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ABSTRACT
Can heterogeneity be a cost-effective solution for swarm robotics?
Motivated by what we see in animal groups, especially eusocial
insect colonies, that exploit behavioural heterogeneity as the cor-
nerstone of their success, we investigate whether or not swarms of
robots with different behaviours can be more cost-effective than ho-
mogeneous swarms. We focus on the process of collective decision-
making where robots must achieve a consensus on the best alter-
native between two options with different qualities, the best-of-2
problem. We consider four behaviours from the literature where
robots use rules of voter-like models to exchange and update their
opinions. We study the swarm’s ability to be robust to the presence
of zealots, i.e., stubborn robots that do not change their opinions.
Our analysis is based on mean-field models that describe the change
of the sub-populations holding different opinions. We show that
heterogeneous swarms can be more efficient when we include in
the analysis the cost of social interactions between robots. Nor-
mally, more interactive behaviours (e.g., pooling many neighbours’
opinions at each timestep rather than one per timestep) are quicker
in making a decision and more robust to zealots. Heterogeneous
swarms combine high performance with lower costs, as not the
entire group must be highly interactive to maximise collective per-
formance. Our results are useful when seeking a balance between
making accurate collective decisions and minimising the cost of
social interactions, the objective of artificial and natural swarms.
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1 INTRODUCTION
Swarms of autonomous robots, that use local knowledge and local
interactions to coordinate their actions and accomplish collabora-
tive tasks, are a technology with tremendous potential [14]. How-
ever, finding the rules to design the robot behaviours that generate
the desired collective outcome is a hard challenge [19]. This study
focuses on the behaviour of robots that exchange opinions in order
to make a consensus decision on the option with the highest qual-
ity among 𝑛 alternative options (best-of-𝑛 problem [57]); we focus
our analysis on binary decisions, 𝑛 = 2. Several of the algorithms
developed to solve this problem are inspired by biology and so-
cial sciences [5, 42]; e.g., house-hunting social insects [41, 49] and
voter-like models in opinion dynamics [7, 44]. Individual insects, or
robots, sample the environment to assess the quality of the option
they prefer. They hold one opinion at a time. Their opinion can
change when they receive messages from their neighbours who
express a different opinion. A collective decision is made when, and
if, a majority agrees on one site. It has been shown that the collec-
tive decision-making process can be undermined by even a small
number of misbehaving robots [30, 31, 45], e.g., damaged or hacked
robots [52]. Therefore, the design of swarm robotics algorithms
also requires an analysis of their robustness against misbehaving
robots [21, 54]. In this study, we consider the presence of a minority
of stubborn robots, also called zealots [24, 32, 45], that never change
their opinion, despite the social information they receive.

We consider different algorithms that control the way the robots
filter and update their opinion. The main difference between these
algorithms is the amount of social information that each robot
needs to process. We construct mathematical models, in the form of
ordinary differential equations (ODEs), to describe how the swarm
population splits into sub-populations composed of agents sharing
the same opinion. First, we establish a baseline understanding of the
robustness of homogeneous swarms, where every robot within the
swarm uses the same algorithm. Then, we consider heterogeneous
swarms composed of robots running different algorithms in order
to assess how varying the proportions of robots using a particular
algorithm affects the robustness of the swarm. In particular, we
quantify the performance of the heterogeneous swarms in terms of
two quantities, the robustness against stubborn robots (zealots) and
the amount of social information that the robots need to process to
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reach an agreement. The former represents how often a swarm is
able to reach a consensus on the best option despite the presence
of zealots, while the latter counts the total amount of messages
exchanged during the decision-making process. Our analysis shows
that algorithms processing more social information are, in general,
more robust. By changing the composition of the heterogeneous
swarms, we show that it is possible to balance the trade-off between
social information processing cost and collective robustness.

The novelty of this work resides in building and analysingmodels
of heterogeneous swarms tasked with solving the best-of-2 problem,
in the presence of zealots. In the state of the art, mathematical
models for homogeneous robot swarms are developed, as in [44, 45,
58, 60], both with the presence of zealots and without. Our study
extends these models to heterogeneous swarms and is motivated by
the intuition that heterogeneous swarms could provide better, or
equal, performance than homogeneous ones requiring however less
social-information processing. If true, such a solution can increase
the efficiency of our robot swarms and provide useful insights
for designing swarms that are robust to malicious agents. While
this work focuses on the engineering perspective of maximising
the efficiency of artificial swarms, the results of our analysis can
also be relevant to collective animal behaviour research where
animal groups have been selected on the same criteria of efficient
computation which minimises costs. A possible solution—which
we explore in this paper—is exploiting group heterogeneity.

2 RELATEDWORK
Best-of-𝑛 decision problems are relevant in swarm robotics as they
can lead to autonomy in selecting the best course of action in sev-
eral application scenarios [57]. Numerous algorithms have been
developed in order to solve practical instances of this problem, such
as in [55, 56, 58, 60]. Existing solutions differ in the capabilities the
robots are required to have in terms of memory, computation and
communication. For example, there are algorithms to let each robot
update the probabilities that each option is the correct one based
on environmental and social evidence. These algorithms typically
require relatively sophisticated computation [2, 11, 17], frequent
communication of messages with a relatively rich content [50], or
relatively high memory [27]. Our study focuses on simpler algo-
rithms based on the idea of minimal computing [63].

Our robots have minimal requirements in terms of memory, com-
putation and communication as they can only store one opinion
that they share with their neighbours. Solutions to the best-of-𝑛
problem that require minimalism are based on voting algorithms
that leverage simple voting rules, typically studied in opinion dy-
namics [7], where each opinion shared by the robots is treated as
a vote. One of the computationally simplest algorithms is based
on the voter model [9, 20] (also referred to as voter rule), where
the robots only read one vote (opinion) from a randomly selected
neighbour. The voter model has later been extended to the weighted
voter model in [59], where robots solve the best-of-𝑛 problem by
expressing their vote for a time proportional to the quality of the
communicated option; in this way, the best option is often selected.
Another popular voting rule used to engineer simple robot swarms
is the local majority rule [12, 18, 26, 33], where the robots select the
most voted option among the votes of their neighbours. While this

rule has a higher computational cost compared to the voter rule
(because the robots must process and pool multiple votes rather
than just picking one), it has been shown to enable quicker collec-
tive decisions [44, 58]. The majority rule—which selects options
that have been voted by more than 50% of the neighbours—can be
generalised to use different sub- and super-majority quorums [28],
e.g., through the k-unanimity rule [48] or the q-voter rule [31]. In
addition to investigating what social information the robot selects
(e.g., voter rule, majority rule), previous work has studied how new
social information is integrated with the previous opinion. Simple
models are based either on direct overwriting of the opinion with
the new social information (direct-switch rule [59]) or on robots
temporarily dropping any opinion before adopting a new one (cross-
inhibition rule [40]). Recent work has compared these two rules
highlighting a trade-off between the ability of the cross-inhibition
rule to make consensus decisions quickly and the high decision
accuracy of the direct-switch rule [45, 61].

Security is a critical aspect of autonomous robot swarms be-
cause they are composed of physical devices that operate in the
real world and malfunctioning robot swarms can physically harm
people and their environment [21]. While there is a growing inter-
est in the swarm robotics community to investigate the security
aspect [8, 15, 39, 53, 54, 62], the number of studies is still limited.
In this work, we focus on the presence of robots that do not follow
the behaviour with which they have been programmed. In the con-
text of collective decision-making, a number of studies considered
solutions to this problem based on outlier detection [47] and tamper-
proof protocols based on blockchain smart contracts [52, 54], en-
abling both the identification and neutralisation of the misbehaving
robots. These approaches are not in agreement with the minimal
computing paradigm as they require sophisticated algorithms; here,
instead, we investigate which of the considered algorithms is intrin-
sically more robust to the presence of misbehaving robots (with-
out aiming to identify or actively neutralise them). We consider
relatively simple misbehaviour, comparable to those of the well-
functioning robots. Previous work that considered such type of
misbehaviour in best-of-𝑛 decision-making looked at the impact
of zealots, contrarians, and independents [6]. Zealots, also called
stubborn robots, are robots that never update their opinion, thus
ignoring the opinion of their neighbours [13, 30, 32, 45]. Contrar-
ians, also called hipsters, pick the opinion that is shared by the
minority of the neighbouring robots [25, 29]. Finally, independents,
also called wishy-washy, adopt a random opinion each time they
partake in the voting process [6, 10].

Behavioural heterogeneity can be a functional feature of robotic
and natural swarms [16, 34]. However, studying swarms of robots
with different behaviours makes the model analysis complicated
as any small behavioural difference can lead to large, often hard-
to-predict, changes in the collective dynamics. In fact, even unin-
tentional differences, such as different levels of actuation errors,
can cause qualitatively different collective responses [38]. Despite
the number of papers on this subject being relatively limited, previ-
ous work showed the great potential of heterogeneity with perfor-
mances superior to homogeneous swarms, e.g., [22, 23]. Our work
focuses on behavioural heterogeneity where robots use different
rules to pool social information; to the best of our knowledge, this
study is the first looking at this aspect.



3 MODELS
We model robots as agents because we do not consider their move-
ment in, their perception of, or their interactions with a physical
environment. We only look at the change of opinions of the robots
(agents) over time in response to social information. Each agent
receives and sends messages expressing its vote in favour of the
option to which it is committed (i.e., the option that it believes to
be the best). The agent behaviour is composed of two parts: first, an
agent filters the opinions it receives from its neighbours using an
opinion filtering rule; then, it updates its opinion with an opinion
update rule. These rules are described in detail in the next two sub-
sections. In order to reach a consensus on the best option, agents
communicate their opinion with a frequency that is proportional to
the quality of the opinion they hold. This method is inspired by the
behaviour of social insects [35, 45]. Zealot agents, instead, never
change their opinions regardless of their neighbours’ opinions; we
assume zealots have the malicious intent of disrupting the collec-
tive decision-making process, therefore they communicate with the
maximum frequency regardless of the opinion they propagate.

We study a binary decision case, i.e.,𝑛 = 2, where the two options
are A and B, eachwith an associated quality𝑞𝐴 and𝑞𝐵 . Without loss
of generality, we fix option A’s quality to 𝑞𝐴 = 1 and vary option B’s
quality in the range 𝑞𝐵 ∈ [0, 1]; thus, the difficulty of the decision
problem is computed as the quality ratio 𝑞 =

𝑞𝐵
𝑞𝐴

. The variables
𝐴 and 𝐵 indicate the proportions of non-zealot agents holding
opinion A and opinion B, respectively, which change over time. The
proportions of zealots with opinions A and B are two additional
parameters: 𝑧𝑎 and 𝑧𝑏 , representing the percentage of zealots with
respect to the total number of collaborative agents. Therefore, in a
swarm composed of 𝑆 susceptible (non-zealot) agents, the numbers
of zealots with opinion A and B are 𝑧𝑎 𝑆 and 𝑧𝑏 𝑆 , respectively. Both
𝑧𝑎 and 𝑧𝑏 have values in the range [0, 0.5], as we do not consider
robustness against a number of zealots exceeding half the swarm
size. Furthermore, we consider a well-mixed system, where an agent
has an equal probability to interact with any other agent.

3.1 Filtering rules
An agent may receive more than one message from its neighbours
expressing their opinions, therefore the agent employs a filtering
rule to select one opinion from the received messages. We consider
two filtering rules: the voter rule and the majority rule. With the
voter rule, the agent selects a random opinion from the received
messages. With the majority rule, the agent selects the opinion
which is present in more than 50% of the messages it receives.

To mathematically model the filtering rules, we define 𝑛#
𝑖
as the

weighted average of the relative number of agents holding opinion
𝑖 (with 𝑖 ∈ {𝐴, 𝐵}). The weights are the qualities of the two options
as we recall that the agents vote with a frequency proportional to
the quality. Hence, for options A and B, we respectively have

𝑛#𝐴 =
𝐴 + 𝑧𝑎

𝐴 + 𝑧𝑎 + 𝑞𝐵 + 𝑧𝑏
and 𝑛#𝐵 =

𝑞𝐵 + 𝑧𝑏

𝐴 + 𝑧𝑎 + 𝑞𝐵 + 𝑧𝑏
. (1)

When using the voter rule, the agent filters a message expressing
an opinion for option A or B with probabilities 𝑣𝐴 and 𝑣𝐵 , respec-
tively, which are defined as

𝑣𝐴 = 𝑛#𝐴, and 𝑣𝐵 = 𝑛#𝐵 . (2)

When using the majority rule, we define the two filtering proba-
bilities as𝑚𝐴 and𝑚𝐵 , corresponding to discrete integrations of a
Bernoulli distribution, as previously modelled in [58]. The Bernoulli
distribution models the probabilistic events of receiving votes for
option A or B. The probabilities that one vote is for A or B cor-
respond to the quantities 𝑛#

𝐴
and 𝑛#

𝐵
. We consider each agent to

sample, on average, 𝐺 messages. Therefore, we account for the
different combinations of the 𝐺 votes through the binomial coef-
ficient

(𝐺
𝑖

)
, with 𝑖 indicating the number of votes in favour of A

or B when computing𝑚𝐴 and𝑚𝐵 , respectively. The probabilities
are computed as the sum of 𝑖 ranging from ⌈𝐺2 ⌉ + 1 −𝐺 (mod 2) to
𝐺 , therefore indicating that 𝑖 is more than half of the number of
messages𝐺 . The lower bound of the summation takes into account
both the cases of even and odd 𝐺 . More precisely, when 𝐺 is even,
an agent will choose the opinion if there are at least 𝐺

2 + 1 samples
sharing that opinion. When 𝐺 is odd, the minimum number of
samples with a given opinion must be ⌈𝐺2 ⌉. Hence, for the majority
rule, the two probabilities are

𝑚𝐴 =

𝐺∑︁
𝑖=⌈ 𝐺2 ⌉+1−𝐺 (mod 2)

(
𝐺

𝑖

)
[𝑛#𝐴]

𝑖 [𝑛#𝐵]
𝐺−𝑖 , (3)

𝑚𝐵 =

𝐺∑︁
𝑖=⌈ 𝐺2 ⌉+1−𝐺 (mod 2)

(
𝐺

𝑖

)
[𝑛#𝐵]

𝑖 [𝑛#𝐴]
𝐺−𝑖 . (4)

3.2 Update rules
Update rules allow an agent to update its opinion based on the
opinion it selects through the filtering rule. We consider two update
rules: direct-switch and cross-inhibition.

An agent that updates its opinion using the direct-switch rule
adopts the filtered opinion directly, hence the name. Since an agent
can hold either opinion A or B, this rule implies that 𝐴 + 𝐵 = 1.

On the other hand, according to the cross-inhibition update rule,
when the filtered opinion is different from the agent’s current opin-
ion, the agent becomes undecided and holds no opinion. Instead,
undecided agents directly adopt the filtered opinion. Let 𝑈 be the
proportion of agents with no opinion. Since an agent can either
hold opinion A or B or have no opinion, the cross-inhibition update
rule implies that 𝐴 + 𝐵 +𝑈 = 1.

3.3 Homogeneous swarms
The models for homogeneous swarms describe the evolution of sub-
populations of agents holding the same opinion when the entire
population uses the same filtering rule and the same update rule.We
build four models, resulting from the combination of the two filter-
ing rules and the two update rules (each model has one rule for each
part of the agent behaviour, thus four models in total). Models using
the direct-switch update rule have two variables, thus they need
two equations: one ordinary differential equation that describes the
evolution of the sub-population committed to A and an algebraic
equation for mass conservation, i.e., 𝐵 = 1 −𝐴. On the other hand,
models using the cross-inhibition update rule have three variables,
thus they need three equations: two ordinary differential equations
that describe the evolution of the sub-populations committed to A
and B, and the mass conservation equation𝑈 = 1 −𝐴 − 𝐵.



For all models, the change in a sub-population is described by
two terms. There is a positive term, which indicates an increase in
the sub-population as a result of agents inside that sub-population
recruiting other agents through their messages. Depending on the
update rule, the recruited population are the agents in the other sub-
population for the direct-switch rule, or agents with no opinion for
the cross-inhibition rule. The second term is negative and indicates
a decrease in the sub-population as a result of agents inside that
sub-population receiving a message from the other sub-population.

The two models based on the direct-switch update rule have the
same form:

𝑑𝐴

𝑑𝑡
= 𝐵𝑝𝐴 −𝐴𝑝𝐵 (5)

where 𝑝𝐴 and 𝑝𝐵 refer to the probability of receiving opinion
A or B, respectively, which depends on the filtering rule (𝑝𝑖 ∈
{𝑣𝑖 ,𝑚𝑖 } and 𝑖 ∈ {𝐴, 𝐵}). On the other hand, the change in the sub-
populations of a cross-inhibition model has the following structure:

𝑑𝑖

𝑑𝑡
= 𝑈𝑝𝑖 − 𝑖𝑝 𝑗 (6)

where 𝑝𝑖 ∈ {𝑣𝑖 ,𝑚𝑖 }, 𝑖, 𝑗 ∈ {𝐴, 𝐵} and 𝑗 = ¬𝑖 .

3.4 Heterogeneous swarms
Heterogeneous swarms are composed of robots (modelled as agents)
that run different algorithms. We consider heterogeneous swarms
comprising agents employing two different filtering rules but using
the same update rule. More precisely, in a heterogeneous swarm
comprising 𝑆 susceptible (non-zealot) agents, there are 𝑘𝑆 agents
using the voter rule and the rest (i.e., (1 − 𝑘)𝑆 agents) using the
majority rule. Thus, the parameter 𝑘 ∈ [0, 1] represents the pro-
portion of susceptible agents using the voter rule and for values of
𝑘 = 0 and 𝑘 = 1, the heterogeneous swarm models reduce to the
homogeneous swarm models of Eqs. (5) and (6). We analyse two
heterogeneous models, one for each opinion update rule.

Let𝐴𝑉 (resp. 𝐵𝑉 ) and𝐴𝑀 (resp. 𝐵𝑀 ) be the proportion of agents
holding opinion A (resp. B) while using the voter rule and the
majority rule, respectively. Then, 𝐴 = 𝐴𝑀 +𝐴𝑉 and 𝐵 = 𝐵𝑀 + 𝐵𝑉 .

For the algorithms using the direct-switch update rule, we model
the change in the two sub-populations holding opinion A as{

𝑑𝐴𝑉

𝑑𝑡
= 𝐵𝑉 𝑣𝐴 −𝐴𝑉 𝑣𝐵

𝑑𝐴𝑀

𝑑𝑡
= 𝐵𝑀𝑚𝐴 −𝐴𝑀𝑚𝐵 ,

(7)

where 𝐴𝑉 + 𝐵𝑉 = 𝑘 and 𝐴𝑀 + 𝐵𝑀 = 1 − 𝑘 .
For algorithms using the cross-inhibition update rule, the models

need to keep track of the number of agents in the undecided state
for both filtering rules. Let𝑈𝑉 and𝑈𝑀 be the proportions of agents
with no opinion while using the voter rule and the majority rule,
respectively. Then, 𝐴𝑉 + 𝐵𝑉 +𝑈𝑉 = 𝑘 and 𝐴𝑀 + 𝐵𝑀 +𝑈𝑀 = 1 − 𝑘 .
Finally, we model the change in the two sub-populations holding
opinions A and B as

𝑑𝐴𝑉

𝑑𝑡
= 𝑈𝑉 𝑣𝐴 −𝐴𝑉 𝑣𝐵

𝑑𝐴𝑀

𝑑𝑡
= 𝑈𝑀𝑚𝐴 −𝐴𝑀𝑚𝐵

𝑑𝐵𝑉
𝑑𝑡

= 𝑈𝑉 𝑣𝐵 − 𝐵𝑉 𝑣𝐴
𝑑𝐵𝑀

𝑑𝑡
= 𝑈𝑀𝑚𝐵 − 𝐵𝑀𝑚𝐴 .

(8)

4 ANALYSIS
We study the long-term dynamics of the system, i.e., we look at the
final state of the ODEs after a large time, 𝑡 → ∞. Given the non-
linearity of the system, it is difficult to obtain a symbolic equation
of the stable states of the ODE systems, especially for the hetero-
geneous case. Therefore, we resort to numerical integration of the
ODEs given an initial condition. We consider the system initialised
at symmetry, with the two sub-populations holding opinions A and
B having the same size, i.e., 𝐴(0) = 𝐵(0) = 0.5. To avoid initialising
the system at an unstable equilibrium where the two populations
balance each other, we include a small deviation from the 50-50
perfect split and we initialise the system at 𝐴(0) = 0.5 + 𝜁 and
𝐵(0) = 0.5 − 𝜁 , with 𝜁 = 10−6. We numerically integrate the ODE
systems for 𝑡𝑀𝐴𝑋 = 103 time units. We also tested conditions with
no bias and minimal bias towards the inferior option B, the results
(not shown in this article) did not show any qualitative change to the
results reported in Sec. 5 but only minimal quantitative differences
in the cost-performance analysis.

4.1 Metrics of performance
To compute the performance of the swarm in making a collective
decision, we measure both the goodness of the decision outcome
and the resources invested in making it. Regarding the decision
outcome, one needs to consider that in the presence of stubborn
agents, reaching a full consensus (100% agreement) can be impos-
sible [30, 45]; therefore, we set a quorum 𝜃 = 0.7 to be reached in
order to consider the swarm made a decision for either alternative.
By looking at the long-term (equilibrium) state of the system, our
mean-field analysis allows us to predict if a robot swarm running
those rules will eventually select either of the two options, or will
remain deadlocked at indecision with no sub-population imposing
itself on the other.

For each configuration and each initial condition, we compute the
following three measures, that a decision-maker should minimise:
regret 𝜌 : it is a numerical value that indicates the loss that the
collective decision led to. When the population selects the option
with the highest quality (option A), the regret is zero as the outcome
of the decision could not be better. However, when it selects the
option with the inferior quality (option B), the regret is 𝜌 = 𝑞𝐴 −
𝑞𝐵 = 1 − 𝑞𝐵 (as we fix 𝑞𝐴 = 1). Finally, in case of decision deadlock,
𝜌 = 𝑞𝐴 − 0 = 1. This loss function is termed regret in agreement
with decision theory literature [3].
decision time 𝜏 : it is the amount of time that any of the two sub-
populations take to reach the decision threshold 𝜃 = 0.7.
cognitive cost 𝜙 : it is a measure of how much social information
each individual needs to process during the collective decision
process. It is computed as the number of opinions each agent gathers
from its neighbours. This quantity is different for the two considered
filtering rules, voter rule and majority rule. With the former, the
agent reads one message per timestep, while with the latter, it reads
𝐺 messages per timestep. We multiply the number of these social
interactions by the timesteps taken to reach the decision quorum.
Thus, for the models using the voter rule, the cognitive cost is
𝜙𝑉 = 𝜏 and for the models using the majority rule, 𝜙𝑀 = 𝜏 𝐺 . For
heterogeneous swarms, we compute the cognitive cost as

𝜙 = 𝜏 [𝑘 + (1 − 𝑘)𝐺] , (9)



(A) (B)

Figure 1: Representative results of the homogeneous swarms
composed of agents using the direct-switch and voter rule
(system (7) with 𝑘 = 1) under wrong-addressing attack in the
parameter space (𝑞, 𝑧𝑏 ). In (A), the three colours show the
decision outcome for each (𝑞, 𝑧𝑏 ): the black points represent
convergence of the group opinions to option A (𝐴(𝑡𝑀𝐴𝑋 ) ≥
𝜃 ), the red points represent convergence of the opinions to
option B (𝐵(𝑡𝑀𝐴𝑋 ) ≥ 𝜃 ) and the yellow points represent a
decision deadlock ((𝐴(𝑡𝑀𝐴𝑋 ) < 𝜃 ) ∧ (𝐵(𝑡𝑀𝐴𝑋 ) < 𝜃 )). In (B), we
use the decision outcome to compute the regret 𝜌 which we
represent as a colour map, where decision deadlocks lead to
the highest regret (yellow region with 𝜌 = 1), and accurate
decisions to the zero regret (dark blue region with 𝜌 = 0).

recalling that 𝜏 is the decision time and 𝐺 is the (average) number
of neighbours sampled by agents using the majority rule.

4.2 Measuring the swarm robustness
We measure the swarm robustness in the presence of two types
of attacks, wrong addressing and denial of service. These swarm-
level attacks borrow names from traditional cyber-security because
they generate a similar system dysfunction. Wrong addressing
corresponds to leading the swarm to select the inferior option and
can be implemented by the zealots by only voting for the option
with the lowest quality, in our case option B. Therefore, we study
robustness against a wrong-addressing attack by setting 𝑧𝑎 = 0
and 𝑧𝑏 > 0. Instead, denial of service corresponds to keeping the
swarm undecided, unable to reach any agreement and, therefore,
unable to deliver the service—make a collective decision—that it has
been programmed for. Previous work [6, 24, 45] has shown that the
presence of two sub-populations of zealots, one for each option, can
keep the system hung at indecision. Therefore, we study robustness
against denial-of-service attacks by setting 𝑧𝑎 = 0.05 and 𝑧𝑏 > 0.

We analyse the models by fixing the parameter 𝑧𝑎 ∈ {0, 0.05}
and study the system dynamics for a large range of values of the
parameters 𝑧𝑏 ∈ [0, 0.5] and 𝑞 ∈ [0, 1]. For heterogeneous systems,
we also vary the heterogeneity parameter 𝑘 in the range [0, 1] with
a step of 0.05. We then compute eachmetric of swarm performance—
regret, decision time, and cognitive cost—as the average value over
all tested conditions. To find a single measure that combines both
the goodness of the decision outcome and the resources invested in
making it, we borrow from cognitive psychology and neuroscience

the metric of Bayes risk 𝛽 , which has been used to study normative
models of decision making [4, 36] and is defined as

𝛽 = 𝑐1DT + 𝑐2ER = 𝑐1 𝜙 + 𝑐2 𝜌. (10)

The parameters 𝑐1 and 𝑐2 indicate how the decision-maker weighs
the two costs of making the decision; more precisely, 𝑐1 weighs
the resources invested in making the decision, that in the cognitive
psychology literature is measured as the decision time (DT). In
our case, we use the cognitive cost 𝜙 . The parameter 𝑐2, instead,
weighs the cost of making an error (error rate ER). In our case, we
use the regret 𝜌 . Thus, in our analysis, we look at systems that can
minimise the Bayes risk composed of the weighted sum of cognitive
cost and regret. We set 𝑐1 = 1 (the cost of each pooled message is 1)
and vary the parameter 𝑐2 ∈ [0, 103] weighting the cost of decision
mistakes (the cost of the loss in quality for incorrect decision). Our
goal is to investigate what is the parameter range of 𝑐2 (if it exists)
by which employing a heterogeneous swarm is more convenient
(lower 𝛽) than using a homogeneous one.

5 RESULTS
We analyse robustness to wrong-addressing and denial-of-service
attacks by fixing the proportion of zealots in favour of option A
(𝑧𝑎) to zero and 0.05, respectively, and computing the decision
performance for parameters 𝑧𝑏 ∈ [0, 0.5] and 𝑞 ∈ [0, 1], denoting
the proportion of zealots in favour of option B and the quality ratio.
We initially consider that the agents running the majority rule
make a sampling effort of reading𝐺 = 8 neighbour messages. Fig. 1
shows a representative example of the results for homogeneous
swarms based on direct-switch and the voter rule (𝑘 = 1) under a
wrong-addressing attack (𝑧𝑎 = 0) in terms of the decision outcome
in panel (A) and regret 𝜌 in panel (B), in the (𝑞, 𝑧𝑏 ) parameter space.
These plots show the typical trend that can be observed in the large
majority of tested cases: for relatively weak attacks (low number of
zealots 𝑧𝑏 ) and for relatively easy decision problems (low quality
ratio 𝑞), the swarm makes accurate decisions with low regret; for
strong attacks (high 𝑧𝑏 ) and difficult problems (high 𝑞), the swarms
make incorrect decisions with regret 𝜌 = 1−𝑞; for the intermediate
cases, there is a triangular region in the parameter space (𝑞, 𝑧𝑏 )
where the swarm is unable to make any decision and has maximum
regret 𝜌 = 1.

When considering heterogeneous swarms, i.e., 0 < 𝑘 < 1, the
curves separating these three regions of the parameter space (𝑞, 𝑧𝑏 )
gradually move according to the swarm composition 𝑘 ; this leads
to changes in the collective decision performance. Fig. 2 shows
the change of the three regions in (𝑞, 𝑧𝑏 ) for a system based on
the direct-switch, for values of 𝑘 ∈ {0.8, 0.9, 1}. For parameters in
the bottom-left and top-right corners, the swarm consistently (for
any 𝑘) makes accurate and inaccurate decisions, respectively. The
yellow region in the bottom-right corner, which denotes decision
deadlocks, becomes smaller as 𝑘 is reduced. In other words, as the
proportion of agents using the majority rule increases, the swarm
improves its decision-making performance by avoiding decision
deadlocks. However, this requires agents to process more social
information as the majority rule requires checking the opinions
of 𝐺 neighbours each timestep. We show this cost-performance
trade-off in Fig. 3.
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Figure 2: The decision outcome in the parameter space (𝑞, 𝑧𝑏 )
changes with the swarm composition. We report the results
for a system based on the direct-switch rule (with 𝐺 = 8) for
three different values of swarm composition 𝑘 ∈ {0.8, 0.9, 1}
under a wrong-addressing attack (𝑧𝑎 = 0). The black region
represents an agreement on the correct option A, the red
region represents an agreement on the inferior option B, and
the yellow region represents a decision deadlock. The three
types of lines divide the region of convergence for the differ-
ent values of 𝑘 . When the system is homogeneous (𝑘 = 1), the
boundary of the yellow region of decision deadlock extends
to the solid lines. As heterogeneity in the system increases,
the area of deadlock is reduced to the dashed (corresponding
to 𝑘 = 0.9) or dotted lines (corresponding to 𝑘 = 0.8).

Fig. 3 shows the regret 𝜌 and the cognitive cost 𝜙 for the two het-
erogeneous swarm models (Eqs. (7) and (8)) for the two considered
types of attacks. The results—presented in the cost-performance
space (𝜙, 𝜌)—indicate that, in agreement with previous results on
homogeneous models [6], majority-based algorithms (𝑘 = 0) are
more robust than the ones based on the voter rule (𝑘 = 1). However,
this robustness comes at the expense of an increased information
processing cost 𝜙 . Here, we expand previous analyses and find that
swarm heterogeneity regulates the cost-performance trade-off for
both types of attacks.

The cost-performance trade-off analysis of Fig. 3 shows that ev-
ery model can be well described by a piecewise linear function
that allows the identification of different trends in how heteroge-
neous swarms trade regret with cognitive cost. The results show
two trends in the cost-performance trade-off of the swarms using
the cross-inhibition rule and three trends when using the direct-
switch rule. We compute the separation points of the piecewise
linear function (Table 1) by testing all values of 𝑘 , fitting the two
(or three lines), and selecting the points that give the minimum
cumulative linear fitting error (estimated error variance). The linear
fitting shows that swarms composed predominantly of agents using
the voter rule (𝑘 ≳ 0.5) have a rapid improvement in performance
(lower regret 𝜌) through the inclusion in the swarm of a minority
of agents using the majority rule (red lines in Fig. 3). Instead, when
the swarm is predominantly composed of agents using the majority
rule (𝑘 ≲ 0.5), adding more majority-rule agents gives a smaller
performance improvement, while still incurring an increase in cog-
nitive cost (blue lines). The swarms using the direct-switch rule

proportion of agents using the voter rule (k)

Figure 3: Cost-performance trade-off as the relationship be-
tween the regret 𝜌 and the cognitive cost 𝜙 in making the
decision, for both models, direct-switch of Eq. (7) and cross-
inhibition of Eq. (8), and for both types of attacks, denial-
of-service (𝑧𝑎 = 0.05) and wrong-addressing (𝑧𝑎 = 0). Each
point represents the average regret (y-axis) computed across
all tested values of parameters 𝑞 and 𝑧𝑏 ; in other words, we
report the average value of the colour maps of Fig. 1B for
each 𝑘 ∈ [0, 1]. Each point’s 𝑘 value is colour-coded according
to the top bar. The insets show the parameter space (𝑞, 𝑧𝑏 )
computed for some specific 𝑘 values, which when averaged
gives the regret of the plotted point 𝑘 (the colour maps for
all tested conditions are available in the supplementary ma-
terial [1]). We can observe that the resulting lines in the cost-
performance space can be approximated well through piece-
wise linear functions (lines overlaid onto the data points, see
Table 1).

show a third part of the curve where the results show that adding
more majority-rule agents does not lead to any improvement in
regret (equal values) but only causes an increase in cognitive cost
(green lines).

The results of Fig. 3 are in agreement with previous analyses
that compared consensus algorithms based on direct-switch and
cross-inhibition, showing that in the presence of zealots, direct-
switch performs poorly due to frequent decision deadlocks and
instead inhibitory signals allow quicker decisions and symmetry-
breaking [45, 61]. Fig. 3 also shows that the situation is reversed
with majority-rule agents, where direct-switch outperforms cross-
inhibition in terms of both metrics, which is in line with previ-
ous analysis that has shown absence of decision deadlocks with
majority-rule agents [44].

Through the Bayes risk 𝛽 of Eq. (10), we compute a single met-
ric as a linear combination of the cost of decision errors (𝜌) and
the average information processing cost of each agent (𝜙). We fix
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Figure 4: The optimal swarm composition 𝑘∗ as a function of swarm heterogeneity 𝑘 (x-axis) and regret weight 𝑐2 (y-axis) for
direct-switch algorithms (left panels A,B,E,F) and cross-inhibition (right panels C,D,G,H). In the top row (A-D), we show the
Bayes risk of Eq. (10) as a colour map (see top bar), when majority rule agents process 𝐺 = 8 neighbours’ opinions. The red lines
show 𝑘∗, i.e., where the Bayes risk is minimal and thus the swarm is the most robust on average. In the bottom row (E-H), we
report the optimal swarm composition 𝑘∗ for different values of 𝐺 ∈ {4, 6, 8, 10} showing a similar trend that shifts with 𝐺 . The
first and third columns (panels A,E,C,G) correspond to denial of service (𝑧𝑎 = 0.05) and the second and fourth columns (panels
B,F,D,H) to wrong addressing (𝑧𝑎 = 0). For all cases, there is a range of regret weight 𝑐2 for which heterogeneous swarms give
the best collective performance.

direct-switch cross-inhibition
attack slope 𝑘 range slope 𝑘 range
WA −0.033

−0.0092
0

[0.5, 1]
[0.2, 0.5]
[0, 0.2]

−0.007
−0.0028

[0.65, 1]
[0, 0.65]

DoS −0.034
−0.016

0

[0.55, 1]
[0.25, 0.55]
[0, 0.25]

−0.0093
−0.0030

[0.6, 1]
[0, 0.6]

Table 1: Slope of the piecewise linear function and range of 𝑘
values of the fitted lines of Fig. 3 for wrong addressing (WA)
and denial of service (DoS). All reported fitting values are
rounded to the second significant digit.

𝑐1 = 1, meaning that the cost of processing one neighbour’s opinion
is one. Then, we increase the regret weight 𝑐2 to scale the cost of
decision errors and find which swarm composition 𝑘∗ leads to the
lowest Bayes risk 𝛽 . In terms of regret under both attacks (Fig.3),
the homogeneous swarms using the majority rule always obtained
the best performance, however they were not the only ones. When
agents use the direct-switch rule, heterogeneous swarms mostly
comprising majority rule agents can be mixed with 15% (denial of
service) to 20% (wrong addressing) of agents using the voter rule

and make decisions with the same average regret 𝜌 . The analy-
sis on 𝛽 in Figs. 4A-D allows us to combine the performance on
the decision outcome with the cost of processing one or 𝐺 neigh-
bour’s opinions per timestep. In this light, heterogeneous swarms
offer the advantage of providing comparable levels of regret with
fewer social exchanges; they are more efficient than homogeneous
swarms. For instance, considering a high regret weight 𝑐2, the Bayes
risk for direct-switch (Figs. 4A-B) shows that with the inclusion
of 15-20% (𝑘∗ = 0.15, 0.2) of agents using the voter rule, the aver-
age decision regret remains equal to homogeneous swarms with
all the agents using the majority rule (𝑘 = 0), however incurring
lower cognitive cost per agent on average. Figs. 4A-D also show
that by reducing the decision-error weight 𝑐2, the best swarm com-
position 𝑘∗ shifts towards higher values (i.e., swarms with larger
voter-rule sub-populations), for any tested type of attack and de-
cision rule. Finally, we show that when errors are relatively low,
𝑐2 ≲ 140 ∼ 20, the homogeneous swarm using only the voter rule,
𝑘 = 1, is the system with less risk. The obtained results seem to
be relatively general as we find qualitatively similar trends when
measuring the robustness to both denial-of-service attacks and to
wrong-addressing attacks, as well as for algorithms based on both
the direct-switch and the cross-inhibition rule (compare panels A
to D of Fig. 4). The only notable qualitative difference among the
models is the fact that when the agents use the cross-inhibition
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Figure 5: (A) Decision time 𝜏 computed as the amount of
time to reach the decision threshold 𝜃 = 0.7 for either op-
tion. (B) The proportion of conditions in the parameter space
(𝑞, 𝑧𝐵) where the swarm remains deadlocked at indecision
((𝐴(𝑡𝑀𝐴𝑋 ) < 𝜃 ) ∧ (𝐵(𝑡𝑀𝐴𝑋 ) < 𝜃 )), i.e., the proportion of the
yellow area of Fig. 1. In both panels, we report results for
both models, both attacks, and various values of the swarm
composition 𝑘 ∈ [0, 1].

rule, regret is minimised by homogeneous swarms only, instead,
when they use of direct-switch rule, regret is also minimised by
heterogeneous swarms; nevertheless, in both cases, when the ratio
𝑐2/𝑐1 decreases, the optimal strategy is behavioural heterogeneity.

We also investigate the impact of different implementations of
the majority rule, more precisely, how the Bayes risk space changes
for different numbers of neighbours’ opinions 𝐺 . Our analysis in
Figs. 4E-H shows that the best swarm composition 𝑘∗ also changes
with the value of 𝐺 , however qualitatively the trend is the same:
for low 𝑐2, voter-rule agents minimise the Bayes risk, and for in-
creasing 𝑐2, having more majority-rule agents is better. Figs. 4E-F,
for the direct-switch case, show that when 𝐺 increases, a smaller
proportion of agents using the majority rule (i.e., larger 𝑘) is enough
to reach the minimum Bayes risk. This means that the best swarm
composition can comprise a larger number of ‘simpler’ agents using
the voter rule.

Before concluding our analysis, we want to touch on another
aspect that is especially relevant when considering robustness: the
cost of indecision. There are parameter ranges for which, in the
long term, swarms subject to the presence of zealots are unable to
reach the decision quorum 𝜃 = 0.7. In our analysis, the size of this
parameter range negatively influences the average regret, however,
no temporal cost for indecision is included in the decision time 𝜏 ,
which only includes the time taken to reach the quorum for either
option. When we consider that swarms deadlocked in an undecided
state imply numerous social exchanges for possibly a long time and
we include a temporal cost of indecision higher than the average
decision time, swarms with many voter-rule agents are unable to
perform well in terms of Bayes risk. Whereas the average time
to make a decision increases moderately with 𝑘 (Fig. 5A), voter-
rule algorithms in the presence of zealots go more often into a
denial-of-service state (Figs. 2 and 5B). Therefore, including high
time cost for indecision penalises more heavily swarms with high

𝑘 but does not alter the results for low 𝑘 . As a result, swarms with
large proportions of voter-rule agents are optimal for a smaller
range of values of 𝑐2, however, the results remain the same for
large 𝑐2, marked with a diamond on top of Figs. 4A-D, (see also the
supplementary figures in [1]).

6 CONCLUSION
This study shows that heterogeneous robot swarms can outperform
homogeneous ones. We consider large swarms of simple robots that
use algorithms based on voter-like models of opinion dynamics to
process social information and reach a group agreement in favour
of the best option between two alternatives. More precisely, we
measure the collective robustness in making such decisions when
in the swarm there are stubborn robots (zealots) that deviate from
conformism rules, possibly leading the swarm to select the inferior
option or to a decision deadlock (which relates to the cyber-security
attacks of wrong addressing and denial of service, respectively). Our
analysis considers both the benefits of making accurate decisions
and the cost of processing social information, leading to a cost-
performance trade-off. We model the robot swarm as a multiagent
system and show that when agents run different rules, depending
on the relative weights on cost and performance, heterogeneous
swarms can outperform homogeneous ones in managing such a
trade-off. In addition to having far-reaching implications for the
design of cost-effective and robust robotic systems, our results can
help us understand how social animals share cognitive load among
individuals exploiting group heterogeneity, as the investigated prob-
lem is also relevant for several biological systems.

While this study already considers several conditions, future
work should further assess the generality of our results considering
a variety of aspects. For instance, our analysis is limited to mean-
field analysis with given starting conditions and future work should
test whether the results hold in stochastic finite-sized multiagent
simulation and for different starting conditions. Further analysis
should also investigate how the results are affected when consider-
ing more than two options, as previous work has shown that there
can be qualitative changes in the group opinion dynamics in best-of-
𝑛 problems with 𝑛 > 2 [43]. Another relevant aspect of distributed
systems is the impact of the network topology on the group dy-
namics. In our study, we analysed well-mixed models only—which
previous work showed can well describe the dynamics of large-scale
robotic systems operating in certain scenarios [56, 58]—however,
future research should also extend previous studies showing the
impact of different network topologies on the group opinion dynam-
ics (e.g., [44, 51]) by considering heterogeneous decision-makers.
Finally, we believe that further advantages in using heterogeneous
swarms can be highlighted when considering dynamic environ-
ments [37, 46], where behavioural heterogeneity may enhance the
ability of the group to adapt to changes.
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