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Abstract—Ant colony optimization is a metaheuristic approach
belonging to the class of model-based search algorithms. In this
paper, we propose a new framework for implementing ant colony
optimization algorithms called the hyper-cube framework for ant
colony optimization. In contrast to the usual way of implementing
ant colony optimization algorithms, this framework limits the
pheromone values to the interval [0,1]. This is obtained by
introducing changes in the pheromone value update rule. These
changes can in general be applied to any pheromone value update
rule used in ant colony optimization. We discuss the benefits
coming with this new framework. The benefits are twofold. On the
theoretical side, the new framework allows us to prove that in Ant
System, the ancestor of all ant colony optimization algorithms, the
average quality of the solutions produced increases in expectation
over time when applied to unconstrained problems. On the
practical side, the new framework automatically handles the
scaling of the objective function values. We experimentally show
that this leads on average to a more robust behavior of ant colony
optimization algorithms.

Index Terms—Ant colony optimization (ACO), metaheuristics.

I. INTRODUCTION

ANT COLONY optimization (ACO) is a metaheuristic for
hard discrete optimization problems that was first pro-

posed in the early 1990s [1]–[3]. The inspiring source of ACO
is the foraging behavior of real ants. When searching for food,
ants initially explore the area surrounding their nest in a random
manner. As soon as an ant finds a food source, it evaluates quan-
tity and quality of the food and carries some of the found food
to the nest. During the return trip, the ant deposits a chemical
pheromone trail on the ground. The quantity of pheromone de-
posited, which may depend on the quantity and quality of the
food, will guide other ants to the food source. The indirect com-
munication between the ants via the pheromone trails allows
them to find shortest paths between their nest and food sources.
This functionality of real ant colonies is exploited in artificial
ant colonies in order to solve discrete optimization problems.

From a broader perspective, ACO algorithms belong to the
class of model-based search (MBS) algorithms [4], [5]. MBS
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algorithms are increasingly popular methods for solving dis-
crete optimization problems. An MBS algorithm is character-
ized by the use of a (parametrized) probabilistic model
(where is the set of all possible probabilistic models) that
is used to generate solutions to the problem under consider-
ation. The class of MBS algorithms can be divided into two
subclasses with respect to the way the probabilistic model is
used. The algorithms in the first subclass use a given prob-
abilistic model without changing the model structure during
run-time, whereas the algorithms of the second subclass use
and change the probabilistic model in alternating phases. ACO
algorithms are examples of algorithms from the first subclass
that use parametrized probabilistic models without changing
them. In ACO algorithms, the probabilistic model is called the
pheromone model. The pheromone model consists of a set of
model parameters , that are called the pheromone trail pa-
rameters. The pheromone trail parameters have values

, called pheromone values. At run-time, ACO algorithms try
to update the pheromone values in such a way that the prob-
ability to generate high-quality solutions increases over time.
The pheromone values are updated using previously generated
solutions. The update aims to concentrate the search in regions
of the search space containing high-quality solutions. In partic-
ular, the reinforcement of solution components depending on
the solution quality is an important ingredient of ACO algo-
rithms. It implicitly assumes that good solutions consist of good
solution components. To learn which components contribute to
good solutions can help to assemble them into better solutions.
In general, the ACO approach attempts to solve an optimization
problem by repeating the following two steps.

1) Candidate solutions are constructed using a pheromone
model; that is, a parametrized probability distribution
over the solution space.

2) The candidate solutions are used to modify the
pheromone values in a way that is deemed to bias
future sampling toward high-quality solutions.

In this paper, we introduce a new framework for im-
plementing ACO algorithms. We call this framework the
hyper-cube framework (HCF) for ACO.1 The framework is
based on changing the pheromone update rules used in ACO
algorithms so that the range of values the pheromone trail
parameters can assume is limited to the interval [0,1]. The main
motivation that led us to introduce the HCF is the observation
that in standard ACO algorithms the pheromone values, and
therefore the performance of the algorithms, strongly depend
on the scale of the problem. In other words, a standard ACO

1A preliminary version of the HCF for ant colony optimization was introduced
in [6].
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algorithm can give different results, and more generally, have
a different behavior, when applied to two isomorphic prob-
lems differing only in that one is obtained from the other by
multiplying the objective function by a constant value. This is
an undesirable property, which is removed by implementing
ACO algorithms in the HCF. Additionally, the HCF makes
some aspects of the theoretical analysis of ACO algorithms
easier, and, on the practical side, makes ACO algorithms more
robust. The new update rules also allow an insightful graphical
interpretation. All these aspects will be discussed in the rest of
the paper, whose organization is as follows.

In Section II, we outline the Ant System (AS), which was the
first ACO algorithm to be proposed. In that context, we give a
precise definition of the solution components and of the con-
struction graph in ACO. In Section III, we propose the HCF
for ACO algorithms and we give its graphical interpretation. In
Section IV, we present some theoretical results obtained using
the HCF, while we focus on the practical benefits of the HCF
in Section V. Section VI presents some computational results in
which we show that the proposed algorithm, although not op-
timized for the considered problem, has a rather good perfor-
mance. Section VII offers a summary and outlines future work.

II. ANT SYSTEM AND COMBINATORIAL OPTIMIZATION

Informally, AS [1], [3] works by letting a set of artificial ants
probabilistically and incrementally build solutions to the combi-
natorial optimization problem under consideration. At each step
of the construction process, ants make probabilistic decisions bi-
ased by the pheromone values. The issue that we discuss in this
section is how to map the considered problem to a representa-
tion that can be used by the artificial ants to build solutions.

A. Solution Components and Construction Graph

In the following, we give a formal characterization, as given
for example in [7], of the representation the artificial ants use.

Let us consider the minimization2 problem ,
where is the set of candidate solutions, is the objective func-
tion which assigns to each candidate solution an objective
function (cost) value , and is a set of constraints. The goal
is to find a globally optimal feasible solution ; that is, a min-
imum cost feasible solution to the minimization problem.

The problem is mapped on a problem that can be
characterized by the following list of items.

• A finite set of opportunely defined
solution components.

• The states of the problem, defined in terms of sequences
of finite length over the elements

of . The set of all possible states is denoted by . The
length of a sequence , that is, the number of components
in the sequence, is expressed by . The maximum length
of a sequence is bounded by a positive constant .

• The set of (candidate) solutions , with .
Given this formulation, ants build solutions by performing

randomized walks on the completely connected graph

2Note that minimizing over an objective function f is the same as maximizing
over�f . Therefore, every combinatorial optimization problem can be described
as a minimization problem.

whose vertexes are the components and
the set fully connects the components . The graph
is called construction graph and elements of are called
connections. The problem constraints are implemented in
the policy followed by the ants. In most applications, ants
construct feasible solutions. However, sometimes it may be
necessary or beneficial to let them construct also infeasible
solutions. Components and connections can
have associated a pheromone trail parameter: , if associated
to components, and , if associated to connections. The
values of the pheromone trail parameters—called pheromone
values—are denoted by , respectively, . The pheromone
trail parameters encode a long-term memory about the search
process that is updated by the ants themselves. The pheromone
values are used by the ants’ heuristic rule to make probabilistic
decisions on how to move on the graph.

This general description, which leaves a large amount of
freedom to the algorithm designer in the definition of the solu-
tion components and of the construction graph, was motivated
(in [7]) by the desire to include in the ACO metaheuristic both
algorithms designed for NP-hard problems and algorithms
for network routing problems. However, when only NP-hard
problems are considered, one can give a more precise definition
of the solution components and of the construction graph.
To do so, we first give a formal definition of a combinatorial
optimization problem.

Definition 1: A Combinatorial Optimization problem
is defined by:

• a set of discrete variables with values
, ;

• a set of constraints among variables;
• an objective function to be

minimized.

The set of all possible feasible assignments is

satisfies all the constraints

The set is usually called a search (or solution) space, as
each element of the set can be seen as a candidate solution.
A solution is called a globally optimal solution, if

. The set of all globally optimal solutions
is denoted by . To solve a combinatorial optimization
problem one has to find a solution .

Given the above definition, we call the combination of a de-
cision variable and one of its domain values a solu-
tion component, denoted by . We denote a partial solution
by (corresponding to a state of the problem) and the fact that
a solution component is part of the partial solution by

. The construction graph is the completely connected
graph of all the solution components.

In contrast to the more general description of the solution
components as given at the beginning of this subsection (and
in [7]), pheromone trail parameters can only be assigned
to solution components . The value of a pheromone
trail parameter —called pheromone value—is denoted by

. The set of all pheromone trail parameters is denoted by .
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B. AS

The pseudocode for the AS algorithm is shown in Algo-
rithm 1. In this algorithm, , , is the solution
constructed by ant , and is the number of ants. After the
initialization of the pheromone values, at every step of the
algorithm each ant constructs a solution. These solutions are
then used to update the pheromone values. The components of
the AS algorithm are explained in more detail in the following.

Algorithm 1 Pseudocode for Ant System
InitializePheromoneValues
while stop conditions not satisfied do
for do

ConstructSolution
end for
ApplyPheromoneUpdate( , )

end while

InitializePheromoneValues : At the beginning of the algo-
rithm all the pheromone values are initialized to the numerical
value . This value is small (i.e., in [0,1]) as in most ACO
algorithms.3

ConstructSolution : In the construction phase an ant incre-
mentally constructs a solution by adding solution components
to the partial solution constructed so far. The probabilistic
choice of the next solution component to be added is done by
using the transition probabilities

(1)

where denotes the set of feasible solution components
that an ant is allowed to add to the current partial solution
(such that the resulting partial, or complete, solution is feasible).
The transition probabilities are determined by a function that
is called the state transition rule, which is a function of the
pheromone values and possibly of other information. The state
transition rule used by AS determines the probability of adding
to the current partial solution a feasible solution component

as the ratio between ’s pheromone value
and the sum of the pheromone values on all feasible solution
components.

ApplyPheromoneUpdate ( , ): Once all ants
have constructed a solution, the following rule for updating the
pheromone values is applied:

(2)

for , . is the set of so-
lutions that were generated in the current iteration,
is a parameter called evaporation rate, and is a
function such that , , ,

. is commonly called the quality function. The goal
of this update rule is to increase the pheromone values of solu-
tion components that have been found in high-quality solutions.

3A notable exception isMAX�MIN Ant System [8], in which c is usually
set to a quite large number.

Although the AS algorithm provides the basic underlying
mechanism of ACO algorithms to solve combinatorial optimiza-
tion problems, in the form described above it is not very effec-
tive. Therefore, in the last couple of years a number of changes
and extensions have been proposed that make ACO algorithms
very effective, often reaching state-of-the-art performance (see
[9] and [10] for overviews). The improvements over AS include
ACO algorithms such as the Ant Colony System [11], and the

Ant System [8]. Important features
of these algorithms are elitist strategies, diversification and in-
tensification mechanisms and, in the case of , lower
and upper bounds to the pheromone values. Also, the application
of local search to the solutions constructed by the ants proved
to be very effective. The interested reader will find a general de-
scription of ACO algorithms in [7] and [10].

C. Examples

In this subsection, we give two examples of how the intro-
duced formalization can be used to describe ACO algorithms.

ACO for the ATSP: The asymmetric traveling salesman
problem (ATSP) [12] is a NP-hard combinatorial optimiza-
tion problem where the goal is to find the shortest tour (a
Hamiltonian cycle) in a completely connected, directed graph

with edge weights. The ATSP can be modeled as
follows. To every node , we assign a decision variable

. The domain for a decision variable consists of
values , and , where the value

corresponds to the edge from node to node . A point in the
domain space corresponds to a feasible solution to the ATSP if
the edges corresponding to the values of the decision variables
constitute a Hamiltonian cycle in . The objective function
gives, for each feasible solution, the sum of the edge-weights of
the edges in the corresponding Hamiltonian cycle. The ATSP
is a constrained problem, as not all points in the domain space
correspond to feasible solutions. As outlined above, to every
combination of decision variable and domain value , we
associate a model parameter .

The construction of solutions works as follows. One of the de-
cision variables, say , is chosen uniformly at random. Then

construction steps are performed. In the following, de-
notes a partial solution where the lower index denotes the deci-
sion variable which has to be dealt with in the current step (i.e.,
if in the previous construction step a decision variable was
assigned a value , then in the current construction step we
have to assign a value to decision variable ). The transition
probabilities in each of these construction steps are the
following:

if

otherwise.
(3)

The last construction step consists in assigning the value
to the last untreated decision variable . This description of
ACO for the ATSP is equivalent to the one given in [3].

ACO for subset problems: In subset problems such as the
knapsack problem (KP) [13] or the -cardinality tree problem
(KCT) [14], we are given a set of items . From this set of
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items a subset must be selected that satisfies the constraints and
gives the optimal objective function value. Therefore, this kind
of problem can be modeled as follows: To each item we as-
sign a binary decision variable . Then, for every variable ,
we have two solution components, corresponding to
and corresponding to . In order to construct a solu-
tion, an ant incrementally adds items to the partial solution it is
constructing, using the following transition probabilities:

if

otherwise.
(4)

The set consists of all components that correspond
to items that are not selected yet, and that can be added to the
current partial solution without violating feasibility. For an
example of an ACO algorithm for subset problems, see [15].

III. THE HCF

In the AS algorithm described in the previous section, we
can regard the set of pheromone values as a -dimensional
vector . By applying the pheromone update at the end of every
iteration, this vector is changed. It moves in a -dimensional
hyperspace defined by the lower and upper limits of the range
of values that the pheromone trail parameters can assume. We
will denote this hyperspace in the following by . For the AS
algorithm, these limits are given as follows.

Proposition 1: For any pheromone value , the following
holds:

(5)

where . By , we denote the pheromone values at
iteration .

Proof: The maximum possible increase of a pheromone
value with in any iteration is times if
all the ants produce the same optimal solution . Therefore,
due to evaporation, the pheromone value at iteration is
bounded by

(6)

where is the initial value for all the pheromone trail parame-
ters. Asymptotically, because , this sum converges to

.
The dependency of the upper limit for the pheromone values

on the quality function implies that the limits of can
be very different depending on the quality function and there-
fore depending on the problem instance tackled. In contrast,
the pheromone update rule of the HCF as described in the fol-
lowing implicitly defines the hyperspace independently of
the quality function and of the problem instance tackled.

The pheromone update rule of the AS algorithm in the HCF
is the following:

(7)

for , . The difference be-
tween this pheromone update rule and the one that is used in
the standard AS algorithm (2) consists of the multiplication of
the amount of added pheromone by and the normalization of
this added amount of pheromone.

In order to give a graphical interpretation of the AS update
rule in the HCF, we consider a solution to the problem from
a different point of view. With respect to a solution , we
partition the set of solution components into two subsets, the
set in that contains all solution components , and

out in. In this way, we can associate to a solution
a binary vector of dimension , where the position corre-
sponding to solution component is set to 1 if in,
to 0 otherwise. This means that we can regard a solution as a
corner of the -dimensional hypercube. Therefore, the set of
feasible solutions can be regarded as a (sub)set of the corners
of the -dimensional hypercube. In the following, we denote
the convex hull of by . It holds that

(8)

For an example, see Fig. 1(a). In the following, we give a graph-
ical interpretation of the pheromone update rule in the HCF.
When written in vector form, (7) can be expressed as

(9)

where is a -dimensional vector with

(10)

and

(11)

Vector is a vector in , the convex hull of , as
and . It also holds that vector is

the weighted average of binary solution vectors. The higher the
quality of a solution , the higher its influence on vector

. Simple algebra allows us to express (9) as

(12)

This shows that the application of the AS pheromone update
rule in the HCF determines a shift of the current pheromone
value vector toward [see Fig. 1(b)]. The size of this shift
is determined by the parameter . In the extreme cases, there
is either very little update (when is very close to zero), or
the current pheromone value vector is replaced by (when

). Furthermore, if the initial pheromone value vector is
in , it remains in , and the pheromone values are bounded
to the interval [0,1]. This means that the HCF, independently
of the problem instance tackled, defines the hyperspace for the
pheromone values as the -dimensional hypercube.

In order to emphasize that the HCF is not restricted to
the AS algorithm, we show that the pheromone update rule
in the HCF can be easily applied to two of the best-known
and experimentally most successful versions of the ACO
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(a) (b)

Fig. 1. Set S of feasible solutions consists of the three vectors (0,0,0), (1,1,0), and (0,1,1). The gray shaded area depicts the set ~S . In (b), two solutions have been
generated by two ants. The vector ~m is the weighted average of these two solutions, (0,0,0) is of higher quality, and ~� will be shifted toward ~m as a result of the
pheromone value update rule (7). (a) Example for the convex hull of binary solution vectors. (b) Example for the pheromone update in the HCF.

metaheuristic: Ant Colony System (ACS) and
Ant System . These algorithms are characterized by
the use of only one solution, denoted in the following by ,
for every pheromone update. From (9) to (12), it follows that
the pheromone update rule for both ACS and in the
HCF is

(13)

So, the old vector is shifted toward the updating solution
in vector form.

IV. THEORETICAL RESULTS

The desired behavior of a MBS algorithm for optimization
can be stated as follows. The average quality of the generated
solutions should grow from iteration to iteration. This is desir-
able, as it usually increases the probability of improving the best
solution found over time. In the following, we show that the AS
algorithm in the HCF shows this behavior. In order to do so,
we analyze the expected behavior of the algorithm. This can be
done by changing the pheromone values at each iteration ac-
cording to the expected update under the assumption that the
number of solutions generated per iteration is infinite. This way
of examining the expected behavior of an algorithm is known
from the field of evolutionary computation (see, for example,
the zeroth-order model proposed in [16]).

We measure the expected quality of the solutions
generated per iteration as follows:

(14)

where is the probability that solution is generated
given the current pheromone values. We examine the AS algo-
rithm in the HCF on unconstrained problems. By unconstrained
problems, we mean that in a solution a decision variable can
take any value of its domain, independently of the values of the
other decision variables. For the selected type of problem, the

construction of a solution is done by sampling a value for every
decision variable according to the following probabilities:

(15)
As we assume an infinite number of solutions to be generated at
each iteration, the pheromone value update in the HCF can be
stated as follows:

(16)
for , , where is the iteration counter.

Theorem 1: The AS algorithm in the HCF applied to uncon-
strained problems has the property that pheromone values can be
interpreted as probabilities throughout the run of the algorithm,
provided that the initial setting is such that they are probabili-
ties.

Proof: Assume that , at
iteration . Then, it holds that

(17)

Then, for it holds that

and, therefore, for all ,
and .

In order to proceed, we also need the following result ob-
tained by Baum and Sell in 1968 [17].

Theorem 2: Let be a polynomial in the variables
where and , , with nonneg-
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Fig. 2. Example for Theorem 2, where n = 1 and m = 3. Therefore, given
are the three variablesX ,X , andX . Furthermore, given is a polynomial
W : D [ @D 7! IR, where a point ~x 2 D [ @ D � IR must satisfy the
following conditions: 1) x � 0, for j = 1, 2, 3, and 2) x +x +x = 1.
Therefore, D [ @D is the convex hull of the three vectors (1,0,0), (0,1,0), and
(0,0,1). Given a point ~x 2 D, Theorem 2 claims that: 1) ~y = M(~x) is a point
in D [ @D, where the mapping M is defined by (18); 2) W (~y) > W (~x),
unless ~x = ~y; and 3) for all ~z = (1 � �)~x + �~y, � 2 (0; 1], it holds that
W (~z) > W (~x), unless ~z = ~y.

ative coefficients. The continuous values of these variables are
denoted by . Let denote the manifold with boundary
given by: , for all . Define a
mapping such that is obtained by

(18)

Then, for , it holds that , for all
. Furthermore

(19)

In other words, is a growth transformation for the polynomial
. Inequality (19) also holds for all the points lying on the

segment connecting and . This means that for all
, , it holds that

(20)

See Fig. 2 for an example. Using this result, we can prove the
following theorem.

Theorem 3: For the expected quality of the solutions gener-
ated at each iteration by the AS algorithm in the HCF applied to
unconstrained problems, it holds that

(21)

as long as at least one pheromone value changes from iteration
to iteration .

Proof: Because of Theorem 1, we can replace the function
on the pheromone trail parameter set by a function

on the parameter set , , ,

where the value of a parameter is . Then it
holds that

(22)
where

(23)

with

if is characterized by

...
...

if is characterized by

Now we identify the function with the polynomial of
Theorem 2. In the following, we show that the update of the
values of the parameters of function (that is the pheromone
update) is equivalent to the mapping defined by (18). First,
we consider the case . From (16), the pheromone update
expressed in terms of parameter set reduces to

(24)

Furthermore, it holds that

(25)

where is the probability to generate solution
under the assumption that . This probability can be

expressed as

(26)

Multiplying both sides of (25) by , we obtain that

(27)
which shows the equivalence of the numerators of the fractions
on the right-hand side of (18) and (24). By summing both sides
of (27) over all domain values (i.e., ), we obtain that

(28)

which shows the equivalence of the denominators of the frac-
tions on the right-hand side of (18) and (24). Using Theorem
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2 we obtain that and therefore that
for . The general case

follows from (20).
This result shows that the AS algorithm in the HCF is (in

expectation) able to improve the average quality of the solutions
generated per iteration by only (implicitly) using first order
derivatives and without adjusting or computing optimal step
sizes. This is in contrast to many conventional gradient methods
[18], for which an increase in quality is guaranteed only when
infinitesimal steps are taken, and determining the optimal step
size entails computing higher order derivatives.4 Moreover,
this result shows a relation between ant colony optimization
and other statistical learning procedures that can be considered
as discrete dynamical systems [20]. Examples are statistical
learning procedures for relaxation labeling networks [21],
for speech recognition [22], evolutionary game theory and
population dynamics [23], and the convergence theory of some
algorithms from the field of evolutionary computation [24].
However, in general, this result cannot be transferred to ACO
algorithms applied to constrained optimization problems. The
reason for this is that in constrained problems the probability
of choosing a domain value for a decision variable depends on
the values of the other decision variables. Therefore, (25) does
not hold and Theorem 3 cannot be proven anymore.

V. PRACTICAL BENEFITS

In addition to the theoretical properties discussed in the pre-
vious section, the implementation of ACO algorithms in the
HCF brings also some practical benefits. First, the robustness
of ACO algorithms increases due to the automatic scaling of
the objective function values. This is shown in Section V-A via
opportunely designed experiments. Second, the handling of the
pheromone values is simplified as shown on the example of the
implementation of a in the HCF in Section V-B.

A. Automatic Scaling of Objective Function Values

When developing an algorithm to tackle NP-hard combina-
torial optimization problems, one of the goals of the algorithm
designer is to develop a robust algorithm whose behavior is in-
dependent of the range of objective function values that the par-
ticular problem instance tackled can assume. In other words,
the behavior of an optimization algorithm should be roughly in-
dependent of whether a problem instance has objective func-
tion values ranging, for example, in the interval [0,1], or in the
interval [0,1000]. In the following, we show that ACO algo-
rithms implemented in the HCF do have this property, in con-
trast to standard ACO implementations. We compare the AS
algorithm in its standard version with AS in the HCF by ap-
plying them to unconstrained binary problems. We generated a
binary problem on 15 variables ( solutions) as-
signing a random objective function value from the range [0,1]
to every solution (applying a uniform sampling process). We

4However, the computation of higher order derivates can sometimes be re-
placed by line-search procedures [19] that do not require any derivative compu-
tation.

denote this problem instance by instance1. From this instance
we generated another problem instance, instance2, by multi-
plying every objective function value by , and another one,
instance3, by multiplying every objective function value of in-
stance1 by . Our goal is minimization. Therefore, we choose
as quality function for all solutions . We ap-
plied each of the two algorithm versions, AS and AS in the
HCF, 100 times with six different parameter settings (number
of ants , ) to the three dif-
ferent problem instances. The termination criterion was 500 it-
erations for all runs. For both algorithm versions we initialized
the pheromone values to 0.5. This is the natural setting for ACO
algorithms implemented in the HCF, as a setting of 0.5 gives
equal chance to both update directions. Fig. 3 shows the results
in summarized form. Each of the four graphs has the following
format: on the axis are the instances, on the axis the number
of ants, and on the axis is the percentage above the optimum
of the value of the best solution found by the algorithm speci-
fied on the axis and the axis. The values on the axis are
averaged over 100 trials.

As the three problem instances are—except for the scale of
the objective function values—the same, we would expect the
performance of the algorithms to change only along the axis
(i.e, we expect to observe an increase in performance when the
number of ants increases). Otherwise, for a fixed number of ants
we would expect an algorithm to show the same average per-
formance for all three problem instances. However, the graphs
in Fig. 3 show that this is not the case, and that for a fixed
number of ants, the performance of AS is different on the three
problem instances. Fig. 3(a) and (c) show an improvement of AS
along the axis (changing range of objective function values)
and the axis (increasing number of ants). In general, the be-
havior of AS is worse for problem instance1, because many of
the quality values are very high in comparison to the initial
pheromone values. This leads to a quite fast convergence of the
AS algorithm when applied to instance1, as illustrated in Fig. 4.
In contrast, the behavior of AS in the HCF, shown in Fig. 3(b)
and (d), is as expected: for a fixed number of ants, the perfor-
mance is the same on the three problem instances. This indicates
that the behavior of ACO algorithms in the HCF is likely to be
more robust than the behavior of standard ACO implementa-
tions. As the comparison of Fig. 3(a) and (b) with Fig. 3(c) and
(d) shows, this conclusion seems to be independent of the set-
ting of . Of course, it would be possible to fine tune the ini-
tial pheromone values in a standard ACO implementation de-
pending on the problem instance tackled. However, this is not
necessary for ACO implementations in the HCF, as the natural
initial value of 0.5 gives an equal chance to both update direc-
tions. In this sense, an ACO algorithm implemented in the HCF
has one parameter fewer.

B. Practical Benefits of Implementing in the HCF

In this subsection, we show that the HCF confinement of
the pheromone values in the interval [0,1] helps in making
decisions concerning the update of the pheromone values. For
this purpose, we choose the Ant System

[8], which is one of the best-performing ACO
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(a) (b)

(c) (d)

Fig. 3. The x axis (instances) and the y axis (number of ants) define different settings of the two algorithms, that are AS, (a) and (c), and AS in the HCF, (b)
and (d). On the x axis are the instances, on the y axis the number of ants, and on the z axis is the percentage above optimum of the value of the best solution
found by the algorithm that is specified by x axis and y axis. The values on the z axis are averaged over 100 trials. instance1 is a binary problem on 15 decision
variables (2 = 32786 solutions) with objective function values randomly chosen from [0,1]. instance2 is equivalent to instance1 with the objective function
values multiplied by 10 . The same holds for instance3, where the objective function values are multiplied by 10 . (a) Results of AS for � = 0:1. (b) Results of
AS in the HCF for � = 0:1. (c) and (d) Results of the two algorithms for � = 0:01. The legends of the four graphs indicate the “height” of the contour lines given
on the xy-plane (i.e., they give a contour map of the performance surface). (a) AS, � = 0:1. (b) AS in the HCF, � = 0:1. (c) AS, � = 0:01. (d) AS in the HCF,
� = 0:01.

(a) (b)

Fig. 4. Performance of (a) AS and (b) AS in the HCF applied to instance1, with settings n = 10 and � = 0:01. The curves are averaged over 100 runs and
show the values of the best solutions found over time (indicated by the percentage above the optimal solution value). Every 20th iteration we additionally show the
standard deviation in form of an error bar. The results show that AS converges earlier and to a worse solution than AS in the HCF. The high standard deviation of
AS after convergence indicates a premature convergence. (a) AS applied to instance1. (b) AS in the HCF applied to instance1.

variants,5 and the unconstrained binary quadratic programming
(UBQP) problem.6

1) UBQP: The UBQP problem can be stated as follows.
Given are binary decision variables , . All

5MMAS owes its name to the fact that it applies a lower bound � and
an upper bound � to the pheromone values. The reason for this is to prevent
the algorithm from converging to a solution (an ACO algorithm has converged
to a solution s if only s has a probability greater than � to be generated, with �

close to zero).
6We choose the UBQP problem because it is easy to explain and understand,

so that it should not distract the reader from our main goal in this section: the
illustration of the general methodology.

points in the domain space are feasible solutions. Additionally,
a symmetric quadratic matrix of size is given whose en-
tries denote the gain of having and in a
solution . The objective function is defined as follows:

(29)

The goal is to maximize . Difficult UBQP problems, which are
NP-hard, have negative as well as positive entries in (in fact,
all positive entries would make the solution with the
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optimal solution; similarly for all negative entries). According
to Section II, we model the UBQP as follows. For every binary
decision variable , there are two solution components:
(corresponding to ) and (corresponding to ).
We denote by the fact that in solution .
For every solution component , we have a
pheromone trail parameter . We choose the quality function

(30)

where is a constant such that .
2) in the HCF for the UBQP: A high-level

description of the algorithm in the HCF for UBQP
is given in Algorithm 2.7 The data structures used by this
algorithm, in addition to counters and to the already defined
pheromone trails , are:

• the iteration-best solution : the best solution generated
in the current iteration by the ants;

• the best-so-far solution : the best solution generated
since the start of the algorithm;

• the restart-best solution : the best solution generated
since the last restart of the algorithm;

• the convergence factor , : a measure of how
far the algorithm is from convergence;

• the Boolean variable bs_update: it becomes true when the
algorithm reaches convergence.

The algorithm works as follows (note that we give here a
high-level description of the algorithm working, and that the
main procedures used by the algorithm are explained in detail
in the following of the section). First, all the variables are ini-
tialized. In particular, the pheromone values are set to their ini-
tial value 0.5 by the procedure InitializePheromoneValues .
Second, the ants apply the ConstructSolution procedure
to construct solutions. These solutions are then improved
by the application of the LocalSearch procedure. Third, the
value of the variables , and is updated (note that, until
the first restart of the algorithm, it holds that ). Fourth,
pheromone trail values are updated via the ApplyPheromone-
Update( , bs_update, , , , ) procedure. Fifth, a new
value for the converge factor is computed. Depending on this
value, as well as on the value of the Boolean variable bs_up-
date, a decision on whether to restart the algorithm or not is
taken. If the algorithm is restarted, then the procedure Reset-
PheromoneValues is applied and all the pheromones are
reset to their initial value (0.5). The algorithm is iterated until
some opportunely defined termination conditions are satisfied.
Once terminated, the algorithm returns the best-so-far solution

.
The main procedures of Algorithm 2 are now described in

detail.
ConstructSolution : Solutions are constructed by sampling

a value for every decision variable according
to the probabilities given by

(31)

7The commented source code of the algorithm is freely available under the
GNU license and can be downloaded from the software section of the ACO
home page [25].

LocalSearch : To each solution constructed by the ants a
steepest descent local search based on the one-flip neighbor-
hood [26] is applied. In the one-flip neighborhood a solution
is a neighbor of a solution if and are different in exactly
one variable.

Algorithm 2 MMAS in the HCF for UBQP

input: a problem instance (n, M)

sbs  NULL

srb  NULL

cf  0

bs_update FALSE

InitializePheromoneValues(T )

while stop conditions not satisfied do

for j  1 to na do

sj  (T )

sj  (sj)

end for

sib  argmax(F (s1); . . . ; F (sn ))

if srb = NULL or f(sib) > f(srb) then srb  sib

if sbs = NULL or f(sib) > f(sbs) then sbs  sib

ApplyPheromoneUpdate(cf,bs_update,T ,sib,srb,sbs)

cf  ComputeConvergenceFactor(T )

if cf > 0:999 then

if bs_update=TRUE then

ResetPheromoneValues(T )

srb  NULL

bs_update FALSE

else

bs_update TRUE

end if

end if

end while

output: sbs

ApplyPheromoneUpdate( , bs_update, , , , ): In
the standard implementation as described in [8], the
following schedule for updating the pheromone values is used.
At the beginning of a restart phase (i.e., when bs_update=FALSE

and is close to zero), the iteration best solution is used
for updating the pheromone values. Then, as the algorithm pro-
gresses (i.e., when increases), more and more often the best
solution found in the current restart phase is used. Shortly
before convergence (i.e., , but close to 0.999), only
the restart-best solution is used, and once convergence is
detected (i.e., ), the control variable bs_update is
set to TRUE, which has the effect that the best-so-far solution

is used for updating the pheromone values. This is done in
order to intensify the search around the best-so-far solution and
can have the effect to move the search in a different zone of the
search space, with the consequent decrease of the convergence
factor. If this is not the case, at the next iteration of the algo-
rithm the ResetPheromoneValues procedure is applied and
the algorithm restarted.

As we have seen, in the schedule described above each of the
three solutions, , and , has a certain influence (that
can be zero) on the pheromones update at different stages of the
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algorithm. In general, to scale this influence is quite difficult,
and may require a lot of experimentation. This is not the case
for an implementation of the same algorithm in the HCF. In fact,
instead of using only one solution per iteration for updating the
pheromone values, we can use a weighted average of the three
solutions , and . In the HCF, the update is therefore
specified by

(32)

with

(33)

where is the weight of solution , is the weight of solu-
tion , is the weight of solution , and

. After the pheromone update rule (32) is applied, pheromone
values that exceed are set back to (similarly for ).

Equation (33) allows to choose how to schedule the relative
influence of the three solutions used for updating pheromones.
A typical update schedule used by in the HCF is shown
in Table I. This schedule uses only the iteration best solution in
the early stages of the search (i.e., when ). Then, when
the value of the convergence factor increases (i.e.,

), one third of the total influence is given to the restart-best
solution, which then increases to two thirds when

. Eventually, all the influence is given to the restart-best so-
lution (i.e., when ). Once the value of the conver-
gence factor raises above 0.999, the Boolean control variable
bs_update is set to TRUE, and all the influence is given to the
best-so-far solution.

ComputeConvergenceFactor : The convergence factor ,
which is a function of the current pheromone values, is com-
puted as follows:

This formula says that when the algorithm is initialized (or reset)
so that all pheromone values are set to 0.5, then , while
when the algorithm has converged, then . In all other
cases, has a value in (0,1).

Finally, we want to point out another benefit of implementing
in the HCF. This benefit is in setting the upper bound

, respectively, the lower bound , for the pheromone
values. As we have seen in Theorem 1, the upper limit8 of the
pheromone values in standard ACO implementations depends
on the value of an optimal solution to the problem instance
tackled. Therefore, the upper limit is in general unknown, so
that it is difficult to introduce an upper bound for the pheromone
values. In the original paper on [8], the upper bound

is set to , which is an approximation of the
upper limit. This means that the upper bound has to be reset each
time a new best-so-far solution is found. As the lower bound

depends on the setting of (see [8]), has also to

8We distinguish between “upper limit” and “upper bound”, that is a value
lower than the upper limit. The upper bound prevents the pheromone values
from reaching the upper limit. Similarly, for “lower limit” and “lower bound”.

TABLE I
SETTING OF � , � , AND � DEPENDING ON THE CONVERGENCE FACTOR cf

AND THE BOOLEAN CONTROL VARIABLE bs_update

TABLE II
COMPARISON OFMMAS IN THE HCF WITH THREE METHODS FROM THE

LITERATURE ON 30 OF THE BIGGEST AVAILABLE UBQP PROBLEM INSTANCES.
THE FIRST COLUMN OF EACH TABLE GIVES THE NAME OF THE PROBLEM, THE

SECOND COLUMN THE BEST-KNOWN RESULT, AND THE OTHER COLUMNS THE

RESULTS OBTAINED BY THE FOUR ALGORITHMS COMPARED. FOR EACH OF

THESE COLUMNS, VALUES THAT ARE AS GOOD AS THE BEST-KNOWN RESULT

ARE SHOWN IN BOLDFACE. (a) COMPARISON ON THE 10 BIGGEST PROBLEM

INSTANCES PROVIDED BY GLOVER et al. IN [30]. (b) COMPARISON ON 20 OF

THE BIGGEST PROBLEM INSTANCES PROVIDED BY BEASLEY IN [28]

(a)

(b)

be updated every time a new best-so-far solution is found. How-
ever, if the algorithm is implemented in the HCF, we
can avoid this inconvenience, as the upper and lower limits of
the pheromone values are known to be, respectively, 1 and 0.
For our algorithm in the HCF for UBQP, we set the
upper bound to 0.999 and the lower bound to 0.001.

VI. SOME COMPUTATIONAL RESULTS

As already mentioned, the main contribution of this paper is
in the methodology that it puts forward, rather than in the exper-
imental results obtained. However, the simple (and not tuned)
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algorithm that we described above (Algorithm 2) achieves re-
sults that compete in quality with other methods for the UBQP
published in the scientific literature. We show this by applying

in the HCF to 30 of the biggest benchmark instances
available at the OR-LIB [27], and by comparing the results (in
terms of the best solution values found) to three other methods,
namely genetic local search (GLS) by Merz and Freisleben [26],
simple tabu search (STS) and simple simulated annealing (SSA)
by Beasley [28]. The GLS algorithm uses exactly the same local
search procedure as in the HCF, while STS and SSA
are both based on the one-flip neighborhood, which is the neigh-
borhood that is used by the local search procedure used by GLS
and in the HCF. We applied in the HCF
twenty times to each problem instance with the parameter set-
ting , (where is the number of ants), and

, , and as specified in Table I. As the time limit for
each trial, we set 20 s for the 200-variable problems, 30 s for the
500-variable problems, and 200 s for the 1000-variable prob-
lems. The results for in the HCF were obtained on
a PC with Athlon 1100 MHz processor under Linux. Because
the computers used to run experiments are very different and
average results are available only for GLS, we limit the com-
parison of the four algorithms to the best solution values they
found.9 The results are presented in Table II. They show that

in the HCF and GLS have a comparable performance
(i.e., in the HCF finds the best known solution for 25
of the 30 problem instances, whereas GLS does so for 26 of the
30 problem instances.). Both algorithms clearly outperform STS
and SSA. In this context, it is interesting to note that GLS, and
therefore also in the HCF, are not much worse than
more sophisticated state-of-the-art algorithms such as the one
proposed in [29].

VII. CONCLUSION

In this paper, we have proposed the HCF for ant colony opti-
mization (HCF-ACO). This framework brings two main benefits
to ACO researchers. First, from the point of view of the theo-
retician, we prove that AS in the HCF, when applied to uncon-
strained problems, generates solutions whose expected value
monotonically does not decrease with the number of algorithm
iterations. Second, from the point of view of the experimental
researcher, we show through two examples that the implemen-
tation of ACO algorithms in the HCF increases their robustness
and makes it easier the handling of the pheromones.

It is also interesting to note that the HCF helps in clarifying
the relations between ant colony optimization and other MBS
algorithms like population-based incremental learning [31] and
the univariate marginal distribution algorithm [32]. We refer the
interested reader to [5] for more information on this subject.
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