is still confined to research laboratories. A
critical challenge to tackle in order to make swarm robotics systems ready
for real world applications is enabling humans to interact with robot swarms.
Human-swarm interaction (i.e., the interaction between humans and robot
swarms) is vital for real world applications because swarms of robots will
never be fully autonomous. Humans usually have a high-level understand-
ing of a task, while a robot swarm only has a low-level understanding of the
task it carries out. This high-level understanding can be leveraged by human
operators to take real-time and ethical decisions that could not be taken by
a robot swarm. In a search-and-rescue task for instance, a human operator
can give priority to sites in which there is higher chance of finding victims.
This decision could not be taken by a robot swarm because it does not have
a high-level understanding of the task. And even if it had this high-level
understanding, this decision could not be taken by a robot swarm for ethical
reasons (this decision could lead to the situation where victims would not be
found, or found too late, resulting in loss of human lives).

An important step towards an effective human-swarm interaction sys-
tem is to understand to what extent the interaction with a robot swarm
impacts human psychology. Understanding the impacts of the interaction
with an interactive system—and in the case of this thesis, with a swarm
robotics system—on human psychology is essential for two reasons (Carroll,
1997). Firstly, it allows researchers to have a global comprehension of hu-
mans interacting with a robot swarm. This global comprehension can be
used by researchers to frame the development of future human-swarm inter-
action systems. Secondly, it allows researchers to evaluate the usability of
human-swarm interaction systems. In the current human-swarm interaction
literature, the study of the impacts of the interaction with a robot swarm on
human psychology is largely ignore.

The goal of this thesis is to have a first understanding of human psy-
chology in human-swarm interaction. As we see in Chapter 2, only a few
works study human psychology in human-swarm interaction research. These
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works, moreover, are conducted in simulation—a group of participants in-
teract with a simulated robot swarm, in a simulated environment, displayed
on a computer screen. In the human-robot interaction literature (presented
in Chapter 2), however, when human operators interact with a robotics sys-
tem in simulation, their psychological reactions are significantly different
than when they interact with a real robotics system. Before conducting
any human-swarm interaction experiments, therefore, it is important to un-
derstand whether simulation and reality also provoke different psychological
reactions in the context of human-swarm interaction. In this thesis, we study
the effect of interacting with a simulated robot swarm and with a real robot
swarm on human psychology (henceforth referred to as the reality gap). We
hypothesize that when humans interact with a robot swarm in simulation,
their psychological responses are lower than when they interact with a real
robot swarm. By confirming this hypothesis, we would show that the current
methodology to conduct human-swarm interaction experiments is flawed and
that human-swarm interaction experiments should be conducted with real
robots.

In human-robot interaction, researchers already studied the psychological
effects of the interaction between a human operator and a single robot (see a
selection of studies in Chapter 2). The results of the experiments conducted
in human-robot interaction could be significantly pertinent to human-swarm
interaction. However, there is a fundamental difference between human-robot
interaction and human-swarm interaction: in human-swarm interaction, hu-
man operators interact with a large number of robots. As of today, we do
not know whether this large number of robots—a characteristic inherent to
the definition of swarm robotics—could affect human psychology. In this
thesis, we study the effect of the increasing number of robots on human psy-
chology. We hypothesize that when humans are exposed to a large number
of robots, their psychological reactions are higher than when they are ex-
posed to a single robot, or to a smaller group of robots. If this is the case,
there would be significant implications for research in human-swarm interac-
tion. Since the large number of robots is inherent to the definition of swarm
robotics, it would not make any sense to reduce the number of robots in order
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CHAPTER 1. INTRODUCTION

to decrease the human operators’ psychological responses. Researchers who
propose novel interaction interfaces, therefore, should focus their efforts on
developing interaction interfaces that do not increase even more the human
operators’ psychological responses.

In this thesis, we study the human psychological state by analysing a
combination of objective and subjective measures. Objective measures are
measures that can not be consciously modified by humans. In this thesis,
objective measures are psychophysiological measures (heart rate and skin
conductance) and reaction time measures. Subjective measures are measures
that a participant can consciously modify because they are reported via a
questionnaire (the participants may decide not to report the truth). In this
thesis, subjective measures are affective state measures (arousal and valence)
and workload measure (see Chapter 3 for a definition of each of these mea-
sures).

In order to confirm the hypothesis that the reality gap affects the hu-
man psychological state, we present two experiments in which we compare
the psychological state of a group of participants interacting with real robot
swarms and with simulated ones. We show that the reality gap effect sig-
nificantly affects our participants psychological state—our participants’ psy-
chophysiological measures, affective state measures, workload and reaction
time measures are significantly higher when they interact with a real robot
swarm compared to with a simulated robot swarm. Moreover, we propose
virtual reality as an alternative to computer-based simulation to mitigate the
reality gap effect—we show that some of the psychological reactions (arousal,
reaction time and workload) of our participants are significantly higher when
they interact with simulated robot swarms in a virtual reality environment
compared to with simulated robot swarms displayed on a computer screen.

In order to confirm the hypothesis that the number of robots (the group
size) affects the human psychological state, we present an experiment in
which a group of participants interact with an increasing number of robots.
In this experiment, we avoid the reality gap effect by conducting the exper-
iment with swarms of real robots. We show that the greater the number
of robots, the more the human psychological state is affected—our partici-
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1.1. THESIS STRUCTURE AND RELATED SCIENTIFIC
CONTRIBUTIONS

pants’ psychophysiological and affective state measures are higher when they
interact with the highest number of robots. These results have important
implications for research in human-swarm interaction, as the large number
of robots that compose a robot swarm is an inherent characteristic of swarm
robotics.

In this thesis, we study the reality gap effect and the group size effect in a
specific form of interaction—in a passive interaction. In a passive interaction,
human operators are only exposed to a swarm of robots and do not issue any
commands to nor receive any feedback from a swarm of robots. We decided
to use passive interaction because it allows us to isolate the reality gap effect
and the group size effect from potential confounding factors that would be
due to an additional interaction interface (e.g., a joystick).

1.1 Thesis Structure and Related Scientific Con-
tributions

In this section, we describe the structure of this manuscript, and present the
related scientific articles published in international conferences and journals.

In Chapter 2, we first review the existing literature on human-swarm in-
teraction. Then, we review the related literature to our research on the effect
of the reality gap. We also review the literature in human-robot interaction
that contains experiments in which psychophysiological measures are used.
Finally, we review the literature related to the effect of the robot group size
on the human psychological state.

In Chapter 3, we describe the materials and methods used to develop
and analyse our experiments. Firstly, we present the robotic platform used
in our experiments, the experimental environments and the software used to
simulate robot swarms. Secondly, we present the measures and the tools that
we used to analyse our experiments.

In Chapter 4, we present two experiments that we conducted in order
to understand what the effect of the reality gap is on human psychology.
This chapter is based on two scientific articles published in an international
journal and in an international conference:
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CHAPTER 1. INTRODUCTION

• G. Podevijn, R. O’Grady, C. Fantini-Hauwel, M. Dorigo. Investigat-
ing the Effect of the Reality Gap on the Human Psychophysiological
State in the Context of Human-swarm Interaction. PeerJ Computer
Science, 2:e82, 2016.

• G. Podevijn, R. O’Grady, C. Fantini-Hauwel, M. Dorigo. Human
Responses to Stimuli Produced by Robot Swarms - The Effect of the
Reality Gap on Psychological State. In Proceedings of the 13th Inter-
national Symposium on Distributed Autonomous Robot Systems, DARS
2016, Springer, in press.

In Chapter 5, we present an experiment conducted with a robot swarm
composed of up to 24 real robots. In this study, we show that the number
of robots in a robot swarm has significant impacts on human psychology.
The results presented in this chapter have been published in an international
journal:

• G. Podevijn, R. O’Grady, N. Mathews, A. Gilles, C. Fantini-Hauwel,
M. Dorigo. Investigating the Effect of Increasing Robot Group Sizes on
the Human Psychophysiological State in the Context of Human-swarm
Interaction. Swarm Intelligence, 10(3), pp. 193–210, Springer, 2016.

In Chapter 6, we discuss the limitations of our research. We propose
several future work directions in order to overcome these limitations and
present our conclusions.

1.2 Other Scientific Contributions

Together with Prof. Marco Dorigo and Dr. Rehan O’Grady, we started to
study human-swarm interaction during my Master’s thesis at IRIDIA. During
the first year of my doctoral studies, we published two papers based on the
materials of my Master’s thesis:

• G. Podevijn, R. O’Grady, and M. Dorigo. Self-organised Feedback in
Human-swarm Interaction. In Workshop on Robot Feedback in Human-
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1.2. OTHER SCIENTIFIC CONTRIBUTIONS

Robot Interaction: How to Make a Robot Readable for a Human Inter-
action Partner, Ro-Man 2012, Paris, France, 2012.

• G. Podevijn, R. O’Grady, Y. Nashed, and M. Dorigo. Gesturing at
Subswarms: Towards Direct Human Control of Robot Swarms. In Pro-
ceedings of the Fourteenth Annual Conference on Towards Autonomous
Robotic Systems, TAROS 2013, pp. 390–403, volume 8069 of LNCS,
Springer, 2013.

In the first paper, we proposed to leverage the same self-organised mech-
anisms used in swarm robotics in order for a swarm of robots to provide a
human operator with meaningful feedback. We named this type of feedback
self-organised feedback. In the second paper, we presented a framework that
enables interaction between human beings and robot swarms. In this paper,
the human operator occupies the same space as the robots, and can engage
in bi-directional communication with the robots (i.e., the human operator
can issue commands to the robots and can receive feedback from the robots)
without the need for any intermediate interface such as a graphical user in-
terface. The framework presented in this paper is based on the idea that the
human operator should be able to interact with a swarm of robots as if it
were a single entity. We developed a gesture-based interaction interface for
human operators to issue commands to robot swarms. These commands are
converted into meaningful individual commands by distributed algorithms
running on each robot. In this paper, we validated the proposed framework
by conducting an experiment in which 18 participants had to guide simu-
lated robots to complete a resource allocation scenario. We also validated
the framework by conducting an experiment with real robots.

During my four years at IRIDIA, I also had the opportunity to collaborate
with Dr. Mauro Birattari and Mr. Gianpiero Francesca. We collaborated on
the analysis of AutoMoDe. AutoMoDe is an approach proposed by G. Francesca
and M. Birattari to automatically design control software for robot swarms.
This collaboration resulted in the publication of a conference paper and of a
journal paper:
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CHAPTER 1. INTRODUCTION

• G. Francesca, M. Brambilla, A. Brutschy, L. Garattoni, R. Miletitch,
G. Podevijn, A. Reina, T. Soleymani, M. Salvaro, C. Pinciroli, V. Tri-
anni, and M. Birattari. An Experiment in Automatic Design of Robot
Swarms: AutoMoDe-Vanilla, EvoStick, and Human Experts. In Pro-
ceedings of the Ninth International Conference on Swarm Intelligence,
ANTS 2014, pp. 25–37, volume 8667 of LNCS, Springer, 2014.

• G. Francesca, M. Brambilla, A. Brutschy, L. Garattoni, R. Miletitch,
G. Podevijn, A. Reina, T. Soleymani, M. Salvaro, C. Pinciroli, F.
Mascia, V. Trianni, and M. Birattari. AutoMoDe-Chocolate: A Method
for the Automatic Design of Robot Swarms that Outperforms Humans.
Swarm Intelligence, 9(2–3):125–152, Springer, 2015.

During this collaboration, I acted, together with other Ph.D. students of
IRIDIA, as a human expert in the programming of control software for robot
swarms. In these papers, the control software produced by two specializa-
tions of AutoMoDe (i.e., AutoMoDe-Vanilla and AutoMoDe-Chocolate) were
compared to the control software produced by human experts and by other
automatic design approaches (e.g., EvoStick). Results have shown that while
AutoMoDe-Vanilla is not able to outperform human experts (but is able to
outperform other automatic design approaches), AutoMoDe-Chocolate (an
improved version of AutoMoDe-Vanilla) performs better than human ex-
perts in the design of control software for robot swarms.

I also had the opportunity to co-supervise the Master’s thesis of a student
from the Faculté des Sciences Appliquées. Together with Dr. Andreagiovanni
Reina (Ph.D. student at that time) and Dr. Mauro Birattari, we defined an
original research idea in human-swarm interaction and we co-supervised the
student’s research during his final academic year.

• Anthony Debruyn. Human-Swarm Interaction: An Escorting Robot
Swarm that Diverts a Human Away from Dangers one Cannot Perceive.
M.Sc. Thesis in Computer Science Engineering, Université Libre de
Bruxelles, Belgium, 2015.
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2
Context and Related Literature

In this chapter, we describe the context of the research presented in
Chapter 4 and Chapter 5. In Section 2.1, we review the current literature
in human-swarm interaction. As we will see, few of the works presented in
this section conducted experiments with participants and the majority of the
works that conducted experiments with participants used simulated robots
in a simulated environment. Moreover, few of the works that conducted
experiments with participants have investigated the psychology of human
operators interacting with a robot swarm.

Due to the reality gap effect, the psychological state of the participants
conducting an experiment in simulation can be biased. To date, there is
no work in the human-swarm interaction literature (other than our work
presented in Chapter 4) that investigates the effect of the reality gap on the
human psychological state. The effect of the reality gap, however, is studied
when humans interact with a single robot—with a service robot or with a
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companion robot for instance. In Section 2.2, we review these works.
In this thesis, we study the human psychological state by using psy-

chophysiological measures (see Chapter 3). Psychophysiological measures
have been used in a single human-swarm interaction study other than our
studies, but have been used more frequently in human-robot interaction to
investigate the human psychophysiological state when humans interact with
a single robot. In Section 2.3, we review these studies.

We also present the first work in human-swarm interaction that studies
the effect of the number of robots on the human psychophysiological state.
Following the conclusions of our research on the reality gap, we conducted
an experiment with swarms of real robots (see Chapter 5). The effect of
the number of robots was already studied in human-swarm interaction and
in human multi-robot interaction. However, these works did not use psy-
chophysiological measures and did not use real robots. In Section 2.4, we
review these works.

2.1 Human-swarm Interaction

The decentralized nature of a swarm robotics system along with the large
number of robots that compose a swarm robotics system make the interac-
tion with these systems challenging. In the last five years, the challenges
encountered during the interaction between humans and robot swarms have
motivated researchers to propose novel approaches to interacting with robot
swarms. Today, human-swarm interaction has become an active and inde-
pendent field of research.

As the remaining of this section shows, today’s human-swarm interaction
literature is very scattered. There are several research directions and within
each direction, the literature shows a disparity of both the results and the
methodology used to obtain these results. A reason for this disparity is that,
as of today, there is no concrete real world applications of swarm robotics.
It is not clear how swarms of robots are going to be used to carry out real
world tasks. And without a clear understanding of the use of swarm robotics
systems, it is extremely difficult to understand how humans are going to
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interact with these systems.

In this section, we review the different research directions in human-
swarm interaction. In contrast to the survey of Kolling et al. (2016), we
devote particular attention to researches that i) validate their approaches
with experiments in simulation or with experiments with real robots and
ii) study the impacts of their approaches on the human psychological state.
At the end of this section, we summarize in Table 2.1 the researches that
validated their approach by conducting experiments with a group of partici-
pants (with simulated robots or with real robots) and those that studied the
psychological impact of their approach.

To the best of our knowledge, there is only one research in human-swarm
interaction that studied the human psychological state with psychophysi-
ological measures (Karavas and Artemiadis, 2015). In this research, the
authors investigated the effect of the swarm’s cohesion on the human elec-
troencephalographic (EEG) activity. The authors conducted an experiment
with two participants. In this experiment, the participants had to watch
a simulated robot swarm moving from one edge of a computer screen to
another. The participants conducted the experiment multiple times with
different swarm’s cohesions. In each experiment, after a certain amount of
time, the robot swarm changed its direction of motion. The participants were
asked to press a button when the robot swarm’s direction of motion changed.
The authors measured the participants’ reaction time to press the button and
the participants’ EEG activity. The results show that the swarm’s cohesion
affected both the participants’ reaction time and the participants’ EEG activ-
ity. Unfortunately, the experiment was conducted with a very small number
of participants, did not include any subjective measures (i.e., psychological
questionnaires) and was conducted in simulation only.

We organised the literature in human-swarm interaction into five cat-
egories: robot swarm control, interaction interfaces, bandwidth limitation
and neglect benevolence, level of automation, and formal verification. In the
remaining of this section, we review the literature related to each of these
five categories.
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2.1.1 Robot Swarm Control

A great deal of attention has been given to controlling (e.g., guiding) a robot
swarm. Two well studied methods for controlling a robot swarm are based
on the control of a leader robot or multiple leader robots. In these methods,
a human operator controls a single robot or a subset of robots in order
to influence the other robots of the robot swarm (i.e., robots that are not
controlled by the human operator).

To the best of our knowledge, there is no study that compares these two
control methods. The following works show that there is no consensus on
which control method (a single robot or a subset of robots) is more appro-
priate to control a robot swarm.

Bashyal and Venayagamoorthy (2008) designed an experiment based on
a radiation source localization problem (i.e., a swarm of robots must detect
the localization of a radiation source). The authors conducted an experiment
with 5 participants. In this experiment, a human operator is asked to select
and guide a leader robot in order for the robot swarm to explore seven key-
locations defined in an environment. These key-locations represent seven
areas in which radiation sources could be present. The goal is for the human
operator to reach these seven key-locations as fast as possible. The results of
the experiment showed that when a human operator can guide a leader robot
from a robot swarm, the seven key-locations were reached 50% faster than
when the robot swarm was fully autonomous. The experiment was conducted
in simulation only.

Walker et al. (2013a) studied the effect of two propagation methods when
a human operator guides a leader robot (i.e., methods to propagate a com-
mand issued by a human operator to all the robots of a swarm). In their
work, a human operator guides a leader robot by changing the leader robot’s
velocity and heading through a graphical interface. They compare the so-
called flooding propagation method to the so-called consensus propagation
method. In the flooding propagation method, the robots of the swarm con-
trolled by a human operator all set their velocity and heading to the leader
robot’s velocity and heading. In the consensus propagation method, the
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robots of the swarm all set their velocity and heading to the average veloc-
ity and heading of their neighbours. The authors conducted an experiment
with 18 participants. Each participant had to guide a robot swarm towards
specific locations of an environment with the flooding propagation method
and with the consensus propagation method. The authors showed that the
participants were able to reach more locations with the flooding propaga-
tion method than with the consensus propagation method. An analysis of
the leader’s position in the swarm also showed that the participants had
better results (i.e, they reached more locations) when the leader robot was
positioned closer to the front of the swarm. The authors also evaluated the
effect of the propagation method on the participants’ psychological state by
measuring the participants’ workload (see Section 3.2.3). The participants’
workload was lower in the flooding propagation method than in the consensus
propagation method. The experiment was conducted in simulation only.

Walker et al. (2014) suggested to use multiple leader robots that are
dynamically selected (i.e., the leader robots can automatically change over
time). The authors conducted an experiment with 17 participants. As
in Walker et al. (2013a), the participants of the experiment had to guide
a robot swarm in order to reach different locations of an environment. In
contrast to Walker et al. (2013a), only the consensus propagation method
was used. In this experiment, the authors showed that when each robot of
the swarm was 1-hop away from a leader robot (i.e., each non-leader robot
is the neighbour of a leader robot), the performance of the human operator
(i.e., reaching specific locations in an environment) was higher than when
each robot was 2-hop or 3-hop away from a leader robot (i.e., there are at
most 2 or 3 other robots between a non-leader robot and a leader robot).
The experiment was conducted in simulation only.

Kapellmann-Zafra et al. (2016b) designed an experiment in which a hu-
man operator helps a robot swarm to aggregate in a location of an obstructed
environment. The human operator can control a single leader robot at a time.
In this experiment, the operator controls the leader robot via a graphical in-
terface. The operator can control the leader robot’s motion or can change
its behaviour (e.g., aggregation, follower, gossip). When the leader robot’s
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behaviour is changed, the behaviour is broadcasted to the other robots of
the robot swarm. The graphical interface provides the operator with very
limited feedback about the robot under control (i.e., either camera feedback
or proximity sensor values). The authors conducted an experiment with 42
participants. The authors used the number of robots in the largest aggre-
gated group of robots as a performance metric. The results showed that,
untrained participants (i.e., participants with no prior training with the ex-
periment) without access to the environment’s global state (i.e., bird’s eye
view of the environment) did not have a significant influence on the robot
swarm. When the untrained participants did have access to the global state
of the environment, however, they had a significant influence on the robot
swarm. The results also showed that trained participants (i.e., participants
with prior training with the experiment) and expert participants (i.e., devel-
opers of the experimental software) without access to the global state of the
environment had a significant influence on the robot swarm. The experiment
was conducted in simulation only.

De la Croix and Egerstedt (2012) studied the effect of different initial
robot swarm’s network topologies when a human operator has to change the
initial robot swarm’s network topology to either an ellipse or to a wegde
by controlling a single leader robot at a time. The authors conducted an
experiment with 18 participants. The authors used the mean least square
(mean LSQ) metric to measures the final formation of the robot swarm. They
also measured the participants’ workload and collected the participants’ self-
assessed difficulty rating (i.e., a score between 0 and 20 representing the
difficulty of the task). The results showed that the initial network topology of
a robot swarm had a significant impact on the human operator’s performance
(assessed by the mean LSQ metric), workload and self-assessed difficulty
rating. The experiment was conducted in simulation only.

Salomons et al. (2016) presented a research in which a human operator
can manage a robot swarm via a leader robot (i.e., assign a task to the robot
swarm, request the robot swarm to count how many robots are in the robot
swarm, create subgroups of robots). In this research, the leader robot is
either selected randomly or is selected by a human operator (by providing
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a robot’s identification number). Once a leader is selected, the other robots
of the robot swarm (i.e., the non-leader robots) stop and wait for incoming
commands (e.g., a new task). The authors did not conduct any experiment
with participants. However, they validated their approach with real robots.

Other works by Goodrich et al. provided a more theoretical approach to
controlling a swarm with leader robots. Goodrich et al. (2012a,b) identified
different types of robots—human aware and human blind. Human aware
robots are either robots that are controlled by a human operator only, or
robots that are controlled by a human operator and influenced by nearby
robots. Human blind robots are influenced only by nearby robots. The
authors also studied the effect of controlling a robot swarm with two types of
leaderships—lead by attraction (also called leader-style) and lead by repulsion
(also called predator-style). None of these works conducted an experiment
with participants and none of these works conducted an experiment with real
robots.

Controlling a robot swarm with a leader robot or with multiple leader
robots is not the only approach that has been investigated in human-swarm
interaction. To the best of our knowledge, among the works that use another
approach to controlling a robot swarm, only one conducted an experiment
with participants.

Kolling et al. (2013) proposed and compared two control methods—
selection and beacon control. With the selection control method, a human
operator selects a robot swarm (e.g., by drawing a rectangular zone around
a robot swarm in a graphical interface) and then controls the selected robot
swarm. With the beacon control method, a human operator exerts an indirect
influence on the robot swarm by adding virtual beacons in the environment
(via a graphical interface). The authors conducted an experiment with 32
participants. The participants had to use each control method (i.e., selec-
tion and beacon) in order to collect information placed at different locations
of an environment. Each information was assigned to a specific score. The
sum of the scores assigned to the information collected by the participants
was used as a performance metric. The participants performed the exper-
iment in different types of environments (with and without obstacles) and
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with a different number of robots (from 50 to 200). The results showed that
the participants performed the experiment better with the selection control
method than with the beacon control method. Participants also seemed to
have better performance with the beacon control method when the number
of robots in the robot swarm increased. The experiment was conducted in
simulation only.

The following works did not conduct any experiment with participants.
Hexmoor et al. (2005) proposed a control method for Unmanned Aerial Ve-
hicles (UAV) based on the setting of different UAV’s parameters. The pa-
rameters are conformity (how quickly a UAV reacts to a human operator’s
command), sociability (how is a UAV influenced by nearby UAVs), commit-
ment (how committed to a task a UAV is) and disposition (to what extent
a UAV abandons a task). Their approach was tested in simulation only.
Walter et al. (2006) also proposed a control method based on parameter set-
tings. In this work, the authors allow human operators to change parameters
associated to “virtual pheromones” (i.e., a virtual pheromone encodes data
exchanged between robots) in order to influence a robot swarm (e.g., robots
can be attracted or repelled by virtual pheromones). A graphical interface
allows a human operator to change the virtual pheromones’ parameters such
as evaporation rate and propagation rate. Their approach was tested in sim-
ulation only. Goodrich et al. (2011) and Kira and Potter (2009) investigated
the possibility of modifying parameters such as repulsion and attraction (to
nearby robots) and the radius of a robot swarm. Kira and Potter (2009) val-
idated their approach with six real robots. Ayanian et al. (2014) presented
a control method that allows a human operator to move and scale a virtual
prism that surrounds a robot swarm. The human operator moves and scales
the virtual prism using a tablet interface. The results of the prism transfor-
mations are transferred to the robot swarm in order for the robots to move
accordingly. The authors validated their approach with three real robots.

Controlling a robot swarm is important because swarms of robots are
not fully autonomous—for instance, humans must have the possibility to
guide a robot swarm to its task locations. Unfortunately, the literature on
control methods in human-swarm interaction currently fails at identifying
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which control methods are the most appropriate. Future work should focus
on comparing existing control methods and identifying whether they are
appropriate in certain conditions more than in others.

2.1.2 Interaction Interfaces

Another research direction that received significant attention is the interfaces
that allow human operators to interact with a robot swarm. These interfaces
render it possible for a human operator to issue commands to and receive
feedback from a robot swarm or a subgroup of a robot swarm. Of the 15
works presented below, only 4 conducted experiments with participants.

The majority of the works presented in this section address technical is-
sues related to the interaction interfaces (e.g., how can a robot swarm decode
gestures, how can a human select a group or a subgroup of robots). However,
with the exception of Podevijn et al. (2013), none of the following works study
the interaction interface’s usability. Studying the interaction interface’s us-
ability is vital for three reasons. Firstly, it enables the implementation of
interaction interfaces that can be used by human operators with effective-
ness, efficiency and satisfaction (ISO, 2000). Secondly, it can help identify for
what types of interaction an interface is better at. For instance, a gesture-
based interface can be less efficient for action commands (e.g., selecting a
particular group of robot in a robot swarm), while a gesture-based interface
can be more efficient for analog commands (e.g., “go faster”) (Podevijn et al.,
2013). Finally, it can help decrease human psychological reactions such as
the workload (Gerhardt-Powals, 1996).

Different types of interaction interfaces are studied in the literature and
some works propose a combination of multiple interaction interfaces (i.e.,
multimodal human-swarm interaction interfaces). The interaction interfaces
can be divided into five categories: gesture interfaces, face engagement in-
terfaces, voice interfaces, haptic interfaces and graphical interfaces (both
displayed on a computer screen or in a dedicated headset).

Giusti et al. (2012) presented a hand gesture-based interaction system.
The goal of their work is to allow robots to decode hand gestures. Each robot
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decodes a human’s hand gesture. Because of sensing noises and because the
robots are placed in different positions, different robots do not necessarily
decode the same hand gesture. After each robot individually decodes a hand
gesture, a distributed consensus algorithm is used in order for all the robots
to agree on the hand gesture. The authors tested their hand gesture-based
interface on real robots but no experiment with participants was conducted.
Nagi et al. (2015) developed a novel distributed consensus algorithm for all
the robots of a swarm to agree on a hand gesture.

Nagi et al. (2012) extended Giusti et al. (2012) by focusing on a machine
learning algorithm that allows robots to learn hand gestures directly from a
human operator (instead of having learned hand gestures based on an offline
large data set of hand gesture pictures).

In these last studies, the authors have validated their algorithms with real
robots, but no experiment with participants was conducted. The following
study conducted an experiment with participants.

Podevijn et al. (2013) presented a framework that enables direct com-
munication between human operators and robot swarms. The authors use a
gesture-based interaction interface for human operators to issue commands
to a robot swarm. They evaluated their framework with an experiment con-
ducted with 18 participants. The experiment was based on a resource allo-
cation and guidance scenario. In this scenario, the participants had to move
selected robot groups of different sizes to specific locations in an environ-
ment. The authors evaluated the time taken by the participants to complete
the experiment and asked the participants to evaluate the gesture-based in-
teraction with a usability questionnaire. The experiment was conducted in
simulation but the authors validated their framework with real robots.

Researchers found that some interaction interfaces are more appropriate
to a task than to another. For instance, face engagement (i.e., looking at
a robot) is more appropriate to select a robot or a group of robots, while
voice recognition is more appropriate to provide commands to the robots. In
the following, we present the works that propose multimodal human-swarm
interaction interfaces (i.e., a combination of different interaction interfaces).

Pourmehr et al. (2013) presented a multimodal human-swarm interaction
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interface to select flying robots with face engagement and by speaking the
number of robots the operator wants to select. In order to increase the size
of a selected group, the authors also proposed a method for adding robots to
a selected group with face engagement. The study was validated with real
robots but no experiment with participants was conducted.

In the same vein, Couture-Beil et al. (2010) used face engagement for
selecting an individual robot from a group of robots and used gesture recog-
nition for giving commands to the selected robot. Monajjemi et al. (2013)
extended Couture-Beil et al. (2010) by allowing a human operator to select
multiple robots by face engagement and gesture recognition. Nagi et al.
(2014) also proposed a combination of face detection and hand gestures to
select a single UAV or a group of UAVs. The feasibility of the four afore-
mentioned studies have been tested on real robots but no experiment with
participants was conducted.

Haas et al. (2011) proposed a multimodal human-swarm interaction in-
terface in which a human operator can issue commands to a robot swarm
via a speech-based interface (i.e., voice recognition) and via a touched-based
interface (i.e., graphical interface). The commands issued by a human oper-
ator modify the robot swarm’s environment (i.e., they place different types
of objects in the robot swarm’s environment). The authors conducted an
experiment with 12 participants. In this experiment, each command had to
be issued by speaking out loud the type of object (e.g., waypoints, targets,
hot spots) to be placed in the robot swarm’s environment and by touching on
a screen the location in the environment where the object had to be placed.
The participants could issue a command by first speaking out loud the type
of object and then by touching the location on the screen, or by first touching
the location on the screen and then speaking out loud the type of object. The
results showed that the majority of the participants started by touching the
location on the screen. The results also showed that the temporal binding
(i.e., time difference between speaking out loud the object and touching the
location) was shorter when the participants started by touching the location
first. The experiment was conducted in simulation only.

Kapellmann-Zafra et al. (2016a) proposed a multimodal human-swarm
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interaction with a Google Glass device. In this work, a human operator
wears a Google Glass device in order to control a single robot (i.e., a leader).
The goal is for the human operator to help a robot swarm move an object
in an environment. The Google Glass device allows a human operator to
select a leader robot and to move the leader robot in the environment via
touch and voice commands. The authors did not conduct any experiment
with participants. They, however, used real robots in order to validate their
approach.

Haptic devices are useful for human operators to receive feedback from a
robot swarm while controlling a robot swarm. There are two researches that
investigate the use of haptic devices to control a robot swarm and receive
feedback from a robot swarm.

Nunnally et al. (2013) conducted an experiment with 32 participants. In
this experiment, the participants had to guide a robot swarm to different
locations in an environment. The participants were divided into two groups.
In one group, haptic feedback and visual feedback (in a graphical interface)
were provided to the participants during the experiment. In the other group,
only visual feedback was provided to the participant. The feedback repre-
sented the aggregate repulsive force of each individual robot (i.e., repulsive
force from obstacles or nearby robots). The authors used the environment
coverage as a metric of performance (the more the swarm covered the en-
vironment, the better the performance). The authors also administered a
questionnaire to the participants in order for the participants to subjectively
report the utility of the haptic feedback. The results showed that partici-
pants with both types of feedback (i.e., haptic and visual) performed better.
The questionnaire’s results also showed that the participants evaluated the
haptic feedback as being useful. The experiment was conducted in simulation
only.

Setter et al. (2015) focused on the mapping between the manipulability
(a number that provides information on whether it is easy to control a robot
swarm or not) and the haptic force feedback (i.e., a function of manipulability
providing force feedback). The authors investigated the difference between
a linear mapping and four exponential mappings (with different values of a
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parameter that controls the force rate of change). The authors conducted
an experiment with 10 participants. In this experiment, the participants
had to use a haptic device to move a robot swarm to different locations in
an environment. The participants moved the robot swarm by controlling a
single robot (i.e., a leader). They performed the experiment with each of
the five mapping functions. The authors calculated the distance between the
leader and the locations and collected the time taken by the participants to
conduct the experiment as performance metrics. The authors also evaluated
the participants’ psychological state by measuring the participants’ workload.
The results showed that the participants performed better and had a lower
workload with the exponential mapping than with the linear mapping. The
experiment was conducted with real robots.

The following works rely on a secondary display that provides a human
operator with a real-time representation of both the environment and the
robot swarms. In such approaches, therefore, the human operator does not
interact with the real robots in their real environment, but with a modelled
representation of both the robots and the environment. In order to create
a modelling layer, it is necessary to collect telemetry data about the robots
(i.e., their position and orientation) and data about the environment (i.e.,
size and obstacles). And to be useful for human-swarm interaction purposes,
such data must be collected and modelled in real-time. Simulated human-
swarm interaction approaches have used the omniscience afforded by robotic
simulators to collect all of the relevant data. However, in the real-world,
external tracking infrastructure would be required (e.g., GPS or external
cameras). Such tracking infrastructure is often infeasible in the dynamic,
a priori unknown environments for which swarm robotics systems are best
suited.

Daily et al. (2003) proposed a human-swarm interaction interface in which
human operators wear an optical see-through head-worn device which re-
ceives simple robots’ messages. When the device receives these messages, it
analyzes them and augments the environment with a visual representation of
these messages. No experiment with participants was conducted. A similar
system is used by Naghsh et al. (2008) who proposed an augmented real-
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ity interface for firefighters helped in their mission by a robot swarm. The
firefighters’ helmets are augmented by a visual device, giving them direction
information to potential hazards. The authors did not conduct any exper-
iment with participants. McLurkin et al. (2006) proposed a graphical user
interface based on real-time strategy video games where the user controls
an army of hundreds of individuals. Their graphical user interface displays
virtual robots in a virtual environment and provides the user with extra de-
bugging information for each individual robot (e.g., waypoints for individual
robots, global positioning). The authors note that it can be difficult to dis-
play such a large amount of data while ensuring that the user still has a
clear understanding of what is going on in the swarm. The authors did not
conduct any experiment with participants but validated their approach with
real robots.

2.1.3 Bandwidth Limitation and Neglect Benevolence

The effects of bandwidth limitation and neglect benevolence (i.e., when hu-
man operators must wait a robot swarm to stabilize in a specific state before
issuing their commands, see Nagavalli et al. (2014) for a formal definition)
have also been studied in human-swarm interaction. Brown and Goodrich
(2014) proposed a classifier to distinguish between two types of robot swarm’s
motions—a torus motion (robots in a robot swarm are moving in a clockwise
or anticlockwise rotation but the centroid of the robot swarm is not mov-
ing) and a flock motion (robots in a robot swarm are moving in the same
direction). The classifier is able to detect these two types of motion under
bandwidth limitation, that is, by considering only a subset of the robots in
a robot swarm. These results would allow a human operator to have a clear
understanding of a robot swarm motion, but no experiment with participants
was conducted. Nunnally et al. (2012), however, conducted an experiment
with 25 participants to investigate the effect of bandwidth limitation in the
context of a foraging task (i.e., a task that requires a human operator to col-
lect several targets in different locations of an environment). In this study,
the positions of the robots a human operator was controlling (via a graphi-
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cal interface) were not updated in real time. The authors considered three
types bandwidth limitations—low bandwidth (only one robot’s position was
updated on the graphical interface at a time), medium bandwidth (only an
estimate of the centroid and orientation of the robot swarm were updated
on the graphical interface), and high bandwidth (all robots’ positions were
updated at the same time on the graphical interface). The number of targets
collected was used as a performance metric. The results showed that, un-
der low bandwidth, the participants detected less targets than under medium
bandwidth. However, the authors did not find any statistical difference when
their participants conducted the experiment under medium bandwidth and
high bandwidth. These results suggest that it is not necessary for a human
operator to visualize each and every robot’s position. The experiment was
conducted in simulation only.

Neglect benevolence is a concept that received attention in the literature.
Walker et al. (2012) conducted an experiment with 21 participants. In this
experiment, the participants had to control a robot swarm in the context
of a foraging task. The results showed that when an operator provided the
robot swarm with commands frequently (i.e., without waiting for the robot
swarm to stabilize), the area covered by the robots was significantly lower
than when the operator waited for the swarm to stabilize. The experiment
was conducted in simulation only. Nagavalli et al. (2015) conducted an ex-
periment in order to investigate if human operators can detect the optimal
time to issue commands to a robot swarm. In this experiment, 44 partici-
pants had to detect the optimal time to issue a command in order for a robot
swarm to move from a spatial configuration to another (e.g., to move from
a circle configuration to a cross configuration). The results show that when
participants received visual help (a line drawn between the current robot’s
position and the final robot’s position), they were able to issue the commands
at a better time than without visual help. The experiment was conducted in
simulation only.

Walker et al. (2016a) built up their research on Nagavalli et al. (2015)’s
results. Walker et al. (2016a) argue that it is vital for a human operator to
firstly understand the dynamic of a robot swarm before being able to under-
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stand when is the best moment to issue a command. The authors conducted
an experiment with 32 participants. In this experiment, the participants
had to watch several videos. Each video showed a robot swarm executing a
robot swarm behaviour (rendezvous, flocking or dispersion). Different level
of noise was added to each robot swarm behaviour (i.e., some of the robots
of the robot swarm were moving randomly). The goal of the participants
was to recognize, under different level of noise, which robot swarm behaviour
(rendezvous, flocking or dispersion) they were watching. The authors found
that the rendezvous behaviour was the easiest robot swarm behaviour to
recognize. The experiment was conducted in simulation only. Walker et al.
(2016b) conducted a similar study to that of Walker et al. (2016a). In this
study, the goal was to determine whether participants were able to predict
the future robot swarm’s state based on different types of visualizations—full
(each robot’s position and heading are displayed on a graphical interface),
centroid/ellipse (an ellipse showing the boundary of the robot swarm and a
cross located at the centroid of the robot swarm are displayed on a graphical
interface) and two additional visualizations based on two different algorithms
showing only a subset of the robot swarm. The robot swarm was performing
either a rendezvous behaviour, a flocking behaviour or a dispersion behaviour.
The goal of the participants was to draw the final shape of the robot swarm
after 30 seconds. The results show that the dispersion behaviour was the
behaviour that was predicted by the participants with higher accuracy. The
authors also showed that the full and centroid/ellipse visualizations did not
significantly change the performance of their participants. The experiment
was conducted in simulation only. Manning et al. (2015) provided a discus-
sion on different types of robot swarm visualizations.

2.1.4 Level of Automation

Researchers have also investigated to what extent a robot swarm needs the
influence of a human operator, i.e., what is the robot swarm’s level of automa-
tion. These research are based on previous works in levels of automation in
human-computer interaction (Sheridan and Verplank, 1978). Sheridan and
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Verplank (1978) identified 10 levels of automation, where the lowest level
suggested that a human operator had to make all decisions, and the high-
est level suggested that the human operator had no decision to make (in
between, the human operator has different levels of supervision).

In the context of human-swarm interaction, Cummings (2004) distin-
guished levels of automation and levels of autonomy. The levels of automa-
tion is the level of human decision making required by an autonomous system
(e.g., computer or robot). The levels of autonomy are specific to multi-robot
systems and robot swarm systems. These levels determine the intra-robot
autonomy, i.e., the level of collaboration between robots in a robot group.
The authors argue that the levels of automation and levels of autonomy are
not necessarily inter-dependent. When the level of autonomy is at its mini-
mum, the levels of automation is not impacted and can vary along the 10-level
scale of automation. When the level of autonomy is at its maximum, how-
ever, the level of automation should be high—the human operator should be
considered only as a supervisor and should not make low level decisions (e.g.,
decisions on a specific individual robot). Because in a robot swarm the inter-
robot collaboration is relatively high (high level of autonomy), the authors
state that swarm robotics systems tend to have a high level of automation.
The author did not conduct any experiment with participants.

Coppin and Legras (2012) proposed the notion of autonomy spectrum.
The autonomy spectrum enables different control mechanisms and different
levels of automation for a single task (a task that has to be carried out by
a robot swarm). It is, therefore, possible for a human operator to interact
with a robot swarm at different levels of automation (e.g., a human operator
can interact at Sheridan’s level 1 (with full control) of automation or at
level 8 (with supervisory control) of automation). The authors conducted
an experiment with 23 participants in order to validate their approach. In
this experiment, the participants had to help a robot swarm to patrol and
to pursuit intruders. The participants were allowed to change the level of
pheromone the robot swarm was influenced by. The authors concluded that
the participants’ performance was positive but that further research was
required. The experiment was conducted in simulation.
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Walker et al. (2013b) conducted an experiment to compare high level
of automation and a low level of automation. The authors conducted an
experiment in which 20 participants had to move a robot swarm in order to
find different targets. In the high level of automation, the participants were
only able to issue a command to disperse the robot swarm in the environment.
In the low level of automation, the participants could select a subset of the
robot swarm and assign this subset of robots to a goal direction. The authors
used the number of targets found by the participants as a performance metric.
The authors concluded that a balance between high level of automation and
low level of automation provided the best results on their participants. The
experiment was conducted in simulation only.

In the aforementioned works, the authors only studied to what extent
different levels of automation affect the human operators’ performances. We
believe that an important aspect to consider is the psychological effect of dif-
ferent levels of automation. Future work in this research direction should de-
termine whether, for instance, low-level of automation significantly increases
the human operators’ psychological responses by using a methodology similar
to the one used in this thesis (i.e., a combination of objective psychophysio-
logical measures and subjective psychological measures). These results could
show that a human-swarm interaction system that allows a human operator
to interact with a robot swarm with a high-level of automation is benefi-
cial for the human operator’s psychological state (e.g., decrease the level of
stress).

2.1.5 Formal Verification

Currently there is no work that formally verifies the interaction between a
human and a robot swarm. Formal verification is important, for instance, to
guarantee performance Tabibian et al. (2014) and Sycara et al. (2015) con-
ducted an experiment in which their participants had to issue one command
from two possible alternatives (“deploy” or “rendezvous”) to a robot swarm
in order for the robot swarm to cover an environment. They use the results of
this experiment in order to develop analytical models of the human operators
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interacting with a robot swarm. Analytical models of the human operators
is a first step towards formal verification. The experiment was conducted in
simulation only.

As in the majority of the studies we presented in this literature review,
studies that investigate formal verification do not take into account human
psychology. Guaranteeing performance in human-swarm interaction, for in-
stance, should help decrease frustration as well as psychological responses. In
future work in formal verification, human psychology could also be studied to
guarantee a stable human operator’s psychological state. The psychological
measures used in this thesis (i.e., combination of objective psychophysiolog-
ical and subjective self-reported measures) would be appropriate.

As shown in Table 2.1, only one of the nineteen experiments was con-
ducted with real robots. Moreover, the majority of these experiments did
not include any psychological measures. To the best of our knowledge, we
are the first who conducted experiments in human-swarm interaction that
focused on the psychological aspect of the human operator interacting with
robot swarms composed of up to 24 real robots.

2.2 Reality Gap in Human-robot Interaction

In the current body of research in human-swarm interaction, more and more
researchers validate their work by performing experiments with participants.
However, as we have seen in Section 2.1, a large majority of the existing
experiments are performed exclusively in simulation, with human operators
interacting with simulated robots on a computer screen, see Table 2.1.

To the best of our knowledge, our research on the effect of the reality gap
on the human psychological state presented in Chapter 4 is the first of its
kind in the context of human-swarm interaction. However, the question of
the psychological reaction differences when humans interact with a real robot
or with a simulated robot has been already addressed in multiple studies in
human-robot interaction, and more specifically in social robotics. In this
section, we review these studies.

Our work is different from the works presented in this section in that the
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Study Experiment Dependent Variables

Karavas and Artemiadis
(2015)

simulation reaction time, EEG activ-
ity

Bashyal and Venayag-
amoorthy (2008)

simulation time-on-task (time to reach
locations)

Walker et al. (2013a) simulation number of locations
reached, workload

Walker et al. (2014) simulation number of locations
reached

Kapellmann-Zafra et al.
(2016b)

simulation number of robots in an ag-
gregated group

De la Croix and Egerstedt
(2012)

simulation mean LSQ, workload, self-
assessment difficulty rating

Kolling et al. (2013) simulation number of information col-
lected

Haas et al. (2011) simulation order of speech-based and
touch-based commands,
temporal binding

Podevijn et al. (2013) simulation time-on-task, usability
questionnaire

Nunnally et al. (2013) simulation environment coverage, util-
ity questionnaire

Setter et al. (2015) real robots distance to locations, time-
on-task, workload

Nunnally et al. (2012) simulation number of targets collected
Nagavalli et al. (2015) simulation participant’s time com-

pared to the optimal time
computer by an offline
algorithm

Coppin and Legras (2012) simulation intruders progress, idleness
of the robots

Walker et al. (2013b) simulation number of targets found
Walker et al. (2016a) simulation recognition of a robot

swarm behaviour
Walker et al. (2016b) simulation accuracy of predicting a

robot swarm state
Tabibian et al. (2014) simulation environment coverage
Sycara et al. (2015) simulation environment coverage

Table 2.1: Summary of research that contain an experiment conducted with partic-
ipants.

interaction with a robot swarm is inherently different from the interaction
with a social robot for two reasons. Firstly, because there is no social inter-
action between human beings and robot swarms. Secondly, because a swarm
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of robots is composed of a large number of relatively simple robots.
In social robotics, the goal of the robot designers is for the robot to socially

interact with humans (Hegel et al., 2009). Most of the works that address
the question of the human psychological reaction differences between the
interaction with real robots and simulated robots in social robotics tend to
show that humans prefer to interact with a real robot than with a simulated
robot.

In the following research, all authors used a measure of “enjoyment”. The
enjoyment is assessed either by a self-developed questionnaire, or by following
the game flow model (a model developed to evaluate player enjoyment in
games (Sweetser and Wyeth, 2005)). When a robot provides humans with
help and instructions on a given task, Kidd and Breazeal (2004), Wainer et al.
(2007) and Fasola and Matarić (2013) all reported that humans had a more
enjoyable experience (assessed by a self-developed questionnaire) with a real
robot compared to a simulated robot. Pereira et al. (2008) and Leite et al.
(2008) also show that humans had a more enjoyable experience with a real
robot than with a simulated robot when their participants were playing chess
against the robot (both assessed by the game flow model). In Powers et al.
(2007), the participants of the authors’ study conversed with a real robot
and with a simulated robot about health habits. The participants reported
to have a more enjoyable conversation with the real robot than with the
simulated robot (assessed by a self-developed questionnaire). Wrobel et al.
(2013) performed an experiment in which elder participants play a card game
against a computer, a real robot and a simulated robot. In their results, their
participants reported more joy playing against the computer than against the
real robot or the simulated robot. However, their participants had a more
enjoyable experience playing against the real robot than against the simulated
robot (assessed by the game flow model).

Other research compared real robots and simulated robots based on dif-
ferent aspects of the interaction. For instance, in the context of an interaction
with a kiosk providing information, participants seemed to pay more atten-
tion to a kiosk providing information with a physical hand than with a kiosk
providing information on a screen (Ju and Sirkin, 2010). Kennedy et al.
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(2015) showed that children payed more attention to a real robot teaching
them new information than to a simulated robot teaching them new informa-
tion. In the context of a game scenario between children and a robot, chil-
dren payed more attention to the real robot than to the simulated one (Looije
et al., 2012). In the same context, Jost et al. (2012) showed that children’s
response time was higher when playing with a real robot than with a sim-
ulated robot. Fujimura et al. (2010) also showed that participants had a
higher response time when participants had to select an object a real robot
was pointing at. Komatsu and Abe (2008) showed that a real robot had more
persuasion than a simulated robot when the robot was trying to engage the
participant in a second task while the participant was already performing a
primary task.

A more comprehensive survey about the psychological differences when
humans interact with real robots and simulated robots is provided in Li
(2015). In addition to presenting studies that compare the interaction with
real robots and simulated robots, this survey also presents studies that com-
pare the interaction with real robots physically present in an environment
and real robot displayed on a video screen.

The majority of the aforementioned studies show that, in the context of
human-robot interaction, humans react significantly differently when they
interact with a real robot than with a simulated one. Human operators have
a higher level of arousal, perform better at a task, and are more engaged
when they interact with a real robot, rather than with a simulated robot.
Though there are inherent differences between human-robot interaction and
human-swarm interaction (i.e., the number of robots human operators inter-
act with is different, and there is no social interaction with robot swarms),
in Chapter 4, we also show that human operators react differently when they
interact with a real robot swarm than with a simulated one (they have higher
levels of arousal, workload and skin conductance when interacting with a real
robot swarm compared to with a simulated one). These reaction differences
can have profound consequences on the use of these robotic systems (be it
swarm or not). In the context of a high-risk task which involves human lives
for example, it is vital to keep the human operator’s engagement at the max-
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imum level for saving a maximum of lives. The aforementioned results in
the context of social robotics, and the results we present in Chapter 4 in the
context of swarm robotics, suggest that interacting with simulated robots (or
with a simulation-based representation of robots) could diminish the human
operator’s engagement.

2.3 Psychophysiological Measures in Human-swarm
Interaction and Human-robot Interaction

In human-robot interaction, psychophysiological measures are already used
to evaluate the psychological state of human beings interacting with a robot.
As shown in the remaining of this section, different types of psychophysiolog-
ical measures are used in human-robot interaction (e.g., heart rate, skin con-
ductance level, deltoid muscle activity, ocular behaviour, skin temperature,
respiratory activity, body movements, . . . ). In human-swarm interaction,
however, psychophysiological measures were used in a single study before
us (Karavas and Artemiadis, 2015). A reason why psychophysiological mea-
sures are not commonly used in human-swarm interaction is because using
psychophysiological measures is resource and time consuming (it requires
specific hardware, it takes time to place the sensors on the participants and
to analyse the data).

In the researches we present in Chapter 4 and Chapter 5, we use two psy-
chophysiological measures—heart rate and skin conductance level (formally
defined in Chapter 3). We decided to use these two psychophysiological mea-
sures because they are simple to monitor and because they are the two more
commonly psychophysiological measures used in the literature. The results
we obtained with these two psychophysiological measures show that psy-
chophysiology is a methodology that is appropriate to study human-swarm
interaction. Future human-swarm interaction studies should, therefore, con-
sider using psychophysiology to study the human psychological state. In the
remaining of this section, we present the works in human-robot interaction
that use psychophysiology to study the human psychological state during the
interaction with a robot.
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Psychophysiological measures have been used in studies on the interaction
between humans and a robot manipulator arm. In Kulić and Croft (2003),
the authors monitored the blood volume pressure, the skin conductance, the
chest cavity expansion and contraction and the corrugator muscle activity
(i.e., used to control the eye brows) of four participants in order to study
the participants’ attention and expectation during the interaction. In Kulić
and Croft (2005, 2007b), the authors monitored the participants’ skin con-
ductance, heart rate and corrugator muscle activity during the interaction
with a robot manipulator arm. The authors used a fuzzy inference engine in
order to estimate the participants’ emotional state to different motion types
of the robot. In Kulić and Croft (2007a), the authors improved their emo-
tional state estimator by using a hidden Markov model instead of a fuzzy
inference engine. In all these studies, the participants were passive during
the interaction with the robot manipulator arm. In Dehais et al. (2011), the
authors evaluated the interaction between a human and a robotic arm in
an active interaction scenario with an object hand-over task (i.e., a robotic
arm gives an object to a human). The authors monitored the participants’
skin conductance, deltoid muscle activity and ocular behaviour during the
interaction with the robot arm moving at different speeds.

Researchers have also used psychophysiological measures in order to eval-
uate the use of companion robots. Aminuddin et al. (2016) have proposed
an experiment in which they monitor skin conductance in order to examine
whether the interaction with a cuddly companion robot is able to reduce
stress in humans. In this experiment, the authors are interested in determin-
ing what aspects of the interaction with the cuddly companion robot reduce
the stress (e.g., stroking the robot, talking to the robot). At the time of writ-
ing this manuscript, the results of the study are not yet available. Robinson
et al. (2015) have studied the effect of the interaction with a cuddly com-
panion robot on the blood pressure and heart rate of elderly persons. The
authors conducted their experiments in a retirement home with 17 elderly
persons (over 71 year old). Over a period of ten minutes, the participants
had a cuddly companion robot on their lap. The authors reported that
the blood pressure and the heart rate of their participants were significantly
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lower after having interacted with the cuddly companion robot. Lu and Hsu
(2015) used psychophysiological measures to evaluate the use of a companion
robot in the context of elderly care. They used heart rate, skin conductance
and skin temperature to evaluate different types of companion robots (non-
humanoid and humanoid robots). The psychophysiological responses of the
participants seemed lower when they were interacting with a non-humanoid
companion robot.

Research in robotic system for rehabilitation services also use psychophys-
iological measures. Tiberio et al. (2012) studied the affective response of
older people suffering from Mild Cognitive Impairment (MCI) to a telep-
resence robot. In their experiments, two groups of elder participants were
compared—one group being composed of healthy older adults and one group
being composed of MCI older adults. Each participant had to interact with
the experimenter directly, and then with the experimenter through a telep-
resence robot. The authors studied the participants’ stress during the inter-
action by monitoring the participants’ heart rate and heart rate variability.
The results showed that the group composed of MCI older adults were more
stressed during the interaction with the experimenter through the telepres-
ence robot than during the interaction with the experimenter. Novak et al.
(2010) have conducted an experiment based on a virtual rehabilitation task
with a haptic robotic arm. The goal of their experiment was to determine
which psychophysiological measures would be the more reliable to study the
psychophysiological state of humans suffering from stroke. They monitored
the participants’ heart rate, skin conductance, skin temperature and respira-
tion. Their results suggest that skin conductance is the psychophysiological
measure that provides the more reliable information on the psychophysiolog-
ical state of human suffering from stroke. Goljar et al. (2011) have performed
a similar study to that of Novak et al. (2010). In their study, the authors
compared a control group (healthy participants) to two groups of stroke par-
ticipants (subacute stroke and chronic stroke). The participants had to reach
and grasp a virtual moving object displayed on a screen. A virtual hand that
followed the participants’ hand motion was also displayed on the screen. A
haptic robotic interface allowed the participants to feel the virtual objects in

33



CHAPTER 2. CONTEXT AND RELATED LITERATURE

their hands. The authors monitored the participants’ heart rate, heart rate
variability, skin conductance, skin temperature and respiration. The authors
showed that stroke groups had weaker psychophysiological responses than
the control group. Shirzad and Van der Loos (2016) proposed a method for
a robot to adapt the difficulty of a rehabilitation task to the engagement of a
human being performing the physical rehabilitation task. Their method en-
ables human beings to remain engaged in the rehabilitation task. The robot
evaluated the human’s level of engagement in order to adapt the difficulty of
the rehabilitation task. The authors conducted an experiment in which they
monitored the participants’ skin temperature, skin conductance and respira-
tion rate. The authors used these physiological responses in order to infer
the participants’ level of engagement during the rehabilitation task.

Studies in service robotics for healthcare (e.g., a robot that assists a nurse
for medicine delivery) have also used psychophysiological measures. Zhang
et al. (2010) have collected heart rate and skin conductance in an experi-
ment in which they evaluated the effect of different service robot interfaces
(i.e., different types of anthropomorphic features such as camera for eyes,
human-life face, synthesized or digitized human voice). The authors have
shown that the more anthropomorphic a service robot is, the greater the
psychophysiological responses are. Swangnetr et al. (2010) have also stud-
ied the effect of different service robot interfaces and found similar results to
those of Zhang et al. (2010). Kraft and Smart (2016) designed an experiment
with a teleoperated robot used in health care. The authors studied whether
their participants trusted more a teleoperated robot when the teleoperator
(i.e., a human that controls the robots from another room) was visible to the
participants. The authors collected the participants’ skin conductance during
the experiment. The participants had higher skin conductance values when
the teleoperator was not visible to the participants. Swangnetr and Kaber
(2013) have developed novel algorithms that allow a service robot to infer
the human emotional state based on psychophysiological measures. In their
study, the authors used neural networks in order to classify human emotional
states based on heart rate and skin conductance measures. The authors con-
cluded that their algorithms can be used by service robots to evaluate in
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real time the patients’ emotional state. Evaluating the patients’ emotional
state in real time could allow service robots to adapt their behaviours to the
patients in order to improve their healthcare.

Adapting the robots’ behaviour to the human’s psychophysiological state
is well studied in the literature. In the early 2000s, the first frameworks for
robots to monitor and adapt to the human psychophysiological state are pro-
posed (Rani et al., 2002, 2004, Sarkar, 2002). Rani and Sarkar (2005) have
conducted an experiment in which a robot adapts to the human anxiety. The
human anxiety was evaluated based on psychophysiological measures (heart
activity, skin conductance, skin temperature, corrugator muscle activity).
The authors designed an exploration task in which a human operator and
a robot had to work in close collaboration. In the case the robot detected
anxiety in the human operator, the robot either raised an alarm, moved
towards the human operator or engaged into a discussion with the human
operator. In this study, the author pre-recorded the participants physiologi-
cal activity during a cognitive task because it was not possible to always infer
anxiety from the participants during the experiments. The pre-recording of
the physiological activity was then provided to the robots during the experi-
ments. In Rani et al. (2006), the authors presented a robot-based basketball
experiment. In this experiment, a basketball hoop was attached to a robotic
arm. During the experiment, the basketball hoop was constantly moving.
The participants were asked to shoot multiple baskets into the hoop. The
level of anxiety was monitored in order to adapt the robotic arm movements
(the more the participants was anxious, the less the robot arm was mov-
ing). Munekata et al. (2015) have used skin conductance in order for a social
robot to detect boredom during an interaction (the interaction consists in a
simple discussion). The authors made the assumption that low skin conduc-
tance values is related to boredom. When the social robot detected that the
participant it was interacting with was getting annoyed by the interaction
(witnessed by a drop in the participant’s skin conductance), the social robot
changed its discussion topic in order to get the participant’s interest back.
Özcan et al. (2016) have proposed a novel type of companion robot for chil-
dren suffering of autism spectrum. This companion robot is augmented with
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physiological sensors (heart rate, heart rate variability, skin conductance,
skin temperature and body movements), allowing the companion robot to
adapt its behaviour to the children psychophysiological state, for example,
by providing the children with affective stimuli.

Psychophysiological measures have been used in other types of research
in human-robot interaction. For instance, Harriott et al. (2015), Novak et al.
(2015) and Teo et al. (2016) all used psychophysiological measures to de-
termine the human operator’s level of workload. Yang and Dorneich (2015)
studied the effect of time delay (i.e., the time between a human operator is-
sues a command to a robot and the time the robot responds to the command)
on the human psychophysiological state in the context of a guidance scenario
(a human operator had to guide a wheeled robot in a maze). Broadbent et al.
(2011) compared the psychophysiological measures of human operators who
had a human-like self-representation of a healthcare robot to those who did
not have human-like self-representation of a healthcare robot. They showed
that human beings who had a human-like representation of healthcare robot
had higher psychophysiological reactions when they saw a real non human-
like healthcare robot. Lazzeri et al. (2015) studied the psychophysiological
reactions of human beings faced to different emotional stimuli of a robot.

2.4 Group Size Effect in Multi-robot Systems

In this section we review the related work to our study on the effect of the
increasing robot group size (i.e., the number of robots in a swarm) on the
human psychophysiological state (presented in Chapter 5). To the best of
our knowledge, there is only a single study in human-swarm interaction that
is related to our own research. In this section, we also review related studies
but in the field of human multi-robot interaction.

In the literature, the distinction between multi-robot systems and swarm
robotics systems is not well defined. In this thesis, our goal is not to formally
define the distinction between these robotic systems. However, we make the
assumption that, in contrast to a swarm robotics system, robots in a multi-
robot system act as individual entities, i.e., they do not necessarily have to

36



2.4. GROUP SIZE EFFECT IN MULTI-ROBOT SYSTEMS

cooperate with one another in order to complete tasks successfully. More-
over, we also make the assumption that, in human multi-robot interaction,
a human operator controls each robot individually. These assumptions are
made based on the existing literature on multi-robot systems.

In the context of human-swarm interaction, Pendleton and Goodrich
(2013) studied the human psychological state by studying the workload level
of human operators controlling a varying number of robots. The authors
studied the effect of the robot swarm size on the human workload level by
collecting data using dedicated psychological questionnaires only (they did
not collect any psychophysiological data). They performed an experiment
in which participants guided 20, 50 and 100 simulated robots in a simulated
environment to gather information about a series of locations in the environ-
ment. In their study, the authors used dedicated psychological questionnaires
to study the human workload when the size of the robot swarm controlled
by a human was increased. The results of their study showed that human
workload does not depend on the number of robots when interacting with a
swarm robotics system. In order to validate their methodology, the authors
also performed preliminary tests on two real robots. However, an experiment
based on real robots was not conducted. We believe that these results may
only be conveying a limited message about the human psychological state as
the experiment was limited to simulated robots, a simulated environment,
and a questionnaire-based data collection methodology because:

• as shown in Chapter 4, experiments performed with simulated robots
and environment suffer of the reality gap effect;

• participants might not always answer psychological questionnaires ob-
jectively, i.e., participants might not answer what they felt during the
experiment, but they might answer what they believe the experimenters
would like them to answer (Bethel et al., 2007).

The interaction with an increasing number of robots is also studied in the
field of human multi-robot interaction. Humphrey et al. (2007) developed an
experiment in which their participants had to search for and detect bombs
with a group of six robots and a group of nine robots. The authors show that
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the participants’ workload was significantly higher when they had to search
for the bombs with nine robots compared to with six robots. Velagapudi
et al. (2008) conducted search and rescue experiments with four, eight and
twelve simulated robots. The results of their experiments revealed that the
participants’ workload increased when the number of robots increased. In an
experiment that simulated a transportation task (i.e., a task in which robots
must transport objects from one location to another), Adams (2009) also
shows an increase of workload with an increase of the number of robots—the
participants’ workload was higher when they were doing the experiment with
four robots compared to two robots and one robot.

2.5 Discussion and Conclusions

In this chapter, we provided an overview of the current literature in human-
swarm interaction. As depicted by this overview, the field of human-swarm
interaction is scattered—there are many different research directions and
within each research direction, there are no consensus on the methods to
use to provide human operators with an effective human-swarm interaction
system (e.g., when is it better to control a single leader robot versus multiple
leader robots). A reason why the field is scattered is because researchers in
swarm robotics do not know today how swarm robotics systems are going to
be used for real world applications. Swarm robotics is still confined in re-
search laboratories in which only abstract tasks are taken into consideration.
The absence of real world applications makes it difficult for human-swarm in-
teraction researchers to even hypothesize how a human operator will interact
with a swarm of robots.

The work we present in this thesis is not impacted by the absence of
real world applications. In this thesis, we are not interested in studying how
human operators can issue commands to or receive feedback from a robot
swarm. We are interested to understand what are the effects of the interac-
tion with a robot swarm on the human psychological state. Specifically, we
study the impacts of the reality gap (i.e., the inherent discrepancy between
reality and simulation) and of the group size (i.e., the number of robots that
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constitute a robot swarm) on the human psychological state. As we showed
in Section 2.2, a large majority of human-swarm interaction experiments is
conducted in simulation. We show in Chapter 4 that human beings react
differently when they interact with real robot swarms than with simulated
ones. We show in Chapter 5 that the number of robots significantly affects
different psychological measures. These results highlight the importance of
human psychology in the design of new interaction systems.

In order to study the effects of the interaction with a robot swarm on
human psychology, we use psychophysiological measures. In this chapter,
we saw that psychophysiological measures are already used in human-robot
interaction. In human-robot interaction, many different psychophysiological
measures are used, such as skin conductance level, heart rate, deltoid muscle
activity, respiratory activity or skin temperature. As it was uncertain that
psychophysiological measures would be appropriate to study human-swarm
interaction, we decided to use the two more commonly used measures in the
literature—skin conductance level and heart rate. The results we present
in Chapter 4 and in Chapter 5 show that, in the context of human-swarm
interaction, psychophysiological measures provide more information on the
human psychological state than the information provided by traditional psy-
chological measures collected via questionnaires.

In the following chapter, we present the materials and methods we used
to conduct our research. We present the robotic hardware and the environ-
ments in which the experiments were conducted. We also present in more
details the psychological measures used in our experiments (psychophysio-
logical measures, affective state measures, workload and reaction time).
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3
Materials and Methods

In this chapter, we present the hardware, the software and the data col-
lection methods used to design, implement and conduct the experiments of
Chapter 4 and Chapter 5. In Section 3.1, we introduce the e-puck robotic
platform and the experimental environments that we utilized to conduct our
experiments. We also describe the software used to design our experiments
in simulation—on a computer screen and in a virtual reality environment.
In Section 3.2, we present the measures collected on our participants during
the experiments. We also present the tools used to collect these measures.

3.1 Robot and Environments

In this section, we first describe in Section 3.1.1 the e-puck robot platform—
the robotic platform used in our experiments. In these experiments, the
e-puck robots were placed in two types of environments that we present in
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Section 3.1.2. As explained in more details in Chapter 4, the experiments
conducted to study the reality gap effect require the participants to inter-
act with simulated robots in a simulated environment. We describe in Sec-
tion 3.1.3 the tools and software used to simulate both the e-puck robot and
the environments.

3.1.1 Robotic Platform

We use the open-hardware e-puck robot platform designed at the École Poly-
technique Fédérale de Lausanne, Switzerland. The e-puck robot was designed
for educational and research purposes. It is particularly well suited for re-
search in swarm robotics because it is small, extensible and relatively cheap.
The e-puck robot is cylindric and has a diameter of 7 cm. It comes with
a dsPIC microcontroller embedding a 16-bit processor running at 64 Mhz.
Several sensors and actuators are available on the e-puck. In our experi-
ments, we used only a subset of the available sensors and actuators. We
refer the reader to Mondada et al. (2009) and Gutiérrez et al. (2008) for the
complete list of sensors and actuators. The sensors and actuators used in
our experiments are the following.

Proximity sensors The proximity sensors are used to detect and avoid ob-
stacles such as walls and nearby robots. There are 8 infrared proximity
sensors evenly placed all around the e-puck, allowing it to detect ob-
stacles all around its chassis.

Ground sensors The ground sensors are used to detect the color of the
ground (shades of gray) under the e-puck robot. The ground sensors
are part of an extension board. This extension board is equipped with
3 infrared sensors (i.e., the ground sensors) that face the ground under
the e-puck.

Wheel actuators The wheel actuators are used to control the e-puck mo-
tion. The wheels are controlled by two stepper motors. They enable
the e-puck to move at a maximal linear speed of 12 cm/s.
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RGB LEDs The RGB LEDs are used to communicate with other robots or
to report simple information to a human operator. There are 3 RGB
LEDs mounted on an extension board placed on the top of the e-puck.

Embedded Linux A Linux extension board extends the e-puck microcon-
troller. It augments the e-puck with an ARM Cortex-A8 processor
running at 600 MHz and with 256 Mb of RAM. The Linux extension
board also enables code controllers developed in simulation to be exe-
cuted on the e-puck (Garattoni et al., 2015), see Section 3.1.3.

We show in Figure 3.1 an e-puck used in our research. The e-puck used
in our research also has an additional camera extension board and a range
and bearing board that we did not use in our experiments.

Figure 3.1: An e-puck robot. The RGB LEDs is used in our experiments to provide
visual stimuli to the participants. The proximity sensors are used to detect and avoid
walls and nearby robots. The wheel actuators are used to control the robot’s motion.
The ground sensors are used to detect the ground color under the e-puck (shades of
gray).

3.1.2 Environments

All our experiments require a swarm of e-puck robots to be placed in a
closed environment. We use two different environments. In the experiments
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presented in Chapter 4, we use a square environment of dimension 2 m × 2 m.
This environment is shown in Figure 3.2 (left). In the experiment presented
in Chapter 5, we also use a square environment of dimension 2 m × 2 m.
The environment is shown in Figure 3.2 (right). This environment has four
covered hidden zones of 25 cm width each. These four covered hidden zones
are placed adjacent to the inner environment walls. A curtain is installed at
the entrance of each hidden zone. These hidden zones and the curtains are
used to hide the e-puck robots from the participants prior to the beginning of
the experiments. In front of each hidden zone entrance, we also added a dark
area of 175 cm × 20 cm. These dark areas are used to prevent the robots
from accidentally returning back into a hidden zone during the experiment.
We refer the reader to Chapter 5 for more information.

Figure 3.2: Environments used in our experiments with real robot swarms. Left: The
environment used in the experiments presented in Chapter 4. Right: The environment
used in the experiments presented in Chapter 5.

3.1.3 Simulation

In this section, we describe the software and the tools used to develop the
simulation-based experiments presented in Chapter 4. We first present AR-
GoS, a swarm robotics simulator that allowed us to display our simulation-
based experiments on a computer screen. Then, we present the virtual reality
framework that allowed us to implement and display our simulation-based
experiments in virtual reality.
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ARGoS

The “Autonomous Robots Go Swarming” (ARGoS) simulator is a swarm
robotics simulator developed within the EU Swarmanoid project (Dorigo
et al., 2013, Pinciroli et al., 2012). As of writing the lines of this manuscript,
the current version of the simulator is ARGoS 3. Its installation instructions
are available on its website1.

ARGoS is an open-source software developed in C++ running on Linux
and Mac OSX. It was developed to meet 3 requirements of a swarm robotics
simulator: accuracy, efficiency and flexibility. Accuracy measures the sim-
ilarity of the simulation compared to the reality. Efficiency measures the
run-time performance of the simulation. Flexibility refers to the ability of
the simulator to be extended.

The flexibility of ARGoS makes it a highly modular software. Thanks
to its modularity, ARGoS provides the user with the ability to customize
the simulator. For instance, it is possible for a user to add new robots,
to modify existing robots (e.g., modify their sensors and actuators), to add
new visualization interfaces (ARGoS already supports an OpenGL interface,
a PoV-Ray interface and a text-based interface), new physics engines (four
physics engine are currently supported) and new media (i.e., inter-robot com-
munication capabilities). The architecture of ARGoS also allows a user to
run the same controller code in simulation and on real robots. The controller
code calls the robots’ sensors and actuators via the control interface which
is the same for simulated robots or real robots. In Figure 3.3, we show the
simulator’s architecture diagram.

In our experiments, we used ARGoS 3, the supported version of the e-
puck robot, a 2D-kinematics physics engine and the OpenGL visualization
interface.

Virtual Reality

The ARGoS simulator does not allow simulation-based experiments to be
executed on a virtual reality platform. Therefore, we developed the virtual

1http://www.argos-sim.info (last access: June 2016).
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Figure 3.3: ARGoS Architecture. Source: from Pinciroli (2014); permission received
from the author to use the figure.

reality-based experiments with additional software. We used Unity3D (Unity
Technologies), SketchUp (Trimble) and the Google Cardboard VR plugin for
Unity3D (Google Inc.). Unity3D is a game engine offering a programming
framework in C#. We used Unity3D to develop the logic of the experiments
(i.e., the robots’ behaviour, see Chapter 4 for more details) and to render
a 3D view of the environment. However, Unity3D does not provide any 3D
model of the e-puck robot and does not support virtual reality by default
(the cameras do not update their view based on the user head movements).
In order to have a 3D model of the e-puck robot in our virtual reality exper-
iments, we created a minimalistic model of the e-puck robot in SketchUp—a
3D modelling software. We then imported this 3D model into Unity3D. We
show in Figure 3.4 the minimalistic 3D model of the e-puck robot. We en-
abled the virtual reality visualization by using the Google Cardboard VR
plugin for Unity3D. This plugin makes it possible to track the user head
movements to update the camera views accordingly.

We run our virtual reality-based experiments on a Google Nexus 5 device
running Android 6.0. The Google Nexus 5 was inserted in a Google Card-
board (see Figure 3.5). The Google Cardboard is an inexpensive head set
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Figure 3.4: A minimalistic simulated e-puck robot modeled in SketchUp.

created to turn a smartphone into a virtual reality device.

Figure 3.5: A Google Cardboard. Source: Evan Amos / Wikimedia Commons /
Public Domain.
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3.2 Data Collection

In this section, we present the measures collected on our participants dur-
ing the experiments, and the tools that we used to collect these measures.
In Section 3.2.1, we first introduce psychophysiology. Then we present the
psychophysiological measures collected on our participants and the hardware
used to collect these psychophysiological measures. We are also interested
in investigating our participants self-reported affective state (i.e., in order
to determine whether our participants are conscious of their psychophysio-
logical state). In Section 3.2.2, we describe the affective state measure and
we present the psychological questionnaire we used to collect this measure.
Subsequently, we present two additional measures used in one of the two
experiments of Chapter 4—the workload measure in Section 3.2.3 and the
reaction-time measure in Section 3.2.4.

3.2.1 Psychophysiology

Psychophysiology aims at understanding and explaining human social and
psychological behaviours through the study of physiological responses of the
human body (Cacioppo et al., 2007). Physiological responses are activated
by the autonomic nervous system. The autonomic nervous system is divided
into the sympathetic nervous system and the parasympathetic nervous sys-
tem. The sympathetic nervous system is considered to be responsible for the
activation of the fight-or-flight physiological responses (i.e., physiological re-
sponses in case of stress). The parasympathetic nervous system, on the other
hand, is considered to be responsible for maintaining physiological responses
to a normal activity (i.e., the physiological responses at rest).

Psychophysiology is a field of research that started in the mid-1960s with
the creation of the first scientific medium of communication on psychophys-
iology: the journal of Psychophysiology. In the first issue of the journal,
psychophysiology was defined as a method for bringing both physiological and
psychological aspect of behavior into a single field of discourse (Ax, 1964) in
which the dependent variable (i.e., what is measured by the experimenter) is
a physiological measure and the independent variable (i.e., what is manipu-
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lated by the experimenter) a “behavioural” [variable] (Stern, 1964). In to-
day’s experiments, however, physiological variables can also be considered as
the independent variable in order to study behavioural modifications (Stern
et al., 2001).

Psychophysiology has already been used in human-computer interaction
to evaluate the interaction with technology (Dirican and Göktürk, 2011,
Mandryk et al., 2006, Scheirer et al., 2002, Sykes and Brown, 2003, Ward
and Marsden, 2003, Wastell and Newman, 1996), and in human-robot inter-
action to evaluate the interaction with robotic systems, see Chapter 2.

In human-robot interaction, psychophysiology is a method that can be
used in three types of research (Bethel et al., 2007). In the first type of
research, psychophysiology is used to detect and identify the human opera-
tor’s emotion. In the second type of research, psychophysiology is used to
modify, in real-time, a robot’s behaviour with respect to psychophysiological
responses of a human operator. Finally, psychophysiology is used in the third
type of research in order to evaluate human operators’ psychophysiological
reactions to a robotic system. The research presented in this thesis lies in
the third type of research.

Using psychophysiological measures to study the interaction with a robotic
system has advantages and disadvantages (Bethel et al., 2007). Firstly, it of-
fers a non-invasive method to the experimenter to study the participants’
psychological states. Secondly, since it is very difficult to intentionally ma-
nipulate our own psychophysiological responses (e.g., intentionally decrease
our own heart rate), psychophysiological measures are considered objective.
However, psychophysiological measures can be difficult to acquire and inter-
pret. The sensitivity of the sensors or a misplacement of the sensors can have
important impacts on the physiological responses that are recorded. More-
over, the individual psychophysiological state of the participants at the mo-
ment of the experiment can be different from a participant to another (Bethel
et al., 2007, Kidd and Breazeal, 2005).

49



CHAPTER 3. MATERIALS AND METHODS

Psychophysiological Measures

In the research presented in Chapter 4 and Chapter 5, we measure the re-
sponses of two different physiological activities: the electrodermal activity and
the cardiovascular activity. The electrodermal activity and the cardiovascu-
lar activity are two common physiological activities used in the literature to
study the human psychophysiological state.

The electrodermal activity is the electrical activity of the skin. The elec-
trical activity of the skin can be used as a measure of the sympathetic nervous
system. The electrical activity of the skin is related to the sweat glands of
the skin. Eccrine is a special type of sweat glands mostly found in the soles
of the feet and in the palm of the hands. Eccrine’s primary role is to ther-
moregulate the body, but it has been found that eccrine is responsive to the
sympathetic nervous system activity (while other types of sweat glands are
more responsive to temperature variations) (Stern et al., 2001). When the
eccrine sweat glands produce sweat in response to the sympathetic nervous
system activity, the electrical resistance of the skin decreases and its recip-
rocal, the electrical conductance, increases. In our research, we study the
electrodermal activity by monitoring the skin conductance level (SCL). The
SCL is the tonic level of the skin conductivity (i.e., it is the level of skin
conductance in absence of stimuli) and is measured in microsiemens (µS). In
this thesis, we measure the change of SCL over time. An increase of the SCL
is only due to an increase of the sympathetic nervous system activity. It is,
therefore, a measure of choice to study the human fight-or-flight response.
SCL has also been correlated to the affective state arousal (Boucsein, 2012)
and to the cognitive workload (i.e., an increase of the SCL suggests an in-
crease of the cognitive workload) (Kramer, 1991).

The cardiovascular activity is the activity of the cardiovascular system.
The cardiovascular system is composed of the heart and of a blood distri-
bution system. There are different measures of the cardiovascular activity.
Blood pressure, heart rate and heart rate variability are the most common
measures used in the literature (Cacioppo et al., 2007). The blood pressure
is the pressure applied by the blood on the walls of the blood vessels. The
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blood pressure is at its maximal value when the heart contracts (i.e., sys-
tolic blood pressure) and at its minimum value between two heart beats (i.e.,
diastolic blood pressure). The heart rate is the number of heart beats per
unit of time. It is usually measured in beats per minute (BPM). Heart rate
has been found to be correlated to the cognitive workload (i.e., an increase of
heart rate suggests an increase of workload) (Kramer, 1991). Blood pressure,
and heart rate can vary due to either a variation of the sympathetic nervous
system, a variation of the parasympathetic nervous system, or a combina-
tion of both (Cacioppo et al., 2007). They are, therefore, more difficult to
analyse and interpret than the SCL. The heart rate variability is the time
variability between heart beats. Heart rate variability can be analysed both
with time domain methods (e.g., standard deviation and square root of the
mean-squared difference of successive heart beat intervals) and frequency do-
main methods (e.g., frequency division of the heart rate variability into low
frequencies and high frequencies). Frequency domain methods enable the
analysis of the interaction between the sympathetic nervous system and the
parasympathetic nervous system. It provides, therefore, more information
than the blood pressure and heart rate. However, in order to accurately
analyse the heart rate variability, it is recommended to obtain 5 minutes of
recordings (Task Force of the European Society of Cardiology et al., 1996).
In the research presented in Chapter 4 and Chapter 5, we use the heart rate
to study the participants’ cardiovascular activity.

Acquisition

We monitored our participants’ physiological responses with a PowerLab 26T
(ADInstruments Ltd.) data acquisition system augmented with a GSR Amp
device (see Figure 3.6). In the experiments presented in Chapter 4 and
Chapter 5, we connected via USB the PowerLab 26T to a laptop computer
running Mac OSX Yosemite. We used the software LabChart 8 to record
the physiological responses acquired by the PowerLab 26T data acquisition
system.

We collected our participants’ heart rate by monitoring their blood vol-
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Figure 3.6: Left: the ADInstruments PowerLab 26T. Right: the ADInstruments GSR
Amp device. Images used with permission of ADInstruments Ltd.

ume pulse (BVP). The blood volume pulse is the change in the pulsatile
blood flow. We used an infrared photoelectric sensor (i.e., a photopletismo-
graph) to measure the blood volume pulse of our participants. The blood
volume pulse can be retrieved by the photopletismograph from the peripheral
parts of the human body such as on the fingers. Photopletismographs are
sensible to body motions and can, therefore, cause motion artifacts (Elgendi,
2012). The heart rate is computed based on the blood volume pulse. Firstly,
we calculate the inter-beat interval. The inter-beat interval is the time in
seconds between two peaks in the blood volume pulse. Then, we calculate
the heart rate by dividing 60 by the inter-beat interval. For instance, if the
inter-beat interval of an individual is 1 s, this individual’s heart rate is 60
BPM. Figure 3.7 shows the blood volume pulse of a participant during a time
window of 10 s.

Figure 3.7: The graph of a participant’s blood volume pulse during 10 seconds.
The BVP does not have a standard unit. The x-axis is the time in minutes since
the beginning of the recording. The time between two peaks (depicted with two
dots connected with a line on the picture) is called the inter-beat interval (IBI). The
participant’s heart rate (the number of beats per minute) is computed by dividing 60
by the inter-beat interval. In this example, the mean heart rate of the participant
during these 10 s is of 87 BPM.

To monitor the electrodermal activity of our participants, we used brightly
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polished stainless steel bipolar electrodes connected to the GSR Amp device.
In order to monitor the skin conductance, the GSR Amp device applies a
direct constant voltage between the bipolar electrodes. The constant voltage
is small enough (i.e., 22 mV) to prevent the participants from feeling it. As
the voltage is known and constant (22 mV), the GSR Amp device can mea-
sure the current between the bipolar electrodes. When the current is known,
the GSR Amp device can calculate the conductance of the skin by applying
Ohm’s law (conductance is the current measured between the electrodes di-
vided by the constant voltage applied by the GSR Amp device between the
electrodes). Figure 3.8 shows the skin conductance of a participant during a
time window of 10 s.

Figure 3.8: The graph of a participant’s skin conductance during 10 s. The skin
conductance’s unit is the microsiemens (y-axis). The x-axis is the time in minutes
since the beginning of the recording. The skin conductance is computed by measuring
the current flowing between two electrodes and by dividing this current by a constant
voltage applied between the electrodes. The average skin conductance level of this
participant during these 10 s is of 5.17 µS.

3.2.2 Self-reported Affective State

In the research presented in Chapter 4 and Chapter 5, we also use self-
reported measures to study our participants’ affective state. We gather data
from our participants using a dedicated psychological questionnaire to deter-
mine whether our participants are subjectively conscious of their psychophys-
iological reaction changes and whether these reaction changes are positive
(i.e., our participants report to have a positive experience) or negative (i.e.,
our participants report to have a negative experience).
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Affective State Measures

We measure our participants’ affective state with two scales: valence and
arousal. Valence is the cognitive judgement (i.e., pleasure or displeasure)
of an evaluation such as the interaction with robots considered in our re-
search. Higher valence values correspond to greater pleasure, while lower
valence values correspond to a less pleasurable experience. The arousal scale
assesses the mental alertness and the level of physical activity or level of ex-
citation (Mehrabian, 1996) felt during an evaluation. Higher arousal values
correspond to a higher excitation state, while lower arousal values correspond
to a lower excitation state.

Acquisition

We used the Self-Assessment Manikin (SAM) questionnaire to collect our
participants’ self-reported affective state (i.e., valence and arousal) (Lang,
1980). In the version of the SAM questionnaire used in this study (see Fig-
ure 3.9), each scale is composed of 9 pictures. Each picture in the valence
and arousal scale represents a value of valence or arousal, respectively. The
left-most picture represents the lowest level, and the right-most picture rep-
resents the highest level of valence or arousal that can be chosen by the
participant.

Figure 3.9: Self-Assessment Manikin scales. Top: The valence scale. The left-most
picture corresponds to the lowest level of valence. The right-most picture corresponds
to the highest level of valence. Bottom: The arousal scale. The left-most picture corre-
sponds to the lowest level of arousal. The right-most picture corresponds to the highest
level of arousal. These pictures are taken from and available at http://www.pxlab.de
(last access: April 2016).

Each picture of each scale (i.e., valence and arousal) corresponds to a
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numerical score. Numerical scores vary from 1 to 9. In the valence scale, 1
corresponds to the lowest level of valence (i.e., displeasure is maximal) and 9
corresponds to the highest level of valence (i.e., pleasure is maximal). In the
arousal scale, 1 corresponds to the lowest level of arousal (i.e., excitement is
minimal) and 9 corresponds to the highest level of arousal (i.e., excitement
is maximal).

3.2.3 Workload

Each task a human operator carries requires a specific amount of mental
resources. However, the amount of mental resources of a human being is
limited. The amount of mental resources required by a human operator is
referred to as his workload. The more a task requires mental resources, the
more the workload increases.

Acquisition

In this thesis, we acquire our participants’ workload level via a subjective psy-
chological questionnaire—the NASA Task Load Index Scale (NASA-TLX)
questionnaire (Hart and Staveland, 1988). The NASA-TLX questionnaire
is a multidimensional questionnaire developed to assess the workload expe-
rienced by participants during a task. The questionnaire is based on six
bipolar scales. The six scales of the NASA-TLX questionnaire are:

• Mental demand: to what extent the task requires a mental activity.

• Physical demand: to what extent the task requires a physical activity.

• Temporal demand: to what extent the task is rapid.

• Performance: to what extent the participant successfully performs the
task.

• Effort: to what extent the task requires mental and physical effort to
perform the task.
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• Frustration level: to what extent the participant feels frustrated (i.e.,
insecure, discouraged, stressed) during the task.

Each of these six scales is graded from “low” to “high”, except the per-
formance scale which is graded from “good” to “poor”. These scales are
associated to a numerical value between 0 and 100 for analysis purposes (a
value of 0 corresponding to “low” or “good” and a value of 100 corresponding
to “high” or “poor”).

The analysis of the NASA-TLX questionnaire provides a global workload
number varying between 0 and 100. In the original version of the NASA-TLX
questionnaire, each of the six scales had to be assigned with a weight. This
weight was determined by the participants (i.e., participants had to compare
each possible pair of dimensions and report, for each pair, the most relevant
dimension for his or her understanding of workload). The workload number
was then computed by multiplying each scale by its corresponding weight,
by summing up the weighted scales and by dividing the summation by 15
(i.e., the number of pairs of dimensions).

More recently, various studies have eliminated the weighting process from
the questionnaire—participants do not have to compare each pair of dimen-
sions. In the version of the NASA-TLX questionnaire without the weighting
process, the workload number is computed by dividing the summation of the
raw scores (i.e., the values chosen by the participants) by 6. This modifica-
tion results in a simpler and faster application of the questionnaire. When
the NASA-TLX questionnaire is used in this form, it is usually referred to
as the NASA Raw Task Load Index Scale (NASA-RTLX) (Hart, 2006). In
the research presented in Chapter 4, we use the NASA-RTLX version of the
questionnaire.

As stated in Section 3.2.1, workload has been found to be correlated
to both heart rate and skin conductance (Kramer, 1991). However, re-
cent research in human-robot interaction found inconsistencies in different
studies were physiological measures were used to analyse participants’ work-
load (Harriott et al., 2015).
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3.2.4 Reaction Time

Reaction time is the time between the occurrence of a stimulus and a response
to that stimulus (Gawron, 2008, MacKenzie, 2012). Reaction time differs
depending on the type of stimulus (e.g., visual, auditory). For instance, for
auditory stimuli, mean reaction time is of 160 ms and of 190 ms for visual
stimuli (Welford, 1980).

We can differentiate three types of reaction time: i) simple reaction time,
where there is only one stimulus to which a participant has to respond, ii)
choice reaction time, where there are multiple stimuli to which a participant
has to respond with different types of response possibilities and iii) recognition
reaction time, where there are multiple stimuli but the participant has to
respond only to a subset of them. In the research presented in Chapter 4,
we use the first type of reaction time, where participants must respond to a
visual stimulus.

Acquisition

In Chapter 4, we collect our participants’ reaction time by measuring the time
taken by our participants to press a button after a visual stimulus occurs.
The button the participants have to press is connected to a computer via
Bluetooth. A software computes the time, in milliseconds, between the visual
stimulus and the moment a participant pressed the button. Figure 3.10 shows
the Bluetooth device and the button the participants had to press.

Figure 3.10: Bluetooth game-pad used to collect the reaction time. The button the
participants had to press after each stimulus is encircled in red in the picture (it is the
right-most button on the device).
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3.3 Conclusions

In this chapter, we presented the hardware, software and the psychological
measures used to conduct our experiments. We presented the e-puck robotic
platform—a robotic platform commonly used in swarm robotics. We pre-
sented the environments used to conduct the reality gap experiments (i.e.,
the study of the effect of the reality gap on the human psychology) and to
conduct the group size experiments (i.e., to study the effect of the number
of robots on human psychology).

We presented in details the psychological measures we used in our exper-
iments and we explained how we collected these psychological measures. We
presented the two psychophysiological measures (heart rate and skin conduc-
tance level), the affective state measures (valence and arousal), the workload
measure (the amount of mental resource need to carry out a task) and the
reaction time (the time needed to respond to a stimulus).

In the next two chapters, we use these measures to study the reality
gap effect (Chapter 4) and the group size effect (Chapter 5). We show that
the reality gap significantly affects the participants’ skin conductance level,
arousal, valence, workload and reaction time and that the number of robots
affects the participants’ skin conductance, heart rate and arousal.
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Effect of the Reality Gap

As we have seen in Chapter 2, the majority of the experiments in human-
swarm interaction are conducted exclusively in simulation, with human oper-
ators interacting with simulated robots on a computer screen. See Table 2.1
for a summary of the experiments with participants in human-swarm inter-
action research.

Simulation is a convenient choice for swarm roboticists for two reasons.
Firstly, simulation allows experimental conditions to be replicated perfectly
in different experimental runs. Secondly, gathering enough real robots to
make a meaningful robot swarm is often prohibitively expensive in terms of
both money and time. However, conducting experiments in simulation suffers
from a potentially fundamental problem—the inherent discrepancy between
simulation and the reality (the reality gap).

In this chapter, we study the effect of the reality gap on human psychol-
ogy. Even though the effect of the reality gap is well studied in human-robot
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interaction (with companion robots or healthcare robots for instance, see
Chapter 2), it is not clear what the effect of the reality gap is in human-
swarm interaction.

More specifically, we expect the participants’ psychological responses to
be significantly higher when they interact with a real robot swarm compared
to when they interact with a simulated robot swarm. Our goal is to confirm
this expectation and, if confirmed, to study how can the effect be mitigated
(i.e., how can we diminish the difference of psychological reactions between
reality and simulation).

We present two experiments in which humans interact with a real robot
swarm, with a simulated robot swarm displayed on a computer screen, and
with a simulated robot swarm displayed in virtual reality (within a virtual
reality headset). We show in Figure 4.1 an example of our experiments. In
the first experiment, our participants are purely passive—they are asked to
watch attentively a swarm of robots moving in an environment. In the second
experiment, our participants are not purely passive anymore—in addition to
watching attentively a swarm of robots moving in an environment, they are
asked to push a button each time a robot from the robot swarm illuminates
its LEDs.

(a) (b) (c)

Figure 4.1: Example of an experiment. (a) A participant interacts with a swarm
consisting of 20 real robots. (b) A participant interacts with a simulated swarm of 20
robots displayed on a computer screen. (c) A participant is attached to a virtual reality
head set and interacts with a simulated swarm of 20 robots. The participant shown
in this figure is the author of the manuscript and did not take part in the experiment.
The pictures shown in this figure were taken for illustration purposes.

The first experiment, in which the participants are purely passive, allows
us to study the effect of the reality gap on human psychology without the risk
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that an interaction interface (e.g., joystick, keyboard, voice or gestures) is
the strongest measurable reaction, drowning out the difference in reaction to
the reality gap. In this experiment, we study the psychological impact of the
reality gap using psychophysiological measures and self-reported measures.
The second experiment allows us to study the effect of the reality gap on
human psychology in a context where our participants are more involved in
the interaction than in the first experiment. In this second experiment, the
task assigned to the participants (pushing a button when a robot illuminates
its LEDs) allows us to study the impact of the reality gap on the participants’
psychophysiological state, workload level and reaction time.

In addition to studying the effect of the reality gap on the human psychol-
ogy, we also investigate how to mitigate this effect in simulation. Indeed, it is
not always possible for researchers to conduct real robot experiments, essen-
tially because real robots are expensive and because real robots experiments
are time consuming. This is the reason why we also asked our participants
to perform our experiments in a virtual reality environment. If the psy-
chological reactions of our participants interacting with a robot swarm in
a virtual reality environment are significantly stronger than when they are
interacting with a robot swarm displayed on a computer screen (i.e., stronger
psychophysiological reactions and higher workload and reaction time), then
we can reasonably argue that virtual reality mitigates the effect of the reality
gap. In other words, we expect our participants’ psychological reactions to
be i) significantly higher when they interact with a real robot swarm com-
pared to a simulated one (be it displayed on a computer screen or in a virtual
reality environment), and ii) significantly higher when they interact with a
simulated robot swarm displayed in a virtual reality environment compared
to with a simulated robot swarm displayed on a computer screen.

This chapter is structured as follows. In the first section, we present the
experiment in which our participants are purely passive. In Section 4.1.1 we
present the hypotheses used to design the experimental scenario presented
in Section 4.1.2. In Section 4.1.3 and in Section 4.1.4 we describe the robots’
behaviour and the measures collected on our participants, respectively. We
report some statistics about our participants in Section 4.1.5. We explain
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the experimental procedure in Section 4.1.6 and we report the results of the
experiment in Section 4.1.7. In the second section of this chapter, we present
the experiment in which our participants are not purely passive anymore.
This second section follows the same structure as the first section. We discuss
the results of these two experiments and conclude this chapter in Section 4.3.

4.1 Experiment 1: Psychological Responses in a Pas-
sive Supervision Task

In this experiment, our goal is to show that the human psychophysiological
state is affected by the reality gap when the interaction with a robot swarm
is purely passive.

4.1.1 Hypotheses

We based this experiment on the following hypotheses:

• The psychophysiological reactions of humans are stronger when they
interact with a real robot swarm than when they interact with a sim-
ulated robot swarm.

• The psychophysiological reactions of humans are stronger when they
interact with a simulated robot swarm displayed in virtual reality than
when they interact with a simulated robot swarm displayed on a com-
puter screen.

Confirming the first hypothesis would imply that human-swarm interac-
tion experiments should be conducted with real robots instead of with simu-
lated robots. Confirming the second hypothesis would imply that in order to
mitigate the effect of the reality gap in simulation, it is better for a researcher
to simulate a robot swarm in virtual reality because it provokes more realistic
psychophysiological reactions compared to simulated robot swarms displayed
on a computer screen.
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4.1.2 Experimental Scenario

We designed an experimental scenario that allowed us to study the two hy-
potheses presented in the previous section. This experimental scenario is
divided into three sessions. In each session, a participant must monitor (i.e.,
watch attentively) a swarm consisting of 20 robots. In the so-called Real
Robots session, the robot swarm is composed of real robots (see Figure 4.2a).
In the so-called Screen Simulation session, the robot swarm is simulated in 2D
and displayed on a computer screen (the participants see the robots swarm
from the top view, see Figure 4.2b). In the so-called Virtual Reality ses-
sion, the robot swarm is simulated in 3D and displayed in a virtual reality
environment (the participants wear the virtual reality headset presented in
Section 3.1.3 and see the robot swarm as they would see it in reality, see
Figure 4.2c). We decided to compare a 2D (top-view) simulation with the
reality because this is how the majority of the experiments in human-swarm
interaction display the robot swarm1. We decided to compare a 3D simu-
lation (virtual reality) to the 2D simulation and to reality in order to test
our second hypothesis. During the three sessions (i.e., Real Robots, Screen
Simulation, Virtual Reality), the participants must monitor the robots for a
period of 60 s.

The order a participant encounters the sessions is random. Prior to begin-
ning an experiment, the experimenter assigns the sessions to the participant
by randomly selecting an order (i.e., a random function was programmed to
randomly permute the three sessions)2.

4.1.3 Robot Behaviour

At the beginning of each session (i.e., Real Robots, Screen Simulation, Virtual
Reality), 20 e-puck robots are randomly placed in the environment. When an

1Please note that this particular choice introduces the question of whether any differ-
ences observed between virtual reality and simulation are due to the different perspectives.
As discussed in Chapter 6, this aspect will be considered in future work.

2A problem with this technique is that the order of the sessions is not guaranteed to be
balanced. In the future, the experimenter should use a proper method to randomly assign
the sessions to the participants, such as using a Latin Square.
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(a) (b) (c)

Figure 4.2: Robots and environments for each of the three sessions. (a) View of the
real robots and environment. The view is displayed from the participant’s perspective.
(b) Top view of the robots and of the environment simulated on a computer and
displayed on a screen. (c) View of the robots and of the environment simulated in
virtual reality. The view is displayed from the participant’s perspective.

experiment starts, the 20 e-puck robots perform a random walk with obstacle
avoidance behaviour for a period of 60 seconds. Each robot executes the two
following steps: i) it drives straight with a constant velocity of 10 cm s−1, and
ii) it changes its direction when it encounters either a robot or an obstacle
in the direction of movement (i.e., it turns in place until the obstacle is no
longer detected in the front part of its chassis). The robots perform random
walk with obstacle avoidance in the environment described in Section 3.1.2
and depicted in Figure 4.2.

4.1.4 Measures

In this experiment, we are interested in understanding the effect of the reality
gap on our participants’ psychophysiological state. In order to study this
effect, we measure our participants’ heart rate and skin conductance level
during the interaction with a robot swarm (see Section 3.2.1). We also use
the SAM questionnaire to study the participants’ subjective affective state.
This questionnaire also allows us to determine whether our participants are
conscious of their psychophysiological state changes (see Section 3.2.2).
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4.1.5 Participants

We recruited 28 participants from the campus population of the Université
Libre de Bruxelles. All participants were between 18 and 29 years old with
an average age of 22.75 years old (SD = 3.28) and came from different facul-
ties of the university (e.g., law, science, psychology, economics). None of the
participants had a background in robotics. We excluded potential partici-
pants with cardiovascular problems. Our participants received an informed
consent form explaining that they would have been filmed3 during the exper-
iment and that their physiological responses would be collected for research
purposes only (see Annex B). At the end of the experiment, we offered a
7 e financial incentive for participation.

4.1.6 Experimental Procedure

We conducted our experiments in the robotics experiment room of the arti-
ficial intelligence laboratory at the Université Libre de Bruxelles (IRIDIA).
Upon arrival, we explained to the participant that she or he was going to
monitor, i.e., watch attentively, a swarm of robots with three different types
of visualization interfaces (i.e., in reality with real robots, in simulation on
a computer screen and in a virtual reality headset). We then showed to the
participant the swarm of robots displayed in the three visualization inter-
faces. The participant was allowed to look at the real robots, at a computer
screen displaying a top view of a swarm of robots, and was allowed to wear
the virtual reality headset. Once the participant was familiar with the three
visualization interfaces, we presented and explained how to answer the SAM
questionnaire. In order for the participant to clearly understand the no-
tions of valence and arousal, we orally associated to the valence scale and to
the arousal scale two bipolar adjectives: unhappy-happy and unsatisfied-
satisfied for valence and relaxed-stimulated and calm-excited for arousal.
These bipolar adjectives are highly correlated with the notions of valence
and arousal (Bradley and Lang, 1994). Then, we invited the participant to

3We did not use the video recordings in our analysis. We recorded our experiments to
have a visual history in case an experiment failed (e.g., robot crashes).
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read and sign the consent form. In order for the physiological sensors to work
properly, we asked the participant to wash their hands in clear water (i.e.,
with no soap) and to remain seated on a chair placed in a corner of the envi-
ronment used for the Real Robots session (see Figure 3.2). We then attached
the participant to the physiological sensors. We proceeded with a 5 minute
rest period in order to collect the participant’s physiological baseline (i.e.,
physiological responses at rest). After the 5 minute rest period, we started
the first session. After each session, we asked the participant to answer the
SAM questionnaire. Before starting the next session of the experiment, we
collected the participant’s baseline during an additional 3 minute rest period.
This 3 minute rest period allowed the participant to get back to a normal
physiological activity. During the whole duration of the experiment, the par-
ticipant remained seated on the same chair. During the Real Robots session,
the participant was immersed in the environment in which the robots were
randomly moving. Prior to the Screen Simulation session, we placed a com-
puter screen in front of the participant. Prior to the Virtual Reality session,
we attached the virtual reality headset to the participant. See Figure 4.3 for
an example of a participant during the experiment.

After the experiment ended, we detached the sensors from the participant
and conducted a brief interview. During the interview, we explained to the
participant the goal of the study and we answered questions the participant
asked. We finished the experiment by thanking the participant and by giving
the participant the 7 e incentive. The entire experiment’s duration was
approximately 30 minutes per participant.

4.1.7 Data Analysis and Results

Out of the 28 participants who took part to the experiment, we had to
remove the physiological data (heart rate and skin conductance) of 5 partic-
ipants due to sensor misplacement. We, however, kept the self-reported data
(valence and arousal values reported by the SAM questionnaire) of these
5 participants. In the following of this section, therefore, we analyse the
psychophysiological data of 23 participants (15 female and 8 male) and the
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(a) (b)

(c) (d)

Figure 4.3: A participant during the experiment. (a) A participant during the Real
Robots session. (b) A participant during the Screen Simulation session. (c) A
participant during the V irtual Reality session. (d) A participant completing the
SAM questionnaire. These pictures are snapshots taken from a video recording of an
experiment. The face of the participant is blurred for ethical reasons.

self-reported data of 28 participants (17 female and 11 male).
Physiological responses can vary between individuals. Therefore, it is

difficult to compare the physiological responses of an individual with those
of another. In order to compare the physiological responses between our
participants, we conduct all our analyses on the difference between our par-
ticipants’ physiological responses at rest (i.e., the participants’ baseline) and
during the experiment.

In the following of this section, we first analyse the data and present
the results of the reality gap effect. Then, we analyse our data in order
to investigate whether or not some of the dependent variables (i.e., heart
rate, skin conductance, arousal and valence) are pairwise correlated. Finally,
we analyse our data in order to study potential gender effect (i.e., whether
females and males differ in their results) and any potential session order effect
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(i.e., whether the participants become habituated to the experiment).

Reality Gap Effect

We analysed our data with the R software (R Core Team, 2015) by perform-
ing a repeated measures design analysis. Because the data was not normally
distributed, we did not use the repeated measure ANOVA test (as the test
assumes a normal distribution). Rather, we used a non-parametric Friedman
test to analyse both the psychophysiological data and the self-reported data
(i.e., the SAM questionnaire). The Friedman test is a rank-based test that
does not make any assumption on the distribution of the data. In our case,
the Friedman test’s null hypothesis states that there are no differences be-
tween the three sessions Real Robots, Screen Simulation and Virtual Reality.
The alternative hypothesis states that there are at least two sessions that are
different. When the Friedman test is significant, we can reject the null hy-
pothesis in favour of the alternative hypothesis. The alternative hypothesis,
however, does not allow us to determine which sessions differ.

In order to determine which sessions significantly differ, we proceeded
with a post-hoc Nemenyi test. The Nemenyi test compares the Friedman
mean rank differences of two groups to a critical difference (CD) value. The
critical difference value depends on the sample size (i.e., the number of par-
ticipants), the number of data sets (i.e., the number of sessions) and on a
value derived from the Studentized range statistic. Equation 4.1 shows the
Nemenyi test for two groups i and j:

|Ri −Rj| >
q∞,k,α√

2

√
k(k + 1)

6N︸ ︷︷ ︸
Critical Difference (CD)

, (4.1)

where Ri and Rj are the Friedman mean ranks of group i and j and q∞,k,α is
the Studentized upper quantile for an infinite level of freedom, for k number
of groups and for the level of significance α (in this research, we set α to
0.05). N is the sample size. The Nemenyi post-hoc test already takes into
account the Type-I error, that is, to declare the test significant while it is
not. The Nemenyi post-hoc test can be easily interpreted graphically with
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a so-called critical difference diagram (Demšar, 2006). A critical difference
diagram is composed of an horizontal axis on which the groups’ mean ranks
are plotted. A bar whose length corresponds to the critical difference value is
also plotted on the diagram. Two groups are significantly different when the
distance between the two groups on the horizontal axis is equal or greater
to the length of the bar representing the critical difference value. When two
groups are not significantly different, then these two groups are connected
with a thick line. Table 4.1 summarises the results by showing the median
and the Friedman mean ranks and the inference statistics of the Friedman
tests (i.e., p-value and χ2). We also show the boxplots of each measure in
Figure 4.4.

Dependent Variable n RR SS VR χ2 p

Heart Rate 23 0.39
(1.87)

1.44
(2.13)

1.01
(2)

χ2(2) = 0.78 .67

SCL 23 4.91
(2.65)

0.77
(1.57)

1.54
(1.78)

χ2(2) = 15.2 < .001

Arousal 28 6
(2.45)

3
(1.39)

5
(2.16)

χ2(2) = 19 < .001

Valence 28 7
(2.73)

5
(1.55)

6
(1.71)

χ2(2) = 24.87 < .001

Table 4.1: Descriptive statistics of the psychophysiological data and of the self-
reported data. RR stands for Real Robots, SS stands for Screen Simulation and
VR stands for V irtual Reality. We report the median and the Friedman mean rank
(in parentheses) of the three sessions (Real Robots, Screen Simulation, V irtual
Reality). We also report the inference statistics of the Friedman test (i.e., χ2 and p).

Heart rate and skin conductance level – The results of the Friedman
test on the psychophysiological data do not show any main effect of the
reality gap on our participants’ heart rate (χ2(2) = 0.78, p = .67), see
Figure 4.5a. The results show, however, a main effect of the reality gap
on our participants’ skin conductance level (χ2(2) = 15.2, p < .001). A
Nemenyi post-hoc test confirms that our participants’ skin conductance level
was statistically significantly different between the Virtual Reality session
and the Real Robots session (CD = 0.69, p < .05) and between the Screen
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Figure 4.4: Boxplots showing the heart rate values (top left), skin conductance level
values (top right), arousal values (bottom left) and valence values (bottom right) of
all three sessions. The median value of each session is shown using the bold horizontal
line in the box. Outliers are represented using dots.

Simulation session and the Real Robots session (CD = 0.69, p < .001). The
Nemenyi post-hoc test does not show any statistically significant difference
between the Screen Simulation session and the Virtual Reality session (CD =
0.69, p = .74), see Figure 4.5b.

SAM questionnaire – The results of the Friedman test on the self-
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1 2 3

Real Robots
Virtual Reality

Screen Simulation

CD

(a) Critical difference diagram showing pairwise statistical differences of the heart rate
data. There are no statistical differences between any of the three sessions.

1 2 3

Screen Simulation
Virtual Reality

Real Robots

CD

(b) Critical difference diagram showing pairwise statistical differences of the skin con-
ductance level data—Screen Simulation and Real Robots, and V irtual Reality and
Real Robots are statistically significantly different.

Figure 4.5: Critical difference diagrams showing pairwise statistical differences for (a)
heart rate and (b) skin conductance level. When two sessions are connected with a
thick line, the two sessions are not statistically different.

reported data also show a main effect of the reality gap on our partici-
pants’ arousal (χ2(2) = 19, p < .001) and on our participants’ valence
(χ2(2) = 24.87, p < .001). A Nemenyi post-hoc test on the arousal data
highlights a statistically significant difference between the Screen Simula-
tion session and the Real Robots session (CD = 0.63, p < .001) and between
the Screen Simulation session and the Virtual Reality session (CD = 0.63,
p < .05). The Nemenyi post-hoc test does not show any statistically signifi-
cant difference between the Virtual Reality session and the Real Robots ses-
sion (CD = 0.63, p = 0.53), see Figure 4.6a. The Nemenyi post-hoc test
shows that our participants’ self-reported valence was statistically signifi-
cantly different between the Virtual Reality session and the Real Robots ses-
sion (CD = 0.63, p < .001) and between the Screen Simulation session and
the Real Robots session (CD = 0.63, p < .001). The Nemenyi post-hoc
test does not show any statistically significant difference between the Screen
Simulation session and the Virtual Reality session (CD = 0.63, p = .8), see
Figure 4.6b.
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1 2 3

Screen Simulation
Virtual Reality

Real Robots

CD

(a) Critical difference diagram showing pairwise statistical differences of the arousal
data—Screen Simulation and V irtual Reality, as well as Screen Simulation and
Real Robots are statistically significantly different.

1 2 3

Screen Simulation
Virtual Reality

Real Robots

CD

(b) Critical difference diagram showing pairwise statistical differences of the valence
data—Screen Simulation and Real Robots, as well as V irtual Reality and Real
Robots are statistically significantly different.

Figure 4.6: Critical difference diagrams showing pairwise statistical differences for (a)
arousal and (b) valence.

Correlations, Gender Effect and Order Effect

In order to calculate a correlation between the psychophysiological data
and the self-reported data (e.g., correlation between skin conductance and
arousal) we only took into account the self-reported data of the participants
whose psychophysiological data had not been rejected (due to sensor mis-
placement). For the correlation test between arousal and valence we took
the 28 participant data points. We did not find any correlation within each
of the three sessions (i.e., there was no correlation for any pairwise dependent
variable within the Real Robots session nor the Screen Simulation session nor
the Virtual Reality session). We, therefore, investigated whether there was
some correlation when the data of each condition was pooled together (e.g.,
we aggregated skin conductance values from the three sessions). Regard-
ing correlation between psychophysiological data and self-reported data, we
found a correlation between skin conductance and valence (ρ = .42, p < .001)
and a weak correlation between skin conductance and arousal (ρ = .253,
p = .03). There was no correlation between heart rate and valence and be-
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tween heart rate and arousal. Concerning the self-reported data, we found a
correlation between arousal and valence (ρ = .32, p = .002). We did not find
any correlation between heart rate and skin conductance.

We analysed the gender effect by splitting into two groups the males’ and
females’ results of each dependent variable (i.e., heart rate, skin conductance,
arousal and valence) for each condition (i.e., Real Robots, Screen Simulation,
Virtual Reality). We compared these two groups with a Wilcoxon rank-sum
test. We did not find any statistically significant difference between males
and females in any condition, for any dependent variable.

We studied the session order effect as follows. For each condition and for
each dependent variable, we separated into three groups the results of the
participants who encountered the session first, second or third, respectively.
We compared the three groups with a Kruskall-Wallis test—a non-parametric
test similar to a Friedman test but for independent groups. We did not
find any statistically significant difference among the three groups in any
session, for any dependent variable, suggesting that the session order had no
significant effect on our participants.

4.2 Experiment 2: Psychological Responses in a Su-
pervision Task with Visual Stimuli

In the previous experiment, we have seen that the reality gap affects the
human psychophysiological state when the interaction with a robot swarm
is purely passive. In this section, we present an experiment that allows us
to show that the human psychophysiological state, as well as the human
workload and reaction time are also affected when the interaction is not
purely passive.

4.2.1 Hypotheses

We based this experiment on 2 hypotheses:

1. The psychophysiological reactions, workload and reaction time of hu-
mans are higher when they interact with a real robot swarm than with
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a simulated one.

2. The psychophysiological reactions, workload and reaction time of hu-
mans are higher when they interact with a simulated robot swarm
displayed in a virtual reality environment than with a simulated robot
swarm displayed on a computer screen.

Confirming the first hypothesis would allow us to show that, not only
the reality gap has an effect on the human psychophysiological state, but
equally importantly, that it has also an effect on the human workload and
reaction time. Confirming the second hypothesis would complete the results
of experiment 1. In experiment 1, we showed that our participants’ arousal
was significantly higher in virtual reality than with the computer screen. By
showing that the psychophysiological reactions, workload and reaction time
are higher when humans interact with a robot swarm in a virtual reality
environment rather than with a robot swarm displayed on a computer screen,
we would strengthen our confidence that virtual reality can mitigate the effect
of the reality gap in simulation.

4.2.2 Experimental Scenario

In order to test our 2 hypotheses, we designed an experimental scenario sim-
ilar to that of experiment 1. In the experimental scenario used in experiment
1, our participants’ task was to monitor a swarm consisting of 20 robots dur-
ing a period of 60 s. The difference with the experimental scenario used in
experiment 1 is that, in this experimental scenario, our participants have to
press a button each time a robot illuminates its LEDs in red.

As in experiment 1, this experimental scenario is divided into the three
sessions Real Robots, Screen Simulation and Virtual Reality, that our partic-
ipants encounter randomly.

4.2.3 Measures

In this experiment, in addition to studying the effect of the reality gap on
the psychophysiological state (by monitoring our participants’ heart rate and
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skin conductance level and by asking them to answer the SAM questionnaire,
see Section 3.2.1 and Section 3.2.2) we also study the effect of the reality gap
on the workload and reaction time. We study the effect of the reality gap
on the workload using the NASA-RTLX questionnaire (see Section 3.2.3).
We study the effect of the reality gap on the reaction time by measuring the
time our participants take to press a button after the appearance of a visual
stimulus coming from a robot, that is, when a robot of the swarm illuminates
its LEDs in red (see Section 3.2.4).

4.2.4 Robot Behaviour

As in experiment 1, the 20 robots perform a random walk with obstacle
avoidance behaviour over 60 s. In this experiment, the robots also provide
the participants with visual stimuli: randomly, one robot at a time illumi-
nates its LEDs in red. The probability for a robot to illuminate its LEDs
in red is computed by a software running on an external computer (there
is a TCP communication link between the software and each robot). The
software computes this probability as follows. Every 100 milliseconds, with
a probability of 0.02, the software randomly chooses a robot’s identification
number (each robot has a unique identification number). With a probabil-
ity of 0.98, the software does not choose any robot’s identification number.
When the software selects an identification number, it sends a signal (i.e., a
message via the TCP communication link) to the robot associated to that
identification number. When a robot receives a signal, it illuminates its LEDs
in red for 2 seconds. When the software chooses an identification number, it
also makes sure to wait 2 additional seconds in order to prevent two robots
from being illuminated at the same time.

4.2.5 Participants

In this experiment, we recruited 37 participants. These participants came
from the campus population of the Université Libre de Bruxelles. No par-
ticipant had a robotic background and none of them had participated to the
first experiment. They came from various faculties of the university. They
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were between 17 and 30 years old with an average age of 23.2 years old
(SD = 3.54). People with current or anterior cardiovascular problems could
not participate to the experiment. Our participants had to read and sign
an informed consent form explaining that we monitored their physiological
activity during the experiment (see Annex B). We offered a 7 e financial
incentive for their participation.

4.2.6 Experimental Procedure

The experimental procedure is similar to that of experiment 1, described
in Section 4.1.6. The experiments took place in IRIDIA, the artificial in-
telligence laboratory of the Université Libre de Bruxelles. We started the
experiment by explaining to the participant the supervision task (i.e., watch
a swarm of robots attentively and press a button each time a robot in the
swarm illuminates its LEDs in red). Then, we showed to the participant
the three visualization interfaces used in each session (the real robots in the
real environment, the simulated robots displayed on a computer screen and
the simulated robots displayed in a virtual reality headset). We allowed
the participant to carefully look at the robots in each visualization interface
in order to get familiarised with each of them. Once familiarised with the
three visualization interfaces, we explained how to answer the SAM and the
NASA-RTLX questionnaires. After the participant signed the consent form,
we asked the participant to wash their hands in clear water (i.e., without
soap) and to take a seat on a chair placed in a corner of the environment
used in the Real Robots session. The participant remained seated on the chair
during the whole duration of the three sessions. Once seated, we attached
the physiological sensors to the participant’s non-dominant hand. Prior to
the first session, we collected the participant’s baseline (i.e., physiological re-
sponses at rest) during 5 minutes. After these 5 minutes, we proceeded with
the first session. After the first session, we administrated the SAM and the
NASA-RTLX questionnaires to the participant. We pursued by collecting
the participant’s baseline during 3 minutes in order for the participant to get
back to their baseline physiological activity. We followed the same procedure
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for the second and third session. After the experiment, we explained the
goal of the experiment to the participant and we answered potential ques-
tions. The whole experiment’s duration was approximately 30 minutes per
participant.

4.2.7 Data Analysis and Results

Due to the fact that our participants had to press a button during the experi-
ment, the heart rate data became too noisy to be usefully analysed (the pulse
transducer sensor is extremely sensible to small movements). We, therefore,
decided not to analyse our participants’ heart rate data. Out of the 37 par-
ticipants, we had to remove the skin conductance data of 6 participants due
to sensor misplacement. We also removed the SAM questionnaire data and
the NASA-RTLX questionnaire data of 3 participants due to an error of the
experimenter in the administration of the questionnaires. We finally removed
the reaction time data of 4 participants due to a hardware problem with the
button. We performed, therefore, our statistical analyses on 31 skin conduc-
tance data (17 female and 14 male), 34 SAM and NASA-RTLX questionnaire
data (19 female and 15 male) and on 33 reaction time data (19 female and 14
male). The analysis is conducted on the difference between the participants’
physiological responses at rest and during the experiment.

In the following of the section, we first present our analysis and results on
the reality gap effect. Then, we present the results of a correlation analysis (in
order to determine whether any dependent variables were pairwise correlated)
and on potential gender and session order effects.

Reality Gap Effect

We analysed our data with the R software by performing a repeated measure
design analysis. We used the non-parametric Friedman test to determine
whether the reality gap has a significant effect on our participants’ measures
(i.e., skin conductance, arousal, valence, NASA-TLX and reaction time). In
case of statistical significance of the Friedman test, we performed a Nemenyi
post-hoc test to evaluate the significance of the differences between sessions.
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In Table 4.2, we summarise the results by giving the median and the Fried-
man’s mean ranks and the inference statistics of the Friedman tests (i.e.,
p-values and χ2). We also report the boxplots of each measure in Figure 4.7.

Dependent Variable n RR SS VR χ2 p

SCL 31 4.54
(2.54)

1.47
(1.71)

1.93
(1.74)

χ2(2) = 14 <.001

Arousal 34 5
(2.31)

3
(1.33)

5
(2.35)

χ2(2) = 25.35 < .001

Valence 34 7
(2.14)

7
(1.9)

7
(1.9)

χ2(2) = 1.38 1

NASA-RTLX 34 27.5
(2.29)

18.33
(1.23)

35
(2.47)

χ2(2) = 32.25 < .001

Reaction Time 33 0.87
(2)

0.72
(1.39)

1.02
(2.6)

χ2(2) = 24.24 < .001

Table 4.2: Descriptive statistics of the psychophysiological data, of the self-reported
data and of the reaction time data. We report the median and the Friedman’s mean
rank (in parentheses) of the three sessions (Real Robots, Screen Simulation, Virtual
Reality). We also report the inference statistics of the Friedman test (i.e., χ2 and p
value).

Skin conductance level – The results of the Friedman test on the skin
conductance level show a main effect of the reality gap on our participants
(χ2(2) = 14, p < .001). A Nemenyi post-hoc test on the skin conductance
level data highlights a statistically significant difference between the Virtual
Reality session and the Real Robots session (CD = 0.59, p < .05) and be-
tween the Screen Simulation session and the Real Robots session (CD = 0.59,
p < .05). The Nemenyi post-hoc test does not show any statistically sig-
nificant difference between the Screen Simulation session and the Virtual
Reality session (CD = 0.59, p = .9), see Figure 4.8.

SAM questionnaire – The Friedman test on the SAM questionnaire
data reports a main effect of the reality gap on our participants’ arousal
(χ2(2) = 25.35, p < .001). The Nemenyi post-hoc test on the arousal data
shows that there is a statistically significant difference between the Screen
Simulation session and the Real Robots session (CD = 0.57, p < .001), be-
tween the Screen Simulation session and the Virtual Reality session (CD =
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Figure 4.7: Boxplots showing the skin conductance level (top left), reaction time
(top right), arousal values (middle left), valence values (middle right) and workload
(bottom) of all three sessions. The median value of each session is shown using the
bold horizontal line in the box. Outliers are represented using dots.
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1 2 3

Screen Simulation
Virtual Reality

Real Robots

CD

Figure 4.8: Critical difference diagram showing pairwise statistical differences of the
skin conductance level data—Screen Simulation and V irtual Reality are statisti-
cally significantly different, as well as V irtual Reality and Real Robots.

0.57, p < .001). The Nemenyi post-hoc test does not show any statisti-
cally significant difference between the Virtual Reality session and the Real
Robots session (CD = 0.57, p = .9), see Figure 4.9a. The Friedman test
does not show any main effect of the reality gap on our participants’ valence
(χ2(2) = 1.38, p = 1), see Figure 4.9b.

1 2 3

Screen Simulation
Real Robots

Virtual Reality

CD

(a) Critical difference diagram showing pairwise statistical differences of the SAM
questionnaire’s arousal data—Screen Simulation and Real Robots are statistically
significantly different, as well as Screen Simulation and V irtual Reality.

1 2 3
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(b) Critical difference diagram showing pairwise statistical differences of the SAM
questionnaire valence data. There are no statistical differences between any of the
three sessions.

Figure 4.9: Critical difference diagrams showing pairwise statistical differences for (a)
arousal and (b) valence.

NASA-RTLX questionnaire – The results of the Friedman test on our
participants’ workload show a main effect of the reality gap (χ2(2) = 32.25,
p < .001). The Nemenyi post-hoc test shows a statistically significant dif-
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4.2. EXPERIMENT 2: PSYCHOLOGICAL RESPONSES IN A
SUPERVISION TASK WITH VISUAL STIMULI

ference in the workload level of our participants between the Screen Simula-
tion session and the Real Robots session (CD = 0.57, p < .001) and between
the Screen Simulation session and the Virtual Reality session (CD = 0.57,
p < .001). The Nemenyi post-hoc test does not show any statistically signifi-
cant difference between the Virtual Reality session and the Real Robots session
(CD = 0.57, p = .7), see Figure 4.10. We report in Figure 4.11 the score of
each dimension of the NASA-RTLX questionnaire for each session.

1 2 3

Screen Simulation
Real Robots

Virtual Reality

CD

Figure 4.10: Critical difference diagram showing pairwise statistical differences of the
NASA-RTLX questionnaire data—Screen Simulation and Real Robots are statisti-
cally significantly different, as well as Screen Simulation and V irtual Reality.

Reaction time – Finally, the results of the Friedman test on our partic-
ipants’ reaction time report a main effect of the reality gap (χ2(2) = 24.24,
p < .001). The Nemenyi post-hoc test shows a statistically significant
difference between the Real Robots session and the Virtual Reality session
(CD = 0.57, p < .05), between the Screen Simulation session and the Real
Robots session (CD = 0.57, p < .05) and between the Screen Simulation ses-
sion and the Virtual Reality session (CD = 0.57, p < .001), see Figure 4.12.

Correlations, Gender Effect and Order Effect

As for the first experiment, we analysed our data in order to determine
whether any dependent variables (i.e., skin conductance, arousal, valence,
workload and reaction time) were pairwise correlated. We performed this
analysis by aggregating the data of the three sessions. We found a correlation
between reaction time and arousal (ρ = 0.26, p < .05), between workload and
reaction time (ρ = 0.43, p < .001), between workload and arousal (ρ = 0.37,
p < .001) and between workload and skin conductance (ρ = 0.26, p < .05).

We were also interested in determining whether the gender of our par-
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Figure 4.11: NASA-RTLX individual dimension’s results. The error bar is the standard
error for each session (standard deviation divided by the squared root of the sample
size).
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Figure 4.12: Critical difference diagram showing pairwise statistical differences of the
reaction time data. Each session is statistically significantly different from the other.

ticipants and the order our participants encountered the sessions had any
effects on their results. We proceeded with the same analysis as in the first
experiment. As in the results of the first experiment, we did not find any
effect of the gender nor of the session order on our participants’ results.
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4.3 Discussion and Conclusions

In this chapter, we presented two experiments on the effect of the reality
gap on the psychological state of humans interacting with a robot swarm.
The first experiment allowed us to show that our participants’ psychophysi-
ological reactions were stronger when they were passively interacting with a
real robot swarm rather than when they were interacting with a simulated
one displayed on a computer screen. Thanks to the additional task asked
to our participants in the second experiment (i.e., pushing a button when
a robot illuminates its LEDs), we showed that our participants’ workload
and reaction time were also higher when our participants interacted with a
real robot swarm rather than with a simulated robot swarm displayed on
a computer screen. Moreover, in the second experiment, we found similar
psychophysiological reactions to those of experiment 1—our participants psy-
chophysiological reactions were also higher when they were interacting with
a real robot swarm rather than with a simulated one displayed on a computer
screen. These results show that it is vital to take into account the reality
gap when researchers design human-swarm interaction experiments.

A solution to avoid the reality gap would be to conduct all human-swarm
interaction experiments with real robots. However, real robots experiments
are expensive and time consuming. It is, therefore, not realistic to expect
researchers to conduct human-swarm interaction experiments with dozens
or hundreds of real robots. For this reason, we decided to investigate the
possibility of using virtual reality in order to mitigate the effect of the reality
gap. To the best of our knowledge, virtual reality has never been used in
the research field of human-swarm interaction and is also little studied in
social robotics (Li, 2015). In our experiments, our results suggest that virtual
reality could be considered to mitigate the effect of the reality gap. In the first
experiment, our participants reported higher arousal values when they were
interacting with a simulated robot swarm in a virtual reality environment
than with a simulated robot swarm displayed on a computer screen. In the
second experiment, our participants also reported higher arousal values when
they were interacting with the robots swarm in a virtual reality environment.
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In addition to higher arousal values, results of the second experiment also
show higher workload and reaction time values when our participants were
interacting with a robot swarm in a virtual reality environment than when
they were interacting with a robot swarm displayed on a computer screen.

Though the interaction with a robot swarm is fundamentally different
than the interaction with a single robot (because of the number of robots hu-
man operators interact with, and because there is no social interaction with
a robot swarm), our results show similar findings than studies in human-
robot interaction—human beings react differently when they interact with
real robots than with simulated robots. In addition to having a significant
impact on the research methodology in human-swarm interaction (i.e., re-
searchers should use real robots to conduct their experiments), these differ-
ences in reactions also have consequences on the development of interaction
interfaces. For instance, in a search-and-rescue task, providing human opera-
tors with a simulation-like interface (i.e., an interface that shows a simulated
representation of real robots), could make human operators less engaged in
the task because all they see would be simulated robots only.

In the next chapter, we present a human-swarm interaction experiment
in which humans interact with robot swarms of increasing sizes. In this
experiment, we avoid the reality gap by conducting our experiments with
real robots only.

84



5
Effect of the Increasing Group Size

In this chapter, we present the results of our research on the effect of
increasing group size on the human psychological state. The goal of this
research is to address this basic question—is the psychology of human beings
affected by the number of robots to which they are exposed? Surprisingly,
this fundamental question has been largely ignored in human-swarm inter-
action research. Some research has considered the role of human psychology
in human-swarm interaction (see Section 2.1). However, the main focus of
existing studies was on human workload, i.e., the mental effort required to
deal with robot swarms under various different circumstances (De la Croix
and Egerstedt, 2012, Pendleton and Goodrich, 2013, Setter et al., 2015).
Only Karavas and Artemiadis (2015) focused on the human electroencephalo-
graphic activity when the robot swarm’s cohesion varied. Compared to these
previous studies, our contribution is twofold. Firstly, we answer a more basic
question—what is the psychological effect on a human being of being con-
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fronted with increasing number of robots. Secondly, we adopt a rigorous,
objective methodology. As discussed in Chapter 4, the reality gap has an ef-
fect on the human psychological state—humans react differently when they
interact with a real robot swarm than with a simulated one. Therefore, in
contrast to the majority of existing studies in human-swarm interaction, we
use exclusively real robots. Equally importantly, while the majority of the
previous studies have relied only on subjective questionnaires to determine
psychological effects, we use a combination of objective psychophysiological
measures and subjective psychological measures.

In this research, we measure the psychological state of twenty-four par-
ticipants. We measure our participants’ psychological state during a purely
passive interaction with an increasing number of robots. For the same rea-
sons as in Chapter 4, restricting our participants to passively interact with
a swarm allows us to study the effect of the robot group size in the simplest
form of interaction, that is, without the risk of increasing any psychological
reactions with an extra interaction interface (e.g., joystick, keyboard, voice
commands).

This chapter is organised as follows. In Section 5.1, we present the hy-
pothesis on which we based the design of our experimental scenario presented
in Section 5.2. In Section 5.3 we describe the measures collected on our par-
ticipants. We give the descriptive statistics of our participants in Section 5.4.
In Section 5.5, we explain the individual robot behaviour. We describe the
experimental procedure of the experiment in Section 5.6. In Section 5.7, we
explain the analysis of our data and we present the results of our research.
Finally, in Section 5.8, we discuss our contributions and conclude the chapter.

5.1 Hypothesis

One of the main characteristics of a swarm robotics system is the relatively
large number of robots that constitutes the system. We believe that the num-
ber of robots in a robot swarm can have important psychological implications
during the interaction between a human operator and the robot swarm. We,
therefore, designed our experiment based on the following hypothesis:
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• The psychophysiological reactions of humans become stronger when
the number of robots in a robot swarm increases.

Confirming this hypothesis would suggest that the psychological responses
of humans is affected by the number of robots to which they are exposed.
This result should have profound implications in the future of human-swarm
interaction since the relatively large number of robots in a robot swarm is an
inherent characteristic of swarm robotics and can not, therefore, be avoided.

5.2 Experimental Scenario

We designed an experimental scenario based on the aforementioned hypoth-
esis. In this scenario, a participant is seated in the same environment as the
robots. We divide the experiment into three sessions. In each session, we
increase the number of robots. As in Velagapudi et al. (2008), we did not
randomize the sessions across the participants because our principal focus
is on the effect of increasing robot group sizes. While the first session in-
cludes only a single robot (hereafter referred to as the 1-robot session) the
second and third sessions (hereafter referred to as the 3-robot session and
the 24-robot session, respectively) include a total of three and twenty-four
robots respectively. Each participant is exposed to each of the three groups
of robots (i.e., 1-robot, 3-robot, 24-robot) for a period of 45 s. In Figure 5.1,
we show an example of a participant at the beginning of the experiment (Fig-
ure 5.1 (a)), interacting with one robot (Figure 5.1 (b)), with three robots
(Figure 5.1 (c)), and finally with twenty-four robots (Figure 5.1 (d)).

5.3 Measures

In this research, we want to study the effect of increasing robot group sizes
on our participants’ psychophysiological state. As in Chapter 4, we study
our participants’ psychophysiological state by monitoring their heart rate
and skin conductance level. We also investigate whether our participants
are conscious of their psychophysiological state by administrating the SAM
questionnaire.
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Figure 5.1: An example of an experiment in progress. (a) At the beginning of
the experiment, the participant is attached to two physiological sensors. (b) The
experiment begins with one robot moving around the participant. (c) Subsequently,
two more robots appear and the participant is exposed to a group of three robots.
(d) Finally, twenty-one robots appear and the participant is exposed to a group of
twenty-four robots. The participant shown in this figure is the author of this thesis
and did not take part in the experiment. The pictures shown in this figure were taken
for illustration purposes.

5.4 Participants

We recruited 25 participants from the overall population of the Université
Libre de Bruxelles. None of our participants had a background in robotics
and none of them had participated to the experiments of Chapter 4. Partic-
ipants were between 18 and 45 years old with an average age of 25.04 years
(SD = 5.16). We considered current or anterior cardiovascular problems that
could act on the central nervous system as exclusion criteria. Our partici-
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pants received an informed consent form explaining that they were filmed1

during the experiment and that their physiological responses were being col-
lected for research purposes only (see Annex C). We offered a 7 e financial
incentive for participation.

5.5 Robot Behaviour

During an experiment, robots gradually drive out of the hidden zones (see
Section 3.1.2) in order for a participant to be exposed to three different
robot group sizes, i.e., one robot, three robots and twenty-four robots. At
the beginning of an experiment, one robot drives out of the hidden zone
and becomes visible to the participant. Then, two robots drive out of the
hidden zones at the same time so that the participant is exposed to a group
of three robots (i.e., the first robot that started the experiment, joined by
two additional robots). In order for the participant to be exposed to a group
of twenty-four robots, twenty-one robots drive out of their hidden zone at
the same time.

Once the robots become visible to a participant, they execute the same
random walk with obstacle avoidance behaviour as in Chapter 4. Additionally,
the obstacle avoidance behaviour is also triggered when the robots enter the
black area (see Section 3.1.2). When a black area is detected by a robot, the
robot performs a U-turn in order to avoid to enter the hidden zone. Doing
so, all robots always remain visible to the participant.

In order for all of our participants to be subjected to similar experimen-
tal conditions, the robots that appear in the 1-robot session and in the 3-
robot session were always coming from identical locations and hidden zones.
As shown in Figure 5.2, the single robot of the 1-robot session was always
coming from the front of the participant and the two additional robots of the
3-robot session were always coming from the front left and the front right of
the participant.

1As in Chapter 4, the video recordings were not used during the analysis.
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Robot that appears
in the first session

Robot that appears
in the second session

Robot that appears
in the second session

Figure 5.2: Initial position of the robots used in the experiments. The robot in front
of the chair (encircled in the picture) is the robot that comes out in the 1-robot session.
The two robots on the left and on the right of the chair (encircled in the picture) are
the robots that come out in the 3-robot session. The other robots (i.e., those not
encircled) are those that come out in the 24-robot session. The four boards of wood
that cover the robots (i.e., that render the robots invisible) have been removed when
taking this picture.

5.6 Experimental Procedure

As for the experiments described in Chapter 4, all our experiments were
conducted at IRIDIA, the artificial intelligence laboratory of the Université
Libre de Bruxelles. Upon arrival, a brief explanation of the procedure of
the experiment was given to the participant. We explained to the partici-
pant that the experiment was divided into three sessions and that in each
session, a certain number of robots would move around them. We asked the
participant to read and sign the consent form and to wash their hands in
clear water. Then, we placed the participant on the chair, we attached the
physiological sensors to the participant and we explained the SAM question-
naire. Before starting the experiment, we recorded the participant’s baseline
during a period of 5 minutes. We then proceeded with the 1-robot session.
After this session, we asked the participant to choose an image in the valence
scale and an image in the arousal scale that correspond to their subjective
psychological state. The SAM questionnaire was attached to the wall in front
of the participant. A number from 1 to 9 was written at the bottom of each
image of the SAM questionnaire. In order for the experimenter to record the
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valence and arousal data, the participant had to speak out loud the num-
ber of the image he or she chose. We followed the same procedure for the
3-robot session and for the 24-robot session.

Figure 5.3 shows a participant during an experiment while the participant
was confronted with a group of twenty-four robots. The entire experiment’s
duration was approximately 30 minutes per participant.

Figure 5.3: A participant during the 24-robot session. The picture is a snapshot
taken from the video recording of an experiment. The participant gave her written
consent to the use of the picture.

After the experiment ended, we detached the sensors from the participant
and conducted a brief interview with the participant. During the interview,
we explained to the participant the goal of the study. We also asked the
participant to describe his or her experience with the experiment and we
answered the participant’s questions.

5.7 Data Analysis and Results

For one of the participants, the robots were misplaced and were visible prior
to the beginning of the experiment. Therefore, we rejected this participant’s
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data (both psychophysiological data and self-reported data) from our analy-
sis in order to avoid possibly biased data. For another participant, the psy-
chophysiological data was very noisy, probably due to a misplacement of the
sensors. We did not take into account this participant’s psychophysiological
data (i.e., heart rate, skin conductance level), but we kept the participant’s
self-reported data (i.e., valence and arousal of the SAM questionnaire). We,
therefore, used the psychophysiological data of 23 participants (11 male and
12 female) and the self-reported data of 24 participants (11 male and 13 fe-
males). As in Chapter 4, the analysis is conducted on the difference between
the participants’ physiological responses at rest and during the experiment.

In the following of this section, we first analyse the effect of the increasing
group size on the human psychophysiological state. Then, we analyse our
data in order to detect any potential habituation effects in our participants.
Finally, we present the results of a correlation analysis and of a gender effect
analysis.

5.7.1 Group Size Effect

We analysed our data with the R software (R Core Team, 2015). We used
the non-parametric Friedman test to analyse both the psychophysiological
data and the self-reported data (i.e., the SAM questionnaire). In our case,
the Friedman test’s null hypothesis states that the three sessions 1-robot,
3-robot and 24-robot are not different. The alternative hypothesis states
that at least two sessions are different. In the case of the Friedman test is
significant, we proceeded with a pairwise comparison of the three sessions
with a Nemenyi post-hoc test.

In Table 5.1, we summarise the results of the psychophysiological and
self-reported data (i.e., median and Friedman’s mean rank of heart rate, skin
conductance level, arousal and valence) in each session (i.e., 1-robot, 3-robot,
24-robot) as well as the inference statistics of the Friedman tests (i.e., p-values
and χ2). In Figure 5.4, we show the boxplots of the three sessions.

Heart rate – The analysis of the heart rate data shows a main effect of
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Dependent Variable n 1-
robot

3-
robots

24-
robots

χ2 p

Heart Rate 23 -1.88
(1.87)

-2.48
(1.69)

0.17
(2.43)

χ2(2) = 6.87 < .05

SCL 23 4.45
(1.61)

4.76
(1.61)

6.73
(2.78)

χ2(2) = 21.13 < .001

Arousal 24 3.5
(1.56)

4
(1.62)

6
(2.8)

χ2(2) = 27.88 < .001

Valence 24 6.5
(1.97)

6.5
(1.89)

7
(2.12)

χ2(2) = 0.8 .6

Table 5.1: Descriptive statistics of the psychophysiological data and of the self-
reported data. We report the median and the Friedman’s mean rank (in parentheses) of
the three sessions (1-robot, 3-robot, 24-robot). We also report the inference statistics
of the Friedman test (i.e., χ2 and p).

the number of robots on our participants (χ2(2) = 27.88, p < .001).2 The
Nemenyi post-hoc test on the heart rate data revealed that our participants’
heart rate was statistically significantly different between the 3-robot session
and the 24-robot session (CD = 0.69, p < .05). Our participants’ heart rate
was not statistically significantly different between the 1-robot session and
3-robot session (CD = 0.69, p = .8). Finally, our participants’ heart rate was
not statistically significantly different between the 1-robot session and the
24-robot session (CD = 0.69, p = 0.13), see Figure 5.5.

Skin conductance level – The analysis of the skin conductance level
also confirmed a main effect of the number of robots on our participants
(χ2(2) = 21.13, p < .001). The Nemenyi post-hoc test on the skin con-
ductance level data revealed a statistically significant difference between the
3-robot and 24-robot sessions (CD = 0.69, p < .001), and between the 1-
robot and 24-robot sessions (CD = 0.69, p < .001). The skin conductance
level was not statistically significantly different between the 1-robot and 3-

2A reason for the heart rate values (the difference between the heart rate values during
the baseline and the heart rate values during the three sessions) to be negative is that, in
situations that generates affective responses, the heart rate first decreases before increas-
ing (Bradley and Lang, 2000). In our case, the heart rate decrease was more prominent
than the following heart rate increase.
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Figure 5.4: Boxplots showing the heart rate values (top left), skin conductance level
values (top right), arousal values (bottom left) and valence values (bottom right) of
all three sessions (1-robot, 3-robot, 24-robot). The median value of each session is
shown using the bold horizontal line in the box. Outliers are represented using dots.

robot sessions (CD = 0.69, p = 1), see Figure 5.6.
SAM questionnaire – The results of the Friedman test on the self-

reported arousal data confirm a main effect of the number of robots on our
participants (χ2(2) = 27.88, p < .001). The Nemenyi post-hoc test showed
that our participants’ self-reported arousal was statistically significantly dif-
ferent between the 1-robot and 24-robot sessions (CD = 0.67, p < .001)
and between the 3-robot and 24-robot sessions (CD = 0.67, p < .001). The
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Figure 5.5: Critical difference diagram showing pairwise statistical differences of the
heart rate data—3-robot and 24-robot are statistically significantly different.
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Figure 5.6: Critical difference diagram showing pairwise statistical differences of the
skin conductance level data—1-robot and 24-robot, and 3-robot and 24-robot are
statistically significantly different.

self-reported arousal was not statistically significantly different between the
1-robot and 3-robot sessions (CD = 0.67, p = .9), see Figure 5.7. The analy-
sis of the self-reported valence does not show any main effect of the number
of robots on our participants (χ2(2) = 0.8, p = .6), see also Figure 5.8.

1 2 3
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3-robot

24-robot

CD

Figure 5.7: Critical difference diagram showing pairwise statistical differences of the
SAM questionnaire’s arousal data—1-robot and 24-robot, and 3-robot and 24-robot
are statistically significantly different.

5.7.2 Habituation Effect

We should account for the possibility that the psychophysiological reactions
we observed were attributable to an initial surprise effect that the partic-
ipants felt on being exposed to robots, which could then wear off as the
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1 2 3
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1-robot
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CD

Figure 5.8: Critical difference diagram showing pairwise statistical differences of the
SAM questionnaire’s valence data—there are no statistical differences between any of
the three sessions.

participants became accustomed to the robots—the so called “habituation
effect”. If our participants were indeed “surprised” by the robots, we would
expect their skin conductance level to rise quickly during the first seconds of
the experiment. In order to detect if our participants were surprised by the
robots, we computed the mean of all of our participants’ skin conductance
values during the whole duration of each session. We show the results of all
three sessions in Figure 5.9. As depicted in Figure 5.9, in each of the three
sessions, the graph peaks before the 10 first seconds of each session. Then,
the skin conductance values decrease and remain stable until the end of the
session.
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Figure 5.9: Mean skin conductance level values (all participants) over time.
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The peak within the 10 first seconds suggests that our participants were
surprised by the robots. After this peak, though, the stabilization of our
participants’ skin conductance suggests a “habituation effect” within each
session—during each session, our participants get habituated to the robots
moving around them. However, the data does not suggest any habituation
effect between sessions with few robots (1 and 3) and the session with many
robots (24). Therefore, the data does not contradict our hypothesis that an
increasing number of robots affects the human psychophysiological state—as
depicted in Figure 5.9, the 24-robot session’s curve clearly remains above the
two other curves (i.e., 1-robot and 3-robot) during the entire duration of the
experiment.

5.7.3 Correlations and Gender Effect

We did not find any correlation between valence and skin conductance, va-
lence and heart rate, arousal and heart rate, nor arousal and valence. How-
ever, there was a significant correlation between skin conductance and heart
rate (ρ = .29, p = .01) and there was a marginally significant correlation
between the skin conductance and arousal (ρ = .229, p = .059)3.

As in Chapter 4, we also investigated whether the gender of our par-
ticipants had any effect on their results. As in Chapter 4, we studied the
gender effect by splitting our participants into two groups—males and fe-
males. The Wilcoxon rank-sum test did not report any significant difference
between groups, suggesting that the gender of our participants did not have
any effect on their results.

5.8 Discussion and Conclusions

The work we presented in this chapter contributes to the human-swarm in-
teraction literature in that it is the first time the effect of the number robots

3In order to be scientifically correct, we should not consider a p-value significant nor
“marginally” significant if its value is greater than the predetermined significance level (in
our case α = .05). However, we wanted to report this result because we believe it might
be nonetheless interesting for any researcher having done correlation analyses between
arousal and skin conductance.
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on human psychology was studied by using psychophysiological measures.
Moreover, to the best of our knowledge, it is the first human-swarm interac-
tion experiment performed with up to twenty-four real robots.

The hypothesis we aimed to test in this study was the following: the
psychological response of humans is affected by the number of robots to
which they are exposed. Twenty-four participants were exposed to three
robot groups of varying sizes: 1 robot, 3 robots and finally 24 robots. The
results of our experiment confirm this hypothesis. Our results show that our
participants’ heart rate and skin conductance level were significantly higher
when the number of robots increased to twenty-four robots. Moreover, our
results also show that our participants were conscious of their psychophys-
iological state change, as they reported significantly higher arousal values
when exposed to the twenty-four robots.

Since the large number of robots is inherent to the definition of swarm
robotics, it will be challenging to mitigate the effect of the number of robots
on human psychology. Moreover, in our experiments, our participants were
completely passive—there was no bidirectional communication between the
participants and the robots (i.e., the participants did not issue any com-
mands and the robots did not provide any feedback). We expect that in an
active interaction scenario (i.e., with a bidirectional communication), human
psychology will be even more affected. For instance, feedback provided by
each individual robot could be overwhelming for human operators, increasing
their psychological responses. Therefore, researchers should focus on dimin-
ishing as much as possible the effects of non-inherent characteristics of swarm
robotics (e.g., issue commands or receive feedback). In the case of feedback
for instance, a solution could be to use self-organised feedback (Podevijn
et al., 2012), where swarms of robots leverage self-organised techniques to
provide human operators with a swarm-level feedback.
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6
Conclusions

In this chapter, we first present the limitations and future work of our re-
search. Then, we present our conclusions.

6.1 Limitations and Future Work

In Chapter 4, we have shown that the reality gap—the inherent discrepancy
between simulation and reality—affects the psychological state of humans
who perform a supervision task with a robot swarm. More specifically, we
have shown, with two distinct experiments, that the human psychophysiolog-
ical state, workload and reaction time measured for the case of interaction
with a swarm of real robots and for the case of interaction with a simu-
lated robot swarm displayed on a computer screen were significantly different.
These results show that the reality gap effect must be carefully considered
in human-swarm interaction.

As discussed in Section 4.3, it is often not practically feasible to conduct
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all human-swarm experiments using real robots. We, therefore, propose vir-
tual reality as an alternative to simulation displayed on a computer screen.
We showed that virtual reality could mitigate the reality gap effect—our par-
ticipants’ arousal, workload and reaction time were significantly higher when
they were interacting with the simulated robot swarm in the virtual real-
ity environment than when they were interacting with the simulated robot
swarm displayed on the computer screen. However, we should qualify these
results because our participants’ reaction time was also significantly higher
when they were interacting with the robot swarm in the virtual reality envi-
ronment compared to when they were interacting with the real robot swarm.
Though these results do not contradict our hypothesis, we believe more re-
search is necessary to better understand the use of virtual reality in human-
swarm interaction studies.

In addition, we should account for the possibility that the difference of
perspectives that we used in our experiments (top-view in the 2D Screen
Simulation session and similar to the reality in the 3D Virtual Reality session)
has also an effect on the participants’ psychophysiological state, workload
and reaction time. Future work should investigate whether the difference
of perspectives has a significant impact on the human psychological state.
For instance, we could replicate the experiments presented in Chapter 4 by
replacing the 2D top-view perspective of the Screen Simulation session with
a 3D perspective of the robots and of the environment.

In Chapter 5, we have shown that the psychological response of humans
is affected by the number of robots to which they are exposed. Our results
confirm this hypothesis, and furthermore show that greater numbers of robots
provoke a stronger response.

Though our results have shown an effect of the group size on the human
psychological state, we did not consider all possible variables that could also
influence the psychological state. For instance, the size of the arena was
kept constant during the experiments. It would be interesting in the future
to study whether increasing the size of the arena while keeping the group
size constant would decrease the effect on the psychological state. Another
variable that could influence the psychological state is the robots’ behaviour.
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In the experiment presented in Chapter 5, our robots were executing a basic
swarm behaviour—a random walk. Future work should focus on other swarm
behaviours such as flocking, foraging, search and rescue, and so on. A third
variable to consider is the location of the participant during the experiment.
We wanted our participants to be immersed in the environment. However,
allowing participants to move in the arena could decrease the effect of group
size—for instance if they feel more comfortable moving to a corner of the
arena or even outside the arena. Other variables could influence the human
psychological state (e.g., the size of the robots, the noise produced by the
robots, the participants’ prior experience with robotic systems). These vari-
ables, or combinations of these variables (with the group size for instance)
should be considered in future work.

One interesting aspect of the results obtained in Chapter 4 and Chapter 5
that also deserves attention in future work is the nature of the psychological
state. Psychophysiological measures are considered objective in that they are
by large not under the conscious control of the participant being measured.
However, the exact relationship between the psychophysiological measures
and the psychological state that provoked the physiological response is not
always clear. For instance, in Chapter 5, we were expecting to see a primarily
stress-based response to the robots. In fact, however, the valence values re-
ported by the SAM questionnaire we asked our participants to fill out suggest
that our participants had a positive experience—on a scale of 1 to 9 (1 being
the less happy and 9 being the more happy), they reported valence values of
6.66, 6.62 and 6.87 for the 1-robot, 3-robot and 24-robot sessions respectively.
We believe that our participants reported these valence values because they
were not actively interacting with the robots, i.e., they did not have to con-
trol the robots. In the experiments presented in Chapter 4 and Chapter 5,
the participants passively interacted with the robots (i.e., the participants
did not send commands to the robots), instead of actively interacting with
the robots (i.e., the participants would send commands to the robots). We
chose passive over active interaction to reduce the number of variables that
could impact the experiment, so as to increase our confidence that it was
the reality gap or the number of robots that was affecting our participants’
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psychological state. For example, in an interactive scenario, frustration due
to interaction difficulties or failures might also have introduced psychological
effects. For each study (i.e., reality gap and group size effects), the effect
of active interaction should be investigated in future work. For instance, we
should study whether actively interacting with a swarm of robots (e.g., by
guiding a swarm) negatively changes the psychological state of our partici-
pants. We would expect, for example, frustration or anger (i.e., low valence
values) when a participant has to guide a swarm of robots.

6.2 Conclusions

Human-swarm interaction is a field of research that became active during
the past five years. Researchers have realized that if we want robot swarms
to become useful for real world applications, studying the interaction with
these robot swarms becomes vital. Unfortunately, today swarm robotics is
limited to research laboratories and has no concrete real world applications.
It is, therefore, difficult to understand how swarms of robots are going to
be used and how humans will interact with these swarms of robots. The
absence of real world applications and the absence of understanding how
robot swarms are going to be used have rendered the field of human-swarm
interaction scattered. As we have seen in Chapter 2, there are many research
directions that are investigated. In these research directions, there are no
consensus on the methods to use in order to provide human operators with
effective human-swarm interaction systems. For instance, different methods
are studied to control a robot swarm (e.g., by controlling either a single
robot, or by controlling multiple leader robots), but none of these methods
are compared, making it difficult to understand what is the best method to
create an effective human-swarm interaction system.

It is our contention that before creating any human-swarm interaction
systems, it is vital to understand how human beings react to swarms of
robots. The results presented in this thesis confirm that it is important to
study the impact of these swarms of robots on human psychology. Even more
so when the impact is due to a characteristic that is inherent to the definition
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of swarm robotics, such as the number of robots that composes a robot
swarm. The psychological impact of a characteristic inherent to the definition
of swarm robotics is hard to mitigate. For instance, it would not make any
sense to reduce the number of robots a human operator is interacting with in
order to decrease the human operator’s psychological responses. Therefore,
it will be important to take into account the psychological impact when
designing a human-swarm interaction system in order to avoid increasing
even more the human operator’s psychological reactions.

In this thesis, the main contribution has been to make a step forward
in the understanding of the psychological impact of the interaction between
humans and robot swarms. We conducted three experiments. For the first
time in human-swarm interaction, the experiments were all conducted with
robot swarms consisting of twenty real robots for two of the experiments
and of up to twenty-four real robots for the third one. Experiments with real
robots are incredibly time consuming, all the more so when we have to set up
monitoring equipment for psychophysiological measurement. For this reason,
the majority of the studies published in the literature do neither—standard
practice is to use simulated robots with psychological questionnaires (see
Chapter 2).

In our experiments, we used a combination of objective psychophysio-
logical measures (physiological responses such as skin conductance and heart
rate) and subjective self-reported measures (with two psychological question-
naires). With the exception of human-computer interaction, psychophysio-
logical measures are still not commonly used in the literature. In human-
computer interaction, psychophysiology is a methodology that is starting
to move out of the research laboratories—as suggested by more and more
human-computer interaction textbooks that propose psychophysiology for
designing and studying new systems humans can interact with (Bainbridge,
2004, Dix et al., 2003, Salvendy, 2012, Tullis and Albert, 2008). In the same
way psychophysiology is used to create today’s real-world human-computer
interaction systems, we strongly believe that psychophysiology (in combina-
tion with psychological questionnaires) should be used to create tomorrow’s
real-world human-swarm interactions systems.
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A
Companion Website

In research, it is vital for researchers to be able to replicate their experiments
or other scientists’ experiments. Successfully replicating an experiment sig-
nificantly increases the confidence we can place in the results.

Recently, the Open Science Collaboration group, headed by Brian Nosek,
has replicated 100 experiments in psychology. Their results, published in
Science, are astonishing: only a third of these replications showed statistical
significant results. Hence, two third of their replications failed to find similar
results as the original researches (Open Science Collaboration, 2015).

In this thesis, we dedicated significant time and effort to making our
experiments reproducible. We described the experimental scenarios and
experimental procedures of our three experiments as clearly and with as
many details as possible. However, describing the experimental scenarios
and the experimental procedures is not enough to make an experiment re-
producible. Describing and releasing the tools and the software source code
used to conduct an experiment is equally important. Therefore, we have
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created a companion website to this thesis. In this annex, we provide an
overview of the companion website. The companion website is available at:
http://iridia.ulb.ac.be/˜gpodevijn/phd/supp.

A.1 Goals

The companion website is an integral part of this thesis and is intended to
be used by researchers that are interested in replicating our experiments, or
by researchers interested in extending our research.

We created this companion website with three goals in mind. Firstly, to
make the software used to conduct the experiments presented in Chapter 4
and Chapter 5 accessible (e.g., the robot controllers, the virtual reality An-
droid application). Secondly, to explain, step-by-step, how to install and use
the software. Thirdly, to make the data we collected during our experiments
and the tools used to analyse this data (e.g., the R scripts) accessible.

A.2 Structure

The companion website is divided into five parts. Each part is always ac-
cessible from anywhere in the website via the menu placed on the top of the
screen.

Home

This part contains a short summary of each experiment, a link to each exper-
iment instructions, a link to the materials web page in which all the software
can be downloaded and a link to the instructions to install the ARGoS sim-
ulator (see Figure A.1).

Reality gap

This part is subdivided into two parts. Each part contains the instructions
and the data of the experiments presented in Chapter 4 (see Figure A.2).
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Figure A.1: Screenshot of the home page. There is a brief summary of each exper-
iment and a link to the experiments’ instructions web page. There is also a link to
the materials web page on which all the software can be downloaded and a link to the
instructions to install the ARGoS simulator.

Group Size

This part contains the instructions and the data of the experiment presented
in Chapter 5 (see Figure A.3).

Materials

This part aggregates all the software (and software source code) used to setup
the experiments (see Figure A.4).
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Figure A.2: Screenshot of the reality gap’s first experiment instruction page. This
page contains step-by-step instructions to run the experiment in simulation and with
the real robots. The menu placed on the top of the screen allows the user to navigate
to the second experiment web page. The data of each experiment and the scripts to
analyse the data are available on each experiment web page.

ARGoS

This part contains the instructions to install the ARGoS simulator and the
ARGoS-Epuck plugin (a plugin used to use the real e-puck robot platform
and the e-puck robot platform in simulation) (see Figure A.5).
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Figure A.3: Screenshot of the group size experiment web page. This web page
contains the instructions to run the experiment both in simulation and with the real
robots. The data of the group size experiment and the scripts to analyse the data are
available from this web page.
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Figure A.4: Screenshot of the materials web page. This web page contains all
the software we used to conduct the experiments. It also contains a link to the
questionnaires (SAM and NASA-RTLX questionnaires).
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Figure A.5: Screenshot of the ARGoS installation instructions web page. This web
page contains the instructions to install both the simulator and the ARGoS-Epuck
plugin.
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B
Reality Gap

B.1 Ethics Committee Approval

The experiments presented in Chapter 4 were approved by the Ethics Com-
mittee of the Faculty of Psychology, Université Libre de Bruxelles. The
approval number is: 061/2015. The ethics committee’s approval letter is
shown in Figure B.1. This letter is in French.

B.2 Consent Form and Information Letter

Before the experiments, we asked the participants to read and sign a consent
form (shown in Figure B.2) and an information letter (shown in Figure B.3).
These documents are in French.

113



APPENDIX B. REALITY GAP

 
COMITE D’ETHIQUE DE LA FACULTE DES SCIENCES PSYCHOLOGIQUES ET DE L'EDUCATION 
Président : P. Peigneux 
Secrétaire : O. Klein 
Membres effectifs : A Bazan, B Dan, V Carette, C Hellemans, C Leys,  
Membres suppléants : C Colin, S Kahn, L Licata, I Merckaert, C Mottrie, S Pohl  
Adresse de contact : 
Prof P. Peigneux, CP191, Avenue F. D. Roosevelt 50, B-1050 Bruxelles (Belgique) 
Tel  +32 (2) 650 26 39 (secrétariat 4581) 
Fax +32 (2) 650 22 09 
Email : Philippe.Peigneux@ulb.ac.be 
 

 

 
Bruxelles, le 6 janvier 2016 

 

Demande d’Avis Ethique 061/2015 : «Reality-gap in human-swarm interaction 
user studies» 
 

Demandeur : PODEVIJN, Gaëtan 

Promoteur :  DORIGO, Marco 
 

Monsieur, 

 

Le Comité d’Ethique Facultaire a examiné votre demande sous référence dans le 
cadre de votre projet de recherche académique et émet un avis favorable à votre 
projet de recherche. 

 

Au nom du Comité d’Ethique Facultaire, je vous souhaite tout le succès possible dans 
votre entreprise et vous prie d’agréer, Monsieur, l’expression de mes meilleurs 
sentiments. 

  

Pour le Comité d’Ethique Facultaire,  

Prof. Philippe Peigneux, Président 

Figure B.1: Ethics committee’s approval letter.
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Formulaire de consentement 
Reality-gap in human-swarm interaction user studies 

Gaëtan Podevijn, Rehan O’Grady, Carole Fantini-Hauwel, Marco Dorigo 

Objectifs 
Le but de cette recherche est d’étudier les différences de réactions lorsqu’un être humain est amené à intéragir 
avec un essaim de robots (i.e., un groupe de robots autonome) via différent types d’interfaces utilisateurs. 

 
 

1. Je soussigné, ……………………………………………………………………………………………...déclare avoir lu le 
document d’information et accepte de participer à l’étude “Reality-gap in human-swarm interaction user studies” de 
G. Podevijn, R. O’Grady, C. Fantini-Hauwel et M. Dorigo. 

2. J’ai reçu une explication concernant la nature, le but, la durée de l’étude et j’ai été informé de ce que l’on attend de 
ma part.  

3. Les catégories de données qui seront utilisées dans le cadre de cette étude sont : 
a. Données physiologiques: fréquence cardiaque et activité électrodermale 
b. Réponses données au questionnaire sur la charge cognitive  
c. Enregistrement vidéo de l’expérience 

4. J’accepte que ces données fassent l’objet de traitements ultérieurs à des fins scientifiques, en relation directe avec 
les objectifs de la recherche ci-dessus mentionnés, dans le respect de la loi belge du 8 septembre 1992 relative à la 
protection de la vie privée à l’égard des traitements de données à caractère personnel. Mon nom, mes réponses 
aux questionnaires, mes résultats obtenus, mes données physiologiques et mes informations personnelles seront 
gardés confidentiels. Les responsables scientifiques de cette étude et les personnes qui traiteront les données 
s’engagent à respecter cette confidentialité de données. 

5. J’accepte que les résultats de cette étude, qui seront toujours anonymisés, soient diffusés à des fins scientifiques et 
en respectant les règles déontologiques de la communauté scientifique. 

6. Je peux à tout moment demander la consultation des données à caractère personnel collectées ou leur rectification 
sans frais. Ces données seront conservées durant le temps nécessaire à leur analyse et ce, jusqu’à un maximum 
de dix années. Le responsable du traitement de ces données (Gaëtan Podevijn) peut être contacté à l’adresse 
suivante : ​gpodevij@ulb.ac.be 

7. L’expérience dure approximativement 30 minutes. Je peux décider d’arrêter l’expérience à tout moment sans avoir 
à justifier ma décision. Dans ce cas, je peux demander de détruire les données récoltées. 

8. Je consens de mon plein gré à participer à cette étude. 

 
Veuillez précéder votre signature de la mention 
“Lu et approuvé.” 
 
______________________________________ 

 
Date 
 
 
____________________________________ 

   

Responsable de l’expérience​: Gaëtan Podevijn, service IRIDIA-CoDE, ULB. 

Figure B.2: Consent form used in the experiments presented in Chapter 4.
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Lettre d’information au participant 
Reality-gap in human-swarm interaction studies 

Gaëtan Podevijn, Rehan O’Grady, Carole Fantini-Hauwel, Marco Dorigo 
 
Madame, Monsieur, 
 
Vous allez participer à une expérience menée en collaboration par le laboratoire IRIDIA (institut de                             
recherches interdisciplinaires et de développements en intelligence artificielle) de la faculté                     
Polytechnique de l’ULB et par le Centre de Recherche en Psychologie clinique, Psychopathologie et                           
Psychosomatique, de la Faculté de Psychologie et des Sciences de l’Éducation de l’ULB. La présente                             
lettre a pour but d’apporter l’ensemble des informations relatives à l’expérience, à son déroulement et à                               
votre participation. 

Présentation 
L’interaction homme-robot swarm (human-swarm interaction) est un sujet de recherche visant à étudier                         
la manière dont les êtres humains peuvent intéragir avec des systèmes de robots en essaim (swarm                               
robotics). Ces systèmes sont constitués d’un nombre de petits robots autonomes (pouvant varier d’une                           
dizaine à plusieurs centaines).  
 
Actuellement, très peu d’études se concentrent sur la manière dont un être human réagit                           
psychologiquement lorsqu’il intéragit avec ces systèmes de robots. Le but de cette expérience est                           
d’étudier la manière dont un être humain réagit face à ces robots lorsqu’il intéragit avec eux au moyen                                   
de différents types d’interfaces utilisateurs. 

Déroulement 
Cette étude est divisée en trois parties. Dans chacune de ces parties, vous serez amené à réaliser une                                   
tâche de supervision (qui vous sera expliquée oralement) d’un essaim de robots. Après chacune de ces                               
parties, nous vous inviterons à répondre à un questionnaire (qui vous sera expliqué oralement). Durant                             
chaque partie de l’expérience, nous collecterons vos données physiologiques (activité électrodermale et                       
activité cardiaque). Vous serez également filmé. Toutes ces données resterons anonymes (la vidéo ne                           
sera pas rendue publique). 
 
Tout au long de l’expérience votre collaboration et votre implication maximale sont requises et doivent                             
être des plus sincères et des plus pertinentes.  
 
Je vous remercie d’avance de votre participation et de votre attention. Je me tiens à votre disposition à                                   
tout moment pour de plus amples informations. 
 
Gaëtan Podevijn, IRIDIA, ULB 
Responsable de l’étude 
gpodevij@ulb.ac.be 
 
 

Figure B.3: Information letter used in the experiments presented in Chapter 4.
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C.1 Consent Form and Information Letter

Before the experiments, we asked the participants to read and sign a consent
form (shown in Figure C.1) and an information letter (shown in Figure C.2).
These documents are in French.
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Formulaire de consentement éclairé au participant 
 
Je soussigné(e) (en lettres d’imprimerie S.V.P), résidant à : 
…………………………………………………………………………………………………
…………………………………………………………………………………………………
…………………………………………………………………………………………………
………………………………………………………………………………………………… 
 
Déclare avoir lu l’information qui précède et accepter de participer à l’étude (veuillez cocher 
la case correspondante à votre décision) 

 
 

 
 

 
Déclare avoir connaissance que l’expérience est filmée et accepter que ces images soient 
traitées à des fins scientifiques (veuillez cocher la case correspondante à votre décision) 

 
 
 

 
 

 
 
 
Date et signature :  
 

OUI 

NON 

OUI 

NON 

Figure C.1: Consent form used in the experiment presented in Chapter 5.
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Formulaire d’information au participant  
 

Cette étude est menée en collaboration par l’Institut de Recherches 

Interdisciplinaires et de Développements en Intelligence Artificielle et le Centre 

de Recherche en Psychologie clinique, Psychopathologie et Psychosomatique, 

de la faculté de psychologie et des sciences de l’éducation de l’ULB. Elle a pour 

but d’investiguer les relations entre l’être humain et les essaims de robots 

appelés couramment « swarmrobots ».   

Cette expérience ne présente aucun danger pour l’être humain et est non-

invasive. Vous serez mis en présence de robots et vous aurez à répondre à 

quelques questionnaires. Aussi, des mesures physiologiques telles que le rythme 

cardiaque, la variabilité cardiaque, l’activité électrodermale et la température 

corporelle seront prises à l’aide d’un bracelet électronique qui se porte comme 

une montre ainsi qu’à l’aide de capteurs qui seront placés au niveau des doigts. 

Enfin, l’entièreté de l’expérience sera filmée. Les données et images ainsi 

récoltées sont anonymes et confidentielles. Seuls les chercheurs travaillant sur 

cette étude analyseront celles-ci à des fins scientifiques.   

L’expérience dure approximativement 20 minutes. Vous avez le droit de 

quitter celle-ci à tout moment sans avoir à justifier votre décision auprès des 

expérimentateurs.  

 

 

 

Figure C.2: Information letter used in the experiment presented in Chapter 5.
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A.C. Dirican and M. Göktürk. Psychophysiological Measures of Human Cog-
nitive States Applied in Human Computer Interaction. Procedia Computer
Science, 3(0):1361 – 1367, 2011.

A. Dix, J.E. Finlay, G.D. Abowd, and R. Beale. Human-Computer Inter-
action (3rd Edition). Prentice-Hall, Inc., Upper Saddle River, NJ, USA,
2003.

M. Dorigo. The swarm-bot project, 2001–2005. Future and Emerging Tech-
nologies (FET-OPEN), http://www.swarmanoid.org.

M. Dorigo. The swarmanoid project., 2006–2010. Future and Emerging
Technologies (FET-OPEN), http://www.swarmanoid.org.

M. Dorigo. E-SWARM: Engineering Swarm Intelligence Systems, 2010–2015.
ERC Advanced. http://www.e-swarm.org.

M. Dorigo, D. Floreano, L. M. Gambardella, F. Mondada, S. Nolfi,
T. Baaboura, M. Birattari, M. Bonani, M. Brambilla, A. Brutschy,
D. Burnier, A. Campo, A. L. Christensen, A. Decugnière, G. A. Di Caro,
F. Ducatelle, E. Ferrante, A. Förster, J. Guzzi, V. Longchamp, S. Magne-
nat, J. Martinez Gonzales, N. Mathews, M. Montes de Oca, R. O’Grady,
C. Pinciroli, G. Pini, P. Rétornaz, J. Roberts, V. Sperati, T. Stirling,
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