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Evolution of Signaling in a Multi-Robot System: 

Categorization and Communication

Christos Ampatzis,1 Elio Tuci,1 Vito Trianni,2 Marco Dorigo1

1IRIDIA, CoDE, Université Libre de Bruxelles, Brussels, Belgium
2ISTC-CNR, Roma, Italy

Communication is of central importance in collective robotics, as it is integral to the switch from solitary

to social behavior. In this article, we study emergent communication behaviors that are not predeter-

mined by the experimenter, but are shaped by artificial evolution, together with the rest of the behav-
ioral repertoire of the robots. In particular, we describe a set of experiments in which artificial evolution

is used as a means to engineer robot neuro-controllers capable of guiding groups of robots in a cate-

gorization task by producing appropriate actions. The categorization is a result of how robots’ sensory
inputs unfold in time, and, more specifically, of the integration over time of sensory input. In spite of the

absence of explicit selective pressure (coded into the fitness function), which would favor signaling

over non-signaling groups, communicative behavior emerges. Post-evaluation analyses illustrate the
adaptive function of the evolved signals and show that these signals are tightly linked to the behavioral

repertoire of the agents. Signals evolve because communication enhances group performance, reveal-

ing a “hidden” benefit for social behavior. This benefit is related to obtaining robust and fast decision-
making mechanisms. More generally, we show how processes requiring the categorization of noisy

dynamical information might be improved by social interactions mediated by communication. In a fur-

ther series of experiments, we successfully download evolved controllers onto real s-bots. We discuss
the challenges involved in porting neuro-controllers displaying time-based decision-making processes

onto real robots. Finally, the beneficial effect of communication is shown to transfer to the case of a real

robot, and the robustness of the behavior against inter-robot differences is discussed.

Keywords communication · decision-making · real robots · signaling · swarm robotics

1 Introduction

Recently, the research work carried out in the context
of the SWARM-BOTS project1 has proven that it is
possible to build and control a swarm of autonomous
self-assembling robots by using the principles of
swarm robotics; that is, a population of simple agents
that, by interacting locally with each other and with

the environment, can physically connect in order to
form bigger robotic structures. Self-assembling sys-
tems can be particularly advantageous as the assem-
bled structure can perform tasks that go beyond the
capabilities of a single robot. The work presented by
Tuci et al. (2006) and Groß, Tuci, Dorigo, Bonani,
and Mondada (2006) shows how an assembled struc-
ture can transport an object that is too heavy to be
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6 Adaptive Behavior 16(1)

moved by a single robot. O’Grady, Groß, Mondada,
Bonani, and Dorigo (2005) demonstrated how assem-
bled robots can climb a hill whose slope would cause a
single robot to topple over. These works highlight the
mechanical and control aspects that make the imple-
mentation of self-assembly possible. However, as
pointed out by Tuci et al. (2006), in these works, the
conditions that trigger self-assembly are determined a
priori by the experimenter. This might be a limitation,
as in these cases the adaptiveness of an autonomous
multi-robot system is reduced. The authors claim that
when and with whom to assemble are decisions that
should be governed as much as possible by robots’
environmental contingencies and not determined by
the experimenter. An alternative way of treating these
issues is to let the switch to collective behavior be
controlled by autonomous decision making. That is,
the robotic group should be capable of deciding when
to initiate collective responses, by identifying the
environmental contingencies that demand social
behavior.

The work presented in this article is about the
design of robot controllers in which decision-making
mechanisms to switch from solitary to social behavior
(as in the case of switching from single robots to assem-
bled structures) are integrated with the mechanisms
that underpin the sensory-motor repertoire of the robot.
Even though we do not go as far as integrating self-
assembly in this study, we believe that our work clari-
fies aspects that might improve the autonomy and the
adaptiveness of multi-robot systems. In particular, we
prove that time-based decision-making mechanisms
can be designed to allow real robots to perform a cate-
gorization task. Moreover, we look at issues directly
implicated in the switch from solitary to collective
behavior, such as the emergence of a communica-
tion system and its relation to the individual decision
making.

This work brings the problem of decision making,
together with the interest in self-organizing communi-
cating systems, to a real world scenario. This scenario
allows the empirical investigation of the switch from
individual to collective behavior via an emergent
communication protocol. In particular, this switch is
governed by time-based decision-making structures
that integrate over time sensory information available
to the robot. The tool we use to implement such struc-
tures is the continuous time recurrent neural network
(CTRNN; Beer & Gallagher, 1992) shaped by artifi-

cial evolution. These structures should allow robots to
initiate social behavior in response to the persistence
of certain environmental stimuli. Because of the
number of trials needed to test individuals, the design
of robot controllers by means of artificial evolution is
usually carried out by using simulation models. How-
ever, the digital medium might fail to take into
account phenomena that impact upon the functional
properties of the evolved controllers. As a conse-
quence, controllers evolved in simulation might be
less effective in managing real-world sensing and actu-
ation (see also Mataric & Cliff, 1996). One of the main
contributions of our work is to show that evolved
CTRNNs successfully control real robots. This is a
practice that has to be taken into account to ensure that
the behaviors we want our robots to display are viable
and observable in the real world and not only in a sim-
ulated environment. There are several works in the lit-
erature that deal with porting an artificial neural
network (ANN) able to display memory to reality. Paine
and Tani (2005), Blynel and Floreano (2003), and
Jakobi (1997) all port evolved CTRNNs onto real Khep-
era robots, but although the networks used are non-
reactive, the tasks described (variations of the T-maze)
are in essence solved by switching through reactive
strategies (see Ziemke & Thieme, 2002). Urzelai and
Floreano (2001) downloaded a plastic neural network
(PNN) on a real Khepera, but the solution to the task
is also reactive. Quinn, Smith, Mayley, and Husbands
(2002) report on work carried out on real hardware
(on a collective task), but the network they use is
based on model spiking neurons. To the best of our
knowledge, there is no work reported where a CTRNN
is ported to a real robot, for a task that requires the
integration over time of the robot’s perception. In this
respect, it is worth noting that the decision-making
mechanism relies on the continuum of the sensory
information (i.e., how the sensory inputs unfold in
time) in order to determine subsequent actions. There-
fore, the main challenges in porting to reality are the
possible disruptive effects on the evolved mechanisms
caused by the sensor/actuator noise present in reality,
as well as potential inter-robot differences.

One goal of our work is to provide evidence that
CTRNNs are capable of displaying complex internal
dynamics, such as the integration over time of the robot’s
perceptual flow, even when tested with physical robots.
The real robot experiments are, we believe, the ulti-
mate test-bed for the effect and performance of any
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communication protocol, and also serve as a connect-
ing link to more engineering-driven applications. We
show, for example, that inter-robot differences not
anticipated in simulation can lead to very different
levels of performance for communicating versus non-
communicating teams.

In this article, we also investigate and unveil the
structure of the behavior used in a communicative
context and we account for its evolution. The results
of this work raise issues concerning the importance
and the implementation of communication with respect
to a collective robotics scenario. In previous work
(Tuci, Trianni, & Dorigo, 2004; Tuci, Ampatzis, &
Dorigo, 2005), a similar problem was studied, in which
the actions of a simulated robot were determined by the
way sensory information unfolds through time. How-
ever, these issues were not studied in a social context.
The difference here is that we study the collective
response to the individual decision making, based on
the integration over time of sensory information. In
other words, we study the group reaction to the indi-
vidual categorization of the environment. Commu-
nication is the way in which the collective group
response can be triggered, once one or more robots
within the group take a decision (see Trianni & Dorigo,
2006; Tuci et al., 2006, for examples). The mechanisms
for switching from solitary to social behavior and the
ways in which the robots can affect each other’s behav-
ior (i.e., communication) are in both cases not prede-
termined by the experimenter, but are aspects of our
model designed by artificial evolution. This approach
is particularly suitable for our goal, because it permits
the co-evolution of communicative and non-commu-
nicative behavior; different strategies can co-adapt
because selection depends only on an overall evaluation
of the group (Nolfi, 2005). We have left the develop-
ment of communicative behavior entirely to artificial
evolution in this way because we believe that the co-
adaptation of all the mechanisms involved can pro-
duce more effective ways to categorize sensory-motor
information. Evolution can produce solutions better
adapted to the problem than hand-coded signaling
behavior (see Trianni & Dorigo, 2006, for an example).

1.1 Biological Background

In our study, we focus on the evolution of communi-
cation in the form of a simple signaling system.
Nature abounds with examples from social species,

where simple (compared to human communication
and language) signaling mechanisms are used. For
example, the alarm calls of vervet monkeys given with
respect to the type of predator approaching have been
studied in depth (Struhsaker, 1967). Alarm calls are
also observed in bird species, squirrels, and so forth
(Hauser, 1997; Sherman, 1977). Food calls are another
example of cooperative signaling. Animals such as
chimpanzees attract conspecifics once they discover food
resources. The dance of the honey bee is possibly the
most elaborate and striking example (von Frisch, 1967).

Since Darwin, scientists have been trying to explain
the evolution of such altruistic signals in animal socie-
ties. Ethologists justified the existence of such cooper-
ative and honest signaling by invoking group selection
theory: animals behave in such ways in order to maxi-
mize the benefit of the group or the species (see, for
example, Tinbergen, 1964). However, the alternative
of kin selection was presented (Hamilton, 1964) and
the naïve application of group selection as an explana-
tion was shown to be unwarranted (Williams, 1966;
Dawkins, 1976). Kin selection suggests that animals
can behave with apparent altruism towards conspecif-
ics as this can be to their own long-term genetic bene-
fit.

Game theoretical models in the 1970s and 1980s
mathematically demonstrated that cheating strategies
will normally invade populations of honest signalers
(Maynard Smith, 1982). Thus, the interest of research-
ers focused on how to identify conditions that can lead
to the emergence of stable cooperation (e.g., Hamil-
ton’s kin-selection theory, reputation-based models,
or the effect of topology). The game theoretical models
studying such issues typically consider signaling capa-
bilities that are built into the agent’s behavioral capac-
ity. Thus, they do not allow the investigation of the
origin of signaling behavior.

The experimental setup we use in this work dif-
fers in several aspects from these game theoretical
models. First, we are attempting to study the origin of
signaling, as signaling capabilities are evolved (sen-
sors and effectors are available for communication,
but there is no requirement that the robots use them).
More specifically, we discuss the existence of possi-
ble cues that serve as precursors for the signals
employed by our robots, through the process of ritual-
ization. Second, in our work the possibility of cheat-
ing and dishonest signaling is excluded because the
evaluation of the fitness of a group of individuals is

 by Marco Dorigo on September 15, 2008 http://adb.sagepub.comDownloaded from 

http://adb.sagepub.com


8 Adaptive Behavior 16(1)

carried out at the group level and the individuals com-
posing the group are genetically identical clones. Our
aim is to understand how communication may emerge
in a robotic system, in the absence of explicit selective
pressures. In other words, we aim to understand the
conditions under which a group of agents will switch
to social behavior, and the implications of that switch
for the performance of the group in a certain scenario.
Our focus is more on the evolution of signaling than
the evolution of cooperation. Our implementation has
been influenced by an ethological perspective, but this
does not mean that we are trying to perform robot
ethology. Nor do we claim that our results will neces-
sarily have any bearing on the biological literature
regarding the evolution of communication.

1.2 Structure of the Article

In Section 2, we give details of the task addressed. The
simulation model used is presented in Section 2.2,
while the controller and the evolutionary algorithm
are introduced in Section 2.3. In Section 2.4, we
describe the fitness function employed to evolve the
desired behavior. The results of the experiments con-
ducted are presented in Section 3. We first report on
the results of the experiments in simulation (Sec-
tion 3.1), revealing the functionality of the evolved
signaling behaviors (Section 3.2). We then discuss the
portability of evolved controllers onto real robots
(Section 3.3). In Section 4, we treat the issue of the
adaptive significance of signaling. Finally, in Section 5,
we draw conclusions by discussing, on the one hand,
the relevance of this work for collective robotics and,
on the other hand, our contribution to the understand-
ing of the principles underlying the evolution of com-
munication in embodied agents.

2 Methods

In this article, we exploit evolutionary robotics (ER;
Nolfi & Floreano, 2000), as the methodology to design
controllers capable of providing the robots with the
mechanisms required to solve the task described below.
Roughly speaking, ER is a methodological tool to
automate the design of robot controllers. ER is based
on the use of artificial evolution to find sets of param-
eters for ANNs that guide the robots to the accom-
plishment of their objective.

2.1 Description of the Task

The task we consider is a categorization task in which
two robots are required to discriminate between two
different environments using temporal cues (i.e., by
integrating their perceptual inputs over time). At the
start of each trial, two simulated robots are placed in a
circular arena with a radius of 120 cm (see Figure 1),
at the center of which a light bulb is always turned
on. The robots are positioned randomly at a distance
between 75 and 95 cm from the light, with a random
orientation between – 120° and + 120° with respect to
the light. The robots perceive the light through their
ambient light sensors. The color of the arena floor is
white except for a circular band, centered around the
lamp covering an area between 40 and 60 cm from it.
The band is divided into three subzones of equal width
but colored differently: light gray, dark gray, and black.
Each robot perceives the color of the floor through its
floor sensors, positioned under its chassis. Robots are
not allowed to cross the black edge of the band close
to the light. This black edge can be seen as a circular
trough that prevents the robots from reaching the
light. The colored zones can be seen as an indication
of how close the robots are to the “danger.” There are
two types of environment. In one type, referred to as
Env A, the band has a gap, called the way in zone,
where the floor is white (see Figure 1a). In the other
type, referred to as Env B, the band completely sur-
rounds the light (see Figure 1b). The way in zone rep-
resents the path along which the robots can safely
reach the target area in Env A, an area of 25 cm around
the light. In contrast, the robots cannot reach the prox-
imity of the light in Env B, and in this situation their
goal is to leave the band and reach a certain distance
from the light source. Robots have to explore the
arena, in order to get as close as possible to the light.
If they encounter the circular band, they have to start
looking for the way in zone in order to continue
approaching the light. Once they find it, they should
move closer to the light and remain in its proximity
for 30 s. After this time interval, the trial is success-
fully terminated. If there is no way in zone (i.e., the
current environment is an Env B), the robots should be
capable of “recognizing” the absence of the way in
zone and leave the band by performing antiphototaxis.

Each robot is required to use a temporal cue in
order to discriminate between Env A and Env B, as in
Tuci et al. (2004). This discrimination is based on the
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persistence of the perception of a particular sensorial
state (the floor, the light, or both) for the amount of
time that, given the trajectory and speed of the robot,
corresponds to the time required to make a loop
around the light. The integration over time of the
robots’ sensorial inputs is used to trigger antiphoto-
taxis in Env B. Communication is not required to
solve the task considered. In particular, the fitness
function we use does not explicitly reward the use of
signaling, in contrast with Tuci et al. (2004). How-
ever, robots are provided with a sound signaling sys-
tem that can be used for communication. The
emergence of a signaling convention by which the
robots can affect each other’s behavior is entirely
open to the dynamics of the evolutionary process.
This issue is discussed further in Section 3.

2.2 Simulation Model

The controllers are evolved in a simulation environ-
ment, which models some of the hardware characteris-
tics of the s-bots (see Figure 2a). The s-bots are wheeled
cylindrical robots with a 5.8-cm radius, equipped with
a variety of sensors, and whose mobility is provided
by a differential drive system (Mondada et al., 2004).
In this work, we make use of four ambient light sen-
sors, placed at – 112.5° (L1), – 67.5° (L2), 67.5° (L3), and
112.5° (L4) with respect to the s-bot’s heading, 15 infra-

red proximity sensors placed around the turret (P1–
P15), two floor sensors (F1 and F2) positioned facing
down on the underside of the robot with a distance of
4.5 cm between them, and an omni-directional sound
sensor SI (see Figure 2b). The motion of the robot
implemented by the two wheel actuators (M1 and M2)
is simulated by the differential drive kinematics equa-
tions, as presented in Dudek and Jenkin (2000), and a
loudspeaker S is available for possible signaling. Light
and proximity sensor values are simulated through a
sampling technique (Miglino, Lund, & Nolfi, 1995).
The robot floor sensors assume the following values:
0 if the sensor is positioned over the white floor; 1/3 if
the sensor is positioned over the light gray floor; 2/3
if the sensor is positioned over the dark gray floor; 1 if
the sensor is positioned over the black floor. The loud-
speaker produces a binary output (on/off); the sound
sensor has no directionality or intensity features. Dur-
ing evolution, 10% random noise was added to the
light and proximity sensor readings, the motor out-
puts, and the position of the robot. We also added
noise of 5% to the reading of the two floor sensors, by
randomly flipping between the four aforementioned
values. No noise was added to the sound sensor. The
reason for this last choice is the fact that the sound
sensor proved to be 100% reliable in reality. Of
course, adding noise to the sound sensor would force
the simulation to address the issue of the reliability of

Figure 1 The task. (a) Env A is characterized by the way in zone. The target area is indicated by the dashed circle. (b)
In Env B the target area cannot be reached. The continuous arrows are an example of a good navigation strategy for
one robot.
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the evolved signals and thus produce neural mecha-
nisms able to cope with noisy communication. This
issue, while an interesting one, is beyond the scope of
the current article.

2.3 Controller and Evolutionary Algorithm

We use fully connected, 13 neuron CTRNNs (Beer &
Gallagher, 1992, see Figure 3 for a depiction of the
network). All neurons are governed by the following
state equation:

Figure 2 (a) A picture of an s-bot. (b) Sensors and motors of the simulated robot. The robot is equipped with four am-
bient light sensors (L1–L4), two floor sensors (F1 and F2), 15 proximity sensors (P1–P15) and a binary sound sensor,
called SI (see text for details). The wheel motors are indicated by M1 and M2. S is the sound signaling system (loud-
speaker).

Figure 3 The fully connected CTRNN architecture. Neurons are represented as circles. Circles with a light gray outline
represent the input neurons, while circles with a heavy gray outline represent the output neurons. Only the efferent con-
nections for N1 are drawn; all other neurons are connected in the same way. We show for all input neurons the combina-
tion of sensors that serve as inputs, and for all output neurons the corresponding actuator. N10 is not connected to any
sensor or actuator.
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(1)

Here, using terms derived from an analogy with real
neurons, τi is the decay constant, yi represents the cell
potential, ωji is the strength of the synaptic connection
from neuron j to neuron i, σ(yj + βj) is the firing rate,
βj is the bias term, g is the gain, and Ii is the intensity
of the sensory perturbation on sensory neuron i. The
connections of all neurons to sensors and actuators is
shown in Figure 3. Neurons N1–N8 receive as input a
real value in the range [0, 1]. Neuron N1 takes as input

and

Neuron N9 receives a binary input (i.e., 1 if a tone is
emitted by either agent, and 0 otherwise) from the
microphone SI, while neurons N10–N13 do not receive
input from any sensor. The cell potentials (yi) of N11

and N12, mapped into [0, 1] by a sigmoid function (σ)
and then linearly scaled into [– 4.0, 4.0], set the robot
motors output. It is important to mention that the

speed that these values translate to is not the maxi-
mum possible speed of the robot, but only half of it.
This is because, after some initial experimentation, we
have found that if we use a faster robot, we have a
higher chance of obtaining a false reading from the
floor sensors and, in general, a worse sensory-motor
coordination. The cell potential of N13, mapped into
[0, 1] by a sigmoid function (σ), is used by the robot
to control the sound signaling system (the robot emits
a sound if y13 ≥ 0.5). The parameters ωji, τi, βj, and g
are genetically encoded. Cell potentials are set to 0
when the network is initialized or reset, and circuits
are integrated using the forward Euler method with an
integration step-size of 0.1.

A simple generational genetic algorithm (GA) is
employed to set the parameters of the networks (Gold-
berg, 1989). The population contains 100 genotypes.
Each genotype is a vector comprising 196 real values
(169 connections, 13 decay constants, 13 bias terms,
and a gain factor). Initially, a random population of
vectors is generated by initializing each component of
each genotype to values chosen uniformly random in
the range [0, 1]. Subsequent generations are produced
by a combination of selection with elitism, recombi-
nation and mutation. For each new generation, the
three highest scoring individuals (“the elite”) from the
previous generation are retained unchanged. The
remainder of the new population is generated by fit-
ness-proportional selection from the 70 best individu-
als of the old population. New genotypes, except “the
elite,” are produced by applying recombination with a
probability of 0.1 and mutation. Mutation entails that
a random Gaussian offset is applied to each real-val-
ued vector component encoded in the genotype, with a
probability of 0.15. The mean of the Gaussian is 0,
and its standard deviation is 0.1. During evolution, all
vector component values are constrained within the
range [0, 1]. Genotype parameters are linearly mapped
to produce CTRNN parameters with the following
ranges: biases βj ∈ [– 2, 2], weights ωji ∈ [– 6, 6] and
gain factor g ∈ [1, 12]. Decay constants are firstly lin-
early mapped onto the range [– 0.7, 1.7] and then
exponentially mapped into τi ∈ [10–0.7, 101.7]. The
lower bound of τi corresponds to a value slightly
smaller than the integration step-size used to update
the controller; the upper bound corresponds to a value
slightly larger than the average time required for a
robot to reach and perform a complete loop of the
band in shades of gray.

dyi

dt
-------

1
τi
--- yi– ωjiσ yi βj+( )

j 1=

13

∑ gIi+ + ,=

σ x( ) 1

1 e x–+
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 
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4
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 
 
 
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3
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 
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2.4 Fitness Function

During evolution, each genotype is coded into a robot
controller, and is evaluated for 10 trials, five in each
environment. Both robots in the 10 trials have the
same controller (homogeneous system). The sequence
order of environments within the 10 trials does not
influence the overall performance of the group as each
robot controller is reset at the beginning of each trial.
Each trial differs from the others in the initialization
of the random number generator, which influences the
robots’ starting positions and orientation, the position
and amplitude of the way in zone (between 45° and
81°), and the noise added to motors and sensors. Within
a trial, the robot life span is 100 s (1000 simulation
cycles). The final fitness attributed to each genotype is
the average fitness score of the 10 trials. In each trial,
the fitness function E is given by the following for-
mula:

Here, nc is the number of (virtual) collisions in a trial,
which is the number of times the robots come closer
than 2.5 cm to each other (if nc > 3, the trial is termi-
nated) and Ei, i = 1, 2, is the fitness score of robot i,
calculated as follows.

1. If the trial is in Env A, or the robot in either envi-
ronment has not yet touched the band in shades of
gray or crossed the black edge of the band, then
its fitness score is given by Ei = (di – df)/di.

2. Otherwise (i.e., if the band is reached in Env B),
Ei = 1 + [(df – 40)/(dmax – 40)].

di is the initial distance of the robot to the light, df is
the distance of the robot to the light at the end of the
trial, and dmax = 120 cm is the maximum possible dis-
tance of a robot from the light. In cases where roboti

ends up in the target area in Env A, we set Ei = 2. From
the above equations, we can see that this is also the
maximum value of Ei that a robot can obtain in Env B,
which corresponds to the robot ending up 120 cm from
the light (df = 120). So, if both robots are successful, the
trial obtains the maximum score of 2. An important fea-
ture of this fitness function is that it rewards agents
that develop successful discrimination strategies and

end up performing the correct action in each environ-
ment, regardless of any use of sound signaling. That
is, a genotype that controls a group which solves the
task without any signaling or communication has the
same fitness as one that makes use of communication.

3 Results: From Simulated Agents to 
Real Robots (The S-Bots)

In this section, we present a series of post-evaluation
tests concerning both simulated and real robots. In
particular, in Section 3.1, we select and re-evaluate
the best evolved strategies of a series of 20 evolution-
ary simulations. In Section 3.2, we show that sound
signaling is a functional element of the behavioral
strategies in the majority of successful groups of
robots. In Section 3.3, we report on the results of
experiments in which we test the capability of one of
the best neural networks evolved in simulation when
controlling the behavior of real robots engaged in the
task illustrated in Section 2.1. In Section 4, we run
further post-evaluation tests aimed at unveiling the
adaptive significance of sound signaling behavior.

3.1 Simulated Agents: A First Series of 
Post-Evaluation Tests

We ran 20 evolutionary simulation runs, each using a
different random initialization, for 12,000 generations.
Of these, 13 evolutionary runs produced successful
groups of robots. Note that a group is successful if both
robots approach the band and subsequently (i) reach
the target area through the way in zone in Env A, and
(ii) leave the band performing antiphototaxis in Env B.
We arbitrarily demand that the successful accomplish-
ment of this task corresponds to an average fitness
score F ≥ 1.8. In those seven evolutionary runs con-
sidered not successful, the fitness score recorded dur-
ing the evolutionary phase by the best groups at each
generation was always lower than 1.8. For each suc-
cessful run, we chose to post-evaluate the best group
of each generation whose fitness score was higher
than 1.8.

The post-evaluation tests are meant to provide a
better estimate of the behavioral capabilities of these
groups. In fact, the fitness of the best evolved control-
lers during evolution may have been an overestima-
tion of their ability to guide the robots in the task. In

E
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----------------------------.=
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general, the best fitness scores take advantage of favo-
rable conditions, which are determined by the exist-
ence of inter-generational variation in starting position
and orientation and other simulation parameters. The
entire set of post-evaluations should establish whether
the groups chosen from the 13 successful runs can
effectively solve the task and at the same time ascer-
tain whether signaling behavior characterized the suc-
cessful strategies. We employed the average fitness
score F over a set of 500 trials in each type of environ-
ment as a quantitative measure of the effectiveness of
the evolved groups’ strategy.

Table 1 shows, for each successful evolutionary
run (i), the results of the best group among those cho-
sen for post-evaluation. These groups are referred to
as gi. We can see that all these groups achieve an aver-
age fitness score in each environment higher than 1.8
(see Table 1, columns 2, 3, 6, and 7). Thus, they proved
to be particularly successful in performing the task.

The post-evaluation tests also reveal that among the
successful groups, nine groups (g1, g2, g5, g6, g7, g8, g9,
g13, g19) make use of sound signaling. In particular, the
use of sound strongly characterizes the behavioral
strategies of the groups when they are located in Env B.
In Env A, signaling is, for all these groups, rather neg-
ligible (see Table 1, columns 4, 5, 8, and 9, which refer
to the average percentage and standard deviation of
the time either robot emits a signal during a trial). In
groups g10, g14, g16, and g18, the robots do not emit sound
during post-evaluation in either environment.

3.2 Sound Signaling and Communication

The results of post-evaluation analyses carried out so
far have shown that in nine of the best evolved groups,
the robots emit sound during the accomplishment of
the task in Env B. Note that the emission of sound is
not demanded in order to navigate towards the target

Table 1 Results of post-evaluation tests showing for each best evolved successful group of each evolutionary run (gi):
the average and standard deviation of the fitness over 500 trials in Env A (see columns 2 and 3) and in Env B (see col-
umns 6 and 7); the average and standard deviation of the percentage of time-steps sound was emitted by either robot
over 500 trials in Env A (see columns 4 and 5) and in Env B (see columns 8 and 9).

Group

Env A Env B

Fitness Signaling (%) Fitness Signaling (%)

Mean SD Mean SD Mean SD Mean SD

g1 1.92 0.31 0.00 0.00 1.98 0.13 17.39 0.30

g2 1.94 0.28 0.72 3.72 1.99 0.00 18.22 1.36

g5 1.99 0.10 0.00 0.00 1.98 0.10 13.36 1.58

g6 1.96 0.21 0.00 0.00 1.99 0.11 16.47 2.38

g7 1.99 0.11 0.00 0.00 1.95 0.21 15.06 2.82

g8 1.96 0.25 0.00 0.00 1.99 0.02 16.47 2.08

g9 1.99 0.12 0.00 0.00 1.97 0.16 16.38 2.62

g10 1.91 0.31 0.00 0.00 1.91 0.36 0.00 0.00

g13 1.87 0.43 1.72 8.14 1.95 0.09 20.88 2.44

g14 1.96 0.17 0.00 0.00 1.98 0.17 0.00 0.00

g16 1.89 0.33 0.00 0.00 1.94 0.27 0.00 0.00

g18 1.81 0.45 0.00 0.00 1.87 0.16 0.00 0.00

g19 1.91 0.27 0.00 0.00 1.98 0.06 12.65 0.99
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and discriminate Env A from Env B. Indeed, the task
and the fitness function do not require the robots to
display signaling behavior (see Section 2.4). Mecha-
nisms for phototaxis, antiphototaxis, and memory are
sufficient for a robot to accomplish the task. There-
fore, in this section we show the results of further
post-evaluation tests on those groups in which the
robots emit sound during the accomplishment of the
task. These tests aim to determine whether sound has
a functional significance within the behavioral strate-
gies of the groups and, if the answer is positive, to
identify the adaptive function of sound use.

3.2.1 Behavioral Features and Mechanisms We
looked at the behavior of the robots that emit sound
during a successful trial in each type of environment.
During each trial, we recorded for each robot of a
group the distance to the light and the change over
time of the sound output (i.e., cell potential of neuron
N13 mapped into [0.0, 1.0] by a sigmoid function σ).
These two variables are recorded both in a normal con-
dition and in a condition in which the robots cannot
hear each other’s sound (i.e., the not-other-sound con-
dition). In the latter circumstances, the input of neuron
N9 of each robot controller is set to 1 only if the sound
in the environment is produced by the robot itself. Fig-
ure 4 shows the results of the tests for robots of group
g2 in Env B only. We do not show the results of the
tests in Env A because they are less relevant to the
issue of sound. In fact, we have already shown that in
Env A the robots of signaling groups either do not emit
sound at all, or they do it in such a way that it is clear
that the sound is not functional within that particular
environment (see Table 1, columns 4, and 5, groups g1,
g2, g5, g6, g7, g8, g9, g13, and g19). We show only the
results of one signaling group (i.e., g2) as it turned out
that the groups that emit sound in Env B share the same
behavioral strategies. Therefore, everything that is said
for group g2 with respect to sound signaling, applies to
groups g1, g5, g6, g7, g8, g9, g13, and g19.

In Figures 4a and 4b, solid and dashed lines refer
to the robot–light distances in the normal and not-
other-sound conditions, respectively. In both figures,
the areas in shades of gray represent the circular band.
From these figures, we can recognize three phases in
the behavior of the robots. In the first phase, the
robot–light distance initially decreases for both robots
(phototaxis phase). When the robots touch the band,

the distance to the light remains quite constant as the
robots circle around the band trying to find the way in
zone (integration over time phase). In the third phase,
the robot–light distances increase and reach their max-
imum at the end of the trial (antiphototaxis phase). We
immediately notice that the behavior of the robots in
the normal condition (see Figure 4a) only slightly dif-
fers from what is observed in the not-other-sound con-
dition (see Figure 4b). The only difference concerns
the third phase. In particular, while in the normal con-
dition both robots begin to move away from the light
at the same time, in the not-other-sound condition,
robot 2 initiates the antiphototactic behavior after
robot 1. If observed with respect to how the robots’
sound output unfolds in time, this small behavioral
difference turns out to be an extremely indicative cue
as to the function of sound.

Figures 4c and 4d show that for both robots the
sound output changes smoothly and in the same way
in both conditions. During the phototaxis phase, the
sound output decreases. During the integration over
time phase, this trend is reversed. The sound output
starts to increase up to the point at which its value
rises over the threshold of 0.5. The increment seems to
be induced by the persistence of a particular sensory
state corresponding to the robot moving around the
light on the band. Once the sound output of a robot
increases over the threshold set to 0.5, that robot starts
emitting a tone. In the normal condition we notice
that, as soon as the sound output of robot 1 rises over
the threshold of 0.5 (see solid line in Figure 4c around
time-step 650) both robots initiate an antiphototactic
movement. Robot 2 leaves the band the moment robot 1
emits a signal, despite the fact that its own sound out-
put is not yet over the threshold of 0.5. Contrary to this,
in the not-other-sound condition we notice that robot
2 does not leave the band at the same time as robot 1,
but it initiates antiphototaxis only at the time when it
starts emitting its own sound (see dashed line in Fig-
ure 4d around time-step 830).

3.2.2 Role of Sound The way in which the distance
to the light and the sound output of each robot change
over time in the two experimental conditions suggests
that the sound is functionally relevant to the accom-
plishment of the task. In particular, signaling behavior
seems to be strongly linked to mechanisms for envi-
ronmental categorization. As long as the latter mecha-
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nisms work properly, the emission of sound after
approximately one loop around the light becomes a
perceptual cue that reliably indicates to a robot the
necessity to move away from the light. Moreover, sound
has a communicative function; that is, once broadcast
into the environment by one robot (e.g., robot 1 in the
normal condition), it changes the behavior of the other
robot (i.e., robot 2 in the normal condition), which
stops circuiting around the light and initiates antipho-
totaxis (see Figures 4a and 4b).

To further test the causal relationship between the
emission of sound and the switch from phototaxis to
antiphototaxis, we performed further post-evaluation
tests. In these tests, we post-evaluated group g2 for
500 trials in Env A and 500 trials in Env B, in condi-
tions in which the robots are not capable of perceiving
sound (i.e., their sound input is set to 0 regardless of
whether any agent emits a signal). We refer to this
condition as the deaf setup. We remind the reader that
similar phenomena to that concerning g2, and illus-

Figure 4 The graphs show some features of the behavior of the group of robots g2 at each time-step of a successful
trial in Env B. (a) and (b) show the robots’ distance to the light. The areas in shades of gray represent the circular band.
(c) and (d) show the cell potential of neuron N13 mapped into [0.0, 1.0] by a sigmoid function σ (i.e., the sound output) of
each robot controller. (a) and (c) refer to the normal condition. (b) and (d) refer to the not-other-sound condition (i.e., the
robots do not hear each other’s sound). Robot 1 (see solid lines) is always initialized closer to the light than robot 2 (see
dashed lines).
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trated in Table 2, have been observed for all the other
signaling groups. As far as it concerns Env A, the
average fitness of the group does not differ much from
the average fitness obtained in the normal setup (see
Table 2, columns 1 and 2). Concerning Env B, the
average fitness of the group is lower than the average
fitness recorded in the normal setup (see Table 2, col-
umns 5 and 6). Moreover, the robots’ average final
distance to the light is only about the same as the
radius of the outer edge of the band (i.e., 60 cm to the
light; see Table 2, columns 9–12). Given that the
robots never collided, the decrease of the average fit-
ness recorded in Env B in the deaf setup can only be
attributed to the fact that the robots do not perform
antiphototaxis. This confirms that, in conditions in
which the robots cannot hear any sound, they do not
switch from phototaxis to antiphototaxis. The role of
sound is indeed to trigger antiphototaxis in both the
emitter and the robot that is not emitting a tone yet.

For the sake of clarity, we should say that, when
signaling groups are located in Env A, the robots’
sound output undergoes a trend similar to that shown
in Figure 4c. That is, it decreases during the initial
phototactic phase and starts rising during the integra-
tion over time phase. However, when the robots are
placed in Env A, the increment of their sound output is
interrupted by the encounter of the way in zone. As
soon as the robot comes closer to the light via the way
in zone, the sound output begins to decrease. This
process has been shaped by evolution in such a way
that, in order for the sound output to rise over the
threshold of 0.5, it must be the case that no way in

zone has been encountered by the robots. In other
words, it takes more or less the time to make a loop
around the light while moving on the circular band for
a robot’s sound output to rise over the threshold. Con-
sequently, when the robot is located in Env A, no
sound is emitted. Those post-evaluation trials in
which sound has been recorded in Env A in signaling
groups (see Table 1, columns 4 and 5, groups g2 and
g13) were probably a result of atypical navigation tra-
jectories, which caused the sound output of either
robot to rise above the threshold.

Finally, we should say that for all the best evolved
groups of robots, we found that there is a neuron other
than the sound output neuron whose firing rate
behaves similarly to neuron N13 of the robots in group
g2. That is, there is a neuron whose firing rate increases
in response to the persistence of the sensory states
associated with moving around the light on the band.
For groups that never emit sound (i.e., g10, g14, g16, and
g18), if this increase is not interrupted by the encounter
of the way in zone, it eventually induces antiphoto-
taxis.2 For groups that emit sound (i.e., g1, g2, g5, g6,
g7, g8, g9, g13, and g19), this mechanism is linked to the
behavior of neuron N13, as shown in Figure 4c. The
relationship between mechanisms for integration of
time and neuron N13 is the basic difference between
signaling and non-signaling groups.

3.3 Transfer to Real Robots

The task described in this article is characterized by
the fact that not only the change but also the persist-

Table 2 Deaf setup (robots’ sound inputs set to 0). The results of the post-evaluation test showing for group g2 the
average and standard deviation of the fitness over 500 trials in Env A (see columns 1 and 2) and in Env B (see columns
5 and 6); the average and standard deviation of the percentage of time-steps the sound was on by either robot over 500
trials in Env A (see columns 3 and 4) and in Env B (see columns 7 and 8); the average and standard deviation of the
final distance (df) of each robot to the light in Env B (see columns 9–12). The row in bold shows again the result of group
g2 in the normal condition, with no disruptions applied to the propagation of sound signals.

Group g2

Env A Env B

Fitness Signaling (%) Fitness Signaling (%) Robot 1 (df) Robot 2 (df)

Mean SD Mean SD Mean SD Mean SD Mean SD Mean SD

1.97 0.16 1.35 7.03 1.26 0.09 51.13 4.35 66.52 14.46 54.90 3.12

1.94 0.28 0.72 3.72 1.99 0.00 18.22 1.36 119.65 0.20 119.64 0.20
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ence of particular sensorial states is directly linked to
the effectiveness of the evolved strategies (see previ-
ous section). These strategies are generated by robot
controllers developed in a simulated world that is
responsible for modeling the sensory states of s-bots
acting in Env A or Env B. Our simulated world (see
Section 2.2) models only a small subset of the s-bot
world physics, as it has been designed to speed up a
particularly long evaluation process (i.e., 12,000 gen-
erations, 100 genotypes, 10 evaluation trials for each
genotype, 1000 simulated time cycles for each trial).
As mentioned in Section 2.2, we compensate for the
effect of those physical phenomena not modeled (e.g.,
acceleration, friction, etc.), by adding random noise to
the light and proximity sensor readings, the motor out-
puts, the position of the robot, and the reading of the
two floor sensors. However, there is always the risk
that the physics of our simulated world are insuffi-
ciently or incorrectly defined, and that the evolved
behavioral strategies exploit loopholes that limit their
effectiveness to an unrealistic scenario. Porting the
controllers evolved in simulation onto a real robot is
the best way to rule out the above-mentioned problem
(Brooks, 1992). As pointed out in Section 1, this step
has not been taken in previous research work in which
CTRNNs have been evolved to deal with tasks that
required the integration over time of sensory states. In
this article, we provide evidence of the “portability”
of the evolved controllers by showing the results of
tests in which real robots are repeatedly evaluated in
Env A and Env B. We chose to re-evaluate the control-
ler of the successful group g2 because this group dur-
ing post-evaluation achieved a very high performance.
Also, in preliminary tests, among other equally suc-

cessful controllers, this group seemed to achieve the
best sensory-motor coordination when downloaded on
a group of real robots. Experiments are performed with
groups of two and four s-bots.

Jakobi (1997) claims that the robot does not have
to move identically in simulation and reality in order
for the porting to be called successful. In fact, it is
enough that its behavior satisfies some criteria defined
by the experimenter. Following this principle, real
robots are considered successful if they carry out the
main requirements of our task. That is, the robots have
to reach the band in shades of gray regardless of the
type of environment and subsequently (i) end up in the
target area in Env A, without crossing the inner black
edge of the circular band or (ii) end up as far as possi-
ble from the light in Env B. The robots should also
avoid collisions.

3.3.1 Experiments with Two S-Bots In our real-
world experimental setup, two s-bots (s-bot1 and s-bot2)
are randomly positioned at a distance of 85 cm from
the light. We performed 40 trials, 20 in each envi-
ronment. Each trial differs from the others for the
randomly defined initial position and orientation of
the robots, and for the position of the way in zone in
Env A. The initial position of the robots is randomly
chosen among one of the 16 possible starting positions
that surround the light (see Figure 5a). The width of
the way in zone is fixed to 45°, which is the smallest
value encountered during evolution and the most diffi-
cult case for a possible misidentification of an Env A
for an Env B. The s-bots proved to be 100% success-
ful in both environments: there were no mistakes in

Figure 5 The experimental setup. (a) A picture of the arena, with the points around the band showing the locations
where the robots were randomly positioned. (b) A snapshot of a trial in which two robots find the way in zone in Env A.
(c) A snapshot of a trial in Env B. The robot with the lighter turret color is the one that has signaled the absence of a way
in zone. Both robots have left the band and are performing antiphototaxis.
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discrimination, no collisions, and no crossing of the
black edge of the band.3 As was the case for the
simulated robots of group g2, the s-bots accom-
plished the task by using sound in a communicative
context. That is, the sound emitted by one s-bot trig-
gers antiphototaxis in both robots. The following par-
agraphs provide further quantitative descriptions of
the behavior of simulated and real robots. These data
will help to quantify the extent to which the behavior
of simulated robots diverges from the behavior of
real robots and to evaluate the reliability of our simu-
lated world as a tool for developing controllers for
real robots.

Given the nature of the successful strategy of
group g2, the start of the emission of a tone can be
used as a sign that precisely indicates when an s-bot
has reached the conclusion that it is located in Env B
rather than Env A. We compute the offset between the
entrance position in the circular band of the robot that
first emits a signal and the position at which this robot
starts to signal. This measure, called offset ∆, takes
value 0° if the robot signals exactly after covering a
complete loop around the circular band. Negative val-
ues of offset ∆ suggest that the robot signals before
having performed a complete loop, while positive val-
ues correspond to the situation in which the robot
emits a tone after having performed a loop around the
light (see Tuci et al., 2004, for details on how to calcu-
late ∆). The offset ∆ is used to compare the behavior
of simulated and real robots.

During the tests on real robots, we observed that
in Env B it is always s-bot1 that emits a signal. As
shown in Table 3, we see that the s-bot that first emits
a signal does so on average before completing a loop.
However, given that the magnitude of the offset ∆ is
smaller than the width of the way in zone, the group
does not run the risk of misinterpreting an Env A as an

Env B. Further tests have proved that, if left to act
alone in an Env B, s-bot2 always signals after complet-
ing a loop (i.e., positive offset ∆; data not shown).
This result can be accounted for by noting the exist-
ence of various arbitrary mechanical and sensor differ-
ences between the two s-bots; inter-robot differences
that are impractical to include in the simulated world.
Contrary to the s-bots, the simulated robots of group
g2 signal on average after completing the loop (see
Table 3). The mismatch between the behavior of sim-
ulated and real robots controlled by the same neural
network is an estimate of the magnitude of the diver-
gence between the simulated and real worlds. How-
ever, given that our real robots were 100% successful
in both environments, we conclude that the noise
injected into the simulated world was sufficient to
cross the “reality gap” (Jakobi, 1997) and to capture
the variability of the behavior of sensors and actuators
of real hardware, which can easily disrupt the effec-
tiveness of the evolved neural mechanisms. Note that
the successful porting of the controller of a group (i.e.,
g2) does not necessarily imply that controllers of other
groups that were successful in simulation would be
equally successful in guiding real robots. For exam-
ple, if the effects of inter-robot differences on the
mechanisms used for environmental discrimination
induce robots to anticipate (with respect to what the
group does in simulation) the emission of a signal,
then simulated groups with ∆ ∈ [– 45°, 0°) could be
more likely to fail. In fact, these groups might fall into
the error of signaling and consequently performing
antiphototaxis even if placed in an Env A.

3.3.2 Experiments with Four S-Bots We also per-
formed a further experiment by porting the controllers
of group g2 to a group of four different s-bots: s-bot3,
s-bot4, s-bot5, and s-bot6. The aim of these tests is two-
fold. First, we test the ability of the evolved control-
lers to accomplish the task, despite the cardinality of
the group being higher than that experienced during
the evolutionary phase. Second, we evaluate the effec-
tiveness of our controllers with respect to individual
differences among the robots. The experiment consists
of evaluating for 10 trials the four-robot group in each
environment. The results are once again almost per-
fect.4 In all trials in Env A, the robots found the way in
zone without erroneously emitting a tone or crossing
the inner black edge of the band in shades of gray. In

Table 3 Average and standard deviation of the offset ∆
recorded for different group types.

Groups Offset ∆

Avg (degree) SD (degree)

Two s-bots – 30.6 11.75

Four s-bots + 18.22 12.97

Simulated robots + 31.6 16.05
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Env B, we noticed that s-bot3 was always signaling
first, but never too early. In all trials, s-bot5 never emit-
ted a tone, and in a separate test we discovered that it
was signaling much too late, even after more than two
full loops around the band.5 Nevertheless, all robots
reacted properly to the signal emitted by s-bot3, left
the band, and reached the appropriate distance from
the light. In Table 3 we see that, with respect to offset
∆, the behavior of the four-robot group is closer to
simulation than the behavior of the two-robot group.

4 On the Adaptive Significance of 
Signaling

The results illustrated in Section 3.1 have shown that the
majority of successful strategies employ signaling behav-
ior and communication among the members of the
groups. This suggests that our decision to equip the
robots with “ears” and a “mouth” turned out to be help-
ful. However, by simply looking at the characteristics
of our model, we cannot necessarily see why evolution
exploited these robot’s structures to develop a simple
form of communication. In principle, groups in which
the use of sound is functionally relevant for the success
of the group, and groups in which it is not, can be
equally successful. Yet, the majority of the evolution-
ary runs that ended successfully (i.e., 9 out of 13 best
evolved groups) are characterized by group strategies
that make use of sound signaling and communication
among the robots (see Table 1). How can we account
for this result?

It might be that there is in fact no selective advan-
tage for groups in which the use of sound is functionally
relevant to their success with respect to alternative types
of group. The evolution of signaling might simply be a
result of the effect of statistical drift of genetic material
over time in populations of simulated agents (i.e.,
genetic drift). However, we have collected evidence
that inclines us to rule out the genetic drift hypothesis,
and that supports the idea that there are selective pres-
sures which favor signaling over non-signaling groups.
The rest of this section is dedicated to this issue.

4.1 Functions of Sound Signaling

We started our analysis by trying to understand whether,
during evolution, sound had fulfilled functions other
than the one we observed in the best evolved groups of

robots during the post-evaluation tests shown in Sec-
tion 3.2. To do this, we post-evaluated (500 times in
each type of environment) all the best groups at each
generation (1–12,000) of all the successful evolution-
ary runs. During this post-evaluation, we recorded the
average fitness in each environment and the average
percentage of time per environment either robot emits
a signal during a trial. After post-evaluating these groups,
we isolated those whose average fitness was higher than
1.8. We noticed that after having excluded (i) those
groups that signal throughout the entire duration of a
trial in both environments,6 (ii) those groups that never
signal in a trial in both environments, and (iii) those
groups in which sound was not functionally relevant
for their behavioral strategies, we were left with groups
that signal only in Env B for an average time of about
one-fourth of the duration of a trial. Further investiga-
tion into the behavior of these groups revealed that in
all of them sound was fulfilling one and only one func-
tion: triggering antiphototaxis in Env B.

In other words, looking at the behavior of all suc-
cessful signaling groups of any evolutionary simula-
tion run, we discovered that whenever signaling is
functionally relevant to the success of the group, it is
employed by the robots in Env B as a self-produced
perceptual cue. This cue induces the emitter as well as
the other robot of the group to change its behavior from
light-seeking to light-avoidance. This evidence con-
strains our investigation on the adaptive significance
of sound signaling to only a specific case in which we
can arbitrarily associate to sound two functionalities.
On the one hand, sound is the means by which a robot
emitter switches from phototaxis to antiphototaxis. We
refer to this as the “solitary” function. On the other
hand, sound is the means by which the robot emitter
influences the behavior of the other robot. In fact, the
perception of the sound triggers antiphototaxis in the
emitter as well as in the robot that is not yet emitting a
tone (see Figures 4a and 4c). We refer to this as the
“social” function. In the following, we illustrate the
results of post-evaluations that prove and explain why
it is the latter functionality that makes a group of sign-
aling robots better adapted than other group types.

4.2 Social Function of Sound Signaling as a 
Means to Obtain Robustness

The statistics shown in Table 4 refer to a series of tests
in which we post-evaluated (500 times in each envi-
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ronment) 100 different groups of robots of five differ-
ent evolutionary runs (runs 2, 10, 14, 16, and 18),
chosen among the best of each generation whose aver-
age fitness was higher than 1.8. As far as it concerns
run 2, we post-evaluated: (i) 100 groups that use sound
signaling in the normal setup (see Table 4, second row
“sig”) and in the not-other-sound setup (see Table 4,
fourth row “not-other”); (ii) 100 groups that do not use
sound signaling (see Table 4, third row “non-sig”).
Recall that the not-other-sound setup refers to the case
in which the robots do not hear each other’s sound
(see also Section 3.2). The 100 non-signaling groups
of robots of evolutionary run 2 are “predecessors” of
the signaling one. That is, they were the best groups
some generations before the evolution of successful
signaling groups.

By looking at the statistics shown in Table 4 we
notice the following. (i) The fitness of signaling groups
(run 2) is significantly higher than the fitness of any of
the non-signaling groups (run 2 “not-sig”, 10, 14, 16,
and 18, pairwise Wilcoxon test with 99% confidence
interval). (ii) The standard deviation of the fitness of
signaling groups (run 2) is smaller than the standard
deviation of the fitness of any of the non-signaling
groups (run 2 “not-sig”, 10, 14, 16, and 18). (iii) The
fitness of signaling groups (run 2) recorded in the not-
other-sound condition is significantly smaller than the
fitness of any of the non-signaling groups (run 2 “not-
sig”, 10, 14, 16, and 18, pairwise Wilcoxon test with
99% confidence interval). We consider (i) and (ii) as
empirical evidence that suggests that indeed signaling

groups are on average better than non-signaling groups.
Notice that, although the difference among the groups
is small, during evolution it may have influenced the
distribution of genetic material and consequently the
emergence of the behavioral strategies. For the sake of
completeness, we also show the lower and upper quar-
tiles and the median of the distributions. These data
confirm that the difference in performance between
the two groups seems to lie in the fact that non-signal-
ing groups display a slightly worse performance than
signaling groups in a few cases (see lower quartiles,
run 2 “sig” and “non-sig”). We consider (iii) as evidence
suggesting that the beneficial effect of signaling is not
linked to the “solitary” function, because if we pre-
vent signaling robots from hearing each other’s sound
(i.e., the not-other-sound setup) the “solitary” function
is not by itself sufficient to make the robots on aver-
age better than those that do not use signaling at all.
Consequently, it appears that groups of robots that use
sound signaling have a selective advantage over other
types of groups, because of the “social” function of
signaling.

In particular, we believe that the selective advan-
tage of signaling groups is given by the beneficial
effects of communication with respect to a robust dis-
ambiguation of Env A from Env B. The beneficial
effect corresponds to robust individual decision-mak-
ing and faster group reaction, as signaler and hearer
react at the same time. Moreover, the effectiveness of
the mechanisms that integrate sensory information
over time in order to produce the categorization of the

Table 4 This table shows the statistics of post-evaluation tests for 100 different groups of robots of five different evolu-
tionary runs (runs 2, 10, 14, 16, and 18), chosen among the best of each generation whose average fitness was higher
than 1.8. For run 2, we post evaluated: (i) 100 groups that use sound signaling in the normal setup (see row “sig”) and in
the not-other-sound setup (see row “not-other”); (ii) 100 groups that do not use sound signaling (see row “non-sig”).

Run Groups Mean SD Lower quartile Median Upper quartile

2 sig 1.989 0.082 1.995 1.996 1.997

non-sig 1.923 0.261 1.964 1.995 1.997

Env B not-other 1.747 0.268 1.589 1.760 1.982

10 non-sig 1.905 0.308 1.966 1.995 1.997

14 non-sig 1.943 0.226 1.993 1.996 1.997

16 non-sig 1.945 0.210 1.992 1.995 1.997

18 non-sig 1.880 0.326 1.918 1.995 1.997
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environment is disrupted by the random noise explic-
itly injected into the simulated world, which strongly
affects the sensors’ reading and the outcome of any
“planned” action. However, by communicating the
outcome of their decision about the state of the envi-
ronment, signaling groups, contrary to other types of
group, might exploit social behavior to counterbal-
ance the disruptive effect of noise on individual mech-
anisms for environmental discrimination. In total, in
those groups in which antiphototaxis is triggered by
the perception of sound rather than by an internal state
of the controller, a robot that by itself is not capable or
not yet ready to make a decision concerning the nature
of the environment can rely on the decision taken by
the other robot of the group. Therefore, by reacting to
the sound signal emitted by the group mate, a robot
initiates an action (i.e., antiphototaxis), which it may
not have been capable of, or ready to perform, other-
wise. The experiments performed on real hardware
provide perfect examples of the benefits of communi-
cation and social behavior, given the presence of
severe disruptions as a result of inter-robot differ-
ences. For example, in the experiments with two real
robots, we have seen that s-bot2 signals always later
than s-bot1 (see Section 3.3.1). In the four-robot experi-
ments (see Section 3.3.2), we noticed that s-bot4, s-bot5,
and s-bot6 repeatedly benefit from the sound signal
emitted by s-bot3, which is the fastest (as well as prov-
ing extremely accurate) robot to signal the absence of
the way in zone in Env B. If a robot that reacts to the
“non-self” produced sound could not have exploited
the signal emitted by the other member of its group, it
would have wasted precious time orbiting around the
light. Eventually, it would have switched to antiphoto-
tactic behavior, but because of time limits it would not
have been able to reach the maximum possible dis-
tance to the light (see df in Section 2.4). Consequently,
the fitness of the group would have been lower.

The performance of signaling groups not only
exceeds the performance of non-signaling groups in
Env B, but also in Env A (pairwise Wilcoxon test with
a 99% confidence interval). It seems that signaling
groups are better adapted to the “danger” of discrimi-
nation mistakes in Env A than non-signaling groups.
Thus, “early” signaling seems to be an issue that has
been taken care of by evolution. Our speculation is that
once signaling groups evolve, their signaling behavior
is refined, probably by categorizing the world later
than in the case of non-signaling groups. This happens

in order to ensure that the chances of a potential disad-
vantage resulting from social behavior are minimized
(e.g., see Table 3: simulated robots of group g2 signal
on average after completing a loop—rather late). In
other words, the use of communication in a system
can also affect aspects of the behavior not directly
related to communication (i.e., the process of integra-
tion of inputs over time). This hypothesis explains the
low performance recorded in the not-other-sound con-
dition, compared to the normal condition. When robots
emit signals later (high offset ∆), the system becomes
more robust because the risk of a discrimination mis-
take in Env A is minimized, at the cost of triggering
antiphototaxis in Env B later.7 However, this is coun-
terbalanced by the effect of the social behavior, as
explained above. To summarize, communication delays
the moment of categorization (larger offset ∆), and at
the same time anticipates the collective response; putting
robustness in Env A and social behavior in Env B
together, we can account for the selective advantage
of communication.

5 Conclusions

In this work, we have studied the emergence of com-
munication in a system provided with the necessary
hardware (i.e., a “mouth” and “ears”) and in which the
use of communication was not predetermined by the
experimenter, but left to evolution to shape. It turned
out that evolution produced signaling behavior tightly
linked to the behavioral repertoire of the agents and
this made social behavior more efficient than solitary
behavior, even though the former was not explicitly
rewarded by the fitness function. In fact, as discussed
in Section 4, communication serves to increase the
robustness of the categorization. This study contrib-
utes to the understanding of issues concerning the
evolution of communication, and, more specifically,
the identification of conditions that might facilitate the
emergence of communication in populations of
embodied agents.

It should definitely be acknowledged that there
are elements in our experimental setup that facilitate
the evolution of cooperative behavior: (i) the fact that
our robot group is composed of genetically identical
clones; (ii) the fact that it is the behavior of the group
that we evaluate after each trial. The above factors
leave no room for conflicts of interest or cheating.
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However, we should stress again that the evolution of
signaling and thus cooperation is neither trivial or
obvious, in particular because it is not explicitly
favored by the fitness function. The use of a func-
tional and meaningful signaling system is not a ques-
tion with a binary answer based on chance. In order
for a signaling system to evolve, evolution must pro-
duce appropriate signals, appropriate reactions to sig-
nals and a reorganization of the decision-making
mechanisms to ensure the robustness of the system, as
seen in the previous section. Still, we can certainly ask
what might happen if the individuals in the robotic
group were not genetically identical, and each robot
had a different controller and was evaluated only on the
basis of its own performance. Floreano, Mitri, Mag-
nenat, and Keller (2007) report on a series of experi-
ments aimed at studying the evolutionary conditions
for the emergence of visual communication. They note
that “under individual selection, the ability to produce
visual signals resulted in the evolution of deceptive
communication strategies in colonies of unrelated
robots and a concomitant decrease in colony perform-
ance.” Clearly, the aspects of our experimental setup
that prevented conflicts of interest and deceptive com-
munication between the robots have had some bearing
on our observed results. In future work, we intend to
withdraw these assumptions and address the broader
issue of conditions under which communication may
evolve despite the absence of explicitly group-level
selection.

Owing to the properties of our design methodol-
ogy (i.e., ER), signaling behaviors co-evolved with
time-dependent categorization structures, that is, inte-
gration over time. In evolutionary terms, these non-
reactive mechanisms might have paved the way for
the evolution of signaling. In fact, we can draw some
hints from the evolutionary analysis we performed in
Section 4 concerning the evolution of signaling,
which suggest that evolution proceeds in an “incre-
mental” way. We observed that signaling was present
in the population before successful solutions started to
appear, in all the evolutionary runs that produced sig-
naling groups. However, it seemed to have no func-
tional meaning: signals seemed to be produced rather
randomly and not with respect to the environmental
contingencies. Functional signaling behaviors seem to
evolve shortly after evolution produces the first
groups able to solve the task without any use of sign-
aling. In other words, communicative solutions seem

to be subsequent to non-communicative solutions. A
possible illustration of this process is that sound pro-
duction that was previously irrelevant becomes linked
to the already evolved mechanisms for environmental
discrimination. Then, as shown in Section 4, the solu-
tions making use of communication come to outper-
form those that do not. Another clue in support of
these speculations is the comparison of the mecha-
nisms underpinning behavior in both signaling and
non-signaling groups, as discussed in Section 3.2.
Both solutions rely on an internal neuron integrating
sensory information over time. However, for commu-
nicative solutions, the sound output also behaves simi-
larly. What we can take from this discussion is that the
evolution of signaling seems to be strongly based on
already evolved cognitive structures (discrimination
capabilities) of the agents (see also Nolfi, 2005).

The selective advantage of signaling over non-
signaling groups, as detailed in Section 4, is the rea-
son why we observe the evolution of signaling groups.
Moreover, it is the social function of signaling (i.e.,
the communication resulting from it) that makes these
groups more fit than others. In other words, we can
attribute the evolution of signaling to its social func-
tion, and thus to the effect of emitted signals on other
members of the group. This observation justifies the
use of the word “signal” in order to describe the emission
of sound. In fact, according to Maynard Smith and
Harper (2003), a signal evolves because of its effect
on others. A “signal” is defined as “an act or structure
that alters the behavior of another organism, which
evolved because the receiver’s response has also
evolved.” In contrast, a “cue” is defined as in Hasson
(1994): “a feature of the world, animate or inanimate,
that can be used by an animal as a guide to future
action.” Obviously our robots do emit a sound “as a
guide to future action” (to trigger the action of antipho-
totaxis), but this is not the reason why signaling behav-
iors emerged in the first place, even if they also
display the latter functionality. Ethologists (see, for
example, Tinbergen, 1964) considered the existence
of cues (or derived activities) as precursors of signals
and their subsequent ritualization into signals crucial
notions in an effort to explain the evolution of com-
munication. They saw ritualization as the process of
the conversion of a movement or action initially not
containing any communicative value into one that
does. In our case, this description is absolutely rele-
vant and we could summarize by saying that the indi-
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vidual categorization seems to be the cue that later on
is ritualized into the (acoustic categorization) signal.
Indeed, as we said above, social solutions to the prob-
lem seem to be subsequent to solitary ones.

In Section 4.2, we have seen that signaling groups
become more robust as they tend to categorize the
environment by initiating antiphototaxis later than
non-signaling groups. In other words, we observe that
the social context has a bearing and effectively alters
the behavior of the robots with respect to their deci-
sion making. This observation brings to mind exam-
ples from zoology and in particular social foraging. It
has been reported that the foraging behavior of ani-
mals changes if the animals are situated in a social
context. For example, Elgar (1987) shows that social
companionship in house sparrows leads to higher feed-
ing rates, as each individual eventually spends less time
scanning for predators. Similarly, Fernandez-Juricic,
Smith, and Kacelnik (2005) show that while foraging,
starlings spend more time scanning for predators once
social information is reduced. Overall, we can say that
the behavior of our robots is reshaped (through evolu-
tion) as a consequence of the social context in which
they are located and the availability at some point in
evolution of social information—categorization sig-
nals.

In this article, we have demonstrated the portabil-
ity of time-dependent decision-making mechanisms
onto real robots. Even though the controllers were
evolved in a simulated world and the simulation did
not go as far as implementing possible inter-robot dif-
ferences (see Section 3.3), the system was always suc-
cessful and we did not observe any mistakes in
categorizing the environment. Our results also show
that the use of communication was particularly benefi-
cial in the real world, as the inter-robot differences did
in fact severely disrupt the individual decision-making
mechanisms of certain agents (see, for example, s-bot5

in the four-robot generalization test, which would
need, if left alone, more than two loops around the
light to initiate antiphototaxis). However, it is easy to
imagine a case where a robot takes the wrong decision
about the state of the world, and initiates antiphoto-
taxis emitting a tone in Env A. This would cause the
collapse of the whole system, as all robots would per-
form the wrong action in that environment, even if
their individual discrimination mechanism would
have produced a correct categorization. This event
was never observed in reality (see Section 3.3), sug-

gesting that the evolved behavior is also very robust
against inter-robot differences.

In parallel with studying the effectiveness of the
evolved signaling mechanisms when tested on real
robots, we found that signaling evolved even in the
absence of explicit selected pressure coded in the fit-
ness function. In fact, our analysis revealed a “hidden”
benefit for communication. This raises the following
issue: should we always equip our robots with “ears”
and a “mouth” to make possible the switch from soli-
tary to social behavior, even in cases when the benefit
of communication in such a system is obscure to us,
the experimenter? The work presented in this article is
an example in which communication proves to be
beneficial and the ER methodology manages to dis-
cover ways to use it by linking it to the rest of the
robot behavior and in the process enhancing the
robustness of the system. That is, evolution found an
efficient way to use these hardware tools (i.e., “ears”
and a “mouth”), and it is our belief that this might also
be the case with other more complex tasks. We cannot
go so far as to claim that incorporating long-range
communication devices should be standard, but we
can say that evolution seems to discover efficient
ways to use them. In other words, by using ER within
the context of collective or swarm robotics, such hard-
ware tools for long-range signaling might end up
being beneficial for the group’s performance on a cer-
tain task, even though communication might appear
pointless to the experimenter at the time of defining
the building blocks of the behavior.
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Notes

1 A project funded by the Future and Emerging Technolo-
gies Program (IST-FET) of the European Commission,
under grant IST-2000-31010. See also http://www.swarm-
bots.org.

2 See http://iridia.ulb.ac.be/supp/IridiaSupp2006-007 for
supplementary graphs showing the behavior of all neurons
and a lesion analysis aimed to prove the functionality of
each neuron.

3 The movies that correspond to these experiments can be
found at http://iridia.ulb.ac.be/supp/IridiaSupp2006-007.

4 The movies that correspond to these experiments and a
more detailed description can be found at http://iridia.ulb.
ac.be/supp/IridiaSupp2006-007.

5 The light sensors of s-bot5 are the reason for this behavior.
In fact, their readings proved to be significantly different
from those of the other robots. By comparing the behavior
of this robot with s-bot1, we can get an idea of the magni-
tude of the inter-robot differences.

6 We do not further analyze the cases in which the robots
signal throughout the entire duration of a trial as we con-
sider it obvious that in these cases the sound-emitting
behavior does not serve any specific function.

7 See http://iridia.ulb.ac.be/supp/IridiaSupp2006-007 for
data complementing the statistics of Table 4 with results
in Env A and for data supporting our claim that signaling
groups tend to initiate antiphototaxis later than non-signal-
ing groups.
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