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Abstract—An important goal of collective robotics is the design
of control systems that allow groups of robots to accomplish
common tasks by coordinating without a centralized control. In
this paper, we study how a group of physically assembled robots
can display coherent behavior on the basis of a simple neural
controller that has access only to local sensory information. This
controller is synthesized through artificial evolution in a simu-
lated environment in order to let the robots display coordinated-
motion behaviors. The evolved controller proves to be robust
enough to allow a smooth transfer from simulated to real robots.
Additionally, it generalizes to new experimental conditions, such
as different sizes/shapes of the group and/or different connection
mechanisms. In all these conditions the performance of the neural
controller in real robots is comparable to the one obtained in
simulation.

Index Terms—Distributed control, evolutionary algorithms, in-
telligent mobile robots, neural networks, swarm intelligence,
swarm robotics.

I. INTRODUCTION

SWARM ROBOTICS is an emergent field of collective
robotics [1], [2] that studies systems composed of swarms

of robots tightly interacting and cooperating to achieve common
goals [3]. In a swarm robotic system, although each single robot
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is fully autonomous, the swarm as a whole can solve prob-
lems that a single robot cannot cope with because of physical
constraints or limited behavioral capabilities. Swarm robotics
emphasizes aspects such as decentralization of control, local
and simple communication among robots, emergence of global
behavior, and robustness [4]–[11]. Moreover, swarm robotics
aims at exploiting self-organizing principles similar to those
observed in social insects [12]–[14].

This paper focuses on a particular swarm robotic system
(referred to as “swarm-bot”) that is composed of a number of
individual robots (referred to as “s-bots”) that are assembled to
each other through physical links [15], [16]. Each s-bot is pro-
vided with different types of sensors, motors, and connecting
apparatuses that allow groups of s-bots to self-assemble and dis-
assemble. A swarm-bot consisting of several connected s-bots
should move as a whole and reconfigure its shape when needed.
For example, it might have to change its shape in order to go
through a narrow passage or overcome an obstacle [17]. Thus,
swarm-bots combine the power of swarm intelligence, as they
are based on the emergent collective intelligence of groups of
robots, and the flexibility of self-reconfiguration as they might
dynamically change their structure to match environmental
variability.

There are different approaches that can be used to control
such an artifact. In this paper, we aim at obtaining a completely
decentralized system. Therefore, the behavior of the swarm-bot
should not be defined by a central controller that establishes the
actions to be performed by every single s-bot, nor should the
s-bots act following a global template. The global behavior of
the swarm-bot should rather be the result of a self-organizing
process, that is, to emerge from the numerous interactions
that take place among the s-bots and between the s-bots and
the environment. Systems that feature self-organization are
also characterized by other interesting properties, such as ro-
bustness, flexibility, and scalability [14]. Therefore, designing
robotic systems that exploit self-organizing principles is highly
desirable.

In this paper, we focus on a particular problem for the swarm-
bot: coordinated motion. The s-bots are physically connected in
a swarm-bot and have to coordinate their individual actions in
order to move coherently. Coordinated motion is well studied
in biology as it is present in many different animal species.
Examples of this behavior can be seen in flocks of birds
flying in a coordinated fashion or in schools of fish swimming
in perfect unison. These examples are not only fascinating
for the charming patterns they create, but they also represent
interesting instances of self-organizing behaviors. In Section V,
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we review some important research work related to coordinated
motion.

This paper shows how a coordinated motion of real physi-
cally linked robots can be achieved on the basis of simple and
robust controllers that have access only to the local sensory
information (similar results, obtained with simulated robots, are
presented in [17] and [18]). Note that this paper focuses
on the coordinated motion of swarm-bots in which s-bots
are assembled since the beginning of the tests, while the
complementary study on self-assembling has been reported
elsewhere (see, for example, [19] and [20]). Swarm-bots’ co-
ordinated motion controllers are neural networks synthesized
through artificial evolution [21]. This methodology proved to
be very effective for the development of collective behaviors,
but rarely were the obtained controllers tested on real robots
(a noticeable exception is given in [11]). The main contribution
of this paper consists in the demonstration that controllers
evolved in simulation to coordinate physically assembled ro-
bots continue to exhibit high performance when downloaded
and tested on real robots. The reason of such a successful
transfer is mainly due to the properties of the evolved con-
trollers, which were shaped by evolution in order to exploit the
dynamical features of the system. This resulted in a simple and
clever behavioral strategy at the individual level and in a robust
self-organizing system at the collective level. To the best of our
knowledge, this is the first work to date in which up to eight
real physically assembled robots display coordinated behaviors
clearly based on self-organizing principles (see Section V).

This paper is organized as follows. Section II presents the
experimental setup, while Section III analyzes the functioning
of the evolved controller. Section IV shows that the controller
evolved in simulation produces a robust behavior when used
to control real robots. Moreover, this section describes how
the evolved neural controller generalizes its ability to produce
coordinated motion in conditions that were never experienced
during the evolutionary phase. In particular, this section shows
that the controller evolved in simulation produces a robust
behavior when used to control real robots. Finally, Section V
reviews some literature related to this paper, and Section VI
draws conclusions.

II. EXPERIMENTAL SETUP

This section describes the simulated and real s-bots’ proper-
ties, the task, and the evolutionary method used to evolve the
neural controller.

A. Robots and the Simulator

The s-bots used in this paper (shown in Fig. 1) have been
developed within the “SWARM-BOTS” project [15], [16].1

Each s-bot is composed of a turret and a chassis. The turret is
a cylindrical body, with a diameter of 11.6 cm, equipped with a
rigid gripper that allows the s-bot to connect to the perimeter
of other s-bots. The chassis is a mobile base provided with
two motors, each controlling a track and a teethed wheel. The

1For more information, see also the project website at http://www.
swarm-bots.org.

Fig. 1. S-bot. The bottom part (the chassis) includes the tracks and the teethed
wheels and the four proximity sensors oriented toward the ground. The top
part (the turret) includes the rigid gripper, one omnidirectional camera, four
microphones, two speakers, 16 infrared proximity sensors, and a three-axis
accelerometer. The traction sensor is placed between the turret and the chassis.
The turret and the chassis can actively rotate with respect to each other. A
flexible arm endowed with a gripper is also part of the s-bot, but it was neither
used nor mounted on the s-bots used for the experiments presented in this paper
(see [16] for more details).

turret and the chassis can actively rotate with respect to each
other through an independent motor. Relative rotation is limited
to ±180◦ due to power and control cables connecting the two
parts.

S-bots are provided with several sensors, such as infrared
proximity sensors, microphones, an omnidirectional camera,
and many others (for more details, see [16]). However, in this
paper, we used only the traction sensor, a sensor that detects
the direction and the intensity of the pulling force that the turret
exerts on the chassis. The sensor is composed of two portions:
one connected to the turret and the other one to the chassis
(see Fig. 2). The two parts can translate with respect to each
other along two orthogonal horizontal axes and consequently
can deform four thin iron plates that connect them. This de-
formation, which is proportional to the intensity of the traction
force, is measured along the two axes by eight strain gauges
placed on the plates. The two values so obtained are the x and
y components of the traction force, which are measured with
respect to a reference-frame integral with the chassis. The two
orthogonal components are used to compute the intensity and
direction of the traction force.2

It should be noted that in swarm-bots formed by two or more
assembled s-bots, the body of each s-bot physically integrates
the forces resulting from the traction and thrust that other
s-bots exert on it. The traction sensor, by detecting the resultant
of these forces, provides compact information on the mismatch
between the s-bot’s movement and the movement of the rest of
the group. The perceived traction thus constitutes an implicit
form of communication (cf. [14]) that, as we will see in
Section III, can be exploited by s-bots to produce coordinated
movements.

A simulator based on a 3-D rigid body dynamics simulation
engine was developed to synthesize the robot controller through

2In this paper, the direction of the traction has been encoded from 0◦ to
360◦, where 0◦ and 180◦ correspond to the backward and forward directions
of motion of the chassis, respectively, while 90◦ and 270◦ correspond to the
traction coming from the left- and right-hand side of the chassis, respectively.
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Fig. 2. Structure of the traction sensor (see text for details).

an evolutionary technique (see Section II-C). In fact, embed-
ding the evolutionary process in the real robots would have
been extremely time demanding: one evolutionary run would
have taken about eight days if carried out with the real robots.
Moreover, even running part of the evolution directly on the real
robots (e.g., to “refine” the controller in real robots, cf. [22])
was not viable given the prototype stage of development of
the robots. Also, many other factors, such as power issues
and reinitialization difficulties, made evolution with real robots
impractical in our particular case.

The simulator of the s-bots was based on a very simplified
model in order to increase the speed of the simulations. This
model preserves only the features of the real s-bots that were
considered important for the experiments to be performed. The
simulated s-bot consists of a cylindrical turret connected to
a chassis by a motorized hinge joint. In the basic simulation
model used for the evolution of the coordinated-motion be-
havior, the two bodies can rotate without limits. However, a
second version of the model simulates the limit for which
the turret can only rotate ±180◦ with respect to the chassis,
as in the real s-bot. The latter model was used for comparing
the results obtained in simulation with those obtained with
the real s-bots (see Section IV). The chassis is modeled as a
parallelepiped to which four spherical wheels are connected.
The lateral wheels are connected to the chassis by motorized
joints. Friction is modeled on the basis of the Coulomb friction
model (the friction coefficient was set to 0.6). This setup implies
that the s-bot’s wheels slip if motion is blocked by obstacles
or by other connected s-bots. The front and back wheels are
passive and can rotate in any direction. The gripper is not
present in the model, and connections between two s-bots are
simulated by creating a rigid joint between the two bodies.

The traction sensor is simulated measuring the horizontal
components of the force acting on the hinge joint that connects
the turret to the chassis. This force is computed at each cycle
by the dynamic simulation engine and is therefore always avail-
able. The maximum force that the sensor can perceive was mea-
sured on the real s-bots and accordingly set in the simulation.
Noise is added to the two horizontal components of the traction
force by adding a value randomly selected with a uniform
distribution within the range [−5%,+5%]. Note that, due to
the high number of variables that influence the perception of

Fig. 3. (a) Four real s-bots forming a linear swarm-bot. (b) Four simulated
s-bots forming the same linear structure. The cylinders represent the turret,
while the chassis is shaped as a parallelepiped. The arrow on the cylinders
indicates the orientation of the turret. The wheels are displayed as cylinders
(motorized wheels) and spheres (passive wheels, which have different colors,
dark and light gray, to allow distinguishing, respectively, the two chassis’
fronts). The black segment between the turrets of the two robots represents a
physical link between them (gripper). The white line above each robot’s turret,
which goes from the turret’s center toward its perimeter, indicates the direction
of the traction force and, with its length, its intensity.

traction (i.e., number of robots involved, friction parameters,
hysteresis, and interrobot variability), a precise characterization
of the traction sensor was not feasible. Moreover, it would
have been extremely difficult to use samples taken from the
real s-bots in order to resort to a sampling technique [23]:
the aforementioned procedure was the only viable option for
simulating the traction sensor. For more details on the simulator
and for a description of more detailed simulation models not
used in the experiments reported in this paper, see [16].

B. Task

A swarm-bot can efficiently move only if the chassis of the
assembled s-bots have the same orientation. As a consequence,
the s-bots should be capable of negotiating a common direction
of movement and then compensating possible misalignments
that originate during motion.

The experiments presented in this paper study a group of
s-bots that remain always connected in a swarm-bot formation
(see Fig. 3). At the beginning of a trial, the s-bots have their
chassis oriented in random directions. Their goal is to choose a
common direction of motion on the basis of only the informa-
tion provided by the traction sensor and then to move as far as
possible from the starting position along such direction. Notice
that this task is more difficult than it might appear at first sight.
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Fig. 4. Weights of the controller synthesized in the 30th run of the simulation.
The sensory neurons associated with the left, front, right, and back traction-
sensor readings are labeled as “l,” “f ,” “r,” and “b,” respectively. “B” indicates
the bias neuron, while ml and mr indicate, respectively, the left and right motor
neuron.

First, the group is not driven by a centralized controller (i.e., the
control is distributed) nor the s-bots can directly communicate
or coordinate on the basis of synchronizing signals. Moreover,
the s-bots cannot use any type of landmark in the environment,
such as light sources, or exploit predefined hierarchies between
them to coordinate (i.e., there are no “leader robots” that decide
and communicate to the other robots the direction of motion of
the whole group). Finally, the s-bots do not have a predefined
trajectory to follow, nor do they have information about their
relative positions or about the structure of the swarm-bot in
which they are assembled. As a consequence, the common
direction of motion of the group should emerge as the result of
a self-organizing process based on local interactions perceived
by the robots through the traction sensors. The problem of de-
signing a controller capable of producing such a self-organized
coordination was tackled using neural networks synthesized
by artificial evolution, as illustrated in detail in the following
section.

C. Neural Controllers and the Evolutionary Algorithm

In the experiments reported here, artificial evolution is used
to synthesize the connection weights of simple neural con-
trollers with fixed architecture (see Fig. 4). The controller of
each s-bot consists of a neural network with four sensory
neurons (plus a bias unit) directly connected to two motor
neurons. The sensory neurons are simple relay units while the
output neurons are sigmoid units whose activation is computed
as follows:

yj = σ

(∑
i

wjixi

)
σ(z) =

1
1 + e−z

(1)

where xi is the activation of the ith input unit, including the
bias, yj is the activation of the jth output unit, wji is the weight
of the connection between the input neuron i and the output
neuron j, and σ(z) is the sigmoid function.

The sensory neurons encode the intensity of traction along
the four directions corresponding to the direction of the semi-
axes of the chassis’ reference frame (i.e., front f , back b, left l,
and right r, see also Fig. 4). In particular, the sensory neurons
are activated as follows:

r = Fx l = 0, iff Fx ≥ 0
r = 0 l = −Fx, iff Fx < 0
f = Fy b = 0, iff Fy ≥ 0
f = 0 b = −Fy, iff Fy < 0

(2)

where Fx and Fy are the x and y components of the traction
force. The bias neuron is clamped to one. The activation state of
the two motor neurons is scaled onto the range [−ωM ,+ωM ],
where ωM is the maximum angular speed of the wheels (ωM ≈
3.375 rad/s in simulated s-bots and ωM ≈ 3.5 rad/s in the real
s-bots: these settings allowed obtaining the same speed for sim-
ulated and real robots). The desired speed of the turret–chassis
motor is set equal to the difference between the desired speed of
the left and right wheels times a constant k = rw/dw, where rw

is the radius of the wheels, and dw is the distance between the
two wheels. This setting produces a movement of the turret with
respect to the chassis that counterbalances the rotation produced
by the wheels’ motion. In this way, the turret–chassis motor
actively contributes to the rotation of the chassis by anchoring
on the connected robots, especially in those situations in which
one or both wheels partially or totally lose contact with the
ground.

The s-bots are connected in a linear formation as shown in
Fig. 3(b). The evolutionary algorithm is based on a popula-
tion of 100 genotypes, which are randomly generated. This
population of genotypes encodes the connection weights of
100 neural controllers. Each connection weight is represented
with a ten-bit binary code mapped onto a real number in a
range [−10,+10]. For each genotype, four identical copies
of the resulting neural-network controllers are used: one for
each s-bot (this implies that the s-bots forming the swarm-bot
have homogenous controllers). The “fitness” of the genotype
is computed as the average performance of the swarm-bot
over five different trials. Each trial lasts T = 150 cycles, each
corresponding to 100 ms of real time for a total of 15 simulated
seconds. At the beginning of each trial, a random orientation of
the chassis is assigned to each s-bot. The ability of a swarm-bot
to display a coordinated motion is evaluated by computing the
average over five trials of the distance D covered by the group.
In particular, in each trial tr, the distance covered by the group
is obtained by measuring the Euclidean distance between the
position of the center of mass of the swarm-bot at the beginning
and at the end of the test

D =
1
5

5∑
tr=1

‖ctr(T ) − ctr(0)‖
DM (T )

(3)

where ctr(t) is the vector of coordinates of the group’s center of
mass at time t, and DM (t) is the maximum distance that can be
covered by an s-bot in t simulation cycles. Notice that this way
of computing the “fitness” of the group is sufficient to obtain
a coordinated-motion behavior. In fact, it rewards swarm-bots
that maximize the covered distance and, therefore, their motion
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speed. As a consequence, the s-bots should minimize the time
required to align their chassis, move at maximum speed once
coordinated, and reduce instabilities and noise disturbances that
might impair the motion of the group while moving. This fitness
measure promotes controllers that result in efficient coordi-
nation, as confirmed by the analysis of the evolved behavior
performed in Section III.

Once the fitness of every genotype of the population has been
computed, the 20 best individuals are selected for reproduction.
Each genotype is reproduced five times, applying a mutation
with 3% probability of replacing a bit with a new randomly
generated value (crossover was not used due to the simplicity
of the controller). The evolutionary process, which is a run
in simulation, lasts 100 generations and is replicated 30 times
starting with different initial randomly generated genotypes.

III. RESULTS

All the 30 evolutionary runs successfully synthesized con-
trollers that produced coordinated motion in the linear swarm-
bot. The obtained results are described in detail in Section III-A.
Section III-B describes how the problem related to the ro-
tational limit of the turret/chassis degree of freedom was
solved. The solution to this problem was important in testing
the evolved controllers on the real robots, as described in
Section IV.

A. Results in Simulation

The controllers evolved in simulation allow the s-bots to
coordinate by negotiating a common direction of movement and
to keep moving along such direction by compensating small
misalignments arising during the movement (see Fig. 5). Direct
observation of the evolved behavioral strategies shows that at
the beginning of each trial, the s-bots try to pull or push the
rest of the group in the direction of motion that they initially
have. This disordered motion results in traction forces that are
exploited for coordination as the s-bots tend to orient their
chassis in the direction of the perceived traction, which roughly
corresponds to the “average” direction of motion of the group.
This allows the s-bots to rapidly converge toward a common
direction and to maintain it.

All the 30 controllers evolved in the different replications
of the evolutionary process present similar dynamics: In all
trials, the s-bots converge to a common direction of motion in
a very fast and effective way. As shown in Fig. 5, this common
direction of motion varies across trials. In fact, the direction of
motion of the group is not a priori defined but rather emerges
as a result of the coordination phase and depends on the initial
random orientations of the s-bots’ chassis.

By testing the best neural controller of the last generation of
each evolutionary run for 100 trials, it was observed that the
performance varies in the range [0.81, 0.91], which is not far
from the theoretical maximum (corresponding to 1.0) that can
be achieved only by a single s-bot moving at full speed in a
fixed direction. Notice that the maximum performance cannot
be reached in practice by a swarm-bot, since assembled s-bots
can move at maximum speed only once they have achieved

Fig. 5. Absolute orientation of the chassis of four s-bots forming a linear
structure in two trials lasting 150 cycles each (thick and thin lines, respectively).
At the beginning of each trial, the s-bots start moving with randomly assigned
orientations, as can be seen by the different starting points of the curves. As time
elapses, the robots achieve coordination and converge to the same direction
of motion, as shown by the curves’ overlap at the end of the graph. Notice
how the final emergent direction of motion of the swarm-bot is different in the
two trials.

coordination. In the rest of this paper, the controller synthesized
by the 30th evolutionary run is used because it resulted to have
the best performance. Fig. 4 shows both the architecture of
this controller and the weights of each connection between the
input and the output neurons, as generated by the evolutionary
process.

In order to understand the functioning of the controller at
the individual level, the activation of the motor units of an s-bot
was measured in correspondence to a traction force whose angle
and intensity were systematically varied. The results reported in
Fig. 6 indicate the following.

1) Whenever the traction intensity is low or when the
traction comes from the front (i.e. around 180◦), the
s-bot moves forward at maximum speed (see the portions
of Fig. 6 indicated by number 1). These conditions take
place, respectively, when the s-bot’s chassis is oriented
toward the same direction in which the other s-bots are
pulling/pushing it or when all s-bots’ chassis are aligned.

2) When traction comes from the left- or the right-hand
side (i.e., around 90◦ or 270◦, respectively), the s-bot
turns toward the direction of traction (see the portions
of Fig. 6 indicated by number 2). This condition takes
place when there is a significant mismatch between the
motion’s direction of the s-bot and the average direction
of motion of the group.

3) When traction comes from the rear (i.e., around 0◦), the
s-bot moves forward at maximum speed independently of
the traction intensity (see the portions of Fig. 6 indicated
by number 3). Notice that this is an unstable condition:
As soon as the angle of traction differs from 0◦, for ex-
ample due to noise, the s-bot rotates its chassis following
the rules specified in point 2. This type of condition is
normally caused by the movement of the s-bot itself,
whenever the resultant of the forces produced by the other
s-bots in the group tends to be null.

In other words, at the individual level, each s-bot exhibits two
tendencies. One consists in following the rest of the group (e.g.,
when the perceived traction comes from the left- or right-hand
side) and the other consists in persevering in moving straight
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Fig. 6. Motor commands issued by (a) the left and (b) right motor units
mapped onto a [−1, 1] interval (−1 and +1 correspond to the maximum
backward and forward speeds, respectively) of one of the best evolved neural
controllers in correspondence to the traction forces having different directions
and intensities (see text for the explanation of the numbers in round brackets).

(e.g., when the perceived traction comes from the rear or from
the front, or has a low intensity). The effects of the individual
behavior at the group level can be described as follows. At the
beginning of each test, all s-bots perceive traction forces with
low intensity, and so they move forward at maximum speed
(according to point 1). The different traction forces generated
by these movements are physically summed up by the turret of
each robot. This causes a unique force to emerge at the group
level, which has a direction that characterizes the movement
of the whole group. The s-bots that have small misalignments
with respect to the average group’s motion direction perceive
traction forces from the rear, and so they tend to persevere in
their motion (according to point 3). In so doing—and this has a
very important role for coordination—they continue to generate
a traction signal in the same direction, which is perceived by
the rest of the group. In contrast, the s-bots that have large
misalignments with respect to the average group’s direction
of motion perceive traction from the left- or right-hand side,

and so they tend to turn so as to follow the rest of the group
(according to point 2). Overall, these behaviors quickly lead the
whole group of s-bots to converge toward the same direction of
motion (see [24] for a more detailed quantitative analysis of the
self-organizing principles at work in these processes).

As will be shown in the rest of this paper, this simple
behavioral strategy is very effective and robust. In some cases,
however, the same strategy does not lead the s-bots to converge
toward a common direction of motion but rather to a rotational
dynamic equilibrium in which all s-bots move around the center
of mass of the swarm-bot. This rotational equilibrium is stable
since, while turning in circle, the s-bots perceive a traction force
toward the group’s center that keeps them moving by slightly
turning toward it. This rotational equilibrium is never observed
in the experimental conditions used to evolve the controller,
involving four simulated s-bots forming a linear structure, but
only in the generalization tests performed with the real robots
in different situations (see Section IV).

B. Coping With the Limits of the Turret–Chassis
Degree of Freedom

As previously mentioned, the chassis of the s-bots can rotate
only 180◦ clockwise or counterclockwise with respect to the
turret, due to the cables connecting the two parts. This implies
that in order to coordinate with the other s-bots, an individual
s-bot cannot simply turn its chassis toward the direction of
traction. In fact, if the rotational limit is located between the
current orientation of the s-bot’s chassis and the direction of
traction, the s-bot should turn in the opposite direction (up
to 360◦) in order to reach the desired orientation.

Rather than introducing the limit in the simulation model and
asking evolution to solve the problem, we designed a solution
that consists in inverting the front of motion when the limit
on the turret–chassis degree of freedom is reached (this solu-
tion was proposed for the first time, and tested in simulation,
in [17]). This solution exploits the fact that s-bots have two
equivalent fronts of motion. In fact, the chassis is symmetric
with respect to the wheel’s axis; the motorized wheels can turn
in both directions; and the sensors are homogeneously distrib-
uted. As a consequence, the same behavior described in the pre-
vious section continues to work properly when the two fronts
of motion are “swapped.” Specifically, the direction of motion
of the s-bot can be easily inverted (forward with backward
and vice versa), provided that the encoding of the sensor
and motor neurons is properly modified. More in particular, a
front inversion can be implemented as follows: 1) The motor
commands are swapped (left with right and right with left),
and their signs are inverted and 2) the encoding of the sensory
neurons that determines which are the front and rear input units
and which are the left and right input units, is rotated 180◦ along
the perimeter of the robot.

The solution to the rotational limit consists in triggering a
front inversion each time the turret exceeds the rotational limit
both while turning clockwise or counterclockwise. The effect of
the front inversion at the level of the single robot is illustrated
in Fig. 7. In the example shown in the figure, the robot is
initially moving by using the first front. Since it perceives
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Fig. 7. Schematic representation of the effect of the front inversion from the
point of view of a single robot. The bold arrow indicates the direction of the
traction perceived by the s-bot. The gray caster wheel cannot pass the rotational
limit. The arrows “1” and “2” indicate the direction in which the chassis turns
before and after the front inversion, respectively. In this case, the inversion was
from the first to the second front (see text).

Fig. 8. Absolute orientations of the chassis of four s-bots (y axis) during a
trial lasting 150 cycles (x axis). The arrows indicate the cycles in which two
s-bots reach the rotational limit and invert their front of motion. During the last
phase, the two s-bots that never changed their front still move by using their
first front, while the other two s-bots use the second front.

the traction from its left-hand side, the robot starts turning its
chassis counterclockwise (along the direction indicated by the
arrow “1” in the figure). While turning, the chassis reaches
the rotational limit, and the front inversion is triggered. At
this point, the controller perceives the traction from the right-
hand side, and therefore, the chassis starts turning clockwise
(along the direction indicated by the arrow “2” in the figure).
Consequently, the robot can successfully align its current front
(the second front in this case) to the direction of traction without
exceeding the rotational limit.

The effect of the front inversion at the level of the swarm-
bot is shown in Fig. 8, which indicates the absolute orientation
(with respect to the first front) of the chassis of the four
s-bots forming a linear structure provided with the rota-
tional limit and the front-inversion mechanism. Initially, the
s-bots, all having random orientations, use the first front.
Between cycles 50 and 100, two s-bots reach the rotational limit
and invert their front. Finally, from about cycle 100 onward, the
four s-bots converge to the same direction of movement. Notice
how two robots, after converging, use the first front and have
an absolute orientation of the chassis of about 120◦, while two
robots use the second front and have an orientation of about

−60◦. The result is that all s-bots move in the same absolute
direction in the last phase of the trial.

The front-inversion mechanism actually solves the problem
introduced by the rotational limit, but it could also affect the
performance of the swarm-bot in the coordinated-motion task.
We measured the effects of this solution measuring the average
distance covered by a swarm-bot over 20 trials lasting 25 s
each. We noticed only a slight decrease with respect to the
baseline performance, that is 8% of the covered distance (see
Fig. 10). This indicates that the front-inversion mechanism is
a viable solution to cope with the rotational limit. This is an
important result in view of testing the evolved controllers with
real robots because in this condition the constraint imposed by
the rotational limit cannot be neglected.

IV. TESTING WITH REAL ROBOTS

The introduction of the front-inversion mechanism provides
the controller evolved in simulation with all the required char-
acteristics to be directly transferred to the real s-bots. We
therefore tested the functionality of the evolved behavior in
reality comparing the obtained performance with the results of
the simulations.

In all the tests performed in this section, s-bots are provided
with the rotational limit of the turret–chassis motor and with the
front-inversion mechanism. The s-bots always start connected
to each other with randomly assigned chassis’ orientations.
Each experimental condition is tested for 20 trials, each lasting
25 s (250 cycles).

We initially tested the functionality of the evolved neural
controller in the experimental conditions identical to those used
during evolution (see Section IV-A). Afterward, we studied
the ability of the controller to generalize to different situations
that were never met during the evolutionary process: rough
terrain and varying size and shapes of the swarm-bots. Then,
we tested the coordination capabilities of the controller when
using semirigid connections between s-bots (implemented by
a slightly loose gripping) or indirect connections between them
(that is, robots attached to an object to be transported). The good
performance recorded in all these new conditions suggests that
the evolved controller is very robust and flexible.

A. Testing the Controller Evolved in Simulation
on Real S-Bots

We tested the best controller evolved in simulation using four
real s-bots forming a linear structure. The results show that
the controller allows the real s-bots to coordinate without the
need of any adjustment and despite significant differences from
the simplified simulation model previously described. Indeed,
as shown in Fig. 9, the simulated and real s-bots display a
qualitatively similar behavior.

Quantitatively, on average, the performance of the best con-
troller evolved in simulation decreases 23% when tested with
the real s-bots (see the second and third histogram bars of
Fig. 10 and the first two columns of Table I). The data shown
in Table I also indicate that the swarm-bot never fell into
the rotational equilibrium, either in tests with simulations nor
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Fig. 9. Trajectory of (a) four simulated and (b) four real s-bots forming a
linear swarm-bot in a coordinated-motion test lasting 15 s. The gray circles
indicate the final position of the s-bots. In the case of real s-bots, trajectories
have been automatically extracted from a video obtained by recording the
behavior of the real s-bots from a camera mounted on the ceiling.

Fig. 10. Performance of the best evolved controller in simulation and reality
(average and standard error of the distance covered in 20 trials, each lasting
25 s). Light and dark gray bars represent the tests carried out with the simulated
and real s-bots, respectively. Labels indicate the experimental conditions. “Line
4” indicates tests involving four s-bots forming a linear structure; “rigid links”
indicate rigid connections between s-bots; “no limit” indicates tests performed
without the introduction of the rotational limit and of the front-inversion
mechanism; “brown terrain” and “white terrain” indicate two different rough
terrain conditions (see text).

TABLE I
PERFORMANCE OF THE BEST EVOLVED CONTROLLER TESTED IN

SIMULATION AND REALITY. TESTS INVOLVE FOUR S-BOTS

FORMING A LINEAR STRUCTURE. THE FIRST TWO COLUMNS

INDICATE THE PERFORMANCE ON FLAT TERRAIN IN THE CASE

OF SIMULATED AND REAL S-BOTS, RESPECTIVELY. THE LAST

TWO COLUMNS INDICATE THE PERFORMANCE OF REAL S-BOTS ON

BROWN AND WHITE ROUGH TERRAIN, RESPECTIVELY (SEE TEXT).
THE SIX ROWS INDICATE IN ORDER: THE AVERAGE PERFORMANCE

OVER 20 TRIALS, THE STANDARD DEVIATION, THE STANDARD

ERROR, THE RATIO OF THE PERFORMANCE WITH RESPECT TO

THE THEORETICAL MAXIMUM, THE RATIO OF THE PERFORMANCE

WITH RESPECT TO THE CORRESPONDING SIMULATED TEST, AND

THE NUMBER OF TRIALS (OUT OF 20) IN WHICH THE SWARM-BOTS

DID NOT MANAGE TO PERFECTLY COORDINATE

in those with real robots. The lower performance of the real
swarm-bot with respect to the simulated swarm-bot is due to
the longer time required by the real s-bots to coordinate. This is
caused by many factors, among which the fact that tracks and
teethed wheels of the real s-bots sometimes get stuck during the
initial coordination phase, which is due to a slight bending of
the structure that caused an excessive thrust on the tracks. This
leads to a suboptimal motion of the s-bots, for example, while
turning on the spot. However, coordination is always achieved,
and the s-bots always move away from the initial position.
This result proves that the controller evolved in simulation
can effectively produce coordinated motion when tested in real
s-bots, notwithstanding the fact that the whole process takes
some more time with respect to simulation.

B. Testing the Controller on Rough Terrain

The evolved controller is also able to produce coordinated
movements on rough terrain. Fig. 10 and Table I show the
performance obtained by the real s-bots placed on two types of
terrain. The brown rough terrain is a very regular surface made
of brown plastic isolation foils. This terrain remains mostly
flat, but it is impossible to access for most standard wheeled
robots. Only robots with tracks like the s-bot can move on it.
The plastic is composed of a grid of cones, which are spaced
2.1 cm apart. Each cone is 1.2 cm large and 0.7 cm high [see
Fig. 11(a)]. The white rough terrain is an irregular surface made
of stonelike plaster bricks. The bricks measure 13 × 28 cm, and
their heights range from 0.9 to 2.1 cm [see Fig. 11(b)].

With the exception of a few cases in which coordination
is only partially achieved, the performance of the swarm-bot
on the rough terrains is comparable with what is achieved on
the flat terrain. However, in these experimental conditions, we
observed a decrease of the performance, which is mainly due
to a more difficult gripping of the tracks and teethed wheels
on the irregular surface. In fact, the roughness leads to very
noisy signals perceived by the traction sensors. As a conse-
quence, the swarm-bots in some cases do not reach a complete
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Fig. 11. Two types of rough terrain used to test the robustness of the controller.
(a) Very regular rough terrain made of brown plastic isolation foils. (b) Irregular
rough terrain made of white plaster bricks that look like rough stones.

coordination since the s-bots have similar but different orienta-
tions. In these situations, the swarm-bots move in large circles,
sometimes returning to the initial position, therefore scoring a
low performance.

C. Testing With Swarm-Bots Consisting of a Larger
Number of Assembled S-Bots

The best evolved controller was tested with the linear
swarm-bots composed of six s-bots. The results showed that
larger swarm-bots preserve their ability to produce coordinated
movements both in simulation and in reality. As shown in
Fig. 12 and Table II, the performance in the new experimental
condition is only 10% and 8% lower than the one measured
with the swarm-bots formed by four s-bots, respectively, in
tests with the simulated and real s-bots. The performance of the
experiments performed with the six real s-bots is 21% lower
than the corresponding simulated experiments in line with
the results presented in Section IV-A. Moreover, in all cases,
swarm-bots never fall into the rotational equilibrium. This test
suggests that the evolved controller produces a behavior that
scales very well with the number of individuals forming the
group both in simulated and real robots.

Fig. 12. Performance of the best evolved controller in simulated and real
swarm-bots formed by a different number of s-bots (average and standard error
of the distance covered in 20 trials, each lasting 25 s) (see the caption of Fig. 10
for an explanation of the figure). Additionally, “line 6” indicates tests involving
six s-bots forming a linear structure.

TABLE II
PERFORMANCE OF THE BEST EVOLVED CONTROLLER TESTED

IN SIMULATION AND REALITY. COMPARISON BETWEEN LINEAR

STRUCTURES INVOLVING FOUR AND SIX S-BOTS, RESPECTIVELY

(SEE CAPTION OF TABLE I FOR MORE DETAILS)

D. Testing With Swarm-Bots Having Different Shapes

The best controller evolved in simulation was tested varying
the shape and the size of the swarm-bot. In particular, we tested
the swarm-bots composed of four s-bots forming a square struc-
ture and swarm-bots composed of eight s-bots forming a “star”
shape (see Fig. 13). The results show that the controller displays
an ability to produce coordinated movements independently of
the swarm-bot’s shape, although the tests that use real s-bots
show a higher drop in performance. As shown in Fig. 14, in
simulation the performance of square and “star” swarm-bots is
not very different from the performance of the linear swarm-
bot composed of four s-bots. Comparing the data reported in
Tables I and III, the performance of the simulated swarm-
bots in square and “star” formations is, respectively, 13% and
17% lower than for a linear swarm-bot. The corresponding
experiments performed with the real swarm-bots present a
performance drop of 18% and 35% with respect to the real
swarm-bots having a linear structure. These higher decrements
of performance of the real robots are due to a higher chance
of falling in the rotational equilibrium (up to seven times in
the case of the “star” formation) and, to a minor extent, to an
increased difficulty in converging toward a common direction
of motion and in maintaining it (see also Section IV-G). With
respect to the rotational equilibrium, we observed that the
chance of falling in it is higher in swarm-bots having shapes that
tend to be central symmetrical. Additionally, increasing the size
of the swarm-bots leads to a slower coordination. This not only
lowers the performance, but also likely increments the prob-
ability that the group falls in the rotational equilibrium. As a
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Fig. 13. (a) Swarm-bot composed of four s-bots forming a square shape.
(b) Swarm-bot composed of eight s-bots forming a “star” shape.

Fig. 14. Performance of the best evolved controller in simulation and reality
(average and standard error of the distance covered in 20 trials, each lasting
25 s) (see the caption of Fig. 10 for a detailed explanation of the figure).
Additionally, “square 4” indicates tests involving four s-bots forming a square
shape; “star 8” indicates tests involving eight s-bots forming a “star” shape.

consequence, the performance of the square and “star” forma-
tions in reality is 27% and 40% lower than the corresponding
simulated ones (see Table III).

E. Testing With Swarm-Bots Assembled Through
Semirigid Links

The experiments presented in this section are conceived to
test the generalization capability with respect to different types
of links between s-bots. The neural controllers have been
evolved with a linear swarm-bot composed of four s-bots
connected through rigid links. Here, we test the same controller

TABLE III
PERFORMANCE OF THE BEST EVOLVED CONTROLLER TESTED IN

SIMULATION AND REALITY. COMPARISON BETWEEN A SQUARE

SWARM-BOT INVOLVING FOUR S-BOTS AND A “STAR”
SWARM-BOT INVOLVING EIGHT S-BOTS (SEE

CAPTION OF TABLE I FOR MORE DETAILS)

Fig. 15. Performance of the best evolved controller in simulation and reality
(average and standard error of the distance covered in 20 trials, each lasting
25 s) (see the caption of Fig. 10 for a detailed explanation of the figure). Ad-
ditionally, “semirigid links” indicate tests involving s-bots connected through
slightly opened grippers.

with s-bots connected through “semirigid” links. Contrary to
the other experiments illustrated in this paper, in the case of
semirigid links, the gripper is not completely closed, and the
assembled s-bots are partially free to move with respect to
each other. In fact, a partially open gripper can slide around
the turret perimeter and can partially rotate by pivoting on the
gripping point.

One interesting aspect of semirigid links is that they poten-
tially allow swarm-bots to dynamically rearrange their shape in
order to better adapt to the environment. Indeed, experiments
conducted in simulation show how the swarm-bots assembled
through semirigid links are able to dynamically rearrange their
shape in order to pass through narrow passages and avoid
falling into holes [17], [25]. The way in which the torque
produced by the motors controlling the wheels and the turret
of each individual s-bot affect the traction perceived by other
s-bots, however, significantly differs in the case of rigid and
semirigid links. Whereas in the case of rigid links the forces
produced by the motors and the collisions directly affect the
traction perceived by other s-bots, in the case of semirigid links
these forces might also affect the shape of the swarm-bot. As
a consequence, the traction forces are transmitted only in part
when using semirigid links.

Despite the increased complexity, the obtained results show
that the evolved controller preserves its capability of producing
coordinated movements both in simulation and in reality (see
Fig. 15 and Table IV). Moreover, the performance drops only
of 4% and 11% passing from the rigid to the semirigid links, re-
spectively, in the tests with the simulated and real swarm-bots.
The performance of the experiments performed with the real
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TABLE IV
PERFORMANCE OF THE BEST EVOLVED CONTROLLER TESTED IN

SIMULATION AND REALITY. COMPARISON BETWEEN THE

SWARM-BOTS WITH RIGID AND SEMIRIGID LINKS

(SEE CAPTION OF TABLE I FOR MORE DETAILS)

Fig. 16. Trajectories produced by (a) four simulated and (b) four real s-bots
forming a linear swarm-bot with semirigid links during a test lasting 15 s. The
gray circles indicate the final position of the s-bots. In the case of real s-bots,
the trajectories have been automatically extracted from a video recording of the
real s-bots.

s-bots with semirigid links is 28% lower than the corresponding
simulation experiments in line with the results presented in
Section IV-A. Fig. 16 shows an example of the behavior of
the simulated and real swarm-bots assembled through semirigid
links. Notice how the swarm-bots modify their shape while
moving without losing their ability to coordinate.

F. Coordinated Object Pushing/Pulling Behavior

Fig. 17 shows the case of four s-bots connected to an
object rather than between them. In this situation, the s-bots

Fig. 17. Four s-bots connected to a cylindrical passive object.

continue to coordinate moving in a common direction while
pushing/pulling the object. Notice that the four s-bots and the
cylindrical object form a single physical system. In such a
situation, as soon as the resistance given by static friction is
overcome, the pushing/pulling forces are transmitted through
the rigid links of the structure, and coordination can take place.
Moreover, a slight resistance produced by the dynamic friction
of the passive object does not disturb the coordinated motion
because, as shown in Section III-A, the evolved controller keeps
moving despite the small traction that comes from the rear.
However, as the s-bots are only able to coordinate if the friction
of the object with the ground is not too high, the tests in simula-
tion and in reality used a lightweight object. Note that this test
was not carried out to study the problem of collective transport,
which is not within the scope of this paper (see Section V for
a review of the corresponding literature). Its aim was rather
to study the robustness of the evolved behavior. In particular,
we verified whether the coordination mechanisms underlying
such behavior were capable of exploiting the “indirect” traction
signals perceived by the s-bots through a passive object to
which they were connected.

The tests performed in this experimental condition show that
the s-bots preserve their ability to coordinate and to move in
a coherent fashion both in simulation and in reality. Conse-
quently, also, the object is transported by the coordinated action
of the s-bots. Fig. 18 shows two examples of the trajectories
traced by a simulated and a real swarm-bot. The figure shows
that after an initial coordination phase, the robots succeed to
move in the same direction while transporting the object.

A quantitative comparison between this experimental con-
dition and the case of the four s-bots assembled in a square
formation (i.e., the most similar shape) showed a slight perfor-
mance drop (see Fig. 19 and Table V). In particular, the per-
formance drops of 23% and 29% in the tests run in simulation
and in reality, respectively. The decrement of performance is
mainly due to a higher probability of falling in the rotational
equilibrium. The resistance to motion of the passive object
is probably the main cause of this. Indeed, the performance
of the experiments performed with real s-bots is 33% lower than
the corresponding simulation experiments in line with the case
of square formations (27% lower).
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Fig. 18. Trajectories followed by four (a) simulated and (b) real s-bots
connected to a cylindrical object during a test lasting 15 s. The light and dark
gray circles indicate the final position of the s-bots and the object, respectively.

G. Analysis of Scalability

To have a general idea of how the performance scales with
the number of robots, we measured the time the real s-bots
take to converge to a single direction of motion in swarm-bots
composed of different numbers of individuals. The time needed
by the s-bots to convergence was estimated on the basis of
graphs analogous to the one reported in Fig. 8. The results of the
tests are reported in Fig. 20 and Table VI. These results indicate
that the swarm-bots formed by a higher number of assembled
s-bots take longer to coordinate. These data confirm similar
results obtained in simulation, for which it was found that the
coordinated-motion behavior scales well with the number of
robots (see [15] and [17]).

V. RELATED WORK

Coordinated motion is a task that attracted the interest of
many researchers and has been commonly studied in the liter-
ature. Also referred to as “formation control,” it requires that a

Fig. 19. Performance of the best evolved controller in simulation and reality
(average and standard error of the distance covered in 20 trials, each lasting
25 s) (see the caption of Fig. 10 for a detailed explanation of the figure).
Additionally, “+object” indicates tests involving s-bots connected through a
passive cylindrical object.

TABLE V
PERFORMANCE OF THE BEST EVOLVED CONTROLLER TESTED IN

SIMULATION AND REALITY. COMPARISON BETWEEN A SQUARE

SWARM-BOT AND S-BOTS CONNECTED TO A CYLINDRICAL

OBJECT IN A SQUARE-LIKE FORMATION

Fig. 20. Time that real s-bots take to converge to a single direction of motion
in swarm-bots formed by a different number of robots (average and standard
error of the distance covered in 20 trials, each lasting 25 s).

TABLE VI
AVERAGE TIME THAT THE REAL S-BOTS COMPOSING SWARM-BOTS

FORMED BY A DIFFERENT NUMBER OF MEMBERS TAKE TO CONVERGE

TO THE SAME DIRECTION OF MOTION. AVERAGE, STANDARD

DEVIATION, AND STANDARD ERROR FOR 20 REPLICATIONS

number of independent entities coordinate their actions in order
to move coherently. One of the first works on this topic dates
back to 1991 when Wang proved how a simple leader–follower



236 IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS—PART B: CYBERNETICS, VOL. 37, NO. 1, FEBRUARY 2007

mechanism could produce a coordinated motion in a group of
simulated robots [26]. This is a common strategy to perform
a decentralized control of a group of robots, as it reduces
coordination to the a priori definition of a hierarchy among
the robots. The leader–follower paradigm has many different
instantiations, in which either the leader role is fixed [27], or
it varies according to some arbitration rule [28] or it emerges
from the interaction among the robots or between the robots
and the environment [11]. In some cases, the leader role is taken
by a centralized controller, which plans a trajectory that the
robots follow keeping a certain group formation [27], [29], [30].
Finally, a kind of leader–follower paradigm is accomplished
defining a neighbor-based hierarchy according to which robots
maintain the relative position with respect to a given neighbor
[27], [31]. On the contrary, the work presented in this paper
does not define any leader that drives the group coordination,
because the latter is the emergent result of a self-organizing
process.

A coordinated motion can also be performed without keeping
the team in a precise formation. In this case, the resulting
behavior is closer to what can be observed in many different
animal species, such has flocks of birds or schools of fish.
Many researchers have provided models for schooling behav-
iors and replicated them in artificial-life simulations [14]. As an
example, it is worth mentioning the seminal work of Reynolds,
who defines the behavior of virtual creatures, called “boids,”
making use of only local rules [32]. The work of Reynolds has
stimulated many other studies on coordinated motion, which
are all based on some biological inspiration [33], [34]. These
works have self-organization as a common “feature” with the
experiments presented in this paper. However, the obtained
results are usually limited to simulation, and the experimental
setup does not consider the possibility of testing the controllers
in real robots.

Among the related works, it is worth mentioning a class
of robotic systems developed for collective transport/manipu-
lation. This task is slightly different from the coordinated-
motion task studied in this paper, since particular attention is
given to the displacement of an object toward a given location
or along a given trajectory. In this task, tight coordination
among the robots is needed especially in the cases in which the
object to be transported must be first lifted and then moved.
In such situations, force sensors are often used that provide
a feedback mechanism to control the stability of the trans-
ported object. Force sensors are not exploited for achieving
coordination in the group, as in the experiments presented in
this paper. They are rather used to keep under control the
planned force to be applied on the transported object [35]–[37]
or for correctly distributing the payload in the group [38]. In
some cases, collective manipulation has been achieved through
centralized approaches [35], [36], a distributed leader–follower
approach [28], [38], [39], or a distributed approach based on
a priori planned trajectories [37].

A different approach characterizes other works that are
devoted to minimalism: Collective transport/manipulation is
distributed, and individual complexity is minimized [40]. The
work of Kube and Zhang [4] is an interesting example of this
approach. They start from the assumption that cooperation does

not necessarily require intention, but it can be easily achieved
exploiting perceptual cues freely offered by the environment
and positive feedback loops that reinforce the collective re-
sponse. A similar approach is taken in the work presented in
this paper. The main difference, which is apart from the experi-
mental details, lies in the coordination mechanism exploited by
the robots. In fact, in the former case, the environment contains
landmarks (i.e., light bulbs) that guide the robots in locating
the object and in moving toward the goal location. On the
contrary, in the experiments presented in this paper, no such
environmental cue is exploited by the group, but coordination
is based solely on a self-organizing process.

Self-organization is also at the basis of some experiments
in clustering and sorting of objects [6], [7]. In these works, a
number of objects are scattered in a closed arena. The objects
can be of different types, and the robots are programmed to
collect them in one cluster or to segregate them in concentric
rings. The individual behavior can be summarized as follows:
Pick up an item, and drop it where the local density of the same
type items is higher. This simple rule makes no reference to the
formation of a single cluster, which instead emerges through
a self-organizing process [6], [7]. Differently from the work
presented in this paper, no real coordination within the group
is necessary for clustering and sorting. The collective action,
instead, enhances the self-organization aspects and speeds up
the accomplishment of the task.

VI. CONCLUSION

This paper showed how a group of several robots physically
assembled in a swarm-bot can display a coherent behavior
on the basis of a simple distributed control system in which
individual robots have access only to local sensory information.
More specifically, the paper showed how it is possible to
evolve a behavior that allows the robots to coordinate their
movements on the basis of self-organization principles. The
robots start by negotiating a common direction of motion, and
then, once coordinated, they continuously compensate possible
misalignments caused by noise or other environmental factors.
This solution is based on a traction sensor that is able to detect
the intensity, and the orientation of the traction that the top
part of the robot (which is physically connected with the other
robots) exerts on the bottom part (which is in contact with the
ground).

The most significant achievement presented in this paper
concerns the successful transfer of controllers evolved in simu-
lation to the real robots. The results illustrated show that the
neural controller can generalize to conditions that are very
different from those in which it was evolved. In particular,
the evolved behavior was successfully tested in the following
conditions: 1) swarm-bots composed of a larger number of as-
sembled robots (up to eight real robots, but similar results have
been obtained in simulation using up to 36 robots [15], [17]);
2) swarm-bots with varying shape; 3) swarm-bots assembled
through semirigid links that allow relative motion of the con-
nected robots; 4) swarm-bots that navigate on rough terrains,
which produce high noise and disturbances; and 5) robots
indirectly connected through a passive object.
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Very few works in the literature present collective behaviors
tested with physical robots, which have an effectiveness com-
parable to the system presented in this paper. Such effectiveness
is the result of the design methodology that allowed obtaining
self-organization in the robotic system along with its charac-
teristic properties. Among these characteristics, we observed
the high flexibility of the evolved behavior, both with respect
to modifications in the environment and to the structure of
the robotic system itself. Another fundamental property of the
presented robotic system is the high complexity of the behavior
exhibited at the collective level, notwithstanding the simplicity
of the mechanisms characterizing the individual level. For
instance, the sensory-motor apparatus of the robots involves
only one sensor and few motors. Also, the neural controller is
the simplest possible, that is, a feedforward single-layer neural
network with very few input and output neurons. Therefore,
all the complexity of the observed collective behavior resides in
the interactions that take place among the robots and between
the robots and the environment. These interactions are shaped
as traction forces, which are captured by the traction sensor
despite the variety of configurations of the robotic system and
the number of robots forming it. The analysis of the individual
behavior reveals that the interactions through the traction forces
can be exploited resorting to two opposing tendencies: the
first consists in complying with the motion of the rest of the
group. This behavior corresponds to the “positive feedback”
mechanisms which is at the basis of the self-organization of
the group [14], [24]. The second tendency consists in per-
severing in the current direction of motion, and it has the
important role of favoring the emergence of a common direc-
tion of motion and stabilizing the system against temporary
disturbances.

It is worth noting that this behavior was obtained through
an automatic design methodology, that is, artificial evolu-
tion, which is particularly tailored for the synthesis of self-
organizing behaviors [15], [21]. In fact, evolutionary methods
work in the bottom-up direction, as they define the controller
at the individual level and evaluate the performance of the
system as a whole. They also tend to produce robust behav-
iors because unstable solutions and solutions easily affected
by disturbances are rapidly eliminated, as they have a poor
performance.

It is also relevant to stress that the evolved behavior con-
stitutes an important building block for swarm-bots that have
to perform more complex tasks such as coordinately moving
toward a light target [17], and coordinately exploring an envi-
ronment by avoiding walls and holes [17], [25].

In future works, we will continue studying the coordinated
motion with the aim of reducing or completely removing those
stagnation conditions in which all robots keep moving around
their center of mass. This rotational equilibrium may be avoided
in different ways, such as providing the robots with additional
information (e.g., additional sensors detecting the speed of the
two wheels), or by providing the controller with recurrent con-
nections, or both. With these modifications, the robots should
be able to detect that the system is in a stagnation condi-
tion and, therefore, to trigger a behavior that could break the
equilibrium.
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