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Abstract. It is often believed that the performance of ant system, and
in general of ant colony optimization algorithms, depends somehow on
the scale of the problem instance at hand. The issue has been recently
raised explicitly [1] and the hyper-cube framework has been proposed to
eliminate this supposed dependency.

In this paper, we show that although the internal state of ant system—
that is, the pheromone matrix—depends on the scale of the problem
instance under analysis, this does not affect the external behavior of
the algorithm. In other words, for an appropriate initialization of the
pheromone, the sequence of solutions obtained by ant system does not
depend on the scale of the instance.

As a second contribution, the paper introduces a straightforward vari-
ant of ant system in which also the pheromone matrix is independent of
the scale of the problem instance under analysis.

1 Introduction

The hyper-cube framework [1] has been recently introduced with the aim of im-
plementing ant colony optimization algorithms (ACO) [2] that are invariant with
respect to a linear rescaling of problem instances. The need for the introduction
of the hyper-cube framework has been explicitly motivated by the observation
that

in standard ACO algorithms the pheromone values and therefore the per-
formance of the algorithms, strongly depend on the scale of the prob-
lem. [1]

In this paper, we formally show that this statement is only partially correct:
Indeed, in standard ant colony optimization algorithms the pheromone trail and
the heuristic values depend on the scale of the problem. Nonetheless, for an
appropriate initialization of the pheromone, the sequence of solutions they find
is independent of the scaling.

For definiteness, the paper focuses on ant system [3,4,5] for the traveling
salesman problem. The theorems we enunciate in the paper are proved first for
this specific algorithm and for this specific problem. The conditions under which
these results extend to other problems are discussed in the following.

Although this paper shows that the main motivation for the introduction of
the hyper-cube framework does not hold, the work of Blum and Dorigo [1] has the
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main merit of having explicitly attracted the attention of the research community
on some important issues. Indeed, the fact that pheromone and heuristic values
depend on the scale of the problem complicates the analysis of the algorithm
and might cause numerical problems in the implementations. The hyper-cube
framework is definitely a solution to this problem. Nonetheless, the hyper-cube
version of ant system is effectively a new algorithm which shares with the orig-
inal ant system the underlying ideas but that produces a different sequence of
solutions. In other words, the hyper-cube ant system and the original ant sys-
tem are not functionally equivalent. In this paper we propose siAS which is a
trivial modification of ant system. Similar to the hyper-cube ant system, siAS
has the property that the pheromone and the heuristic values do not depend on
the scaling of the problem. Nevertheless, contrary to the hyper-cube ant system,
siAS is functionally equivalent to the original ant system. This last property is
particularly desirable: all theoretical and empirical studies previously performed
on ant system immediately extend to siAS.

In this paper, we focus our attention on ant system. Nonetheless the same
invariance property can be proved for other ACO algorithms. We refer the reader
to [6] for an analysis of the invariance of MAX–MIN ant system [7,8] and of
ant colony system [9]. Moreover, in [6] the algorithms siMMAS and siACS are
defined, which are functionally equivalent to MAX–MIN ant system and ant
colony system, respectively, and in which the pheromone and the heuristic values
do not depend on the scaling of the problem.

The rest of the paper is organized as follows. Section 2 introduces some prelim-
inary concepts. Section 3 defines ant system and formally proves its invariance.
Section 4 introduces the siAS algorithm. Finally, Sect. 5 concludes the paper.

2 Preliminary Definitions

This section introduces a number of fundamental concepts that will be needed
in the following.

Definition 1 (Linear transformation of a problem instance). If I is an
instance of a generic combinatorial optimization problem, Ī = fI, f > 0, is a
linear transformation of I if Ī is obtained by multiplying all costs in I by the
coefficient f . In particular, it results that the cost C̄ of a solution T̄ of instance
Ī is f times the cost C of the corresponding solution T of instance I.

Definition 2 (Linear transformation of a traveling salesman instance).
With Ī = fI, f > 0, we indicate that the instance Ī is a linear transformation
of the instance I: The two instances have the same number of cities and the cost
c̄ij of traveling from city i to city j in Ī is f times the corresponding cost cij in
instance I. Formally:

c̄ij = fcij , for all 〈i, j〉. (1)
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Remark 1. The cost C̄ of a solution T̄ of instance Ī is f times the cost C of the
corresponding solution T of instance I. Formally:

(Ī = fI) ∧ (T̄ = T ) =⇒ C̄ = fC. (2)

Remark 2. In the following, if x is a generic quantity that refers to an instance
I, then x̄ is the corresponding quantity for what concerns instance Ī, when Ī is
a linear transformation of I.

Ant colony optimization algorithms are stochastic: Solutions are constructed in-
crementally on the basis of stochastic decisions that are biased by the pheromone
and by some heuristic information. The following hypothesis will be used in the
paper.

Hypothesis 1 (Pseudo-random number generator). When solving two in-
stances I and Ī, the stochastic decisions taken while constructing solutions are
made on the basis of random experiments based on pseudo-random numbers
produced by the same pseudo-random number generator. We assume that this
generator is initialized in the same way (for example, with the same seed) when
solving the two instances so that the two sequences of pseudo-random numbers
that are generated are the same in the two cases.

Definition 3 (Invariance). An algorithm A is invariant to linear transfor-
mations if the sequence of solutions SI generated when solving an instance I and
the sequence of solutions SĪ generated when solving an instance Ī are the same,
whenever Ī is a linear transformation of I.

If A is a stochastic algorithm, it is said to be invariant if it is so under
Hypothesis 1.

Definition 4 (Strong and weak invariance). An algorithm A is said to be
strongly-invariant if, beside generating the same solutions on any two lin-
early related instances I and Ī, it also enjoys the property that the heuristic
information and the pheromone at each iteration are the same when solving I
and Ī. Conversely, the algorithm A is weakly-invariant if it obtains the same
solutions on linearly related instances but the heuristic information and the phe-
romone assume different values.

If A is stochastic, it is said to be strongly-invariant (or weakly-invariant) if it
is so under Hypothesis 1.

3 Ant System

Ant system is the original ant colony optimization algorithm proposed by Dorigo
et al. [3,4,5]. The pseudo-code of the algorithm is given in Fig. 1. In our analysis,
we refer to the application of ant system to the well-known traveling salesman
problem, which consists in finding the Hamiltonian circuit of least cost on an
edge-weighted graph.
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Ant system:

Initialize pheromone trail
while (termination condition not met) do

Construct solutions via the random proportional rule
Update pheromone

end

Fig. 1. Pseudo-code of ant system

Definition 5 (Random proportional rule). At the generic iteration h, sup-
pose that ant k is in node i. Let N k

i be the set of feasible nodes. The node j ∈ N k
i ,

to which ant k moves, is selected with probability:

pk
ij,h =

[τij,h]α[ηij ]β∑
l∈Nk

i
[τil,h]α[ηil]β

,

where α and β are parameters, τij,h is the pheromone value associated with arc
〈i, j〉 at iteration h, and ηij represents heuristic information on the desirability
of visiting node j after node i.

Definition 6 (Heuristic information). When solving the traveling salesman
problem, the heuristic information ηij is the inverse of the cost of traveling from
city i to city j:

ηij =
1
cij

, for all 〈i, j〉.

Definition 7 (Pheromone update rule). At the generic iteration h, suppose
that m ants have generated the solutions T 1

h , T 2
h , . . . , T m

h of cost C1
h , C2

h , . . . , Cm
h ,

respectively. The pheromone on each arc 〈i, j〉 is updated according to the follow-
ing rule:

τij,h+1 = (1 − ρ)τij,h +
m∑

k=1

Δk
ij,h,

where ρ is a parameter called evaporation rate and

Δk
ij,h =

{
1/Ck

h
, if 〈i, j〉 ∈ T k

h
;

0, otherwise.
(3)

Definition 8 (Ant system). Ant system is an ant colony optimization algo-
rithm in which solutions are constructed according to the random proportional
rule given in Definition 5, and the pheromone is updated according to the rule
given in Definition 7. The evaporation rate ρ, the number of ants m, and the
exponents α and β are parameters of the algorithm.

When ant system is used for solving the traveling salesman problem, it is cus-
tomary to initialize the pheromone as follows.
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Definition 9 (Nearest-neighbor pheromone initialization). At the first
iteration h = 1, the pheromone on all arcs is initialized to the value:

τij,1 =
m

Cnn , for all 〈i, j〉,

where m is the number of ants considered at each iteration, and Cnn is the cost
of the solution T nn obtained by the nearest-neighbor heuristic.

The following theorem holds true.

Lemma 1. The random proportional rule is invariant to concurrent linear
transformations of the pheromone and of the heuristic information. Formally:

(τ̄ij,h = g1τij,h) ∧ (η̄ij = g2ηij), for all 〈i, j〉 =⇒ p̄k
ij,h = pk

ij,h, for all 〈i, j〉.

where p̄k
ij,h is obtained on the basis of τ̄ij,h and η̄ij, according to Definition 5.

Proof. According to Definition 5:

p̄k
ij,h =

[τ̄ij,h]α[η̄ij ]β∑
l∈Nk

i
[τ̄il,h]α[η̄il]β

=
[g1τij,h]α[g2ηij ]β∑

l∈Nk
i

[g1τil,h]α[g2ηil]β

=
[g1]α[g2]β [τij,h]α[ηij ]β∑

l∈Nk
i

[g1]α[g2]β[τil,h]α[ηil]β
=

[g1]α[g2]β [τij,h]α[ηij ]β

[g1]α[g2]β
∑

l∈Nk
i

[τil,h]α[ηil]β

=
[τij,h]α[ηij ]β∑

l∈Nk
i

[τil,h]α[ηil]β
= pk

ij,h.

��

Theorem 1. The ant system algorithm for the traveling salesman problem is
weakly-invariant, provided that the pheromone is initialized as prescribed by De-
finition 9.

Proof. Let us consider two generic instances I and Ī such that

Ī = fI, with f > 0.

The theorem is proved by induction: We show that if at the generic iteration h
some set of conditions C holds, then the solutions generated for the two instances
I and Ī are the same and the set of conditions C also holds for the following
iteration h + 1. The proof is concluded by showing that C holds for the very
first iteration. With few minor modifications, this technique is adopted in the
following for proving all theorems enunciated in the paper.

According to Definition 6, and taking into account (1), it results:

η̄ij =
1
f

ηij , for all 〈i, j〉.
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According to Lemma 1, if at the generic iteration h, τ̄ij,h = 1
f τij,h, for all 〈i, j〉,

then p̄k
ij,h = pk

ij,h, for all 〈i, j〉. Under Hypothesis 1,

T̄ k
h

= T k
h
, for all k = 1, . . . , m,

and therefore, according to (2),

C̄k
h

= fCk
h
, for all k = 1, . . . , m.

According to (3):

Δ̄k
ij,h =

{
1/C̄k

h , if 〈i, j〉 ∈ T̄ k
h ;

0, otherwise;
=

{
1/fCk

h , if 〈i, j〉 ∈ T̄ k
h = T k

h ;
0/f, otherwise;

=
1
f

{
1/Ck

h
, if 〈i, j〉 ∈ T k

h
;

0, otherwise;
=

1
f

Δk
ij,h,

and therefore, for any arc 〈i, j〉:

τ̄ij,h+1 = (1 − ρ)τ̄ij,h +
m∑

k=1

Δ̄k
ij,h = (1 − ρ)

1
f

τij,h +
m∑

k=1

1
f

Δk
ij,h

= (1 − ρ)
1
f

τij,h +
1
f

m∑

k=1

Δk
ij,h =

1
f

(

(1 − ρ)τij,h +
m∑

k=1

Δk
ij,h

)

=
1
f

τij,h+1.

In order to provide a basis for the above defined induction and therefore to
conclude the proof, it is sufficient to observe that at the first iteration h = 1,
the pheromone is initialized as:

τ̄ij,1 =
m

C̄nn =
m

fCnn =
1
f

τij,1, for all 〈i, j〉.

��

Remark 3. Theorem 1 holds true for any way of initializing the pheromone,
provided that for any two instances Ī and I such that Ī = fI, τ̄ij,1 = 1

f τij,1, for
all 〈i, j〉.

Remark 4. Theorem 1 extends to the application of ant system to problems
other than the traveling salesman problem, provided that the initialization of
the pheromone is performed as prescribed in Remark 3 and for any two instances
Ī and I such that Ī = fI, with f > 0, there exists a coefficient g > 0 such that
[η̄ij ]β = [gηij ]β , for all 〈i, j〉. In particular, it is worth pointing out here that one
notable case in which this last condition is satisfied is when β = 0, that is, when
no heuristic information is used.
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4 Strongly-Invariant Ant System

A strongly invariant version of ant system (siAS) can be easily defined. For
definiteness, we present here a version of siAS for the traveling salesman problem.

Definition 10 (Strongly-invariant heuristic information). When solving
the traveling salesman problem, the heuristic information ηij is

ηij =
Cnn

ncij
, for all 〈i, j〉. (4)

where cij is the cost of traveling from city i to city j, n is the number of cities, and
Cnn is the cost of the solution T nn obtained by the nearest-neighbor heuristic.

Definition 11 (Strongly-invariant pheromone update rule). The phero-
mone is updated using the same rule given in Definition 7, with the only differ-
ence that Δk

ij,h is given by:

Δk
ij,h =

{
Cnn/mCk

h
, if 〈i, j〉 ∈ T k

h
;

0, otherwise;

where Cnn is the cost of the solution T nn obtained by the nearest-neighbor heuris-
tic and m is the number of ants generated at each iteration.

Definition 12 (Strongly-invariant pheromone initialization). At the first
iteration h = 1, the pheromone on all arcs is initialized to the value:

τij,1 = 1, for all 〈i, j〉.

Definition 13 (Strongly-invariant ant system). The strongly-invariant
ant system (siAS) is a variation of ant system. It shares with ant system the
random proportional rule for the construction of solutions, but in siAS the heuris-
tic values are set as in Definition 10, the pheromone is initialized according to
Definition 12 and the update is performed according to Definition 11.

Remark 5. In the definition of siAS given above, the nearest-neighbor heuristic
has been adopted for generating a reference solution, the cost of which is then
used for normalizing the cost of the solutions found by siAS. Any other algorithm
could be used instead, provided that the solution it returns does not depend on
the scale of the problem.

Remark 6. It is worth noting here that the presence of the term n in the de-
nominator of the left hand side of (4) is not needed for obtaining an invariant
heuristic information. It has been included for achieving another property. In-
deed, ηij as defined in (4) assumes values that do not depend on the size of the
instance under analysis—that is, on the number n of cities. If this term were not
present, since the numerator Cnn grows with n, ηij would have been relatively
larger in large instances and smaller in small ones.
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Remark 7. Similarly, it should be noticed that by initializing the pheromone to
τij,1 = 1/m, for all 〈i, j〉, and by defining Δk

ij,h as:

Δk
ij,h =

{
Cnn/Ck

h
, if 〈i, j〉 ∈ T k

h
;

0, otherwise;

one would have obtained nonetheless an invariant algorithm. The advantage of
the formulation given in Definitions 11 and 12 is that the magnitude of the
pheromone deposited on the arcs does not depend on the number m of ants
considered.

The strongly-invariant ant system is functionally equivalent to the original ant
system, that is, the two algorithms produce the same sequence of solutions for
any given instance, provided that the pheromone is properly initialized, their
respective pseudo-random number generators are the same, and these generators
are initialized with the same seed. Formal proofs of the functional equivalence
of siAS and ant system and of the strong invariance of siAS, are given in [6].

5 Conclusions

We have formally proved that, contrary to what previously believed [1], ant
system is invariant to the rescaling of problem instances. The same holds [6] for
the two main other members of the ant colony optimization family of algorithms,
namely, MAX–MIN ant system and ant colony system.

Moreover, we have introduced siAS, which is a straightforward strongly-
invariant version of ant system. In this respect, siAS is similar to the hyper-cube
ant system [1] which is the first strongly-invariant version of ant system ever
published in the literature. The main advantage of siAS over the hyper-cube ant
system is that, while the latter is effectively a new algorithm, siAS is functionally
equivalent to the original ant system. As a consequence, one can immediately
extend to siAS all understanding previously acquired about ant system and
all empirical results previously obtained. Following the strategy adopted in the
definition of siAS, a strongly-invariant version of any ACO algorithm can be
defined. In particular, siMMAS and siACS are introduced in [6]. These two al-
gorithms are the strongly-invariant versions of MAX–MIN ant system and ant
colony system, respectively. Like siAS, also siMMAS and siACS are functionally
equivalent to their original counterparts.
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