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Abstract

The design of intelligent behaviours for a complex robotic system composed of a swarm of
autonomous units is the goal of the research activities presented in this thesis. This goal
has a twofold value: on the one hand, we are interested in defining a basic procedure for the
design of the controller for such a robotic system. On the other hand, we are interested in
studying the basic principles that underpin an adaptive/intelligent behaviour, both at the
individual and collective level. The study of collective, cooperative behaviours particularly
attracts our attention, also given that much of the work presented in this thesis is inspired
by the amazing organisational skills of social insects or other animal societies.

From the observation of the activities of social insects we derive the concept of self-
organisation, that is, “a process in which pattern at the global level of a system emerges
solely from numerous interactions among the lower-level components of the system.” (Ca-
mazine et al., 2001, p. 8). In a self-organising system such as an ant colony, there is
neither a leader that drives the activities of the group, nor the individual ants are in-
formed of a global recipe or blueprint to be executed. On the contrary, each single ant
acts autonomously following simple rules and locally interacting with the other ants. As
a consequence of the numerous interactions among individuals, a coherent behaviour can
be observed at the colony level.

A similar organisational structure would be definitely beneficial for a swarm of au-
tonomous robots. In fact, a coherent group behaviour can be obtained providing each
robot solely with simple individual rules. Moreover, the features that characterise a self-
organising system—such as decentralisation, flexibility and robustness—are highly desir-
able also for a swarm of autonomous robots.

The main problem that has to be faced in the design of a self-organising robotic
system is exactly the definition of the individual rules that lead to the desired collective
behaviour. In fact, the latter is the emergent result of a dynamic process that depends on
the numerous interactions among the robots and between the robots and the environment.
It is therefore difficult to predict which is the the global behaviour produced by a given
set of individual rules. And it is equally difficult to decompose a desired global behaviour
in the individual behaviours, first, and in the corresponding behavioural rules afterwards.
The solution we propose to this design problem relies on artificial evolution as the main
tool for the synthesis of self-organising behaviours. Artificial evolution, in fact, proceeds
in a bottom-up direction by first defining the controllers at the individual level and then
testing their effect at the collective level. In the experiments presented in this thesis, we
show that this approach is viable, as it produces efficient individual controllers and robust



self-organising behaviours. To the best of our knowledge, our experiments are the only
example of evolved self-organising behaviours that are successfully tested on a physical
robotic platform.

The evolution of self-organising behaviours for a swarm of robots, and the consequent
analysis of the obtained results, not only has an engineering value, but it also provides a
mean for the understanding of those biological processes that were a fundamental source of
inspiration in the first place. Indeed, working with an artificial system allows to uncover the
basic mechanisms that underpin the emergence of a given collective behaviours. Moreover,
the proposed methodology constitutes a synthetic way to evaluate the efficiency of similar
features observed in Natural systems. In this perspective, the experiments presented in
this thesis can be considered an interesting instance of a synthetic approach to the study
of collective intelligence and, more in general, of Cognitive Science.
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Chapter 1

Introduction

Ants are everywhere, but only occasionally noticed. They run much of the
terrestrial world as the premier soil turners, channelers of energy, dominatrices
of the insect fauna [...] They employ the most complex forms of chemical
communication of any animals and their organization provides an illuminating
contrast to that of human beings [...]

Hölldobler and Wilson, 1990, p. 1

This way, Hölldobler and Wilson introduce their journey into the ants’ world. They
provide a passionate, yet rigorous description of this fascinating and intriguing animal
society. A picture that serves as inspiration not only for entomologists or socio-biologists,
but also for engineers and computer scientists. Indeed, the principles that lay behind the
organisation of an ant colony have been so far exploited in multiple domains, resulting in
the development of robust optimisation algorithms (see, for example, Dorigo and Stützle,
2004), and giving birth to the swarm intelligence research domain (Beni and Wang, 1989;
Bonabeau et al., 1999). Also robotics could benefit from this biologically-inspired ap-
proach, as demonstrated by the continuously growing interest for swarm robotics (Dorigo
and Şahin, 2004).

The subject of this thesis concerns exactly a swarm robotic system, that is, a system
composed of a number of autonomous robots, which need to interact and to cooperate to
achieve a common goal. In such a context, it is useful to allow for self-organisation while
designing the different parts of the robotic system. Self-organisation can be defined as the
emergence of order in a system as the result of interactions among the system components.
It is often observed in biology, and in particular in animal societies, not limited to social
insects like ants, bees or termites (see Camazine et al., 2001, for a review). From an en-
gineering perspective, there are multiple advantages in designing a self-organising robotic
system. Among these, it is worth mentioning that such a system is inherently robust to
individual failures, as it is normally redundant in its constituent parts. It can adapt to
varying environmental conditions and it can maintain its organisation notwithstanding
certain external perturbations.

However, designing a self-organising behaviour for a group of simulated and/or real
robots is not a trivial task. The classic approach to this design problem consists in two

3



4 CHAPTER 1

decomposition phases: (i) the behaviour of the system should be described as the result
of interactions among individual behaviours, and (ii) the individual behaviours must be
encoded into controllers. Both phases are complex because they attempt to decompose a
process (the global behaviour or the individual one) that is a result of dynamical inter-
actions among its sub-components (interactions among individuals or between individual
actions and the environment). These dynamic aspects are in general difficult to be pre-
dicted by the observer. In such a context, we believe that Evolutionary Robotics (ER)
should be the methodology to be exploited (Harvey et al., 1993; Nolfi and Floreano, 2000;
Harvey et al., 2005). ER bypasses the problem of decomposition at both the levels of
finding the mechanisms that lead to the emergent global behaviour, and of implementing
those mechanisms into a suitable controller. In fact, ER relies on the evaluation of the
system as a whole, that is, on the emergence of the desired global behaviour starting from
the definition of the individual controllers. Moreover, ER can exploit the richness of pos-
sible solutions offered by the dynamic robot-environment interactions, which may not be
a priori evident to the experimenter (Nolfi and Floreano, 2000; Dorigo et al., 2004).

In this thesis, we propose the use of ER techniques for the design of self-organising
group behaviours, for both simulated and real robots. In this respect, the contribution
brought forth in this thesis is twofold. From an engineering perspective, we propose an au-
tomatic methodology for synthesising complex behaviours in a robotic system. We believe
that evolutionary techniques should be used in order to obtain robust and efficient group
behaviours based on self-organisation. From a more theoretical point of view, we show
that simple sensory-motor mechanisms are at the base of complex cognitive phenomena,
both at the individual and at the collective level. We therefore propose the study of adap-
tive, intelligent behaviours as the result of evolutionary selective pressures. In summary,
the work presented in this thesis tries to mediate between two apparently opposed per-
spectives: engineering and cognitive science. The former seeks for the optimal design, that
can display the best performance at the lowest cost. The latter seeks for tangible models
that can explain intelligence. Both these perspectives inform the research described in
this thesis.

1.1 Original Contributions

As mentioned above, the object of our research is a swarm robotic system composed of
a number of autonomous mobile robots—referred to as s-bots (see Figure 1.1a and b)—
which have the ability to connect to each other forming a physical structure—referred to
as a swarm-bot (see Figure 1.1c and Mondada et al., 2004, for further details). Exploiting
the cooperation among its components, the swarm-bot can solve problems the single s-bots
are not able to cope with. In the swarm-bot form, the s-bots are attached to each other,
therefore forming a single robotic system that can move and reconfigure. For example, the
swarm-bot might have to take different shapes in order to go through a narrow passage
or overcome an obstacle. Physical connections between s-bots are essential for solving
many collective tasks. Additionally, the physical interactions can be exploited for self-
organisation of the swarm-bot. However, for tasks such as searching for a goal location, or



INTRODUCTION 5

(a) (b) (c)

Figure 1.1: (a,b) The real s-bot. The traction system is composed by both tracks and
wheels. On top of it, a rotating turret is mounted, which holds many sensory systems
and the rigid gripper for physical connections. (c) A swarm-bot moving in a outdoor
environment.

tracing an optimal path to a goal, a swarm of unconnected s-bots may be more efficient.

The swarm-bot is a very innovative robotic artifact, developed by a consortium of Eu-
ropean universities and AI labs, which participated to the SWARM-BOTS project.1 From
the mechatronics point of view, the s-bots are considered to be among the most complex
robots in their size to date. Our research was committed to the design of suitable control
systems capable of exploiting the features of these robots and of displaying coordination
and cooperation abilities. We believe that this design activity represents per se an impor-
tant contribution to the robotics domain, at least from an engineering perspective. As an
example, in the experiments presented in Chapter 7 we show how a group of physically
connected s-bots can cooperate to solve a problem that the single s-bots cannot face, due
to their limited individual capabilities. To the best of our knowledge, no other examples
exist in the literature that present a comparable behavioural complexity at the collective
level able to overcome the physical limitations of the single individuals. Therefore, the
research performed within the SWARM-BOTS project represents the state-of-the-art in
swarm robotics.

Besides the aspects related to the particular technology used for our research, the
experimental work presented in this thesis contributes to assess artificial evolution as a
viable methodology for the development of robot controllers. The use of evolutionary
techniques for the synthesis of group behaviours has been relatively modest up to now,
as shown in Section 4.3. Moreover, the synthesis of self-organising group behaviours
through artificial evolution has been limited to simulated scenarios, and the few examples
of collective evolutionary robotics research tested in reality do not exploit self-organisation.
To the best of our knowledge, the experiments presented in Chapter 6 and 7 constitute
the first examples of self-organising behaviours synthesised through artificial evolution and

1The SWARM-BOTS project was funded by the Future and Emerging Technologies programme (IST-
FET) of the European Commission, under grant IST-2000-31010. It started in October 2001 and ended in
March 2005. See also http://www.swarm-bots.org.

http://www.swarm-bots.org
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successfully tested on real robots.

Another important contribution brought forth by the experiments presented in this
thesis concerns the understanding of basic principles underlying self-organising behaviours
and collective intelligence. In our experimental work, once the desired behaviour has been
evolved, we analyse its properties trying to uncover the mechanisms that have led to a
certain organisation. For example, in Chapter 6 we observed that an extremely simple
rule at the individual level, which can be summarised as “do what the others are doing”,
is at the basis of a cooperative behaviour that proved to be very flexible and efficient.
Similarly, in Chapter 7 we observe the evolution of simple communication forms that lead
to an improved performance of the system, if compared to experimental setups that either
ignore or handcraft the communication paradigm. Analysing the obtained results, we
show that performance improvements are based on simple mechanisms, such as inhibition
of signalling, that are counter-intuitive if decontextualised. Another example is given in
Chapter 9, in which we describe a collective decision-making process that emerges from
complex robot-robot and robot-environment interactions. In this case, we show that there
is no single robot that takes the lead and drives the decision-making process. Instead, the
decision emerges as a result of a self-organising process.

A final important contribution can be found in the experiments presented in Part III.
Here, we try to synthesise controllers that integrate a large repertoire of adaptive be-
haviours, both at the individual and at the collective level. These experiments, though
preliminary, are targeted to the study of scenarios in which the robot-environment inter-
action governs the behaviour eventually displayed by the agents. The collective decision-
making experiment mentioned before is one example of such a scenario. Other scenarios
have been studied, in which a decision must be taken on the basis of environmental con-
straints that the agent is required to extract either from its current perceptual status,
or from the experience about the environment it has accumulated in time. The main
contribution brought forth by the obtained results resides in the successful synthesis of
integrated controllers, in the form of time-dependent neural networks, that could display a
large repertoire of different adaptive responses, including the decision-making mechanisms
required to switch between them.

1.2 Document Layout and Related Publications

This document is organised in three main parts. In Part I, we introduce the reader into the
basic concepts that underpin our research. Part II represents the experimental core of the
thesis, with detailed descriptions of the applied methodology and of the obtained results.
Finally, Part III is dedicated to further experiments and preliminary results that indicate
the way to follow for future research. This thesis summarises an original research carried
out by the author, which has been partly published in international journals and/or in
conference proceedings by the author and a number of co-workers. The articles related to
the experiments presented in this thesis are specified below.

Chapter 2 is dedicated to a historical background, which starts with the early studies
in Artificial Intelligence and Cybernetics (Turing, 1936, 1937; McCarthy and Hayes, 1969;
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Newell and Simon, 1976; Ashby, 1956, 1960; von Foerster, 1960) and continues until the
most recent approaches, such as Behaviour-Based Robotics (Brooks, 1991b) and Embodied
Cognitive Science (Pfeifer and Scheier, 1999; Sharkey and Ziemke, 2000). This historical
background is important for situating the work presented in this thesis in a clear context.

Another contextualisation is performed in Chapter 3, in which we principally review
the literature that concerns Multi-Robot Systems. Particular attention is given to the
literature in swarm robotics (see Dorigo and Şahin, 2004), the domain wherein this research
has been conducted. Section 3.2 is dedicated to an analysis of the main features and
challenges that belong to a swarm robotic system. Afterwards, we make a parallel between
a swarm robotic and a self-organising system, highlighting the similarities between their
characterising features. This analysis suggests that the controller of a swarm robotic
system should allow for self-organisation.

The problem of designing a self-organising swarm robotic system is treated in Chap-
ter 4. Here, we describe the problems that may arise when trying to engineer a solution
using the top-down approach. We argue that the decomposition of a global behaviour
into individual ones is complex and often arbitrary because the global behaviour is the
emergent result of complex individual-individual and individual-environment interactions
(see Nolfi and Floreano, 2000). We propose an alternative methodology, that is, Evolu-
tionary Robotics (ER), as the solution to this design problem. In fact, ER can bypass the
arbitrary decomposition as it proceeds in the bottom-up direction: it defines the rules of
each individual controller and evaluates the resulting system as a whole. From this point
of view, ER perfectly fits for the evolution of self-organising behaviours. This is confirmed
by our experiments, a first example being given in Section 4.4. This chapter is partially
based on the following articles:

- V. Trianni, R. Groß, T.H. Labella, E. Şahin, and M. Dorigo. Evolving aggregation
behaviors in a swarm of robots. In W. Banzhaf, T. Christaller, P. Dittrich, J. T.
Kim, and J. Ziegler, editors, Advances in Artificial Life. Proceedings of the 7th Eu-
ropean Conference on Artificial Life (ECAL 2003), volume 2801 of Lecture Notes in
Artificial Intelligence, pages 865–874. Springer Verlag, Berlin, Germany, 2003

- M. Dorigo, V. Trianni, E. Şahin, R. Groß, T. H. Labella, G. Baldassarre, S. Nolfi,
J.-L. Deneubourg, F. Mondada, D. Floreano, and L. M. Gambardella. Evolving self-
organizing behaviors for a swarm-bot. Autonomous Robots, 17(2–3):223–245, 2004

Part II of this thesis is dedicated to the experiments performed with simulated and
real robots. It is introduced in Chapter 5 by a detailed description of the robotic system
we used for our experiments: the swarm-bot. We analyse the hardware of an s-bot, and we
mention the simulation model used to perform the evolutionary experiments. Finally, we
review the most important works that have been performed within the SWARM-BOTS
project and that are not covered by the experiments presented in this thesis.

In Chapter 6, we analyse an evolved self-organising behaviour which proves to be
flexible enough to work in various different experimental situations. The properties of
the self-organising system are based on simple rules built upon a force sensor. The latter
physically integrates the forces applied to the body of an s-bot, therefore making it possible
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to easily exploit the complex physical interactions among the s-bots and between s-bots
and the environment. The resulting group behaviour is scalable, as it can work with an
increasing number of s-bots; flexible, as it generalises to different shapes of the swarm-bot
and different roughness of the terrain; efficient, as its performance maintains a satisfactory
level despite the variability of the experimental conditions we tested. The experiments
presented in this chapter are reported also in the following article:

- G. Baldassarre, V. Trianni, M. Bonani, F. Mondada, M. Dorigo, and S. Nolfi. Self-
organised coordinated motion in groups of physically connected robots. IEEE Trans-
actions on Systems, Man and Cybernetics - Part B: Cybernetics, to appear

Chapter 7 refers to a set of experiments that improve on the above results by evolving
a more complex self-organising behaviour that allows a swarm-bot to navigate an arena
presenting holes or open borders. This set of experiments studies the evolution of simple
communication forms among the s-bots. We examine different communication protocols
among the robots (i.e., no signalling, handcrafted and evolved signalling), and we show that
a completely evolved approach achieves the best performance. This result is in accordance
with our working hypothesis, for which evolution potentially produces a system that is
more efficient than those obtained with other conventional design methodologies. This
chapter is based on the research work presented in the following articles:

- V. Trianni, T. H. Labella, and M. Dorigo. Evolution of direct communication for a
swarm-bot performing hole avoidance. In M. Dorigo, M. Birattari, C. Blum, L. M.
Gambardella, F. Mondada, and T. Stützle, editors, Ant Colony Optimization and
Swarm Intelligence – Proceedings of ANTS 2004 – Fourth International Workshop,
volume 3172 of Lecture Notes in Computer Science, pages 131–142. Springer Verlag,
Berlin, Germany, 2004a

- V. Trianni, S. Nolfi, and M. Dorigo. Cooperative hole avoidance in a swarm-bot.
Robotics and Autonomous Systems, 54(2):97–103, 2006

- V. Trianni and M. Dorigo. Self-organisation and communication in groups of simu-
lated and physical robots. Biological Cybernetics, to appear

Finally, Part III of this thesis is dedicated to some preliminary experiments that indi-
cate possible future developments. Decision-making is the topic of Chapter 8 and 9. The
main contribution brought forth by these chapters concerns the design and understanding
of adaptive controllers for decision-making processes. We start describing an example of
emergent collective decisions in a group of robots, which are the result of a self-organising
process. In this case, while no single robot is aware of the decision to be taken, the robot-
robot and robot-environment interactions enable the group to perform a collective choice
(see Chapter 8). In Chapter 9, we investigate the processes leading to individual decisions
as a result of the past experience. For example, if the execution of a given task is unsuc-
cessful for a certain amount of time, the agent should take a decision whether to persevere
in the same action, or change for better. Such a decision should be taken only on the basis
of previous experience, that is to say, on the basis of information collected during time.
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We show how such an adaptive decision-making mechanism can be successfully evolved
making use of neural networks characterised by time dynamics. These experiments have
been presented in the following articles:

- V. Trianni and M. Dorigo. Emergent collective decisions in a swarm of robots. In
P. Arabshahi and A. Martinoli, editors, Proceedings of the 2005 IEEE International
Symposium on Swarm Intelligence (SIS 2005), pages 241–248. IEEE Press, Piscat-
away, NJ, 2005

- E. Tuci, V. Trianni, and M. Dorigo. Feeling the flow of time through sensory-motor
coordination. Connection Science, 16(4):301–324, 2004

- C. Ampatzis, E. Tuci, V. Trianni, and M. Dorigo. Evolving communicating agents
that integrate information over time: a real robot experiment. In E.-G. Talbi,
P. Liardet, P. Collet, E. Lutton, and M. Schoenauer, editors, Artificial Evolution.
Seventh International Conference, Evolution Artificielle (EA 2005), volume 3871 of
Lecture Notes in Computer Science. Springer Verlag, Berlin, Germany, 2006

We conclude the experimental discussion with Chapter 10. This chapter is dedicated to
the design of controllers for functional self-assembly, that is, the self-organised creation of a
physically connected structure—a swarm-bot. Self-assembly can be viewed as an adaptive
response of a group of autonomous agents to cope with environmental conditions which
prevent them from carrying out their task. In other words, s-bots should self-assemble only
if adverse environmental conditions make it impossible for them to carry out their task in-
dividually. Therefore, self-assembly is never per se the goal of the agents, but it generally
requires to be integrated within the behavioural repertoire of agents capable of performing
several different adaptive responses. Our results, though preliminary, show that it is possi-
ble to synthesise a single non-modularised neural controller that integrates individual and
collective goal-oriented behaviours, besides the decision-making mechanisms that trigger
the self-assembling process. These experiments are also reported in the following articles:

- V. Trianni, E. Tuci, and M. Dorigo. Evolving functional self-assembling in a swarm of
autonomous robots. In S. Schaal, A. Ijspeert, A. Billard, S. Vijayakamur, J. Hallam,
and J.-A. Meyer, editors, From Animals to Animats 8. Proceedings of the Eighth
International Conference on Simulation of Adaptive Behavior (SAB 04), pages 405–
414. MIT Press, Cambridge, MA, 2004b

- E. Tuci, R. Groß, V. Trianni, F. Mondada, M. Bonani, and M. Dorigo. Cooperation
through self-assembling in multi-robot systems. ACM Transactions on Autonomous
and Adaptive Systems, 2006. To appear

Finally, Chapter 11 concludes this thesis with a summary of our achievements and
suggestions of innovative directions in the study of evolutionary robotics applied to self-
organising systems.
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Chapter 2

Embodied Cognitive Science

The work presented in this thesis can be read under two possible interpretations. On
the one hand, we design adaptive behaviours in groups of robots, in order to uncover the
properties of self-organisation and collective intelligence. On the other hand, we are also
motivated by an engineering perspective, aiming at the definition of a general methodology
for the design of distributed controllers for complex robotic systems. These are the two
sides of the same coin—a synthetic approach to the study of Embodied Cognitive Science
(see also Pfeifer and Scheier, 1999). This approach finds its roots in a research agenda
that involved many scientists from various backgrounds for the whole last century. This
chapter is devoted to a brief history of the field, which leads to and motivates our approach
to the study of distributed intelligent systems.

2.1 Back to the Origins: Artificial Intelligence

and Cybernetics

The question about “what is intelligence” has been tackled in many different ways, and
various definitions have been proposed trying to account for common sense notions and
scientific observations (see Pfeifer and Scheier, 1999, p. 6). The debate confronted the ideas
of many philosophers and psychologists, and consensus was hard to find. At the beginning
of the XX Century, the technological advancements and the advent of computers enriched
this debate with the following question: can a machine be intelligent?

Mainly two disciplines tried to give an answer: Artificial Intelligence (AI) and Cyber-
netics. The former originates from the work of Turing (1936, 1937), which represented a
milestone for the theory of computation and computability and gave a formal definition
of the universal computing machine. This work was followed by the development of the
first general-purpose computers during the early 1940’s, under the pressure of the Sec-
ond World War and with the contribution of many scientist, among which Von Neumann
(1945).1 The scientific community was impressed by the problem-solving ability of these

1Von Neumann gave his name to the architecture of most of the non-parallel-processing computers.
However, it has to be recognised that many years before the work of Von Neumann, implementations of
general-purpose computing machines already existed.

11
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computing machines and by the envisioned potentials. Soon, rather than being a simple
tool, the computer started to be considered as an artificial brain that could mimic human
reasoning.

In the same period, analog machines were built, that could demonstrate some form
of “intelligent behaviour”. In 1912, the military research in the USA celebrated the elec-
tric dog, built by John Hammond Jr. and Benjamin Miessner (see Figure 2.1a). This
machine—sadly the precursor of what nowadays is called, using an oxymoron, intelli-
gent weapon—was able to direct itself and move toward a light source. Some years later,
Grey Walter (1950, 1951, 1953) demonstrated how Elmer and Elsie, two electric tortoises,2

could display complex behaviours, as if they were “alive” (for more details, see Figure 2.1b
and Holland, 2003):

Not in looks, but in action, the model must resemble an animal. Therefore,
it must have these or some measure of these attributes: exploration, curiosity,
free-will in the sense of unpredictability, goal-seeking, self-regulation, avoidance
of dilemmas, foresight, memory, learning, forgetting, association of ideas, form
recognition, and the elements of social accommodation. Such is life.

Grey Walter, 1953, pp. 120-121

[Elsie] lingers before a mirror, flickering, twittering and jigging like a clumsy
Narcissus. The behavior of a creature thus engaged with its own reflection is
quite specific, and on a purely empirical basis, if it were observed in an animal,
might be accepted as evidence of some degree of self-awareness.

Grey Walter, 1953, pp. 128-129

Grey Walter’s tortoises were built following the principles of Cybernetics. This dis-
cipline aimed at the understanding of the basic principles that underpin the behaviour
of “the animal and the machine”, as it was indicated in the subtitle of Wiener’s book
(Wiener, 1948, 1961). Cybernetics was mainly driven by control theory and statistical
information theory. Animals were modelled and studied as if they were machines, in or-
der to uncover the basic principles of their behaviour. In doing so, the environment was
taken into account as a fundamental part of the system under observation. The environ-
ment was considered as a source of energy and disturbances flowing through the observed
system, which reacts trying to maintain its internal equilibrium. This led to the introduc-
tion of the concept of homeostasis, the ability to maintain “internal order”—i.e., certain
parameters within a given range of values—notwithstanding the external influence from
the environment (Ashby, 1956, 1960). Adaptive behaviour and learning were studied un-
der this perspective, and physical instantiations of cybernetics theories took the form of
various electro-mechanical homeostatic machines, including Grey Walter’s tortoises. Un-
fortunately, cyberneticists missed to participate to the digital revolution of the time, so
that soon their lucky star faded away, dimmed by the raising sun of Artificial Intelligence.

2The only surviving tortoise was repaired by Dr. Owen Holland and is conserved at the Burden Neuro-
logical Institute in Bristol.
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(a) (b)

Figure 2.1: The origin of cybernetics. (a) The electric dog, built in 1912 by John Hammond
Jr. and Benjamin Miessner. This machine could orient itself and move toward a light
source. (b) The electric tortoise. This machine was provided with light sensors to perceive
the ambient light, and a bumper to detect collisions. It reacted to the perceived light
approaching it or moving away, depending on the perceived intensity. In this way, it was
able to show complex behaviours and learning abilities, thus mimicking a living organism
( c© UWE Bristol).

2.2 Artificial Intelligence: from Dawn to Dusk

While Grey Walter was busy cabling his tortoises, the AI community was rapidly growing.
The year 1956 was a key point for this discipline. Two important meetings were organised.
The Symposium of Information Theory took place at the MIT in Boston. During this
meeting, Newell and Simon (1956) presented a program that could demonstrate theorems
in logic. The second meeting was the so called Dartmouth Conference, a six-week meeting
that brought together the most prominent researchers in the field. The meeting led to
the establishment of the “brain-computer metaphor”: the processes of the mind were
considered completely logical, so that they could have been simulated by a well-defined
program. From this point of view, the mental processes are assimilated to a program, to be
executed by a computer, which in turn takes the place of the brain. On the extreme of this
line, the Functionalism stated that what matters are only the programs—i.e., the mental
processes—while the machine that executes them—i.e., the brain—has no relevance at all,
as far as it can underpin the required functions.

It became natural to think of human beings as information processing sys-
tems that receive input from the environment (perception), process that infor-
mation (thinking), and act upon the decision reached (behavior). This corre-
sponds to the so-called sense-think-act cycle. [...] The hope was to establish a
strong theoretical and formal ground for conceptualizing human behavior that
would replace behaviorist psychology.

Pfeifer and Scheier, 1999, p. 37
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Behaviourism was a trend in the research in Psychology during the first half of the
XX Century. Behaviourists believed that any behaviour can be explained as a stimulus-
response association, without the need to invoke whatsoever mental state. Contrary to the
behaviourists, the practitioners of Artificial Intelligence gave importance to mental states
only, claiming that every behaviour is the result of a planning activity, which is a mental
process by definition.

Robotics was influenced by the current approach in Artificial Intelligence, so that the
behaviourist approach that characterised Grey Walter’s tortoises was finally abandoned,
and robots were built in order to comply with the needs of AI practitioners:

All these systems used offboard computers (and thus they could be the
largest most powerful computers available at the time and place), and all op-
erated in mostly static environments. All of these robots operated in environ-
ments that at least to some degree had been specially engineered for them.
They all sensed the world and tried to build two or three dimensional world
models of it. Then, in each case, a planner could ignore the actual world,
and operate in the model to produce a plan of action for the robot to achieve
whatever goal it had been given. In all [...] these robots, the generated plans
included at least a nominal path through the world model along which it was
intended that the robot should move.

Despite the simplifications (static, engineered environments, and the most
powerful available computers) all these robots operated excruciatingly slowly.
Much of the processing time was consumed in the perceptual end of the systems
and in building the world models. Relatively little computation was used in
planning and acting.

An important effect of this work was to provide a framework within which
other researchers could operate without testing their ideas on real robots, and
even without having any access to real robot data.

Brooks, 1991a

Therefore, even in robotics applications, in which a physical artifact had to interact
with the real word, reasoning was performed by symbolic manipulations that resulted in a
plan to be executed. This exemplifies the general paradigm followed by AI practitioners:
the Physical Symbol System Hypothesis (Newell and Simon, 1976). Newell and Simon sup-
ported the hypothesis that every intelligent behaviour could be simulated by appropriate
manipulation of physical symbols—i.e., symbols that could be implemented on some form
of hardware, be it a computer or a human brain. Following the rules of logic, artificially
intelligent systems were built that could prove theorems, play chess or solve whatever
problem for which knowledge could be modelled in some form of symbols, that undergo
some form of logic manipulation—i.e., reasoning.

However, notwithstanding the enthusiasm about the physical symbol system paradigm,
some problems were soon recognised. The first relevant criticism goes under the name of
frame problem, originally raised by McCarthy and Hayes (1969). The frame problem arises
from the assumption in logic that in the modelled system everything stays unchanged but
the direct consequences of the action performed. This assumption fails to consider all
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possible side effects of a given action, which may be extremely relevant in some situations.
In order to explain the frame problem, Dennett (1984) resorted to a hypothetic experiment.
A robot must retrieve a spare battery, which is placed on a wagon inside a room. On the
same wagon, there is a bomb that is going to explode. In a first attempt, the robot enters
the room, finds the battery on the wagon and pulls it out. Unfortunately, the robot does
not recognise the side effect of its action, that is, that the bomb is retrieved along with the
battery and the wagon. The bomb explodes, the robot fails. The frame problem can be
summarised in the fact that even if the reasoning of the robot is not wrong, the relevant
implications of the performed action are not considered.

A possible solution to the frame problem would teach Dennett’s robot to consider all
implications of any action before performing it. Dennett claims that also in this case the
robot fails in retrieving the spare battery, because the bomb would explode while the robot
is busy in considering all the (infinite) sequences of implications of a certain action—e.g.,
“pulling the wagon out of the room would not change the colour of the room” (Dennett,
1984). And even if one would teach the robot to consider only the relevant implications,
it would anyhow spend all its time in discarding irrelevant possibilities. Apart from the
folklore of Dennett’s presentation, the frame problem points out the difficulty of symbolic
systems to take into account all changes in the environment and consequently update the
symbolic model: the more the environment is dynamic and unpredictable, the more the
model will fail in tracing changes in it.

Symbolic systems received an even stronger criticism, that goes under the name of
symbol grounding problem. The supporters of AI believed that a symbolic system could
actually “understand” what it was reasoning about, and that it could also explain hu-
man understanding ability. However, a symbolic system works only on syntactic rules,
while the semantics—and therefore, the “understanding”—does not pertain to such sys-
tems. This argument was exemplified by Searle (1980) with his famous “Chinese Room”
Gedankenexperiment :

Suppose that I’m locked in a room and given a large batch of Chinese writ-
ing. Suppose furthermore (as is indeed the case) that I know no Chinese. [...]
Now suppose further that after this first batch of Chinese writing I am given a
second batch of Chinese script together with a set of rules for correlating the
second batch with the first batch. The rules are in English, and I understand
these rules as well as any other native speaker of English. They enable me to
correlate one set of formal symbols with another set of formal symbols, and all
that “formal” means here is that I can identify the symbols entirely by their
shapes. Now suppose also that I am given a third batch of Chinese symbols
together with some instructions, again in English, that enable me to correlate
elements of this third batch with the first two batches, and these rules instruct
me how to give back certain Chinese symbols with certain sorts of shapes in re-
sponse to certain sorts of shapes given me in the third batch. [...] Suppose also
that after a while I get so good at following the instructions for manipulating
the Chinese symbols [...] that from the external point of view—that is, from
the point of view of somebody outside the room in which I am locked—my
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answers to the questions are absolutely indistinguishable from those of native
Chinese speakers. [...] I produce the answers by manipulating uninterpreted
formal symbols. As far as the Chinese is concerned, I simply behave like a
computer; I perform computational operations on formally specified elements.
For the purposes of the Chinese, I am simply an instantiation of the computer
program.

Searle, 1980

With this experiment, Searle shows that understanding has nothing to do with the syntac-
tic rules employed to manipulate symbols. The meaning is instead apparent to an external
viewpoint, that is, to an observer that already has those symbols in some way grounded.

Searle is not just arguing that AI programs need a way to point at and
categorise objects in the world. [...] Searle, on the other hand, is arguing
for much more; a machine cannot have intrinsic semantics because it is not
intentional and it has no consciousness. [...] Searle’s view is biological. He
holds that the phenomenal mind is caused by a real living brain.

Sharkey and Ziemke, 2000

The frame problem and the symbol grounding problem, along with other criticisms (see
also Pfeifer and Scheier, 1999, pp. 63–74, for more details) slowly wore away the beliefs
in the computer/mind metaphor, and led to the refusal of symbols, formal knowledge
representations and world modelling. In contrast, the importance of the physical brain,
and concepts like situatedness and embodiment started to spread.

2.3 Connectionism: the Refusal of Symbols

Directly following the refusal of the symbolic paradigm, the new approaches in the study
of intelligence tried to model mind making use of sub-symbolic structures. Connectionism,
in particular, looked at interconnected networks of simple units and at their emergent pro-
cesses as models for mental and behavioural phenomena. The first steps in Connectionism
were moved in the late fifties and sixties, with the assessment of techniques for the study
of Artificial Neural Networks (ANNs). Inspired by the organisation of the brain, ANNs
are interconnected networks of simple units, called artificial neurons in analogy with the
biological counterpart. The simplest artificial neuron is called perceptron (Rosenblatt,
1958), and it basically operates a linear separation of the input space. Any connection
between artificial neurons is characterised by a weight, which simulates the strength of
an axon-dendrite synapse. By adjusting its weights, a perceptron network can be trained
to perform a given function between the input and output space. Training takes places
exploiting a set of a priori known input/output pairs, so that, after presenting the input
to the network, the corresponding output is compared to the correct response and the
difference is used to adjust the network parameters. A crucial point in the development
of Connectionism was the introduction of back-propagation algorithms (Rumelhart and
McClelland, 1986), which overcame many of the limitations of the previous learning al-
gorithms and opened the way to the study of more complex cognitive processes. These
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algorithms allow the fine-tuning of the ANN’s weights starting from the error between a
desired and the actual output of the network resulting from a given input vector.

The basic idea behind Connectionism is that ANNs could be used as tools to study
cognitive phenomena, without the need of modelling, knowledge representation, symbols
and abstract reasoning. Simply, the ANNs could be trained to perform an input/output
mapping using a mathematical learning technique.

Connectionism is an attempt to get closer to the physical basis of mind by
viewing representations as brain states. However, [...] the subsymbolic repre-
sentations of connectionists are closer to the symbolic realm than to physical
brain states.

Sharkey and Ziemke, 2000

Notwithstanding the radically different approach, connectionists were not too far from
functionalism, as they considered it possible to functionally simulate mental processes,
although using tools that physically tried to mimic the brain. The difference was above
all in the fact that symbolic, syntactically structured representations were replaced by
subsymbolic, spatially structured ones.

Thus the representations and their spatial organisation could be learned
“from the world” [...]. Although most of the representation research was carried
out in worlds that mainly consisted of symbols of one form or another [...],
the theory was that connectionist networks were hardwired physical machines
(like brains) with connections that change in response to the outside world [...].
Connectionism had opened questions about the physical basis of representation
and how neural adaptation can create and change representations and their
spatial organisation through interaction with the world.

Sharkey and Ziemke, 2000

2.4 Behaviour-Based Robotics:

the Importance of “Being in the World”

As we have seen in the previous section, a new bottom-up approach started to take place
with Connectionism. However, the real revolution started with Brooks (1986), who radi-
cally changed the viewpoint in the study of cognitive systems.

It is instructive to reflect on the way in which earth-based biological evolu-
tion spent its time. Single-cell entities arose out of the primordial soup roughly
3.5 billion years ago. A billion years passed before photosynthetic plants ap-
peared. After almost another billion and a half years, around 550 million years
ago, the first fish and Vertebrates arrived, and then insects 450 million years
ago. Then things started moving fast. Reptiles arrived 370 million years ago,
followed by dinosaurs at 330 and mammals at 250 million years ago. The first
primates appeared 120 million years ago and the immediate predecessors to
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the great apes a mere 18 million years ago. Man arrived in roughly his present
form 2.5 million years ago. He invented agriculture a mere 10,000 years ago,
writing less than 5000 years ago and “expert” knowledge only over the last few
hundred years.

This suggests that problem solving behavior, language, expert knowledge
and application, and reason, are all pretty simple once the essence of being and
reacting are available. That essence is the ability to move around in a dynamic
environment, sensing the surroundings to a degree sufficient to achieve the
necessary maintenance of life and reproduction. This part of intelligence is
where evolution has concentrated its time—it is much harder.

Brooks, 1991b

Therefore, why starting from complex phenomena when the simplest one still have to
be understood? Why “thinking about thinking machines”, when even the basic sensory-
motor capabilities are difficult to obtain? In Brooks’ view, the study of Artificial Intel-
ligence should start from building machines that interact with the real world. Indeed,
the work of Brooks was mainly driven by engineering motivations. He recognised the
need of improving the performance of the state-of-the-art robots, abandoning the top-
down traditional approach for which modelling was always required, and turning to a
biologically-oriented, bottom-up methodology.

There was a requirement that intelligence be reactive to dynamic aspects of
the environment, that a mobile robot operate on time scales similar to those of
animals and humans, and that intelligence be able to generate robust behavior
in the face of uncertain sensors, an unpredicted environment, and a changing
world.

Brooks, 1991a

Practically speaking, Brooks introduced on the AI scenes the so called Behaviour-based
Robotics, which aims at defining the behaviour of a robot through the design of a number of
parallel behavioural modules. The way in which the outcomes of each behavioural module
interact in order to produce the actual behaviour of the robot is the result of a network
of interconnections that determines how each behavioural module can use (subsume) the
outcome of other modules. This architecture is hence called subsumption architecture
(Brooks, 1986).

The results obtained with this approach were revolutionary: Allen was able to search
for a target location while avoiding to collide with obstacles or people that were moving
in the same environment (Brooks, 1986). Using its arm, Herbert could collect soda cans
in a multiple-room environment, following walls and passing through doors, and it could
return to the home location to deposit the collected cans (Connell, 1989). Genghis could
stand-up on its six legs, walk and avoid obstacles on both a flat and a rough terrain
(Brooks, 1989). All these robots “achieved interesting performance levels and were built
from combinatorial circuits plus a little timing circuitry” (Brooks, 1991a).

These examples are only a few compared to the plethora of instances of this new
paradigm of building robots and studying intelligence (see, for example, Arkin, 1998).
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However, notwithstanding the engineering inspiration, the new approach indicated by
Brooks had important theoretical implications. On the one hand, as Sharkey and Ziemke
(2000) notice, behaviour-based robotics represents a return to the past, to the tradition of
Behaviourism, which was rejected by AI practitioners some 40 years before. But, on the
other hand, Brooks’ approach identifies “two cornerstones” that would be at the basis of
future research. These are situatedness and embodiment.

Situatedness refers to “being in the world”: robots perceive the world through their
sensors, and the world provides them with all the information required to execute their
behaviour. Abstract representations are of no use because what is needed can be directly
perceived:

A situated agent must respond in a timely fashion to its inputs. Modeling
the world completely under these conditions can be computationally challeng-
ing. But a world in which it is situated also provides some continuity to the
agent. That continuity can be relied upon, so that the agent can use its per-
ception of the world instead of an objective world model. The representational
primitives that are useful then change quite dramatically from those in tradi-
tional Artificial Intelligence. The key idea from situatedness is: The world is
its own best model.

Brooks, 1991a

Modelling is useless for the situated robot. Nothing more than what the real world provides
can be included in an abstract model. As a consequence, modelling-related problems—i.e.,
the frame problem, see Section 2.2—do not hold anymore.

Embodiment refers to “acting in the world”: robots have bodies and through their
actions can move in the world and modify it, actively determining what will be the feedback
they will subsequently receive. Additionally, in Brooks’ view, this dynamic process in
which the agent and the world are tightly coupled provides a starting point to ascribe
meaning to “concepts”—i.e., grounding symbols:

Our mental “concepts” are based on physically experienced exemplars. [...]
Without an ongoing participation and perception of the world there is no
meaning for an agent. Everything is random symbols.

Brooks, 1991a

A symbol can acquire meaning only if grounded by the experience of the world. Therefore,
embodiment solves the symbol grounding problem through the dynamic interaction of an
agent and the environment in which it is placed.

2.5 Embodied Cognitive Science: Embodiment and

Autopoiesis

The work of Brooks triggered the development of Embodied Cognitive Science as a new
approach to the study of cognition3 (Pfeifer and Scheier, 1999). In this respect, the

3Other terminologies have been used to denote the same approach, such as enactive cognitive science

(Varela et al., 1991), embodied cognition (Sharkey and Ziemke, 2000) or biologically-oriented cognitive
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(a) (b)

Figure 2.2: The importance of embodiment. (a) The Khepera robot. (b) The intelligent
behaviour of an embodied robot. The lines represent walls, the full circle in the centre of
the arena represents the target object, the large empty circle around the target represents
the area in which the robot is rewarded, the small empty circle represents the position of
the robot after 500 cycles, finally the trace on the terrain represents the trajectory of the
robot (reprinted with permission from Nolfi, 1997).

importance of embodiment stems from the possibility to exploit the dynamic interactions
of the agent with the environment, so that intelligent behaviours can emerge (see also
how Brooks, 1991a, talks about intelligence and emergence). A striking example of the
significance of the dynamic interactions with the environment is given by Nolfi (1997). A
Khepera robot, shown in Figure 2.2a (Mondada et al., 1993), is positioned in a rectangular
arena (60 × 35 cm) which contains a cylindrical object having a diameter of 2.3 cm. The
robot is asked to discriminate between the walls and the cylinder, avoiding the former
and remaining close to the latter. The controller is a simple neural network that takes
as input only the proximity sensors, and drives the two wheels. This task is difficult to
be accomplished by a disembodied agent with the same sensory apparatus as the robot,
because there is not much difference between the sensory stimulation generated by a wall
and the one generated by the cylinder. The embodied agent, on the contrary, has the
possibility to move in the environment and to actively choose those perceptual cues that
result in a correct discrimination. Indeed, when the robot is close to a wall, it quickly moves
away, while it keeps on moving back and forth when close to the cylinder, maintaining
approximately the same relative position with respect to the object (see the trajectories
in Figure 2.2b). These oscillatory movements and the corresponding robot-environment
interactions bring forth a dynamic equilibrium that allow the robot to remain close to the
cylinder, and therefore to accomplish its task.

The above example demonstrates the fundamental role of embodiment. Contrary to
the sense-think-act cycle typical of the AI approach, cognition can be viewed here as a
sense-act-sense cycle: the action of the embodied agent is determined by the previous
perception, and in turn defines, altogether with the environment, the subsequent percep-

science (Tuci, 2004).
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tions. It is therefore clear how the study of cognition cannot neglect the agent-environment
interaction. The intelligent agent is the one that performs an action that will lead to a
profitable state, which in the long term corresponds to the achievement/maintenance of a
certain dynamical relation with the environment. In other words, intelligence can be seen
as adaptivity.

Adaptivity is really a consequence of self-sufficiency. If an agent is to sustain
itself over extended periods of time in a continuously changing, unpredictable
environment, it must be adaptive. [...] Several definitions of intelligence [...]
alluded, in one way or another, to the concept of adaptivity, that is, the ability
to adjust oneself to the environment. Thus, adaptivity and intelligence are
directly related. By adaptation, we mean that some structure is maintained in
changing environmental conditions.

Pfeifer and Scheier, 1999, p. 92

Besides defining adaptation, Pfeifer and Scheier also refer to Ashby’s homeostasis,
which, as mentioned in Section 2.1, was introduced by cyberneticists and refers to the
maintenance of certain variables within given limits. Therefore, Cybernetics and Em-
bodied Cognitive Science share a basic principle: the importance of modelling the agent
within its environment, or, in other words, embodiment. Recall that research in Cybernet-
ics produced the first embodied agents, among which we already mentioned Grey Walter’s
tortoises or the “electric dog”. The latter, in particular, was recognised by the American
psychologist Jacques Loeb as the physical support of his theories on tropism (Loeb, 1918).
But, in general, the above examples constitute the earliest instantiations of a mechanistic
view of intelligence, that considers cognition as embedded in the mechanisms of an agent.
The agent is naturally predisposed to perform a certain behaviour, and the role of the
environment consists in creating those conditions that generate a particular movement of
the agent. This view, which Sharkey and Ziemke (2000) refer to as Loebian embodiment,
clearly informed many research works, among which the one of Valentino Braitenberg
(1984). With his “Vehicles”, Braitenberg provides a series of thought experiments that
demonstrate how the simplest mechanisms could produce behaviours that to an observer
would resemble “love”, “hate”, “fear” or “aggression”. This is possible if the complexity
resides in the environment, which creates a web of possible interactions—in the form of
attractions and repulsions—that determine such behaviours.

The mechanistic view of Loebian embodiment certainly allows the simplest forms of
adaptive behaviour. But adaptivity is not limited to a mere reaction to environmental
stimuli. It takes place rather in a “structural coupling” between the agent and the environ-
ment, during which they are both sources of mutual perturbations (Maturana and Varela,
1980). This kind of embodiment is referred to as Uexküllian embodiment by Sharkey
and Ziemke (2000), named from the biologist Jakob von Uexküll, who in contradiction
to the mechanistic view of Loeb, believed in the subjectivity of perception and action
of an agent in its environment, and considered cognition as “functional embedding” of
an agent in its sensory-motor interaction with the world. This kind of embodiment con-
siders adaptation as the capability of an agent to maintain its internal organisation in
relation to the perturbations that come from the environment. The agent is a kind of
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homeostatic system, where the variable to be maintained under control consists of the
very same internal organisation. Maturana and Varela (1980) define such a system as
autopoietic. The purpose of Embodied Cognitive Science should therefore be the study
of autopoietic systems. However, in Maturana and Varela’s view, autopoiesis is peculiar
to living systems, and it cannot be found in machines or human artifacts. The latter
have to be considered allopoietic systems, because they are the result of processes that
are independent from the system. Therefore, every attempt to create an artificial system
that would replicate an adaptive/intelligent behaviour is condemned to failure because the
machine will always remain allopoietic, and “cognition is first and foremost a biological
phenomenon” (Sharkey and Ziemke, 2000). However, if it is not possible to artificially
build an autopoietic system—i.e., a “living” robot—, it is still possible to study embodied
cognition making use of artificial systems:

Uexküllian embodiment is of course possible, in the sense of simulating
embodied cognition with a physical robot. This would mean writing programs
to capture aspects of cognition, but in a different way and with a different
notion of cognition than used in disembodied AI. It would be a simulation of
[embodied] cognition that could provide a “wedge in the door” for biological
and psychological research. In this sense it can be useful to view an autopoietic
machine as an allopoietic machine.

Sharkey and Ziemke, 2000

Sharkey and Ziemke (2000) refer to the synthetic approach to the study of Embodied
Cognitive Science. In their view, its limitation stems from the impossibility to reproduce
truly living systems. However, bearing this in mind, the synthetic approach is scientifically
plausible and constitutes an optimal way of understanding many cognitive phenomena.
This will be stressed also in the following section, in which we develop the concept of
autopoiesis, introducing some aspects relevant to the work presented in this thesis.

2.6 Autopoiesis from Cells to Societies

The concept of autopoiesis represents a formal definition of what life is. Indeed, any living
system can be considered autopoietic. The basic example of an autopoietic system is the
biological cell: it is composed of various parts that are spatially enclosed within the cell
membrane and that produce a network of interactions that are meant to maintain the cell
internal organisation. It is not surprising that autopoiesis applies to the biological cell.
Actually, Maturana and Varela developed the theory of autopoiesis explicitly to account
for entities observable at very different scales. The biological cell is referred to as a first-
order autopoietic unit because it constitutes the basic entity on which other living—i.e.,
autopoietic—systems are built. As a consequence, a multicellular organism is referred
to as second-order autopoietic unit, because its organisation results from the structural
coupling of first-order units.
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The question that arises from the above considerations is: how can a system be iden-
tified as autopoietic? Varela et al. (1974) defined a six-step procedure for this purpose:4

i. Determine if the system has identifiable boundaries.

ii. Determine if the system is made of identifiable components.

iii. Determine if the system components are interrelated and are at the basis of the
system properties.

iv. Determine if the components at the boundaries of the system can be identified by
relations and interactions with the other components.

v. Determine if the boundary components are internally produced or the result of in-
ternal transformations of external elements that enter the system through its bound-
aries.

vi. Determine if the system components are internally produced or if they permanently
participate in the production of other system components.

From the six steps described above, a system can be recognised as a unity with boundaries
that encompass a number of elementary components. These components are at the basis
of the organisation of the system, as they are responsible for the definition of the system
boundaries and for the (re)production of the very same components. A system that fulfils
the above requirements can be objectively defined as autopoietic.

The above definition is rather general: it applies not only to living beings, but also to
other systems, natural or artificial, as long as these systems present the required features.
For example, an insect society such as an ant colony perfectly fits within this definition: it
has some form of boundaries, it is composed by many parts, and it is organised in order to
maintain the internal order, continuously (re)producing its constituent parts. Therefore,
autopoiesis can be ascribed to ant colonies, and, in general, to social system. Maturana
and Varela (1980) refer to these systems as third-order autopoietic units, because they
are constituted by structurally coupled second-order units. In such a social system, the
internal order is the result of the interactions among the system components, and the
organisation emerges from the activities of the constituent parts. In other words, a third-
order autopoietic unit is a self-organising system (see Section 3.3 for a brief introduction
to self-organisation).

It can now be understood how the theory of autopoiesis underpins the study of cog-
nition also at the level of social systems, such as ant colonies or honey bee swarms. If
the study of cognition cannot neglect the agent-environment interaction, it is even more
important to take embodiment into account when investigating about social systems that
present self-organising behaviours—i.e., third-order autopoietic units. The complex inter-
actions that characterise these systems, both at the individual and the social level, are of
fundamental importance, and they cannot be accounted for with a disembodied approach.

4We present here an informal description of the six points given by Varela et al.. The terminology used
here has been modified for presentation purposes and does not correspond to the original one.
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The approach taken by Embodied Cognitive Science, on the contrary, represents a viable
way also for the study of collective intelligence.

2.7 Summary

In this chapter, we gave a historical background to the approach taken by Embodied
Cognitive Science. We have described some drawbacks of the symbolic approach, which
resulted in the definition of new ways of studying cognitive phenomena. We have also
introduced the fundamental concepts of situatedness and embodiment, which inform our
research in collective intelligence. We finally introduced the theory of autopoiesis, showing
how it theoretically underpins our methodology in the study of self-organising systems.



Chapter 3

Swarm Robotics and

Self-Organisation

This chapter introduces the reader into the domain of swarm robotics through an analysis
of the state-of-the-art in multi-robot systems. The interest in such systems stems from
two decades of research aimed at the development of complex robotic systems which
could display features like versatility, robustness or capacity to perform complex tasks
in unknown environments. In order to achieve these features, the single-robot approach
was often abandoned in favour of systems involving multiple robots working in strict
cooperation (Arkin and Bekey, 1997; Bekey, 2005; Jones and Matarić, 2006).

Various reasons lay behind the interest in multi-robot systems. Above all, inspiration
comes from the observation of social activities, which are based on concepts like division of
labour, cooperation and communication. If societies are organised in such a way in order
to be more efficient, then also robotic groups could benefit from similar paradigms. More
precisely, a multi-robot approach can have many advantages over a single-robot system.
First, a monolithic robot that could accomplish various tasks in varying environmental
conditions is difficult to design. Moreover, the single-robot approach suffers from the
problem that even small failures of the robotic unit may prevent the accomplishment of
the whole task. On the contrary, a multi-robot approach can benefit from the parallelism
of operation to be more efficient, from the versatility of its multiple, possibly heterogeneous
units and from the inherent redundancy given by the usage of multiple agents (Jones and
Matarić, 2006).

Constructing tools from a collection of individuals is not a novel endeavor
for man. A chain is a collection of links, a rake a collection of tines, and
a broom a collection of bristles. Sweeping the sidewalk would certainly be
difficult with a single or even a few bristles. Thus there must exist tasks that
are easier to accomplish using a collection of robots, rather than just one.

Kube and Zhang, 1993

All the above motivations were early recognised by robotics practitioners, and many
different flavours of multi-robot systems have been developed, giving birth to the field
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of Collective Robotics. Section 3.1 is dedicated to an overview of the state-of-the-art
of this domain, reviewing the most relevant work that, to the best of our knowledge,
has been presented to date. In Section 3.2, we thoroughly analyse the swarm intelligent
approach to the study/design of multi-robot systems (see also Bonabeau et al., 1999),
which is at the base of the research presented in this thesis. Finally, in Section 3.3, we
discuss the relations between the challenges given by swarm robotics and the concept of
self-organisation. Section 3.4 concludes the chapter.

3.1 The Many Flavours of Multi-Robot Systems

The research in multi-robot systems is characterised by a variety of different approaches,
making it difficult, if possible at all, to produce a clear classification. Moreover, it is rather
common that different terms refer to similar approaches, or that the same terminology
is used in a rather eclectic way. Various taxonomies have been proposed, which try to
classify the state-of-the-art over some orthogonal axes, such as research directions (Cao
et al., 1997; Arai et al., 2002) or system characteristics (Dudek et al., 2002).

In this section, we present a number of research works that can be classified within
the collective robotics domain (see Section 3.1.1). The abundance of publications in this
area does not allow a thorough review, therefore we only discuss some of the most relevant
work.1 Moreover, we also highlight two specific approaches in collective robotics research,
namely what we call second-order robotics and swarm robotics, respectively in Section 3.1.2
and 3.1.3. The latter is the domain that comprises also the research work presented in
this thesis.

3.1.1 Collective Robotics

Since the late 1980s, researchers began to be interested in collective robotics. A number of
tasks were soon identified, which could be used to share knowledge and compare results.
Among these, it is worth mentioning foraging, box pushing and coordinated motion (see
also Arai et al., 2002).

One of the most studied tasks is probably collective foraging : it involves a group of
robots that have to collect objects scattered in the environment, and deposit them in
some particular location, often referred to as home or—using a biological metaphor with
ants—nest. Balch and Arkin (1994) report experiments with simulated and real robots. A
fully distributed homogeneous control is used for the group, each robot being driven by a
schema-based reactive controller (Arkin, 1989). Schema-based controllers are constituted
by a network of concurrent processes—i.e., schemas—that define the action taken by the
robot at each control cycle. Using this reactive control approach, foraging was efficiently
performed by the robotic group. The authors also notice that using simple inter-robot
communication is beneficial for the group performance when compared to a situation that
does not involve communication.

1Note that in Part II and III, along with the description of our experimental work, a review of the
literature related to the particular experiment is given as well
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A slightly modified version of the foraging task is used by Parker (1998) to demonstrate
the features of ALLIANCE, a behaviour-based control architecture for groups of (possibly
heterogeneous) robots:

ALLIANCE allows teams of robots, each of which possesses a variety
of high-level functions that it can perform during a mission, to individu-
ally select appropriate actions throughout the mission based on the require-
ments of the mission, the activities of other robots, the current environ-
mental conditions, and the robot’s own internal states. ALLIANCE is a
fully distributed, behavior-based architecture that incorporates the use of
mathematically-modeled motivations (such as impatience and acquiescence)
within each robot to achieve adaptive action selection.

Parker, 1998

In this particular implementation, three robots have to clean an area from objects repre-
senting toxic waste, bringing them to a “spill location”, while referring about the progress
to humans monitoring the system. The whole mission is carried out in cooperation by the
robots, and allocation of different roles occurs as a result of the environmental feedback in-
fluencing the “impatience” of a robot in performing a particular sub-task. Fault-tolerance
is also demonstrated. In Parker’s view, the unpredictability of the environment inherent
to multi-robot domains requires a control architecture that can result in robust behaviour
execution, task switching and task-oriented action selection. ALLIANCE is demonstrated
to be resilient to environmental changes and to the variation of the composition of the
group: manually interfering with one robot, or removing it from the team, results in the
rest of the group dynamically adapting to the new unforeseen situation.

One of the drawbacks of ALLIANCE is the fixed structure among basic behaviours,
which requires an a priori definition of the inter-behaviour dependencies. Matarić (1997)
proposes an alternative approach based on reinforcement learning (Sutton and Barto,
1998) applied to group behaviours. Matarić shows that it is effectively possible for a
group of robots to learn collective foraging based on a set of basic behaviours (i.e., avoid-

ing, dispersing, searching, homing, resting, see Matarić, 1994, for more details).
However, as the size of the group increases, the performance decreases due to interferences
among robots. It is therefore necessary to learn social rules that can reduce the negative
effect of robots disturbing each others.

[Generally speaking,] the learning agent attempts to acquire an effective
policy for individual (greedy) payoff. In contrast, [...] the problem of learning
social rules that allow for optimizing global payoff, but may not “trickle down”
to the individuals [...] is a particularly challenging form of the credit assignment
problem: not only is credit (reward) from the environment delayed, but in
many cases of social behavior, it is non-existent. Consequently, other sources
of reward, such as social reinforcement, need to be introduced in order to make
social rules learnable.

Matarić, 1997
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The use of social reward for learning agents results in the emergence of cooperative or
altruistic behaviours, such as yielding, proceeding, communicating, and listening,
which “serve to effectively minimize interference and maximize the effectiveness of the
group” (Matarić, 1997).

A different way to improve the efficiency of the group through the minimisation of the
inter-robot interference consists in resorting to an adaptive mechanism that allocates the
optimal number of robots to a specific task. Such an optimal number exists, as theoret-
ically demonstrated by Hayes (2002), but determining it requires an a priori knowledge
of the environmental characteristics. Whenever this knowledge is not available or the
environment is dynamic and unpredictable, it is necessary to resort to some adaptive
mechanism. Labella et al. (2006) presented a probabilistic control system based on ants’
foraging behaviour, for which the probability of being a forager is based on the previ-
ous successes/failures experienced by the robot. In a overcrowded situation, inter-robot
interferences result in the failure of some robots involved in the foraging activity. As a
consequence, the failing robots diminish their foraging activity, thus interfering less with
the other robots. On the other hand, when the number of foragers is too low, those in-
dividuals that are rarely active have a higher probability to be successful, and therefore
they will be more and more prone to actively participate in foraging.

Another task thoroughly studied involves a number of robots that have to push a box
in a given direction/position. The task is made difficult by various parameters, such as
the size/dimension of the box or its weight. The study of box pushing originates from
the well-known “piano movers’ problem” (Schwartz and Sharir, 1983a,b,c), which is often
used as a prototypical situation to describe the difficulties in coordinating the actions of
two agents while moving a large object throughout an environment presenting obstacles.
Inspired by the piano movers, Matarić et al. (1995) presents a box pushing experiment
performed by two six-legged robots. Each robot occupies a position close to one end
of a large rectangular box, and they cooperatively push the box toward a light target.
Robots use a turn-taking paradigm to execute their actions: at each control-cycle, one
of the two robots takes the decision about its and the other robot’s action, based on a
joint sensory space that couples the sensory information of both robots. The actions that
result from this computation are then synchronously performed by the two robots. This
approach is distributed in the sense that both robots are provided by a controller and
can independently perform the task. However, it relies on a joint sensory space, which
does not scale with the number of robots, as it leads to an exponential explosion of the
possible states. Moreover, reliable communication and strict synchronisation are required:
the failure of one of the robots irremediably jeopardises the execution of the task.

A similar turn-taking behaviour is implemented in the experiments presented by Parker
(1999). In this case, a box pushing scenario is used as a proof-of-concept of the ALLIANCE
architecture presented above. Here, two robots can push a rectangular box on either the
left or the right side. The two robots proceed in a alternate fashion, communicating to
the other robot the end of their pushing action in order for the other to take its turn in
pushing the opposite side. However, contrary to the work of Matarić et al. (1995), the
ALLIANCE architecture is fault-tolerant and adaptive: if one of the robots is removed,
the other takes over the whole task, swinging between the left and right ends of the box.
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A completely distributed, non communicative approach is taken by Rus et al. (1995)
and by Yamada and Saito (2001). The former research aims at producing a simple control
system for a group of robots to move—i.e., push or rotate—furniture in a room. The
use of local rules only, without any communication mechanism, proves to be sufficient
for performing a coordinated rotational movement. A similar approach characterises the
work of Yamada and Saito (2001). Here, box pushing is demonstrated with up to three
Khepera robots, controlled by an adaptive action selection mechanism. The robots first
try to determine in which situation they are—single robot vs. multiple robots—and after-
wards they choose the corresponding behavioural set. Box pushing, or, better, its wider
instantiation—i.e., collective transport—has been also studied using swarm approaches
(see, for example Kube and Zhang, 1993, 1997; Groß and Dorigo, 2004; Groß et al., 2006c).
We will review these and other works in later sections.

Another task that has attracted the interest of many researchers is coordinated motion,
also referred to as formation control. In this task, the robotic system is composed of a
number of independent entities that have to coordinate their actions in order to move
coherently. One of the first work on this topic dates back to 1991, when Wang proved
how a simple leader-follower mechanism could produce coordinated motion in a group of
simulated robots (Wang, 1991). A kind of leader-follower control is studied by Barfoot and
Clark (2004). In their approach, instead of following a given individual, a group of robots
keeps a given formation with respect to a planned trajectory of their centre of mass. The
movements of the robots are planned as well, giving the opportunity to alter at wish the
formation while turning in order to comply with the robots’ non-holonomic constraints.
This approach is representative of a number of other studies in which the formation of a
group of robots is a priori defined and the motion is planned in advance.

A different approach to the coordinated motion task is taken by Balch and Arkin
(1998). They developed a behaviour based control system for the robotic team, also in
this case based on motor schemas. The formation control is obtained using one of three
possible techniques: (i) unit-centre-referenced, in which the robots adjust their position
with respect to the centre of mass of the group, (ii) leader-referenced, in which the robots
follow a predefined leader and (iii) neighbour-referenced, in which the robots maintain
the relative position with respect to a predefined neighbour. In this way, the authors
were able to show coordinated motion of a group of robots in 4 different formations—
i.e., line, columns, wedge and diamond. Additionally, they show that “since behavior-
based systems integrate several goal oriented behaviors simultaneously, systems using this
technique are able to navigate to waypoints, avoid hazards and keep formation at the same
time” (Balch and Arkin, 1998). The drawback of this work consists in the requirement
of global information. All robots need to know their ID within the formation, and global
positions of every robot is required. The latter is a limitation that has been overcome by
Fredslund and Matarić (2002). They propose a simple formation control approach that
can generalise to a broad range of a priori defined formations of any number of robots,
as it is based on a very simple idea: “each robot keeps a single friend at a desired angle
θ, using some appropriate sensor. By panning the sensor by θ degrees, the goal for all
formations becomes simply to centre the friend in the sensor’s field of view” (Fredslund
and Matarić, 2002).
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Coordinated motion can be performed also without keeping the team in a predefined
formation. In this case, the resulting behaviour of the group is closer to what can be
observed in many different animal species. For example, we can think of flocks of birds
coordinately flying, or of schools of fish swimming in perfect unison. These examples
are not only fascinating for the charming patterns they create, but they also represent
interesting instances of self-organised behaviours. Many researchers have provided models
for schooling behaviours, and replicated them in artificial life simulations (see Camazine
et al., 2001, chapter 11). As an example, it is worth mentioning the seminal work of
Reynolds (1987). He defines the behaviour of virtual creatures, called boids, making use
only of local rules:

To build a simulated flock, we start with a boid model that supports ge-
ometric flight. We add behaviors that correspond to the opposing forces of
collision avoidance and the urge to join the flock. Stated briefly as rules, and
in order of decreasing precedence, the behaviors that lead to simulated flocking
are: (i) Collision Avoidance: avoid collisions with nearby flockmates; (ii) Ve-
locity Matching: attempt to match velocity with nearby flockmates; (iii) Flock
Centering: attempt to stay close to nearby flockmates. [...] Static collision
avoidance and dynamic velocity matching are complementary. Together they
ensure that the members of a simulated flock are free to fly within the crowded
skies of the flock’s interior without running into one another. [...] Static colli-
sion avoidance serves to establish the minimum required separation distance;
velocity matching tends to maintain it. [...] Flock centering causes the boid to
fly in a direction that moves it closer to the centroid of the nearby boids. [...]
Real flocks sometimes split apart to go around an obstacle. To be realistic, the
simulated flock model must also have this ability. Flock centering correctly
allows simulated flocks to bifurcate.

Reynolds, 1987

The research of Reynolds has been taken as inspiration by many other studies on coor-
dinated motion, which are all based on some biological inspiration. Some of these studies
fall within the domain of swarm robotics, and are treated in later sections. Moreover, a
detailed investigation of coordinated motion behaviour is given in Part II, which contains
our experimental work along with further literature reviews.

3.1.2 Second-Order Robotics

In this section, we review the literature that falls within the category of what we call
Second-Order Robotics. This term relates to all those multi-robot systems in which (rela-
tively simple) robotic units can physically connect one to the other, forming a bigger struc-
ture. Drawing the parallel with autopoietic units (see Section 2.6), we define a second-order
robotic unit as a robot that is formed by a number of robotic units—referred to as first-
order robotic units—physically connected one to the other. The potential of second-order
robotics was recognised since the development of the very early prototypes. Actually, the
very first multi-robot system is a second-order robot called CEBOT, first introduced by
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Fukuda and Nakagawa (1987). Since then, in the literature, two main approaches can be
found that fall into second-order robotics: self-reconfigurable and self-assembling robots.

3.1.2.1 Self-Reconfigurable Robots

Self-reconfigurable robotics research is concerned with groups of robotic modules that
have little or no independent mobility and very few sensors, but are capable of connecting
among themselves in various ways to form complex physical structures.

Self-reconfigurable robots are robots that are made from reconfigurable
modules that can autonomously change their physical connections and con-
figurations under computer or human command to meet the demands of the
environment. Each reconfigurable module is an autonomous robot equipped
with controllers, communications, actuators, sensors, power distribution, and
most importantly, connectors for joining with other modules. With the shape
changing capability, these robots can perform remarkable actions that go be-
yond the traditional, fixed-shaped robotic systems.

Shen and Yim, 2002

Self-reconfigurable robots are assembled by hand in an initial structure. This struc-
ture can modify its shape, split into smaller structures, but normally cannot reassemble
into bigger entities. Pioneering examples of self-reconfigurable robots are the metamor-
phic systems (Chirikjian et al., 1996; Pamecha et al., 1997) and FRACTA (Yoshida et al.,
1997; Tomita et al., 1999). Both these systems are 2D self-reconfigurable robots, and
their individual modules are approximately hexagonal. Metamorphic systems’ modules
are characterised by three degrees of freedom controlled by three motors placed on alter-
nate vertices of the hexagon, so that the hexagon can completely deform and roll over
other modules. On each side of the module, electro-mechanical links are present, which
enable connections and disconnections at will. The hardware apparatus of metamorphic
robots allows self-reconfiguration and motion on a plane. Pamecha et al. (1997) show
that a near-optimal plan for the reconfiguration of a metamorphic robot can be obtained
from an arbitrary initial configuration to a desired final configuration. Contrary to the
metamorphic robots, the FRACTA self-reconfigurable robot exploits a distributed control
(Yoshida et al., 1997). Modules are provided with optical communication devices and
magnets—permanent and electric—for reconfiguration. With this apparatus, formation
control and self-repair abilities were demonstrated (see Yoshida et al., 1997; Tomita et al.,
1999, for more details).

Improving on the above examples, a number of robotic systems have been developed
that could show 3D reconfiguration abilities—e.g., PolyBot (Yim et al., 2000), CONRO
(Castano et al., 2000), Crystalline (Rus and Vona, 2001), M-TRAN (Murata et al., 2002),
and ATRON (Jørgensen et al., 2004)). PolyBot modules are cuboids that can establish
connections on 2 opposite sides. Each module has one degree of freedom involving rotation
of two opposite connection plates through a ±90 degrees range. Additionally, passive
modules with 6 connection faces are used to allow a higher branching capability. The active
modules are equipped with an encoder for the detection of the joint position, and with
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photo-diodes/LEDs integrated in the connection plates, which help in docking activities.
The control is decentralised, and various locomotion gaits have been demonstrated (e.g.,
snake, loop or centipede-like gaits, see Zhang et al., 2003). Similar to PolyBot, CONRO is
a chain-like self-reconfigurable robot. CONRO modules are formed by three segments: a
body, an active connector and a passive one. The latter can receive connections from three
lateral sides. Two motorised joints allow rotations of each connectors in pitch and yaw axes
with respect to the body segment. Also in this case, different locomotion gaits result from
a decentralised control approach (Støy et al., 2002). On a very similar research line lies
M-TRAN. Modules are characterised by two connecting boxes equipped with permanent
magnets, which can rotate ±90 degrees with respect to a linking segment. The boxes
have three connecting faces, and can be either active or passive (see Murata et al., 2002,
for more details). Also in this case, various control types have been tested and different
locomotion gaits have been demonstrated, including on-line self-reconfiguration (see, for
instance, Kamimura et al., 2005).

A different approach is taken by the Crystalline Robots presented by Rus and
Vona (2001). In this case, modules—referred to as atoms—are cubes that can create
connections—referred to as bonds—on every side. No rotational degree of freedom is
present. Instead, modules can expand and contract in every direction. Therefore, a very
regular lattice-based structure can be built, and its shape varies through the relocation
of atoms (see Rus and Vona, 2001, for more details). One of the latest developments in
this area is the ATRON module. It is very simple, having a quasi-spherical shape and
a rotational degree of freedom between two hemispheres. Given the curved shape, con-
nections have to be made on a point-to-point basis rather than on a surface-to-surface
basis as in the self-reconfigurable robots presented so far. In order for a connection to
be made, three hooks emerge from the surface of the active connector and grab into the
passive connector. Four male/female connection points are provided to each module, two
on each hemisphere (Jørgensen et al., 2004). The last research worth mentioning is the
one presented by Zykov et al. (2005). The authors study the so-called self-replicating ma-
chines, that is, a self-reconfigurable system made of cubic modules, that have a rotational
degree of freedom along a diagonal axis. Electro-magnetic connections can be established
using the passive/active magnets placed on the faces of the module. With such a system,
self-reconfiguration and self-reproduction have been demonstrated. Self-reproduction con-
sists in the production of a copy—the replica—of a self-reconfigurable robots. The replica
is required to have the same shape/dimension of the original robot, be detached from it
and fully functional. Zykov et al. (2005) show that, if a sufficient number of additional
modules is provided to a self-reproducing robot at fixed feeding stations, the production
of a replica of the original robot is possible.

3.1.2.2 Self-Assembling Robots

The main limitation of self-reconfigurable robots is the lack of full autonomy at the level of
the robotic modules. This implies that the modules have to be connected to other modules
to be able to move. Moreover, modules are initially assembled by the experimenter, while
subsequent connections and disconnections are possible only if modules assume specific
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positions in a well-defined lattice. These limitations can be overcome if the robots are
able of autonomous motion, recognition of other robots, and assembling without human
intervention. We are talking about self-assembling robots.

An innovative way of cooperation is given by self-assembly, that is, the ca-
pability of a group of mobile robots to autonomously connect to and disconnect
from each other through some kind of device that allows physical connections.
Self-assembly can enhance the efficiency of a group of autonomous cooperat-
ing robots in several different contexts. Generally speaking, self-assembly is
advantageous anytime it allows a group of agents to cope with environmental
conditions which prevent them from carrying out their task individually.

Tuci et al., 2006

Only few of the self-reconfigurable robots reported in Section 3.1.2.1 present the abil-
ity of self-assembly. Yim et al. (2002) demonstrated self-assembly with PolyBot: a six-
modules arm connected to a spare module on a flat terrain. One end of the arm and the
spare module were fixed to the walls of the arena at known positions. In the first of a
three-phases procedure, the arm approached the spare module exploiting the knowledge
of the goal position and inverse kinematics. The second phase allowed a further approach
and alignment of the arm to the spare module, exploiting IR sensors and emitters. The
third phase finally led to the connection to the spare module, which in turns detached from
the wall (see Yim et al., 2002, for more details). Another example of self-reconfigurable
robot capable of self-assembly is CONRO. Rubenstein et al. (2004) demonstrated the abil-
ity of two separate CONRO robots to perform an autonomous docking task. Each of the
two robots was composed by two modules, and able of performing a snake-like motion.
The two robots were initially placed at a distance not bigger than 15 cm, and with an
angular displacement not exceeding 45 degrees. The controller of the two robots allowed
their alignment first, exploiting the IR sensors and emitters, and the approaching and
connection afterwards. Once completed, the docking was recognised and communicated
to all the units composing the new 4-module CONRO robot.

The above examples of self-assembly are constrained by the sensory and mechanical
apparatus of the robotic modules. Less limitations are presented by a different class of
self-assembling robots, where the individual units are capable of independent sensing and
motion in the environment. Each unit is a fully-autonomous robot, and self-assembly
is achieved by means of specialised connection devices. The first example falling into
this class is CEBOT, a cellular robotic system (Fukuda and Nakagawa, 1987; Fukuda
and Ueyama, 1994). CEBOT is a heterogeneous system comprised of cells with different
functions (e.g., move, bend, rotate, and slide). Five different prototypes have been im-
plemented to date, and various experiments have been performed. In particular, Fukuda
et al. (1988) report on self-assembly between a moving cell and an immobile object cell.
The experiment was performed positioning the moving cell in front of the object cell, 60
cm away from it and with a small angular displacement. The moving cell managed to
dock into the object cell, being driven by a handcrafted controller. Another pioneer work
is the one of Hirose et al. (1996), that presented the prototype of a self-assembling robot
called “Gunryu”. This robot is provided with two articulated tracks that support a ma-
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nipulator. The latter can grasp other similar robots, therefore forming chains that can
potentially navigate through steep concave regions or bridge large troughs. However, to
the best of our knowledge, this work remained at the level of a proposal: two prototypes
were built and manually assembled in a chain, demonstrating the increased stability of the
chain over the single unit when moving on a very rough terrain (Hirose et al., 1996). A
similar approach has been taken more recently by Brown Jr. et al. (2002). They propose
the Millibot Trains, that is, a linearly linked robotic system. Each module of the system
is equipped with caterpillar tracks, and the inter-modules connection is provided with a
rotational degree of freedom, so that the assembled chain can bend in support to actions
like climbing steps or moving on rough terrains. To date, no sensing device has been
provided to the millibot trains’ modules, and self-assembly has not been demonstrated.

Super Mechano Colony (SMC) (Damoto et al., 2001; Hirose, 2001) is a novel modular
robotic concept composed of a single main body (called the mother-ship) and many child
units attached to it. The child units are shaped as a single wheel and a manipulator,
which can attach to the mother ship or to other child units. When attached to the
mother-ship, the child units function as normal wheels. Otherwise, the child units are
able of autonomous motion or self-assembly to form long chains, which can potentially
overcome situation that the single unit is unable to face. The last development of the
SMC concept consists in a rover for planetary explorations (see Motomura et al., 2005, for
more details).

A completely different approach has been taken recently in the development of self-
assembling modules that passively float in a fluid that enables Brownian motion. These
modules stochastically assemble and reconfigure to form a given structure. In this way,
the constraints given by the necessity of motors and sensors does not hold any more,
and miniaturisation is possible. Belonging to this class of stochastic cellular robots is the
prototype implemented by White et al. (2004). Two kind of modules, shaped as square
and triangles, randomly float on a air-table and self-assemble when they collide. Units
are un-powered, but they become active when they connect to particular bonding sites
connected to the main structure. If they receive a connection, they can hold it or release
it following the internally-stored rules. Depending on the specific design of individual
modules, they can share power and information and cooperate to achieve global sensing,
actuation and computation. A very similar approach is taken by Bishop et al. (2005) and
by Griffith et al. (2005). The latter also demonstrate self-replication of a given structure
starting from random parts floating on the air-table. We conclude this review mentioning
the work of White et al. (2005), who successfully achieved stochastic self-assembly of 3D
modules floating in a vegetable-oil tank.

3.1.3 Swarm Robotics

Multi-robot systems often draw inspiration from biology, looking at the social character-
istics of insects and animals. In this respect, a particular class of multi-robot systems is
represented by swarm robotics, which is inspired by the behaviour of social insects, such
as ants, bees, wasps and termites.
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Social insects [...] stand as fascinating examples of how collectively intel-
ligent systems can be generated from a large number of individuals. Despite
noise in the environment, errors in processing information and in performing
tasks, and the lack of global communication system, social insects can coor-
dinate their actions to accomplish tasks that are beyond the capabilities of a
single individual: termites build large and complex mounds, army ants orga-
nize impressive foraging raids, ants can collectively carry large prey.

Dorigo and Şahin, 2004

Swarm robotics finds its roots in the recent development of swarm intelligence, which
has emerged as a novel approach to the design of “intelligent” systems inspired by the
efficiency and robustness observed in social insects in performing global tasks (Bonabeau
et al., 1999). The term swarm intelligence was initially introduced by (Beni and Wang,
1989) in the context of cellular automata design, and later on it was used to characterise
systems with a clear biological inspiration: some examples are given by Ant Colony Op-
timisation (Dorigo and Stützle, 2004) and Particle Swarm Optimisation (Kennedy et al.,
2001), two optimisation meta-heuristics inspired by swarm-like behaviours.

Because the biological inspiration informed the research in robotics since the early
attempts to develop multi-robot systems, many studies can be ascribed in some way or
another to swarm robotics. It is therefore difficult to draw a sharp line between those
systems that are or not inspired by a swarm paradigm. Dorigo and Şahin (2004) give
four criteria to measure the degree to which a robotic system can be considered a swarm
robotic system:

i. The study should be relevant for the coordination and control of a large number
of robots. This includes all the approaches that aim for scalability, but does not
consider those that are designed for small robotic groups only.

ii. The study should involve relatively few groups of homogeneous robots, each group
comprising a large number of individuals. Heterogeneity is not a priori against
the idea of swarm robotics, but high redundancy is required within each group.
Therefore, highly heterogeneous systems do not belong to swarm robotics.

iii. The study should consider tasks that cannot be efficiently solved by the single robot,
due to individual limitations. A study in which a multi-robot solution does not
significantly improve over the single robot one should not be considered a swarm
robotic study.

iv. The study should involve robots that have local and limited sensing and communi-
cation abilities. Global knowledge or complex communication systems are likely not
to scale well with the number of robots, therefore limiting the extent to which the
swarm robotic approach can be applied.

The above criteria highlight the main characteristics of a swarm robotic system, and in
some way suggest the challenges to be faced when designing the control rules for such a
system. We will come back to this point in Section 3.2.
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Many interesting studies can be found that fit in the above criteria. One of the pio-
neer works in this sense is surely the collective transport experiment by Kube and Zhang
(1993, 1997), already mentioned in Section 3.1.1. Kube and Zhang start from the assump-
tion that cooperation does not forcedly require intention, but it can be easily achieved
exploiting perceptual cues freely offered by the environment, and positive feedback loops
that reinforce the collective response. They programmed a group of robots with a simple
behaviour-based approach, in which no explicit communication was defined. The task is
box-pushing, in which the box is too heavy to be moved by a single individual and a coop-
erative effort is required. Some simple group responses are included in the behavioural set
of the robots, such as the following behaviour that has the purpose to form a critical mass
of robots in order to efficiently push the box. Efficient box-pushing was achieved using 5
robots (see Kube and Zhang, 1993, for more details). In a second set of experiments, goal-
directed collective transport was demonstrated with up to 11 robots (Kube and Zhang,
1997). With the obtained results, Kube and Zhang demonstrated that inspiration from
insect societies is beneficial for solving a task with minimal complexity at the individual
level. But this is not the only important achievement. Seen from the perspective of a
biologist, the box-pushing experiment constitutes a formal model of ant’s behaviour, that
can explain biological mechanisms that are still to be uncovered:

One of the swarm-based robotic implementations of cooperative transport
is so closely inspired by cooperative prey retrieval in social insects that it is a
genuine model of the phenomenon, thereby providing a unique example of a
truly bidirectional exchange between biology and robotics. [Despite the many
observations of ants’ foraging behaviour,] the mechanisms underlying coopera-
tive transport—that is, when and how a group of ants move a large prey item to
the nest—remain unclear. No formal description of the biological phenomenon
has been developed, and surprisingly, roboticists went further than biologists
in trying to model cooperative transport: perhaps the only convincing model
so far is one that has been introduced and studied by roboticists (Kube and
Zhang, 1997), and although this model was not aimed at describing the be-
havior of real ants, it is biologically plausible.

Kube and Bonabeau, 2000

We can better appreciate now the importance of biological inspiration, not only for the
design of control systems for a group of robots, but also to provide plausible explanations
of collective behaviours observed in insect societies. This also explains how the synergy
between biologists and roboticists is at the basis of the success that swarm robotics is
nowadays receiving.

Another ant-inspired behaviour stems from the observation of clustering and annular
sorting in brood of Lepthotorax ants. These ants organise brood items in concentric rings
depending on the development status: older and larger brood items are arranged in the
periphery of the structure, while eggs and micro-larvae stay in the centre (see Franks
and Sendova-Franks, 1992, for more details). A simulation model was developed in order
to uncover the basic mechanisms of the ants’ observed behaviour by Deneubourg et al.
(1991). In this model, the rule followed by ants is assumed to be “deposit an item where
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the density of already deposited items is higher”. More precisely, ants are assumed to
sense the local density of items of different kind, and know what type of item they are
carrying. The perceived local density of deposited items influences the probability to drop
a new item in a given place: the higher the density, the bigger the probability. Using such
a simple model, a basic understanding of the clustering and sorting phenomena observed
in ants was given (see Deneubourg et al., 1991). The above model was further simplified by
Beckers et al. (1994) in their pucks-clustering experiments performed with physical robots.
In these experiments, a certain number of pucks are initially scattered in a closed arena.
Robots are provided with a gripper in which they can collect pucks and push them while
exploring the arena. Pucks are released only when a sufficient number has been collected in
the gripper, as indicated by the activation of a micro-switch. The latter is a sensing ability
that allows a very coarse estimation of the local density of pucks, which anyway proved to
be sufficient for the production of efficient clustering. Indeed, the authors observed that
robots were able to collect all pucks in a single cluster, and this was obtained using only
local sensing abilities and exploiting the environmental modifications brought forth during
the experiment.

A similar approach has been taken by Martinoli et al. (1999), that studied clustering
performed by a group of Khepera robots. In this case, the particular sensory apparatus
and the behaviour set provided to the robots led to the formation of linear clusters, rather
than circular ones. Nonetheless, the basic mechanisms did not change. In addition to
the implementation for a robotic clustering experiment, Martinoli et al. (1999) propose
a formal probabilistic model of the clustering behaviour, which exploits the knowledge of
the individual behaviour and some simple geometrical considerations. The probabilistic
model shows powerful prediction abilities, with a quality comparable to what obtained, in
a much longer time, by detailed sensor-based simulations.

Sorting was also studied by Holland and Melhuish (1999) and by Wilson et al. (2004).
In a first set of experiments, Frisbees of two different types—plain and ring—are scattered
in a large octagonal arena in order to be collected by a group of small robots—called U-bots
(Holland and Melhuish, 1999). Each robot has very simple capabilities, such as avoiding
obstacles, holding a Frisbee in the gripper and releasing it. With this experimental setup,
Holland and Melhuish studied sorting of the two objects types, aiming at the formation
of a single cluster in which the centre is constituted by one type and the periphery by the
other. They programmed the U-bots with similar behaviours as in the work of Beckers
et al. (1994), with the additional rule that one of the object types was pulled back of a
certain distance every time the robot decided to drop it. This simple mechanism alone was
sufficient to produce an effective segregation of the different types of Frisbees. A follow-up
of this study was presented by Wilson et al. (2004): a higher number of object types is
used, and different sorting mechanism are compared.

A classic topic of swarm robotics research goes under the name of division of labour.
In swarm systems, both natural and artificial, the group efficiency depends on the group
size. In some cases, insects are super-efficient, that is, the efficiency of the group increases
super-linearly with the group size. Group transport is a typical example of super-efficiency:
ants can collectively transport prey that are much heavier than the sum of the maximum
weight each individual can carry (Franks, 1986). Super-linear performance is difficult to
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achieve. Usually, efficiency increases linearly or sub-linearly. In the latter case, negative
interferences among individuals are the main responsible for the efficiency drop.

Nature has evolved various strategies for division of labour. One of these strategies
is based on stimulus-response thresholds, observed in ants and bees (Deneubourg et al.,
1987; Robinson, 1987): if the environmental stimulus to engage in some activity raises
over the individual threshold, the response is triggered. As more and more individuals get
engaged, the environmental stimulus lowers below the activation threshold of some of the
engaged individuals, which will stop participating in the corresponding activity. In this
way, an optimal number of workers is chosen. This idea has been exploited and further
developed in a number of studies in swarm robotics. Foraging experiments with up to 12
real Khepera robots have been performed, showing a good correspondence between the
robotic implementation and the ants’ behaviour (Krieger and Billeter, 2000; Krieger et al.,
2000). In these experiments, also a simple form of recruitment was implemented, a kind
of tandem running also observed in some ant species (see Hölldobler and Wilson, 1990).
The authors show the benefits of the transfer of knowledge through recruitment, above all
when food distribution is clumped. In these experiments, individual activation thresholds
were fixed at the beginning of the experiment differently for each individual, in order to
avoid that all robots engage in foraging at the same time. Fixed activation thresholds
were used also in a set of clustering experiments reported by Agassounon and Martinoli
(2002). In this case, however, the robots could estimate their individual thresholds on the
basis of the number of collected pucks during an initial estimation phase. A completely
adaptive algorithm is used in the foraging experiments presented by Labella et al. (2006),
already mentioned in Section 3.1.1. Here, individual activation thresholds are continuously
adapted during the experiment, in order to better fit to the dynamic aspects of the task.

A number of other swarm robotic systems have been developed, inspired or not by
social insects or other animal societies. A remarkable example that does not directly take
inspiration from biology is represented by the physicomimetics, or artificial physics (AP)
framework (see Spears et al., 2004). The basic idea behind AP consists in driving the
multi-robot system by means of virtual forces, in order to reach a target configuration
that minimise the system’s potential energy. Emphasis is put on the limited sensing and
communication range of each unit in the system. As a consequence, the system relies on
a distributed control that exploits local interaction rules that, through a self-organising
process, lead to the global formation. AP also aims at fault-tolerance and self-repair in
the system, so that, if some units get damaged, either the performance degrades grace-
fully or the functionality of the system is reestablished by the remaining working units.
Within this framework, several types of vehicle formations have been achieved, including
square and hexagonal lattices (see Spears et al., 2004). These structured formations can
be used as sensor networks for surveillance or for other tasks such as chemical plume trac-
ing (Zarzhitsky et al., 2005). This task involves a group of robots for the detection of a
chemical that diffuses in the air, and the localisation of the source emitter. It is a partic-
ularly challenging task because of the very complicated fluid physics that characterise the
diffusion of the chemical in the environment. Therefore, a swarm distributed approach is
more suitable for such a task, as demonstrated also by Hayes et al. (2002, 2003).
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We conclude this review mentioning two projects that are currently at the early stages
of development, but that are characterised by a very promising concept. The first project
is the UltraSwarm (Holland et al., 2005), which aims at the development of a swarm of
Unmanned Air Vehicles (UAVs) connected in a high-bandwidth wireless network. The
UltraSwarm aims at putting together the power of swarm intelligence and of grid com-
puting. The purpose is obtaining a system that is versatile and highly reliable exploiting
the intrinsic redundancy of swarm systems, and that is also able of high-power distributed
computing for analysing data collected during a mission (Holland et al., 2005). The sec-
ond project worth of mention is the Mascarillion project (Nembrini et al., 2005) , which
stands as an interesting crossroad between Art and Science. The purpose of the project is
the development of a swarm of cubic blimps that self-organise and self-assemble into novel
architectonic structures.

In this research, instead of concentrating on designing a final result, the
process of architectural creation is transformed into the design of rules govern-
ing the assembly of components. If the number of these components is high
enough, their interaction will eventually lead to the formation of complex hov-
ering structures. [...] For the first time [...], this flying architecture will emerge
from the collective behavior of a set of individual agents (“flying bricks”), a
flock of proactive elements taking the form of flying robotic cubic blimps, the
Mascarillons.

Nembrini et al., 2005

These two projects, although different in their purposes, both extend the swarm-robotic
paradigm towards innovative directions, and clearly show how swarm intelligence can be
potentially exploited for applications that are far beyond the current state-of-the-art.

3.2 Features and Challenges of Swarm Robotics

The above review of the state-of-the-art in swarm robotics gives an idea about the research
directions undertaken by the scientific community. Not surprisingly, the scenarios that
inspire much of the above mentioned work have been anticipated by science fiction, which
narrates the advent of colonies of microscopic robots that work in cooperation, self-sustain
and self-reproduce, much as a new species of living organisms.

[...] each lithocule knew exactly where it was supposed to go and what it
was supposed to do. They were tetrahedral building blocks of calcium and
carbon, the size of poppyseeds, each equipped with a power source, a brain
and a navigational system.

“The Diamond Age”, Neal Stephenson, 1995

“But obviously,” Ricky said, “these robot cameras were vulnerable. You
could shoot them down like pigeons. The Pentagon wanted a camera that
couldn’t be shot down. [...]” I nodded. “And so you thought of a swarm of
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nanocomponents.” “That’s right.” Ricky pointed to the screen, where a cluster
of black spots wheeled and turned in the air, like birds. “A cloud of components
would allow you to make a camera with as large a lens as you wanted. And
it couldn’t be shot down because a bullet would just pass through the cloud.
Furthermore, you could disperse the cloud, the way a flock of birds disperses
with a gunshot. Then the camera would be invisible until it re-formed again.
So it seemed an ideal solution.”

“Prey”, Michael Crichton, 2002

If, on the one hand, these futuristic visions may seem rather unrealistic, on the other
hand today’s trends in scientific and technological research suggest that they are much
closer to reality than one would expect. Research is actually moving in the direction
of micro- and nano-robots, supported by the technological achievements in MEMS and
nanotechnologies (see, for example, the I-SWARM concept presented by Seyfried et al.,
2005). Micro-robots capable of operations at the nano-scale are also under development,
allowing for cellular manipulation and monitoring (Casanova et al., 2005; Brufau et al.,
2005).

In summary, technological advancements in swarm robotics are pushing towards minia-
turisation. As a consequence, the main challenges to be met in the future concern the con-
trol aspects. Miniaturisation requires a low complexity of the controller at the individual
level, which should be counterbalanced by a high number of locally interacting individuals
in order to be able to observe the emergence of a complex behaviour. Additionally, the
controller of the robotic system should be distributed, flexible and robust, in order for
the system to be efficient and reliable. Decentralisation, locality, flexibility, robustness
and emergence are what we consider the main features of a swarm robotic system. Un-
derstanding the implications of these features is the first step towards the development of
efficient control systems.

3.2.1 Decentralisation

A swarm robotic system normally features a decentralised controller, because of the unfea-
sibility of a centralised solution. The latter consists in a single machine/agent/entity that
defines the action to be performed by each robot in the system. Planning the instructions
to be executed requires the combination of the state space of all the robots in a single
joint space. This is feasible if the number of robots is very small (see, for example Matarić
et al., 1995), but it becomes unpractical as the group size increases, as the dimension of
the joint space grows exponentially with the number of robots. Additionally, a centralised
approach lacks of flexibility and robustness, and it must rely upon a communication sys-
tem between the central controller and the agents. Failures of the central controller unit
or of the communication would result in the whole system to stop working.

On the contrary, decentralisation leads to the distribution of the decision making pro-
cess among all the robots in the system. Each robot is responsible for its own actions,
which are taken independently from the other individuals, leading to a noticeable reduc-
tion in the complexity of the control systems. In this way, the individual controller can
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be reasonably simple while the system can still exhibit complex behaviours (see also Sec-
tion 3.2.4). Not surprisingly, excellent instances of decentralised activities are given by
social insects: they base their decisions in a distributed manner, not being governed by
any leading individual in the colony, and at the same time achieving a very efficient and
organised behaviour at the colony level.

One of the pitfalls of decentralised approaches reside in the possibility of stagnation: in
some deadlock situations, the system may be unable to progress because the distributed
efforts of many individuals reciprocally cancel. Avoiding or solving stagnation requires
either additional rules for the individual behaviour, or some perturbation of the deadlock
equilibrium due to random fluctuations or to the intervention of external forces (e.g., the
aid of additional individuals).

3.2.2 Locality and Stigmergy

A swarm robotic system should involve robots that have local and limited sensing and
communication abilities, as already mentioned in Section 3.1.3. In fact, system wide
interactions are unpractical and global communication costly, given that both suffer of
exponential explosion as the number of individuals in the system increases. Robots should
therefore rely only on local interactions and simple forms of communication. The latter are
often beneficial for the achievement of coordinated behaviours or for an increased efficiency
of the group (Matarić, 1998; Ijspeert et al., 2001; Trianni et al., 2004a). However, in some
cases explicit communication does not result in any advantage (Balch and Arkin, 1994).
This happens when the information that is communicated is in some way already available
within the environment, and coordination among individuals of the swarm can be obtained
without any additional cost. For example, consider a group of grazing robots. In this case,
there is no need of explicit communication to coordinate the activities of the group (i.e.,
where to graze), because “as robots graze they inevitably leave a record of their passage,
the graze swath” (Balch and Arkin, 1994). These changes made within the environment by
a work-in-progress can be considered a form of implicit communication, which is usually
referred to as stigmergy.

There is a class of natural systems in which large numbers of simple agents
collectively achieve remarkable feats through exploiting a single principle.
They offer a spectacular existence proof of the possibility of using many sim-
ple agents rather than one or a few complex agents to perform complex tasks
quickly and reliably. [...] The natural systems we refer to are social insects—
ants, termites, wasps, and bees. The principle is that of stigmergy, recognised
and named by the French biologist P. P. Grassé (1959) during his studies of
nest building in termites. Stigmergy is derived from the roots ‘stigma’ (goad)
and ‘ergon’ (work), thus giving the sense of “incitement to work by the prod-
ucts of work”. It is essentially the production of a certain behaviour in agents
as a consequence of the effects produced in the local environment by previous
behaviour.

Beckers et al., 1994
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Stigmergic communication is of utmost importance within insect societies, which
abound of interesting examples (see Section 7.1 for more details). Also within the col-
lective robotics domain stigmergy is studied and exploited, and we have presented already
some examples in Section 3.1.3. Stigmergic communication helps to achieve system wide
coordination with local interactions. Besides, the exploitation of such a communication
paradigm corresponds to a reduced complexity of the control system. As a final remark,
it is worth noticing that stigmergic communication scales very well with the number of
involved individuals. This characteristic makes stigmergy relevant above all in a swarm
robotic context, suggesting that it should be used whenever possible.

3.2.3 Flexibility and Robustness

The above concept of decentralisation and locality are tightly linked with both flexibility
and robustness. A flexible system is capable to adapt to new, different, or changing
requirements dictated by the environmental conditions it encounters. A robust system is
capable to continue working notwithstanding failures of some system components. Both
these features are desired in a swarm robotic system, and they can be obtained in different
ways. For example, flexibility may be the outcome of the exploitation of a stigmergic
communication, as described by Bonabeau et al. (1999):

Stigmergy is often associated with flexibility: when the environment
changes because of an external perturbation, the insects respond appropriately
to that perturbation, as if it were a modification of the environment caused
by the colony’s activities. In other words, the colony can collectively respond
to the perturbation with individuals exhibiting the same behaviour. When it
comes to artificial agents, this type of flexibility is priceless: it means that the
agent can respond to a perturbation without being reprogrammed to deal with
that particular perturbation.

Bonabeau et al., 1999, pp. 16–17

Similarly, robustness is directly associated to decentralisation. In a centralised system,
in fact, the failure of the central controller would affect the whole group, while a decen-
tralised system, not relying on a single controller, can continue to work even if some of its
parts are not available any more. However, a distributed control alone is not enough to
obtain robustness. Let us consider a group of agents that are able to achieve their goal
performing an ordered sequence of sub-tasks, each executed by a specialised agent. In this
case, the system may be decentralised, but not robust, because the failure of one agent
will lead to the failure of the entire group. In a swarm robotic system, homogeneity and
redundancy represent the main way to achieve robustness. The system components are
replicated identically many times, thereby obtaining that the removal of some components
does not affect the functionality of the system.

Flexibility and robustness are typical features of insect colonies, that are able to func-
tion even after the removal of many individuals. A striking example is given by ants of
the Pheidole genus, which are characterised by workers physically divided into two castes:
the small minors, who fulfil most of the quotidian tasks, and the larger majors, who are
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responsible for seed milling, abdominal food storage, defence or a combination of these.
Wilson (1984) experimentally changed the proportion of majors to minors. By diminishing
the fraction of minors, majors get engaged in the tasks usually performed by minors and
replace them efficiently. The colony displays robustness, being able to maintain its func-
tionality notwithstanding the removal of many individuals. Besides, it displays flexibility,
being able to promptly respond to the new environmental conditions.

3.2.4 Emergence

Another feature that pertains to a swarm robotic system is the emergence of the global
behaviour from the local interactions among the robots in the system and between robots
and environment. In fact, the global behaviour is not explicitly coded within the rules
that govern each individual. It rather appears—i.e., emerges—as a result of the interplay
of the individual behaviours.

Not every swarm robotics system presents emergent properties. And emergent be-
haviours are not required for a robotic system to belong to swarm robotics. However, the
importance of emergence should not be neglected: a high complexity at the system level
can be obtained solely using simple rules at the individual level. It is therefore highly
desirable to seek for emergent properties in a swarm robotic system, as they can be ob-
tained with minimal cost. This concept also opens the way for miniaturisation, making
it possible to think of a high number of very simple miniature robots that cooperate to
perform some useful task. However, because the relationship between simple local rules
and complex global properties is indirect, the definition of the individual behaviour is
particularly challenging.

[The] problem is to determine how these so-called “simple” robots should
be programmed to perform user-designed tasks. The pathways to solutions are
usually not predefined but emergent, and solving a problem amounts to finding
a trajectory for the system and its environment so that the states of both the
system and the environment constitute the solution to the problem: although
appealing, this formulation does not lend itself to easy programming.

Kube and Bonabeau, 2000

This problem, which we refer to as the design problem, is the central issue of the
following chapter, and will be treated in detail in Section 4.1.

3.3 A Close Look to Self-Organisation

The inherent complexity of a swarm robotic system suggests that the design of its controller
is a particularly challenging task. Decentralisation, robustness, embodiment, locality of
sensing, dynamic interactions between robots, are all aspects that have to be taken into
account when developing the control system. Is it possible to find some basic principles
to be followed when facing this challenge? A possible answer is suggested by the notion
of self-organisation (SO).



44 CHAPTER 3

Self-organisation can be defined as “a process in which pattern at the global level of a
system emerges solely from numerous interactions among the lower-level components of the
system. Moreover, the rules specifying interactions among the system’s components are
executed using only local information, without reference to the global pattern” (Camazine
et al., 2001, p. 8). In other words, a system self-organises driven by its own components,
which interact relying only on local information, without any reference to the system as a
whole.

The notion of “self-organisation” started to be discussed in the middle of the 20th

century by a multi-disciplinary group of scientists, like the thermodynamicists Nicolis and
Prigogine (1977) or the cyberneticians Ashby (1962) and von Foerster (1960). Prigogine
won the Nobel prize for his study of dissipative systems, that is, systems able to contin-
uously dissipate energy preserving a particular dynamic state. These systems are able to
maintain constant or decrease their own entropy dissipating the excess energy in the sur-
roundings. Prigogine suggested that self-organisation typically takes place in non-linear
systems far from their thermodynamic equilibrium point. A well known example of dissi-
pative system that presents self-organisation is given by the Bénard convection cells that
can be observed when heating a thin layer of a vegetable oil. The vertical temperature
gradient in the horizontal oil layer causes an ordered movement of the molecules in the
liquid that results in a global hexagonal pattern, which can be observed on the substrate.

In the same period, Ashby and von Foerster begun their work on self-organisation.
Ashby (1962) noted that a self-organising system is a system that evolves toward a state
of equilibrium, also called attractor. On the other hand, von Foerster (1960) supported
the notion of “order from noise”, claiming that injecting noise in a system can move it
across its state space, with the possibility of ending in a more stable (ordered) state.

Starting from these pioneers, the importance of self-organisation has been recognised
in the study of many complex systems, ranging from chemistry to biology. As mentioned
above, global order in a self-organising system is the result of local interactions among
the individuals composing the system. When in the disordered state, individual actions
and interactions are deeply influenced by randomness or noise, and result in the so called
random fluctuations of the system around its state. Then, self-organisation may emerge
from the interplay of two basic mechanisms: positive and negative feedback. Positive
feedback consists in the amplification of the random fluctuations of the system: it can
be seen as a snowball effect that increases exponentially and drives the system toward a
stable state. On the contrary, negative feedback serves as a regulatory mechanism, and
it is often a result of the amplification itself, that exhausts the resources of the system.
Negative and positive feedback are responsible for maintaining a system in its stable state,
restoring the organisation after any deviation caused by some external influence.

As an example, let us consider again the Bénard convection cells mentioned above.
When heating the thin layer of oil, a temperature gradient is created between the bottom
and the top of the layer. However, the system remains in a stable state where heat
is dissipated by conduction until a certain threshold is reached. At this point, random
fluctuations and local interactions may trigger the self-organisation process. In fact, a
small portion of the liquid at the bottom may rise slightly because of random movements
of the molecules (random fluctuations). It will be surrounded by a colder region, and,
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being less dense, it will be pushed up (local interactions). The more it rises, the colder
the surroundings and the higher the rising force (positive feedback). The same mechanism
applies to a cold portion of liquid at the top: a small downward movement caused by
random fluctuations is amplified by the interaction with the warmer (and thus lighter)
liquid in the surroundings. The amplification process terminates once convection cells
appear throughout the whole oil layer, that is, when all the resources of the system have
been exhausted (negative feedback).

Self-organisation can also explain the behaviour of many biological systems, such as
ant colonies or fish schools (Camazine et al., 2001). For this reason, it is of particular
interest for studies in swarm robotics, which are often inspired by some biological coun-
terpart. Animal societies present multiple forms of self-organisation and self-assembly.
In such systems, the interactions among individuals take place following rules of thumb
that in general require: (i) a limited cognitive ability and (ii) a limited knowledge of the
environment (Camazine and Sneyd, 1991; Camazine et al., 1990; Deneubourg and Goss,
1989; Detrain, 1990; Fitzgerald, 1995; Saffre et al., 1999; Seeley, 1995; Seeley et al., 1991).
Also in these cases, we can recognise the basic features of self-organisation: local interac-
tions, random fluctuations, positive and negative feedback mechanisms. As an example,
we can mention aggregation in the bark beetle larvae Dendroctonus micans (Deneubourg
et al., 1990b). Normally, these larvae individually search for a fruitful feeding site, moving
randomly (random fluctuations). When they start feeding in a good location, they start
to emit a chemical signal, a pheromone that diffuses in air and serves as communication
medium (local interactions, stigmergic communication). At this point, the aggregation
process is triggered: in presence of a pheromone gradient, larvae react by moving in the
direction of higher concentration of pheromone, thus reinforcing the chemical signal com-
ing from the aggregation site (positive feedback mechanism). The aggregation ends when
all the larvae have clustered in one location (negative feedback mechanism resulting from
the exhaustion of larvae) (Deneubourg et al., 1990b).

The above example shows how order in a system, that is, the aggregate, can emerge
from simple individual rules and local interactions. This kind of behaviour is emergent,
and corresponds to what desired in a swarm robotic system. Then, why not designing a
swarm robotic system able to self-organise? In fact, self-organising systems hold the same
features that have been discussed in Section 3.2:

Decentralisation All the elements of a self-organising system are, by definition, au-
tonomous: there is no leader that drives the organisation of the system, which is not
a result of any recipes, blueprints or templates.

Locality Every element of a self-organising system relies only on local information and
interacts locally with the other elements of the system, suggesting that its behaviour
can be modelled with simple rules.

Flexibility and robustness A self-organising system has the natural tendency to main-
tain its organisation, driven by its feedback mechanisms. Therefore, it is resilient
to environmental changes and external disturbances (up to a certain level). A self-
organising system is also said to “live at the edge of chaos”, meaning that the system
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presents non-linearities and complex far-from-equilibrium dynamics, that is, the sys-
tem reaches a stable state that is not an equilibrium point. This makes it possible
to have a dynamic system with fast reactions, which favours adaptation to environ-
mental changes and the production of new responses to new, unexpected situations.
Finally, the high redundancy of individual components suggests that a self-organising
system is also robust to failures.

Emergence The control is distributed, and all parts of the system contribute to the emer-
gence of the organisation. The global order is the result of the numerous interactions
among the system components.

In conclusion, a swarm robotic system should be self-organising in order to exploit all
the advantageous features that pertain to these particular systems. However, we still have
to understand how to design the control system in order to obtain self-organisation. The
“design problem” is the topic of the following chapter.

3.4 Summary

In this chapter, we gave an introduction to the state-of-the-art in multi-robot systems,
analysing its many different flavours as they can be found in the literature. Particular
attention has been given to second order robotics, which studies artifacts composed of
individual robotic units connected to form a large physical structure. To this class of
robotic systems belongs also swarm robotics, whose characteristics have been discussed in
detail. We have finally introduced the notion of self-organisation, along with a parallel
between swarm robotics and a self-organising system, which present similar features. This
suggests that the controller of a swarm robotic system should be designed in order to
obtain self-organisation. The following chapter uncovers the problems that arise in doing
so, and proposes artificial evolution as a possible solution.



Chapter 4

Evolutionary Robotics for

Self-Organising Behaviours

This chapter is dedicated to the justification of the methodological approach used in
the experiments presented in this thesis. As seen in the previous chapter, there is a
fundamental problem—referred to as the design problem—that arises in the development
of self-organising behaviours for a group of robots. This problem consists in defining the
appropriate individual rules that will lead to a certain global pattern. In Section 4.1 we
analyse in detail which are the reasons that lead us to conclude that developing a control
system for a group of robots is not a trivial task. The lack of basic principles for the design
of collective behaviours can be bypassed resorting to evolutionary robotics, as described in
Section 4.2.

Evolutionary robotics is an automatic technique for generating solutions for a partic-
ular robotic task, based on artificial evolution (Fogel et al., 1966; Holland, 1975; Schwefel,
1981; Goldberg, 1989). It is inspired by natural evolution, which predicates the “survival
of the fittest”: the individual that best adapts to its environment has more chances to
reproduce and to pass its genetic material to the subsequent generations. In this way, the
species evolves toward better and better individuals. The same idea is exploited in the
artificial counterpart, in which a population of individuals is evolved for many generations.
Each individual, called genotype, represents a solution for a given task. Its fitness—i.e.,
the quality of the solution to the task—is automatically evaluated in each generation.
Individuals are allowed to “reproduce” by generating copies of their genotypes. The latter
are modified using genetic operators, such as crossover (sexual reproduction) or mutation
(asexual reproduction). In this way, offspring are generated that undergo the same eval-
uation process, until a valid solution is found. Figure 4.1 gives a schematic description of
this process.

Notwithstanding the appealing properties of evolutionary robotics and the many suc-
cessful applications in the single robot domain (see, for example, Harvey et al., 1993; Nolfi
and Floreano, 2000; Harvey et al., 2005), only recently it has been used for the develop-
ment of group behaviours. In Section 4.3, we highlight the most interesting work found
in the literature about collective evolutionary robotics. Finally, in Section 4.4 we present
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Figure 4.1: The basic evolutionary algorithm. At the beginning, a population of geno-
types is created randomly (step 1). Each individual is evaluated according to a user-defined
performance metric, which assigns a “fitness” score to the genotype (step 2). If the termi-
nation criteria is not satisfied (step 3), the fitness score is used to select—deterministically
or probabilistically—the genotypes that will reproduce (step 4). These genotypes pro-
duce the next generation of individuals, applying genetic operators such as mutation or
crossover (step 5). Once obtained the new population, the evolutionary process starts
again, and it is iterated until the termination criteria is satisfied (step 6). The termina-
tion criteria can be based, for example, on a maximum number of generations or on a
maximum fitness achieved.

in detail an example of evolutionary technique applied to swarm robotics, that follows
the ideas presented in the first sections of this chapter. Section 4.5 concludes the chapter
summarising the main points previously discussed.

4.1 The Design Problem

The design of a control system that lets a swarm of robots self-organise requires the
definition of those rules at the individual level that correspond to a desired pattern at the
system level. This problem, referred to as the design problem, is not trivial. In fact, it is
necessary to discover the relevant interactions between the individual robots, which lead
to the emergence of the global organisation. In other words, the challenge is given by the
necessity to decompose the global behaviour that results in the desired organisation in
simple mechanisms and interactions among the system components. Furthermore, even if
we know the mechanisms that lead to the emergence of the global organisation, we still have
to consider the problem of encoding them into the controller of each robot. In doing this,
the environment in which the robots are embedded must be taken into account because of
its influence on the dynamics of the system and its role as communication medium. This
two-step decomposition process is exemplified in Figure 4.2. The self-organised system
displays a global behaviour interacting with the environment (Figure 4.2, left). In order to
define the controller for the robots, it is necessary first to decompose the global behaviour
into individual behaviours and local interaction among robots and between robots and
environment (centre). Then, the individual behaviours must be encoded into the control
program that drives each robot (right).
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Figure 4.2: The “divide and conquer” approach to the design problem. In order to have
the swarm robotic system self-organise, we should first decompose the global behaviour
of the system (left) into individual behaviours and local interactions among robots and
between robots and environment (centre). Then, the individual behaviour must be in
some way encoded into a control program (right).

Summarising, from an engineering perspective the design problem is generally viewed
as comprising two different phases: first, the behaviour of the system must be described as
the result of interactions among individual behaviours, and then the individual behaviours
must be encoded into controllers. Both phases are complex because they attempt to de-
compose a process (the global behaviour or the individual one) that emerges from a dy-
namical interaction among its subcomponents (interactions among individuals or between
individual actions and environment).

Nolfi and Floreano (2000) claim that, since the individual behaviour is the emergent
result of the interaction between agent and environment, it is difficult to predict which
behaviour results from a given set of rules, and which are the rules that will create a given
behaviour. Similar difficulties occur in the decomposition of the organised behaviour of
the whole system into interactions among individual behaviours of the system components.
Here, the understanding of the mechanisms that lead to the emergence of self-organisation
must take into account the dynamic interactions among individual components of the
system and between components and environment. Thus, it is difficult to predict, given a
set of individual behaviours, which behaviour at the system level will emerge, and it is also
difficult to decompose the emergence of a desired global behaviour in simple interactions
among individuals. In addition, the role of the environment in relation to the emergence
of the global pattern should not be neglected.

The decomposition from the global to the individual behaviours could be simplified
taking inspiration from natural systems, such as insect societies, that could reveal which
are the basic mechanisms to be exploited. This is the swarm intelligent approach to the
solution of the design problem (Bonabeau et al., 1999). Following the observation of a
natural phenomenon, a modelling phase is performed, which is of fundamental importance
to “uncover what actually happens in the natural system” (Bonabeau et al., 1999, p. 8).
The developed model can then be used as a source of inspiration for the designer, who can
try to replicate certain discovered mechanisms into the artificial system, in order to obtain
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Figure 4.3: The swarm-intelligent approach to the design problem: a natural self-
organising system (left) can be observed and its global behaviour modelled (centre), ob-
taining useful insights on the mechanisms underlying the self-organisation process. The
model can be used as a source of inspiration for the following design phase, which leads
to the definition of the control program (right).

dynamics similar to the natural counterpart. As exemplified in Figure 4.3, this approach
requires an initial analytical phase that models the phenomena observed in nature to find
out which are the basic mechanisms and individual interactions. This knowledge is then
exploited in the design phase, in which these mechanisms are encoded into the control
program.

However, it is not always possible to take inspiration from natural processes because
they may differ from the artificial systems in many important aspects (e.g., the physical
embodiment, the type of possible interactions between individuals and so forth), or because
there are no natural systems that can be compared to the artificial one. Moreover, the
problem of encoding the individual behaviours into a controller for the s-bots remains to be
solved. Our working hypothesis is that these problems can be efficiently solved relying on
evolutionary robotics techniques (Nolfi and Floreano, 2000), as discussed in the following
section.

4.2 Why Evolutionary Robotics?

Evolutionary robotics represents an effective solution to the design problem because it
eliminates the arbitrary decompositions at both the level of finding the mechanisms that
lead to the emergent global behaviour, and the level of implementing those mechanisms
into a controller for the robots. In fact, it relies on the evaluation of the robotics system
as a whole, that is, on the emergence of the desired global behaviour starting from the
definition of the individual rules. This approach is exemplified in Figure 4.4: the controller
encoded into each genotype is directly evaluated looking at the resulting global behaviour.
The evolutionary process is responsible of selecting the “good” behaviours and discarding
the “bad” ones. Moreover, the controllers are directly tested in the environment, thus
they can exploit the richness of solutions offered by the dynamic interactions among s-bots
and between s-bots and environment, which are normally difficult to be exploited by hand
design.

It is worth noting that, while the hand design normally proceeds in a top-down direc-
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tion, following a divide and conquer approach, the evolutionary process proceeds in the
bottom-up direction, directly evaluating controllers for their suitability to the requirements
defined by the designer. Evolutionary robotics does not need any arbitrary decomposition
of the problem into sub-problems, but it relies on the automatic process of selection and
reproduction (which is often referred to be self-organised itself).

The main problem of the divide and conquer approach is well explained by Nolfi
and Floreano (2000). The decomposition of a global behaviour into sub-components is
often performed from a distal description of the behaviour, that is, a description from
the observer point of view. On the other hand, the control rules correspond to a proximal
description of the behaviour, that is, a description of the coupling of sensory (and internal)
states to motor actions. The distal description of the behaviour is a result of the agent-
environment interactions, and therefore it may be impractical to define the controller
at the proximal level. The divide and conquer approach may fail when, following the
distal description, the global behaviour is arbitrarily decomposed in sub-parts that does
not have a one-to-one mapping with the sub-components of the control system. On the
contrary, the evolutionary approach can overcome this problem defining a controller at
the proximal description level, while testing and evaluating it at the distal level. In this
way, no arbitrary choice is performed by the designer, but the process is left free to choose
and test any possible solution that can produce the desired global behaviour.

Before concluding, it is worth mentioning that the advantages offered by Artificial
Evolution are not costless, as pointed out by Matarić and Cliff (1996). On the one hand,
it is necessary to identify initial conditions that assure evolvability, i.e., the possibility to
progressively synthesise better solutions starting from scratch. On the other hand, artificial
evolution may require long computation time and it is often unfeasible on real robots. For
this reason, software simulations are often used. The simulations must retain as much
as possible the interesting features of the robot-environment interaction. Therefore, an
accurate modelling is needed to deploy simulators that well represent the physical system
(Jakobi et al., 1995; Jakobi, 1997).

environmentcontroller

self−organizing
system

Figure 4.4: The evolutionary approach to the design problem: controllers (left) are evalu-
ated for their capability to produce the desired group behaviour (right). The evolutionary
process is responsible for the selection of the controllers and for evaluating their perfor-
mance (fitness) within the environment in which they should work.
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4.3 Collective Evolutionary Robotics in the Literature

As mentioned above, the use of artificial evolution for the development of group behaviours
received attention only recently. In fact, the challenges highlighted by Matarić and Cliff
(1996) are even more important in the collective domain. Therefore, most of the literature
in collective evolutionary robotics focuses on research performed exclusively in simulation,
without any test on real robot. Some valuable exceptions exist, mentioned later on in this
section.

Werner and Dyer (1991, 1993) were among the first to study collective behaviours
making use of evolutionary robotics techniques. They studied populations of elementary
organisms that were selected for different abilities. In an early work (Werner and Dyer,
1991), they observed the emergence of communication strategies that were necessary for
the successful mating of artificial organisms characterised by their gender. In a later work
(Werner and Dyer, 1993), they studied the evolutionary origin of herding in co-evolving
populations of predators and prey. They observed that after some generations during
which predators evolved an ability to catch the prey, the latter converged into small herds
which were constantly splitting up and reforming.

A similar approach was taken by Reynolds (1993), who improved on his early work
on flocking of simulated creatures—the boids (Reynolds, 1987), see Section 3.1.1—making
use of evolutionary techniques. He evolved the visual apparatus and the control system
of a group of creatures, called critters, which were placed in an environment with static
obstacles and a manually programmed predator. The control system was evolved to avoid
collisions and to escape from the predator. Capitalising on the experience of Reynolds,
Ward et al. (2001) evolved the e-boids, that is, groups of artificial fish capable of displaying
schooling behaviour. In this work, two populations of predator and prey creatures were
evolved in a 2D environment, which also contained randomly distributed food items. The
authors report the emergence of schooling behaviours, despite the creatures were not
explicitly rewarded for coordinated motion. By analysing the obtained results, it was
found that schooling is beneficial for finding food clumps and for protecting from predators.
Finally, Spector et al. (2005) resorted to genetic programming (Koza, 1992, 1994) to evolve
group behaviours for flying agents in a simulated environment.

Quinn (2001a) explored two ways of evolving controllers for a coordinated motion
behaviour to be carried out by two simulated Khepera robots. In the first approach,
called clonal, the members of the group are homogeneous and share the same genotype.
The second approach, called aclonal, provides each member of the group with different
genotypes—an heterogeneous group. Results indicate that aclonal evolution produces bet-
ter performing behaviours for this rather simple task. In fact, with aclonal evolution it was
possible to obtain different controllers for different roles (leader and follower). However,
the heterogeneous approach may not be suitable when coping with larger groups and/or
with behaviours that do not allow for a clear role allocation. In those situation, homoge-
neous groups achieve better results, as shown by Perez-Uribe et al. (2003). They evolved
groups of artificial ants—i.e., simulated ALICE robots (Caprari et al., 2002)—for a for-
aging task, and showed that homogeneous groups achieve a better performance, as they
display altruistic behaviours that appear with low probability when selection is performed
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on a individual basis.

Overall, the above mentioned works confirm that artificial evolution can be success-
fully used to synthesise controllers for collective behaviours. However, whether these
results can generalise to physical systems—i.e., real robots—remains to be ascertained.
Very few examples exist of evolutionary robotics techniques applied to group behaviours
and successfully tested on physical robots. A notable example is given by Quinn et al.
(2003), who studied the evolution of coordinated motion in a group of three simulated
and physical robots. Relying only on the local and noisy information provided by four
infrared proximity sensors, the robots are asked to move in formation as far as possible
from their initial position, without losing contact with each other. The analysis of the
evolved behaviour has shown that after an initial coordination phase, the robots assume
different roles depending on their relative position and the history of interactions they
have with the other robots. This role allocation is therefore not a-priori defined, but it
emerges from the initial interactions among the robots.

Another example of group behaviours evolved in simulation and successfully tested on
real robots is given by Nelson et al. (2004). They study a robotic version of the game
“capture the flag” in which a team of robots has to defend its own goal while attacking
the opponents’ one. A particular form of selection was implemented, allowing to rank the
teams not with an absolute performance, but with a performance relative to the other
teams in the population. In this way, evolution could proceed smoothly towards a good
competitive strategy.

Before concluding this short review of collective evolutionary robotics research, we
wish to mention a couple of attempts to define an embodied, open-ended evolutionary
paradigm. An open-ended evolution is a process that is not characterised by performance
evaluations and termination criteria different from the survival of the individuals that are
involved in the evolution.

By open-ended evolution we mean an evolutionary process that leads to
a large variety of qualitatively different solutions and to the development of
novelties, that is new traits that tend to be retained for long evolutionary
periods and to constitute important building blocks for further evolutionary
stages. Examples of major novelties discovered by natural evolution are: multi-
cellular individuals, new cell types (e.g. the neural cells), new organs and
systems (e.g., the central nervous system).

Bianco and Nolfi, 2004

A first requirement for open-ended evolution is the possibility for individuals to meet
and reproduce—i.e., spread their genetic material to other individuals living in the same
environment. An early attempt toward such a paradigm has been carried out by Watson
et al. (1999), who devised an evolutionary process completely embedded in hardware—
referred to as embodied evolution. In this process, eight physical robots are evaluated on the
basis of their ability to approach the light-emitting target. Each robot is characterised by
different genes, which are exchanged between robots located nearby in the environment.
Robots with higher performance have a higher probability to send their genes to other
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robots, which ensure the selection of better behaviours. Watson et al. (1999) successfully
report the evolution of efficient behaviours, and propose embodied evolution as a new
methodology for evolutionary robotics.

The limitation of the above experiments lays in the fact that there is no room for
cooperation, because genotypes are evaluated for the individual ability to reach the light
source, and therefore to spread in the environment in competition with the other indi-
viduals. Differently, the approach of Bianco and Nolfi (2004) leads to the emergence of
collective behaviours. The authors propose a new evolutionary methodology in which self-
assembling robotic units are let free to move in a closed arena. Whenever a unit connects
to another one, it transfers its genetic material and releases the connection. In this way,
genotypes adapted to reach and grasp other units survive, while those that fail in avoid-
ing a connection disappear. Therefore, the population evolves toward individuals able to
move and connect to each other. In a second set of experiments, Bianco and Nolfi force
the robots to remain connected in a single physical structure. In this situation, only those
individuals that are capable of coordinated motion can efficiently survive, while those
unable to cooperate soon disappear. There is an implicit reward for cooperation, which
eventually leads to the emergence of efficient coordinated motion behaviours. Finally, by
encoding a connection position in the genotype, Bianco and Nolfi are able to observe the
emergence of assemblages with a specific shape, which results to be more adapted for sur-
viving in such an open-ended evolutionary process. The limiting aspect of the proposed
methodology is the difficulty to be performed on physical robots. In fact, up to now, we
are aware of results obtained in simulation only. However, this limitation should not shade
the relevance and the potentials of this novel evolutionary approach.

4.4 A Case-Study: Evolving Self-Organised Aggregation

In this section, we provide a case-study in which self-organising behaviours are evolved for
a swarm of robots. This example is useful for introducing the reader to the experimental
methodology used for all the other experiments treated in this thesis (for a thorough
description of this experiment, see Dorigo et al., 2004). The task chosen is aggregation:
robots start in random positions in a closed arena and should gather in a single location,
therefore forming a single aggregate. Aggregation is of particular interest since it stands
as a prerequisite for other forms of cooperation. Therefore, the aggregation ability can be
considered as the precondition for other tasks that the swarm robotic system is expected
to be able to carry out.

The formation of aggregates is observed in social insects and other animal societies.
In Section 3.3 we mentioned the example of the bark beetle larvae that aggregate fol-
lowing a pheromone gradient. This self-organising process observed in Nature stands as
inspiration for the experiments presented in this section. However, it was not possible to
apply the mechanisms observed in the natural system to the robotic one, due to the large
gap between them in the individual dynamics (wheeled robots versus larvae) and in the
communication medium (sound signals versus pheromone). Once abandoned the swarm
intelligent approach, we resorted to evolutionary robotics, in the attempt to evolve scal-
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able aggregation behaviours that could result in good performance while varying the size
of the group. In the following, we first describe the experimental setup, then we analyse
the obtained results and we discuss the scalability of the evolved strategies.

4.4.1 Experimental Setup

The experiments have been performed in simulation, using a simple model for each robot
(see Section 5.2 for more details). Each robot has a cylindrical body (5 cm radius), a
chassis and two motorised wheels that provide a differential drive motion. Additionally,
a speaker is placed on top of the cylindrical body, which emits a tone for long range
signalling (see Figure 4.5a for a schematic view of the actuators). Robots can perceive
the intensity of the sound signal using three directional microphones (sound sensors). The
sound signal is a single frequency tone which is continuously emitted by each robot. The
intensity of the tone decreases quadratically with the distance from the speaker, and it can
be perceived from a distance of up to 75 cm. The robots are also provided with 8 proximity
sensors for short range detection of obstacles and other robots. For each sensor (sound
and proximity), noise is simulated by adding a random component uniformly distributed
within ±5% of the sensor saturation value. Figure 4.5b shows the position of the sensors
used for this experiment. Robots are placed in a square arena, having a side 3 m long,
surrounded by walls. The size of the arena is bigger than the perceptual range of the
robots, in order to emphasise the locality of sensing.

The evolutionary algorithm used to evolve the controllers works on a population of
100 randomly generated binary genotypes. At every generation, the best 20 genotypes are
selected for reproduction, and each generates 5 offspring. Each offspring is mutated with a
3% probability of flipping each bit. Recombination is not used. Parents are not copied in
the population of the next generation. One evolutionary run lasts 100 generations. Each
genotype encodes the connection weights of a single layer feed forward neural network—a
perceptron network—that directly connects the inputs to the output neurons. The network
is cloned and assigned to each robot that takes part in the experiment.

The fitness evaluation of a genotype is the average over 8 trials, which differ in the

(a) (b)

Figure 4.5: A schematic view of the robot as seen from the top. The arrows show the
front direction. (a) Actuators: the two grey rectangles indicate the motorised wheels.
The black circle indicates the speaker, which continuously emits a tone. (b) Sensors: 8
proximity sensors (black ellipses) and three directional microphones (grey triangles).
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Figure 4.6: Performance across 100 generations, averaged over 20 replications. The fitness
of the best genotype and the average fitness of the population are plotted against the
generation number.

initial position and orientation of the robots in the arena. Moreover, in each trial the size of
the group of robots is randomly chosen between 4 and 8. The fitness estimation in a trial is
performed considering the ability of the robots to minimise the average distance from the
centre of mass of the group. This component is called aggregation quality. Additionally,
a second component—referred to as motion quality—penalises the turning-on-the-spot
behaviour, which was observed to be a local optimum in which the evolved strategies
often converged using the aggregation quality only.

4.4.2 Results

The evolutionary experiment was replicated 20 times, starting with different randomly
initialised populations. We observed that aggregation behaviours were successfully gener-
ated in each replication. Figure 4.6 plots the average fitness of the 20 replications of the
experiment. The best genotype of the population reaches in average 60% of the theoretical
maximum value.1

A qualitative analysis of the evolved controllers reveals that different replications re-
sult in slightly different behaviours. Some similarities can be observed among the evolved
solutions. For example, solitary robots tend to explore the arena moving in large circles
and turning away from obstacles when they are too close to them. The evolved solutions
differ mainly in the behaviour of the robots when they are close to each other. In gen-
eral, all evolved strategies rely on a delicate balance between attraction to sound sources
and repulsion from obstacles, the former being perceived by sound sensors, the latter by

1It is important to bear in mind that the fitness is the result of a product, whose factors are values in
the range [0, 1]. Therefore, an overall performance around 60% corresponds to high performance values—
around 80%—for each fitness component.
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proximity sensors. For the sake of simplicity, we will describe here the behaviour of the
controller produced by the tenth replication of the experiment.2 This controller not only
has a good performance, but it also presents the best scalability properties, as discussed
in Section 4.4.3. In this case, the interaction between attraction and repulsion from other
robots creates a “following behaviour” that can be observed with small groups (see Fig-
ure 4.7a). When the number of s-bots increases, this ordered “following behaviour” is
replaced by a disordered motion of the robots, that continuously change their relative
positions. As a result, the aggregate continuously expands and shrinks, slightly moving
across the arena (see Figure 4.7b). This feature of the evolved strategy is strictly related
to scalability, as we discuss in the following section.

4.4.3 Scalability

As mentioned in Section 3.1.3, one criteria to understand if a system can be ascribed
to swarm robotics concerns the number of robots involved in the experiment. In this
particular case, even if the controller has been designed for groups of up to eight robots,
scalability may ensure that the controller can be used with bigger groups.

The scalability of the best controllers of each evolutionary run was evaluated for robot
groups ranging from 4 to 40. The aggregation quality was used in order to test the
performance of different groups.

We performed 100 evaluations for different group sizes (n = 4, 8, 12, ..., 40). The results
obtained showed that not all the evolved controllers have a comparable performance.
However, half of the tested controllers present a very good scalability. The best scalable
strategy was the one produced by the tenth replication, already analysed in the previous

2See http://www.swarm-bots.org/scaling aggregation.html for some movies of this behaviour.

(a) (b)

Figure 4.7: Aggregation behaviour. (a) The aggregation of 4 robots usually produces
groups moving in circles. (b) When the group is bigger, the movement is more disordered
and the robots continuously change their relative positions.



58 CHAPTER 4

4 8 12 16 20 24 28 32 36 40

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

group size

pe
rf

or
m

an
ce

Figure 4.8: Scalability of the aggregation behaviour. The performance for some group
sizes (4, 8, 12, . . ., 40 robots) is shown. The box-plot shows 100 evaluations per box. The
average values are indicated by the thick black line. Boxes represent the inter-quartile
range of the data, while the horizontal bars inside the boxes mark the median values. The
whiskers extend to the most extreme data points within 1.5 of the inter-quartile range
from the box. The empty circles mark the outliers.

section. We have mentioned that this controller creates an aggregate that moves across the
arena. This is a result of the complex motion of the robots within the aggregate, which in
turn is the result of the interaction between attraction to sound sources and repulsion from
obstacles. The slow motion of the aggregate across the arena leads to scalability, as an
aggregate can continue to move joining solitary robots or other already formed aggregates,
eventually forming a single one.

Figure 4.8 plots the performance of this controller as a function of the group size. We
can see that the performance gracefully degrades when the group size increases over the
limit used during evolution. It indicates that the aggregation behaviour scales well and
is not dependent on some particular settings. The best performance is obtained with 4
robots, and corresponds to the situation in which all the robots have an ordered circular
motion, that allows them to stay very close to each other. When increasing the group size
to 8 and 12 robots, we observe a drop in performance that is mainly due to the transition
from the ordered to the disordered motion of the robots within the aggregate. In this case,
the aggregate is more dynamic, continuously changing shape, size and position driven by
the complex interactions among the robots. We also observe a higher variance in the data
or more outliers, corresponding to the formation of two or more small aggregates that
did not have enough time to join in a single one. Further increasing the group size, we
observe that the performance reaches a stable level. Less outliers are observed and also
the variance is reduced, because the increasing density of robots in the arena makes it
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easier for smaller groups to aggregate into a single one.

4.4.4 Testing with realistic simulations

Once a satisfactory behaviour is obtained, it should be tested on real robots in order
to ascertain its functionality. However, at the time the experiments presented in this
section were performed, a sufficient number of real robots—the s-bots, see Chapter 5—
was not available. Therefore, the evolved controllers have been validated using a detailed
simulation model, which accurately replicates the mechanical parts of the s-bot.3

The validation of the aggregation behaviours with the detailed simulation model was
performed using identical settings as in the scalability test presented in Section 4.4.3.
Thus, 100 evaluations of the aggregation quality were performed for varying group sizes
(n = 4, 8, 12, ..., 40). Figure 4.9 shows the results obtained. These data and the observation
of the system reveal that the aggregation process is slower than with the simplified model.
This is due to the different conformation of the traction system, which is provided with
both tracks and wheels (see Chapter 5). Tracks make the rotation of the robot slower and
less precise, influencing the efficiency of “following behaviour” previously described. This
problem explains the results obtained for group size 4: the inefficiency of the “following
behaviour” has a greater impact for this group size, its role being important when the
density of robots in the arena is low. The aggregation performance increases for group
size 8 and is comparable to the one of the simple model (see Figure 4.8). For bigger group
sizes, we observe a decrease in performance which rapidly stabilises at a fairly good value.
This confirms that the evolved strategies are robust enough to be ported on a different
model with a tolerable decrease of performance.

4.5 Summary

Self-organising behaviours present many features that are highly desirable in a swarm
robotic system, as discussed in Section 3.3. Above all, it is of fundamental importance
the possibility to obtain a complex global behaviour as the emergent result of locally
interacting individuals, each governed by simple rules. The main problem that arises
is how to design these supposedly simple rules that lead the robotic system to show the
desired global behaviour. This problem—referred to as design problem—can be faced with
alternative approaches: the classical methodology is often called “divide and conquer”,
and consists in splitting a problem into sub-problems easier to be tackled. Concerning
the design problem, the desired global behaviour is decomposed into individual behaviour,
and subsequently the individual behaviour is decomposed in rules to be encoded into
the controller. We have shown in Section 4.1 that this approach may fail because of the
difficulty in making such a decomposition. In fact, the individual behaviour is the emergent
result of the dynamic interaction between the individual and its environment (Nolfi and
Floreano, 2000). Moreover, and more importantly in a swarm robotic domain, the group

3the complexity of this simulation model resulted in slow simulation, that would have made the evolution
of controllers using this model unpractical.
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Figure 4.9: Aggregation behaviours tested with the detailed simulation model of the s-bot.
For an explanation of the box-plot, see Figure 4.8.

behaviour is the result of interactions among individuals and between individuals and
environment.

A decomposition made without taking into account the above dynamic relations, be-
sides difficult to be made, is also arbitrary as it highly depends on the observer’s stand-
point. Arbitrary decompositions can be avoided resorting to artificial evolution as the
methodology for synthesising robot controllers, as we showed in Section 4.2. In fact, ar-
tificial evolution works in the bottom-up direction, as it starts from the definition of the
individual rules and continues with the evaluation of the system as a whole. Therefore,
artificial evolution seems perfectly suited for the automatic synthesis of self-organising be-
haviours in group of robots, as also suggested by the case-study described in Section 4.4.
However, in the literature, the use of artificial evolution for collective behaviours has been
limited. Some interesting examples have been reported in Section 4.3. These works are
often limited to simulation results, and only in few cases the evolved behaviours have
been tested on real robots. Among these, there are the experiments presented in Part II
of this thesis that, to the best of our knowledge, represent the first examples of evolved
self-organising behaviours successfully tested on physical robots.
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Chapter 5

A Self-Organising Artefact:

The Swarm-bot

This chapter is dedicated to the description of the swarm robotic system that has been used
for the experiments discussed in this thesis: the swarm-bot (Mondada et al., 2004; Dorigo
et al., 2004). A swarm-bot is defined as a self-assembling, self-organising artefact formed
by a number of independent robotic units, called s-bots. In the swarm-bot form, the s-
bots become a single robotic system that can move and reconfigure. Physical connections
between s-bots are essential for solving many collective tasks, such as the retrieval of
a heavy object. Also, during navigation on rough terrain, physical links can serve as
support if the swarm-bot has to pass over a hole wider than a single s-bot, or when it has
to pass through a steep concave region. However, for tasks such as searching for a goal
location or tracing an optimal path to a goal, a swarm of unconnected s-bots can be more
efficient. In the following, we describe in detail the s-bot ’s features (see Section 5.1) and
the simulation model used for the experiments presented in this thesis (see Section 5.2).
Section 5.3 concludes the chapter with a brief review of the most relevant studies in which
the swarm-bots robotics platform has been exploited.

5.1 The S-bot

An s-bot is a small mobile autonomous robot with self-assembling capabilities, shown in
Figure 5.1 (Mondada et al., 2004). It weighs 700 g and its main body has a diameter of
about 12 cm. Its design is innovative concerning both sensors and actuators. The traction
system is composed of both tracks and wheels, each track-wheel pair on the same side
being controlled by a single motor. This combination of tracks and wheels provides the
s-bot with a differential drive motion, which is labelled Differential Treels c© Drive.1 The
treels are connected to the chassis, which contains the batteries, some sensors and the
corresponding electronics. The main body is a cylindrical turret mounted on the chassis
by means of a motorised joint, that allows the relative rotation of the two parts. Due to
the power and control cables that connect chassis and turret, the relative rotation of the

1Treels is a contraction of TRacks and whEELS.
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Figure 5.1: View of the s-bot from different sides. The main components are indicated
(see text for more details).

two parts must be limited in the range [−π, π] rad. This constraint—hereafter referred
to as the rotational limit—must be taken into account in developing control strategies, as
discussed in the following chapters.

The gripper is mounted on the turret and it can be used for connecting rigidly to
other s-bots or to some objects. The shape of the gripper closely matches the T-shaped
ring placed around the s-bot ’s turret, so that a firm connection can be established. The
gripper does not only open and close, but it also has a degree of freedom for lifting the
grasped objects. The corresponding motor is powerful enough to lift another s-bot. S-bots
are also provided with a flexible arm with three degrees of freedom, on which a second
gripper is mounted (see the s-bots shown in Figure 5.2). However, this actuator has not
been considered for the experiments presented in this thesis, nor was it mounted on the
s-bots that have been used. Both rigid and flexible connections can be used to form a
swarm-bot, which can assume shapes that conform to the surrounding environment, and
allow to pass over holes or to climb steps, as shown in Figure 5.2.
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Figure 5.2: Four s-bots connected in different ways to form a swarm-bot. The elevation
of the rigid gripper allows to lift an s-bot, opening to the possibility of climbing steps or
other obstacles. All s-bots shown are equipped with a flexible arm, characterised by three
degree of freedom and a gripper mounted as end effector.

An s-bot is provided with many sensory systems, useful for the perception of the
surrounding environment or for proprioception. Infrared proximity sensors are distributed
around the rotating turret, and can be used for detection of obstacles and other s-bots.
Four proximity sensors placed under the chassis—referred to as ground sensors—can be
used for perceiving holes or the terrain’s roughness (see Figure 5.1). Additionally, an
s-bot is provided with eight light sensors uniformly distributed around the turret, two
temperature/humidity sensors, a 3-axis accelerometer and incremental encoders on each
degree of freedom.

Each robot is also equipped with sensors and devices to detect and communicate with
other s-bots, such as an omni-directional camera, coloured LEDs around the s-bots’ turret,
microphones and loudspeakers (see Figure 5.1). Eight groups of three coloured LEDs
each—red, green and blue—are mounted around the turret, and they can be used to emit
a colour that can represent a particular internal state of the robot. The variety of possible
configuration of the LEDs, as shown in Figure 5.3a, allows a wide range of communication
modalities. The colour emitted by a robot can be detected by other s-bots using the
omni-directional camera, which allows to grab panoramic views of the scene surrounding
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(a) (b)

Figure 5.3: S-bot devices. (a) The coloured LEDs mounted on the turret of an s-bot can be
lit to display different coloured patterns. In the top figures, the principal colours red, green
and blue are displayed by switching on the corresponding LEDs. In the bottom figures, it
is possible to notice how various colours or patterns can be obtained by switching on the
LEDs in different ways. (b) A panoramic view of the surrounding environment taken by
the omni-directional camera of the s-bot. Red points corresponds to other s-bots signalling
with their red LEDs.

an s-bot (see Figure 5.3b). The loudspeaker can be used to emit a sound signal varying
its frequency and intensity. The signal is perceived by the microphones and processed by
the on-board CPU in order to discriminate the perceived frequency and intensity. Some
experiments have been performed to detect the direction of a sound source exploiting
the information acquired by the four microphones. The results, though preliminary, are
encouraging.

In addition to a large number of sensors for perceiving the environment, several sensors
provide each s-bot with information about physical contacts, efforts, and reactions at the
interconnection joints with other s-bots. These include torque sensors on most joints as
well as a traction sensor, a sensor that detects the direction and the intensity of the
pulling force that the turret exerts on the chassis. This sensor has been widely used in
the experiments presented in this thesis, and it presents a complex and innovative electro-
mechanical design (see Figure 5.4). The sensor is composed of two portions, connected to
the turret and to the chassis. The two parts can translate with respect to each other along
two orthogonal axes, and consequently deform four thin iron plates that connect the two
structures. This deformation is measured by eight strain gages placed on the plates, and
corresponds to the intensity of the traction force along the two horizontal axes. These
two values—F̂x and F̂y—are the x and y component of the traction force, measured with
respect to a reference frame integral with the chassis. The intensity and direction of the
traction force F̂ is computed by means of these two orthogonal components.2 It is worth
noting that the turret of an s-bot physically integrates the forces that are applied to it

2The traction force F̂ corresponds to what is measured by the traction sensor. Instead, F is a normalised
force, i.e., scaled in the range [0,1] (see equation (6.5)). The latter is extensively used in the experiments
reported in the forthcoming chapters.
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Figure 5.4: The traction sensor. (a) The physical realisation of the sensor. (b) A mechan-
ical drawing, showing the main parts of which the sensor is composed. See text for more
details.

by other connected s-bots. The resultant force is measured by the traction sensor, and it
can be employed to provide the s-bot with an indication of the average direction toward
which the swarm-bot is trying to move. More precisely, the traction sensor measures the
mismatch between the direction in which the s-bot ’s own chassis is trying to move and
the direction in which the whole group is trying to move. This feature plays an important
role in the context of coordinated movement of a group of physically connected s-bots, as
we discuss in Chapter 6.

An overview of the electronic structure controlling the s-bot is given in Figure 5.5. The
CPU is an Intel XScale processor running Linux OS and controlling directly the sound and
camera interfaces. All other devices on the robot are controlled by local PICTM micro-
controllers3 communicating with the main processor using an I2C bus. The electronics is
mainly included in the turret of the s-bot, but several printed circuits are located in places
where they support sensors or local control electronics, such as in the chassis or molded
within the gripper’s mechanical parts. The main XScale Linux board was developed
considering tight requirements at the level of size, power consumption and computational
power. The low level software is distributed among the 14 processors controlling all the
functionalities. For further details about the electro-mechanical features of the s-bot, see
Mondada et al. (2004).

5.2 Simulating the S-bot

In order to design a controller for the swarm-bot through artificial evolution within a rea-
sonable time, it is necessary to devise a simulation environment. In fact, evolution on the
physical robots, besides being impractical, is extremely time-consuming: one single evolu-
tionary run may require several days if performed on the real s-bots. We defined a simple

3PICTM micro-controllers are products of Microchip Corp. See http://www.microchip.com for more
details.
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Figure 5.5: Overview of the electronics controlling an s-bot.

s-bot model that at the same time allows fast simulations and preserves those features of
the real s-bot that were important for the experiments (see Figure 5.6a). The developed
software is based on a 3D rigid body dynamics simulator. As shown in Figure 5.6a, the
s-bot ’s traction system was simulated by a chassis and four wheels: two lateral, motorised
wheels and two spherical, passive casters placed in the front and in the back, which serve
as support. The four wheels are fixed to the chassis, which also holds the cylindrical turret,
which can rotate around its axis. In order to speed up the simulation, spherical collision
models are used for all the wheels and for the chassis, as they require less computations,
even if they are graphically rendered with different geometries. In some experiments, the
rotational limit was ignored, allowing the turret to rotate freely with respect to the chassis.
Whenever the rotational limit is taken into account, the simulated turret can rotate only
in the range [−π, π] rad, consistently with the hardware counterpart. The implications of
the rotational limit in the evolution of collective behaviour and in their transferability to
the real s-bots are explained in the following chapters. The gripper is not present in the
simulated model, but connections between two s-bots are accounted for creating a joint
between the two bodies.

Concerning the sensors, most of the physical ones have been modelled in the simulator
trying to closely match the physical counterpart. Whenever possible, a sampling technique
was used (Miglino et al., 1995). This technique simulates a set of sensors using samples of
the corresponding devices recorded from the real robot. For example, the readings of the IR
proximity sensors generated by a wall can be recorded systematically varying the position
and orientation of the robot with respect to the wall. These samples are collected in a
matrix of activation values that can afterwards be used into the simulation to characterise
the perception of the simulated wall. This technique has many advantages, because not
only it allows to save much computational power in the simulation, but it also closely
models the peculiarity of the interaction between sensor and environment (Miglino et al.,
1995). However, the sampling technique can be used only in very controlled experimental
conditions, because it requires that the sensor readings are sampled for every object class
present in the environment. Moreover, asymmetric or irregular objects are not practical to
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(a) (b)

Figure 5.6: The simulated s-bot. (a) The simple simulation model is composed of 4 wheels,
a chassis and a cylindrical turret (see text for details). The presence of a circle painted
on top of the turret indicates that the s-bot is emitting a tone. The arrow on the turret
indicates the position of the simulated gripper. The black line exiting from the chassis
and pointing to the ground indicates a ground sensor. (b) The detailed simulation model
of an s-bot closely matches the different mechanical parts of the real robot.

be sampled, and particular attention has to be paid when multiple objects can be perceived
at the same time. Using the sampling technique, the s-bot ’s IR proximity sensors and light
sensors could be modelled.

In all cases in which sampling is not feasible, we use mathematical models or ray
casting techniques. The latter technique resort to collision detection algorithms between
the objects in the environment and one or multiple “rays”, in order to detect which objects
are in the sensing range. The computation of the actual sensor reading depends on the
intersection positions between the rays and the object. The positions on the rays allows to
compute an average distance of the perceived object, which is afterwards mapped into the
sensor reading using a function obtained by linear regression of the experimental values.
Therefore, also with mathematical models a close matching between simulation and reality
is possible. Using this technique, we simulate especially the ground sensors, but also, in
some particular cases, proximity, light and sound sensors.

Perception of sound is particularly difficult to simulate, due to noise in the environment
and reflections of the sound waves on the walls and the ceiling of the experimental room.
In order to avoid an excessive computational effort in modelling the sound signalling
system, we decided to limit its capability to a simple binary perception. The loudspeaker
is used to emit a single frequency f signal with a fixed intensity. Microphones detect the
average intensity If over a range of frequencies centred around f . If the intensity value
If exceeds a given threshold Im, the signal is perceived, otherwise no signal is detected.
Self-emitted signals can be perceived as well. Varying the threshold Im allows to vary the
communication range, which has to be considered in the simulation.

Finally, force/torque sensors are accounted for exploiting the dynamic simulation en-
gine on which the 3D simulation is based. In particular, the traction sensor is simulated
measuring the horizontal components of the force acting on the hinge joint that connects
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the turret to the chassis. This force is computed at each cycle by the dynamics simulation
engine, and is therefore always available. The maximum force that the sensor can per-
ceive was measured on the real s-bots and accordingly set in the simulation. Due to the
high number of variables that influence the perception of traction (i.e., number of robots
involved, friction parameters, hysteresis and inter-robot variability), a precise characteri-
sation of the traction sensor is not feasible. It is therefore impossible to use samples taken
from the real s-bots, in order to resort to a sampling technique, leaving as the only option
for simulating the traction sensor the above described way.

Notwithstanding the efforts to devise a precise simulation, some characteristic of the
robots and of the robot-environment interaction may escape the modelling phase. For this
reason, noise is used to ensure that the evolved behaviour will cope with differences between
simulation and reality (see also Jakobi, 1997). Noise is simulated for all sensors, adding
a random value uniformly distributed in the interval [−5%, 5%] of the sensor saturation
value.

The simple simulation model described so far is not the only one developed for the
swarm-bot. Other models try to better simulate the various mechanical parts of the s-bot,
at the cost of a higher computational effort (see Figure 5.6b). For more details on the
simulator, and for a description of the more detailed simulation models not used in the
experiments reported in this thesis, see Mondada et al. (2004).

5.3 Related Literature

The SWARM-BOTS project involved various researchers from four European institutions,
who worked in tight cooperation in order to achieve the ambitious goal of producing an
innovative swarm robotic system. Various research activities have been carried out during
the lifespan of the project, and many of these are treated in later chapters of this thesis.
The rest is summarised in this section. All the activities performed can be considered as
parts of an experimental scenario that has been defined as a case study to test multiple
design and implementation choices (see Figure 5.7). The scenario can be shortly described
as follows:

A swarm of s-bots must transport a heavy object from an initial to a target
location. There are several possible paths between these two locations; these
paths may have different lengths and may require avoiding obstacles (e.g., walls
and holes). The weight of the object is such that its transportation requires
the coordinated effort of at least n s-bots, with n > 1.

Dorigo et al., 2005

In order to solve the above scenario, many different abilities are required. First of all,
the s-bots must prove capable of finding the object to be transported, the target location
and tracking an optimal path from the object to the target. Secondly, the s-bot should
prove capable of cooperating in order to transport a heavy load. Finally, the s-bot should
adaptively allocate resources to the different tasks that have to be performed. These
abilities can be displayed by s-bots in isolation, or by a swarm-bot. Therefore, additional
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s−bots

target 

holesobject to be transported

Figure 5.7: A graphical representation of the swarm-bots’ experimental scenario. The
cylinder at the left hand side represents the object to be transported; the landmark on
the right represents the target location to which the object has to be transported. The
s-bots between the object and the target location form a path which logically connects
the former to the latter. This path is exploited by other s-bots to move back and forth
between the target location and the object to be retrieved. Also visible are two types of
obstacles: walls and holes.

requirements are the ability to self-assemble, to move coordinately and to collectively
avoid/overcome obstacles that would hinder the s-bots from individually seeking their
goal. If all these abilities can be displayed by the swarm-bot, the scenario can be efficiently
solved. In this section, we shortly describe the progress made toward the achievement of
this ambitious objective.

The first requirement for a swarm-bot that has to cope with the above scenario concerns
searching the environment for the object and the target location. Committed to the
principles of swarm robotics, Nouyan (2004) designed a distributed goal search and path
formation process that takes inspiration from the behaviour of real ants. Due to limited
individual abilities and to the necessity to explore very large areas, ants forage collectively,
relying on pheromone trails in order to instruct other insects about the path to follow to
reach a profitable site (Deneubourg et al., 1990a). Nouyan (2004) proposes robot chains to
simulate the pheromone trails: s-bots can act as landmarks or beacons, crating a visually
connected chain that defines a path to be followed in order to navigate between two
locations in the environment. Robot chains grow from the home location—referred to as
“nest” using the ants metaphor—and extend in different directions of the environment.
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Chain formation, growth and disaggregation are processes probabilistically determined by
few parameters of the individual controller. Tuning these parameters, it is possible to
control system-wide properties such as the average number of formed chains, their length
and their stability. The ability to modify the collective behaviour is very important for
the purpose of goal search. The robot chains that extend in the environment starting from
the nest may connect to a goal location—e.g., a “prey” object that has to be transported
to the nest—therefore establishing a path from the nest to the prey, which can be used
by other s-bots much as the pheromone trails in ants. The results obtained are satisfying,
confirming that the self-organised approach to goal search is viable (for more details, see
Nouyan, 2004).

Once the object to be transported has been found, and a path to the target location
has been built, the problem to be solved is collectively pushing/pulling the object. As
already discussed in Section 3.1.1, collective transport is a widely studied problem. In the
swarm-bot case, however, s-bots can self-assemble and connect to the object in order to
form a physical structure for better pulling/pushing it. Groß et al. (2006c) approached this
transport problem through the study of a group of s-bots pre-attached to the object. Some
of the s-bots cannot perceive the target location, and rely solely on physical interactions to
give their contribution. The controller for these “blind” s-bots was evolved in simulation,
and consists in a small recurrent neural network (see Groß and Dorigo, 2004). The “non-
blind” s-bots, on the contrary, execute a hand-crafted controller. Experiments have been
performed using up to six real s-bots, and the results demonstrate that “blind” s-bots
actively contribute to the object transport, as the performance achieved can be considered
superior to that of frictionless, passive casters (Groß et al., 2006c). The limitation of
using s-bots pre-attached to the object has been removed in other studies focusing on
self-assembly (Groß et al., 2006d; Tuci et al., 2006). In this work, s-bots are placed around
the object to be transported, which emits a red light using the same LEDs provided to
the s-bots. The object is therefore an aggregation seed that attracts the surrounding s-
bots, which rapidly connect to it. As soon as an s-bot assembles, it emits a red light
as well, increasing the attractiveness of the aggregation site. This is a positive feedback
mechanism that leads to a fast self-assembly of the s-bots around the object. Once all
s-bots are assembled, the transport phase can start with similar modalities to the work
described above. The same algorithm has been employed for self-assembly of s-bots among
each other provided that an s-bot is set as aggregation seed (Groß et al., 2006a,b), or, with
small modifications, for self-assembly in response to the current environmental conditions
(O’Grady et al., 2005). The latter topic is treated in more detail in Chapter 10, in which
the decision making mechanisms that trigger self-assembly are studied.

Chain formation and goal search can be coupled with the ability to collectively trans-
port an object. This allows to solve the scenario, at least for its main components. The
first successful attempt in this direction has been reported by Nouyan et al. (2006). In
these experiments, s-bots start at random location in the environment and initially search
for the nest, which constitutes the root of the chain formation process. Afterwards, chains
start to form and disband, also attracting those robots that have not yet found the nest.
The goal search process continues until the prey is found. At this point, the path between
nest and prey is established, and can be used by all the other s-bots to reach the prey. Self-
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Figure 5.8: The scenario solved. Six s-bots are involved in the experiments. Four of them
are aggregated into a robot chain, and two are assembled to the prey (red object). The
blue object represents the nest, which is also the target location of the collective transport.

assembling and collective transport start subsequently: in this respect, the robot chain is
exploited to return back to the nest while carrying the prey and it progressively disbands
in order not to interfere with the transport process. Experimental results have been ob-
tained with groups of 2, 4 and 8 physical s-bots, confirming the reliability and robustness
of the system. An example is given in Figure 5.8, which shows a robot chain that connects
the nest to the prey. It is also possible to see that two s-bots are connected to the prey,
and already started to pull it towards the nest (see Nouyan et al., 2006, for more details).

Many other researches complete the results achieved within the SWARM-BOTS
project. Some of them have been already mentioned (see, for example, Labella et al.,
2006), while other studies are mentioned in subsequent chapters as they are closely related
to our research.

5.4 Conclusions

In this chapter, we introduced the robotic system we used for the experiments presented in
this thesis. We reported a detailed description of the mechanical and electronic parts of the
s-bots, which are small autonomous robots able to self-assemble in a physical structure,
that is, a swarm-bot. We also presented the simulation model that has been used to
early prototyping of controllers for the s-bots and for evolutionary experiments. Finally,
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we described the most interesting results obtained using this innovative robotic platform,
showing how s-bots can cooperate to achieve common goals that are beyond the capabilities
of the individual units.

The two forthcoming chapters are dedicated to the description of the main experimen-
tal activity performed in the context of this thesis. In particular, we present coordinated
motion behaviours for a swarm-bot. Coordinated motion is a basic ability that supports
all the activities a swarm-bot should be able to carry out. It should therefore be consid-
ered complementary to the swarm-bot abilities studied elsewhere and shortly presented
in this chapter. Another peculiarity of the results presented in the forthcoming chapters,
which in some way characterises our work, is the use of artificial evolution as the only
design methodology. We show how evolved neural controllers can display behaviours that
make the system very flexible, also allowing a smooth transfer of the strategies evolved in
simulation to the real robots.



Chapter 6

Coordinated Motion

This chapter presents the first set of experiments of this thesis, in which we exploit artificial
evolution for the synthesis of self-organising behaviours for the swarm-bot. We focus on
a particular problem, namely coordinated motion. As already mentioned in Section 3.1.1,
this problem has been widely studied in the literature. However, in the swarm-bot case,
it takes a different flavour, due to the physical connections among the s-bots, which open
the way to study novel interaction modalities that can be exploited for coordination.
Coordinated motion is a basic ability for the s-bots physically connected in a swarm-bot
because, being independent in their control, they must coordinate their actions in order
to choose a common direction of movement. This coordination ability is essential for an
efficient motion of the swarm-bot as a whole, and constitutes a basic building block for
the design of more complex behavioural strategies (see, for example, Chapter 7).

By extending previous research conducted in simulation only (Baldassarre et al., 2003,
2006), we show how coordinated motion of physically assembled s-bots can be achieved
on the basis of simple and robust controllers that have access only to local sensory in-
formation. Our main contribution consists in the demonstration that these controllers
evolved in simulation continue to exhibit a high performance when downloaded and tested
in physical s-bots. The reason of such a successful transfer is mainly due to the prop-
erties of the evolved controllers, which are shaped by evolution in order to exploit the
dynamical features of the system. This resulted in a simple and clever behavioural strat-
egy at the individual level, and in a very flexible and robust self-organising system at
the collective level. To the best of our knowledge, this is the first work to date in which
up to eight physically assembled robots display coordinated behaviours clearly based on
self-organising principles.

This chapter is organised as follows. In Section 6.1, we review some literature related to
the presented work. Section 6.2 presents the experimental setup, while Section 6.3 analyses
the functioning of the evolved controller. Section 6.4 describes how the evolved neural
controller generalises its ability to produce coordinated motion in different conditions
that were never tested during the evolutionary phase. In particular, this section provides
evidence of the capability of the controller evolved in simulation to efficiently control the
real robots. Finally, in Section 6.5 we discuss the main conclusions.

75
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6.1 Related Work

Coordinated motion is a task which attracted the interest of many researchers and has
been commonly studied in the literature. We already discussed in Section 3.1.1 some of
the most important works referring to coordinated motion, or “formation control” (Wang,
1991; Balch and Arkin, 1998; Barfoot and Clark, 2004; Fredslund and Matarić, 2002; Quinn
et al., 2003). A common strategy for decentralised control of a group of agents is a simple
leader-follower paradigm, as it reduces coordination to the a priori definition of a hierarchy
among the robots. The leader-follower paradigm has many different instantiations, in
which either the leader role is fixed (Balch and Arkin, 1998), or it varies according to
some arbitration rule (Wang et al., 2003) or it emerges from the interaction among the
robots or between the robots and the environment (Quinn et al., 2003). In some cases, the
leader role is taken by a centralised controller, which plans a trajectory that the robots
follow keeping a certain group formation (Barfoot and Clark, 2004; Balch and Arkin, 1998;
Desai et al., 2001). Finally, a kind of leader follower paradigm is accomplished defining
a neighbour-based hierarchy, according to which robots maintain the relative position
with respect to a given neighbour (Balch and Arkin, 1998; Fredslund and Matarić, 2002).
The work presented in this chapter does not define any leader that drives the group
coordination, because the latter is the emergent result of a self-organising process.

Coordinated motion can also be performed without keeping the team in a precise
formation. In this case, the resulting behaviour is closer to what can be observed in many
different animal species, such has flocks of birds or schools of fish. Many researchers have
provided models for schooling behaviours, and replicated them in artificial life simulations
(Camazine et al., 2001). As an example, we already mentioned the seminal work of
Reynolds, who defined the behaviour of virtual creatures, called boids, making use only
of local rules (Reynolds, 1987, 1993). The work of Reynolds has stimulated many other
studies on coordinated motion, which are all based on some biological inspiration (Ward
et al., 2001; Spector et al., 2005). These works have self-organisation as a common point
with the experiments presented in this chapter. However, the obtained results are usually
limited to simulation, and the experimental setups do not consider the feasibilty of testing
the controllers with real robots.

Among the related works, it is worth mentioning a class of robotic systems developed
for collective transport/manipulation. This task is slightly different from the coordinated
motion task studied in this chapter, since particular attention is given to the displacement
of an object toward a given location or along a given trajectory. Collective manipula-
tion has been achieved through centralised approaches (Sugar and Kumar, 2002; Zhu and
De Schutter, 1999), through distributed leader-follower approaches (Wang et al., 2003;
Yang et al., 2004; Huntsberger et al., 2003), or through a distributed approach based on
a priori planned trajectories (Khatib et al., 1996). Tight coordination among the robots
is normally needed, especially in the cases in which the object to be transported must be
first lifted and then moved. Force sensors are often used, which provide a feedback mech-
anism to control the stability of the transported object. Differently from the experiments
presented here, force sensors are not exploited for achieving coordination in the group
but they are rather used to keep under control the planned force to be applied on the
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transported object (Sugar and Kumar, 2002; Zhu and De Schutter, 1999; Khatib et al.,
1996), or for correctly distributing the payload in the group (Huntsberger et al., 2003).

6.2 Evolution of Coordinated Motion Behaviours

A swarm-bot can efficiently move only if the chassis of the assembled s-bots have the same
orientation. As a consequence, the s-bots should be capable of negotiating a common di-
rection of movement and then compensating possible misalignments that originate during
motion. The experiments presented in this chapter study a group of s-bots that remain
always connected in swarm-bot formation (see Figure 6.1). At the beginning of a trial, the
s-bots start with their chassis oriented in a random direction. Their goal is to choose a
common direction of motion on the basis of the only information provided by their traction
sensor, and then to move as far as possible from the starting position. Notice that this
task is more difficult than it might appear at first sight. First, the group is not driven
by a centralised controller (i.e., the control is distributed), nor can the s-bots directly
communicate or coordinate on the basis of synchronising signals. Moreover, s-bots cannot
use any type of landmark in the environment, such as light sources, or exploit predefined
hierarchies between them to coordinate (i.e., there are no “leader robots” that decide and
communicate to the other robots the direction of motion of the whole group). Finally, the
s-bots do not have a predefined trajectory to follow, nor they are aware of their relative
positions or about the structure of the swarm-bot in which they are assembled. As a
consequence, the common direction of motion of the group should emerge as the result of
a self-organising process based on local interactions, which are shaped as traction forces.
The problem of designing a controller capable of producing such a self-organised coordi-
nation is tackled using neural networks synthesised by artificial evolution, as illustrated in
detail in the following section.

(a) (b)

Figure 6.1: (a) four real s-bots forming a linear swarm-bot. (b) four simulated s-bots.
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6.2.1 The Neural Controllers and the Evolutionary Algorithm

In the experiments reported here, artificial evolution is used to synthesise the connection
weights of simple neural controllers with fixed architecture (see Figure 6.2a). The controller
of each s-bot consists in a neural network with four sensory neurons directly connected to
two motor neurons. The sensory neurons are simple relay units while the output neurons
are sigmoid units whose activation is computed as follows:

yi = σ

(

∑

i

wijIi + βi

)

, σ(z) =
1

1 + e−z
, (6.1)

where Ii is the activation of the ith input unit, βi is the bias term, yj is the activation of
the jth output unit, wij is the weight of the connection between the input neuron i and
the output neuron j, and σ(z) is the sigmoid function.

The sensory neurons encode the intensity of traction along four directions, correspond-
ing to the direction of the semi-axes of the chassis’ frame of reference (i.e., front, back,
left and right, see also Figure 6.2b). In particular, the sensory neurons are activated as
follows:

I1 = Fx iff Fx > 0
I2 =−Fx iff Fx ≤ 0
I3 = Fy iff Fy > 0
I4 =−Fy iff Fy ≤ 0

(6.2)

where Fx and Fy are the x and y components of the traction force. In all other cases
not mentioned above, the activation of the sensory neurons is 0.1 Despite the little re-
dundancy introduced, the usage of four variables that encode the traction force proved
to be more advantageous than other encodings for the evolution of good coordinated mo-
tion behaviours. The activation state of the two motor neurons is scaled onto the range
[−ωM ,+ωM ], where ωM is the maximum angular speed of the wheels (ωM ≈ 3.375 rad/s
for simulated s-bots and ωM ≈ 3.5 rad/s for the real s-bots: these settings allowed us to ob-
tain the same speed for simulated and real robots). The desired speed of the turret-chassis
motor is set equal to the difference between the desired speed of the left and right wheels
times a constant k = rw/2dw, where rw is the radius of the wheels and dw is the distance
between the two wheels. This setting produces a movement of the turret with respect to
the chassis that counter-balances the rotation produced by the wheels’ motion. In this
way, the turret-chassis motor actively contributes to the rotation of the chassis, especially
in those situations in which one or both the wheels partially or totally lose contact with
the ground.

The evolutionary algorithm is based on a population of 100 genotypes, which are
randomly generated. This population of genotypes encodes the connection weights of
100 neural controllers. Each connection weight is represented with a 10-bit binary code
mapped onto a real number ranging in [-10, +10]. Subsequent generations are produced by
a combination of selection and mutation. Recombination is not used. At each generation,

1For example, in the situation depicted in Figure 6.2b both Fx and Fy are positive. According to
equation (6.2), the following values are fed to the neural network: I1 = Fx, I2 = 0, I3 = Fy and I4 = 0.



COORDINATED MOTION 79

 2yy 1
 1β = 6.48  2β = 5.39

−8.83

−3.75

−1.41

−10.00

−1.17

7.58

−5.08

8.12

 4

 3

 2

 1

I

I

I

I

Fx

FyF

y

x

(a) (b)

Figure 6.2: (a) Structure of the single layer feed-forward neural controller. The sensory
neurons are labelled as I1, I2, I3 and I4 respectively, and encode the traction perceived
from left, front, right and back directions. β1 and β2 indicate the bias, while y1 and
y2 indicate the output units connected respectively to the left and right motors. The
parameters of the controller synthesised in the 30th evolutionary run—i.e., the controller
used for testing on physical s-bots—are also shown. (b) Encoding of the traction force. ~F
is decomposed in the Fx and Fy components, which are used to compute the activation
of the neural inputs, according to equation (6.2).

the 20 best individuals are selected for reproduction. Each genotype reproduces five times,
applying a mutation with 3% probability of replacing a bit with a new randomly generated
value. The evolutionary process is run for 100 generations.

6.2.2 Fitness Evaluation

For each genotype, four identical copies of the resulting neural network controllers are
used, one for each s-bot (i.e., the s-bots forming the swarm-bot are homogeneous). The
s-bots are connected in a linear formation, shown in the bottom part of Figure 6.1. The
fitness F of the genotype is computed as the average performance of the swarm-bot over
five different trials. Each trial θ lasts T = 150 cycles, each corresponding to 100ms of
real time, for a total of 15 simulated seconds. At the beginning of each trial, a random
orientation of the chassis is assigned to each s-bot. The ability of a swarm-bot to display
coordinated motion is evaluated by computing the performance Fθ as the average distance
covered by the group during the trial θ. In particular, in each trial θ the distance covered
by the group is obtained by measuring the Euclidean distance between the position of the
centre of mass of the swarm-bot at the beginning and at the end of the test:

Fθ =
||c(T ) − c(0)||

DM (T )
, (6.3)
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where c(t) is the coordinates vector of the group’s centre of mass at time t and DM (t)
is the maximum distance that can be covered by an s-bot in t simulation cycles. Notice
that this way of computing the fitness of the groups is sufficient to obtain coordinated
motion behaviour. In fact, it rewards swarm-bots that maximise the distance covered
and, therefore, their motion speed. As a consequence, the s-bots should minimise the
time required to align their chassis, move at maximum speed once coordinated and reduce
instabilities and noise disturbances that might impair the motion of the group. This
fitness measure promotes controllers that result in efficient coordination, as confirmed by
the analysis of the evolved behaviour performed in Section 6.3.

6.3 Results

Using the setup described above, 30 evolutionary runs have been performed in simulation.
All the evolutionary runs successfully synthesised controllers that produced coordinated
motion in a swarm-bot. The obtained results are described in detail in Section 6.3.1.
Section 6.3.2 describes how the problem related to the rotational limit of the turret/chassis
degree of freedom was solved. The applied solution was important for testing the evolved
controllers on the real robots, as described in Section 6.4.

6.3.1 Results in Simulation

The controllers evolved in simulation allow the s-bots to coordinate by negotiating a com-
mon direction of movement and to keep moving along such direction by compensating
small misalignments arising during movement (see Figure 6.3). Direct observation of the
evolved behavioural strategies shows that at the beginning of each trial the s-bots try to
pull or push the rest of the group in the direction of motion they are initially placed. This
disordered motion results in traction forces that are exploited for coordination: the s-bots
orient their chassis in the direction of the perceived traction, which roughly corresponds
to the average direction of motion of the group. This allows the s-bots to rapidly converge
toward a common direction and to maintain it.

All the 30 controllers evolved in the different replications of the evolutionary process
present similar dynamics: in all trials, the s-bots converge to a common direction of motion
in a very fast and effective way. As shown in Figure 6.3, this common direction of motion
varies across trials. In fact, the direction of motion of the group is not a priori defined,
but it rather emerges as a result of the coordination phase and it depends on the initial
random orientations of the s-bots’ chassis.

By testing the best neural controller of the last generation of each evolutionary run for
100 trials, it was observed that performance varies in the range [0.81, 0.91]. It therefore
well approximates the theoretical maximum—corresponding to 1.0—that can be achieved
only by a single s-bot moving at full speed in a fixed direction. Notice that the maximum
performance cannot be reached in practice by a swarm-bot, since assembled s-bots can
move at maximum speed only once they have achieved coordination. In the rest of the
chapter, the controller synthesised by the 30th evolutionary run is used, which proved to
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Figure 6.3: Absolute orientation of the chassis of four s-bots forming a linear structure in
two trials of 150 cycles each (thick and thin lines respectively). At the beginning, s-bots
start moving with randomly assigned orientations, as can be seen by the different starting
points of the curves. As time elapses, the robots achieve coordination and converge to the
same direction of motion, as shown by the curves’ overlap at the end of the graph. Notice
how the final direction of motion of the swarm-bot is different in the two trials.

have the best performance. Figure 6.2a shows the weights of each connection between
inputs and outputs, as resulted from the evolutionary process.

In order to understand the functioning of the controller at the individual level, the
activation of the motor units were measured in correspondence to a traction force whose
angle and intensity were systematically varied. The results, reported in Figure 6.4, indicate
that:

i. When the s-bot perceives a traction aligned with its direction of motion (i.e., it has
an angle around 180◦), and in general when the intensity of the traction is low, the
s-bot moves forward at maximum speed (see the portions of Figure 6.4 indicated
by number 1). These conditions take place respectively when the s-bot ’s chassis is
oriented toward the same direction in which the other s-bots are pulling/pushing it,
or when all s-bots’ chassis are aligned.

ii. When the s-bot perceives a traction orthogonal to the direction of motion of the
robot (i.e., it has an angle around 90◦ or 270◦, respectively), the s-bot turns toward
the direction of traction (see the portions of Figure 6.4 indicated by number 2). This
condition takes place when there is a significant mismatch between the direction of
motion of the s-bot and the average direction of motion of the group.

iii. When the s-bot perceives a traction force opposite to its direction of motion (i.e. it
has an angle around 0◦), the s-bot moves forward at maximum speed independently
of the traction intensity (see the portions of Figure 6.4 indicated by number 3).
Notice that this is an unstable condition: as soon as the angle of traction differs



82 CHAPTER 6

 0

 0.25

 0.5

 0.75

 1

 0

 0.25

 0.5

 0.75

 1  0
 90

 180
 270

 360

 0

 0.25

 0.5

 0.75

 1

left motor
unit activation

traction
intensity traction

direction

left motor
unit activation

(1)

(3)

(3)
(2)

 0

 0.25

 0.5

 0.75

 1

 0

 0.25

 0.5

 0.75

 1  0
 90

 180
 270

 360

 0

 0.25

 0.5

 0.75

 1

right motor
unit activation

traction
intensity traction

direction

right motor
unit activation

(1)

(3)

(3)

(2)

(a) (b)

Figure 6.4: Motor commands issued by the left (a) and right (b) motor units (0 corresponds
to maximum backward speed and 1 to maximum forward speed), of the best evolved neural
controller in correspondence to traction forces having different directions and intensities.
See text for the explanation of numbers in round brackets.

from 0◦, for example due to noise, the s-bot rotates its chassis following the rules
specified above. This condition is normally caused by the movement of the s-bot
itself, whenever the resultant of the forces produced by the other s-bots in the group
tends to be null.

In other words, the ability for a group of s-bots to display coordinated motion is the
result of two opposite tendencies at the individual level: one corresponds to follow the rest
of the group (e.g., when the perceived traction is not aligned with the current direction of
motion) and the other to persevere in moving straight (e.g., when the perceived traction
is opposite with respect to the current direction of motion, or when it has a low intensity).
The effects of the individual behaviour at the group level can be described as follows.
At the beginning of each test, all s-bots perceive traction forces with low intensity, and
so they move forward at maximum speed (according to point 1). The different traction
forces generated by these movements are physically summed up by the turret of each
robot. This causes a unique force to emerge at the group level, which has a direction that
roughly corresponds to the average direction of motion of the whole group. The s-bots that
are aligned with or opposite to this group’s average motion direction tend to persevere in
moving straight (according respectively to point 1 or 3). In so doing—and this has a very
important role for coordination—they continue to generate a traction signal in the same
direction, which is perceived by the rest of the group. In contrast, the s-bots that are
largely misaligned with respect to the average group’s direction of motion tend to turn so
as to follow the rest of the group (according to point 2). Overall, these behaviours quickly
lead the whole group of s-bots to converge toward a same direction of motion.

As it will be shown in the rest of the chapter, this simple behavioural strategy is very
effective and robust. In some cases, however, the same strategy does not lead the s-bots
to converge toward a common direction of motion, but rather to a rotational dynamic
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equilibrium in which all s-bots move by slightly turning toward the centre of mass of
the swarm-bot. This rotational equilibrium is stable since, while turning in circle, the
s-bots perceive a traction force pointing toward the group’s centre, which keeps them
moving by slightly turning toward it. This rotational equilibrium is never observed in
the experimental conditions used to evolve the controller, involving four simulated s-bots
forming a linear structure, but only in generalisation tests performed in different situations
(see Section 6.4).

6.3.2 The Front Inversion Mechanism

As previously mentioned, the chassis of the s-bots can rotate only 180◦ clockwise or an-
ticlockwise with respect to the turret, due to the cables connecting the two parts. This
implies that, in order to coordinate with the other s-bots, an individual s-bot cannot sim-
ply turn its chassis toward the direction of traction. In fact, if the rotational limit is
located between the current orientation of the s-bot ’s chassis and the direction of traction,
the s-bot should turn in the opposite direction (up to 360◦) in order to reach the desired
orientation. This corresponds to a perceptual aliasing problem. In fact, the information
about the angular displacement of the turret with respect to the chassis is missing, and
the rotational limit can be recognised only referring to this displacement. Instead of pro-
viding this additional information to the neural controller, we decided to apply a different
solution that can bypass this problem. This solution, referred to as front inversion mech-
anism, was first introduced by Baldassarre et al. (2006) and consists in inverting the front
of motion when the limit on the turret-chassis degree of freedom is reached.

Suppose that the s-bot finds itself in the situation depicted in Figure 6.5a: the chassis
is oriented in the direction indicated as A and a traction force is perceived as indicated.
Driven by its controller, the s-bot rotates the chassis counterclockwise, but it encounters
the rotational limit and gets stuck. Now, suppose that the traction force stays the same,
while the chassis is oriented in the opposite direction, indicated by B in Figure 6.5b.
In this case, the controller rotates the chassis clockwise and reaches the desired position
without encountering the rotational limit.

In the situation depicted in Figure 6.5, A and B correspond to the two directions—
hereafter called fronts—of the s-bot ’s chassis: one corresponds to forward motion, the
other to backward motion. The symmetry of the chassis allows to make no distinction
between these two fronts. The front inversion mechanism consists in swapping from front
A to front B and vice versa every time the rotational limit is encountered. With respect
to the above example, when the s-bot is in the situation depicted in Figure 6.5a, it is
exploiting the front A as main direction of motion and turns counterclockwise, until the
rotational limit is encountered. At this point, the front inversion mechanism swaps the
fronts, so that the s-bot exploits front B as main direction of motion. As the traction force
comes now from the left, the s-bot rotates clockwise and reaches the desired orientation.

Technically, inverting the front from A to B or vice versa involves a 180◦ rotation of
the chassis’ frame of reference, therefore passing from xaya to xbyb, as in Figure 6.5.
The inputs of the controller must be computed referring to the new frame of reference. In
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Figure 6.5: The front inversion mechanism. (a) The s-bot is using the front A, therefore
inputs to and outputs from the controller are relative to the frame of reference xaya integral
with the chassis. (b) The s-bot is using front B. In this case, inputs to and outputs from
the controller must be relative to the frame of reference xbyb. See text for more details.

particular, the traction encoding must be inverted:

~Fb = − ~Fa,

where ~Fa is the traction as perceived by the traction sensor, and ~Fb is the value fed to the
controller. If other sensors are used, their readings must be swapped with respect to both
x and y axes before using them as input to the controller.2 Concerning the wheels, using
the front B instead of front A requires that the controller outputs are inverted as well:

ωb,l = −ωa,r,

ωb,r = −ωa,l,

where ωa,- is the angular speed defined by the controller, while ωb,- is the angular speed
set to the wheel.

The precondition for the application of the front inversion mechanism is the central-
symmetry of the sensory-motor equipment, because it allows a 180◦ rotation of the frame of
reference. Moreover, the controller must be somewhat “symmetric” itself: in the inverted
condition, the controller should produce an action that is opposite with respect to the
non-inverted condition. For example, a controller that rotates the chassis clockwise for
every perceptual condition is not symmetric. In such a case, swapping the fronts does not
lead to any advantage. A symmetric controller would turn counterclockwise when using
A and clockwise when using B for a given perceptual state, similarly to the situation
depicted in Figure 6.5. Notice that the controller does not have to be perfectly symmetric,
but it is sufficient that it results in a “qualitatively” symmetric action with respect to
symmetric perceptual conditions.

The effect of a front inversion at the level of the swarm-bot is shown in Figure 6.6,
which indicates the absolute orientation (with respect to the first front) of the chassis of

2This applies to ground sensors in the experiments presented in Chapter 7.
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four s-bots forming a linear structure and provided with the rotational limit and the front
inversion mechanism. Initially, the s-bots, all having random orientations, use the first
front. Between cycles 50 and 100, two s-bots reach the rotational limit and invert their
front. Finally, from about cycle 100 onward, the four s-bots converge to a same direction
of movement. Notice how, after converging, two robots use the first front and have an
absolute orientation of the chassis of about 120◦, while two robots use the second front
and have an orientation of about −60◦. The result is that all s-bots move in the same
absolute direction in the last phase of the trial.
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Figure 6.6: Absolute orientations of the chassis of four s-bots provided with the rotational
limit (y-axis) during a trial lasting 150 cycles (x-axis). The arrows indicate the cycles in
which two s-bots reach the rotational limit and invert their front of motion. During the
last phase, the two s-bots that never changed their front still move by using their first
front, while the other two s-bots use the second front.

The front inversion mechanism actually solves the problem introduced by the rotational
limit, but it could also affect the performance of the swarm-bot in the coordinated motion
task. We measured the effects of this solution by recording the average distance covered
by a swarm-bot over 20 trials lasting 25 s each. We noticed only a slight decrease with
respect to the baseline performance (8% of the covered distance, see also the first and
second column of the histogram in Figure 6.7), which allows us to conclude that the front
inversion mechanism is a viable solution to cope with the rotational limit. This is an
important result in view of testing the evolved controllers with real robots, which cannot
neglect the constraint imposed by the rotational limit, as we discuss in the following
section.

6.3.3 Issues in Porting on Physical S-bots

The neural network controller is used on the real s-bots exactly in the same way as in
simulation. The values returned by the various sensors are read every 100ms, they are
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scaled in the range [0,1] and finally fed to the neural network. The outputs of the network
are used to control the wheels and the turret-chassis motor. There are only two differences
with simulation. First of all, an exponential moving average is applied to the outputs of
the neural network that control the wheels and the turret-chassis motor:

ω(t) = τy(t) + (1 − τ)ω(t − 1), (6.4)

where ω(t) is the desired angular speed of the wheels at time t, y(t) is the set-point defined
by the neural controller and τ = 0.8 is the time constant used. This average is required
to avoid damage to the robots if the network output varies too much, and it adds to
the smoothing of the wheels’ speed performed by the PICTM controller of the motors.
Moreover, we added a recovery function that is necessary to avoid damage of the s-bots
due to excessive effort by the motors of the wheels. This function constantly monitors
the torque applied by the motors of the left and right wheels, and in case the torque
exceeds a given threshold for a long time, the speed of the wheels is set to 0. Both these
modifications make the system somewhat less reactive to external stimuli, but they are
required in order to avoid excessive strain of the motors.

No parameter tuning was required except for the maximum traction force FM . This
parameter is used for scaling the raw readings F̂x and F̂y of the traction sensor, in order
to compute the normalised readings Fx and Fy used in equation (6.2):

F- =











−1 if F̂- < −FM ,
F̂-

FM
if |F̂-| ≤ FM ,

1 if F̂- > FM ,

(6.5)

where F- is the normalised value of the x or y traction force component. The optimal
value of FM depends on the neural controller, the individual properties of the s-bots (level
of noise, effective power of the motors) and the friction coefficient of the ground, which can
vary due to dust or humidity. Therefore, we tuned this parameter independently for each
neural controller in order to maximise its performance. This procedure has been applied
also for the experiments presented in Chapter 7.

6.4 Testing with Real Robots

The introduction of the front inversion mechanism and the few issues described above
provide the controller evolved in simulation with all the required characteristics to be
directly tested on the real s-bots. We therefore tested the functionality of the evolved
behaviour in reality comparing the obtained performance with the results of simulations.

In all the tests performed in this section, s-bots are provided with the rotational limit
of the turret-chassis motor and with the front inversion mechanism. The s-bots always
start connected to each other, having randomly assigned orientations of their chassis. Each
experimental condition is tested for 20 trials, each lasting 25 seconds (250 cycles).

We initially test the functionality of the evolved neural controller in experimental
conditions identical to those encountered during evolution (see Section 6.4.1). Afterwards,
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we study the ability of the evolved behaviour to generalise to different situations that were
never met during the evolutionary process. We test the real swarm-bots on rough terrain,
and we also vary its size and shape. Then, we test the use of semi-rigid connections among
s-bots and we conclude discussing the case of indirect connections, that is, s-bots assembled
to an object to be transported while coordinately moving. The good performance recorded
in completely new experimental conditions suggests that the evolved behaviour is very
robust and flexible.

6.4.1 Testing with Swarm-bots in Simulation and in Reality

We tested the best controller evolved in simulation using four real s-bots forming a lin-
ear structure. The results show that the controller allows the real s-bots to coordinate
without the need of any adjustment and despite significant differences from the simplified
simulation model previously described.

Quantitatively, the performance of the best controller evolved in simulation decreases of
23%, on the average, when tested with the real s-bots (see the second and third histogram
bars of Figure 6.7 and the first two columns of Table 6.1). Data shown in Table 6.1 also
indicate that the swarm-bot never fell into the rotational equilibrium, neither in tests with
simulations nor in those with real robots. The lower performance of the real swarm-bot
with respect to the simulated swarm-bot is due to the longer time required by real s-
bots to coordinate. This is caused by many factors, among which the fact that tracks
and teethed wheels of the real s-bots sometimes get stuck during the initial coordination
phase, due to a slight bending of the structure that caused an excessive thrust on the
tracks. This leads to a sub-optimal motion of the s-bots, for example while turning on the
spot. However, coordination is always achieved and the s-bots always move away from the
initial position. This result proves that the controller evolved in simulation can effectively
produce coordinated motion when tested in real s-bots, notwithstanding the fact that the
whole process takes some more time compared with simulation.

6.4.2 Testing with Swarm-bots Moving over Rough Terrain

The evolved controller is also able to produce coordinated movements on rough terrain.
Figure 6.7 and Table 6.1 show the performance obtained by real s-bots placed on two
types of terrain. The brown rough terrain is a very regular surface made of brown plastic
isolation foils. This terrain remains mostly flat, but it is impossible to access for most
standard wheeled robots. Only robots with tracks like the s-bot can move on it. The
plastic is composed of a grid of cones, spaced 2.1 cm apart. The cones are 1.2 cm large
and 0.7 cm high (see Figure 6.8a). The white rough terrain is an irregular surface made of
plaster bricks that look like stones. The bricks measure 13x28 cm and their height ranges
from 0.9 to 2.1 cm (see Figure 6.8b). In these experimental conditions, we observed a
decrease of performance that is mainly due to a more difficult gripping of the tracks and
teethed wheels on the irregular surface. In fact, the roughness leads to very noisy signals
perceived by the traction sensors. As a consequence, the swarm-bots in some cases do not
reach a complete coordination since the s-bots have similar but different orientations. In
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Figure 6.7: Performance of the best evolved controller in simulation and reality (distance
covered in 20 trials, each lasting 25 s). Boxes represent the data inter-quartile range. The
horizontal bars in the boxes indicate the median values. Whiskers cover the data points
within 1.5 times the inter-quartile range. The empty circles mark the outliers. Labels
indicate the experimental setup: ‘Sim’ and ‘Hw’ indicate tests performed respectively
with simulated and physical s-bots; ‘L4’ indicates tests involving 4 s-bots forming a linear
structure; ‘NoL’ indicates tests performed without the introduction of the rotational limit
and of the front inversion mechanism; ‘BR’ and ‘WR’ indicate the rough terrain condition,
respectively brown and white (see text for details).

Table 6.1: Performance of the best evolved controller tested in simulation and reality.
Tests involve four s-bots forming a linear structure. The first two columns indicate the
performance on flat terrain respectively in the case of simulated and real s-bots. The
last two columns indicate the performance of real s-bots on rough terrain (see text). The
six rows indicate: the average performance over 20 trials, the standard deviation, the
standard error, the ratio of performance with respect to the theoretical maximum to the
corresponding simulated test, and the number of trials (out of 20) in which the swarm-bot
did not manage to perfectly coordinate.

Line 4, rigid links,
flat terrain

Line 4, rigid links,
rough terrain

Simul. Hardw. Brown White

Avg. perf. 156.96 120.85 87.75 81.25
Std. dev. 28.39 29.53 43.95 39.45
Std. err. 6.35 6.60 9.82 8.82
% with th. max. 0.85 0.65 0.47 0.44
% with sim. 1.00 0.77 0.56 0.52
Partial coord. 0 0 4 6
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(a) (b)

Figure 6.8: The two types of rough terrain used to test the robustness of the controller.
(a) A very regular rough terrain made of brown plastic isolation foils. (b) An irregular
rough terrain made of white plaster bricks that look like rough stones.

these situations, the swarm-bots move in large circles, sometimes returning to the initial
position, therefore scoring a low performance.

With the exception of the few cases in which coordination is only partially achieved,
the performance of the swarm-bot on rough terrain is comparable with what achieved on
the flat terrain. This is the first example of generalisation that shows how robust the
evolved behaviour is with respect to varying experimental conditions. Robustness is not
limited to rough terrain conditions, but it is also observed with respect to many other
aspects of the experimental setup, as described in the following.

6.4.3 Testing with Swarm-bots of Larger Sizes

The best evolved controller was tested with linear swarm-bots composed of six s-bots.
The results showed that larger swarm-bots preserve their ability to produce coordinated
movements both in simulation and in reality. As shown in Figure 6.9 and Table 6.2,
the performance in the new experimental condition is only 10% and 8% lower than what
measured with swarm-bots formed by four s-bots, respectively in tests in simulation and in
reality. The performance of the experiments performed with real s-bots is 21% lower with
respect to the corresponding simulation experiments, in line with the results presented in
Section 6.4.1. Moreover, in all cases swarm-bots never fell into the rotational equilibrium.
This test suggests that the evolved controller produces a behaviour that scales well with
the number of individuals forming the group both in simulated and real robots (for more
results on scalability with simulated robots, see (Baldassarre et al., 2006; Dorigo et al.,
2004)). The scalability property of the evolved behaviour is also confirmed by the results
reported in Section 6.4.4, in which eight s-bots are used.
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Figure 6.9: Performance of the best evolved controller in simulation and reality (average
and standard error of the distance covered in 20 trials, each lasting 25 s). See the caption
of Figure 6.7 for an explanation of the figure. Additionally: ‘L6’ indicates tests involving
six s-bots forming a linear structure.

Table 6.2: Performance of the best evolved controller tested in simulation and reality.
Comparison is made between linear structures involving respectively four and six s-bots.
See caption of Table 6.1 for more details.

Line 4, rigid links,
flat terrain

Line 6, rigid links,
flat terrain

Simul. Hardw. Simul. Hardw.

Avg. perf. 156.96 120.85 141.03 111.65
Std. dev. 28.39 29.53 39.36 26.05
Std. err. 6.35 6.60 8.80 5.82
% with th. max. 0.85 0.65 0.76 0.60
% with sim. 1.00 0.77 1.00 0.79
Rot. equil. 0 0 0 0
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Figure 6.10: Swarm-bots with different shapes. (a) A swarm-bot composed of four s-bots
forming a square shape. (b) A swarm-bot composed of eight s-bots forming a “star” shape.

6.4.4 Testing with Swarm-bots of Different Shapes

The best controller evolved in simulation was tested varying the shape and the size of
the swarm-bot. In particular, we tested swarm-bots composed of four s-bots forming a
square structure and swarm-bots composed of eight s-bots forming a “star” shape (see
Figure 6.10). The results show that the controller displays an ability to produce coor-
dinated movements independently of the swarm-bot ’s shape, although the tests that use
real s-bots show a higher drop in performance. As shown in Figure 6.11, in simulation the
performance of square and “star” swarm-bots is not very different from the performance
of a linear swarm-bot composed of four s-bots. Comparing the data reported in Table 6.1
and in Table 6.3, the performance of simulated swarm-bots in square and “star” forma-
tions is respectively 13% and 17% lower than for a linear swarm-bot. The corresponding
experiments performed with real swarm-bots present a performance drop of 18% and 35%
with respect to real swarm-bots having a linear structure. These higher decrements of
performance of real robots is due to a higher chance of falling in the rotational equilibrium
(up to seven times in the case of the “star” formation) and, to a minor extent, to an
increased difficulty to converge toward a common direction of motion and to maintain it.
We observed that the chance of falling in the rotational equilibrium is higher in swarm-
bots having shapes that tend to be central symmetrical. Additionally, increasing the size
of the swarm-bots leads to a slower coordination. This not only lowers the performance,
but also increases the probability that the group falls in the rotational equilibrium. As a
consequence, the performance of square and “star” formation in reality is 27% and 40%
lower than the corresponding simulated structures (see Table 6.3).

6.4.5 Testing with Swarm-bots Having Semi-rigid Links

The experiments presented in this section are conceived to test the generalisation capa-
bility with respect to different types of links among s-bots. The neural controllers have
been evolved with a linear swarm-bot composed of four s-bots connected through rigid
links. Here, we test the same controller with s-bots connected through “semi-rigid” links.
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Figure 6.11: Performance of the best evolved controller in simulation and reality (average
and standard error of the distance covered in 20 trials, each lasting 25 s). See the caption
of Figure 6.7 for a detailed explanation of the figure. Additionally: ‘S4’ indicates tests
involving four s-bots forming a square shape; ‘S8’ indicates tests involving eight s-bots
forming a “star” shape.

Table 6.3: Performance of the best evolved controller tested in simulation and reality.
Comparison is made between a square structure involving four and a “star” shape involving
eight s-bots. See caption of Table 6.1 for more details.

Square 4, rigid links Star 8, rigid links
Simul. Hardw. Simul. Hardw.

Avg. perf. 136.02 99.00 131.05 78.10
Std. dev. 65.44 57.22 64.96 55.15
Std. err. 14.63 12.79 14.53 12.33
% with th. max. 0.74 0.53 0.71 0.42
% with sim. 1.00 0.73 1.00 0.60
Rot. equil. 4 5 4 7
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Figure 6.12: Performance of the best evolved controller in simulation and reality (average
and standard error of the distance covered in 20 trials, each lasting 25 s). See the caption
of Figure 6.7 for a detailed explanation of the figure. Additionally: ‘F4’ indicates tests
involving 4 s-bots forming a linear structure not rigidly connected.

Table 6.4: Performance of the best evolved controller tested in simulation and reality.
Comparison is made between swarm-bots with rigid or semi-rigid links. See caption of
Table 6.1 for more details.

Line 4, rigid links Line 4, semi-rigid links
Simul. Hardw. Simul. Hardw.

Avg. perf. 156.96 120.85 150.57 108.00
Std. dev. 28.39 29.53 27.87 34.14
Std. err. 6.35 6.60 6.23 7.63
% with th. max. 0.85 0.65 0.81 0.58
% with sim. 1.00 0.77 1.00 0.72
Rot. equil. 0 0 0 2

Contrary to the other experiments illustrated in this chapter, in the case of semi-rigid
links the gripper is not completely closed and the assembled s-bots are partially free to
move with respect to each other. In fact, a partially open gripper can slide around the
turret perimeter, while other movements are constrained.

One interesting aspect of semi-rigid links is that they potentially allow swarm-bots to
dynamically rearrange their shape in order to better adapt to the environment. Indeed,
experiments conducted in simulation show how swarm-bots assembled through semi-rigid
links are able to dynamically rearrange their shape in order to pass through narrow pas-
sages and avoid falling into holes (Baldassarre et al., 2006; Trianni et al., 2006). The
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way in which the torque produced by the motors controlling the wheels and the turret of
each individual s-bot affects the traction perceived by other s-bots, however, significantly
differs in the case of rigid and semi-rigid links. While in the case of rigid links the forces
produced by motors and collisions directly affect the traction perceived by other s-bots, in
the case of semi-rigid links these forces might affect also the shape of the swarm-bot. As
a consequence, traction forces are transmitted only in part when using semi-rigid links.

Despite the increased complexity, the obtained results show that the evolved controller
preserves its capability of producing coordinated movements both in simulation and in
reality (see Figure 6.12 and Table 6.4). Moreover, performance drops only of 4% and
11% passing from rigid to semi-rigid links respectively in the tests with simulated and
real swarm-bots. The performance of the experiments performed with real s-bots is 28%
lower with respect to the corresponding simulation experiments, in line with the results
presented in Section 6.4.1.

6.4.6 Testing with Swarm-bots Carrying an Object

Figure 6.13 shows the case of four s-bots connected to an object, rather than between
them. In this situation, the s-bots continue to coordinate moving in a common direction
while pushing/pulling the object. Notice that the four s-bots and the cylindrical object
form a single physical system. In such a situation, as soon as the resistance given by static
friction is overcome, the pushing/pulling forces are transmitted through the rigid links of
the structure, and coordination can take place. Moreover, a slight resistance produced by
dynamic friction of the passive object does not disturb the coordinated motion since, as
we showed in Section 6.3.1, the evolved controller keeps moving despite a small traction
opposite to the direction of motion. Since s-bots are only able to coordinate if the friction
of the object with the ground is not too high, the tests in simulation and in reality used a
lightweight object. Note that this test was not carried out to study the problem of collective
transport, which is not within the scope of this chapter (see Section 6.1 for a review of the
corresponding literature). Our aim is to study the robustness of the evolved behaviour,

Figure 6.13: Four s-bots connected to a cylindrical, passive object.
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which is based on coordination mechanisms that can exploit also indirect signals, that is,
forces that are perceived notwithstanding the presence of a passive object to which the
s-bots are connected.

Tests performed in this experimental condition show that the s-bots preserve their
ability to coordinate and to move in a coherent fashion both in simulation and in real-
ity. Consequently, also the object is transported by the coordinated action of the s-bots.
Quantitative comparison between this experimental condition and the case of four s-bots
assembled in a square formation (i.e., the most similar shape) showed a slight performance
drop (see Figure 6.14 and Table 6.5). In particular, the performance drops of 23% and 29%
respectively in the tests run in simulation and in reality. The decrement of performance is
mainly due to a higher probability of falling in the rotational equilibrium. The resistance
to motion of the passive object is probably the main cause of this. As a consequence, the
performance of the experiments performed with real s-bots is 33% lower with respect to
the corresponding simulation experiments, in line with the case of square formations.

6.5 Conclusions

This chapter showed how a group of several s-bots physically assembled in a swarm-bot can
display a coherent behaviour on the basis of a simple distributed control system in which
individual robots have access only to local sensory information. More specifically, the
chapter showed how it is possible to evolve a self-organising behaviour that lets the s-bots
coordinate their movements. The s-bots start by negotiating a common direction of motion
and then, once coordinated, they continuously compensate for possible misalignments
caused by noise or other environmental factors. This solution is based on a traction sensor
able to detect the intensity and the orientation of the traction that the top part of the
s-bot (that is physically connected with other robots) exerts on the bottom part (that is
in contact with the ground).

The most significant achievement presented in this chapter concerns the successful
transfer of controllers evolved in simulation to real s-bots. The results illustrated show
that the neural controller can generalise to conditions that are very different from those
in which it was evolved. In particular, the evolved behaviour was successfully tested in
the following conditions: (i) swarm-bots composed of a larger number of assembled robots
(up to eight real s-bots, but similar results have been obtained in simulation using up
to 36 s-bots (Baldassarre et al., 2006; Dorigo et al., 2004)); (ii) swarm-bots with varying
shape; (iii) swarm-bots assembled through semi-rigid links that allow relative motion of
the connected s-bots; (iv) swarm-bots that navigate on rough terrains, which produce high
noise and disturbances; (v) s-bots indirectly connected through a passive object.

To the best of our knowledge, no other work in the literature presents collective be-
haviours tested with physical robots, which have effectiveness comparable to the system
presented in this chapter. Such effectiveness is the result of a design methodology that
allowed us to obtain self-organisation in our robotic system, along with its characteris-
tic properties. Among these, we observed the high flexibility of the evolved behaviour,
both with respect to modifications in the environment and in the structure of the robotic
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Figure 6.14: Performance of the best evolved controller in simulation and reality (average
and standard error of the distance covered in 20 trials, each lasting 25 s). See the caption
of Figure 6.7 for a detailed explanation of the figure. Additionally: ‘P4’ indicates tests
involving 4 s-bots connected through a passive cylindrical object.

Table 6.5: Performance of the best evolved controller tested in simulation and reality.
Comparison is made between a square swarm-bot and s-bots connected to a cylindrical
object in a square-like formation.

Square 4, rigid
links

Square 4, + object

Simul. Hardw. Simul. Hardw.

Avg. perf. 136.02 99.00 105.34 70.4
Std. dev. 65.44 57.22 80.72 53.28
Std. err. 14.63 12.79 18.05 11.91
% with th. max. 0.74 0.53 0.57 0.38
% with sim. 1.00 0.73 1.00 0.67
Rot. equil. 4 5 8 9
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system itself. Another fundamental property is the high complexity of the behaviour at
the collective level, notwithstanding the simple mechanisms characterising the individual
level. For instance, the sensory-motor apparatus of the s-bots involves only one sensor and
few motors. Also, the neural controller is the simplest possible, that is, a feed-forward,
single layer neural network with very few input and output neurons. Therefore, all the
complexity resides in the interactions that take place among the s-bots and between the
s-bots and the environment. These interactions are shaped as traction forces, captured
by the traction sensor despite the particular configuration of the robotic system and the
number of robots connected. The analysis of the individual behaviour reveals that in-
teractions through traction forces can be exploited resorting to two opposing tendencies:
the first consists in complying with the motion of the rest of the group. This behaviour
corresponds to the “positive feedback” mechanism that is at the basis of self-organisation.
The second tendency consists in persevering in the current direction of motion, and it has
the important role of favouring the emergence of coordinated movements and stabilising
the system against temporary disturbances.

The evolved behaviour constitutes an important building block for swarm-bots that
have to perform more complex tasks such as coordinately moving toward a light target
(Baldassarre et al., 2006), and coordinately exploring an environment by avoiding walls
and holes (Baldassarre et al., 2006; Trianni et al., 2006). In the following chapter, we
analyse in detail one of these extensions of the coordinated motion task, that is, hole
avoidance.
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Chapter 7

Hole Avoidance

In this chapter, we present a set of experiments that build upon the results on coordinated
motion presented in the previous chapter. Also in this case, we study a coordination
problem among the s-bots forming a swarm-bot. The physical connections among s-bots
result in physical interactions that can be exploited for self-organisation of the swarm-
bot. Additionally, s-bots are provided with a sound signalling system, that can be used for
communication. The task we study requires the s-bots to explore an arena presenting holes
in which the robots may fall. Individual s-bots cannot avoid holes due to their limited
perceptual apparatus. On the contrary, a swarm-bot can exploit the physical connections
and the communication among its components in order to safely navigate in the arena.

Communication is an important aspect to consider in a collective robotics domain, as
it is often required for coordination of collective behaviours. Social insects make use of
different forms of communication, outlined in Section 7.1. Hölldobler and Wilson point to
twelve functional categories of communication in ants (see Hölldobler and Wilson, 1990,
page 227). This wide use of communication with different modalities is justified by the
fact that communication serves as a regulatory mechanism of the activities of the colony.
Actually, they call the ant colony a dense heterarchy, that is, a hierarchy-like system
decomposable in two or more levels in which lower levels can influence the higher levels
through some form of mass communication.1 This heterarchy is dense in the sense that
every individual is likely to communicate with any other (Wilson and Hölldobler, 1988).
Also in collective robotics research, the coordination of the activities in a group of robots
requires the definition of communication strategies and protocols among the individuals.
However, the example given by social insects teaches us that these strategies and protocols
need not be particularly complex. In many cases, simple forms of communication—or no
explicit communication at all—are enough to obtain the coordination of the activities of
the group (Beckers et al., 1994; Kube and Zhang, 1997; Holland and Melhuish, 1999). This
is the case for the experiments presented in this chapter, which focus on local and simple
communication paradigms, that however allow an efficient coordination of the group.

The experiments presented here bring forth a twofold contribution. We examine dif-
ferent communication protocols among the robots (i.e., no signalling, handcrafted and

1The whole colony is to be considered the highest level of the heterarchy.
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evolved signalling), and we show that a completely evolved approach achieves the best
performance. This result is in accordance with the assumption, for which evolution poten-
tially produces a system that is more efficient than those obtained with other conventional
design methodologies (see Section 4.2). Another important contribution of these experi-
ments consists in the testing of the evolved controllers on physical robots. We show that
the evolved controllers produce a self-organising system that is robust enough to be tested
on real s-bots, notwithstanding the huge gap between simulation and reality. To the best of
our knowledge, only little work can be found in the literature in which cooperative evolved
behaviours have been successfully tested on a group of physical robots (see, for example,
Quinn et al., 2003; Kamimura et al., 2005). Considering the difficulty of the task we
face and the complex dynamics involved, we believe that we obtained the most advanced
evolved group behaviours so far successfully tested on a physical robotic platform.

The rest of the chapter is organised as follows. In Section 7.1, we briefly overview the
different forms of communication that can be found in social insects and in Section 7.2 we
draw a parallel with collective robotics research . A taxonomy of different communication
modalities is also introduced. In Section 7.3, we define the hole avoidance task and we give
details about the experimental setup used for evolving cooperative behaviours. Section 7.4
shows the obtained results in simulation, while Section 7.5 describes the results obtained
in transferring the evolved controllers on the real s-bots. Finally, Section 7.6 concludes the
chapter.

7.1 A Glance at Insect Societies

From the study of mass communication modalities arises the concept of stigmergy : it
describes an indirect communication among individuals, which is mediated by the en-
vironment. Stigmergy was first introduced by Grassé, while studying the nest building
behaviour of termites of the genus Macrotermes (Grassé, 1959). Impressed by the com-
plexity of termites’ nests and by their dimension with respect to an individual, Grassé
suggested that the cooperation among termites in their building activities was not the re-
sult of either some direct interactions among individuals, nor some other form of complex
communication. On the contrary, cooperation could be explained as the result of environ-
mental stimuli provided by the work already done—i.e., the nest itself. Other examples
of stigmergic communication have been observed in the foraging behaviour of many ant
species, which lay a trail of pheromone, thus modifying the environment in a way that can
inform other individuals of the colony about the path to follow to reach a profitable for-
aging area (Goss et al., 1989; Hölldobler and Wilson, 1990). Stigmergy is also at the basis
of the cemetery formation (Chrétien, 1996; Deneubourg et al., 1991) and brood sorting in
ant colonies (Franks and Sendova-Franks, 1992). In both these activities, aggregates form
as the result of the collective action of ants, mediated by the “work in progress”, that is,
the presence of already formed aggregates.

Stigmergy is not the only way of communication that can be observed in social insects.
Direct interactions—such as antennation, mandibular contact, trophallaxis—account for
various social phenomena (Hölldobler and Wilson, 1990). For example, in many species of
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ants such as Œcophilla longinoda, recruitment of nest-mates for the exploitation of a food
source is performed with a mix of antennation and trophallaxis: when an ant returning
from a food source encounters another worker, it stimulates the other ant to follow the laid
pheromone trail by touching the nest-mate with the antennas and regurgitating a sample
of the food source. Hölldobler and Wilson (1990) report of an invitation behaviour during
colony emigrations in ants of the species Camponotus sericeus. A recruiter ant invites
another individual to follow it to a new nesting site by first grasping and pulling it by the
mandibles. Afterwards, the recruiter turns around and moves toward the new site, while
the other ant follows keeping a physical contact by means of its antennae. Mandible pulling
and the subsequent tandem running are striking examples of coordination of movements
that exploit direct interactions among individuals. Similar behaviours have been observed
in other ant species, associated to recruitment for both colony emigration and foraging.

Some forms of direct communication within insect societies have been studied, a well-
known example being the waggle dance of honey bees. A bee is able to indicate to the
unemployed workers the direction and distance from the hive of a patch of flowers, us-
ing a “dance” that also gives information on the quality and the richness of the food
source (Seeley, 1995). A sort of waggle dance has also been observed in ants of the species
Camponotus socius. Ants returning from a food source lay a pheromone trail that alone
does not trigger recruitment of other workers. On the contrary, workers are alerted by
the returning ant by head waving movements, to which the workers respond following
the trail. Another form of direct communication takes places through acoustical signals.
Many ant species use sound signals—called stridulations—as recruiting, alarm or mating
signals. In presence of a big prey, ants of the genus Aphaenogaster use stridulation during
nest-mates recruitment. Here, the sound signal does not attract ants, but it serves as a
reinforcement of the usual chemical and tactile attractors, resulting in a faster response
of the nest-mates. Another form of acoustic signalling is drumming, that is, vibrations
produced by strokes on the surface of chambers in wooden nests (Fuchs, 1976). This
signal functions as a direct alarm communication, and it has a modulating effect on the
probability of individual workers to respond to other signals.

7.2 From Insects to Robots

The above examples suggest a possible taxonomy of different forms of communication
in insect societies, that can be borrowed for characterising a collective robotic system
(Trianni et al., 2004a):

Indirect or Stigmergic Communication. A form of communication that takes place
through the environment, as a result of the actions performed by some individuals,
which indirectly influence someone else’s behaviour (e.g., pheromone trails).

Direct Interaction. A form of communication that implies a non-mediated transmission
of information, as a result of the actions performed by some individuals, which
directly influence someone else’s behaviour (e.g., antennation, mandibular pulling).
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Direct Communication. A form of communication that implies a non-mediated trans-
mission of information, without the need of any physical interaction (e.g., the waggle
dance, stridulations).

A number of other taxonomies for communication modalities in robotic systems have
been proposed in the past (see, for example, Balch and Arkin, 1994; Cao et al., 1997;
Dudek et al., 2002; Matarić, 1998). What we propose can be considered equivalent to
the taxonomy introduced by Cao et al. (1997), having adapted it to the natural examples
discussed above. The terminology we used is partly borrowed from Matarić (1998).

A pioneering work on the study of biologically inspired communication in collective
robotics is the one of Balch and Arkin (1994). Three tasks and three different commu-
nicative setups were considered. Balch and Arkin show that direct communication is not
required if the task is characterised by some form of indirect communication that provides
the same amount of information. Additionally, they show that, among the direct commu-
nication strategies, a higher complexity does not forcedly result in an advantage. Similarly,
Kube and Zhang (1997) describe a collective task in which no direct communication is used
among the robots, which are able to coordinate their activities anyway using some form
of indirect communication. Stigmergy is the main coordination mechanism employed in
many other works relevant for swarm robotics research (Beckers et al., 1994; Holland and
Melhuish, 1999). Finally, it is worth mentioning the work of Kube and Bonabeau (2000),
that show how a self-organising behaviour observed in ants (i.e., collective transport) can
be replicated in a group of robots. In this case, the robotic experiments served as an
empirical model useful to uncover some interesting features of the insect behaviour.

Direct interactions are not commonly exploited in robotic systems, as physical contacts
among robots are preferably avoided or ignored. An exception is given by the studies on
collective manipulation (Khatib et al., 1996; Zhu and De Schutter, 1999; Sugar and Kumar,
2002). In these studies, there is no direct physical contact among the robots, but physical
forces are transmitted through the transported object and they are exploited for control,
as we already discussed in Section 6.1.

Simple forms of direct communication modalities are often chosen in collective robotics.
Hayes et al. (2000) study how a simple binary communication can result in higher per-
formance in a collective exploration task. Ijspeert et al. (2001) show how in a strictly
collaborative task (i.e., a task where cooperation is strictly required for goal achievement)
a simple form of direct communication can enhance the performance of the system. Simi-
larly to the already mentioned work of Balch and Arkin (1994), Rybski et al. (2004) study
the influence of different forms of communication on the performance of a collective robotic
system in a foraging task.

We conclude this short literature review mentioning some interesting work related to
communication in an evolutionary robotics context. The pioneering work of Werner and
Dyer (1991) studies evolution of communication strategies in a population of male and
female artificial organisms selected for their ability to mate. More recently, Di Paolo
(2000) has studied the evolution of a simple communication protocol for two simulated
agents. In this work, the agents’ goal was staying close one to the other, based only
on acoustic communication signals. The agents achieve this goal using a simple turn-
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taking strategy, for which only one agent at a time emits a signal. This strategy favours
the recognition of the other agent, which could hardly be perceived, as agents do not
discriminate between a self-emitted and an external sound signal. Another example is given
by Quinn (2001b), who evolved a sort of communication strategy between two simulated
robots that should perform coordinated motion. This strategy is based on a particular
sequence of movements that results in the allocation of leader/follower roles. All the above
work has been conducted in simulation. A remarkable exception is the work of Quinn et al.
(2003), who studied the evolution of coordinated motion in a group of three simulated and
physical robots. Also in this case, there is no explicit communication among the robots,
but role allocation emerges from the initial interactions among the robots.

7.3 Evolution of Hole Avoidance Behaviours

The hole avoidance task has been defined for studying collective navigation strategies
for a swarm-bot that moves in environments presenting holes in which it risks remaining
trapped. In such a scenario, due to the limited sensory apparatus of the s-bot, the swarm-
bot is more efficient than individual units. In fact, the position of the ground sensors makes
it impossible for an s-bot to detect holes that are sidelong with respect to its direction
of motion, because sensors are placed under its chassis and parallel to its tracks (see
also Figure 5.1). The swarm-bot can instead perform hole avoidance exploiting its larger
physical structure and the cooperation among the s-bots.2 However, for a swarm-bot to
perform hole avoidance, two main problems must be solved: (i) coordinated motion must
be performed in order to obtain coherent movements of the swarm-bot, as a result of the
actions of its components; (ii) the presence of holes, which cannot be perceived by all the
s-bots at the same time, must be communicated to the entire group, in order to trigger
a change in the common direction of motion. In some preliminary studies, conducted
in simulation only, we successfully evolved cooperative behaviours for the hole avoidance
task (Trianni et al., 2004a, 2006). Here, we apply the same methodology to the evolution
of behaviours that can be tested on the physical s-bots. In doing so, a number of new
challenges has to be faced, as the simulation model previously used was differing in some
crucial aspects from the physical robot. In Section 7.3.1, we give a detailed description of
the experimental choices made in order to cope with these challenges.

Moreover, in these experiments we study and compare three different approaches to
communication among the s-bots. In the first setup, s-bots communicate only through
direct interactions, that is, they exploit the pulling/pushing forces that one exerts on the
other as a form of communication. This setup, referred to as Direct Interactions setup
(DI ), is the simplest possible for hole avoidance. The second and third setups make use
of direct communication among the s-bots in addition to the direct interactions. In the
second setup, referred to as Direct Communication setup (DC ), the s-bots emit a tone as a
handcrafted reflex action to the perception of a hole. On the contrary, in the third setup,
which is referred to as Evolved Communication setup (EC ), the signalling behaviour is

2The limitation in the perception of holes applies also to a swarm-bot in which all s-bots are connected
forming a line.
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not defined a priori, but it is left to evolution to shape the best communication protocol.
In the following, we detail the experimental setup. Then, we describe the controllers and
the evolutionary algorithm used, and finally we present the evaluation function defined for
evolving hole avoidance behaviours.

7.3.1 Experimental Setup

We aim at evolving hole avoidance behaviours for a group of four s-bots connected in a
square formation. A precondition for the evolution of hole avoidance is the ability of the
swarm-bot to perform coordinated motion. We therefore decided to let evolution shape
the neural controller testing the swarm-bot both in environments with and without holes
(see Figure 7.1). In particular, we let the s-bots move on a flat plane connected in both a
linear and a square formation, as shown in Figures 7.1a and b. This is useful to create the
selective pressure that favours the evolution of robust controllers for coordinated motion.
Concerning the evolution of hole avoidance, a square swarm-bot formation is placed in an
arena presenting holes, as shown in Figure 7.1c. The arena is a square of 4 meters per
side, with 2 rectangular holes and open borders. In all cases, the s-bots start connected in
a swarm-bot formation, and the orientation of their chassis is randomly defined, so that
they need to coordinate in order to choose a common direction of motion. In conditions
“a” and “b”, once coordinated, the s-bots have to maintain straight motion as much as
possible. In condition “c”, the s-bots have to explore the arena without falling into holes
or out of the borders.

In all three setups (DI, DC and EC ), s-bots are equipped with traction and ground
sensors, described in Section 5.2. In DC and EC, microphones and speakers are also used.
The information provided to the controller by these sensors proved to be sufficient for
the evolution of hole avoidance behaviours (Trianni et al., 2004a). However, these studies
did not consider the rotational limit in the turret-chassis degree of freedom and the front
inversion mechanism (see Section 6.3.2). Additionally, in Trianni et al. (2004a), we used
different ground sensors, which were four proximity sensors uniformly distributed along
the turret’s perimeter and pointing to the ground. This sensor configuration makes it

(a) (b) (c)

Figure 7.1: Experimental conditions in which the hole avoidance behaviour is evolved. In
conditions “a” and “b”, a swarm-bot is initialised on a flat terrain and has to perform
coordinated motion. The swarm-bot shape is either a line or a square. In condition “c”,
a square swarm-bot is positioned in an arena with open borders and holes.
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easier for the single s-bot, and in turns for the swarm-bot, to perceive the presence of a
hole and to avoid it. However, we found that implementing such sensor configuration on
the physical s-bots was not feasible, and we resorted to the usage of the ground sensors
positioned under the s-bot ’s chassis.

7.3.2 The Neural Controllers and the Evolutionary Algorithm

The s-bots are controlled by artificial neural networks, whose parameters are set by an
evolutionary algorithm. A single genotype is used to create a group of s-bots with an
identical control structure—a homogeneous group. Each s-bot is controlled by a fully
connected, single layer feed-forward neural network—a perceptron network. Each input
is associated with a single sensor, receiving a real value in the range [0.0, 1.0], which is
a simple linear scaling of the reading taken from its associated sensor. Additionally, the
network is provided with a bias unit—an input unit whose activation state is clamped to
1.0—and output neurons that control the effectors of the s-bot (see Figure 7.2).

In the basic DI setup the traction and the ground sensors are used as inputs. Specifi-
cally, 4 inputs of the perceptron are dedicated to the traction sensor, encoding the traction
force intensity and direction into 4 variables, as already mentioned in Section 6.2.1. Four
other inputs are dedicated each to one ground sensor. Concerning the actuators, the two
outputs of the perceptron are used to control the two wheels and the turret-chassis motor,
in the same way as described in Section 6.2.1.

In the DC setup, two additional binary inputs encode the information perceived by
the microphones, as shown in Figure 7.2. We use two inputs in order to cope with the
rotational limit and the front inversion mechanism. These inputs are set to 1 if at least
one s-bot is signalling, while they are set to 0 if no sound signal is perceived. One input

motors

groundtractionbias sound

sound

Figure 7.2: The neural controller. Circles represent neurons, while lines represent weighted
connections from input to output neurons. The empty circles and the normal lines refer
to neurons and connections used in the DI setup: the neural controller takes as input the
traction and ground sensors, plus a bias, and it controls the two wheels and turret/chassis
motor. The bold lines and light grey neurons are added in the DC setup: the neural
controller receives as input also the perceived sound signals. The dashed lines and the
dark grey neuron are further added in the EC setup: the neural network now also controls
the sound emitter.
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is active when the s-bot uses the principal front, while the other is used when the s-bot
is using the inverted front. In this way, it is possible to evolve controllers that can cope
with the front inversion mechanism, as the evolved behaviour can be “symmetric” (see
Section 6.3.2). In fact, having a single input would lead to a single action no matter
which front is used. For example, if the response to a perceived signal is a clockwise turn,
it would not change when inverting the fronts. Therefore, we make use of two inputs,
which are alternately set depending on the active front. This allows evolution to shape a
symmetric behaviour with respect to the perception of sound signals.

In the DC setup, the activation of the loudspeaker has been handcrafted, simulating a
sort of reflex action: an s-bot activates the loudspeaker whenever one of its ground sensors
detects the presence of a hole. Thus, the neural network does not control the emission of
a sound signal. However, it receives the information coming from the microphones, and
evolution is responsible for shaping the correct reaction to the perceived signals. On the
contrary, in the EC setup the sound emitter is controlled by an additional output added
to the neural network, along with all the required connections (see Figure 7.2). Whenever
the activation of this additional neuron is greater than 0.5, a tone is emitted. Therefore,
in this setup evolution is responsible for shaping not only the response to the emission of
a signal, but also the signalling behaviour. In other words, the complete communication
paradigm—the signalling and the reaction to the perceived signal—is under the control of
evolution.

The weights of the perceptron’s connections are genetically encoded parameters. In
all three setups, a simple generational evolutionary algorithm is used. Initially, a random
population of 100 genotypes is generated. Each genotype is a vector of binary values—
8 bits for each parameter. The genotype is composed of 144 bits for DI, 176 bits for
DC and 264 for EC. Subsequent generations are produced by a combination of selection
with elitism and mutation. Recombination is not used. At every generation, the best 20
genotypes are selected for reproduction, and each generates 4 offspring. The 80 offspring,
each mutated with a 5% probability of flipping each bit, together with the 20 parents form
the population of the subsequent generation. One evolutionary run lasts 200 generations.

7.3.3 Fitness Evaluation

During evolution, a genotype is mapped into a control structure that is cloned and down-
loaded in all the s-bots taking part in the experiment (i.e., we make use of a homogeneous
group of s-bots). Each genotype is evaluated 12 times—i.e., 12 trials. Each trial is char-
acterised by a different seed for the initialisation of the random number generator, which
influences both the initial position of the swarm-bot and the initial orientation of each s-
bot ’s chassis. Each trial lasts T = 400 control cycles, each corresponding to 0.1 simulated
seconds. As already mentioned, we have defined three different initial conditions for the
evolution of both coordinated motion and hole avoidance (see Figure 7.1). Conditions “a”
and “b” are intended to evolve robust coordinated motion strategies on flat terrain. Con-
dition “c” is devoted to the evolution of hole avoidance. During evolution, the swarm-bot
is initialised in one of these different conditions for 4 trials, thus obtaining 12 trials in
total per genotype.
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The behaviour produced by the evolved controller is evaluated according to a fitness
function that takes into account only variables directly accessible to the s-bots (see Nolfi
and Floreano, 2000, page 73). In each simulation cycle t, for each s-bot s belonging to the
swarm-bot S, the individual fitness Fs(t) is computed as the product of three components:

Fs(t) = Ωs(t) · ∆Ωs(t) · Υs(t), (7.1)

where:

• Ωs(t) accounts for fast motion of an s-bot. It is computed as the sum of the absolute
values of the angular speed of the right and left wheels, linearly scaled in the interval
[0, 1]:

Ωs(t) =
|ωs,l(t)| + |ωs,r(t)|

2 · ωM

, (7.2)

where ωs,l(t) and ωs,r(t) are respectively the angular speed of the left and right
wheels of s-bot s at cycle t, and ωM is the maximum angular speed achievable.

• ∆Ωs(t) accounts for the straightness of the s-bot ’s motion. It is computed as the
difference between the angular speed of the wheels, as follows:

∆Ωs(t) =

{

0 if ωs,l(t) · ωs,r(t) < 0,

1 −
√

|ωs,l(t)−ωs,r(t)|
ωM

otherwise.
(7.3)

This component is different from zero only when the wheels rotate in the same
direction, in order to penalise any turning-on-the-spot behaviour. The square root
is useful to emphasise small speed differences.

• Υs(t) accounts for coordinated motion and hole avoidance. It is computed as follows:

Υs(t) = 1 − max
(

Fs(t),Gs(t),Ss(t)
)

, (7.4)

where Fs(t) is the intensity of the traction force perceived by the s-bot s at time
t, Gs(t) is the maximum activation among the ground sensors of s-bot s at time t
and Ss(t) is a binary value corresponding to 1 if s-bot s is emitting a tone at time
t, and 0 otherwise. All these measures are scaled in [0, 1]. This component favours
coordinated motion as it is maximised when the perceived traction is minimised,
which corresponds to a coherent motion of the swarm-bot. It also favours hole
avoidance because it is maximised if the s-bots stay away from the holes. Finally,
the component referring to the speaker has been designed to minimise the usage of
direct communication, in order to signal only when it is necessary.

Given the individual fitness Fs(t), the fitness Fθ of a trial θ is computed as follows:

Fθ =











0 if fall,

1

T

T
∑

t=1

min
s∈S

Fs(t) otherwise,
(7.5)
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where T is the maximum number of simulation cycles. This fitness computation strongly
penalises every fall of the swarm-bot, in order to evolve robust avoidance behaviours.
However, given that many trials are performed on a flat plane, genotypes that result in
a good coordinated motion strategy are still rewarded. Additionally, at each simulation
cycle t we select the minimum among the individual fitnesses Fs(t), which refers to the
worst-performing s-bot, therefore obtaining a robust overall fitness computation. As a
final remark, it is worth noting that in all the three setups the same evaluation function
is used. Even if it may appear that the fitness evaluation has been designed explicitly for
the EC setup, it ensures a fair comparison of the three setups. In fact, in DI sound is not
used, so that Ss(t) is always 0, while in DC sound is used corresponding to the maximum
activation of the ground sensors, so that both Ss(t) and Gs(t) are equal to 1, therefore the
handcrafted emission of a tone is not penalised more than in the EC setup.

7.4 Results

For all setups—DI, DC and EC—the evolutionary experiments were replicated 10 times,
so that 30 evolutionary runs have been performed on the whole. The average fitness values,
computed over all the replications, are shown in Figure 7.3. The average performance of
the best individual and of the population are plotted against the generation number. All
evolutionary runs were successful, each achieving a very good performance. The average
fitness value of the best individuals reaches 0.5, where a value of 1 should be understood as
a loose upper-bound to the maximum value the fitness can achieve.3 It is worth noting that
the average fitness of DC and EC is slightly higher than in the case of DI. This suggests
that the use of direct communication among s-bots is beneficial for the hole avoidance
task. The effects of communication on the performance of the system will be investigated
in more detail later.

7.4.1 Behavioural Analysis

Looking at the behaviour produced by the evolved controllers, we observe no particular
difference among the different controllers evolved in the three setups for what concerns
the initial coordination phase that leads to the coordinated motion of the swarm-bot.
This is not surprising, because coordinated motion results mainly from the evaluation of
the controllers on a flat terrain—namely, in conditions “a” and “b” shown in Figure 7.1.
In these conditions, the use of direct communication does not lead to any particular
advantage, and the performance achieved by the three different setups is comparable.
Therefore, in the following we describe the initial coordination phase referring to one
particular controller evolved in the DI setup, as the other controllers produce similar
behavioural strategies.

3This maximum value could be achieved only if all s-bots start with their chassis already aligned in a
same direction and always move in a flat environment, without holes. This is very unlikely to happen in the
condition “a” and “b” shown in Figure 7.1. Additionally, in the condition “c” the narrow passages result
in frequent activations of the ground sensors and therefore in frequent re-organisations of the swarm-bot.
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Figure 7.3: Average performance of the 10 replications is plotted against the generation
number for each experimental setup. Thick lines refer to the best individual of the popu-
lation, while thin lines refer to the population average.

At the beginning of a trial, the s-bots start to move in the direction in which they
were initially positioned, resulting in a rather disordered overall motion. Within a few
simulation cycles, the physical connections transform this disordered motion into traction
forces, that are exploited to coordinate the group. When an s-bot feels a traction force,
it rotates its chassis in order to cancel this force. Once the chassis of all the s-bots are
oriented in a same direction, the traction forces disappear and the coordinated motion of
the swarm-bot starts. The evolved behaviour is qualitatively very similar to what achieved
for coordinated motion only, described in Section 6.3 (see also Baldassarre et al., 2006;
Trianni et al., 2004a).

The differences between the three setups appear once the hole avoidance behaviour
is considered. In the DI setup, s-bots can rely only on direct interactions in the form
of traction forces in order to communicate the presence of a hole and consequently avoid
falling into it. The s-bot that first detects a hole immediately inverts its direction of motion,
and therefore it produces a traction force that is perceived by the other s-bots. Exploiting
this force, a new coordination phase is triggered, which results in a new direction of motion
that leads the swarm-bot away from the hole. The trajectory of a swarm-bot successfully
performing an avoidance action are shown in Figure 7.4a. However, s-bots are not always
capable of avoiding falling. In fact, the avoidance behaviour is based on a delicate balance
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(a) (b) (c)

Figure 7.4: Trajectories of a swarm-bot while performing hole avoidance. The behaviours
are tested in the arena with open borders and holes shown in Figure 7.1c. We show the
trajectories obtained by a behaviour evolved within (a) the DI setup, (b) the DC setup
and (c) the EC setup. In all cases, the swarm-bot starts with the same initial condition.
Movies of these behaviours are available in the electronic supplementary material.

of the forces involved—i.e., motors, traction and friction forces—which does not always
ensure a prompt reaction to the detection of the hole.

A faster reaction to the detection of a hole is achieved in the DC and EC setup,
in which s-bots have the possibility to exploit direct communication mediated by sound
signals.4 This is always the case in all the controllers evolved in different evolutionary
runs. In the DC setting, the activation of the speaker is handcrafted and corresponds to
the perception of a hole with any of the ground sensors, while the response to this signal
is shaped by evolution. Generally, but not always, the perception of the signal results in
the rotation on the spot of the chassis. This happens for all the s-bots but the one that
perceives the hole. The latter tries to move away from the arena border and, in doing so,
it does not encounter much resistance from the others, until it ends up not detecting the
hole any more. At this point, the signalling ceases and the group reorganises moving in
a new direction. An example of the trajectory produced by a DC controller is shown in
Figure 7.4b.

The situation is much more complex for the EC setup. In fact, evolution was responsi-
ble for shaping both the signalling mechanisms and the response to the perceived signals.
It is very interesting to notice how evolution produced a variety of behaviours, all particu-
larly adapted to the hole avoidance task. A detailed description of all the communication
and behavioural strategies corresponding to the different evolutionary runs is out of the
scope of this chapter. It is anyway interesting to highlight some of the common points
that characterise these behaviours, which seem to be the cause of the better performance
achieved in this setup, as we will show in the following.

i. Signalling is associated with the perception of a hole, similarly to the DC setup.

4Falls are also registered for these setup, even if much more sporadically than in the DI case (see also
Table 7.1).
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However, not all ground sensors are associated with a signalling behaviour, but only
those corresponding to the direction of motion. In this way, s-bots do not influence
each other if they perceive a hole while they are moving away from it.

ii. The signalling behaviour is not only linked to the perception of a hole, but it is
influenced also by other factors, such as the traction force perceived and the percep-
tion of sound signals. In particular, in some cases, a high traction force inhibits the
production of the signal. The adaptive function of this inhibition consists in the fact
that in the absence of sound signals, the s-bots try to coordinate based on traction
only, which may lead to a faster choice of a new direction of motion away from the
hole.

iii. Similarly to point 2, signal production is in some cases inhibited also by sound
perception. In particular, when the perception of the self-emitted sound inhibits
its production, an s-bot performs an alternate signalling. In this way, the s-bots’
behaviour is influenced only in part.

The above mechanisms contribute to achieve a fast and reliable reaction to the perception
of a hole, a reaction that in general results in an efficient avoidance (see Figure 7.4c for
an example of the trajectory traced by a swarm-bot).

From the qualitative analysis, the use of direct communication seems to confirm our
expectations: it results in a faster reaction to the detection of a hole and therefore in
a more efficient avoidance behaviour. Additionally, the evolved communication strategy
appears more adaptive than the handcrafted solution. In order to assess the performance
difference between the different setups, we performed a quantitative analysis, described in
the following.

7.4.2 Quantitative Analysis

We performed a post-evaluation analysis and we compared the results obtained with the
three setups. For each evolutionary run, we selected the best individual of the final
generation and we re-evaluated it 100 times. Each performance evaluation is the average
of the fitness scored in three trials, one for each experimental condition encountered during
evolution and shown in Figure 7.1. In each trial, characterised by a different random
initialisation, the performance is measured using (7.5). All individuals are tested against
the same set of trials, using the same random initialisation. On the whole, the selected
controllers are evaluated in 300 trials, obtaining 100 performance values that characterise
their behaviour with respect to both coordinated motion and hole avoidance. A box-plot
summarising the performance of these individuals is shown in Figure 7.5. It is possible
to notice that EC generally performs better than DC and DI, while DC seems to be
generally better than DI.

Table 7.1 reports the average performances obtained from the post-evaluation analysis,
along with the number of falls registered in condition “c”. Average performance seems to
confirm that the use of direct communication has a relevant effect on the performance.
We can also notice that in the DI setup, the swarm-bot is often unable to avoid falling.
In the other setups, the swarm-bot falls only sporadically.
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Figure 7.5: Post-evaluation analysis of the best controller produced by all evolutionary
runs of the three different setups. Boxes represent the inter-quartile range of the data,
while the horizontal lines inside the boxes mark the median values. The whiskers extend
to the most extreme data points within the inter-quartile range from the box. The empty
circles mark the outliers.

Table 7.1: Average and standard deviation of the performance of the best evolved con-
trollers in the three different setups. For each controller, the percentage of falls is also
shown.

DI setup DC setup EC setup
rep. F falls % F falls % F falls %

1 0.43 ± 0.06 41 0.48 ± 0.06 0 0.51 ± 0.06 0
2 0.45 ± 0.07 33 0.50 ± 0.08 22 0.49 ± 0.06 2
3 0.43 ± 0.07 34 0.49 ± 0.06 2 0.50 ± 0.06 0
4 0.47 ± 0.07 56 0.47 ± 0.06 1 0.48 ± 0.08 1
5 0.44 ± 0.07 47 0.51 ± 0.06 1 0.50 ± 0.06 1
6 0.45 ± 0.07 37 0.50 ± 0.05 0 0.55 ± 0.06 2
7 0.44 ± 0.07 39 0.47 ± 0.06 0 0.53 ± 0.05 0
8 0.44 ± 0.06 41 0.48 ± 0.06 1 0.50 ± 0.06 1
9 0.46 ± 0.08 23 0.44 ± 0.08 7 0.51 ± 0.06 2
10 0.45 ± 0.08 30 0.50 ± 0.06 0 0.51 ± 0.06 0
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On the basis of these data, we performed a two-way analysis of variance to test if
there is a significant difference in performance among the three setups (for this and the
following analyses, we followed the methodology described in Montgomery, 1997, for the
randomised block design of experiments). The analysis considers 3 factors (the setups),
100 blocks (the testing trials) and 10 replications for each combination of factor/block (the
evolutionary runs). The applicability of the method was checked looking at the residuals
coming from the linear regression modelling of the data: no violation of the hypothesis to
use the analysis of variance was found. The result of the analysis, summarised in Table 7.2,
allows us to reject the null hypothesis that there is no difference among the three setups
with confidence of 99% (p-value < 0.0001).

Table 7.2: Analysis of Variance for the effect of the setups.

d.f. Partial SS MS F P

Setups 2 1.823 0.911 279.43 < 0.0001
Trials 99 4.153 0.042 12.86 < 0.0001
Total 101 5.9760 0.059 18.14 < 0.0001
Error 2898 9.4525 0.003

The above analysis tells us that there is a statistical difference among the three setups,
but it does not show which setup is different. Therefore we performed pairwise Tukey’s
tests among the three setups. The obtained results show with 99% confidence (p-value
< 0.0001) that the behaviours evolved within the EC setup performs significantly better
than those evolved within both the DI and the DC setup. The latter in turn results
to be significantly better than the DI setup. We can conclude that the use of direct
communication is clearly beneficial for hole avoidance. In fact, it speeds up the reaction
to the detection of a hole, and it makes the avoidance action more reliable. We have also
shown that evolving the communication protocol leads to a more adapted system. In the
following, we will show how these behaviours can be efficiently transfered on the physical
robots.

7.5 Transfer on Physical S-bots

So far, we have shown how evolution can synthesise neural controllers that produce coor-
dinated, cooperative behaviours in a group of simulated robots. We have also shown that
evolution can shape the communication protocol in order to maximise the performance of
the robotic system. In this section, we show how the controllers evolved in simulation can
smoothly transfer to the real world. In order to do so, we first describe the methodology
applied for choosing the individuals to test in reality. Then, we describe some issues re-
lated to the porting of the evolved controllers on physical robots. Finally, we present the
results obtained with the physical robots and we compare them with the simulation.
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(a) (b)

Figure 7.6: The square arena used for the comparison between simulation and physical
s-bots. (a) The simulated arena. (b) The real arena.

7.5.1 Selection of the Controllers

In order to test the evolved behaviours on the physical robots, a choice had to be made
among the available controllers, because testing all the best evolved neural networks in
a sufficient number of trials would have been impractical and very time-consuming. We
therefore decided to test a single controller per setup, and to compare its performance
between simulation and reality.

We based the selection of the best controller on a different performance metric with
respect to what was used during evolution. In fact, the function defined in (7.5) is a very
conservative evaluation of the hole avoidance behaviour. It always takes into account the
worst performing individual of the group, and makes a product of measures that are based
on individual sensor readings, which are affected by high levels of noise in the real world.
Therefore, when computed on data obtained from the physical robots, Fθ resulted in very
low values, and a comparison with simulation results was not fair. The new performance
metric T gives a more informative measure of the controller’s quality with respect to hole
avoidance and ensures a fair comparison between simulation and reality. This performance
metric corresponds to the distance covered by the swarm-bot and is computed integrating
the trajectory covered by the centre of mass of the s-bots during a trial θ. This metric is
computed as follows:

Tθ =











0 if fall

1

DM (T )

T
∑

t=1

||c(t) − c(t − 1)|| otherwise
(7.6)

where c(t) is the coordinate vector of the centre of mass of the swarm-bot S at cycle t, T
is the number of control cycles performed and DM (T ) is the maximum distance that an
s-bot can cover moving straight at maximum speed in T control cycles.

Using (7.6), we performed a post-evaluation analysis of all the best controllers evolved
in the 30 evolutionary runs. The swarm-bot was put in a small square arena, its side
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Table 7.3: Results of the post-evaluation using the performance based on the integrated
trajectory. Average performance and standard deviation are displayed. For each con-
troller, the percentage of falls is also shown. The individuals chosen for transfer to the
physical s-bots are displayed in bold.

DI setup DC setup EC setup
rep. T falls % T falls % T falls %

1 0.10 ± 0.21 69 0.48 ± 0.28 5 0.63 ± 0.31 8
2 0.08 ± 0.15 62 0.19 ± 0.26 52 0.46 ± 0.31 13
3 0.10 ± 0.20 66 0.53 ± 0.30 5 0.48 ± 0.32 15
4 0.04 ± 0.12 76 0.32 ± 0.28 28 0.54 ± 0.33 10
5 0.10 ± 0.15 52 0.40 ± 0.27 14 0.43 ± 0.31 14
6 0.11 ± 0.20 61 0.49 ± 0.24 0 0.50 ± 0.28 8
7 0.12 ± 0.19 60 0.43 ± 0.25 0 0.58 ± 0.31 9
8 0.09 ± 0.18 63 0.54 ± 0.27 2 0.46 ± 0.32 14
9 0.28 ± 0.26 29 0.43 ± 0.32 21 0.42 ± 0.37 29
10 0.13 ± 0.24 63 0.56 ± 0.26 1 0.57 ± 0.30 5

measuring 180 cm, shown in Figure 7.6a. A real version of this arena was built, making the
comparison between simulation and reality possible (see Figure 7.6b). The results obtained
from the post-evaluation are summarised in Table 7.3. Both the average performance and
the number of times the swarm-bot fell out of the arena are shown.5 It is possible to notice
that the number of falls is rather high for the DI setup, and in general much lower for the
DC and EC setups.

The choice of the best controller for each setup should be based on its performance.
However, other factors are also relevant when considering porting on real robots. In our
case, we were mainly interested in avoiding damage to the s-bots, therefore we decided
to select those controllers that resulted in the least number of falls. In case of multiple
possibilities, as for the DC setup, a choice based on the highest mean performance has
been performed. Consequently, we chose the controllers evolved in the 9th, 6th and 10th

evolutionary runs respectively for the DI, DC and EC setup.

7.5.2 Results

Each selected controller was evaluated in 30 trials, always starting with a different random
initialisation. A square swarm-bot was placed in the centre of the square arena shown in
Figure 7.6b. The behaviour of the swarm-bot was recorded using an overhead camera,
and its trajectory obtained using the tracking software SWISTrack6, which proved to be a
valuable tool for tracking a robot swarm (Correll and Martinoli, 2005). Figure 7.7a shows

5Using these data we performed the same statistical analysis described in Section 7.4.2, and also in this
case we obtained a significant difference among the setups, confirming that EC is the best setup, followed
by DC and DI (data not shown).

6A software developed by the Swarm-Intelligent Systems Group, EPFL,
http://swis.epfl.ch/research/swistrack
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an example of the trajectory extracted using the tracking software. The obtained data
were used to compute the performance of the system using (7.6).

Qualitatively, the behaviour produced by the evolved controllers tested on the phys-
ical s-bots is very good and closely corresponds to what observed in simulation7 (see
Figure 7.7). S-bots coordinate more slowly in reality than in simulation, taking a few sec-
onds to agree on a common direction of motion. Some problems are caused by the front
inversion mechanism, which sometimes leads to a loss of coordination, due mainly to the
higher friction of the tracks that were not simulated in our model. Hole avoidance is also
performed with the same modalities as observed in simulation. With the DI controller,
the combination of tracks and wheels of the traction system brings an advantage in hole
avoidance as the s-bot that perceives the hole can produce a traction force even if it is
nearly completely suspended out of the arena. Moreover, the high friction provided by
the tracks allows to produce higher traction forces that can have a greater influence on
the behaviour of the rest of the group. Similarly, the treels system is advantageous for
the DC controller, in which the s-bot perceiving the holes pushes the other s-bots away
from the arena border while emitting a sound signal. Concerning the EC controller, on
the contrary, the treels system does not lead to a clear advantage from a qualitative point
of view. In this setup, we also observed some failures in the communication system, as
the s-bot cannot switch the loudspeaker on and off at a high pace.

From a quantitative point of view, it is possible to recognise some differences between
simulation and reality, as shown in Figure 7.8 and in Table 7.4. We compare the perfor-
mance Tθ recorded in 100 trials in simulation with the one obtained from the 30 trials
performed in reality. Generally, we observe a decrease in the maximum performance,
mainly due to a slower coordination among the s-bots. This means that physical s-bots
start moving coordinately later than the simulated ones, both at the beginning of a trial
and after the perception of a hole. This influences the performance, as the swarm-bot
cannot cover high distances until coordination among the s-bots is achieved.

Looking at Figure 7.8 and Table 7.4, we can notice that the performance of the DI
controller is better in reality, thus confirming the qualitative analysis for which the treels
system allows to enhance the direct interactions among the s-bots, therefore leading to a
better avoidance behaviour. This is also confirmed by the percentage of falls, which is lower
in reality than in simulation. Concerning the DC controller, the performance difference
between simulation and reality is minimal. In this case, we observed that problems due

7Movies of these behaviours are available in the electronic supplementary material.

Table 7.4: Average and standard deviation of the performance obtained by the selected
controllers tested both in simulation (S) and reality (R). The percentage of falls is also
shown.

DI setup DC setup EC setup
Tθ falls % Tθ falls % Tθ falls %

S 0.28 ± 0.26 29 0.49 ± 0.24 0 0.57 ± 0.30 5
R 0.33 ± 0.20 20 0.47 ± 0.18 3.3 0.45 ± 0.21 6.6
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Figure 7.7: Hole avoidance performed by a physical swarm-bot. (a) View of the arena
taken with the overhead camera. The green line correspond to the trajectory of the
swarm-bot in a trial lasting 900 control cycles. (b) A physical swarm-bot while performing
hole avoidance. It is possible to notice how physical connections among the s-bots can
serve as support when a robot is suspended out of the arena, still allowing the whole
system to work. Notwithstanding the above difficult situation, the swarm-bot was able to
successfully avoid falling.

to communication failures were compensated for by the higher force transmitted from
one s-bot to the other due to the high friction of the treels system. Here, only one fall
was observed out of the 30 trials performed. On the contrary, the best controller of
the EC setup does not perform as well in reality as in simulation. S-bots are always
able to coordinate and to perform coordinated motion and hole avoidance. However,
we observe here that s-bots are slower in avoiding holes due mainly to some failures in
the communication system, which is fundamental to trigger and support the avoidance
action. For this reason, quantitatively the performance decreases. However, the behaviour
is altogether good, and the percentage of falls is in line with the results obtained in
simulation, as shown in Table 7.4.

7.6 Conclusions

In this chapter, we provided further evidence that artificial evolution is able to synthesise
collective behaviours based on self-organisation, which allows to achieve very good perfor-
mance in simulation and that can be smoothly ported on physical robots. We have also
shown that the use of direct communication among the s-bots is particularly beneficial in
the case of hole avoidance. It is worth noting that direct communication acts here as a
reinforcement of the direct interactions among the s-bots. In fact, s-bots react faster to
the detection of the hole when they receive a sound signal, without waiting to perceive a



118 CHAPTER 7

DI DC EC

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

setup

pe
rf

or
m

an
ce

simulation
reality

Figure 7.8: Comparison of the performance produced in the different settings by the
selected controllers tested both in simulation and reality. For an explanation of the plot,
see Figure 7.5.

traction strong enough to trigger the hole avoidance behaviour. However, traction is still
necessary for avoiding the hole and coordinating the motion of the swarm-bot as a whole.
Additionally, the statistical analysis of the obtained results showed that the completely
evolved setup outperforms the setup where direct communication is handcrafted. This
result is in our eyes particularly significant, because it shows how artificial evolution can
synthesise solutions that would be very hard to design with conventional approaches. In
fact, the most effective solutions discovered by evolution exploit some interesting mecha-
nisms for the inhibition of communication that would have been difficult to devise without
any a priori knowledge of the system’s dynamics.

The neural controllers synthesised by artificial evolution proved to be robust enough
to be tested on physical robots, notwithstanding the huge gap between the simulation
model used for the evolution and the actual s-bot. The neural controllers produced a
behaviour qualitatively equivalent to what was observed in simulation. The performance
of the controllers tested in the real world was somewhat affected by various factors, but
the difference with simulation was never higher than 20% on average. We can therefore
conclude that we succeeded in transferring an evolved self-organising behaviour from sim-
ulated to physical s-bots. To the best of our knowledge, no other comparably advanced
behaviour has been evolved in simulation and successfully tested on physical robots.
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Preface to Part III

Research in evolutionary robotics usually focuses on the study of scenarios in which the
robotic system performs a single behaviour in a somewhat controlled environment. The
relevance of these studies resides in the understanding of the mechanisms that underpin
certain behaviours, both at the individual and at the collective level. Whatever complexity
the evolved behaviours have, they are anyway studied in isolation, as if they were the only
feature of the robotic system. The experiments presented in Part II follow this approach, as
they study a particular behaviour (i.e., coordinated motion or hole avoidance) in isolation
with respect to other possible abilities the swarm-bot can display.

In this part of the thesis, we report on some important research directions that we
are currently developing in collective robotics. It is our opinion that future research in
evolutionary robotics should abandon the single behaviour approach in favour of the study
of self-sustaining “life-like” behaviours that can display multiple abilities while preserving
the functionality of the robotic system. For example, a swarm of robots should be able
to monitor the energy available to each individual and regulate the activities of the group
accordingly. Moreover, the system should be flexible and robust enough to be able to
cope with varying environmental conditions, being able to select an optimal behavioural
response as a function of the environment in which it is placed. In other words, the
mere execution of a task should be accompanied by the maintenance of an homeostatic
equilibrium between the robotic system and its environment, as much as living systems
do. We believe that only seeking for similar properties it is possible to obtain truly
adaptive/intelligent behaviours.

There are many interesting issues to be studied in this respect. First of all, it is
necessary to provide the system with multiple abilities integrated in a single controller.
Secondly, the system must be provided with action selection mechanisms, which anytime
choose the correct action to perform. Decision making mechanisms are also required in
order to trigger the action selection, in relation to the environmental contingencies that
have been experienced by the robotic system.8 Both action selection and decision making
can exploit memory structures and learning mechanisms, in order to capitalise on the
experience gathered in the past.

The above issues inform the research activities that we present in the final part of this

8It is worth noting that action selection and decision making mechanisms are closely related and in some
cases they cannot be differentiated. We distinguish among them because, in our view, action selection refers
always to the individual level, while decision making can be performed both at the individual and collective
level.
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thesis. In fact, the experiments presented here represent the first steps toward the study
of the evolution of more complex behaviours, with a particular focus to the integration of
multiple adaptive responses in a single neural controller, managed by some decision making
mechanism. In particular, Chapter 8 describes how collective decisions in a group of robots
can emerge as a result of a self-organising process, in which no single robot can be consid-
ered aware of the decision that has been taken. On the contrary, in Chapter 9, decision
making is studied at the individual level, and it is a result of a time-dependent process.
Here, robots are asked to discriminate between two different environmental situations,
which can be recognised only through the perception of the persistence of a particular
perceptual status for a sufficient time. Finally, the experiments presented in Chapter 10
represent a first attempt to integrate in a single neural controller a rich repertoire of in-
dividual and collective adaptive responses, along with the decision making mechanisms
required to switch between them. All the experiments presented in the following chap-
ters have been performed in simulation only, in some cases using models of the robots
that substantially differ from the physical s-bot described in Chapter 5. Moreover, the
results presented should be considered preliminary only. Nevertheless, we believe that the
obtained results bring important contributions to the state-of-the-art in the evolutionary
robotics domain, indicating innovative directions that are worth discussing in this thesis.



Chapter 8

Emergent Collective Decisions

through Self-Organisation

Decision making mechanisms are important features for an intelligent agent, as they make
it possible to display different behaviours as a function of the particular environmental
situation the agent perceives and in relation to its beliefs and its desires. Individually, a
decision is often the result of a process that takes into account information gathered from
the environment. For example, animals collect information about the quality of a food
source while foraging. Depending on this information, they base their decision to stay in
the same area or to search for a more profitable one. We will come back on these issues
in Chapter 9.

A more complex case is presented by decisions that have to be taken at a collective
level. Societies may entrust their decision making ability to a few leaders that care about
the whole community. This is the case of groups of mammals, often characterised by the
presence of a few individuals that lead the activities of the others. The situation is different
in insect societies, in which decisions are taken collectively. Many examples of collective
choice have been studied so far in social insects. These decisions are generally the result
of a self-organising process: the decision emerges from the numerous interactions among
the individuals forming the colony, and from the interactions between individuals and the
environment (Camazine et al., 2001). Therefore, complex decision making processes can
be observed at the collective level, notwithstanding the simple behavioural rules followed
by each individual insect. Examples of such processes can be found in honey bees that
collectively select the most profitable foraging site between two different food sources
(Seeley, 1995), or in ants that collectively choose the shortest path from the nest to a food
source (Beckers et al., 1993).

Collective decisions are an important issue whenever a swarm robotic system is taken
under consideration, as they allow to keep a low complexity of the individual behaviours,
while obtaining more complex behaviours at the group level. The experiments presented in
this chapter show one particular case, in which a swarm-bot able to perform hole avoidance
has to deal with a trough of varying width. We observe that, depending on the width of
the gap to be bridged, the s-bots collectively take a decision whether to pass over the gap
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or change direction of motion and avoid falling. This complex decision can be collectively
taken relying only on simple behavioural rules followed by each s-bot. These rules do not
contain any reference to the behaviour of passing over the trough. However, they result
in a self-organising process that allow decision making through an emergent estimation of
the size of the trough.

8.1 Avoid Holes or Bridge Them Over

As mentioned above, the experiments presented in this chapter are performed exploiting
a controller evolved for hole avoidance (see Trianni et al., 2004a). However, this controller
and the simulation model used for the s-bot slightly differ with respect to those presented
in Chapter 7.1 In particular, the four ground sensors are not positioned under the chassis
of the s-bot, but rather distributed around the turret, and integral with it (see Figure 8.1a).
Moreover, the rotational limit was not taken into account in these particular experimental
setup. Traction was the only mean for coordination and communication, similarly to the
DI setup described in Chapter 7. Therefore, no sound signalling was used in this case.
Exploiting this configuration, very efficient hole avoidance strategies were evolved, which
could exploit the advantageous positioning of the ground sensors around the turret of the
s-bot (for more details, see Trianni et al., 2004a).

We chose the best controller among those obtained from the evolutionary experiments
conducted for hole avoidance. This controller, similarly to the one described in Chapter 7
for the DI setup, bases its functioning on the perception of holes through the ground
sensors, and on the traction forces applied by one s-bot to the others. Intuitively, if the
perception of holes is masked to the s-bots—for example, setting to 0 the activation of
the ground sensors—then the swarm-bot will sooner or later fall into a hole. However,
whenever the hole is small enough to be bridged by a swarm-bot, one could observe the s-
bots passing on the other side, exploiting the physical connections that support them when
they are suspended over the hole. Therefore, if the swarm-bot were able of estimating the
size of the hole, it could decide whether to change direction of motion and avoid falling,
or to try to pass on the other side of the hole.

In this chapter, we show how such an estimation of the size of a hole can be collectively
performed—and a decision collectively taken—by the s-bots forming the swarm-bot. We
designed a set of experiments in order to test the ability of a swarm-bot to bridge a gap
of varying size. This test is intended to demonstrate how the simple controllers developed
for hole avoidance generalise to a collective decision making mechanism for discriminating
between situations that can be faced by a swarm-bot from situations that could be too
hazardous even for a large connected structure.

1This difference is justified by the fact that these experiments have been conducted before the sensory-
motor layout of the s-bots was fixed. At the time these experiments were performed, we explored a layout
that eventually could not be implemented in the real s-bots. This made it necessary to explicitly evolve
hole avoidance behaviour for the transfer to the physical s-bots, as mentioned in Chapter 7.
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Figure 8.1: (a) The simulation model used for the s-bot. Notice the ground sensors, indi-
cated as lines starting from the turret and pointing to the ground. (b) The experimental
setup for measuring the swarm-bot ’s ability in passing over a trough. A swarm-bot com-
posed of 16 s-bots, represented as grey circles, has to deal with a trough, represented as
a dark rectangle. The initial orientation of the square structure is randomly chosen, and
it is indicated by the vector A and the angle α̂. The s-bots start with the same random
orientation of the chassis, indicated within each circle by an arrow parallel to the vector
B and the angle β̂. The swarm-bot is initially positioned at a distance De from the first
edge of the trough.

8.1.1 Experimental Setup

A swarm-bot is placed in an arena divided by a trough (see Figure 8.1b). We test swarm-
bots of different size—4, 9, and 16 s-bots connected in a square formation—that have to
deal with a trough of width varying from 2 to 30 cm. In each trial, the square structure is
rotated choosing every time a new random orientation, indicated by the vector A and the
corresponding angle α̂ in Figure 8.1b. Independently of the direction of the swarm-bot ’s
structure, the s-bots are initialised with their chassis aligned in a same random direction,
indicated by the vector B and the corresponding angle β̂ in Figure 8.1. The angles α̂ and
β̂ vary in the range [−45, 45] degrees with respect to the direction perpendicular to the
trough. As a consequence of the initial alignment of the chassis, no coordination phase is
required at the beginning of the trial, but the swarm-bot can directly move in a coherent
way toward the trough. These settings let us focus on the ability to pass over the trough
rather than on the coordination abilities of the swarm-bot.

S-bots are controlled by the same neural network evolved for hole avoidance, described
by Trianni et al. (2004a). Therefore, the controller takes as input the traction force
perceived by the s-bot and the readings coming from the four ground sensors. Recall that
ground sensors are simple proximity sensors pointing to the ground. These sensors can be
used also to estimate the depth of a hole or the width of a nearby trough, as they have
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an inclination of 30 degrees with respect to a horizontal plane (see Figure 8.1a). In fact,
if the trough is not too wide, an s-bot near the border would perceive the opposite edge,
having different perceptions with varying width. However, this applies only for small gaps,
having a width of 2-4 cm. In all the other cases, the opposite edge is not perceived and
therefore the size of the trough cannot be estimated by a single s-bot.

We measure the ability of the swarm-bot in passing over a trough computing the
distance covered by the group along the x axis, which is perpendicular to the trough (see
Figure 8.1b). In particular, the measure F is given by the maximum distance covered in
the direction of the trough during the trial, given by the following equation:

F =
maxt∈[0,T ] dx(t)

DM (T )
, dx(t) = cx(t) − cx(0), (8.1)

where cx(t) is the position of the swarm-bot centre of mass on the x-axis at time t, T is
the length of the trial and DM (t) is the maximum distance the swarm-bot can cover in
t simulation cycles. If the swarm-bot is not able to pass over the trough, the measure F
takes values around De/DM (T ), where De is the distance of the first edge of the trough
from the swarm-bot ’s starting position (see Figure 8.1b). In fact, the trough is always
reached due to the initialisation of the swarm-bot, and therefore the maximum distance
dx(t) is obtained in the vicinity of the trough. Higher values are obtained whenever the
swarm-bot is able to pass over the trough.

Note that the measure F has been explicitly defined to evaluate the behaviour of pass-
ing over a trough. Consequently, it assigns a high score to those situations in which the gap
is passed, while an avoidance action corresponds to a low value. This low value should not
be considered as a failure, but it should be rather used to distinguish in which conditions
the swarm-bot performs an avoidance or a passing action, as we show in Sections 8.1.2
and 8.2.

8.1.2 Results

A qualitative analysis of the behaviour produced by the controllers evolved for hole avoid-
ance when used in an arena presenting small holes reveals that: (i) if the width of the
gap is small enough (2-4 cm), an individual s-bot does not perceive it as a hazard—the
activation of the ground sensors is rather low—and therefore the swarm-bot can pass over
the trough. Here, physical connections provide the support for the suspended s-bots. (ii)
If the width of the gap is bigger, the individual s-bot perceives the trough via the ground
sensors and reacts consequently. However, the s-bot may be pushed out of the borders by
the actions of the remaining s-bots in the formation. In this case, it may reach the opposite
side of the trough, bridging the gap and letting also other s-bots pass (see Figure 8.2a).
(iii) If the gap cannot be bridged by the swarm-bot, a normal hole avoidance behaviour is
performed and the swarm-bot will move away from the hole (see Figure 8.2b).

Using the performance metric described in equation (8.1), we performed a quantitative
analysis to evaluate the ability of a swarm-bot in passing over a trough. We performed
100 evaluation trials per experimental setup, systematically varying the swarm-bot size
and the trough width—i.e., 100 trials for each size/width pair. Each trial lasts T = 300
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simulation cycles, that correspond to 30 seconds of real time. The results of this analysis
are plotted in Figure 8.3. The plot shows, for each trough width, the performance of the
three studied swarm-bots. The light grey area that spans over the various trough widths
gives an indication of the position of the trough with respect to the performance metric.
The bottom edge of the grey area corresponds to the performance of De/DM (T ) achieved
when the swarm-bot reaches the first edge of the trough. Whenever the gap is bridged and
the swarm-bot finds itself on the other side of the arena, the performance has higher values
than the grey area. If the swarm-bot is not able to bridge the gap, than the performance
obtained is within the grey area or lower.

From the results shown in Figure 8.3 it is possible to notice how the performance
generally decreases as the width of the gap increases: a good performance can be observed
for small gaps, followed by a transition that leads to poor performance for large troughs.
Looking at the performance of the 4-individual swarm-bot, we notice that for gaps of
2-6 cm the performance is always higher than the grey area, indicating that the swarm-
bot systematically passes over the trough. An abrupt change in the performance can be
observed for a trough 8-12 cm wide. For these sizes, a transition can be observed, in

(a) (b)

Figure 8.2: Trajectories drawn by a swarm-bot composed of 9 s-bots in a square formation.
(a) The swarm-bot is able to pass over a 10 cm wide trough. (b) The swarm-bot avoids a
20 cm wide trough, which could be too large to be bridged.
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Figure 8.3: Performance of a swarm-bot passing over a trough. Performance is defined
according to equation (8.1). Each box-and-whiskers plot represents 100 evaluation trials.
Boxes covers the interquartile range, while whiskers extend to the last data-point within
1.5 times the interquartile range. The small circles are outliers. The dark grey area
represents the performance for those distances occupied by the trough.

which the swarm-bot stops passing over the trough systematically and sometimes avoids
it, depending on its orientation. For the 12 cm trough the swarm-bot is successful only
sporadically, while for bigger sizes—14 cm or more—the avoidance behaviour is always
performed. The situation is different for bigger structures. In fact, the bigger the swarm-
bot, the larger the gap that can be passed. For a 9-individuals swarm-bot, the performance
drops for gaps 10-18 cm wide. For smaller sizes, the swarm-bot is always able to bridge
the gap. For bigger sizes, the swarm-bot always avoid it. Concerning the 16 individuals
swarm-bot, we can notice that the transition starts with a width of 12 cm. However, in
this case the performance drop is more graceful, as the structure is large enough to bridge
troughs up to 30 cm. In fact, it is possible to notice that there are trials in which the
performance is above the grey area for all test conditions.

It should be noted that in some cases even if the gap is bridged, the swarm-bot loses
the necessary coordination to pass on the other side. In fact, once the gap is encountered
and bridged by some of the s-bots, a new coordination phase may take place which leads
to the choice of a new direction of motion, that could let the swarm-bot retrace its steps.
Furthermore, the coordination phase over the trough is time-consuming, and the swarm-
bot may not be able to completely pass over the trough in the limited available time.
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8.2 Emergent Collective Decisions

The behaviour presented above is very conservative, as the avoidance action is generally
preferred to passing over the trough. This means that a swarm-bot does not consistently
pass over a trough that is narrow enough to be bridged, but it preferably performs an
avoidance action. This is not surprising because the behaviour was evolved explicitly for
the hole avoidance task. Therefore, a trough can be estimated too large to be bridged even
when the swarm-bot is big enough to pass over it. However, looking at the performance
shown in Figure 8.3, we can notice that the swarm-bots perform reasonably well with
respect to their physical constraints. In fact, given the size of a 4-individual swarm-bot,
the maximum width of a trough that can be bridged is about 14 cm. Our results show that
from this width on, the swarm-bot always performs an avoidance action, while the swarm-
bot is able to pass over narrower troughs, even if not systematically. A similar situation
can be observed for the case of 9 and 16 s-bots, which are respectively characterised by
the maximum width of 22 and 30 cm.

Whether a trough is avoided or bridged depends on multiple factors, among which
the orientation of the swarm-bot and its direction of motion when it first approaches the
trough. In fact, the collective behaviour of passing over a trough relies on a delicate
balance between the forces exerted by the s-bots that touch the ground and the missing
influence of those s-bots that are suspended over the gap. According to the rules evolved
for hole avoidance, an s-bot that perceives a hole reacts trying to change its direction of
motion and trying to influence the behaviour of the whole group by exerting a traction
force. However, the bigger the size of the swarm-bot, the bigger the inertia of the physical
structure. Once the swarm-bot reaches an edge, its inertia will cause some s-bots to be
pushed out, over the gap. In fact, few s-bots have a small effect on the overall behaviour
of the group. The suspended s-bots cannot influence the behaviour of the group, so that
the dynamics of the swarm-bot are governed by fewer s-bots. When a sufficient number
of s-bots is suspended out of the arena, the forces exerted by those s-bots that reach the
edge can be perceived by the whole group, and they will trigger a change in the direction
of motion of the swarm-bot in order to avoid falling. If some of the suspended s-bots
reach the other side of the trough, they start again to have an influence on the rest of
the group. First, they align with the current direction of motion, and afterwards they
contribute to the gap passing behaviour pulling the whole structure on the other side of
the gap. This emergent behaviour can be considered self-organised, as it depends on the
interactions among individuals and on clear feedback loops: the conformist tendency of
the s-bots in following the average direction of the group constitutes a positive feedback,
while the tendency to avoid a hole of the individual s-bots and the missing influence of
the suspended s-bots constitute the negative feedback.

In conclusion, the above behaviour of passing over a trough relies upon an emergent
decision making mechanism that allows a swarm-bot to discriminate between those troughs
that are small enough to be safely bridged and those that are not. We observed that the
width of the troughs that can be traversed varies, depending on the size of the swarm-bot :
the bigger the size, the wider the trough. Therefore, it is possible to conclude that through
a self-organising process, the swarm-bot is able to collectively estimate the width of the
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trough, and consequently it is able to take the correct decision about the way to move.

8.3 Conclusions

The experiments presented in this chapter show an interesting situation in which a complex
decision—such as passing over a trough or avoiding it—can be collectively taken relying
only on simple behavioural rules, which do not contain any reference to the decision
making mechanism. However, these rules result in a self-organising process that allow an
estimation of the size of the trough and therefore an emergent decision making process.

In our view, similar self-organised behaviours should be exploited for other problems
requiring a collective decision making process. The decision making mechanism presented
in this chapter was not explicitly sought for. It was rather an emergent result of a self-
organising system evolved for hole avoidance. However, this unexpected result suggests
that evolution can be exploited to shape similar mechanisms, which rely on the dynamical
interactions among the system components to define a coherent system-wide behaviour.
As discussed in Chapter 4, artificial evolution is particularly tailored for the definition
of the individual rules that lead to a self-organising process, and therefore it should be
considered as a valuable option to obtain emergent decision making mechanisms.

In the following chapter, we describe further experiments for the evolution of decision
making mechanisms, which are somewhat complementary to what studied in this chapter.
Here, we showed how the spatial and dynamical relationships among the robots and the
environment result in a collective decision. In the following chapter, instead, we study
decision making performed by a single individual and based on temporal cues, i.e., the
persistence of a perceptual cue for a certain amount of time. We believe that both spa-
tial and temporal relationships are of fundamental importance for the design of efficient
decision making mechanisms.



Chapter 9

Decision-Making Mechanisms

through the Perception of Time

A general problem common to biology and robotics concerns the understanding of the
mechanisms necessary to decide when it is better to pursue a particular action in a certain
location and at which moment in time it is better to leave for pursuing a similar or a differ-
ent activity in a similar or different location. This problem is common to many activities
that a natural or artificial agent is required to carry out. Autonomous agents may be asked
to change their behaviour in response to the information gained through repeated interac-
tions with their environment. For example, after various unsuccessful attempts to retrieve
a heavy prey, an ant may decide to give up and change its behaviour by either cutting
the prey or recruiting some nest-mates for collective transport (Detrain and Deneubourg,
1997). This example suggests that autonomous agents require adaptive mechanisms to
decide whether it is better to pursue solitary actions or to initiate cooperative strategies.

In this chapter, we describe some experiments that follow the above described direc-
tion. We study the evolution of decision-making mechanisms for an autonomous robot
which integrates over time its perceptual experiences in order to initiate alternative ac-
tions. In other words, the behaviour of the agent should change as a consequence of its
repeated interaction with particular environmental circumstances. The experiment per-
formed here, described in detail in Section 9.1, requires an autonomous agent to possess
both navigational skills and decision-making mechanisms. That is, the agent should prove
capable of navigating in a boundless arena in order to approach a light bulb positioned at
a certain distance from its starting position. Moreover, it should prove capable of discrim-
inating between two types of environment: one in which the light can be actually reached,
and another in which the light is surrounded by a “barrier” which prevents the agent from
proceeding further toward its target. Due to the nature of the experimental setup, the
agent can find out in which type of environment it is situated only if it proves capable
of (i) moving in a coordinated fashion in order to bring forth the perceptual experience
required to discriminate between the two environments; (ii) integrating over time its per-
ceptual experience in order to initiate an alternative action if situated in an environment
in which the light cannot be reached. The results of our simulations show that a single
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Continuous Time Recurrent Neural Network—CTRNN, described in Section 9.3 and also
in (Beer, 1995)—shaped by evolution makes an autonomous agent capable of perceiving
the time flow through the perceptual information determined by its actions.

The rest of the chapter is organised as follows. Section 9.1 details the nature of the
discrimination task. Section 9.2 highlights similarities and differences between our ap-
proach and some other works in the literature, which also study decision-making problems
based on the evolution of “low-level” time-dependent structures. Section 9.3 introduces
the experimental setup used for the experiments described in Section 9.4. Conclusions are
drawn in Section 9.6.

9.1 Description of the task

The task we study is depicted in Figure 9.1. At the beginning of each trial, a robot
is positioned within a boundless arena, at about 100 cm west of a light bulb, with a
randomly determined orientation chosen between North-East and South-East. The light
bulb is always turned on during the trial. The robot perceives the ambient light intensity
through two sensors, positioned 45 degrees left and 45 degrees right with respect to its
heading. The colour of the arena floor is white except for a circular band, centred around
the lamp, within which the floor is in shades of grey. The circular band covers an area
between 40 cm and 60 cm from the light: the floor is black at exactly 40 cm from the
lamp, and the grey level decreases linearly with increasing distance. The robot perceives
the colour of the floor through its floor sensor, positioned under its chassis, which outputs
a value scaled between 0—when the robot is positioned over white floor—and 1—when it
is over black floor. The robot can freely move within the band, but it is not allowed to
cross the black edge. The latter can be imagined as an obstacle or a trough, that prevents
the robot from further approaching the light. Whenever the robot crosses the black edge,
the trial is unsuccessfully terminated. The area in shades of grey is meant to work as a
warning signal which indicates to the robot how close it is to the danger—i.e., the black
edge.

There are two types of environment. In the first type—referred to as Env. A—the
band presents a discontinuity (see Figure 9.1a). This discontinuity, referred to as the way
in zone, is a sector of the band in which the floor is white. In the second type—referred to
as Env. B—the band completely surrounds the light (see Figure 9.1b). The way in zone
represents the path along which the robot is allowed to safely reach the light in Env. A. A
successful robot should prove capable of performing phototaxis as well as looking for the
way in zone to avoid to cross the black edge of the band. Such a robot should always reach
the light in Env. A. On the contrary, in Env. B the robot should signal the absence of the
way in zone by emitting a tone. A decision must be taken by the robot whether to signal
or not, depending on the experience gathered while moving within the environment. This
decision can be taken only exploiting a temporal cue: the Env. B can be “recognised”
by the persistence of a particular perceptual state for the amount of time necessary to
discover that there is no way in zone. The flow of time, in its turn, can be recognised
through the integration of the perceptual information available to the robot. This means
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Figure 9.1: Depiction of the task. (a) Env. A is characterised by the way in zone. The
target area, centred on the light, is indicated by the dashed circle. (b) In Env. B there
is no way in zone and the target area cannot be reached. The continuous lines are an
example of a good navigational strategy for one robot.

that the movements of the robot should bring forth the persistence of a certain perceptual
condition, and the discrimination can be made only if the latter is maintained long enough.

In view of what we have just said, we claim that the most challenging part of our
empirical work resides in (i) synthesising, through an evolutionary process, a robot’s con-
troller which moves the robot coordinately so that it can integrate over time the flow of
perception determined by its actions; (ii) evolving within a single—i.e., not modularised—
controller the mechanisms required for sensory-motor coordination and discrimination
through sound signalling. As illustrated in the next section, the results of previous similar
works in the evolutionary robotics literature seem to suggest that CTRNNs provide all the
“building blocks” necessary for evolution to generate the mechanisms required by an au-
tonomous agent to perform this task: that is, mechanisms for sensory-motor coordination
and time-dependent structures for decision making (see Section 9.2).

9.2 Related work

Several studies consider time-dependent neural networks evolved for taking decisions based
on past experiences (Ziemke and Thieme, 2002; Tuci et al., 2002; Nolfi, 2002; Blynel
and Floreano, 2003). The evolution of time-dependent structures and decision-making
mechanisms are extensively studied on the T-maze problem (see Ziemke and Thieme, 2002;
Blynel and Floreano, 2003). Generally speaking, this task requires a robot to find its way
to a goal location, placed at the bottom of any of the two arms of a T-maze. When at the
T-junction, the robot must decide whether to turn left or right. The correct decision can
be made if the agent is capable of exploiting perceptual cues previously available. Ziemke
and Thieme (2002) study a mechanism for neuromodulation of sensory-motor weights,
which provides the required plasticity to exploit the relationship between the location of
light signals placed roughly at the middle of the first corridor, and the turn to make at
the junction. Similarly, Blynel and Floreano (2003) allow the agent to experience the
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environment in a first trial, in which the success or failure play the role of a reinforcement
signal, in order to associate the position of the goal with respect to the T-junction. The
use of a reinforcement signal acquired in a previous trial was first introduced by Tuci et al.
(2002). They evolved CTRNNs to discover the spatial relationship between the position of
a landmark and the position of a goal. In this study, the spatial relationship between the
goal and the landmark can be learned by ‘remembering’ from previous trials the relative
position of the landmark with respect to the goal.

The difference between these and our study resides in the cue that allows to take
a decision. In the above examples, the discrimination is based on the recognition of
distinctive environmental contingencies and the maintenance of these experiences through
time, as a form of short term memory. On the contrary, in our study, the cue which
allows the agent to make the discrimination has to deal with the persistence over time
of a perceptual state common to both the elements to be distinguished—i.e., Env. A and
Env. B—rather than with the nature of the cue itself employed to make the discrimination.
That is, in our case, due to the nature of the agent sensory apparatus, one environment
can be distinguished from the other solely because a perceptual state, common to both
environments, might, in one case, be perceived by the agent for a time longer than what
the agent might experience by acting in the other type of environment.

Similar experiments to the one described here are performed by Nolfi (2002) and
by De Croon et al. (2004). These authors investigate a discrimination task in which a
robot, while navigating through a maze, must recognise whether it is located in one room
or in another. In spite of the differences in the experimental set up, these works and the
one described here focus on similar issues. They all exploit evolution to design controllers
for autonomous robots required to make decisions based on time-dependent structures.

9.3 Experimental Setup

Fully connected, eight neuron CTRNNs are used (see Figure 9.2). All neurons are governed
by the following state equation:

dpi

dt
=

1

τi



−pi +

8
∑

j=1

wjiσ(pj + βj) + gIi



 , σ(z) =
1

1 + e−z
(9.1)

where, using terms derived from an analogy with real neurons, pi represents the cell
potential, τi the decay constant, βj the bias term, σ(pj + βj) the firing rate, wji the
strength of the synaptic connection from neuron j th to neuron ith, Ii the intensity of the
sensory perturbation on sensory neuron i and g the gain factor. The first three neurons
receive input Ii from the robot sensors. These input neurons receive a real value in the
range [0,1], which is a simple linear scaling of the reading taken from its associated sensor.1

The other neurons do not receive any input from the robot’s sensors. Only neurons N6, N7

and N8 control the robot’s actuators. The cell potential pi of the 6th neuron, mapped into

1Neuron N1 takes input from the ambient light sensor L1, N2 from the ambient light sensor L2, N3

from the floor sensor F .
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from inputs to outputs

N1

N2

N3

N8

N7

Figure 9.2: A schema of the Continuous Time Recurrent Neural Network (CTRNN) used
in the experiments presented in this chapter. The network is composed of eight neurons in
total. The first three neurons—from N1 to N3—receive an input from the robot’s sensors.
The last three neurons—from N6 to N8—govern the robot’s actuator. Neurons N4 and
N5 are hidden.

[0,1] by the sigmoid function σ and then set to 1 if bigger than 0.5 or 0 otherwise, is used
by the robot to control the sound signalling system. The cell potentials pi of the 7th and
the 8th neurons, mapped into [0,1] by the sigmoid function σ and then linearly scaled into
[-10,10], set the robot motors output. The strength of synaptic connections wji, the decay
constants τi, the bias terms βj , and the gain factor g are genetically encoded parameters.
Cell potentials are set to 0 any time the network is initialised or reset, and circuits are
integrated using the forward Euler method with an integration step-size of 0.2 seconds.

9.3.1 The Evolutionary Algorithm

A simple generational genetic algorithm (GA) is employed to set the parameters of the
networks (Goldberg, 1989). The population contains 100 genotypes. Generations follow-
ing the first one are produced by a combination of selection with elitism, recombination
and mutation. For each new generation, the three highest scoring individuals (‘the elite’)
from the previous generation are retained unchanged. The remainder of the new popu-
lation is generated by fitness-proportional selection from the 70 best individuals of the
old population. Each genotype is a vector comprising 81 real values (64 connections, 8
decay constants, 8 bias terms, and a gain factor). Initially, a random population of vectors
is generated by initialising each component of each genotype to values chosen uniformly
random from the range [0,1]. New genotypes, except ‘the elite’, are produced by applying
recombination with a probability of 0.3 and mutation. Mutation entails that a random
Gaussian offset is applied to each real-valued vector component encoded in the genotype,
with a probability of 0.15. The mean of the Gaussian is 0, and its standard deviation is
0.1. During evolution, all vector component values are constrained to remain within the
range [0,1]. Genotype parameters are linearly mapped to produce CTRNN parameters
with the following ranges: biases βj ∈ [-2,2], weights wji ∈ [-6,6] and gain factor g ∈
[1,12]. The genes which codify the decay constants are firstly linearly mapped into the
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range [−0.7, 1.7] and then exponentially mapped into τi ∈ [10−0.7,101.7].

9.3.2 The Evaluation Function

During evolution, each genotype is coded into a robot controller, and is evaluated 16 times,
12 in Env. A and 4 in Env. B. At the beginning of each trial, the neural network is reset—
i.e., the activation value of each neuron is set to zero. Each trial differs from the others
in the initialisation of the random number generator, which influences the robot starting
position and orientation, the position of the way in zone, and the noise added to motors
and sensors. For each trial in Env. A, the position of the way in zone is varied to facilitate
the evolution of robust navigational strategies. Its amplitude is fixed to π/2. Within a
trial, the robot life-span is 80 seconds (400 simulation cycles). A trial is terminated earlier
either when the robot crosses the black edge of the band or when it reaches an Euclidean
distance from the light higher than 120 cm. In each trial θ, the robot is rewarded by an
evaluation function Fθ which corresponds to the sum of the following two components:

Motion component This component rewards movements toward the light bulb, and it
is computed as:

Fm =
df − dn

df

, (9.2)

where df and dn represent respectively the furthest and the nearest Euclidean dis-
tance between the robot and the light bulb. In Env. A, dn is set to 0 if the robot is
less than 7.5 cm away from the light bulb. In Env. B, dn is set to 0 as soon as the
robot reaches the band in shades of grey.

Signal component This component rewards agents that (i) do not signal whenever they
are located in Env. A; (ii) emit a sound signal whenever they are located in Env. B.
The component is computed as:

Fs =

{

1 if proper signalling,
0 otherwise.

(9.3)

An important feature of this evaluation function is that it simply rewards agents that
make a proper use of their sound signalling system, without directly interfering with the
nature of the discrimination strategies.

9.4 Evolving Time-Dependent Decision Making

Ten replication of the experiments were run, which were all successful in producing the
desired behaviour. The 100% success rate can be accounted for by recalling that the
fitness function, not rewarding any specific action except phototaxis and the signalling
behaviour, has positively influenced the development of successful behaviours. In fact,
evolution is left free to search for whatever strategy could be effective for the achievement
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of the final goal.2 Notice also that in the fitness evaluation, the trials performed in Env. A
are three times more frequent than those performed in Env. B. In such a situation, there is
a strong selective pressure towards the evolution of a good sensory-motor coordination. In
fact, an agent that never signals is three times more successful than an agent that always
emits a sound signal. Thus, evolution might proceed by firstly rewarding agents capable
of sensory-motor coordination but not capable of sound signalling, and subsequently by
rewarding those agents that combine sensory-motor coordination with a proper use of
the sound signal. We observed that this is a good strategy in order to obtain a good
discrimination mechanism.3

A qualitative analysis of the evolved controllers confirms that a number of different
behavioural strategies have been obtained. However, some constant characteristics can be
recognised. At the beginning of a trial, all robots perform phototaxis until they reach the
circular band. When the grey level on the floor exceeds a certain threshold, the robots start
circuiting around the light bulb with an approximately constant angular speed. Whenever
the robots are placed in Env. A and the way in zone is detected, phototaxis starts again
and the light bulb is reached. On the contrary, in Env. B, after travelling on the band for
a given time without detecting the way in zone, the robots initiate a signalling behaviour.

An example of this behaviour is shown in Figures 9.3 and 9.4: in both Env. A and
Env. B, it is possible to notice that, when the circular band is detected—see continuous line
F at about simulation cycle 130—the robot starts moving on the circular band maintaining
a constant distance from the light bulb. This behaviour is indicated by the constant
readings of the light sensors L1 and L2 and of the floor sensors F . In Env. A, the way in
zone is encountered shortly before simulation cycle 300, as indicated by the sudden drop
in the floor sensor F . At this point, the robot performs phototaxis again, rapidly reaching
the light bulb, as indicated by the high activation of the light sensors L1 and L2 at the
end of the simulation.

The constant angular speed on the circular band is the basic mechanism exploited for
discrimination between Env. A and Env. B by successfully evolved robots. In fact, this
constant motion allows the robots to experience a constant perceptual state (the grey
level of the floor and the light intensity that impinges on their sensors), which roughly
corresponds to the constant flow of time. In Figures 9.3 and 9.4, it is possible to notice
that the persistence of a particular perceptual state, corresponding to the robot circuit-
ing around the light and over the band, makes the output S, which controls the sound,
increase linearly. This perceptual state triggers the sound signalling through an efficient
integration mechanism which is based on the ‘feeling’ of being travelling long enough over
the circular band without having encountered the way in zone. In fact, if the way in
zone is encountered, as in Figure 9.3, the activation of the neuron S decreases below the
threshold level 0.5. This response makes the robot capable of avoiding to initiate the
signalling behaviour when it is not required. The situation is different in Env. B: the
absence of the way in zone let the output of neuron S reach and overcome the threshold

2The same experiments performed using a more constraining fitness function yield a success rate of 50%
(data not shown).

3Different proportions of trials performed in Env. A and Env. B have been tested, resulting in a slightly
lower performance (for more details, see Tuci, Trianni, and Dorigo, 2004).
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level 0.5—see Figure 9.4, simulation cycle 300. This response makes the robot capable of
correctly signalling that it is located in Env. B.

In summary, the behavioural analysis revealed that the evolved controllers produce the
required sensory-motor coordination that brings forth a perceptual state that is integrated
over time and exploited for discrimination through sound signalling. In order to assess
and compare the performance of controllers evolved in different replications, we performed
further analyses, by re-evaluating each of the best evolved final generation individuals for
100 trials in each type of environment (i.e., Env. A and Env. B). In each trial performed
in Env. A, we look at the robot capability to reach the light bulb (Succ.), without making
any error. Errors can be of two types: E1 refers to the emission of a sound signal, while
E2 refers to crossing the black edge of the band. Similarly, in Env. B, we look at the
performance of the robot on properly signalling the absence of the way in zone (Succ.),
without committing any error. Also in this case, two error types are possible: E3 refers
to the lack of sound signalling, and E4 refers to the robot crossing the black edge of the
band. Furthermore, in Env. B we also compute the offset between the entrance position
of the robot in the circular band and the position in which the robot starts to signal. This
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Figure 9.3: Behavioural analysis for Env. A. The sensors activity and the corresponding
motor outputs are plotted for 400 simulation cycles. L1 and L2 refer to the light sensors,
while F refers to the floor sensor. M1 and M2 correspond to the motors of the two wheels,
and S refers to the sound signalling. When S is bigger than 0.5, the robot emits a signal
(see Section 9.3).
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Figure 9.4: Behavioural analysis for Env. B. See the caption of Figure 9.3 for more details.

measure, called offset ∆, is computed as follows:

∆ = |α(te, ts)| − 2π, (9.4)

α(t1, t2) =

t2−1
∑

t=t1

ÂOB, A = Xt,B = Xt+1 (9.5)

where O corresponds to the position of the light, and α is the angular displacement of the
robot around the light from the starting position—the position at time te when the robot
enters into the circular band—to the signalling position—the position at time ts when the
robot starts signalling. α is computed summing up all the convex angles ÂOB comprised
between two consecutive position of the robot Xt, taking into account that an angle is
negative if the robot moves clockwise. This measure accounts for the capability of a robot
for searching the way in zone. Offset ∆ takes value 0 if the robot signals exactly after
covering a complete loop of the circular band. Otherwise, it gives the angular displacement
from this position. Negative values of the offset ∆ suggest that the robot signals before
having performed a complete loop, while positive values correspond to the situation in
which the robot has performed more than one loop around the light, waiting too long to
signal.

Table 9.1 refers to the post-evaluation results. Here, all the evolved controllers perform
well, having a very high success rate in both Env. A and Env. B. It is worth noting that
there are only few cases in which the robot makes signalling errors (E1 and E3), while
some replications of the experiments have a higher error rate in crossing the black edge
of the circular band. This is due mainly to a tendency of the robots to approach the
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Table 9.1: Post-evaluation results. Performance of the best evolved controllers of each
replication. The percentage of success (Succ. %) and the percentage of errors (E1, and E2
in Env. A, and E3, and E4 in Env. B, ) over 100 trials are shown for both Env. A and
Env. B. Additionally, the average offset ∆ and its standard deviation (degrees) are shown
for Env. B.

run Env. A Env. B
Succ. E1 E2 Succ. E3 E4 Offset ∆
(%) (%) (%) (%) (%) (%) Avg. Std

n. 1 100 0 0 100 0 0 -38.5 8.79
n. 2 100 0 0 99 1 0 -60.05 30.47
n. 3 100 0 0 100 0 0 -57.47 12.6
n. 4 100 0 0 99 0 1 -17.94 24.06
n. 5 91 1 8 90 0 10 -67.21 25.78
n. 6 100 0 0 98 2 0 -28.83 38.38
n. 7 98 0 0 100 0 0 -47.16 25.21
n. 8 97 0 3 100 0 0 -65.49 16.04
n. 9 96 0 4 91 0 9 63.98 22.91
n. 10 98 0 2 96 4 0 -57.47 27.5

black edge while circuiting on the band. Concerning the offset ∆, most evolved controllers
have a negative value, in general lower than 65 degrees, meaning that all robots signal far
before having completed one loop of the circular band. However, this offset is enough to
discriminate between Env. A and Env. B, as the way in zone is 90 degrees wide. Only in
one case, in replication 9, the robot is somewhat “prudent”: that is, it signals only after
having completed a loop around the light bulb, as indicated by the positive value of the
offset ∆.

It is worth noting that the selective pressure given by the higher percentage of Env. A
encountered by the robot during evolution yields a robust behaviour. The sound signalling
behaviour appears only after having acquired the sensory-motor coordination required for
the integration over time.4 Therefore, once a good sensory-motor coordination is achieved,
the association between the sound signalling behaviour and the absence of the way in zone
can be easily made.

9.5 Further Insights in Time-Dependent Decision Making

The experiment described above demonstrates how it is possible to evolve efficient decision
making mechanism that are based on time-dependent mechanisms. The most important
achievement, in our opinion, resides in the ability to exploit sensory-motor coordination
to “feel” the flow of time. In fact, the integration over time can be successful provided
that the robot displays a good sensory-motor coordination, which results in a constant

4A phylogenetic analysis revealed that the sound signalling behaviour is the last capability to appear
among the repertoire of behaviours shown by the evolved robots (data not shown).
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perceptual flow through time. Integration over time is the “low-level” mechanism that
allows decision making, and it can be recognised in the linear increase of the activation
level of the neuron that controls the sound signal.

We further investigated the potential of time-dependent structures for decision making
by repeating the above experiment in environments in which the distance of the circular
band from the light bulb varies across different trials. This environmental variation ex-
perienced by the robots represents a significant challenge for the evolution of an efficient
decision making mechanism. By varying the light-band distance, while maintaining fixed
the width of the circular band, the spatio-temporal structures that the robot must exploit
to distinguish between Env. A and Env. B vary as well. For example, for a robot that
moves at a certain speed and with a certain trajectory over the band, if the light-band
distance is 20 cm, the time required to perform a loop around the light will be definitely
shorter than the time required in an environment in which the light-band distance is at its
maximum of 65 cm. In order to be capable of successfully distinguishing between Env. A
and Env. B, this robot must be able to adapt to the characteristics of the environment.

The obtained results—described in detail in Tuci, Trianni, and Dorigo (2004)—
represent a very important achievement, because they show that, by simply working on
the nature of the fitness function, it is possible to bring forth discrimination mechanisms
that can adapt to environmental conditions that significantly vary. Moreover, the evolved
solution are robust enough to deal with a range of light-band distances that is much
higher than what used during evolution. Notice that the unexpected circumstances upon
which our evolved robots have been evaluated—that is, the light-band distance—concern
the spatio-temporal structures that the robot employs for discrimination. Therefore, by
varying these important environmental structures, we might have induced a particularly
disruptive effect on the robot performance. On the contrary, the robots managed to suc-
cessfully carry out their task, showing an amazingly good performance.

The decision making mechanism evolved in the experiments so far described makes
it possible to perfectly discriminate between the two different environmental conditions.
However, apart from signalling, the robot does not perform any alternative action once the
discrimination has been performed. It is indeed common to observe that, while signalling,
the robot continues to move along the circular band. The adaptive significance of the
decision making mechanism is therefore somewhat reduced. For this reason, we conducted
other experiments in which the robot has to perform anti-phototaxis as alternative action
once the discrimination has been made. More precisely, when placed in Env. A the robot
should reach the light bulb passing through the way in zone. On the contrary, when
placed in Env. B the robot should leave the circular band, as if it is going in search
of another light source. Performing anti-phototaxis as alternative action is particularly
complex, because this action is the exact opposite of what should be performed in Env. A.
Therefore, not only the robot should prove capable of discriminating between Env. A and
Env. B though integration over time, but it should also possess both the phototactic and
anti-phototactic tendencies, modulated by the decision making mechanism. This task has
been solved in various interesting conditions. In one case, experiments involved multiple
robots that exploit the sound signal for communicating the absence of the way in zone
zone (see Ampatzis, Tuci, Trianni, and Dorigo, 2006). Another interesting case involves a
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single robot that performs iterative decisions without resetting the neural network between
different trials (see Tuci, Ampatzis, and Dorigo, 2005). In this last case, the robot seems to
continuously explore different environments in search of a reachable light source, giving the
impression of being “alive”. This last work is very interesting, as it goes in the direction
of the synthesis of “life-like” behaviours that we mentioned at the beginning of Part III.
In fact, the evolved behaviour in this particular case does not simply terminates when
the trial ends, but it goes beyond the limits imposed by the single trial preserving its
functionality and its adaptive significance.

9.6 Conclusions

In this chapter, we explored a particularly interesting decision making problem, in which
the discrimination between two different environmental conditions could be performed
on the basis of the sole perception of the flow of time. The particular environmental
conditions that the agent experiences during its lifetime makes it impossible to solve the
discrimination problem relying only on the agent’s perceptions. In fact, there is no single
perceptual state that can be exploited to recognise Env. A from Env. B. This perceptual
aliasing can be bypassed only through the use of low-level time-dependent structures
that can help disambiguating the two different environments by integrating over time
the agent’s perceptual flow. The results we obtained are of particular interest because,
contrary to other previous similar studies, in this work the decision-making is uniquely
determined by the perception of time, which in turn is tightly linked to the mechanisms
for sensory-motor coordination (see Section 9.2).

We have also shown that both sensory-motor coordination and decision making can
be produced by a single (i.e., not modularised) CTRNN shaped by evolution. The sig-
nificance of this result is twofold: on the one hand, we further support the suitability
of CTRNNs as controllers for autonomous robots. Despite the complexity of the task,
CTRNNs are easily shaped by evolution to bring forth complex reactive and non-reactive
mechanisms within a single non-modularised controller. On the other hand, the obtained
results support the significance of the evolutionary approach to robotics. As we stated in
Chapter 4, evolutionary robotics is particularly suited to bypass the decomposition of a
problem into sub-problems, in order to find an optimal solution that can exploit the dy-
namical interaction of the robot with its environment (see also Nolfi and Floreano, 2000).
The experiments presented in this chapter move exactly in this direction: sensory-motor
coordination and decision making are not considered in isolation, but they are tightly
linked together as they are the result of a dynamical process that involves the interaction
during time of the robot with its environment. As a final remark, it is worth noting that
evolution synthesised adaptive autonomous agents which—much as natural systems—can
cope with environmental circumstances never encountered by the agents’ ancestors during
the evolutionary phase. From an engineering point of view, this is a particularly desir-
able property for autonomous systems, since it represents a way to successfully overcome
the limitations of other more classic approaches to robotics (see Brooks, 1991b,a; Harvey
et al., 1993; Wheeler, 1996, for more on this issue).



Chapter 10

Functional Self-Assembly

In the previous chapters, we described two different decision making mechanisms that can
be considered complementary, as one is related to spatial and dynamical cues while the
other is related to temporal cues. In fact, in the experiments described in Chapter 8, the
decision was taken collectively by a group of robots via a self-organising process that ex-
ploits physical interactions among the robots and between the robots and the environment
(see Chapter 8). On the contrary, in Chapter 9 we described a decision making process
that finds its root in temporal cues recognised by means of low-level, time-dependent
structures. Here, we address a problem that involves both the spatial and the temporal
approach to decision making: functional self-assembly.

We define functional self-assembly as the self-organised creation of a physically con-
nected structure, which should be functional to the accomplishment of a particular task.
In other words, our goal is the design of controllers for s-bots capable of connecting to each
other (i.e., forming a swarm-bot) each time environmental contingencies prevent the single
s-bot from achieving its goal. Self-assembly occurs in a wide range of natural systems. In
particular, it characterises the behaviour of many social insects (see Anderson et al., 2002,
for a review). A striking example of functional self-assembly can be observed in ants of the
species Œcophilla longinoda (see Lioni et al., 2001). These ants are able to build chains
connecting one to the other, creating bridges that facilitate the passage of other ants (see
Figure 10.1a). In swarm-robotics, functional self-assembly can be viewed as an adaptive
response of a group of autonomous agents to cope with environmental conditions which
prevent them from carrying out their task. For example, the navigation of a group of
robots can be hindered by the presence of a trough larger than the size of the body of a
single robot, which can be bridged only by an assembled structure (see Figure 10.1b). The
goal of functional self-assembly resides in recognising by means of some individual or col-
lective decision making process the existence of environmental contingencies that require
the robots to self-assemble, and consequently to perform the required actions (aggregation,
assembling, coordination of the movements within the assembled structure).

Despite its relevance as an adaptive response, functional self-assembly has been rarely
investigated within the context of collective robotics. As described in Chapter 3, several
works in the literature have focused on the study of collective behaviours of autonomous
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(a) (b)

Figure 10.1: Examples of self-assembly observed in ants and robots. (a) Ants of the species
Œcophilla longinoda forming a chain (This image has been kindly provided by Dr. Arnaud
Lioni). (b) A demonstrative image of a swarm-bot structured in a chain while passing over
a trough.

agents, which, due to the limits of their morphological structure, are not capable of self-
assembling (see Section 3.1.1). Other studies focus on the development of assembled
structures of non-autonomous robotic units, that can be differently connected to each
others by the experimenter and in some cases are able to self-reconfigure their shape, as
described in Section 3.1.2.1. Limited attention has been given so far to self-assembly,
and in most cases the problem is studied per se, without a true adaptive significance
(see Section 3.1.2.2). In our view, the complexity of functional self-assembly does not
concern the creation of a physical link between two robots. It rather resides in the nature
of the individual mechanisms required (i) to decide whether or not the environmental
contingencies require self-assembly, (ii) to bring forth the coordinated movements that
lead to the formation of the assembled structure, and (iii) to achieve a coherent motion of
the assembled structure. In fact, self-assembly should never be considered the ultimate goal
of the agents, but it generally requires to be integrated within the behavioural repertoire
of agents capable of performing several different adaptive responses. In particular, we are
interested in investigating scenarios in which the s-bots should:

i. Independently perform a specific task. That is, if assembling is not required, s-bots
should be capable of individually achieving their goal.

ii. Aggregate in order to allow subsequent assembling. That is, if assembling is required
by particular environmental contingencies, the s-bots should be capable of bringing
forth the conditions which facilitate self-assembling. Aggregation is the first step in
order to form an assembled structure—i.e., a swarm-bot.

iii. Act coordinately in order to physically assemble. That is, each s-bot should find
the correct position with respect to another s-bot in order to be able to establish a
connection.

iv. Move coordinately in order to contribute to the effectiveness of the behaviour of the
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assembled structure. That is, the s-bots should perform coordinate actions in order
to achieve their common goal.

v. Disconnect. That is, once the environmental contingencies do not require any longer
the assembled structure, the s-bots should disconnect and carry out their goal inde-
pendently of each other.

An example of task with the above characteristics is one in which a group of s-bots
must move from a starting position to a goal location. During the movement, the robots
must traverse zones that may require or not to be in a assembled configuration (i.e., a
swarm-bot). For example, the s-bots might start in a flat terrain zone in which the most
efficient choice is to move independently of each other, then reach a rough terrain zone
where by self-assembling into a swarm-bot they minimise the probability of toppling over,
and finally enter the goal location area where the terrain is again flat and where they
should therefore disband and continue moving independently of each other.

Our approach to the study of functional self-assembly requires that the rich repertoire
of individual and collective adaptive responses described above is integrated in a single
neural controller, along with the decision making mechanisms required to switch in between
them. In this chapter, we present a set of experiments that can be considered a first
attempt to pursue this ambitious goal (see Section 10.1). The results obtained, though
preliminary, are very promising, as they indicate that evolutionary robotics is a viable tool
for the synthesis of integrated controller for functional self-assembly (see Section 10.2).

10.1 Description of the Task

The scenario defined for the study of functional self-assembly looks rather simple if com-
pared to tasks that require s-bots to pass over a trough or to navigate on rough terrain.
However, the introduced simplifications do not trivialise the significance of the experi-
mental setup, which contains all the relevant issues related to the study of functional
self-assembly, as we describe in the following.

The task requires navigation within a rectangular corridor in order to approach light
bulbs positioned on the opposite end with respect to the s-bots’ starting positions (see
Figure 10.2). The corridor (4 meters long, 1 meter wide) is divided in an area of high
temperature and an area of low temperature (respectively, light and dark grey in Fig-
ure 10.2). In our simulation, the “temperature” metaphor is just a simple way to model
an environment made of two parts: one in which the s-bots should move not-assembled,
and the other in which they should move in a swarm-bot formation. The current temper-
ature can be perceived by a single binary sensor which returns 1 if the s-bot is placed in
a high temperature area, and 0 otherwise.1

1This is a strong simplification with respect to more challenging scenarios, in which the s-bots might
be required to employ more complex mechanisms in order to recognise those environmental contingencies
that require assembling, such as the discrimination mechanism presented in the Chapter 9. However,
the peculiarity by which different areas of the environment require different responses (i.e., individual or
collective) is kept unchanged.
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Aggregation and assembling are required in order to traverse a low temperature area,
within which a swarm-bot navigates more effectively than a group of disconnected s-bots.
The effectiveness of the navigational strategies is correlated with the “strength” required
by an s-bot to explore the corridor. While moving through the corridor, each s-bots keeps
its strength by navigating disconnected in the area of high temperature, and assembled in
the area of low temperature. If, while navigating, an s-bot exhausts its strength, it is not
able to move any more. The s-bots do not have any information concerning their strength.
However, thy can reach the light bulbs before exhausting it if they properly react to the
characteristics of the environment. In particular, an optimal strategy requires the s-bots
(i) to individually move toward the light bulbs as long as the temperature remains high;
(ii) to aggregate by exploiting the sound signalling system they are provided with as soon
as the temperature drops; (iii) to continue their phototactic behaviour in an assembled
structure (i.e., by forming a swarm-bot) throughout the low temperature area. Each s-bot
s has an initial strength es = 1. The strength must be higher than a certain threshold
ε = 0.01 for the s-bot to be able to move. The strength of each s-bot can increase or
decrease depending on:

i. The temperature of the area in which the s-bot is currently located. The temperature
is 1 if the s-bot is in a high temperature area, 0 if it is in a low temperature area.

ii. The state of the s-bot ’s loudspeaker. An s-bot emits a tone to signal its position to
other s-bots. This signalling behaviour can facilitate the aggregation of the group,
which is a prerequisite for the assembling action.

iii. Whether the s-bot is assembled or not.

More precisely, when s-bot s is assembled in a swarm-bot formation, its strength de-
creases in the area of high temperature and increases in the area of low temperature, as
described by the following equation:

es(t + 1) = es(t) + τ · ((1 − Γs(t)) − es(t)), (10.1)

where es(t) is the strength of the sth s-bot at cycle t, τ = 0.2 is a time constant governing
the speed of the strength variation and Γs(t) is the temperature sensed by the sth s-bot at
cycle t in its current position. When an s-bot is not connected but it emits a sound signal,
it loses strength in both areas. In the areas of low temperature its strength converges to
a low but non-null value. This is described by the following equation:

es(t + 1) = es(t) + τ · (k(1 − Γs(t)) − es(t)), (10.2)

where k = 0.1 is a constant. In all the other situations, the s-bot ’s strength increases in
areas of high temperature and decreases in areas of low temperature:

es(t + 1) = es(t) + τ · (Γs(t) − es(t)). (10.3)

The time constant τ guarantees that the s-bots’ strength varies smoothly according
to the state of the system as described above. This smooth variation gives time to the
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Figure 10.2: A graphical representation of the task. See text for details.

control system of each s-bot to react to the new environmental situation in order to perform
appropriate actions, before its strength drops under the threshold ε = 0.01.

It is worth mentioning that the strength of an s-bot does not refer to any physical
property. Moreover, the s-bots do not have any information concerning their strength
while moving through the corridor, and cannot base any decision on it. The strength has
been mainly introduced for evaluation purposes, in order to define a task that requires
self-assembly.

10.1.1 Experimental Setup

Each s-bot is provided with the traction sensor, in order to coordinate with the other
robots when assembled in a swarm-bot (see also Chapter 6 and 7). Each s-bot is also
equipped with three directional microphones, used to detect the tone emitted by other
s-bots, and with a temperature sensor. Finally, the ambient light is sensed using two light
sensors mounted on the rotating turret. Noise is simulated for all sensors, adding a random
value uniformly distributed within the 5% of the sensors saturation value. Concerning the
actuators, s-bots can control the two wheels, independently setting their speed in the
range [−6.5, 6.5] rad/s. The loudspeaker can be switched on, simulating the emission of a
continuous tone, or it can be turned off. The virtual gripper can be closed or open, in order
to connect to another s-bot. However, we force the gripper to stay open if a connection
fails. Finally, the motor controlling the rotation of the turret is used, even though it is not
directly controlled by the evolved neural network. When s-bots are not connected, this
motor ensures the alignment between the turret and the chassis. On the contrary, when
an s-bot is connected to other s-bots to form a swarm-bot, the turret can rotate freely.

Each s-bot is controlled by a fully connected, 14 neuron Continuous Time Recurrent
Neural Network (CTRNN, see Section 9.3 and Beer, 1995, for details). The network
parameters are evolved through a simple generational evolutionary algorithm. Initially, a
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random population of 100 genotypes is generated. Subsequent generations are produced
by a combination of selection with elitism and mutation. Recombination is not used. At
every generation, the best 20 genotypes are selected for reproduction, and each generates
4 offsprings. The genotype of the selected parents is copied in the subsequent generation;
the genotype of their 4 offspring is mutated with a 5% probability of flipping each bit.
One evolutionary run lasts 1000 generations.

10.1.2 The Evaluation Function

During evolution, a genotype is mapped into a control structure that is cloned and down-
loaded in all the s-bots taking part to the experiment (i.e., homogeneous group of s-bots).
Groups of n = 3 s-bots are evaluated 5 times—i.e., 5 trials. Each trial differs from the
others in the initialisation of the random number generator, which influences mainly the
s-bots starting positions and the point beyond which the temperature drops from 1 to 0.
In each trial θ, the lifetime of an s-bot is limited to 600 cycles, which simulate 60 seconds
of real time. The behaviour of the s-bots is evaluated according to an evaluation function
Fθ that takes into account the individual contribution of each s-bot s:

Fθ =
1

n3
·

(

n
∑

s=1

ds ·
n
∑

s=1

es · c

)

, (10.4)

where the factors ds, es and c are explained below.

• ds rewards s-bots that perform phototaxis, no matter if they are assembled or not.
This fitness component is computed as follows:

ds =











0.1 ·
xf,s−xi,s

xΓ−xi,s
if xf,s ≤ xΓ

0.1 + 0.9 ·
xf,s−xΓ

xM−xΓ
if xΓ < xf,s ≤ xM

1 otherwise

(10.5)

where xi,s and xf,s are respectively the initial and final x coordinate of the sth s-bot
position, xΓ is the x coordinate in which the temperature drops from 1 to 0, and xM

is the x coordinate of the light bulbs position.2

• es is the final strength possessed by the sth s-bot, at cycle t = 600. The variation
of the strength of an s-bot is regulated by equations (10.1), (10.2) and (10.3). This
fitness component rewards s-bots that end their lifetime with full strength, which
corresponds to s-bot capable of assembling in response to the decrease in the envi-
ronmental temperature.

• c is the maximum size of a swarm-bot observed at the end of the trial, ranging from
1 (no connections among s-bots) to n (all s-bots connected in a single swarm-bot).
This fitness component further rewards groups of s-bots able to self-assemble.

2The coordinate system used has the x and y axes parallel respectively to the long and short wall of
the corridor. The origin of the axes is positioned at the bottom left corner of the corridor.
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10.2 Results

Ten evolutionary runs, each using different random seeds, were run for 1000 generations
each. Two runs out of ten ended up successfully by producing controllers capable of
displaying functional self-assembly. We examined the behaviour of the best evolved group
of s-bots of the last generation for each run, in order to establish whether it evolved
functional self-assembly. The fitness of each of these groups was re-evaluated 250 times,
and the obtained results are summarised in Table 10.1. The first two runs are the successful
ones, showing an average fitness higher than all the others. An analysis of the controllers
produced by the unsuccessful runs revealed that these groups of s-bots were able to solve
the task only in part. We observed that, while in these runs the s-bots were capable of
phototaxis and obstacle avoidance, only in few runs they were able to properly react to
the decrease in temperature, and only in the run n. 8 the s-bots were occasionally capable
of self-assembling. On the contrary, in the two successful runs, the groups of s-bots showed
the complete repertoire of behaviours required by the task.

Table 10.1: Average fitness and standard deviation of the best evolved controller of the
last generation of each run.

seed 1 2 3 4 5 6 7 8 9 10

avg. 0.505 0.572 0.052 0.031 0.028 0.006 0.030 0.292 0.031 0.058
std. 0.218 0.289 0.028 0.003 0.002 0.007 0.002 0.325 0.002 0.029

10.2.1 Behavioural Analysis: Self-Assembling

In this section, we illustrate the results of post-evaluation tests performed on one of the
successful evolutionary run. Similar results can be observed in the post-evaluation tests
of the other successful run, with a small difference as far as it concerns the time required
for the formation of the self-assembled structure (i.e., the swarm-bot).

Figure 10.3 shows how the covered distance3 and the strength of each s-bot vary over
time. Looking at these graphs, it is possible to distinguish four different phases: individual
phototaxis, aggregation, self-assembling and collective phototaxis. At the beginning of the
trial—from cycle 0 to the time indicated by the empty circle—the three s-bots, located in
the high temperature area and with full strength, perform individual phototaxis, as shown
by the continuous line indicating an increase in the covered distance.

The second phase starts when the s-bots enter the low temperature area. Three phe-
nomena can be observed in Figure 10.3: aggregation, decrease of the strength and sig-
nalling behaviour. Aggregation is indicated by the covered distances of the three s-bots
(see continuous lines), which reach similar values before the end of the phase. The de-
crease in the strength, according to equations (10.2) and (10.3), indicates that the s-bots
move independently. Since the strength converges, for each s-bot, to the value es = k

3The covered distance refers to the distance between the current position of the s-bot and the starting
position, along the x axis.
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Figure 10.3: Each graph shows how the covered distance (continuous line) and the strength
of an s-bot (dashed line) vary through time, as recorded during a post-evaluation trial
lasting 1250 simulation cycles. The empty circles indicate the cycle in which an s-bot
enters a low temperature area.

(see equation (10.2)), we can deduce that the s-bots react to the temperature decrease by
switching on their loudspeaker, signalling their position to the other s-bots. This should
in principle facilitate the aggregation. However, we observed that the s-bots tend also to
exploit other “affordances” (Gibson, 1977), such as the walls of the corridor, in order to
get close to each other.

The third phase corresponds to self-assembling. In Figure 10.3, this phase is indicated
by an increase in the strength (dashed line), caused by the s-bots connecting to each
other when located in the low temperature area (see equation (10.1)). In this particular
case, s-bots 1 and 2 self-assemble first, while s-bot 3 joins the swarm-bot later. Collective
phototaxis is performed during the last phase. Here, s-bots move assembled in a swarm-bot
that approaches the light bulbs, as indicated in Figure 10.3 by the synchronous increase
of the covered distance (see continuous lines).

This four phases process demonstrates how the s-bots self-assemble in order to solve
the task. The environmental contingencies that require the robots to self-assemble—i.e.,
the decrease in temperature—are promptly recognised by the s-bots, which change their
behaviour in order to aggregate: in particular, robots stop performing phototaxis therefore
waiting for other robots to join in a swarm-bot formation. Once the swarm-bot is formed,
phototaxis can start again as a result of the coordinated effort of the s-bots.
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10.2.2 Disassembling of the Swarm-bot

In an additional series of post-evaluation tests, we looked at the capability of the swarm-bot
to disassemble as a reaction to an increase of the environmental temperature. Recall that
this circumstance has never been encountered by the s-bots during the evolutionary phase.
Therefore, disassembling should be considered an additional capability of the evolved
controllers, which confers robustness to the system. We placed the s-bots in a corridor
with four areas, two characterised by high temperature and two by low temperature (see
Figure 10.4).

The graphs in Figure 10.5 show how the covered distance and the strength of each
s-bot vary through time while the s-bots move down the corridor toward the light bulbs.
In this case, we focus our attention on how the s-bots react to the transition from low to
high temperature areas. In fact, the transitions from high to low temperature areas result
in a variation of the covered distance and of the strength similar to what was observed
and discussed for Figure 10.3.

The transition of the s-bots from low to high temperature areas is indicated in the
graphs by a filled circle. Roughly speaking, this transition is characterised by two differ-
ent phases. Initially, a decrease in the strength is observed, according to equation (10.1),
when an s-bot still assembled in a swarm-bot formation perceives the new environmen-
tal condition (high temperature). Subsequently, the s-bots progressively disconnect from
each other, which results in a gain in their strength. In the particular case illustrated in
Figure 10.5, s-bot 1 is the first to perceive the high temperature area and consequently
to disassemble from the swarm-bot. It is possible to notice that s-bot 1, after discon-
necting, moves back and forth, experiencing twice the low-to-high temperature transition.

temperature
areas of high

temperature
areas of low

Figure 10.4: A graphical representation of the environment with two high temperature and
two low temperature areas. This environment has been used for post-evaluation to check
whether the s-bots capable of assembling were also capable of disassembling in response
to an increase in the environmental temperature.
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Figure 10.5: Each graph shows how the distance to the covered distance (continuous line)
and the strength of an s-bot (dashed line) vary through time, as recorded during a post-
evaluation trial lasting 1250 simulation cycles. The empty circles indicate the cycle in
which an s-bot enters a low temperature area. The filled circles indicate the cycle in which
an s-bot enters a high temperature area.

Similarly, s-bot 2 disconnects from s-bot 3 as soon as it ends up in the high temperature
area. Consequently, s-bot 3 finds itself alone in the area of low temperature. It is possible
to notice that its strength drops, according to equation (10.2), due to the fact that the
s-bot has the loudspeaker turned on. Nevertheless, the s-bot still has enough strength to
perform individual phototaxis and to approach the high temperature area. Once in the
high temperature area, its strength increases again, indicating that the s-bot has switched
off the loudspeaker. Its covered distance shows that the s-bot quickly approaches the light
bulbs, reaching and finally connecting to the other 2 s-bots.

The above behaviour does not work if the s-bot that experiences the passage from low
to high temperature areas is receiving a connection from another s-bot. In this case, in
fact, the s-bot cannot autonomously disconnect because the link was set up by another
s-bot. Being assembled in a swarm-bot and placed in a high temperature area, the s-bot
loses its strength according to equation (10.1). In this situation, the s-bot may exhaust
its strength without being able to move anymore.

The above analysis reveals that disassembling of a swarm-bot can be in some cases
achieved in response to a passage from low to high temperature area, despite this situation
was never experienced during evolution. This feature confirms that the evolved behaviour
correctly associates the need to stay in an assembled formation with the adverse environ-
mental contingencies—i.e., the low temperature areas. As soon as these adverse situations
do not hold any more, the s-bot may autonomously decide to disconnect, in order to better
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comply with the novel environmental conditions.

10.3 Conclusions

In this chapter we observed how a group formed by three s-bots successfully employs func-
tional self-assembly to move down a corridor that presents areas in which a swarm-bot
can move more efficiently than individual s-bots. Here, self-assembly is functional to the
accomplishment of a particular task, that could not be individually solved by the s-bots.
To the best of our knowledge, this is the first work in which controllers for a group of
homogeneous robots capable of functional self-assembly are described. Inspired by our
achievements, O’Grady et al. (2005) handcrafted a controller for functional self-assembly
to allow a group of physical s-bots to overcome steep hills which cause a single s-bot to top-
ple backwards. Notwithstanding the successful results reported by O’Grady et al. (2005),
the proposed control architecture is based on a set of a priori assumptions concerning the
specification of the environmental conditions which trigger the self-assembling process.
This conditions are based on a perfect knowledge of the environment in which the exper-
iment is performed, which limits the adaptiveness of the proposed solution to unknown
and unpredictable situations. For this reason, we believe that the evolutionary robotics
approach should be further pursued.

Through evolution, simple and effective decision making mechanisms have been syn-
thesised in order to trigger the aggregation and the subsequent assembling of the s-bots as
soon as the adverse environmental conditions—i.e., the low temperature area—are encoun-
tered. Moreover, in some cases we could observe disassembling of the swarm-bot as soon
as the environmental contingencies that hinder individual actions cease to exist, proving
that the evolved strategy could adapt to situations never encountered during evolution.
This is possible thanks to the tight relationship between the decision making structures
and the mechanisms for sensory-motor coordination, which altogether allow the s-bots to
decide when it is time to gather and pursue collective strategies, or to disband in order to
continue the individual action. Besides, our results prove that, despite the complexity of
the task, neural controllers can be successfully evolved to produce all the required individ-
ual and collective adaptive responses. We believe that this integration of many different
abilities and decision making mechanisms in a single neural controller is a very important
contribution brought forth by these experiments.

The task studied in this chapter encompasses many of the relevant issues treated in
this thesis. Coordinated motion of a swarm-bot, communication among s-bots, decision
making and integration of different abilities in a single controller are all ingredients that
can be finally studied in a single scenario. This is the reason why functional self-assembly
has been proposed as the last experiment discussed in this thesis. Indeed, less than a final
achievement, this study of functional self-assembly represents a starting point for future
research. The results presented here should be considered only preliminary. Nevertheless,
their relevance suggests that it is important to follow this research direction, which will
certainly contribute to the assessment of evolutionary robotics as a viable tool for the
synthesis of group behaviours.
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Chapter 11

Conclusions

In this thesis, we have argued that self-organising behaviours represent a viable solution
for controlling a swarm robotic system, and that evolutionary robotics techniques are a
valuable design tool. There are multiple reasons why self-organisation should be sought for.
Among these, the properties of decentralisation, flexibility, robustness and emergence that
pertain to self-organising systems and that are highly desirable for a swarm of autonomous
robots (see Section 3.3). However, if everything seems to fit in nicely, the problems arise
while trying to design a behaviour that can be considered self-organising. In fact, the
features that determine the behaviour of a self-organising system are not explicitly coded
anywhere, while the design of a control system requires exactly the definition of behavioural
rules for each robot of the system. The design problem—treated in detail in Section 4.1—
consists in filling the gap between the desired global behaviour of the robotic system and
the individual rules that govern each single robot.

From an engineering perspective, the design problem is generally tackled with a double
decomposition phase, following a divide et impera approach. First, the global behaviour is
described as the result of interactions among individual behaviours, and then the individual
behaviour is encoded into the controller’s rules. Both phases are complex because they
attempt to decompose a process (the global behaviour or the individual one) that is the
emergent result of dynamical interactions among its sub-components (interactions among
individuals or between individual actions and the environment). These dynamical aspects
are in general difficult to be predicted by the observer, and we provided some examples in
the experiments presented in this thesis. The solution we propose for the design problem
consists in exploiting evolutionary robotics for the synthesis of self-organising behaviours.
In fact, evolutionary robotics techniques naturally fill in the gap between individual rules
and global behaviours, as they work by defining the former and evaluating the latter (see
Section 4.2 for more details). The work presented in Part II and III of this thesis tries
to support the proposed solution to the design problem through a number of examples in
which collective, cooperative behaviours are evolved and analysed.

All the experiments presented in this thesis share the same methodology, which consists
in synthesising neural controllers for homogeneous groups of simulated robots. The evolved
controllers are afterwards tested in simulation and, whenever it is possible, also with
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physical robots. The analysis of the behaviours produced by the evolutionary process
is useful to assess the quality of the obtained results. However, the same analysis can
be seen from a different, equally important, perspective, that is, the discovery and the
understanding of the basic principles underlying self-organising behaviours and collective
intelligence. The analysis of the behaviours evolved in the experiments presented in this
thesis shows how simple sensory-motor mechanisms are at the base of complex cognitive
phenomena, both at the individual and at the collective level. These results are important
to assess evolutionary robotics not only as a design tool, but also as a methodology for
modelling and understanding intelligent adaptive behaviours.

11.1 Summary and Contributions

The work presented in this thesis summarises our contribution to the research in swarm
robotics and embodied cognitive sciences. We have presented these domains in Part I,
which provides an introductory/theoretical description of the basic concepts that inform
our research. The experimental core of our research is treated in Part II, in which we detail
the results obtained in the evolution of self-organising behaviours with both simulated and
physical robots. Finally, Part III presents some experiments that contain novel ideas and
interesting results in view of future research.

In Chapters 2 and 3, we provide the background required to contextualise the work
presented in this thesis with respect to both an historical and a methodological perspective.
We describe the path that led from the initial steps moved in cybernetics and classical
artificial intelligence towards the birth of embodied cognitive science. This theoretical
debate was accompanied by technical advancements that originated from or anticipated the
different approaches to the study of intelligent behaviours. For instance, the development
of the first computing machines boosted the research in classic artificial intelligence. On
the contrary, the behaviour based approach introduced by Brooks (1986, 1991a,b) deeply
influenced the way in which robots were built. Recent technological advancements in multi
robot systems are treated in Chapter 3. We review the most relevant works in collective
robotics, with a particular attention to the swarm robotics domain. Moreover, we describe
in detail the relevant features of a swarm robotic system, as the research conducted in this
thesis belongs to this particular domain.

In Chapter 4, we introduce and justify the experimental approach followed in this
thesis, that is, the evolutionary approach for the synthesis of self-organising behaviours.
As already mentioned above, we believe that evolutionary robotics can solve the design
problem as it bypasses the decomposition of a desired global behaviour into individual
behaviours first, and single behavioural rules afterwards. In support to this claim, we pro-
vide a case-study in Section 4.4, in which we explain how evolutionary robotics techniques
can be exploited to synthesise a robust and scalable self-organising aggregation behaviour.
This case study represents an example of the methodology that has been followed in all
the experiments presented in this document.

Chapter 5 introduces an innovative swarm robotic system—i.e., the swarm-bot—which
is the object of our research. A swarm-bot is a self-assembling, self-organising artefact
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composed of a number of autonomous units—referred to as s-bots—that have the capability
to connect to/disconnect from each other. The development of the swarm-bot was based
on the bold idea that complex problems can be solved exploiting the cooperation among
the robots and the physical support of connections between them. In other words, the
s-bots may face situations in which particular environmental contingencies would hinder
individual actions, so that a collective effort is required. Typical examples are tasks like
carrying an heavy load or passing over a trough, which are impossible to be accomplished
by a single robot due to limited individual capabilities, but that can be efficiently solved by
a swarm-bot that exploits the physical connections and the coordinated efforts of multiple
individuals.

One of the basic abilities of the swarm-bot is coordinated motion, that is, the coherent
motion of a group of connected s-bots. In Chapter 6, we propose an interesting solution,
which is based on self-organisation and is evolved to exploit the traction sensor—i.e., a
sensor that perceives the pulling/pushing forces exerted by the connected robots. When
in a physically connected structure, an s-bot can perceive through the traction sensor the
average direction of motion of the group. This information can be exploited to efficiently
coordinate with the other robots, eventually agreeing on a common direction of motion.
The solution found by evolution is clearly based on self-organising principles and it is
robust enough to be successfully tested on physical robots. Moreover, the evolved solution
presents a high flexibility, as it continues to work in significantly different experimental
conditions. The contribution brought forth by the experiments presented in this chapter is
twofold. We show that artificial evolution can be efficiently exploited for the synthesis of a
robust and flexible self-organising behaviour for simulated and physical robots. To the best
of our knowledge, this is the first example in the literature of an evolved self-organising
system tested with up to eight physical robots. The second important contribution lays
in the analysis of the evolved behaviour, which uncover how simple individual rules can
be at the basis of a very effective group behaviour. These rules were evolved to exploit
the richness of the dynamical interactions among robots resulting from their physical
interconnections.

Building on the above results, we further improved the navigation abilities of a swarm-
bot studying the hole avoidance task, treated in Chapter 7. In this case, the s-bots have
to explore an arena presenting hazards such as holes and open borders, which cannot be
avoided by the individual robots due to limited sensing capabilities. In such a situation, the
swarm-bot can exploit its larger body and the physical connections among s-bots to coor-
dinately move while avoiding to fall into holes. Also in this case, evolution was responsible
for shaping the neural controller for a group of s-bots. We tested three different experi-
mental setups, varying the communication ability the s-bots were provided. The obtained
results show that evolution is capable of synthesising efficient hole avoidance behaviours.
By comparing evolved and handcrafted signalling strategies, we prove that the former
achieve a significantly better performance. Finally, we prove that the evolved strategies
can be smoothly ported from simulated to physical robots. The experiments presented
in this chapter further contribute to assess artificial evolution as a viable methodology
for the development of controllers for swarm of robots. In particular, we show that the
solution found by evolution may be hard to design with more conventional methodolo-
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gies, because they are based on mechanisms that are counterintuitive without an a priori
knowledge of the system’s dynamics. It is worth noting that the obtained results are not
only relevant for the methodology used to produce the robot behaviours, but they also
help understanding the role of different forms of communication by means of a synthetic
approach. The exploitation of different forms of communication that reinforce each other
is an important mechanism observed also in many ant species (see Section 7.1). In our
artificial system, we prove that the use of sound signals for alarm communication helps in
speeding up the reaction of the group, allowing a better collective response. In fact, the
sound signalling adds on the physical interactions among robots, which are also exploited
for communication, and together they support a fast and reliable avoidance action.

The thesis is concluded by the experiments presented in Part III. Here, we look at
future directions and propose some results obtained in the evolution of decision making
mechanisms. In particular, in Chapter 8 we study an emergent decision making process
based on self-organisation. We study the behaviour of a swarm-bot that deals with a trough
of varying width. By exploiting a controller evolved for hole avoidance, we show how a
collective estimation of the width of the trough is performed, which allows the swarm-bot to
decide whether to pass over the gap or not. We show how the collective decision making is
the result of a self-organising process, in which the dynamical interactions between robots
and environment, and, above all, the missing influence of the robots suspended over the
gap play a major role. It is important to notice that this self-organised collective decision
is completely emergent, as no rule has been coded to define it and no robot in the swarm-
bot is aware of the decision taken. Nevertheless, the group as a whole behaves coherently
in response to the features of the environment. This experiment suggests that artificial
evolution can be exploited to synthesise emergent decision making mechanisms that are
based on self-organisation. Such mechanisms allow to obtain a coherent group behaviour
as a result of the dynamical interactions among individuals, which anyway follow simple
behavioural rules.

In Chapter 9, we continue discussing about decision making, but seen from an orthog-
onal perspective with respect to the collective decision experiment presented above. In
fact, here we look at individual decisions based on the perception of the time flow. The
problem we study is a discrimination task between two different environmental conditions,
one presenting an entrance to a target zone and the other without it. In order to recog-
nise the absence of such an entrance, there are no other environmental cues that can be
exploited but temporal ones. That is, the robot has to “feel” the flow of time in order to
recognise that it has been exploring the environment for long enough without encountering
any entrance. Evolution was exploited to produce time-dependent controllers in the form
of Continuous Time Recurrent Neural Networks (CTRNN, see also Beer, 1995), which
provide the required low-level mechanisms that allow this particular form of decision mak-
ing. We show how a decision between the two environmental conditions can be taken by
integrating over time a persistent perceptual flow resulting from the robot’s sensory-motor
coordination. The obtained results confirm that artificial evolution is a valuable tool for
the synthesis of neural controllers for a robotic task. Besides, the CTRNN proves suit-
able for integrating multiple behavioural responses, both reactive and non-reactive, into
a single neural structure. This result is very important in view of the synthesis of more
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complex behaviours that arbitrate between various adaptive responses.

In Chapter 10 we conclude presenting an ambitious experiment: the evolution of a
single (i.e., non-modularised) neural network that is able to produce different individual
and collective actions, along with the decision making mechanisms for switching in between
them. The task chosen to seek this goal is functional self-assembly, in which three s-bots
have to form a swarm-bot any time it is required by adverse environmental contingencies.
Therefore, the s-bots should prove capable of individually performing a specific task, and
of self-assembling in order to pursue their goal collectively whenever demanded by the
environmental conditions. The experiment presented in Chapter 10 represents a first step
towards the study of functional self-assembly. The results we obtained, though preliminary,
are very encouraging as they prove that it is possible to evolve a single neural controller
that produces many different individual and collective responses. Various improvements
are still possible in this direction, which anyway does not reduce the significance of the
results so far achieved. In the following section, we describe more in detail our intent for
future research.

11.2 Future Developments

In future work, we will continue the study of the evolution of self-organising behaviours
for the swarm-bot and, possibly, for other robotic platforms. Mainly, two problems draw
our attention: on the one hand, we are interested in improving the results obtained so
far in functional self-assembly. This problem is still at the early stage of study, above
all concerning the evolution of the mechanisms required to decide when it is necessary
to self-assemble. In the experiments presented in Chapter 10, in fact, there is a clear
environmental cue that defines when to self-assemble and when to act individually. A
more realistic case would be similar to what described in Chapter 9. The decision whether
to self-assemble or not should be taken as a result of reiterated interactions with the
environment. The results obtained in the experiments presented in this thesis suggest that
similar decision making mechanisms can be actually evolved, at least at the individual level.
However, a further research effort is necessary in order to integrate these time-dependent
mechanisms with other complex individual and collective actions. Moreover, collective
decisions such as those presented in Chapter 8 should be taken into account, in order for
the robot to share the burden of deciding which action they should collectively perform.
The study of the interaction between individual and collective decision making mechanisms
and the subsequent integration of such mechanisms with individual and collective actions
is a possible research direction we would like to undertake in the future.

Another possibility for future research consists in the study of the synchronisation of
the activities of a group. The observation of insect societies, and in general the observation
of collective behaviours, reveals that synchronisation of the group activities is often in
place. A classic example of synchronised activity is given by the flashing of fireflies, which
gathers in huge clusters and flash in perfect unison. The mechanisms that underly the
synchrony of actions are well studied, and in many cases are based on the adjustment of
the phase of an intrinsic periodic process as a response to the perception of the phase
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of the neighbours. However, what is often unclear is the adaptive significance of these
behaviours. Similarly to functional self-assembly, we intend to study the evolution of
synchronous behaviours that is functional to the achievement of a particular goal—e.g.,
amplifying an individual response or reducing the waste of energy at the group level.

In both the above research directions, communication plays a crucial role, which we
intend to investigate as well. Up to now, we focused on rather simple forms of com-
munication, such as the pulling/pushing forces or the binary sound signals exploited for
coordinated motion and hole avoidance (see Chapters 6 and 7). We aim at evolving more
complex forms of communication, in which multiple signals can acquire through evolution
a precise adaptive significance.

In conclusion, we demonstrated with this thesis that evolutionary robotics represents
a promising tool both for engineers and cognitive scientists. By exploiting this tool, it
is possible to synthesise efficient controllers for self-organising systems, and it is possible
to uncover the mechanisms that are at the basis of intelligent behaviour. However, many
problems still remain to be tackled and many novel directions still have to be undertaken.
For this reason, we will continue to be committed to science in search of ever-new and
intriguing challenges.



Notation Used

We summarise here the notation used throughout the thesis for formals and equations.

t Simulation or control cycle
n Number of robots

F̂x Reading of the physical traction sensor along the x axis

F̂y Reading of the physical traction sensor along the y axis
Fx Normalised value of the perceived traction force along the x axis
Fy Normalised value of the perceived traction force along the y axis
~F Normalised traction force
FM Maximum value of the traction force used as a normalising factor for

the traction readings
ω Angular speed of the wheels
ωM Maximum angular speed of the wheels

c(t) Position of the centre of mass of the s-bots at time t
DM (t) Maximum distance that an s-bot or a swarm-bot can cover in t cycles
Xt Coordinates vector of an object/robot at cycle t with respect to the

absolute reference frame

wij Weight of the neural connection from neuron i to neuron j
Ii Input of the ith neuron
βi Bias of the ith neuron
rw Radius of an s-bot ’s wheel
dw Distance between the s-bot ’s wheels
θ Evaluation trial
T Length of an evaluation trial
Fθ Fitness computed in the evaluation trial θ
Fs(t) Fitness of the sth s-bot computed at cycle t
Ni Neuron i of a CTRNN
pi Cell potential of the ith neuron of a CTRNN
τi Decay constant of the ith neuron of a CTRNN
g Gain factor that amplifies the input values of a CTRNN
σ(z) Sigmoid function
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L. Chrétien. Organisation spatiale du matériel provenant de l2̆019excavation du nid
chez Messor barbarus et des cadavres d2̆019ouvrières chez Lasius niger (Hymenoptera :
Formicidae). PhD thesis, Université Libre de Bruxelles, 1996.
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M. Dorigo, V. Trianni, E. Şahin, R. Groß, T. H. Labella, G. Baldassarre, S. Nolfi, J.-
L. Deneubourg, F. Mondada, D. Floreano, and L. M. Gambardella. Evolving self-
organizing behaviors for a swarm-bot. Autonomous Robots, 17(2–3):223–245, 2004.

M. Dorigo, E. Tuci, F. Mondada, S. Nolfi, J.-L. Deneubourg, D. Floreano, and L. M.
Gambardella. The SWARM-BOTS project. Kunstliche Intelligenz, 4(5):32–35, 2005.

G. Dudek, M. Jenkin, and E. Milios. A taxonomy of multirobot systems. In T. Balch and
L. E. Parker, editors, Robot Teams: From Diversity to Polymorphism. A K Peters Ltd.,
Wellesley, MA, 2002.

T. D. Fitzgerald. The tent caterpillars. Cornell University Press, Ithaca, NY, 1995.

L. J. Fogel, A. J. Owens, and M. J. Walsh. Artificial Intelligence through Simulated
Evolution. John Wiley & Sons, New York, NY, 1966.



168 CHAPTER 11

N. R. Franks. Teams in social insects: group retrieval of prey by army ants (Eciton
burchelli, Hymenoptera: Formicidae). Behavioral Ecology and Sociobiology, 18:425–429,
1986.

N. R. Franks and A. B. Sendova-Franks. Brood sorting by ants: distributing the workload
over the work-surface. Behavioural Ecology and Sociobiology, 30:109–123, 1992.
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