
Toward the Formal Foundation of Ant Programming

Mauro Birattari, Gianni Di Caro, and Marco Dorigo

IRIDIA, Université Libre de Bruxelles
CP 194/6, Av. Franklin D. Roosevelt 50, 1050 Brussels, Belgium

{mbiro,gdicaro,mdorigo}@ulb.ac.be
http://iridia.ulb.ac.be

Abstract. This paper develops the formal framework of ant programming with
the goal of gaining a deeper understanding on ant colony optimization and, more
in general, on the principles underlying the use of an iterated Monte Carlo ap-
proach for the multi-stage solution of combinatorial optimization problems. Ant
programming searches for the optimal policy of a multi-stage decision problem
to which the original combinatorial problem is reduced. In order to describe ant
programming we adopt on the one hand concepts of optimal control, and on the
other hand the ant metaphor suggested by ant colony optimization. In this context,
a critical analysis is given of notions such as state, representation, and sequential
decision process under incomplete information.

1 Introduction

In the last decade, a number of algorithms inspired by the foraging behavior of ant
colonies have been introduced for the approximate solution of combinatorial optimiza-
tion problems (see [8,10,9] for extensive reviews). The framework of ant colony opti-
mization [8,10] gave recently a first unifying description of (most of) these algorithms.
Loosely speaking, ant colony optimization presents the following features. A graph is
defined in a way that each solution of the combinatorial problem corresponds to at least
one path on the graph itself. The weights associated to the edges are such that the cost
of a path equals the cost of the associated solution. In this sense, the goal of ant colony
optimization is to find a path of minimum cost. To this end, a number of paths are incre-
mentally generated in a Monte Carlo fashion, and the observed costs are used to bias the
generation of further paths. This process is iterated with the aim of gathering information
on the graph and of eventually producing a path of minimum cost. In ant colony opti-
mization, the above described algorithm is visualized in terms of a metaphor in which the
generation of a path is represented as the walk of an ant that, at each node, stochastically
selects the following one on the basis of local information called pheromone trail [1].
In turn, the pheromone trail is modified by the ants in order to bias the generation of
future paths toward better solutions.

The very possibility of obtaining better solutions by exploiting memory about so-
lutions generated so far is the basic assumption of ant colony optimization. A further
implicit assumption concerns what this memory should consist in. In spite of the key
role played in all implementations of ant colony optimization, this assumption was never
critically discussed before: The formal definition of ant colony optimization [8] envis-
ages, for each optimization problem, a unique way of defining the memory. To clarify

M. Dorigo et al. (Eds.): ANTS 2002, LNCS 2463, pp. 188–201, 2002.
c© Springer-Verlag Berlin Heidelberg 2002

Toward the Formal Foundation of Ant Programming 189

this issue, let us consider an optimization problem whose solutions are expressed by ant
colony optimization as a sequence of components. Ant colony optimization generates
solutions in the form of paths in the space of such components. Memory is kept of all the
observed transitions between components. A degree of desirability is associated to each
transition depending on the quality of the solutions in which it occurred so far. While a
new solution is being incrementally generated, a component y is included with a proba-
bility that is proportional to the desirability of the transition between the last component
included and y itself. Even if it seems natural that memory should be associated with
pairs of solution components, as assumed by ant colony optimization, in this paper we
maintain that such an assumption is just a matter of choice. Indeed, this is only one
of the possible representations of the solution generation process that can be adopted
for framing information about solutions previously observed. As it will be clear in the
following, this representation is neither optimal nor the most natural, provided that a
correct analysis of the problem at hand is given. Our analysis will be based on a clear
understanding of the concept of state of the process of incremental solution construction.

In this paper, we propose a novel formal description of the combinatorial optimiza-
tion problems to which ant colony optimization applies, and we analyze the implication
of adopting a generic solution strategy based on the incremental Monte Carlo construc-
tion of solutions biased by a memory. This paper is an abridged version of a previously
unpublished work by the same authors [4] and complements other recent theoretical
analysis [15,21,12]. The paper introduces ant programming as an abstract class of algo-
rithms which presents the characterizing features of ant colony optimization but which is
more amenable to theoretical analysis for what concerns the concepts of representation
and state. In particular, ant programming bridges the terminological gap between ant
colony optimization and the fields of optimal control [3] and reinforcement learning [17].
Accordingly, the name ant programming was chosen for its assonance with dynamic pro-
gramming, with which ant programming has in common the stress on the concept of
state and the related idea of reformulating an optimization problem as a multi-stage
decision problem and then searching for a good (hopefully optimal) decision policy for
the latter. Both in dynamic programming and in ant programming, such a reformulation
is not trivial and requires an ad hoc analysis of the optimization problem under consid-
eration. These concepts, being among the main issues in this research, will be discussed
in detail in the rest of the paper: Section 2 shows how to reformulate a discrete optimiza-
tion problem into a discrete-time optimal control problem and then into a shortest path
problem. Section 3 introduces the concepts of graph of the representation, phantasma
and sequential decision process under incomplete information. Section 4 introduces and
discusses the ant programming abstract class of algorithms. Section 5 discusses the main
issues and describes the future developments of our research.

2 Discrete Optimization, Optimal Control, and Shortest Paths

Let us consider a discrete optimization problem defined by a finite set S of feasible
solutions and by a cost function J . The set S is:

S = {s1, s2, . . . , sN}, N ∈ N, N < ∞, (1)

where each solution si is a ni-tuple

190 M. Birattari, G. Di Caro, and M. Dorigo

si = (s0
i , s

1
i , . . . , sni−1

i), ni ∈ N, ni ≤ n < ∞, (2)

with n = max ni, and sj
i ∈ Y , where Y is a finite set of components. The cost function

J : S → R assigns a cost to each feasible solution si. The optimization problem is
therefore the problem of finding the element s̄ ∈ S which minimizes the function J :

s̄ = arg min
s∈S

J(s). (3)

Being the set S finite, the minimum of J on S indeed exists. If such minimum is attained
for more than one element of S, it is a matter of indifference which one is considered.

A feasible solution in S can be built incrementally starting from the 0-tuple x0 = (),
and adding one-at-a-time a component. The generic iteration can be described as:

xj = (u0, . . . , uj−1) → xj+1 = (u0, . . . , uj−1, uj), with uj ∈ Y, (4)

where xj is a partial solution of length j. A partial solution xj is called feasible if it
can be completed into a feasible solution si ∈ S, that is, if at least one feasible solution
si ∈ S exists, of which xj is the initial sub-tuple of length j. It is understood that a
process generating a sequence of feasible partial solutions necessarily ends up into a
feasible solution. For each feasible partial solution xj , we define the set U(xj) ∈ Y of
all the possible new components uj that can be appended to xj giving in turn a feasible
(partial) solution xj+1.

Now, the set X of all feasible tuples xj is finite since both the set S and the length
of each feasible solution si are finite. Moreover, it can be shown that S ⊂ X , since all
the solutions si are composed by a finite number of components, all belonging to Y .

Since a feasible solution can be obtained incrementally, the original optimization
problem can be reformulated as a multi-stage decision process in which the optimal so-
lution s̄ is obtained by a sequence of decisions concerning the set Y of the components.
Such a way of proceeding results particularly natural when the cost J(si) of a solution si

is expressed as a sum of contributions cj+1, each related to the fact that a particular com-
ponent uj is included in the solution si itself after a sequence of components described
by the tuple xj . Formally, a function C : X \ {x0} → R must be conveniently defined,
which associates a cost cj+1 to each tuple xj+1.1

The finite-horizon multi-stage decision process described above can be thoroughly
seen as a deterministic discrete-time optimal control problem [5]. The tuple xj can be
seen as the state at time t = j of a discrete-time dynamic system whose state-transition
application is such that the state at time t+1 is obtained by appending the current control
action ut ∈ U(xt) to the state xt:{

xt+1 = [xt, ut],
yt+1 = ut,

(5)

The set of the feasible actions, given the current state, is a subset of the range of the
output: U(xt) ⊂ Y .

1 Given rule (4), the tuple xj+1 determines uniquely the tuple xj and the component uj , and is
in turn determined uniquely by them. Therefore, the function C could be equivalently defined
as a function mapping on the real line an ordered pair 〈xj , uj〉, a transition 〈xj , xj+1〉, or even
the triplet 〈xj , uj , xj+1〉.

Toward the Formal Foundation of Ant Programming 191

Now, let U be the set of all the admissible control sequences that bring the system
from the initial state x0 to a terminal state belonging to S: The generic element of U ,
u = 〈u0, u1, . . . , uτ−1〉, is such that the corresponding state trajectory, which is unique,
is 〈x0, x1, . . . , xτ 〉, with xτ ∈ S, and ut ∈ U(xt), for 0 ≤ t < τ . In this sense, the
dynamic system defines a mapping S : U → S which assigns to each admissible control
sequence u ∈ U a final state s = S(u) ∈ S.

The problem of optimal control consists in finding the sequence ū ∈ U for which
the sum J of the costs ct, incurred along the state trajectory, is minimized:

ū = arg min
u∈U

J
(S(u)

)
, (6)

where with “arg min” we denote the element of U for which the minimum of the com-
posed function J ◦S is attained. If such a minimum is attained for more than one element
of U , it is a matter of indifference which one is considered.

It is apparent that the solution of the problem of optimal control stated in (6) is
equivalent to the solution of the original optimization problem (3), and that the optimal
sequence of control actions ū for the optimal control problem determines uniquely the
optimal solution s̄ of the original optimization problem. Since the set X is discrete and
finite, together with all the sets U(xt), for all xt ∈ X , and since trajectories have a
fixed maximum length n, all the possible state trajectories of the system (5) can be
conveniently represented through a weighted and oriented graph with a finite number
of nodes. Let G(X, U) be such a graph, where X is the set of nodes and U is the set of
edges, and let C : U → R be a function that associates a weight to each edge. In terms
of system (5), each node of the graph G(X, U) represents a state xt of the system. The
set U ⊂ X × X is the set of the edges 〈xt, xt+1〉. Each of the edges departing from
a given node xt represents one of the actions ut ∈ U(xt), feasible when the system
is in state xt. Finally, the function C is defined in terms of the function C. Namely,
ct+1 = C(〈xt, xt+1〉) = C(xt+1) is the cost of the edge 〈xt, xt+1〉. Furthermore, on the
graph G(X, U) we can single out the initial state x0, as the only state with no incoming
edges, and the set S of the terminal nodes from which no edges depart. In terms of the
graph G(X, U) and of the function C, the optimal control problem (6) can be stated as
the problem of finding the path of minimal cost from the initial node x0 to any of the
terminal nodes in S.

As already mentioned in Section 1, the solution strategy of ant colony optimization is
based on the iterated generation of multiple paths on a graph that encodes the optimization
problem under consideration.As it will be defined in the following, this graph is obtained
as a transformation of the graph G consisting in an aggregation of nodes. In previous
works on ant colony optimization, the graph resulting from such a transformation was
the only graph taken into consideration explicitly. In this paper, we move the focus on
the original graph G and on the properties of the transformation.

3 Markov and Non-Markov Representations

Consistently with the optimal control literature, we have called state each node of the
graph G(X, U) and, by extension, we call state graph the graph G itself. In the following,
the properties of the state graph will be discussed in the perspective of the solution of

192 M. Birattari, G. Di Caro, and M. Dorigo

problem (3), and in relation to the solution strategy of ant colony optimization. The ant
metaphor will be used to visualize abstract concepts. In particular, we will picture the
state evolution of system (5), and therefore the incremental construction of a solution,
as the walk of an ant on the state graph G. In the following, the state xt at time t will be
called interchangeably the “partial solution,” the “state of the system,” or, by extension,
the “state of the ant.”

The state of a stochastic or deterministic dynamic system can be informally thought
of as the piece of information that gives the most predictive description possible of the
system at a given time instant.2 Since what is known in the literature as Markov property
is related precisely to the concept of state, it is clear that the state, when correctly
conceived, is always a state in the Markov sense: When described in terms of its state,
any discrete-time system is intrinsically Markov.3 It is therefore of dubious utility to
state the Markov property with respect to a dynamic system tout court. Of much greater
significance, it is to assert the Markov property of a representation. Informally, we call
a representation the structure in which an agent4 frames experience: an agent refers to
a representation for describing the state of the system, for possibly keeping memory
of observed trajectories, and for performing predictions or control actions. In the limit,
a representation might bear the same information as the state. In this case the Markov
property holds for such representation. In the more general case, a representation is of
non-Markov type, that is, it gives less information than the state. Being non-Markov is
therefore a characteristic of the interaction system-agent and is related to the fact that the

2 A detailed analysis of the concept of state in the context of ant colony optimization can be
found in [4]. A general analysis of the concept of state is given in the classical literature on
linear system theory [20], dynamic programming [2], and optimal control [3].

3 For a discrete Markov decision process, the following holds by definition: P (xt+1|xt, ut) =
P (xt+1|xt, ut), where xt = (xt, xt−1, xt−2, . . .) and ut = (ut, ut−1, ut−2, . . .) indicate
the past history of x and u, respectively. Now, let us consider a time-varying system whose state
dynamic is given by xt+1 = ft(xt, ut, ξt) where xt and ut are respectively state and input at
time t, and the state disturbance ξt ∼ P (ξ) is a white noise independent of the state and the
input in the following sense: P (ξt|xt, ut) = P (ξt). Clearly, xt+1 is a random variable whose
distribution is P (xt+1|xt, ut) = P (Ξxt+1) where Ξxt+1 = {ξ : ft(xt, ut, ξ) = xt+1} is the
set of the values ξ that, for the given xt and ut, map to xt+1, and P (Ξxt+1) indicates the
probability of observing a ξ belonging to such a set. The Markov property holds when the
above introduced time-varying system is seen as a decision process. In particular:

P (xt+1|xt, ut) =
∑

Ξxt+1

P (ξ|xt, ut) =
∑

Ξxt+1

P (ξ) = P (Ξxt+1) = P (xt+1|xt, ut).

The treatment given above assumes that ξ is a discrete variable. Thought the property holds
also for continuous ξ, the proof for the general case involves a more complex notation and goes
beyond the scope of this footnote.

Conversely, any discrete Markov decision process is a state description of a system in the
Kalman sense. It is straightforward to verify that any xt+1 ∼ P (xt+1|xt, ut) can be written
in the form xt+1 = ft(xt, ut, ξt) where the dependence on time t accounts for the fact that in
the definition of the Markov property the distributions at different temporal instants need not
be the same. Since xt+1 = ft(xt, ut, ξt) is the classical form in which the state dynamic of a
generic time-varying system can be given, the assertion is proved.

4 By agent we mean any entity acting on or observing purposely the system at hand.

Toward the Formal Foundation of Ant Programming 193

agent describes the system in terms of a representation that brings less information than
a state description. In general, such a shortcoming of the representation can be ascribed
to the inability of the agent to obtain information on the system, or to the deliberate
choice of reducing the amount of information to be handled. In this second case, we are
facing a quality-complexity dilemma.

In the context of ant colony optimization, as pointed out in Section 1, the basic
assumption is that better solutions can be obtained by exploiting memory about previ-
ously generated ones. In this context, the discussion proposed above entails two major
issues. First, for most combinatorial optimization problems of interest for which the
state space grows exponentially with the size of the problem itself, it is clear that it is
infeasible to gather and use memory about solutions in terms of a state description: it is
very unlikely that a trajectory has exploitable superpositions with previously generated
ones. Therefore, in ant colony optimization it is necessary to refer to a representation
that reduces the information retained about the current state. This determines some sort
of aliasing of distinct states which induces a criterion for generalizing previous expe-
rience. Second, as it will be made clear in the following, since a generic representation
is non-Markov, it is not possible to generate feasible solutions on the basis of the sole
representation. Therefore, it is necessary to refer to a state description in order to insure
that a feasible solution be generated. These two issues, taken together, force to devise
a strategy for the incremental generation of solution that on the one hand refers to a
state description for guaranteeing feasibility, and on the other hand refers to a repre-
sentation for optimizing the quality of the generated solution. The characteristics of the
representation to be adopted reflect the design choice regarding the trade-off associated
with the quality-complexity dilemma. Ant programming makes explicit the necessity to
refer both to a representation and to a state description. Every step in the incremental
construction of a solution consists of two sub-steps: first, a set of feasible candidate
actions is defined on the basis of information pertaining to the state description; second,
one of such candidates is selected on the basis of its desirability expressed in terms
of the representation. In this sense, Ant programming introduces the categories needed
for understanding some mechanisms already adopted in ant colony optimization such
as, for instance, keeping and updating at each step the list of the components whose
inclusion into the solution under construction would make the latter unfeasible. Such a
list implicitly brings information about the state of the solution construction process.

For the class of problems discussed in this paper, a formal definition of a representa-
tion can be given with reference to the state graph G(X, U). We define the representation
graph as the graph Gr(Zr, Ur), where Zr is the set of the nodes and Ur is the set of
the edges. Furthermore, we call generating function of the representation the function
r : X → Zr that maps the set X of the states onto the set Zr. The function r as-
sociates therefore to every elements of X an element in Zr: every element zt ∈ Zr

has at least one preimage in X , but generally the preimage is not unique. The notation
r−1({zt}) = {xτ |r(xτ) = zt} indicates the set of states xτ whose image under r is zt.
The function r induces an equivalence relation on X: Two states xi and xj are equivalent
according to the representation defined by r, if and only if r(xi) = r(xj). In this sense, a
representation can be seen as a partition of the set X . In the following, we will call each
zt ∈ Zr a phantasma, adopting the term used by Aristotle with the meaning of mental

194 M. Birattari, G. Di Caro, and M. Dorigo

image.5 With such a term we want to stress that, from the point of view of an agent that
observes the system through the representation r, zt plays the role of the phenomenal
perception, that is, what is retained about the system at time t for optimization purposes.6

Thanks to the notion of phantasma, we can give a precise interpretation to the concept
of representation in the context of the control problem (6). As we pointed out before,
the state evolution of the system (5) can be described as the walk of an ant on G(X, U).
Let us assume now that the ant visits in sequence the nodes x0, x1, . . . , xn. The same
sequence, under the representation induced by r, appears as a sequence z0, z1, . . . , zn

where for each i, with 0 ≤ i ≤ n, zi is the phantasma of the state xi, that is, zi = r(xi).
In the ant metaphor, we say that the ant, though moving on the state graph G(X, U),
represents its movement on the representation graph Gr(Zr, Ur). In control theory, the
process that carries the state into what we call a phantasma, is related to the concept of
state-space reduction.7

In the same spirit of the definition of the set Zr, also the set of the edges Ur can
be defined in terms of the generating function r. The set Ur ⊂ Zr × Zr is the set of
the edges 〈zi, zj〉 for which an edge 〈xi, xj〉 ∈ U exists on the state graph such that xi

and xj are the preimages under r of zi and zj , respectively. Formally:

Ur =
{

〈zi, zj〉
∣∣ ∃〈xi, xj〉 ∈ U : zi = r(xi), zj = r(xj)

}
.

When the system is described through a generic representation r, the subset Ur(t) ⊂ Ur

of the admissible control actions at time t cannot usually be described in terms of the
phantasma zt alone, but needs for its definition the knowledge of the underlying state xt.
In other words, for the generic generating function r, the phantasma zt does not bring
the same information as the state xt and therefore the corresponding representation is
non-Markov. The adoption of a non-Markov representation is by no means free from
complications. While on the graph G every (partial) path is a (partial) feasible solution
and vice versa, on Gr this property does not hold anymore. As far as the construction
of feasible solutions is concerned, G is not therefore superseded by Gr: As anticipated
before, the graph Gr and the information stored on it are used for optimizing the con-
struction of a solution while the graph G is used for guaranteeing feasibility. In any case,
because of the loss of topological information induced by the transformation from G to
Gr and since the optimization process is based on Gr, in the general case only sub-optimal
solutions will be obtained.

The parallel of the weight function C of G for the graph Gr cannot be defined in a
straightforward manner for a generic r. Moreover, it results more useful to define the

5 Aristotle (384–322 BC) De Anima: “The soul never thinks without a mental image.”
6 As an example, let us consider the case in which the set Zr coincides with the set of solution

components Y and r : [xt, ut] �→ ut. This is the typical transformation adopted in the applica-
tions of ant colony optimization to the traveling salesman problem and to other combinatorial
optimization problems. For this reason, such a transformation will be denoted in the following
as raco.

7 Yet, the result of a state-space reduction does not have a standard name in control theory and
the various terms used always bring a direct reference to the concept of state: e.g. reduced
state. It is just in order to underline the important qualitative difference between the properties
of the state and those of the result of a state-space reduction, that we introduce here the term
phantasma to denote the latter.

Toward the Formal Foundation of Ant Programming 195

weights of the edges of the graph Gr(Zr, Ur) so that they describe the quantity that in ant
colony optimization is called pheromone trail. The function T : Ur → R will be used
in the process of selecting an action by an ant when perceiving a given phantasma, and
will be iteratively modified in order to improve the quality of the solutions generated.
The definition of the function T will be given in Section 4.

4 Ant Programming

In this section we introduce ant programming as a new class of algorithms that deal
with the optimization problems (3) under the form described by (6). Ant programming
is inspired by ant colony optimization, and from the latter it inherits the essential fea-
tures, the terminology and the underlying philosophy. The aim of this section is mostly
speculative: we do not describe a specific algorithm, but rather a class of algorithms, in
the sense that we define a general resolution strategy and an algorithmic structure where
some components are functionally specified but left uninstantiated.

4.1 The Three Phases of Ant Programming

Two are the essential features of ant programming. The first is the incremental Monte
Carlo generation of complete paths over the state graph G, on the basis of desirability
information provided by the function T associated with the representation graph Gr.
The second is the update of the desirability information in Gr on the basis of the cost of
the generated solutions and the use of such information to bias subsequent generations.
These two features are described in terms of the three phases that, when properly iterated,
constitute ant programming:At each iteration, a new set of ants, hereafter called a cohort,
is considered. Each ant in the cohort undergoes a forward phase that determines the
generation of a path, and a backward phase that states how the costs experienced along
such a path should influence the generation of future paths. Finally, each iteration is
concluded by a merge phase that combines the contribution of all the ants of the cohort.
The three phases forward, backward, and merge are in turn characterized by the three
operators π, ν, and σ respectively.

The forward phase. Using the terminology of ant colony optimization and in the
light of the formalization given in Section 3, ant programming metaphorically describes
each Monte Carlo run as the walk of an ant over the graph G(X, U), where at each node
a random experiment determines the following node. In the ant metaphor, the random
experiment is depicted as a decision taken by the ant on the basis of a probabilistic policy
parameterized in terms of the function T , usually called the pheromone trail, defined on
the set of edges of the graph Gr(Zr, Ur).

The forward phase can be described as follows: Let us suppose that after t decision
steps the partial solution built so far is (u0, . . . , ut−1). The state of the solution generation
process is therefore xt = (u0, . . . , ut−1). In the ant metaphor, this fact is visualized as
an ant being in the node xt of G(X, U). The ant perceives the state xt in terms of the
phantasma zt = r(xt). In the general case, it is not possible to express the set Ur(t) of
admissible actions available to the ant when in zt only in terms of zt itself, and of the
information given by Gr. The set Ur(t) of the admissible actions at time t is indeed:

196 M. Birattari, G. Di Caro, and M. Dorigo

Ur(t)=Ur(zt|xt)=
{

〈zt, zt+1〉 ∈ Ur

∣∣ zt = r(xt),∃u ∈ U(xt) : zt+1 = r([xt, u])
}

.

The decision of the ant consists in the selection of one element from the set Ur(zt|xt)
of the available transitions, as described at the level of the graph Gr. Once an element,
say 〈zt, zt+1〉, is selected, the partial solution is transformed according to Eq. 4 and
Eq. 5: xt+1 = [xt, ut] = (u0, . . . , ut−1, ut), where xt+1 ∈ r−1({zt+1}) is one of
the preimages of the phantasma zt+1. In terms of the metaphor, this state transition is
described as a movement of the ant to the node xt+1 of G which in turn is perceived by
the ant as a movement to the phantasma zt+1 = r(xt) on Gr.

The decision among the elements of Ur(zt|xt) is taken according to the first operator
of ant programming: the stochastic policy π. Given the current phantasma and the set of
admissible actions Ur(zt|xt), the policy selects an element of Ur(zt|xt) as the outcome
of a random experiment whose parameters are defined by the weights T (〈zt, zt+1〉)
associated with the edges Ur(zt|xt) of the graph Gr(Zr, Ur). Accordingly we will adopt
the following notation to denote the stochastic policy:

π
(
zt, Ur(zt|xt);T |Ur(zt|xt)

)
. (7)

With the notation T |Ur(zt|xt) we want to suggest that, when in zt, the full knowledge of
the function T is not strictly needed to select an element of the set Ur(zt|xt). Indeed
it is sufficient to know the restriction of T to the subset Ur(zt|xt) of the domain Ur.8

The function T plays the role of parameter of the policy π: changing T will change the
policy itself.

In relation to the definition of the policy π, it is worth noticing here how the decision
process uses the information contained in the two graphs G and Gr: The decision is taken
on the basis of information pertaining to the graph Gr, restricted by the knowledge of
the actual state xt which in turn is a piece of information pertaining to the graph G.

Given the abstract definition (7) of the policy π, the forward phase can be defined as
the sequence of steps that take one ant from the initial state x0, to a solution, say s = xτ ,
of the original combinatorial problem (3). Each of such steps is composed by three
operations: first define, on the basis of the current state xt, the set Ur(zt|xt) of the
available transitions; second select a transition on Gr; and third move on G from the
current node xt to the neighboring node xt+1. Formally, the single forward step is
described as:

〈zt, z
′
t+1〉 = π

(
zt, Ur(zt|xt);T |Ur(zt|xt)

)
;

xt+1 = F(
xt, 〈zt, z

′
t+1〉

)
;

zt+1 = r(xt+1),

(8)

where the operator π is the stochastic policy that indicates the transition to be executed
as seen on the graph Gr, and where with the operator F we denote the operation of

8 This fact is the expression of one of the feature of ant programming, namely the locality of
the information needed by the ant in order to take each elementary decision. Such a feature
plays and important role in the implementation, allowing a distribution of the information on
the graph of the representation Gr .

Toward the Formal Foundation of Ant Programming 197

selecting one preimage xt+1 of z′
t+1 and moving to it on the graph G from the current

state xt. Such a movement on G will be indeed “perceived” by the ant as a movement
to the phantasma zt+1 = r(xt+1) = z′

t+1, as requested by the policy π.

The backward phase. The ultimate goal of ant programming is to find a policy π̄,
not necessarily stochastic, such that a sequence of decisions taken according to π̄ leads
an ant to define the solution s̄ which minimizes the cost function J of the original
optimization problem (3).

Since the generic policy (7) is described parametrically in terms of the function T ,
that is, in terms of the weights associated to the edges of the graph Gr, a search in the
space of the policies amounts to a search in the space of the possible weights of the graph
Gr itself. From a conceptual point of view, the function T is to be related to Hamilton’s
principal function of the calculus of variations, and to the cost-to-go and value function
of dynamic programming and reinforcement learning. More precisely, the function T
can be closely related to the function that in the reinforcement learning literature is
known as “state-action value function,” and that is customarily denoted by the letter Q.
In fact, T (〈zt, zt+1〉) determines, as to (7), the probability of selecting the action “go
to phantasma zt+1” when the current phantasma is zt. It therefore associates to the
phantasma-action pair, a number which represents the desirability of performing such
an action in the given phantasma. In this respect, it is clear the similarity with the role of
the function Q in reinforcement learning.9 The value of T (〈zt, zt+1〉) is generally given
as a statistic of the observed cost of paths containing the transition 〈zt, zt+1〉. It therefore
brings information on the quality of the solution that can be obtained by “going to zt+1”
when in zt. Also in this respect, it can be stated a parallel with the function Q which
indeed informs on the long-term cost of a given action, provided that future actions
are selected optimally. In ant programming, as generally in reinforcement learning, the
search in the space of the policies is performed through some form of generalized policy
iteration [17]. Starting from some arbitrary initial policy, ant programming iteratively
generates a number of paths in order to evaluate the current policy and then improves it
on the basis of the result of the evaluation. At each iteration, therefore, a cohort of ants
is considered, each generating a solution through a forward phase. Once the solution is
completed, each ant traces back its path proposing at each visited phantasma an update
of the local values of the function T on the basis of the costs experienced in the forward
movement. This phase is denoted in the terminology of ant programming as the backward
phase of the given ant. The actual new value of T is obtained by some combination of
the values proposed by the ants of the cohort. This phase is denoted as the merge phase.

Let us now see in detail the backward phase for a given single ant. Let us consider
a complete path x = 〈x0, x1, . . . , xτ 〉 over the graph G. If z = 〈z0, z1, . . . , zτ 〉 is the
complete forward path as seen under r, and c = 〈c1, . . . , cτ 〉 is the experienced sequence
of costs, then the single step of the backward phase is:

9 An important difference is precisely that the function Q supposes a direct knowledge of the
state, while T refers to the phantasma. In reinforcement learning, the situation in which more
states are not perceived as distinct is termed perceptual aliasing [19].

198 M. Birattari, G. Di Caro, and M. Dorigo

zt = B(zt+1, z),

T ′(〈zt, zt+1〉) = ν(c, T),
(9)

where the operator B indicates a single step backward on Gr, along the forward tra-
jectory z. The operator ν is the key element of the backward phase. It has the role of
proposing a new value for the weight associated to each visited edge 〈zt, zt+1〉, on the
basis of the sequence of costs experimented during the forward phase, and of the current
values of the function T . Hence, in our pictorial description of ant programming, this
phase is pictured through an ant that “traces back” its forward path and leaves on such a
path some information. >From a logical point of view, the different strategies for prop-
agating the information gathered along a path are to be related to the different update
strategies in reinforcement learning. In particular, to propose values of T ′ only for the
visited transitions and on the basis of the cost of the associated solution, is equivalent to
what in reinforcement learning is called Monte Carlo update [17]. On the other hand,
it is equivalent to a Q-learning update [18] to propose a value of T ′ for a visited tran-
sition on the basis of the experienced cost for the transition itself and of the minimum
of the current values that T assumes on the edges departing from the node to which the
considered transition leads. The details of the definition of the backward phase, and in
particular of the operator ν are not given as part of the description of ant programming
and are left uninstantiated.

The merge phase. In the same spirit, we leave here undefined in its details also the
merge phase which combines the different functions T ′ proposed by the individual ants
of the same cohort. At this level of our description it will be sufficient to note that, for
every transition 〈zt, zt+1〉 ∈ Ur, the actual new value of T (〈zt, zt+1〉) will be some
linear or nonlinear function of the current value of T (〈zt, zt+1〉), and of the different
T ′

j(〈zt, zt+1〉), where j is the index ranging over the ants of the cohort. The merge phase
will be therefore characterized by the operator σ:

T (〈zt, zt+1〉) = σ
(
T (〈zt, zt+1〉), T ′

1(〈zt, zt+1〉), T ′
2(〈zt, zt+1〉), . . .

)
. (10)

Different possible instances of the operators ν and σ will be discussed in a future work.

4.2 The Algorithm and the Metaphor

The abstract definition of ant programming was given in previous sections in terms of
the operators π, ν, and σ. In order to define an instance of the ant programming class,
such operators need to be instantiated. Together with the operators π, ν, and σ, the other
key element in the definition of an instance of the class, is the generating function r that
defines the relation between the state graph G and the representation Gr. We will therefore
denote an instance of ant programming with the 4-tuple I = 〈r, π, ν, σ〉. Indeed, other
elements are to be instantiated as, for example, the number of ants composing a cohort
and the way of initializing the function T .Anyway, such elements are either less relevant,
or are to be defined as a more or less direct consequence of the definition of I.

In particular, the 4-tuple I gives an operative definition of the function T . As seen
in the previous sections, the generating function r, together with the graph G, gives
the topology of the graph Gr and determines therefore the domain of the function T .
The operator π defines how the values of T are used in the decision process, while the

Toward the Formal Foundation of Ant Programming 199

operators ν and σ define how the function T is to be modified on the basis of the quality
of the solutions obtained. According to the pictorial description of ant programming,
the function T is called pheromone trail and defines the policy π followed by the ant
during the forward walk. Once a solution s is completed, the ant traces back its forward
path and deposits its pheromone to update the function T . The role of the pheromone
trails T is therefore to make available the information gathered on a particular path by
one ant belonging to one given cohort, to other ants of a future cohort; it is therefore a
form of inter-cohort communication mediated by the graph Gr. >From the terminology
adopted in the studies on social insects [13], it is customary to refer to such indirect
communication with the term stigmergy [7].

At this point, having defined the 4-tuple I, we have completed the definition of the
elements that are necessary to handle the complexity of the combinatorial problem (3)
in the spirit of the solution strategy originally suggested by ant colony optimization.

5 Discussion and Future Work

Future work will concentrate on the analysis of ant programming and on the proper-
ties of its possible instances. In particular, it is of paramount importance to gain a full
understanding of the impact of the choice of r, the generating function of the repre-
sentation, on the resulting algorithms. Such a function associates a phantasma to the
current state and therefore can be informally thought of as the “lens” under which the
process of incremental construction of a solution is seen. In this sense, “the ant never
thinks without a phantasma” and, as far as the decision process is concerned, this is to be
understood as “the ant takes decisions on the basis of the phantasma.” The generating
function determines therefore the information on the basis of which decisions will be
taken. At the extreme, the generating function might be a one-to-one mapping. In this
case, only one state is associated to a phantasma, and vice versa. As a consequence, the
state graph G and the representation graph Gr have the same topological structure and,
therefore, the representation enjoys the Markov property. Accordingly, we refer to this
extreme instance of the ant programming class with the name of Markov ants. Markov
ants face directly the exponential explosion of the number of edges of the graph G. Nev-
ertheless, since r is a one-to-one mapping, no two states are aliased in the representation.
As a consequence, the policy that according to (7) selects the action on the basis of the
current phantasma, indeed implicitly bases the choice on the actual underlying state.
>From this fact, different appealing properties follow. It can be shown, for instance, that
an optimal policy exists, and that it is deterministic. The performance of Markov ants
can be improved if the pheromone trails T and the operator ν are designed in such a way
that the Markov property of the representation is fully exploited. This can be done by
defining T as a costs-to-go function, and by allowing the operator ν to bootstrap [17]. In
this way Markov ants would reduce to an algorithm of the temporal difference class [17].
Anyway, Markov ants are not meant to be implemented. The focus of ant programming
is indeed on problems whose Markov representation is computationally intractable and,
in such situations, Markov ants are ruled out by their very own nature. Still, Markov ants
remain of great theoretical interest.

Another class of instances of ant programming is of much greater practical interest.
These instances are characterized by the function raco, as in Footnote 6, that associates

200 M. Birattari, G. Di Caro, and M. Dorigo

a phantasma with one and only one of the possible solution components. The func-
tion raco generates the representation used in almost all the implementations of ant
colony optimization since the first “template” instance developed by Marco Dorigo and
colleagues [11,6] back in 1991. Accordingly, we call Marco’s ants the instances of this
class. Thanks to the concepts introduced in this paper, it becomes apparent that the rep-
resentation graph generated by raco is much more compact than the state graph. In order
to compensate this drastic loss of information, most of the instances of ant colony opti-
mization adopt some additional device both to guarantee the feasibility and to improve
the quality of the solutions being built. As far as feasibility is concerned, all instances of
ant colony optimization use an implicit description of the state graph usually in the form
of a list of components already included into the solution under construction. As far as
quality is concerned, two major approaches have been followed. In the first approach,
some additional a priori knowledge about the problem at hand, has been combined to
the estimate of the function T for the definition of the decision policy. In the second
approach, local optimization procedures, ad hoc tailored on the problem at hand, have
been used in order to improve the quality of the solutions generated by the ants. Some
of the resulting implementations have been shown to be comparable to or better than
state-of-the-art techniques on several NP-hard problems. Moreover, under “reasonable”
assumptions on the characteristics of the other components of the algorithm, ant colony
optimization has been proved to asymptotically converge in probability to the optimal
solution [14,16].

Future developments of this work will analyze in detail the properties of the two above
mentioned instances: Markov ants and Marco’s ants. Further, it will be of great practical
interest to evaluate the possibility of designing other instances of ant programming that,
on the one hand, keep an eye on the practical implementation, as Marco’s ants do, and
that, on the other, try to preserve as much as possible the properties of a state-space
representation, going therefore in the direction of Markov ants.

Acknowledgments. Mauro Birattari acknowledges support from the Metaheuristics
Network, a Research and Training Network funded by the Commission of the Euro-
pean Communities under the Improving Human Potential programme, contract number
HPRN-CT-1999-00106. The work of Gianni Di Caro has been supported by a Marie
Curie Fellowship of the European Community programme Improving the Human Re-
search Potential under contract number HPMF-CT-2000-00987. The information pro-
vided is the sole responsibility of the authors and does not reflect the Community’s
opinion. The Community is not responsible for any use that might be made of data
appearing in this publication. Marco Dorigo acknowledges support from the Belgian
FNRS, of which he is a Senior Research Associate.

References

1. R. Beckers, J. L. Deneubourg, and S. Goss. Trails and U-turns in the selection of the shortest
path by the ant Lasius Niger. Journal of Theoretical Biology, 159:397–415, 1992.

2. R. Bellman. Dynamic Programming. Princeton University Press, Princeton, NJ, USA, 1957.
3. D. P. Bertsekas. Dynamic Programming and Optimal Control. Athena Scientific, Belmont,

MA, USA, 1995. Vols. I and II.

Toward the Formal Foundation of Ant Programming 201

4. M. Birattari, G. Di Caro, and M. Dorigo. For a formal foundation of the Ant Programming
approach to combinatorial optimization. Part 1: The problem, the representation, and the
general solution strategy. Technical Report TR-H-301, ATR Human Information Processing
Research Laboratories, Kyoto, Japan, 2000.

5. V. Boltyanskii. Optimal Control of Discrete Systems. John Wiley & Sons, New York, NY,
USA, 1978.

6. M. Dorigo. Optimization, Learning and Natural Algorithms (in Italian). PhD thesis, Dipar-
timento di Elettronica, Politecnico di Milano, Milan, Italy, 1992.

7. M. Dorigo, E. Bonabeau, and G. Theraulaz. Ant algorithms and stigmergy. Future Generation
Computer Systems, 16(8):851–871, 2000.

8. M. Dorigo and G. Di Caro. The ant colony optimization meta-heuristic. In D. Corne,
M. Dorigo, and F. Glover, editors, New Ideas in Optimization, pages 11–32. McGraw-Hill,
New York, NY, USA, 1999.

9. M. Dorigo, G. Di Caro, and T. Stützle (Editors). Special issue on “Ant Algorithms”. Future
Generation Computer Systems, 16(8), 2000.

10. M. Dorigo, G. Di Caro, and L. M. Gambardella. Ant algorithms for distributed discrete
optimization. Artificial Life, 5(2):137–172, 1999.

11. M. Dorigo,V. Maniezzo, andA. Colorni. The ant system:An autocatalytic optimizing process.
Technical Report 91-016 Revised, Dipartimento di Elettronica, Politecnico di Milano, Milan,
Italy, 1991.

12. M. Dorigo, M. Zlochin, N. Meuleau, and M. Birattari. Updating ACO pheromones using
stochastic gradient ascent and cross-entropy methods. In S. Cagnoni, J. Gottlieb, E. Hart,
M. Middendorf, and R. Raidl, editors, EvoCOP 2002: Applications of Evolutionary Com-
puting, volume 2279 of Lecture Notes in Computer Science, pages 21–30. Springer-Verlag,
Heidelberg, Germany, 2002.

13. P. P. Grassé. La reconstruction du nid et les coordinations interindividuelles chez belli-
cositermes natalensis et cubitermes sp. La théorie de la stigmergie: essai d’interprétation du
comportement des termites constructeurs. Insectes Sociaux, 6:41–81, 1959.

14. W. Gutjahr. A graph-based ant system and its convergence. Special issue on Ant Algorithms,
Future Generation Computer Systems, 16(8):873–888, 2000.

15. N. Meuleau and M. Dorigo. Ant colony optimization and stochastic gradient descent. Artificial
Life, 8(2):103–121, 2002.

16. T. Stützle and M. Dorigo. A short convergence proof for a class of ACO algorithms. IEEE
Transactions on Evolutionary Computation, 6(4), 2002, in press.

17. R. S. Sutton and A. G. Barto. Reinforcement Learning. An Introduction. MIT Press, Cam-
bridge, MA, USA, 1998.

18. C. J. C. H. Watkins. Learning from Delayed Rewards. PhD thesis, King’s College, Cambridge,
United Kingdom, 1989.

19. S. D. Whitehead and D. H. Ballard. Learning to perceive and act. Machine Learning, 7(1):45–
83, 1991.

20. L. Zadeh and C. Desoer. Linear System Theory. McGraw-Hill, New York, NY, USA, 1963.
21. M. Zlochin, M. Birattari, N. Meuleau, and M. Dorigo. Model-base search for combinatorial

optimization. Technical Report TR/IRIDIA/2001-15, IRIDIA, Université Libre de Bruxelles,
Brussels, Belgium, 2001.

	Introduction
	Discrete Optimization, Optimal Control, and Shortest Paths
	Markov and Non-Markov Representations
	Ant Programming
	The Three Phases of Ant Programming
	The Algorithm and the Metaphor

	Discussion and Future Work
	References

