
Deception in Ant Colony Optimization

Christian Blum and Marco Dorigo

IRIDIA – Université Libre de Bruxelles – Brussels, Belgium
{cblum,mdorigo}@ulb.ac.be

Abstract. The search process of a metaheuristic is sometimes misled.
This may be caused by features of the tackled problem instance, by
features of the algorithm, or by the chosen solution representation. In the
field of evolutionary computation, the first case is called deception and
the second case is referred to as bias. In this work we formalize the notions
of deception and bias for ant colony optimization. We formally define
first order deception in ant colony optimization, which corresponds to
deception as being described in evolutionary computation. Furthermore,
we formally define second order deception in ant colony optimization,
which corresponds to the bias introduced by components of the algorithm
in evolutionary computation. We show by means of an example that
second order deception is a potential problem in ant colony optimization
algorithms.

1 Introduction

Deception and bias are well-studied subjects in evolutionary computation algo-
rithms for the application to combinatorial optimization (CO) problems. The
term deception was introduced by Goldberg in [12] with the aim of describing
problems that are misleading for genetic algorithms (GAs). Well-known examples
of deceptive problems are n-bit trap functions [7]. These functions are character-
ized by fixpoints with large basins of attraction that correspond to sub-optimal
solutions, and by fixpoints with relatively small basins of attraction that corre-
spond to optimal solutions. Therefore, for these problems a GA will – in most
cases – not find an optimal solution. Except for deception, other efforts in the
field of evolutionary computation were aimed at studying the effects of the bias
that is sometimes introduced by the solution representation and the genetic op-
erators. In some cases this bias was shown to have a negative impact on the
search process (see, for example, [16]).

In the early 90’s, ant colony optimization (ACO) [8–10] emerged as a novel
nature-inspired metaheuristic method for the solution of combinatorial optimiza-
tion problems. The inspiring source of ACO is the foraging behavior of real ants.
When searching for food, ants initially explore the area surrounding their nest
in a random manner. As soon as an ant finds a food source, it evaluates quantity
and quality of the food and carries some of the food found to the nest. During
the return trip, the ant deposits a chemical pheromone trail on the ground. The
quantity of pheromone deposited, which may depend on the quantity and quality

M. Dorigo et al. (Eds.): ANTS 2004, LNCS 3172, pp. 118–129, 2004.
c© Springer-Verlag Berlin Heidelberg 2004

Deception in Ant Colony Optimization 119

of the food, will guide other ants to the food source. The indirect communication
between the ants via the pheromone trails allows them to find shortest paths be-
tween their nest and food sources. This behaviour of real ant colonies is exploited
in artificial ant colonies in order to solve discrete optimization problems.

Research on bias in ACO algorithms is largely restricted to the work by
Merkle and Middendorf [14, 13], and the work by Blum and Sampels [3, 4]. Merkle
and Middendorf proposed and introduced the use of models of ACO algorithms.
They studied the behaviour of a simple ACO algorithm by studying the dynam-
ics of its model when applied to permutation problems. It was shown that the
behaviour of ACO algorithms is strongly influenced by the pheromone model
(and the way of using it) and by the competition between the ants. Moreover,
it was shown that the performance of the model of an ACO algorithm may de-
crease during a run, which is clearly undesirable, because in general this worsens
the probability of finding better and better solutions. Independently, Blum and
Sampels showed on the example of an ACO algorithm for a general shop schedul-
ing problem that ACO algorithms may fail depending on the chosen pheromone
model.

Our Contribution. In this work we formalize the notions of deception and bias
in ant colony optimization. We formally define first order deception in ant colony
optimization, which corresponds to deception as being described in evolutionary
computation. Then, we formally define second order deception in ant colony
optimization, which corresponds to the bias introduced by components of the
algorithm in evolutionary computation. Finally, we give an example of second
order deception in order to show that the bias that leads to the occurrence of
second order deception can make an ACO algorithm fail.

2 The Framework of a Basic ACO Algorithm

ACO algorithms are metaheuristic methods for tackling combinatorial optimiza-
tion problems (see [11]). The central component of an ACO algorithm is the
pheromone model, which is used to probabilistically sample the search space. As
outlined in [2], the pheromone model can be derived from a model of the CO
problem under consideration. A model of a CO problem can be stated as follows.

Definition 1. A model P = (S, Ω, f) of a CO problem consists of:

– a search (or solution) space S defined over a finite set of discrete decision
variables and a set Ω of constraints among the variables;

– an objective function f : S → IR+ to be minimized.

The search space S is defined as follows: Given is a set of n discrete variables

Xi with domains Di = {v1
i , . . . , v

|Di|
i }, i = 1, . . . , n. A variable instantiation,

that is, the assignment of a value vj
i to a variable Xi, is denoted by Xi = vj

i . A
feasible solution s ∈ S is a complete assignment (i.e., an assignment in which
each decision variable has a domain value assigned) that satisfies the constraints.
If the set of constraints Ω is empty, then each decision variable can take any value

120 Christian Blum and Marco Dorigo

Algorithm 1 The framework of a basic ACO algorithm
input: An instance P of a CO problem model P = (S , f, Ω).
InitializePheromoneValues(T)
sbs ← null
while termination conditions not met do

Siter ← ∅
for j = 1, . . . , na do

s← ConstructSolution(T)
s← LocalSearch(s) {optional}
if (f(s) < f(sbs)) or (sbs = null) then sbs ← s

Siter ← Siter ∪ {s}
end for
ApplyPheromoneUpdate(T ,Siter ,sbs)

end while
output: The best-so-far solution sbs

from its domain independently of the values of the other decision variables. In
this case we call P an unconstrained problem model, otherwise a constrained
problem model. A feasible solution s∗ ∈ S is called a globally optimal solution,
if f(s∗) ≤ f(s) ∀s ∈ S. The set of globally optimal solutions is denoted by
S∗ ⊆ S. To solve a CO problem one has to find a solution s∗ ∈ S∗.

A model of the CO problem under consideration implies the finite set of
solution components and the pheromone model as follows. First, we call the
combination of a decision variable Xi and one of its domain values vj

i a solution
component denoted by cj

i . Then, the pheromone model consists of a pheromone
trail parameter T j

i for every solution component cj
i . The value of a pheromone

trail parameter T j
i – called pheromone value – is denoted by τ j

i . The set of all
pheromone trail parameters is denoted by T . As a CO problem can be modelled
in different ways, different models of the CO problem can be used to define
different pheromone models.

Algorithm 1 captures the framework of a basic ACO algorithm. It works
as follows. At each iteration, na ants probabilistically construct solutions to
the combinatorial optimization problem under consideration, exploiting a given
pheromone model. Then, optionally, a local search procedure is applied to the
constructed solutions. Finally, before the next iteration starts, some of the solu-
tions are used for performing a pheromone update. The details of this framework
are explained in more detail in the following.

InitializePheromoneValues(T). At the start of the algorithm the pheromone values
are all initialized to a constant value c > 0.

ConstructSolution(T). The basic ingredient of any ACO algorithm is a construc-
tive heuristic for probabilistically constructing solutions. A constructive heuristic
assembles solutions as sequences of elements from the finite set of solution com-
ponents C. A solution construction starts with an empty partial solution sp = 〈〉.
Then, at each construction step the current partial solution sp is extended by

Deception in Ant Colony Optimization 121

adding a feasible solution component from the set N(sp) ⊆ C \ sp, which is
defined by the solution construction mechanism. The process of constructing so-
lutions can be regarded as a walk (or a path) on the so-called construction graph
GC = (C, L), which is a fully connected graph whose vertices are the solution
components C and the set L are the connections. The allowed walks on GC are
implicitly defined by the solution construction mechanism that defines the set
N(sp) with respect to a partial solution sp. We denote the set of all solution that
may be constructed in this way by S. The choice of a solution component from
N(sp) is, at each construction step, done probabilistically. In most ACO algo-
rithms the probabilities for choosing the next solution component – also called
the transition probabilities – are defined as follows:

p(cj
i | sp) =

τ j
i

α · η(cj
i)

β

∑

cl
k∈N(sp)

τ l
k

α · η(cl
k)β

, ∀ cj
i ∈ N(sp) , (1)

where η is a weighting function that assigns, at each construction step, a heuristic
value η(cj

i) to each feasible solution component cj
i ∈ N(sp). The values that are

given by the weighting function are commonly called the heuristic information.
α and β are positive parameters whose values determine the relative importance
of pheromone and heuristic information.

ApplyPheromoneUpdate(T ,Siter ,sbs). Most ACO algorithms use the following
pheromone value update rule:

τ j
i ← (1− ρ) · τ j

i +
ρ

na
·

∑

{s∈Supd|cj
i∈s}

F (s) , (2)

for i = 1, . . . , n, and j ∈ {1, . . . , |Di|} 1. ρ ∈ (0, 1] is a parameter called evap-
oration rate. F : S 	→ IR+ is a function such that f(s) < f(s′) ⇒ F (s) ≥
F (s′), ∀s �= s′ ∈ S. F (·) is commonly called the quality function. Instantiations
of this update rule are obtained by different specifications of Supd, which – in all
cases that we consider in this paper – is a subset of Siter ∪ {sbs}, where Siter is
the set of solutions that were constructed in the current iteration, and sbs is the
best-so-far solution. A well-known example of update rule (2) is the AS-update
rule (i.e., the update rule of Ant System (AS) [10]) which is obtained from (2)
by setting Supd ← Siter. The goal of the pheromone value update rule is to
increase the pheromone values on solution components that have been found in
high quality solutions.

1 Note that the factor 1
na

is usually not used. We introduce it for the mathematical
purpose of studying the expected update of the pheromone values. However, as the
factor is constant it does not change the qualitative behaviour of an ACO algorithm.

122 Christian Blum and Marco Dorigo

3 Deception in Ant Colony Optimization

In the following, we first define and study first order deception in ACO, which
corresponds to deception in EC. Then, we introduce second order deception in
ACO, which corresponds to bias in EC.

3.1 First Order Deception

The desired behaviour of an ACO algorithm can be stated as follows: The average
quality of the generated solutions should grow over time. This is desirable, as
it usually increases the probability of finding better solutions over time. For
studying the behaviour of an ACO algorithm, we study in the following its model
as proposed by Merkle and Middendorf in [14]. The model of an ACO algorithm
is obtained by applying the expected pheromone update instead of the real
pheromone update. Therefore, models of ACO algorithms are deterministic and
can be considered discrete dynamical systems. The behaviour of ACO algorithm
models is characterized by the evolution of the expected quality of the solutions
that are generated per iteration. We denote this expected iteration quality in the
following by WF (T), or by WF (T | t), where t > 0 is the iteration counter.

As an example, a simplified model of an ACO algorithm is obtained by as-
suming an infinite number of solution constructions (i.e., ants) per iteration. In
this case, the expected iteration quality is given by

WF (T) =
∑

s∈S

F (s) · p(s | T) . (3)

The expected pheromone update of the AS algorithm (i.e., Algorithm 1 using
the AS-update rule) based on this simplified model can then be stated as follows:

τ j
i (t + 1)← (1 − ρ) · τ j

i (t) + ρ ·
∑

{s∈S|cj
i∈s}

F (s) · p(s | T) , (4)

for i = 1, . . . , n, j = 1, . . . , |Di| (note that j depends on i), and where t is the
iteration counter. However, this simplified model is only an example, and more
accurate models of ACO algorithms are possible (see for example [14]).

Definition 2. Given a model P of a CO problem, we call a model of an ACO
algorithm applied to any instance P of P a local optimizer if for any initial
setting of the pheromone values the expected update of the pheromone values is
such that WF (T | t + 1) ≥ WF (T | t), ∀t ≥ 0. In other words, the expected
quality of the generated solutions per iteration must increase monotonically.

Note that an increase in expected iteration quality does – due to the rather
loose definition of the relation between quality function F (·) and objective func-
tion f(·) – not necessarily imply an increase in expected objective function val-
ues. However, in most cases this can be assumed. Based on this definition we
introduce the definition of first order deceptive systems.

Deception in Ant Colony Optimization 123

Definition 3. Given a model P of a CO problem, we call a local optimizer
applied to instance P of P a first order deceptive system (FODS) if
there exists an initial setting of the pheromone values such that the algorithm
does in expectation not converge to a globally optimal solution.

This means that even if the model of an ACO algorithm is a local optimizer it
is a first order deceptive system when for example applied to problem instances
that are characterized by the fact that they induce more than one stable fixpoint
of which at least one corresponds to a local minimum2.

Ant System Applied to Unconstrained Problems. In [2] was proposed
the hyper-cube framework (HCF) for ACO. The HCF is a framework for ACO
algorithms that applies a normalized pheromone update at each iteration. For
example, the AS-update rule in the HCF is

τ j
i ← (1 − ρ) · τ j

i + ρ ·
∑

{s∈Siter |cj
i∈s}

F (s)
∑

{s′∈Siter} F (s′)
, (5)

for i = 1, . . . , n, j = 1, . . . , |Di|. The difference between pheromone update rules
in the HCF and the ones that are used in standard ACO algorithms consists in
the normalization of the added amount of pheromone. In [2] it was shown that
the simplified model of the AS algorithm in the HCF (i.e., assuming an infinite
number of solution constructions per iteration) possesses the property that the
expected iteration quality monotonically increases over time when applied to
unconstrained problems. This can be regarded as an indicator that the average
quality of the generated solutions in empirical applications (i.e., using a finite
number of ants per iteration) is likely to grow from iteration to iteration. In
this section we show that the simplified model of the AS algorithm (not imple-
mented in the HCF) also possesses this property when applied to unconstrained
problems, which can be stated as follows: given are n decision variables Xi,
i = 1, . . . , n, with domains Di = {v1

i , . . . , v
|Di|
i }. To construct a solution we do

n construction steps as follows. At construction step i, where i ∈ {1, . . . , n}, we
add one of the solution components cj

i , where j ∈ {1, . . . , |Di|}, to the current
partial solution sp under construction. This corresponds to assigning a value to
decision variable Xi. The transition probabilities are as follows:

p(cj
i | T) =

τ j
i

|Di|∑

k=1

τk
i

, i = 1, . . . , n . (6)

2 The term of a stable fixpoint stems from the field of discrete dynamical systems. It
denotes the state of a system that is characterized by the fact that when the system
has entered this state, which is characterized by a an open basin of attraction, it will
never leave it again.

124 Christian Blum and Marco Dorigo

Theorem 1. The simplified model of AS (i.e., assuming an infinite number of
solution constructions per iteration) is a local optimizer when applied to uncon-
strained problems.

Proof. This theorem is a simple extension of Theorem 3 in [2], which proves
that the simplified model of AS in the HCF is a local optimizer when applied
to unconstrained problems. For distinguishing between the pheromone values of
(a) AS and (b) AS in the HCF, we denote the pheromone values of AS by τa

and the pheromone values of AS in the HCF by τb. We use the same notational
convention for all the probabilities. Let us assume that at iteration t ≥ 0 the
pheromone values of AS and AS in the HCF are such that pa(cj

i | t) = pb(cj
i | t),

for i = 1, . . . , n, and j = 1, . . . , |Di|. Assuming that ρ = 1, the expected update
of the pheromone values of AS can, according to Equation 4, be stated as

τaj
i (t + 1)←

∑

{s∈S|cj
i∈s}

F (s) · p(s | T) . (7)

In the same way, according to Equation 5, the expected update of the pheromone
values of AS in the HCF can be stated as

τbj

i (t + 1)←
∑

{s∈S|cj
i∈s}

F (s) · p(s | T)
WF (T)

. (8)

Theorem 1 in [2] shows that pb(cj
i | t + 1) = τbj

i (t + 1), for i = 1, . . . , n, and
j = 1, . . . , |Di|. Therefore, with Equation 8 it holds that

pb(cj
i | t + 1) =

∑

{s∈S|cj
i∈s}

F (s) · p(s | T)
WF (T)

. (9)

Furthermore, from Equations 6 and 7 it follows that

pa(cj
i | t + 1) =

τaj
i (t + 1)

|Di|∑

k=1

τak
i (t + 1)

=
∑

{s∈S|cj
i∈s}

F (s) · p(s | T)
WF (T)

. (10)

From Equations 9 and 10 it follows that pa(cj
i | t + 1) = pb(cj

i | t + 1), for
i = 1, . . . , n, and j = 1, . . . , |Di|. As the simplified model of AS in the HCF is a
local optimizer as shown in Theorem 3 in [2], also the simplified model of AS is a
local optimizer when ρ = 1. The general case follows from the fact that the new
pheromone vector for ρ < 1 for AS in the HCF is on the line segment between
the old pheromone vector and the pheromone vector that would be the result of
the setting ρ = 1. The same holds for AS. ��

A consequence of this result is that the simplified model of AS is a FODS
when applied to instances of unconstrained problems that induce more than one
stable attractor such as for example n-bit trap functions. This is confirmed by

Deception in Ant Colony Optimization 125

Table 1. A 4-bit trap function. Each of the 16 columns shows the 4 bits of a solution
and its objective function value

1st bit 0 1 0 0 0 1 1 1 0 0 0 1 1 1 0 1
2nd bit 0 0 1 0 0 1 0 0 1 1 0 1 1 0 1 1
3rd bit 0 0 0 1 0 0 1 0 1 0 1 1 0 1 1 1
4th bit 0 0 0 0 1 0 0 1 0 1 1 0 1 1 1 1

f(·) 5 1 1 1 1 2 2 2 2 2 2 3 3 3 3 4

(a) Simplified model of AS (b) AS

Fig. 1. (a) Evolution of the expected iteration quality WF of the simplified model of
AS when applied to a 4-bit trap function as shown in Table 1. As in this case we are
considering a maximization problem, we choose F (·) = f(·). The expected iteration
quality continuously increases and the system converges to the sub-optimal solution
with quality 4 (the optimal solution is characterized by Xi = 0, i = 1, . . . , 4, and
quality 5). (b) Evolution of the average iteration quality of AS (i.e., Algorithm 1 using
the AS-update rule) when applied to the 4-bit trap function. The graph is the result of
100 runs of the algorithms (the vertical bars show the standard deviation). For (a) and
(b) we chose the following settings: ρ = 0.01 (evaporation rate), and c = 0.5 (initial
setting for the pheromone values). Furthermore, for (b) we chose na = 10 (number of
ants per iteration)

Figure 1 which shows the evolution of the expected quality WF of the simplified
model of AS when applied to a 4-bit trap function (see Table 1) over time. The
result shows that ACO algorithms suffer from the same type of deception as EC
algorithms.

3.2 Second Order Deception

In most cases, for example when NP -hard problems are considered, we can not
do better than having a local optimizer. Therefore, first order deception can not
be considered a problem. In contrast, the empirical behaviour of an algorithm
whose model is not a local optimizer might be very difficult to predict. In the
following, we define a second order deceptive system (SODS) as a system that
does not have the property of being a local optimizer.

126 Christian Blum and Marco Dorigo

Definition 4. Given a model P of a CO problem, we call a model of an ACO
algorithm applied to instance P of P a second order deceptive system
(SODS), if the evolution of the expected iteration quality contains time windows
[i, i + l] (where i > 0, l > 0) with WF (T | t + 1) < WF (T | t), ∀ t ∈ {i, . . . , i +
l − 1}. This means that the combination of a model of an ACO algorithm and
an instance P of P may be a SODS, if the ACO algorithm model is not a local
optimizer. We henceforth refer to the above mentioned time windows as second
order deception effects. Also with respect to the empirical behaviour of an
ACO algorithm we will use the notion of second order deception effects.

The result obtained in the previous section, i.e., that the simplified model
of AS applied to unconstrained problems is a local optimizer, can in general
not be transfered to models of AS applied to constrained problems. The reason
is that the solution construction process in ACO algorithms applied to con-
strained problems is a constrained sampling process (as indicated in [2]). A con-
strained sampling process is used, because an unconstrained sampling process
(which would allow the construction of unfeasible solutions) is often not feasible
in practice. As an example consider the travelling salesman problem (TSP) in
undirected complete graphs with solutions represented as permutations of the n
city identifiers. The number of different permutations is n!, whereas the uncon-
strained search space, which is the set of strings of length n over the alphabet
{1, . . . , n}, is of size nn. Using Stirling’s approximation (i.e., n! ≈ nne−n

√
2πn)

we obtain nn

n! ≈
en√
2πn

, which shows that the size of the unconstrained search
space grows exponentially in comparison to the size of the constrained search
space. Therefore, the probability of generating feasible solutions by an uncon-
strained sampling process might be extremely low.

4 Examples of Second Order Deception

Two examples of second order deception can be found in the literature. In [5],
Blum and Sampels showed second order deception in the context of an ACO algo-
rithm applied to the node-weighted k-cardinality tree (KCT) problem. However,
in this case second order deception can only be detected when the AS-update
rule is applied without the use of local search for improving the solutions con-
structed by the ants. A more serious case of second order deception is reported
by Blum et. al in [3, 4] for the job shop scheduling (JSS) problem, in which is
given a finite set of operations O = {o1, . . . , on} that have to be processed by
machines. Each operation has a processing time assigned. The goal is to find
a permutation of all operations that satisfies some precedence constraints and
which is minimal in some function of the completion time of the operations. In
order to apply ACO to the JSS problem, Colorni et al. [6] proposed the follow-
ing CO problem model of the JSS problem: First, the set of operations O is
augmented by two dummy operations o0 and on+1 with processing time zero.
Operation o0 serves as a source operation and on+1 as a destination operation.
The augmented set of operations is O = {o0, o1, . . . , on, on+1}. Then, for each

Deception in Ant Colony Optimization 127

operation oi, where i ∈ {0, . . . , n}, a decision variable Xi is introduced. The
domain for decision variable X0 is D0 = {1, . . . , n}, and for every other decision
variable Xi the domain is Di = {1, . . . , n + 1} \ {i}. The meaning of a domain
value j ∈ Di for a decision variable Xi is that operation oj is placed immediately
after operation oi in the permutation of all the operations to be constructed by
the algorithm. We denote this CO problem model of the JSS problem by P suc

JSS. In
order to derive the pheromone model we again introduce for each combination
of a decision variable Xi and a domain value j ∈ Di a solution component cj

i .
The pheromone model then consists of a pheromone trail parameter T j

i for each
solution component cj

i .
The ants’ mechanism for constructing feasible solutions builds feasible per-

mutations of all the operations from left to right. It works as follows. Let I
denote the set of indices of the decision variables that have already assigned a
value and the decision variable that receives a value in the current construction
step. Furthermore, let ic denote the index of the decision variable that receives
a value in the current construction step. The solution construction starts with
an empty partial solution sp = 〈〉, with ic = 0, and with I = {0}. Then, at each
of n construction steps t = 1, . . . , n a solution component cj

ic
∈ N(sp) is added

to the current partial solution, where

N(sp) =
{
cj
ic
| oj ∈ Ot

}
. (11)

In this context, Ot is the set of allowed operations at construction step t. This
means that at each construction step we decide a domain value for the decision
variable with the index ic. When adding the solution component cj

ic
to sp we

also set ic to j and add j to I. In the (n + 1)-th construction step, the value of
the last unassigned decision variable Xic is set to n + 1. Each construction step
is done according to the following probability distribution:

p(cj
ic
| T) =






τ j
ic∑

ck
ic

∈N(sp) τk
ic

if cj
ic
∈ N(sp)

0 otherwise .
(12)

Figure 2 shows the evolution of the average iteration quality over time for
several versions of Algorithm 1 based on the above described pheromone model
and construction mechanism (the parameter settings of the algorithm are given
in the caption of the figure). The strongest second order deception effects are
obtained with the AS-update rule. However, even when using the more common
IB-update rule, that is, only the best of the solutions constructed per iteration
is used for updating the pheromone values, the algorithm obtains solutions at
the end of a run whose average quality is lower than the average quality of the
solutions in the first iteration. This shows that the harmful bias that leads to
the occurrence of second order deception can be a serious problem and may
cause the failure of an algorithm. The reasons for the existence of such a bias
are discussed in [1].

128 Christian Blum and Marco Dorigo

(a) AS-update (b) IB-update (c) IB-update + LS

Fig. 2. The three graphics show the evolution of Algorithm 1 applied to the JSS prob-
lem as outlined in the text for different pheromone update rules as well as with and
without the application of steepest descent local search (based on the neighborhood
structure introduced by Nowicki and Smutnicki in [15]). The following settings were
chosen: na = 10 (number of ants), ρ = 0.05 (evaporation rate), and c = 0.5 (initial
setting of the pheromone values). The graphics show the result of 100 runs of the
algorithm. The vertical bars show the standard deviation

5 Conclusions

In this paper, we first have introduced the notion of first order deception in ant
colony optimization. We showed that ACO algorithms suffer from this type of
deception in the same way as evolutionary algorithms do. Then, we introduced
second order deception, which is a bias introduced by algorithmic components.
We presented an example of second order deception from the literature. The
example of the job shop scheduling problem shows that second order deception
is a major issue in ACO algorithms and should be taken into account by re-
searchers that develop ACO algorithms. This is because an ACO algorithm that
suffers from strong second order deception effects might fail. Therefore, research
efforts have to be undertaken towards methods for avoiding second order decep-
tion. Possibilities include choosing different solution construction mechanisms,
different pheromone models, and different pheromone update rules.

Acknowledgements

This work was supported by the “Metaheuristics Network”, a Research Training
Network funded by the Improving Human Potential program of the CEC, grant
HPRN-CT-1999-00106. The information provided is the sole responsibility of
the authors and does not reflect the Community’s opinion. The Community
is not responsible for any use that might be made of data appearing in this
publication. Marco Dorigo acknowledges support from the Belgian FNRS, of
which he is a Senior Research Associate, and from the “ANTS” project, an
“Action de Recherche Concertée” funded by the Scientific Research Directorate
of the French Community of Belgium.

Deception in Ant Colony Optimization 129

References

1. C. Blum. Theoretical and practical aspects of ant colony optimization. PhD thesis,
IRIDIA, Université Libre de Bruxelles, Belgium, 2004.

2. C. Blum and M. Dorigo. The hyper-cube framework for ant colony optimization.
IEEE Trans. on Systems, Man, and Cybernetics – Part B, 34(2):1161–1172, 2004.

3. C. Blum and M. Sampels. Ant Colony Optimization for FOP shop scheduling:
A case study on different pheromone representations. In Proceedings of the 2002
Congress on Evolutionary Computation (CEC’02), volume 2, pages 1558–1563.
IEEE Computer Society Press, Los Alamitos, CA, 2002.

4. C. Blum and M. Sampels. When model bias is stronger than selection pressure.
In J. J. Merelo Guervós et al., editors, Proceedings of PPSN-VII, Seventh Int.
Conference on Parallel Problem Solving from Nature, volume 2439 of Lecture Notes
in Computer Science, pages 893–902. Springer, Berlin, Germany, 2002.

5. C. Blum, M. Sampels, and M. Zlochin. On a particularity in model-based search. In
W. B. Langdon et al., editors, Proceedings of the Genetic and Evolutionary Com-
putation Conference (GECCO-2002), pages 35–42. Morgan Kaufmann Publishers,
San Francisco, CA, 2002.

6. A. Colorni, M. Dorigo, V. Maniezzo, and M. Trubian. Ant System for job-shop
scheduling. JORBEL – Belgian Journal of Operations Research, Statistics and
Computer Science, 34(1):39–53, 1994.

7. K. Deb and D. E. Goldberg. Analyzing deception in trap functions. In L. D. Whit-
ley, editor, Foundations of Genetic Algorithms 2, pages 93–108. Morgan Kaufmann,
San Mateo, CA, 1993.

8. M. Dorigo. Optimization, Learning and Natural Algorithms (in Italian). PhD thesis,
Dip. di Elettronica, Politecnico di Milano, Italy, 1992.

9. M. Dorigo, V. Maniezzo, and A. Colorni. Positive feedback as a search strategy.
Technical Report 91-016, Dip. di Elettronica, Politecnico di Milano, Italy, 1991.

10. M. Dorigo, V. Maniezzo, and A. Colorni. Ant System: Optimization by a colony of
cooperating agents. IEEE Transactions on Systems, Man, and Cybernetics – Part
B, 26(1):29–41, 1996.

11. M. Dorigo and T. Stützle. Ant Colony Optimization. MIT Press, Cambridge, MA,
2004.

12. D. E. Goldberg. Simple genetic algorithms and the minimal deceptive problem. In
L. Davis, editor, Genetic algorithms and simulated annealing, pages 74–88. Pitman,
London, UK, 1987.

13. D. Merkle and M. Middendorf. Modelling ACO: Composed permutation problems.
In M. Dorigo, G. Di Caro, and M. Sampels, editors, Proceedings of ANTS 2002
– From Ant Colonies to Artificial Ants: Third International Workshop on Ant
Algorithms, volume 2463 of Lecture Notes in Computer Science, pages 149–162.
Springer Verlag, Berlin, Germany, 2002.

14. D. Merkle and M. Middendorf. Modelling the dynamics of ant colony optimization
algorithms. Evolutionary Computation, 10(3):235–262, 2002.

15. E. Nowicki and C. Smutnicki. A fast taboo search algorithm for the job-shop
problem. Management Science, 42(2):797–813, 1996.

16. F. Rothlauf and D. E. Goldberg. Prüfer numbers and genetic algorithms: A lesson
on how the low locality of an encoding can harm the performance of GAs. In Pro-
ceedings of PPSN-VI, Sixth International Conference on Parallel Problem Solving
from Nature, volume 1917 of Lecture Notes in Computer Science, pages 395–404,
Springer Verlag, Berlin, Germany, 2000.

	1 Introduction
	2 The Framework of a Basic ACO Algorithm
	3 Deception in Ant Colony Optimization
	3.1 First Order Deception
	3.2 Second Order Deception

	4 Examples of Second Order Deception
	5 Conclusions
	References

