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Abstract—Ant colony optimization (ACO) is a promising meta-
heuristic and a great amount of research has been devoted to its em-
pirical and theoretical analysis. Recently, with the introduction of
the hypercube framework, Blum and Dorigo have explicitly raised
the issue of the invariance of ACO algorithms to transformation of
units. They state (Blum and Dorigo, 2004) that the performance of
ACO depends on the scale of the problem instance under analysis.

In this paper, we show that the ACO internal state—commonly
referred to as the pheromone—indeed depends on the scale of
the problem at hand. Nonetheless, we formally prove that this
does not affect the sequence of solutions produced by the three
most widely adopted algorithms belonging to the ACO family: ant
system, – ant system, and ant colony system. For
these algorithms, the sequence of solutions does not depend on the
scale of the problem instance under analysis.

Moreover, we introduce three new ACO algorithms, the internal
state of which is independent of the scale of the problem instance
considered. These algorithms are obtained as minor variations of
ant system, – ant system, and ant colony system. We
formally show that these algorithms are functionally equivalent to
their original counterparts. That is, for any given instance, these
algorithms produce the same sequence of solutions as the original
ones.

Index Terms—Ant colony optimization (ACO), combinatorial
optimization, pheromone invariace, swarm intelligence, weak and
strong invariance.

I. INTRODUCTION

ANT colony optimization (ACO) [2] is a metaheuristic in-
spired by the foraging behavior of ants [3]. In order to find

the shortest path from the nest to a food source, ant colonies
exploit a positive feedback mechanism: They use a form of
indirect communication called stigmergy [4], which is based
on the laying and detection of pheromone trails. In ACO, a
generic combinatorial optimization problem is encoded into a
constrained shortest path problem. A number of paths are gen-
erated in a Monte Carlo fashion on the basis of a probabilistic
model whose parameters are called artificial pheromone—or
more simply pheromone. In the ACO metaphor, these paths are
said to be constructed by artificial ants walking on the graph that
encodes the problem. The cost of the generated paths is used to
modify the pheromone, and therefore to bias the generation of
further paths towards promising regions of the search space [5].

The ACO framework has been explicitly defined by Dorigo
and co-workers in 1999 [6], and comprises a number of al-
gorithms including the original ant system [7]–[9], ant colony
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system [10], and – ant system [11], [12]. A vast
literature exists on ACO and on its application to a large number
of problems. We refer the reader to [2] for a comprehensive
overview and to [13] for a recent survey.

Recently, with the introduction of the hypercube framework
[1], Blum and Dorigo have explicitly raised the issue of the in-
variance of ACO algorithms to transformation of units. In the
hypercube framework, the cost of solutions is normalized on
a per iteration basis. A number of desirable properties follow
from this [1], including the invariance to transformation of units.
Blum and Dorigo [1] maintain that this property is peculiar to
the hypercube framework:

In standard ACO algorithms, the pheromone values and
therefore the performance of the algorithms, strongly de-
pend on the scale of the problem [1].

Here by “performance,” the authors informally mean the se-
quence of solutions generated when solving a problem instance.

In this paper, we formally show that this statement is only
partially correct. Indeed, in standard ACO algorithms, the
pheromone values (and the heuristic information) depend
on the scale of the problem. Nonetheless, the sequence of
solutions ACO algorithms find is independent of the scale of
the problem. For concreteness, in this paper, we focus on ant
system, – ant system, and ant colony system,
which are the three most representative algorithms in the ACO
family.

As a second contribution, we propose variants of the
aforementioned algorithms called strongly invariant ant
system (siAS), strongly invariant – ant system
(si ), and strongly invariant ant colony system (siACS).
These variants are equivalent to their original counterparts, but
they enjoy the further property that the pheromone and the
heuristic values do not depend on the scale of the problem.
Although this property might be desirable in practical applica-
tions, the significance of the introduction of strongly invariant
ACO algorithms is mostly theoretical and speculative. Indeed,
the fact of showing that it is possible to define algorithms
enjoying the above invariance property provides new insight
into ACO.

The rest of this paper is organized as follows. In Section II,
we introduce some preliminary concepts. In Sections III–V, we
deal with ant system, – ant system, and ant colony
system, respectively. In these sections, we formally define the
three algorithms and we prove that the sequence of solutions
they produce does not depend on the scale of the problem in-
stance under analysis. Moreover, in these sections, we propose
the strongly invariant versions of the three algorithms and we
formally study their properties. In Section VI, we describe three
combinatorial optimization problems—namely, the traveling
salesman problem, the quadratic assignment problem, and the
open shop scheduling problem—and we illustrate how the
theorems proved in Sections III–V apply to these problems. In
Section VII, we conclude this paper with some final remarks.
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II. PRELIMINARY DEFINITIONS

In this section, we introduce a number of fundamental con-
cepts that will be needed in the following.

Definition 1 (Linear Transformation of Units): A linear trans-
formation of units is a binary relation defined on the space of
the instances of a combinatorial optimization problem. Two in-
stances and are related via a linear transformation of units if
they share the same space of solutions , and for any solution

, where is a constant and
and are the value of the objective function in for and

, respectively. In the following, the notation will be
adopted.

Being reflexive, symmetric, and transitive, a linear transfor-
mation of units is an equivalence relation. Accordingly, two in-
stances and that meet the conditions given in Definition 1
will be said to be equivalent up to a linear transformation of
units or more simply equivalent.

Remark 1: In the following, if is a generic quantity that
refers to an instance , then is the corresponding quantity for
what concerns instance , when is equivalent to up to a linear
transformation of units.

Definition 2 (Construction Graph, Pheromone, and Heuristic
Information): In ACO, a combinatorial optimization problem
is mapped on a graph , where is the set of nodes
and is the set of edges. The graph is called construction
graph.

The solutions of the original problem are mapped to paths
on . Variables called pheromone and heuristic information are
associated with the edges in .

ACO algorithms are iterative. At each iteration, a number of
solutions are built incrementally on the basis of stochastic de-
cisions that are biased by pheromone and heuristic information.
These solutions are used for updating the pheromone in order
to bias future solutions towards promising regions of the search
space. A pseudocode of a generic ACO algorithm is given in Al-
gorithm 1. The constraints of the optimization problem are im-
plemented by enumerating the set of solution components that
can be added at each step. This set typically depends on the par-
tial solution constructed so far.

Algorithm 1: The ACO Metaheuristic

Set parameters, set heuristic information, and initialize
pheromone;

WHILE termination condition not met do

Construct solutions based on pheromone and heuristic
information;

Improve solutions via local search;1 (optional)

Update pheromone;

end while

1In this paper, we will not discuss the adoption of a local search to improve
solutions constructed by ants. Nonetheless, it is worth noticing here that local
search algorithms are typically invariant to transformation of units. Therefore,
all the theorems presented in the paper also holds true when a local search is
adopted.

In the following, we will adopt the notation to denote the
edge connecting nodes and . With , we denote the heuristic
information on the desirability of constructing a path on fea-
turing node immediately after . Finally, with , we denote
the pheromone on edge at iteration of the algorithm.
The following hypothesis will be used in this paper.

Hypothesis 1 (Pseudorandom Number Generator): When
solving two equivalent instances and , the stochastic de-
cisions taken while constructing solutions are made on the
basis of random experiments based on pseudorandom numbers
produced by the same pseudorandom number generator. We
assume that this generator is initialized in the same way (for
example, with the same seed) when solving the two instances
so that the two sequences of pseudorandom numbers that are
generated are the same in the two cases.

Similarly, when two algorithms and solve the same in-
stance , we assume that the pseudorandom number generators
adopted by the two algorithms are the same and are initialized
in the same way.

Definition 3 (Weak-Invariance): An algorithm is weakly
invariant (or more simply invariant) to linear transformation
of units if the sequence of solutions and generated when
solving, respectively, the instances and are the same, when-
ever is equivalent to up to a linear transformation of units.
If is a stochastic algorithm, it is said to be invariant if it is so
under Hypothesis 1.

Definition 4 (Strong-Invariance): An algorithm is said to
be strongly invariant if, besides generating the same solutions
on any two equivalent instances and , it also enjoys the prop-
erty that its internal state at each iteration is the same when
solving and . If is stochastic, it is said to be strongly in-
variant if it is so under Hypothesis 1.

Remark 2: An ACO algorithm is strongly invariant if
heuristic information and pheromone at each iteration are the
same when solving any two equivalent instances.

Definition 5 (Functional Equivalence): Two algorithms
and are functionally equivalent, or simply equivalent, if for
any instance , the sequence of solutions generated by
and the sequence of solutions generated by are the same.
If and are stochastic, they are said to be equivalent if they
are so under Hypothesis 1.

Definition 6 (Reference Solution): Let be a solution of in-
stance returned by some appropriate invariant algorithm. Such
an algorithm, which is necessarily problem-specific, might be
based either on a heuristic or more simply on a random sam-
pling of the solution space. In this latter case, the invariance of
the algorithm relies on Hypothesis 1. From this definition, it fol-
lows that , for any two equivalent instances
and such that .

III. ANT SYSTEM

Ant system is the original ACO algorithm proposed by
Dorigo and co-workers [7], [7]–[9]. In the following, we pro-
vide a formal definition of the algorithm.

Definition 7 (Random Proportional Rule): At the generic it-
eration , suppose that ant is in node . Further, let be
the set of feasible nodes that can be visited by ant . In general,
this set depends on the partial solution constructed so far by ant
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. The node , to which ant moves, is selected with
probability

where and are parameters.
Definition 8 (Pheromone Update Rule): At the generic it-

eration , suppose that ants have generated the solutions
of cost , respectively.

The pheromone on each edge is updated according to the
following rule:

where is a parameter called the evaporation rate and

(1)

Definition 9 (Pheromone Initialization): At iteration ,
the pheromone is initialized to

where is the number of ants and is the reference solution.
Definition 10 (Ant System): Ant system is an ACO algorithm

in which solutions are constructed according to the random pro-
portional rule given in Definition 7, the pheromone is initialized
as in Definition 9 and updated according to the rule given in
Definition 8. The evaporation rate , the number of ants , and
the exponents and are parameters of the algorithm. The def-
inition of the heuristic information is problem-specific.

The following theorem holds true.
Lemma 1: The random proportional rule is invariant to

concurrent linear transformation of the pheromone and of the
heuristic information. Formally, for any two positive constants

and

where is obtained on the basis of and , according
to Definition 7.

Proof: According to Definition 7

Theorem 1 (Weak Invariance of Ant System): Let and
be two equivalent instances such that , with .
Further, let be the construction graph associated
with and . Ant system obtains the same sequence of solutions
on and if

(Condition 1) the heuristic information is such that

where is the parameter appearing in Definition 7 and
is an arbitrary constant.

Proof: The theorem is proved by induction: We show that if
at the generic iteration some set of conditions holds, then the
solutions generated for the two instances and are the same,
and the set of conditions also holds at the following iteration

. The proof is concluded by showing that holds at the very
first iteration. With few minor modifications, this technique is
adopted in the following for proving all theorems enunciated in
this paper.

According to Lemma 1 and given Condition 1, if at the
generic iteration , for all , then

, for all . Under Hypothesis 1

and therefore

According to (1)

and therefore, for any edge

The proof is completed by observing that a basis for the above
induction follows from Definition 9:

Remark 3: One notable case in which Condition 1 is satisfied
is when , that is, when no heuristic information is used.
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A. Strongly Invariant Ant System

In this section, we introduce siAS, which is a strongly in-
variant version of ant system. We first define the algorithm, then
we prove that it is functionally equivalent to ant system, and fi-
nally, that it is indeed strongly invariant.

Definition 11 (Strongly Invariant Pheromone Update Rule):
The pheromone is updated using the same rule given in Defini-
tion 8, with the only difference that is given by

where is the number of ants and is the reference solution.
Definition 12 (Strongly Invariant Pheromone Initialization):

At the first iteration , the pheromone is initialized to
, for all .

Definition 13 (Strongly Invariant Ant System): The strongly
invariant ant system (siAS) is a variation of ant system. In siAS,
the random proportional rule is adopted for the construction of
solutions, the pheromone is initialized according to Definition
12, and the update is performed according to Definition 11. The
heuristic information is set in an invariant way through some
appropriate problem-specific rule.

Theorem 2: Ant system and siAS are functionally equivalent
if

(Condition 2) the heuristic information is such that

where is the parameter appearing in Definition 7, and
are the heuristic information on edge , respectively, in siAS
and ant system, and is an arbitrary constant.

Proof: Let us consider a generic instance . In this proof, a
tilde placed above a symbol indicates that it refers to siAS. Let

. According to Lemma 1 and given Condition 2,
if at the generic iteration , for all , then

, for all . Under Hypothesis 1, , for all
. According to Definitions 8 and 11

Therefore, for any edge

The proof is completed by observing that a basis for the above
induction is provided by

which follows from Definitions 9 and 12.

Theorem 3: siAS is strongly invariant if
(Condition 3) the heuristic information is such that

for any two instances and such that , with .
Proof: Given Condition 3, according to Lemma 1 and Hy-

pothesis 1, if at the generic iteration , for all
, then , for all , and , for all

, and therefore, , for all
. According to Definition 11

and therefore, for any edge

The proof is completed by observing that Definition 12 pro-
vides a basis for the above induction.

Remark 4: It is worth noticing that by initializing the
pheromone to , for all , and by defining
as

one would have obtained nonetheless a strongly invariant algo-
rithm. The advantage of the formulation given in Definitions 11
and 12 is that the magnitude of the pheromone deposited on the
arcs does not depend on the number of ants considered.

Remark 5: In the original ant system, the pheromone has di-
mension , where u is the unit in which costs are measured.
On the contrary, in siAS the pheromone to be deposited is ob-
tained by dividing the cost of observed solutions by the cost of
the reference solution. As a result, in siAS the pheromone is
dimensionless. In this respect, siAS is similar to an hypercube
ACO algorithm, in which the pheromone is dimensionless, due
to the fact that the cost of solutions is normalized on a per iter-
ation basis [1].

IV. – ANT SYSTEM

The results given for ant system can be extended to
– ant system [11], [12]. The characterizing

element of – ant system is the fact that the
pheromone value is constrained between a minimum and a
maximum, which possibly change iteration by iteration.

Definition 14 (Pheromone Trail Limits): At iteration , the
pheromone value on a generic edge is constrained:
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with and , where is the
best solution found up to and including iteration is the evap-
oration rate, and is a parameter, with .

Remark 6: The following notation will be adopted:

It can be easily shown that, if

This property will be used in the following.
Definition 15 (Pheromone Update Rule): If is the value

of the pheromone on edge at the current iteration , the
value of the pheromone at iteration is given by

(2)

where is the evaporation rate. The quantity is given by

(3)

where is either the best-so-far solution , that is, best
solution found up to and including iteration , or the iteration-
best solution , that is, the best solution found in iteration .

Remark 7: At a given iteration , whether a best-so-far or
an iteration-best update is to be performed is a design choice.
In the typical implementation of – ant system, in
the initial iterations, the iteration-best update is mostly adopted,
and the frequency with which the best-so-far update is employed
increases iteration after iteration [12].

Definition 16 (Pheromone Initialization): At iteration ,
the pheromone on each edge is initialized to

where is the evaporation rate and is the reference solution.
Definition 17 ( – Ant System): –

ant system is an ACO algorithm in which solutions are con-
structed according to the random proportional rule given in Def-
inition 7, the pheromone is initialized as in Definition 16, and
it is updated according to Definition 15. The evaporation rate

, the exponents and , the number of ants , and the factor
are parameters of the algorithm. The heuristic information is

problem-specific.
Theorem 4 (Weak Invariance of – Ant System):

Let and be two equivalent instances such that , with
. Further, let be the construction graph

associated with and . – ant system obtains the
same sequence of solutions on and if

(Condition 1) the heuristic information is such that

where is the parameter appearing in Definition 7 and
is an arbitrary constant.

Proof: The proof follows the one given for Theorem 1.
Let us assume that, at the beginning of the generic iteration

and , for all . According
to Lemma 1 and given Condition 1, , for all .
Under Hypothesis 1, , for all , and there-
fore, , for all . In particular,

, and . Moreover, whether or not
an improvement is made on the best-so-far solution, .
Indeed, since , then . If

, then also , and
. On the other hand, if , then

also , and .
According to (3)

where , in case of a best-so-far update; and
, in case of an iteration-best update. In both

cases

and therefore

It follows that:

The proof is completed by observing that, according to Def-
inition 16, the pheromone is initialized as

and the initial best-so-far solutions are , where
is the reference solution.
Remark 8: Condition 1 is trivially satisfied when no heuristic

information is used, that is, when .

A. Strongly Invariant – Ant System

A strongly invariant version of – ant system
(si ) can be defined. We first define the algorithm, then
we prove that it is functionally equivalent to – ant
system, and finally, that it is indeed strongly invariant.
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Definition 18 (Strongly Invariant Pheromone Update Rule):
The pheromone is updated as in Definition 15, with the differ-
ence that

(4)

where is the evaporation rate, is the reference solution, and
is either the best-so-far or the iteration-best solution.

Definition 19 (Strongly Invariant Pheromone Initialization):
The pheromone is initialized to , for all .

Definition 20 (Strongly Invariant Pheromone Trail Limits):
At iteration , the value of the pheromone on a
generic edge is constrained: ,
with and , where is
the reference solution, is the best solution found up to
and including iteration , and is a parameter.

Definition 21 (Strongly Invariant – Ant
System): The strongly invariant – ant system
(si ) is a variation of – ant system. In
si , the random proportional rule given in Definition
7 is adopted for the construction of solutions. The pheromone
is initialized according to Definition 19, limited according
to Definition 20, and the update is performed according to
Definition 18. The heuristic information is set in an invariant
way through some appropriate problem-specific rule.

Theorem 5: – ant system and si are
functionally equivalent if

(Condition 2) the heuristic information is such that

where is the parameter appearing in Definition 7, and
are the heuristic information on edge , respectively, in

si and – ant system, and is an ar-
bitrary constant.

Proof: As in the proof of Theorem 2, a tilde placed above
a symbol indicates that the latter refers to si . Let

. According to Lemma 1 and given Condition 2, if at the
generic iteration and , for all

, then , for all . Under Hypothesis 1,
, for all . In particular, . More-

over, whether or not an improvement is made on the best-so-far
solution, —see the proof of Theorem 4.

According to (4)

where is either the best-so-far , or the iteration-best
solution . In both cases, according to Definitions 14 and
20, and

. It follows that, for all
:

The proof is completed by observing that at the first iteration
, for all and

the initial best-so-far solutions are .
Theorem 6: si is strongly invariant if
(Condition 3) the heuristic information is such that

for any two instances and such that , with .
Proof: Given Condition 3, according to Lemma 1 and Hy-

pothesis 1, if at the generic iteration , for all
, and if , then , for all

and , for all . It follows
that and, due to Definition 20, and

. Moreover, it can be easily observed that, as a con-
sequence of Definition 18, , for all there-
fore, , for all . The proof is completed by
observing that, according to Definition 19, , for all

, and the initial best-so-far solutions are .

V. ANT COLONY SYSTEM

The weak invariance property holds also for ant colony
system [10]. In ant colony system, the concept of local
pheromone update is introduced: When an ant traverses edge

while constructing a solution, that is, when the solution
component encoded by edge is included in the solution
being constructed, the pheromone on is decreased [2],
[10]. In order to describe this feature, a slightly modified
notation is needed: With we denote the partial solution
constructed by ant , at iteration , in the first steps of the
solution construction process. Further, with is
the solution component added at step . Similarly, is
the value of the pheromone on edge at iteration , when
ant is performing step of the solution construction process.
Finally, if ant is in node at construction step of iteration

is the probability that it moves to node .
Definition 22 (Local Pheromone Update Rule): At the

generic iteration , in turn, the ants perform a step of the
solution construction by traversing an edge, the pheromone
on which is then decreased. This process is iterated until each
of the ants has constructed its complete solution. After the
generic ant has performed step of the construction of its
solution, the pheromone is modified according to

where is a parameter called the local pheromone evaporation
rate, and is the initial value of the pheromone—see Defi-
nition 25. When all ants have completed step of the solution
construction process, step is started with .

Definition 23 (Global Pheromone Update Rule): At each iter-
ation , after all ants have built their solution and performed
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the local pheromone update, the pheromone on the edges be-
longing to the best-so-far solution found up to and including
iteration , are reinforced

where , and is the number of construction
steps needed to obtain a complete solution. The quantity
is the value of the pheromone on edge after all ants
have completed the construction steps of iteration , while

is the quantity of pheromone on edge right before
the first ant performs the first construction step of iteration .

Definition 24 (Pseudorandom Proportional Rule): At the
generic iteration and generic construction step , suppose that
ant is in node and is the set of feasible nodes. The node
to be visited next is selected according to the following rule:
With a probability given by the parameter , the ant moves to
the feasible node that maximizes , where ;
with probability a node is selected according to the
random proportional rule given in Definition 7, with .2

Formally, is shown in (5) at the bottom of the page,
where and are parameters with .

Definition 25 (Pheromone Initialization): At iteration ,
the pheromone on each edge is initialized to

where is the number of nodes in the construction graph
, and is the reference solution.

2In the original ant colony system, � is set to 1 and is not a free parameter.

Definition 26 (Ant Colony System): Ant colony system is an
ACO algorithm in which solutions are constructed according
to the pseudorandom proportional rule given in Definition 24,
the pheromone is initialized as in Definition 25 and updated ac-
cording to Definitions 22 and 23. The local and global evapora-
tion rates and , the number of ants , the exponent , and the
probability are parameters of the algorithm. The definition of
the heuristic information is problem-specific.

Lemma 2: The pseudorandom proportional rule is invariant
to concurrent linear transformation of the pheromone and of the
heuristic information. Formally, for any two positive constants

and

where is obtained on the basis of and , according
to Definition 24.

Proof: See (6) at the bottom of the page.
Theorem 7 (Weak Invariance of Ant Colony System): Let

and be two equivalent instances such that , with
. Further, let be the construction graph associated

with and . Ant colony system obtains the same sequence of
solutions on and if

(Condition 1) the heuristic information is such that

where is the parameter appearing in Definition 7 and
is an arbitrary constant.

Proof: The proof follows those given for Theorems 1 and
4. Let us assume that at the beginning of the generic iteration

and , for all . Let us

(5)

(6)
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consider the first construction step at iteration . According to
Lemma 2, for the first ant, , for all . Under
Hypothesis 1, . On the basis of Definition 22

Under the condition , Lemma 2 also
applies to the second ant at the first step of the solution con-
struction at iteration : , for all . There-
fore, , and finally , for all

. This procedure is repeated for all ants at the first step
of the solution construction at generation , with the net re-
sult that , for all , and

for all . The same reasoning also holds for the
second step of the solution construction. Indeed, according to
Definition 22, ,
for all . Eventually, after construction steps,

, for all , and , for all .
Therefore, , for all . In partic-
ular, . Moreover, whether or not an improve-
ment is made on the best-so-far solution, , and there-
fore —see the proof of Theorem 4—which
results in . According to Definition 23

The proof is completed by observing that according to Defi-
nition 25, the pheromone is initialized as

and the initial best-so-far solutions are , where
is the reference solution.
Remark 9: Condition 1 is trivially satisfied when no heuristic

information is used, that is, when .

A. Strongly Invariant Ant Colony System

A strongly invariant version of ant colony system (siACS) can
be defined. We first define the algorithm, then we prove that it
is functionally equivalent to ant colony system, and finally that
it is indeed strongly invariant.

Definition 27 (Strongly Invariant Global Pheromone Update
Rule): The global pheromone update is performed as in Defini-
tion 23, with the difference that , where

and and are the reference and the best-so-far
solution, respectively.

Definition 28 (Strongly Invariant Pheromone Initialization):
The pheromone is initialized to , for all .

Definition 29 (Strongly Invariant Ant Colony System): The
strongly invariant ant colony system (siACS) is a variation of
ant colony system. In siACS, the pseudorandom proportional
rule is used for the construction of solutions, the pheromone is
initialized according to Definition 28 and the local and global
pheromone updates are performed according to Definitions 22
and 27, respectively. The heuristic information is set in an in-
variant way through some appropriate problem-specific rule.

Theorem 8: Ant colony system and siACS are functionally
equivalent if

(Condition 2) the heuristic information is such that

where is the parameter appearing in Definition 7, and
are the heuristic information on edge , respectively, in

siACS and ant colony system, and is an arbitrary constant.
Proof: As in the proofs of Theorems 2 and 5, a tilde placed

above a symbol indicates that the latter refers to siACS. Let
. According to Lemma 2, given Condition 2, and

under Hypothesis 1, if at the beginning of the generic itera-
tion and , for all ,
then, , for all , for all ants ,
and for all construction steps . Further,

, and therefore —see the proof of Theorem 7.
In particular, . Moreover, . Finally,
whether or not an improvement is made on the best-so-far so-
lution, —see the proof of Theorem 4. The global
pheromone update takes place on the basis of the quantities

It follows that, for all :

The proof is completed by observing that at the first iteration
, for all

and the initial best-so-far solutions are .
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Theorem 9: siACS is strongly invariant if
(Condition 3) the heuristic information is such that

for any two instances and such that , with .
Proof: Under Hypothesis 1 and given Condition 3, ac-

cording to Lemma 2 and Definition 22, if at the generic itera-
tion and , for all , then

and , for all , for all ants
, and for all construction steps . It fol-

lows that and , for all .
In particular, from which, as a consequence of Def-
inition 27, , for all therefore,

, for all .
The proof is completed by observing that, according to Def-

inition 28, , for all , and the initial
best-so-far solutions are .

VI. PROBLEMS

In this section, we illustrate how the theorems proved
in Sections III–V apply to some well-known combinatorial
optimization problems. In particular, Section VI-A deals
with the traveling salesman problem, Section VI-B with the
quadratic assignment problem, and Section VI-C with the
open shop scheduling problem. Further examples of how the
proposed theorems apply to other combinatorial optimiza-
tion problems are given in [14] and can be found online at
http://iridia.ulb.ac.be/supp/IridiaSupp2006-008/.

A. Traveling Salesman Problem

The traveling salesman problem consists in finding a Hamil-
tonian circuit of minimum cost on an edge-weighted graph

, where is the set of nodes, and is the set of edges.
If a directed graph is considered, the problem is known as the
asymmetric TSP [15].

Let be a binary variable taking value 1 if edge is
included in tour , and 0 otherwise. Let be the cost associated
to edge . The goal is to find a tour such that the function

is minimized.
1) Transformation of units: If the cost of all edges is multi-

plied by a constant , the resulting instance is equivalent
to the original , that is, , with . Indeed,

, for all , for all .
2) Reference solution: Many constructive heuristics exist for

the TSP [16] that can be conveniently adopted here.
3) Heuristic information: The typical setting is ,

for all . This meets Condition 1 with .
Therefore, the theorems on the weak invariance of ant
system, – ant system, and ant colony system
hold. In the literature, the three variants of ACO con-
sidered in this paper have been applied to the traveling
salesman problem with the setup just described [2].

4) Strongly invariant heuristic information:
, for all , where . It is worth

noting that the term is not needed for the invariance to
transformation of units. It has been included for achieving
another property: the above defined does not depend
on the size of the instance under analysis—that is, on the
number of cities. This definition meets Condition 2 with

, and Condition 3.
Therefore, siAS, si , and siACS are indeed
strongly invariant and are functionally equivalent to their
original counterparts.

B. Quadratic Assignment Problem

In the quadratic assignment problem, facilities and loca-
tions are given, together with two matrices and

, where is the distance between locations and ,
and is the flow between facilities and . A solution is an
assignment of each facility to a location. Let denote the
facility assigned to location . The goal is to find an assignment
that minimizes the function

1) Transformation of units: If all distance is multiplied by
a constant and all flows by a constant , the resulting
instance is equivalent to the original , that is, ,
with .

2) Reference solution: The construction of the reference so-
lution is typically stochastic: a number of solutions are ran-
domly generated and improved through a local search. The
best solution obtained is adopted as the reference solution
[17]. It is worth noting that a local search is an invariant
algorithm.

3) Heuristic information: Often, the heuristic information is
not adopted [17], that is, . In this case, Condition 1
is trivially met. Some authors [18] set .
This meets Condition 1 with .
Therefore, the theorems on the weak invariance of ant
system, – ant system, and ant colony system
hold.

4) Strongly invariant heuristic information: If the heuristic
information is adopted, , for all

. This meets Condition 2 with , and Con-
dition 3. On the other hand, if no heuristic information is
adopted as suggested in [17], Conditions 2 and 3 are triv-
ially met.
Therefore, siAS, si , and siACS are indeed
strongly invariant and are functionally equivalent to their
original counterparts.

C. Open Shop Scheduling Problem

In open shop scheduling problems [19], a finite set of
operations is given, which is partitioned into a collection of
subsets and a collection of subsets

. Each is the set of operations that
have to be performed by machine ; and each is the set of
operations belonging to job . A non-negative processing time
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and an earliest possible starting time are associated
with operation . A solution is a collection of sched-
ules , where is the
sequence of operations scheduled for machine and is
the operation in position in sequence . The completion
time of operation is computed recursively from

, with
. The goal is to minimize the makespan, which is given by

1) Transformation of units: If all processing times and ear-
liest possible starting times are multiplied by a constant ,
the resulting instance is equivalent to the original , that
is, , with .

2) Reference solution: The construction of the reference so-
lution is typically stochastic.

3) Heuristic information: The heuristic information is typi-
cally , for all , which meets Condition
1 with .
Therefore, the theorems on the weak invariance of ant
system, – ant system, and ant colony system
hold.

4) Strongly invariant heuristic information:
, for all . This meets Condition 2 with

, and Condition 3.
Therefore, siAS, si , and siACS are indeed
strongly invariant and are functionally equivalent to their
original counterparts.

VII. CONCLUSION

Contrary to what was previously believed [1], at least three
of the most representative and most widely adopted algorithms
belonging to the ACO family appear to be invariant to transfor-
mation of units. In this paper, we have formally proved that ant
system, – ant system, and ant colony system are
indeed weakly invariant. In other words, the sequence of solu-
tions they produce does not depend on the scale of the problem
instance at hand. The technique adopted for proving the theo-
rems is basically the same for the three algorithms. In the three
cases, the proof is of an inductive nature: We prove that if some
conditions are fulfilled at the beginning of iteration , then the
solutions produced at iteration are the same whenever solving
any two instances that are equivalent up to a linear transforma-
tion of units. Moreover, the same conditions also hold at the fol-
lowing iteration . The proof is concluded by showing that
the conditions are fulfilled at the beginning of the first iteration.
The same technique can be adopted for formally showing the
invariance of other algorithms belonging to the ACO family. It
is worth noticing here that the initialization of the pheromone
plays a critical role: In order for the algorithm to be invariant,
the pheromone should be initialized in an invariant way. Defini-
tions 9, 16, and 25 guarantee the invariance of the initialization.
A similar remark holds for what concerns the heuristic infor-
mation. In order to obtain an invariant algorithm, the heuristic
information should meet Condition 1 as given in the statement
of Theorems 1, 4, and 7.

As a second contribution, the paper introduces three algo-
rithms: siAS, si , and siACS. These algorithms are
functionally equivalent to AS, , and ACS, respec-
tively, but they enjoy the further property of being strongly
invariant. In other words, besides producing the same sequence
of solutions irrespective of any linear transformation of units,
these algorithms are such that the pheromone and the heuristic
information do not change with the units adopted.

Blum and Dorigo [1] were the first to draw attention to the
property that in this paper we call strong invariance. This prop-
erty is definitely desirable for at least two main reasons: first,
it reduces possible numerical problems in the implementations
and contributes therefore to enhance the stability of the algo-
rithm; second, it greatly improves the readability of the solu-
tion process. In order to achieve strong invariance, Blum and
Dorigo [1] have defined a new framework they named hyper-
cube. An hypercube version of AS, , or ACS is effec-
tively a new algorithm which shares with its originating (non-
hypercube) version much of the underlying ideas but that is not
functionally equivalent to the latter. The main advantage of the
strongly invariant algorithms we have proposed in this paper is
indeed that they are proved to be functionally equivalent to their
respective original counterparts. The properties of these algo-
rithms do not therefore need to be studied from scratch: The re-
sults reported in the existing literature on ACO, which are rather
substantial, directly extend to these new algorithms. In partic-
ular, AS, , and ACS have been successfully applied to
a variety of problems and therefore an assessment of the perfor-
mance of siAS, si , and siACS under a large number of
experimental conditions is already available.

Anyway, the significance of the introduction of siAS,
si , and siACS is mostly theoretical and speculative.
Indeed, the very possibility of defining a strongly invariant
algorithm that is functionally equivalent to a given ACO algo-
rithm sheds new light on ACO.
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