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Abstract The paper introduces ACO/F-Race, an algorithm for tackling combina-
torial optimization problems under uncertainty. The algorithm is based
on ant colony optimization and on F-Race. The latter is a general method
for the comparison of a number of candidates and for the selection of
the best one according to a given criterion. Some experimental results
on the probabilistic traveling salesman problem are presented.
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1. Introduction
In a large number of real-world combinatorial optimization problems,

the objective function is affected by uncertainty. In order to tackle
these problems, it is customary to resort to a probabilistic model of the
value of each feasible solution. In other words, a setting is considered
in which the cost of each solution is a random variable, and the goal is
to find the solution that minimizes some statistics of the latter. For a
number of practical and theoretical reasons, it is customary to optimize
with respect to the expectation. This reflects a risk-neutral attitude of
the decision maker. Theoretically, for a given probabilistic model, the
expectation can always be computed but this typically involves partic-
ularly complex analytical manipulations and computationally expensive
procedures. Two alternatives have been discussed in the literature: an-
alytical approximation and empirical estimation. While the former ex-
plicitly relies on the underlying probabilistic model for approximating
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the expectation, the latter estimates the expectation through sampling
or simulation.

In this paper we introduce ACO/F-Race, an ant colony optimization
algorithm [8] for tackling combinatorial optimization problems under
uncertainty with the empirical estimation approach. F-Race [6, 5] is
an algorithm for the comparison of a number of candidates and for the
selection of the best one. It has been specially developed for tuning
metaheuristics.1 In the present paper, F-Race is used in an original way
as a component of an ant colony optimization algorithm. More precisely,
it is adopted for selecting the best-so-far ant, that is, the ant that is
appointed for updating the pheromone matrix.

The main advantage of the estimation approach over the one based on
approximation is generality: Indeed, a sample estimate of the expected
cost of a given solution can be simply obtained by averaging a number of
realizations of the cost itself. Conversely, computing a profitable approx-
imation is a problem-specific issue and requires a deep understanding of
the underlying probabilistic model. Since ACO/F-Race is based on the
empirical estimation approach, it is straightforward to apply it to a large
class of combinatorial optimization problems under uncertainty. For def-
initeness, in this paper we consider an application of ACO/F-Race to the
probabilistic traveling salesman problem, more precisely to its
homogeneous variant [11]. An instance of the probabilistic travel-
ing salesman problem (PTSP) is defined as an instance of the well
known traveling salesman problem (TSP), with the difference that
in PTSP each city has a given probability of requiring being visited. In
this paper we consider the homogeneous variant, in which the probabil-
ity that a city must be visited is the same for all cities. PTSP is here
tackled in the a priori optimization sense [1]: The goal is to find an a
priori tour visiting all the cities, which minimizes the expected length
of the associated a posteriori tour. The a priori tour must be found
prior to knowing which cities indeed require being visited. The asso-
ciated a posteriori tour is computed after knowing which cities need
being visited, and is obtained by visiting them in the order in which
they appear in the a priori tour. The cities that do not require being
visited are simply skipped. This problem was selected as the first prob-
lem for testing the ACO/F-Race algorithm for two main reasons: First,
PTSP is particularly simple to describe and to handle. In particular,
the homogeneous variant is rather convenient since a single parameter,

1A public domain implementation of F-Race for R is available for download [4]. R is a
language and environment for statistical computing that is freely available under the GNU
GPL license.
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that is, the probability that each city requires being visited, defines the
“stochastic character” of an instance: When the probability is one, we
fall into the deterministic case; as it decreases, the normalized standard
deviation of the cost of a given solution increases steadily. We can in-
formally conclude that an instance of the homogeneous PTSP becomes
more and more stochastic as the probability that cities require being
visited decreases. This feature is particularly convenient in the analy-
sis and visualization of experimental results. Second, some variants of
ant colony optimization have been already applied to PTSP: Bianchi et
al. [3, 2] proposed pACS, a variant of ant colony system in which an ap-
proximation of the expected length of the a posteriori tour is optimized;
Gutjahr [9, 10] proposed S-ACO, in which an estimation of the expected
length of the a posteriori tour is optimized. ACO/F-Race is similar to
S-ACO. The main difference lies in the way solutions are compared and
selected.

The rest of the paper is organized as follows: Section 2 discusses the
problem of estimating, on the basis of a sample, the cost of a solution
in a combinatorial optimization problem under uncertainty. Section 3
introduces the ACO/F-Race algorithm. Section 4 reports some results
obtained by ACO/F-Race on PTSP. Section 5 concludes the paper and
highlights future research directions.

2. The empirical estimation of stochastic costs
For a formal definition of the class of problems that can be tackled by

ACO/F-Race, we follow [10]:

Minimize F (x) = E
[
f(x, ω)

]
, subject to x ∈ S, (10.1)

where x is a solution, S is the set of feasible solutions, the operator E
denotes the mathematical expectation, and f is the cost function which
depends on x and also on a random (possibly multivariate) variable ω.
The presence of the latter makes the cost f(x, ω) of a given solution x a
random variable.

In the empirical estimation approach to stochastic combinatorial op-
timization, the expectation F (x) of the cost f(x, ω) for a given solution
x is estimated on the basis of a sample f(x, ω1), f(x, ω2), . . . , f(x, ωM ),
obtained from M independently-extracted realizations of the random
variable ω:

F̂M (x) =
1
M

M∑
i=1

f(x, ωi). (10.2)

Clearly, F̂M (x) is an unbiased estimator of F (x).
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In the case of PTSP, the elements of the general definition of a stochas-
tic combinatorial optimization problem given above take the following
meaning: A feasible solution x is an a priori tour visiting once and only
once all cities. If cities are numbered from 1 to N , x is a permutation
of 1, 2, . . . , N . The random variable ω is extracted from an N -variate
Bernoulli distribution and prescribes which cities need being visited. In
the homogeneous variant of PTSP, each element in ω is independently
extracted from a same univariate Bernoulli distribution with probability
p, where p is a parameter defining the instance. The cost f(x, ω) is the
length of an a posteriori tour visiting the cities indicated in ω, in the
order in which they appear in x.

3. The ACO/F-Race algorithm
It is straightforward to extend an ant colony optimization algorithm for

the solution, in the empirical estimation sense, of a combinatorial opti-
mization problem under uncertainty. Indeed, it is sufficient to consider
one single realization of the random influence ω, say ω′, and optimize
the function F̂1(x) = f(x, ω′). Indeed, F̂1(x) is an unbiased estimator of
F (x). The risk we run by following this strategy is that we might sam-
ple a particularly atypical ω′ which provides a misleading estimation of
F (x). A safer choice consists in considering a different realization of ω
at each iteration of the ant colony optimization algorithm. The rationale
behind this choice is that unfortunate modifications to the pheromone
matrix that can be caused by sampling an atypical value of ω at a given
iteration, will not have a large impact on the overall result and will be
corrected in following iterations. In this paper we call ACO-1 an ant
colony optimization algorithm for stochastic problems in which the ob-
jective function is estimated on the basis of one single realization of ω
which is sampled anew at each iteration of the algorithm.

A more refined approach has been proposed by Gutjahr [9, 10] and
consists in using a large number of realizations for estimating the value of
F (x). In Gutjahr’s S-ACO [9], the solutions produced at a given iteration
are compared on the basis of a single realization. The iteration-best
is then compared with the best-so-far solution on the basis of a large
number of realizations. The size Nm of the sample is defined by the
following equation:

Nm = 50 + (0.0001 · n2) · k (10.3)

where n and k denote the size of the instance and the iteration index,
respectively.

A variant of S-ACO called S-ACOa has been introduced by Gutjahr
in [10] in which the size of the sample is determined dynamically on the
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basis of a parametric statistical test: Further realizations are consid-
ered till when either a maximum amount of computation is performed,
or when the difference between the sample means for the two solutions
being compared is larger than 3 times their estimated standard devia-
tion. The selected solution is stored as the new best-so-far for future
comparisons and is used for updating the pheromone matrix.

The ACO/F-Race algorithm we propose in this paper is inspired by
S-ACOa and similarly to the latter it considers, at each iteration, a num-
ber of realizations for comparing candidate solutions and for selecting the
best one which is eventually used for updating the pheromone matrix.
The significant difference lies in the algorithm used at each iteration for
selecting the best candidate solution. ACO/F-Race adopts F-Race, an
algorithm originally developed for tuning metaheuristics [6, 5]. F-Race
is itself inspired by a class of racing algorithms proposed in the machine
learning literature for tackling the model selection problem [13, 14].

A detailed description of the algorithm and its empirical analysis are
given in Birattari [5].

Solution methodology
The ACO/F-Race algorithm presents many similarities with S-ACO

and even more with S-ACOa [10]. Similarly to S-ACOa, at each iteration
it considers a number of realizations for comparing candidates solutions
and for selecting the best one, which is used for updating the pheromone
matrix. The sole difference between the two algorithms lies in the specific
technique used to select the best candidate solution at each iteration.

In S-ACOa, the solutions produced at a given iteration are compared
on the basis of a single realization ω to select the iteration-best solu-
tion. On the basis of a large sample of realizations, the size of which is
computed dynamically, the iteration-best solution is then compared with
the best-so-far solution. For PTSP, the solution with shorter expected a
posteriori tour length between the two solutions is selected and stored as
the new best-so-far solution for the subsequent iterations. This solution
is used to update the pheromone matrix. In a nutshell, S-ACOa exploits
sampling techniques and a parametric test.

ACO/F-Race employs F-Race, an algorithm based on a nonparametric
test that was originally developed for tuning metaheuristics. In the con-
text of ACO/F-Race, the racing procedure consists in a series of steps at
each of which a new realization of ω is considered and is used for evaluat-
ing the solutions that are still in the race. At each step, a Friedman test
is performed and solutions that are statistically dominated by at least
another one are discarded from the race. The solution that wins the
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Algorithm 1 ACO/F-Race Algorithm
input: an instance C of a PTSP problem
τij ← 1, ∀(i, j)
for iteration k = 1, 2, . . . do

for ant z = 1, 2, . . . ,m do
sz ← a priori tour of ant z

end for
if (k = 1) then
sbest ← F-Race(s1, s2, . . . , sm)

else
sbest ← F-Race(s1, s2, . . . , sm, sbest)

end if
τij ← (1− ρ)τij , ∀(i, j) # evaporation

τij ← τij + c, ∀(i, j) ∈ sbest # best-so-far pheromone update

end for

race is used for updating the pheromone and is stored as the best-so-far.
The race terminates when either one single candidate remains, or when
a maximum amount of computation time is reached.

The pseudo-code of ACO/F-Race is presented in Algorithm 1. The al-
gorithm starts by initializing to 1 the pheromone on each arc (i, j) of the
PTSP. At each iteration of ACO/F-Race, m ants, where m is a param-
eter, construct a solution as it is customary in ant colony optimization.
In particular, we have adopted here the random proportional rule [8] as
shown in Equation 10.4: Ant z, when in city i, moves to city j with a
probability given by Equation 10.4, where N z

i is the set of all cities yet
to be visited by ant z.

pzij =
ταij · ηβij∑
l∈Nz

i
ταil · ηβil

, if j ∈ N z
i (10.4)

The m solutions generated by the ants, together with the best-so-far
solution, are evaluated and compared via F-Race.

4. Experimental analysis
In the experimental analysis proposed here, we compare ACO/F-Race

with ACO-1, S-ACO and S-ACOa. For convenience of the reader, we
summarize here the main characteristics of the algorithms considered in
this study.

ACO-1: Solutions produced at a given iteration are compared on the
basis of single realization ω to select the iteration-best solution.
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Again, on the basis of the same realization, the iteration-best so-
lution is then compared with the best-so-far solution to select the
new best-so-far solution.

S-ACO: Solutions produced at a given iteration are compared on the
basis of a single realization ω to select the iteration-best solution.
On the basis of a large sample of realizations, whose size is given
by the equation 10.3, the iteration-best solution is then compared
with the best-so-far solution.

S-ACOa: Solutions produced at a given iteration are compared on the
basis of a single realization ω to select the iteration-best solution.
On the basis of a large sample of realizations, the size of which
is computed dynamically on the basis of a parametric statistical
test, the iteration-best solution is then compared with the best-so-
far solution.

ACO/F-Race: Solutions produced at a given iteration, together with the
best-so-far solution, are evaluated and compared using the F-Race
algorithm.

These four algorithms differ only for what concerns the technique used
for comparing solutions and for selecting the best-so-far solution which
is used for updating the pheromone. The implementations used in the
experiments are all based on [15]. The problems considered are homo-
geneous PTSP instances obtained from TSP instances generated by the
DIMACS generator [12]. We present the results of two experiments. In
the first, cities are uniformly distributed, in the second they are clustered.
For each of the two experiments, we consider 100 TSP instances of 300
cities. Out of each TSP instance we obtain 21 PTSP instances by letting
the probability range in [0, 1] with a step size of 0.05. computation time
has been chosen as the stopping criterion: Each algorithm is allowed to
run for 60 seconds on an AMD OpteronTM 244. These four algorithms
were not fine-tuned. The parameters adopted are those suggested in [10]
for S-ACO and are given in Table 10.1. This might possibly introduce
a bias in favor of S-ACO. Also note that S-ACOa was not previously
applied to PTSP. Furthermore, for PTSP, the expected cost of the ob-
jective function can be easily computed using an explicit formula given
in [1]. Using this mathematical formula, the solutions selected by each
algorithm on each instance were then evaluated.

In the plots given in Figures 10.1 and 10.2, the probability that cities
require being visited is represented on the x-axis. The y-axis represents
the expected length of the a posteriori tour obtained by ACO/F-Race,
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Table 10.1. Value of the parameters adopted in the experimental analysis.

Parameter Notation Value

Number of ants m 50
Pheromone exponent α 1.0
Heuristic exponent β 2.0
Pheromone evaporation factor ρ 0.01
Best-so-far update constant c 0.04

S-ACO and S-ACOa normalized by the expected length of the a posteriori
tour obtained by ACO-1, which is taken here as a reference algorithm.

For each of the two classes of instances and for the probability values
of 0.25, 0.50, 0.75, and 1.00, we study the significance of the observed
differences in performance. We use the Pairwise Wilcoxon rank sum test
[7] with p-values adjusted through Holm’s method [17]. In our analysis,
we consider a significance level of α = 0.01. In Tables 10.2 and 10.3,
the p-value reported at the crossing between row A and column B refers
to the comparison between the algorithms A and B, where the null
hypothesis is A = B, that is, the two algorithms produce equivalent
results, and the alternative one is A < B, that is, A is better than B: A
number smaller than α = 0.01 in position (A,B) means that algorithm A
is better than algorithm B, with confidence at least equal to 1−α = 0.99.

From the plots, we can observe that the solution quality of ACO-1
is better than S-ACO, S-ACOa and ACO/F-Race for probabilities larger
than approximately 0.4, that is, when the variance of the a posteri-
ori tour length is small. Under such conditions, an algorithm designed
to solve TSP is better than one specifically developed for PTSP. This
confirms the results obtained by Rossi and Gavioli [18]. This is easily
explained: Using a large number of realizations for selecting the best-so-
far solution is simply a waste of time when the variance of the objective
function is very small.

On the other hand, for probabilities smaller than approximately 0.4,
the problem becomes “more stochastic”: Selecting the best-so-far solu-
tion on the basis of a large sample of realizations plays a significant role.
The risk we run by following a single sample strategy, as in ACO-1, is
that we might sample a particularly atypical realization which provides
a misleading evaluation of solution. S-ACO, S-ACOa and ACO/F-Race
by considering a large sample of realizations obtain better results than
ACO-1.

Another important observation concerns the relative performance of
S-ACO, S-ACOa and ACO/F-Race. Throughout the whole range of
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Figure 10.1. Experimental results on the uniformly distributed homogeneous PTSP.
The plot represents the expected length of the a posteriori tour obtained by
ACO/F-Race, S-ACO, and S-ACOa normalized by the one obtained by ACO-1 for
the computation time of 60 seconds.
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Figure 10.2. Experimental results on the clustered homogeneous PTSP. The plot
represents the expected length of the a posteriori tour obtained by ACO/F-Race,
S-ACO, and S-ACOa normalized by the one obtained by ACO-1 for the computation
time of 60 seconds.
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probabilities, the solution quality obtained by ACO/F-Race is signifi-
cantly better than the one obtained by S-ACO and S-ACOa. We can
conclude that ACO/F-Race, with its nonparametric evaluation method,
is more effective than S-ACOa, which uses parametric method, and than
S-ACO, which adopts a linearly increasing sample size for selecting the
best-so-far solution at each iteration.

In Figures 10.3 and 10.4, the average number of solutions explored
by ACO-1, S-ACO, S-ACOa and ACO/F-Race is given. Since ACO-1 uses
a single realization to select the best solution, the average number of
solutions explored by ACO-1 is always larger than the those explored by
S-ACO, S-ACOa and ACO/F-Race. Apparently a trade-off exists. The
number of realizations considered should be large enough for providing
a reliable estimate of the cost of solutions but at the same time it should
not be too large otherwise too much time is wasted. The appropriate
number of realizations depends on the stochastic character of the in-
stance at hand. The larger the probability that a city is to be visited,
the less stochastic an instance is. In this case, the algorithms that obtain
the best results are those that consider a reduced number of realizations
and therefore explore more solutions in the unit of time. On the other
hand, when the probability that a city is to be visited is small, the in-
stance at hand is highly stochastic. In this case, it pays off to reduce
the total number of solutions explored and to consider a larger number
of realizations for obtaining more accurate estimates.

In Figures 10.1 and 10.2, it should be observed that when the prob-
ability tends to 1 the curve of ACO/F-Race approaches 1 and therefore
ACO/F-Race performs almost as well as ACO-1. This is due to the na-
ture of the Friedman test adopted within ACO/F-Race. Indeed, in the
deterministic case the Friedman test is particularly efficient and with a
minimum number of realizations it is able to select the best solution.
The computational overhead with respect to ACO-1 is therefore rela-
tively reduced. On the other hand, both S-ACO and S-ACOa adopt a
number of realizations that is too large and therefore are able to explore
only a limited number of solutions: In S-ACO the size of the sample
does not depend on the probability and in S-ACOa the statistical test
adopted is apparently less efficient than the Friedman test in detecting
that the instance is deterministic and that a large sample is not needed.
This can be observed on the far right hand side of Figures 10.1 and 10.2.
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Figure 10.3. Experimental results on the uniformly distributed homogeneous PTSP.
The plot represents the average number of solutions explored by ACO-1, S-ACO,
S-ACOa and ACO/F-Race for the computation time of 60 seconds.
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Figure 10.4. Experimental results on the clustered homogeneous PTSP. The plot
represents the average number of solutions explored by ACO-1, S-ACO, S-ACOa and
ACO/F-Race for the computation time of 60 seconds.
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Table 10.2. The p-values of the paired Wilcoxon tests on uniformly distributed ho-
mogeneous PTSP instances. The quantities under analysis are the expected length
of the a posteriori tour obtained by ACO/F-Race, S-ACO, S-ACOa and ACO-1.

Probability=0.25 ACO/F-Race S-ACO S-ACOa ACO-1
ACO/F-Race – < 2.2e− 16 < 2.2e− 16 < 2.2e− 16
S-ACO 1 – 1 < 2.2e− 16
S-ACOa 1 < 2.2e− 16 - < 2.2e− 16
ACO-1 1 1 1 –

Probability=0.5 ACO/F-Race S-ACO S-ACOa ACO-1
ACO/F-Race – < 2.2e− 16 < 2.2e− 16 1
S-ACO 1 – < 2.2e− 16 1
S-ACOa 1 1 – 1
ACO-1 < 2.2e− 16 < 2.2e− 16 < 2.2e− 16 –

Probability=0.75 ACO/F-Race S-ACO S-ACOa ACO-1
ACO/F-Race – < 2.2e− 16 < 2.2e− 16 1
S-ACO 1 – < 2.2e− 16 1
S-ACOa 1 1 – 1
ACO-1 < 2.2e− 16 < 2.2e− 16 < 2.2e− 16 –

Probability=1.0 ACO/F-Race S-ACO S-ACOa ACO-1
ACO/F-Race – < 2.2e− 16 < 2.2e− 16 1
S-ACO 1 – < 2.2e− 16 1
S-ACOa 1 1 – 1
ACO-1 < 2.2e− 16 < 2.2e− 16 < 2.2e− 16 –

Table 10.3. The p-values of the paired Wilcoxon tests on clustered homogeneous
PTSP instances. The quantities under analysis are the expected length of the a
posteriori tour obtained by ACO/F-Race, S-ACO, S-ACOa and ACO-1.

Probability=0.25 ACO/F-Race S-ACO S-ACOa ACO-1
ACO/F-Race – < 2.2e− 16 < 2.2e− 16 < 2.2e− 16
S-ACO 1 – 0.6845 < 2.2e− 16
S-ACOa 1 < 0.3155 – < 2.2e− 16
ACO-1 1 1 1 –

Probability=0.5 ACO/F-Race S-ACO S-ACOa ACO-1
ACO/F-Race – < 2.2e− 16 < 2.2e− 16 < 2.2e− 16
S-ACO 1 – < 2.2e− 16 1
S-ACOa 1 1 – 1
ACO-1 1 < 2.2e− 16 < 2.2e− 16 –

Probability=0.75 ACO/F-Race S-ACO S-ACOa ACO-1
ACO/F-Race – < 2.2e− 16 < 2.2e− 16 1
S-ACO 1 – < 2.2e− 16 1
S-ACOa 1 1 – 1
ACO-1 < 2.2e− 16 < 2.2e− 16 < 2.2e− 16 –

Probability=1.0 ACO/F-Race S-ACO S-ACOa ACO-1
ACO/F-Race – < 2.2e− 16 < 2.2e− 16 1
S-ACO 1 – 1 1
S-ACOa 1 < 2.2e− 16 – 1
ACO-1 < 2.2e− 16 < 2.2e− 16 < 2.2e− 16 –
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5. Conclusions and future work
The preliminary experimental results proposed in Section 4 confirm

the generality of the approach proposed by Gutjahr [9, 10], and show
that the F-Race algorithm can be profitably adopted for comparing so-
lutions in the framework of the application of ant colony optimization to
combinatorial optimization problems under uncertainty.

Further research is needed for properly assessing the quality of the
proposed ACO/F-Race. We are currently developing an estimation-based
local search for PTSP. We plan to study the behavior of ACO/F-Race en-
riched by this local search on homogeneous and non-homogeneous prob-
lems.

In the experimental analysis proposed in Section 4, the goal was to
compare the evaluation procedure based on F-Race with the one pro-
posed in [10] and with the trivial one based on a single realization. For
this reason, solution construction and pheromone update were imple-
mented as described in [9, 10]. We plan to explore other possibilities,
such as construction and update as defined in MAX–MIN ant system
[16]. Applications to other problems, in particular of the vehicle rout-
ing class, will be considered too.

Acknowledgments. This research has been supported by COMP2SYS,
a Marie Curie Early Stage Research Training Site funded by the Euro-
pean Community’s Sixth Framework Programme under contract num-
ber MEST-CT-2004-505079, and by the ANTS project, an Action de
Recherche Concertée funded by the Scientific Research Directorate of
the French Community of Belgium. Marco Dorigo acknowledges sup-
port from the Belgian FNRS, of which he is a Research Director.

References

[1] D. J. Bertsimas, P. Jaillet, and A. Odoni. A priori optimization.
Operations Research, 38:1019–1033, 1990.

[2] L. Bianchi. Ant Colony Optimization and Local Search for the Prob-
abilistic Traveling Salesman Problem: A Case Study in Stochastic
Combinatorial Optimization. PhD thesis, Université Libre de Brux-
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Proc. SAGA 2003, volume 2827 of LNCS, pages 10–25, Berlin, Ger-
many, 2003. Springer-Verlag.

[10] W. J. Gutjahr. S-ACO: An ant based approach to combinato-
rial optimization under uncertainity. In M. Dorigo, M. Birattari,
C. Blum, L. M. Gambardella, F. Mondada, and T. Stützle, edi-
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