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Summary

Ant colony optimization (ACO) has become one of the popular metaheuristics used for

tackling optimization problems. Its popularity grows steadily, and the area of appli-

cations constantly widens. The recent research shows that ACO is competitive and

applicable to various real-world optimization problems. Similarly to many other meta-

heuristics, ACO has been initially developed for combinatorial optimization problems.

These problems are characterized by a finite set of states that each decision variable

may assume. Later, there have been attempts to extend it also to continuous problems,

that is, problems where the decision variables may assume any real value from a given

domain. However, these attempts were not following the original ACO formulation.

Also, none of the ACO-inspired approaches proposed so far could tackle mixed-variable

optimization problems, that is, problems that combine both discrete and continuous

components. This means that any given decision variable may be either discrete or

continuous.

In this work, we present a way to extend ACO, so that it can be applied to both

continuous and mixed-variable optimization problems. We demonstrate, first, how ACO

may be extended to continuous domains. We describe the algorithm proposed, discuss

the different design decisions made, and we position it among other metaheuristics.

Following this, we present the results of numerous simulations and testing. We compare

the results obtained by the proposed algorithm on typical benchmark problems with

those obtained by other methods used for tackling continuous optimization problems

in the literature. Finally, we investigate how our algorithm performs on a real-world

problem coming from the medical field—we use our algorithm for training neural network

used for pattern classification in disease recognition.

Following an extensive analysis of the performance of ACO extended to continuous

domains, we present how it may be further adapted to handle both continuous and

discrete variables simultaneously. We thus introduce the first native mixed-variable
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version of an ACO algorithm.

Mixed-variable optimization problems are often tackled with continuous optimization

algorithms by relaxing some of the constraints, and then repairing the obtained results.

In order to analyze the performance of this native mixed-variable ACO algorithm, and

to compare it to the performance of the continuous version of the ACO algorithm, we

propose a specific benchmark problem. We investigate, for which types of problems the

native mixed-variable approach should outperform the continuous-relaxation approach.

Then, we analyze and compare the performance of both continuous and mixed-variable

ACO algorithms on different benchmark problems from the literature. Through the re-

search performed, we gain some insight into the relationship between the formulation of

mixed-variable problems, and the best methods to tackle them. Furthermore, we demon-

strate that the performance of ACO on various real-world mixed-variable optimization

problems coming from the mechanical engineering field is comparable to the state of the

art.

The proposed algorithms follow closely the original ACO formulation that was initially

defined for combinatorial optimization problems. We show how these fundamental ideas

may be further extended to handle also other types of problems. Although there have

been already attempts to apply ACO to continuous domains, they did not follow the

original idea closely. Furthermore, there were no attempts to propose a mixed-variable

version of the ACO metaheuristic before. The application of ACO to new types of

problems while maintaining the original ideas is the main contribution of this work.



Original Contributions

The following is a summary of the main contributions presented in this work:

• Formal and coherent definition of the combinatorial, continuous, and

mixed-variable optimization problems: While the combinatorial, continuous,

and mixed-variable problems have been identified and defined before, we provide a

coherent definition that is common for all of them based on the way the combinato-

rial problems are usually defined. This allows demonstrating how ACO algorithms

may also tackle the continuous and mixed-variable optimization problems by em-

phasizing the crucial differences and similarities between these types of problems.

• Ant colony optimization algorithm for continuous domains (ACOR): One

of the most significant contributions of this work. We present how ACO can

be extended to continuous domains with the pheromone modeled by probability

density functions instead of a table. We describe the underlying idea, we also

present a fully functional algorithm—ACOR—and we demonstrate its performance

on a large number of benchmark problems.

• Application of ACOR to training a neural network for pattern classifica-

tion in the medical field: We evaluate the performance of ACOR on a real-world

problem. We present how ACOR may be applied to the problem of training neural

networks for pattern classification in the medical field. We demonstrate that the

performance of ACOR is competitive, when compared to genetic algorithms, and

that a hybridized version of ACOR with a derivative-based method outperforms

typical methods used for neural network training.

• A benchmark mixed-variable optimization problem with well-controlled

characteristics: We propose a new mixed-variable benchmark problem, which

provides a well-controlled environment for testing algorithms. It allows for adjust-

ing its characteristics and difficulty level, and hence provides an excellent testing
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ground for mixed-variable optimization algorithms.

• Ant colony optimization algorithm for mixed-variable domains (ACOMV):

Following the general idea of ACOR, we propose a further extended version of this

algorithm—ACOMV—that is able to handle both continuous and discrete decision

variables. We investigate its basic performance using the benchmark problem that

we proposed.

• Application of ACOR and ACOMV algorithms to real-world engineer-

ing mixed-variable optimization problems: We apply our mixed-variable

ACOMV algorithm along with the ACOR algorithm mentioned earlier to three en-

gineering real-world mixed-variable optimization problems. We demonstrate, how,

in relation to the problem formulation, each of them has certain advantages. We

compare the results obtained with those of different methods found in the litera-

ture.
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“Writing in English is the most ingenious torture

ever devised for sins committed in previous lives.”
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Chapter 1

Introduction

In the early days of computer science, the concept of algorithm was formalized through

the works of Alan Touring [Turing, 1936] and Alonzo Church [Church, 1936], as a proce-

dure for solving mathematical problems. Since then, many algorithms have been proposed

and developed. One of the fundamental goals of computer science has been defining al-

gorithms that are able to find provably optimal solutions (so called exact algorithms)

within reasonable run times. However, it was observed that for some problems such

algorithms could not be found.

A branch of computer science, called computational complexity theory, focused on inves-

tigating how well algorithms scale with increasing size of the problems. The scaling has

been defined by the amount of the resources (e.g., memory, execution time) needed by

an algorithm to solve a given problem. The research led to discovering that algorithms

scale differently for different types of problems. The so-called complexity classes have

been defined to describe the types of problems that demonstrate similar scaling char-

acteristics. In particular, the complexity class P identifies the problems, which may be

solved by a deterministic machine in polynomial time. These types of problems may be

usually successfully tackled with exact algorithms even for large problem instances.

Another complexity class, NP , describes the problems that may be solved in polynomial

time only by non-deterministic machine. The problems belonging to this class have the

property that a solution may be easily evaluated. It remains an open question whether

the set of P and NP are the same, or P is just a subset of NP . Many problems exist,

for which a polynomial-time algorithm has not yet been found. For larger instances of

such problems, the exact algorithms become impractical due to excessive resources (time

and/or memory) required to tackle them. For an in-depth introduction to complexity

3



4 Introduction

theory aspects and history, we refer the reader to [Spiser, 2005].

However, for many real-world optimization problems, it is not necessary to guarantee

finding an optimal solution. Often it is sufficient to find a reasonably good (or approxi-

mate) solution using limited resources available. Hence, researchers tried relaxing some

of the requirements posed initially for the algorithms—approximate methods were born.

Approximate methods employ various strategies for finding good solutions. They are

often dependent on particular characteristics of the problem being solved. The name

chosen to describe them was heuristics, from the Greek word heurisko, which means “I

find”. A heuristic is usually defined as a replicable method or approach for directing one’s

attention in learning, discovery, or problem solving. Originally, the heuristics developed

in computer science were very problem-, or even instance-dependent. Further research

led to creation of more robust, general methods so that they may be applicable for

solving various different problems. These more general and improved heuristic methods

were called metaheuristics.

Since these early days, there have been many metaheuristics proposed in the literature.

It is worth mentioning evolutionary algorithms (EA) [Fogel et al., 1966; Holland, 1975;

Schwefel, 1981; Fogel, 1995], tabu search (TS) [Glover, 1989, 1990], simulated annealing

(SA) [Kirkpatrick et al., 1983; Cemy, 1985], iterated local search (ILS) [Ramalhinho-

Lourenço et al., 2002], and ant colony optimization (ACO) [Dorigo, 1992; Dorigo and

Stützle, 2004].

Indeed, one of the most recent of them, and a very actively developed one, is ant colony

optimization. ACO was inspired by the ants’ foraging behavior [Dorigo, 1992]. Through

the observation of the behavior of real ants, a combinatorial optimization algorithm

was proposed. The algorithm was found to be an efficient method for tackling various

combinatorial optimization problems (COPs). Examples of COPs include scheduling,

vehicle routing, timetabling, and others. These problems are characterized in particular

by the fact that the solution is created from a finite set of available components. We

define the combinatorial optimization problems more formally in Chapter 2. Also, a

more in-depth description of the ant colony optimization metaheuristic for combinatorial

problems is presented in Chapter 3 of this thesis.

However, real-world problems may not always be described as combinatorial problems.

Metaheuristics often focus on these type of problems, as they are easier to define and

tackle using numerical methods and digital computer. In the real-world often some or

all of the decision variables are continuous—i.e., able to assume any real value within
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a certain range. This results in either continuous—if all variables are continuous—or

mixed-variable problems, if only some of them are continuous. For such problems, algo-

rithms dedicated to combinatorial optimization may not be used efficiently. Also, these

problems require different representation of the variables. The continuous variables are

usually represented in digital machines using the floating point representation. While it

generally allows for easier handling of real values, it is in fact also only an approximation,

as the digital computers are not able to effectively represent real values.

There has been a significant amount of research done in the direction of either proposing

new metaheuristics which can handle these types of problems, or adapting existing

ones. While there are some metaheuristics that have been developed from the beginning

for continuous (or mixed-variable) problems, many have been initially developed to

handle combinatorial optimization problems only. These were then often adapted so that

they could also tackle the continuous and (in some cases) mixed-variable optimization

problems.

Since the emergence of ACO as a combinatorial optimization tool, attempts have also

been made to use it for tackling continuous problems. However, applying the ACO

metaheuristic to continuous domains was not straightforward, and the methods proposed

often took inspiration from ACO, but did not follow it exactly. Contrary to those earlier

approaches, this thesis presents a way to extend ACO to continuous and mixed-variable

domains without the need to make any major conceptual change to its original structure.

Continuous and mixed-variable optimization is hardly a new research field. There exist

numerous algorithms that were proposed for tackling these types of problems. In order

to have a proper perspective on the performance of our proposed algorithms, we compare

them not only to other ant-related methods, but also to other metaheuristics and other

algorithmic approaches such as direct search methods, derivative methods, and others.

In this thesis, we provide a clear description of the proposed extension of ACO first

to continuous domains and then to mixed-variable domains. We discuss the design

decisions made, and explain how the proposed algorithms compare to others known in

the literature. We run multiple experiments on typical benchmark problems, but also

on example real-world problems. Finally, we show that ACO extended to continuous

and mixed-variable optimization is a competitive approach.



6 Introduction

1.1 Structure of the Thesis

This introductory Chapter 1 is followed by Chapters 2 and 3, which provide additional

background material needed for the reader to fully understand the main body of the

thesis.

Chapter 2 introduces the notion of optimization. It also defines formally the combina-

torial, continuous, and mixed-variable optimization problems using the same common

framework. It explains what are the characteristics of these different problems, and how

this impacts the design of algorithms that are used to tackle them. It provides examples

of both: the problems and the popular methods for solving them, giving additionally a

general classification of the methods used.

Chapter 3 provides an overview of the ant colony optimization metaheuristic. First, the

inspiring biological roots are presented. Several experiments with real ants are described.

Then, it is presented how an optimization algorithm metaphor may be drawn from the

behavior of real ants. The basic ideas of ant colony optimization are presented, followed

by examples of practical implementations of ACO algorithms.

Following these introductory chapters, the main contribution of this thesis is presented

in Chapters 4, 5, and 6. First, in Chapter 4, the fundamental ideas of the extension of

ant colony optimization to continuous domains are presented. Then, a practical imple-

mentation of an algorithm is described, followed by the results of several experiments and

comparisons. The proposed algorithm is compared to many others on several benchmark

test functions. Chapter 5 continues the empirical evaluation of the proposed algorithm.

It presents a practical application of an ACO algorithm extended to continuous domains

on a problem of neural network training for pattern recognition in the medical field. In

the process, the proposed continuous algorithm is compared to genetic algorithms and

dedicated derivative-based methods for neural network training.

Chapter 6 explains how the proposed ACO algorithm may be further adapted to be

able to handle simultaneously both continuous and discrete variables. We also discuss

different types of formulation of the mixed-variable problems, and we show how this

impacts the choice of a potential algorithm to tackle them. We propose a new benchmark

problem for evaluating performance of native mixed-variable optimization algorithms in

a controlled environment. Finally, we demonstrate the performance of the mixed-variable

ACO on several real-world engineering problems and compare the results obtained to

those reported in the literature.
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Finally, Chapter 7 wraps up the main body of the thesis and provides a summary of

the contributions and an analysis of the results obtained. It also gives an idea of future

research directions.

Following the main body of the thesis, there are also several appendixes that complement

the research reported in the thesis and provide additional details, which will make it

easier to replicate the results obtained.

Appendix A explains in more detail, how the proposed ACO algorithm for continuous

domains handles the possible correlation among decision variables. Additionally, Ap-

pendix B presents an alternative way of describing the proposed ACOR algorithm, one

that was used in some initial publications [Socha and Dorigo, 2008; Socha and Blum,

2006, 2007]. Last, Appendix C provides overview of the code of the algorithms developed

in the course of the research. This allows an interested reader to continue experimenta-

tion and (hopefully) further improve the performance.



8



Chapter 2

Discrete, Continuous, and

Mixed-Variable Optimization

The thesis aims at presenting a novel approach to tackling continuous and mixed-variable

optimization problems with ant colony optimization. Before presenting the main topic of

the thesis, it is crucial to define what we mean by optimization in general, why it makes

sense to differentiate between discrete, continuous and mixed-variable optimization, and

finally why ant colony optimization may be used for tackling these types of problems.

From a purely mathematical perspective, an optimization problem may be defined as

follows [Boyd and Vandenberghe, 2004]:

Definition 2.1 Given a function f : S → R, find X∗ ∈ S : ∀X∈S f(X∗) ≤ f(X)

(minimization) or f(X∗) ≥ f(X) (maximization).

Function f is called the objective function, its domain S is called the search space,

and the elements of S, are called feasible solutions. A feasible solution X is a vector

of optimization variables X = {X1, X2, ..., Xn}. A feasible solution X∗ that minimizes

(maximizes) the objective function is called an optimal solution.

Note that maximization over an objective function f is equivalent to minimization over

the function −f . Hence, without any loss of generality, in the remainder of this work

we will limit ourselves to the case of minimization.

In general, there exist several families (or classes) of optimization problems, which are

characterized by particular forms of the objective functions, search spaces, or constraints.

In this work, we use the division into classes based on how the optimization problems

9
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differ in the definition of their search spaces.

We consider three types of optimization problems depending on the characteristic of the

search space:

• discrete optimization problems—problems in which all the optimization variables

Xi, i = 1, ..., n are discrete, i.e., belong to a countable set, Xi ∈ Di, i = 1, ..., n;

• continuous optimization problems—problems in which all the optimization vari-

ables Xi, i = 1, ..., n are continuous, Xi ∈ R, i = 1, ..., n;

• mixed-variable optimization problems—problems in which p out of n = p + q

variables are discrete, Xi ∈ Di, i = 1, ...p, and q are continuous Xi ∈ R, i =

p + 1, ..., p + q.

In the remaining part of the thesis we often mention combinatorial optimization prob-

lems. Combinatorial optimization problems are in fact a subset of discrete optimization

problems characterised by finite size of their domain. Since there are many problems

of this type, and several algorithms have been proposed to deal exclusively with such

combinatorial problems (notably, the original formulation of ACO), we focus on this

type of discrete problems.

This classification is based on the fact that solving these three different classes of prob-

lems poses different difficulties and often requires different approaches. While some

methods work well on continuous optimization problems, they may not be used for com-

binatorial optimization problems, and vice versa. In turn, mixed-variable optimization

problems pose yet another type of difficulties due to the fact that they combine both

discrete and continuous optimization variables.

It is important to note that it is not always possible to find the optimal solution to a

given problem. In the case of combinatorial optimization, often, in order to ensure that a

candidate solution is an optimal one, it must be compared to all other possible solutions.

Unfortunately, in some cases the number of available solutions is (although finite) very

large, and hence it is impossible (or at least impractical) to ensure that a given solution

is the optimal one. Similarly, in the case of continuous optimization problems, it may

be impossible to find an exact solution with analytical methods.

In such cases, the aim is to find a near-optimal solution, i.e., a solution that is sufficiently

close to the optimal solution. What exactly sufficiently close means, depends on the

problem at hand. In those cases, in which exact or analytical methods may not be used or

their use is impractical, the most common approach is to use the metaheuristics [Glover
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and Kochenberger, 2003] such as evolutionary algorithms (EAs) [Fogel, 1995], simulated

annealing (SA) [Kirkpatrick et al., 1983], tabu search (TS) [Glover, 1989, 1990], ant

colony optimization (ACO) [Dorigo and Stützle, 2004], and others. These methods

often allow finding near-optimal solutions in reasonable time.

The remainder of this chapter is divided into three main sections, each focusing on one

of the three different classes of optimization problems, as they have been listed above:

Section 2.1 focuses on combinatorial optimization, Section 2.2 deals with continuous

optimization, and finally Section 2.3 summarizes the mixed-variable optimization prob-

lems. We describe the fundamental characteristics of the different optimization problem

classes, give examples of specific real-world applications, and shortly present the various

methods used for tackling these types of problems. Section 2.4 concludes the chapter.

2.1 Combinatorial Optimization

The name given to this type of optimization problems, i.e., combinatorial, comes from

the fact that such problems may be expressed as those of finding a permutation or com-

bination of a finite set of elements. Combinatorial optimization problems are therefore

characterized by a finite set of possible solutions. This of course does not imply that

they must be easy to solve, as the size of the set of solutions may be very large.

Following the definition of the optimization problem in the previous section, a model of

a combinatorial optimization problem (COP), may be formally defined as follows:

Definition 2.2 A model P = (S,Ω, f) of a COP consists of:

• a search space S defined over a finite set of discrete decision variables and a set Ω

of constraints among the variables;

• an objective function f : S→ R to be minimized.

The search space S is defined as follows: Given is a set of discrete variables Xi, i =

1, ..., n, with possible values vj
i ∈ Di = {v1

i , ..., v
|Di|
i }. A solution s ∈ S—i.e., a complete

assignment in which each decision variable has a value assigned—that satisfies all the

constraints in the set Ω, is a feasible solution of the given COP. If the set Ω is empty,

P is called an unconstrained problem model, otherwise it is said to be constrained. A

solution s∗ ∈ S is called a global optimum if and only if: f(s∗) ≤ f(s) ∀s∈S. The set of

all globally optimal solutions is denoted by S∗ ⊆ S. Solving a COP requires finding at

least one s∗ ∈ S∗.
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2.1.1 Applications

Combinatorial optimization is the process of finding one or more optimal solutions in a

well defined discrete problem space. Such problems occur in almost all fields of man-

agement (e.g., finance, marketing, production, scheduling, inventory control, facility

location and layout, and database management), as well as in many engineering disci-

plines (e.g., optimal design of waterways or bridges, VLSI-circuitry design and testing,

the layout of circuits to minimize the area dedicated to wires, design and analysis of

data networks, solid-waste management, determination of ground states of spin-glasses,

determination of minimum energy states for alloy construction, energy resource-planning

models, logistics of electrical power generation and transport, the scheduling of lines in

flexible manufacturing facilities, and problems in crystallography).

The versatility of application of the combinatorial optimization model stems from the

fact that in many practical problems, activities and resources, such as machines, air-

planes and people, are indivisible. Also, many problems have only a finite number of

alternative choices and consequently can appropriately be formulated as combinatorial

optimization problems.

Many optimization problems can be represented by a network (or graph) that is defined

by nodes and by edges connecting those nodes. Many practical problems arise around

physical networks such as city streets, highways, rail systems, communication networks,

and integrated circuits. In addition, there are many problems that can be modeled as

networks even when there is no underlying physical network. For instance, one can think

of the assignment problem where one wishes to assign a set of machines to a set of jobs

in a way that minimizes the cost of the assignment. Here, one set of nodes represents

the machines to be assigned, another set of nodes represents the possible jobs, and there

is an edge connecting a machine to a job if that machine is capable of performing the

given job.

In addition, there are many graph-theoretic problems that examine the properties of the

underlying graph or network. Such problems include the traveling salesman problem,

where one wishes to find a shortest Hamiltonian cycle in a graph. Other graph problems

include the vertex coloring problem, the object of which is to determine the minimum

number of colors needed to color each vertex of a graph in order that no pair of adjacent

nodes share the same color; the maximum clique problem, whose goal is to find the

largest subgraph of the original graph such that every node is connected to every other

node in the subgraph; and the minimum cut problem, whose goal is to find a minimum



Discrete, Continuous, and Mixed-Variable Optimization 13

weight collection of edges that (if removed) would disconnect a set of nodes s from a set

of nodes t.

Although these combinatorial optimization problems on graphs might appear, at first

glance, to be interesting mathematically but to have little application to the decision

making in management or engineering, their domain of applicability is extraordinarily

broad. For example, the traveling salesman problem has applications in routing and

scheduling, in large scale circuitry design and in strategic defense, while both the clique

problem and the minimum cut problem have important implications for the reliability

of large systems. An overview of combinatorial optimization problems may be found

in [Cook et al., 1998].

2.1.2 Methods

Solving combinatorial optimization problems, i.e., finding an optimal solution to such

problems, can be a difficult task. The difficulty arises from the fact that unlike lin-

ear programming, for example, whose feasible region is a convex set, in combinatorial

problems one must search a lattice of feasible points. Thus, unlike linear programming,

where, due to the convexity of the problem, we can exploit the fact that any locally opti-

mal solution is a global optimum, combinatorial optimization problems have many local

optima and finding a global optimum to the problem requires one to prove that a partic-

ular solution dominates all feasible points by arguments other than the calculus-based

derivative approaches of convex programming.

In general, we may divide the methods used to tackle the combinatorial optimization

problems into the following two groups:

• exact methods—methods that guarantee finding an optimal solution to a given

problem (but not always in reasonable time); and

• heuristic methods—methods that usually do not guarantee finding an optimal so-

lution, but usually provide a near-optimal one in reasonable time.

In the following two subsections, we shortly present some of the most popular exact and

heuristic methods for tackling combinatorial optimization problems.
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Exact Methods

There are (at least) three different approaches for solving combinatorial optimization

problems exactly, although they are frequently combined into hybrid procedures in com-

putational practice:

• enumerative techniques,

• relaxation and decomposition techniques,

• cutting planes approaches based on polyhedral combinatorics.

Enumerative approaches: The simplest approach to solving a pure combinatorial opti-

mization problem is to enumerate all finitely many possibilities. However, due to the

combinatorial explosion with the increase of the problem size, only the smallest in-

stances could be solved by such an approach. Sometimes one can implicitly eliminate

many possibilities by domination or feasibility arguments. Besides straight-forward or

implicit enumeration, the most commonly used enumerative approach is called branch-

and-bound, where the branching refers to the enumeration part of the solution technique

and bounding refers to the fathoming of possible solutions by comparison to a known

upper or lower bound on the solution value [Land and Doig, 1960]. To obtain an upper

bound on the problem, the problem is relaxed in a way which makes the solution to the

relaxed problem, relatively easy to find.

All commercial branch-and-bound algorithms relax the problem by dropping the inte-

grality conditions and solve the resultant continuous linear programming problem over

the set P . If the solution to the relaxed linear programming problem satisfies the inte-

grality restrictions, the solution obtained is optimal. If the linear program is infeasible,

then so is the integer program. Otherwise, at least one of the integer variables is frac-

tional in the linear programming solution. One chooses one or more such fractional

variables and branches to create two or more subproblems, which exclude the prior solu-

tion but do not eliminate any feasible integer solutions. These new problems constitute

nodes on a branching tree, and a linear programming problem is solved for each node

created. Nodes can be fathomed if the solution to the subproblem is infeasible, satisfies

all of the integrality restrictions, or has an objective function value worse than a known

integer solution.

Lagrangian Relaxation and Decomposition Methods: Relaxing the integrality restriction

is not the only possible approach to relaxing the problem. An alternative approach is

to take a set of complicating constraints into the objective function in a Lagrangian
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fashion (with fixed multipliers that are changed iteratively). This approach is known

as Lagrangian relaxation [Fisher, 1981]. By removing the complicating constraints from

the constraint set, the resulting sub-problem is frequently considerably easier to solve.

The latter is a necessity for the approach to work because the subproblems must be

solved repetitively until optimal values for the multipliers are found. The bound found

by Lagrangian relaxation can be tighter than that found by linear programming, but

only at the expense of solving subproblems in integers, i.e., only if the subproblems do

not have the integrality property1. Lagrangian relaxation requires that one understands

the structure of the problem being solved in order to then relax the constraints that

are complicating. A related approach, which attempts to strengthen the bounds of

Lagrangian relaxation, is called Lagrangian decomposition [Guignard and Kim, 1987].

This method consists of isolating sets of constraints so as to one obtains separate, easy

problems to solve over each of the subsets. The dimension of the problem is increased by

creating linking variables which link the subsets. All Lagrangian approaches are problem

dependent and no underlying general theory has evolved.

Since each of the decomposition approaches described above provide a bound on the

integer solution, they can be incorporated into a branch-and-bound algorithm, instead

of the more commonly used linear programming relaxation. However, these algorithms

are special-purpose algorithms in that they exploit the constraint pattern or special

structure of the problem.

Cutting Plane algorithms based on polyhedral combinatorics: In 1935, Weyl established

the fact that a convex polyhedron can alternatively be defined as the intersection of

finitely many half spaces or as the convex hull plus the conical hull of some finite number

of vectors or points. If the data of the original problem formulation are rational numbers,

then Weyl’s theorem implies the existence of a finite system of linear inequalities whose

solution set coincides with the convex hull of the mixed-integer points in S which we

denote conv(S). Thus, if we can list the set of linear inequalities that completely define

the convexification of S, then we can solve the integer programming problem by linear

programming. Gomory derived in 1958 a cutting plane algorithm [Gomory, 1958] for

integer programming problems which can be viewed as a constructive proof of Weyl’s

theorem, in this context.

More recently a method called branch-and-cut [Padberg and Rinaldi, 1991] has been

derived based on those earlier ideas. The major components of this algorithm con-

1A problem has the integrality property if the solution to the Lagrangian problem is unchanged,
when the integrality restriction is removed
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sist of automatic reformulation heuristic procedures, which provide good feasible integer

solutions, and cutting plane procedures which tighten the linear programming relax-

ation to the combinatorial problem under consideration—all of which is embedded into

a tree-search framework as in the branch-and-bound approach to integer programming.

Whenever possible, the procedure permanently fixes variables (by reduced cost implica-

tions and logical implications) and does comparable conditional fixing throughout the

search-tree. These four components are combined so as to guarantee optimality of the

solution obtained at the end of the calculation. However, the algorithm may also be

stopped early to produce suboptimal solutions along with a bound on the remaining

error. The cutting planes generated by the algorithm are facets of the convex hull of

feasible integer solutions or good polyhedral approximations thereof and as such they

are the tightest cuts possible. Lifting procedures assure that the cuts generated are

valid throughout the search tree which aids the search process considerably and is a

substantial difference to traditional (Gomory) cutting-plane approaches.

Metaheuristics

The heuristics solution approaches are the techniques for obtaining good but not neces-

sarily optimal solutions to combinatorial optimization problems quickly and, in general,

without any guarantee as to their closeness to an optimal solution. Heuristics are, how-

ever, important for a variety of reasons. They may provide the only usable solution to

very difficult optimization problems for which the current exact algorithms are incapable

of providing an optimal solution in reasonable times. When heuristics are used within

an exact algorithm, they provide a bound to fix variables and to define branches on a

search-tree.

The main general heuristic methods—known as metaheuristics—often used for tack-

ling combinatorial optimization problems include evolutionary algorithms (EAs) [Fogel,

1995], simulated annealing (SA) [Kirkpatrick et al., 1983], tabu search (TS) [Glover,

1989, 1990], ant colony optimization (ACO) [Dorigo and Stützle, 2004], and others. We

give here a brief description of the more popular methods.

Evolutionary Algorithms: They are a class of population-based metaheuristic optimiza-

tion algorithms, which use mechanisms inspired by biological evolution, such as natural

selection, mutation, and recombination [Fogel, 1995]. Each member of the population

represents a candidate solution to the optimization problem. The fitness function is

used to define the quality of each such solution. Specific evolutionary algorithms, such
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as genetic algorithms (GA) [Goldberg, 1989], genetic programming (GP) [Koza, 1992],

or evolution strategy (ES) [Beyer and Schwefel, 2002] differ in the way they implement

various genetic operators (such as for instance selection, cross-over, or mutation) in order

to evolve the population towards better solutions.

We shortly present the basic mechanism of operation of evolutionary algorithms using

as an example a genetic algorithm. The set of solutions of the problem are stored in

the form of population. Each member of the population stores information about a

single (but complete) solution to a given problem. The solution is encoded—in case of

genetic algorithms, usually a binary string is used for encoding the solution. From the

population of available solutions, an algorithm chooses a subset of solutions with the use

of a selection operator. These selected solutions are then used for deriving new solutions

through either mutation or recombination operators. The recombination operator in

case of genetic algorithms is usually realized as a form of cross-over. Two (or more)

solutions from the parent population are crossed-over in order to create two (or more)

children. The mutation operator works on single elements of the population. It allows to

introduce small variations in the values of solutions—usually with very small probability.

Finally, the subset of individuals from among the old population and the set of newly

generated ones, is kept as the new population.

Estimation of Distribution Algorithms: Algorithm first proposed by Mühlenbein and

Paaß [Mühlenbein and Paaß, 1996]. Although usually estimation of distribution algo-

rithms (EDAs) are considered to be part of the family of evolutionary algorithms, they

differ sufficiently from all the others that it makes sense to present them separately.

In EDA the two parents recombination process is replaced by generating new solutions

according to the probability distribution of all promising solutions of the previous gen-

eration.

In EDAs the problem specific interactions among the variables of individuals are taken

into consideration. In evolutionary algorithms in general, the interactions are not di-

rectly addressed, whereas in EDAs the interrelations are expressed explicitly through the

joint probability distribution associated with the individuals of variables selected at each

generation. The probability distribution is calculated from a database of selected indi-

viduals of previous generation. The selection methods used in genetic algorithms may

be used here. Then sampling this probability distribution generates offspring. Neither

crossover nor mutation is applied in EDAs.

Simulated Annealing: An algorithm independently invented by S. Kirkpatrick, C.D.
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Gelatt and M.P. Vecchi in 1993 [Kirkpatrick et al., 1983], and by V. Cerny in 1985 [Cerny,

1985]. The inspiration (as well as the name) comes from the process of annealing known

in metallurgy. It is a technique of heating and controlled cooling of materials to increase

size of crystals and reduce their defects. The heating causes the atoms in the material

to obtain more kinetic energy, and hence be able to move away from their positions of

local minimal energy. The slow cooling gives them a chance to find a low internal energy

state.

By analogy with this physical process, each step of the SA algorithm replaces the current

solution by a random neighborhood solution, chosen with a probability that depends on

the difference between the corresponding function values and on a global parameter T

(called by analogy—the temperature), that is gradually decreased during the process.

The dependency is such that the current solution changes almost randomly when T is

large, but increasingly downhill as T approaches zero. The allowance for uphill moves

saves the method from becoming stuck in local minima.

Tabu Search: An algorithm generally attributed to Glover [Glover, 1989, 1990]. Tabu

search uses a local or neighborhood search procedure to iteratively move from a solution

x to a solution x′ in the neighborhood of x, until some stopping criterion has been

satisfied. To explore regions of the search space that would be left unexplored by the

local search procedure and—by doing this—escape local optimality, tabu search modifies

the neighborhood structure of each solution as the search progresses. The solutions

admitted to N∗(x), the new neighborhood, are determined through the use of a special

memory structure—the tabu list. The search progresses by iteratively moving from a

solution x to a solution x′ in N∗(x). Solutions in the tabu list are excluded from N∗(x).

Other tabu list structures prohibit solutions that have certain attributes (e.g., traveling

salesman problem (TSP) solutions that include certain arcs) or prevent certain moves

(e.g., an arc that was added to a TSP tour cannot be removed in the next n moves).

Selected attributes in solutions recently visited are labelled tabu-active. Solutions that

contain tabu-active elements are tabu. This type of short-term memory is also called

recency-based memory.

Iterated Local Search: According to its name, it is an algorithm that iteratively uses a

certain local search technique [Ramalhinho-Lourenço et al., 2002]. The main idea is the

change of the search space. Instead of searching in the space of all possible solutions, the

algorithm searches in the space of locally optimal solutions. Iterated local search (ILS)

generates at each iteration a starting solution, and then uses an additional local search

mechanism, which returns locally optimal solutions. The returned solution is used to
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create a new starting solution by the ILS. The new starting solution is usually created

through a perturbation—a modification of the given solution.

The nature of the perturbation, as well as the specific local search used, depend on the

problem at hand. ILS, in spite of its apparent simplicity, has been shown to perform

quite well on number of problems.

Ant Colony Optimization: Finally, one of the metaheuristics used for tackling combi-

natorial optimization problems is ant colony optimization. Since this algorithm is the

main topic of this work, a comprehensive introduction to ACO is presented in a separate

chapter (Chapter 3).

2.1.3 Choosing the Suitable Method

Each of the two main types of methods presented in the previous section has its ad-

vantages and disadvantages. These must be taken into consideration when choosing a

method to tackle a given problem. In this section, we shortly compare the main ad-

vantages and disadvantages of these methods. We also discuss which characteristics of

the problem, as well as other conditions related to the situation in which the problem is

solved, have influence on the choice of a particular method.

When choosing a method to tackle a given combinatorial optimization problem, several

issues must be taken into consideration. On one hand, the characteristics of the methods

have to be taken into account, such as, for instance:

• how quick it gives the results,

• what is the quality of the results,

• whether the method provides any guarantee about the quality of the solution

found,

• how difficult it is to implement,

• how well does it scale with problem size,

• etc.

On the other hand, one has to also consider the characteristics of the problem at hand,

as well as the situation in which the problem is solved:

• what is the size of the problem,
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• what solution quality is needed,

• how much time is there to implement the method,

• how much time is there to run the algorithm to obtain the results,

• etc.

Only after analyzing the characteristics of the methods available and the given problem

formulation, as well as defining the situation in which the problem is to be solved, one

may be able to choose the method that is most suitable.

In the following, we present the main characteristics of the two main types of meth-

ods for tackling combinatorial optimization problems, i.e, the exact methods and the

metaheuristics.

Advantages and Disadvantages

While the exact methods, as the name suggests, allows to solve the combinatorial prob-

lems exactly, metaheuristics give a solution that is close to the optimum. The exact

methods guarantee finding the optimum solution, however the time required to find it is

usually quite long. In turn, metaheuristics do not guarantee anything about the quality

of the solutions found, but are able to find reasonably good solutions in a small amount

of time.

The term reasonably good is rather vague, and in most cases it can not be defined pre-

cisely. How good is in fact the solution found by a metaheuristic depends on several

factors. Among others, it depends on: the type of the problem, its size, the amount of

time available to find the solution, and the actual implementation of the metaheuristic

used. Nevertheless, metaheuristics are often used to tackle combinatorial optimization

problems. The main reasons for this is that either the time available to solve a combina-

torial problem is very short, or the dimension of the problem is such that the use of exact

methods is impractical. Also, in the majority of the real world situations a reasonably

good solution is sufficient. There is usually no need to have provably optimum solution.

However, if this is indeed what is needed, than exact methods should be used.
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2.2 Continuous Optimization

Similarly to a combinatorial optimization problem (COP), also a model for continuous

optimization problem (CnOP) may be formally defined:

Definition 2.3 A model Q = (S,Ω, f) of a CnOP consists of:

• a search space S defined over a finite set of continuous decision variables and a

set Ω of constraints among the variables;

• an objective function f : S→ R to be minimized.

The search space S is defined as follows: Given is a set of continuous variables Xi, i =

1, ..., n with possible values vi ∈ Di ⊆ R. A solution s ∈ S—i.e., a complete assignment,

in which each decision variable has a value assigned—that satisfies all the constraints in

the set Ω, is a feasible solution of the given CnOP. If the set Ω is empty, Q is called an

unconstrained problem model, otherwise it is called a constrained one. A solution s∗ ∈ S

is called a global optimum if and only if: f(s∗) ≤ f(s) ∀s∈S. The set of all globally

optimal solutions is denoted by S∗ ⊆ S. Solving a CnOP requires finding at least one

s∗ ∈ S∗.

The main difference between the combinatorial and continuous optimization problems, is

the fact that the search space is not finite. Each of the continuous decision variables may

assume an infinite number of values. Of course, solving such problems using computers

imposes certain limitations, as computers—being digital in nature—can only represent a

finite number of values. One could think that this reduces the problem to a combinatorial

optimization one. This is however not really the case. In the case of combinatorial

optimization, the set of available values is predefined before starting the optimization.

The size of this set has a significant influence on the difficulty of finding an optimal

or near-optimal solution. In case of continuous optimization problems, the algorithms

use an efficient and flexible floating point representation of real-valued variables. This

allows finding solutions with the required accuracy in a more efficient way.

2.2.1 Applications

The area of applications for continuous optimization is very wide. Many real-world prob-

lems and processes may be presented in the form of a continuous optimization problem.

Typical examples include designing optimal shapes (such as wings, turbines, and oth-

ers) or choosing values of continuous parameters for various industrial processes (e.g.,
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temperature, pressure, etc.). An example presented in Chapter 5 illustrates how a con-

tinuous optimization algorithm may be used to train artificial neural network, which in

turn is used for medical diagnosis. Of course, continuous optimization algorithms are

also often used to tackle functions that may be defined using relatively simple mathe-

matical formulas. These may vary from simple test functions, to complex mathematical

descriptions of various processes. Examples include engine design, power plants design,

or computer simulations of many other processes.

It is important to notice that certain problems may be transformed from combinatorial

to continuous form by relaxing the requirement of having the values from a finite set.

In the evaluation of the objective function, the continuous values may be then rounded

to the nearest value from the initial set. Similarly, it is also possible to transform the

continuous problem into the combinatorial one by dividing the continuous domains into

a set of values. This however is only possible if the continuous domain is bounded (i.e.,

the lower and upper bounds are defined).

2.2.2 Methods

Similarly to the case of combinatorial optimization problems, the algorithms available

for solving continuous optimization problems may be divided into the exact and the

approximate ones.

Analytical Approach

Solving a continuous optimization problem exactly means to minimize analytically a

given objective function f . This is not always easy or possible, as analytical method

requires certain conditions to be fulfilled. For multivariate functions2 of the form

f(x1, ..., xn) = f(x) ∈ R, x ∈ Dn ⊂ Rn, the gradient 5f = d
dx

f and the Hessian

H = d2

dx2 f need to be found. They are given respectively by:

2In the case of a univariate function f(x), simply its first and second derivatives, f ′(x) and f ′′(x)
need to be calculated.
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5f =
d

dx
f =




∂f
∂x1
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∂2
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f . . . ∂2

∂x1∂xn
f

...
. . .

...

∂2

∂xn∂x1
f . . . ∂2

∂xn∂xn
f


 . (2.1)

The extreme points of the function f satisfy the condition 5f(x) = (0, . . . , 0). However,

in order to distinguish between the maxima, minima, and saddle points, it is necessary to

find the signs of the eigenvalues of the Hessian H = d2

dx2 f . This is usually accomplished

through eigenvalue/eigenvector decomposition of the Hessian3:

H = UΛUT , with Λ = diag(λ1, . . . , λn), (2.2)

where matrix U contains the eigenvectors, and vector Λ contains the eigenvalues. Then,

the type of extreme point depends on the sign of the eigenvalues in the following way:

• ∀i∈{1,...,n}λi > 0→ maximum,

• ∀i∈{1,...,n}λi < 0→ minimum,

• ∃i,j∈{1,...,n}λi < 0 ∧ λj > 0,→ saddle point,

• else → further studies are necessary.

It is important to notice that such analytical approach is possible only if the gradient

5f and the Hessian H can be found analytically. This is obviously possible only if the

function f is given in the form of a mathematical formula, and it is not possible when,

for instance, the function f is only known as empirical data, which is often the case in

real-world problems.

Numerical Methods Based on Gradient Descent

Since, as mentioned earlier, symbolic computation is often not easy or practical, a num-

ber of methods have been proposed to perform numerical function minimization. Among

them, there is a number of derivative-based methods, which we shortly present here.

3Note that such decomposition is only possible if f ∈ C2.
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Steepest Descent: One of the simplest methods of numerical derivative-based function

minimization is the steepest descent method, also often called the gradient descent [Ar-

fken, 1985]. This method relays on the fact that the first derivative, i.e., the gradient

5f (see Equation 2.1) can be calculated for chosen points x ∈ Dn.

In steepest descent, the search starts with a randomly chosen solution x. In each itera-

tion, the current solution x is replaced by a solution x′:

x′ = x− ε5 f (2.3)

where ε is a coefficient sufficiently small, so that f(x′) < f(x). The value of the coefficient

ε may change at each iteration step.

The steepest descent method is guaranteed to converge to a local optimum, but its

convergence is sometimes quite slow.

Conjugate Gradient Method: This is a more advanced method when compared to the

previous one. It uses conjugate directions instead of local gradient for going downhill.

Successive one-dimensional minimizations are performed along conjugate directions with

each direction being used only once per iteration [Bulirsch and Stoer, 1991]. The first

direction is taken as in case of the steepest descent method:

d0 = −5 f(x0) (2.4)

Each subsequent conjugate direction is then calculated with the following formula:

di+1 = −5 f(xi+1) +
5f(xi+1)

T 5 f(xi+1)

5f(xi)T 5 f(xi)
di (2.5)

The convergence of the conjugate gradients method is usually faster than the previously

described steepest descent method.

Newton’s Method: Isaac Newton has worked out his method in 1669. Since then, several

versions of Newton’s method have been proposed [Fujita and Yamaguti, 1981; Peitgen,

1989]. The basic one for finding a minimum of the function f(x) requires the knowledge
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of both the gradient 5f and the Hessian matrix H (see Equation 2.1). Instead of mini-

mizing the objective function f directly, the Newton’s method minimizes the quadratic

polynomial approximation Q around the solution x0, assuming that the minimum exists

as solution xmin:

Q(x) = f(x0) +5f(x0)(x− x0) +
1

2!
(x− x0)H(x0)(x− x0)

T (2.6)

A minimum of Q(x) occurs where 5Q(x) = (0, . . . , 0), what can be written in the

following way:

5Q(x) = 5f(x0) + (x− x0)H(x0) = (0, . . . , 0) (2.7)

Assuming that solution x0 is close to the solution xmin (where the minimum occurs),

then H(x0) is invertible and the above equation may be solved for x, which in turn can

be used as solution x1—the next approximation of the solution xmin:

x1 = x0 − 5f(x0)

H(x0)
(2.8)

The advantages of the Newton method include quite fast convergence (quadratic con-

vergence for quadratic functions) and better error approximation than the gradient

methods. There are also some disadvantages. It requires calculation of second order

derivatives and inversion of the Hessian matrix, which is usually quite computationally

intensive. Also, the initial starting solution should be chosen reasonably close to the

actual minimum. Alternatively, there are also the quasi -Newton methods, which use an

approximation of the Hessian matrix [Brojden, 1967; Dennis Jr. and More, 1977].

Direct Search Methods

Following a short overview of the analytical approach to continuous function optimiza-

tion and derivative-based approximation methods, we will now present the direct meth-

ods that do not require any additional information about the objective function f , apart
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from the ability to evaluate it at chosen points.

Simplex: An algorithm originally proposed by Nelder and Mead [Nelder and Mead,

1965]. Simplex is a generalized n-dimensional triangle. To minimize an n-dimensional

function, the algorithm uses simplexes composed of (n + 1) points. Initially, the points

for the simplex are chosen randomly. Then, at each iteration the simplex is modified

by removing the point for which the value of the objective function f is the worst.

Instead, a new point is added using the reflection, expansion, and contraction operators.

Reflection creates a new point as a reflection of the worst point on the other side of the

n-dimensional plane formed by all the simplex points with the exception of the worst one.

Expansion causes the simplex to become bigger, and contraction—respectively—smaller.

The simplex algorithm, although quite simple, has proven to be a very robust method

for local function minimization. It is currently rarely used alone, as there are other

more powerful methods (such as the Powell’s method described next). However, it is

often used in combination with other methods (e.g., metaheuristics) to form hybrid

approaches.

Powell’s Method: In Powell’s algorithm [Powell, 1964], the procedure begins at a starting

point x0, and each iteration of the algorithm consists of (n + 2) successive exact line

searches, that is exploration in a straight line. Initially, the first (n+1) line searches are

along the n coordinate axes. The (n + 2)-nd line search goes from the point obtained

from the first line search through the best point (obtained at the end of the (n + 1) line

searches). If the function is quadratic, this will locate the optimum. If it is not, then the

search is continued with one of the first n directions replaced by the (n+1)-th direction,

and the procedure is repeated until a stopping criterion is met.

Powell has pointed out that this procedure requires modification if the acceleration

directions become close to being linearly dependent. He reported that this possibility

has been found to be serious if the function depends on more than five variables. Hence,

a test should be performed before each new vector is to replace one of the previous n

ones, in order to ensure that this does not happen.

This method has been called one of the most efficient and reliable of the direct search

methods. The reason is its relative simplicity and quadratic termination property. It

is worth to notice that the conjugate gradient method was proved to be as effective as

Powell’s method, but it requires the gradient information to work.
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Metaheuristics

Last, but not least, metaheuristics have been also used for continuous optimization. One

of the primary reasons to use metaheuristics for this purpose is the fact that they may be

able to find a global optimum of the problem at hand, and not only the local one. While

some of the algorithms presented earlier are quite efficient in locating local optima, none

of them has been designed for global optimization. This is why metaheuristics become

an interesting alternative.

There have been many metaheuristics proposed for tackling continuous optimization

problems. In the previous section, we have already presented some of them. It is im-

portant to note here that while there were some metaheuristics that were developed

with the continuous optimization in mind, most of them have been adapted to con-

tinuous optimization based on their counterparts initially developed for combinatorial

optimization. Indeed, the main contribution of this work is such a metaheuristic—ant

colony optimization applied to continuous optimization problems. Chapter 4 contains a

more detailed discussion, how the algorithm proposed here compares to other popular

metaheuristics.

Metaheuristics for continuous optimization are often hybridized with local search meth-

ods presented earlier in this section. This allows them to focus on global optimization,

while the local search methods, such as gradient-based or direct search methods, help

them in finding local optimums.

We now briefly present those metaheuristics that have been explicitly designed for con-

tinuous optimization.

Evolution Strategy: This method was developed by Rechenberg [Rechenberg, 1973] and

Schwefel [Schwefel, 1981]. Initially the method was not intended to be used as an al-

gorithm for computers, but rather as a method to find optimal parameter settings in

laboratory experiments. Nowadays, this method is considered to be one of the evolution-

ary algorithms, which we already briefly presented. An interesting element of the design

of evolution strategy is the fact that its parameters (i.e., the parameters of the algorithm

itself) are optimized along with the so-called object parameters, i.e., the parameters of

the process being optimized.

Each member of the population contains a vector of parameters being optimized. Each

element of this vector is a real number, and each such element is either an object pa-

rameter op, or a strategy parameter sp. Usually, the only parameter of the strategy is
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the step-size of the mutation—one for each object parameter. New solutions are created

through element-wise mutation through addition of normally distributed random num-

bers. For each object parameter, a corresponding strategy parameter is used to describe

the standard deviation of the normal distribution used:

op ← op + N(0, sp), (2.9)

where op is a vector of object parameters, sp is a vector of respective strategy parameters,

and N(0, sp) is a normal distribution with µ = 0, and σ = sp.

There exist numerous versions of the evolution strategy, which differ mostly through

the way the new solutions are chosen from the old population and the newly generated

children. The first and simplest one, but also one that is still quite often used due

to its simplicity and effectives, is the so-called (1+1)-ES. Its population consists of a

single individual. A child is generated from this single individual through mutation.

If the child is better than the parent—it replaces the parent, otherwise, the parent

stays unchanged. More generally, λ mutants can be generated and compete with the

parent, called (1+λ)-ES. In a (1, λ)-ES the best mutant becomes the parent of the next

generation while the current parent is always disregarded. Contemporary derivatives

of evolution strategy often use a population of µ parents and also recombination as an

additional operator (called (µ/ρ, λ)-ES). This is believed to make them less prone to get

stuck in local optima.

Differential Evolution: This is another example of an evolutionary algorithm. Differen-

tial evolution has been proposed relatively recently by Storn and Price [Storn and Price,

1995, 1997]. It operates on a population of vectors, i.e., solutions to the given problem.

Each vector consists of a series of real-valued parameters to be optimized. The methods

works as follows. For each vector xi, i = 1, . . . , n from the current population, a trial

vector vi is created:

vi = xr1 + F (xr2 − xr3), (2.10)

where r1, r2, r3 ∈ (1, . . . , n) are random integer numbers that are mutually different, as

well as different from i. F is a real-valued factor, which controls the amplification of
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differential variation.

Additionally, certain elements of each newly created vector vi are replaced by elements

of the original vector xi to form the final vectors ui. This aims at increasing the diversity

of the parameter vectors and is a mechanism similar to cross-over in other evolutionary

algorithms. Finally, the resulting vectors ui are compared to the original vectors xi and

only the better ones are retained.

Iterated Density Estimation Evolutionary Algorithms: Yet another instance of an evo-

lutionary algorithm. Iterated density estimation evolutionary algorithm (IDEA) is an

extension of the estimation of distribution algorithms (EDA) [Mühlenbein and Paaß,

1996], which were already presented in Section 2.1.2. The IDEA framework has been

proposed by Bosman and Thierens [Bosman and Thierens, 1999, 2000] as a method for

extending EDAs also to the continuous domain.

Similarly to EDA, in IDEA a population of individuals containing current solutions to the

given problem is used to build a probability distribution, which in turn is used to generate

the new population. In case of continuous optimization problems, the normal or normal

kernel distribution is used. In the first case, an n-dimensional normal distribution

is fitted using all the elements of the current population. In the second case, an n-

dimensional normal distribution is built for each point from the current population and

then all of these are superimposed to form the normal kernel distribution. While in case

of using just a single normal distribution both parameters (i.e., µ and σ)4 are fitted based

on all the available solutions, in the case of normal kernel distribution, the procedure is

more complex. The parameter µ of each normal distribution is set to the coordinates

of the points making up the current population. The parameters σ are chosen per

dimension, based on the range of values assumed in this dimension by all the solutions

in the population. Once the probability distribution is established a new population is

created through sampling this distribution.

Particle Swarm Optimization: This is a population-based stochastic optimization tech-

nique developed by Eberhart and Kennedy [Kennedy and Eberhart, 1995]. The inspira-

tion for the algorithm was the social behavior of bird flocking and fish schooling.

Although particle swarm optimization (PSO) shares many similarities with evolution-

ary computation techniques, it is considered to be rather part of swarm intelligence

methods. The system is initialized with a population of random solutions and searches

for optima by updating subsequent generations. Unlike typical evolutionary algorithm,

4Note that both µ and σ are vectors of cardinality n.
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PSO has no evolutionary operators such as cross-over or mutation. In PSO individuals

called particles representing the solutions to the given optimization problem, fly through

the problem search space by following certain attractors. These attractors may be rep-

resented by the best known position of the given particle, or the best position found

globally by the whole swarm.

The PSO concept consists in iteratively changing (in discrete steps) the velocity vectors

of the particles towards (usually) a combination of the particle best and global best

locations. Additionally, a certain inertia may be added to the particle in order to improve

performance.

2.2.3 Choosing the Suitable Method

As in the case of combinatorial optimization problems, each of the types of methods

for continuous optimization has its advantages and disadvantages. These must be taken

into consideration, when choosing a method to tackle a given problem. In this section,

we shortly compare the main advantages and disadvantages of these methods.

Differently from what happens with combinatorial optimization problems, not all the

methods available for continuous optimization may always be used. Their usefulness is

subject to several limitations related to the way the problem is formulated, and depend-

ing whether the solution sought is a global or local optimum.

In the following, we present the main characteristics of the types of methods for tackling

continuous optimization problems and explain when each of them can be used.

Advantages and Disadvantages

The analytical approach is the only approach that may yield exact results. It allows to

find all minima and maxima, including also the global minimum and maximum, if they

exist. However, this approach can only be used if the problem is formulated in the form

of a mathematical formula and not, for instance, as a set of sampled empirical data.

Unfortunately, this is a rare situation, when real-world problems are concerned.

All the other types of methods for continuous optimization presented in the previous

sections allow to find only approximate results. The first of them, derivative-based meth-

ods, allow to reasonably quickly find local optimum. Unlike the analytical approach, the

derivative-based methods use numerical function optimization, which requires only to
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be able to calculate the value of the function in any point of the search space instead of

requiring the symbolic formula of the function. However, the derivative-based methods

require also information on the derivatives of the optimized function—i.e., it must be

possible to also evaluate the derivatives for any of the points of the search space. De-

pending on the actual method, it may be either just the first derivative, or the first and

second one.

Direct search methods are more robust than the previous two, that is, they are able

to deal effectively with a wider range of continuous optimization problems. They only

require that the function may be evaluated in any point of the search space. They do not

require any additional information. Their drawback is however the fact that, similarly to

derivative-based methods, they only find a local optimum, and not the global optimum.

Finally, there are metaheuristics. As in the case of combinatorial optimization problems,

metaheuristics for continuous optimization do not provide any guarantees about the

quality of the solutions found. However, they may be able to look not only for local

optima, but also for the global optimum. The metaheuristics also have little requirements

about the problem formulation. Similarly to the direct methods, they only need to be

able to evaluate the function in any point of the search space.

The ability of the metaheuristics to look for global optimum is often coupled with the

speed of finding the local optima by the direct methods or derivative-based methods.

The algorithms used in practice to tackle real-world continuous optimization problems

are often constructed as hybrids of a metaheuristic and a direct or derivative-based

method. An example of such approach is presented in Chapter 5, where the continuous

ACO algorithm is used with derivative-based methods to optimize weights of a neural

network.

2.3 Mixed-Variable Optimization

Based on the models of combinatorial and continuous optimization problems, a model

for a mixed-variable optimization problem (MVOP) may be formally defined as follows:

Definition 2.4 A model R = (S,Ω, f) of a MVOP consists of:

• a search space S defined over a finite set of both discrete and continuous decision

variables and a set Ω of constraints among the variables;

• an objective function f : S→ R+
0 to be minimized.
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The search space S is defined as follows: Given is a set of n = p + q variables Xi, i =

1, ..., n, of which p are discrete with values vj
i ∈ Di = {v1

i , ..., v
|Di|
i }, and q are continuous

with possible values vi ∈ Di ⊆ R. A solution s ∈ S—i.e., a complete assignment in

which each decision variable has a value assigned—that satisfies all the constraints in

the set Ω, is a feasible solution of the given MVOP. If the set Ω is empty, R is called an

unconstrained problem model, otherwise it is said to be constrained. A solution s∗ ∈ S is

called a global optimum if and only if: f(s∗) ≤ f(s) ∀s∈S. The set of all globally optimal

solutions is denoted by S∗ ⊆ S. Solving a MVOP requires finding at least one s∗ ∈ S∗.

Mixed-variable optimization problems are hence a combination of combinatorial and

continuous optimization problems. They are particularly difficult to tackle, as they pose

both type of difficulties—those of combinatorial problems (e.g., the necessity to check

essentially all the solutions to be certain that the optimal one has been found), and

those of continuous problems (e.g., the fact that the search space is infinite and may be

unbounded).

For this reason, there are not many dedicated algorithms to tackle mixed-variable prob-

lems directly. Most of the approaches that are in use relax some of the constraints of the

problem and then try to solve the transformed problem with the hope that the solution

obtained may be easily repaired to become a good solution to the original problem. The

most popular approach is to relax the requirement for the discrete variables. They are

replaced by continuous variables and the problem is solved as a continuous optimization

problem, but taking into account during the objective function evaluation only the al-

lowed values for the discrete variables. This type of approach is often called continuous

relaxation approach.

The relaxation is particularly easy if the discrete variables are numerical, or at least if

a certain order among them may be established. For instance, such would be the case

for a variable representing the diameter of pipes used in water distribution systems.

While the number of available diameters is limited, they may be easily ordered from the

smallest to the largest. The continuous optimization algorithm may hence easy move

between slightly smaller and slightly larger sizes during the optimization process.

The situation is different in the case of categorical discrete variables. An example of

such problem is the choice of material to be used for manufacturing certain parts. Each

material may have several different characteristics (e.g., weight, thermal conductivity,

strength, etc.), all of which may be important for the optimization problem at hand. In

such cases, there is no implicit ordering of such categorical variables and relaxation of
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this problem to the continuous case requires from the algorithm designer to impose an

ordering. This choice may then influence the performance of the algorithm.

Certainly, relaxation of the mixed-variable problem to a continuous problem is not the

only possible approach, and there exist also methods performing full mixed-variable

optimization (see Section 2.3.2). Also, such a method is presented as part of this work—

an ant colony optimization algorithm for tackling mixed-variable optimization problems.

2.3.1 Applications

Applications of mixed-variable optimization problems concern mostly industrial appli-

cations. Many industrial process and problems contain parameters of which some are

discrete and some continuous. Popular examples include the truss design problem [Sellar

et al., 1994; Turkkan, 2003; Pandia Raj and Kalyanaraman, 2005; Schmidt and Thier-

auf, 2005], the coil spring design problem [Deb and Goyal, 1998; Lampinen and Zelinka,

1999c; Guo et al., 2004], designing a pressure vessel [Deb and Goyal, 1998; Guo et al.,

2004; Schmidt and Thierauf, 2005], welded beam design [Deb and Goyal, 1998], or design

of thermal insulation systems [Audet and Dennis Jr., 2001; Kokkolaras et al., 2001].

All these problems require choosing values for discrete and continuous variables. Some

of them may be easily transformed into continuous optimization problems (this is often

the approach used to solve them). Some—the design of thermal insulation systems is

an example—may not be easily transformed in such a way. This is due to the fact that

there is no obvious ordering that may be imposed on the categorical variables.

2.3.2 Methods

The methods proposed in the literature to tackle mixed-variable optimization problems

may be divided into two groups. The first group consists of methods that modify or

divide the problem, so that it can be tackled with available continuous and combinatorial

algorithms. The second group of methods represent the true mixed-variable optimization

algorithms, which can natively handle mixed-variable optimization problems. We will

shortly present both groups.
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Hybrid and Relaxation-based Methods

As mentioned earlier, often mixed-variable optimization problems are relaxed to be-

come continuous optimization problems. In such cases, most of the methods presented

in Section 2.2 may be used to tackle them. In these cases, the methods are usually

enriched with additional repair mechanism that converts the continuous values chosen

by the original methods for the discrete variables to the actual values allowed. Popu-

lar methods used for such approach include differential evolution (DE) [Lampinen and

Zelinka, 1999b,c], genetic algorithms (GA) [Turkkan, 2003], and particle swarm opti-

mization (PSO) [Guo et al., 2004]. It should be noted that often also another approach

is used with genetic algorithms—all continuous variables are discretized with a certain

resolution and then incorporated into a binary encoding [Pandia Raj and Kalyanaraman,

2005].

Another possible approach to solving a mixed-variable optimization problem is to couple

two methods specific to respectively combinatorial and continuous optimization. Then,

one method may be used as a form of local search for the other. For instance, for a

given problem, a continuous optimization method may be the main one, and for each

evaluated combination of continuous variables, a full local search may be launched for

the optimal values of the discrete variables. The situation may be also inverted—the

combinatorial optimization method may play the role of the main algorithm, and the

continuous one the role of local search. Depending on the problem at hand, one of these

configurations may perform better than the other.

The inherent drawback of this approach comes from the different philosophy represented

by continuous and combinatorial optimization methods. In continuous optimization

(true also for most mixed-variable optimization problems), one of the crucial aspects is

to have a small number of objective function evaluations. Usually the effort required

to evaluate the objective function by far exceeds any other actions performed by the

algorithm. At the same time, combinatorial optimization algorithms are usually opti-

mized for absolute speed (usually measured in terms of CPU time). They often use delta

function evaluations, that is, the objective function is only partially reevaluated if the

values of only some discrete variables change. Such an approach is usually not possible

in case of mixed-variable optimization, as it would usually lead to an excessive number

of objective function evaluations.

Ways to overcome this problem have been proposed by some researchers. Parharaj

and Azarm [Praharaj and Azarm, 1992] run in turn a combinatorial and a continuous
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optimization algorithms starting from the optimal solution found by the other one.

Another approach is taken by Stelmack and Batill [Stelmack and Batill, 1997] who

use a concurrent subspace optimization algorithm. They propose to discretize all the

continuous variables, and solve such defined problem first. Then, the best solution found

is used to run a continuous optimization algorithm on continuous variables.

Native Mixed-Variable Optimization Algorithms

Finally, there have been methods proposed in the literature that are able to natively han-

dle mixed-variable optimization problems. Only few such methods have been proposed,

and we now shortly present them here.

Genetic Adaptive Search: As could be seen from the discussion above, genetic algo-

rithms allow for quite a flexible approach to representation of the variables. There are

versions of genetic algorithms that are applied to mixed-variable optimization problems

through relaxing all the variables to be continuous [Turkkan, 2003], but there exist also

others, where in fact the continuous variables are treated as discrete ones [Pandia Raj

and Kalyanaraman, 2005]. Clearly, this approach may be further extended to natively

handling both continuous and discrete variables. Such an approach is presented by the

genetic adaptive search [Deb and Goyal, 1998].

In order to enable simultaneous handling of both discrete and continuous variables,

a particular crossover and mutation operators are used. The crossover is performed

variable-by-variable. If a variable is discrete, a standard binary crossover is performed.

If a variable is continuous, the children are created using a two-modal probability dis-

tribution, whose peaks are aligned with the values of the given continuous variable of

the parents. The mutation operator is also applied per variable, and differs slightly

depending on its type. For discrete variables, the mutation means a change of one of

the bits with certain small probability. For the continuous ones, the new value may be

replaced with one generated using a polynomial probability distribution.

Pattern Search Method: It is an iterative method that generates a sequence of feasible

solutions whose objective function value is non-increasing. At any given iteration, the

objective function f is evaluated at a finite number of points on a mesh in order to

try to find one that yields a decrease in the objective function value. Initially, the

method has been proposed for continuous optimization problems only [Torczon, 1997],

but later it has been transformed to be applicable directly to mixed-variable optimization

problems [Audet and Dennis Jr., 2001].
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An iteration of a pattern search method is initiated with the initial solution s, as well

as with an enumerable subset M of the domain Ω ⊂ S. The resolution of the mesh M
is parametrized by a positive real number ∆. The goal of each iteration is to obtain a

new initial solution on the current mesh whose objective function value is strictly less

(by any amount) than the old one.

Exploration of the mesh is conducted in one or two phases. First, a finite search, free

of any other rules imposed by the algorithm, is performed anywhere on the mesh. It

is called the search step. Any strategy can be used as long as it searches finitely many

points (including none). This part of the algorithm has the advantage that the user can

put in place any ad-hoc search he/she might favor for improving the initial solution with

the knowledge that if this fails, the next phase will provide a fail-safe.

If the search does not succeed in improving the initial solution, the second phase is

called. A potentially exhaustive (but always finite) search in a local mesh neighborhood

around s and around promising points in its set of neighbors is performed. The second

phase (called the poll step) follows stricter rules than the first one, and it guarantees

theoretical convergence to a local minimum of a quality specified by the user. The set

of points visited in this phase is referred to as the poll set.

If a point with a better objective value than s is found in either phase, then the iteration

is declared successful. The better point becomes the new initial solution, and the next

iteration is initiated with a (possibly) coarser (and different) mesh around the new

initial solution. Otherwise, the iteration is declared unsuccessful. In that case, the next

iteration is initiated at the same (old) initial solution, but with a finer mesh on the

continuous variables, and a set of neighbors closer (if possible) to the initial solution.

A key property of the mesh exploration is that if an iteration is unsuccessful, then the

current objective function value is less than or equal to the objective function values

evaluated at all points in the trial set consisting of all points considered in the search

and poll steps.

For a detailed description of the method of creating and evaluating the mesh M and

the poll set, we refer the reader to [Audet and Dennis Jr., 2001].

Mixed Bayesian Optimization Algorithm: The bayesian optimization algorithm has been

proposed initially by Pelikan et al. [Pelikan et al., 2000]. Recently, Očenášek and

Schwarz [Očenášek and Schwarz, 2002] have proposed an extension of that algorithm

to also handle mixed-variable optimization problems. In their approach, they use de-

cision trees. They have adopted the CART model [Chipman et al., 1998], that is, the
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classification and regression tree, which may be used for both categorical and continuous

splits.

For each target random variable xi they build one decision tree. The split nodes of

the i-th decision tree are used to cut the domain of parent variables Pa(xi) into parts,

where the variable xi is more linear or predictable. They start building the decision trees

from empty trees and recursively add the splitting nodes until no splitting is favorable.

The leaf nodes define the elementary models for obtaining the target variable xi. For

continuous variables, a one-dimensional normal probability density function is estimated

and used as the leaf.

2.3.3 Choosing the Suitable Method

Again, each of the methods for mixed-variable optimization has its advantages and

disadvantages. These must be taken into consideration when choosing a method to

tackle a given problem. In this section, we shortly compare their main advantages and

disadvantages.

Since mixed-variable optimization is a combination of combinatorial and continuous

optimization, the methods used consist of essentially a certain combination of methods

used in combinatorial and continuous optimization. The two types of methods identified

in the previous section differ mostly in the way these combinatorial and continuous parts

are used together.

The first type of methods divides or transforms the problem in such a way that regular

combinatorial or continuous algorithms may be used to tackle it. The second type en-

compasses the algorithms that try to perform combinatorial and continuous optimization

at the same time.

Advantages and Disadvantages

Choosing, which approach to use is often difficult. Often, researchers use one of the

approaches and obtain reasonable results, but they do not investigate the other approach,

nor they provide convincing arguments why the approach they used is the best one.

Certainly, the choice of the approach depends on the particular problem at hand. For

instance, problems with combinatorial decision variables that are independent of the

continuous ones may easily be divided into two separate problems, one being solved with
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a combinatorial optimization technique, and the other with a continuous one. However,

often it is not obvious whether this is the case. If the variables are dependent, and the

problem is nevertheless divided into the combinatorial and continuous parts and solved

separately, the risk is that a sub-optimal solution will be found.

As we show in Chapter 6 of this work, another possible way of classifying mixed-variable

optimization problems is considering whether the discrete variables may be easily or-

dered, or not. We show that, if they are ordered, it brings good results to use a

continuous-relaxation approach, that is, to relax the discrete variables and solve the

entire problem as a continuous optimization one. If the discrete variables can not be

easily ordered, often the native mixed-variable approach is more efficient.

2.4 Discussion

In this chapter, we have presented how and why optimization problems may be divided

into combinatorial, continuous, and mixed-variable ones. We have given the formal

definition of these different problem classes. Further, we have discussed the area of their

applications, and listed the most popular methods used to tackle them.

Although there exist exact methods for solving combinatorial and continuous optimiza-

tion problems, they have their disadvantages. They may not be always used either due

to the problem formulation, or to the fact that they would need excessive time to solve

the problems. This is why metaheuristics and other approximate methods are enjoying

increasing attention. Ant colony optimization, which is the subject of this work, is one

of the metaheuristics. While ant colony optimization has been proposed as a method for

combinatorial optimization, in this work we show that it may also be extended to the

other types problems presented in this chapter, namely continuous and mixed-variable

problems.

Clearly these two classes of problems are often encountered in real-world situations,

especially in mechanical engineering. Efficient algorithms, especially for mixed-variable

optimization are still not very numerous, and research is needed in order to make them

available.



Chapter 3

Ant Colony Optimization

This chapter presents an overview of ant colony optimization (ACO) – a metaheuristic in-

spired by the behavior of real ants. ACO was proposed by Dorigo and colleagues [Dorigo

et al., 1991; Dorigo, 1992; Dorigo et al., 1996] as a method for solving hard combinatorial

optimization problems.

ACO algorithms may be considered to be part of swarm intelligence, that is, the research

field that studies algorithms inspired by the observation of the behavior of swarms.

Swarm intelligence algorithms are made up of simple individuals that cooperate through

self-organization, that is, without any form of central control over the swarm members.

A detailed overview of the self-organization principles exploited by these algorithms, as

well as examples from biology, can be found in [Camazine et al., 2003]. Many swarm

intelligence algorithms have been proposed in the literature. For an overview of the field

of swarm intelligence, we refer the interested reader to [Bonabeau et al., 1999].

This chapter, which is dedicated to present a concise overview of ACO, is organized as

follows. Section 3.1 presents the biological phenomenon that provided the original inspi-

ration. Section 3.2 presents a formal description of the ACO metaheuristic. Section 3.3

overviews the most popular variants of ACO and gives examples of their application.

Section 3.4 shows current research directions, and Section 3.5 summarizes and concludes

the chapter.

39
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3.1 From Biology to Algorithms

Ant colony optimization was inspired by the observation of the behavior of real ants. In

this section, we present a number of observations made in experiments with real ants,

and then we show how these observations inspired the design of the ACO metaheuristic.

3.1.1 Ants

One of the first researchers to investigate the social behavior of insects was the French

entomologist Pierre-Paul Grassé. In the forties and fifties of the 20-th century, he was

observing the behavior of termites – in particular, the Bellicositermes natalensis and

Cubitermes species. He discovered [Grassé, 1946] that these insects are capable to re-

act to what he called “significant stimuli”, signals that activate a genetically encoded

reaction. He observed [Grassé, 1959] that the effects of these reactions can act as new

significant stimuli for both the insect that produced them and for the other insects in the

colony. Grassé used the term stigmergy [Grassé, 1959] to describe this particular type of

indirect communication in which the “workers are stimulated by the performance they

have achieved”.

The two main characteristics of stigmergy that differentiate it from other means of

communication are:

• the physical, non-symbolic nature of the information released by the communicat-

ing insects, which corresponds to a modification of physical environmental states

visited by the insects; and

• the local nature of the released information, which can only be accessed by those

insects that visit the place where it was released (or its immediate neighborhood).

Examples of stigmergy can be observed in colonies of ants. In many ant species, ants

walking to, and from, a food source deposit on the ground a substance called pheromone.

Other ants are able to smell this pheromone, and its presence influences the choice of

their path—i.e., they tend to follow strong pheromone concentrations. The pheromone

deposited on the ground forms a pheromone trail, which allows the ants to find good

sources of food that have been previously identified by other ants.

Some researchers investigated experimentally this pheromone laying and following be-

havior in order to better understand it and to be able to quantify it. Deneubourg et

al. [Deneubourg et al., 1990] set up an experiment called a “binary bridge experiment”.
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They used Linepithema humile ants (also known as Argentine ants). The ants’ nest was

connected to a food source by two bridges of equal length. The ants could freely choose

which bridge to use when searching for food and bringing it back to the nest. Their

behavior was then observed over a period of time.

In this experiment, initially there is no pheromone on the two bridges. The ants start

exploring the surroundings of the nest and eventually cross one of the bridges and reach

the food source. When walking to the food source and back, the ants deposit pheromone

on the bridge they use. Initially, each ant randomly chooses one of the bridges. However,

due to random fluctuations, after some time there will be more pheromone deposited on

one of the bridges than on the other. Because ants tend to prefer in probability to follow

a stronger pheromone trail, the bridge that has more pheromone will attract more ants.

This in turn makes the pheromone trail grow stronger, until the colony of ants converges

towards the use of a same bridge.1

This colony level behavior, based on autocatalysis, that is, on the exploitation of positive

feedback, can be exploited by ants to find the shortest path between a food source and

their nest. This was demonstrated in another experiment conducted by Goss et al. [Goss

et al., 1989], in which the two bridges were not of the same length: one was significantly

longer than the other. In this case, the stochastic fluctuations in the initial choice of a

bridge were much reduced as a second mechanism played an important role: those ants

choosing by chance the shorter bridge were also the first to reach the nest and when

returning to the nest they chose the shorter bridge with higher probability as it had a

stronger pheromone trail. Therefore, the ants—thanks to the pheromone following and

depositing mechanism—quickly converged to the use of the shorter bridge.

In the next section we explain how these experiments and findings were used to develop

optimization algorithms.

3.1.2 Algorithms

Stimulated by the interesting results of the experiments described in the previous section,

Goss et al. [Goss et al., 1989] developed a model to explain the behavior observed in

the binary bridge experiment. Assuming that after t time units since the start of the

experiment, m1 ants had used the first bridge and m2 the second one, the probability p1

for the (m + 1)-th ant to choose the first bridge can be given by:

1Deneubourg et al. conducted several experiments, and results show that each of the two bridges
was used in about 50% of the cases.
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p1(m+1) =
(m1 + k)h

(m1 + k)h + (m2 + k)h
, (3.1)

where parameters k and h are needed to fit the model to the experimental data. The

probability that the same (m + 1)-th ant chooses the second bridge is p2(m+1) = 1 −
p1(m+1). Monte Carlo simulations, run to test how the model corresponds to the real

data [Pasteels et al., 1987], showed very good fit for k ≈ 20 and h ≈ 2.

This basic model, which explains the behavior of real ants, may be used as an inspiration

to design artificial ants that solve optimization problems defined in a similar way. In

the above described ant foraging behavior example, stigmergic communication happens

via the pheromone that ants deposit on the ground. Analogously, artificial ants may

simulate pheromone laying by modifying appropriate pheromone variables associated

with problem states they visit while building solutions to the optimization problem.

Also, according to the stigmergic communication model, the artificial ants would have

only local access to these pheromone variables.

Therefore, the main characteristics of stigmergy mentioned in the previous section can

be extended to artificial agents by:

• associating state variables with different problem states; and

• giving the agents only local access to these variables.

Another important aspect of real ants’ foraging behavior that may be exploited by artifi-

cial ants is the coupling between the autocatalytic mechanism and the implicit evaluation

of solutions. By implicit solution evaluation, we mean the fact that shorter paths (which

correspond to lower cost solutions in the case of artificial ants) are completed earlier than

longer ones, and therefore they receive pheromone reinforcement quicker. Implicit solu-

tion evaluation coupled with autocatalysis can be very effective: the shorter the path,

the sooner the pheromone is deposited, and the more ants use the shorter path. If

appropriately used, it can be a powerful mechanism in population-based optimization

algorithms (e.g., in evolutionary algorithms [Holland, 1975; Fogel, 1995] autocatalysis is

implemented by the selection/reproduction mechanism).

Stigmergy, together with implicit solution evaluation and autocatalytic behavior, gave

rise to ACO. The basic idea of ACO follows very closely the biological inspiration.

Therefore, there are many similarities between real and artificial ants. Both real and
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artificial ant colonies are composed of a population of individuals that work together to

achieve a certain goal. A colony is a population of simple, independent, asynchronous

agents that cooperate to find a good solution to the problem at hand. In the case of

real ants, the problem is to find the food, while in the case of artificial ants, it is to

find a good solution to a given optimization problem. A single ant (either a real or an

artificial one) is able to find a solution to its problem, but only cooperation among many

individuals through stigmergy enables them to find good solutions.

In the case of real ants, they deposit and react to a chemical substance called pheromone.

Real ants simply deposit it on the ground while walking. Artificial ants live in a virtual

world, hence they only modify numeric values (called for analogy artificial pheromones)

associated with different problem states. A sequence of pheromone values associated

with problem states is called artificial pheromone trail. In ACO, the artificial pheromone

trails are the sole means of communication among the ants. A mechanism analogous to

the evaporation of the physical pheromone in real ant colonies allows the artificial ants

to forget the past history and focus on new promising search directions.

Just like real ants, artificial ants create their solutions sequentially by moving from one

problem state to another. Real ants simply walk, choosing a direction based on local

pheromone concentrations and a stochastic decision policy. Artificial ants also create

solutions step-by-step, moving through available problem states and making stochastic

decisions at each step.

There are however some important differences between real and artificial ants:

• Artificial ants live in a discrete world – they move sequentially through a finite set

of problem states.

• The pheromone update (i.e., pheromone depositing and evaporation) is not ac-

complished in exactly the same way by artificial ants as by real ones. Sometimes

the pheromone update is done only by some of the artificial ants, and often only

after a solution has been constructed.

• Some implementations of artificial ants use additional mechanisms that do not exist

in the case of real ants. Examples include look-ahead, local search, backtracking,

etc.
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3.2 The Ant Colony Optimization Metaheuristic

Ant colony optimization (ACO) has been formalized into a combinatorial optimization

metaheuristic by Dorigo et al. [Dorigo and Di Caro, 1999; Dorigo et al., 1999; Dorigo

and Stützle, 2004] and has since been used to tackle many combinatorial optimization

problems.

Given a combinatorial optimization problem (COP), which has been already presented in

Section 2.1, the first step for the application of ACO to its solution consists in defining

an adequate model. This is then used to define the central component of ACO: the

pheromone model.

First, an instantiated decision variable Xi = vj
i (i.e., a variable Xi with a value vj

i

assigned from its domain Di), is called a solution component and denoted by cij. The

set of all possible solution components is denoted by C. A pheromone trail parameter Tij

is then associated with each component cij. The set of all pheromone trail parameters

is denoted by T. The value of a pheromone trail parameter Tij is denoted by τij (and

called pheromone value).2 This pheromone value is then used and updated by the ACO

algorithm during the search. It allows modeling the probability distribution of different

components of the solution.

In ACO, artificial ants build a solution to a combinatorial optimization problem by

traversing the so-called construction graph, GC(V,E). The fully connected construction

graph consists of a set of vertexes V and a set of edges E. The set of components

C may be associated either with the set of vertexes V of the graph GC , or with the

set of its edges E. The ants move from vertex to vertex along the edges of the graph,

incrementally building a partial solution. Additionally, the ants deposit a certain amount

of pheromone on the components, that is, either on the vertexes or on the edges that

they traverse. The amount ∆τ of pheromone deposited may depend on the quality of the

solution found. Subsequent ants utilize the pheromone information as a guide towards

more promising regions of the search space.

The ACO metaheuristic is shown in Algorithm 1. It consists of an initialization step

and a loop over three algorithmic components. A single iteration of the loop consists of

constructing solutions by all ants, their (optional) improvement with the use of a local

search algorithm, and an update of the pheromones. In the following, we explain these

three algorithmic components in more detail.

2Note that pheromone values are in general a function of the algorithm’s iteration t : τij = τij(t).
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Algorithm 1 Ant colony optimization metaheuristic

Set parameters, initialize pheromone trails
while termination conditions not met do

ConstructAntSolutions
ApplyLocalSearch {optional}
UpdatePheromones

end while

ConstructAntSolutions : A set of m artificial ants construct solutions from elements of

a finite set of available solution components C = {cij}, i = 1, ..., n, j = 1, ..., |Di|.
A solution construction starts with an empty partial solution sp = ∅. Then, at each

construction step, the current partial solution sp is extended by adding a feasible solution

component from the set of feasible neighbors N(sp) ⊆ C. The process of constructing

solutions can be regarded as a path on the construction graph GC = (V,E). The allowed

paths in GC are hereby implicitly defined by the solution construction mechanism that

defines the set N(sp) with respect to a partial solution sp.

The choice of a solution component from N(sp) is done probabilistically at each construc-

tion step. The exact rules for the probabilistic choice of solution components vary across

different ACO variants. The best known rule is the one of Ant System (AS) [Dorigo

et al., 1996]:

p(cij|sp) =
τα
ij · η(cij)

β

∑
cil∈N(sp) τα

il · η(cil)β
, ∀cij ∈ N(sp), (3.2)

where τij is the pheromone value associated with the component cij, and η(·) is a func-

tion that assigns at each construction step a heuristic value to each feasible solution

component cij ∈ N(sp). The values that are given by this function are commonly called

heuristic information. Furthermore, α and β are positive parameters, whose values de-

termine the relative importance of pheromone versus heuristic information. Eq. 3.2 is

a generalization of Eq. 3.1 presented in Sec. 3.1: ACO formalization follows closely the

biological inspiration.

ApplyLocalSearch: Once solutions have been constructed, and before updating pheromones,

often some optional actions may be required. These are often called daemon actions,

and can be used to implement problem specific and/or centralized actions, which cannot

be performed by single ants. The most used daemon action consists in the application of
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local search to the constructed solutions: the locally optimized solutions are then used

to decide which pheromones to update.

UpdatePheromones : The aim of the pheromone update is to increase the pheromone

values associated with good or promising solutions, and to decrease those that are asso-

ciated with bad ones. Usually, this is achieved (i) by decreasing all the pheromone values

through pheromone evaporation, and (ii) by increasing the pheromone levels associated

with a chosen set of good solutions Supd:

τij ← (1− ρ) · τij + ρ ·
∑

s∈Supd|cij∈s

F (s) , (3.3)

where Supd is the set of solutions that are used for the update, ρ ∈ (0, 1] is a parameter

called evaporation rate, and F : S→ R+
0 is a function such that f(s) < f(s′)⇒ F (s) ≥

F (s′), ∀s 6= s′ ∈ S. F (·) is commonly called the fitness function.

Pheromone evaporation is needed to avoid a too rapid convergence of the algorithm. It

implements a useful form of forgetting, favoring the exploration of new areas in the search

space. Different ACO algorithms, such as for example Ant Colony System (ACS) [Dorigo

and Gambardella, 1997] or MAX -MIN Ant System (MMAS) [Stützle and Hoos,

2000] differ in the way they update the pheromone.

Instantiations of the update rule presented in Eq. 3.3 are obtained by different specifi-

cations of Supd, which in many cases is a subset of Siter ∪ {sbs}, where Siter is the set of

solutions that were constructed in the current iteration, and sbs is the best-so-far solu-

tion, that is, the best solution found since the first algorithm iteration. A well-known

example is the AS-update rule, that is, the update rule of Ant System [Dorigo et al.,

1996], where:

Supd ← Siter . (3.4)

An example of a pheromone update rule that is more often used in practice is the IB-

update rule (where IB stands for iteration-best):
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Supd ← arg max
s∈Siter

F (s) . (3.5)

The IB-update rule introduces a much stronger bias towards the good solutions found

than the AS-update rule. Although this increases the speed with which good solutions

are found, it also increases the probability of premature convergence. An even stronger

bias is introduced by the BS-update rule, where BS refers to the use of the best-so-

far solution sbs. In this case, Supd is set to {ssb}. In practice, ACO algorithms that

use variations of the IB-update or the BS-update rules and that additionally include

mechanisms to avoid premature convergence, achieve better results than those that use

the AS-update rule.

3.2.1 Example: The Traveling Salesman Problem

One of the most popular ways to illustrate how the ACO metaheuristic works, is via

its application to the traveling salesman problem (TSP). The TSP consists of a set of

locations (cities) and a travelling salesman that has to visit all the locations once and only

once. The distances between the locations are given and the task is to find a Hamiltonian

tour of minimal length. The problem has been proven to be NP-hard [Lawler et al., 1985].

The application of ACO to the TSP is straightforward. The moves between the locations

become the solution components—i.e, the move from city i to city j becomes a solution

component cij ≡ cji. The construction graph GC = (V,E) is defined by associating

the set of locations with the set V of vertices of the graph. Since, in principle, it is

possible to move from any city to any other one, the construction graph is fully connected

and the number of vertices is equal to the number of locations defined by the problem

instance. Furthermore, the lengths of the edges between the vertices are proportional

to the distances between the locations represented by these vertices. The pheromone is

associated with the set E of edges of the graph. An example of the resulting construction

graph GC is presented in Fig. 3.1a.

The ants construct the solutions as follows. Each ant starts from a randomly selected

location (vertex of the graph GC). Then, at each construction step it moves along the

edges of the graph. Each ant keeps a memory of its path through the graph, and in

subsequent steps it chooses among the edges that do not lead to vertexes that it has

already visited. An ant has constructed a solution once it has visited all the vertexes
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Figure 3.1: Example construction graphs for a 4-city TSP. a) - when com-
ponents are associated with the edges of the graph, b) - when components are
associated with the vertexes of the graph. Note that cij ≡ cji.

of the graph. At each construction step an ant chooses probabilistically the edge to

follow among the available ones (those that lead to yet unvisited vertices). The exact

rule depends on the implementation, an example being Eq. 3.2. Once all the ants have

finished their tour, the pheromone on the edges is updated according to one of the

possible implementations of Eq. 3.3. ACO has been shown to perform quite well on the

TSP [Stützle and Dorigo, 1999].

It is worth noticing that it is also possible to associate the set of solution components

of the TSP (or any other combinatorial optimization problem) with the set of vertices

V rather than the set of edges E of the construction graph GC . For the TSP, this

would mean associating the moves between locations with the set V of vertices of the

construction graph, and the locations with the set E of its edges. The corresponding

example construction graph for a 4-city TSP is presented in Fig. 3.1b. When using

this approach, the ants’ solution construction process has to be also properly modified:

the ants would have to move from vertex to vertex of the construction graph choosing

thereby the connections between the cities.

It is important to note that both ways of defining the construction graph are correct and

both may be used in practice. Depending on the problem at hand, one may be more
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intuitive than the other. For instance, for the University Course Timetabling Problem

(UCTP) the second one seems better suited [Socha et al., 2002].

3.3 Main Variants of ACO

Several variants of ACO have been proposed in the literature. We present the main

characteristics of the most successful ones together with a short list of their applications.

We attempt to present them in chronological order as new variants are often based on

ideas introduced earlier.

In the following sections we present Ant System—the first implementation of an ACO

algorithm—followed byMAX -MIN Ant System and Ant Colony System. We mention

also some others that are less popular but still quite interesting, such as hyper-cube ACO

or population-based ACO. In order to illustrate the differences between them clearly, we

use the example of the traveling salesman problem, as described in Sec. 3.2.1.

3.3.1 Ant System

Ant System (AS) was the first ACO algorithm to be proposed in the literature [Dorigo

et al., 1991; Dorigo, 1992; Dorigo et al., 1996]. Its main characteristic is that the

pheromone values are updated by all the ants that have completed the tour. The

pheromone update for τij, that is, for edge joining cities i and j, is performed as follows:

τij ← (1− ρ) · τij +
m∑

k=1

∆τ k
ij , (3.6)

where ρ is the evaporation rate, m is the number of ants, and ∆τ k
ij is the quantity of

pheromone per unit length laid on edge (i, j) by the k-th ant:

∆τ k
ij =





Q
Lk

if ant k used edge (i, j) in its tour,

0 otherwise,
(3.7)

where Q is a constant, and Lk is the tour length of the k-th ant.
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When constructing the solutions, the ants in AS traverse a construction graph and

make probabilistic decision at each vertex. The transitional probability pk
ij of the k-th

ant moving from city i to city j is given by:

pk
ij =





τα
ij ·ηβ

ijP
l∈allowedk

τα
il ·ηβ

il

if j ∈ allowedk,

0 otherwise,
(3.8)

where allowedk is the list of cities not yet visited by the k-th ant, and α and β are

parameters that control the relative importance of the pheromone versus the heuristic

information ηij given by:

ηij =
1

dij

, (3.9)

where dij is the length of edge (i, j).

Several implementations of the AS algorithm have been applied to different combinatorial

optimization problems. The first and best known is the application to the TSP [Dorigo

et al., 1991; Dorigo, 1992; Dorigo et al., 1996]. However, AS was also used success-

fully to tackle other combinatorial problems. The AS-QAP [Maniezzo et al., 1994;

Maniezzo and Colorni, 1999] algorithm was used to tackle quadratic assignment prob-

lem (QAP), AS-JSP [Colorni et al., 1994] for the job-shop scheduling problem (JSP),

AS-VRP [Bullnheimer et al., 1998, 1999] for the vehicle routing problem (VRP), and

AS-SCS [Michel and Middendorf, 1998, 1999] for the shortest common supersequence

(SCS) problem.

3.3.2 MAX -MIN Ant System

MAX -MIN Ant System (MMAS) is an improvement over the original Ant System

idea. MMAS was proposed by Stützle and Hoos [Stützle and Hoos, 2000] and introduces

the following two changes:

• only the best ant can update the pheromone trails, and

• the minimum and maximum values of the pheromone are limited.
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Equation 3.6 takes hence the following new form:

τij ← (1− ρ) · τij + ∆τbest
ij , (3.10)

where ∆τbest
ij is the pheromone update value defined by:

∆τbest
ij =





Q
Lbest

if the best ant used edge (i, j) in its tour,

0 otherwise.
(3.11)

Lbest is the length of the tour of the best ant. This may be (subject to the algorithm

designer decision) either the best tour found in the current iteration—iteration-best,

Lib—or the best solution found since the start of the algorithm—best-so-far, Lbs—or a

combination of both.

Concerning the limits on the minimal and maximal pheromone values allowed, respec-

tively τmin and τmax, Stützle and Hoos suggest that they should be chosen experimentally

based on the problem at hand. The maximum value τmax may be calculated analytically

provided that the optimum ant tour length is known. In the case of the TSP, τmax is

given by:

τmax =
1

ρ
· 1

L∗
, (3.12)

where L∗ is the length of the optimal tour. The minimum pheromone value τmin should

be chosen with caution as it has a rather strong influence on the algorithm performance.

They present an analytical approach to finding this value based on the probability pbest

that an ant constructs the best tour found so far. This is done as follows. First, it

is assumed that at each construction step an ant has a constant number k of options

available. Therefore, the probability that an ant makes the right decision (i.e., the

decision that belongs to the sequence of decisions leading to the construction of the best

tour found so far) at each of n steps is given by pdec = n−1
√

pbest. The analytical formula

they suggest for finding τmin is:
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τmin =
τmax · (1− pdec)

k · pdec

. (3.13)

For more details on how to choose τmax and τmin, we refer to [Stützle and Hoos, 2000].

It is important to mention here that it has been also shown [Socha et al., 2002] that for

some problems the choice of an appropriate τmin value is more easily done experimentally

than analytically.

The process of pheromone update inMMAS is concluded by verifying that all pheromone

values are within the imposed limits:

τij =





τmax if τij > τmax,

τmin if τij < τmin.
(3.14)

MAX -MIN Ant System provided a significant improvement over the basic Ant System

performance. While the first implementations focused on the TSP [Stützle and Hoos,

2000], it has been later applied to many other combinatorial optimization problems

such as the QAP [Stützle and Hoos, 1998] or the university course timetabling problem

(UCTP) [Socha et al., 2002], the generalized assignment problem (GAP) [Ramalhinho-

Lourenço and Serra, 1998], and the set covering problem (SCP) [Lessing et al., 2004].

3.3.3 Ant Colony System

Another improvement over the original Ant System was Ant Colony System (ACS)

introduced by Gambardella and Dorigo [Gambardella and Dorigo, 1996; Dorigo and

Gambardella, 1997]. The most interesting contribution of ACS is the introduction of a

local pheromone update in addition to the pheromone update performed at the end of

the construction process (called here offline pheromone update).

The local pheromone update is performed by all the ants after each construction step.

Each ant applies it only to the last edge traversed:

τij = (1− ϕ) · τij + ϕ · τ0 , (3.15)
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where ϕ ∈ (0, 1] is the pheromone decay coefficient, and τ0 is the initial value of the

pheromone.

The main goal of the local update is to diversify the search performed by subsequent

ants during one iteration. In fact, decreasing the pheromone concentration on the edges

as they are traversed during one iteration encourages subsequent ants to choose other

edges and hence to produce different solutions. This makes less likely that several ants

produce identical solutions during one iteration.

The offline pheromone update, similarly to MMAS, is applied at the end of each iter-

ation by only one ant (the one that found the best solution in the iteration). However,

the update formula is slightly different:

τij ←




(1− ρ) · τij + ρ ·∆τij if edge (i, j) belongs to Tbest,

τij otherwise,
(3.16)

and in case of TSP, ∆τij = 1
Lbest

.

Another important difference between AS and ACS is in the decision rule used by the

ants during the construction process. Ants in ACS use the so-called pseudorandom

proportional rule: the probability for an ant to move from city i to city j depends on a

random variable q uniformly distributed over [0, 1], and a parameter q0; if q ≤ q0, then

j = argmaxl∈N(sp){τilη
β
il}, otherwise Eq. 3.8 is used.

ACS has been initially developed for the travelling salesman problem [Gambardella and

Dorigo, 1996; Dorigo and Gambardella, 1997], but it was later used to tackle various

combinatorial optimization problems, including vehicle routing [Bianchi et al., 2004]

and timetabling [Socha et al., 2003].

3.3.4 Others

In addition to the main variants of ACO just described, it is worth mentioning the hyper-

cube ACO (HC-ACO) proposed by Blum [Blum and Dorigo, 2004], and population-

based ACO (PB-ACO) proposed by Guntsch and Middendorf [Guntsch and Middendorf,

2002b].

The main idea introduced by HC-ACO is the normalization of pheromone values used
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in the pheromone table. According to HC-ACO, the pheromone values should always

be normalized in the interval [0, 1]. It has been shown [Blum and Dorigo, 2004] that

this makes the HC-ACO algorithm behavior independent of the scaling of the objective

function, an issue for previous ACO algorithms.

Population-based ACO introduces a novel mechanism for pheromone updates. As in

regular ACO, some of the good solutions found are used to increase the pheromone val-

ues. However, pheromone evaporation is implemented differently. PB-ACO memorizes

the solutions used to increase the pheromone values (the set of memorized solutions is

called a “population”, hence its name). Once the population has reached its maximum

dimension (a parameter of the algorithm), the worst solutions in the population are

removed to make room for the new ones. When a solution of the population is removed,

the pheromone associated with it is also removed: this is obtained by applying a negative

pheromone update.

3.4 Future Directions

Research in ant colony optimization is very active. It includes the application of ACO al-

gorithms to new real-world optimization problems or new types of problems, such as dy-

namic optimization [Guntsch and Middendorf, 2002a], multiobjective optimization [Iredi

et al., 2001], stochastic problems [Gutjahr, 2004], or continuous and mixed-variable op-

timization [Socha, 2004]. Also, with an increasing popularity of parallel hardware ar-

chitectures (multi-core processors and the grid technology), a lot of research is being

done on creating parallel implementations of ACO that will be able to take advantage

of the available hardware. In this section we shortly present current research in these

new areas.

3.4.1 Parallel ACO Implementations

Parallelization of algorithms becomes more and more an interesting and practical option

for algorithm designers. ACO is particularly well suited for parallel implementations

thanks to ants operating in an independent and asynchronous way. There have already

been many attempts to propose parallel ACO algorithms. They are usually classified by

their parallel grain, that is, the relationship between computation and communication.

We can then distinguish between coarse-grained and fine-grained models. While the
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former are characterized by many ants using the same CPU and rare communication

between the CPUs, in the latter only few ants use each CPU and there is a lot of

communication going on. A review of the trends and strategies in designing parallel

algorithms may be found in [Cung et al., 2001].

Randall and Lewis proposed a first reasonably complete classification of parallel ACO

implementations [Randall and Lewis, 2002]. Although many parallel ACO implementa-

tions have been proposed in the literature [Merkle and Middendorf, 2002; Talbi et al.,

1999; Gambardella et al., 1999; Rahoual et al., 2002; Bullnheimer et al., 1997; Stützle,

1998], the results are fragmented and difficult to compare. Experiments are usually of

limited scale and concern different optimization problems. Also, not all parallel im-

plementations proposed are compared with their sequential counterparts, which is an

essential measure of their usefulness [Stützle, 1998]. All this implies that more research

is necessary in the area of parallelization of the ACO metaheuristic.

3.4.2 Other Types of Problems

Dynamic Optimization

One of the new areas of application of ACO is dynamic optimization. This type of

problems are characterized by the fact that the search space dynamically changes. While

an algorithm searches for good solutions, the conditions of the search as well as the

quality of the solutions already found may change. This poses a whole new set of issues

for designing successful algorithms that can deal with such situations. It becomes crucial

for an algorithm to be able to adjust the search direction, following the changes of the

problem being solved. Initial attempts to apply ACO to dynamic optimization problems

have been quite successful [Di Caro and Dorigo, 1998; Guntsch et al., 2001; Guntsch and

Middendorf, 2002a] .

Multiobjective Optimization

Multiobjective optimization is another area of application for metaheuristics that has

received increasing attention over the past years. A multiobjective optimization problem

involves solving simultaneously several optimization problems with potentially conflict-

ing objectives. For each of the objectives, a different objective function is used to assess

the quality of the solutions found. Algorithms usually aim at finding the so called Pareto
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set—i.e., a set of non-dominated solutions—based on the defined objective functions. In

the Pareto set, no solution is worse than any other in the set, when evaluated over all the

objective functions. Some ACO algorithms designed to tackle multiobjective problems

have been proposed in the literature [Iredi et al., 2001; Guntsch and Middendorf, 2003;

Doerner et al., 2004].

3.4.3 Continuous and Mixed-Variable Optimization

Finally, another new direction of research related to ACO is its extension from the

combinatorial domain, so that it may be applied also to continuous and mixed-variable

optimization problems. As discussed already in Chapter 2, tackling these optimization

problems presents different requirements to an algorithm. There have been already

some attempts to apply ACO-inspired algorithms to continuous optimization problems.

The best known include Continuous ACO (CACO) [Bilchev and Parmee, 1995], API

algorithm [Monmarché et al., 2000], Continuous Interacting Ant Colony (CIAC) [Dréo

and Siarry, 2002]. These approaches however do not follow the ACO metaheuristic very

closely, and hence may not be really considered true extensions of ACO to continuos

domain. Also, none of the algorithms proposed so far can tackle both continuous and

mixed-variable optimization problems. Until now.

Indeed, this thesis focuses on an extension of the ACO metaheuristic to continuous

and mixed-variable domains. The algorithms presented in the remaining chapters of

this work not only perform well when tested on various continuous and mixed-variable

benchmark problems, but also follow closely the ACO philosophy. Hence, they may be

considered an extension of ACO to both continuous and mixed-variable domains.

3.5 Discussion

We have presented an introduction to ant colony optimization—a metaheuristic inspired

by the foraging behavior of real ants. The central component of ACO is the pheromone

model based on the underlying model of the problem being solved. The basic idea of

ACO, which has been formalized into a metaheuristic framework, leaves many options

and choices to the algorithm designer. Several variants of ACO have been already

proposed, the most successful beingMMAS Ant System and Ant Colony System.

ACO is a relatively young metaheuristic, when compared to others such as evolutionary
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computation, tabu search, or simulated annealing. Yet, it has proven to be quite efficient

and flexible. ACO algorithms are currently state-of-the-art for solving many combina-

torial optimization problems including the sequential ordering problem (SOP) [Gam-

bardella and Dorigo, 2000], the resource constraint project scheduling (RCPS) prob-

lem [Merkle et al., 2002], and the open shop scheduling (OSS) problem [Blum, 2005].

For an in-depth overview of ACO, including applications, the interested reader should

refer to [Dorigo and Stützle, 2004].
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Chapter 4

ACO for Continuous Domains

Combinatorial optimization—as the name suggests—deals with finding optimal combi-

nations or permutations of available problem components. Hence, it is required that

the problem is partitioned into a finite set of components, and the combinatorial opti-

mization algorithm attempts to find their optimal combination or permutation. Many

real-world optimization problems may be represented as COPs in a straightforward way.

There exists however an important class of problems for which this is not the case:

the class of optimization problems that require choosing values for continuous variables.

Such problems may be tackled with a combinatorial optimization algorithm only once

the continuous ranges of allowed values are converted into finite sets. This is not always

convenient, especially if the initial possible range is wide, and the resolution required

is very high. In these cases, algorithms that can natively handle continuous variables

usually perform better.

Chapter 3 presented already in considerable detail the basics of ant colony optimization.

This chapter presents a way to effectively apply ACO—an algorithm originally developed

to tackle COPs—to continuous optimization problems.

From the early days of ACO as a combinatorial optimization tool, reasearchers have

tried to use it for tackling also continuous problems. However, applying the ACO meta-

heuristic to continuous domains was not obvious. The different methods proposed often

deviated from the original ACO formulation.

This work presents a way to extend ACO to continuous domain without the need to make

any major conceptual change to its structure. To improve the clarity of this thesis, we

denote this ACO extended to continuous domains by ACOR. We aim at presenting

59
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the core idea of applying ACOR to continuous domains as well as an implementation

that performs well on standard benchmark test problems. In order to have a proper

perspective on the performance of ACOR, we compare it not only to other ant-related

methods, but also to other metaheuristics used for continuous optimization.

The reminder of the chapter is organized as follows. Section 4.1 presents ACOR, our

extension of ACO to tackle continuous optimization problems. Section 4.2 provides

a discussion of the proposed approach with regard to other methods for continuous

optimization. Section 4.3 presents the experimental setup and results obtained, and

compares them to the results found in the literature. Finally, Section 4.4 presents the

conclusions and future work plans.

Additionally, the material presented in this chapter is futher extended in several app-

nedixes at the end of the thesis. Appendix A discusses an important issue concerning

variable correlation handling in ACOR. Appendix B presents an alternative way of

describing the proposed ACOR algorithm, one that was used in some initial publica-

tions [Socha and Dorigo, 2008; Socha and Blum, 2006, 2007]. Finally, Appendix C

provides the source code of the algorithm presented in this chapter.

4.1 The Algorithm

The idea that is central to the way ACO works is the incremental construction of solu-

tions based on the biased probabilistic choice of solution components. In ACO applied to

combinatorial optimization problems, the set of available solution components is defined

by the problem formulation. At each construction step, ants make a probabilistic choice

of the solution component ci from the set N(sp) of available components according to

Equation 3.2. The probabilities associated with the elements of the set N(sp) make up

a discrete probability distribution (Figure 4.1a) that an ant samples in order to choose a

component to be added to the current partial solution sp.

The fundamental idea underlying ACOR is the shift from using a discrete probability

distribution to using a continuous one, that is, a probability density function (PDF)

(Figure 4.1b). In ACOR, instead of choosing a component cij ∈ N(sp) according to

Equation 3.2, an ant samples a PDF.

The ACO metaheuristic finds approximate solutions to an optimization problem by

iterating the following two steps:
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Figure 4.1: (a) Discrete probability distribution Pd (cij|sp) of a finite set
{ci1, .., ci10} ∈ N(sp) of available components. (b) Continuous probability den-
sity function Pc (x|sp) with possible range x ∈ [xmin, xmax]. The y-axis on both
plots indicates the probability p. Note that

∑
j p (cij|sp) =

∫ xmax

xmin
p (x|sp) dx = 1.

1. Candidate solutions are constructed in a probabilistic way using a probability

distribution over the search space;

2. The candidate solutions are used to modify the probability distribution in a way

that is deemed to bias future sampling toward high quality solutions.

ACO algorithms for combinatorial optimization problems make use of a pheromone model

in order to probabilistically construct solutions. A pheromone model is a set of so-called

pheromone trail parameters. The numerical values of these pheromone trail parameters

(that is, the pheromone values) reflect the search experience of the algorithm. They are

used to bias the solution construction over time towards the regions of the search space

containing high quality solutions.

In ACO for combinatorial problems, the pheromone values are associated with a finite set

of discrete values related to the decisions that the ants make. This allows to represent

the pheromone values in the form of a pheromone table. This is not possible in the

continuous case, as the number of possible values is not finite. Hence, ACOR uses rather

a solution archive as way of describing the pheromone distribution over the search space.

The solution archive contains a number of complete solutions to the problem. While a

pheromone model in combinatorial optimization can be seen as an implicit memory of

the search history, a solution archive is an explicit memory.1

The basic flow of the ACOR algorithm is as follows. As a first step, the solution archive is

initialized. Then, at each iteration, a number of solutions is probabilistically constructed

1A similar idea was proposed for by Guntsch and Middendorf [Guntsch and Middendorf, 2002b] for
combinatorial optimization problems.
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Figure 4.2: The structure of the solution archive. The solutions in the archive
are sorted according to their quality (i.e., the value of the objective function
f(s)), hence the position of a solution in the archive always corresponds to its
rank.

by the ants. These solutions may be improved by any improvement mechanism (for

example, local search or gradient techniques). Finally, the solution archive is updated

with the generated solutions. In the following we outline the components of ACOR in

more details.

4.1.1 Archive structure, initialization, and update

ACOR keeps a history of its search process by storing solutions in a solution archive T

of dimension |T | = k. Given an n-dimensional continuous optimization problem and k

solutions, ACOR stores in T the values of the solutions’ n variables and the value of their

objective functions. The value of the i-th variable of the j-th solution is in the following

denoted by si
j. Figure 4.2 shows the structure of the solution archive.

Before the start of the algorithm, the archive is initialized with k random solutions.

At each algorithm iteration, first, a set of m solutions is generated by the ants and

added to those in T . From this set of k + m solutions, the m worst ones are removed.

The remaining k solutions are sorted according to their quality (i.e., the value of the

objective function) and stored in the new T . In this way, the search process is biased

towards the best solutions found during the search. The solutions in the archive are
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always kept sorted based on their quality (i.e., the objective function values), so that

the best solution is on top.

4.1.2 Probabilistic solution construction

Construction of new solutions by the ants is accomplished in an incremental manner,

variable by variable. First, an ant chooses probabilistically one of the solutions in the

archive. The probability of choosing solution j is given by:

pj =
ωj∑k
r=1 ωr

, (4.1)

where ωj is a weight associated with solution j. The weight may be calculated using

various formulas depending on the problem tackled. In the remainder of this paper

we use a Gaussian function g(µ, σ) = g(1, qk), which was also used in our previous

work [Socha and Dorigo, 2008]:

ωj =
1

qk
√

2π
e
−(j−1)2

2q2k2 , (4.2)

where, q is a parameter of the algorithm and k is the size of the archive. The mean of

the Gaussian function is set to 1, so that the best solution has the highest weight.

The choice of the Gaussian function was motivated by its flexibility and non-linear

characteristic. Thanks to its non-linearity, it allows for a flexible control over the weights.

It is possible to give higher probability to a few leading solutions, while significantly

reducing the probability of the remaining ones.

Once one of the solutions in the archive is chosen, an ant may start constructing a

new solution. However, before the new solution is created, the algorithm attempts to

de-correlate the variables of the solutions in the archive. It does so through a linear

transformation of the soltuion archive while generating new solutions and reverting to

original state afterwards. As this does not have an impact on the way the solutions

are generated, we do not describe this process here. A detailed description of the de-

correlation process implemented is provided in Appendix A.
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The ant treats each problem variable i = 1, ..., n separately. It takes the value si
j of the

variable i of the chosen j-th solution and samples its neighborhood. This is done using a

probability density function (PDF). Again, as in the case of choosing the weights, many

different functions may be used. A PDF P (x) must however satisfy the condition:

∫ ∞

−∞
P (x)dx = 1. (4.3)

In this work, similarly to earlier publications presenting ACOR [Socha and Dorigo, 2008],

we use as PDF the Gaussian function:

P (x) = g(x, µ, σ) =
1

σ
√

2π
e−

(x−µ)2

2σ2 . (4.4)

The function has two parameters that must be defined: µ, and σ. When considering

variable i of solution j, we assign µ← si
j. Further, we assign σ:

σ ← ξ

k∑
r=1

|si
r − si

j|
k − 1

. (4.5)

which is the average distance between the i-th variable of the solution sj and the i-th

variables of the other solutions in the archive, multiplied by a parameter ξ2.

This whole process is repeated for each dimension i = 1, ..., n in turn by each of the m

ants.

An alternative description of the ACOR aglorithm using the notion of Gaussian kernels

is also possible. It has been used in some of our initial publications on the subject [Socha

and Dorigo, 2008; Socha and Blum, 2006, 2007]. This alternative description is provided

as Appendix B.

2Parameter ξ has an effect similar to that of the pheromone evaporation rate in ACO. The higher
the value of ξ, the lower the convergence speed of the algorithm. While the pheromone evaporation rate
in ACO influences the long term memory—i.e., the worst solutions are forgotten faster—ξ in ACOR
influences the way the long term memory is used—i.e., the new solutions are considered closer to known
good solutions.
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4.2 Positioning of ACOR

ACOR is part of a rather large family of algorithms for continuous optimization. The

description of the most of the important ones have been already provided in Chapter 2.

In this section, we give a short summary and discuss, how ACOR may be positioned in

relation to the others.

For continuous optimization problems, a number of methods have been proposed in the

literature. They include some ant-related methods [Bilchev and Parmee, 1995; Mon-

marché et al., 2000; Dréo and Siarry, 2002], as well as a more generic swarm inspired

method such as Particle Swarm Optimization [Kennedy and Eberhart, 1995]. There are

also many others: many metaheuristics have been originally developed for combinatorial

optimization and later adapted to the continuous case. Examples include the Continuous

Genetic Algorithm (CGA) [Chelouah and Siarry, 2000], Enhanced Simulated Annealing

(ESA) [Siarry et al., 1997], or Enhanced Continuous Tabu Search (ECTS) [Chelouah

and Siarry, 1999].

Additionally, there are also other methods that—similarly to ACO—explicitly use some

notion of probability distribution estimation. Many of these algorithms have spawned

from the general class of Evolutionary Algorithms (EAs). Examples include Evolution-

ary Strategies (ES) [Schwefel, 1981; Ostermeier et al., 1994; Hansen and Ostermeier,

2001], Iterated Density Estimation Algorithm (IDEA) [Bosman and Thierens, 2000],

Mixed Bayesian Optimization Algorithm (MBOA) [Očenášek and Schwarz, 2002], or

Population-Based Incremental Learning (PBIL) [Baluja and Caruana, 1995; Yuan and

Gallagher, 2003]. Some of them, similarly to ACO, have been initially used for combi-

natorial optimization, and only later adapted to handle continuous domains.

In addition to all the algorithms mentioned so far, there are also many gradient-based

algorithms for continuous optimization. They are fast, but they have some prerequisites.

They are able to quickly find a local minimum, but they require the optimized function

to be continuous and differentiable. Examples of such algorithms include the Newton

method [Ralston and Rabinowitz, 1978], or the backpropagation algorithm [Rumelhart

et al., 1986] routinely used for training artificial neural networks. The usefulness of

gradient based algorithms is limited due to the prerequisites mentioned above. ACOR,

as well as all other algorithms for continuous optimization mentioned earlier, do not

have such limitations, which makes them much more general.

Last, but not least, there are the direct search methods, such as the simplex method [Nelder
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and Mead, 1965], or the Powell’s method [Powell, 1964]. They are quick and efficient in

most cases, but they only allow to find the nearest local optimum. They are however

quite interesting as a method to complement ACOR or other metaheuristics. Namely,

they may be used as local search routines for the metaheuristics. In Section 4.3.3, we

present some experiments involving the direct search methods, also used as local search

for ACOR. Although the hybridized versions do not seem to have particular advantage in

these experiments, the approach of improving performance of ACOR with a local search

is also used and evaluated more thoroughly in Chapter 5 with more encouraging results.

4.2.1 ACOR and Other Swarm-Based Algorithms

The main type of swarm-based algorithms that we will refer to in this section are the

ant-related algorithms. A single swarm-based algorithm that is not ant-related will be

presented towards the end of this section.

There have been previous attempts to apply ant-based optimization algorithms to the

continuous domain. Some attempts were more successful than others, but none of them

was an extension of ACO to the continuous domain. Rather, they were new algorithms

that also drew their initial inspiration from the behavior of ants. In the following para-

graphs, we shortly present these algorithms and indicate how they differ from ACOR.

One of the first attempts to apply an ant-related algorithm to the continuous optimiza-

tion problems was Continuous ACO (CACO) [Bilchev and Parmee, 1995]. In CACO the

ants start from a point, called a nest, situated somewhere in the search space. The good

solutions found are stored as a set of vectors, which originate in the nest. The ants at

each iteration of the algorithm choose probabilistically one of the vectors. They then

continue the search from the end-point of the chosen vector by making some random

moves from there. The vectors are updated with the best results found. Although the

authors of CACO claim that they draw inspiration from the original ACO formulation,

there are important differences. They introduce the notion of nest, which does not exist

in the ACO metaheuristic. Also, CACO does not perform an incremental construction

of solutions, which is one of the main characteristics of the ACO metaheuristic. CACO

does not qualify therefore to be an extension of ACO.

Another ant-related approach to continuous optimization is the API algorithm [Mon-

marché et al., 2000]. API does not claim to be based on the ACO metaheuristic. The

ants perform their search independently, but starting from the same nest (the nest is
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moved periodically). The ants use only tandem running, a type of recruitment strategy.

It is the only known algorithm among the ant-related algorithms published so far that

allows to tackle both discrete and continuous optimization problems.

The third ant-based approach to continuous optimization is Continuous Interacting Ant

Colony (CIAC) [Dréo and Siarry, 2002]. CIAC uses two types of communication between

ants: stigmergic information (spots of pheromone deposited in the search space) and

direct communication between ants. The ants move through the search space being

attracted by pheromone laid in spots, and guided by some direct communication between

individuals. Although also CIAC claims to draw its original inspiration from ACO, the

differences are many: there is direct communication between ants and no incremental

construction of solutions. As CACO, also CIAC does not qualify as an extension of

ACO.

Finally, as mentioned at the beginning of this section, there is a well-known swarm-based

algorithm for continuous optimization that is not ant-related. It is called Particle Swarm

Optimization (PSO) [Kennedy and Eberhart, 1995]. PSO works with a population of

particles. These particles move in the search space with a certain velocity. The value

and the direction of the velocity vector change according to the attractors in the search

space. Each particle reacts to two such attractors. One is the best value found by

the particle, and the other one is the best value found globally. PSO has been shown

experimentally to perform well on many continuous optimization problems.

4.2.2 ACOR and Evolutionary Algorithms

ACO for combinatorial optimization is similar to Evolutionary Algorithms (EAs) in

many respects. Both ACO and EAs use some notion of probability distribution in

order to find promising areas in the search space. This similarity is maintained when

comparing ACOR with EAs developed or adapted to continuous domains.

Kern et al. in [Kern et al., 2004] present an extensive comparison of several evolutionary

algorithms dedicated to continuous optimization—from very simple ones to those that

are quite advanced. We will now shortly present them.

The set of algorithms compared by Kern et al. contains three versions of Evolutionary

Strategies (ES), and two other algorithms—the Mixed-Bayesian Optimization Algorithm

(MBOA), and the Iterated Density Estimation Algorithm (IDEA). The simplest algo-

rithm used in this comparison is (1+1) ES [Kern et al., 2004]. It is a simple ES with
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one parent generating one offspring per iteration. Only the individual representing the

higher quality solution is kept. The next ES included in the comparison is Evolutionary

Strategy with Cumulative Step Size Adaptation (CSA-ES) [Ostermeier et al., 1994; Kern

et al., 2004]. It adapts the global step size by using the path traversed by the parent

population over a number of generations. The third ES considered is CMA-ES—ES

with Covariance Matrix Adaptation [Hansen and Ostermeier, 2001; Kern et al., 2004].

It is an extended version of CSA-ES, with de-randomized adaptation of the covariance

matrix.

The first of the two algorithms that are not ES is IDEA, proposed by Bosman and

Thierens [Bosman and Thierens, 2000]. It formalizes the Estimation of Distribution

Algorithms (EDA) in continuous domains. To estimate the distribution of the parent

population, IDEA exploits the fact that every multivariate joint probability distribution

can be written as a conditional factorization of the following form: P (xi, ..., xn) =∏n
i=1 P (xi|xi+1, xi+2, ..., xn). The probabilistic model of the parent population is rebuilt

in every generation.

The last algorithm considered in this comparison is MBOA [Očenášek and Schwarz,

2002]. It is a Bayesian network with local structures in the form of decision trees

that captures the mutual dependencies among the parent individuals. The first EDA

employing the Bayesian network model with decision trees was the hierarchical Bayesian

Optimization Algorithm (hBOA) [Pelikan et al., 2000]. MBOA is an extension of hBOA

from binary to continuous domains. In fact, MBOA is able to deal with discrete and

continuous variables simultaneously, just like ACOR.

Each of these algorithms is different, but they all use some way of learning and mod-

elling explicitly probability distributions. There are two ways these algorithms use the

probability distributions. All versions of the ES incrementally update their probability

distributions at each iteration. In contrast, IDEA and MBOA each time entirely rebuild

them. ACOR acts in this respect yet differently. Similarly to ACO for combinatorial op-

timization, in ACOR ants use at each construction step a different, dynamically created

probability distribution. This distribution depends on the previous construction steps

and may be different for each ant. Hence, the ACOR approach is closer to what IDEA

and MBOA do, but it is even more fine-grained—several dynamically created probability

distributions are used during one iteration.

All of the probability-learning algorithms compared by Kern et al. use some form of

Gaussian function for modeling the probability distributions. (1+1)ES and CSA-ES use
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isotropic Gaussian distributions. IDEA uses one (or more—a mixture, if clustering is

enabled) arbitrary Gaussian distribution. MBOA uses a concept somewhat similar to

the one used by ACOR—Gaussian kernel distribution, but defined on partitions of the

search space.

4.3 Experimental Setup and Results

In this section, we present the experimental setup for evaluating the performance of

ACOR and the results obtained. In order to have an overview of the performance of

ACOR in comparison to other methods for continuous optimization, we use the typi-

cal benchmark test functions that have been used in the literature for presenting the

performance of different methods and algorithms.

Obviously, it is impractical to compare ACOR to every method that has been used for

continuous optimization in the past. Hence, we decided to limit our comparison to other

metaheuristics used for this purpose. We then decided to divide those metaheuristics

into three groups, based on their similarity to ACOR:

• Probability-learning methods—methods which explicitly model and sample prob-

ability distributions.

• Ant-related methods—methods that claim to draw inspiration from the behavior

of ants.

• Other metaheuristics originally developed for combinatorial optimization and later

adapted to continuous domains.

We have used a slightly different experimental methodology for each comparison in order

to make the results obtained by ACOR as comparable as possible to those obtained with

the other methods.

It is important to emphasize that—unlike combinatorial optimization—the comparison

of algorithms for continuous optimization is usually not done based on CPU time. In

case of combinatorial optimization, usually each algorithm is given the same amount

of CPU time and the results obtained within that time are compared. This makes the

comparison of different algorithms complicated, as the CPU time depends significantly

on the programming language used, the compiler, the skills of the programmer, and

finally also on the machine(s) used for running the experiments. Hence, in case of com-

binatorial optimization it is strongly recommended to re-implement all the algorithms
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used in the comparison in order to make it fair. This still does not guarantee an en-

tirely fair comparison, as it is difficult to assure the same amount of effort being put in

optimization of the code of all the implemented algorithms.3

In contrast, the great majority of the papers on continuous optimization algorithms use

as criterion of comparison the number of function evaluations needed to achieve a certain

solution quality [Kern et al., 2004; Bilchev and Parmee, 1995; Monmarché et al., 2000;

Dréo and Siarry, 2004]. Such an approach gives several key advantages: it solves the

problem of the algorithms being implemented using different programming languages;

it is insensitive to the code-optimization skills of the programmer (or to the compiler

used); and it allows comparing easily the results obtained on different machines. The

drawback of this approach is that it does not take into consideration the time-complexity

of the algorithms compared. However, in view of the other numerous disadvantages of

using the CPU time as a criterion, it is an acceptable methodology, and we adopt it in

this paper. Also, in case of continuous optimization problems, usually the majority of

the time of the execution of the algorithm is spent on evaluating the objective function,

so in general the measuring the number of function evaluations is a good way to also

approximate the time needed for the algorithm to run.

The use of the number of function evaluations as a criterion allows us to run the ex-

periments only with ACOR and compare the results obtained to those found in the

literature. Additionally, in order to ensure a fair comparison, we replicate carefully the

experimental setup (in particular: initialization interval, parameter tuning methodology,

and termination condition) used by the competing algorithms.

4.3.1 ACOR Compared with the Probability-Learning Methods

There are many metaheuristics that explicitly model and sample probability distribu-

tions. In this comparison we use the algorithms tested by Kern et al. [Kern et al., 2004],

which have been already described in Sec. 4.2.2.

The test functions used for comparison range from very simple to quite complex, and

were chosen by Kern et al. for their particular characteristics. In particular, they test

the algorithms’ robustness when applied to a linear transformation of the considered

problem. For a fair comparison of ACOR’s performance, we have used the same test

3Automatic parameter tuning procedures such as F-Race [Birattari et al., 2002; Birattari, 2005] can
help in this respect.
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Table 4.1: Summary of the test functions used for comparing ACOR with
other methods explicitly estimating probability distributions. We used n = 10
dimensions for all the test functions listed here.

Function Formula

Plane (PL)
~x ∈ [0.5, 1.5]n, n = 10

fPL(~x) = x1

Diagonal Plane (DP )
~x ∈ [0.5, 1.5]n, n = 10

fDP (~x) = 1
n

∑n
i=1 xi

Sphere (SP )
~x ∈ [−3, 7]n, n = 10

fSP (~x) =
∑n

i=1 x2
i

Ellipsoid (EL)
~x ∈ [−3, 7]n, n = 10

fEL(~x) =
∑n

i=1(100
i−1
n−1 xi)

2

Cigar (CG)
~x ∈ [−3, 7]n, n = 10

fCG(~x) = x2
1 + 104

∑n
i=2 x2

i

Tablet (TB)
~x ∈ [−3, 7]n, n = 10

fTB(~x) = 104x2
1 +

∑n
i=2 x2

i

Rosenbrock (Rn)
~x ∈ [−5, 5]n, n = 10

fRn(~x) =
∑n−1

i=1 100(x2
i − xi+1)

2 + (xi − 1)2

functions. They are listed in Tab. 4.1. Plane and Diagonal Plane functions are max-

imization problems (the goal is to reach εmax = 1010), the others are minimization

problems (required accuracy is εmin = 10−10). In addition to the functions listed in

Tab. 4.1, the comparison also uses randomly rotated versions of the Ellipsoid, Cigar,

and Tablet functions. In all the experiments we used 10-dimensional versions of the

functions. The performance was judged based on the number of function evaluations

needed to reach the stopping condition. The stopping condition used was the required

accuracy: f > εmax for maximization problems, and |f − f ∗| < εmin for minimization

problems, where f is the value of the best solution found by ACOR, and f ∗ is the (known

a priori) optimal solution for the given test problem.

When tackling continuous optimization test problems (i.e., those for which the optimal

solution is known a priori), one has to do the initialization with caution.4 In fact, it has

been shown in the literature that if the initialization is done close to the optimum, or it

is symmetric around the optimum, it may introduce an undesired bias [Fogel and Bayer,

1995]. It has also been demonstrated that the results obtained by some algorithms differ

significantly, when the symmetric and asymmetric initialization are used [Eiben and

4In the case of real-world problems, the optimal solutions are often not known, and hence the
initialization intervals have to be chosen based on some other estimates or even at random.
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Bäck, 1997; Chellapilla and Fogel, 1999].

Due to these issues, special care must be taken in order to use (when possible) ini-

tializations that do not introduce the bias. Such an approach is often called skewed

initialization [Eiben and Bäck, 1997; Deb et al., 2002]. Also, any comparison of the

continuous optimization algorithms should explicitly take into account the initialization

used by each of the algorithms. In all our test runs we use initialization intervals identical

to those used by the methods we compare to.

In order to compare the performance of ACOR to that of the algorithms presented

in [Kern et al., 2004], we have adopted the same methodology for conducting the ex-

periments. We have done 20 independent runs on each of the test problems. Con-

cerning parameters tuning, Kern et al. used the parameters as suggested by the au-

thors, with the exception of the size of the population5 used. The latter was cho-

sen separately for each algorithm-problem pair—the smallest population from the set

p ∈ [10, 20, 50, 100, 200, 400, 800, 1600, 3200] was chosen, which still allowed to achieve

the required accuracy in all the runs. The summary of the parameters we used for ACOR

is presented in Tab. 4.2. The archive size k = 50 was used for all test problems.

Table 4.2: Summary of the parameters used by ACOR. The solution archive
size varied depending on the test function, as done by Kern et al.[Kern et al.,
2004].

Parameter Symbol Value

no. of ants used in an iteration m 2

speed of convergence ξ 0.85

locality of the search process q 10−4

archive size k 50

Table 4.3 presents the results obtained by ACOR compared to those obtained by the

algorithms tested by Kern et al.. For each test problem, the relative median performance

for all the algorithms is reported, 1.0 being the best algorithm (lowest median number

of function evaluations). Numbers for the other algorithms indicate how many times

larger was their median number of function evaluations in relation to the best one on a

given test function. For the best algorithm also the actual median number of function

evaluations is supplied in curly brackets.

5In case of the evolutionary algorithms, there is the notion of population size. In case of ACOR, the
respective parameter is the archive size.
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Table 4.3: Results obtained by ACOR compared to those obtained by other
probability-learning algorithms—based on [Kern et al., 2004]. Reported is the
relative median number of function evaluations. The actual median number
of function evaluations is given in curly brackets only for the best performing
algorithm on a given problem. Results marked with * indicate that the required
accuracy was not reached in every run.

Function ACOR (1+1)ES CSA-ES CMA-ES IDEA MBOA

Plane 1.0
(175)

4.5 7.2 6.3 ∞ 4970

Diag. Plane 1.0
(170)

4.9 7.4 6.4 ∞ 241

Sphere 1.1 1.0
(1370)

1.6 1.3 5.0 48

Ellipsoid 2.6 66 110 1.0
(4450)

1.6 14

Cigar 1.4 610 800 1.0
(3840)

4.6 12

Tablet 1.0
(2567)

46 65 1.7 2.9 24

Rot. Ellipsoid 2.8 64 110 1.0
(4490)

13 *1800

Rot. Cigar 1.4 600 800 1.0
(3840)

38 *2100

Rot. Tablet 1.0
(2508)

44 63 1.7 12 *1600

Rosenbrock *1.1 *51 180 1.0
(7190)

*210 *1100

The performance of ACOR is quite good. It achieves the best result in four out of 10 test

problems. Also, when it is not the best, it is only slightly worse than the best algorithm

(CMA-ES). Unlike some of the competing algorithms, ACOR is performing well in case

of both maximization (Plane and Diagonal Plane) and minimization problems. It is

able to adjust well to problems that are scaled differently in different directions (such as

Ellipsoid, Cigar, and Tablet functions), and the rotation of the test function does not

have any impact on the performance. In this respect only CMA-ES performs similarly

well.

Due to unavailability of full result sets and missing results of some algorithms for some

test functions, it is impossible to do any serious statistical significance analysis. In order

to enable future researchers to perform more statistically sound comparisons, the full
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set of results obtained with ACOR is available online.6

4.3.2 ACORCompared with Other Ant-Related Approaches and

Other Metaheuristics

As we have mentioned earlier, there were other ant-related methods proposed for continu-

ous optimization in the past. The very first one—called Continuous ACO (CACO)—was

proposed by Bilchev and Parmee [Bilchev and Parmee, 1995], and also used later [Wodrich

and Bilchev, 1997; Mathur et al., 2000]. Others include the API algorithm by Mon-

marché [Monmarché et al., 2000], and Continuous Interacting Ant Colony (CIAC), pro-

posed by Dréo and Siarry [Dréo and Siarry, 2002, 2004]. These algorithms have been

already described in Sec. 4.2.1. They were tested by their authors on some classical test

functions and compared with other metaheuristics that had been primarily developed

for combinatorial optimization and later adapted to continuous domain. The continu-

ous versions of these metaheuristics include in particular Continuous Genetic Algorithm

(CGA) [Chelouah and Siarry, 2000], Enhanced Continuous Tabu Search (ECTS) [Che-

louah and Siarry, 1999], Enhanced Simulated Annealing (ESA) [Siarry et al., 1997], and

Differential Evolution (DE) [Storn and Price, 1995].

In these comparisons, the parameters chosen by the authors of the competing algorithms

were essentially picked by a simple trial and error procedure. Hence, we have also

refrained from doing an extensive parameter tuning. Instead, we used almost identical

parameters to those used earlier for comparing ACOR with probability-learning methods.

The only exception was parameter q, which required a slightly larger value in order

to increase the robustness of ACOR on the multimodal functions used in this set of

experiments. The value q = 0.1 was used. More analysis of the influence of parameter

q on the performance of ACOR is provided in Sec. 4.3.4.

To compare ACOR with all these algorithms, we have run ACOR on a number of test

functions used by the other algorithms, and we followed the original experimental setup

in terms of the initialization interval and required accuracy. The list of test functions on

which we run ACOR, along with the number of dimensions used and the initialization

interval, is presented in Tab. 4.4 & 4.5. A more detailed description of the test functions

used may be found in the literature [Björkman and Holmström, 1999; Chelouah and

6http://iridia.ulb.ac.be/∼ksocha/aco r.html
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Table 4.4: First part of the test functions used for comparing ACOR to other
ant-related algorithms and other metaheuristics adapted for continuous opti-
mization.

Function Formula

Branin RCOS (RC)
~x ∈ [−5, 15]n, n = 2

fRC(~x) =
(
x2 − 5

4π2 x
2
1 + 5

π
x1 − 6

)2

+10
(
1− 1

8π

)
cos xi + 10

B2

~x ∈ [−100, 100]n, n = 2
fB2(~x) = x2

1 + 2x2
2 − 3

10
cos(3πx1)− 2

5
cos(4πx2) + 7

10

Easom (ES)
~x ∈ [−100, 100]n, n = 2

fES(~x) = − cos(x1) cos(x2)e
−((x1−π)2+(x2−π)2)

Goldstein & Price (GP )
~x ∈ [−2, 2]n, n = 2

fgp(~x) = (1 + (x1 + x2 + 1)2(19− 14x1 + 13x2
1 − 14x2

+6x1x2 + 3x2
2)) · (30 + (2x1 − 3x2)

2(18− 32x1

+12x2
1 − 48x2 − 36x1x2 + 27x2

2))

Martin & Gaddy (MG)
~x ∈ [−20, 20]n, n = 2

fMG(~x) = (x1 − x2)
2 +

(
x1+x2−10

3

)2

Rosenbrock (Rn)
~x ∈ [−5, 10]n, n = 2, 5

fRn(~x) =
∑n−1

i=1 100(x2
i − xi+1)

2 + (xi − 1)2

Zakharov (Zn)
~x ∈ [−5, 10]n, n = 2, 5

fZn(~x) =
(∑n

j=1 x2
j

)
+

(∑n
j=1

jxj

2

)2

+
(∑n

j=1
jxj

2

)4

De Jong (DJ)
~x ∈ [−5.12, 5.12]n, n = 3

fDJ(~x) = x2
1 + x2

2 + x2
3

Griewank (GRn)
~x ∈ [−5.12, 5.12]n, n = 10

fGRn(~x) =
(

1
10

+
(∑n

i=1
x2

i

4000
−∏n

i=1 cos
(

xi√
i

)
+ 1

))−1

Sphere Model (SM)
~x ∈ [−5.12, 5.12]n, n = 6

fSM(~x) =
∑n

i=1 x2
i

Siarry, 2000; Dréo and Siarry, 2004]. Following the experimental setup described in

the literature, we performed 100 independent runs, and we used the following stopping

criterion (as used by the other algorithms in this comparison):

|f − f ∗| < ε1f + ε2 , (4.6)

where f is the value of the best solution found by ACOR, f ∗ is the (known a priori)

optimal value for the given test problem, and ε1 and ε2 are respectively the relative and

absolute errors. For all the test runs of ACOR, we used ε1 = ε2 = 10−4, following the

values reported in the literature.
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Table 4.5: Second part of the test functions used for comparing ACOR to
other ant-related algorithms and other metaheuristics adapted for continuous
optimization.

Function Formula

Hartmann
(H3,4)

fH3,4(~x) = −∑4
i=1 cie

−P3
j=1 aij(xj−pij)

2

~x ∈ [0, 1]n

n = 4
aij =

{
3.0 10.0 30.0
0.1 10.0 35.0
3.0 10.0 30.0
0.1 10.0 35.0

}
, ci =

{
1.0
1.2
3.0
3.2

}
,

pij =

{
0.3689 0.1170 0.2673
0.4699 0.4387 0.7470
0.1091 0.8732 0.5547
0.0381 0.5743 0.8828

}

Hartmann
(H6,4)

fH6,4(~x) = −∑4
i=1 cie

−P6
j=1 aij(xj−pij)

2

~x ∈ [0, 1]n

n = 6
aij =

{
10.00 3.00 17.0 3.50 1.50 8.00
0.05 10.00 17.0 0.10 8.00 14.00
3.00 3.50 1.70 10.00 17.00 8.00

17.00 8.00 0.05 10.00 0.10 14.00

}
, ci =

{
1.0
1.2
3.0
3.2

}
,

pij =

{
0.1312 0.1696 0.5569 0.0124 0.8283 0.5886
0.2329 0.4135 0.8307 0.3736 0.1004 0.9991
0.2348 0.1451 0.3522 0.2883 0.3047 0.6650
0.4047 0.8828 0.8732 0.5743 0.1091 0.0381

}

Shekel
(S4,k)

fS4,k(~x) = −∑k
i=1

(
(~x− ~ai)

T (~x− ~ai) + ci

)−1

k = 5, 7, 10
~x ∈ [0, 10]n

n = 4

aij =





4.0 4.0 4.0 4.0
1.0 1.0 1.0 1.0
8.0 8.0 8.0 8.0
6.0 6.0 6.0 6.0
3.0 7.0 3.0 7.0
2.0 9.0 2.0 9.0
5.0 5.0 3.0 3.0
8.0 1.0 8.0 1.0
6.0 2.0 6.0 2.0
7.0 3.6 7.0 3.6





, ci =





0.1
0.2
0.2
0.4
0.4
0.6
0.3
0.7
0.5
0.5





Tables 4.6 & 4.7 present the results obtained by ACOR, and respectively other ant-

related algorithms and other metaheuristics. Some of the test functions used in this

section are multimodal—they have many local optima, where algorithms may get stuck.

Hence, the results presented not only give an overview of the mean performance (i.e.,

number of function evaluations), but also give the success rate—percentage of successful

runs, when the algorithm found the global optimum.

When compared with other ant-related methods (Tab. 4.6), ACOR is a clear winner—

all other algorithms in this category require many more function evaluations in order

to reach the required accuracy. ACOR is simply a much more effective approach. As

mentioned earlier, serious statistical analysis of the results is not possible due to un-

availability of the full data result sets for the other algorithms.
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Table 4.6: Results obtained by ACOR compared to those obtained by other
ant-related algorithms. Reported is the relative mean number of function evalua-
tions. The actual mean number of function evaluations is given in curly brackets
only for the best performing algorithm on a given problem. Numbers in square
brackets indicate the percentage of successful runs (i.e., when the algorithm did
not get stuck in a local optimum). When the percentage is not given—all the
runs were successful. Note that for some algorithms, the results on some test
functions were not available.

Test Function ACOR CACO API CIAC

Rosenbrock (R2) 1.0
(820)

8.3 12 14

Sphere 1.0
(781)

28 13 64

Griewank (GR10) 1.0 [61%]

(1390)
36 - 36 [52%]

Goldstein & Price 1.0
(384)

14 - 61 [56%]

Martin & Gaddy 1.0
(345)

5 - 34 [20%]

B2 1.0
(544)

- - 22

Rosenbrock (R5) 1.0 [97%]

(2487)
- - 16 [90%]

Shekel (S4,5) 1.0 [57%]

(787)
- - 50 [5%]

When ACOR is compared to other metaheuristics adapted for continuous domains, such

as CGA, ECTS, or ESA (Tab. 4.7), it is not so clear anymore which of the algorithms

is best. Almost each of the algorithms presented is best performing for at least some of

the test problems (with the exception of ESA). While ACOR is the winner for Easom,

both Hartmann, Griewank, and one Zakharov problem, CGA is the leader for B2 and

all three Shekel problems. In turn ECTS is the best one on Branin RCOS, Goldstein

& Price, one Zakharov, and both Rosenbrock problems. ESA is the only one that is

not best on any of the problems, and results of DE—although promising—best for De

Jong—are available for only very few problems.

The differences in performance between the metaheuristics are however rather small—

they rarely exceed the factor of 2.0. It may be hence concluded that while each of these

algorithms is different, they all perform similarly well, including ACOR proposed in this

paper. For particular real-world applications some of them may be better suited than
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Table 4.7: Mean number of function evaluations obtained by ACOR comprised
to other metaheuristics adapted to continuous domains. The actual mean is
given in curly brackets only for the best performing algorithm on a given problem.
Numbers in square brackets indicate the percentage of successful runs (when not
given—100% successful). Dash indicates that results were not available.

Test Function ACOR CGA ECTS ESA DE

Branin RCOS 3.5 2.5 1.0
(245)

- -

B2 1.3 1.0
(430)

- - -

Easom 1.0 [98%]

(772)
1.9 - - -

Goldstein & Price 1.7 1.8 1.0
(231)

3.4 -

Rosenbrock (R2) 1.7 2.0 1.0
(480)

1.7 1.3

Zakharov (Z2) 1.5 3.2 1.0
(195)

81 -

De Jong 1.0 1.9 - - 1.0
(392)

Hartmann (H3,4) 1.0
(342)

1.7 1.6 2.0 -

Shekel (S4,5) 1.3 [57%] 1.0 [76%]

(610)
1.4 [75%] 1.9 [54%] -

Shekel (S4,7) 1.1 [79%] 1.0 [83%]

(680)
1.3 [80%] 1.8 [54%] -

Shekel (S4,10) 1.1 [81%] 1.0 [83%]

(650)
1.4 [80%] 1.8 [50%] -

Rosenbrock (R5) 1.2 [97%] 1.9 1.0
(2142)

2.5 -

Zakharov (Z5) 1.0
(727)

1.9 3.1 96 -

Hartmann (H6,4) 1.0
(722)

1.3 2.1 3.7 -

Griewank (Gr10) 1.0 [61%]

(1390)
- - - 9.2

others. However, the differences are not large, and it is not trivial to say when any

of these algorithms should be preferred over the others. Again, as mentioned earlier,

serious statistical analysis of the results is not possible due to unavailability of the full

result data sets for the other algorithms.
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4.3.3 ACOR compared with Direct Search Methods

As mentioned in Chapter 2, there exist also a set of direct search methods for continuous

optimization. They include among others the Nelder-Mead (or Simplex) method the

Powell method. These methods, similarly to metaheuristics, do not need any additional

information about the problem being solved. Hence, they may be potentially applied

to the same problems as our ACOR proposed algorithm. The direct search methods

are known to perform well on many real-world problems. Their main disadvantage is

that they search for local minima rather than for a global one. Hence, they are often

used either as local search methods for metaheuristics, or as random-restart local search

algorithms, where multiple runs of a direct search method are used in order to increase

the chances of finding the global optimum.

This section focuses on how our ACOR algorithm compares to these direct search meth-

ods on different types of problems. In order to have a proper overview, we have chosen

three continuous optimization test problems of different characteristics. We chose the

Rosenbrock function (n = 10) as an example of a difficult unimodal test problem, the

Shekel (4,7) function as an example of low dimensional (n = 4) multimodal test problem

with few local optima, and finally an Ackley function (n = 10), as an example of a

multimodal test function with many local optima. For all the test functions we used

the earlier mentioned skewed initialization in order to avoid bias of population based

methods towards the center of the search space.

As examples of the direct search methods, we used the Simplex (S) method and the

Powell (P) method. In order to have a proper perspective, we have tested several different

configurations, including: ACOR algorithm alone, random-restart versions of Simplex

(RRS) and Powell (RRP), as well as hybrids of ACOR with respectively Simplex (ACOR-

S) or Powell (ACOR-P) algorithm as a local search. We have implemented the RRS

algorithm using the optim function in R, which provides the implementation of the

Simplex algorithm. The RRP was implemented with the use of package powell, which

provides the implementation of the Powell algorithm, also in R.

For each of the test problems, we have done a separate set of experiments including

tuning of the algorithms’ parameters. In the following subsections, we describe the

results of each of these experiments.
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Rosenbrock Function

The first problem that we tackled was the Rosenbrock test function with n = 10 di-

mensions. This function has already been used in Section 4.3.1. ACOR, ACOR-S, and

ACOR-P required choosing appropriate parameters. We have accomplished this using

the F-Race method mentioned earlier. Table 4.8 presents the set of parameters chosen

for these algorithms.

Table 4.8: Summary of the parameters used by ACOR, ACOR-S, and ACOR-P
for the Rosenbrock problem.

Symbol ACOR ACOR-S ACOR-P

m 2 2 2

ξ 1 0.8 0.8

q 0.01 10−4 10−4

k 200 20 10

The experiment aimed at establishing how many function evaluations would each of the

algorithms need to optimize the 10-dimensional Rosenbrock function with accuracy of

at least e = 10−4. We have done 100 independent runs of each algorithm. Table 4.9

presents the values of the minimum, median, and maximum number of objective function

evaluations needed to achieve the required accuracy by each of the algorithms.

Table 4.9: Summary of the results obtained by ACOR, its hybrids with direct
search methods, and the random-restart versions of the direct search methods
on the Rosenbrock problem. The dashes indicate when the solution could not
be found with required accuracy even with one million of function evaluations.

Alg. Min Median Max

ACOR 16726 18050 20284

ACOR-S 86394 159044 218460

ACOR-P 2093 2840 3409

RRS - - -

RRP 790 1439 4808

After analyzing the results obtained, it is clear that the Powell method is the most ef-

ficient for solving this problem. Hybridizing the Powell method with ACOR does not
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improve the results. Most likely, ACOR adds an unnecessary overhead, which increases

the number of evaluations needed to solve the problem. Contrary to the Powell method,

the Simplex method does not seem to be able to deal very well with the Rosenbrock

problem. The random-restart version of the Simplex algorithm could not find the op-

timum solution even with one million of function evaluations. A hybrid of ACOR with

the Simplex method as a local search did reach the optimum, but it took on average

100 times more function evaluations than the Powell method, and about 10 times more

than ACOR alone. Note that ACOR was run here with different parameters than in Sec-

tion 4.3.1. While there ACOR was converging faster, there were some unsuccessful runs.

Here, more robust parameter settings were used, which allowed to obtain 100% success

rate, that is, all ACOR runs resulted in finding the optimum solution with required

accuracy.

Shekel (4,7) Function

The second function that we used to compare the performance of ACOR with direct

search methods, was Shekel (4,7). It was used before in Section 4.3.2. It is a multimodal

function with n = 4 dimensions, and few local optima. We have chosen the param-

eters for ACOR, ACOR-S, and ACOR-P using the F-Race method mentioned earlier.

Table 4.10 presents these parameters.

Table 4.10: Summary of the parameters used by ACOR, ACOR-S, and ACOR-P
algorithms for the Shekel (4,7) problem.

Symbol ACOR ACOR-S ACOR-P

m 2 2 2

ξ 1.1 0.2 1

q 0.4 0.7 0.6

k 50 100 20

Similarly to the Rosenbrock function, we measured the number of function evaluations

required to reach the accuracy of e = 10−4. We have done 100 independent runs of

each algorithm. Table 4.11 presents the values of the minimum, median, and maximum

number of the objective function evaluations needed to achieve the required accuracy

by each of the algorithms.
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Table 4.11: Summary of the results obtained by ACOR, its hybrids with direct
search methods, and the random-restart versions of the direct search methods
on the Shekel (4,7) problem.

Alg. Min Median Max

ACOR 1376 1756 2698

ACOR-S 704 726 2156

ACOR-P 144 263 667

RRS 171 833 2515

RRP 57 109 526

Clearly, for the Shekel (4,7) problem, both direct search methods are much more efficient

than ACOR. Powell is also much better than the Simplex method. Hybridizing ACOR

with the direct search methods improves the ACOR performance, but it is still worse

than the random-restart version of the respective direct search method alone.

The results show that a random-restart direct search method is quite efficient for a

problem of few dimensions and not too many local optima. In the worst case only few

iterations allow to find the global optimum. While for the direct search methods it is

sufficient to start with an initial point that is the right valley to be certain to find the

optimum, this is more complicated for ACOR. In the Shekel (4,7) problems, the valleys

of all optima are rather large and the quality of local optima does not differ significantly.

Hence, ACOR tends to sample many of them at the same time, and it takes some tome

before it converges to the correct one. Therefore, this experiment shows that random-

restart direct search heuristics significantly outperform ACOR for this type of problems.

Ackley Function

The third and final test function that we chose for comparing ACOR to direct search

methods, is the Ackley function [Ackley, 1987]. The Ackley function is a multimodal

function with a large number of local optima:

fac = −20 exp
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For our experimentation, we used the Ackley function with n = 10 dimensions. Usually

in the literature, the domain of the Ackley function is defined as X ∈ (−32, 32)n. This

however leads to a bias performance of population-based methods, as the optimum is

found exactly in the center of the search space, X∗ = {0, 0, ..., 0}. In order to avoid

this, we used the skewed initialization, that is, we used the domain of the same size, but

shifted off the center, X ∈ (−16, 48)n.

As before, we have chosen the parameters for ACOR, ACOR-S, and ACOR-P using the

F-Race method. Table 4.12 presents these parameters.

Table 4.12: Summary of the parameters used by ACOR, ACOR-S, and ACOR-P
algorithms for the Ackley problem.

Symbol ACOR ACOR-S ACOR-P

m 2 2 2

ξ 0.9 0.5 0.5

q 0.06 10−4 10−3

k 50 50 50

The performance of the algorithms was compared using the number of function evalua-

tions needed to reach the accuracy of e = 10−4. We have done 100 independent runs of

each algorithm. Table 4.13 presents the values of the minimum, median, and maximum

number of the objective function evaluations needed to achieve the required accuracy

by each of the algorithms.

Table 4.13: Summary of the results obtained by ACOR, its hybrids with direct
search methods, and the random-restart versions of the direct search methods
on the Ackley problem. The dashes indicate, when the solution could not be
found with required accuracy even with one million of function evaluations.

Alg. Min Median Max

ACOR 2206 2512 2794

ACOR-S 503046 604632 665586

ACOR-P 20422 27708 39962

RRS - - -

RRP - - -

The results are quite different than on the other two test problems. Both random-restart
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versions of the direct search heuristics failed to find the optimum of the Ackley function

even when allowed one million of function evaluations. This is most likely due to the

fact that the Ackley function has so many local optima that finding a starting point

that would allow the direct search method to reach the global optimum is very difficult

when doing it at random. A higher level strategy is probably needed to guide the search

process towards the promising regions of the search space. This is supported by the fact

that the hybrids of ACOR with either of the direct search methods managed to find the

optimum.

However, the most interesting result is the one obtained by the ACOR algorithm alone.

It performs on average 10 times better than ACOR and Powell hybrid and 200 times

better than ACOR and Simplex hybrid. The poor performance of the hybridized versions

of ACOR may be explained. While ACOR is able to guide the search process towards

the global optimum, the direct search methods used as local search use many function

evaluations in order to find each local optimum on the way. However, this is not really

necessary to converge to the global optimum. The ACOR algorithm when used alone

can therefore quickly converge towards the global optimum, and only then intensify the

search to reach the required accuracy. Hence, for problems with many local optima and

a general structure that may be exploited by a higher level strategy, ACOR appears to

be much more efficient than any of the two direct search methods investigated.

Conclusions

The results of the experiments presented in this section lead to quite interesting obser-

vations. The first, and the most obvious one is that depending on the problem at hand,

ACOR may outperform direct search methods. This is particularly the case for complex

multimodal problems with many local optima.

Another observation is that for all the problems investigated, the performance of the

Simplex method is never better than the Powell method. Hence, if the direct search

methods are considered, the Powell method rather than Simplex should be used.

The third, and probably the most interesting observation is the fact that for none of

the problems investigated, a hybridized version of ACOR was the overall winner. For

any of the problems, either the random-restart Powell method was the best performing

one (Rosenbrock and Shekel (4,7)), or ACOR alone was the best one (Ackley). Hence, it

appears that there is no added value in hybridizing ACOR with a direct search method

as a local search. Although adding such local search could improve ACOR performance
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in some cases, when it happens, probably the random-restart version of this direct search

method could perform better. On the other hand, if ACOR performs well—as for the

Ackley problem—adding a local search does not help.

4.3.4 Diversification vs. Intensification

When tackling multimodal test functions, it is important that the algorithm is able to

avoid being stuck in one of the local optima. An algorithm must use some strategy to

diversify the search in such a way that it does not get stuck in a local optimum, and yet

it is able to converge in the global optimum.

These in fact are two contradictory goals. On one hand, an algorithm is expected to

converge as fast as possible, while on the other hand, it is expected not to converge

entirely to a local optimum. The fundamental problem is that an algorithm does not

know if a given promising region contains a local or a global optimum. Hence, an

algorithm has to make an intelligent guess, whether to focus on diversification (higher

robustness), or intensification (higher convergence speed—higher efficiency).

Algorithms proposed for continuous optimization deal with this problem in various ways.

Some just ignore it (like the simple (1+1)ES), but this usually does not give good re-

sults. Others explicitly divide the operation of the algorithm into the diversification

and intensification phases—e.g., CGA, ECTS, or CIAC. Finally, some algorithms use

one or more parameters in order to define the balance between diversification and in-

tensification. Such an approach is used for instance by CSA-ES, CMA-ES, IDEA, and

ACOR.

Usually, parameters such as learning rate and population size are those that most in-

fluence the robustness of the algorithm. In the case of ACOR, they also play some

role—i.e., the slower the learning rate and the larger the solution archive size, the more

robust is the algorithm, but the slower is the convergence speed. In ACOR, there is

also another parameter specifically designed to control the diversification of the search

process—parameter q.

When q approaches 0, it means that only the Gaussian function associated with the best

solution found so far is used for generating further solutions by the ants. Following

Equations. B.5 and B.6, for a given parameter q and size of the solution archive k, the

probability pqk of choosing one of the q · k highest ranking solutions as the base for the

PDF is: pqk ≈ 0.68 (and respectively p2qk ≈ 0.95). This is due to the characteristic of the



86 ACO for Continuous Domains
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Figure 4.3: Relationship between the robustness of the ACOR algorithm and
its efficiency. For each of the two test functions, and for each value of the
parameter q tested, the failure rate (upper part) and the distribution of the
number of function evaluations needed to reach the required accuracy (lower
part) are given. The size of the solution archive was fixed at k = 100, and
m = 2 ants were used in all runs.

normal distribution: around 68% of the samples fall inside the interval (−σ, σ) around

the mean and respectively 95% in the interval (−2σ, 2σ). For instance, for q = 0.1 and

k = 50 (as used in experiments in Sec. 4.3.2), one of the 5 highest ranking solutions

will be used with probability 0.68, and one of the 10 highest ranking solutions with

probability 0.95.

When using larger q, the algorithm samples the search space based on a larger number

of reasonably good solutions, rather than only on the best one found so far. The search

is hence more diversified and the algorithm performs more robustly. Unfortunately,

as already said, higher robustness usually means lower efficiency—slower convergence

speed. This is illustrated in Fig. 4.3, which shows the failure rate (upper part) and
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the distribution of number of function evaluations for different values of the parameter

q (lower part), for two typical multimodal test functions—Shekel (S4,7) and Griewank

(GR10). The distribution of the number of function evaluations is given only for the

successful runs. It is presented in the form of boxplots—the box is drawn between the

first and the third quartile of the distribution, with median and outliers indicated.

4.4 Discussion

We have presented in this chapter a straightforward way of extending Ant Colony Opti-

mization to continuous domains. We have discussed the idea and shown its implemen-

tation. ACOR is a direct extension of ACO, and it is the first ant-based algorithm for

continuous optimization which fits in the ACO framework.

We have discussed how ACOR is situated within the (rather large) family of algorithms

for continuous optimization. We have tested the performance of ACOR against a sub-

stantial number of other algorithms and approaches. The results obtained show that

ACOR may be considered a competitive approach. Additionally, the performance of

ACOR may be adapted according to the needs to either show more robustness or higher

efficiency.

ACOR, when compared to other probability-learning methods, proved to be the best on

four out of 10 test problems. On the others, the quality of the solutions found was not

significantly worse than the state-of-the-art. Also, ACOR is a clear winner when com-

pared to other ant-related algorithms for continuous optimization that were proposed in

the past. When compared to these methods, ACOR was better by almost two orders of

magnitude. When compared to other metaheuristics adapted to continuous optimiza-

tion, ACOR was the winner in one-third of the test problems and performed not much

worse on the others. Finally, while for some problems ACOR is clearly outperformed by

direct search methods, such as Powell, for problems with large number of local optima

ACOR performs much better than the direct search methods.
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Chapter 5

ACOR for Training Neural Networks

While in Chapter 4, we have presented the ACOR algorithm and shown how it per-

forms of typical continuous benchmark test problems, this chapter presents its practical

application.

In this chapter, we present how the ACOR algorithm may be successfully applied to the

problem of training neural networks. Also, in order to provide a further insight into

the performance of the ACOR algorithm, we use not only a stand-alone ACOR, but also

we introduce a hybrid versions of ACOR with typical derivative-based methods used for

neural network training. We compare the results obtained with those reported in the

literature.

We have chosen a pattern classification problem from the medical field as a test problem.

Artificial neural network (NN) is used as a classifier, but first it must be trained. We

employ the ACOR algorithm as the method to train this network.

Pattern classification is an important real-world problem. In the medical field, for ex-

ample, pattern classification problems arise when physicians are interested in reliable

classifiers for diseases based on a number of measurements. Feed-forward neural net-

works are commonly used systems for the task of pattern classification [Bishop, 2005],

but require prior configuration. Generally, the configuration problem consists of two

parts:

• First, the structure of the feed-forward NN has to be determined.

• Second, the numerical weights of the neuron connections have to be determined

such that the resulting classifier is as correct as possible.

89
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Figure 5.1: A feed-forward NN with one hidden layer of neurons is presented
on the left. Note that each neuron of a certain layer is connected to each neuron
of the next layer. On the right, one single neuron (from either the hidden layer,
or the output layer) is presented. The neuron receives inputs (i.e., signals il,
weighted by weights wl) from each neuron of the previous layer. Additionally,
it receives a so-called bias input ibias with weight wbias. The transfer function
f(

∑
) of a neuron transforms the sum of all the weighted inputs into an output

signal, which serves as input for all the neurons of the following layer. Input
signals, output signals, biases and weights are real values.

In this work, we focus only on the second part, namely the optimization of the connection

weights. We adopt the NN structures from earlier works on the same subject.

The outline of this chapter is as follows. In Section 5.1, we shortly present the structure

of feed-forward NNs for the purpose of pattern classification. In Section 5.2, we present

the experimental setup proposed. Then, in Section 5.3 we compare the ACOR algorithm

to methods specialized for feed-forward NN training, as well as to a genetic algorithm.

Finally, in Section 5.4 we offer a conclusion and a glimpse of future work.

5.1 Feed-Forward Neural Networks for Pattern Clas-

sification

A dataset for pattern classification consists of a number of patterns together with their

correct classification. Each pattern consists of a number of measurements (i.e., numerical

values). The goal consists in generating a classifier that takes the measurements of a

pattern as input, and provides its correct classification as output. A popular type of

classifier are feed-forward neural networks (NNs).
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A feed-forward NN consists of an input layer of neurons, an arbitrary number of hidden

layers, and an output layer (for an example, see Figure 5.1). Feed-forward NNs for

pattern classification purposes consist of as many input neurons as the patterns of the

data set have measurements, i.e., for each measurement there exists exactly one input

neuron. The output layer consists of as many neurons as the data set has classes, e.g.,

if the patterns of a medical data set belong to either the class normal or to the class

pathological, the output layer consists of two neurons. Given the weights of all the

neuron connections, in order to classify a pattern, one provides its measurements as

input to the input neurons, propagates the output signals from layer to layer until the

output signals of the output neurons are obtained. Each output neuron is identified with

one of the possible classes. The output neuron that produces the highest output signal

classifies the respective pattern (winner takes all).

5.1.1 Definition of the Problem

Due to their practical importance, we chose to evaluate the performance of ACOR on

classification problems arising in the medical field. More specifically, we chose three

problems from the well-known PROBEN1 benchmark set [Prechelt, 1994], namely Can-

cer1, Diabetes1, and Heart1. Each of these problems consists of a number of patterns

together with their correct classification, that is, Cancer1 consists of 699 patterns from a

breast cancer database, Diabetes1 consists of 768 patterns concerning diabetes patients,

and Heart1 is the biggest of the three data sets, consisting of 920 patterns describing a

heart condition. Each pattern of the three problems is either classified as pathological,

or as normal. Furthermore, each pattern consists of a number of measurements (i.e.,

numerical values): 9 measurements in the case of Cancer1, 8 in the case of Diabetes1,

and 35 in the case of Heart1. The goal consists in generating a classifier that takes the

measurements of a pattern as input, and provides its correct classification as output.

Concerning the hidden neuron layers of the feed-forward NNs that we used, we took

inspiration from the literature. More specifically we used the same structure of hidden

layers that were used in [Alba and Chicano, 2004]. For an overview of the feed-forward

NNs that we used see Tab. 5.1. The number of weights to be optimized is (for each of

the three data sets) given by the following formula:

nh(ni + 1) + no(nh + 1) , (5.1)
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Table 5.1: Summary of the NN structures that we use for the three data sets.
In the last table column is given the number of weights to be optimized for each
tackled problem. Note that for the calculation of this number, the bias inputs
of the neurons have also to be taken into account.

Data Set Input Layer Hidden Layer Output Layer # of weights

Cancer1 9 6 2 74

Diabetes1 8 6 2 68

Heart1 35 6 2 230

where ni, nh, and no are respectively the numbers of input, hidden, and output neurons.

Note that the additional input for each neuron of the hidden layer and the output layer

represents the bias inputs. The last column of Tab. 5.1 provides the number of weights

to be optimized.

The process of generating a NN classifier consists of determining the weights of the

connections between the neurons such that the NN classifier shows a high performance.

Since the weights are real-valued, this is a continuous optimization problem of the follow-

ing form: Given are n decision variables {X1, . . . , Xn} with continuos domains. These

domains are not restricted, i.e., each real number is feasible. Furthermore, the problem

is unconstrained, which means that the variable settings do not depend on each other.

Sought is a solution that minimizes the objective function called square error percentage

(SEP):

SEP = 100
omax − omin

n0np

np∑
p=1

n0∑
i=1

(tpi − op
i )

2 , (5.2)

where omax and omin are respectively the maximum and minimum values of the output

signals of the output neurons, np represents the number of patterns, n0 is the number

of output neurons, and tpi and op
i represent respectively the expected and actual values

of output neuron i for pattern p.

Finally, in order to assess the quality of the final solution found by a given algorithm,

we used the Classification Error Percentage (CEP) as the performance measure. CEP

represents the percentage of incorrectly classified patterns from the test set.



ACOR for Training Neural Networks 93

5.2 Experimental Setup

5.2.1 Algorithms Used for Comparison

The goal of our experimentation was to evaluate whether ACOR may be used for train-

ing feed-forward NNs, and if so, we were interested in how it would compare to other

algorithms. In order to be able to draw any meaningful conclusions, it is required to

have some reference algorithm to which to compare the performance of ACOR. In order

to ensure a fair comparison, we have re-implemented some algorithms traditionally used

for training NNs—namely the back-propagation (BP) algorithm and the Levenberg-

Marquardt (LM) algorithm. We used the R programming language (a free alternative

to S+) for implementing these algorithms.

Backpropagation

Backpropagation is a gradient-descent algorithm traditionally used for training NNs

[Rumelhart et al., 1986]. The term backpropagation is an abbreviation which stands for

backwards propagation of errors. It is a first-order minimization algorithm—i.e., it is

based on first-order derivatives (i.e., the gradient). It uses the estimation of the gradient

of the instantaneous sum-squared error for each network layer:

∆~w = −η5 E(~w) , (5.3)

where ~w is the vector of all weights, η is the learning rate, and E is the error. The

technique may be informally described as follows:

1. Present a training pattern to the neural network

2. Compare the network’s output to the desired output. Calculate the error in each

output neuron.

3. For each neuron, calculate what the output should have been, and a scaling factor,

how much lower or higher the output must be adjusted to match the desired output.

This is the local error.

4. Adjust the weights of each neuron to lower the local error.
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5. Assign blame for the local error to neurons at the previous level, giving greater

responsibility to neurons connected by stronger weights.

6. Repeat the steps above on the neurons at the previous level, using each one’s blame

as its error.

As the algorithm’s name implies, the errors (and therefore the learning) propagate back-

wards from the output nodes to the inner nodes. So technically speaking, backpropaga-

tion is used to calculate the first-order gradient of the error of the network with respect

to the network’s modifiable weights. This gradient is then used in a simple stochastic

gradient descent algorithm to find weights that minimize the error. Often the term

backpropagation is used in a more general sense, to refer to the entire procedure encom-

passing both the calculation of the gradient and its use in stochastic gradient descent.

Backpropagation usually allows quick convergence on satisfactory local minima. The

BP algorithm has been rediscovered a number of times, and is a special case of a more

general technique called automatic differentiation in the reverse accumulation mode.

Levenberg-Marquardt

Levenberg-Marquardt is a variation of Newton’s method that was initially designed for

minimizing functions that are either sums of squares, or, in general, other non-linear

functions [Hagan and Menhaj, 1994]. In Newton’s method, minimization is based on

utilizing the second order derivatives as well as on the use of a batch training mode

rather than the pattern mode (which is used, for example, in back-propagation). The

batch training mode is based on derivatives of instantaneous errors. The LM algorithm

uses an approximation of the Hessian matrix by adding a small constant µ multiplied

by the identity matrix I to the product of the transposed Jacobian matrix JT and the

Jacobian matrix J :

∆~w = −
P∑
1

5E(w)
[
J(w)T J(w) + µI

]−1
. (5.4)

Both algorithms (i.e., BP and LM) require gradient information. Hence, they require the

neuron transfer function to be differentiable. Consequently, these algorithms may not be

used in the case, when the neuron transfer function is not differentiable or is unknown. In
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contrast, ACOR is a general heuristic optimization that can be applied when the neuron

transfer function is non-differentiable. On the other side, in case, when the neuron

transfer function is differentiable, the drawback of general optimization algorithms such

as ACOR is that they do not exploit available additional information as, for example,

gradient information.

In order to see how the additional gradient information influences the performance of

ACOR, we have also implemented hybridized versions of ACOR, namely ACOR-BP and

ACOR-LM, which are hybrids of the ACOR algorithm and respectively the BP and

LM algorithms. In these hybrids, each solution generated by the ACOR algorithm is

improved by running a single improving iteration of either BP or LM, respectively.

Finally, we wanted to study how all the algorithms tested compare to a simple random

restart search method. In order to accomplish that, we have implemented random search

(RS)—i.e., an algorithm that randomly generates a set of values for the weights and then

evaluates these solutions. As we used a sigmoid function as neuron transfer function,

it was sufficient to limit the range of weight values to values close to 0. Hence, we

arbitrarily chose a range of [−5, 5].

5.2.2 Parameter Tuning

All our algorithms (with the exception of RS) require certain parameter values to be

determined before they can be applied. While algorithms such as BP or LM have very

few parameters, ACOR (as well as its hybridized versions) have more. In general, in

order to ensure a fair comparison of algorithms, an equal amount of effort is required in

the parameter tuning process for each of the algorithms. Also, it has been shown in the

literature that the stopping condition for the parameter tuning runs should be identical

to the one used in the actual experiments (be that time, number of iterations, etc.), as

otherwise the danger of choosing suboptimal parameter values increases [Socha, 2003].

We have hence used a common parameter tuning methodology for all our algorithms,

with the same stopping condition that we planned to use for the final experiments.

The methodology that we used is known as F-RACE methodology [Birattari et al., 2002;

Birattari, 2005]. In particular we used the RACE package for R. It allows running a

race of different configurations of algorithms against each other on a set of test instances.

After each round, the non-parametric Friedman test is used to compare the performance

of different configurations. Configurations are being dropped from the race as soon as
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Table 5.2: Summary of the number of patterns used for training and testing
both for parameter tuning and the final performance evaluation. The parameters
used for parameter tuning (learning and testing) were randomly chosen from the
training set that we used later in the performance evaluation.

Parameter Tuning Performance Evaluation

Problem Total Training set Test set Training set Test set

patterns for tuning for tuning for testing for testing

Cancer1 699 350 175 525 174

Diabetes1 768 384 192 576 192

Heart1 920 460 230 690 230

sufficient statistical evidence has been gathered against them. For more information on

the F-RACE methodology, we refer the interested reader to [Birattari, 2005]. Since for

the problems we investigated we did not have several instances available (i.e., we wanted

to tune the algorithms for each of the three considered data sets separately), we have

created a set of instances for each race by dividing randomly (several times) the training

set of each problem instance into a training set for tuning (two thirds of the training set)

and a test set for tuning (one third of the training set). Tab. 5.2 provides details on the

number of patterns used respectively for learning and validation during the parameter

tuning runs, as well as for training and testing the chosen configurations.

For the tuning, we determined 10 different configurations of parameter settings for each

of our algorithms. Then, we applied the F-RACE to each instance set (i.e., per algorithm,

per problem), allowing not more than 100 experiments in the race. Each of the parameter

tuning races returned one configuration that performed best1. The final parameter value

settings that we used for our final experiments are summarized in Tab. 5.3

5.3 Results

The evaluation of a classifier is generally performed as follows. Given a problem instance,

the set of pattern is divided into a training set and a test set. The pattern from the

training set are used for the training of the classifier, while the pattern from the test set

1Due to the limited resources for tuning, the chosen configuration for each race is not necessarily
significantly better than all the others. The limit of 100 experiments per race did sometimes not allow
reaching that level of assurance. However, the chosen configuration was definitely not significantly worse
than any of the others.
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Table 5.3: Summary of the final parameter values that we chose for our al-
gorithms. Not included in the table are the parameters common to all ACOR
versions, namely q and m. For these parameters we used the settings q = 0.01,
and m = 2 (the number of ants used in each iteration). Note that η is the
step-size parameter of BP, and β is the adaptation-step parameter of LM.

Cancer1 Diabetes1 Heart1

Alg. k ξ η β k ξ η β k ξ η β

ACOR 148 0.95 - - 136 0.8 - - 230 0.6 - -

ACOR-BP 148 0.98 0.3 - 136 0.7 0.1 - 230 0.98 0.4 -

ACOR-LM 148 0.9 - 10 136 0.1 - 10 230 0.1 - 10

BP - - 0.002 - - - 0.01 - - - 0.001 -

LM - - - 50 - - - 5 - - - 1.5

are used for the performance evaluation of the trained classifier, that is, for calculating

the CEP value. This method is called the holdout method. For the first set of experiments

that are presented in Section 5.3, we chose the first 75% of the pattern as training set,

and the remaining 25% as test set. An overview of the resulting number of patterns in

training and test set is given in the last two columns of Table 5.2. We chose this method

for the first set of experiments, as it made it possible to compare the results we obtained

with those found in literature.

However, the holdout method may depend (sometimes heavily) on the chosen division

of the pattern into training set and test set. In fact, the classifier evaluation may be

significantly different depending on how this division is made. Therefore, we performed

in a second set of experiments a so-called k-fold cross-validation. Hereby, the set of

pattern is divided into k subsets, and the holdout method is repeated k times. Each

time, one of the k subsets is used as the test set and the remaining k − 1 subsets

are joined to form the training set. Then the average CEP value across all k trials

may be computed. The aim of k-fold cross-validation is to average out the effects of

the training/test set division. The disadvantage of this method is that the training

algorithm has to be rerun from scratch k times, which means it takes k times as much

computation time to make an evaluation. In Section 5.3.2 we present the results of a

4-fold cross-validation.
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5.3.1 Initial Results

In order to compare the performance of the algorithms, we applied each algorithm 50

times to each of the three test problems. As stopping condition we used the number of

fitness function evaluations. Following the work of Alba and Chicano [Alba and Chicano,

2004], we used 1000 function evaluations as the limit in order to be able to compare our

results to those obtained by them.

Figures 5.2, 5.3, and 5.4 present respectively the results obtained for the cancer, diabetes,

and heart test problems in the form of box-plots. Each figure presents the distributions

of the actual classification error percentage (CEP) values obtained by the algorithms

(over 50 independent runs); the right one presents the distributions of rankings achieved

by the algorithms. Any solution generated by any of the algorithms is ranked. Having

6 algorithms and running 50 trials each, the possible rankings vary from 1 to 300.

The distribution of those rankings is then plotted per algorithm—this allows for a clear

identification of those better performing ones, regardless of how small the difference may

be in terms of objective function value. The boxes are drawn between the first and the

third quartile of the distribution, while the indentations in the box-plots (or notches)

indicate the 95% confidence interval for a given distribution [McGill et al., 1978]. In

other words, this means that if the notches of two distributions do not overlap, they are

significantly different with 95

Cancer1 (see Figure 5.2) appears to be the easiest data set among the three that we

tackled. All algorithms obtained reasonably good results, including the RS method.

However, the best performing algorithm is BP. From the fact that the results obtained

by RS do not differ significantly from the results obtained by other–more complex al-

gorithms, it may be concluded that the problem is relatively easy, and that there are a

lot of reasonably good solutions scattered over the search space. None of the algorithms

was able to classify all the test patterns correctly. This may be due to the limited size

of the training set, i.e. there might have been not enough information in the training set

to generalize perfectly.

Diabetes1 (see Figure 5.3) is a problem that is more difficult than Cancer1. All our

algorithms clearly outperform RS. However, the overall performance of the algorithms

in terms of the CEP value is not very good. The best performing is again BP. The less

good overall performance of the algorithms may again indicate that the training set does

not represent fully all the possible patterns.

The Heart1 problem (see Figure 5.4) is—with 230 weights—the largest problem that we
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Figure 5.2: Box-plots for Cancer1. The boxes are drawn between the first and
the third quartile of the distribution, while the indentations in the box-plots (or
notches) indicate the 95 % confidence interval.
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Figure 5.3: Box-plots for Diabetes1. The boxes are drawn between the first
and the third quartile of the distribution, while the indentations in the box-plots
(or notches) indicate the 95 % confidence interval.
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Figure 5.4: Box-plots for Heart1. The boxes are drawn between the first and
the third quartile of the distribution, while the indentations in the box-plots (or
notches) indicate the 95 % confidence interval.

tackled. It is also the one on which the performance of the algorithms differed mostly.

All tested algorithms clearly outperform RS, but there are also significant differences

among the more complex algorithms. BP, which was performing quite well on the other

two test problems, did not do so well on Heart1. ACOR achieves results similar to

BP. In turn, LM which was not performing so well on the first two problems, obtains

quite good results. Very interesting is the performance of the hybridized versions of

ACOR, namely ACOR-BP and ACOR-LM. The ACOR-BP hybrid clearly outperforms

both ACOR and BP. ACOR-LM outperforms respectively ACOR and LM. Additionally,

ACOR-LM performs best overall.

Summarizing, we note that the performance of ACOR alone does often not quite reach the

performance of the derivative based algorithms and the ACOR hybrids. Its performance

is, however, not much worse. Furthermore, the results show that hybridizing ACOR with

BP or LM helps to improve the results of the pure ACOR algorithm. This was especially

the case for Heart, where ACOR-LM was the overall winner. We want to remind at this

point that ACOR is much more general than for example BP and LM, because it does

not require derivative information. Hence, it may be applied when the neuron transfer

function of a NN is non-differentiable or unknown, while algorithms such as BP or LM

could not be used in this case.
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Table 5.4: Pair-wise comparison of the results (CEP) of ACOR with recent
results obtained by a set of GA (see [Alba and Chicano, 2004]). The results can
be compared due to the fact that 1000 evaluations as stopping criterion were
used for all the algorithms. For each problem-algorithm pair we give the mean
(over 50 independent runs), and the standard deviation (in brackets). The best
result of each comparison is indicated in bold.

GA ACOR

Cancer1 16.76 (6.15) 2.39 (1.15)

Diabetes1 36.46 (0.00) 25.82 (2.59)

Heart1 41.50 (14.68) 21.59 (1.14)

Table 5.5: Pair-wise comparison of the results (CEP) of the ACOR based hybrid
algorithms with recent results obtained by a set of GA based hybrid algorithms
(see [Alba and Chicano, 2004]). The results can be compared due to the fact that
1000 evaluations as stopping criterion were used for all the algorithms. For each
problem-algorithm pair we give the mean (over 50 independent runs), and the
standard deviation (in brackets). The best result of each comparison is indicated
in bold.

GA-BP ACOR-BP GA-LM ACOR-LM

Cancer1 1.43 (4.87) 2.14 (1.09) 0.02 (0.11) 2.08 (0.68)

Diabetes1 36.36 (0.00) 23.80 (1.73) 28.29 (1.15) 24.26 (1.40)

Heart1 54.30 (20.03) 18.29 (1.00) 22.66 (0.82) 16.53 (1.37)

Finally, it is interesting to compare the performance of the ACOR based algorithms

to some other general optimization algorithms. Alba and Chicano [Alba and Chicano,

2004] have published the results of a genetic algorithm (GA) used for tackling exactly

the same three problems as we did. They have tested not only a stand-alone GA, but

also its hybridized versions: GA-BP and GA-LM.

Tables 5.4 and 5.5 summarizes the results obtained by the ACOR and GA based algo-

rithms. Clearly the stand-alone ACOR performs better than the stand-alone GA for all

the test problems. ACOR-BP and ACOR-LM perform respectively better than GA-BP

and GA-LM on both of the more difficult problems Diabetes1 and Heart1 and worse on

Cancer1. For the Heart1 problem the mean performance of any ACOR based algorithm

is significantly better than the best GA based algorithm (which was reported as the

state-of-the-art for this problem in 2004).
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Figure 5.5: Box-plots concerning Cancer1. The boxes are drawn between the
first and the third quartile of the distribution, while the indentations in the
box-plots (or notches) indicate the 95 % confidence interval. The results are
presented for each sample of the 4-fold cross-validation.

5.3.2 Cross-Validation Experiments

In order to study the influence of the training/test set division, we have designed a 4-fold

cross-validation. We have divided the set of pattern of each problem instance into four

equal parts. Then we chose each part in turn as the test set, leaving the other three

parts as training set. Each of the four pairs of training and test set is henceforth called

a sample. Note that the 4-th sample is thus identical to the one which was used in the

set of experiments described in Section 5.3.

We have not repeated the parameter tuning for the three new samples. Instead, we

simply used the same set of parameter values as reported in Table 5.3. We applied

each of our algorithms 50 times to each of the three new samples. Figures 5.5, 5.6,

and 5.7 present the obtained results. Note that the order (from left to right) in which

the algorithm results are presented is the same in each box-plot: ACOR, ACOR-BP,

ACOR-LM, BP, LM, RS. Instead of presenting the averages over the 4 cross-validation

experiments, we rather show the results for each of them separately. Several interesting

observations may be made based on the performance of the algorithms on different
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Figure 5.6: Box-plots concerning Diabetes1. The boxes are drawn between
the first and the third quartile of the distribution, while the indentations in the
box-plots (or notches) indicate the 95 % confidence interval. The results are
presented for each sample of the 4-fold cross-validation.

samples.

The results concerning Cancer1 allow us to make the following observation. While there

are not many differences between the algorithms when applied to the same sample, the

differences between the applications of the same algorithm to different samples is gen-

erally very high. The former is consistent with our observation concerning sample 4 in

the previous section. However, the latter means that the difficulty levels represented by

the different samples vary significantly. Apart from that, it can be observed that BP is

consistently the best algorithm for all samples, although this is not always statistically

significant. The fact that random search (RS) performs similarly to the other algorithms

over all samples, strengthens our initial hypothesis that this problem instance is reason-

ably easy. The fact that there are big differences of the same algorithm when applied to

different samples, might lead to the conclusion that the samples are neither homogenous

nor entirely separable. If they were reasonably homogenous, the differences between the

samples would be smaller. If they were separable, most likely some algorithms would

perform much better than others, and in particular much better than random search.

This might be caused by the fact that the number of patterns available in Cancer1 is
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Figure 5.7: Box-plots concerning Heart1. The boxes are drawn between the
first and the third quartile of the distribution, while the indentations in the
box-plots (or notches) indicate the 95 % confidence interval. The results are
presented for each sample of the 4-fold cross-validation.

relatively small. If the number of patterns was substantially larger, the chance of the

uniform distribution of the two classes in the data set could be higher. Also, this might

make the two classes better separable.

The situation for the Diabetes1 problem instance is similar to that of Cancer1. This

is with the exception of random search, which performs significantly worse than all

the other algorithms. Moreover, no longer a single algorithm may be identified that

performs best across all the samples. While in samples 1 and 4 the best algorithm

appears to be BP, in samples 2 and 3 it is rather ACOR-LM that performs best. Again,

the differences of the same algorithm over the samples are quite big. This suggests a

similar explanation concerning the homogeneity of the samples and number of pattern

as in the case of Cancer1. Indeed, the number of pattern available for Diabetes1 is only

slightly larger than for Cancer1. Finally, for all samples it holds that the separation of

the different classes is far from perfect—hardly for any sample the CEPs obtained by

any of the algorithms drop below 20%.

Finally, let us deal with the last problem instance tackled—the Heart1 problem. The
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situation in this case is slightly different than in the previous cases. First of all, over

all samples the random search algorithm performs worst. Further, the performance

differences between the other algorithms regarding a single sample are more pronounced,

which holds for all samples. At the same time, the differences in performance of the

same algorithm across the samples are no longer so pronounced—they are still there,

but smaller. Moreover, ACOR-LM algorithm seems to be the best algorithm for all the

samples. The higher homogeneity of the samples may be explained by the fact that the

Heart1 problem instance has the highest number of patterns available in the data set:

over 30% more than in the case of Cancer1. Heart1 is the most difficult problem instance

of the three tackled—while the naive method of random search performs quite poorly,

the remaining algorithms perform relatively well.

5.4 Discussion

We have presented an ant colony optimization algorithm (i.e., ACOR) for the training

of feed-forward neural networks for pattern classification. The performance of the algo-

rithm was evaluated on real-world test problems and compared to specialized algorithms

for feed-forward neural network training (backpropagation and LevenbergMarquardt).

In addition we compared our algorithms to another general optimizer, namely a genetic

algorithm. Further, we have performed a 4-fold cross-validation analysis of the perfor-

mance of the different algorithms. The results of this analysis show that there is probably

insufficient number of training patterns in the cases of the two smaller problem instances,

which leads to the fact that the classes are not very well separable. More training pat-

terns would perhaps allow for more homogenous results. Of course, the non-separability

may result from the problem definition itself. Perhaps, the chosen measurements do not

provide enough information to always properly classify the case.

The performance of the stand-alone ACOR was comparable (or at least it was not much

worse) than the performance of specialized algorithms for neural network training. This

result is particularly interesting as ACOR—being a much more generic approach—allows

also the training of networks in which the neuron transfer function is either not differen-

tiable or unknown (i.e., black-box type of neurons). The hybrid between ACOR and the

Levenberg-Marquardt algorithm (i.e., ACOR-LM) was in some cases able to outperform

the backpropagation and the Levenberg-Marquardt algorithms that are traditionally

used for neural network training. Finally, when compared to other general-purpose al-

gorithms, namely genetic algorithm based algorithms from the literature, our results
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showed that the ant colony optimization based algorithms may provide superior perfor-

mance for some of the test problems. Further research is needed to see how our algorithm

performs on more complex problems, but the initial results are promising.



Chapter 6

Mixed-Variable Optimization with

ACO—ACOMV

As mentioned in the Chapter 2, mixed-variable optimization problems are a combination

of discrete and continuous optimization. ACO is well known (as presented in Chapter 3)

for being able to successfully tackle the discrete optimization problems. Also, as shown in

Chapters 4 and 5, ACOR may be successfully used for tackling continuous optimization

problems. Hence, similarly to other continuos optimization algorithms, it may be used

also for tackling mixed-variable optimization problems through relaxation of the discrete

constraints.

However, this conclusion relies on the assumption that a certain ordering may be defined

on the set of discrete variables’ values. While this assumption is fulfilled in many real

world problems,1 it is not necessarily always the case. In particular, this is not true

for categorical variables, that is, variables that may assume values associated with ele-

ments of an unordered set. We can intuitively expect that if the correct ordering is not

known, or does not exist (as in case of categorical variables), the continuous optimization

algorithms may perform poorly.

On the other hand, algorithms that natively handle mixed-variable optimization prob-

lems are indifferent to the ordering of the discrete variables, as they do not make any

particular assumptions about it. Hence—again intuitively—we would expect that these

algorithms would perform better on problems containing categorical variables, and that

they would not be sensitive to the particular ordering chosen.

1Consider for instance pipe diameters: the sizes could be 1
4”, 1

2”, 1”, 1 1
2”, etc., and the ordering of

these values is obvious.
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Accordingly, in this chapter we test the hypothesis that:

Hypothesis 6.1
Native mixed-variable optimization algorithms are more

efficient than continuous optimization algorithms with

relaxed discrete constraints in the case of mixed-variable

problems containing categorical variables, for which no

obvious ordering exists.

In order to test this hypothesis, we propose a modified version of ACOR—ACOMV—an

algorithm that is able to handle natively also mixed-variable optimization problems. We

present the modifications made, and and give example of the implementation.

Additionally, a proper benchmark problem is needed. Mixed-variable benchmark prob-

lems may be easily found in the literature. They often originate from the mechanical

engineering field. Examples include the coil spring design problem [Deb and Goyal,

1998; Lampinen and Zelinka, 1999c; Guo et al., 2004], the problem of designing a pres-

sure vessel [Deb and Goyal, 1998; Guo et al., 2004; Schmidt and Thierauf, 2005], or

the thermal insulation systems design [Audet and Dennis Jr., 2001; Kokkolaras et al.,

2001]. None of these problems, however, can be easily parametrized for the purpose of

comparing the performance of a continuous and a mixed-variable algorithm. Because of

this, we propose a new simple yet flexible benchmark problem based on the Ellipsoid

function. We use this benchmark problem for analyzing the performance of two versions

our algorithm—continuous ACOR and native mixed-variable ACOMV. Later, we evalu-

ate the performance of both the algorithms also on other typical benchmark problems

from the literature.

The remainder of this chapter is organized as follows. Section 6.1 presents the modified

ACOR that is able to handle both continuous and mixed-variable problems—ACOMV.

In Section 6.2, our proposed benchmark is defined, which allows to easily compare the

performance of ACOR with that of ACOMV. The results of this comparison are presented

and analyzed. In Section 6.3, ACOR and ACOMV are tested on benchmark problems

derived from real-world problems. The results obtained are also compared to those found

in the literature. Finally, Section 6.4 summarizes the results obtained, offers conclusions,

and outlines the plans for future work.
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6.1 ACO and Mixed Variables

While ACOR has been designed to handle only continuous variables, the ability to handle

both continuous and discrete variables can be easily introduced. It requires only an

additional routine responsible for constructing the discrete part of the solutions for

mixed-variable optimization problems.

ACOMV extends ACOR allowing to declare each variable of the considered problem as

continuous, ordered discrete, or categorical discrete. Continuous variables are treated

as in the original ACOR, while discrete variables are treated differently. The pheromone

representation (i.e., the solution archive) as well as the general flow of the algorithm do

not change. Hence, we focus here on presenting how the discrete variables are handled.

If there are any ordered discrete variables defined, ACOMV uses a continuous-relaxation

approach. The natural ordering of the values for these variables may have little to do

with their actual numerical values (and they may even not have numerical values, e.g.,

x ∈ {small, big, huge}). Hence, instead of operating on the actual values of the ordered

discrete variables, ACOMV operates on their indexes. The values of the indexes for the

new solutions are generated by the algorithm as real numbers, as it is the case for the

continuous variables. However, before the objective function is evaluated, the continuous

values are rounded to the nearest valid index, and the value at that index is then used

for the objective function evaluation.

Clearly, at the algorithm level, ACOMV≡ACOR in this case. However, things change

when the problem includes categorical discrete variables, as for this type of variables

there is no pre-defined ordering. This means that the information about the ordering

of the values in the domain may not be taken into consideration. The values for these

variables need to be generated with a different method—one that is closer to the regular

combinatorial ACO. We present the method used by ACOMV in the following section.

Solution Construction for Categorical Variables

In standard ACO (see [Dorigo and Stützle, 2004]), solutions are constructed from solu-

tion components using a probabilistic rule based on the pheromone values. Differently,

in ACOMV there are no static pheromone values, but a solution archive. As in standard

ACO, in ACOMV the construction of solutions for discrete variables is done by choosing

the components, that is, the values for each of the discrete decision variables. However,
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Figure 6.1: Calculating probabilities of choosing different categorical values for
a given decision variable. First, the initial probabilities are generated using a
normal distribution and based on the best ranked solution that uses given value
(left plot, dashed bars). Then, they are divided by the number of solutions using
this value (left plot, solid bars), and finally a fixed value is added (right plot,
dotted bars) in order to increase the probability of choosing those values, which
are currently not used. The final probabilities are presented on the right plot,
as solid bars.

since the static pheromone values of standard ACO are replaced by the solution archive,

the actual probabilistic rule used has to be modified.

Similarly to the case of continuous variables, each ant constructs the discrete part of

the solution incrementally. For each i = 1, ..., n discrete variable, each ant chooses

probabilistically one of ci available values vi
l ∈ Di = {vi

1, ..., v
i
ci}. The probability of

choosing the l-th value is given by:

oi
l =

wl∑c
r=1 wr

, (6.1)

where wl is the weight associated with the l-th available value. It is calculated based on

the weights ω and some additional parameters:
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wl =
ωjl

ui
l

+
q

η
. (6.2)

The final weight wl is hence a sum of two components. The weight ωjl
is calculated

according to Equation 4.2, where the jl is the index of the highest quality solution that

uses value vi
l for the i-th variable. In turn, ui

l is the number of solutions using value

vi
l for the i-th variable in the archive. Therefore, the more popular the value vi

l is, the

lower is its final weight.

The second component is a fixed value (i.e., it does not depend on the value vi
l chosen):

η is the number of values vi
l from the ci available ones that are unused by the solutions in

the archive, and q is the same parameter of the algorithm that was used in Equation 4.2.

The graphical representation of how the first component
ωjl

ui
l

is calculated is presented

on the left plot of Figure 6.1. The dashed bars indicate the values of the weights ωjl

obtained for the best solutions using the available values.2 The solid bars represent

the weights ωjl
divided by the respective number of solutions ui

l that use values vi
l . It

is shown for the available set of categorical values used, vi
l ∈ {a, b, c, d, e, f, g} in this

example.

Some of the available categorical values vl may be unused for a given i-th decision

variable in all the solutions in the archive. Hence, their initial weight is zero. In order

to enhance exploration and to prevent premature convergence, in such a case, the final

weights w are further modified by adding to all of them the second component. Its value

depends on the parameter q and on the number of unused categorical values ηi, as shown

in Equation 6.2.

The right plot in Figure 6.1 presents the normalized final probabilities for an example

in which the solution archive has size k = 10, and where the set of categorical values is

{a, b, c, d, e, f, g}, with values {a} and {g} unused by the current decision variable. The

dotted bars show the value of q/η added to all the solutions, and the solid bars show

the final resulting probabilities associated with each of the available categories. These

probabilities are then used to generate the value of the i-th decision variable for the new

solutions.

2If a given value is not used, the associated index is indefinite, and thus its initial weight is zero.
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6.2 Simple Benchmark Problem

Benchmark problems used in the literature to evaluate the performance of mixed-variable

optimization algorithms are typically real-world mechanical engineering problems. They

include among others: pressure vessel design, coil spring design, or thermal insulation

system design problems. Although we also use these problems in Section 6.3, they are not

very well suited for the detailed investigation of the performance of an algorithm. This

is because their search space is not clearly defined and easy to analyze. Additionally, the

objective functions of these problems cannot be manipulated easily in order to check the

sensitivity of the algorithm to particular conditions. Hence, such test problems do not

represent a sufficiently controlled environment for the investigation of the performance

of an algorithm.

Such well defined test problems providing a controlled environment are often used to test

the performance of continuous optimization algorithms. Although simple, they allow to

compare different algorithms on particular, well defined difficulties. A good example is

a set of problems used by Kern et al. [Kern et al., 2004].

In order to be able to flexibly compare ACOR using the continuous relaxation approach

with the native mixed-variable ACOMV algorithm, we have designed a new mixed-

variable benchmark problem. We have based it on a randomly rotated Ellipsoid function:

fEL(~x) =
n∑

i=1

(β
i−1
n−1 zi)

2,





~x ∈ (−3, 7)n,

~z = A~x,
(6.3)

where β is the coefficient defining the scaling of each dimension of the ellipsoid, n is

number of dimensions and A is a random normalized n-dimensional rotation matrix. In

order to make it easier to analyze and visualize the results, we have limited ourselves to

the two dimensional case (n = 2).3

In order to transform this continuous optimization problem into a mixed-variable one,

we have divided the continuous domain of variable x1 ∈ (−3, 7) into a set of discrete

values, T = {θ1, θ2, ..., θt} : θi ∈ (−3, 7). This results in the following mixed-variable

test function:

3Higher dimensional problems are discussed in Section 6.3.
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Figure 6.2: Randomly rotated ellipsoid function (β = 5) with discrete variable
x1 ∈ T, |T| = t = 30. The left plot presents the case in which the natural
ordering of the intervals is used, while the right one presents the case in which
a random ordering is used.

fELMV
(~x) = z2

1 + β · z2
2 ,





x1 ∈ T,

x2 ∈ (−3, 7),

~z = A~x.

(6.4)

The set T is created by choosing t uniformly spaced values from the original domain

(−3, 7) in such a way that ∃i=1,...,t θi = 0. This way, it is always possible to find the

optimum fELMV
(0, 0) = 0, regardless of the chosen value for t.

6.2.1 Experimental Setup

We have compared ACOR and ACOMV on two experimental setups of our test problem.

We used β = 100, as this is the value most often reported in the literature for the

ellipsoid function. The two setups simulate two types of mixed-variable optimization

problems: (i) with ordered discrete variables, and (ii) with categorical variables.
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In the first setup, the discrete intervals for variable x1 are naturally ordered. Such a setup

simulates a problem where the ordering of the discrete variables may be easily defined.

The left plot in Figure 6.2 shows how the algorithm sees such a naturally ordered rotated

ellipsoid function, with discrete x1 variable.4 The test function is presented as the ACOR

algorithm sees it—as a set of points representing different solutions found by the ants

and stored in the solution archive. The darker the point, the higher the quality of the

solution.

In the second setup, the intervals are ordered randomly, that is, for each run of the

algorithm a different ordering was generated. This setup allows to investigate how the

algorithm performs when the optimum ordering of the intervals is not well defined or

unknown. The right plot of Figure 6.2 shows how the algorithm sees such modified

problem for a given single random ordering. Clearly, compared to the natural ordering,

the problem appears to be quite different.

For both setups, we have run both ACOR and ACOMV. We have tested the two algo-

rithms on both test setups for a different number t of intervals for variable x1. For fewer

number of intervals, the problem is less continuous, but the probability of choosing the

wrong interval is relatively small. At the same time, since the domain is always the

same, the size of the intervals is larger, and ACOR may get stuck more easily. The more

intervals are used, the more the problem resembles a continuos problem, up to t→∞,

when it would become a true continuos optimization problem.

6.2.2 Parameter Tuning

In order to ensure a fair comparison of the two algorithms, we have applied an identi-

cal parameter tuning procedure to both: the F-RACE method [Birattari et al., 2002;

Birattari, 2005].

We have defined 168 candidate configurations of parameters for each of the algorithms.

Then, we have run them on 150 instances of the test problem, which differed in terms

of number of intervals used (t ∈ {10, 20, 50}), and of their ordering (we used always

random ordering for parameter tuning). We used 50 instances for each chosen number

of intervals.

The summary of the parameters chosen is given in Table 6.1.

4Please note that Figure 6.2 uses the value of β = 5, as it is clearer for visualization. This simply
means that the ellipsoid is less flat and more circle-like.
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Table 6.1: Summary of the parameters used by ACOR and ACOMV.

Parameter Symbol ACOR ACOMV

number of ants m 2 2

speed of convergence ξ 0.3 0.7

locality of the search q 0.1 0.8

archive size k 200 50

6.2.3 Results

For each version of the benchmark problem, we have evaluated the performance of ACOR

and ACOMV for different numbers of intervals t ∈ {2, 4, 8, 11,

13, 15, 16, 18, 20, 22, 32, 38, 50}. We have done 200 independent runs of each algorithm

for each version of the benchmark problem and for each number of intervals tested.

Table 6.2 presents the means and standard deviations for both algorithms on both

versions of the benchmark problem. Also, Table 6.3 presents the respective median

values. However, such data is difficult to read, analyze, and draw conclusions. Hence,

we also report the results separately for each version of the benchmark problem in a

graphical form. This allows focusing on differences in performance of the two algorithms.

Figure 6.3 presents the performance of ACOR (thick solid line) and ACOMV (thinner

solid line) on the benchmark problem with naturally ordered discrete intervals. The

left plot presents the distributions boxplots of the results for a representative sample

(t = 8, 20, 50) of the number of intervals used. The boxplots marked as c.xx were

produced from results obtained with ACOR, and the boxplots marked as m.xx were

produced from results obtained with ACOMV. The xx is replaced by the actual number

of intervals used. Note that the y-axis is scaled to the range [0, 1] for readability reasons

(this causes some outliers to be not visible). The right plot presents an approximation

(using smooth splines with five degrees of freedom) of the mean performance, as well

as the actual mean values measured for various numbers of intervals. Additionally, we

indicate the standard error of the mean (also using smooth splines).

Figure 6.4 presents in turn the performance of ACOR and ACOMV on the benchmark

problem with randomly ordered intervals. It is organized similarly to Figure 6.3.

A comparison of Figures 6.3 and 6.4 reveals that, while the performance of ACOMV does
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Table 6.2: Summary of the results obtained by both ACOR and ACOMV on
both versions of the benchmark problem for different number of intervals. Re-
ported are the mean and standard deviation values calculated over 200 indepen-
dent runs.

ACOR ACOMV

t Nat. Order Rnd. Order Nat. Order Rnd. Order

2 0.1355 (1.9164) 0.0000 (0.0000) 0.0000 (0.0000) 0.0000 (0.0000)

4 0.1233 (1.3465) 0.4786 (2.6095) 0.0013 (0.0116) 0.0049 (0.0334)

8 0.1124 (0.9990) 0.4133 (1.1191) 0.0177 (0.0456) 0.0206 (0.0601)

11 0.1212 (0.8242) 0.8658 (2.6419) 0.0290 (0.0804) 0.0523 (0.1762)

13 0.0989 (0.6261) 0.5537 (1.2790) 0.0467 (0.1594) 0.0274 (0.0838)

15 0.0144 (0.2042) 0.6656 (1.4998) 0.0400 (0.1120) 0.0384 (0.0939)

16 0.0192 (0.1965) 0.5929 (1.3251) 0.0350 (0.0928) 0.0264 (0.0619)

18 0.0927 (0.6050) 0.6230 (1.5268) 0.0436 (0.1173) 0.0389 (0.1089)

20 0.0287 (0.2902) 0.6917 (2.5739) 0.0361 (0.0890) 0.0324 (0.0933)

22 0.0050 (0.0709) 0.5526 (1.4248) 0.0279 (0.0677) 0.0317 (0.0837)

32 0.0053 (0.0537) 0.6055 (1.4865) 0.0263 (0.0560) 0.0674 (0.3180)

38 0.0049 (0.0699) 0.5321 (1.5796) 0.0352 (0.1176) 0.0555 (0.2378)

50 0.0008 (0.0115) 0.5163 (1.6856) 0.0659 (0.4775) 0.1161 (0.4398)

not change significantly, ACOR performs much better in the case of natural ordering of

the intervals. In this case, the mean performance of ACOR is inferior to the one of

ACOMV when t < 18. As the number of intervals used increases, the performance of

ACOR improves, and eventually (for t > 20) it becomes better than ACOMV.

Clearly, the performance of ACOR is different for a small or for a large number of

intervals. For a small number of intervals, the mean performance of ACOR is influenced

by the large size of the intervals. If the algorithm gets stuck in the wrong interval,

the best value it can find there is much worse than the optimum one. Hence, although

this happens quite rarely, this causes worse mean performance. The more intervals are

used, the closer the problem resembles a continuous one. The size of intervals becomes

smaller, and ACOR is less likely to get stuck in a wrong one. Hence, for larger number

of intervals used, ACOR’s performance improves.

The mean performance of ACOR on the version of the benchmark problem with randomly

ordered intervals follows a similar pattern, but is generally worse. For a small number of

intervals, the mean performance is penalized by their large size. With increasing number
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Table 6.3: Median values (over 200 independent runs) obtained by both ACOR
and ACOMV on both versions of the test problem for different number of inter-
vals.

ACOR ACOMV

t Nat. Order Rnd. Order Nat. Order Rnd. Order

2 0.0000 0.0000 0.0000 0.0000

4 0.0000 0.0000 0.0000 0.0000

8 0.0000 0.0000 0.0003 0.0005

11 0.0000 0.0000 0.0016 0.0033

13 0.0000 0.0000 0.0021 0.0023

15 0.0000 0.0000 0.0034 0.0034

16 0.0000 0.0000 0.0035 0.0032

18 0.0000 0.0000 0.0043 0.0025

20 0.0000 0.0000 0.0053 0.0015

22 0.0000 0.0000 0.0021 0.0022

32 0.0000 0.1112 0.0026 0.0023

38 0.0000 0.0694 0.0024 0.0019

50 0.0000 0.0541 0.0019 0.0031

of intervals, the performance further degrades due to the lack of natural ordering—the

search space contains discrete traps, with which ACOR does not deal very well. For

t > 20, the mean performance begins to improve again, as there is a higher probability

of finding a discrete interval reasonably close in quality to the optimal one. It is im-

portant to notice that, while in the case of natural ordering the median performance is

systematically very good for any number of intervals, in the case of random ordering the

median performance of ACOR decreases with the increase of the number of intervals.

Also, the mean performance of ACOR remains inferior to ACOMV for any number of

intervals tested.

Contrary to ACOR, the mean performance of ACOMV does not differ for the two ver-

sions of the benchmark problem. This is consistent with the initial hypothesis, since

the ordering of the intervals should not matter for a native mixed-variable algorithm.

ACOMV is always able to find an interval that is reasonably close in quality to the op-

timal one. Its efficiency depends only on the number of intervals available. The more

there are intervals, the more difficult it becomes to find the optimal one. This is why the

mean performance of ACOMV decreases with the increase of the number of intervals.
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Figure 6.3: Performance of ACOR and ACOMV on a discretized randomly
rotated Ellipsoid function (n = 2) with natural ordering of the intervals. The
results distribution of ACOR (c) and ACOMV (m) for t = {8, 20, 50} are on the
left plot. The right plot shows the mean performance for different number of
intervals. The dotted lines indicate the standard error of the mean, and the
circles are the measured means for different numbers of intervals.

6.2.4 Discussion

Our initial hypothesis that the ordering of the discrete intervals should not have impact

on the performance of the native mixed-variable optimization algorithm appears to hold.

The mean performance of ACOMV is better than ACOR, when the ordering is not

natural. These results suggest that ACOMV should perform well also on other real-

world and benchmark problems containing categorical variables.

In order to further asses the performance of ACOMV on various mixed-variable opti-

mization problems, we tackle them using both ACOR and ACOMV in the next section.

We also compare the results obtained with those reported in the literature, so that the

results obtained by ACOR and ACOMV may be put in perspective.

6.3 Results on Various Benchmark Problems

In many industrial processes and problems some parameters are discrete and other con-

tinuous. This is why problems from the area of mechanical design are often used as
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Figure 6.4: Performance of ACOR and ACOMV on a discretized randomly
rotated Ellipsoid function (n = 2) with random ordering of the intervals. The
results distribution of ACOR (c) and ACOMV (m) for t = {8, 20, 50} are on the
left plot. The right plot shows the mean performance for different number of
intervals. The dotted lines indicate the standard error of the mean, and the
circles the measured means for different numbers of intervals.

benchmarks for mixed-variable optimization algorithms. Popular examples include truss

design [Sellar et al., 1994; Turkkan, 2003; Pandia Raj and Kalyanaraman, 2005; Schmidt

and Thierauf, 2005], coil spring design [Deb and Goyal, 1998; Lampinen and Zelinka,

1999c; Guo et al., 2004], pressure vessel design [Deb and Goyal, 1998; Guo et al., 2004;

Schmidt and Thierauf, 2005], welded beam design [Deb and Goyal, 1998], and thermal

insulation systems design [Audet and Dennis Jr., 2001; Kokkolaras et al., 2001].

In order to illustrate the performance of ACOR and ACOMV on real-world mixed-variable

problems, we use a subset of these problems. In particular, in the following sections, we

present the performance of ACOR and ACOMV on the pressure vessel design problem,

the coil spring design problem, and the thermal insulation system design problem. Also,

we compare the results obtained with those reported in the literature.

6.3.1 Pressure Vessel Design Problem

The first engineering benchmark problem that we tackle is the problem of designing a

pressure vessel. The pressure vessel design (PVD) problem has been used numerous
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Figure 6.5: Schematic of the pressure vessel to be designed.

times as a benchmark for mixed-variable optimization algorithms [Sandgren, 1990; Deb

and Goyal, 1998; Lampinen and Zelinka, 1999a; Guo et al., 2004; Schmidt and Thierauf,

2005].

Problem Definition

The problem requires designing a pressure vessel consisting of a cylindrical body and

two hemispherical heads such that the cost of its manufacturing is minimized subject

to certain constraints. The schematic picture of the vessel is presented in Figure 6.5.

There are four variables for which values must be chosen: the thickness of the main

cylinder Ts, the thickness of the heads Th, the inner radius of the main cylinder R, and

the length of the main cylinder L. While variables R and L are continuous, the thickness

for variables Ts and Th may be chosen only from a set of allowed values, these being the

integer multiplies of 0.0625 inch.

There are numerous constraints for the choice of the values of the variables. In fact,

there are three distinctive cases (A, B, and C) defined in the literature. These cases

differ by the constraints posed on the thickness of the steel used for the heads and the

main cylinder. Since each case results in a different optimal solution, we present here

all three of them. Table 6.4 presents the required constrains for all three cases.

The objective function represents the manufacturing cost of the pressure vessel. It is a

combination of material cost, welding cost, and forming cost. Using rolled steel plate,

the main cylinder is to be made in two halves that are joined by two longitudinal welds.

Each head is forged and then welded to the main cylinder. The objective function is the

following:
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Table 6.4: Constraints for the three cases (A, B, and C) of the pressure vessel
design problem.

No Case A Case B Case C

g1 Ts − 0.0193 R ≥ 0

g2 Th − 0.00954 R ≥ 0

g3 π R2L + 4
3
π R3 − 750 · 1728 ≥ 0

g4 240− L ≥ 0

g5 1.1 ≤ Ts ≤ 12.5 1.125 ≤ Ts ≤ 12.5 1 ≤ Ts ≤ 12.5

g6 0.6 ≤ Th ≤ 12.5 0.625 ≤ Th ≤ 12.5

g7 0.0 ≤ R ≤ 240.0

g8 0.0 ≤ L ≤ 240.0

f(Ts, Th, R, L) = 0.6224 TsRL + 1.7781 ThR
2 + 3.1611 T 2

s L + 19.84 T 2
s R. (6.5)

The coefficients used in the objective function, as well as the constraints, come from

conversion of units from imperial to metric ones. The original problem defined the

requirements in terms of imperial units, that is, the working pressure of 3000 psi and

the minimum volume of 750 ft3. For more details on the initial project formulation, as

well as on how the manufacturing cost of the pressure vessel is calculated, we refer the

interested reader to [Sandgren, 1990].

Experimental Setup

Most benchmarks found in the literature set to 10, 000 the number of function evaluations

on which the algorithms are evaluated. Accordingly, we use 10, 000 function evaluations

as stopping criterion for both ACOR and ACOMV.

The constraints defined in the PVD problem were handheld in a rather simple manner.

The objective function was defined in such a way that if any of the constraints was

violated, the function returns an infinite value. In this way feasible solutions are always

better than infeasible ones.

For each of the cases A, B, and C, we have performed 100 independent runs for ACOR

and ACOMV in order to asses the robustness of the performance.
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Parameter Tuning

In order to ensure a fair comparison of ACOR and ACOMV, we have used the F-RACE

method for tuning the parameters. The parameters selected by F-RACE are listed in

Table 6.5. Note that the same parameters were selected for all the three cases of the

PVD problem.

Table 6.5: Summary of the parameters chosen for ACOR and ACOMV for the
PVD problem.

Parameter Symbol ACOR ACOMV

number of ants m 2 2

speed of convergence ξ 0.9 0.8

locality of the search q 0.05 0.3

archive size k 50 50

Results

The pressure vessel design problem has been tackled by numerous algorithms in the past.

The results of the following algorithms are available in the literature:

• nonlinear integer and discrete programming (NLIDP) [Sandgren, 1990] (cases A

and B),

• mixed integer-discrete-continuous programming (MIDCP) [Fu et al., 1991] (cases

A and B),

• sequential linearization approach (SLA) [Loh and Papalambros, 1991] (case B),

• nonlinear mixed discrete programing (NLMDP) [Li and Chou, 1994] (case C),

• genetic algorithm (GA) [Wu and Chow, 1995] (case B),

• evolutionary programming (EP) [Cao and Wu, 1997] (case C),

• evolution strategy (ES) [Thierauf and Cai, 2000] (case C),

• differential evolution (DE) [Lampinen and Zelinka, 1999a] (cases A, B, and C),

• combined heuristic optimization approach (CHOPA) [Schmidt and Thierauf, 2005]

(case C),
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• hybrid swarm intelligence approach (HSIA) [Guo et al., 2004] (case B).

For the sake of completeness, we have run our algorithms on all the three cases of the

PVD problem. Tables 6.6, 6.7, and 6.8 summarize the results found in the literature

and those obtained by ACOR and ACOMV. Each table provides the best value found

(rounded to three digits after the decimal point), the success rate—that is, the percentage

of the runs, in which at least the reported best value was found, and the number of

function evaluations allowed. We have performed 100 independent runs for both ACOR

and ACOMV.

Table 6.6: Results for Case A of the pressure vessel design problem. For
each algorithm are given the best value, the success rate (i.e., how often the
best value was reached), and the number of function evaluations allowed. Note
that, in some cases, the number of evaluations allowed was not indicated in the
literature. Also, for the ACO algorithms, the mean number of evaluations of the
successful runs is given in parentheses.

NLIDP MIDCP DE ACOR ACOMV

f∗ 7867.0 7790.588 7019.031 7019.031 7019.031
success rate 100% 99% 89.2% 100% 28%

# of function eval. - - 10000 10000
(3037)

10000
(6935)

Table 6.7: Results for Case B of the pressure vessel design problem. For
each algorithm are given the best value, the success rate (i.e., how often the
best value was reached), and the number of function evaluations allowed. Note
that, in some cases, the number of evaluations allowed was not indicated in the
literature. Also, for the ACO algorithms, the mean number of evaluations of the
successful runs is given in parentheses.

NLIDP SLA GA DE HSIA ACOR ACOMV

f∗ 7982.5 7197.734 7207.497 7197.729 7197.9 7197.729 7197.729
success rate 100% 90.2% 90.3% 90.2% - 100% 35%

# of function eval. - - - 10000 - 10000
(3124)

10000
(6998)

Based on the results obtained, it may be concluded that both ACOR and ACOMV are

able to find the best currently known value for all three cases of the PVD problem.

Additionally, ACOR is able to do so in just over 3,000 objective function evaluations on

average, while maintaining 100% success rate. On the other hand, ACOMV, although
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Table 6.8: Results for Case C of the pressure vessel design problem. For
each algorithm are given the best value, the success rate (i.e., how often the
best value was reached), and the number of function evaluations allowed. Note
that, in some cases, the number of evaluations allowed was not indicated in the
literature. Also, for the ACO algorithms, the mean number of evaluations of the
successful runs is given in parentheses.

NLMDP EP ES DE CHOPA ACOR ACOMV

f∗ 7127.3 7108.616 7006.9 7006.358 7006.51 7006.358 7006.358
success rate 100% 99.7% 98.3% 98.3% - 100% 14%

# of function eval. - - 4800 10000 10000 10000
(3140)

10000
(6927)

Figure 6.6: Schematic of the coil spring to be designed.

also able to find the best known solution for all the three cases of the PVD problem,

it does so only in about 30% of the runs within the 10,000 evaluations of the objective

function. Hence, on the PVD problem ACOMV performs significantly worse than ACOR,

which is consistent with the initial hypothesis that ACOR performs better than ACOMV

when the optimization problem includes no categorical variables.

6.3.2 Coil Spring Design Problem

The second benchmark problem that we considered is the coil spring design (CSD)

problem [Sandgren, 1990; Deb and Goyal, 1998; Lampinen and Zelinka, 1999c; Guo

et al., 2004]. This is another popular benchmark used for comparing mixed-variable

optimization algorithms.
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Problem Definition

The problem consists in designing a helical compression spring that will hold an axial

and constant load. The objective is to minimize the volume of the spring wire used

to manufacture the spring. A schematic of the coil spring to be designed is shown in

Figure 6.6. The decision variables are the number of spring coils N , the outside diameter

of the spring D, and the spring wire diameter d. The number of coils N is an integer

variable, the outside diameter of the spring D is a continuous one, and finally, the spring

wire diameter is a discrete variable, whose possible values are given in Table 6.9.

Table 6.9: Standard wire diameters available for the spring coil.

Allowed wire diameters [inch]

0.0090 0.0095 0.0104 0.0118 0.0128 0.0132

0.0140 0.0150 0.0162 0.0173 0.0180 0.0200

0.0230 0.0250 0.0280 0.0320 0.0350 0.0410

0.0470 0.0540 0.0630 0.0720 0.0800 0.0920

0.1050 0.1200 0.1350 0.1480 0.1620 0.1770

0.1920 0.2070 0.2250 0.2440 0.2630 0.2830

0.3070 0.3310 0.3620 0.3940 0.4375 0.5000

The original problem definition [Sandgren, 1990] used imperial units. In order to have

comparable results, all subsequent studies that used this problem [Deb and Goyal, 1998;

Lampinen and Zelinka, 1999c; Guo et al., 2004] continued to use the imperial units; so

did we.

The spring to be designed is subject to a number of design constraints, which are defined

as follows:

• The maximum working load, Fmax = 1000.0 lb.

• The allowable maximum shear stress, S = 189000.0 psi.

• The maximum free length, lmax = 14.0 in.

• The minimum wire diameter, dmin = 0.2 in.

• The maximum outside diameter of the spring, Dmax = 3.0 in.

• The pre-load compression force, Fp = 300.0 lb.



126 Mixed-Variable Optimization with ACO—ACOMV

• The allowable maximum deflection under pre-load, σpm = 6.0 in.

• The deflection from pre-load position to maximum load position, σw = 1.25 in.

• The combined deflections must be consistent with the length, that is, the spring

coils should not touch each other under the maximum load at which the maximum

spring deflection occurs.

• The shear modulus of the material, G = 11.5 · 106.

• The spring is guided, so the buckling constraint is bypassed.

• The outside diameter of the spring, D, should be at least three times greater than

the wire diameter, d, to avoid lightly wound coils.

These design constraints may be formulated into a set of explicit constraints, listed in

Table 6.10. The following symbols are used in the constraints definition:

Cf =
4D

d
−1

4D
d
−4

+ 0.615 d
D

K = Gd4

8 ND3

σp = Fp

K

lf = Fmax

K
+ 1.05(N + 2)d

(6.6)

Table 6.10: Constraints for the coil spring design problem.

No Constraint

g1
8 Cf FmaxD

π d
− S ≤ 0

g2 lf − lmax ≤ 0

g3 dmin − d ≤ 0

g4 D −Dmax ≤ 0

g5 3.0− D
d
≤ 0

g6 σp − σpm ≤ 0

g7 σp + Fmax−Fp

K
+ 1.05(N + 2)d− lf ≤ 0

g8 σw − Fmax−Fp

K
≤ 0

The cost function to be minimized computes the volume of the steel wire as a function

of the design variables:
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fc(N, D, d) =
π Dd2(N + 2)

4
(6.7)

Experimental Setup

Most of the research on the CSD problem reported in the literature focused on finding the

best solution. Only the recent work by Lampinen and Zelinka [Lampinen and Zelinka,

1999a] gave some attention to the number of function evaluations used to reach the best

solution. They used 8,000 function evaluations. In order to obtain results that could be

compared, this was used also used for both ACOR and ACOMV.

The constraints defined in the CSD problem were handled with the use of a penalty

function, similarly to the way it was done by Lampinen and Zelinka [Lampinen and

Zelinka, 1999a]. The objective function was defined as follows:

f = fc

8∏
i=1

c3
i , (6.8)

where:

ci =





1 + sigi if gi > 0,

1 otherwise,

s1 = 10−5, s2 = s4 = s6 = 1, s3 = s5 = s7 = s8 = 102.

(6.9)

We have performed 100 independent runs for both ACOR and ACOMV in order to asses

the robustness of the algorithms’ performance.

Parameter Tuning

We have used the F-RACE method for tuning the parameters. The parameters chosen

this way for both ACOR and ACOMV are summarized in Table 6.11.
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Table 6.11: Summary of the parameters chosen for ACOR and ACOMV for
the CSD problem.

Parameter Symbol ACOR ACOMV

number of ants m 2 2

speed of convergence ξ 0.8 0.2

locality of the search q 0.06 0.2

archive size k 120 120

Results

In the CSD problem the discrete variables can be easily ordered. Therefore, similarly to

the PVD problem, we expect that ACOR will perform better than ACOMV. Table 6.12

presents the results found by ACOR and ACOMV, as well as those found in the literature.

Table 6.12: Results for the coil spring design problem. For each algorithm are
given the best value, the success rate (i.e., how often the best value was reached),
and the number of function evaluations allowed. Note that, in some cases, the
number of evaluations allowed was not indicated in the literature.

NLIDP GA DE ACOR ACOMV

f ∗ 2.7995 2.6681 2.65856 2.65856 2.65856

success rate 100% 95.3% 95.0% 82% 39%

# of function eval. - - 8000 8000 8000

Both ACOR and ACOMV were able to find the current best known solution of the CSD

problem. ACOR again performed better than ACOMV. Both were performing better

(in terms of quality of the solutions found) than many methods reported in literature.

ACOR was a bit less robust (lower success rate) than the differential evolution (DE)

used by Lampinen and Zelinka [Lampinen and Zelinka, 1999a].

The results obtained by ACOR and ACOMV for the coil spring design problem are

consistent with the findings for pressure vessel design. The variables of the coil spring

design problem may be easily ordered and ACOR performs better than ACOMV, as

expected. ACOR was run with the same number of function evaluations as the DE used

by Lampinen and Zelinka. The best result is the same, but while in the PVD problem

ACOR had a higher success rate than DE [Lampinen and Zelinka, 1999a] (as well as a

faster convergence), in the case of the CSD problem, the success rate is slightly lower
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than that of DE.

Generally, again—the performance of ACOR and ACOMV is comparable to the best

results reported in the literature. ACOR is able to find the known optimum in a com-

parable amount of time. As expected, ACOR is performing better than ACOMV for

problems, where the discrete variables may be easily ordered.

6.3.3 Designing Thermal Insulation System

The third engineering problem that we used to test our algorithms was the thermal

insulation system design (TISD) problem. The choice was due to the fact that this is

one of the few benchmark problems used in the literature that deals with categorical

variables—that is, variables which have no natural ordering.

Various types of thermal insulation systems have been tackled and discussed in the

literature. Hilal and Boom [Hilal and Boom, 1977] considered cryogenic engineering

applications in which mechanical struts are necessary in the design of solenoids for

superconducting magnetic energy storage systems. In this case, vacuum is ruled out as

an insulator because the presence of a material is always necessary between the hot and

the cold surfaces in order to support mechanical loads. Hilal and Boom used only few

intercepts in their studies (up to three), and they considered only one single material

for all the layers between the intercepts.

More recently, cryogenic systems of space borne magnets have been studied. The insu-

lation efficiency of a space borne system ensures that the available liquid helium used

for cooling the intercepts evaporates with minimum rate during the mission. Some stud-

ies [Musicki et al., 1989] focused on optimizing the inlet temperatures and flow rates

of the liquid helium for a predefined number of intercepts and insulator layers. Oth-

ers [Yamaguchi et al., 1991] studied the effect of the number of intercepts and the types

of insulator on the temperature distribution and insulation efficiency. Yet others [Li

et al., 1989] considered different substances such as liquid nitrogen or neon for cooling

the intercepts and compared different types of insulators.

In all the studies mentioned so far, the categorical variables describing the type of

insulators used in different layers were not considered as optimization variables, but

rather as parameters. This is due to the fundamental property of categorical variables—

there is no particular ordering defined on the set of available materials, and hence they

may not be relaxed to be handheld as regular continuous optimization variables. The
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Figure 6.7: Schematic of the thermal insulation system.

algorithms used by the before mentioned studies did not allow to handle such categorical

variables. Only the more recent work of Kokkolaras et al. [Kokkolaras et al., 2001]

propose a mixed-variable programming (MVP) algorithm, which is able to handle such

categorical variables properly.

In this section, we show that, thanks to the fact that ACOMV can also handle natively

categorical variables, it performs comparably to MVP on the thermal insulation system

design problem, and outperforms significantly ACOR, which further confirms our initial

Hypothesis 6.1.

Problem Definition

In our work, we use the definition of thermal insulation system as proposed by Hilal

and Boom [Hilal and Boom, 1977], and later also used by Kokkolaras et al. [Kokkolaras

et al., 2001]. Thermal insulation systems use heat intercepts to minimize the heat flow

from a hot to a cold surface. The cooling temperature Ti is a control imposed at the

i = 1, 2, ..., n locations xi to intercept the heat. The design configuration of such a

multi-intercept thermal insulation system is defined by the number of intercepts, their

locations, temperatures, and types of insulators placed between each pair of adjacent

intercepts. Figure 6.7 presents the schematic of a thermal insulation system.

The optimization of a thermal insulation system consists of minimizing the total refrig-

eration power P required by the system, which is a sum of the refrigeration power Pi

needed at all n intercepts:
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f(x,T) =
∑n

i=1 Pi = ACi

(
Thot

Tcold
− 1

)(
1

∆xi

∫ T i+1

Ti
kdT − 1

∆xi−1

∫ T i

Ti−1
kdT

)
,

i = 1, 2, ..., n,
∑n

i=1 ∆xi = L,
(6.10)

where Ci is a thermodynamic cycle efficiency coefficient at the i-th intercept, A is a

constant cross-section area, k is the effective thermal conductivity of the insulator, and

L is the total thickness of the insulation.

Kokkolaras et al. define the problem based on a general mathematical model of the

thermal insulation system:

min
n,I,∆x,T

f(n, I, ∆x,T), subject to g(n, I, ∆x,T), (6.11)

where n ∈ N is the number of intercepts used, I = {I1, ..., In} is a vector of insulators,

∆x ∈ Rn is a vector of thicknesses of the insulators, T ∈ Rn
+ is the vector of temperatures

at each intercept, and g(·) is a set of constraints.

The applicable constraints come directly from the way the problem is defined. They are

presented in Table 6.13.

Table 6.13: Constraints for the thermal insulation system design problem.

No Constraint

g1 ∆xi ≥ 0, i = 1, ..., n + 1

g2 Tcold ≤ T1 ≤ T2 ≤ ... ≤ Tn−1 ≤ Tn ≤ Thot

g3

∑n+1
i=1 ∆xi = L

Kokkolaras et al. [Kokkolaras et al., 2001] have shown that the minimal refrigeration

power needed decreases with the increase in the number of intercepts used. However,

the more intercepts are used, the more complex and expensive becomes the task of man-

ufacturing the thermal insulation system. Hence, due to practical reasons, the number

of intercepts is usually limited to a value function of the manufacturing capabilities, and

it may be chosen in advance.

Considering that the number of intercepts n is defined in advance, and based on the
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model presented, we may define the following problem variables:

• Ii ∈M, i = 1, ..., n+1 — the material used for the insulation between the (i−1)-th

and the i-th intercepts (from a set of M materials).

• ∆xi ∈ R+, i = 1, ..., n+1 — the thickness of the insulation between the (i− 1)-th

and the i-th intercepts.

• ∆Ti ∈ R+, i = 1, ..., n + 1 — the temperature difference of the insulation between

the (i− 1)-th and the i-th intercepts.

This way, for a TISD problem using n intercepts, there are 3(n + 1) problem variables.

Of these, there are n+1 categorical variables chosen form a set M of available materials.

The remaining 2n + 2 variables are continuous—positive real values.

In order to be able to evaluate the objective function for a given TISD problem according

to Equation 6.10, it is necessary to define several additional parameters. These are: the

set of available materials, the thermodynamic cycle efficiency coefficient at i-th intercept

Ci, the effective thermal conductivity of the insulator k for the available materials, the

cross-section A, and the total thickness L of the insulation.

Since both the cross-section and the total thickness have only linear influence on the value

of the objective function, we use normalized values A = 1 and L = 1 for simplicity. The

thermodynamic cycle efficiency coefficient is a function of the temperature, as follows:

C =





2.5 if T ≥ 71 K

4 if 71 K > T > 4.2 K

5 if T ≤ 4.2 K

(6.12)

The set of materials defined initially by Hilal and Boom [Hilal and Boom, 1977], and later

also used by Kokkolaras et al. [Kokkolaras et al., 2001] includes: teflon (T), nylon (N),

epoxy-fiberglass (in plane cloth) (F), epoxy-fiberglass (in normal cloth) (E), stainless

steel (S), aluminum (A), and low-carbon steel (L):

M = {T, N, F, E, S, A, L} (6.13)
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Figure 6.8: The effective thermal conductivity for the various materials in the
function of temperature. Tabulated data fitted with cubic splines. The left plot
presents all materials, and the right plot only the better insulators (visible on
the left plot as the lowest line).

Certainly, this set may be divided intuitively into two groups. The better insulators

would include the teflon, nylon, and both epoxy-fiberglass ones. The worse ones would

be the aluminum and both types of steel. The effective thermal conductivity k of all

these insulators varies heavily with the temperature. Figure 6.8 shows respectively all

of the insulators on the left plot, and only the group of the better ones in the right plot.

The tabulated data comes from [Barron, 1966]. Since the ACOR is implemented in R,

the tabulated data has been then fitted with cubic splines directly in R.

The plots of the effective thermal conductivity for the available materials clearly present,

why the variables describing the materials are categorical and may not be easily ordered.

While for some temperature ranges ∆T some materials have better insulation properties,

for other temperature ranges, it changes. Hence, one cannot say that one material is

always better than another, and thus it is impossible to define a single proper ordering

of the materials.

The effective thermal conductivity k of all these insulators varies heavily with the tem-

perature and does so differently for different materials. Hence, which material is better

depends on the temperature and it is impossible to define a temperature-independent

ordering of the insulation effectiveness of the materials.
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The tabulated data of the effective thermal conductivity k that we use in this work

comes from [Barron, 1966]. Since ACOR is implemented in R, the tabulated data has

been fitted with cubic splines directly in R for the purpose of calculating the integrals

in the objective function given in Equation 6.10.

Experimental Setup

Certainly, the problem of choosing the right materials for insulators presented here is

not overly complex, as it may be easily noted that only three out of the seven ma-

terials presented are indeed best in some temperature ranges (i.e., nylon, teflon, and

epoxy-fiberglass in normal cloth). Further, these temperature ranges are reasonably

well defined, and an optimization algorithm could be designed that uses this informa-

tion effectively.

However, this information has not been used in previous studies in this way, and in order

to obtain reasonably comparable results, we have also refrained from making an active

use of it. Hence, for our ACOR algorithms, the characteristic of the materials is not

known. The integral over the thermal conductivity is only computed when calculating

the objective function value for a given solution that has been created by the ants.

The constraints defined in Table 6.13 are met through the use of either a penalty or

a repair function. First, constraint g3 is met through normalizing the ∆x values. The

constraint g2 is met through the design choice of using ∆T as a variable and ensuring

that no ∆T may be negative. The latter is ensured together with meeting the constraint

g1 by checking if any ∆x of ∆T chosen is negative. If it is, the objective function returns

infinity as the solution quality.

The problem may be defined for a different number of intercepts. It has been shown by

Kokkolaras et al. [Kokkolaras et al., 2001] that generally adding more intercepts allows

to obtain better results. However, due to practical reasons, too many intercepts cannot

be used in a real thermal insulation system. Hence, we decided to limit ourselves to

n = 10 intercepts in our experiments (that is, our TISD instance has 3(n + 1) = 33

decision variables).

Further, in order to obtain results comparable to those reported in the literature, we set

to 2,350 the maximum number of objective function evaluations for our algorithms. In

this way, the results obtained by ACOR can be compared to those reported by Kokkolaras

et al. [Kokkolaras et al., 2001].
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All the results reported were obtained using 100 independent runs of both ACOR and

ACOMV on each of the problem instance tackled.

Parameter Tuning

Similarly to the problems presented earlier, we have used the F-RACE method to choose

the parameters. The parameters chosen this way for both ACOR and ACOMV are

summarized in Table 6.14.

Table 6.14: Summary of the parameters chosen for ACOR and ACOMV for the
TISD problem.

Parameter Symbol ACOR ACOMV

number of ants m 2 2

speed of convergence ξ 0.8 0.9

locality of the search q 0.01 0.025

archive size k 50 50

Results

Contrary to the two earlier mixed-variable optimization problems that we tackled, this

one clearly contains categorical variables. The materials that may be used for insulation

show different qualities depending on the temperature. This makes them difficult to be

ordered a priori. TISD makes a perfect benchmark problem to test our hypothesis that

in case of problems containing categorical variables, ACOMV should outperform ACOR.

It could be seen in the earlier two example problems that if the discrete variables could

be easily ordered, ACOR was able to exploit this fact and converge faster to good results.

The TISD problem is different, the categorical variables may not be easily ordered, and

hence we would expect ACOMV to perform better this time.

Our motivation was not only to compare ACOR and ACOMV, but also to see how they

perform comparing to other algorithms used to tackle this problem.

Because of the experimental setup that we chose, the performance of ACOR and ACOMV

could only be compared to the results obtained using mixed-variable programming
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(MVP) by Kokkolaras et al. [Kokkolaras et al., 2001].5

Table 6.15: The results obtained by ACOR and ACOMV on the TISD problem
using n = 10 intercepts (i.e., 33 decision variables) and 2,350 function evalua-
tions, compared to those reported in the literature.

MVP ACOR ACOMV

min 25.36336 27.91392 25.27676

median - 36.26266 26.79740

max - 198.90930 29.92718

The results obtained by ACOR and ACOMV, as well as the result of MVP algorithm,

are summarized in Table 6.15. As mentioned earlier, we followed the experimental setup

used by Kokkolaras et al. [Kokkolaras et al., 2001] for one of their experiments. We used

the TISD problem instance with n = 10 intercepts (i.e., 3(n+1) = 33 decision variables)

and only 2,350 function evaluations.

It may be observed that indeed, this time ACOMV significantly outperforms ACOR.

This clearly supports our initial hypothesis. Similarly to the initial benchmark problem

we used, also on the TISD problem containing categorical variables, the native mixed-

variable ACOMV approach outperforms ACOR.

Comparing ACOR and ACOMV performance to MVP is more complicate. While we

have done 100 independent runs of both ACOR and ACOMV, Kokkolaras et al. reports

only one single result. Also, Kokkolaras et al. used a Matlab implementation to fit the

tabulated data and compute the integrals required to calculate the value of the objective

function, while we used R. Furthermore, the MVP results for n = 10 intercepts were

obtained with MVP using additional information about the problem. Due to all these

reasons, it is not possible to compare very precisely the results obtained by ACOR and

ACOMV to those of MVP. However, it may be concluded that the best results obtained

by ACOMV and MVP under similar conditions are comparable.

5A similarly defined problem was also tackled by Hilal and Boom [Hilal and Boom, 1977], but they
only considered very simple cases.
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6.4 Discussion

In this chapter, we have considered two approaches to the approximate solution of mixed-

variable optimization problems. The first is based on ACOR and uses a continuous-

relaxation approach. The second is based on ACOMV, an extension of the ACO meta-

heuristic, which uses a native mixed-variable approach.

The two approaches have advantages and disadvantages. Our initial hypothesis was that

while ACOR should perform better on problems containing discrete variables that can

be ordered, ACOMV should perform better on problems where a proper ordering is not

possible, or unknown. We have proposed a new benchmark problem based on a rotated

ellipsoid function in order to evaluate the difference in performance between ACOR and

ACOMV.

We have also run tests applying ACOR and ACOMV to the solution of three representa-

tive mixed-variable engineering test problems. For each of the problems, we compared

the performance of ACOR and ACOMV with the results reported in the literature.

Our initial hypothesis was supported by the results of our experiments. While ACOR

performed better on the pressure vessel design and on the coil spring design problems

which did not contain any categorical variables, ACOMV was significantly better on the

thermal insulation system design problem which on the contrary contained categorical

variables. Also, the results obtained by ACOR and ACOMV were usually as good as the

best results reported in the literature for the considered test problems. Hence, it may be

concluded that both ACOR and ACOMV are competitive approaches for mixed-variable

problems (in their versions without and with categorical variables respectively).

Further studies of the performance of ACOR and ACOMV on various mixed-variable

optimization problems are needed in order to better understand their respective advan-

tages and disadvantages. Also, the current R-based implementation is not particularly

efficient, nor it has been properly optimized. In order to use it for practical purposes, it

should be re-implemented in C, or other compiled language and properly optimized.
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Chapter 7

Conclusions

Approximate methods for solving optimization problems have been around for quite

many years now. Nevertheless, the research in this area is still very active, with new

findings appearing every year. The results reported in the literature show a constant

increase in quality and robustness of the algorithms. This demonstrates that there is

still room for improvement: better, more efficient, and more robust methods can still be

developed.

Ant colony optimization is a relatively new metaheuristic, which means that there is cer-

tainly still a large potential for improvement and development. While the performance

of ACO on static combinatorial problems has been already reasonably well understood,

its application to other types of problems and its use in parallel environments is not that

well studied. Current research concerning ACO concentrates on adapting it to different

kinds of problems, which includes continuous and mixed-variable problems, dynamic

problems, or problems involving uncertainty and noise. Also the application of ACO in

parallel environments is given significant attention.

Our work fits neatly into this general trend of research by presenting a way to apply

ACO to continuous and mixed-variable optimization problems. The main contributions

of this thesis may be summarized in the following list:

• Formal and coherent definition of the combinatorial, continuous, and

mixed-variable optimization problems: We provide a coherent definition of

combinatorial, continuous, and mixed-variable problems based on the way the

combinatorial problems are usually defined. This allows demonstrating how ACO

algorithms may also tackle the continuous and mixed-variable optimization prob-
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lems by emphasizing the crucial differences and similarities between these types of

problems.

• Ant colony optimization algorithm for continuous domains (ACOR): One

of the most significant contributions of this thesis. We present a novel idea on how

ACO may be extended to continuous domains with the pheromone modeled by

probability density functions instead of a table. We describe the underlying idea;

we present a fully functional algorithm—ACOR—and we evaluate its performance

on a large number of benchmark problems.

• Application of ACOR to training neural networks for pattern classifica-

tion in the medical field: We evaluate the performance of ACOR on a real-world

problem. We present how ACOR may be applied to the problem of training neural

networks for pattern classification in the medical field. We demonstrate that the

performance of ACOR is competitive, when compared to genetic algorithms, and

that a hybridized version of ACOR with a derivative-based method outperforms

typical methods used for neural network training.

• A benchmark mixed-variable optimization problem with well-controlled

characteristics: We propose a new mixed-variable benchmark problem, which

provides a well-controlled environment for testing algorithms. It allows for adjust-

ing its characteristics and difficulty level, and hence provides an excellent testing

ground for mixed-variable optimization algorithms.

• Ant colony optimization algorithm for mixed-variable domains (ACOMV):

Following the general idea of ACOR, we propose a further extended version of this

algorithm—ACOMV—that is able to handle both continuous and discrete decision

variables. We investigate its basic performance using the benchmark problems

that we proposed.

• Application of ACOR and ACOMV algorithms to real-world engineer-

ing mixed-variable optimization problems: We apply our mixed-variable

ACOMV algorithm along with the ACOR algorithm mentioned earlier to three en-

gineering real-world mixed-variable optimization problems. We demonstrate how,

as the function of a problem formulation, each of them has certain advantages.

We compare the results obtained with those that have been obtained using other

methods found in the literature.

While the use of probability density functions for modeling continuous search spaces

seems quite obvious a posteriori, it has not been proposed in the context of ant colony
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optimization before our research began. It is therefore our pioneering and original con-

tribution to the ant colony optimization research field.

A significant portion of the ideas presented in this thesis has been already published

in conference proceedings, book chapters, and international journals. Also, numerous

requests have led to making the code developed as part of this thesis available online

under the GPL license. This attention shows that the topic tackled is interesting and

useful, and that the quality of results obtained is encouraging for others to use and

possibly improve it.

Building on the findings presented in this work, it is possible to further improve the

performance and the range of applications of ACO algorithms. Hence, the algorithms

developed in the course of this research, while being useful and comparable to the state

of the art in many cases, may be also the stepping stone to developing even more efficient

and robust algorithms for many new optimization problems. This also means that the

research on this topic is hardly finished. We hope to continue it, so that both the

theoretical and practical aspects of the proposed solutions could be further analyzed

and understood. Practical implementations need to be found, which are more robust

and efficient. Also, it will be extremely satisfying, if the ACOR or ACOMV algorithms

could be used for solving practical real-world problems with good results.

As part of future work plans, we aim to develop a more efficient, optimized versions of

the proposed algorithms. As such, they will able to tackle also more complex problems,

which due to the interpreted nature of the R language could not be handled by the

existing version at this time. We have already identified some very interesting real-

world problems coming from the medical field, which we could not tackle using the

existing implementation due to too long run time. An improved implementation (for

instance in C) could allow to tackle such problems.

Also, as mentioned in the thesis, there are several design decisions and several possible

parameters that can be used to fine tune the performance of the algorithm. More

research is needed to understand better their interactions and how each of them can

have influence on the algorithm performance. This is particularly interesting, if this

may be related to the characteristics of the problem. If so, some automated way of

tuning the algorithm based on the problem at hand could be proposed.

Finally, the application of our algorithm to mixed-variable problems is only the tip of

the iceberg. Although the mixed-variable problems are encountered quite frequently

in the real world, there are few benchmarks available in the literature. This is due to
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the fact that until recently there were very few algorithms that could natively handle

these problems. Hence the real-world mixed-variable problems were reformulated or

divided so that they could have been solved by existing algorithms. With more and more

native mixed-variable optimization algorithms appearing, there is an increasing number

of problems being evaluated. We plan to continue experimentation with these new

algorithms in order to first gain better understanding of their operation, and eventually

further improve their performance.



Appendix A

Variable Correlation Handling

ACO algorithms in general do not exploit correlation information between different

decision variables (or components). In ACOR, due to the specific way the pheromone is

represented (i.e., as the solution archive), it is in fact possible to take into account the

correlation between the decision variables. Consider Fig. A.1, where the same Ellipsoid

test function defined as:

fEL(~x) =
n∑

i=1

(5
i−1
n−1 xi)

2, (A.1)

is presented—not rotated (left), and then randomly rotated (right). The test function

is presented as the ACOR algorithm sees it—as a set of points representing different

solutions found by the ants and stored in the solution archive. The darker the point,

the higher the quality of the solution (and the higher its rank). While on the left plot

the variables are not correlated (i.e., for good solutions, the value of one coordinate

does not depend on the value of the other coordinate), on the right plot they are highly

correlated.

The default coordinate system that corresponds to the set of the original decision vari-

ables xi, i = 1, 2, is marked in bold. It is clear that the axes of that coordinate system

align well with the scaling of the test function in the left plot. The example Gaussian

kernel PDFs for both of the dimensions are indicated on the right and above the plot.

Clearly a new solution generated using them would fall somewhere in the promising

region. In contrast, in the case of the rotated Ellipsoid function presented on the right
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Figure A.1: Example of the Ellipsoid function not rotated (left) and rotated
by 45◦ (right). It illustrated by 10000 points—of which only the best 1000 are
visible (the darker the point the higher rank). The original coordinate system
has been marked in bold, and the optimal one is also indicated on the right plot.
Also, the examples of the Gaussian kernel PDFs as generated using the default
coordinate system, are given on the right and above.

plot, the PDFs created with the default coordinate system cover roughly the whole

search space (here D = [−2, 2]2). If sampling was done based on the original coordinate

system, the points sampled would most likely be far from being good. The optimal

coordinate system that should be used by the ants in this case is also indicated on the

right plot. If ants used that coordinate system instead of the original one, the sampling

would be as efficient as in the case of the non-rotated Ellipsoid function.

Our ACOR algorithm dynamically adapts the coordinate system used by each ant in

order to minimize the correlation between different decision variables. The adaptation of

the coordinate system is actually accomplished by expressing the set of decision variables

X with temporary variables Zi, i = 1, ..., n that are linear combinations of Xi, i = 1, ..., n.

Although a popular method for accomplishing it is the Principle Component Analysis

(PCA), we have implemented another method—a non-deterministic adaptive one. In

the following sections, we shortly present PCA as well as the method chosen, and we

provide the reasoning for our decision.
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Figure A.2: Example of the Rosenbrock function illustrated by 10000 points—
of which only the best 1000 are visible (the darker the point the higher rank).
The coordinate system chosen by PCA is marked in bold, and it is different than
the optimal one at this stage of the search process.

A.1 Principal Component Analysis

An obvious choice for adapting the coordinate system to the distribution of the solutions

in the archive is the well-known technique of principal component analysis (PCA). It is

based on a statistical analysis of the solutions in the archive in order to distinguish the

principal components. This is usually done through the calculation of eigenvectors and

eigenvalues in the process called eigen decomposition. For details we refer an interested

reader for instance to [Hastie et al., 2001].

Although, this technique is quite efficient in case of reasonably easy and regular func-

tions, such as the Ellipsoid function, its performance proved to be no so interesting in

case of more difficult problems such as the Rosenbrock function.1

We have observed some drawbacks of PCA, when used for adapting the coordinate

system in ACOR. For more irregular functions, such as the Rosenbrock function, the

PCA adapts the coordinate system by considering all the points in the archive, what

1See Tab. 4.1 for the definition of the Rosenbrock function.
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often places too much emphasis on points that are not so good. This results frequently in

having a sub-optimal coordinate system chosen. Such situation is for instance presented

in Figure A.2, where the optimal coordinate system is indicated, as well as the one

chosen by PCA (in bold).

The choice of sub-optimal coordinate system in during one of the iterations of the al-

gorithm is not a major problem. However, due to the fact that PCA is a deterministic

algorithm, this often leads to stagnation and is difficult to overcome. In order to solve

this issue, we have tried to define a local PCA that would only take into consideration

a certain percentage of the best best points in the solution archive. The goal was, to

ensure that only the important points are taken into account, and by that reduce the

probability of the algorithm stagnation.

We have used the F-RACE method [Birattari et al., 2002; Birattari, 2005] for choosing

the right configuration of ACOR parameters and the percentage of best solutions to be

used by PCA. This method has been already presented in some detail in Section 5.2.2.

We have considered using 20%, 40%, 60%, 80%, and 100% of the best solutions from

the archive by PCA. Together with other parameters of ACOR, we defined 660 different

parameter configurations in total. As a test function, we used the Rosenbrock function

(n = 10):

fRn(~x) =
n−1∑
i=1

100(x2
i − xi+1)

2 + (xi − 1)2. (A.2)

The best performing candidate used 100% of the solutions from the archive. This clearly

indicates that the idea of using local PCA was not efficient. In fact, decreasing the

percentage of the solutions used by the PCA degraded performance of the algorithm.

Also, the best performing candidate required still two times more function evaluations on

this test function, than the algorithm using non-deterministic adaptive method presented

in the next section.

A.2 Non-Deterministic Adaptive Method

The mechanism that we designed instead of PCA, is relatively simple. Its main difference

from PCA is the fact that it is not deterministic. This means that for a given set of
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solutions present in the solution archive, each ant uses a slightly different coordinate

system. This is accomplished as follows.

Each ant at each step of the construction process chooses a direction in the search space.

The direction is chosen by randomly selecting a solution su that is reasonably far away

from the solution sl chosen earlier as the mean of the PDF. Then, the vector ~slsu becomes

the chosen direction. The probability of choosing solution su at step i (having chosen

earlier solution sl as the mean of the PDF) is the following:

p(su|sl)i =
d(su, sl)

4
i∑k

r=1 d(sr, sl)4
i

, (A.3)

where the function d(·, ·)i returns the Euclidean distance in the (n− i + 1)-dimensional

search sub-space2 between two members of the solution archive T . Once this vector is

chosen, the new orthogonal basis for the ant’s coordinate system is created using the

Gram-Schmidt process [Golub and van Loan, 1989]. It takes as input all the (already

orthogonal) directions chosen in earlier ant’s steps and the newly chosen vector. The

remaining missing vectors (for the remaining dimensions) are chosen randomly. Then,

all the current coordinates of all the solutions in the archive are rotated and recalculated

according to this new orthogonal base resulting in the set of new temporary variables

Zi, i = 1, ..., n.

At the end of the solution construction process, the chosen values of the temporary

variables Zi, i = 1, ..., n are converted back into the original coordinate system, giving

rise to a set of values for the original decision variables Xi, i = 1, ..., n.

This simple, non-deterministic mechanism makes the ACOR algorithm much more ro-

bust. This is especially visible in case of irregular functions, such as the Rosenbrock

function, for which (for n = 10), ACOR with our non-deterministic method performs

twice as good as with PCA. It has to be noted of course, that for very regular functions,

such as for instance the Ellipsoid function, the performance of ACO with PCA is better

than the performance of ACOR with our proposed method. However, since the real-

world problems are usually not regular, we chose not to use PCA, as it was less robust

than our non-deterministic method.

2At step i, only dimensions i through n are used.
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Appendix B

Alternative Description of ACOR

In some initial publications on the subject, a different description of the ACOR algorithm

was used than the one provided in Chapter 4. We found the new one to be more clear

and elegant, while being functionally identical. For the sake of complitness, we also

provide the initial description in this appendix.

B.1 Probability Density Function (PDF)

In principle, a probability density function may be any function P (x) : R 3 x→ P (x) ∈
R such that:

∫ ∞

−∞
P (x)dx = 1. (B.1)

For a given probability density function P (x), an associated cumulative distribution func-

tion (CDF) D(x) may be defined, which is often useful when sampling the corresponding

PDF. The CDF D(x) associated with PDF P (x) is defined as follows:

D(x) =

∫ x

−∞
P (t)dt. (B.2)

The general approach to sampling PDF P (x) is to use the inverse of its CDF, D−1(x).
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When using the inverse of the CDF, it is sufficient to have a pseudo-random number

generator that produces uniformly distributed real numbers.1 However, it is important

to note that for an arbitrarily chosen PDF P (x), it is not always straightforward to find

D−1(x).

One of the most popular functions that is used as a PDF is the Gaussian function. It has

some clear advantages, such as a reasonably easy way of sampling—e.g., the Box-Muller

method [Box and Muller, 1958]—but it also has some disadvantages. A single Gaussian

function is not able to describe a situation where two disjoint areas of the search space

are promising, as it only has one maximum. Due to this fact, we use a PDF based on

Gaussian functions, but slightly enhanced—a Gaussian kernel PDF. Similar constructs

have been used before [Bosman and Thierens, 2000], but not exactly in the same way.

We define a Gaussian kernel as a weighted sum of several one-dimensional Gaussian

functions gi
l(x), and denote it as Gi(x):

Gi(x) =
k∑

l=1

ωlg
i
l(x) =

k∑

l=1

ωl
1

σi
l

√
2π

e
− (x−µi

l)
2

2σi
l
2

. (B.3)

Since we use as many Gaussian kernel PDFs as there is number of dimensions of the prob-

lem, i = 1, ..., n identifies a single such PDF. The Gaussian kernel Gi(x) is parametrized

with three vectors of parameters: ω is the vector of weights associated with the indi-

vidual Gaussian functions, µi is the vector of means, and σi is the vector of standard

deviations. The cardinality of all these vectors is equal to the number of Gaussian func-

tions constituting the Gaussian kernel. For convenience, we will use the parameter k to

describe it, hence |ω| = |µi| = |σi| = k.

Such a PDF allows a reasonably easy sampling, and yet provides a much increased

flexibility in the possible shape, in comparison to a single Gaussian function. An example

of how such a Gaussian kernel PDF may look like is presented in Figure B.1.

B.2 Pheromone Representation in ACOR

In ACO for combinatorial optimization, pheromone information is stored as a table. At

each iteration, when choosing a component to be added to the current partial solution

1Such pseudo-random number generators are routinely available for most programming languages.
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Figure B.1: Example of five Gaussian functions and their superposition–the
resulting Gaussian kernel (illustration limited to the range x ∈ [−5, 5]).

(according to Eq. 3.2), an ant uses some of the values from that table as a discrete

probability distribution (Figure 4.1a). In the case of continuous optimization, the choice

an ant makes is not restricted to a finite set (Figure 4.1b). Hence, it is impossible to

represent the pheromone in the form of a table. A different approach has to be adopted.

We use an idea similar to that proposed by Guntsch and Middendorf in Population-

Based ACO (PB-ACO) [Guntsch and Middendorf, 2002b]. In PB-ACO the pheromone

table is updated based on the components of good solutions found—just like in regular

ACO. However, in regular ACO, the actual solutions found by the ants are discarded

once the pheromone table has been updated. In contrast, PB-ACO keeps track of a

certain number of the solutions used to update the pheromone table. Instead of using

pheromone evaporation, the pheromone associated with the oldest solutions is eventually

removed by performing a negative update on the pheromone table—thus canceling its

influence.

In ACOR we also keep track of a number of solutions in a solution archive T . For each

solution sl to an n-dimensional problem, ACOR stores in T the values of its n variables

and the value of the objective function f(s). The i-th variable of the l-th solution is

hereby denoted by si
l. The structure of the solution archive T is presented in Figure B.2.

While in case of PB-ACO the components of the solutions are used directly to modify the

pheromone table, in the continuous case we use them to dynamically generate probability

density functions. In order to accomplish this, a method for generating a PDF based
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Figure B.2: The archive of solutions kept by ACOR. The solutions are or-
dered in the archive according to their quality—i.e., for a minimization problem:
f(s1) ≤ f(s2) ≤ ... ≤ f(sl) ≤ ... ≤ f(sk). Each solution has an associated weight
ω that depends on the solution quality. Therefore, ω1 ≥ ω2 ≥ ... ≥ ωl ≥ ... ≥ ωk.
The PDF Gi is constructed using only the i-th coordinates of all k solutions from
the archive.

on a set of memorized solutions is defined. As indicated in Section B.1 (Eq. B.3), the

Gaussian kernel PDF is parametrized by three vectors ω, µi, and σi (each of cardinality

k). The solutions in the archive are used to calculate the values of these parameters,

and hence shape the Gaussian kernel PDF used to guide the ants in their search process.

The number of solutions memorized in the archive is set to k and this parameter de-

termines therefore the complexity of the PDF: There are k separate Gaussian functions

making up the Gaussian kernel PDF. For each dimension i = 1, ..., n of the problem,

there is a different Gaussian kernel PDF Gi defined (see Figure B.2). For each such Gi,

the values of the i-th variable of all the solutions in the archive become the elements of

the vector µi:

µi = {µi
1, ..., µ

i
k} = {si

1, ..., s
i
k}. (B.4)

The vector of weights ω is created in the following way. Each solution that is added to

the archive T is evaluated and ranked (ties are broken randomly). The solutions in the
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archive are sorted according to their rank—i.e., solution sl has rank l. The weight ωl of

the solution sl is calculated according to the following formula:

ωl =
1

qk
√

2π
e
− (l−1)2

2q2k2 , (B.5)

which essentially defines the weight to be a value of the Gaussian function with argument

l, mean 1.0, and standard deviation qk, where q is a parameter of the algorithm. When

q is small, the best-ranked solutions are strongly preferred, and when it is large, the

probability becomes more uniform. The influence of this parameter on ACOR is similar to

adjusting the balance between the iteration-best and the best-so-far pheromone updates

used in ACO. A more detailed analysis of the influence of the parameter q is presented

in Section 4.3.4.

In order to find the final shape of each Gaussian kernel PDF Gi, the vector σi of

the standard deviations must still be defiend. The detailed description of how this

is accomplished is presented in the following section as part of the description of the

solution construction process.

B.3 ACOR Metaheuristic Framework

In this section, we outline the ACOR version of the three major algorithmic components

of the ACO metaheuristic as presented in Algorithm 1.

AntBasedSolutionConstruction(): Given decision variables Xi, i = 1, ..., n, an ant con-

structs a solution by performing n construction steps. At construction step i an ant

chooses a value for variable Xi. As mentioned earlier, the Gaussian kernel PDF is com-

posed of a number of regular Gaussian functions. The number of functions used is equal

to the size k of the solution archive T . At construction step i, only the information

about the i-th dimension (i.e., decision variable Xi) is used. In this way, at each step i

the resulting Gaussian kernel PDF Gi is a different one.

Following Eq. B.3, in order to define the PDF Gi, the values of vectors µi, σi, and ω

must be defined. While the creation of µi and ω has been discussed in Section B.2,

the computation of the standard deviation vector σi is the most complex issue. Before

presenting how this is done in detail, we explain the practical implementation of Eq. B.3.
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In practice, the sampling process is accomplished as follows. First, the elements of the

weight vector ω are computed following Eq. B.5. Then, the sampling is done in two

phases. Phase one consists of choosing one of the Gaussian functions that compose the

Gaussian kernel. The probability pl of choosing the l-th Gaussian function is given by:

pl =
ωl∑k

r=1 ωr

. (B.6)

Phase two consists of sampling the chosen Gaussian function (i.e., at step i—function

gi
l). This may be done using a random number generator that is able to generate random

numbers according to a parametrized normal distribution, or by using a uniform random

generator in conjunction with, for instance, the Box-Muller method [Box and Muller,

1958]. This two-phase sampling is equivalent to sampling the Gaussian kernel PDF Gi

as defined in Eq. B.3.

It is clear that at step i, the standard deviation needs only to be known for the single

Gaussian function gi
l(x) chosen in phase one. Hence, we do not calculate the whole

vector of standard deviations σi, but only the σi
l that is needed.

The choice of the l-th Gaussian function is done only once per ant, per iteration. This

means that an ant uses the Gaussian functions associated with the single chosen solution

sl—i.e. functions gi
l , i = 1, ..., n, for constructing the whole solution in a given iteration.

This allows exploiting the correlation between the variables, which is explained in de-

tail in Appendix A. Of course, the actual Gaussian function sampled differs at each

construction step, as for step i, µi
l = si

l, and σi
l is calculated dynamically, as follows.

In order to establish the value of the standard deviation σi
l at construction step i, we

calculate the average distance from the chosen solution sl to other solutions in the

archive, and we multiply it by a parameter ξ:

σi
l = ξ

k∑
e=1

|xi
e − xi

l|
k − 1

. (B.7)

The parameter ξ > 0, which is the same for all dimensions, has an effect similar to that

of the pheromone evaporation rate in ACO. The higher the value of ξ, the lower the

convergence speed of the algorithm. The pheromone evaporation rate in ACO influences
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the long term memory—i.e., the higher is the evaporation rate, the faster the algorithm

focuses on the good solutions found so far by faster forgetting the bad ones. ξ in ACOR

influences the way the long term memory is used—i.e., the lower its value, the closer to

the current good solutions is the search space sampled. The effect is similar—the search

focuses on good solutions found so far.

As we said, this whole process is done for each dimension i = 1, ..., n in turn, and each

time the standard deviation σi
l is calculated only with the use of the single dimension

i. This ensures that the algorithm is able to adapt to a linear transformation of the

considered problem (e.g., moving from a sphare model to an ellipsoid, or rotating an

ellipsoid).

PheromoneUpdate(): As mentioned earlier, in case of ACOR, the pheromone information

is stored as a solution archive. This implies that the pheromone update procedure has

to perform some form of update on this archive.

The size k of the archive T is a parameter of the algorithm. However, k may not be

smaller than the number of dimensions of the problem being solved.2 At the start of the

algorithm, the solution archive T is initialized generating k solutions by uniform random

sampling.

Pheromone update is accomplished by adding the set of newly generated solutions to

the solution archive T and then removing the same number of worst solutions, so that

the total size of the archive does not change. This process ensures that only the best

solutions are kept in the archive, so that they effectively guide the ants in the search

process.

DaemonActions(): As part of this algorithmic block, the best solution found is updated,

so that it may be returned once the termination condition is met. We do not apply

any local search heuristics, though this could be easily done to improve the algorithm

performance.

2This is due to the explicit handling of correlation among variables as explained in Appendix A. In
order to be able to rotate the coordinate system properly, the number of points available has to be at
least equal to the number of dimensions.
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Appendix C

Source Code

The algorithms developed as part of this work are free software; you can redistribute

them and/or modify them under the terms of the GNU General Public License as pub-

lished by the Free Software Foundation; either version 2 of the License, or (at your

option) any later version.

The source code (in R) is available online from:

http://iridia.ulb.ac.be/supp/IridiaSupp2008-001

The code has been tested with R up to version 2.5.1. Subsequent modifications of the

R language may require adaptation of the code. The source code is divided into a few

seperate files, which we describe in some detail below.

C.1 ACOR and ACOMV Algorithms

C.1.1 ACO.R

ACO.R file contains is the R implementation of both ACOMV and ACOR aglrotithms.

In fact, when the problem tackled only contains continuous variables, ACOR≡ACOMV.

Although, the implementation evloved slightly in time, the one presented here was es-

sentially used to obtain the results in this thesis. Note that also routines presented in

Section C.1.2 make an integral part of the algorithms.

The main function implementing the ACOR≡ACOMV algorithms is as follows:
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ACO <- function(f, e, n.of.ants, k, q, xi, max.eval, seed, ls)

and it takes the following parameters:

• f - objective function object - see functions.R for details and examples,

• e - max. error value - used when solution quality used as stopping criterion,

• n.of.ants - number of ants used in each iteration (≥ 2),

• k - size of the solution archive,

• q - locality of the search (0, 1),

• xi - convergence pressure (0,Inf) - suggested: (0,1),

• max.eval - maximal number of function evaluations when used as the stopping

criterion (0 means no limit),

• seed - random seed (0 means no random seed set),

• ls - local search function (if used, otherwise NULL).

C.1.2 routines.R

Additional routines required by both ACOR and ACOMV are provided in routines.R

file. Some of them are simple helper functions, while some are cruscial to the algorithms’

operation. In particular gen.X() and gen.C() functions are the functions generating

new values for respectively continuous and discrete variables.

C.2 Test Functions

Additionally to the actual algorithms, we make available also the R implementation of

all the test functions that we have used for evaluating performance of our algorithms.

They may be used by interested researchers to verify the results reported or to perform

different type of comparisons or investigations. Also, the presented implementation of

the objective functions should serve as an excellent guide and example for anyone wishing

to try the algorithms on also other objective functions.
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C.2.1 functions.R

Each test function foo is defined as a set of objects described below. Each function

is considered to be a maximization problem (any optimization function may be easily

translated to such problem).

First object (foo.d) is a list that is the domain definition - for each variable the variable

type must be defined as one of the following:

• u - unordered discrete variable,

• o - ordered discrete variable,

• x - continuous variable.

Following the variable type, the domain must be defined for each variable. For u and

o variables, all possible values must be specified. For x variable the lower and upper

bound must be given.

NOTE: All the discrete variables MUST be defined before any continuous variables!

Second object (foo.tf) is a function performing the mapping from the values generated

by the algorithm to the values from the defined earlier domain. Usually, for continuous

and ordered variables there is a direct mapping, and for unordered - categorical - variables

there is a mapping from the index number to the actual value. There may be some

additional translations or repair mechanisms implemented as well - an option left for the

designer. See example test functions for details how this may be done.

Third object (foo.f) is the actual objective function. The first function that is called

must be the foo.tf function in order to map the values generated by the algorithm to

the actual values from the respective variables’ domains. Only then the actual objective

function value may be calculated and returned.

Finally the last object is a collection of all the previous objects of the form:

foo <- c(f=foo.f,d=list(foo.d),tf=foo.tf,opt=<optimal value>),

where the <optimal value> is the known a priori optimal value of the objective function.

If the optimal value is not known, it is sufficient to specify a high enough value (reminder:

all functions are considered to be maximization problems).

Below, a template of a function is given. Additional insight into designing test functions

may be obtained through the analysis of the (numerous) examples provided.
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#######################################################################
# Test Function Template (FOO)
#
# foo.d <- list(
# list("<variable type>",<domain>),
# .
# .
# .
# list("<variable type>",<domain>))
#
# foo.tf <- function(u,o,x) {
# <mapping: X <- f(u,o,x)>
# return(X)
# }
#
# foo.f <- function(u,o,x) {
# X <- foo.tf(u,o,x)
# <function body: y <- f(X)>
# return(y)
# }
#
# foo <- c(f=foo.f,d=list(foo.d),tf=foo.tf,opt=<optimal value>)

C.2.2 utilities.R

The additional functions contained in this file provide the additional helper functions

used, when defining the objective functions. These inlcude creation of a matrix of

random values, or predefining required global variables.

C.2.3 nn.R

The code available in nn.R file is related in principle to Chapter 5, where the ACOR

algorithm is used for training feed-forward neural networks (NNs). The implementation

of suitable objective functioins is provided along with the NN evaluation function and

a couple of other algorithms, such as Backpropagation and Levenberg-Marquardt. For

details see Chapter 5.
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by ant colonies, in T. Bäck, T. Fukuda and Z. Michalewicz (eds), Proceedings of the

1996 IEEE International Conference on Evolutionary Computation (ICEC’96), IEEE

Press, Piscataway, NJ, pp. 622–627.

Gambardella, L. M. and Dorigo, M. [2000]. Ant Colony System hybridized with a new

local search for the sequential ordering problem, INFORMS Journal on Computing

12(3): 237–255.

Gambardella, L. M., Taillard, E. and Agazzi, G. [1999]. MACS-VRPTW: A multiple

Ant Colony System for vehicle routing problems with time windows, in D. Corne,

M. Dorigo and F. Glover (eds), New Ideas in Optimization, McGraw-Hill, London,

UK, pp. 63–76.

Glover, F. [1989]. Tabu search - part I, ORSA Journal on Computing 1(3): 190–206.

Glover, F. [1990]. Tabu search - part II, ORSA Journal on Computing 2(1): 4–32.

Glover, F. and Kochenberger, G. [2003]. Handbook of Metaheuristics, Kluwer Academic

Publishers.

Goldberg, D. [1989]. Genetic Algorithms in Search, Optimization and Machine Learning,

Addison-Wesley, Boston, MA, USA.

Golub, G. and van Loan, C. [1989]. Matrix Computations, 2nd edn, The John Hopkins

University Press, Baltimore, MD.

Gomory, R. [1958]. Outline of an algorithm for integer solutions to linear programs,

Bulletin of the American Mathematical Society 64: 275–278.

Goss, S., Aron, S., Deneubourg, J.-L. and Pasteels, J.-M. [1989]. Self-organized shortcuts

in the Argentine ant, Naturwissenschaften 76: 579–581.
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Monmarché, N., Venturini, G. and Slimane, M. [2000]. On how Pachycondyla apicalis

ants suggest a new search algorithm, Future Generation Computer Systems 16: 937–

946.

Mühlenbein, H. and Paaß, G. [1996]. From recombination of genes to the estimation

of distributions: I. binary parameters, Proceedings of Parallel Problem Solving from

Nature-PPSN IV, Vol. 1411 of LNCS, pp. 178–187.

Musicki, Z., Hilal, M. and McIntosh, G. [1989]. Optimization of cryogenic and heat

removal system of space borne magnets, Advances in Cryogenic Engineering 35: 975–

982.

Nelder, J. A. and Mead, R. [1965]. A simplex method for function minimization, Com-

puter Journal 7: 308–313.
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Stützle, T. and Dorigo, M. [1999]. ACO algorithms for the traveling salesman problem,



174 Bibliography
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