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ABSTRACT

C
ollective decision making can be seen as a means of designing and understanding swarm
robotics systems. While decision-making is generally conceived as the cognitive ability of
individual agents to select a belief based only on their preferences and available information,

collective decision making is a decentralized cognitive process, whereby an ensemble of agents
gathers, shares, and processes information as a single organism and makes a choice that is not
attributable to any of its individuals. A principled selection of the rules governing this cognitive
process allows the designer to define, shape, and foresee the dynamics of the swarm.

We begin this monograph by introducing the reader to the topic of collective decision making.
We focus on artificial systems for discrete consensus achievement and review the literature of swarm
robotics. In this endeavor, we formalize the best-of-n problem—a generalization of the logic underly-
ing several cognitive problems—and define a taxonomy of its possible variants that are of interest for
the design of robot swarms. By leveraging on this understanding, we identify the building-blocks that
are essential to achieve a collective decision addressing the best-of-n problem: option exploration,
opinion dissemination, modulation of positive feedback, and individual decision-making mecha-
nism. We show how a modular perspective of a collective decision-making strategy allows for the
systematic modeling of the resulting swarm performance. In doing so, we put forward a modular
and model-driven design methodology that allows the designer to study the dynamics of a swarm at
different level of abstractions. Successively, we employ the proposed design methodology to derive
and to study different collective decision-making strategies for the best-of-n problem. We show how
the designed strategies can be readily applied to different real-world scenarios by performing two
series of robot experiments. In the first series, we use a swarm of 100 robots to tackle a site-selection
scenario; in the second series, we show instead how the same strategies apply to a collective per-
ception scenario. We conclude with a discussion of our research contributions and provide future
direction of research.
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1
INTRODUCTION

T
he ability to undertake a decision-making process is a fundamental property of both natural

and artificial systems regardless of their scale, number of components, computational and

sensory capabilities. In artificial systems, the paramount importance of decision-making has

long been recognized by the robotics and artificial intelligence community as a means necessary

to obtain autonomy (Jennings et al., 1998). Systems composed of a single agent are supported

by comprehensive theoretical frameworks that include decision trees, Markov decision processes,

and reinforcement learning, to name a few. Cooperation and deception strategies between multiple

rational decision-makers have been largely explored in game theory, extending the subject of decision-

making to a group of two or more agents. Yet, we still lack a comprehensive theory of decision-making

in the case of large populations of interacting agents as the ones of robot swarms.

Swarm robotics (Dorigo et al., 2014; Şahin, 2005) studies the application of the principles of

swarm intelligence (Beni, 2005) to design and control large groups of autonomous robots. Swarm

robotics aims at designing systems that are scalable in the number of robots and keep performing for

increasing swarm sizes; systems that are robust to failure of individual robots thanks to their high

redundancy of components and that are flexible to unknown and/or changing environments. In

order to meet these objectives, swarm robotics systems are designed following the working principle

of self-organization: “order through fluctuations” (Nicolis and Prigogine, 1977). Random fluctuations

are amplified by positive feedback until the system converges to an ordered state and then dampened

by negative feedback to keep the system ordered. Additionally, in a swarm robotics system, individual

agents rely only on partial and local knowledge of their environment and their interactions are

governed by simple control rules. Nonetheless, repeated interactions among agents and between

agents and the environment allow a swarm to act as an integrated entity capable of performing

autonomously.
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CHAPTER 1. INTRODUCTION

Swarm robotics has been shown to provide a promising approach for a number of different

applications. Robots in a swarm can self-assemble to form complex structures (Klavins, 2007; Nagpal,

2002; O’Grady et al., 2009; Rubenstein et al., 2014b), they can cooperate to perform construction

works (Ardiny et al., 2015; Werfel et al., 2014) as well as to collectively transport (Ferrante et al., 2013;

Rubenstein et al., 2013; Wilson et al., 2014) or manipulate objects (Ijspeert et al., 2001). The successful

accomplishment of these tasks requires the swarm to address high-level cognitive problems. For

example, a precondition of a self-assembly application may require the swarm to identify the most

suitable shape to form (Christensen et al., 2007); when performing collective construction (Soleymani

et al., 2015), the swarm may need to find the most favorable working location (Campo et al., 2010b) or

the shortest path to efficiently transport materials from a central depot (Montes de Oca et al., 2011).

Moreover, complex application scenarios can be tackled by decomposing them into a combination

of multiple but simpler tasks (e.g., collective construction can be conveniently decomposed into

foraging, transport, and sorting tasks, as suggested by Parker and Zhang (2006)). However, in order to

undertake this divide and conquer approach, the swarm would need to face and to address several

distinct collective decision-making problems.

The research contributions reported in this dissertation are motivated by the need in swarm

robotics for a comprehensive theoretical framework of collective decision making. In our endeavor,

we consider collective decision-making problems that demand the swarm to find consensus over

which option of a finite set of alternatives offers the most profitable choice for the swarm. We refer to

this type of cognitive problems as discrete consensus achievement (see Chapter 2). The objective of this

dissertation is to put forward a principled and theoretically grounded methodology to systematically

design collective decision-making strategies for discrete consensus achievement problems.

As opposed to the close mimicking of natural systems or to the engineering of domain-specific

strategies (cf. Chapter 2), we aim to devise a methodology to design collective decision-making

strategies that are sufficiently generic to be ported across different applications scenarios. To this

end, we decouple the high-level control logic of a strategy from its low-level implementation details

which are necessarily tailored for a specific scenario and robotic platform (see Chapter 3). This

approach allows us to identify a minimal set of fundamental processes and their mechanisms that

are necessary to implement a decentralized consensus achievement process: option exploration, to

gather information from the environment; opinion dissemination, to spread the gathered information

within the swarm; modulation of positive feedback, to bias the decision-making process in favor

of the best option; and individual decision-making mechanism, to allow agents to change their

opinions. We build on this understanding to define a modular control structure of a generic collective

decision-making strategy and to provide guidelines and constraints for the design of specific modules.

This approach allows us to define a generic compartmental model that can be instantiated by the

designer to analytically study the macroscopic dynamics of a specific choice of modules. As a result

of this endeavor, we support the designer with a model-driven approach that facilitates the selection

and comparison of different design choices for the modules of a strategy.
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1.1. PREVIEW OF CONTRIBUTIONS

In the second part of this monograph, we illustrate our modular model-driven design method-

ology by devising three different collective decision-making strategies (see Chapter 4–6). For each

of these strategies, we instantiate the proposed mathematical framework to study the performance

of the swarm using deterministic and stochastic mathematical models. Deterministic models give

insights into the asymptotic properties of a strategy in the limit of an infinite swarm size; stochastic

models provide instead means to quantify the effects of random fluctuations characterizing swarms

with a finite number of agents.

Finally, we validate the results of our modular design methodology by performing experiments

with real robot swarms. We consider an application scenario that demands the robots of the swarm

to agree on which site in the environment has the highest quality (see Chapter 7). Using this scenario

as a case study, we perform experiments with a swarm composed of 100 Kilobots (Rubenstein et al.,

2014a) and compare its performance with the predictions of macroscopic mathematical models.

Successively, we support the generality of the proposed collective decision-making strategies by

considering a second case study, the collective perception scenario (see Chapter 8), and providing low-

level implementations of the proposed strategies that are tailored for a swarm of e-pucks (Mondada

et al., 2009).

1.1 Preview of Contributions

This dissertation contains a number of original research contributions. In this section, we summarize

each of these research contributions following the order of their appearance in this monograph. For

each research contribution, we refer the reader to the chapter where the contribution is discussed

and we outline the resulting scientific publications.

i A review of discrete consensus achievement from the perspective of swarm robotics. This research

study led to the formalization of the best-of-n problem, to the definition of a taxonomy of

consensus achievement scenarios that are relevant for robot swarms, and to a novel interpretation

of the existing literature. See Chapter 2.

ii A modular model-driven methodology to design collective decision-making strategies for the

best-of-n problem. This research study led the identification of the building-blocks of a collective

decision-making strategy and to the definition of a modeling methodology to systematically

derive predictive, macroscopic mathematical models of a strategy. See Chapter 3.

iii A study of finite-size effects in the Indirect Modulation of Majority-based Decisions strategy1(IMMD).

This research study is based on the derivation and analysis of an absorbing time-homogeneous

Markov chain model and provides new insights on the variance of consensus time. See Chapter 4.

1The IMMD strategy has been originally proposed by Montes de Oca et al. (2011) as the majority rule with differential
latency model.
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CHAPTER 1. INTRODUCTION

? G. Valentini, M. Birattari, and M. Dorigo. Majority Rule with Differential Latency:

An Absorbing Markov Chain to Model Consensus. In Proceedings of the European

Conference on Complex Systems, ECCS’12, pp. 651–658, Springer Proceedings in

Complexity, Springer, 2013.

iv The design and mathematical analysis of a novel collective decision-making strategy, the Direct

Modulation of Voter-based Decisions strategy (DMVD), that guarantees consensus on the optimal

collective decision in the mean field limit. This research study is based on the derivation and

analysis of an ordinary differential equation model and a chemical reaction network model. See

Chapter 5.

? G. Valentini, H. Hamann, and M. Dorigo. Self-Organized Collective Decision-

Making: The Weighted Voter Model. In Proceedings of the 13th International Con-

ference on Autonomous Agents and Multiagent Systems, AAMAS 2014, pp. 45–52,

IFAAMAS, 2014.

v The design, mathematical analysis and validation against real robots of a novel collective decision-

making strategy: the Direct Modulation of Majority-based Decisions strategy. This research study

is based on the derivation and analysis of an ordinary differential equation model and a chemical

reaction network model, which are validated against data from experiments with a swarm of 100

Kilobots. The study focuses on the speed versus accuracy trade-off of the collective decision as a

function of the neighborhood size. See Chapter 6 and Chapter 7.

? G. Valentini, H. Hamann, and M. Dorigo. Self-Organized Collective Decision-

Making in a 100-Robot Swarm. In Proceedings of the 29th AAAI Conference on

Artificial Intelligence, AAAI 2015, pp. 4216–4217, AAAI Press, 2015.

? G. Valentini, H. Hamann, and M. Dorigo. Self-Organized Collective Decisions in a

Robot Swarm. In Video Proceedings of the 9th AAAI Video Competition, AAAI 2015,

AAAI Press, 2015. Best Student Video Award.

? G. Valentini, H. Hamann, and M. Dorigo. Efficient Decision-Making in a Self-

Organizing Robot Swarm: On the Speed Versus Accuracy Trade-Off. In Proceedings

of the 14th International Conference on Autonomous Agents and Multiagent Sys-

tems, AAMAS 2015, pp. 1305–1314, IFAAMAS, 2015.

? G. Valentini, E. Ferrante, H. Hamann, and M. Dorigo. Collective Decision with 100

Kilobots: Speed versus Accuracy in Binary Discrimination Problems. Autonomous

Agents and Multi-Agent Systems, 30(3):553–580, 2016.

vi The proposal and study of a novel application scenario for discrete consensus achievement in

robot swarms: the collective perception scenario. This research study introduces a new benchmark

scenario for robot swarms, which is used to support the generality of the DMVD and DMMD
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1.2. ADDITIONAL RESEARCH CONTRIBUTIONS

Figure 1.1: Illustration of a Kilogrid composed of 10×20 modules covering an area of 2 m2. From left

to right, Bernát Wiandt, Marco Dorigo, Gabriele Valentini, and Anthony Antoun.

strategies. The study is based on physics-based simulations and real-robot experiments with a

swarm of 20 e-pucks. See Chapter 8.

? G. Valentini, D. Brambilla, H. Hamann, and M. Dorigo. Collective Perception of En-

vironmental Features in a Robot Swarm. In Proceedings of the tenth International

Conference on Swarm Intelligence, ANTS 2016, in press, 2016.

1.2 Additional Research Contributions

During the development of this dissertation, I contributed to a number of additional research studies

that are not central to this monograph. These research contributions are summarized below and the

reader is referred to the corresponding scientific publications.

i We introduced the Kilogrid experimental platform for the Kilobot robot (see Figure 1.1). The

Kilogrid is a modular and scalable virtualization environment that aims to ease experimentation

with the Kilobots. The Kilogrid consists of a grid of interconnected cells each of which provides a

duplex communication channel situated in space and a visual feedback in the form of colored
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light signals. Additionally, the Kilogrid is interfaced with a remote workstation for programming

and data collection. The principal functionality of the Kilogrid is to provide means to emulate

sensors and actuators that are not available on the Kilobot robot and to allow the experimenter

to perform online data collection while executing an experiment.

? A. Antoun, G. Valentini, E. Hocquard, B. Wiandt, V. Trianni, and M. Dorigo. Kilo-

grid: a Modular Virtualization Environment for the Kilobot Robot. Submitted to

the 2016 IEEE/RSJ International Conference on Intelligent Robots and Systems,

IROS 2016.

ii We investigated the origins of collective alignment of motion in swarms of juvenile locusts. In

this study, we investigated the bistability of the direction of motion of the swarm and showed the

presence of a similar effect in the aggregation behavior obtained using the BEECLUST algorithm.

We focused our study on the time variance of positive feedback that drives the system towards a

stable and temporary ordered state and showed that the stability of this state is a function of the

number of aligned swarm members and their neighborhood size.

? G. Valentini, and H. Hamann. Time-Variant Feedback Processes in Collective

Decision-Making Systems: Influence and Effect of Dynamic Neighborhood Sizes.

Swarm Intelligence, 8(2–3):153–176, 2015.

? H. Hamann, and G. Valentini. Swarm in a Fly Bottle: Feedback-Based Analysis

of Self-Organizing Temporary Lock-Ins. In Proceedings of the ninth International

Conference on Swarm Intelligence, ANTS 2014, pp. 170–181, volume 8667 of LNCS,

Springer, 2014.

iii We proposed a novel global-to-local analysis methodology to investigate microscopic features of

the spatial interaction network of agents using only a collection of macroscopic observations. This

research study shows how linear regression of a mixture of macroscopic models can be adopted

to infer the degree distribution of the agent interaction network resulting from the collective

motion behavior of locust swarms.

? H. Hamann, G. Valentini, Y. Khaluf, and M. Dorigo. Derivation of a Micro-Macro

Link for Collective Decision-Making Systems: Uncover Network Features based

on Drift Measurements. In Proceedings of the 13th International Conference on

Parallel Problem Solving from Nature, PPSN XIII, pp. 181–190, volume 8672 of

LNCS, Springer, 2014.

iv We introduced the idea that swarms that achieve user-specified objectives can be designed by

leveraging on behavioral heterogeneity. We showed in two case studies (i.e., task allocation and a

leaf-cutting and collecting scenario) how designing the behavior of a robot swarm is reduced to

6
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the selection of the right robot controllers from an initial, possibly much larger set of predefined

ones. The selection of the robot controllers that approximate the input of the user corresponds to

an optimization problem that can be solved by a variety of optimization techniques. We explored

this new design paradigm with two different approaches: in the first approach we reduce the

design problem to an `1-regularized logistic regression problem; in the second approach we use

a genetic algorithm.

? G. Valentini, H. Hamann, and M. Dorigo. Global-to-Local Design for Self-Organized

Task Allocation in Swarms. IRIDIA Technical Report Series, TR/IRIDIA/2016-002,

2016.

? H. Hamann, G. Valentini, and M. Dorigo. Population Coding: A New Design

Paradigm for Embodied Distributed Systems. In Proceedings of the tenth Interna-

tional Conference on Swarm Intelligence, ANTS 2016, in press, 2016.

v We proposed a novel collective decision-making strategy for discrete consensus achievement

that is inspired by the behavior of honeybees swarm. This strategy combines a direct recruitment

mechanism and a cross-inhibition mechanism to allow a swarm of agents to make a collective

decision. The proposed strategy is supported by macroscopic mathematical models as well as a

set of guidelines to drive the microscopic implementation of the strategy in different application

scenarios. In this research study, we consider implementations of the proposed strategy for both

behaviorally homogeneous and behaviorally heterogeneous swarms of agents.

? A. Reina, G. Valentini, C. Fernández-Oto, M. Dorigo, and V. Trianni. A Design

Pattern for Decentralized Decision Making. PLOS ONE, 10(10):e0140950, 2015.

? A. Reina, G. Valentini, C. Fernández-Oto, M. Dorigo, and V. Trianni. A design pat-

tern for best-of-n collective decisions. In 3rd Workshop on Biological Distributed

Algorithms, BDA 2015, 2015.

vi We proposed a novel communication protocol that allows robots in a swarm to direct their

communication to robots in specific regions of the environment without the need of external

infrastructure, dedicated hardware, global knowledge or unique robot identifiers. We call this

Spatially Targeted Communication (STC). STC is a completely decentralized communication pro-

tocol that permits a robot to select which other robot or group of robots will receive its messages

depending on their location in space. STC is highly scalable with predictable performance and

has been studied using macroscopic Markov chain models, physics-based simulations, and robot

experiments with a heterogeneous multi-robot system composed of ground and flying robots.

? N. Mathews, G. Valentini, A.L. Christensen, R. O’Grady, A. Brutschy, and M. Dorigo.

Spatially Targeted Communication in Decentralized Multirobot Systems. Au-

tonomous Robots, 38(4):439–457, 2015.
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1.3 Outline

The rest of this monograph is organized in four parts.

In Part I, which consists of Chapter 2 and Chapter 3, we provide the reader with the background

necessary to fully appreciate the contributions of this monograph.

Chapter 2 gives an overview of the literature on collective decision making in robot swarms.

First, we organize collective decision-making systems in two categories: consensus achievement

and task allocation. Then, we focus on systems designed for consensus achievement problems and

further distinguish them between discrete and continuous. Finally, we formalize the framework of

the best-of-n problem and show how this framework can be specialized to cover a large number of

application scenarios that require discrete consensus achievement by reviewing the swarm robotics

literature.

Chapter 3 outlines our modular methodology to design a collective decision-making strategy

for the best-of-n problem. We identify the fundamental processes that determine the functioning

of a collective decision-making strategy. Successively, we propose a modular structure of a generic

strategy that implements these fundamental processes and provide guidelines to design specific

modules. Finally, we introduce a general methodology to derive predictive mathematical models

and show how this methodology can be instantiated to model a specific combination of modules

defining a strategy.

In Part II, which consists of Chapter 4, Chapter 5, and Chapter 6, we illustrate the use of the

proposed modular design methodology by developing three different collective decision-making

strategies, describing them by means of predictive mathematical models, and analyzing their collec-

tive dynamics.

Chapter 4 describes the Indirect Modulation of Majority-based Decisions strategy (IMMD). We

study the performance of the IMMD strategy numerically by means of macroscopic Monte Carlo

simulations and analytically by defining and analyzing an absorbing, time-homogeneous Markov

chain that models a system with a finite number of robots.

Chapter 5 introduces the Direct Modulation of Voter-based Decisions strategy (DMVD). We study

the performance of the DMVD strategy numerically by means of microscopic multi-agent simulations

where robots are represented by mass-less particles moving in a closed environment. Additionally,

we perform an analytical study of the proposed strategy by means of two macroscopic mathematical

models: a deterministic mean-field model, that consists of a system of ordinary differential equations,

and a stochastic model, that consists of a chemical reaction network.

Chapter 6 introduces the Direct Modulation of Majority-based Decisions strategy (DMMD). We

study the performance of the DMMD strategy by means of two mathematical models, respectively, a

system of ordinary differential equations and a chemical reaction network. The analysis contained

in this chapter focuses on the speed versus accuracy trade-off characterizing the DMMD strategy.

Additionally, we compare the performance of the DMMD strategy against the one of the DMVD

strategy.
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In Part III, which consists of Chapter 7 and Chapter 8, we validate the results obtained in the

previous part of this monograph by means of real-robot experiments.

Chapter 7 reports the results of robot experiments performed in a site-selection scenario. We

provide an implementation of the DMMD strategy that is tailored for the Kilobot robot and compare

the obtained performance with the predictions of the mathematical models defined in Chapter 6.

Chapter 8 reports the results of robot experiments performed in a collective perception scenario.

We support the generality of the modular design methodology proposed in this monograph by

providing implementations of both the DMVD strategy and the DMMD strategy that are tailored

for the e-puck robot. The analysis presented in this chapter is performed using both physics-based

simulations and experiments with real robots.

In Part IV, which consists of Chapter 9, Appendix A, and Appendix B, we conclude this monograph

and we provide the reader with two annexes.

Chapter 9 concludes this monograph. We summarize the research contributions described in this

monograph and discuss their relevance. Finally, we conclude by suggesting and discussing future

directions of research.

Appendix A provides the reader with a table summarizing the mathematical notation used

throughout the chapters of this monograph.

Appendix B provides a minimal background on the formalism of time-homogeneous Markov

chains as well as on the analysis of absorbing Markov chains.
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DISCRETE CONSENSUS ACHIEVEMENT IN ARTIFICIAL SYSTEMS

C
llective decision making refers to the phenomenon whereby a collective of agents makes a

choice in a way that, once made, the choice is no longer attributable to any of the individual

agents. This phenomenon is widespread across natural and artificial systems and is studied

in a number of different disciplines including psychology (Hirokawa and Poole, 1996; Moscovici and

Zavalloni, 1969), biology (Camazine et al., 2001; Conradt and List, 2009; Couzin et al., 2011), and

physics (Castellano et al., 2009; Galam, 2008), to name a few. In the case of robot swarms, Brambilla

et al. (2013) distinguish collective decision-making systems between consensus achievement and task

allocation. The first category encompasses systems that aim to establish an agreement among agents

on a certain matter. The second category deals with systems that aim to allocate agents, i.e., the

available workforce, to a set of tasks with the objective to maximize the performance of the collective.

In this chapter, we review the literature of swarm robotics with a focus on consensus achievement

problems. The interested reader may refer to (Brambilla et al., 2013; Gerkey and Matarić, 2004) for an

overview of task allocation approaches for robot swarms.

Consensus achievement problems can be further distinguished in two classes depending on the

granularity of the choices available to the swarm. When the possible choices of the swarm are finite

and countable, we say that the consensus achievement problem is discrete. An example of a discrete

problem is the selection of the shortest path connecting the entry of a maze with its exit (Szymanski

et al., 2006). Alternatively, when the choices of the swarm are infinite and measurable, we say that the

consensus achievement problem is continuous. An example of a continuous problem is the selection

of a common direction of motion by a swarm of agents flocking in a two- or three-dimensional

space (Reynolds, 1987). Both discrete and continuous consensus achievement problems have al-

ready received substantial attention from the scientific community. In the following, we provide

the reader with a summary of research contributions developed by different scientific communities
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CHAPTER 2. DISCRETE CONSENSUS ACHIEVEMENT IN ARTIFICIAL SYSTEMS

that are related to consensus achievement but are not of fundamental for the understanding of this

monograph.

Discrete consensus achievement problems have been studied in a number of different contexts.

The community of artificial intelligence focused on decision-making approaches for cooperation

in teams of agents applying methods from the theory of decentralized partially observable Markov

decision processes (Bernstein et al., 2002; Pynadath and Tambe, 2002). These approaches, however,

rely on sophisticated communication strategies and are suitable only for relatively small teams of

agents. Discrete consensus achievement problems have been considered also in the context of the

RoboCup soccer competition (Kitano et al., 1997). In this scenario, robots in a team are provided

with a predefined set of plays and are required to agree on which play to execute. Different decision-

making approaches have been developed to tackle this problem including centralized (Bowling et al.,

2004) and decentralized (Kok and Vlassis, 2003; Kok et al., 2003) play-selection strategies. Other

approaches to consensus achievement over discrete problems have been developed in the context

of sensor fusion to perform distributed object classification (Kornienko et al., 2005a,b). Finally,

discrete consensus achievement problems are also studied by the community of statistical physics.

Example studies include models of collective motion in one-dimensional spaces (Czirók and Vicsek,

2000; Czirók et al., 1999; Yates et al., 2009) that describe the marching bands phenomenon of locust

swarms (Buhl et al., 2006) as well as models of democratic voting and opinion dynamics (Castellano

et al., 2009; Galam, 2008).

Continuous consensus achievement problems have been primarily studied in the context of collective

motion, that is, flocking (Camazine et al., 2001). Flocking is the phenomenon whereby a collective

of agents moves cohesively in a common direction. The selection of a shared direction of motion

represents the consensus achievement problem. In swarm robotics, flocking has been studied in

the context of both autonomous ground robots (Ferrante et al., 2012; Nembrini et al., 2002; Spears

et al., 2004; Turgut et al., 2008) and unmanned aerial vehicles (Hauert et al., 2011; Holland et al.,

2005) with a focus on developing algorithms suitable for minimal and unreliable hardware. Apart

from flocking, the swarm robotics community focused on spatial aggregation scenarios where

robots are required to aggregate in the same region of a continuous space (Garnier et al., 2008;

Gauci et al., 2014; Soysal and Şahin, 2007; Trianni et al., 2003). The phenomenon of flocking is also

studied by the community of statistical physics (Szabó et al., 2006; Vicsek and Zafeiris, 2012) with

the aim of defining a unifying theory of collective motion that equates several natural systems.

A popular example study is provided by the minimalist model of self-driven particles proposed

by Vicsek et al. (1995). The community of control theory has intensively studied the problem of

consensus achievement (Mesbahi and Egerstedt, 2010) with the objective of deriving optimal control

strategies and prove their stability. In addition to flocking and tracking (Cao and Ren, 2012), the

consensus achievement problems studied in control theory include formation control (Ren et al.,

2005), agreement on state variables (Hatano and Mesbahi, 2005), sensor fusion (Ren and Beard, 2008)

as well as the selection of motion trajectories (Sartoretti et al., 2014). Finally, continuous consensus
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achievement problems have been also studied in the context of wireless sensor networks with the

aim of developing algorithms for distributed estimation of signals (Schizas et al., 2008a,b).

In the rest of this chapter, we focus on discrete consensus achievement scenarios and we overview a

number of research studies that proposed collective decision-making strategies specifically conceived

for robot swarms. First, we formally define the best-of-n problem, i.e., a general structure and logic

of a decision-making problem that characterizes several application scenarios in swarm robotics.

Successively, we review related studies by organizing them in different classes depending on the

approach adopted to design the collective decision-making strategy. Finally, we discuss the main

differences between the different design approaches.

2.1 The Best-of-n Problem

In the swarm robotics literature, a large number of research studies focused on a relatively few

application scenarios whose accomplishment requires the swarm to solve a consensus achievement

problem (e.g., the shortest-path problem in foraging scenarios, site-selection in aggregation sce-

narios). These application scenarios have been primarily tackled separately from each other with

an application-oriented perspective that resulted in either the development of domain-specific

methodologies or the design of black-box controllers (cf. Section 2.2). However, we believe that the

consensus achievement problems underlying these application scenarios share a similar logic and

structure and that they can be abstracted to a unique framework: the best-of-n problem.

From an abstract point of view, the best-of-n problem requires a swarm of agents to make a collective

decision over which option, out of n available options, offers the best alternative to satisfy the

current needs of the swarm. We use the generic term options to abstract domain-specific concepts

such as foraging patches, aggregation areas, or traveling paths, to name a few, that are related to

particular application scenarios. We refer to the different options of the best-of-n problem using

natural numbers, 1, . . . ,n, and we say that the swarm is required to find the option i ∈ {1, . . . ,n} with

highest quality. That is, each option i ∈ {1, . . . ,n} is characterized by an option quality ρi . Without loss

of generality, we consider the quality of each option i to be normalized in the interval (0;1] and ρi = 1

to represent the quality of the best option. Again, we use the term option quality as an abstraction

to represent domain specific features (e.g., the length of a path, the size of an aggregation spot, the

quality of food in a foraging patch).

Given a swarm of N agents, we say that the swarm has found a solution to a particular instance of the

best-of-n problem as soon as it makes a collective decision for any option i ∈ {1, . . . ,n}. A collective

decision is represented by the establishment of a large majority M ≥ (1−δ)N of agents that favor

the same option i , where δ, 0 ≤ δ¿ 0.5, represents a tolerance threshold set by the designer. In the

boundary case with δ= 0, we say that the swarm has reached a consensus decision, i.e., all agents

favor the same option i . It is worth noting two aspects of a collective decision. On the one hand, a

collective decision must satisfy the property of cohesion (Franks et al., 2013); that is, δ¿ 0.5 implies
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that the opinions within the swarm are not split over different options of the best-of-n problem. On

the other hand, a collective decision inherits the quality of the associated option i and, therefore, it

can be optimal, ρi = 1, or sub-optimal, ρi < 1.

In general, the quality of an option is a function of the features of the environment, or of characteris-

tics inherent to the swarm (e.g., the number of agents), or a combination of both factors and possibly

multiple attributes (Reid et al., 2015). We distinguish between two factor types that determine the

quality of a certain option. On the one hand, the option quality can be determined by an internal

preference of individual agents for specific attributes characterizing an option. For example, when

searching for a new nest site, honeybees instinctively favor candidate sites with a certain volume,

exposure, and height from the ground (Camazine et al., 1999) regardless of their distance from the

current nest location. This type of factors requires individual agents to directly evaluate the attributes

of a certain option and to estimate its quality. On the other hand, the option quality can be deter-

mined by an existing bias that does not generate internally to individual agents but from certain

features of the environment that indirectly influence the behavior of the swarm. We refer to this

type of factors as environmental bias. For example, when foraging, ants find the shortest traveling

path between a pair of locations as a result of pheromone trails being reinforced more often on the

shortest path (Goss et al., 1989). Ants do not measure the length of each path individually. However,

the length of a path indirectly influences the amount of pheromone laid over the path by the ants.

Environmental bias factors can be interpreted as defining the cost of each option; this environmental

cost can affect the selection of the best option by the swarm both positively, when higher quality

options have lower costs, or negatively, otherwise (cf. Chapter 3.2.2).

In the case in which the option quality is independent of internal agent preferences and of en-

vironmental bias, the best-of-n problem reduces to a symmetry-breaking problem (de Vries and

Biesmeijer, 2002; Hamann et al., 2012). In this case, any of the n available options of the decision-

making problem has the same quality and the goal of the swarm is to collectively choose one of the

available options. A symmetry-breaking scenario arises also as a special case of the other classes

when two or more options have equal and highest quality.

Finally, depending on the considered application scenario, the option quality is either dynamic

or static. That is, the value of ρi may be a function of time. This feature is particularly relevant to

guide the choices of designers when defining a collective decision-making strategy. When the option

quality is static, the decision-making problem is a non-recurring or rarely recurring problem. In

this case designers favor strategies that results in consensus decisions (Montes de Oca et al., 2011;

Parker and Zhang, 2009; Scheidler et al., 2016). Differently, when the option quality is a function

of time (Arvin et al., 2014; Parker and Zhang, 2010), designers favor strategies that result in a large

majority of agents in the swarm favoring the same option without converging to consensus. In this

case, the remaining minority of agents that are not aligned with the current swarm decision keep

exploring other options and possibly discover new ones. This approach makes the swarm adaptive to

changes in the environment (Schmickl et al., 2009b).

16



2.2. OVERVIEW OF CURRENT DESIGN APPROACHES

Figure 2.1: Taxonomy used to

review research studies that

consider a discrete consensus

achievement scenario. Research

studies are organized according

to their design approach (i.e.,

bottom-up and top-down) and to

how the control rules governing

the interaction among robots

have been defined.

top-down
design

bottom-up
design

design approaches

evolutionary
robotics AutoMoDeopinion-

based ad hoc

aggregation
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2.2 Overview of Current Design Approaches

The efforts of researchers in the last decade produced a vast literature of studies that spans over a

number of application scenarios, design approach, and resulting collective decision-making strate-

gies. In this section, we introduce a taxonomy that will be used in the rest of this chapter to review

the most important studies performed in the literature of swarm robotics (see Figure 2.1).

Particular instances of the best-of-n problem have been tackled using both bottom-up and top-

down design approaches (Crespi et al., 2008). In the bottom-up approach, the designer develops

the robot controller by hand, following a trial and error procedure where the robot controller is

iteratively refined until the swarm behavior fulfills the requirements. In the top-down approach,

the controller for individual robots is derived directly from a high-level specification of the desired

behavior of the swarm by means of automatic techniques, for example, as a result of an optimization

process (Bongard, 2013; Nolfi and Floreano, 2000) or of a compilation process (Werfel et al., 2014).

In the bottom-up approaches (see Section 2.3), the robot controller is usually developed by defining

different atomic behaviors that are combined together by the designer to obtain a probabilistic-finite

state machine. Each behavior of the robot controller is implemented by a set of control rules that

determines i) how a robot works on a certain task and ii) how it interacts with its neighbor robots.

We distinguish collective decision-making strategies designed by means of a bottom-up process in

two categories, cf. Figure 2.1, depending on how the control rules governing the interaction among

robots have been defined. In the first category, that we call opinion-based approaches, robots have an

explicit internal representation of their favored option, i.e., an opinion, and the role of the designer

is to define the control rules that determine how robots share and change their opinions. Opinion-

based approaches are used by the designer to tackle directly a consensus achievement problem

rather than specific application scenarios. In the second category, that we call ad hoc approaches,

we consider research studies where the control rules governing the interaction between robots have

been defined by the designer to address a specific application scenario. As opposed to opinion-

based approaches, control strategies belonging to this category are not explicitly designed to solve a
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consensus achievement problem; nonetheless, their execution by robots of the swarm results in a

collective decision. In this category, we consider research studies that focus on the problem of spatial

aggregation and on the problem of navigation in unknown environments.

In the top-down approaches (see Section 2.4), the robot controller is derived automatically from a

high-level description of the desired swarm behavior. We organize research studies adopting a top-

down approach in two categories: evolutionary robotics and automatic modular design. Evolutionary

robotics (Bongard, 2013; Nolfi and Floreano, 2000) relies on evolutionary computation methods to

obtain a neural network representing the robot controller. As a consequence, this design approach

results in black-box controllers. In contrast, automatic modular design (Francesca et al., 2014) relies

on optimization processes to combine behaviors chosen from a predefined set and obtain a robot

controller that is represented by a probabilistic finite-state machine.

2.3 Bottom-Up Design Approaches

In this section, we consider research studies that developed collective decision-making strategies

using a bottom-up design approach.

2.3.1 Opinion-Based Approaches

A large amount of research work has focused on the design of collective decision-making strategies

characterized by robots having an explicit representation of their opinions. We refer to these collec-

tive decision-making strategies as opinion-based approaches. Using this design approach, robots

are required to perform explicit information transfer (Ferrante, 2013), i.e., to purposely transmit

information represented by their opinion to their neighbors. As a consequence, a collective decision-

making strategy developed using an opinion-based approach requires robots to have communication

capabilities.

One of the first research studies developed with an opinion-based approach is that of Wessnitzer and

Melhuish (2003). The authors considered a scenario in which a swarm of robots needs to capture two

preys that are moving in the environment (i.e., the option of a best-of-2 problem). To do so, robots are

required to collectively choose which prey to hunt first. The authors proposed a collective decision-

making strategy based on the majority rule. Initially, each robot favors a prey chosen at random. At

each time step, robots apply the majority rule over their neighborhood in order to reconsider and

possibly change their opinions. In this case study, the two options of the decision-making problem

are characterized by the same quality and thus the decision-making problem requires the swarm to

break this symmetry.

Parker and Zhang (2009) developed a collective decision-making strategy by taking inspiration from

the house-hunting behavior of social insects (Franks et al., 2002). The authors considered a site-

selection scenario where a swarm of robots is required to discriminate between two illuminated

sites (i.e., the options of a best-of-2 problem) based on their level of brightness (i.e., option quality
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Figure 2.2: Schematic illustration of the double-

bridge problem (Goss et al., 1989). A source and a

destination areas are connected by 2 paths: path 2

(blue arrow) whose length is approximately twice

longer than path 1 (red arrow). The figure also

shows a swarm of 5 robots (green circles), 3 robots

with opinion 1 (red triangle) and 2 robots with

opinion 2 (blue triangle).

source

destination

path 1

path 2

defined by an internal preference factor). The proposed control strategy is characterized by three

phases. Initially, robots are in the search phase either exploring the environment or waiting in a

idle state. Upon discovery of a site and estimating its quality, a robot transits to the deliberation

phase. During the deliberation phase, a robot recruits other robots in the search phase by repeatedly

sending recruitment messages. The frequency of these messages is proportional to the option quality.

Meanwhile, robots estimate the popularity of their favored option and use this information to test if

a quorum has been reached. Upon detection of a quorum, robots enter the commitment phase and

eventually relocate to the chosen site. The strategy proposed by Parker and Zhang builds on a direct

recruitment and a quorum-sensing mechanism inspired by the house-hunting behavior of ants of

the Themnothorax species. Later, Parker and Zhang (2011) considered a simplified version of this

strategy and proposed a rate equation model to study its convergence properties.

Parker and Zhang (2010) proposed a collective decision-making strategy for unary decisions and

applied it to the task sequencing problem. In the task sequencing problem, a swarm of robots

needs to work sequentially on different tasks. The robots are required to collectively agree on the

completion of a certain task prior to begin working on the next task. The task sequencing problem is

a best-of-2 problem whose options (i.e., “task complete” or “task incomplete”) are characterized by

dynamic qualities (i.e., the level of completeness of a task changes over time). The authors proposed

a quorum-sensing strategy to address this problem. Robots working on the current task monitor

its level of completion (and, therefore, the option quality is due to an internal preference factor);

when a robot recognizes the completion of the task, it enters the deliberation phase during which

it asks its neighbors if they recognized too the completion of the task. Once a deliberating robot

perceives a certain number of neighbors in the deliberation phase (i.e., the quorum), it moves to

the committed phase during which it sends commit messages to inform neighbor robots about the

completion of the current task. Robots in the deliberation phase that receive a commit message

enter the committed phases and responds with an acknowledgement message. Committed robots

measure the time passed since the last received acknowledgement and, after a certain time, they

begin working on the next task.

Rather than mimicking biological systems, Montes de Oca et al. (2011) took advantage of the the-

oretical framework developed in the field of opinion dynamics (Krapivsky and Redner, 2003). The
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authors extended the concept of latent voters introduced by Lambiotte et al. (2009) (i.e., voters

stop participating to the decision-making process for a stochastic amount of time after changing

opinion) and proposed a collective decision-making strategy referred to as majority rule with differ-

ential latency. The proposed strategy is applied to a scenario inspired by the popular double-bridge

problem (Goss et al., 1989). Robots in a swarm need to transport objects between two locations

(i.e., source and destination in Figure 2.2) connected by two paths of different length (i.e., option

quality). Objects are too heavy to be transported by single robots and require a team of 3 robots.

During the collective decision-making process, robots repeatedly form teams at the source location.

Within a team, robots share with each other their opinion for their favored path and then apply

the majority rule (Galam, 2008) to determine which path the team should traverse. Then, the team

travels back-and-forth along the chosen path before dismantling once back in the source location.

Using this strategy, robots do not measure the length of each path; in contrast, the length of a path

indirectly biases the frequency of participation of robots to the decision-making process taking place

in the source location (i.e., the option quality is defined by an environmental bias). The majority

rule with differential latency has been the subject of an extensive theoretical analysis that includes

deterministic macroscopic models (Montes de Oca et al., 2011), master equations (Scheidler, 2011),

statistical model checking (Massink et al., 2013), and Markov chains (see Chapter 4).

The same foraging scenario investigated by Montes de Oca et al. (see Figure 2.2) has been the subject

of other research studies. In (Brutschy et al., 2012; Scheidler et al., 2016), the authors extended the

control structure underlying the majority rule with differential latency introducing the k-unanimity

rule—a novel decision-making mechanism for individual robots. Instead of forming teams and

applying the majority rule within each team, robots have a memory of size k where they store the

opinions of other robots as they encounter them. A robot using the k-unanimity rule changes its

current opinion in favor of a different option only after consecutively encountering k other robots

all favoring that other option. The primary benefit of the k-unanimity rule is that it allows the

designer to adjust the speed and the accuracy of the collective decision-making strategy by means of

the parameter k (Scheidler et al., 2016). The authors studied the dynamics of the k-unanimity rule

analytically when applied to decision-making problems with up to n = 3 options using a deterministic

macroscopic model and a master equation.

Reina et al. (2014, 2015a,b) proposed a collective decision-making strategy inspired by theoretical

studies that unify the decision-making behavior of social insects with that of neurons in vertebrate

brains (Marshall et al., 2009; Pais et al., 2013; Seeley et al., 2012). The authors considered the problem

of finding the shortest path connecting a pair of locations in the environment. In their strategy, robots

can be either uncommitted, i.e., without any opinion favoring a particular option, or committed to

a certain option, i.e., with an opinion. Uncommitted robots might discover new options in which

case they become committed to the discovered option. Committed robots can recruit other robots

that have not yet an opinion (i.e., direct recruitment); inhibit the opinion of robots committed to a

different option making them become uncommitted (i.e., cross-inhibition); or abandon their current
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opinion and become uncommitted (i.e., abandonment). In (Reina et al., 2014, 2015a), the authors

studied the proposed strategy in a foraging scenario with two alternative foraging patches (i.e., the

option of a best-of-2 problem); the quality of each option is determined by their distance from a

central retrieval area which indirectly influence the behavior of the swarm (i.e., environmental bias).

In Reina et al. (2015b), the authors studied the proposed strategy in a different setup: foraging patches

are characterized by a quality that the robot can measure (i.e., the internal preference factor) and

are positioned at different distances in a way that the best foraging patch is the farthest (i.e., an

environmental bias factor that influences negatively the decision-making process). The proposed

strategy is supported by both deterministic and stochastic mathematical models (i.e., ordinary

differential equations and chemical reaction networks) that link the microscopic parameters of the

system to the macroscopic dynamics of the swarm.

2.3.2 Ad Hoc Approaches

In this section, we consider a number of research studies that resulted in the development of control

strategies for specific application scenarios, that is, spatial aggregation and navigation in unknown

environments. As opposed to opinion-based approaches, the objective of the designers of these

control strategies is not to tackle a consensus achievement problem but to address a specific need

of the swarm (i.e., aggregation or navigation). Nonetheless, the control strategies reviewed in this

section provide a swarm of robots with collective decision-making capabilities.

2.3.2.1 Aggregation-Based Approaches

Aggregation-based approaches are control strategies that make the robots of the swarm aggregate in a

common region of the environment forming a cohesive cluster. The opinion of a robot is represented

implicitly by its position in space. The primary advantage of an aggregation strategy is represented by

the fact that the information regarding a robot opinion can be implicitly transferred to nearby robots

without the need of communication (Ferrante, 2013; Sumpter, 2010, Chapter 3). Implicit information

transfer can be implemented, for example, by means of neighbors observation.

Garnier et al. (2009) considered a behavioral model of self-organized aggregation and studied the

emergence of collective decisions. The authors consider an aggregation scenario, cf. Figure 2.3, where

robots are presented with two shelters (i.e., the options of a best-of-2 problem) of different area

(i.e., option quality) and are required to select one shelter under which the swarm should aggregate.

The proposed control strategy is inspired by the behavior of young larvae of the German cockroach,

Blattella germanica, (Jeanson et al., 2003, 2005). Robots explore their environment by executing a

correlated random walk. When a robot detects the boundary of the arena, it pauses the execution of

the random walk and begins the execution of a wall-following behavior. The wall-following behavior

is performed for an exponentially distributed period of time after which the robot turns randomly

towards the center of the arena. When encountering a shelter, the robot decides whether to stop

or not as well as whether to stop for a short or a long period of time as a function of the number of
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Figure 2.3: Schematic illustration of the aggrega-

tion scenario considered in (Campo et al., 2010a;

Garnier et al., 2009). The environment is repre-

sented by a circular arena enclosed by a wall

(blue line). The arena is provided with 2 shelters

of different size: shelter 1 (red circle) has an area

approximately twice as smaller than that of shel-

ter 2 (blue circle). The figure also shows a swarm

of 4 robots (green circles with purple triangles)

wondering around the environment.

1 2

nearby neighbors. Given the number of perceived neighbors, this function returns the probability for

a robot to stop and its value has been tuned by the designer to favor the selection of the shelter of

bigger area (i.e., shelter 2 in Figure 2.3). Garnier et al. (2009) studied the proposed strategies in two

different setups. In the first setup, the aggregation problem requires to break the symmetry between

two shelters of equal size. In the second setup, one shelter is larger than the other. The option quality

is determined by an internal preference factor (i.e., the number of perceived neighbors which carries

information on the shelter size) and an environmental bias factor (i.e., the shelter size, on the grounds

that larger shelters are easier to discover by robots and are of lesser cost). Correll and Martinoli (2011)

studied this collective behavior with both Markov chains and difference equations and showed that a

collective decision arises only when robots move faster than a minimum speed and are characterized

by a sufficiently large communication range.

Campo et al. (2010a) considered the same aggregation scenario of (Garnier et al., 2009) and developed

a control strategy taking inspiration from theoretical studies of the aggregation behaviors of cock-

roaches (Amé et al., 2006). In their strategy the robot controller is composed of 3 phases: exploration,

stay under a shelter, and move back to the shelter. Initially, the robots explore the environment by

performing a random walk. Once a robot discovers a shelter, it moves randomly within the shelter’s

area and estimates the density of other robots therein. If during this phase, a robot accidentally exits

the shelter, it performs a U-turn aimed at reentering the original shelter. Differently from (Garnier

et al., 2009), the robots directly decide whether to stay under a shelter or to leave and return to the

exploration phase. This decision is stochastic and the probability to leave the shelter is given by a

sigmoid function of the estimated density of robots under the shelter. Contrarily to (Garnier et al.,

2009), the authors tuned the parameters of the sigmoid function with the aim to favor the selection

of the smallest shelter that can host the entire swarm (e.g., shelter 1 in Figure 2.3). As a consequence,

the option quality is still determined by a combination of internal preference and environmental bias

factors as in (Garnier et al., 2009) but, this time, the environmental bias factor (i.e., the size of the

shelter) hampers the discovery of the best option (shelter 1 in Figure 2.3 by the robots of the swarm.
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A similar aggregation strategy was proposed later by Brambilla et al. (2014) and studied in a binary

symmetry-breaking setup. Differently from the sigmoid function used in (Campo et al., 2010a), the

authors considered a linear function of the number of neighbors to determine the probability with

which a robot decides whether to leave a shelter or not.

Kernbach et al. took inspiration from the thermotactic aggregation behavior of young honeybees,

Apis mellifera L., (Grodzicki and Caputa, 2005), and proposed the BEECLUST algorithm (Kernbach

et al., 2009; Schmickl et al., 2009b). The goal of a swarm executing the BEECLUST algorithm is to

aggregate around the brightest spot in the environment. For this purpose, a robot moves randomly in

the environment; upon encountering another robot, the robot stops moving and measures the local

intensity of the ambient light. After waiting for a period of time proportional to the measured light,

the robot resumes a random walk. In (Schmickl et al., 2009b), the authors studied the BEECLUST

algorithm in a setup characterized by two spots (i.e., the options of a best-of-2 problem) of different

brightness. The option quality is defined by an internal preference factor (i.e., the brightness mea-

sured by each robot) and is also positively influenced by an environmental bias factor (i.e., brighter

spots are also characterized by a bigger area which make them easier to discover by the robots of the

swarm). Later, Hamann et al. (2012) studied the BEECLUST algorithm in a binary symmetry-breaking

setup where both spots are characterized by the same level of brightness. The BEECLUST algorithm

has been subject of an extensive theoretical analysis that includes both spatial and non-spatial

macroscopic models (Hamann, 2013; Hamann et al., 2012; Hereford, 2010; Schmickl et al., 2009a).

While the resulting decision-making process is robust, it is particularly difficult to model due to the

complex dynamics of cluster formation and cluster breakup (Hamann et al., 2012).

More recently, Arvin et al. (2012, 2014) extended the original BEECLUST algorithm by means of a

fuzzy controller. In the original BEECLUST algorithm, after the expiration of the waiting period, a

robot chooses randomly a new direction of motion. Contrarily, using the extension proposed by Arvin

et al., the new direction of motion is determined using a fuzzy controller that maps the magnitude

and the bearing of the input signal (in their case, a sound signal) to one out of five predetermined

directions of motion (i.e., left, slightly-left, straight, slightly-right, right). The authors studied the

extended version of the BEECLUST algorithm in a dynamic, binary decision-making problem defined

by two aggregation areas; each area is identified by a sound emitter and the sound magnitudes of

the two areas are different and vary over time. As in (Schmickl et al., 2009b) where the option quality

was determined by the level of brightness, the size of each aggregation area is proportional to the

magnitude of the emitted sound. Consequently, the option quality is determined by an internal

preference factor and is facilitated by an environmental bias factor. This extension has been shown

to improve the aggregation performance of the BEECLUST algorithm (i.e., clusters last for a longer

period of time) as well as its robustness to noisy perceptions of the environment.

Mermoud et al. (2010) considered an application scenario where robots of the swarm are required

to monitor a certain environment, searching and destroying undesirable artifacts (e.g., pathogens,

pollution). Specifically, artifacts correspond to colored spots that are projected on the surface of the
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arena and can be of two types: “good” or “bad”. The author proposed an aggregation-based strategy

that allows robots to collectively perceive the type of a spot and to destroy those spots that have been

perceived as bad while safeguarding good spots. Each robot explores the environment by performing

a random walk and avoiding obstacles. Once a robot enters a spot, it measure the light intensity to

determine the type of the spot. Successively, the robot moves inside the spot area until it detects a

border; at this point, the robot decides with a probability that depends on the estimated spot type

whether to leave the spot or to remain inside it by performing a U-turn. Within the spot, a robot stops

moving and starts to form an aggregate as soon as it perceives one or more other robots evaluating

the same spot. When the aggregate reaches a certain size (which is predefined by the experimenter),

the spot is collaboratively destroyed and robots resume the exploration of the environment. The

achievement of consensus is detected using an external tracking infrastructure which also emulates

the destruction of the spot. The scenario proposed by Mermoud et al. corresponds to an infinite series

of best-of-2 decision-making problem (i.e., one for each spot) that are tackled in parallel by different

subsets of agents of the swarm (i.e., different robot aggregates). The quality of each spot is determined

by an internal preference factor that is represented by the measured light. The proposed strategy has

been derived following a bottom-up, multi-level modeling methodology that encompasses physics-

based simulations, chemical reaction networks, and continuous ODE approximation (Mermoud

et al., 2010, 2014).

2.3.2.2 Navigation-Based Approaches

Navigation-based approaches are control strategies that allow a swarm of robots to navigate an

environment towards one or more regions of interest. Navigation algorithms have been extensively

studied in the swarm robotics literature. However, not all of them provide a swarm with collective

decision-making capabilities. For examples, navigation algorithms based on hop-count strategies

have been proposed to find the shortest-path connecting a pair of locations (Payton et al., 2001;

Szymanski et al., 2006). However, these strategies are incapable of selecting a unique path when there

are two or more paths with equal length and thus fail to make a collective decision (Campo et al.,

2010b). From a broader perspective, navigation-based approaches include also flocking whereby

robots have to agree on a common direction of motion (Ferrante et al., 2012; Nembrini et al., 2002;

Spears et al., 2004; Turgut et al., 2008). However, as discussed in the introduction of this chapter, these

control strategies are generally studied in experimental setups corresponding to continuous con-

sensus achievement problems (i.e., best-of-∞). In the following, we consider navigation algorithms

applied to discrete consensus achievement problems.

Schmickl and Crailsheim took inspiration from the trophallactic behavior of honeybee swarms, Apis

mellifera L. (Camazine et al., 1998; Korst and Velthuis, 1982), and proposed a virtual gradient and

navigation strategy that provides a swarm of robots with collective decision-making capabilities.

Trophallaxis refers to the direct, mouth-to-mouth exchange of food between two honeybees (or

other social insects). The authors studied the proposed strategy in a binary aggregation scenario
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with two spots of different size (Schmickl et al., 2007) and in a foraging scenario reminiscent of the

double-bridge problem (Schmickl and Crailsheim, 2006, 2008). Robots explore their environment

searching for resources (i.e., aggregation spots, foraging patches). Once a robot finds a resource,

it loads a certain amount of virtual nectar. As the robot moves in the environment, it spreads and

receives virtual nectar to and from other neighboring robots. This behavior allows robots to create a

virtual gradient of nectar that can be used by robots to navigate back and forth a pair of locations

following the shortest of two paths or to orient towards the largest of two aggregation areas. In

both cases, the quality of each option is determined solely by an environmental bias factor (i.e.,

the length of a path and the size of the aggregation area) which influences the rate of diffusion of

virtual nectar. This trophallaxis-inspired strategy has been studied later using models of Brownian

motion (Hamann, 2010; Hamann and Wörn, 2008). The authors defined both a Langevin equation (i.e.,

a microscopic model) to describe the motion of an individual agent and a Fokker–Planck equation

(i.e., a macroscopic model) to model the motion of the entire swarm finding a good qualitative

agreement with simulated dynamics of the trophallaxis-inspired strategy.

Garnier et al. (2007b) studied a robot control strategy that closely mimics the pheromone-laying

behavior characterizing foraging in many ant species (Deneubourg and Goss, 1989; Goss et al., 1989).

The authors considered a foraging scenario similar to the double-bridge problem where two areas

are connected by a pair of paths of equal length (i.e., the options of a best-of-2 symmetry-breaking

problem). During robot experiments, pheromone is emulated by means of an external tracking

infrastructure interfaced with a light projector that manages both the laying of pheromone and

its evaporation. The robots can perceive pheromone trails by means of a pair of light sensors and

can recognize the two target areas by means of IR beacons. In the absence of a trail, a robot moves

randomly in the environment avoiding obstacles. When perceiving a trail, the robot starts following

the trail and depositing pheromone which evaporates with an exponential decay. In their study, the

authors show that using this strategy the robots of a swarm are capable to make a consensus decision

for one of the two paths. However, the implementation of pheromone-inspired mechanisms on a

robotic platform (Fujisawa et al., 2014) still represents a challenge with current technologies which

prevents its employment in real-world robotic applications.

Campo et al. (2010b) proposed a solution to the above limitations of pheromone-inspired mecha-

nisms for the case of chain-based navigation systems. In their research work, the robots of the swarm

form a pair of chains leading to 2 different locations. Each chain identifies a path and each path has

different length (i.e., 2 options with quality defined by an environmental bias factor). The authors

proposed a collective decision-making strategy to select the shortest of the 2 paths that is based on

virtual pheromones. Robots in a chain can communicate with their 2 immediate neighbors forming

a communication network. Virtual ants navigate through the network and lay virtual pheromone

eventually leading to the identification and selection of the shortest path.

Gutiérrez et al. (2009b) proposed a navigation strategy called social odometry that allows a robot

of a swarm to keep an estimate of its current location with respect to a certain area of interest.
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A robot has an estimate of its current location and a measure of confidence about its belief that

decreases with the traveled distance. Upon encountering a neighboring robot, they both exchange

their location estimates and confidence measures. Successively, each of the two robots updates its

current location estimate by averaging its current location with that of its neighbor weighted by the

respective measures of confidence. Using social odometry, Gutiérrez et al. (2010) studied a foraging

scenario characterized by two foraging patches (i.e., the options of a best-of-2 problem) positioned at

different distance (i.e., option quality) from a central retrieval area. The authors find that the weighted

mean underlying social odometry favors the selection by the swarm of the closest foraging patch

due to the fact that robots traveling to that patch have higher confidence in their location estimates.

In this strategy, the option quality is determined by a combination of an internal preference factor

with an environmental bias factor. The internal preference is represented by the level of confidence

because it is derived by each robot from its own measured distance. The environmental bias is

represented by the distance of a patch from the retrieval area because patches that are closer to the

retrieval area are easier to discover by robots and are therefore of lesser cost. Due to the presence of

noise, social odometry allows a swarm of robots to find consensus on a common foraging patch also

in a symmetric setup where the two patches are positioned at the same distance from the retrieval

area.

2.4 Top-Down Design Approaches

In this section, we consider research studies that developed collective decision-making strategies

using a top-down design approach. All research studies reviewed below make use of automatic

optimization approaches to design robot controllers for specific application scenarios.

2.4.1 Evolutionary Robotics

As for most collective behaviors studied in swarm robotics (Brambilla et al., 2013), collective decision-

making systems have been also developed by means of automatic design approaches. The typical

automatic design approach is represented by evolutionary robotics (Bongard, 2013; Nolfi and Flo-

reano, 2000) where optimization methods from evolutionary computation (Back et al., 1997) are

used to evolve a population of agent controllers following the Darwinian principles of recombina-

tion, mutation, and natural selection. Generally, the individual robot controller is represented by

an artificial neural network that maps the sensory perceptions of a robot (i.e., input of the neural

network) to appropriate actions of its actuators (i.e., output of the neural network). The parameters

of the neural network are evolved to tackle a specific application scenario by opportunely defining a

fitness function on a per-case base; the fitness function is then used to evaluate the quality of each

controller and to drive the evolutionary optimization process.

Evolutionary robotics has been successfully applied to address a number of collective decision-

making scenarios. Trianni and Dorigo (2005) evolved a collective behavior that allows a swarm of
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physically-connected robots to discriminate the type of holes present on the arena surface based on

their perceived width and to decide weather to cross the hole (i.e., the hole is sufficiently narrow to

be safely crossed) or to avoid it by changing the motion direction (i.e., the hole is too risky to cross).

Similarly, Trianni et al. (2007) considered a collective decision-making scenario where a swarm of

robots need to collectively evaluate the surrounding environment and determine weather there are

physical obstacles that requires cooperation in the form of a self-assembly or, alternatively, if robots

can escape obstacles independently of each other.

Francesca et al. (2012, 2014) applied methods from evolutionary robotics to a binary aggregation

scenario similar to that studied in (Campo et al., 2010a; Garnier et al., 2008, 2009) but with shelters

of equal size (i.e., a symmetry-breaking problem). The authors compared the performance of the

evolved controller with theoretical predictions of existing mathematical models (Amé et al., 2006);

however, their results show a poor agreement between the two models due to the fact that artifi-

cial evolution was capable to exploit specific features (e.g., geometric symmetries) present in the

simulated environment.

Evolutionary robotics can be successfully applied to the design of collective decision-making systems.

However, its use as a design approach suffers of several drawbacks. For example, artificial evolution

is a computationally intensive process and the designer is required to perform it for each specific

scenario. Artificial evolution may suffer from over-fitting whereby a successfully evolved controller

performs well in simulation but poorly on real robots. This phenomenon is also known as the reality

gap (Jakobi et al., 1995; Koos et al., 2013). Moreover, artificial evolution does not provide guarantees on

the optimality of the resulting robot controller (Bongard, 2013). The robot controller, being ultimately

a black-box model, is difficult to model and analyze mathematically (Francesca et al., 2012). As a

consequence, in general the designer cannot maintain and improve the designed solutions (Matarić

and Cliff, 1996; Trianni and Nolfi, 2011).

2.4.2 Automatic Modular Design

More recently, Francesca et al. (2014) proposed an automatic design method, called AutoMoDe,

that provides a white-box alternative to evolutionary robotics. The robot controllers designed using

AutoMoDe are behavior-based and have the form of a probabilistic finite-state machine. Robot

controllers are obtained by combining a set of predefined modules (e.g., random walk, phototaxis)

using an optimization process that, similarly to evolutionary robotics, is driven by a fitness function

defined by the designer for each specific scenario.

Using AutoMoDe, Francesca et al. (2014) designed an aggregation strategy for the same scenario as

in (Campo et al., 2010a; Garnier et al., 2008, 2009). In their experimental setup, the collective decision-

making problem corresponds to a binary symmetry-breaking scenario where the swarm needs to

select one of two equally good aggregation spots. The resulting robot controller proceeds as follow. A

robot starts in the attraction state in which its goal is to get close to other robots. When perceiving an

aggregation spot, the robot stops moving. Once stopped, the robot has a fixed probability for unit of
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time to return to the attraction state and start moving again. Additionally, the robot may transit to the

attraction state in the case in which it has been pushed out of the aggregation spot by other robots.

2.5 Discussion

In this chapter, we introduced the reader to several aspects of collective decision making. We fol-

lowed Brambilla et al. (2013) and organized collective decisions in consensus achievement and

task allocation depending on the purpose of the swarm. We showed how decision-making prob-

lems requiring the achievement of consensus can be further distinguished in two classes, discrete

and continuous, depending on the granularity of the available options. For the case of discrete

consensus achievement, we formally defined the structure of the best-of-n problem and showed

how this general framework covers a large number of specific application scenarios. Finally, we

reviewed the principal research contributions in swarm robotics that focus on discrete consensus

achievement problems. We divided our literature review in two parts, bottom-up (see Section 2.3)

and top-down (see Section 2.4) design approaches. For each part, we further distinguished collective

decision-making systems and obtained five different categories: opinion-based, aggregation-based,

navigation-based, evolutionary robotics, and automatic modular design.

Aggregation-based approaches to collective decision making have the advantage of functioning with-

out the need of communication by exploiting implicit information transfer. However, aggregation as

a means of communicating one own opinion provides a viable solution only when the options of

the best-of-n problem are clearly separated in space from each other. Similarly, navigation-based

approaches can be applied only to scenarios in which the discrete consensus achievement problem

requires the swarm to find the shortest-path connecting different locations. In contrast, automatic

design approaches as evolutionary robotics and automatic modular design have the potential to be

applied to a larger set of consensus achievement scenarios. Evolutionary robotics, however, might

suffer from the reality-gap between simulated and real robots. Moreover, it is difficult to derive predic-

tive mathematical models for systems designed using artificial evolution. This latter limitation might

also affect automatic modular design depending on the complexity of the resulting probabilistic

finite-state machines. Opinion-based approaches offer a more general design methodology that can

be applied to different application scenarios. This higher level of generality, however, requires explicit

information transfer and can be obtained only at the cost of robot-to-robot communication.

As introduced in Section 2.1, the definition of quality of an option in the best-of-n problem de-

pends on the specific application scenario. Nonetheless, we showed that the option quality can be

determined by a combination of factors of two types, internal preference of individual agents and

environmental bias indirectly affecting the behavior of the swarm. Figure 2.4 illustrates how different

combinations of internal preference and environmental bias factors determine the best option of

the best-of-n problem. When the option quality is independent of internal agent preferences and

of environmental bias, the best-of-n problem reduces to a symmetry-breaking problem. When the
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Figure 2.4: Classification of consen-

sus achievement scenarios corre-

sponding to the best-of-n problem.

The schema illustrates how different

combinations of internal preference

factors and environmental bias fac-

tors influences the best option of the

decision-making problem.
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option quality is independent of internal agent preferences and is solely subject to environmental

bias, the decision-making problem reduces to finding the option of minimum cost and can be tackled

using collective decision-making strategies that do not require agents to directly measure the quality

of each option. In the opposite case, i.e., when the option quality depends only on internal preference

factors, the best option corresponds to that with highest quality as directly measured by individual

agents. Finally, when both factor types coexist, we distinguish between scenarios where the relation

between environmental bias and internal preference factors is positive and scenarios in which it

is negative. In the first case the best option corresponds to that with highest quality as measured

by individual agents which has also minimum cost. In the second case, environmental bias factors

influence negatively the option quality and the decision-making problem requires a compromise

between option quality and cost.

The taxonomy illustrated in Figure 2.4 provides us with different means to interpret the swarm

robotics literature. We conclude this chapter by reorganizing the research studies reviewed in Sec-

tion 2.3 and Section 2.4 according to this new taxonomy as shown in Table 2.1. We distinguish

research studies in five different categories determined by the specific coupling between internal

preference factors and environmental bias factors that shapes the best-of-n problem. For each cat-

egory, we further group the literature in separate lines of research, where each line of research is

centered around a particular collective decision-making strategy. In our endeavor, we could not

assign some research studies based on evolutionary robotics to a distinct category owing to the

difficulty of understanding the precise functioning of the underlying neural networks. The first two

categories in Table 2.1, namely, symmetry-breaking problems and problems where the option quality

is defined only by environmental bias factors, are covered by a large number of research studies.

Moreover, these studies are distributed in five separate lines of research for each category. Differ-

ently, the swarm robotics literature has considered a significantly smaller number of studies that

focused on the best-of-n problem in the case in which the option quality is determined by an internal
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Table 2.1: Classification of the swarm robotics literature according to the combination of factors that

determines the quality of the options of the best-of-n problem.

Internal preference Environmental bias Research lines/studies

No

No

i. Wessnitzer and Melhuish (2003)

ii. Garnier et al. (2007b)

iii. Garnier et al. (2009); Brambilla et al. (2014)

iv. Hamann et al. (2012); Hamann (2013)

v. Francesca et al. (2012, 2014)

Yes

i. Schmickl and Crailsheim (2006, 2008); Schmickl

et al. (2007); Hamann and Wörn (2008); Hamann

(2010)

ii. Campo et al. (2010b)

iii. Montes de Oca et al. (2011); Scheidler (2011);

Massink et al. (2013)

iv. Brutschy et al. (2012); Scheidler et al. (2016)

v. Reina et al. (2014, 2015a)

Yes

No
i. Parker and Zhang (2009, 2010, 2011)

ii. Mermoud et al. (2010, 2014)

Yes, positive bias

i. Garnier et al. (2009)

ii. Schmickl et al. (2009a,b); Arvin et al. (2012, 2014)

iii. Gutiérrez et al. (2010)

Yes, negative bias
i. Campo et al. (2010a)

ii. Reina et al. (2015b)

preference factor. The majority of these studies considered application scenarios where the option

quality is either independent of environmental bias factors or it is positively influenced by them. Note

that collective decision-making strategies developed for the former of these two categories directly

apply to the latter due to the positive influence of environmental bias factors. The last category,

i.e., research studies considering application scenarios where the internal agent preferences are

negatively influenced by environmental biases, is the less developed area of study in the literature

of discrete consensus achievement with only two research contributions. From the perspective of

the designer, this category represents application scenarios with the highest level of complexity that

require design solutions able to compensate the negative influence of environmental bias.
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R
obot swarms frequently face discrete consensus achievement scenarios and need to make

a collective decision with the purpose to accomplish more complex tasks. Although these

applications scenarios are widespread and a consistent literature of swarm approaches exists

(as described in Chapter 2), they have been primarily addressed with domain-specific methodologies.

Many of them, however, share a common structure and can be cast in the framework of the best-

of-n problem introduced in Chapter 2.1. Rather than tackling these scenarios individually, we aim

at defining a general design methodology that allows us to conceive collective decision-making

strategies at will (e.g., with a desired compromise of speed and accuracy). Strategies that can be

transferred across different problem domains and that have guaranteed and predictable performance.

To do so, we leverage on the idea that collective decision-making strategies can be decomposed

into simple building-blocks and we propose a modular design approach that allows the designer to

systematize the selection of each module, the derivation of predictive mathematical models, and the

analysis of the swarm performance. We provide a high level perspective of collective decision-making

strategies and identify the fundamental processes that characterize their functioning. Successively,

we propose a minimal modular control structure of a collective decision-making strategy and define

a set of guidelines and constraints to support the design of specific modules. Finally, we proceed by

defining a general modeling methodology and show how this methodology can be instantiated to

study macroscopic properties of specific strategies.

3.1 Fundamental Mechanisms of a Strategy

At a high level of abstraction, a collective decision-making strategy is a set of control rules that

enables a swarm of agents to operate as a compact information processing entity with problem-

solving capabilities. The swarm gathers and processes the information available in the environment
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Figure 3.1: Illustration of the

swarm as an information pro-

cessing entity transforming the

information from the environ-

ment into a collective decision

through the coupling between

information gathering and in-

formation pooling.

information 
gathering

information 
pooling

information collective decision

in order to make a decision on a certain matter. When facing the best-of-n problem, each agent in the

swarm has its own preference for a certain option i , i ∈ {1,2, . . . ,n}, that we call the agent’s opinion.

Throughout the entire decision-making process, the agents interact with each other and with the

environment by executing the control rules prescribed by the collective decision-making strategy. As

a result, the agents repeatedly reconsider and change their opinion for the best option eventually

converging to a collective decision where the totality or a large majority of them share the same

opinion (cf. Chapter 2.1).

The distributed information processing performed by the agents of the swarm during the collective

decision-making process consists of two distinct and simultaneous processes. Campo et al. (2010a)

argue that:

“The decision-making process is usually a combination of exploration and information

pooling that leads the group to focus its activity on one or a subset of all the available

resources”.

We adopt a slightly different terminology and we refer to these processes as information gathering

and information pooling. At the swarm level, information gathering and information pooling are

highly coupled processes simultaneously performed by different agents of the swarm.

• Information gathering is the process through which the agents explore the environment, dis-

cover alternative options of the decision-making problem, and individually collect information

about the quality of these options.

• Information pooling is the process through which the agents spread throughout the swarm

the information gathered about each option of the decision-making problem, sample the

information of other members of the swarm and use it to reconsider their opinion.

Additional and updated information keeps flowing into the information processing entity (i.e.,

the swarm) during the entire decision-making process until it reaches a collective decision (see

Figure 3.1). At the agent level, information processing and information pooling are instead performed

sequentially by individual agents at different times.
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+

+

A B

positive feedback loop

(a)

-

+

A B

negative feedback loop

(b)

Figure 3.2: Illustration of different feedback loops. Figure (a) shows a positive feedback loop: an

increase in the frequency of events A generates an increase of events B which further amplifies the

frequency of events A and results in a snowball effect. Figure (b) shows a negative feedback loop: the

increase in the events A has the effect to increase the frequency of events B which in turns inhibits

the generation of events A and stabilizes the system.

When executing a collective decision-making strategy, the agents interact with each other and

with their environment by repeatedly applying a few control rules. A subset of these control rules,

henceforth referred to as the individual decision-making mechanism, allows the agents to reconsider

and possibly change their current opinion about the best option of the decision-making problem.

The repeated application of the individual decision-making mechanism by the agents of the swarm

generates a positive feedback loop that leads the swarm towards one of possibly many ordered

states (Garnier et al., 2007a; Şahin, 2005) representing different collective decisions. In general,

positive feedback loops are generated by processes showing an autocatalytic behavior (Camazine

et al., 2001; Deneubourg and Goss, 1989). That is, from a process whose result is a catalyst event

for the original process itself and determines a non-linear amplification of the resulting events (see

Figure 3.2a). Due to its autocatalytic nature, positive feedback initially builds up slowly over time by

amplifying the effects of random fluctuations (e.g., a marginal majority in the opinions of the swarm

favoring a certain option); then, once the process reaches a certain critical point, positive feedback

increases non-linearly producing a cascade effect (e.g., a fast build-up of a majority of opinions)

until experiencing a slowdown due to the depletion of the catalyst events and eventually vanishing

when the system converges to an ordered state (e.g., consensus). In a collective decision-making

strategy, the opinions spread by agents during information pooling and their application of the

individual decision-making mechanism function as the catalysts of a self-enhanced diffusion of

opinions among other members of the swarm and generates the positive feedback crucial to establish

a collective decision.

In the absence of other phenomena, a swarm of agents executing a collective decision-making

strategy characterized only by positive feedback loops would converge to a stable consensus decision.

There are two phenomena that might prevent the swarm from reaching consensus and make it

converge to a large majority. This phenomena are negative feedback, that results from the interactions
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among agents and between agents and the environment, and intrinsic noise, that generates internally

to individual agents. Negative feedback is an inhibitory process that counterbalances the effects of

positive feedback and leads the system to a homeostatic stable state (Schaber et al., 2013; Sumpter,

2006). While positive feedback amplifies random fluctuations resulting in an explosive growth of

the system, negative feedback has the opposite effect (see Figure 3.2b): it stabilizes the system by

inhibiting the random fluctuations that could drive the system away from a stable state (Heylighen,

2001). Negative feedback usually arises from the depletion or saturation of resources available in the

environment (e.g., from crowding effects that generate spatial interference and obstacle agents spatial

maneuvers). When this is the case, the closer the swarm is towards a consensus decision, the stronger

is the effect of negative feedback (e.g., the more robots travel along a confined path, the higher

their reciprocal spatial interference). Eventually, the swarm converges towards a stable collective

decision represented by a majority of the agents sharing the same opinion and corresponding to

the point in which positive and negative feedback counterbalance each other. Similarly, intrinsic

noise might prevent a swarm from reaching a consensus decision. Intrinsic noise generates internally

within individual agents from spontaneous errors or exploratory behaviors that make an agent

spontaneously change its opinion. Although both negative feedback and intrinsic noise lead to stable

majority decisions, negative feedback is a non-linear process while intrinsic noise is generally linear.

Positive feedback allows a swarm to make a collective decision also when all options of the best-

of-n problem have equal quality, i.e., ρi = ρ j , ∀i , j ∈ {1, . . . ,n}. This result is due to the fact that

positive feedback is proportional to the size of sub-populations of agents with the same opinion

and amplifies random deviations from an unbiased initial condition. However, positive feedback

alone is not sufficient for the swarm to make optimal collective decisions (Marshall et al., 2009)

when the decision-making problem has differently valued options. To do so, the swarm needs

a mechanism to process the information about the quality ρi of each option i and to steer the

decision-making process in favor of the best option. That is, a collective decision-making strategy

requires a modulation mechanism that acts on positive feedback in order to spread agents opinions

proportionally to their quality (Garnier et al., 2007a). To account for the options’ quality, agents in

the swarm amplify or reduce the frequency of events generating positive feedback as a function of

their quality estimates (e.g., the duration of opinion dissemination, the frequency of participation

to the decision-making process). As a result of the agents modulating positive feedback, the swarm

has higher chances to converge on the option with highest quality as opposed to other sub-optimal

alternatives.

3.2 Modular Perspective of a Strategy

We consider a modular structure of a collective decision-making strategy that implements all funda-

mental mechanisms necessary to solve a best-of-n problem. The primary components of the strategy

structure are: i) a pair of control states, respectively, the exploration state and the dissemination
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Figure 3.3: Illustration of the individual

robot control algorithm. The figure shows

the PFSM for n alternative options of the

decision-making problem. The transition

from state Ei to state Di is determinis-

tic (solid arrow) while transitions from

state Di to states E j , j ∈ {1, . . . ,n}, are

stochastic (dotted arrows) and depend on

the outcome of the individual decision-

making mechanism (DR).

DR

∀j < i

… …

… …Di DD

Ei EE
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n

∀j > i
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state; ii) an individual decision-making mechanism; and iii) a mechanism for the modulation of

positive feedback. The exploration state implements the information gathering process and allows

the agents to estimate the quality of the different options. On the other hand, the dissemination

state implements the information pooling process where the gathered information is shared and

processed by the agents of the swarm. These two control states are combined to form a probabilistic

finite-state machine representing the basic structure of the individual agent controller. The individual

decision-making mechanism and the modulation of positive feedback mechanism represent the

remaining modules left to be designed. By properly selecting these two modules, the designer has a

means to control the feedback processes that govern the decision-making process of the swarm.

3.2.1 Exploration and Dissemination States

The basic structure of the individual agent controller is represented by the Probabilistic Finite-State

Machine (PFSM) shown in Figure 3.3. In this agent controller, the exploration and the dissemination

states are replicated for each of the n options of the decision-making problem. The resulting PFSM has

2n control states and, in each control state, the agents have always a preference for a certain option i

of the best-of-n problem. The agents continuously alternate periods of opinion dissemination to

periods of option exploration. While executing the dissemination state, the agents need to interact

with each other and are therefore required to stay in a common area called decision-making hub.

This is not required for agents executing the exploration state. An agent in the exploration state Ei

explores option i for a certain period of time. After this time has elapsed, the agent transits to the

dissemination state Di (solid arrow in Figure 3.3). At this point, the agent disseminates opinion i for

a certain period of time; then, it collects the opinions disseminated by its neighbors and applies the

individual decision-making mechanism to reconsider its opinion. After the individual decision, the

agent transit to the exploration state corresponding to its current (possibly different) opinion (dotted

arrows in Figure 3.3).

In the exploration state Ei , the objective of an agent is to gather information from its environment—

information that is instrumental in solving the decision-making problem. Specifically, an agent that
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Figure 3.4: Illustration of

the control-flow followed by

an agent in the exploration

state Ei . Routines “Goto” and

“Estimation()” are used, respec-

tively, to move in the correct

region of the environment and

to sample the option quality.
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E i

favors opinion i collects a sample estimate ρ̂i of the quality ρi (see Figure 3.4). In case the region of

the environment associated to option i does not correspond to the decision-making hub, the agent

needs first to reach that region. Once it reached the region, the agent estimates the quality of the

corresponding option by means of a domain-specific routine. After collecting a sample estimate ρ̂i ,

the agent transits to the dissemination state Di . Depending on the specific scenario, the agent might

need to return to the decision-making hub before making the transition to Di .

To successfully implement the agent’s behavior in the exploration state, the designer has to define at

most two routines: a relocation routine (i.e., routine “Goto()” in Figure 3.4) and a quality estimation

routine (i.e., routine “Estimate()” in Figure 3.4). The relocation routine is not subject to particular

constraints beyond that of being effective and, depending on the specific scenario, might not be

required at all (i.e., when the agents can estimate the quality of all options of the best-of-n problem

without leaving the decision-making hub). Contrarily, the estimation routine is always required and

needs to satisfy the following condition:

• unbiased estimation: the collected estimate ρ̂i is an unbiased, possibly noisy estimate of

the option quality ρi , i.e., the sample mean of a collection of quality estimates {ρ̂(1)
i , . . . , ρ̂(s)

i }

converges to the true mean ρi for a number s of samples that tends to infinity.

The above condition requires that the procedure followed by the agents to estimate the quality of a

certain option is free from systematic errors. This condition needs to be satisfied by the particular

implementation of the estimation routine. Note that the unbiased estimation condition does not

require options to be associated to specific locations of the environment. All options can potentially

be co-located in the same region of the environment (e.g., the decision-making hub) or be distributed

in different regions.

In the dissemination state Di , the objective of an agent is to contribute to the information pooling

process performed by the swarm. Specifically, an agent with opinion i has to promote its current

opinion, observe the opinions of its neighbors, and eventually leverage this information to reconsider

and possibly change its opinion (see Figure 3.5). For the entire period of opinion dissemination,

the individual agent broadcasts its opinion locally (i.e., within a limited communication range) and
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Figure 3.5: Illustration of the

control-flow followed by an

agent in the dissemination

state Di . Routines “Broad-

cast()”, “Listen()”, and “Deci-

sion()” are used to dissemi-

nate opinion i , to listen to the

neighbors’ opinions, and to re-

consider the agent’s opinion.
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listens to the opinions of its neighbors. At the end of the dissemination period, the agent reconsiders

its opinion i about which option is the best alternative of the decision-making problem. The agent

first collects the opinions promoted by its neighbors and then applies the individual decision-making

mechanism as a function of the collected opinions to determine its new opinion j ∈ {1, . . . ,n}. Finally,

the agent leaves the dissemination state Di and transits to the exploration state E j corresponding to

its new opinion.

To successfully implement the agent’s behavior in the dissemination state, the designer has to define

three routines: an opinion dissemination routine, a routine to collect the neighbors’ opinions, and a

routine to reconsider the current opinion of the agent (i.e., routine “Broadcast()”, routine “Listen()”,

and routine “Decision()” in Figure 3.5). We focus on the necessary conditions required to implement

the first two routines and postpone the discussion of the latter routine (i.e., the individual decision-

making mechanism) to Section 3.2.3. We define three conditions:

• decision-making hub: the agents require a shared region of the environment where to exchange

their opinions with other members of the swarm during opinion dissemination;

• listen-only to opinion dissemination: the agents consider only the opinion of neighboring

agents that are explicitly disseminating their own opinions (i.e., explicit information transfer)

and ignore instead the opinions that might be passively shared by agents in the exploration

state;

• well-mixed interaction: within the decision-making hub, each agent has approximately the

same probability to interact with any other agent in the hub independently of their opinions,

i.e., the agents interaction pattern is such that the opinions are well mixed.

As already introduced at the beginning of this section, the existence of a decision-making hub ensures

that agents with different opinions have the possibility to interact with each other and, in doing so, to

influence each other opinion. The latter two conditions, the listen-only to opinion dissemination and

the well-mixed interaction, define instead how these interactions should happen. An agent in the

dissemination state collects only the information that is broadcast by other agents in the dissemina-

tion state. As will be more clear in Section 3.2.2, this condition is required to correctly implement the
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modulation of positive feedback mechanism. Additionally, the agents are required to approximate

a well-mixed interaction pattern. This condition is required to prevent the spatial fragmentation

of opinions within the decision-making hub (e.g., formation of clusters of robots with the same

opinion i ) which could prevent the system from converging to a collective decision (Deffuant et al.,

2000). Depending on the specific scenario, the designer might satisfy this condition by increasing the

communication range of the agents (e.g., by physically using more powerful sensors, or virtually, by

making the agents function as repeaters of their neighbors’ opinions) and by defining proper motion

routines to stir the opinions of the agents in the decision-making hub (e.g., random walks, spatial

aggregation).

On the one hand, the agent controller defined based on the dissemination and the exploration states

provides the basic structure of a collective decision-making strategy. The implementation of this

control structure is largely domain-specific and the designer needs only to take care of this task in

order to reuse an existing strategy in different scenarios. On the other hand, the designer can sepa-

rately focus on the selection of the individual decision-making mechanism and of the modulation

of positive feedback mechanism. The coupling of this two components defines the performance of

the collective decision-making strategy and its design is supported by macroscopic mathematical

models (see Section 3.3). For this reason, we purposely ignored to discuss the implementation details

concerning the timing of the agent controller, i.e., the duration of the exploration and dissemination

states. These aspects influence the design process of the modulation of positive feedback mechanism

and will be treated in Section 3.2.2.

3.2.2 Modulation of Feedback Loops

As introduced above, the combination of positive and negative feedback loops allows a swarm of

agents to agree on a common opinion but it is the modulation mechanism that steers the collective

decision in favor of the best option. Depending on the specific problem scenario, the designer needs

to opportunely define a modulation mechanism that allows the agents to amplify or inhibit their

individual tendency to promote a certain opinion and, in doing so, to favor the best option. As also

illustrated through biological examples by Garnier et al. (2007a), the factors that affect the modulation

mechanism are divided into those that arise externally to the swarm, i.e., environmental bias factors

and those that generate internally, i.e., internal preference factors,(cf. Chapter 2.1). We consider these

factors from an engineering perspective and illustrate how they characterize the properties of the

modulation mechanism and the possible choices of the designer. We distinguish between indirect

and direct modulation:

• indirect modulation: the result of environmental bias factors influencing the behavior of the

swarm, i.e., the modulation resulting from the indirect effect of the interaction between the

agents and the environment with the environment being the driving force that modulates the

frequency of positive and negative feedback events.

38



3.2. MODULAR PERSPECTIVE OF A STRATEGY

• direct modulation: the result of agents adjusting their behavior as a function of internal prefer-

ence factors, i.e., the modulation resulting from the direct effect of the behavior of the swarm

or of its individual agents that explicitly modulate the duration of their actions generating

positive and negative feedback.

Depending on the target scenario (i.e., the presence of environmental bias factors) and on the choices

taken by the designer (i.e., the presence of internal preference factors), the modulation mechanism

of a collective decision-making strategy can be indirect, direct or a combination of both.

The features of the environment that results in the indirect modulation of feedback loops depend

on the specific scenario and are generally beyond the control of the designer. For example, in

an aggregation scenario where shelters represent the alternative options of the decision-making

problem, the size of each shelter influences the probability for an agent to discover it (Campo et al.,

2010a); in the case of the shortest-path problem, the length of each path influence the frequency with

which an agent participates in the decision-making process (Montes de Oca et al., 2011; Scheidler

et al., 2016); similar results would be observed with paths having equal length but different traversal

times due to the asymmetric presence of obstacles or rough terrain on the paths (see Chapter 2).

When environmental bias factors are present in the considered scenario, the agents are generally

subject to their effects (i.e., indirect modulation) only during their execution of the exploration

states Ei , i ∈ {1, . . . ,n}. Specifically, indirect modulation affects the duration of the exploration state.

Let us consider an agent in state Ei : the shorter the time required by the agent to execute state Ei , the

more frequently the agent participates to the decision-making process (and the other way around).

As a consequence, opinion i is promoted more frequently and its supporters have higher chances to

influence other agents in the hub whose opinion j 6= i . Although indirect modulation factors cannot

be controlled, the designer can sometimes leverage them during the design process. When indirect

modulation is negatively correlated to the quality of the different options, i.e., higher quality options

have shorter exploration times, this modulation mechanism is sufficient to drive the swarm towards

optimal collective decisions. The designer might choose this as a minimal implementation to simplify

the collective decision-making strategy (see Chapter 4 for an example).

Differently from indirect modulation, direct modulation is the results of the actions purposely taken

by individual agents owing to internal preference factors and its functioning mechanism is completely

in the hand of the designer. Direct modulation is generally performed by the agents during the

execution of the dissemination state: the agents adjust the duration of their opinion dissemination

phase as a function positively correlated with the option quality ρi , i.e., higher quality options have

longer dissemination times. In doing so, the agents that favor higher quality options disseminate

their opinion for a longer period of time and, consequently, have higher chances to influence other

members of the swarm. In Figure 3.6, the routine “Modulate()” represents the function of ρi that the

designer is required to define in order to implement a direct modulation mechanism. An example of

direct modulation mechanism is the linear function

f (ρ̂i ) = ρ̂i g , (3.1)
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Figure 3.6: Illustration of the

control-flow followed by an

agent in the dissemination

state Di with direct modulation.

In the implementation of the

dissemination state, routine
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Dissemination state:

Broadcast(  )

Listen( ) IF (       )

no

yes

i

i =

t ≤ 0

Decision( )t = t −1

Modulation(   )t = ρi!

where g is a time-scaling constant (see Chapter 5 and Chapter 6 for an extensive analysis). Alterna-

tively, to increase the discrimination power of the modulation mechanism, the designer might select

a nonlinear function, for example, the exponential function

f (ρ̂i ) = g e ρ̂i k , (3.2)

where g and k are time-scaling constants.

As described above, indirect and direct modulation mechanisms work differently: the first modulates

the duration of the time the agents spend away from the decision-making process while the second

modulates the duration of the time in which they participate to it. Depending on the specific scenario,

the designer might choose to couple a direct modulation mechanism to an existing indirect one to

increase the performance of the collective decision-making strategy. We consider indirect modula-

tion and distinguish two cases. In the first case, the indirect modulation mechanism is negatively

correlated to ρi and promotes the spread of higher quality options. By coupling a direct modulation

mechanism, the designer can further increase the performance of the swarm with respect to indirect

modulation alone. In the second case, the indirect modulation mechanism is positively correlated

to ρi which hinders the spread of higher quality options. This time the designer is required to use

a direct modulation mechanism to reverse the situation (e.g., a linear or an exponential function

of ρi as described in the previous paragraph). This latter scenario represents the hardest variant

of the best-of-n problem from a design perspective. The performance of the direct modulation

mechanism is lowered by the presence of indirect modulation and its effectiveness depends on the

relative strength of the two modulation mechanisms.

3.2.3 Individual Decision-Making Mechanism

We can now focus on the last ingredient that characterizes the design of a collective decision-making

strategy: the individual decision-making mechanism used by each agent of the swarm to reconsider

its current opinion. From an abstract perspective, the individual decision-making mechanism is a
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function h : {1, . . . ,n}v → {1, . . . ,n} that takes as input a set of opinions of size v and returns as output

the new opinion of the focal agent1. The input of this function consists of the opinions of the neighbor

agents and (possibly) that of the focal agent and needs to be collected by the focal agent prior to the

application of the individual decision-making mechanism. The output of h corresponds instead to

one element of the set {1, . . . ,n} representing all possible opinions. The design of function h, that is,

of the individual decision-making mechanism, strongly influences the performance of the collective

decision-making strategy in terms of its speed and accuracy (Franks et al., 2003) as well as in terms

of the type of the resulting collective decision (i.e., consensus versus large majority). Therefore, the

designer should properly define this component in order to shape the dynamics of the collective

decision-making strategy and obtain the desired performance compromise.

Depending on the choices of the designer, the individual decision-making mechanism might lead

a swarm to either a stable, time-invariant consensus decision where all agents share the same

opinion (Montes de Oca et al., 2011; Scheidler, 2011; Scheidler et al., 2016) or to a large and fluctuating

majority of agents with the same opinion but without unanimity in the swarm (Campo et al., 2010a;

Hamann et al., 2012; Reina et al., 2015b). Consensus is favorable when the swarm of agents faces

one-time or rarely-recurring decision-making problems (e.g., the selection of a construction site).

Differently, a collective decision formed by a large majority of opinions allows the swarm to commit

a small portion of its agents to the exploration of other options of the decision-making problem. In

doing so, the swarm can detect and adapt to changes in the environment that might redefine the

decision-making problem at run time (e.g., exhaustion of the available resources, discovery of a new

alternative). When the objective is to obtain a stable consensus decision, the designer should satisfy

the following condition:

• consensus condition: function h is the sole mechanism that allows an agent to change its

current opinion or that of a neighbor and is such that, at all times, h(i , . . . , i ) = i .

The consensus condition is sufficient to obtain stable consensus decisions. It is easy to see that, once

consensus is reached—let say on option i —all applications of h would always have as input a set of

opinions all equal to i and would therefore return as output opinion i preventing the swarm from

breaking the consensus. When the consensus condition is satisfied, the dynamics of the swarm can

be described by an absorbing Markov process (see Chapter 4) whose absorbing states identify all

possible collective decisions.

Popular examples of individual decision-making mechanisms that satisfy the consensus condition

are the voter model, the majority rule, and the k-unanimity rule:

• voter model: when applying the voter model, an agent with opinion i copies the opinion j of a

random agent in its neighborhood.

• majority rule: when applying the majority rule, an agent with opinion i provided with a set

of neighbors’ opinions adopts the opinion j that is favored by the relative majority of the

1 Henceforth, we refer to an agent applying the individual decision-making mechanism as the focal agent.
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considered opinions. In case of ties between two or more options, the focal agent keeps its

current opinion i .

• k-unanimity rule: when applying the k-unanimity rule, an agent with opinion i adopts opin-

ion j only if all of its last k perceived neighbors had opinion j . In the case in which there is not

unanimity, the agent keeps its current opinion i .

The voter model, the majority rule, and the k-unanimity rule satisfy the consensus condition and, in

the absence of other phenomena, make the swarm converge to a consensus decision. However, these

mechanisms differ in terms of performance and computational requirements.

The voter model is possibly the simplest mechanism for collective decision-making and has been

extensively studied in the field of opinion dynamics to model processes of democratic voting and

spatial conflict between different species (Clifford and Sudbury, 1973; Liggett, 1999). From an en-

gineering perspective, it has low requirements since it only requires the focal agent to process one

neighbor’s opinion. As we will see in Chapter 5, the voter model leads to particularly accurate col-

lective decisions but has long decision times. The majority rule is also a popular model of opinion

formation extensively studied in the field of opinion dynamics (Galam, 2008; Krapivsky and Redner,

2003). With respect to the voter model, the majority rule requires agents to process more than one

opinion; it is faster but also less accurate (see Chapter 6 for an extensive comparison of the two

mechanisms). Finally, the k-unanimity rule has been introduced more recently by Scheidler et al.

(2016); it has requirements similar to those of the majority rule, and its performance is a compromise

between that of the voter model and that of the majority rule.

Contrarily, when the individual decision-making mechanism does not satisfy the consensus con-

dition, the collective decision made by the swarm has the form of a large, fluctuating and possibly

time-variant majority of agents sharing the same opinion i . As discussed in Section 3.1, this type of

collective decisions might results from factors that are difficult to control by the designer (e.g., spatial

interference generating negative feedback or faulty agents affected by intrinsic noise). However, the

designer can purposely design an individual decision-making mechanism that violates the consensus

condition to obtain a collective decision-making strategy that allows adaptation to changes of the

environment. A simple approach to do so is to include the possibility of spontaneous switching

in the definition of function h (see Hamann et al., 2014). In addition to a mechanism generating

positive feedback (e.g., the majority rule), the agent has a certain probability to spontaneously change

its current opinion i in favor of a randomly chosen option j ∈ {1, . . . ,n}. By properly balancing the

spontaneous switching rate of individual agents, the designer can reserve a small proportion of the

swarm for the exploration of the environment and the detection of its changes while the majority of

the swarm exploits the currently best alternative (Hills et al., 2015). Alternatively, the designer can

directly define a function h that is intrinsically stochastic as done by Garnier et al. (2009) that assigns

a probability to change opinion as a function of the neighborhood size.
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3.3 Modeling the Dynamics of a Strategy

In the previous section, we have defined a modular structure of a collective decision-making strategy

and a set of constraints that, if satisfied, allows the designer to define a specific strategy by selecting

only two modules: the modulation mechanism and the individual decision-making mechanism.

Rather than proceeding in the design of these two modules by trial and error (Brambilla et al.,

2013), our modular design methodology allows the designer to use a model-driven approach and to

select these two modules by leveraging on the systematic derivation, analysis, and comparison of

macroscopic mathematical models.

The modular structure of the agent controller introduced in Section 3.2.1 allows us to use a compart-

mental modeling approach (Godfrey, 1983; Jacquez, 1985) and to define a generic macroscopic model

of a collective decision-making strategy. Independently of the chosen mathematical formalism (e.g.,

deterministic, stochastic), we consider a compartment for each possible control state of the agent

controller representing the proportion (or the number) of agents of the swarm that are executing

that control state. Then, we define which compartments can exchange agents with each other as

defined in the PFSM of the agent controller (see Figure 3.3). The rate (or probability) at which these

exchanges of agents happen depends on the individual decision-making mechanism and on the

modulation mechanism and are left as generic functions that the designer is required to specify in

order to model a specific strategy. In this section, we show how this can be done by means of Ordinary

Differential Equations (ODEs); nonetheless, the methodology that we propose can be adopted to

define stochastic models as well (e.g., Markov Chains in Chapters 4, chemical reaction networks in

Chapter 5 and Chapter 6). Once a model for a specific collective decision-making strategy is obtained,

the designer can not only analyze it to characterize the strategy’s performance but she/he can use it

to guide the design process by focusing on each module separately and readily comparing different

design choices.

3.3.1 Generic Model Structure

Given a decision-making problem with n alternative options, we consider the proportion of agents of

the swarm that are executing each of the 2n possible control states. We define variables ei and di ,

with i ∈ {1, . . . ,n}, to model the proportion of agents with opinion i , respectively, in the exploration

state Ei and in the dissemination state Di . The dynamics resulting from the generic structure of

a collective decision-making strategy defined in Section 3.2.1 are described by the system of 2n

equations2 {
d

d t di = f i (i )ei − f d (ρi )di , ∀i ∈ {1, . . . ,n},
d

d t ei =− f i (i )ei +∑n
j=1 p j i f d (ρ j )d j , ∀i ∈ {1, . . . ,n}.

(3.3)

2It is worth noting that one of the 2n equations composing the system of Equations (3.3) is redundant and could be
eliminated due to the implicit constraint

∑
i∈{1,...,n} di +ei = 1 on the conservation of the swarm mass (i.e., the swarm is

composed of a constant number of agents).
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Figure 3.7: Illustration of the flows of proportions of agents between different compartments of

the model as defined by the system of Equations (3.3). Figure (a) and Figure (b) show the flows

of agents in input to and in output from the dissemination state Di and the exploration state Ei .

The boxes represent the proportion of agents with opinion i in the exploration state ei , and in the

dissemination state di , with filled boxes representing the focal proportion of agents. The arrows

identify the direction and the rate of the flows of agents.

The two equations shown above, which are repeated for each option i ∈ {1, . . . ,n} of the best-of-n

problem, model the evolution over time of the proportion of agents with opinion i executing, respec-

tively, the dissemination state and the exploration state (i.e., one equation for each compartment of

the model). The functions f d (ρi ) and f i (i ) model the effects of the direct and the indirect compo-

nents of the modulation mechanism in terms of the rates at which different compartments exchange

agents. The function f d (ρi ) is defined by the designer and is a function of the option quality ρi .

Contrarily, f i (i ) depends on the specific scenario (cf. Section 3.2.2) and is not necessarily a function

of ρi . Finally, the set of probabilities pi j , i , j ∈ {1, . . . ,n}, models the effects of the individual decision-

making mechanism and defines the probability for an agent disseminating opinion i ∈ {1, . . . ,n} to

change its preference in favor of opinion j ∈ {1, . . . ,n} as a result of an individual decision.

Figure 3.7 illustrates the flows of agents between the different compartments of the macroscopic

model defined by the system of Equations (3.3). As a result of indirect modulation, the proportion di

of agents in the dissemination state Di increases with a per-agent rate f i (i ) due to agents leaving the

exploration state Ei (see Figure 3.7a). The same proportion di decreases with a per-agent rate f d (ρi )

as a result of direct modulation determining the timing with which agents in state Di apply the

individual decision-making mechanism and transit to any of the exploration states E j , j ∈ {1, . . . ,n}.

The rate with which the proportion ei of agents in the exploration state Ei increases is the result of

different contributions from each compartment d j , j ∈ {1, . . . ,n}, modeling a dissemination state D j

(see Figure 3.7b). For each of these compartments, ei increases with a per-agent rate p ji f d (ρ j )

where p ji models the application of the individual decision-making mechanism by an agent with
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opinion j ∈ {1, . . . ,n}. The same proportion ei decreases with a per-agent rate f i (i ) as a result of agent

transitioning from the exploration state Ei to the dissemination state Di .

3.3.2 From the Generic Structure to a Specific Model

The macroscopic model defined by the system of Equations (3.3) is a generic model that the designer

has to properly instantiate to study the dynamics of a collective decision-making strategy (i.e., a

specific choice for both the modulation mechanism and the individual decision-making mechanism).

In order to do so, the designer is required only to model the effects of the direct and indirect com-

ponents of the modulation mechanism, i.e., functions f d (ρi ) and f i (i ), and that of the individual

decision-making mechanism, i.e., probabilities pi j , i , j ∈ {1, . . . ,n}.

The mathematical modeling of direct modulation is a relatively straightforward task for the designer.

Function f d (ρi ) defines the per-agent rate with which agents in the dissemination state Di make

individual decisions and its contribution is known a priori by the designer as a result of the design

process (cf. Section 3.2.2). In the simplest case in which the modulation mechanism has no com-

ponents implementing direct modulation, we have that the mean duration g of the dissemination

state Di is constant, independent of the option quality ρi , and equal for each opinion i ∈ {1, . . . ,n}.

Therefore, function f d (ρi ) is given by the reciprocal of g , i.e., f d (ρi ) = g−1. In the general case in

which direct modulation is adopted, the duration of the dissemination state is a known function

of the option quality ρi and its reciprocal value determines f d (ρi ). For the linear and exponential

examples introduced in Section 3.2.2, we obtain functions

f d (ρi ) = 1

ρi g
, (3.4)

and

f d (ρi ) = 1

g eρi k
. (3.5)

In both equations, the parameter g is the unbiased duration of the dissemination state (set by the

designer) that is modulated by the option quality ρi either linearly in Equation (3.4) or exponentially

in Equation (3.5). Parameter k is a normalization constant that determines the discrimination

strength of the modulation mechanism.

A similar approach is required to model the contribution f i (i ) of indirect modulation which, however,

is dependent on environmental features of the target scenario. This time, the designer has generally

no or little a priori knowledge about the contribution of indirect modulation and is required to make

assumptions based on educated guesses. In the simplest case, the designer might assume that the

environment does not affect the time necessary for an agent to explore a certain option and set

function f i (i ) to a constant value f i (i ) = σ independently of the agent opinion i . In the general

case, the time σ−1
i necessary for an agent to explore the quality of option i is different for each

option i ∈ {1, . . . ,n} of the best-of-n problem. Function f i (i ) is therefore set to f i (i ) =σi . As a last

example, we consider the case in which the environment positively influences the decision-making
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process, i.e., when the indirect modulation mechanism is a negatively correlated function of the

option quality ρi . When this negatively correlated function is linear, as for the shortest-path problem

(see Chapter 4), the contribution of indirect modulation is defined by

f i (ρi ) = ρiσ, (3.6)

where σ is a time-scaling constant.

The next step in the design process is to model the effect of the chosen individual decision-making

mechanism. In order to accomplish this task, the designer needs to find a suitable analytic description

of the probability pi j with which an agent with opinion i changes opinion in favor of option j by

applying the individual decision-making mechanism. The definition of probability pi j , i , j ∈ {1, . . . ,n}

for a given individual decision-making mechanism is generally a non-trivial task that requires some

effort by the designer. A possible approach for the designer is to estimate the set of probabilities pi j

from a collection of microscopic simulations of the collective decision-making strategy. Alternatively,

the designer needs to properly define an analytic description of pi j . If the implementation of the

agent controller satisfies the conditions defined in Section 3.2.1 with particular regard for the well-

mixed interaction condition, then the designer has some means to define pi j . In the following, we

provide three examples by deriving probabilities pi j for each individual decision-making mechanism

introduced in Section 3.2.3.

In general, probability pi j is a function of the current macroscopic state of the swarm, and more

specifically, of the distribution of opinions among the neighbors of the agent taking an individual

decision. A first step in the definition of pi j is to consider the probability pi that an agent in any

of the dissemination states D j , j ∈ {1, . . . ,n}, perceives the opinion i of a neighbor in state Di . As a

consequence of the well-mixed interaction condition, this probability is defined by the ratio

pi = di∑n
j=1 d j

, ∀i ∈ {1, . . . ,n}. (3.7)

Probability pi can be used by the designer to define the distribution of opinions among the neighbors

of the focal agent and successively model the individual decision-making mechanism by properly

accounting for the resulting individual decision in every different combination of opinions in the

neighborhood.

As defined in Section 3.2.3, agents using the voter model adopt the opinion of a randomly chosen

neighbor. The likelihood of this event is directly modeled by probability pi . Similarly, when agents use

the k-unanimity rule, the outcome of the individual decision depends on the opinions of k randomly

chosen neighbors. The neighbors’ opinions are sampled sequentially from the agents in the swarm

executing the dissemination state and they trigger the focal agent to change its opinion only if they

unanimously agree on the same option. If the k opinions are sampled within a short period of time,

the outcome of the k-unanimity rule is well-approximated by the joint probability pk
i (Scheidler

et al., 2016). In the general case of n options, we can model the effects of the voter model and of the
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k-unanimity rule as

pi j =
pk

j , iff i 6= j ,

1−∑
∀h, h 6=i pk

h , iff i = j .
(3.8)

When parameter k is set to k = 1, we obtain the probabilistic description of the voter model; for

values of k > 1, we obtain instead that of the k-unanimity rule.

Finally, when using the majority rule, agents change their opinion only in the presence of a relative

majority of preferences for a certain option among their neighbors (cf. Section 3.2.3). We assume

that, during the decision-making process, agents apply the majority rule over a group of opinions

with mean size G , where G includes the opinion of the focal agent. Let us consider a focal agent

with opinion i applying the majority rule over a group of opinions of mean size G . We consider the

set Mi j = {〈η1, . . . ,ηn〉1, . . . ,〈η1, . . . ,ηn〉m} of all possible opinion configurations of the focal agent’s

neighborhood that, due to a majority decision, would result in the focal agent changing its preference

from opinion i to opinion j . For each entry 〈η1, . . . ,ηn〉h of the set Mi j , the value of η j , j ∈ {1, . . . ,n},

gives the number of agents with opinion j in that neighborhood configuration and
∑

j∈{1,...,n}η j =
G −1. The probability pi j modeling the effect of the majority rule is defined as a discrete integration

of a multinomial distribution

pi j =


∑
∀〈η1,...,ηn〉∈Mi j

(G−1)!
η1!...ηn ! pη1

1 . . . pηn
n , iff i 6= j ,

1−∑
∀h, h 6=i

∑
∀〈η1,...,ηn〉∈Mi h

N !
η1!...ηn ! pη1

1 . . . pηn
n , iff i = j .

(3.9)

Intuitively, the application of the majority rule over a certain neighborhood configuration 〈η1, . . . ,ηn〉 ∈
Mi j is modeled as sampling a number G −1 of marbles (i.e., the neighborhood size excluding the

focal agent opinion which is known) of a given color (opinion configuration 〈η1, . . . ,ηn〉) from an urn

(swarm of agents in the dissemination state). Due to the continuous approximation underlying the

ODE model, which implies an infinite population size, sampling of each neighbor is modeled with

replacement and therefore we obtain a multinomial distribution.

3.4 Discussion

In this chapter, we proposed a modular design methodology that allows a designer to define and

implement a collective decision-making strategy for the best-of-n problem by focusing on the se-

lection of few modules. Differently from trial and error approaches (Brambilla et al., 2013) or from

the mimicking of specific biological behaviors (Kernbach et al., 2009; Reina et al., 2015b), our design

methodology leverages on the mathematical understanding of the properties of the different pro-

cesses arising from the execution of a certain strategy, of which components of the strategy generate

these processes, and how to control and design them. In doing so, our objective is to separately

focus on the design of specific modules and obtain reusable knowledge for designing collective

decision-making strategies that can be used across different problem domains. We have shown that a
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swarm of agents converges on a collective decision by gathering, pooling, and processing the informa-

tion available in the environment, and that the resulting decision-making process is self-organized

and based on the generation and modulation of positive and negative feedback loops. Along this

process, we identified and formalized the basic structure of a collective decision making strategy,

i.e., a combination of exploration and dissemination states, and its two fundamental modules, the

modulation mechanism and the individual decision-making mechanism, that determine the strategy

performance.

Our design methodology relies on the definition of a generic agent controller that the designer is

required to implement for each specific problem scenario. We defined the agent controller as a PFSM

that makes the agent continuously alternate between a period of option exploration and a period of

opinion dissemination. This agent controller provides the basic structure of a collective decision-

making strategy and implements the information gathering and information pooling necessary to the

swarm to make a collective decision. If the implementation of the designer satisfies a set of constraints,

the remaining part of the design process is represented by the selection of the modulation mechanism

and of the individual decision-making mechanism. We have illustrated how the modulation of

positive and negative feedback loops influences the outcome of the collective decision of the swarm.

We characterized the properties of a modulation mechanism and distinguished between direct

modulation, where agents directly amplify or inhibit the feedback loops, and indirect modulation,

where the modulation is instead a result of the features of the environment that affect the behavior of

the swarm. Similarly, we showed that the fact that the individual decision-making mechanism leads

to a collective decision corresponding to consensus or to a large majority of opinions depends both

on the choices of the designer and on the features of the environment.

This modular perspective of a collective decision-making strategy allows the designer to develop

a large part of the design process with a model-driven approach that is independent of the target

scenario. The basic structure of the agent controller allows us to define a generic macroscopic

model of a collective decision-making strategy by adopting a compartmental modeling approach

and systematically derive equations for each state of the agent controller. Finally, we provided

several examples of how the designer can instantiate the macroscopic model for a specific choice

of individual decision-making mechanism and modulation mechanism. In the next part of this

monograph, we illustrate our modular model-driven design methodology by extensively analyzing

and comparing different design alternatives and by showing how the designed collective decision-

making strategies can be implemented in different swarm robotics scenarios.
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INDIRECT MODULATION OF MAJORITY-BASED DECISIONS

I
n this chapter1, we consider a binary consensus achievement scenario and investigate an

example of collective decision-making strategy that entirely relies on the environment for

the modulation of positive feedback. We consider the majority rule with differential latency

originally proposed by Montes de Oca et al. (2011) in the context of collective transport and show

how it can be reinterpreted according to the modular design methodology introduced in Chapter 3 as

Indirect Modulation of Majority-based Decisions (IMMD). In this collective decision-making strategy,

the majority rule is coupled to the spatial asymmetries of the environment in order to steer the

decision-making process towards a decision for the best option. A large number of research studies

has been devoted to the differential latency model (see Chapter 2.3.1). Montes de Oca et al. (2011)

studied the system in the limit of an infinite swarm size using an ODE model; Scheidler (2011)

proposed a continuous approximation of a finite swarm by means of a master equation; more

recently, Massink et al. (2012, 2013) studied this decision model using tools from statistical model

checking. However, continuous approximations provide reliable predictions only when the number

of robots in the swarm is relatively large—e.g., thousands of robots. Our aim in this chapter is to study

the majority rule with differential latency with an approach able to accurately capture the dynamics

of finite swarms regardless of their size. We use the formalism of time homogeneous Markov chains2

with finite state space (Kemeny and Snell, 1976) that allows us to consider swarms of any finite size

and to derive reliable estimations of both the accuracy and the speed of the collective decision.
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source

destination
path

path b

a

Figure 4.1: Illustration of the collective transport scenario. Robots can travel back and forth between

the source and the destination areas by traversing either path a (top) or path b (bottom).

4.1 Problem Scenario and Decision-Making Strategy

The majority rule with differential latency model has been originally developed in the context of

collective transport in robot swarms (Montes de Oca et al., 2011) and applied to a binary decision-

making problem that resembles the well-known double-bridge experiment performed by Goss et al.

(1989). Robots in the swarm need to collectively decide between two possible actions to perform,

henceforth referred to as action a and action b. Actions differ in their execution times and the goal of

the swarm is to reach consensus on the action with the shortest execution time. Specifically, robots

in the swarm need to transport objects from a source area to a destination area (see Figure 4.1). To

this end, robots can choose between two possible paths: path a and path b. Choosing and traversing

a path corresponds to performing action a or action b. The two paths differ in length and therefore

are characterized by different traversal times (i.e., the path length is the environmental bias factor,

cf. Chapter 2.1). Additionally, each object is too heavy for a single robot to be transported and requires

instead a team of 3 robots. Once a team if formed, the robots collectively decide which path to take.

In the following, we summarize the functioning of this strategy and reinterpret it according to the

framework introduced in Chapter 3.

4.1.1 Control Algorithm

We consider a swarm composed of N robots all executing the same control algorithm. Each robot

in the swarm has an opinion that defines its currently favored path. During the execution of the

collective transport behavior, a robot can change its opinion as a result of the interaction with other

members of the swarm. At any given time, a robot is either inactive, waiting for other robots in the

source area, or is actively engaged in the transport process and is traversing a path. Montes de Oca

1The development of Chapter 4 is based on the author’s article (Valentini et al., 2013) published in the proceedings of
the European Conference on Complex Systems.

2The reader may refer to Appendix B for a minimal background on time-homogeneous Markov chains.
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et al. (2011) refer to the robots that are waiting in the source area as non-latent robots and to those

that are traversing a path as latent robots. Only non-latent robots can take part in the decision-

making process and influence other members of the swarm. In order to transport objects from the

source area to the destination area, non-latent robots form teams of 3 members each. Once a team is

formed, robots decide which path to traverse. To do so, robots share with the other members of the

team their opinions concerning their favored path; then, each robot applies the majority rule over

this set of opinions and determines its newly favored path (and therefore that of the entire team3). At

this stage, the robots become latent, i.e., they leave the source area as a team transporting an object,

and travel back and forth along the chosen path. On its return from a journey, the team disbands and

its members become non-latent joining other robots resting in the source area.

The majority rule with differential latency model has been designed by taking inspiration from

opinion formation models (Galam, 1986; Krapivsky and Redner, 2003) rather than by following the

modular design approach introduced in Chapter 3. Specifically, Montes de Oca et al. (2011) extended

the idea of latency introduced by Lambiotte et al. (2009) in the canonical majority rule model. In the

model of Lambiotte et al. (2009), when an agent switches opinion as a consequence of the application

of the majority rule it turns into a latent state for a latency period that has a stochastic duration. Later,

Montes de Oca et al. (2011) extended this idea by using different latency periods as a function of the

option quality and, in doing so, they obtain the discrimination capabilities necessary to select the

best option of the best-of-n problem. Despite the different sources of inspiration, we can identify in

the majority rule with differential latency model the same structure of a collective decision-making

strategy previously introduced in Chapter 3. Specifically, we can reinterpret this strategy as an Indirect

Modulation of Majority-based Decisions (IMMD).

The distinction of agents between those that are latent and those that are non-latent corresponds

to our definition of the exploration state and the dissemination state. Robots that are non-latent

and resting in the source area corresponds to agents disseminating their opinions in the decision-

making hub. In this strategy, the duration of the dissemination state is independent of the opinions

of individual agents. Therefore, agents are not provided with a mechanism for the direct modulation

of positive feedback. The majority rule is adopted as the individual decision-making mechanism

and its application by triplet of agents after the formation of a team marks the agents’ transition

from the dissemination state to the exploration state. When robots are latent, i.e., during their trip

back and forth between the source and destination areas, they are executing the exploration state

aimed at sampling the quality of the available options. The process of estimating the quality of a

certain option of the decision-making problem is not performed by agents directly measuring the

length or the traversal time of a particular path (cf. Montes de Oca et al., 2011). Instead, the spatial

asymmetries naturally present in the environment (i.e., the length of a path) indirectly modulate the

positive feedback which steers the decision-making process towards the best option. In this system,

the shorter the time spent by an agent to traverse a path (i.e., to explore the corresponding option),

3Note that, due to the team’s size of 3 robots, the application of the majority rule always results in a team’s consensus
due to the impossibility of decision ties.
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the more frequently the agents will return to the source area. As a consequence, agents that favor the

opinion associated to the best available option have higher chances to influence other members of

the swarm with their opinions, in this way positively affecting the decision-making process.

As in Montes de Oca et al. (2011), we consider a scenario where the number of latent robots is constant

and a multiple k of the team size 3. Additionally, we consider the duration of the latency period to

be exponentially distributed and its expected value to be a function of the opinion (i.e., the path)

favored by the team of robots. In our analysis, we make use of the terminology defined in Chapter 3

in order to provide the reader with a homogeneous discussion of the topic. In particular, we refer to

the latent and non-latent states as the exploration and dissemination states. Additionally, we refer

to the expected values of the latency periods, which are the reciprocal of the options’ qualities ρa

and ρb , as the expected duration of the exploration state, respectively, for path a and for path b.

4.1.2 Monte Carlo Simulation

In order to validate the results of our study, we implemented a simple Monte Carlo simulation of the

IMMD strategy. We simulated two sets of agents: agents in the exploration state grouped into teams

of 3 members and characterized by an opinion and a duration of the exploration state proportional

to the option quality (i.e., ρa or ρb); and agents in the dissemination state described only by their

opinions. The Monte Carlo simulation proceeds at discrete time steps; at each time step the following

instructions are executed:

1. the exploring team having minimum residual duration of the exploration state is disbanded,

its composing agents are added to the set of agents in the dissemination state, and its residual

exploration time is subtracted to that of all other teams in the exploration state;

2. 3 agents are randomly sampled without replacement from the set of agents in the dissemination

state and form a team;

3. the opinions of the sampled agents are noted and the majority rule is applied over this set to

determine the new opinion i of the team;

4. the new team is added to the set of agents in the exploration state and its exploration time is

randomly drawn from an exponential distribution with expected value determined by 1/ρi .

The simulation schema defined above is repeated until the swarm reaches consensus over any of the

two options. In order to validate the predictions of the Markov chain model, we average the results of

Monte Carlo simulations over 1000 independent repetitions for each combination of the parameters

of the system.
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4.2 Markov Chain Model

We model the execution of the IMMD strategy by defining an absorbing, time-homogeneous Markov

chain with a finite state space (Kemeny and Snell, 1976). Similarly to (Montes de Oca et al., 2011), we

assume a constant number k of teams executing the exploration state. Additionally, without loss of

generality, we consider the expected duration of the exploration periods to have mean values 1/ρa = 1,

for opinion a, and 1/ρb , 06 ρb 6 1, for opinion b. That is, opinion a is either the best option of the

best-of-2 problem or both options are equally-good (i.e., when ρb = 1). We consider each application

of the individual decision-making mechanism as one step of the decision-making process along the

chain. More precisely, we consider each step ϑ as being composed of three stages:

1. A team from those in the exploration state transits to the dissemination state (i.e., it finishes its

exploration period).

2. A new team of 3 agents is randomly formed out of the set of agents in the dissemination state.

3. The agents in the team apply the majority rule to determine the team’s opinion. Next, the

agents transit as a team to the exploration state.

Given a particular choice of values for the swarm size N and for the number k of teams in the

exploration state, we aim at studying the evolution of the number of agents with opinion a over ϑ. Let

N represent the set of natural numbers. We define the state of the Markov chain as a tuple s = 〈Ea ;Da〉,
where Ea ∈ {Ea : Ea ∈N, 06 Ea 6 k} is the number of teams in the exploration state with opinion a

and Da ∈ {Da : Da ∈ N, 0 6 Da 6 N −3k} is the number of agents in the dissemination state with

opinion a. The number Eb of teams in the exploration state with opinion b and the number Db of

agents in the dissemination state with opinion b is obtained by difference, respectively as k −Ea

and N − 3k −Da . Note that each state of the Markov chain provides a macroscopic perspective

of the opinions within the swarm. The resulting state space of the Markov chain is characterized

by m = (k+1)(N −3k+1) states (i.e., the number of elements in the Cartesian product of the domains

of Ea and Da). In the following, we use symbols si and s j to refer to a pair of generic states of the

chain, while we use symbols sa and sb to refer to the consensus states 〈k; N −3k〉 and 〈0;0〉 in which

the entire swarm agrees on opinion a and b, respectively. Note that sa and sb are absorbing states of

the Markov chain; consequently, once the decision-making process reaches one of these states it will

remain trapped therein for all future times (cf. Kemeny and Snell, 1976). In practice, the absorption of

the Markov process into one of the absorbing states sa and sb identifies the achievement of consensus

and the completion of the decision-making process.

At the generic step ϑ, the decision-making process moves from state si = 〈E (i )
a ;D (i )

a 〉 to state s j =
〈E ( j )

a ;D ( j )
a 〉 following the aforementioned 3 stages. At stage 1, a team from those in the exploration

state finishes its exploration period, transits to the dissemination state and disbands. The probabil-
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ity pi that this team has opinion a is given by

pi = ρaE (i )
a

ρaE (i )
a +ρb(k −E (i )

a )
= E (i )

a

E (i )
a +ρb(k −E (i )

a )
. (4.1)

The set of agents in the dissemination state with opinion a increases of c = 3 units, if the disbanding

team has opinion a and of c = 0, if the disbanding team has opinion b. At stage 2, a new team is

formed by 3 random agents from the set of agents in the dissemination state (i.e., those agents

resting in the source area). We are interested in the probability qi that the new team is formed by

a number 06 g 6 3 of agents with opinion a. As in Chapter 3.3.2, the probability qi is defined by a

hypergeometric distribution,

qi (g ;c) =
(di+c

g

)(N−3k−D (i )
a +3−c

3−g

)
(N−3k+3

3

) . (4.2)

In the above equation, N −3k +3 represents the number of opinions in the (current) set of agents in

the dissemination state which also include the 3 agents of the most recently disbanded team. This

set of opinions is composed of D (i )
a +c preferences for opinion a and N −3k −D (i )

a +3−c preferences

for opinion b. Finally, at stage 3, the majority rule is applied by the robots in the newly formed team

and its outcome is represented by the value of g . Eventually, the decision-making process moves to

the next state s j .

Equations (4.1) and (4.2) allow us to define the transition probabilities between each possible pair

of states si and s j . These probabilities are the entries of the stochastic transition matrix P , which

completely defines the dynamics of a Markov process (cf. Kemeny and Snell, 1976). However, not

all pairs of states identify a feasible step of the process along the chain according to the rules of

the system, i.e., not all pair of states are adjacent to each other. Two states si and s j are adjacent if

∆i j s = 〈∆i j Ea = E ( j )
a −E (i )

a ;∆i j Da = D ( j )
a −D (i )

a 〉 appears in the first column of the following table. The

correspondent transition probability P i j is given in the second column:

〈∆i j Ea ;∆i j Da〉 P i j stage 1 stage 2

〈−1;3〉
pi qi (3−∆i j d ;3)

a 3b

〈−1;2〉 a a2b

〈0;1〉 a 2ab

〈0;0〉 pi qi (3−∆i j d ;3)+ (1−pi )qi (|∆i j d |;0)
a 3a

b 3b

〈0;−1〉
(1−pi )qi (|∆i j d |;0)

b a2b

〈1 : −2〉 b 2ab

〈1;−3〉 b 3a

Columns three and four provide the corresponding events observed in stage 1 and stage 2, i.e., the

opinion of the agents in the next team returning from the exploration of an option and the opinions

of the agents that randomly form a new team in the set of agents in the dissemination state. For

values of ∆i j s not included in column one, the transition probability is P i j = 0.
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The probabilistic interpretation of P is straightforward: at any step ϑ, if the decision-making process

is in state s(ϑ) = si it will move to state s(ϑ+1) = s j with probability P i j . It is worth noticing that, being

the consensus states sa and sb two absorbing states, the probability mass of sa and sb is concentrated

in the corresponding diagonal entries of P , that is, P aa = 1 and P bb = 1.

4.3 Analysis of Opinion Dynamics

In order to analyze the dynamics of the majority rule with differential latency, we follow Kemeny

and Snell (1976) and define, on the basis of the transition matrix P , the matrices Q , R , and F .

Matrix Q describes transitions between pairs of transient states, matrix R gives the probability to

move from a transient state to an absorbing state, and matrix F = (I −Q)−1 is the fundamental matrix

with matrix I being the identity matrix. From matrices Q , R , and F of the Markov chain model we

study the dynamics of a finite swarm. We validate the predictions of our model with the results of

Monte Carlo simulations averaged over 1000 independent repetitions for each combination of the

parameters of the system. The interested reader may refer to Appendix B.2 for further details on the

derivation of Q , R , and F as well as other mathematical derivations used in this section.

4.3.1 Exit Probability

We are interested in studying the accuracy of the IMMD strategy in terms of its capability to discrimi-

nate the best option of the best-of-2 problem. To reach this goal, we derive the exit probability EN ,

i.e., the probability that a swarm of N agents that starts the execution of the IMMD strategy with

the initial configuration s(ϑ= 0) = si reaches consensus on the opinion associated to the shortest

path—opinion a. This probability is given by the entries associated to the consensus state sa of the

matrix of the absorption probabilities resulting from the multiplication F R .

Figure 4.2 shows the predictions of the exit probability over the initial proportion (3Ea(0)+Da(0))/N

of agents favoring opinion a for different configurations of the parameters of the system. A first

observation that can be drawn from the results shown in Figure 4.2a is that, for increasing values of

the swarm size N , the exit probability EN approaches a step function. This step function is centered

around the critical density that divides the initial configurations of the swarm leading to a decision

for option a (i.e., the best option) from those leading to a decision for option b (i.e., the worst option).

Additionally, as also found by Scheidler (2011), we can observe from Figure 4.2b that the larger is

the expected duration 1/ρb of the exploration state associated to opinion b, the smaller is the initial

number of preferences for opinion a that results in the exit probability being biased towards option a

(i.e., EN > 0.5). We observe a good accuracy in the predictions of the Markov chain model (lines)

when compared to the average behavior of the Monte Carlo simulations (symbols) regardless of the

number of agents in the swarm.
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Figure 4.2: Exit probability EN that the swarm reaches consensus on opinion a against the initial

proportion (3Ea(0)+Da(0))/N of agents favoring that opinion for different parameter configurations

of the system. Figure (a) shows the value of the exit probability for a decision-making problem

characterized by ρb = 0.5 and swarm size N ∈ {20,50,101}. Figure (b) shows the exit probability when

varying the problem difficulty ρb ∈ {0.25,0.5,1.0} for a swarm of size N = 50. The lines provide the

predictions of the Markov chain model while the symbols correspond to the results of 1000 Monte

Carlo simulations for each initial configuration of the system.

4.3.2 Expectation and Variance of Consensus Time

In addition to the exit probability, we are interested in characterizing the time necessary for a swarm

to make a collective decision. This quantity is related to the number τ of applications of the majority

rule that the agents in the swarm have to take in order to reach consensus. As specified in Section 4.2,

each step of the decision-making process along the Markov chain corresponds to one application of

the individual decision-making mechanism—the majority rule. In the following, we use our Markov

chain model to compute the expected value of τ as τ̂ = ξF , where ξ is a column vector of all 1s

(cf. Appendix B.2). The entries of τ̂ correspond to the row sums of the fundamental matrix F . In

turn, F gives the mean sojourn time for each transient state of a Markov chain, that is, the expected

number of times that a process started in state s(ϑ= 0) = si transits through state s j . The variance

of τ is defined as τ̂2 = (2F − I )τ̂− τ̂sq , where the matrix I is the identity matrix and the vector τ̂sq

corresponds to τ̂ with squared entries. Additional details can be found in Appendix B.2.

Figures 4.3a and 4.3b show, respectively, the expected value τ̂ and the variance τ̂2 of the number of

applications of the majority rule necessary to reach consensus for a swarm of N = 50 agents. As for

the exit probability analyzed in the previous section, the Markov chain model predicts the Monte

Carlo simulations with good accuracy. The expected value τ̂ of the number of applications of the

majority rule reaches its maximum near the critical density that divides initial configurations of the

systems that lead to consensus on opinion a from those that lead to consensus on opinion b. The

results shown in Figure 4.3a highlight a critical feature of the IMMD strategy: in order to make a
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Figure 4.3: Distribution of the number of applications of the majority rule necessary to reach

consensus against the initial proportion (3Ea(0) + Da(0))/N of agents favoring opinion a for a

swarm of N = 50 agents and k = 16 teams when the decision-making problem is characterized

by ρb ∈ {1,0.5,0.25}. Figure (a) shows the expected value τ̂ of the number of applications of the

majority rule; Figure (b) shows instead its variance τ̂2. The lines provide the predictions of the Markov

chain model while the symbols correspond to the average of 1000 Monte Carlo simulations for each

initial configuration of the system.

collective decision, the swarm requires a number of applications of the majority rule that is larger for

easier discrimination problems (i.e., ρb → 0) than for more difficult ones (i.e., ρb → 1). This result is

due to the fact that agents traveling along the sub-optimal path, i.e., path b, need to travel for a longer

time (than agents traveling along path a) before returning to the decision-making hub and have a

chance to change their opinions; meanwhile, agents with opinion a keep applying the majority rule

which affects the value of τ̂.

The predictions of our Markov chain are in agreement with the analysis of consensus time developed

in (Scheidler, 2011). However, we can observe from Figure 4.3b that the expected number τ̂ of appli-

cations of the majority rule (which is related to the consensus time studied by Scheidler (2011)) does

not provide a faithful description of this system. Indeed, the variance τ̂2 of the number of application

of the majority rule is about three orders of magnitude larger than the expected value τ̂. We note that

this behavior is characteristic of absorbing Markov processes (cf. Kemeny and Snell, 1976). Similarly

to the expected value, we observe that easier decision-making problems are characterized by a larger

variance of the number of applications of the majority rule.

4.3.3 Distribution of Consensus Time

Finally, we derive the cumulative distribution function P (τ 6 ϑ; si ) of the number of decisions

necessary to the swarm to reach consensus as well as its probability mass function P (τ = ϑ; si ).

From a swarm robotics perspective, we are interested in the dynamics of a system initially unbiased,
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Figure 4.4: Distribution of the number of applications of the majority rule necessary to reach con-

sensus for a swarm of N = 50 agents and k = 16 teams when the decision-making problem is

characterized by ρb ∈ {1,0.5,0.25}. Figure (a) shows the cumulative distribution function P (τ6ϑ; su)

of the number of applications of the majority rule; Figure (b) shows instead the probability mass

function P (τ=ϑ; su) with details of the mode, the median and the mean values. The lines provide the

predictions of the Markov chain model while the symbols correspond to the average of 1000 Monte

Carlo simulations for each initial configuration of the system.

i.e., a swarm that begins the execution of the decision-making process with an equal number of

preferences for both the opinion a and the opinion b. Let s(ϑ= 0) = su represents this initial unbiased

configuration. Recalling that matrix Q is the matrix of the transition probabilities for the transient

states, we have that the entries of Qϑ
uj , i.e., the ϑth power of matrix Q , give the probabilities that

the decision-making process is in the transient state s j at step ϑ when started in state su . Thus, the

row sum of the u-th row of Qϑ gives the probability that the decision-making process is still in one

of the transient states at step ϑ. From this probability, we can derive the cumulative distribution

function P (τ6ϑ; su) by computing the series {1−∑
j Qϑ

uj } for values of ϑ such that Qϑ→ 0.

Figure 4.4a shows the cumulative distribution function P (τ6ϑ; su) for a swarm of N = 50 agents that

begins the decision-making process unbiased. In agreement with the results shown in Figure 4.3, the

longer is the expected duration 1/ρb of the exploration state associated to opinion b (i.e., the lower is

the option quality ρb), the larger is the number of applications of the majority rule necessary to reach

consensus. Figure 4.4b, provides the probability mass function P (τ=ϑ; su), together with details of

the mode, the median, and the mean values of τ. As shown in the inset of Figure 4.4b, the values of

the mode, the median and the mean statistics diverge for increasing values of the ratio ρa/ρb = 1/ρb

between the expected duration of the exploration state associated to opinion a and that associated

to opinion b. Moreover, when 1/ρb →∞ the shape of the distribution P (τ = ϑ; su) tends to a flat

function revealing therefore that the variance dominates the system.
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4.4 Discussion

In this chapter, we considered the majority rule with differential latency model—a collective decision-

making strategy originally proposed by Montes de Oca et al. (2011)—and provided an equivalent

interpretation of this strategy according to the modular design methodology introduced in Chapter 3.

We referred to this strategy as Indirect Modulation of Majority-based Decisions (IMMD) to highlight

its constituent modules: an indirect mechanism for the modulation of positive feedback and the

majority rule.

The majority rule with differential latency model (i.e., the IMMD strategy) is a benchmark model of

collective decision-making in robot swarms and has been the subject of a large number of research

studies (Massink et al., 2012, 2013; Montes de Oca et al., 2011; Scheidler, 2011). Most of this studies,

however, resulted in the definition of mathematical models that provide continuous approximations

of the swarm dynamics (e.g., deterministic ODE models derived in the limit of an infinite swarm

size (Montes de Oca et al., 2011) and continuous approximations of finite size systems (Scheidler,

2011)). The primary limitation of continuous approximations is that the defined mathematical

models provide accurate and reliable predictions only when the number of agents in the swarm is

relatively large. Conversely, swarm robotics aims to design scalable control strategies that operate for

swarms of any size, ranging from tens to millions of agents. Moreover, it is usually difficult to derive

statistics from a continuous approximation model that go beyond the expected value of quantities of

interest and this often results in poorly informative descriptions of the underlying swarm dynamics.

To overcome these limitations, we designed an absorbing Markov chain model to predict the perfor-

mance of the IMMD strategy in a swarm composed of a finite number of agents. Using our model, we

studied the probability that a system of N agents reaches consensus on the opinion associated to the

best option of the decision-making problem (i.e., the shortest path), as well as the distribution of the

number of applications of the majority rule necessary to reach consensus. This latter result reveals

that this collective decision-making strategy is characterized by a large variance of the number of

decisions necessary before consensus, and thus, that its expected value, which was used as a measure

of performance in previous studies, is a relatively poor statistic for this system. In contrast to con-

tinuous approximations, we explicitly model the macroscopic state space of the system—which is

discrete—and the transition probabilities governing its dynamics. This approach allows us to derive

reliable predictions of the swarm dynamics regardless of its size.

Our contribution is relevant from a swarm robotics perspective because it allows us to advance the

understanding of the IMMD strategy with respect to previous studies. The analysis of our Markov

chain model, with particular regard to the distribution of the number of applications of the majority

rule necessary to reach consensus, provides the possibility to perform statistical inference on certain

interesting aspects of the system. For example, using the results in Figure 4.4, we can compute the

probability that the swarm has reached consensus as a function of time and use this information to

improve the efficiency of quorum-detection mechanisms (Parker and Zhang, 2010). Moreover, the

approach can be easily extended to model individual decision-making mechanisms other than the
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majority rule, allowing for a priori comparison of different design choices.

The IMMD strategy studied in this chapter provides an example of collective decision-making strategy

for discrete consensus achievement problems that couples the majority rule (which functions as the

individual decision-making mechanism) with a mechanism for the indirect modulation of positive

feedback (which results from an environmental bias). Different compromises between the speed and

the accuracy of a collective decision could be achieved by employing individual decision-making

mechanisms other than the majority rule (e.g., the k-unanimity rule discussed in Chapter 3). However,

the primary limitation of this collective decision-making strategy results from the fact that it is entirely

dependent on environmental bias factors for the modulation of positive feedback and these factors

are beyond the control of the designer. As a consequence, its applicability is limited to those scenarios

in which the environment naturally defines the quality of alternative options and in which the best

option is the one characterized by the shortest exploration time. In the next chapter, we will explore

an example of collective decision-making strategy that, in contrast to the IMMD strategy, makes use

of a mechanism for the direct modulation of positive feedback.
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5
DIRECT MODULATION OF VOTER-BASED DECISIONS

I
n this chapter1, we study a collective decision-making strategy where the modulation of positive

feedback results directly from the actions of individual agents of the swarm. We consider

a binary site-selection scenario and focus on the study of the Direct Modulation of Voter-

based Decisions (DMVD)2. This collective decision-making strategy combines a simple individual

decision-making mechanism (i.e., the voter model) with a mechanism for the direct modulation of

positive feedback. The individual decision-making mechanism is inspired by the voter model—a

model of opinion dynamics extensively studied in the field of statistical physics. In the classic voter

model (Clifford and Sudbury, 1973; Liggett, 1999) agents change opinion by adopting the opinion of a

random neighbor. We couple the voter model with a mechanism for the direct modulation of positive

feedback that is inspired by the waggle dance behavior of honeybees (von Frisch, 1967). We study

the DMVD by means of a deterministic ODE model, a chemical reaction network analyzed using

the Gillespie algorithm, and multi-agent simulations. This set of (macroscopic and microscopic)

models enables us to investigate the behavior of the swarm both in the thermodynamic limit of an

infinite swarm size N →∞ and when random fluctuations arise as a consequence of a finite swarm

size N <∞. Based on our results, we provide the requirements on the initial conditions necessary

to guarantee a consensus decision on the best option of the decision-making problem as well as

the minimum swarm size necessary to guarantee a given level of accuracy. Finally, we show that the

proposed decision-making strategy scales with the size of the swarm and is robust in the presence of

noise in the agent estimates of the option quality.

1The development of Chapter 5 is based on the author’s article (Valentini et al., 2014) published in the proceedings of
the 13th International Conference on Autonomous Agents and Multiagent Systems.

2The collective decision-making strategy studied in this chapter has been proposed by (Valentini et al., 2014) and was
originally referred to as the weighted voter model. In this chapter, we refer to the weighted voter model using the name
DMVD and we use a notation and a terminology different from (Valentini et al., 2014) with the aim to provide the reader
with a homogeneous perspective along this monograph.
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NestSite Sitea b

Figure 5.1: Illustration of the site selection scenario. Robots can travel back and forth between the

nest (at the center) and the two sites, respectively, site a (on the left) and site b (on the right). In this

example, the quality of a site consists in the level of brightness of the ambient light and is represented

by a sun symbol over the site, that is, site a is twice as good as site b.

5.1 Problem Scenario and Decision-Making Strategy

In the following, we focus on the study of binary decision-making problems (i.e., the best-of-n

problem with n = 2) and we refer to the two alternative options as option a and option b. Specifically,

we consider a site-selection scenario (see Figure 5.1) where the goal of the swarm is to select the best

site available in the environment where to relocate the swarm. We consider agents acting within a

bounded, two-dimensional environment which is divided in a number of regions. Each option of the

decision-making problem is associated to a particular region in the environment that is referred to

as site. The opinion of each agent in the swarm represents its preference for a particular site in the

environment. In addition to sites, the environment is characterized by a third region called the nest.

The nest functions as a hub for the decision-making process and all agents are initially located in this

region of the environment. Agents repeatedly travel between the nest and their currently favored site.

The time necessary to travel towards and back from a site is the same for both sites. As a consequence,

the decision-making problem has no environmental bias factor that might influence the modulation

of positive feedback. Once in a certain site, an agent can perceive and estimate the quality of that

site (i.e., an internal preference factor). Without loss of generality, we consider site a to have higher

quality than site b and for the remaining of this chapter we set ρa = 1 and we vary the value of ρb in

the interval (0,1]. We consider the decision-making problem successfully solved if the swarm reaches

consensus on opinion a—the opinion associated to the best site.

5.1.1 Control Algorithm

Agents in the swarm are driven by the probabilistic finite-state machine (PFSM) shown in Figure 5.2

(i.e., a specific instance of the generic PFSM shown in Figure 3.3 of Chapter 3). In the dissemination

states (either Da or Db) agents advertise their currently favored site by locally broadcasting their

opinion and eventually apply the individual decision-making mechanism, i.e., the voter model, to

reconsider their opinion. In the exploration states (either Ea or Eb) agents estimate the quality of
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Figure 5.2: Illustration of the probabilistic

finite-state machine of the individual agent.

Solid and dotted lines represent, respectively,

deterministic and stochastic transitions; sym-

bols Di and Ei with i ∈ {a,b} represent the dis-

semination states and the exploration states,

while symbols V M highlight the application of

the voter model at the end of the dissemina-

tion state. D D

E Ea

a b

b

VM VM

the site associated to their current opinion. The time spent by an agent in a certain state consists of

two contributions. Initially, agents spend an unknown period of time necessary to reach the proper

region of the environment where to perform the activities defined by their current state (henceforth

referred to as traveling time). Next, once arrived in the correct region, agents perform the actions

associated to their current state for a period of time defined by a parameter set by the designer. We

choose to adopt exponentially distributed periods of time. Due to its memory-less property, the

exponential distribution eases our successive derivations of mathematical models and enhances

the predictability of the proposed strategy. Alternative options to this choice could be provided by

constant time periods or by stochastic time periods whose probability distribution is different from

the exponential distribution. However, these latter alternatives are characterized by less favorable

mathematical properties.

As soon as agents transit to the dissemination state (i.e., either Da or Db) they begin to perform a

random walk within the boundaries of the nest. In the meanwhile, agents advertise their opinion

about their currently favored site. Agents purposely perform a random walk in order to mix their

opinions within the nest and prevent spatial fragmentation of opinions that might hinder the decision-

making process. Before their transition to the exploration state, that is, as soon as the dissemination

time expires, agents reconsider their opinion about the best available site. As in the classic voter

model (Clifford and Sudbury, 1973; Liggett, 1999), an agent polls the opinions of its neighbors in

the dissemination state within a limited interaction range; then, the agent adopts the opinion of a

randomly picked neighbor from this poll. Similarly to honeybees (cf. Visscher and Camazine (1999)),

the individual decision-making mechanism used by the agents does not take into consideration the

quality of the advertised sites. Once agents have deliberated on their opinion, they transit to the

exploration state (i.e., either Ea or Eb , see Figure 5.2).

A core mechanism of the DMVD strategy, which implements the selection of the best option, is the

modulation of positive feedback (Garnier et al., 2007a). The agent controller is designed to scale the

time spent in the dissemination states proportionally to the quality of the opinions. The time spent
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disseminating opinion a (respectively, opinion b) is directly proportional to the opinion’s quality ρa g

(respectively, ρb g ) where g is the unbiased dissemination time, a parameter set by the designer.

The parameter g represents the average duration of opinion dissemination without considering

its modulation; the designer needs to choose the value of g depending on the specific application

scenario. The agents modulate the positive feedback by setting the amount of time during which they

disseminate a certain opinion to be an increasing function of the option quality. In this way agents

influence the frequency with which other agents observe a certain opinion in their dissemination

state. As a consequence, observing neighbors that are in favor of the best option is more likely than

observing neighbors that are in favor of other, lower quality alternatives. Therefore, the swarm is

biased towards achieving a collective decision for the best option. This idea is loosely inspired by

the honeybee behavior shown when honeybees search for potential site locations for their new

nest (Franks et al., 2002; Seeley, 2010; von Frisch, 1967).

As soon as agents enter the exploration state (i.e., either Ea or Eb) they leave the nest and move toward

the site associated with their current opinion. Once arrived at the correct site, the agent evaluates

the characteristic features that determine the quality associated to its opinion following a given

domain-specific routine. The quality-estimation routine depends on the particular target scenario

and could involve complex agent behaviors—for example, those necessary to explore a candidate

construction site and evaluate its level of safety. Independently of the scenario, the quality estimation

routine results in one sample measurement which is generally subject to noise. The swarm processes

noisy measurements by acting as a filter that averages over many individual agent measurements.

Once the exploration is completed, the agent switches to the dissemination state that corresponds to

its current opinion (cf. solid lines in Figure 5.2).

As introduced in Chapter 3.2.1, a requirement of the DMVD strategy is that the interaction among

agents in the dissemination state should be well-mixed or, at least, approximately well-mixed. That

is, the probability of any agent to encounter a neighbor of a certain opinion is proportional to the

distribution of opinions in the whole swarm. The well-mixed property is only a weak requirement as

it influences the efficiency of the decision-making process but only in extreme cases its efficacy. If the

spatial distribution of agents is sufficiently well-mixed, the decision-making strategy is efficient and

successful. The more the system deviates from a well-mixed state, the slower the decision-making

process is. Only if the spatial distribution of agents is far from well-mixed, then the decision-making

process is slowed down considerably by spatial fragmentation of opinions (e.g., formation of clusters

of agents with the same opinion) and might even end up in a deadlock, that is, a macroscopic

state of indecision far from consensus (Deffuant et al., 2000). In Chapter 7, we will explain how this

requirement can be fulfilled for the case of autonomous ground-based robots.

5.1.2 Multi-Agent Simulation

We implemented a simple multi-agent simulator with the aim to study the dynamics of a swarm

using the DMVD strategy. In our simulations, agents are represented as mass-less particles, i.e., they
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Figure 5.3: Illustration of a multi-agent simu-

lation of the site-selection scenario. The envi-

ronment is divided in three different regions:

site a on the left side, the nest in the cen-

ter, and site b on the right side. Agents of the

swarm are represented by colored symbols: ◦
for agents in state Da , • for agents in state Ea ,

M for agents in state Db , and N for agents in

state Eb .
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are points moving at constant velocity in a bounded, two-dimensional space. As a consequence, we

do not consider a particular metric system or scale for the size of the environment but we employ

dimensionless space units.

Agents are positioned in a rectangular arena of 150×50 space units (see Figure 5.3). The arena is

divided into three regions: two regions of 40×50 space units at the two extremities of the arena

represent the sites, respectively, site a on the left side and site b on the right side; and a region of

70×50 space units centered between the two sites represents the nest. Agents are equipped with a

digital compass that, when necessary, allows them to reorient their motion toward a particular region

of the environment. In Figure 5.3, we represent agents’ opinions by colored symbols using red circles

for opinion a and blue triangles for opinion b. Empty symbols represent agents in the dissemination

state (either Da or Db) and filled symbols represent agents in the exploration state (either Ea or Eb).

In our simulations, agents perform the control algorithm described in Section 5.1.1. Their motion

is determined by a random walk implemented as follows. Agents move straight for a normally

distributed period of time with mean duration of 2 seconds and a standard deviation of 0.33 seconds;

next, they change their direction of motion by uniformly choosing a new random orientation in the

interval [−π;π] and then resume straight motion. Since we model agents as dimensionless points,

we do not consider collisions between agents in our simulations. However, agents do collide with

the boundaries of the arena. In the case of a collision with a wall, the agent changes its direction of

motion by mirroring the angle of incidence.

Finally, when applying the individual decision-making mechanism, agents first pool the opinions

of neighboring agents in the dissemination state (i.e., only those that are advertising their opinion)

within a given interaction range r . Then, they randomly choose one of the opinions within their pool.

In the case that an agent has no neighbors, thus being unable to survey other opinions, the agent

keeps its current opinion. After applying the individual decision-making mechanism, agents transit

to the exploration state associated to their current opinion (i.e., either Ea or Eb).
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Figure 5.4: Illustration of the flows of propor-

tions of agents between pairs of control states.

The proportion of agents in the different con-

trol state are represented by symbols da and db ,

respectively for the dissemination states, and by

symbols ea and eb , respectively for the explo-

ration states. The labels of the arrows give the

rates of the flows between pairs of control states.
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5.2 Ordinary Differential Equations Model

In the thermodynamic limit, i.e., when the number N of agents tends to infinity, N →∞, random

fluctuations that characterize the behavior of self-organizing systems vanish and the system itself

approaches a deterministic behavior. Such an asymptotic perspective allows us to gain insights into

the dynamics of a swarm executing the DMVD strategy regardless of the swarm size. Our object of

interest is the development of consensus and therefore we look at the dynamics of the opinions in

space (i.e., in the nest and in the sites) and in time. We make use of dynamical systems theory and

we define a system of ordinary differential equations (ODEs) with the aim to describe the dynamics

of the DMVD strategy. In our derivations, we assume null traveling times and we consider only the

contributions of the design parameters3 g and σ−1 (cf. Chapter 3).

We define quantities da and db as proportions of agents in the swarm that are in the dissemination

state advertising, respectively, site a and site b (i.e., they have respectively opinion a and opinion b).

Additionally, we denote the proportion of agents exploring site a using the symbol ea and the

proportion of agents exploring site b using the symbol eb . The evolution over time of the proportions

of agents da ,db ,ea and eb is given by

d

d t
da =σea −αda ,

d

d t
db =σeb −βdb ,

d

d t
ea = paaαda +pbaβdb −σea ,

d

d t
eb = pabαda +pbbβdb −σeb .

(5.1)

In Equation (5.1), which is a specialization of Equation (3.3) provided in Chapter 3, symbols α =
(ρa g )−1 and β = (ρb g )−1 model the modulation of the dissemination time by the option quality,

respectively, for opinion a and for opinion b; probabilities pi j , i , j ∈ {a,b}, model the application of

the voter model. Given the probability pa = da/(da +db) that an agent adopts opinion a by randomly

choosing the opinion of a neighboring agent, we have that paa = pba = pa and pab = pbb = 1−pa , cf.

3We recall that parameter g corresponds to the unbiased dissemination time before modulation and parameter σ−1

corresponds to the mean exploration time.
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Figure 5.5: Illustration of the transitory behavior of a swarm of agents executing the DMVD strategy

as predicted by the ODE model. Figure (a) shows the time evolution of the proportion da + ea of

agents with opinion a predicted by the ODE model (lines) compared with the results of multi-agent

simulations (box-plots). Figure (b) shows the time evolution of da +ea for a number of different initial

conditions. Parameters: N = 1000, r =∞, g = 100 seconds, σ−1 = 10 seconds, ρa = 1, and ρb = 0.875.

Chapter 3.3. We recall that probability pa is derived under the assumption of a well-mixed population

of agents in the nest. That is, we assume that each agent has the same probability to interact with

every other agent in the nest.

The flows of the proportions of agents between the different control states can be understood by

looking at Figure 5.4. The proportion da of agents advertising site a (respectively, db for site b)

increases at a rate σea due to the agents returning from the exploration of site a (respectively, site b).

This proportion also decreases at a rate αda as agents leave the dissemination state associated to

opinion a (respectively, at a rate βdb for db). The dynamics of the proportion ea of agents exploring

site a (the reasoning is equivalent for site b) depends on the application of the individual decision-

making mechanism of the DMVD strategy. Therefore, it depends on probabilities pi j . Specifically, the

proportion ea increases at a rate paaαda +pbaβdb due to the agents leaving the dissemination state

after adopting opinion a; proportion ea decreases at a rate σ due to the agents that have completed

their exploration of site a.

In the ODE model, the magnitude and the ratio of control parameters g andσ determine the duration

of the collective decision process. The longer the time agents spend at the sites or at the nest the longer

is the consensus time. At design time, the designer should carefully set the value of the dissemination

time g in order to approximate a well-mixed distribution of agents in the nest. Once the designer

has chosen a value for the dissemination time g , the consensus time of the DMVD strategy increases

linearly with the value of σ−1. From an engineering perspective of minimizing the consensus time,

a designer should, when possible, favor minimal values for the control parameters g and σ−1 such

that g Àσ−1. In Figure 5.5a, we compare the predictions of the ODE model (lines) with the results
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Figure 5.6: Illustration of the speed of change of

the proportion da + ea of agents favoring opin-

ion a as predicted by the ODE model. Parame-

ters: g = 100 seconds, σ−1 ∈ {10,50,150} seconds,

ρa = 1, and ρb = 0.875.
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of 103 independent multi-agent simulations for a swarm of N = 103 agents and infinite interaction

range r =∞ (box-plots). We set the quality of the sites to ρa = 1.0 and ρb = 0.875. The difference

between opinion qualities drives the system toward consensus on the best opinion (da +ea = 1 and

db +eb = 0). The results in Figure 5.5a show a good agreement between the predictions of the ODE

model and the behavior of the multi-agent simulations.

In the thermodynamic limit, the DMVD strategy guarantees consensus on the best option of the

decision-making problem. Figure 5.5b shows the evolution over time of the proportion da + ea of

agents in the swarm with opinion a for a number of different initial conditions. When ρa > ρb , every

trajectory initially starting at {da ∈ (0,1],db = 1−da} eventually converges to consensus on opinion a

(that is, da + ea = 1). As it happens in the classic voter model (Clifford and Sudbury, 1973; Liggett,

1999), the two macroscopic solutions, consensus either on opinion a or on opinion b, characterize

the asymptotic behavior of the collective decision-making process. Notably, for the assumption

ρa = 1 and ρa > ρb , the consensus da +ea = 1 is a stable fixed point, while the consensus da +ea = 0

is an unstable fixed point. The system of ODEs is characterized by the two fixed points

γ?1 =
[

da = g

g +σ−1 ,db = 0,ea = σ−1

g +σ−1 ,eb = 0

]
, (5.2)

γ?2 =
[

da = 0,db = ρb g

ρb g +σ−1 ,ea = 0,eb = σ−1

ρb g +σ−1

]
. (5.3)

The fixed point γ?1 is an asymptotically stable point and the system converges to it for all initial

conditions da ∈ (0,1],db = 1−da . The fixed point γ?2 is instead an unstable point and the swarm

would reach γ?2 only if initially started with consensus on opinion b (da = 0,db = 1). The analytic

formulations of γ?1 and γ?2 provided in Equation (5.2) and Equation (5.3) might be useful in real-world

applications because they allow to tune at design time the final distribution of agents between the

nest and the best site (e.g., to optimize the collection of resources in foraging tasks (Montes de Oca

et al., 2011; Scheidler, 2011)).

Finally, we consider the non-equilibrium dynamics of a swarm of agents executing the DMVD

strategy by looking at the speed of change d/d t (da +ea) of the proportion of agents with opinion a

as a function of itself (da +ea). Figure 5.6 depicts a number of trajectories for different values of the

ratio σ−1/g of control parameters and various initial conditions {da ∈ (0,1],db = 1−da ,ea = 0,eb = 0}
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(shaded lines). Initially, the value of (da+ea ;d/d t da+d/d t ea) is determined by the initial conditions

of the system of ODE and is independent of the ratio σ−1/g (see cross symbols in Figure 5.6, each

trajectory moves from the left to the right). The speed of change of the proportion of agents with

opinion a as a function of itself decreases abruptly due to agents rapidly redistributing among the

nest and the two sites. At a later stage of the decision-making process, trajectories converge towards

a parabolic curve determined by the magnitude of σ−1/g . The less time agents spend to explore the

sites, the faster is the change in the proportion of agents with opinion a (compare solid and dotted

lines). Note that the speed of change of the proportion of agents with opinion a reaches its peak at

the unbiased conditions da +ea = 0.5. The distribution of opinions among the agents in the swarm

deviates rapidly from the unbiased scenario with da + ea = 0.5 and converges towards consensus

da +ea = 1 with decreasing speed.

5.3 Chemical Reaction Network Model

In Section 5.2, we studied the properties of the DMVD strategy in the thermodynamic limit of N →∞
where the swarm approaches a deterministic behavior. Real-world swarm systems, however, are

composed of a large but finite number of agents. In many of these systems, finite size crucially

influences the system’s dynamics so that predictions based on continuous approximations might be

of limited use (Toral and Tessone, 2007). A number of different modeling techniques exist to deal

with finite-size effects, such as Markov chains (Hamann, 2013; Soysal and Şahin, 2007; Valentini and

Hamann, 2015) and master equations (Lerman et al., 2005; Martinoli et al., 1999, 2004; Scheidler et al.,

2016; Vigelius et al., 2014). In this chapter, we use the formalism of chemical master equations which

are derived from a chemical reaction network (van Kampen, 1992). Note that the predictions of the

chemical reaction network defined below converge to those of the ODE model for increasing values of

the swarm size N . As a consequence, the two models can be considered equally good approximations

of the collective decision-making process. However, the chemical reaction network has the advantage

of providing a greater descriptive power than the ODE model and is more accurate for small swarm

sizes N .

Chemical master equations are stochastic differential equations modeling the dynamics of coupled

chemical reactions among a set of molecules. Using this formalism to model a multi-agent system,

agents in different states are represented by molecules of different types, while state transitions

of individual agents are represented by chemical reactions with certain rates. Chemical master

equations are often hard if not impossible to solve analytically. For this reason, we base our study on

numerical simulations using the Gillespie algorithm (Gillespie, 1977). The Gillespie algorithm—also

known as Stochastic Simulation Algorithm—generates statistically correct trajectories of a master

equation which can be used to approximate its exact solution.

Given a swarm of N agents, we use symbol Di , i ∈ {a,b}, to represent an agent in one of the two

dissemination states and symbol Ei ,i ∈ {a,b}, to represent an agent in one of the two exploration
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Algorithm 5.1: Gillespie algorithm for the DMVD strategy. Parameters: (N ,Da(0),σ,α,β).

1 Initialize agents in the swarm: Da = Da(0), Db = N −Da(0), Ea = 0, Eb = 0

2 Initialize time: t = 0

3 repeat

4 Compute the total reaction rate: κ=αDa +βDb +σEa +σEb

5 Generate an exponentially distributed time t ′ with rate parameter κ and set t = t + t ′

6 Set paa = Da
Da+Db

and pba = Da
Da+Db

7 Let x be a uniformly distributed random number in the range [0,1)

8 if x ∈ [0; paaαDa/κ) −→ Set Da = Da −1 and Ea = Ea +1

9 if x ∈ [paaαDa/κ;αDa/κ) −→ Set Da = Da −1 and Eb = Eb +1

10 if x ∈ [αDa/κ,αDa/κ+pbaβDb/κ) −→ Set Db = Db −1 and Ea = Ea +1

11 if x ∈ [αDa/κ+pbaβDb/κ;αDa/κ+βDb/κ) −→ Set Db = Db −1 and Eb = Eb +1

12 if x ∈ [αDa/κ+βDb/κ;αDa/κ+βDb/κ+σEa/κ) −→ Set Ea = Ea −1 and Da = Da +1

13 if x ∈ [αDa/κ+βDb/κ+σEa/κ;1) −→ Set Eb = Eb −1 and Db = Db +1

14 until Da +Ea ∈ {0, N };

states. Symbols Da ,Db ,Ea and Eb are the equivalent of the molecule species generally used in the

definition of chemical reactions (Gillespie, 1977). Similarly, we define the number Di , i ∈ {a,b},

of agents in the nest that are disseminating their preferences for site i and the number Ei , i ∈
{a,b}, of agents exploring site i . The DMVD strategy is described by a set of chemical reactions and

corresponding reaction rates. In the following, we provide the equations for the reactions concerning

agents that favor opinion a (reactions modeling agents with opinion b are derived similarly). Within

the nest, agents change opinion as a result of the application of the voter model. Such a change in

the opinion is captured by reactions

Da
α−→EA|Eb ⇐⇒

Da
paaα−−−→Ea

Da
pabα−−−→Eb .

(5.4)

Probabilities paa and pab (respectively, pba and pbb) are defined as in Section 5.2 by means of the

probability pa = Da/(Da +Db) that an agent adopts opinion a by copying the opinion of a random

neighbor. As defined in Section 5.1.1, agents with opinion a reconsider their current opinion at a

rate of α= (ρa g )−1. When doing so, agents keep opinion a with probability paa = pa and switch to

opinion b with probability pab = 1−pa . Agents ceasing to explore site a are modeled by the chemical

reaction

Ea
σ−→Da . (5.5)

Equation (5.5) models the agents leaving the exploration state Ea and moving to the dissemination

state Da with a constant rate σ.

The set of chemical reactions defined by Equation (5.4) and Equation (5.5), together with the re-

spective chemical reactions for agents with opinion b, suffice to define a master equation following

the methods described by van Kampen (1992). The solution of the master equation can be studied
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Figure 5.7: Illustration of the effects of the quality of each option of the decision-making problem on

the performance of the swarm. Figure (a) shows the exit probability EN as a function of the initial

conditions; Figure (b) shows the consensus time TN . Symbols represent the results of multi-agent

simulations and lines represent the results of Algorithm 5.1. Parameters: N = 100, g = 100 seconds,

σ−1 = 10 seconds, ρa = 1, and ρb ∈ {0.5,0.875,0.96875,1.0}.

numerically by applying the Gillespie algorithm—a Markov chain Monte Carlo method capable of

generating statistically correct trajectories of stochastic equations (Gillespie, 1977). Algorithm 5.1

depicts our particular formulation of the Gillespie algorithm that models the behavior of a finite

swarm of agents executing the DMVD strategy.

In the remaining of this section, we analyze the master equation by means of Algorithm 5.1 and

we assess how finite-size effects influence the dynamics of the DMVD strategy. For this purpose,

we consider (i) the exit probability EN , i.e., the probability that a swarm of N agents eventually

reaches consensus over opinion a and (ii) the consensus time TN , i.e., the time necessary to reach

consensus on any opinion. The exit probability EN is computed as the fraction of trajectories that

converge to consensus on opinion a over the overall number of executions of Algorithm 5.1; the

consensus time TN is computed as the average time necessary to reach consensus over all executions

of the algorithm. In our analysis of the DMVD strategy we set the unbiased dissemination time to

g = 100 seconds and the average exploration time to σ−1 = 10 seconds and we vary the value of the

parameters N , ρb and r . The numerical solutions of the master equation model are compared against

the results of agent-based simulations both averaged over 2.5 ·104 independent executions.

5.3.1 Influence of Option Qualities

The difficulty of the site-selection scenario is a function of the quality of the various options of

the decision-making problem. Both the accuracy of the collective decision and the time necessary

to reach this decision depend on the option qualities (ρa and ρb). In this section, we study this

relationship by analyzing the chemical reaction network defined above for values of ρa = 1.0 and
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ρb ∈ (0,1].

We consider a swarm of N = 100 agents with unlimited interaction range r =∞. Figure 5.7a shows

the exit probability as a function of the initial proportion of agents with opinion a for values of

ρb ∈ {0.5,0.875,0.96875,1.0}. We compare the results from the multi-agent simulations (symbols)

with the numerical solutions of the master equation approximated with the Gillespie algorithm

(lines). We find a good agreement between the numerical solutions of the master equation and the

multi-agent simulations. For equal opinion qualities (i.e., ρb = 1), the exit probability EN resembles

a straight line with slope 1. When the difference in quality between the two options increases (i.e.,

ρa > ρb) EN increases as well and eventually converges to a step function. This result holds for all

initial conditions {Da(0) ∈ (0, N ],Db(0) = N −Da(0),Ea(0) = 0,Eb(0) = 0}. The DMVD strategy enables

a swarm of agents to easily discriminate an inadequate site from a good one, while it correctly

generates an unbiased behavior for sites of equal qualities.

Additionally, as shown in Figure 5.7b, the chemical reaction network model provides a good approxi-

mation of the consensus time TN with only a small prediction error (i.e., the difference between lines

and symbols n Figure 5.7b) that increases with increasing values of TN . This prediction error is a result

of the fact that our model neglects the delays due to traveling times. When TN is maximal, agents

perform many visits to the sites and the effects of traveling times is more pronounced. Nonetheless,

traveling times only affect the transient dynamics of the systems, and therefore the consensus time

(as shown in Figure 5.7b). In contrast, equilibrium dynamics given by the exit probability are inde-

pendent of such delays (see Figure 5.7a). The DMVD strategy requires longer times to discriminate

between sites of similar qualities, while easier decision-making problems are solved with much

smaller effort. Note that this behavior is opposed to that of the IMMD strategy described in Chapter 4

which takes longer times to solve easier decision-making problems. Furthermore, for equal sites’

quality, ρa = ρb , the consensus time converge to a curve that is symmetric and centered around the

unbiased initial condition {Da(0) = N /2,Db(0) = N /2,Ea(0) = 0,Eb(0) = 0} (which is also the case for

the IMMD strategy).

5.3.2 Scalability with the Size of the Swarm

When the swarm size N is finite, the dynamics of the DMVD strategy is not deterministic and shows

stochastic behavior that varies as a function of N . In the following we study the scalability of the

DMVD strategy using the chemical reaction network model and we compare its prediction with the

results of multi-agent simulations.

We consider a swarm with unlimited interaction range r = ∞ that is tasked with solving a site-

selection problem defined by the option qualities ρa = 1 and ρb = 0.875. We use the accuracy of the

decision given by the exit probability and the consensus time as performance measures. Figure 5.8a

shows the exit probability EN as a function of the initial proportion of agents favoring opinion a

for different values of the swarm size N . The multi-agent simulations (symbols) and the chemical

reaction network (lines) show good agreement. When the value of N is small (e.g., N = 10) the exit
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Figure 5.8: Illustration of the effects of the size of the swarm on the accuracy and on the time necessary

to the swarm for a collective decision. Figure (a) shows the exit probability EN as a function of the

initial conditions for N ∈ {10,50,100,500}; symbols represent the results of multi-agent simulations

and lines represent the results of Algorithm 5.1. Figure (b) shows the consensus time TN as function

of the swarm size N for values of the interaction range r ∈ {5,7,10,∞}; the solid line represents the

results of the Gillespie algorithm and the dashed lines represent the results of multi-agent simulations.

Parameters: g = 100 seconds, σ−1 = 10 seconds, ρa = 1, and ρb = 0.875.

probability approaches a straight line with slope 1, resembling the initial proportion of agents with

opinion a. However, as the swarm size increases, the exit probability rapidly grows and approaches

a step function. Therefore, the accuracy of the DMVD strategy depends positively on the size of

the swarm: bigger swarms are more accurate. Additionally, we note that the results of the chemical

reaction network are in agreement with the deterministic behavior of the swarm (i.e., consensus on

opinion a) predicted by the ODE model in Section 5.2.

Additionally, we investigate the scalability of the DMVD strategy in terms of the time TN necessary

to the swarm for a collective decision. For unlimited interaction range r =∞, the multi-agent simu-

lations are correctly predicted by the chemical reaction network as can be observed by comparing

the trends of the dashed lines with that of the solid line shown in Figure 5.8b. The small prediction

error of the chemical reaction network model is a result of neglecting the traveling time necessary to

the agents to move between the nest and the sites. Note that according to our model the consensus

time scales logarithmically with the swarm size N . In contrast, when the interaction range is finite

(e.g., r = 5), the chemical reaction network fails to accurately predict the consensus time for swarms

of small size N . This discrepancy is reduced for larger swarm size N and larger interaction range

(e.g., r ∈ {7,10}). While a finite interaction range r affects the consensus time, the prediction error

is reduced for larger swarms as higher agent densities reduce the effects of small r . For these finite

interaction ranges r , bigger swarms have faster decision-making processes as also observed in hon-

eybee swarms (Schaerf et al., 2013). Contrary to the accuracy of the collective decision, the consensus
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Figure 5.9: Illustration of the effects of noisy quality estimations on the accuracy and on the time

necessary to the swarm for a collective decision. Figure (a) shows the exit probability EN and Figure (b)

shows the consensus time TN for varying level of noise ε ∈ {0.05,0.1,0.15,0.2}. Parameters: g = 100

seconds, σ−1 = 10 seconds, ρa = 1, ρb = 0.96875, and r = 5.

time is affected by both the size of the swarm and the value of the interaction range.

5.3.3 Robustness to Noisy Qualities

In real-world applications, the agents of a self-organizing swarm are most likely equipped with low-

cost sensors that suffer from noisy measurements. In these conditions, the accuracy of the collective

decision and the duration of the decision-making process might be affected, resulting in the loss

of performance and in increased prediction errors. In this section, we study the robustness of the

DMVD strategy to noisy estimations of the site qualities by agents in the exploration states. For this

purpose, we include in the multi-agent simulations a normally distributed noise with zero mean and

varying standard deviation ε ∈ {0.05,0.10,0.15,0.2} over the values of the site qualities ρa = 1.0 and

ρb = 0.96875.

Figure 5.9a shows the exit probability EN for a swarm of agent with limited interaction range r = 5

for various levels of noise ε ∈ {0.05,0.1,0.15,0.2}. The exit probability is equivalent for all tested

levels of noise and consistently predicted by the Gillespie algorithm. As observed for honeybee

swarms (Passino and Seeley, 2006; Schaerf et al., 2013), the DMVD strategy shows a very high robust-

ness to noisy estimates of the quality of the sites. Figure 5.9b shows the time TN necessary to reach

consensus under noisy conditions for swarms of different size and agents with finite interaction

range r = 5. The consensus time seems not to be significantly influenced by the noise. In agreement

with the results in Section 5.3.2, the numerical approximation of the master equation fails to predict

the consensus time for a swarm with limited interaction range r . Nonetheless, the prediction error

decreases with increasing swarm size N and consequently our predictions are expected to be accurate

for large swarms.
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5.4 Discussion

In this chapter, we focused our attention on a collective decision-making strategy that combines a

simple individual decision-making mechanism—the voter model—with a mechanism for the direct

modulation of positive feedback. We called this strategy Direct Modulation of Voter-based Decisions

(DMVD). The primary advantages of this collective decision-making strategy are (i) its increasing

decision accuracy with increasing size of the swarm (see Figure 5.8a), (ii) the fact that the time

necessary to reach consensus scales logarithmically with the swarm size (see Figure 5.8b), and (iii)

the high robustness of the strategy to noisy estimates of the sites’ quality by individual agents (see

Figure 5.9). We have reported a deterministic ODE model and a stochastic master equation model

defined as a chemical reaction network. These models allow us to accurately predict the performance

of the swarm in terms of the accuracy of the collective decision and the time necessary for achieving

consensus. Using the ODE model we are able to guarantee convergence to a collective decision

for the best option in the thermodynamic limit. Using the Gillespie simulations of the chemical

reaction network we are able to give guarantees for the decision accuracy and the consensus time

while accounting for finite-size effects. We empirically investigated the robustness of the DMVD

strategy using multi-agent simulations and validated the accuracy of our mathematical models.

We conjecture that the robustness of the DMVD strategy is a result of the distributed nature of the

collective decision-making process.

The DMVD strategy is related to the approach proposed by Parker and Zhang (2009). In their study,

the authors proposed a strategy to tackle the best-of-n problem that closely resembles the actual

house-hunting behavior of ant colonies (Mallon et al., 2001). Agents directly recruit their neighbors

as observed in ant colonies. In contrast, the DMVD strategy is based on an individual decision-

making mechanism that is inspired by the waggle dance behavior of honeybees (von Frisch, 1967)

and performs indirect recruitment through neighbor observations. These two individual decision-

making mechanisms are known to produce equivalent dynamics (Franks et al., 2002) although

they might differ in cognitive requirements. The strategy proposed by Parker and Zhang (2009)

includes, in addition to the deliberation phase equivalent to our dissemination states, an initial

search phase where robots search for possible alternatives and a final commitment phase where the

swarm recognizes that a collective decision has been made. As a consequence, the resulting control

algorithm is more complex (due to the many control states) and has been studied only empirically

by means of experiments with robot swarms of up to 15 robots (Parker and Zhang, 2009). Later, the

authors extended their study by focusing on the primary component of their algorithm that provides

the swarm with discrimination capabilities and proposed a rate equation model to deepen their

study of the resulting dynamics (Parker and Zhang, 2011).

With respect to the indirect modulation of majority-based decisions (IMMD) strategy investigated

in Chapter 4, the DMVD strategy makes use of the voter model (Clifford and Sudbury, 1973; Liggett,

1999) as the individual decision-making mechanism rather than the majority rule (Galam, 2008).

The two decision-making mechanisms provide different compromises in terms of the speed and the
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accuracy of the decision-making process that we will investigate in the next chapter. Additionally, the

DMVD strategy also differs from the IMMD strategy in the mechanism used for the modulation of

positive feedback. In the DMVD strategy, the direct modulation of positive feedback is the result of

agents disseminating their opinions for a time proportional to the opinions’ quality (i.e., an internal

preference factor). In the IMMD strategy (cf. Chapter 4), the modulation of positive feedback is an

indirect effect of an environmental bias factor, i.e., the different traveling times between regions of

the environment that are associated with each opinion. The longer the traveling time the lower is

the opinion quality. As a consequence, the IMMD strategy takes more time to discriminate between

option of very different quality (cf. the discussion in Chapter 4.3.2) contrary to the DMVD strategy

which solves such easier decision-making problems faster (see Figure 5.7b).
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DIRECT MODULATION OF MAJORITY-BASED DECISIONS

I
n this chapter1, we study a collective decision-making strategy that combines a mechanism for

the direct modulation of positive feedback with the majority rule used as individual decision-

making mechanism. We consider the same binary site-selection scenario of Chapter 5 and

focus on the study of the Direct Modulation of Majority-based Decisions (DMMD). On the one

hand, similarly to the DMVD strategy, this collective decision-making strategy implements a direct

modulation of positive feedback with agents advertising their opinion for a time that is proportional

to the assessed quality (as defined by an internal preference factor). On the other hand, the individual

decision-making mechanism in the DMMD strategy is implemented by the majority rule (Galam,

2008)—as for the IMMD strategy—with agents changing their opinion to the one shared by the

majority of the individuals in their neighborhood. We analytically compare the majority rule with the

voter model by means of ODE models, showing that the majority rule achieves faster decisions at

the expense of lower accuracy. This result is confirmed for finite-size systems using a second model,

based on a chemical reaction network simulated numerically using the Gillespie algorithm. Using

both modeling techniques, we show that the speed-accuracy trade-off (Franks et al., 2003; Passino

and Seeley, 2006) of the DMMD strategy is strongly dependent on one key parameter of the system:

the number of neighbors’ opinions considered by individual agents when applying the majority rule.

6.1 Decision-Making Strategy

We design a collective decision-making strategy to allow a swarm of agents to discriminate between

two options based on their quality as determined by an internal preference factor (cf. Chapter 2).

1The development of Chapter 6 is based on the author’s articles (Valentini et al., 2015c), published in the proceedings of
the 14th International Conference on Autonomous Agents and Multiagent Systems, and (Valentini et al., 2016c), published
in the journal of Autonomous Agents and Multi-Agent Systems.
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Figure 6.1: Illustration of the probabilistic

finite-state machine of the individual agent.

Solid and dotted lines represent, respectively,

deterministic and stochastic transitions; sym-

bols Di and Ei with i ∈ {a,b} represent the dis-

semination states and the exploration states,

while symbols MR highlight the application of

the majority rule at the end of the dissemina-

tion state. D D

E Ea

a b

b

MR MR

Although the approach is general enough for an arbitrary number of options (see Chapter 3), we

focus on a binary scenario to simplify the description of the DMMD strategy. We consider the same

site-selection scenario studied in Chapter 5 with a symmetric environment characterized by the

complete lack of environmental bias factors that might affect the modulation of positive feedback.

We refer to the two options as option a and option b. The quality of the two options is denoted

with ρi ∈ (0,1], i ∈ {a,b}. Each agent in a swarm has always a preference for an option, either a or b,

referred to as the agent’s opinion. Furthermore, each agent can be in one of four possible states:

dissemination states Da and Db , exploration states Ea and Eb . The resulting probabilistic finite-state

machine2 is shown in Figure 6.1.

The DMMD strategy uses the same mechanism for the direct modulation of positive feedback as the

DMVD strategy. However, the DMMD strategy differs in the choice of the individual decision-making

mechanism which is represented by the majority rule. At the end of the dissemination state (either

state Da or state Db), the agent perceives and collects the opinions of its neighbors. Then, the agent

adds its own opinion to this group of opinions and applies the majority rule to determine its next

preferred option. In the remainder of this chapter, we refer to the size of this group of opinions

with symbol G . Depending on the outcome of the majority rule, the agent transits to one of the two

exploration states Ea or Eb (cf. dotted lines in Figure 6.1). In the case of a tie the agent keeps its current

opinion. With the exception of the individual decision-making mechanism, the implementation of

the DMMD strategy corresponds to that of the DMVD strategy and the reader may refer to Chapter 5

for additional details.

6.2 Ordinary Differential Equations Model

We study the behavior of a swarm of agents executing the DMMD strategy under the continuous

limit approximation (N →∞). We also study systematically the impact of the neighborhood size

2Note that the PFSM shown in in Figure 6.1 is a specialization of the generic PFSM provided in Figure 3.3 of Chapter 3.
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on the speed and accuracy of the decision-making process. To this end, we instantiate the generic

system of ordinary differential equations (ODEs) defined in Equation (3.3) of Chapter 3 and derive

a specific model for the DMMD strategy. The ODE model describes the dynamics of the expected

proportion of agents in the dissemination states (da and db) and the expected proportion of agents in

the exploration states (ea and eb). Our mathematical modeling approach relies on two assumptions: i.

the neighborhood size of agents is constant and ii. each agent has always a noiseless quality estimate

of its opinion (even at time t = 0). Assumptions i. and ii. simplify our derivation of the ODE model

by allowing us to neglect the effects of random fluctuations of the group size G and of the option

qualities ρa and ρb , and to consider instead their mean values.

In order to define an ODE model for the DMMD strategy starting from the generic model in Equa-

tion (3.3) we need to model the contribution of the direct modulation of positive feedback as well as

that of the majority rule. As a consequence of direct modulation, the time spent in the dissemination

state by an agent is proportional to the quality of the sites (ρa g and ρb g ). If these two quantities

represent the average time spent by agents to disseminate their opinion, then we can also define

the rates at which agents move from a dissemination state to an exploration state as the inverse of

these quantities. We obtain, respectively, the rate α= (ρa g )−1 and the rate β= (ρb g )−1. Additionally,

to derive our set of differential equations, we need to know the rates at which agents change their

opinions. We need to express the probability pab that an agent with opinion a switches to opinion b

as an effect of applying the majority rule for a given group size G (similarly for probability pba). In the

model, we also need to consider the cases where the application of the majority rule has no effect,

that is, no opinion switch is triggered after its application. The probabilities of keeping the same

opinion are denoted as paa and pbb .

We consider a simplified example to explain how we determined these probabilities (cf. Figure 6.2).

Consider an agent i with opinion a that has two neighbors j ,h. Hence, we have G = 3. The prob-

ability pab that this agent switches opinion to b after applying the majority rule is computed by

considering all possible combinations of neighbors that form a majority of opinions for option b.

In this simple example with a small group, the only relevant case is when both neighbors j and h

have opinion b (denoted by bb). All the other cases, aa, ab, and ba, correspond to a majority of

opinions for option a which leaves agent i unaffected. We define pa the probability that a neighbor-

ing agent has opinion a; due to symmetry, (1−pa) is the probability that a neighboring agent has

opinion b. Probability pa is a function of the proportions da and db of agents in the dissemination

states. Only these agents advertise their opinion and only they can provoke a switch, which gives

pa = da
da+db

(cf. Chapter 3.3). Given the probability pa , we can derive pab as the joint probability

(1−pa)2 to have two neighbors with opinion b. In the same way, the probability paa of not provoking

a switch is p2
a +2pa(1−pa), obtained as the sum of the three cases aa, ab, and ba. The derivations

of probabilities pi j , i , j ∈ {a,b}, is performed by assuming an infinite number of agents (N →∞) and

a well-mixed distribution of their positions (and therefore their opinions) within the nest. The first

assumption is a direct consequence of the continuous nature of the ODE model presented in this sec-
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Figure 6.2: The figure illustrates the application of the majority rule in a group of G = 3 agents. An

agent i with opinion a applies the majority rule over a set of opinions containing its current opinion

and the opinions of its two neighbors j and h. In the first three cases, agent i keeps its current

preference for option a; in the last case, the agent switches its opinion to option b.

tion. The second assumption is instead motivated by the requirement of the DMMD strategy to have

agents approaching a well-mixed distribution (cf. well-mixed interaction property in Chapter 3.2.1).

The above reasoning to compute probabilities paa and pab for a pair of neighbors can be generalized

to a generic group size G by means of equations

paa =
G−1∑

i=b(G−1)/2c

(
G −1

i

)
p i

a(1−pa)G−1−i , (6.1)

pab =
b(G−1)/2c−1∑

i=0

(
G −1

i

)
p i

a(1−pa)G−1−i . (6.2)

These equations are a discrete integration of a Binomial distribution, where pa is the success prob-

ability, G −1 the number of trials, and i the number of successes. The rationale is simple. In order

to keep opinion a, the number of successes for a needs to be less than half of the neighborhood

(G−1) minus 1 which is the agent itself. More successes than that provoke a switch towards opinion b.

The expressions for probabilities pbb and pba can be obtained by swapping the power indexes in

Equations (6.1–6.2).

Finally, by means of rates α and β and of probabilities paa , pab pba , and pbb , we can instantiate

the generic system of ordinary differential equation provided in Equation (3.3). With the exception

of probabilities paa , pab pba , and pbb , the resulting ODE model is equivalent to that provided in

Equation 5.1 for the DMVD strategy. The reader may refer to the description of Figure 5.4 provided in

Chapter 5 for a detailed explanation of the flows of proportions of agents that characterize the ODE

model.
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6.2.1 Stability of Equilibria

Our objective in this section is to understand which are all the possible collective decisions that

might emerge from the execution of the DMMD strategy. To reach this objective, we determine what

are all the possible fixed points γ? = [d?a ,d?b ,e?a ,e?b ]T of the system of ODEs and perform a stability

analysis. The analysis results in three fixed points

γ?1 =
[

gσρa

1+ gσρa
,0,

1

1+ gσρa
,0

]T

, (6.3)

γ?2 =
[

0,
gσρb

1+ gσρb
,0,

1

1+ gσρb

]T

, (6.4)

γ?3 = 1

Ψ

[
gσρaρ

2
b , gσρ2

aρb ,ρ2
b ,ρ2

a

]T
, (6.5)

whereΨ= ρ2
a + gσρ2

aρb + gσρaρ
2
b +ρ2

b is a normalization constant.

The two fixed points γ?1 and γ?2 given by Equation (6.3) and Equation (6.4) represent consensus

on opinion a and consensus on opinion b. In addition to the options’ qualities ρi , i ∈ {a,b}, the

proportion of agents in the exploration and the dissemination states predicted by γ?1 and γ?2 depend

also on the exploration and dissemination rates. This result means that the designer has a tool to

fine-tune the desired proportion of agents exploring or disseminating at consensus. This could be of

interest during a foraging task (Montes de Oca et al., 2011; Scheidler et al., 2016; Valentini et al., 2013)

to effectively tune the foraging rate, or to aid the calibration of the quorum thresholds (Parker and

Zhang, 2009, 2010) when the detection of consensus is necessary to trigger a change in the behavior

of the entire swarm (e.g., migration to the selected site). The third equilibrium γ?3 in Equation (6.5)

corresponds instead to a macroscopic state of indecision where both opinions coexist in the swarm.

A subsequent question that arises is which of these equilibria is asymptotically stable and, more

importantly, under which conditions. To answer this question, we linearize the system of ODEs

around each equilibrium, calculate the eigenvalues of the corresponding Jacobian matrix, and study

their signs. Note that, due to the conservation of the swarm mass, the system of ODEs is over-

determined. One equation can be omitted, for example the last equation, by rewriting the remaining

three using the substitution eb = 1−da −db −ea . Therefore, each equilibrium of the system has only

three meaningful eigenvalues. The eigenvalues corresponding to the two consensus equilibria γ?1
and γ?2 are 

− 1
gρb

−σ
−gσρaρb−ρa

gρaρb

 ,


− 1

gρa

−σ
−gσρaρb−ρa

gρaρb

 , (6.6)

respectively for consensus on option a and for consensus on option b. These eigenvalues depend

only on the rates g ,σ and on the site qualities ρa ,ρb . Given that these quantities are defined to

be always strictly positive we can observe that the eigenvalues in Equation (6.6) are always strictly

negative and conclude that the two consensus equilibria are asymptotically stable.
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The third equilibrium γ?3 is characterized by eigenvalues with a very complex analytic formulation

which prevents us from providing it here for the reader3. Nonetheless, we have performed the stability

analysis for this fixed point as well. According to our analysis, for values of ρa ,ρb ∈ (0;1], ρa ≥ ρb , and

for σ, g > 0, two eigenvalues are always strictly negative while one is always strictly positive. Such a

fixed point, which is difficult to visualize due to the high dimensionality of the system, is a saddle

point and divides the basin of attraction between trajectories converging to consensus on opinion a

and trajectories converging to consensus on opinion b (see also the next section). Additionally,

trajectories that originate close to this fixed point are characterized by long transient dynamics (i.e.,

higher consensus time) before converging on either γ?1 or γ?2 . We can therefore conclude that the

macroscopic state of indecision, γ?3 , is not stable.

We finally compare the dynamics of the DMMD strategy with those of the DMVD strategy analyzed

in Chapter 5. Let us recall that these two collective decision-making strategies differ only in the

individual decision-making mechanism: the DMMD strategy implements the majority rule while the

DMVD implements the voter model. With respect to the majority rule, the voter model has simpler

asymptotic dynamics as it has only 2 equilibria corresponding to the two consensus decisions. One

of the two equilibria is associated with the best option a and is asymptotically stable when ρa > ρb .

The other equilibrium is unstable. When ρa = ρb , one eigenvalue vanishes for both equilibria that

are in this case only Lyapunov stable but not asymptotically stable. Under these conditions, the voter

model does not converge to a collective decision but remains indefinitely with the same proportion

of agents with opinions a and b with which the swarm was initialized. Therefore, in the limit of

N →∞, the differences between the voter model and the majority rule are the following. 1) With the

majority rule, convergence to a particular equilibrium depends on the initial conditions (as there

are two stable equilibria); whereas the voter model always converges to the best option, if one exists

(ρa > ρb). 2) The majority rule converges, differently from the voter model, to one of the opinions

even in the case of symmetric qualities (ρa = ρb). In Chapter 5, we showed that these properties of

the voter model hold only in the deterministic, continuous approximation (N →∞), and that they

vanish when the influence of finite-size effects is included (see Section 5.3).

6.2.2 Speed Versus Accuracy Trade-Off

Our aim in this section is to use the ODE model defined above to analyze how convergence speed

and decision accuracy (Franks et al., 2003; Passino and Seeley, 2006) change as a function of a key

parameter of our strategy: the group size G . In our terminology, the system has higher accuracy when

it can reach consensus on the opinion associated to the best option (i.e., option a) for a wider range

of initial conditions. For all possible initial conditions da(0) ∈ [0,1],db = 1−da(0), we determine the

consensus d?a +e?a ∈ {0,1} that is reached asymptotically from there. We are particularly interested in

the border c that separates the two basins of attraction: we converge to d?a +e?a = 1 for da(0) ∈ [c+ε,1]

3The reader might refer to the supplementary material of (Valentini et al., 2016c) available online (Valentini et al.,
2015a) for a Mathematica notebook containing the derivation and the symbolic analysis of γ?3 .
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Figure 6.3: The figure shows the results from the speed versus accuracy analysis performed using the

ODE model as a function of the group size G , the initial condition da(0),db(0) = 1−da(0), and the

option quality ρb . The figures show the border c (black line) that divides initial conditions that lead

the system to consensus on a (white area) from those with consensus on b (gray area) for increasing

values of the group size G . Figure (a) shows the results for ρb = 0.5 and Figure (b) shows the results

for ρb = 0.9. Parameters: g = 8.4 minutes, σ−1 = 6.072 minutes.

and to d?a +e?a = 0 for da(0) ∈ [0,c−ε] where ε> 0. Smaller values of c are preferred since they increase

the basin of attraction for the best option. We consider the convergence time as the time necessary

to reach consensus on any option. To compute this time from the ODE model, we introduce a

threshold δ= 10−3 and consider that the system has converged to a collective decision at a certain

time t if either da(t )+ea(t )> 1−δ (i.e., consensus on opinion a) or da(t )+ea(t )6 δ (i.e., consensus

on opinion b). We define convergence time to be the minimum t satisfying this criterion.

The results of this analysis are reported in Figure 6.3 for decision accuracy and Figures 6.4–6.5 for

convergence time. In both figures, the difference between the left and right graphs is the value of the

quality parameter ρb . We keep the quality of opinion a constant with ρa = 1 and vary the value of ρb

which determines the difficulty of the decision-making problem. Specifically, a quality of ρb = 0.5

defines a simpler, more asymmetric best-of-2 problem where option a is twice as good as option b,

whereas ρb = 0.9 defines a much harder problem where the qualities of the two options are more

difficult to distinguish.

In Figure 6.3a the black, solid line represents the border c between the two intervals of initial con-

ditions (basins of attraction) that lead to different consensus decisions (i.e., asymptotically stable

solutions). We observe that this border increases as a function of the group size G . Higher values of

this border indicate a smaller set of initial conditions (white area) that lead the swarm to choose the

best option (i.e., site a), and thus lower decision accuracy. The graph shows that the accuracy of the

DMMD strategy decreases as a function of the group size. This happens for both easier (ρb = 0.5, Fig-

ure 6.3a) and more difficult (ρb = 0.9, Figure 6.3b) decision-making problems. However, for ρb = 0.9
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Figure 6.4: The figure shows the results from the speed versus accuracy analysis performed using

the ODE model as a function of the group size G , the initial condition da(0),db(0) = 1−da(0), and

the option quality ρb . The heatmaps show the consensus time (in minutes) for group size G ∈ {3,25}

and initial condition da(0) ∈ [0,1], respectively, Figure (a) for ρb = 0.5 and Figure (b) for ρb = 0.9.

Black solid lines represent the border points c for each value of G . Parameters: g = 8.4 minutes,

σ−1 = 6.072 minutes.

this increase is much less noticeable due to the fact that accuracy is already relatively low for small

group sizes. Additionally, we can observe that the parity of the group size G influences the accuracy

of the decision-making process. When G is even the set of initial conditions leading to consensus on

option a is smaller than that of the two nearby odd group sizes. This phenomenon, which is more

distinct for small group sizes, is characteristic of the majority rule and was reported previously for

other systems too (Galam, 1986; List, 2004).

Figures 6.4a and 6.4b show through heatmaps how the time necessary to reach a decision varies

as a function of the group size G and of initial conditions da(0),db(0) = 1−da(0). The black lines

provide the border c between consensus on opinion a and consensus on opinion b. As we can see, the

consensus time increases with the proximity to the border c . Figure 6.5a and Figure 6.5b detail instead

the shape of consensus time for selected values of the group size G . The type of the lines represents

the asymptotic result of the decision-making process, respectively, dashed lines for consensus on

opinion a and solid lines for consensus on opinion b. As we can see, the consensus time is higher

when the initial proportion da(0) of agents favoring option a is closer to the border c between the

basins of attraction that divides initial conditions leading to consensus on opinion a from those

leading to consensus on opinion b (i.e., where lines turn from solid to dashed in Figures 6.5a and 6.5b).

Additionally, we observe that increasing the group size G speeds up the decision-making process for

a wide range of initial conditions da(0). This speedup obtained by increasing the group size becomes

smaller every time we double the number of neighbors in the group (c.f. the speedup given by G = 9

with respect to G = 5 with that given by G = 17 with respect to G = 9).

The results given in Figures 6.3, 6.4, and 6.5 reveal the crucial trade-off between convergence speed
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Figure 6.5: The figure shows the results from the speed versus accuracy analysis performed using

the ODE model as a function of the group size G , the initial condition da(0),db(0) = 1−da(0), and

the option quality ρb . Figures show the consensus time over initial conditions da(0) for group

size G ∈ {5,9,17}, respectively, Figure (a) for ρb = 0.5 and Figure (b) for ρb = 0.9. Lines represent

initial conditions with consensus on option a (dashed lines) and option b (solid lines). Parameters:

g = 8.4 minutes, σ−1 = 6.072 minutes.

and decision accuracy of the DMMD strategy. We can increase convergence speed by increasing the

group size G at the cost of lower accuracy. Similarly, we can have higher accuracy at the cost of lower

convergence speed. This behavior is particularly evident for simple decision-making problems (e.g.,

ρb = 0.5). For more difficult best-of-2 problems (e.g., ρb = 0.9), the group size G has a lower influence

on the decision accuracy while the swarm can still benefit in terms of convergence speed.

6.3 Chemical Reaction Network Model

In Section 6.2, we studied the asymptotic properties of the DMMD strategy using the continuous

limit approximation (N →∞). As done in Chapter 5.3 for the DMVD strategy, we deepen our un-

derstanding of the DMMD strategy by performing an analysis of finite-size effects resulting from

random fluctuations.

Given a swarm of N agents, we use symbols Da and Db to denote the number of agents in the

dissemination states and symbols Ea and Eb to denote the number of agents in the exploration states.

Additionally, we refer to an individual agent in one of these states using symbols Da and Db for

opinion dissemination and symbols Ea and Eb for exploration, respectively. The DMMD strategy is

modeled by the chemical reactions

Da
α−→Ea |Eb , (6.7)

Db
β−→Ea |Eb , (6.8)

Ea
σ−→Da , (6.9)
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Algorithm 6.1: Gillespie algorithm for the DMMD strategy. Parameters: (N ,G ,Da(0),σ,α,β).

1 Initialize agents in the swarm: Da = Da(0),Db = N −Da(0),Ea = 0,Eb = 0

2 Initialize time: t = 0

3 repeat

4 Compute the total reaction rate: κ=αDa +βDb +σEa +σEb

5 Generate an exponentially distributed time t ′ with rate parameter κ and set t = t + t ′

6 Set paa =∑G−1
i=b(G−1)/2c

(Da−1
i

)( Db
G−i−1

)
/
(Da+Db

G−1

)
and pba =∑b(G−1)/2c−1

i=0

( Da
G−i−1

)(Db−1
i

)
/
(Da+Db

G−1

)
7 Let x be a uniformly distributed random number in the range [0,1)

8 if x ∈ [0; paaαDa/κ) −→ Set Da = Da −1 and Ea = Ea +1

9 if x ∈ [paaαDa/κ;αDa/κ) −→ Set Da = Da −1 and Eb = Eb +1

10 if x ∈ [αDa/κ,αDa/κ+pbaβDb/κ) −→ Set Db = Db −1 and Ea = Ea +1

11 if x ∈ [αDa/κ+pbaβDb/κ;αDa/κ+βDb/κ) −→ Set Db = Db −1 and Eb = Eb +1

12 if x ∈ [αDa/κ+βDb/κ;αDa/κ+βDb/κ+σEa/κ) −→ Set Ea = Ea −1 and Da = Da +1

13 if x ∈ [αDa/κ+βDb/κ+σEa/κ;1) −→ Set Eb = Eb −1 and Db = Db +1

14 until Da +Ea ∈ {0, N };

Eb
σ−→Db . (6.10)

The above set of reactions is sufficient to define a master equation as described by van Kampen

(1992). According to Equations (6.7–6.8), each molecule representing an agent in a dissemination

state (either Da or Db) transforms into a molecule representing an agent in the exploration state

(either Ea or Eb) at a constant rate. Specifically, at rate α= (ρa g )−1 if the agent is in state Da or at

rate β = (ρb g )−1 otherwise. Equations (6.9–6.10) model instead the transformation of molecules

representing agents in the exploration state (either Ea or Eb) into molecules representing agents in

the dissemination state (either Da or Db) which happens at a constant rate σ.

In the Gillespie algorithm (Gillespie, 1977), the evolution in time of the numbers of agents Da , Db , Ea ,

and Eb is obtained by iteratively performing two steps: i) determine the time of the next reaction and

ii) determine which is the reaction that occurs and consequently update the macroscopic state Da ,

Db , Ea , Eb of the system. Since the execution time of chemical reactions is modeled by exponentially

distributed times (van Kampen, 1992), we have that the time before the next occurrence of any

reaction is also exponentially distributed. Specifically, this time is computed as the minimum of a set

of exponentially distributed variables which is still exponentially distributed with a rate κ equal to the

sum of the individual reactions rates (see lines 4-5 in Algorithm 6.1). The specific reaction that occurs

is randomly determined with probabilities equal to the ratio between each reaction rate and the

overall rate κ. If the reaction in Equation (6.7) occurs, respectively that in Equation (6.8), the outcome

is determined by an additional probabilistic experiment. The number Da of agents (Db) decreases by

one unit, and the type of agents increasing by one unit is Ea with probability paa (pba) or Eb with

probability pab (pbb). If the reaction in Equation (6.9) occurs, respectively that in Equation (6.10),

the outcome is uniquely determined. We have that the number Ea of agents exploring option a (Eb)

decreases by one unit and the number Da of agents disseminating opinion a (Db) increases by one
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unit.

This additional step is required because the reactions in Equations (6.7–6.8) are in fact “meta-

reactions” that expand in a larger reaction set having one entry for each possible configuration

of an agent neighborhood during the application of the majority rule. Probabilities paa , pab , pba ,

and pbb are the discrete equivalent of the switching probabilities in Equations (6.1–6.2) used for the

continuous ODE model. In contrast to the Binomial distribution used in Section 6.2, in the discrete

case we use an hypergeometric distribution, which yields probabilities

paa =
G−1∑

i=b(G−1)/2c

(Da−1
i

)( Db
G−i−1

)(Da+Db
G−1

) , (6.11)

pab =
b(G−1)/2c−1∑

i=0

(Da−1
i

)( Db
G−i−1

)(Da+Db
G−1

) . (6.12)

Probabilities paa and pab are a discrete integration of an hypergeometric distribution. Using the

standard terminology of the hypergeometric distribution, we have that Da and Db are the number

of success states and failure states in the population, Da +Db is the population size, G −1 is the

number of trials, and i the actual number of drawn successes. The expressions for probabilities pbb

and pba can be obtained by swapping the number of successes i with the number of failures G − i −1

in Equations (6.11–6.12).

We use the Gillespie algorithm to simulate a number of trajectories of the chemical reaction network

and use them to compute the exit probability EN , i.e., the probability that a swarm of N agents

reaches consensus on opinion a, and the average consensus time TN , i.e., the time necessary to

reach consensus on any option. In all of our studies, we approximate the values of EN and TN using

2.5×104 independent executions of Algorithm 6.1 for each data point. In the reminder of this section,

we use the chemical reaction network model to perform a thorough analysis of the speed versus

accuracy trade-off that characterizes the DMMD strategy and we compare the results with those of

the DMVD strategy previously described in Chapter 5.

6.3.1 Speed Versus Accuracy Trade-Off

The results of the speed versus accuracy analysis performed by approximating the chemical master

equation are reported in two separate figures: Figure 6.6 reports the accuracy of the system by

showing the exit probability EN as a function of the group size G and of the initial condition Da(0);

Figure 6.7 reports the convergence speed of the DMMD strategy by showing the time TN necessary to

reach consensus as a function of the same two parameters. Throughout this analysis we keep the

same color and lines schema used in the figures of Section 6.2.2 for the ODE model with the purpose

of simplifying the comparison of the results.

For what concerns accuracy, the outcome of the analysis with the Gillespie algorithm is in accordance

with that obtained with the ODE model: the system is more accurate for lower values of the group

size G , particularly for easier decision-making problems (ρb = 0.5, Figures 6.6a and 6.6c). The main
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Figure 6.6: Analysis of the decision accuracy using the chemical reaction network model. The x-axis

refers to the group size G ∈ {3, . . . ,25}, the y-axis to the initial condition Da(0) ∈ {0, . . . , N },Db(0) =
N −Da(0). The heatmaps show the exit probability EN to reach consensus on option a, respectively,

Figure (a) for ρb = 0.5 and Figure (b) for ρb = 0.9. Figures (c) and (d) are zoomed-in versions of

Figures (a) and (b). The white color represents consensus on opinion a (EN = 1) while the gray color

represents consensus on opinion b (EN = 0). Parameters: g = 8.4 minutes, σ−1 = 6.072 minutes,

N = 100.

difference between the continuous and finite-size analysis is that in the latter case we do not have

anymore a clear border dividing the two basins of attraction for different consensus decisions. In

contrast, we obtain a border that gathers all the points having equal probability to converge to either

of the two options (EN = 0.5). Under this line, the probability to converge to option a smoothly

decreases to 0, above this line, it increases to 1 (Figures 6.6c and 6.6d). This behavior is a direct

consequence of finite-size effects modeled by the chemical reaction network and ignored in the ODE

model. Where the ODE model predicts a macroscopic state of indecision, we have instead that the

swarm converges anyway to consensus in the finite-size model. Additionally, the results in Figure 6.6

also show the same pattern in the decision accuracy that we observed with the ODE model where
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groups with even cardinality were less accurate than groups with odd cardinality (cf. Section 6.2.2).

The results of the analysis of the convergence speed are shown in Figure 6.7. In agreement with the

prediction obtained with the ODE model, we have that the system is faster for higher values of the

group size G . This is particularly true for initial conditions that are closer to the state of indecision

(i.e., the black line that marks the points with EN = 0.5) as shown in Figure 6.7a and Figure 6.7b. The

primary difference between the current finite-size analysis and that of the continuous approximation

in Section 6.2 is evident when looking at the shape of the consensus time as a function of the initial

condition. Figure 6.7c and Figure 6.7d show these results: the curve of the consensus time TN has

a much smoother shape around the point of indecision when compared to the curves shown in

Figure 6.5a and Figure 6.5b. Additionally, we also observe that the value of TN predicted by the

chemical reaction network is lower than the one predicted by the ODE model for almost all initial

conditions. As already mentioned above, the discrepancies in the behavior of the system are a direct

consequence of the finiteness of the swarm size.

Overall, the speed versus accuracy analysis presented here provides the same message as the con-

tinuous analysis in Section 6.2.2. By increasing the group size G , the swarm benefits in terms of

convergence speed at the cost of a lower decision accuracy. This loss in accuracy is stronger in

easier decision-making problems (e.g., ρb = 0.5) while it is mitigated in more difficult problems

(e.g., ρb = 0.9). Conversely, the benefits concerning convergence speed obtained by increasing the

group size are relatively unaffected by the difficulty of the problem. With respect to the continuous

approximation provided by the ODE model, the analysis of the chemical master equations allowed

us to better quantify the performance of the system by capturing the stochastic effects resulting from

random fluctuation characteristic of a finite swarm.

6.3.2 Comparison with the DMVD Strategy

We conclude the analysis of finite-size effects by performing again a speed versus accuracy study

but this time we compare the performance of the DMMD strategy against that of the DMVD strategy

described in Chapter 5. For this purpose, we employ the chemical reaction network previously pro-

posed in (Valentini et al., 2014) for the DMVD strategy which is derived under the same assumptions

of Algorithm 6.1 and allows us to perform a fair comparison between the models. Let us recall that the

only difference between the two collective decision-making strategies is given by the decision-making

mechanism utilized by individual agents—in the DMVD strategy agents use the voter model and

decide by copying the opinion of a random neighbor; instead, in the DMMD strategy, agents adopt

the opinion favored by the majority of their neighbors according to the majority rule.

The difference EV M
N −E MR

N in decision accuracy between the two strategies is reported in Figure 6.8a

for increasingly difficult decision-making problems (ρb ∈ {0.5,0.7,0.9,0.99}). The DMMD strategy is

less accurate than the DMVD strategy when values are greater than 0; both strategies are equally accu-

rate for values equal to 0; and the DMMD strategy is more accurate than the DMVD strategy for values

smaller than 0. As it can be noticed, the voter model used in the DMVD strategy is in general more ac-
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Figure 6.7: Analysis of the convergence speed using the chemical reaction network model. The x-axis

refers to the group size G ∈ {3, . . . ,25}, the y-axis to the initial condition Da(0) ∈ {0, . . . , N },Db(0) =
N −Da(0). The heatmaps show the average consensus time TN (minutes), respectively, Figure (a)

for ρb = 0.5 and Figure (b) for ρb = 0.9. Black solid lines represent the border points c for each

value of G . In the lower row, figures show the consensus time over initial conditions da(0) for group

size G ∈ {5,9,17}, respectively, Figure (c) for ρb = 0.5 and Figure (d) for ρb = 0.9. Lines represent

initial conditions with consensus on option a (dashed lines) and option b (solid lines). Parameters:

g = 8.4 minutes, σ−1 = 6.072 minutes, N = 100.

curate than the majority rule used in the DMMD strategy for initial conditions Da(0)6 50. Conversely,

the accuracy of the majority rule reaches that of the voter model for initial conditions Da(0) > 50

and it even outperforms the voter model for the hardest decision problem (ρb = 0.99). This behavior

can be understood also in terms of the stability analysis provided in Section 6.2.1: since the DMVD

strategy has only one asymptotically stable state, when considering finite-size effects, we have that

its dynamics converge with high probability to the best option for a larger set of initial conditions

(cf. Valentini et al. (2014)). In contrast, the dynamics of the DMMD strategy strongly depend on the

initial conditions. Figure 6.8b reports instead the comparison between the two strategies in terms
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Figure 6.8: The figure shows the results of the speed versus accuracy comparison between the

majority rule and the voter model. Data shown have been generated using Algorithm 6.1 for the

DMMD strategy and Algorithm 5.1 for the DMVD strategy. Figure (a) shows the difference EV M
N −E MR

N

between the exit probability of the DMVD strategy, EV M
N , and that of the DMMD strategy, E MR

N . With

respect to the DMVD strategy, the DMMD strategy is less accurate for EV M
N −E MR

N > 0, equally accurate

for EV M
N −E MR

N = 0, and more accurate for EV M
N −E MR

N < 0. Figure (b) shows the time ratio T V M
N /T MR

N

between the consensus time of the DMVD strategy, T V M
N , and the DMMD strategy, T MR

N . Parameters:

g = 8.4 minutes, σ−1 = 6.072 minutes, N = 100, G = 5, ρb ∈ {0.5,0.7,0.9,0.99}.

of convergence time depicted as the ratio between the consensus time of the voter model, T V M
N ,

over that of the majority rule, T MR
N . We can observe that the majority rule considerably speeds up

the decision-making process for all considered parameters. The difference in speed ranges from

almost two-fold for the simple problem with ρb = 0.5 up to twenty-fold for the difficult problem

with ρb = 0.99.

The above analysis shows that, for application scenarios where the time available to reach a collective

decision is critical, the majority rule underlying the DMMD strategy is a better design choice than the

voter model used by the DMVD strategy. This key difference is extremely relevant when considering

the limitations in energy autonomy of nowadays robotic platforms. Although the voter model is more

accurate than the majority rule for most initial conditions Da(0) < 50, this difference is considerably

reduced for values of Da(0) ≈ 50 and vanishes for Da(0) > 50. That is, when the designer has means to

initialize the swarm with an approximately uniform distribution of opinion, the difference in decision

accuracy between the DMMD and the DMVD strategies is negligible.

6.4 Discussion

In this chapter, we have described a collective decision-making strategy—Direct Modulation of

Majority-based Decisions (DMMD)—that allows a swarm of agents to address the best-of-n problem.
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Following the DMMD strategy, individual agents in the swarm couple the use of the majority rule

with a mechanism for the direct modulation of positive feedback to achieve consensus on the

best option. Specifically, agents iteratively alternate periods of opinion dissemination, where they

advertise their preference for particular options of the best-of-n problem, with periods of exploration,

where they gather information from the environment concerning the quality of their current opinion.

Similarly to (Parker and Zhang, 2009, 2011; Valentini et al., 2014), the information gathered from the

environment is utilized by individual agents to directly modulate their efforts of opinion promotion,

that is, amplifying or reducing the time spent in the dissemination state during which they advertise

a particular option. As in (Montes de Oca et al., 2011), at the end of the dissemination period, agents

reconsider their current opinion by adopting the opinion favored by the majority of their neighbors.

The coupling of direct modulation of the positive feedback with the majority rule implemented by the

DMMD strategy introduces a bias in the dynamics of agents opinions that steers the swarm towards

a collective decision for the best option.

We have defined a mathematical framework to analyze the performance of the DMMD strategy. We

have investigated the limiting dynamics (N →∞) of the DMMD strategy using an ordinary differential

equation model and finite-size effects (N <∞) using a chemical reaction network approximated with

the Gillespie algorithm. Using this mathematical framework, we proved that consensus decisions

are the only asymptotically stable solutions of the system. We investigated the trade-off between the

convergence speed and the decision accuracy that arises when varying the average neighborhood

size of agents applying the majority rule. The primary result of this analysis is that quicker collective

decisions can be obtained with larger neighborhood sizes at the cost of a lower probability to reach

the optimal decision. Additionally, we observed that the parity of the group of opinions utilized

in the majority rule influences this trade-off as well, with swarms using odd group sizes having

greater chances to choose the best option than swarms using even groups. Finally, we compared

the performance of the DMMD strategy with that of the DMVD strategy described in the previous

chapter. With respect to the voter model used in the DMVD strategy, the majority rule implemented

by the DMMD strategy speeds up the decision-making process considerably while it is characterized

by a lower accuracy in all but the harder decision-making problems.
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A ROBOT EXPERIMENT IN SITE SELECTION

T
he combination of macroscopic mathematical models with simple microscopic multi-agent

simulations is advantageous because it provides us with computationally efficient means

to systematically analyze the dynamics of a collective decision-making strategy. However,

these models rely on simplifying assumptions and might be limited in their accuracy. A validation

performed through robot experiments, notwithstanding the controlled experimental conditions,

provides us with extremely useful insights concerning the performance of a robot swarm. In this

chapter1, we aim at exploring the efficacy and the robustness of the collective decision-making

strategies described so far in real-world conditions. We consider the DMMD strategy described in

Chapter 6 applied to a binary site-selection scenario and perform a series of robot experiments using

a swarm of 100 Kilobots. In doing so, we aim both at testing whether the DMMD strategy is sufficiently

simple to be implemented using robots with limited hardware and at exploring its robustness to

robot failures. Additionally, we compare the resulting swarm dynamics with the predictions of the

macroscopic mathematical models previously developed with the objective to further deepen our

analysis of the speed versus accuracy trade-off characterizing these strategies (Franks et al., 2003;

Passino and Seeley, 2006).

7.1 Robotic Platform and Experimental Setup

We performed experiments using the Kilobot robotic platform (Rubenstein et al., 2014a). The Kilobot,

that is shown in Fig. 7.1a, is a commercially available robot that enables researchers to experiment

with large robot swarms. The Kilobot is small, with a diameter of only 3.3 cm. It has a lithium-ion

1The development of Chapter 7 is based on the author’s articles (Valentini et al., 2015c), published in the proceedings of
the 14th International Conference on Autonomous Agents and Multiagent Systems, and (Valentini et al., 2016c), published
in the journal Autonomous Agents and Multi-Agent Systems.
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Figure 7.1: Illustration of the robotic platform and the experimental setup. Figure (a) shows, in

clockwise order, the top, front and bottom views of the Kilobot robot highlighting the position of

the ambient light sensor, the RGB LED, the motors, and the IR transceiver. Figure (b) shows a top-

view picture of the arena used during the robot experiments highlighting the partitioning of the

environment into nest, site a and site b, as well as the positions of the border beacons and the

external light source.

battery that provides the robot with a few hours autonomy. The Kilobot moves on a smooth, two-

dimensional surface using stick-slip motion. A pair of vibrating engines allow the Kilobot to move by

performing micro-jumps over its three (stick-like) legs. By varying the vibration frequency of the two

engines, the robot either proceeds in a straight line at a nominal speed of 1 cm/s, or turns in place at

up to π/4 rad/s. The Kilobot can perceive its environment using a light sensor that allows the robot to

locally measure the level of brightness of the ambient light. Additionally, using an infrared transceiver,

the Kilobot can communicate 3-byte messages with neighbor robots up to a distance of 20 cm.

Finally, the robot is endowed with one RGB LED that can be used to display internal information to

an external observer.

We implemented the DMMD strategy in a binary site-selection scenario, i.e., a best-of-n problem

with n = 2 options. We built a rectangular arena whose total size is 100×190 cm2 (see Figure 7.1b)

which is three orders of magnitude larger than the footprint of a single Kilobot. Options a and b

correspond to foraging sites of quality ρa and ρb , respectively. The two sites are 80×45 cm2 large and

are located at the right (site a, red) and at the left (site b, blue) side of the arena. The remaining, central

part of the arena is called nest. It is 100×100 cm2 large and it is where the swarm of 100 Kilobots

is initially placed. The nest is also the decision-making hub of the swarm, that is, the individual

decision-making mechanism is only allowed to be executed within the nest. We initially place robots

in a circular area whose radius is 40 cm and whose center is the center of the nest (see Figure 7.1b).

The robots are placed so that they are approximately at the same distance from their neighbors. Their
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opinions are initially homogeneously distributed in the nest. At time t = 0, the swarm consists of

50 robots with opinion a and 50 with opinion b, all of which are initialized in the dissemination state;

their initial quality estimate is unbiased (ρ̂a(0) = ρ̂b(0) = 1). Our goal is to have the majority of the

swarm foraging from the site associated with the higher quality, in this scenario by definition site a.

Specifically, the quality of site a is twice as high as that of site b (ρa = 1 and ρb = 0.5). We position a

light source on the right side of the arena, to provide a landmark that can be used by the robots to

navigate and find the three areas. They perform phototaxis when they need to move from site b to

the nest or from the nest to site a and anti-phototaxis in the remaining two cases.

The Kilobots can identify the two sites and measure the sites’ quality by using their infrared sensors.

For each site, five additional Kilobots are positioned upside-down under the transparent surface of

the arena, at the border between the site and the nest, and act as beacons (see Figure 7.1b). These

Kilobots continuously communicate locally a message containing the type (a or b) and the quality

(ρa or ρb) associated to a site. These infrared messages are perceived only within the sites, both

due to their local nature (they are positioned approximately 15 cm below the surface of the arena)

and because we cover the nest area by light occluding paper to prevent robots from sensing this

information at the nest.

As defined by the DMMD strategy in Chapter 6, robots continuously alternate between a period

of exploration and a period of dissemination. Robots explore the site associated with their current

opinion by navigating from the nest to that site and measuring its quality. They then return to the

nest, where they disseminate their current opinion modulating the positive feedback based on

the measured quality ρi , i ∈ {a,b}. Finally, they collect the opinions of their neighbors and apply

the majority rule potentially changing preference for the best site. As explained in Section 6.1, the

swarm can potentially suffer from the formation of clusters of robots with the same opinion, and

consequently, from opinion fragmentation (Deffuant et al., 2000). For example, the robots might

distribute themselves in such a way that all robots with opinion a are positioned close to site a and all

robots with opinion b are positioned close to site b. As a consequence, a robot would be more likely

to interact with a robot of the same opinion which might cause the decision-making process to enter

a deadlock. To maintain the spatial distribution close to a well-mixed distribution, we implemented

specialized motion routines that, if performed for a sufficiently long period of time, allow robots to

mix well in the nest while disseminating their opinions.

7.2 Robot Control Algorithm

We implemented the DMMD strategy by using the motors, the light sensor, and the infrared transceiver

of the Kilobot. Three low-level motion routines, respectively, random walk, phototaxis and anti-

phototaxis, allow robots to navigate and to explore the environment. Depending on the current

control state and on the current robot opinion, these routines are combined into a probabilistic

finite-state machine to implement the behavior in the dissemination states (see Figure 7.2a) and in
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Table 7.1: Parameters of the random

walk routine. Symbol N represents a

normal distribution with mean µ and

variance σ2, symbol U represent a

uniform distribution. All parameters

are given in seconds.

Control state Motion Parameters

Dissemination
Forward N (µ= 15,σ2 = 25) seconds

Rotation U (−3,3) seconds

Exploration
Forward N (µ= 5,σ2 = 9) seconds

Rotation U (−3,3) seconds

the exploration states (see Figure 7.2b). The interested reader can refer to (Valentini et al., 2015b)

for a video highlighting intermediate phases of the robot controller. In the following, we employ

the exponential distribution to determine the duration of several sub-routines used in the robot

controller. We have chosen this distribution due to its large variance that allows us to break the

synchrony in the robot motion patterns by introducing noise that improves the mixing of robots.

7.2.1 Low-Level Motion Routines

We implemented a correlated random walk in order to improve the mixing of the opinions in the

swarm (see Table 7.1 for the parameters of this routine). When performing the random walk, the robot

moves forward for a normally distributed amount of time. Given that the nest is bigger than each of

the two sites, the duration of this period of time depends on the robot control state: the dissemination

state is characterized by a longer period of forward motion than the exploration state. Then, the robot

turns in place for a uniformly distributed period of time. Additionally, we implemented phototaxis

and anti-phototaxis motion routines to allow robots in the swarm to navigate between different

regions of the environment. Phototaxis is implemented by letting robots perform oriented motion

towards the light source placed on the right side of the arena. The robots search for the direction with

the highest light intensity by turning on the spot; once found, they move forward until the ambient

light intensity measurement falls outside a tolerance range; when this happens, the robots resumes

the on-spot search of the correct direction of motion. Anti-phototaxis is implemented similarly to

phototaxis with the only difference that, in order to move away from the light source, robots search

for the direction with the lowest light intensity.

7.2.2 Dissemination States

In both dissemination states Da and Db , the robots execute the finite-state machine depicted in

Figure 7.2a. Robots start by performing a random walk in the nest while communicating locally their

opinions. The random walk favors the spatial mixing of robots in space and therefore of their opinions.

In addition to their current opinion, robots communicate a randomly generated 16-bit identifier that,

with high probability, uniquely identifies the robot in its local neighborhood. This is used to make

sure that, at any given time, robots distinguish the opinion of different neighbors. In general, any

implementation that prevents robots from counting the opinion of a same neighbor multiple times
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Figure 7.2: The figure shows the finite-state machines that implement the motion control method

of the individual robot during the execution of the decision-making strategy. Figure (a) shows the

FSM used for both dissemination states Da and Db ; Figure (b) shows the two FSMs used for the

exploration state Ea (top) and Eb (bottom). Symbols represent low level motion routines, respectively,

random walk (RW ), phototaxis (PT ), and antiphototaxis (!PT ); colors represent the current robot

opinion, respectively, white for opinion a and gray for opinion b.

will suffice for this purpose (see Mathews et al. (2015) for an ID-free communication example based

on a combination of cameras, LED lights, and blob detection algorithms). Robots directly modulate

positive feedback by spending an exponentially distributed amount of time in the dissemination

state. The mean of this exponential distribution is either ρ̂a g or ρ̂b g , where ρ̂i , i ∈ {a,b} is the current

robot estimate of the option quality. While performing the dissemination state, the robots might

perceive messages from the five robot-beacons positioned at each border between the nest and a

site. If such a message is perceived, it means that the robot is mistakenly leaving the nest and it

therefore performs either phototaxis or anti-phototaxis in order to return to the nest (see Figure 7.2a).

Oriented motion is performed by the robot for as long as beacon messages are received and proceeds

for an additional period of 20 seconds after the last message. This kind of oriented motion allows

the robot to keep a distance from the border and to favor a good mixture of robot opinions in space.

Once opinion dissemination is completed, the robot records the opinions of its neighbors for three

seconds. It then adds its own current opinion to that record, applies the majority rule to determine

its next preferred option and, consequently, the next site to explore. We chose a relatively short time

for opinion collection in order to reduce the time-correlation of the observed opinions (i.e., robots

taking decisions on the basis of outdated information). Nonetheless, this period of time is sufficient

for a robot to receive messages from many neighbors as will be clear from the analysis in the next

section. Finally, the robot leaves the nest to explore the chosen site.

101



CHAPTER 7. A ROBOT EXPERIMENT IN SITE SELECTION

Figure 7.3: The figure shows a series of screen-shots taken from one experiment with a swarm of

100 Kilobots. The screen-shots are taken every 18 minutes of execution.

7.2.3 Exploration States

In states Ea and Eb , robots move to the site associated with their current opinion, performing either

phototaxis (towards site a) or anti-phototaxis (towards site b). Once they reach the site, they explore it

for an exponentially distributed amount of time, they record the associated quality (received from the

beacons), and then return to the nest. During this time, the robot executes the finite-state machine

depicted in Figure 7.2b (respectively, top for site a and bottom for site b) in order to stay within the

boundaries of the site. We consider this behavior as an abstraction of a quality-estimation routine

dependent on the target scenario. This abstraction allows us to study swarm dynamics that are closer

to those of a real-world scenario, where exploration is a necessary and time-consuming task. For

example, the robot might assess during this period how much of a certain resource is available in

the site (e.g., construction material), what is the average level in the site of a certain physical feature

(e.g., temperature), etc. Additionally, to ensure that robots fully enter the site (i.e., they do not remain

in the border region), we implemented the following mechanism. If a robot wants to explore site a

(respectively, b), it performs phototaxis (anti-phototaxis) in two phases. In the first phase, the robot

performs phototaxis (anti-phototaxis) until it perceives a message from the beacons, indicating

that the robot has crossed the border and entered site a (b). In the second phase, phototaxis (anti-

phototaxis) is continued for as long as messages from the beacons are not received for 5 seconds.

Exactly the same mechanism, but reversed, is used by the robots returning to the nest and entering

the dissemination state. The second phase also eases the mixing of robot opinions in the nest because

robots are programmed to approach the center of the nest.
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7.3 Experiments

Our main working hypothesis in the analysis performed in Chapter 6 was that the efficiency and the

accuracy of the DMMD strategy are affected by the neighborhood size of robots when applying the

majority rule. The neighborhood size can be directly or indirectly controlled by the experimenter.

However, its value could fluctuate over time due to spatial density constraints. In our scenario, we

consider two extreme situations. We restrict the maximum neighborhood size to either 4 robots or

to 24 robots. The latter case corresponds in practice to no restriction, since the actual number of

neighbors perceived by a robot at a given time is rarely greater than 24. Robots record the opinions

they receive in a memory of fixed size according to a first-in, first-out policy. Since robots receive

messages from their neighbors in a random order, this implementation results in a random selection

of the neighbors’ opinions. We refer to this parameter as the maximum size of the opinion group Gmax

and we define it in a way so that it also includes the opinion of the considered robot: Gmax ∈ {5,25}.

For each of these two cases, we performed 10 independent runs where each run lasts for 90 minutes.2

Recall that the parameter g determines the duration of the dissemination state without considering

the modulation of positive feedback through the site quality. The higher the value of g , the longer

the robot performs its random walk behavior contributing to the mixing of the opinions. However,

higher values of g also increase the time necessary to the swarm to find consensus. We performed

preliminary test runs with parameter g ∈ {300,400,500} seconds and visually evaluated the mixing

of robots’ opinions. We found that g = 500 seconds (i.e., about g = 8.4 minutes) provided a proper

mixing of the robots’ opinions while limiting the overall decision and experimentation time. Some

snapshots taken from one of the experiments are shown in Figure 7.3.

7.3.1 Influence of Neighborhood Size

The results of the robot experiments are shown in Figure 7.4. Figure 7.4a reports the behavior of

the proportion (Da +Ea)/N of robots with opinion a over time for the two cases: Gmax = 5 and

Gmax = 25. Qualitatively, we observe that the maximum allowed neighborhood size influences the

speed of the decision-making process. To determine whether the observed difference in speed was

statistically significant, we fitted a generalized linear mixed model (GLMM) (Bolker et al., 2009) with

binomial response, where we considered time as a continuous covariate, Gmax as a fixed factor, and

Gmax nested into the run number as a random factor. In this model, we also included explicitly the

interaction of Gmax with time as an additional fixed factor, which turned out to be significant (p-value

= 0.047). The presence of a significant interaction confirms our qualitative observation: the curves

representing the predicted proportion of robots with opinion a as a function of time for the two

settings (Gmax = 5 and Gmax = 25) do not grow at the same rate. The one with Gmax = 25 grows faster

than the one with Gmax = 5. These two curves (dashed lines) are shown in Figure 7.4b, together with

the confidence intervals (shaded areas) predicted by the GLMM analysis. As we can see, the system

2All experiments with the robots have been recorded and videos can be found online in the supplementary mate-
rial (Valentini et al., 2015a) of the article (Valentini et al., 2016c).
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Figure 7.4: Illustration of the results of the robot experiments and their statistical analysis. Figure (a)

shows the distributions of the proportion of robots with opinion a over time. Figure (b) shows the

median and the confidence intervals predicted by the GLMM analysis. The horizontal dotted line

represents a majority of 90% of the swarm favoring opinion a.

reaches a 90% majority for opinion a faster with Gmax = 25 than with Gmax = 5: with 95% confidence,

the system converges to 90% majority for opinion a in the interval between t ≈ 55 and t ≈ 69 for

Gmax = 25, and in the interval between t ≈ 66 and t ≈ 80 for Gmax = 5.

In both parameter settings, after 90 minutes of execution the swarm always reached a state where the

broad majority of robots favor opinion a, but this majority almost never coincided with 100% con-

sensus. We identified robot failure as a possible cause of this result: robots occasionally experienced

battery failures or stuck motors, or switched to stand-by due to short circuits caused by collisions

with other robots (0.7 robots per experimental run). Additionally, some robots experienced serious

motion difficulties due to poor motor calibration and they were unable to reach target areas (i.e.,

nest, sites); thus they were prevented from changing opinion. Despite these failures, the DMMD

strategy proved to be very robust by allowing the swarm to always reach a correct collective decision.

7.3.2 Group Size and Exploration Time

We performed additional robot experiments to estimate the values of the average group size G in the

two settings and that of the time σ−1 necessary to explore a site. In the next section, we will use this

information to compare the results of the robot experiments with the predictions of the mathematical

models described in Chapter 6. Each Kilobot records internally its series of exploration times and

that of the number of neighbors at decision time. After an entire experiment, the acquired data are

downloaded from the robots using a wired connection. We had to limit the number of experiments

for data acquisition because it is a very time-consuming process. Specifically, we performed four

runs: two runs to measure the actual average group size in the two settings (Gmax = 5 and Gmax = 25);

and two runs to measure the average time required to complete the exploration of a site, again in the
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Figure 7.5: The figure shows the results of the statistical analysis performed during the additional

robot experiments. Figure (a) shows the probability mass function of the group size G for the two

parameter settings Gmax = 5 (green) and Gmax = 25 (purple). Figure (b) shows the probability density

function of the time σ−1 necessary for a robot to explore a site (the dotted vertical line gives the

average value of σ−1).

two settings.

Figure 7.5a shows the probability mass function P (G) of the neighborhood size estimated from a

single experimental run for each setting. When Gmax = 25 (652 samples), the average group size

estimated was 8.57, while it was 4.4 for Gmax = 5 (682 samples). We have therefore a difference

of almost a factor of two between the two averages. We performed a two-sample Kolmogorov-

Smirnov test to verify that the exploration time has the same probability density function for Gmax = 5

(504 samples) and Gmax = 25 (602 samples). The null hypothesis that the two samples come from the

same distribution could not be rejected (p-value = 0.5364), which supports our original conclusion

that data sets are consistent with each other. We therefore merged the two data sets to improve our

estimate of the exploration time. Figure 7.5b shows the probability density function P (σ−1) of the

timeσ−1 a robot spends to complete the exploration of a site (we recall thatσ is a rate, see Section 6.2).

The average exploration time is 6.072 minutes (dotted line).

7.3.3 Comparison with Macroscopic Models

In order to validate our design methodology, we perform a comparison of the robot experiments

with the macroscopic mathematical models developed in the previous chapter. Such a comparison is

aimed both at validating the predictions of our mathematical models and at gathering additional

knowledge about the actual dynamics of the swarm. We initially compare the predictions of the ODE

model introduced in Section 6.2 with the results of the robot experiments. Successively, we perform

the same comparison using instead the predictions of the chemical reaction network introduced in

Section 6.3. Table 7.2 lists all the parameters used in the ODE model and in the chemical reaction
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Table 7.2: Parameters of the

ODE model and the chemical

reaction network. DP is a de-

sign parameter; RE is param-

eter estimated from robot ex-

periments; PP is a problem

parameter.

Parameter Value Type

Quality of Site a ρa = 1.0 PP

Quality of Site b ρb = 0.5 PP

Maximum group size (robots) Gmax ∈ {5,25} DP

Mean group size (ODEs) G ∈ {5,9} RE

Exploration time σ−1 = 6.072 minutes RE

Dissemination time g = 8.4 minutes DP

t (min)

d
a

+
e

a

0 20 40 60 80
0.2

0.4

0.6

0.8

1.0

Gmax = 5
Gmax = 25

(a)

t (min)

d
a

+
e

a

0 20 40 60 80
0.2

0.4

0.6

0.8

1.0

Gmax = 5
Gmax = 25

(b)

Figure 7.6: Illustration of the comparison between robot experiments (box-plots) and predictions of

the ODE model defined in Chapter 6 (lines), respectively, for Gmax = 5 (green) and Gmax = 25 (purple).

Figure (a) shows the comparison of robot experiments with the predictions of the ODE model using

the parameters estimated in Section 7.3.2. Figure (b) shows the same comparison but the predictions

of the ODE model are scaled in time according to t ′ = 3t + g . Parameters: σ= 6.072 min, g = 8.4 min,

ρa = 1, ρb = 0.5, Gmax ∈ {5,25}, G ∈ {5,9}.

network. We set the group size in both models by rounding the average group size obtained in

the robot experiments (cf. Figure 7.5a). This was 8.57 when Gmax = 25 and 4.4 when Gmax = 5. We

therefore set G = 5 and G = 9 in the two cases. The value of the unbiased dissemination time g was

set to g = 8.4 minutes. The mean duration of the exploration state (i.e., the inverse of the rate σ at

which robots transit from the exploration state to the dissemination state) was estimated from data

and equals σ−1 = 6.072 minutes (cf. Figure 7.5b).

The comparison between the system of ODEs and the robot experiments is shown in Figure 7.6a. As

we can see, the trajectories predicted by the model (solid lines) have the same shape but do not match

those obtained in the robot experiments (box-plots). Specifically, the ODE model appears to be shifted

in time and to evolve at a higher speed. Indeed, the fitting improves if we apply the following time

rescaling: t ′ = 3t + g , see Figure 7.6b. This result suggests that robot experiments are approximately 3

times slower than the dynamics predicted by the ODE model, and shifted by a factor g . The offset g
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Figure 7.7: Illustration of the comparison between robot experiments (box-plots) and the predictions

of the chemical reaction network in Equations (6.7–6.10) approximated by the Gillespie algorithm

(shaded areas). The shaded areas correspond to a confidence region computed using the 25th and

the 75th percentiles of 1000 independent executions of Algorithm 6.1 with time rescaled according to

t ′ = 3t + g . Figure (a) shows the results for the robot scenario with Gmax = 5 and Figure (b) shows the

results for Gmax = 25. Parameters: N = 100, σ= 6.072 minutes, g = 8.4 minutes, ρa = 1, ρb = 0.5.

is easily explained by assumption ii. of the ODE model: initially, the Kilobots do not have a correct

estimate of the quality of the two sites but begin the execution with ρa = ρb = 1 (in contrast to

assumption ii.). Before having a correct quality estimate, the robots have to do an initial exploration

of the sites, for which they need to wait on average g minutes. In addition, we conjecture that spatial

interference among robots might have caused a partial violation of the well-mixed assumption of

the model, which caused a slowdown by a factor of 3. Note that the time rescaling t ′ = 3t + g has

been derived manually without making use of tuning algorithms, thus favoring the simplicity and

generality of the resulting explanation over the accuracy of model fitting. Despite this, we obtained

correct, qualitative predictions from the ODE model with respect to the asymptotic dynamics of

robot experiments. Additionally, we validated the predictions of the ODE model by extending the

GLMM model presented in Section 7.3.1. We included in the GLMM model the source originating the

data as a fixed factor (i.e., robot experiments or ODE model). We then verified that this factor is not

statistically significant which means that predictions of the ODE model are not significantly different

from the results of the robot experiments (p-value = 0.436).

We compare the predictions of the chemical reaction network with the results of the robot experi-

ments. The results of this comparison are shown in Figure 7.7 as a function of time. The shaded areas

provide the region between the 25th and 75th percentile predicted by the model and the box-plots

give the outcome of robot experiments. The results of the Gillespie algorithm depicted in the figure

are obtained using the same time rescaling t ′ = 3t + g used for the ODE model. Remarkably, the

predictions of the chemical reaction network fit the robot experiments very well for both group
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sizes G = 5 (Figure 7.7a) and G = 9 (Figure 7.7b). In contrast to the ODE model, the chemical reaction

network can also accurately predict the variance of the collective decision-making process. Both in

the data from the robot experiments and in the predictions of the model, the variance is higher for

intermediate values of time and lower at the beginning and at the end of the execution of the DMMD

strategy. As performed for the ODE model, we tested the predictions of the chemical reaction network

against the results of robot experiments using the GLMM. We found that the differences between

the predictions of the model and the results of robot experiments are not statistically significant

(p-value = 0.367).

7.4 Discussion

The collective decision-making strategy and the problem scenario studied in this chapter are inspired

by the collective behavior of social insects, such as ants and honeybees (Franks et al., 2002; Marshall

et al., 2009; Seeley, 2010; Sumpter, 2010). Specifically, the scenario was inspired by the site-selection

problem often faced by honeybee swarms (Franks et al., 2002; Seeley, 2010), and was tackled by a

swarm of 100 Kilobots (Rubenstein et al., 2014a). The same and similar robots have been successfully

used in swarms sized up to one thousand to complete tasks such as aggregation (Kernbach et al.,

2009), collective transport (Rubenstein et al., 2013) and pattern formation (Rubenstein et al., 2014b).

However, the site-selection scenario analyzed in this chapter is the first experiment in which a large

swarm of robots has tackled a consensus achievement problem.

We have shown that the DMMD strategy can be successfully implemented to let a swarm of 100 Kilo-

bots tackle a binary site-selection problem. We have validated the DMMD strategy by performing

more than 20 independent repetitions, equivalent to approximately 35 hours of robot experiments.

The results of the robot experiments prove that:

i the DMMD strategy has sufficiently low requirements that allow its implementation on robots

with very limited perception and actuation capabilities;

ii it is fast enough to implement a feasible collective decision-making process within the robots’

limited energy autonomy;

iii it is robust to individual robot failures characteristic of real hardware.

Additionally, we have shown that both the ODE model and the chemical reaction network model

described in Chapter 6 yield qualitatively good predictions of the DMMD strategy with an appropriate

rescaling of time. The goodness and generality of both models are a function of the value chosen for

the design parameter g and of the quality of the estimates of domain-specific parameters (e.g., σ,

G , ρi ∈ {a,b}). Different problem scenarios are likely to require time rescaling different from 3t + g .

The discrepancies between predictions of the models and the results of the robot experiments

could be mitigated by increasing the value of g to improve the mixing of robots in space. This would

however increase the experimentation time. Conversely, these discrepancies would be exacerbated by
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decreasing the dissemination time g up to a point where the swarm would approach a macroscopic

state of fragmentation.
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A ROBOT EXPERIMENT IN COLLECTIVE PERCEPTION

I
n addition to its accuracy and to the time it takes to make a decision (Franks et al., 2003), the

success of a collective decision-making strategy can be measured by the extent at which it can

be generalized across different problem scenarios. Generality of a strategy allows the designer to

reuse the existing high-level control logic in different problem scenarios and, while doing so, to focus

only on the implementation of domain-specific, low-level control routines (e.g., motion patterns). In

this chapter1, we support the generality of our design methodology by considering a novel problem

scenario: collective perception. When a distributed system is composed of a large number of relatively

incapable and poorly informed components, the limitations of single individuals can be overcome

by aggregating and processing the information collectively. Contrary to the selection of the fastest

traveling route (cf. Chapter 4) or of the highest quality location in the environment (cf. Chapters 5–7),

the collective perception scenario requires a swarm of robots to explore an environment and evaluate

the abundance of certain features that are scattered therein (e.g., the availability of precious metals

or other minerals) with the objective to determine which feature is the most frequent.

Previous studies that considered the problem of collective perception focused on providing robots

with the means to determine features of individual objects or specific locations in the environment.

In (Kornienko et al., 2005a,b), the authors develop a strategy that allows robots to individually and

locally evaluate the shape of an object using their IR sensors and then to perform distributed sensor

fusion with the aim of achieving collective perception. Schmickl et al. (2007) propose two strategies,

a hop-count strategy and a Trophallaxis-inspired strategy, that allow a swarm of robots to collectively

perceive which area in the environment is the largest. In (Tarapore et al., 2012, 2013), the authors

propose instead a control strategy that is inspired by the adaptive immune system of vertebrates; this

strategy allows a swarm of agents to collectively discriminate between dangerous and non-dangerous

1The development of Chapter 8 is based on the author’s article (Valentini et al., 2016a), to appear in the Proceedings of
the Tenth International Conference on Swarm Intelligence.
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objects and to adopt appropriate actions (e.g., tolerate or clear out the objects). Finally, Mermoud

et al. (2010) develop an aggregation-based strategy that allows robots to collectively perceive the type

of a spot (i.e., good or bad) and to destroy those spots that have been perceived by the swarm as bad.

In contrast, we consider the collective perception scenario as a collective decision-making problem

and provide domain-specific implementations of the DMVD and DMMD strategies (cf. Chapter 5 and

Chapter 6) tailored for the e-puck robot (Mondada et al., 2009). We also consider a third collective

decision-making strategy, that we called Direct Comparison (DC), with the aim to better highlight the

advantages of self-organized approaches. In the DC strategy, we allow robots to share a larger amount

of information (i.e., quality estimates) and, based on this information, to modify their opinions by

comparing their quality estimate with those of their neighbors. Additionally, the DC strategy does

not make use of the modulation of positive feedback. We use a swarm of N = 20 e-pucks and study

the performance of each strategy over two different problem setups representing a simple and a

difficult decision-making problem. After successfully demonstrating the generality of the DMMD and

DMVD strategies through robot experiments, we deepen our analysis using extensive physics-based

simulations. We implement the collective perception scenario using the ARGoS simulator (Pinciroli

et al., 2012) and use this setup to show that the self-organized mechanisms underlying the DMMD

and the DMVD strategies allow these strategies to sustain high levels of noise that would instead

prevent the use of the more informed DC strategy.

8.1 Robotic Platform and Experimental Setup

We performed experiments using the e-puck robotic platform (Mondada et al., 2009). The e-puck,

shown in Figure 8.1a, is a popular robotic platform within the community of swarm robotics and has

been been adopted in a large number of experimental studies. It is a commercially available robot

designed for research and education with a diameter of 7 cm and a battery autonomy of up to 45

minutes. The e-puck is a wheeled robot that can move with a maximum speed of 16 cm/s. In its basic

configuration, the robot is equipped with RGB LEDs, a low-resolution camera, an accelerometer, a

sound sensor, and 8 proximity sensors. Figure 8.1a shows the e-puck configuration used in our exper-

iments where the robot is extended with the range & bearing IR communication module (Gutiérrez

et al., 2009a), the ground sensor, the Overo Gumstick module, and the omnidirectional turret2. In our

experiments, the robots use the range & bearing module to share their information locally with their

neighbors (e.g., internal state, quality estimate). This module consists of 12 IR transceivers positioned

around the circumference of the robot that allow it to send and receive messages up to a distance of

approximately 70 cm. Additionally, the e-puck mounts 8 IR proximity sensors that are used to detect

the presence and measure the distance of nearby obstacles. The e-puck has 3 ground sensors that

allow it to measure the color of the surface in gray-scale values. Finally, the Overo Gumstick module

2The omnidirectional camera mounted in the e-puck turret is not used by robots in the collective perception scenario.
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Figure 8.1: Illustration of the robotic platform and the experimental setup. Figure (a) shows the

e-puck robot highlighting, in clock-wise order, the position of the Wi-Fi board, the range & bearing

board, the ground sensor, the proximity sensors, and the RGB LEDs. Figure (b) shows a top-view

picture of the arena used for the collective perception scenario with a swarm of N = 20 e-pucks, 10

with opinion a (red LEDs) and 10 with opinion b (blue LEDs). The color pattern drawn on the surface

of the arena represents a difficult problem scenario with 52% of the surface colored in black and 48%

colored in white.

provides the e-puck with the capabilities to run Linux and with a Wi-Fi connection. This latter feature

is exploited during our experiments to collect statistics about the collective decision-making process.

For both robot experiments (see Figure 8.1b) and physics-based simulations (see Figure 8.2), we

consider a collective perception scenario characterized by an environment with n = 2 features. The

robots are positioned in a square arena with a total area of 200× 200 cm2. As in Chapter 7, the

environment is approximately three orders of magnitude larger than a single robot footprint. It is

bounded by four walls that can be detected by the proximity sensors of the robots. The surface of the

environment is characterized by a grid consisting of 10×10 cm2 cells. The color of each cell is used as

an abstraction to represent a particular feature of the environment. Robots always have an opinion

about which feature they currently believe to be the most frequent. In particular, the color black

represents the feature of the environment associated to opinion a while the color white represents

the feature of the environment associated to opinion b. Without loss of generality, we always have
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(a) (b)

Figure 8.2: Illustration of the physics-based simulations of the collective perception scenario imple-

mented using the ARGoS simulator (Pinciroli et al., 2012). Figure (a) and Figure (b) show, respectively,

a top and a side view of the simulated environment with a swarm of N = 20 e-pucks.

the black feature as the most frequent in the environment and, as a consequence, the goal of the

swarm is to make a collective decision favoring opinion a. Each robot of the swarm uses its LEDs

to show its current opinion. LEDs are lighted up in red when the robot favors opinion a and in blue

when the robot favors opinion b. The robots use their ground sensors to perceive the brightness of

the underlying surface, determine its color, and estimate the quality of the corresponding option.

8.2 Robot Control Algorithm

In this section, we describe the three collective decision-making strategies used in our performance

comparison (i.e., the DMMD, DMVD, and DC strategies). All three strategies rely on common low-level

control routines (i.e., random walk, obstacle avoidance, and quality estimation) that are described in

Section 8.2.1. In Section 8.2.2, we describe the implementation of the DMMD strategy and the DMVD

strategy for the collective perception scenario. Section 8.2.3 provides instead the description of the

DC strategy.

8.2.1 Low-Level Motion Routines

We implemented a random walk routine as follows. A robot performing random walk alternates

between straight motion and rotation on the spot. The robot moves straight for a random period of

time with a mean duration of 40 seconds that is sampled from an exponential distribution. After this

period of time, the robot turns on the spot for a random period of time that is uniformly distributed

between 0 seconds and 4.5 seconds. The turning direction is also chosen randomly. With equal
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probability, the robot turns clockwise or counterclockwise. Once turning is completed, the robot

resumes straight motion.

The perception by a robot of one or more nearby obstacles (i.e., a wall or a neighboring robot at

a distance less than approximately 30 cm) causes the execution of the random walk to be paused

and triggers the obstacle avoidance routine. We implemented the obstacle avoidance routine as

follows. The robot uses its proximity sensors to detect the distance and the bearing of each perceived

obstacle. It then uses this information to compute a new direction of motion that is opposite to the

obstacles. Depending on the computed direction, the robot turns on the spot either clockwise or

counterclockwise until its orientation corresponds to the computed one. Then, the robot resumes its

random walk.

We implemented the following quality estimation routine to let a robot estimate the quality ρi of the

feature associated to its opinion i ∈ {a,b}. When executing the quality estimation routine, the robot

uses its ground sensors to sample the color of the surface while moving randomly in the environment.

During the entire execution of the quality estimation routine, the robot keeps track of the amount

of time τi during which it perceived the color associated to its current opinion i . Finally, the robot

computes a quality estimate ρ̂i which is the ratio of τi to the overall duration of the quality estimation

routine.

8.2.2 DMMD and DMVD Strategies Implementation

In the exploration states Ei , i ∈ {a,b}, a robot with opinion i explores the environment by performing

the random walk routine and, when necessary, the obstacle avoidance routine. Meanwhile, the

robot samples the environment locally and estimates the option quality ρi , by executing the quality

estimation routine. The duration of the exploration state is random and exponentially distributed

with a mean duration of σ−1 seconds (cf. Chapter 6). After this period of time is elapsed, the robot

switches to the dissemination state Di .

In the dissemination states Di , i ∈ {a,b}, a robot with opinion i broadcasts its opinion locally to

its neighbors using its range & bearing module. Meanwhile, the robot performs the same random

walk and obstacle avoidance routines as in the exploration states. The aim of this motion pattern,

however, is not to explore the environment but to mix the positions of robots of different opinions

in the environment which eases the collective decision-making process. The robot uses its current

quality estimate ρ̂i to amplify or inhibit the duration of the dissemination state Di in a way that this

duration is proportional to the opinion quality. To do so, the duration of the dissemination state is

exponentially distributed with mean ρ̂i g seconds, where g is a design parameter that defines the

unbiased dissemination time. Finally, the robot collects the opinions broadcast by its neighbors and

applies the individual decision-making mechanism (either the majority rule in the DMMD strategy

or the voter model in the DMVD strategy) to determine its new opinion j ∈ {a,b}. Then, the robot

switches to the exploration state E j to collect a new estimate ρ̂ j of the option quality.
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8.2.3 Direct Comparison of Option Quality

We define a third decision-making strategy, the Direct Comparison (DC) of option quality, by using

the same PFSM of the DMMD and DMVD strategies but letting robots compare their quality esti-

mates directly to modify their opinion. When executing the DC strategy, robots alternate periods

of exploration to periods of dissemination. In contrast to the DMVD and DMMD strategies, the DC

strategy does not make use of a mechanism for the modulation of positive feedback and the mean

duration of the dissemination state Di , i ∈ {a,b}, is g , independently of the option quality ρi . During

the dissemination period, the robot also broadcasts its current quality estimate ρ̂i in addition to its

opinion i . This additional information is used by robots to modify their opinions. At the end of the

dissemination state, a robot with opinion i compares its opinion with that of a random neighbor

with opinion j ∈ {a,b}. If the neighbor’s estimate ρ̂ j is greater than the considered robot’s estimate ρ̂i ,

then the robot modifies its current opinion to j . Next, the robot switches to the exploration state E j

which is implemented identically to that of the DMMD and DMVD strategies.

Our aim is to use the DC strategy to show the benefits of a self-organized approach. Indeed, as

observed in natural systems (Edwards and Pratt, 2009; Visscher and Camazine, 1999), the ability of

the DMMD and DMVD strategies to discriminate different options is based on the self-organized

processing of a multitude of individual quality estimates by the swarm. These quality estimates are

processed by modulating positive feedback in combination with an individual decision-making

mechanism that operates on opinions of neighbors only. In contrast, a swarm executing the DC

strategy relies on the capabilities of individual robots to correctly discriminate the different options

by their quality.

8.3 Experiments

We consider the collective perception scenario described in Section 8.1 and perform experiments

using the DMVD, DMMD, and DC strategies. Our primary objective during these experiments is to

compare the performance of the three considered collective decision-making strategies in terms of

the speed and the accuracy of the resulting collective decisions (Franks et al., 2003; Passino and Seeley,

2006). As done in the previous chapters, we measure the strategies’ speed using the average time TN

necessary for a swarm to reach consensus on any opinion, while we use the exit probability EN ,

computed as the proportion of experimental runs that converge to consensus on opinion a, as a

measure of the strategies’ accuracy. By doing so, we aim at investigating if the additional information

used by the DC strategy (i.e., the neighbors’ estimates of the option quality) provides any benefits

with respect to the more canonical approach underlying the DMVD and the DMMD strategies. In the

following, we first perform experiments using a swarm of N = 20 e-pucks in two different setups of

the environment classification scenario representing a simple and a more difficult decision-making
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problem3. Then, we deepen our experimental analysis by means of physics-based simulations

implemented using the ARGoS simulator (Pinciroli et al., 2012). Physics-based simulations allows

us to study the behavior of the DMVD, DMMD, and DC strategies over a wider space of parameters

configurations including the initial conditions, the problem difficulty, and the swarm size. In both

robot experiments and physics-based simulations, we set robots to start the execution of their

controllers in the exploration state. Additionally, we set the mean duration of the exploration state to

σ−1 = 10 seconds and the unbiased duration of the dissemination state to g = 10 seconds.

8.3.1 Robot Experiments

We considered two different experimental setups for the collective perception problem. The first

setup represents a simple decision-making problem where the proportion of feature a (i.e., color

black) in the environment is approximately twice that of feature b (i.e., color white). Specifically,

the surface of the environment is ρa = 66% black and ρb = 34% white and the problem difficulty is

defined by the normalized option qualities ρ?a = 1 and ρ?b = ρb/ρa = 0.515. The second setup consists

of a more difficult collective perception problem where the surface of the environment is ρa = 52%

black and ρb = 48% white (i.e., ρ?a = 1 and ρ?b = 0.923). For each combination of problem setup and

collective decision-making strategy, we performed 15 repetitions of the robot experiment (i.e., a total

of 90 repetitions). In all experiments, the swarm is initially unbiased with 10 robots in state Ea and 10

robots in state Eb .

Figure 8.3 shows the results of the robot experiments for the simple collective perception scenario

for the DMMD strategy (top), the DMVD strategy (middle), and the DC strategy (bottom). The

box-plots provide the evolution over time of the number Da +Ea of robots with opinion a: white

box-plots for the repetitions converging to consensus on opinion a and gray box-plots for the

repetitions converging to consensus on opinion b. The vertical lines indicate the average time TN

to reach consensus. When executing the DMMD strategy (see Figure 8.3, top), the swarm of e-

pucks requires on average TN = 138 seconds to converge on a consensus decision with a standard

deviation of 35.5 seconds; its accuracy is EN = 0.933, i.e., only 1 out of 15 repetitions converges

to a wrong consensus on opinion b. In contrast, when executing the DMVD strategy or the DC

strategy, the swarm of e-pucks is always able to correctly identify the most frequent feature in the

environment (i.e., decision accuracy EN = 1.0). However, the DMVD strategy converges to consensus

after TN = 179.3 seconds with a standard deviation of 108.4 seconds while the DC strategy is faster

and requires only TN = 76 seconds and has a standard deviation of 35.2 seconds. In agreement with

the results of Chapter 6, we observe that the DMMD strategy is faster but also less accurate than

the DMVD strategy. For the simple experimental setup, the DC strategy benefits from using more

information; it is faster than both the DMMD strategy and the DMVD strategy and has the same

maximum accuracy as the DMVD strategy.

3All robot experiments have been recorded and videos can be found online in the supplementary material (Valentini
et al., 2016b) of the article (Valentini et al., 2016a).
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Figure 8.3: Illustration of the results of the robot experiments for the simple experimental setup. The

figure shows the evolution over time of the number of robots with opinion a (i.e., Da +Ea) for the

DMMD strategy (top), the DMVD strategy (middle), and the DC strategy (bottom). White and gray

box-plots shows, respectively, the distribution of the experimental runs converging to consensus on

opinion a and consensus on opinion b. The gray box-plots are not plotted in the case in which all

runs converged on opinion a. The vertical lines show the average time necessary to reach consensus

on any opinion. Parameters: ρ?a = 1, ρ?b = 0.515, σ−1 = 10 seconds, g = 10 sec, N = 20.

Figure 8.4 shows the results of the robot experiments in the difficult setup of the collective perception

scenario in which the normalized option qualities are given by ρ?a = 1 and ρ?b = 0.923. As for the

simple experimental setup, Figure 8.4 shows the results for the DMMD strategy (top), the DMVD

strategy (middle) and the DC strategy (bottom). The increased difficulty of the decision-making

problem overturns the results obtained in the simple experimental setup. The DMMD strategy

based on the majority rule is the fastest strategy in the comparison with an average consensus time

of TN = 184 seconds and a standard deviation of 64.8 seconds. The DMVD strategy based on the

voter model is still the slowest strategy with an average consensus time of TN = 387.9 seconds and

a standard deviation of 291.2 seconds. The DC strategy has an average consensus time of TN =
303.3 seconds and a standard deviation of 135.2 seconds. In contrast, the DMMD strategy has the
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Figure 8.4: Illustration of the results of the robot experiments for the difficult experimental setup. The

figure shows the evolution over time of the number of robots with opinion a (i.e., Da +Ea) for the

DMMD strategy (top), the DMVD strategy (middle), and the DC strategy (bottom). White and gray

box-plots shows, respectively, the distribution of the experimental runs converging to consensus on

opinion a and consensus on opinion b. The gray box-plots are not plotted in the case in which all

runs converged on opinion a. The vertical lines show the average time necessary to reach consensus

on any opinion. Parameters: ρ?a = 1, ρ?b = 0.923, σ−1 = 10 seconds, g = 10 sec, N = 20.

lowest accuracy, EN = 0.667, reaching consensus on the best option 10 times out of 15 repetitions.

The DMVD strategy, with a decision accuracy of EN = 0.933, performs similarly to the DC strategy

whose decision accuracy is still maximal, EN = 1.0. For higher difficulty of the collective perception

scenario, there is no strategy that outperforms all others in both speed and accuracy.

The communication overhead underlying the DC strategy seems to provide stronger benefits than

those of the modulation of positive feedback used by the DMMD and DMVD strategies. However,

a cross comparison of the results between the simple and difficult experimental setups reveals an

interesting performance trend. The increase in the difficulty of the decision-making problem resulted

in a relative little slowdown of the DMMD strategy which is 1.33 times slower when compared to

the simple experimental setup; the DMVD strategy is 2.16 times slower; while the DC strategy has a
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more pronounced slow down of 3.99 times. The DMMD strategy, with an accuracy 28.5% less than

the simple setup, is preferable when consensus time is the most critical constraints. The DMVD

strategy loses only 6.7% of its accuracy and its consensus time increases much less than that of the

DC strategy. This trend suggests that the DMVD strategy could be the choice of reference for the

designer when favoring the accuracy of the collective decision.

The results of our robot experiments provide us with useful indications; however, since such exper-

iments are particularly time-consuming, we could collect a limited amount of data (i.e., only 15

independent repetitions for each parameter configuration). As a consequence, the statistics com-

puted from the robot experiments are characterized by a pronounced spread which is shown by the

standard deviation of the consensus time. In the next section, we deepen the results of our analysis

by means of physics-based simulations.

8.3.2 Physics-Based Simulations

We performed physics-based simulations using the ARGoS simulator (Pinciroli et al., 2012) and

compared the performance of the DMMD, DMVD, and DC strategies over a wider region of the

parameter space than what we did in the robot experiments. We varied the initial number Ea(0) of

robots favoring opinion a, the swarm size N , and the difficulty of the collective perception scenario

through the normalized option quality ρ?b . For each parameter configuration, we collected data from

1000 independent repetitions of the simulated experiment.

We set N = 20 and study the simple and difficult scenarios defined above as a function of the initial

numberEa(0) of robots with opinion a (see Figure 8.5). For the simple scenario, the exit probability EN

of the three strategies corresponds to that obtained in the robot experiments (cf. Ea(0) = 10 in

Figure 8.5a). For all strategies, EN increases with increasing values of the initial number Ea(0) of

robots with opinion a; the DC strategy has the highest accuracy while the DMMD strategy has

the lowest. However, for all three collective decision-making strategies, the consensus time TN

shown in Figure 8.5b is considerably shorter than that obtained with robot experiments. Additionally,

the DMMD strategy is now the fastest strategy and it outperforms the DC strategy for all initial

conditions Ea(0). For the difficult scenario, we observe similar differences in the speed and accuracy

of the three decision-making strategies. Both the DMVD and DC strategies are considerably less

accurate than in the robot experiments (see Figure 8.5c). In addition, the decision accuracy of the

DMMD strategy decreases more slowly than that of the DMVD and DC strategies when decreasing the

value of Ea(0). As for the simple scenario, all strategies converge faster to consensus (see Figure 8.5d).

The DC strategy is the slowest strategy in the comparison.

The results of physics-based simulations reproduce only partially the performance obtained with

robot experiments. The observed discrepancies are a result of differences in the level of noise between

simulation and reality. For example, a few robots used during the experiments have particularly noisy

proximity sensors; as a result, they often collide with other robots or with the walls. Additionally, the

uneven surface of the experimental arena caused robots to remain temporarily stuck over the same
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Figure 8.5: Illustration of the exit probability EN and of the consensus time TN as a function of

the initial number of robots favoring opinion a. Figure (a) and Figure (b) show, respectively, the

exit probability and the consensus time for a simple decision-making problem with ρ?b = 0.515.

Figure (c) and Figure (d) show the same metrics but for a more difficult decision-making problem

where ρ?b = 0.923. Parameters: ρ?a = 1.0, ρ?b ∈ {0.515,0.923}, σ−1 = 10 seconds, g = 10 seconds, N = 20.

cell resulting into particularly erratic quality estimates. The influence of these factors is exacerbated

by the limited number of runs performed with real robots as shown by the large spread of the consen-

sus time characterizing the results in Figs. 8.3 and 8.4. Nonetheless, the physics-based simulations

confirm a poor scalability of the DC strategy as previously shown by the robot experiments.

We deepen our comparison by analyzing the speed and the accuracy of the DMMD, DMVD, and DC

strategies when varying the swarm size N and the difficulty ρ?b of the collective perception scenario

(see Figure 8.6). The exit probability of all considered strategies decreases for increasing difficulty

of the collective perception scenario (see Figure (a) and Figure (b)). However, the DMVD and DC

strategies benefit from the bigger swarm size, N = 100, as shown by their higher accuracy. In contrast,

the DMMD strategy is affected by the increased swarm size and the resulting collective decisions
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Figure 8.6: Illustration of the exit probability EN and the consensus time TN for decision-making

problems of increasing difficulty (i.e., the normalized option quality ρ?b → ρ?a ). Figure (a) and Fig-

ure (b) show the exit probability, respectively, for a swarm of N = 20 and N = 100 e-pucks. Figure (c)

and Figure (d) show the consensus time as a function of ρ?b , respectively, for a swarm of N = 20

and N = 100 simulated e-pucks. Note that the vertical axis is characterized by a logarithmic scale.

Parameters: ρ?a = 1.0, ρ?b ∈ [0.515;0.923],σ−1 = 10 seconds, g = 10 seconds, N ∈ {20,100}, Ea(0) = N /2,

Eb(0) = N /2.

are less accurate. For swarms of size N = 20 and N = 100, we observe that the DC strategy is the

strategy that suffers the fastest slowdown of the consensus time as a result of increasing the difficulty

of the decision-making problem. This result confirms the trend observed from the analysis of the

robot experiments. Additionally, by comparing Figure 8.6c with Figure 8.6d, we also observe that the

consensus time of the DC strategy increases much faster than that of the other strategies when the

size of the swarm is increased to N = 100; therefore, the DC strategy does not scale with the swarm

size. Contrarily, the consensus time of the DMMD and DMVD strategies is only slightly affected by

the larger swarm size.
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8.4 Discussion

In this chapter, we proposed a novel collective decision-making scenario, referred to as collective

perception, that requires a swarm of robots to explore a certain environment, perceive the presence

of certain features, and determine which feature is the most frequent. As for the site-selection

scenario considered in the previous chapter, the collective perception scenario is characterized by the

complete absence of indirect modulation of positive feedback. The absence of indirect modulation is

a consequence of the fact that the entire swarm operates in the same region of the environment (and

thus spatiality cannot introduce any bias) and of the fact that the duration of the estimation routine

is independent of the specific feature being evaluated at that moment (represented by the color of

the arena surface).

Using the collective perception scenario, we supported the generality of the direct modulation of

majority-based decision (DMMD) strategy and that of the direct modulation of voter-based decision

(DMVD) strategy. DMMD and DMVD are modular strategies that combine a direct modulation

mechanism of positive feedback (i.e., modulation of opinion dissemination) with an individual

decision-making mechanism (respectively, the majority rule and the voter model). In order to better

understand the benefits of these modules, we considered a third strategy, the direct comparison of

option quality (DC), that has no modulation mechanism and whose individual decision-making

mechanism relies on a larger amount of information (i.e., quality estimates). Using both robot

experiments and physics-based simulations, we performed an extensive comparison of the DMMD,

DMVD, and DC strategies under realistic working conditions.

Our results are twofold. On the one hand, we have shown that the DMMD and DMVD strategies

provided us with off-the-shelf solutions to a collective decision-making scenario different from their

original context of site-selection. When applied to the collective perception scenario, these design

solutions maintained the same speed and accuracy performance observed for the site-selection

scenario and showed a promising level of generality. On the other hand, we have shown that, despite

relying on less information, the self-organized approach of the DMMD and DMVD strategies is more

robust to noise and individual errors. We have done so by highlighting the scalability problems

of the DC strategy for increasing problem difficulty, ρb/ρa , and/or swarm size, N . When adopted

by an individual agent, the direct comparison of options’ quality is known to perform poorly for

difficult decision-making problems (Sasaki et al., 2013) as well as for problems characterized by many

options (Sasaki and Pratt, 2012). Our results show that the larger amount of information used by the

DC strategy is not beneficial even when it is used in a distributed manner by a collective of agents.
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9
CONCLUSIONS

C
onsensus achievement refers to the phenomenon whereby agents in a collective gather

information from the environment, pool this information with each other, and process it

to obtain a collective decision to address a cognitive problem. The ability to undertake

a collective decision-making process and to achieve consensus is a cognitive skill of paramount

importance in robot swarms. It allows the swarm to function as a compact information processing

entity that overcomes the cognitive constraints that affect individual agents. Throughout a collective

decision-making process, the agents of a swarm sample information from the environment in

parallel extending their reach and gathering a greater amount of knowledge than is possible for

a single individual. This information, which may exceed the processing capacity of single agents,

is processed by means of self-organized processes that result from the execution of interaction

rules sufficiently simple for agents with limited capabilities. In addition to non-recurring cognitive

problems, consensus achievement is often required to coordinate the multitude of agents composing

robot swarms. For example, complex application scenarios can be favorably decomposed into a

series of tasks that the swarm should perform one after the other; in this situation, coordination may

require to achieve consensus on when to start working on the next task of the sequence.

Despite its relevance, the study of consensus achievement in robot swarm has received little attention

from the swarm robotics community. In particular, the research described in this dissertation is

motivated by the lack of a comprehensive theoretical framework for the design and analysis of

collective decision-making strategies for discrete collective agreement problems. That is, decision-

making problems that require a swarm of agents to achieve consensus over which option of a finite

set of alternatives is the solution that is most advantageous for the swarm. With the aim of advancing

our understanding of discrete consensus achievement, we put forward a principled methodology

to design collective decision-making strategies for robot swarms. The methodology we propose
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builds on the understanding of the fundamental mechanisms underlying collective decision making

to dictate a modular and model-driven perspective on the design of collective decision-making

strategies.

9.1 Take-Home Message

Collective decision-making strategies for the best-of-n problem can be conveniently designed by

leveraging on modularity. Four modules are necessary to design a strategy: option exploration,

opinion dissemination, modulation of positive feedback, and individual decision-making mechanism.

The take-home message of this dissertation consists of four points:

i The option exploration and opinion dissemination modules are required to gather and pool

information about the best-of-n problem. The implementation of these modules largely depends

on the specific application scenario. However, the designer needs only to implement these

modules to reuse an existing strategy in a different scenario. This modular approach promotes

the generality of the designed strategies.

ii Modulation of positive feedback is required to drive the swarm towards consensus for the best op-

tion. It can be performed directly by the agents of the swarm or indirectly through the interaction

between the swarm and the environment. Direct modulation is entirely under the control of the

designer while indirect modulation depends on the application scenario. Depending on the target

scenario, the designer might rely only on indirect modulation to design simple strategies that

minimize the costs of a collective decision; she/he might include direct modulation to further

increase the performance of the strategy or to compensate for the negative influence of the

environment.

iii The individual decision-making mechanism is needed for the agents to process the information

gathered by the swarm and to change their opinion. This module allows the designer to shape

the performance of a strategy in terms of the speed and the accuracy of the resulting collective

decision. The designer might favor the speed of the collective decision at the expense of its

accuracy, for example, using the majority rule, or vice versa, she/he might prioritize accuracy

over speed, for example, using the voter model.

iv Modulation of positive feedback and individual decision-making mechanism can be designed

independently of other modules and then combined in different configurations to create different

strategies. This modular approach eases the definition of mathematical models that support the

design process as well as the creation of a catalog of modules with known properties.

In the rest of this chapter, we detail the primary research contributions obtained during the develop-

ment of this dissertation and we discuss future directions of research.
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9.2 Research Contributions in Detail

In Chapter 2, we provided the first in-depth review of the literature of discrete consensus achievement

from a swarm robotics perspective. We formalized the logic and structure of the best-of-n problem

and showed how different combinations of internal preference factors and environmental bias

factors determine specific variants of this problem. By adopting this perspective, we reviewed studies

in swarm robotics that deal with discrete consensus achievement organizing them according to

their design approach: opinion-based approaches, ad hoc approaches, and automatic approaches.

In doing so, we showed that only opinion-based and automatic approaches have the sufficient

generality to design collective decision-making strategies across different application scenarios; and

that, among these two design approaches, only opinion-based approaches are amenable for the

derivation of predictive macroscopic mathematical models. The results in Chapter 2 allowed us to

advocate for the use of an opinion-based approach, the design approach that forms the base of the

modular design methodology proposed in this monograph.

In Chapter 3, we detailed a modular and model-driven design methodology to define collective

decision-making strategies for the best-of-n problem. We identified four mechanisms that are nec-

essary to achieve consensus: option exploration, to gather information on the quality of an option;

opinion dissemination, to pool the gathered information with other members of the swarm; mod-

ulation of positive feedback, to bias the decision-making process in favor of the best option; and

individual decision-making mechanism, to allow agents to change opinion about the best option of

the decision-making problem. We showed how modulation of positive feedback can be distinguished

in direct modulation, when it results from agents adjusting their behavior as a function of internal

preference factors, and indirect modulation, when environmental bias factors influence the swarm

dynamics. By building on this understanding, we have proposed a general and modular structure of a

collective decision-making strategy that implements all fundamental mechanisms and have provided

guidelines as well as constraints to design specific modules. This approach allowed us to define a

generic model of a collective decision-making strategy that can be instantiated by the designer to

study a specific combination of modules defining a strategy or to readily compare different design

alternatives implementing specific modules.

In Chapters 4, 5 and 6, we illustrated the application of our modular design methodology. In Chapter 4,

we provided an interpretation of the majority rule with differential latency (Montes de Oca et al., 2011)

according to our framework and showed how this strategy combines an indirect mechanism for the

modulation of positive feedback to the majority rule functioning as the individual decision-making

mechanism (i.e., Indirect Modulation of Majority-based Decisions strategy, IMMD). We analyzed the

IMMD strategy by means of an absorbing Markov chain model and provided novel insights on the

variance of consensus time. In Chapter 5 and Chapter 6, we instantiated our design methodology

to define and analyze two novel strategies: the Direct Modulation of Voter-based Decisions strategy

(DMVD) and the Direct Modulation of Majority-based Decisions strategy (DMMD). Both the DMVD

and DMMD strategies make use of a mechanism for the direct modulation of positive feedback in
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order to bias the decision-making process as a function of one or more internal preference factors.

However, the two strategies differ in the choice of the individual decision-making mechanism: the

DMVD strategy is based on the voter model and the DMMD strategy is based on the majority rule.

We studied the asymptotic properties of both strategies by means of ordinary differential equations

and finite size effects using chemical reaction networks. In doing so, we showed that the DMVD

and DMMD strategies provide different design compromises in terms of the speed and accuracy

of the collective decision. In particular, we showed that the DMVD strategy is characterized by a

pronounced accuracy of the resulting collective decision but that requires long time to achieve

consensus. In contrast to the DMVD strategy, the DMMD strategy is characterized by lower decision

accuracy and allows the swarm to make collective decision in shorter time.

In Chapter 7, we validated our design methodology experimentally by implementing the DMMD

strategy in a site-selection scenario using a swarm of 100 Kilobots. In this application scenario,

the robots of the swarm need to choose between two sites based on an internal preference factor

determining the quality of each site. We studied the speed versus accuracy trade-off that characterizes

the DMMD strategy as a function of the neighborhood size. We showed that the DMMD strategy

can be successfully implemented using robots with limited perception and actuation capabilities,

that is sufficiently fast to achieve consensus within the robots’ energy autonomy, and that is robust

to failures of individual robots. Additionally, we showed that our modeling methodology provides

qualitatively good predictions of the dynamics of a swarm executing the DMMD strategy. We have

done so by comparing the results of robot experiments with the predictions of both the deterministic

and the stochastic mathematical models introduced in Chapter 6.

In Chapter 8, we further showcased our design methodology by performing a series of experiments

using a swarm of 20 e-pucks (using both physics-based simulations and real-robot experiments). We

proposed a novel application scenario—the collective perception scenario—that requires a swarm of

robots to determine the most frequent feature in the environment. Using the collective perception

scenario, we supported the generality of the DMVD and DMMD strategies. We achieve this objective

by showing how these strategies provided off-the-shelf solutions to an application scenario different

from their original one (i.e., site selection) while maintaining the same performance in terms of the

speed and accuracy of the collective decision. In Chapter 8, we also studied the Direct Comparison

of options’ quality strategy (DC), a collective decision-making strategy that has no modulation

mechanism and in which agents change opinion only when perceiving a neighbor with a better

quality estimate. By comparing the performance of the DMVD and DMMD strategies to that of the

DC strategy, we showed how indirect information processing resulting from the combination of

modulation of positive feedback with a simple individual decision-making mechanism allows the

DMVD and DMMD strategies to be robust to noise and individual errors.

The research contributions provided in this monograph represent a step forward towards the defini-

tion of a formal theoretical framework for the design and analysis of collective decision making in

robot swarms. Our contribution in this direction is far from being complete. In the following, we refer
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Figure 9.1: Schematic illustration of

a foraging scenario with two forag-

ing sites (i.e., site a and site b). Site a

contains construction materials that

are twice as good as those contained

in Site b (i.e., internal preference)

but is positioned three times farther

than site b (i.e., negative environ-

mental bias).

ρa = 1

ρb = 0.5

σ a
−1 = 3σ −1

σ b
−1 =σ −1

a

b

the reader to possible directions of research that can further advance our understanding of collective

decisions.

9.3 Future Directions of Research

Advanced mechanisms for the modulation of positive feedback As we showed in Chapter 2, the

combination of internal preference and environmental bias factors determines the particular variant

of the best-of-n problem. The strategies we proposed in this monograph directly apply to all possible

variants. However, when environmental bias factors affect negatively the dynamics of the swarm with

respect to internal preference factors of higher priority, the performance of the DMVD and DMMD

strategies is likely to deteriorate. For example, in the foraging scenario represented in Figure 9.1, the

site with the best construction materials is also the farthest from the retrieval area and its cost might

affect the collective decision. A possible extension of the modular design methodology proposed in

this monograph is represented by the design of modulation mechanisms that are able to compensate

the negative effects of indirect modulation by augmenting the strength of the contribution of direct

modulation as a function of environmental bias factors too. To achieve this objective, agents would

need to estimate the impact of environmental bias factors (e.g., the duration of the exploration state)

and use this information when determining the contribution of direct modulation.

Behaviorally heterogeneous swarms/mixed collective decision-making strategies Thanks to our

modular design methodology, we were able to perform an extensive speed versus accuracy compari-

son of the DMVD and DMMD strategies by relying on predictive mathematical models. The result of

this analyses is that the DMVD and DMMD strategies provide different design compromises. Their

performance could be projected on a Pareto chart and would form a Pareto frontier with two points.

A natural extension of our methodology that improves the choices of the designer is represented by

the design of novel mechanisms for individual agents’ decisions. For example, one could envisage

a Direct Modulation of k-unanimity Decisions strategy (DMKD) to extend the Pareto frontier. A rather

different and possibly more innovative approach is represented instead by the idea of behavioral
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heterogeneity. That is, to design swarms composed of different sub-populations of agents each

executing a different collective decision-making strategy. This approach provides a much higher

granularity of design solutions and would allow the designer to choose from a more complete Pareto

frontier. Note that the same objective can also be achieved by letting agents choose at random which

individual decision-making mechanism to apply.

Additional fundamental mechanisms In Chapter 3, we identified four fundamental mechanisms

that are necessary for consensus achievement (i.e., option exploration, opinion dissemination, modu-

lation of positive feedback, individual decision-making mechanism). However, this set of mechanisms

is far from being complete. For example, a factor that has a prominent role in shaping the collective

dynamics is spatiality because it constrains the interactions among agents and between agents and

their environment. The execution of control rules by individual agents in their environment creates

an interaction network with volatile structure. In turn, the topology of this network influences the

collective decision-making process by shaping the flow of information within the swarm. From this

perspective, it is natural to think about the possibility of finding additional fundamental mechanisms

that could extend the proposed design methodology. For example, the performance of a strategy

could be improved by considering mechanisms that promote the formation of certain interaction

structures able to maximize the flow of information within the swarm. To this end, network sci-

ence and information theory offer tools to support the development of future research. The former

provides theoretical frameworks that models the dynamics of the swarm at the level of the agents’

interaction network, e.g., adaptive network models (Couzin et al., 2011; Huepe et al., 2011; Zschaler

et al., 2012). The latter gives access to the means necessary for measuring the flow of information in

the network; these means include measures of information transfer that give both a local perspec-

tive (Lizier et al., 2008), i.e., between pairs of nodes of the network, and a global perspective (Balduzzi

and Tononi, 2008), i.e., between pairs of macroscopic states of the overall network.
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NOTATION AND TERMINOLOGY

I
n this appendix, we summarize the notation used throughout this monograph with the aim

to help the reader in following the development of our discussion. Table A.1 illustrates our

mathematical notation: for each symbol, the table provides a brief explanation of the symbol’s

meaning using the terminology defined in this monograph and provides a reference to the context in

which that particular notation is used.

Table A.1: Illustration of the mathematical notation used throughout this monograph. The first

column report the symbols, the second column provides a brief description of their meaning, and

the last column gives the context where the symbols are used.

Symbol Description Context

N Set of natural numbers

n ∈N Number of options of the best-of-n problem
best-of-n

problem
{1,2, . . . ,n} Set of options indexes for n options

{a,b} Set of options indexes for n = 2 options

ρi Quality of option i

N Number of agents in the swarm

agent controller

swarm

Di Dissemination state for opinion i

Ei Exploration state for opinion i

g Average unbiased duration of the dissemination state

σ−1 Average duration of the exploration state

r Interaction range of the agents

V M Voter model as individual decision-making mechanism

MR Majority rule as individual decision-making mechanism

135



APPENDIX A. NOTATION AND TERMINOLOGY

Symbol Description Context

G Size of the group of opinions used in the majority rule

TN Consensus time for a swarm of N agents

EN Exit probability for a swarm of N agents

di Proportion of agents in the dissemination state Di

mathematical

models

ei Proportion of agents in the exploration state Ei

pi Probability to perceive a neighbor with opinion i

pi j Probability to change opinion from i to j as a result of an individual

decision

f d Function modeling the direct modulation of positive feedback

f i Function modeling the indirect modulation of positive feedback

γ? Fixed point in the form [d?1 , . . . ,d?n ,e?1 , . . . ,e?n ]T

Di Molecule specie for agents in the dissemination state Di

Ei Molecule specie for agents in the exploration state Ei

Di Number of agents in the dissemination state Di

Ei Number of agents in the exploration state Ei

P Stochastic transition matrix

Q Matrix of transition probabilities between transient states

R Matrix of transition probabilities from a transient to an absorbing

state

F Fundamental matrix

I Identity matrix

O Matrix with all entries set to 0

ξ Column vector of all 1s

τ Expected number of steps before absorption

τ2 Variance of the number of steps before absorption
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BACKGROUND ON MARKOV CHAINS

I
n this appendix, we review the concepts underlying the theory of time-homogeneous Markov

chains that are relevant for the understanding of this monograph. The discussion presented in

this appendix focuses on absorbing time-homogeneous Markov chains over a finite state-space

and summarizes the results presented in (Kemeny and Snell, 1976; Norris, 1997). In Section B.1, we

introduce the formalism of Markov chains, we discuss the memory-less property underlying this

formalism, and we illustrate how states of a chain can be organized in different equivalence classes.

In Section B.2, we consider an absorbing Markov chain, we illustrate how to find the canonical form

of the chain and, based on this, we show how to derive a number of quantities of interest.

B.1 Time-Homogeneous Markov Chains

LetN represent the set of naturals. Each element i ∈Ω is called a state and the finite setΩ⊂N is called

the state-space. We say that the vector λ= (λi : i ∈Ω) is a probability distribution onΩ if 06λi 6 1

for all i ∈Ω and
∑

i∈Ωλi = 1. We consider the random variable X which takes values inΩ and let

λi = P (X = i ), (B.1)

where the function P gives the probability of the event X = i . The random variable X models a

random state which takes value i with probability λi and λ defines the probability distribution of X .

Let P = (p i j : i , j ∈Ω) represent a stochastic matrix, that is, a matrix in which every row (p i j : j ∈Ω)

is a probability distribution. We say that the sequence of random variables {Xϑ :ϑ ∈N} is a Markov

chain with initial distributionλ and stochastic transition matrix P if the following two conditions are

satisfied:

i. X0 has probability distribution λ,
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ii. for each time-step ϑ ∈N conditioned to the fact that Xϑ = i , we have that Xϑ+1 has probability

distribution (p i j : j ∈Ω) and is independent of X0, . . . , Xϑ−1.

The first condition states that the probability distribution λ defines the distribution of the initial

state X0 of the chain at step ϑ= 0. The second condition defines the Markov property of a stochastic

process—the lack of memory. A stochastic process has the Markov property if, at any time-step, the

future state of the process depends only on the current state and is independent of its past (cf. Kemeny

and Snell, 1976; Norris, 1997). Given Xϑ = i , the entry p i j of the stochastic transition matrix P gives

the probability that the next state Xϑ+1 will correspond to j . Note that matrix P is independent of the

time-step ϑ. This time independence is referred to as the time-homogeneous property of the Markov

chain. In general, the probability to find the stochastic process in state j ∈Ω at time-step ϑ will be

equal to

P (Xϑ = j ) = (λPϑ) j , (B.2)

where the function (·) j returns the j -th element of a vector.

The state-space Ω of the Markov chain can be divided into equivalence classes of states—also known

as communicating classes. Within an equivalence class, the stochastic process can transit from any

initial state to any other state, although not necessarily in one time-step. If, from a state i of the

equivalence class A it is not possible to go to a state j of any other equivalence class B, then A

is said to be closed and their states are called ergodic states. In the opposite case, we say that the

states are transient states. As a consequence of the previous condition, we have that 1) if a stochastic

process leaves a certain transient class it will never return to that class and 2) if the stochastic process

enters a closed class, it will never leave that closed class. In particular, an ergodic class that consists

of a single state i corresponds to a state that cannot be left by the stochastic process; this state is

called absorbing state. An absorbing state i is characterized by probability p ii = 1 and probabilities

p i j = 0, ∀ j 6= i . A Markov chain that has at least one absorbing state is called absorbing Markov chain

and the stochastic process moving along the chain will eventually enter an absorbing state.

B.2 Analysis of Absorbing Markov Chains

We consider an absorbing, time-homogeneous Markov chain {Xϑ : ϑ ∈ N} with state-space Ω =
{1, . . . , w}, w ∈N. The state-space Ω includes a number r > 1 of absorbing states. We remark to the

reader that, during the development of this monograph, we make use of absorbing states to identify

macroscopic configurations of the agents of the swarm that are of interest to the designer, e.g, the

achievement of consensus on a particular opinion. As a consequence, absorption represents the

completion of the swarm’s task.

Once the Markov chain is completely defined, the stochastic transition matrix P can be used to

answer a number of questions regarding the performance of the system it models. To this end, the

first step of the analysis consists of finding the canonical form of matrix P (see Kemeny and Snell,

1976). This objective can be achieved by reordering the states in Ω so that to write the stochastic
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transition matrix P as

P =
(

I O

R Q

)
. (B.3)

In Equation (B.3), Q is a (w − r )× (w − r ) matrix that contains the transition probabilities between

transient states; R is a (w − r )× r matrix that contains the transition probabilities from a transient

state to an absorbing state; matrix O consists entirely of 0’s; and matrix I is the identity matrix with

size r ×r which identifies the absorbing states of the Markov chain. Note that, as a consequence of the

absorbing nature of the Markov chain, the entries of Qϑ converge to 0 as the time-step ϑ→∞. That is,

the probability to find the process in a transient state vanishes as the time passes. This result provides

sufficient conditions for the existence of the inverse of matrix I −Q , which is called fundamental

matrix and is given by

F = (I −Q)−1 = I +Q +Q2 +·· · =
∞∑

k=0
Qk . (B.4)

Each entry f i j of the fundamental matrix F corresponds to the mean number of time-steps that a

process started in the transient state i spends in the transient state j .

By means of the canonical decomposition of P we can derive a number of interesting macroscopic

quantities regarding the dynamics of a swarm. The first of these quantities is the probability that a

system initially started in state X0 = i will eventually enter the absorbing state Xϑ = j at a certain

time-step ϑ. If we consider all possible initial states i and all possible absorbing states j , we have that

the set of absorption probabilities is determined by the matrix

B = F R . (B.5)

Each entry bi j of B corresponds to the absorption probability for the pair of initial and absorbing

states (i , j ).

In addition to the absorption probabilities, we can study the time to absorption, that is, the number

of time-steps necessary to a stochastic process moving along the chain to enter an absorbing state.

Let us denote with τ the random variable that counts the number of time-steps before absorption.

The expected value τ̂ and the variance τ̂2 of τ are given by equations

τ̂= Fξ, (B.6)

and,

τ̂2 = (2F − I )τ̂− τ̂sq . (B.7)

In the above equations, the symbol ξ identifies a column vector of all 1’s and the vector τ̂sq cor-

responds to τ̂ with squared entries. The i -th entry of the vectors τ̂ and τ̂2 gives, respectively, the

expectation and the variance of the time necessary before absorption for a system initially started in

state i .

Finally, we can derive the cumulative distribution function P (τ6ϑ; i ) of the time to absorption as

well as the probability mass function P (τ=ϑ; i ) of the same quantity for any initial state X0 = i . The
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cumulative distribution function is obtained as the infinite series

P (τ6ϑ; i ) = 1− ∑
j∈Ω

Qϑ
i j , for ϑ→∞. (B.8)

The term
∑

j∈ΩQϑ
i j in Equation (B.8) gives the probability that the stochastic process will be in a

transient state at step ϑ. The complement of this value provides the probability that the process has

entered an absorbing state before time-step ϑ.
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Robotics, volume 3342 of LNCS, pages 1–9. Springer, 2005.

D. S. Bernstein, R. Givan, N. Immerman, and S. Zilberstein. The complexity of decentralized control

of markov decision processes. Mathematics of Operations Research, 27(4):819–840, 2002.

B. M. Bolker, M. E. Brooks, C. J. Clark, S. W. Geange, J. R. Poulsen, M. H. H. Stevens, and J.-S. S. White.

Generalized linear mixed models: A practical guide for ecology and evolution. Trends in Ecology &

Evolution, 24(3):127–135, 2009.

J. C. Bongard. Evolutionary robotics. Communications of the ACM, 56(8):74–83, 2013.

M. H. Bowling, B. Browning, and M. M. Veloso. Plays as effective multiagent plans enabling opponent-

adaptive play selection. In Proceedings of the 14th International Conference on Automated Planning

& Scheduling, pages 376–383. AAAI Press, 2004.

141



BIBLIOGRAPHY

M. Brambilla, E. Ferrante, M. Birattari, and M. Dorigo. Swarm robotics: a review from the swarm

engineering perspective. Swarm Intelligence, 7(1):1–41, 2013.

M. Brambilla, A. Brutschy, M. Dorigo, and M. Birattari. Property-driven design for robot swarms:

A design method based on prescriptive modeling and model checking. ACM Transactions on

Autonomous and Adaptive Systems, 9(4):17:1–17:28, 2014.

A. Brutschy, A. Scheidler, E. Ferrante, M. Dorigo, and M. Birattari. “Can ants inspire robots?” Self-

organized decision making in robotic swarms. In 2012 IEEE/RSJ International Conference on

Intelligent Robots and Systems (IROS), pages 4272–4273. IEEE Press, 2012.

J. Buhl, D. J. T. Sumpter, I. D. Couzin, J. J. Hale, E. Despland, E. R. Miller, and S. J. Simpson. From

disorder to order in marching locusts. Science, 312(5778):1402–1406, 2006.

S. Camazine, K. Crailsheim, N. Hrassnigg, G. E. Robinson, B. Leonhard, and H. Kropiunigg. Protein

trophallaxis and the regulation of pollen foraging by honey bees (Apis mellifera l.). Apidologie, 29

(1-2):113–126, 1998.

S. Camazine, P. K. Visscher, J. Finley, and R. S. Vetter. House-hunting by honey bee swarms: collective

decisions and individual behaviors. Insectes Sociaux, 46(4):348–360, 1999.

S. Camazine, J.-L. Deneubourg, N. R. Franks, J. Sneyd, G. Theraulaz, and E. Bonabeau. Self-

Organization in Biological Systems. Princeton University Press, Princeton, NJ, 2001.

A. Campo, S. Garnier, O. Dédriche, M. Zekkri, and M. Dorigo. Self-organized discrimination of

resources. PLoS ONE, 6(5):e19888, 2010a.

A. Campo, Á. Gutiérrez, S. Nouyan, C. Pinciroli, V. Longchamp, S. Garnier, and M. Dorigo. Artificial

pheromone for path selection by a foraging swarm of robots. Biological Cybernetics, 103(5):339–352,

2010b.

Y. Cao and W. Ren. Distributed coordinated tracking with reduced interaction via a variable structure

approach. IEEE Transactions on Automatic Control, 57(1):33–48, 2012.

C. Castellano, S. Fortunato, and V. Loreto. Statistical physics of social dynamics. Reviews of Modern

Physics, 81:591–646, 2009.

A. L. Christensen, R. O’grady, and M. Dorigo. Morphology control in a multirobot system. IEEE

Robotics Automation Magazine, 14(4):18–25, 2007.

P. Clifford and A. Sudbury. A model for spatial conflict. Biometrika, 60(3):581–588, 1973.

L. Conradt and C. List. Group decisions in humans and animals: A survey. Philosophical Transactions

of the Royal Society B: Biological Sciences, 364(1518):719–742, 2009.

142



BIBLIOGRAPHY

N. Correll and A. Martinoli. Modeling and designing self-organized aggregation in a swarm of

miniature robots. The International Journal of Robotics Research, 30(5):615–626, 2011.

I. D. Couzin, C. C. Ioannou, G. Demirel, T. Gross, C. J. Torney, A. Hartnett, L. Conradt, S. A. Levin, and

N. E. Leonard. Uninformed individuals promote democratic consensus in animal groups. Science,

334(6062):1578–1580, 2011.

V. Crespi, A. Galstyan, and K. Lerman. Top-down vs bottom-up methodologies in multi-agent system

design. Autonomous Robots, 24(3):303–313, 2008.

A. Czirók and T. Vicsek. Collective behavior of interacting self-propelled particles. Physica A: Statistical

Mechanics and its Applications, 281(1–4):17–29, 2000.

A. Czirók, A.-L. Barabási, and T. Vicsek. Collective motion of self-propelled particles: Kinetic phase

transition in one dimension. Physical Review Letters, 82:209–212, 1999.

H. de Vries and J. C. Biesmeijer. Self-organization in collective honeybee foraging: emergence of

symmetry breaking, cross inhibition and equal harvest-rate distribution. Behavioral Ecology and

Sociobiology, 51(6):557–569, 2002.

G. Deffuant, D. Neau, F. Amblard, and G. Weisbuch. Mixing beliefs among interacting agents. Advances

in Complex Systems, 3(01n04):87–98, 2000.

J.-L. Deneubourg and S. Goss. Collective patterns and decision-making. Ethology Ecology & Evolution,

1(4):295–311, 1989.

M. Dorigo, M. Birattari, and M. Brambilla. Swarm robotics. Scholarpedia, 9(1):1463, 2014.

S. C. Edwards and S. C. Pratt. Rationality in collective decision-making by ant colonies. Proceedings

of the Royal Society B: Biological Sciences, 276(1673):3655–3661, 2009.

E. Ferrante. Information transfer in a flocking robot swarm. PhD thesis, Université libre de Bruxelles,

Brussels, BE, 2013.

E. Ferrante, A. E. Turgut, C. Huepe, A. Stranieri, C. Pinciroli, and M. Dorigo. Self-organized flocking

with a mobile robot swarm: a novel motion control method. Adaptive Behavior, 20(6):460–477,

2012.

E. Ferrante, M. Brambilla, M. Birattari, and M. Dorigo. Socially-mediated negotiation for obstacle

avoidance in collective transport. In A. Martinoli, F. Mondada, N. Correll, G. Mermoud, M. Egerstedt,

A. M. Hsieh, E. L. Parker, and K. Støy, editors, Distributed Autonomous Robotic Systems, volume 83

of STAR, pages 571–583. Springer, 2013.

143



BIBLIOGRAPHY

G. Francesca, M. Brambilla, V. Trianni, M. Dorigo, and M. Birattari. Analysing an evolved robotic

behaviour using a biological model of collegial decision making. In T. Ziemke, C. Balkenius, and

J. Hallam, editors, From Animals to Animats 12, volume 7426 of LNCS, pages 381–390. Springer,

2012.

G. Francesca, M. Brambilla, A. Brutschy, V. Trianni, and M. Birattari. AutoMoDe: A novel approach to

the automatic design of control software for robot swarms. Swarm Intelligence, 8(2):89–112, 2014.

N. R. Franks, S. C. Pratt, E. B. Mallon, N. F. Britton, and D. J. T. Sumpter. Information flow, opinion

polling and collective intelligence in house-hunting social insects. Philosophical Transactions of

the Royal Society B: Biological Sciences, 357(1427):1567–1583, 2002.

N. R. Franks, A. Dornhaus, J. P. Fitzsimmons, and M. Stevens. Speed versus accuracy in collective

decision making. Proceedings of the Royal Society B: Biological Sciences, 270:2457–2463, 2003.

N. R. Franks, T. O. Richardson, N. Stroeymeyt, R. W. Kirby, W. M. D. Amos, P. M. Hogan, J. A. R. Marshall,

and T. Schlegel. Speed–cohesion trade-offs in collective decision making in ants and the concept

of precision in animal behaviour. Animal Behaviour, 85(6):1233–1244, 2013.

R. Fujisawa, S. Dobata, K. Sugawara, and F. Matsuno. Designing pheromone communication in

swarm robotics: Group foraging behavior mediated by chemical substance. Swarm Intelligence, 8

(3):227–246, 2014.

S. Galam. Majority rule, hierarchical structures, and democratic totalitarianism: A statistical approach.

Journal of Mathematical Psychology, 30(4):426–434, 1986.

S. Galam. Sociophysics: A review of Galam models. International Journal of Modern Physics C, 19(03):

409–440, 2008.

S. Garnier, J. Gautrais, and G. Theraulaz. The biological principles of swarm intelligence. Swarm

Intelligence, 1(1):3–31, 2007a.

S. Garnier, F. Tache, M. Combe, A. Grimal, and G. Theraulaz. Alice in pheromone land: An experimen-

tal setup for the study of ant-like robots. In Proceedings of the IEEE Swarm Intelligence Symposium,

SIS 2007, pages 37–44, 2007b.

S. Garnier, C. Jost, J. Gautrais, M. Asadpour, G. Caprari, R. Jeanson, A. Grimal, and G. Theraulaz. The

embodiment of cockroach aggregation behavior in a group of micro-robots. Artificial Life, 14(4):

387–408, Oct 2008.

S. Garnier, J. Gautrais, M. Asadpour, C. Jost, and G. Theraulaz. Self-organized aggregation triggers

collective decision making in a group of cockroach-like robots. Adaptive Behavior, 17(2):109–133,

2009.

144



BIBLIOGRAPHY

M. Gauci, J. Chen, W. Li, T. J. Dodd, and R. Groß. Self-organized aggregation without computation.

The International Journal of Robotics Research, 33(8):1145–1161, 2014.
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